
Oracle® Mobile Application Framework
Developing Mobile Applications with Oracle Mobile Application

Framework

2.3.1

E73450-01

June 2016

Documentation that describes how to use Oracle JDeveloper to
create mobile applications that run natively on devices.

Oracle Mobile Application Framework Developing Mobile Applications with Oracle Mobile Application
Framework, 2.3.1

E73450-01

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

Contributing Authors: Puneeta Bharani, Sujatha Joseph

Primary Author: Walter Egan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xix

Audience ... xix

Documentation Accessibility ... xix

Related Documents.. xix

Conventions... xx

What's New in This Guide for MAF Release 2.3.1 .. xxi

New and Changed Features for MAF Release 2.3.1 ... xxi

Other Significant Changes in this Document for MAF Release 2.3.1.. xxii

1 Introduction to Oracle Mobile Application Framework

1.1 Introduction to Mobile Application Framework .. 1-1

1.2 About the MAF Runtime Architecture... 1-2

1.3 About Developing Applications with MAF .. 1-6

1.3.1 About Connected and Disconnected Applications ... 1-9

1.4 MAF Sample Applications ... 1-9

2 Getting Started with MAF Application Development

2.1 Introduction to Declarative Development for MAF Applications ... 2-1

2.2 Creating a MAF Application.. 2-2

2.2.1 How to Create a MAF Application.. 2-3

2.2.2 What Happens When You Create a MAF Application... 2-3

2.3 Defining Application Features for a MAF Application ... 2-4

2.3.1 How to Define an Application Feature ... 2-5

2.4 Adding Content to an Application Feature ... 2-6

2.5 Adding Application Features to a MAF Application... 2-6

2.5.1 How to Add an Application Feature to a MAF Application ... 2-7

2.5.2 What You May Need to Know About Feature Reference IDs and Feature IDs.......... 2-7

2.6 Creating MAF AMX Pages and MAF Task Flows .. 2-7

2.6.1 How to Create a MAF AMX Page.. 2-10

2.6.2 How to Create MAF Task Flows.. 2-12

iii

2.6.3 What Happens When You Create MAF AMX Pages and Task Flows 2-13

2.7 Containerizing a MAF Application for Enterprise Distribution... 2-13

3 Configuring the Content of a MAF Application

3.1 Introduction to Configuring MAF Application Display Information...................................... 3-1

3.2 Setting Display Properties for a MAF Application .. 3-1

3.3 Changing the Launch Screen for Your MAF Application on iOS .. 3-3

3.4 Setting Display Properties for an Application Feature .. 3-4

4 Configuring the Application Navigation

4.1 Introduction to the Display Behavior of MAF Applications ... 4-1

4.2 Configuring Application Navigation.. 4-1

4.2.1 How to Set the Display Behavior for the Navigation Bar .. 4-2

4.2.2 How to Set the Display Behavior for the Springboard ... 4-3

4.2.3 How to Set the Slideout Behavior for the Springboard .. 4-4

4.2.4 How to Set the Display Order for Application Features .. 4-5

4.3 What Happens When You Configure the Navigation Options .. 4-6

4.4 What Happens When You Set the Animation for the Springboard... 4-7

4.5 What You May Need to Know About Custom Springboard Application Features with

HTML Content .. 4-8

4.6 What You May Need to Know About Custom Springboard Application Features with

MAF AMX Content... 4-8

4.7 What You May Need to Know About the Runtime Springboard Behavior 4-12

4.8 Navigating a MAF Application Using Android’s Back Button .. 4-12

4.8.1 How to Configure Behavior of the Android System Back Button 4-14

4.9 Creating a Sliding Window in a MAF Application .. 4-17

4.10 Using Custom URL Schemes in MAF Applications ... 4-18

5 Defining the Content Type of MAF Application Features

5.1 Introduction to Content Types for an Application Feature... 5-1

5.2 Defining the Application Feature Content as Remote URL or Local HTML.......................... 5-2

5.3 Defining the Application Feature Content as a MAF AMX Page or Task Flow..................... 5-5

5.4 What You May Need to Know About Selecting External Resources 5-7

6 Creating the Client Data Model in a MAF Application

6.1 Introduction to the Client Data Model in a MAF Application.. 6-1

6.2 Overview of Creating a Client Data Model in a MAF Application.. 6-3

6.3 Connecting to a REST Service to Create the Client Data Model... 6-4

6.3.1 How to Connect to the REST Service to Retrieve Data Objects..................................... 6-4

6.3.2 What You May Need to Know About the MCS Anonymous Access Key................... 6-6

6.4 Discovering Candidate Data Objects for the Client Data Model.. 6-6

6.4.1 How to Discover Data Objects Using a REST Resource URL.. 6-7

6.4.2 How to Discover Data Objects Using a Sample Payload ... 6-8

iv

6.4.3 How to Discover Data Objects Using a RAML File... 6-9

6.4.4 What You May Need to Know About the Flatten Nested Data Objects Option....... 6-10

6.5 Selecting and Persisting Data Objects for the Client Data Model... 6-10

6.5.1 How to Select and Persist Data Objects .. 6-11

6.5.2 How to Create New Data Objects .. 6-12

6.5.3 How to Modify Data Object Attributes... 6-12

6.6 Specifying Parent-Child Relationships for Data Objects ... 6-13

6.6.1 How to Specify a Parent-Child Relationship for Data Objects 6-15

6.7 Defining CRUD REST Resources... 6-16

6.8 Specifying CRUD REST Resource Details.. 6-18

6.8.1 How to Specify GET (Read) Resource Details.. 6-19

6.8.2 How to Specify Non-GET (Write) Resource Details ... 6-19

6.8.3 How to Add Custom Resources... 6-20

6.8.4 How to Specify Query and Path Parameters.. 6-21

6.8.5 How to Add HTTP Header Parameters.. 6-23

6.9 Setting Runtime Options for the Client Data Model .. 6-23

6.10 Generating the Client Data Model ... 6-25

6.11 Editing the Client Data Model in a MAF Application ... 6-26

6.12 Defining a Custom Resource.. 6-27

6.13 Getting Programmatic Access to Service Objects.. 6-29

6.14 Creating a User Interface from a MAF Client Data Model.. 6-31

6.14.1 How to Create Data Controls from the Client Data Model.. 6-31

6.14.2 What Happens When You Create a Data Control from the Client Data Model 6-32

6.14.3 How to Use the MAF User Interface Generator... 6-33

6.14.4 What Happens When You Generate a User Interface... 6-35

6.15 Synchronizing Offline Transactions from a MAF Application... 6-36

6.15.1 How to View Pending Synchronization Actions... 6-37

6.15.2 How to Add Custom Logic to Handle Failed Synchronization Actions.................. 6-39

6.15.3 What You May Need to Know About Disabling Automatic Synchronization 6-40

7 Localizing MAF Applications

7.1 Introduction to MAF Application Localization... 7-1

7.2 Setting Resource Bundle Options for a MAF Application... 7-2

7.2.1 How to Set the Resource Bundle Options for a MAF Application 7-3

7.3 Defining Text Resources in a Base Resource Bundle.. 7-4

7.3.1 How to Define a Text Resource in a Base Resource Bundle... 7-5

7.3.2 What Happens When You Define a Text Resource in a Base Resource Bundle 7-6

7.4 Creating Locale-Specific Resource Bundles ... 7-7

7.4.1 How to Create a Locale-Specific Resource Bundle.. 7-9

7.5 Editing Resources in Resource Bundles ... 7-10

7.6 Localizing Image Files in a MAF Application ... 7-10

7.7 MAF Support of Languages ... 7-12

7.8 Localizable MAF Properties ... 7-14

v

8 Skinning MAF Applications

8.1 Introduction to MAF Application Skins... 8-1

8.1.1 About the maf-config.xml File.. 8-3

8.1.2 About the maf-skins.xml File.. 8-4

8.2 Adding a Custom Skin to an Application .. 8-6

8.3 Specifying a Skin for an Application to Use .. 8-6

8.4 Registering a Custom Skin ... 8-7

8.5 Versioning MAF Skins .. 8-8

8.6 What Happens When You Version Skins .. 8-8

8.7 Overriding the Default Skin Styles.. 8-9

8.8 What You May Need to Know About Skinning ... 8-11

8.9 Adding a New Style Sheet to a Skin ... 8-12

8.10 Enabling End Users Change an Application's Skin at Runtime ... 8-12

8.11 What Happens at Runtime: How End Users Change an Application's Skin...................... 8-15

9 Reusing MAF Application Content

9.1 Introduction to Feature Archive Files... 9-1

9.2 Using FAR Content in a MAF Application.. 9-1

9.3 What Happens When You Add a FAR as a Library... 9-3

9.4 What Happens When You Add a FAR as a View Controller Project 9-6

9.5 What You May Need to Know About Enabling the Reuse of Feature Archive Resources .. 9-8

10 Using Plugins in MAF Applications

10.1 Introduction to Using Plugins in MAF Applications ... 10-1

10.2 Enabling a Core Plugin in Your MAF Application... 10-3

10.2.1 How to Enable a Core Plugin in Your MAF Application... 10-3

10.2.2 What Happens When You Enable a Core Plugin in Your MAF Application.......... 10-3

10.3 Registering Additional Plugins in Your MAF Application... 10-3

10.3.1 How to Register an Additional Plugin.. 10-3

10.3.2 What Happens When You Register an Additional Plugin for Your MAF

Application .. 10-4

10.4 Deploying Plugins with Your MAF Application .. 10-5

10.5 Importing Plugins from a Feature Archive File .. 10-6

10.6 Using a Plugin in a MAF Application .. 10-6

11 Customizing MAF Application Artifacts with MDS

11.1 Introduction to Applying MDS Customizations to MAF Files... 11-1

11.2 Customizing MAF Applications with MDS... 11-2

11.3 Configuring Customization Layers... 11-4

11.3.1 How to Configure the Layer Values Globally.. 11-5

11.3.2 How to Configure the Application-Level Layer Values... 11-6

11.4 Creating Customization Classes.. 11-7

vi

11.5 Consuming Customization Classes ... 11-10

11.6 Understanding a Customization Developer Role ... 11-14

11.6.1 How to Switch to the Customization Developer Role in JDeveloper..................... 11-15

11.6.2 What You May Need to Know About the Tip Layer .. 11-15

11.7 Enabling Customizations in Resource Bundles... 11-16

11.7.1 How to Create an Application Resource Bundle... 11-16

11.7.2 How to Create a Project Resource Bundle .. 11-17

11.8 Upgrading a MAF Application with Customizations.. 11-19

11.8.1 What Happens in JDeveloper When You Upgrade Applications........................... 11-21

11.8.2 What You May Need to Know About Upgrading FARs.. 11-22

12 Using Lifecycle Listeners in MAF Applications

12.1 Introduction to Lifecycle Listeners in MAF Applications ... 12-1

12.2 Registering a Lifecycle Listener for a MAF Application or an Application Feature 12-4

12.3 What Happens When You Register a Lifecycle Listener ... 12-4

13 Creating MAF AMX Pages

13.1 Introduction to the MAF AMX Application Feature.. 13-1

13.2 Creating Task Flows .. 13-1

13.2.1 How to Create a Task Flow... 13-2

13.2.2 What You May Need to Know About Task Flow Activities and Control Flows.... 13-8

13.2.3 What You May Need to Know About the ViewController-task-flow.xml File..... 13-10

13.2.4 What You May Need to Know About the MAF Task Flow Diagrammer 13-10

13.2.5 How to Add and Use Task Flow Activities .. 13-10

13.2.6 How to Define the Data Control Context Depth for Task Flows 13-25

13.2.7 How to Define Control Flows... 13-27

13.2.8 What You May Need to Know About MAF Support for Back Navigation........... 13-30

13.2.9 How to Enable Page Navigation by Dragging... 13-31

13.2.10 How to Specify Action Outcomes Using UI Components 13-31

13.2.11 How to Create and Reference Managed Beans.. 13-31

13.2.12 How to Specify the Page Transition Style... 13-37

13.2.13 What You May Need to Know About Bounded and Unbounded Task Flows... 13-39

13.3 Creating Views .. 13-47

13.3.1 How to Work with MAF AMX Pages.. 13-48

13.3.2 How to Add UI Components to a MAF AMX Page.. 13-71

13.3.3 How to Add Data Controls to a MAF AMX Page ... 13-85

13.3.4 What You May Need to Know About the Server Communication 13-117

14 Creating the MAF AMX User Interface

14.1 Introduction to Creating the User Interface for MAF AMX Pages....................................... 14-1

14.2 Designing the Page Layout .. 14-2

14.2.1 How to Use a View Component... 14-6

14.2.2 How to Use a Panel Page Component .. 14-6

vii

14.2.3 How to Use a Panel Group Layout Component.. 14-6

14.2.4 How to Use a Panel Form Layout Component.. 14-7

14.2.5 How to Use a Panel Stretch Layout Component ... 14-8

14.2.6 How to Use a Panel Label And Message Component .. 14-9

14.2.7 How to Use a Facet Component... 14-9

14.2.8 How to Use a Popup Component .. 14-16

14.2.9 How to Use a Panel Splitter Component .. 14-21

14.2.10 How to Use a Spacer Component .. 14-22

14.2.11 How to Use a Table Layout Component... 14-23

14.2.12 How to Use a Masonry Layout Component .. 14-24

14.2.13 How to Use an Accessory Layout Component .. 14-27

14.2.14 How to Use a Deck Component... 14-28

14.2.15 How to Use a Flex Layout Component... 14-29

14.2.16 How to Use the Fragment Component ... 14-30

14.3 Creating and Using UI Components .. 14-32

14.3.1 How to Use the Input Text Component.. 14-34

14.3.2 How to Use the Input Number Slider Component ... 14-38

14.3.3 How to Use the Input Date Component ... 14-40

14.3.4 How to Use the Output Text Component... 14-40

14.3.5 How to Use Buttons ... 14-41

14.3.6 How to Use Links ... 14-48

14.3.7 How to Display Images ... 14-49

14.3.8 How to Use the Checkbox Component... 14-50

14.3.9 How to Use the Select Many Checkbox Component .. 14-51

14.3.10 How to Use the Choice Component .. 14-53

14.3.11 How to Use the Select Many Choice Component.. 14-55

14.3.12 How to Use the Boolean Switch Component ... 14-56

14.3.13 How to Use the Select Button Component ... 14-57

14.3.14 How to Use the Radio Button Component... 14-58

14.3.15 How to Use List View and List Item Components.. 14-59

14.3.16 How to Use a Carousel Component .. 14-86

14.3.17 How to Use the Film Strip Component... 14-90

14.3.18 How to Use Verbatim Component .. 14-93

14.3.19 How to Use an Output HTML Component.. 14-94

14.3.20 How to Enable Iteration .. 14-96

14.3.21 How to Refresh Contents of UI Components... 14-97

14.3.22 How to Load a Resource Bundle.. 14-101

14.3.23 How to Use the Action Listener ... 14-103

14.3.24 How to Use the Set Property Listener ... 14-105

14.3.25 How to Use the Client Listener .. 14-107

14.3.26 How to Convert Date and Time Values .. 14-110

14.3.27 How to Convert Numeric Values .. 14-114

14.3.28 How to Enable Drag Navigation.. 14-116

viii

14.3.29 How to Use the Loading Indicator .. 14-120

14.4 Enabling Gestures.. 14-122

14.5 Providing Data Visualization... 14-124

14.5.1 How to Create an Area Chart ... 14-131

14.5.2 How to Create a Bar Chart .. 14-133

14.5.3 How to Create a Range Chart... 14-135

14.5.4 How to Create a Bubble Chart.. 14-136

14.5.5 How to Create a Combo Chart ... 14-138

14.5.6 How to Create a Line Chart .. 14-139

14.5.7 How to Create a Pie Chart .. 14-142

14.5.8 How to Create a Scatter Chart .. 14-145

14.5.9 How to Create a Spark Chart.. 14-147

14.5.10 How to Create a Funnel Chart.. 14-148

14.5.11 How to Create a Stock Chart .. 14-150

14.5.12 How to Style Chart Components ... 14-153

14.5.13 How to Use Events with Chart Components ... 14-154

14.5.14 What You May Need to Know About Customization of Chart Tooltips........... 14-155

14.5.15 How to Enable Sorting of Charts with Categorical Axis 14-155

14.5.16 How to Define the Initial Zooming of Charts .. 14-155

14.5.17 How to Define Stacking of Specific Chart Series ... 14-155

14.5.18 How to Enable Split Dual-Y Axis in Charts ... 14-156

14.5.19 How to Create a LED Gauge .. 14-156

14.5.20 How to Create a Status Meter Gauge .. 14-156

14.5.21 How to Create a Dial Gauge ... 14-158

14.5.22 How to Create a Rating Gauge... 14-159

14.5.23 How to Define Child Elements for Chart and Gauge Components 14-161

14.5.24 How to Create a Geographic Map Component ... 14-165

14.5.25 How to Create a Thematic Map Component ... 14-170

14.5.26 How to Use Events with Map Components... 14-177

14.5.27 How to Create a Treemap Component ... 14-178

14.5.28 How to Create a Sunburst Component ... 14-183

14.5.29 How to Create a Timeline Component ... 14-185

14.5.30 How to Create an NBox Component... 14-189

14.5.31 How to Define Child Elements for Map Components, Sunburst, Treemap,

Timeline, and NBox.. 14-191

14.5.32 How to Create Databound Data Visualization Components 14-192

14.5.33 How to Create Data Visualization Components Based on Static Data 14-205

14.5.34 How to Enable Interactivity in Chart Components... 14-205

14.5.35 How to Create Polar Charts .. 14-206

14.6 Styling UI Components... 14-206

14.6.1 How to Use Component Attributes to Define Style.. 14-206

14.6.2 What You May Need to Know About Skinning .. 14-209

14.6.3 What You May Need to Know About Using CSS ID Selectors for Skinning 14-209

ix

14.6.4 How to Style Data Visualization Components .. 14-209

14.7 Localizing UI Components... 14-212

14.8 Understanding MAF Support for Accessibility .. 14-214

14.8.1 How to Configure UI and Data Visualization Components for Accessibility 14-215

14.8.2 What You May Need to Know About the Basic WAI-ARIA Terms 14-219

14.8.3 What You May Need to Know About the Oracle Global HTML Accessibility

Guidelines .. 14-222

14.9 Validating Input... 14-222

14.10 Using Event Listeners ... 14-225

14.10.1 What You May Need to Know About Constrained Type Attributes for Event

Listeners ... 14-228

15 Using Bindings and Creating Data Controls in MAF AMX

15.1 Introduction to Bindings and Data Controls ... 15-1

15.2 About Object Scope Lifecycles ... 15-2

15.2.1 What You May Need to Know About Object Scopes and Task Flows..................... 15-3

15.3 Creating EL Expressions... 15-4

15.3.1 About Data Binding EL Expressions ... 15-5

15.3.2 How to Create an EL Expression ... 15-6

15.3.3 What You May Need to Know About MAF Binding Properties............................. 15-12

15.3.4 How to Enable Retention of Data Provider State Across Iterators 15-12

15.3.5 How to Reference Binding Containers.. 15-13

15.3.6 About the Categories in the Expression Builder.. 15-15

15.3.7 About EL Events... 15-22

15.3.8 How to Use EL Expressions Within Managed Beans ... 15-23

15.4 Creating and Using Managed Beans... 15-24

15.4.1 How to Create a Managed Bean in JDeveloper ... 15-24

15.4.2 What Happens When You Use JDeveloper to Create a Managed Bean 15-26

15.5 Exposing Business Services with Data Controls ... 15-26

15.5.1 How to Create Data Controls ... 15-26

15.5.2 What Happens in Your Project When You Create a Data Control 15-27

15.5.3 Data Control Built-in Operations... 15-28

15.6 Creating Databound UI Components from the Data Controls Panel 15-30

15.6.1 How to Use the Data Controls Panel... 15-32

15.6.2 What Happens When You Use the Data Controls Panel.. 15-33

15.7 What Happens at Runtime: How the Binding Context Works... 15-34

15.8 Configuring Data Controls... 15-35

15.8.1 How to Edit a Data Control .. 15-36

15.8.2 What Happens When You Edit a Data Control ... 15-36

15.8.3 What You May Need to Know About MDS Customization of Data Controls...... 15-38

15.9 Working with Attributes .. 15-38

15.9.1 How to Designate an Attribute as Primary Key .. 15-38

15.9.2 How to Define a Static Default Value for an Attribute... 15-39

x

15.9.3 How to Set UI Hints on Attributes .. 15-39

15.9.4 What Happens When You Set UI Hints on Attributes ... 15-40

15.9.5 How to Access UI Hints Using EL Expressions... 15-40

15.10 Creating and Using Bean Data Controls .. 15-41

15.10.1 What You May Need to Know About Serialization of Bean Class Variables...... 15-41

15.11 Using the DeviceFeatures Data Control ... 15-42

15.11.1 How to Use the getPicture Method to Enable Taking Pictures 15-44

15.11.2 How to Use the SendSMS Method to Enable Text Messaging 15-49

15.11.3 How to Use the sendEmail Method to Enable Email.. 15-51

15.11.4 How to Use the createContact Method to Enable Creating Contacts................... 15-54

15.11.5 How to Use the findContacts Method to Enable Finding Contacts...................... 15-58

15.11.6 How to Use the updateContact Method to Enable Updating Contacts 15-61

15.11.7 How to Use the removeContact Method to Enable Removing Contacts 15-64

15.11.8 How to Use the startLocationMonitor Method to Enable Geolocation................ 15-66

15.11.9 How to Use the displayFile Method to Enable Displaying Files........................... 15-68

15.11.10 How to Use the addLocalNotification and cancelLocalNotification Methods to

Manage Local Notifications... 15-71

15.11.11 What You May Need to Know About Device Properties..................................... 15-73

15.12 Validating Attributes... 15-77

15.12.1 How to Add Validation Rules .. 15-79

15.12.2 What You May Need to Know About the Validator Metadata............................. 15-81

15.13 Using Background Threads.. 15-82

15.14 Working with Data Change Events .. 15-82

16 Configuring End Points Used in MAF Applications

16.1 Introduction to Configuring End Points in MAF Applications ... 16-1

16.2 Defining the Configuration Service End Point.. 16-1

16.3 Creating the User Interface for the Configuration Service .. 16-2

16.4 About the URL Construction ... 16-4

16.5 Setting Up the Configuration Service on the Server... 16-4

16.6 Configuring Properties For Use By Enterprise Mobile Management 16-4

17 Using Web Services in a MAF Application

17.1 Introduction to Using Web Services in a MAF Application.. 17-1

17.2 Creating a Rest Service Adapter to Access Web Services.. 17-2

17.2.1 Accessing Input and Output Streams.. 17-4

17.2.2 Support for Non-Text Responses ... 17-6

17.3 Accessing Secure Web Services ... 17-7

17.3.1 How to Enable Access to Web Services... 17-8

17.3.2 What Happens When You Enable Access to Web Services 17-9

17.3.3 What You May Need to Know About Accessing Web Services and Containerized

MAF Applications .. 17-10

17.3.4 What You May Need to Know About Credential Injection 17-11

xi

17.3.5 What You May Need to Know About Cookie Injection ... 17-13

17.4 Configuring the Browser Proxy Information .. 17-13

18 Using the Local Database in MAF AMX

18.1 Introduction to the Local SQLite Database Usage .. 18-1

18.1.1 Differences Between SQLite and Other Relational Databases................................... 18-1

18.2 Using the Local SQLite Database .. 18-3

18.2.1 How to Connect to the Database.. 18-3

18.2.2 How to Use SQL Script to Initialize the Database ... 18-4

18.2.3 How to Initialize the Database on a Desktop... 18-6

18.2.4 What You May Need to Know About Commit Handling ... 18-7

18.2.5 Limitations of MAF SQLite JDBC Driver.. 18-8

18.2.6 How to Use the VACUUM Command.. 18-8

18.2.7 How to Encrypt and Decrypt the Database.. 18-8

19 Customizing MAF AMX Application Feature Artifacts

19.1 Introduction to Customizing MAF AMX Pages and Artifacts.. 19-1

19.2 Customizing MAF AMX Pages and Artifacts ... 19-1

20 Creating Custom MAF AMX UI Components

20.1 Introduction to Creating Custom UI Components ... 20-1

20.2 Using MAF APIs to Create Custom Components .. 20-1

20.2.1 How to Use Static APIs.. 20-1

20.2.2 How to Use AmxEvent Classes.. 20-8

20.2.3 How to Use the TypeHandler... 20-8

20.2.4 How to Use the AmxNode.. 20-11

20.2.5 How to Use the AmxTag... 20-18

20.2.6 How to Use the VisitContext .. 20-22

20.2.7 How to Use the AmxAttributeChange.. 20-23

20.2.8 How to Use the AmxDescendentChanges.. 20-23

20.2.9 How to Use the AmxCollectionChange.. 20-24

20.2.10 How to Use the AmxNodeChangeResult ... 20-24

20.2.11 How to Use the AmxNodeStates ... 20-25

20.2.12 How to Use the AmxNodeUpdateArguments .. 20-26

20.3 Creating Custom Components .. 20-26

21 Implementing Application Feature Content Using Remote URLs

21.1 Introduction to Remote URL Applications .. 21-1

21.2 Enabling Remote Applications Access Container Services ... 21-2

21.3 Whitelisting Remote URLs in Your MAF Application... 21-3

21.3.1 How to Whitelist Remote URLs on the Android Platform .. 21-4

21.3.2 How to Whitelist Remote URLs on the iOS Platform ... 21-6

21.3.3 How to Whitelist Remote URLs on Universal Windows Platform........................... 21-6

xii

21.4 Enabling the Browser Navigation Bar on Remote URL Pages.. 21-7

21.4.1 How to Add the Navigation Bar to a Remote URL Application Feature 21-8

21.4.2 What Happens When You Enable the Browser Navigation Buttons for a Remote

URL Application Feature... 21-9

22 Enabling User Preferences

22.1 Creating User Preference Pages for a Mobile Application .. 22-1

22.1.1 How to Create Mobile Application-Level Preferences Pages 22-5

22.1.2 What Happens When You Create an Application-Level Preference Page 22-15

22.2 Creating User Preference Pages for Application Features... 22-15

22.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages.................... 22-16

22.3.1 What You May Need to Know About preferenceScope... 22-18

22.3.2 Reading Preference Values in iOS Native Views... 22-18

22.4 Platform-Dependent Display Differences .. 22-19

23 Setting Constraints on Application Features

23.1 Introduction to Constraints .. 23-1

23.1.1 Using Constraints to Show or Hide an Application Feature 23-1

23.1.2 Using Constraints to Deliver Specific Content Types... 23-2

23.2 Defining Constraints for Application Features ... 23-3

23.2.1 How to Define the Constraints for an Application Feature 23-4

23.2.2 What Happens When You Define a Constraint... 23-4

23.2.3 About the property Attribute ... 23-4

23.2.4 About User Constraints and Access Control.. 23-4

23.2.5 About Hardware-Related Constraints .. 23-6

23.2.6 Creating Dynamic Constraints on Application Features and Content 23-12

24 Enabling and Using Notifications

24.1 Introduction to Notifications.. 24-1

24.2 Enabling Push Notifications... 24-3

24.2.1 What You May Need to Know About the Push Notification Payload..................... 24-5

24.3 Managing Local Notifications.. 24-5

24.3.1 How to Manage Local Notifications Using Java.. 24-6

24.3.2 How to Manage Local Notifications Using JavaScript ... 24-7

24.3.3 How to Manage Local Notifications Using the DeviceFeatures Data Control........ 24-8

24.3.4 How to Handle Local Notifications... 24-9

24.3.5 What You May Need to Know About Local Notification Options and the

Application Behavior ... 24-10

25 Caching Data in a MAF Application

25.1 Introduction to Data Caching in MAF Applications .. 25-1

25.2 Enable Data Caching in a MAF Application.. 25-2

25.3 Specifying Cached Resources and Cache Policies in the sync-config.xml File................... 25-3

xiii

25.4 Caching Policies Provided by MAF .. 25-5

25.5 Using Configuration Service End Points in the sync-config.xml File 25-7

25.6 Encrypting Cached Data in a MAF Application ... 25-7

25.7 Packaging the sync-config.xml File in a FAR .. 25-7

26 Displaying Error Messages in MAF Applications

26.1 Introduction to Error Handling in MAF Applications... 26-1

26.2 Displaying Error Messages and Stopping Background Threads.. 26-2

26.2.1 How Applications Display Error Message for Background Thread Exceptions 26-3

26.3 Localizing Error Messages.. 26-4

27 Deploying MAF Applications

27.1 Introduction to Deployment of MAF Applications .. 27-1

27.2 Working with Deployment Profiles .. 27-2

27.2.1 About Automatically Generated Deployment Profiles .. 27-2

27.2.2 How to Create a Deployment Profile .. 27-6

27.2.3 What Happens When You Create a Deployment Profile ... 27-7

27.3 Deploying an Android Application .. 27-8

27.3.1 How to Create an Android Deployment Profile.. 27-9

27.3.2 How to Deploy an Android Application to an Android Emulator 27-20

27.3.3 How to Deploy an Application to an Android-Powered Device............................ 27-22

27.3.4 How to Publish an Android Application.. 27-23

27.3.5 What Happens in JDeveloper When You Create an .apk File 27-23

27.3.6 Selecting the Most Recently Used Deployment Profiles... 27-24

27.3.7 What You May Need to Know About Using the Android Debug Bridge 27-24

27.4 Deploying an iOS Application... 27-24

27.4.1 How to Create an iOS Deployment Profile .. 27-26

27.4.2 How to Deploy an iOS Application to an iOS Simulator .. 27-33

27.4.3 How to Deploy an Application to an iOS-Powered Device..................................... 27-35

27.4.4 What Happens When You Deploy an Application to an iOS Device..................... 27-37

27.4.5 What You May Need to Know About Deploying an Application to an iOS-

Powered Device .. 27-37

27.4.6 How to Distribute an iOS Application to the App Store .. 27-39

27.5 Deploying a MAF Application to the Universal Windows Platform................................. 27-41

27.5.1 How to Deploy a MAF Application to the Universal Windows Platform............. 27-43

27.5.2 What Happens When You Deploy a MAF Application to the Universal Windows

Platform.. 27-43

27.6 Overview of MAF Quick Deployment of Applications ... 27-45

27.6.1 About the Artifacts That Support Quick Deployment.. 27-46

27.6.2 About Requirements for Quick Deployment ... 27-47

27.6.3 What Happens During a Quick Deployment Session... 27-47

27.6.4 How to Start the Full Deployment of an Application... 27-47

27.6.5 How to Force the Full Deployment of an Application ... 27-48

xiv

27.6.6 What You May Need to Know About Quick Deployment Limitations................. 27-48

27.7 Deploying Feature Archive Files (FARs).. 27-49

27.7.1 How to Create a Deployment Profile for a Feature Archive.................................... 27-50

27.7.2 How to Deploy the Feature Archive Deployment Profile.. 27-52

27.7.3 What Happens When You Deploy a Feature Archive File Deployment Profile... 27-54

27.8 Creating a Mobile Application Archive File .. 27-55

27.8.1 How to Create a Mobile Application Archive File .. 27-56

27.9 Creating a New Application from an Application Archive .. 27-64

27.9.1 How to Create a New Application from an Application Archive 27-65

27.9.2 What Happens When You Import a MAF Application Archive File 27-66

27.10 Deploying MAF Applications from the Command Line... 27-67

27.10.1 Using OJDeploy to Deploy Mobile Applications .. 27-68

27.11 Deploying with Oracle Mobile Security Suite ... 27-70

27.11.1 What Happens When You Containerize Your Application with OMSS.............. 27-72

28 Understanding Secure Mobile Development Practices

28.1 Weak Server-Side Controls... 28-1

28.2 Insecure Data Storage on the Device .. 28-2

28.2.1 Encrypting the SQLite Database .. 28-2

28.2.2 Securing the Device's Local Data Stores ... 28-2

28.2.3 About Security and Application Logs... 28-3

28.3 Insufficient Transport Layer Protection ... 28-3

28.4 Side-Channel Data Leakage ... 28-3

28.5 Poor Authorization and Authentication .. 28-4

28.6 Broken Cryptography ... 28-4

28.7 Client-Side Injection From Cross-Site Scripting .. 28-5

28.7.1 Protecting MAF Applications from Injection Attacks Using Device Access

Permissions.. 28-5

28.7.2 About Injection Attack Risks from Custom HTML Components............................. 28-6

28.7.3 About SQL Injections and XML Injections ... 28-6

28.8 Security Decisions From Untrusted Inputs.. 28-6

28.9 Improper Session Handling ... 28-7

28.10 Lack of Binary Protections Resulting in Sensitive Information Disclosure....................... 28-8

29 Securing MAF Applications

29.1 Introduction to MAF Security.. 29-1

29.2 About the User Login Process.. 29-2

29.3 Overview of the Authentication Process for MAF Applications.. 29-4

29.4 Overview of the Authentication Process for Containerized MAF Applications................ 29-5

29.5 Configuring MAF Connections ... 29-6

29.5.1 How to Create a MAF Login Connection ... 29-6

29.5.2 How to Create a Multi-Tenant Aware MAF Login Connection................................ 29-8

29.5.3 How to Configure Basic Authentication... 29-10

xv

29.5.4 How to Configure OAuth Authentication.. 29-13

29.5.5 How to Configure Web SSO Authentication ... 29-16

29.5.6 How to Configure a Placeholder Connection for MAF Application Login........... 29-19

29.5.7 How to Update Connection Attributes of a Named Connection at Runtime 29-21

29.5.8 How to Store Login Credentials... 29-23

29.5.9 What Happens When You Create a Connection for a MAF Application 29-24

29.5.10 What Happens When You Create a Multi-Tenant Aware Connection 29-25

29.5.11 What You May Need to Know About the Login Connection Configuration...... 29-26

29.5.12 What You May Need to Know About Login Connections and Containerized

MAF Applications .. 29-26

29.5.13 What You May Need to Know About Multiple Identities for Local and Hybrid

Login Connections.. 29-26

29.5.14 What You May Need to Know About Migrating a MAF Application and

Authentication Modes.. 29-27

29.5.15 What You May Need to Know About Custom Headers .. 29-27

29.5.16 What Happens at Runtime: When MAF Calls a REST Web Service..................... 29-27

29.5.17 What You May Need to Know About Injecting Basic Authentication Headers . 29-27

29.5.18 What You May Need to Know About Web Service Security................................. 29-28

29.5.19 How to Configure Access Control ... 29-29

29.5.20 What You May Need to Know About the Access Control Service 29-31

29.5.21 How to Alter the Application Loading Sequence.. 29-33

29.5.22 How to Configure Login Credentials Programmatically Prior to Authentication 29-34

29.6 Configuring Security for MAF Applications ... 29-37

29.6.1 How to Enable Application Features to Require Authentication 29-37

29.6.2 How to Designate the Login Page ... 29-38

29.6.3 How to Create a Custom Login HTML Page ... 29-41

29.6.4 What You May Need to Know About Login Pages .. 29-42

29.6.5 What You May Need to Know About Login Page Elements................................... 29-45

29.6.6 What Happens in JDeveloper When You Configure Security for Application

Features .. 29-45

29.7 Allowing Access to Device Capabilities ... 29-46

29.8 Enabling Users to Log Out from Application Features.. 29-46

29.9 Using MAF Authentication APIs .. 29-47

29.10 Creating Certificates to Access Servers That Use Self-Signed Certificates for SSL........ 29-48

29.11 Configuring a MAF Application to Enable Two-Way SSL for Authentication.............. 29-49

30 Testing and Debugging MAF Applications

30.1 Introduction to Testing and Debugging MAF Applications ... 30-1

30.2 Testing MAF Applications ... 30-2

30.2.1 How to Perform Accessibility Testing on iOS-Powered Devices.............................. 30-2

30.3 Configuring JDeveloper and MAF Applications to Debug Code .. 30-2

30.3.1 What You May Need to Know About the Debugging Configuration...................... 30-3

30.3.2 How to Enable Debugging of Java Code and JavaScript.. 30-5

xvi

30.3.3 How to Debug the MAF AMX Content .. 30-6

30.4 Debugging MAF Applications Deployed on the Android Platform.................................... 30-6

30.4.1 How to Debug Java Code on the Android Platform... 30-7

30.4.2 How to Debug UI Code on the Android Platform .. 30-7

30.5 Debugging MAF Applications Deployed on the iOS Platform .. 30-8

30.5.1 How to Debug Java Code on the iOS Platform.. 30-8

30.5.2 How to Debug UI Code on the iOS Platform... 30-8

30.6 Debugging MAF Applications Deployed on the Universal Windows Platform 30-16

30.6.1 How to Debug Java Code on the Universal Windows Platform............................. 30-16

30.6.2 How to Debug UI Code on the Universal Windows Platform................................ 30-19

30.7 Using and Configuring Logging in MAF Applications ... 30-21

30.7.1 How to Configure Logging Using the Properties File .. 30-23

30.7.2 How to Use JavaScript Logging ... 30-25

30.7.3 How to Use Embedded Logging.. 30-26

30.7.4 How to Use Xcode for Debugging and Logging on the iOS Platform 30-26

30.7.5 How to Access the Application Log .. 30-26

30.7.6 How to Disable Logging.. 30-28

30.8 Measuring MAF Application Performance.. 30-28

30.9 Sending Diagnostic Information to Oracle Mobile Cloud Service 30-36

30.10 Sending Analytics Information to Oracle Mobile Cloud Service...................................... 30-36

30.10.1 How to Configure the Transfer of Analytics to Oracle Mobile Cloud Service.... 30-38

30.10.2 How to Programmatically Send Analytics to Oracle Mobile Cloud Service 30-40

30.10.3 How to Send Context Events to Oracle Mobile Cloud Service.............................. 30-42

30.10.4 How to Send Analytics to Other Repositories ... 30-43

30.10.5 MAF Framework Events that Capture Analytics Information.............................. 30-45

30.11 Inspecting Web Service Calls in a MAF Application ... 30-47

A Troubleshooting MAF Applications

A.1 Problems with Input Components on iOS Simulators.. A-1

A.2 Code Signing Issues Prevent Deployment.. A-2

A.3 The credentials Attribute Causes Deployment to Fail .. A-2

B Local HTML and Application Container APIs

B.1 Using MAF APIs to Create a Custom HTML Springboard Application Feature B-1

B.1.1 About Executing Code in Custom HTML Pages... B-2

B.2 The MAF Container Utilities API.. B-3

B.2.1 Using the JavaScript Callbacks .. B-3

B.2.2 Using the Container Utilities API.. B-4

B.2.3 getApplicationInformation... B-5

B.2.4 gotoDefaultFeature .. B-6

B.2.5 gotoFeature ... B-6

B.2.6 getFeatures .. B-7

B.2.7 getFeatureByName .. B-8

xvii

B.2.8 getFeatureById ... B-9

B.2.9 resetFeature... B-9

B.2.10 resetApplication ... B-10

B.2.11 gotoSpringboard .. B-11

B.2.12 showSpringboard... B-12

B.2.13 hideSpringboard .. B-12

B.2.14 showNavigationBar ... B-13

B.2.15 hideNavigationBar... B-14

B.2.16 showPreferences... B-14

B.2.17 invokeMethod .. B-15

B.2.18 invokeContainerMethod... B-16

B.2.19 invokeContainerJavaScriptFunction ... B-16

B.2.20 sendEmail.. B-18

B.2.21 sendSMS .. B-18

B.2.22 Application Icon Badging ... B-18

B.3 Accessing Files Using the getDirectoryPathRoot Method .. B-19

B.3.1 Accessing Platform-Independent Download Locations .. B-19

C MAF Application and Project Files

C.1 Introduction to MAF Application and Project Files .. C-1

C.2 About the Application Controller Project-Level Resources ... C-3

C.3 About the View Controller Project Resources .. C-7

C.4 About the MAF Application Configuration File .. C-8

C.5 About the MAF Application Feature Configuration File.. C-9

D Converting Preferences for Deployment

D.1 Naming Patterns for Preferences.. D-1

D.2 Converting Preferences for Android ... D-2

D.2.1 maf_preferences.xml... D-3

D.2.2 maf_arrays.xml .. D-6

D.2.3 maf_strings.xml ... D-7

D.3 Converting Preferences for iOS .. D-8

D.4 Converting Preferences for Windows ... D-8

xviii

Preface

Welcome to the Developing Mobile Applications with Oracle Mobile Application Framework.

Audience
This document is intended for developers tasked with creating cross-platform mobile
applications that run as natively on the device.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Installing Oracle Mobile Application Framework

• Installing Oracle JDeveloper

• Developing Applications with Oracle JDeveloper

• Developing Extensions for Oracle JDeveloper

• Securing Applications with Oracle Platform Security Services

• Understanding Oracle Web Services Manager

• Administering Web Services

• Securing Web Services and Managing Policies with Oracle Web Services Manager

• Java API Reference for Oracle Mobile Application Framework

• Tag Reference for Oracle Mobile Application Framework

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• JSDoc Reference for Oracle Mobile Application Framework

• Java API Reference for Oracle Web Services Manager

• Oracle JDeveloper 12c Online Help

• Oracle JDeveloper 12c Release Notes (link included with your Oracle JDeveloper 12c
installation and on Oracle Technology Network)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xx

What's New in This Guide for MAF Release
2.3.1

The following topics introduce the new and changed features of Oracle Mobile
Application Development Framework (Oracle MAF) and other significant changes,
which are described in this guide.

New and Changed Features for MAF Release 2.3.1
Oracle MAF Release 2.3.1 includes the following new and changed development
features, which are described in this guide.

• MAF applications can now access REST services through the client data model
introduced in this release. The client data model provides a wizard to identify the
data objects exposed by REST services that you can include in your MAF
application’s data model. Once identified, you can specify:

– Data to persist on users’ devices when your application is offline

– Specify parent-child relationships between data objects

– Identify the REST resources that perform CRUD actions on the data

– Synchronize data from your application to the server when your application
returns online

For more information, see Creating the Client Data Model in a MAF Application.

• The client data model also includes a reusable application feature that you can add
to your MAF application to inspect web service calls from the application. For more
information, see Inspecting Web Service Calls in a MAF Application.

• MAF applications that you deploy to Android emulators or iOS simulators now
support a quick deployment where only new and revised files are deployed after
an initial full deployment of the application. You can always trigger a full
deployment, if required. For more information, see Overview of MAF Quick
Deployment of Applications.

• This release of MAF supports a new grant type (client credentials) for the
OAuth authentication server type. Use the client credentials grant type so
that your MAF application can access Oracle Mobile Cloud Service APIs
anonymously without requiring an end user ID or user credentials. For more
information, see How to Configure OAuth Authentication.

xxi

• New version of the mobileAlta skin (mobileAlta-1.6) that is the default for
MAF applications created using this release. For more information, see Skinning
MAF Applications.

• MAF now enables you to configure properties in your MAF application that an
Enterprise Mobile Management administrator can set values for when your
application is deployed to end users. For more information, see Configuring
Properties For Use By Enterprise Mobile Management .

Other Significant Changes in this Document for MAF Release 2.3.1
This document has been updated in several ways for this release. Following are the
sections that have been added or changed.

• Added information describing how you can configure your MAF application so
that an end user can send an email recipient the MAF application log file from their
device. For more information, see How to Access the Application Log.

• Added information for the addXXX and removeXXX methods of Data Control. For
more information, see addXXX and removeXXX Methods of Data Control.

• Revised to note that you must implement a getKey() method in a class where you
use the ProviderChangeSupport object or, alternatively, specify an attribute on
the associated data control as a key attribute. Implementing one of these changes is
required to ensure successful synchronization of data change events. For more
information, see Working with Data Change Events.

xxii

1
Introduction to Oracle Mobile Application

Framework

This chapter introduces Oracle Mobile Application Framework (MAF), a solution that
enables you to create mobile applications that run natively on both iOS and Android
phones and tablets.

This chapter includes the following sections:

• Introduction to Mobile Application Framework

• About the MAF Runtime Architecture

• About Developing Applications with MAF

• MAF Sample Applications

1.1 Introduction to Mobile Application Framework
MAF is a hybrid mobile architecture, one that uses HTML5 and CSS to render the user
interface, Java for the application business logic, and Apache Cordova to access device
features such as GPS activities and e-mail. Because MAF uses these cross-platform
technologies, you can build an application that runs on both Android and iOS devices
without having to use any platform-specific tools. After deploying a MAF application
to a device, the application behaves similarly to applications that are created using
platform-specific tools, such as Objective C or Android SDK. Further, MAF enables
you to build the same application for smartphones or for tablets, thereby allowing you
to reuse the business logic in the same application and target various types of devices,
screen sizes, and capabilities.

A MAF application installs on a user’s device like any other application on the device.

Figure 1-1 MAF Applications Installed on a Device

Introduction to Oracle Mobile Application Framework 1-1

MAF applications consist of one or more application features. An application feature is
a reusable, self-contained module of application functionality. Each application feature
performs a specific set of tasks, and application features can be grouped together to
complement each other's functionality. For example, you can pair an application
feature that provides customer contacts together with one for product inventory.
Because each application feature has its own class loader and web view (essentially a
native UI component that behaves as a browser), features are independent of one
another; a single MAF application can be assembled from application features created
by several different development teams. Application features can also be reused in
other MAF applications. The MAF application itself can be reused as the base for
another application, allowing ISVs (independent software vendors) to create
applications that can be configured by specific customers.

In addition to hybrid mobile applications that run locally on the device, you can
implement application features as any of the following mobile application types,
depending on the requirements of a mobile application and available resources:

• Mobile web applications—These applications are hosted on a server. Although the
code can be portable between platforms, their access to device features and local
storage can be limited, as these applications are governed by the device's browser.

• Native applications—These applications are authored using the platform tools (for
example, Xcode for iOS) and are therefore limited in terms of serving the platform.
Reuse of code is likewise limited.

1.2 About the MAF Runtime Architecture
As illustrated in Figure 1-2, MAF is a thin native container that is deployed to a device.
MAF follows the model-view-controller (MVC) development approach, which
separates the presentation from the model layer and the controller logic. The native
container allows the MAF application to function as a native application on the
platform (iOS, Android, or UWP) where you deploy MAF application.

About the MAF Runtime Architecture

1-2 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 1-2 The MAF Runtime Architecture

• Web View—Uses a mobile web engine of the device to display and process web-
based content. In a MAF application, the web view delivers the user interface by
rendering the application markup as HTML 5. You can create the user interface for
a MAF application feature by implementing any of the following content types.
Application features implemented from various content types can coexist within
the same MAF application and can also interact with one another.

– MAF AMX Views—Like an application authored in the language specific to the
platform of the device, applications whose contents are implemented as MAF
Application Mobile XML (AMX) views reside on the device and provide the
most authentic device-native user experience. MAF provides a set of code
editors that enable you to declaratively create a user interface from components
that are tailored to the form factors of mobile devices. You can use these
components to create the page layout, such as List View, as well as input
components, such as Input Text. When you develop MAF AMX views, you can
leverage data controls. These components enable you to declaratively create
data-bound user interface components, access a web service, and the services of

About the MAF Runtime Architecture

Introduction to Oracle Mobile Application Framework 1-3

a mobile device (such as camera, GPS, or e-mail). At runtime, the JavaScript
engine in the web view renders MAF AMX view definitions into HTML5 and
JavaScript. For more information, see the following:

◆ Creating MAF AMX Pages

◆ Creating the MAF AMX User Interface

◆ Using Bindings and Creating Data Controls in MAF AMX

◆ Using Web Services in MAF AMX

◆ Configuring End Points Used in MAF Applications

◆ Using the Local Database in MAF AMX

◆ Customizing MAF AMX Application Feature Artifacts

◆ Creating Custom MAF AMX UI Components

Task Flow—The Controller governs the flow between pages in the MAF
application, enabling you to break the application flow into smaller, reusable
task flows and include non-visual components, such as method calls and
decision points. For more information, see Creating Task Flows.

– Server HTML— With this content type, the user interface is delivered from
server-generated web pages that can open within the web view of the
application feature. Within the context of MAF, this content type is referred to
as remote URL. The resources for these browser-based pages do not reside on the
device. Instead, the user interface, page flow logic, and business logic are
delivered from a remote server. When one of these remotely hosted web pages
is allowed to open within the web view, it can use the Cordova JavaScript APIs
to access any designated device-native feature or service, such as the camera or
GPS capabilities. When implementing a feature using the remote URL content,
you can leverage an existing browser-based application that has been optimized
for mobile use, or use one that has been written specifically for a specific type of
mobile device. For applications that can run within a browser on either
desktops or tablets, you can implement the remote URL content using
applications created through Oracle ADF Faces rich client-based components.
For more information, see Implementing Application Feature Content Using
Remote URLs .

Note:

Because the content is served remotely, a feature that uses a remote URL is
available only as long as the server connection remains active.

– Local HTML—HTML pages that run on the device as a part of the MAF
application. Local HTML files can access device-native features services through
the Cordova and JavaScript APIs.

• Cordova—The Apache Cordova JavaScript APIs that integrate the native features
of the device and services into a MAF application. Although you can access these
APIs programmatically from Java code (or using JavaScript when implementing a
MAF application as local HTML), you can add device integration declaratively
when you create MAF AMX pages because MAF packages these APIs as data
controls.

About the MAF Runtime Architecture

1-4 Developing Mobile Applications with Oracle Mobile Application Framework

• Java Virtual Machine—Provides a Java runtime environment for a MAF
application. This Java Virtual Machine (JVM) is implemented in device-native code,
and is embedded (or compiled) into each instance of the MAF application as part of
the native application binary. The JVM is based on the JavaME Connected Device
Configuration (CDC) specification.

– Business Logic—Business logic in MAF application may be written in Java.
Managed Beans are Java classes that can be created to extend the capabilities of
MAF, such as providing additional business logic for processing data returned
from the server. Managed beans are executed by the embedded Java support,
and conform to the JavaME CDC specifications. For more information, see
Using Bindings and Creating Data Controls in MAF AMX .

– Model—Contains the binding layer that connects the business logic components
with the user interface. In addition, the binding layer provides the execution
logic to invoke REST-based web services. For more information, see About
Connected and Disconnected Applications.

– JDBC— The JDBC API enables access to the data in the encrypted SQLite
database through CRUD (Create, Read, Update and Delete) operations.

• Application Configuration refers to services that allow application configurations
to be downloaded and refreshed, such as URL endpoints for a web service or a
remote URL connection. Application configuration services download the
configuration information from a WebDav-based server-side service. For more
information, see Configuring End Points Used in MAF Applications .

• Credential Management, Single Sign-on (SSO), and Access Control—MAF
handles user authentication and credential management using the mobile security
SDK from Oracle Identity Management. MAF applications perform offline
authentication, meaning that when users log in to the application while connected,
MAF maintains the user name and password locally on the device, allowing users
to continue access to the application even if the connection to the authentication
server becomes unavailable. MAF encrypts the locally stored user information as
well as the data stored in the local SQLite database. After authenticating against the
login server, a user can access all of the application features secured by that
connection. MAF also supports the concept of access control by restricting access to
application features (or specific functions of application features) by applying user
roles and privileges.

• Push Handler—Enables the MAF application to receive events from the iOS or
Android notification servers. The Java layer handles the notification processing.

Resources that interact with the native container include:

• Encrypted SQLite Database—The embedded SQLite database is a lightweight,
cross-platform relational database that protects locally stored data and is called
using JDBC. Because this database is encrypted, it secures data if the device is lost
or stolen. Only users who enter the correct user name and password can access the
data in the local database. For more information, see Using the Local Database in
MAF AMX .

• Device Services—The services and features that are native to the device and
integrated into application features through the Cordova APIs.

The device native container enables access to the following server-side resources:

About the MAF Runtime Architecture

Introduction to Oracle Mobile Application Framework 1-5

• Configuration Server —A WebDav-based server that hosts configuration files that
are used by the application configuration services. The configuration server is
delivered as a reference implementation. Any common WebDav services that are
hosted on a J2EE server can be used for this purpose. For more information, see
Configuring End Points Used in MAF Applications .

• Server-Generated HTML—Web content that is hosted on remote servers that are
used for browser-based application features. For more information, see
Implementing Application Feature Content Using Remote URLs .

• APNs and GCM Push Services—Apple Push Notification Service (APNs) and
Google Cloud Messaging (GCM) are the notification providers that send
notification events to MAF applications. Push notifications are not supported on
MAF applications that you deploy to the Universal Windows Platform.

• REST Services—Remotely hosted REST-based web services, which can be accessed
through the client data model, the Java layer, or through data controls. For more
information, see Creating the Client Data Model in a MAF Application and Using
Web Services in MAF AMX .

1.3 About Developing Applications with MAF
Although the components of a MAF application may be created by a single developer,
an application may typically be built from resources provided by different
development roles. An application developer builds the application data and the user
interface logic either as an application or as a reusable program that can be used in an
application feature. An application assembler gathers different application features into
a single application and puts them in a user-friendly, navigable order. An application
deployer ensures a controlled application deployment. For example, deployment of
MAF applications may require certificates and uploads to public vendor sites such as
the Apple App Store or GooglePlay.

Note:

Depending on the application development team size and your organization,
one person may fill many different roles.

Typically, you perform the following activities when building a MAF application:

• Gathering requirements

• Designing

• Developing

• Deploying

• Testing and debugging

• Securing

• Enabling access to the server-side data

• Redeploying

• Retesting and debugging

About Developing Applications with MAF

1-6 Developing Mobile Applications with Oracle Mobile Application Framework

• Publishing

The steps you take to build a MAF application may be similar to the following:

1. Gathering requirements: Create a mobile use case (or user scenario) by gathering
user data that describes who the users are, their essential tasks, and the location or
context in which they perform them. Consider such factors as the type of
information required to complete a task, the information that is available to the
user, and how it is accessed or delivered.

2. Designing: After you construct a use case, create a wireframe that illustrates all of
the steps (and associated user views) in the application's task flow. When creating
a task flow, consider how, and when, different users may interact. Does viewing
data (such as a push notification) suffice to complete a task? If not, how much data
entry does the task require? To frame these tasks within a mobile context,
compare completing tasks using a desktop application to a mobile application. A
single desktop application may enable multiple functions that might be
partitioned into several different mobile applications (or in the context of MAF,
several different application features embedded in a MAF application). Because
mobile applications are generally used in short bursts (about two minutes at a
time), they must be easily navigable and accommodate the limited data entry of a
mobile device.

During the design and development phases, keep in mind that mobile
applications may require a set of mobile-specific server-side resources, because
the applications may not be able to consume large amounts of data delivered
through complex web services. In addition, a mobile application may require
extensive client side logic to process data returned by services. It's usually best to
shape the data coming into a mobile application on the server side to avoid
forcing the client to process too much data.

3. Developing: Select the technology that is best suited for application. While the
MAF web view supports remote content which may be authored using Apache
Trinidad or ADF Faces Rich Client components, these applications do not support
offline use. Applications authored in MAF AMX, which runs on the client,
however, integrate with device services, enabling end users to not only view files
and utilize GPS services, but also collaborate with one another by tapping a phone
number to call or text. The MAF AMX component set includes data visualization
tools (DVT) that enable you to add analytics that render appropriately on mobile
screens. A MAF AMX application supports offline use by transferring data from
remote source and storing it locally, enabling end users to view information when
they are not connected.

MAF provides a set of wizards and editors that build not only the basic
application itself, but also the application features that are implemented from
MAF AMX and local HTML content. Using these tools provides such artifacts as
descriptor files for configuring the MAF application and incorporating its
application features, a set of default images for application icons, springboards,
navigation bar items that are appropriate to the form-factors of the supported
platforms.

For more information, see the following:

• Getting Started with MAF Application Development

• Configuring the Content of a MAF Application

• Creating MAF AMX Pages

About Developing Applications with MAF

Introduction to Oracle Mobile Application Framework 1-7

• Creating the MAF AMX User Interface

4. Deploying: You deploy the MAF application not only in the context of publishing
it to end users, but also for testing and debugging, because MAF applications
cannot run until they have been deployed to a device or simulator. Depending on
the phase of development, you designate the credential signing options (debug or
release). For testing, you deploy the application to a mobile device or simulator.
For production, you package it for distribution to application markets such as the
Apple App Store or Google Play.

To deploy an application you first create a deployment profile that describes the
target platform and its devices and simulators. Creating a deployment profile
includes selecting the launch icons used for the application in different
orientations (landscape or portrait) and on different devices (phone or tablets). For
more information, see Deploying MAF Applications .

5. Testing and debugging: During the testing and debugging stage, you optimize
the application by deploying it in debug mode to various simulators and devices
and then review the debugging output provided through JDeveloper and
platform-specific tools. For more information, see Testing and Debugging MAF
Applications .

6. Securing: Evaluate security risks throughout the application development
process. While mobile applications have unique security concerns, they share the
same vulnerabilities as any application that accesses remotely served data. To
ensure client-side security, MAF provides such features as:

• APIs that generate a strong password to secure access to the SQLite database
and encrypt and decrypt its data.

• A set of web service policies that support SSL.

• A cacerts file of trusted Certificate Authorities to enforce deployment in SSL

MAF's security configuration includes selecting a login server, such as the Oracle
Access Mobile and Social server, or any web page protected by the basic HTTP
authentication mechanism, configuring the session management (session and idle
timeouts) and also setting the endpoint to the access control service web service,
which hosts the application's user roles. For more information, see Securing MAF
Applications .

7. Enabling access to the server-side data: After ensuring that your application
functions as expected at a basic level, you can implement the Java code or use data
controls to access the server-side data. For more information, see About
Connected and Disconnected Applications.

8. Redeploying: During subsequent rounds of deployment, ensure that after adding
security to your application and enabling access to the server-side data, the
application deployment runs as expected and the application is ready for the final
testing and debugging.

9. Retesting and debugging: During the final round of testing and debugging, focus
on the security and the server-side data access functionality, ensuring that their
integration into the application did not result in errors and unexpected behavior.

10. Publishing: Deploying the application to the production environment typically
involves publishing to an enterprise server, the Apple App Store, or Google Play.
After you publish the MAF application, end users can download it to their mobile

About Developing Applications with MAF

1-8 Developing Mobile Applications with Oracle Mobile Application Framework

devices and access it by touching the designated icon. The application features
bear the designated display icons and display as appropriate to the end user and
the user's device.

1.3.1 About Connected and Disconnected Applications
A MAF application can run while connected to a network, but can also work in a
disconnected mode, such as when there is no cellular signal. Examples include:

• A basic connected application that includes a user interface backed directly by a
web service data control that, in turn, invokes a web service hosted on a server.

• A connected application that uses moderate (or complex) data services. For this
type of application, Java classes (POJOs) exposed through data controls can
dispatch data queries between the user interface and the service data source.

• A disconnected application that manipulates data stored in the SQLite database,
enabling application users to work offline. The application may need to get data
from a web service, but if connectivity is lost, the data is stored locally and
synchronized when connectivity is restored.

1.4 MAF Sample Applications
MAF provides an extensive set of sample applications that implement a range of use
cases. You can open these sample applications in JDeveloper to explore the source
code and/or deploy to a device or emulator/simulator to view the runtime behavior.
Sample applications exist that demonstrate how you can implement a variety of
functions in a MAF application, such as accessing device-native features, performing
operations on a local database or implementing gestures, amongst other things.

A HelloWorld sample application demonstrates how to implement a single
application feature with a local HTML file. We suggest that you use the HelloWorld
application to verify that your development environment is set up correctly to compile
and deploy an application.

Other sample applications that may be of interest to you when getting started include
the:

• CompGallery (component gallery) that serves as an introduction to the MAF
AMX UI components by demonstrating all of these components. Using this
application on a device or emulator/simulator, you can change the attributes of
components and see the effects of these changes in real time.

• WorkBetter sample application, illustrated in Figure 1-3, showcases the MAF AMX
UI capabilities. It also demonstrates how you can programmatically access REST
services.

After you install the MAF extension, you can extract the sample applications from the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory. In most cases, the name of the
application’s directory provides a good indicator as to its purpose. For example, the
application in the SkinningDemo directory demonstrates how you can change the
skin of the MAF application. Consult the ReadMe.txt file in the extracted directory
for a description of each sample application. The Oracle Mobile Application
Framework Samples page that you can access on the following Oracle Technology
Network page also provides information about the sample applications. See http://
www.oracle.com/technetwork/developer-tools/maf/learnmore/
mafsamples-2227357.html.

MAF Sample Applications

Introduction to Oracle Mobile Application Framework 1-9

http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html

Figure 1-3 WorkBetter Sample Application

MAF Sample Applications

1-10 Developing Mobile Applications with Oracle Mobile Application Framework

2
Getting Started with MAF Application

Development

This chapter describes how to create a MAF application in JDeveloper and introduces
the files and other artifacts that JDeveloper generates when you create the application.

This chapter includes the following sections:

• Introduction to Declarative Development for MAF Applications

• Creating a MAF Application

• Defining Application Features for a MAF Application

• Adding Content to an Application Feature

• Adding Application Features to a MAF Application

• Creating MAF AMX Pages and MAF Task Flows

• Containerizing a MAF Application for Enterprise Distribution

2.1 Introduction to Declarative Development for MAF Applications
The Oracle Mobile Application Framework (MAF) extension in JDeveloper provides a
number of overview editors and other wizards to facilitate the development, testing,
and deployment of MAF applications. Using these wizards, you can create a MAF
application, define one or more application features, add content to an application
feature, and deploy the MAF application to a test environment or device in a relatively
short amount of time.

Figure 2-1 shows the WorkBetter sample application in JDeveloper's Applications
window where a number of the items that you use to develop MAF applications are
identified:

1. The overview editor for the maf-features.xml file opens by default when you
create a new MAF application. Use this overview editor to define the application
features that your MAF application contains.

2. Use the overview editor for the maf-application.xml file used to, among
other things, specify the MAF application's name, the default navigation menus
(navigation bar or springboard) that the application renders, security, and device
access options for the application.

3. By default, JDeveloper creates a MAF application with two data controls
(ApplicationFeatures and DeviceFeatures). These data controls expose operations
that you can drag to a MAF AMX page where JDeveloper displays context menus
to complete configuration of the operation when you drop it on the page. For
example, dragging the hideNavigationBar() operation to a page prompts

Getting Started with MAF Application Development 2-1

JDeveloper to display a context menu where you configure a control for end users
to hide an application's navigation bar.

The WorkBetter sample application is one of a number of sample applications that
MAF provides to demonstrate how to create mobile applications using MAF. For more
information, see MAF Sample Applications.

JDeveloper proposes default options in the wizards so that you can create a MAF
application with one application feature displaying one MAF AMX page as follows:

1. Create a MAF application, as described in Creating a MAF Application.

2. Define an application feature for the MAF application, as described in Defining
Application Features for a MAF Application.

3. Add content to the application feature, as described in Adding Content to an
Application Feature.

Figure 2-1 Overview Editors for Application Features and Application

2.2 Creating a MAF Application
Before you can create a MAF application, download, install, and configure the MAF
extension in JDeveloper. For more information, see Installing Oracle Mobile Application
Framework. Once you have completed this task, create a MAF application using the
creation wizards in JDeveloper.

Creating a MAF Application

2-2 Developing Mobile Applications with Oracle Mobile Application Framework

2.2.1 How to Create a MAF Application
You create a MAF application in JDeveloper using the application creation wizard.

To create a MAF application:

1. In the main menu, choose File and then Application > New.

2. In the New Gallery, in the Items list, double-click Mobile Application Framework
Application.

3. In the Create Mobile Application Framework Application wizard, enter
application and project details like name, directory, and default packages. For help
with the wizard, press F1 or click Help.

4. Click Finish.

2.2.2 What Happens When You Create a MAF Application
JDeveloper creates a MAF application with two projects (ApplicationController and
ViewController) and two data controls (ApplicationFeatures and DeviceFeatures). It
also creates files that you use to configure your MAF application and files that your
MAF application needs when you deploy it to the supported platforms.

By default, JDeveloper opens the overview editor for the maf-features.xml file in
the ViewController project of the newly-created MAF application, as shown in Figure
2-2. Use this overview editor to add one or more application features to your MAF
application. A MAF application must have at least one application feature. For more
about adding application features to a MAF application, see Defining Application
Features for a MAF Application.

For more information about the files and artifacts that JDeveloper generates when you
create a MAF application, see MAF Application and Project Files.

Creating a MAF Application

Getting Started with MAF Application Development 2-3

Figure 2-2 Overview Editor for Application Features in Newly-Created MAF Application

2.3 Defining Application Features for a MAF Application
A MAF application must have at least one application feature. The WorkBetter sample
application, for example, includes four application features (Dashboard, People,
Organizations, and Springboard). Figure 2-3 shows three of these application features
displaying in that application's custom springboard.

Defining Application Features for a MAF Application

2-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 2-3 Application Features in the WorkBetter Application's Springboard

2.3.1 How to Define an Application Feature
You define an application feature for a MAF application using the overview editor for
the maf-features.xml file.

To define an application feature for a MAF application:

1. In the Applications window, expand the ViewController project and then
Application Sources and META-INF.

2. Double-click the maf-feature.xml file.

3. In the Features page, click the Add icon.

4. Complete entries in the Create MAF Feature dialog as follows:

• Feature Name: Enter the display name for the application feature.

• Feature ID: Enter a unique ID for the application feature or accept the value that
JDeveloper generates.

• Directory: Specify the directory for the application feature or accept the value
that JDeveloper generates.

• Select the Add a corresponding feature reference to maf-application.xml
checkbox to add the application feature to the MAF application. By default,
JDeveloper selects this checkbox.

5. Click OK.

Defining Application Features for a MAF Application

Getting Started with MAF Application Development 2-5

2.4 Adding Content to an Application Feature
One of the tasks to do after you define an application feature is to add content to the
application feature. Choose among the following types to render content in your
application feature:

• MAF AMX Page: Choose this content type if you want the application feature to
render MAF AMX pages.

• MAF Task Flow: Choose this content type if you want the application feature to
render a collection of activities that make up a task flow. Examples of activities that
you can include in a task flow are views (to display MAF AMX pages), method
calls (to invoke managed bean methods), and task flow calls (to call other task
flows).

• Local HTML: Choose if you want the application feature to render HTML page.

• Remote URL: Choose if you want the application feature to render content from a
remote URL.

The general steps to add a content type to an application feature are the same for all
content types. That is, you choose the type of content to add to the application feature
in the Content tab of the Features page of the maf-features.xml file's overview
editor. For the specific steps for each content type, see Defining the Content Type of
MAF Application Features .

2.5 Adding Application Features to a MAF Application
You can automatically add an application feature to a MAF application when you
define it by selecting the Add a corresponding feature reference to maf-
application.xml checkbox in the Create MAF Feature dialog, as described in How to
Define an Application Feature.

Use the Feature References page of the maf-application.xml file's overview
editor if you want to add an application feature that you did not add to the MAF
application when you created it, you use the Feature References page of the maf-
application.xml file's overview editor.

You can also add application features to your MAF application that you import from
Feature Archive (FAR) files. You must import the application feature into your MAF
application before you can add an application feature to the MAF application. For
more information about importing from FAR files, see Reusing MAF Application
Content .

Figure 2-4 shows the Feature References page where you add application features to a
MAF application.

Figure 2-4 Adding Application Features Using the Feature References Page

Adding Content to an Application Feature

2-6 Developing Mobile Applications with Oracle Mobile Application Framework

2.5.1 How to Add an Application Feature to a MAF Application
You use the Feature References page in the overview editor of the maf-
application.xml file to add application features to a MAF application.

To add an application feature to a MAF application:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-application.xml file and in the overview editor that appears,
click the Feature References navigation tab.

4. In the Feature References page, click the Add icon.

5. In the Insert Feature Reference dialog, select the ID of the application feature from
the drop-down list.

6. Click OK.

2.5.2 What You May Need to Know About Feature Reference IDs and Feature IDs
JDeveloper writes an entry in the maf-application.xml file to reference the
application feature that you add to the MAF application.

In the maf-application.xml file, the refId attribute of an
<adfmf:featureReference> element identifies the corresponding application
feature in the maf-feature.xml file. For this reason, the value of the refId
attribute for a <adfmf:featureReference> element in the maf-
application.xml file must match the value of the id attribute defined for the
<adfmf:feature> element in the maf-feature.xml file.

Use a naming convention consistently to make sure that application feature IDs are
unique. Application feature IDs must be unique across a MAF application.

Example 2-1 shows the entries for the People application feature in the WorkBetter
sample application's maf-application.xml and maf-feature.xml files.

Example 2-1 Feature Reference and Feature ID for an Application Feature in WorkBetter Application

<!-- Feature Reference ID in maf-application.xml File -->
<adfmf:featureReference id="fr2" refId="People"/>
...
<!-- Feature ID in maf-feature.xml File -->
<adfmf:feature id="People" name="People" icon="images/people.png" image="images/people.png">
...

2.6 Creating MAF AMX Pages and MAF Task Flows
As described in Creating MAF AMX Pages , the MAF AMX components enable you to
build pages that run identically to those authored in a platform-specific language.
MAF AMX pages enable you to declaratively create the user interface using a rich set
of components. Figure 2-5 illustrates the declarative development of a MAF AMX
page.

Creating MAF AMX Pages and MAF Task Flows

Getting Started with MAF Application Development 2-7

Figure 2-5 Creating a MAF AMX Page

These pages may be created by the application assembler, who creates the MAF
application and embeds application features within it, or they can be constructed by
another developer and then incorporated into the MAF application either as an
application feature or as a resource to a MAF application.

The project in which you create the MAF AMX page determines if the page is used to
deliver the user interface content for a single application feature, or be used as a
resource to the entire MAF application. For example, a page created within the
application controller project, as shown in Figure 2-9, would be used as an application-
wide resource.

Tip:

To make pages easier to maintain, you can break it down in to reusable
segments known as page fragments. A MAF AMX page may be comprised
one or more page fragments.

MAF enables you to arrange MAF AMX view pages and other activities into an
appropriate sequence through the MAF task flow. As described in Creating Task
Flows, a MAF task flow is visual representation of the flow of the application. It can be
comprised of MAF AMX-authored user interface pages (illustrated by such view
activities, such as the WorkBetter sample application's default List page and the Detail
page in Figure 2-6) and nonvisual activities that can call methods on managed beans.
The non-visual elements of a task flow can be used to evaluate an EL expression or call
another task flow. As illustrated by Figure 2-6, MAF enables you to declaratively

Creating MAF AMX Pages and MAF Task Flows

2-8 Developing Mobile Applications with Oracle Mobile Application Framework

create the task flow by dragging task flow components onto a diagrammer. MAF
provides two types of task flows: a bounded task flow, which has a single point of
entry, such as the List page in the WorkBetter sample application, and an unbounded
task flow, which may have multiple points of entry into the application flow. The
WorkBetter sample application is located in the PublicSamples.zip file within the
jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples
directory on your development computer.

Figure 2-6 MAF Task Flow

Figure 2-7 shows wizards that MAF provides to add MAF task flows, AMX pages,
reusable portions of MAF AMX pages called MAF page fragments, and application
features. To access these wizards, select a view controller or application controller
project within the Applications window and choose File > New. Select one of the
wizards after selecting Mobile Application Framework within the Client Tier.

Creating MAF AMX Pages and MAF Task Flows

Getting Started with MAF Application Development 2-9

Figure 2-7 Wizards for Creating Resources for Application Features

2.6.1 How to Create a MAF AMX Page
You can use the MAF AMX Page wizard to create AMX pages used for the user
interface for an application feature, or as an application-level resource (such as a login
page) that can be shared by the application features that comprise the MAF
application. For more information about application feature content, see Defining the
Content Type of MAF Application Features .

To create a MAF AMX page as content for an application feature:

1. In the Applications window, right-click the view controller project.

2. Choose File and then New.

3. From the Client Tier node in the New Gallery, choose MAF AMX Page and then
click OK.

4. Complete the Create MAF AMX Page dialog, shown in Figure 2-8, by entering a
name in the File Name field. In the Directory field, enter the file location, which
must be within the public_html folder of the view controller project.

Creating MAF AMX Pages and MAF Task Flows

2-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 2-8 Creating a MAF AMX Page in a View Controller Project

5. Select (or deselect) the Facets within the Panel Page that are used to create a
header and footer. Click OK.

For more information, see How to Use a Panel Page Component.

6. Build the MAF AMX page. For more information about using the AMX
components, see Creating MAF AMX Pages. See also Defining the Application
Feature Content as a MAF AMX Page or Task Flow.

To create a MAF AMX page as a resource to a MAF application:

1. In the Applications window, select the application controller project.

2. Choose File and then New.

3. From the Client Tier node in the New Gallery, select MAF AMX Page, and then
click OK.

4. Complete the Create MAF AMX Page dialog, shown in Figure 2-9, by entering a
name in the File Name field. In the Directory field, enter the file location, which
must be within the public_html folder of the application controller project. Click
OK.

Creating MAF AMX Pages and MAF Task Flows

Getting Started with MAF Application Development 2-11

Figure 2-9 Creating a MAF AMX Page in an Application Controller Project

5. Build the MAF AMX page. For more information, see Creating MAF AMX Pages.

2.6.2 How to Create MAF Task Flows
You can deliver the content for an application feature as a MAF task flow.

To create a MAF Task Flow as content for an application feature:

1. In the Applications window, select the view controller project.

2. Choose File and then New.

3. From the Client Tier node in the New Gallery select MAF Task Flow and then
click OK.

4. Complete the Create MAF Task Flow dialog, shown in Figure 2-10, by entering a
name in the File Name field. In the Directory field, enter the file location, which
must be within the public_html folder of the view controller project. Click OK.

Figure 2-10 Creating a MAF Task Flow in a View Controller Project

Creating MAF AMX Pages and MAF Task Flows

2-12 Developing Mobile Applications with Oracle Mobile Application Framework

5. Build the task flow. See also Creating Task Flows.

2.6.3 What Happens When You Create MAF AMX Pages and Task Flows
JDeveloper places the MAF AMX pages and task flows in the Web Content node of
the view controller project, as shown by custom_springboard.amx and
ViewController-task-flow.xml (the default name for a task flow created within
this project) in Figure 2-11. These artifacts are referenced in the maf-feature.xml
file. To manage the unbounded task flows, JDeveloper generates the adfc-mobile-
config.xml file. Using this file, you can declaratively create or update a task flow by
adding the various task flow components, such as a view (a user interface page), the
control rules that define the transitions between various activities, and the managed
beans to manage the rendering logic of the task flow.

Figure 2-11 MAF AMX Pages and Task Flows within Application Controller and
View Controller Projects

JDeveloper places the MAF AMX page and task flow as application resources to the
MAF application in the Web Content node of the application controller project. As
illustrated in Figure 2-11, the file for the MAF AMX page is called
application_resource.amx and the task flow file is called
ApplicationController-task-flow.xml (the default name).

2.7 Containerizing a MAF Application for Enterprise Distribution
At the time of deployment, you can choose to wrap the MAF application with the
Oracle Mobile Security Suite (OMSS) to take advantage of its enterprise mobile
application management capabilities. OMSS allows secure access to corporate
applications and data from mobile devices while preserving a rich user experience. Its
Mobile Security Container creates the enterprise Workspace on any iOS or Android

Containerizing a MAF Application for Enterprise Distribution

Getting Started with MAF Application Development 2-13

device, corporate-owned or personal. Employees get seamless access to corporate data
and applications with enterprise-grade security and single sign-on authentication.

With the Mobile Security App Containerization Tool, you can add a standardized
security layer to native mobile applications. The containerization process is simple and
injects the following security services into your application.

• Secure data transport: An encrypted AppTunnel through Mobile Security Access
Server to application back-end resources behind an enterprise firewall.

• Authentication: Managed by the Secure Workspace application and provides single
sign-on across applications in the secure workspace.

• Secure data storage: Encrypted storage of application data, including files,
database, application cache and user preferences.

• Data leakage controls: The ability to restrict file sharing and copy paste to only
other trusted applications. This enables you to control the sharing of data,
including e-mail, messaging, printing and saving.

• Dynamic policy engine: More than 50 detailed application controls, including
authentication frequency, geo and time fencing as well as remote lock and wipe.

The OMSS single sign-on authentication and user identity propagation to MAF
application services is supported only for applications configured to use the Web SSO
authentication server type for login connections. Applications using HTTP Basic and
OAuth authentication will be required to log in to the MAF application after the
Container authentication is successful. For details about these authentication types
and the role they play in OMSS, see What You May Need to Know About Login
Connections and Containerized MAF Applications.

The containerization process is simple and does not change the way you develop the
MAF application. In fact, you should not change application code specifically with
containerization in mind. You develop the MAF application the same way whether or
not you intend to deploy with OMSS containerization enabled.

When you deploy the application with OMSS containerization enabled, JDeveloper
runs the Mobile Security App Containerization Tool provided by OMSS to
containerize the MAF application.

After deployment, the MAF application developer works with the OMSS system
administrator to get the application added to OMSS Mobile App Catalog and to
configure appropriate policies. For details, see the Managing Mobile Apps chapter in
Administering Oracle Mobile Security Suite.

When the user launches the containerized MAF application, the Secure Workspace
application redirects to the Mobile Security Container, which performs SSO
authentication before handing the session back to the MAF application. The
containerized MAF application does not require VPN to connect to internal websites
or services. Instead a secure AppTunnel is established between the application and
Mobile Security Access Server (MSAS), which provides secure transport for accessing
internal sites and services that have been registered for access by mobile device users.

For more information about how OMSS containerization affects MAF applications, see
these sections:

• For the JDeveloper procedure to containerize the MAF application for OMSS, see
Deploying with Oracle Mobile Security Suite (OMSS).

Containerizing a MAF Application for Enterprise Distribution

2-14 Developing Mobile Applications with Oracle Mobile Application Framework

• For details about accessing secure web services behind the corporate firewall by the
containerized MAF application, see What You May Need to Know About
Accessing Web Services and Containerized MAF Applications.

• For details about the authentication process of containerized MAF applications, see
Overview of the Authentication Process for Containerized MAF Applications.

In the OMSS documentation library, refer to the following list of resources for details
about OMSS administration tasks related to mobile devices and workspace containers.

• For background information about OMSS, see the Understanding Oracle Mobile
Security Suite chapter in Administering Oracle Mobile Security Suite.

• For details about how system administrators use the OMSS Mobile Security
Manager console to enroll the MAF application user’s mobile device and
workspace, see the Enrolling Devices and Workspaces chapter in Administering
Oracle Mobile Security Suite

• For details about how system administrators use the OMSS Mobile App Catalog to
manage the MAF application provisioned to devices and workspaces, see the
Managing Mobile Apps chapter in Administering Oracle Mobile Security Suite.

• For details about how system administrators use the OMSS Mobile Security
Manager console to manage access to a corporate file shared by MAF application
capabilities, see the Managing Mobile Security Policies chapter in Administering
Oracle Mobile Security Suite.

In the OMSS documentation library, refer to the following list of resources for details
about MSAS administration tasks related to securing resources and authentication.

• For background information about MSAS, see the Getting Started with Mobile
Security Access Server chapter in Administering Oracle Mobile Security Access Server.

• For details about how system administrators create a proxy application to define
forward proxy URLs for protected resources accessed by MAF applications, see the
Managing Mobile Security Access Server Applications chapter in Administering
Oracle Mobile Security Access Server.

• For details about how system administrators attach predefined security policies to
forward proxy URLs and secure access by the MAF application to protected web
services, see the Securing Mobile Security Access Server Resources chapter in
Administering Oracle Mobile Security Access Server.

• For details about how system administrators configure a MSAS authentication
endpoint to handle authentication on the MAF application user’s mobile device by
the Secure Workspace application, see the Configuring a Mobile Security Access
Server Instance chapter in Administering Oracle Mobile Security Access Server.

Containerizing a MAF Application for Enterprise Distribution

Getting Started with MAF Application Development 2-15

Containerizing a MAF Application for Enterprise Distribution

2-16 Developing Mobile Applications with Oracle Mobile Application Framework

3
Configuring the Content of a MAF

Application

This chapter describes how you configure the maf-application.xml and maf-
features.xml files to define information such as the application name and
application features to include for your MAF application.

This chapter includes the following sections:

• Introduction to Configuring MAF Application Display Information

• Setting Display Properties for a MAF Application

• Setting Display Properties for an Application Feature

3.1 Introduction to Configuring MAF Application Display Information
You can configure the display information that appears to the end users of your MAF
application by setting values in the overview editor of the maf-application.xml
file. Examples of the type of information you enter for the application include the
display name, a description of your application, and the application's version number.
You can enter similar information for individual application features that you include
in your MAF application or distribute for use in other MAF applications. Additionally,
you can specify icons that an application feature displays when it renders in a MAF
application's navigation bar or springboard.

3.2 Setting Display Properties for a MAF Application
Figure 3-1 shows the Application page of the maf-application.xml file's overview
editor where you set the display name and application ID of your MAF application.

Configuring the Content of a MAF Application 3-1

Figure 3-1 Setting the Basic Information for the MAF Application

To set the basic information for a MAF application:

1. Choose the Application page.

2. In the Applications window, expand the Application Resources panel.

3. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

4. Double-click the maf-application.xml file and in the overview editor that appears,
click the Application navigation tab.

5. Enter a display name for the application in the Name field.

You can select a value from a resource bundle if you intend to localize your
application. For more information, see Introduction to MAF Application
Localization.

Note:

MAF uses the value entered in this field as the name for the iOS archive (.ipa
or .app) file that it creates when you deploy the application to an iOS-
powered device or simulator. For more information, see How to Create an iOS
Deployment Profile.

6. Enter a unique ID in the Id field.

To avoid naming conflicts, Android and iOS use reverse package names, such as
com.company.application. JDeveloper prefixes com.company as a reverse package to
the application name, but you can overwrite this value with another as long as it is
unique and adheres to the ID guidelines for both iOS- and Android-powered
devices. For iOS application, see the "Creating and Configuring App IDs" section in
iOS Team Administration Guide (available from the iOS Developer Library at

Setting Display Properties for a MAF Application

3-2 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios). For Android, refer to the
document entitled "The AndroidManifest.xml File," which is available from the
Android Developers website (http://developer.android.com/guide/
topics/manifest/manifest-intro.html). You can overwrite this ID in the
deployment profiles described in How to Create an Android Deployment Profile
and How to Create an iOS Deployment Profile.

Note:

To make sure that an application deploys successfully to an Android-powered
device or emulator, the ID must begin with a letter, not with a number or a
period. For example, an ID comprised of a wholly numeric value, such as
925090 (com.company.925090) fails to deploy. An ID that begins with letters,
such as hello925090 (com.company.hello925090) deploys successfully.

7. In the Description field, enter text that describes the application.

8. Enter the version in the Version field.

9. Enter the name of the vendor who originated this application in the Vendor field.

10. In the Lifecycle Event Listener field, enter a class with code that executes in
response to lifecycle events in your MAF application. A newly-created MAF
application specifies application.LifeCycleListenerImpl by default.

For more information, see Using Lifecycle Listeners in MAF Applications .

3.3 Changing the Launch Screen for Your MAF Application on iOS
MAF provides a HTML page to display the launch screen that appears to end users
when your MAF application starts up on an iOS device.

This HTML page is designed to render responsively on the iOS device where the MAF
application runs. That is, the page uses the available screen and displays the copyright
information and logo in a size appropriate to the device.

You can create a custom HTML page where you define an alternative launch screen.
You do this from the Launch Screen section of the Application page of the maf-
application.xml file’s overview editor. The HTML page you create is saved in the
ApplicationController/public_html directory of your MAF application. The
following XML entries appear in the maf-application.xml file’s source if you
create a HTML page to use as a launch screen:

...
 <adfmf:configuration>
 <adfmf:launchScreen url="custom-launch-screen.html"/>
 </adfmf:configuration>
...

The URL attribute defines the path, relative to the ApplicationController/
public_html directory, that the application uses to find the HTML page you create
as the launch screen.

View the HTML page that MAF renders as the default launch screen for iOS devices
for ideas on how to create a custom HTML page to render as the launch screen. The
default launch screen (maf-launch-screen.html) can be found in the following

Changing the Launch Screen for Your MAF Application on iOS

Configuring the Content of a MAF Application 3-3

http://developer.apple.com/library/ios
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

sub-directory of the deployment profile that you use to first deploy the MAF
application:

.../FARs/OracleStandardADFmfUiComponents/public_html/

3.4 Setting Display Properties for an Application Feature
Each MAF application must have at least one application feature. Application features
can be developed independently of each other (and also from the MAF application
itself). The overview editor for the maf-feature.xml file enables you to define the
child elements of <adfmf:features> to differentiate the application features by
assigning each application feature a name, an ID, and setting how their content can be
implemented. Using the overview editor for application features, you can also control
the runtime display of the application feature within MAF application and designate
when an application feature requires user authentication.

Figure 3-2 shows the General tab of the overview editor for the People application
feature in the WorkBetter sample application. Use this tab to specify information such
as the name of the application feature and the icons that display in the springboard
and navigation bar.

Figure 3-2 General Tab for Application Feature in maf-feature.xml File

Before you begin:

Setting Display Properties for an Application Feature

3-4 Developing Mobile Applications with Oracle Mobile Application Framework

If an application feature uses custom images for the navigation bar and springboard
rather than the default ones provided by MAF, you must create these images to the
specifications described by the Android Developers website (http://
developer.android.com/design/style/iconography.html) and in the
"Custom Icon and Image Creation Guidelines" chapter in iOS Human Interface
Guidelines, which is available from the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/).

You place these images in the view controller project's public_html directory. See
also What You May Need to Know About Selecting External Resources .

In addition, you must open the maf-feature.xml file and select the General tab.

To set the basic information for the application feature:

1. Choose the General tab.

2. Click the Add icon in the Features section.

3. Complete the Create MAF Feature dialog and click OK.

To complete the Create MAF Feature dialog:

• Enter a display name for the application feature in the Feature Name field.

• Enter a unique identifier for the application feature in the Feature ID field.

• If needed, change the location for the application feature to any directory within
the public_html directory (the default parent directory). Enter this location in
the Directory field.

• Select the Add a corresponding feature reference to maf-application.xml
checkbox to include the newly defined application feature in the MAF
application.

4. (Optional) In the General tab of the overview editor, enter the originator of the
application feature in the Vendor field.

5. (Optional) Enter the version number of the application feature in the Version field.

6. (Optional) Enter a brief description of the application's purpose in the Description
field.

7. (Optional) Enter the fully qualified class name (including the package, such as
oracle.adfmf.feature) using the Class and Package Browser in the Lifecycle
Event Listener field to enable runtime calls for start, stop, hibernate, and return to
hibernate events. For more information, see Using Lifecycle Listeners in MAF
Applications .

8. (Optional) In the Navigation Bar Icon and Springboard Image fields, browse to,
and select, images from the project to use as the icon in the navigation bar and also
an image used for the display icon in the springboard. You can also drag and drop
the image files from the Applications window into the file location field.

Setting Display Properties for an Application Feature

Configuring the Content of a MAF Application 3-5

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

Setting Display Properties for an Application Feature

3-6 Developing Mobile Applications with Oracle Mobile Application Framework

4
Configuring the Application Navigation

This chapter describes how to configure application navigation in a MAF application.

This chapter includes the following sections:

• Introduction to the Display Behavior of MAF Applications

• Configuring Application Navigation

• What Happens When You Configure the Navigation Options

• What Happens When You Set the Animation for the Springboard

• What You May Need to Know About Custom Springboard Application Features
with HTML Content

• What You May Need to Know About Custom Springboard Application Features
with MAF AMX Content

• What You May Need to Know About the Runtime Springboard Behavior

• Navigating a MAF Application Using Android’s Back Button

• Creating a Sliding Window in a MAF Application

• Using Custom URL Schemes in MAF Applications

4.1 Introduction to the Display Behavior of MAF Applications
You can configure the MAF application to control the display behavior of the
springboard and the navigation bar in the following ways:

• Hide or show the springboard and navigation bar to enable the optimal usage of
the mobile device's interface. These options override the default display behavior
for the navigation bar, which is shown by default unless otherwise specified by the
application feature.

• Enable the springboard to slide from the right. By default, the springboard does not
occupy the entire display, but instead slides from the left, pushing the active
content (which includes the navigation bar's Home button and application
features) to the right.

4.2 Configuring Application Navigation
The Navigation options of the Applications page, shown in Figure 4-1, enable you to
hide or show the navigation bar, select the type of springboard used by the
application, and define how the springboard reacts when users page through
applications.

Configuring the Application Navigation 4-1

Figure 4-1 The Navigation Options of the Application Page

4.2.1 How to Set the Display Behavior for the Navigation Bar
The default behavior for a MAF application is to show the navigation bar on
application launch. You can change this default behavior in the Application page of
the maf-application.xml file's overview editor.

To set the display behavior for the navigation bar:

1. Select Show Navigation Bar on Application Launch to enable the MAF
application to display its navigation bar (instead of the springboard), by default,
as shown in Figure 4-2.

Figure 4-2 The Navigation Bar, Shown By Default

If you clear this option, then you hide the navigation bar when the application
starts, presenting the user with the springboard as the only means of navigation.
Because the navigation bar serves the same purpose as the springboard, hiding it
can, in some cases, remove redundant functionality.

2. Select Show Navigation Bar Toggle Button to hide the navigation bar when the
content of a selected application feature is visible. Figure 4-3 illustrates this option,

Configuring Application Navigation

4-2 Developing Mobile Applications with Oracle Mobile Application Framework

showing how the navigation bar illustrated in Figure 4-2 becomes hidden by the
application feature content.

Figure 4-3 Hiding the Navigation Bar

This option is selected by default; the navigation bar is shown by default if the
show or hide state is not specified by the application feature.

4.2.2 How to Set the Display Behavior for the Springboard
By default, a MAF application does not show a springboard on application launch.
You can change this default behavior in the Application page of the maf-
application.xml file's overview editor.

To set the display behavior for the springboard:

1. Select the type of springboard (if any):

• None—Select this option if the springboard should not be displayed in the
application.

• Default—Select to display the default springboard provided by MAF. The
default springboard is implemented as a MAF AMX page. For more
information, see What You May Need to Know About Custom Springboard
Application Features with MAF AMX Content.

• Custom—Select to use a customized springboard. You may, for example,
create a custom springboard that arranges the embedded application features
in a grid layout pattern, or includes a search function, or data, such as a list of
common tasks (My Reports, or My Leads, for example). This application, which
can be implemented either as an HTML page or as a MAF AMX page, is
declared as an application feature in the maf-feature.xml file (which is
located within a view controller project). For more information, see Setting
Display Properties for an Application Feature. For information on enabling
navigation within a customized springboard written in HTML, see Local
HTML and Application Container APIs.

– Feature—Select the application feature used as a springboard, as shown in
Figure 4-4.

Configuring Application Navigation

Configuring the Application Navigation 4-3

Note:

MAF's design time prompts you to set the Show on Navigation Bar and
Show on Springboard options to false when you designate an application
feature as a custom springboard. This makes sure that the page behaves as a
custom springboard rather than as an application feature that users launch
from a navigation bar or from a springboard.

Figure 4-4 Selecting an Application Feature as a Custom Springboard

2. Select Show Springboard on Application Launch to enable the MAF application
to display the springboard to the end user after the MAF application has been
launched. (This option is only available for the Default or Custom options.)

3. Select Show Springboard Toggle Button to enable the display of the springboard
button, shown in Figure 4-5, that displays within an application feature. Figure 4-2
shows this button within the context of an application feature. This option is only
available for the Default or Custom options.

Figure 4-5 The Springboard Toggle Button

4.2.3 How to Set the Slideout Behavior for the Springboard
If you configure your MAF application to use a springboard, you can set the slideout
behavior of the springboard in the Application page of the maf-application.xml
file's overview editor.

To set the slideout behavior for the springboard:

1. Select Springboard Animation and then choose Slide Right. The springboard
occupies an area determined by the number of pixels (or the percent) entered for
the Slideout Width option. If you select None, then the springboard cannot slide
from the right (that is, MAF does not provide the animation to enable this action).
The springboard takes the entire display area.

Configuring Application Navigation

4-4 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

The slideout option is only applicable when you select either the Custom or
Default springboard options.

2. Set the width (in pixels). The default width of a springboard on an iOS-powered
device is 320 pixels. On Android-powered devices, the springboard occupies the
entire screen by default, thereby taking up all of the available width.

Note:

If the springboard does not occupy the entire area of the display, then an
active application feature occupies the remainder of the display. For more
information, see What Happens When You Set the Animation for the
Springboard.

4.2.4 How to Set the Display Order for Application Features
You set the display order for application features in the Feature References page of
the maf-application.xml overview editor.

To set the display order for application features:

1. Click the Feature References page of the maf-application.xml overview
editor.

2. Use the up- and down-arrows shown to arrange the display order of the feature
references, or use the drop-down list in rows of the Feature Id column to reorder
the feature references. The top-most application feature is the default application
feature. Depending on the security configuration for this application, MAF can
enable users to login anonymously to view unsecured content, or it can prompt
users to provide their authentication credentials.

Note:

The top-most Id in the Feature References table is the first application feature
to display within the MAF application. See, for example, the Dashboard
application feature in the WorkBetter sample application.

3. Set the springboard and navigation bar display behavior for the application
feature by selecting true or false from the drop-down lists in the rows of the
Show on Navigation Bar and Show on Springboard columns. Figure 4-6 shows
selecting these options to prevent an application feature from displaying in the
navigation bar.

Tip:

Set these options to false if the application uses a custom springboard or if
the application feature displays as a sliding window.

Configuring Application Navigation

Configuring the Application Navigation 4-5

Figure 4-6 Changing the Navigation Options

The springboard and the navigation bar display by default (that is, these attributes
are set to true). If both the navigation bar and springboard attributes are set to
false, then the application feature only displays if it is in the first position.

Note:

Because springboard applications do not display on the navigation bar or
within the springboard of a MAF application, Show on Navigation Bar and
Show on Springboard must both be set to false for feature references used
as custom springboard application features.

4.3 What Happens When You Configure the Navigation Options
Setting the springboard and navigation bar options updates or adds elements to the
adfmf:application.xml file's <adfmf:navigation> element. For example,
selecting None results in the code updated with <springboard
enabled="false"> as illustrated in the following example.

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="false"/>
 </adfmf:navigation>
</adfmf:application>

Tip:

By default, the navigation bar is enabled, but the springboard is not. If you
update the XML manually, you can enable the springboard as follows:

<adfmf:application>
 ...
<adfmf:navigation>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
 ...
</adfmf:application>

Example 4-1 illustrates how the enabled attribute is set to true when you select
Default.

What Happens When You Configure the Navigation Options

4-6 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Because the springboard fills the entire screen of the device, the navigation bar
and the springboard do not appear simultaneously.

If you select Custom and then select the application feature used as the springboard,
the editor populates the <adfmf:navigation> element as illustrated in Example
4-2. The id attribute refers to an application feature defined in the maf-
feature.xml file that is used as a custom springboard.

Example 4-1 Enabling the Display of the Default Springboard

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
</adfmf:application>

Example 4-2 Configuring a Custom Springboard

<adfmf:navigation>
 <adfmf:springboard enabled="true">
 <adfmf:springboardFeatureReference id="springboard"/>
 </adfmf:springboard>
 </adfmf:navigation>

4.4 What Happens When You Set the Animation for the Springboard
Example 4-3 shows the navigation block of the maf-application.xml file, where
the springboard is set to slide out and occupy a specified area of the display (213
pixels).

The following line disables the animation:

<adfmf:springboard enabled="true" animation="none"/>

The following line sets the springboard to occupy 100 pixels from the left of the
display area and also enables the active application feature to occupy the remaining
portion of the display:

<adfmf:springboard enabled="true" animation="slideright" width="100px"/>

In addition to the animation, Example 4-3 demonstrates the following:

• The use of the showSpringboardAtStartup attribute, which defines whether
the springboard displays when the application starts. (By default, the springboard
is displayed.)

• The use of the navigationBar's displayHideShowNavigationBarControl
attribute.

To prevent the springboard from displaying, set the enabled attribute to false.

Example 4-3 Configuring Springboard Animation

<adfmf:navigation>
 <adfmf:navigationBar enabled="true"
 displayHideShowNavigationBarControl="true"/>

What Happens When You Set the Animation for the Springboard

Configuring the Application Navigation 4-7

 <!-- default interpretation of width is pixels -->
 <adfmf:springboard enabled="true"
 animation="slideright"
 width="213"
 showSpringbaordAtStartup="true"/>
</adfmf:navigation>

4.5 What You May Need to Know About Custom Springboard Application
Features with HTML Content

The default HTML springboard page provided by MAF uses the following
technologies, which you may also want to include in a customized login page:

• CSS—Defines the colors and layout.

• JavaScript—The <script> tag embedded within the springboard page contains
references to the methods described in Local HTML and Application Container
APIs. that call the Apache Cordova APIs. In addition, the HTML page uses
JavaScript to respond to the callbacks and to detect page swipes. When swipe
events are detected, JavaScript enables the dynamic modification of the style sheets
to animate the page motions.

A springboard authored in HTML (or any custom HTML page) can leverage the
Apache Cordova APIs by including a <script> tag that references the base.js
library. You can determine the location of this library (or other JavaScript libraries)
by first deploying a MAF application and then locating the www/js directory
within platform-specific artifacts in the deploy directory. For an Android
application, the www/js directory is located within the Android application
package (.apk) file at:

application workspace directory/deploy/deployment profile name/deployment profile
name.apk/assets/www/js

For iOS, this library is located at:

application workspace directory/deploy/deployment profile name/
temporary_xcode_project/www/js

For more information, see Using MAF APIs to Create a Custom HTML
Springboard Application Feature.

• WebKit—Provides smooth animation of the icons during transitions between
layouts as well as between different springboard pages. For more information on
the WebKit rendering engine, see http://www.webkit.org/.

Springboards written in HTML are application features declared in the maf-
feature.xml file and referenced in the maf-application.xml file.

4.6 What You May Need to Know About Custom Springboard Application
Features with MAF AMX Content

Like their HTML counterparts, springboards written using MAF AMX are application
features that are referenced by the MAF application. Because a springboard is typically
written as a single MAF AMX page rather than as a task flow, it uses the
gotoFeature method to launch the embedded application features.

What You May Need to Know About Custom Springboard Application Features with HTML Content

4-8 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.webkit.org/

Note:

A custom springboard page (authored in either HTML or MAF AMX) must
reside within a view controller project which also contains the maf-
feature.xml file.

The default springboard (adfmf.default.springboard.jar, located in
jdev_install\jdeveloper\jdev\extensions\oracle.maf\lib) is a MAF
AMX page that is bundled in a Feature Archive (FAR) JAR file and deployed with
other FARs that are included in the MAF application. This JAR file includes all of the
artifacts associated with a springboard, such as the DataBindings.cpx and
PageDef.xml files. This file is only available after you select Default as the
springboard option in the maf-application.xml file. Selecting this option also
adds this FAR to the application classpath. For more information, see Deploying
Feature Archive Files (FARs).

The default springboard (springboard.amx, illustrated in the following example) is
implemented as a MAF AMX application feature.

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="#{bindings.name.inputValue}" id="ot3"/>
 </amx:facet>
 <amx:listView var="row"
 value="#{bindings.features.collectionModel}"
 fetchSize="#{bindings.features.rangeSize}"
 id="lv1"
 styleClass="amx-springboard">
 <amx:listItem showLinkIcon="false"
 id="li1"
 actionListener="#{bindings.gotoFeature.execute}">
 <amx:tableLayout id="tl1"
 width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11"
 width="46px"
 halign="center">
 <amx:image source="#{row.image}"
 id="i1"
 inlineStyle="width:36px;height:36px"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12"
 width="100%"
 height="43px">
 <amx:outputText value="#{row.name}"
 id="ot2"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 <amx:setPropertyListener from="#{row.id}"
 to="#{pageFlowScope.FeatureId}"/>
 </amx:listItem>
 </amx:listView>
 </amx:panelPage>
</amx:view>

What You May Need to Know About Custom Springboard Application Features with MAF AMX Content

Configuring the Application Navigation 4-9

As shown in Figure 4-7, a MAF AMX file defines the springboard using a List View
whose List Items are the MAF application's embedded application features. These
application features, once deployed, are displayed by their names and associated
icons. The gotoFeature method of the AdfmfContainerUtilities API provides
the page's navigation functions. For a description of using this method to display a
specific application feature, see gotoFeature. See also How to Use List View and List
Item Components.

Figure 4-7 The Default Springboard

MAF provides the basic tools to create a custom springboard (or augment the default
one) in the ApplicationFeatures data control. This data control, illustrated in Figure
4-8, enables you to declaratively build a springboard page using its data collections of
attributes that describe both the MAF application and its application features. For an
example of a custom springboard page, see the APIDemo sample application. For
more information on this application (and other samples that ship with MAF), see
MAF Sample Applications.

What You May Need to Know About Custom Springboard Application Features with MAF AMX Content

4-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 4-8 ApplicationFeatures Data Control

The ApplicationFeatures data control exposes methods that the
AdfmfContainerUtilities class from the following package provides to
implement navigation in a MAF application:

oracle.adfmf.framework.api

Table 4-1 describes some of the methods that you can drag from the
ApplicationFeatures data control and drop on a MAF AMX page to navigate in your
MAF application.

For more information about using data controls, see Using Bindings and Creating Data
Controls in MAF AMX . For more information about the
AdfmfContainerUtilities class, see Java API Reference for Oracle Mobile Application
Framework.

What You May Need to Know About Custom Springboard Application Features with MAF AMX Content

Configuring the Application Navigation 4-11

Table 4-1 Application Feature Methods

Method Description

gotoDefaultFeature Navigates to default application feature.

gotoFeature Navigates to a specific application as designated by the
parameter that is passed to this method.

gotoPreferences Navigates to the preferences page.

gotoSpringboard Navigates to the springboard.

hideNavigationbar Hides the navigation bar.

showNavigationbar Displays the navigation bar (if it is hidden).

resetFeature Resets the application feature that is designated by the
parameter passed to this method.

hideSpringboard Hides the springboard.

showSpringboard Shows the springboard.

toggleSpringboard Toggles the display of the springboard.

4.7 What You May Need to Know About the Runtime Springboard
Behavior

If you chose the Show Springboard on Application Launch option and defined the
slideout width to full size of the screen, then MAF loads the default application feature
in the background at startup. When the MAF application hibernates, MAF hides the
springboard.

4.8 Navigating a MAF Application Using Android’s Back Button
End users can navigate backwards on MAF applications using the Android system’s
Back button.

Figure 4-9 shows the Android system’s Back button that appears on the Android
navigation bar or on the Android device itself. Figure 4-9 shows the Android 4.x and
Android 5.x versions of the navigation bar where this button appears.

Figure 4-9 Android’s Back Button

Figure 4-10 shows a navigation flow on a MAF application where an end user has
navigated between three application features (Customer, Sales, and Billing) to the
Billing Page 3 page of the Billing application feature.

What You May Need to Know About the Runtime Springboard Behavior

4-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 4-10 Navigation Flow Between Application Features and Pages in a MAF Application

The default MAF application behavior in response to an end user tapping Android’s
system Back button on:

• Billing Page 3 is to navigate to Billing Page 2

• Billing Page 2 is to navigate to Billing Page 1

• Billing Page 1 is to hibernate the MAF application

An end user may choose to tap Android’s system Back button instead of a MAF AMX
button that you expose on the UI with a value of __back for the action attribute. The
behavior is the same in both scenarios. Assume, for example, that all 3 pages in the
Billing application feature expose a button component with an action attribute set to
__back. The backward navigation flow in this scenario is from Page 3 to Page 2, Page
2 to Page 1, and for the MAF application to hibernate if the end user taps the
command button on Page 1.

You can override the default MAF application behavior in response to an end user
tapping the Android system Back button so that the MAF application navigates
elsewhere or executes some logic prior to navigating backwards. MAF provides
JavaScript APIs and the MAF AMX System Action Behavior
(systemActionBehavior) component that you can use to override the default MAF
application behavior. The systemActionBehavior component can only be used
where your application feature’s content is MAF AMX pages. JavaScript can be used
to override the default behavior on application features that use MAF AMX pages,
local HTML or remote URLs. You can use the registerSystemActionOverride
JavaScript method to register a handler to be invoked when an end user taps the
Android Back button. Use the unregisterSystemActionOverride JavaScript
method to remove a handler from being invoked. Both methods are in the
adf.mf.api namespace. For more information, see JSDoc Reference for Oracle Mobile
Application Framework.

For more information about using the systemActionBehavior component, see
How to Configure Behavior of the Android System Back Button.

The default MAF application behavior in response to an end user tapping Android’s
system Back button in a MAF application created using a release prior to MAF 2.2.0
was to navigate back between application features. This meant that, for example in

Navigating a MAF Application Using Android’s Back Button

Configuring the Application Navigation 4-13

Figure 4-9, an end user navigates from the Billing application feature to Sales
application feature and finally Customer application feature before hibernating the
MAF application. You can implement this legacy behavior in MAF applications
created using this release of MAF by configuring a parameter in the maf-
config.xml file, as described in the Retaining Legacy Behavior When Navigating a
MAF Application Using Android’s Back Button section of the Installing Oracle Mobile
Application Framework. Implementing this legacy behavior causes the MAF application
to ignore any usage of the systemActionBehavior component and the
registerSystemActionOverride JavaScript method discussed here.

4.8.1 How to Configure Behavior of the Android System Back Button
The System Action Behavior (systemActionBehavior) operation allows you to
override the default behavior of the Android-powered device Back button to perform
processing of custom logic before the navigation proceeds to the previous page of the
MAF AMX application feature as defined by the task flow.

In JDeveloper, the System Action Behavior is located under Operations in the
Components window, as Figure 4-11 shows.

Navigating a MAF Application Using Android’s Back Button

4-14 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 4-11 System Action Behavior in the Components Window

Navigating a MAF Application Using Android’s Back Button

Configuring the Application Navigation 4-15

The following example demonstrates the systemActionBehavior element defined
in a MAF AMX file. This element can only be a child of the view element.

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:systemActionBehavior id="sab1"
 type="back"
 actionListener="#{MyBean.onBackButton}"
 action="#{MyBean.getNavAction}"/>
 ...
</amx:view>

In the preceding example, the actionListener and action attributes of the
systemActionBehavior invoke Java bean methods shown in the following
example. The onBackButton method performs processing of custom logic before the
back navigation occurs. The getNavAction method disables the back behavior.

public class MyBean {

 public void onBackButton() {
 // do processing
 }

 public String getNavAction() {
 return "";
 }
}

In the preceding example, the getNavAction method could return the "__back"
String to enable the back navigation. In this case, the action would be resolved when
the MAF AMX page is loaded; it would not be called every time the system back
button on the Android-powered device is pressed.

In addition to the System Action Behavior MAF AMX component and Java beans, you
can use JavaScript to configure behavior of the Android system back button. The
following example demonstrates the feature.js file included with the application
feature. It defines a handler for the Android system back button that enables some sort
of processing to take place before the back navigation occurs.

handleSystemBack = function()
{
 // do some processing, invoke a Java bean
 adf.mf.api.amx.doNavigation("__back");
};
adf.mf.api.registerSystemActionOverride("back", handleSystemBack);

The handler demonstrated in the following example prevents the back navigation
from occurring.

handleSystemBack = function()
{
 // do nothing
};
adf.mf.api.registerSystemActionOverride("back", handleSystemBack);

The handler demonstrated in the following example enables the standard back
navigation.

handleSystemBack = function()
{

Navigating a MAF Application Using Android’s Back Button

4-16 Developing Mobile Applications with Oracle Mobile Application Framework

 adf.mf.api.amx.doNavigation("__back");
};
adf.mf.api.registerSystemActionOverride("back", handleSystemBack);

4.9 Creating a Sliding Window in a MAF Application
You can render an application feature as a sliding window. This makes the application
feature display concurrently with the other application features that display within the
navigation bar or springboard. You might use a sliding window to display content
that is always present within the application, such as a global tool bar, or for
temporary (pop-up) content, such as a help window.

Figure 4-12 shows the SlidingDrawer application feature from the SlidingWindow
sample application, described in MAF Sample Applications. This application feature
appears on the right of an application screen while overlaying other application
features.

Figure 4-12 Sliding Window Overlaying Other Application Features

If you choose to render an application feature as a sliding window, you must set its
Show on Navigation Bar and Show on Springboard properties to false.

You create a sliding window by invoking a combination of the
oracle.adfmf.framework.api.AdfmfSlidingWindowOptions and
AdfmfSlidingWindowUtilities classes, either from a managed bean or lifecycle
listener within your application.

The following example demonstrates how the SlidingWindow sample application
creates the sliding window shown in Figure 4-12 from the activate method of
LifeCycleListenerImpl.java. After creating the sliding window, the
SlidingWindow sample application uses SlidingDrawerBean.java to manage
the display of the sliding window.

Creating a Sliding Window in a MAF Application

Configuring the Application Navigation 4-17

...
public void activate() {
 // The argument you pass to the create method is the refId of the
 // feature in the maf-application.xml. For example,
 // <adfmf:featureReference id="fr4" refId="SlidingDrawer"
showOnNavigationBar="false"
 // showOnSpringboard="false"/>
 String slidingWindowDrawer =
AdfmfSlidingWindowUtilities.create("SlidingDrawer");

 // Note also that both showOn... values must be set to false in the config
 // file for the sliding window to appear

 SlidingDrawerBean.slidingDrawerWindow=slidingWindowDrawer;
 AdfmfSlidingWindowOptions options = new AdfmfSlidingWindowOptions();
 options.setDirection(AdfmfSlidingWindowOptions.DIRECTION_RIGHT);
 options.setStyle(AdfmfSlidingWindowOptions.STYLE_OVERLAID);
 options.setSize("0");

 }

For information about how to access the complete SlidingWindow sample
application discussed here, see MAF Sample Applications.

For more information about AdfmfSlidingWindowUtilities and
AdfmfSlidingWindowOptions, see the Java API Reference for Oracle Mobile
Application Framework. For more information about using lifecycle listeners, see Using
Lifecycle Listeners in MAF Applications .

4.10 Using Custom URL Schemes in MAF Applications
A custom URL scheme can be used to invoke a native application from other
applications.

To invoke a MAF mobile application from another application, perform the following
steps:

1. Register a custom URL scheme. You configure this URL scheme in the Overview
editor of the maf-application.xml file using the URL Scheme field. The URL
with this scheme can then be used to invoke the MAF mobile application and pass
data to it.

2. In the application controller project, create a custom URL event listener class (for
example, CustomURLEventListener) that is notified of the URL. This class must
implement the oracle.adfmf.framework.event.EventListener interface
that defines an event listener. For more information on the
oracle.adfmf.framework.event.EventListener interface, see Java API
Reference for Oracle Mobile Application Framework.

Override and implement the onMessage(Event e) method that gets called with
the URL that is used to invoke the MAF mobile application. The Event object can
be used to retrieve useful information about URL payload and the application
state. To get URL payload, use the Event.getPayload method. To get the
application state at the time of URL event, use the
Event.getApplicationState method. For more information, see the Event
class in Java API Reference for Oracle Mobile Application Framework.

3. Register an application lifecycle event listener (ALCL) class.

Using Custom URL Schemes in MAF Applications

4-18 Developing Mobile Applications with Oracle Mobile Application Framework

For more information, see Using Lifecycle Listeners in MAF Applications .

Get an EventSource object in the start method of the ALCL class that
represents the source of the custom URL event:

EventSource openURLEventSource =
EventSourceFactory.getEventSource(EventSourceFactory.OPEN_URL_EVENT_SOURCE_NAME);

Create and add an object of the custom URL event listener class to the event source:

openURLEventSource.addListener(new CustomURLEventListener());

A MAF application can invoke another native application in the following ways:

• Using an amx:goLink on a MAF AMX page whose URL begins with the custom
URL scheme registered by the native application. For example:

<amx:goLink text="Open App" id="gl1" url="mycustomurlscheme://somedata"/>

• Using an HTML link element on an HTML page whose href attribute value begins
with the custom URL scheme registered by the native application. For example:

Open App

Add any custom URL schemes that your MAF application uses to invoke a native
application to the Allowed Scheme list in the Security page of the maf-
application.xml file’s overview editor. This change addresses iOS 9’s requirement
that applications declare any URL schemes they use to invoke other applications. Click
the Add icon in the Allow Schemes section of the Security page to add the custom
URL scheme, as shown in Figure 4-13.

Figure 4-13 Registering a Custom URL Scheme that a MAF Applications Use to
Invoke Another Application

Using Custom URL Schemes in MAF Applications

Configuring the Application Navigation 4-19

Using Custom URL Schemes in MAF Applications

4-20 Developing Mobile Applications with Oracle Mobile Application Framework

5
Defining the Content Type of MAF

Application Features

This chapter introduces the content types that you can use in the applications features
of your MAF application and describes how to create each supported content type in
an application feature.

This chapter includes the following sections:

• Introduction to Content Types for an Application Feature

• Defining the Application Feature Content as Remote URL or Local HTML

• Defining the Application Feature Content as a MAF AMX Page or Task Flow

• What You May Need to Know About Selecting External Resources

5.1 Introduction to Content Types for an Application Feature
The content type for an application feature describes the format of the user interface,
which can be constructed using MAF AMX components or HTML(5) tags. An
application feature can also derive its content from remotely hosted pages that contain
content appropriate to a mobile context. These web pages might be a JavaServer page
authored in Apache Trinidad for smartphones, or be comprised of ADF Faces
components for applications that run on tablet devices. The application features
embedded in a MAF application can each have different content types.

While a MAF application includes application features with different content types,
applications features themselves may have different content types to respond to user-
and device-specific requirements. For information on how the application feature
delivers different content types, see Setting Constraints on Application Features .
Adding a child element to the <adfmf:content> element, shown in Example 5-1,
enables you to define how the application feature implements its user interface.

The Content tab of the overview editor, shown in Figure 5-1, provides you with drop-
down lists and fields for defining the target content-related elements and attributes
shown in Example 5-1. The fields within this tab enable you to set constraints that can
control the type of content delivered for an application feature as well as the
navigation and springboard icon images that it uses.

Each content type has its own set of parameters. As shown in Figure 5-1, for example,
you specify the location of the MAF AMX page or task flow for the application
features that you implement as MAF AMX content. In addition, you can optionally
select a CSS file to give the application feature a look and feel that is distinct from
other application features (or the MAF application itself), or select a JavaScript file that
controls the actions of the MAF AMX components.

Defining the Content Type of MAF Application Features 5-1

Figure 5-1 Defining the Implementation of the Application Feature

Example 5-1 The <adfmf:content> Element

<adfmf:content id="Feature1">
 <adfmf:amx file="FeatureContent.amx">
</adfmf:content>

5.2 Defining the Application Feature Content as Remote URL or Local
HTML

The Content tab of the overview editor, shown in Figure 5-1, provides you with drop-
down lists and fields for defining the target content-related elements and attributes
shown in Example 5-1. The fields within this tab enable you to set constraints that can
control the type of content delivered for an application feature as well as the
navigation and springboard icon images that it uses.

Before you begin:

Each content type has its own prerequisites, as follows:

• Remote URL—A reference to a web application. You can enhance an existing web
application for mobile usage and extend device services. Remote content can
complement both MAF AMX and local HTML content by providing a local data
cache and a full set of server-side data and functionality. The remote URL
implementation requires a valid web address. For more information, see
Implementing Application Feature Content Using Remote URLs .

• Local HTML—Reference a HTML page that is packaged within your MAF
application. Such HTML pages can reference JavaScript, as demonstrated by the
HelloWorld sample application described in MAF Sample Applications. Consider
using this content type to implement application functionality through usage of the
Cordova JavaScript APIs if the MAF is not best suited to implementing your
application's functionality. For more information about JavaScript APIs and the
MAF, see Local HTML and Application Container APIs.

To define the application content as Remote URL or Local HTML:

Defining the Application Feature Content as Remote URL or Local HTML

5-2 Developing Mobile Applications with Oracle Mobile Application Framework

1. Select an application feature listed in the Features table in the maf-feature.xml
file.

2. Click Content.

3. Click Add to create a new row in the Content table.

4. Select one of the following content types to correspond with the generated ID:

• Remote URL

• Local HTML

5. Define the content-specific parameters:

• For remote URL content, select the connection, as shown in Figure 5-2, that
represents address of the web pages on the server (and the location of the
launch page).

Figure 5-2 Selecting the Connection for the Hosted Application

You can create this connection by first clicking Add and then completing the
Create URL Connection dialog, shown in Figure 5-3. For more information on
this dialog, see the online help for Oracle JDeveloper. This connection is stored
in the connections.xml file.

Note:

This connection can only be created as an application resource.

Defining the Application Feature Content as Remote URL or Local HTML

Defining the Content Type of MAF Application Features 5-3

Figure 5-3 Creating a URL Connection

• For local HTML content, enter the location of the local bundle or create the
HTML page by clicking Add in the URL field, completing the dialog as shown
in Figure 5-4, and then building the page using JDeveloper's HTML editor.
Because this is an application feature, this page is stored within the Web
Content folder of the view controller project.

Defining the Application Feature Content as Remote URL or Local HTML

5-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 5-4 Creating the Local HTML Page as the Content for an Application Feature

6. If needed, do the following:

• Enter constraints that describe the conditions under which this content is
available to users. For more information, see Setting Constraints on Application
Features .

• Select navigation bar and springboard images.

5.3 Defining the Application Feature Content as a MAF AMX Page or Task
Flow

The Content tab of the Overview editor, shown in Figure 5-1, provides you with drop-
down lists and fields for defining the target content-related elements and attributes
shown in Example 5-1. The fields within this tab enable you to set constraints that can
control the type of content delivered for an application feature as well as the
navigation and springboard icon images that it uses.

Before you begin:

Each content type has its own prerequisites, as follows:

• MAF AMX—The default content type for application features. For more
information about MAF AMX pages, see Creating MAF AMX Pages .

An application feature implemented as MAF AMX requires a view (that is, a single
MAF AMX page) or a bounded or unbounded task flow. Including a JavaScript file
provides rendering logic to the MAF AMX components or overrides the existing

Defining the Application Feature Content as a MAF AMX Page or Task Flow

Defining the Content Type of MAF Application Features 5-5

rendering logic. Including a style sheet (CSS) with selectors that specify a custom
look and feel for the application feature, one that overrides the styles defined at the
MAF application level that are used by default for application features. In other
words, you ensure that the entire application feature has its own look and feel.

If you create the MAF AMX pages as well as the MAF application that contains
them, you can create both using the wizards in the New Gallery. You access these
wizards by first highlighting the view controller project in the Applications
window and then by choosing New.

Note:

When manually editing references to task flows, MAF AMX pages, CSS and
JavaScript files in the maf-feature.xml file, keep in mind that file systems
used on devices may enforce case-sensitivity and may not allow special
characters. To ensure that these files can be referenced, check the mobile
device specification.

• MAF Task Flow— Provides a modular approach to defining control flow in your
application feature. Use a task flow to define a collection of activities that make up
a task. Examples of activities that you can include in a task flow are views (use to
display MAF AMX pages), method calls (use to invoke managed bean methods),
and task flow calls (use to call other task flows). For more information about task
flows, see Creating Task Flows.

To use a MAF AMX page or task flow as application feature content:

1. Select the application feature.

2. Click Content.

3. If needed, click Add to create a row in the Content table and choose MAF AMX
Page or MAF Task Flow from the drop-down list in the Type column, as shown in
the following figure.

Figure 5-5 Selecting MAF AMX Page or MAF Task Flow as the Content Type

4. In the File field, choose the appropriate option:

• If you have already created a MAF AMX page or task flow, click the Browse
icon and choose the location of the page or task.

• If you want to create a new MAF AMX page, click the Add icon to invoke a
dialog where you can create a new MAF AMX page or task flow.

5. If needed, do the following:

Defining the Application Feature Content as a MAF AMX Page or Task Flow

5-6 Developing Mobile Applications with Oracle Mobile Application Framework

• Enter the JavaScript files by clicking Add in the Includes table, choose
JavaScript, and then browse to the location of the file. For more information, see
Overriding the Default Skin Styles.

• Override the default style sheet designated in maf-config.xml by first
clicking Add and then by choosing Stylesheet. Browse to the location of the file.
For more information, see Skinning MAF Applications.

• Enter the constraints, as described in Setting Constraints on Application
Features .

• Select navigation bar and springboard images.

Note:

The images, style sheet, and JavaScript files must reside within the
public_html folder to enable deployment. See What You May Need to
Know About Selecting External Resources .

5.4 What You May Need to Know About Selecting External Resources
To enable deployment, all resources referenced by the following attributes must be
located within the public_html directory of the view controller project.

• The icon and image attributes for <adfmf:feature> (for example,
<adfmf:feature id="PROD" name="Products"
icon="feature_icon.png" image="springboard.png">). See also Setting
Display Properties for an Application Feature.

• The icon and image attributes for <adfmf:content> (for example,
<adfmf:content id="PROD" icon="feature_icon.png"
image="springboard_image.png">). See also Introduction to Content Types
for an Application Feature.

• The file attribute for <adfmf:amx> (for example, <adfmf:amx
file="PRODUCT/home.amx" />). See also Introduction to Content Types for an
Application Feature.

• The url attribute for <adfmf: localHTML> (for example, <adfmf:localHTML
url="oracle.hello/index.html"/>). See also Introduction to Content Types
for an Application Feature and The Custom Login Page.

• The file attribute defined for type=stylesheet and type=JavaScript in
<adfmf:includes> (for example, <adfmf:include type="JavaScript"
file="myotherfile.js"/> or <adfmf:include type="StyleSheet"
file="resources/css/stylesheet.css" id="i3"/>). See also Skinning
MAF Applications.

MAF does not support resources referenced from another location, meaning that you
cannot, for example, enter a value outside of the public_html directory using ../ as
a prefix. To safeguard against referencing resources outside of public_html, MAF
includes an audit rule called File not in public_html directory. You can access the MAF
audit profiles, shown in Figure 5-6, from the Audit Profiles node in Preferences by
choosing Tools > Preferences > Audit > Profiles.

What You May Need to Know About Selecting External Resources

Defining the Content Type of MAF Application Features 5-7

Figure 5-6 MAF Audit Profiles

When this profile is selected, JDeveloper issues a warning if you change the location of
a resource. As shown in Figure 5-7, JDeveloper displays such a warning when the
default values are overridden. For information on auditing, see the "Auditing and
Monitoring Java Projects" chapter in Developing Applications with Oracle JDeveloper.

Figure 5-7 The External Resource Warning

What You May Need to Know About Selecting External Resources

5-8 Developing Mobile Applications with Oracle Mobile Application Framework

6
Creating the Client Data Model in a MAF

Application

This chapter describes how to create data and service objects in the client data model
of your MAF application by retrieving resources from REST services.

This chapter includes the following sections:

• Introduction to the Client Data Model in a MAF Application

• Overview of Creating a Client Data Model in a MAF Application

• Connecting to a REST Service to Create the Client Data Model

• Discovering Candidate Data Objects for the Client Data Model

• Selecting and Persisting Data Objects for the Client Data Model

• Specifying Parent-Child Relationships for Data Objects

• Defining CRUD REST Resources

• Specifying CRUD REST Resource Details

• Setting Runtime Options for the Client Data Model

• Generating the Client Data Model

• Editing the Client Data Model in a MAF Application

• Defining a Custom Resource

• Getting Programmatic Access to Service Objects

• Creating a User Interface from a MAF Client Data Model

• Synchronizing Offline Transactions from a MAF Application

6.1 Introduction to the Client Data Model in a MAF Application
MAF provides design-time support to connect your MAF application to REST services
from where you can expose data objects. You can then create a client data model based
upon these data objects within your application. In addition to retrieving data, MAF
assists you in determining what data you persist on the MAF application when it is in
offline mode.

A MAF application's client data model contains Java classes and associated files to
represent the data model of a MAF application. MAF uses a SQLite database to store
data for offline usage, and two types of Java class: data objects (also known as entity
objects) and service objects (also known as entity CRUD service objects) to interact
with the data. Data objects hold the data that you retrieve from the REST service(s)

Creating the Client Data Model in a MAF Application 6-1

that your MAF application connects to. The MAF application stores and retrieves data
objects in a SQLite database on the device. Service objects perform create, read,
update, and delete (CRUD) actions plus other custom actions that operate on the data
objects. You typically use service objects to create data controls from where you can
drag and drop the associated methods and entity collections onto AMX pages to build
the UI layer. The MAF client data model uses the persistence-mapping.xml file
to store the object-relation mapping information that identifies how database tables
and columns map to data objects and data objects' attributes plus how data objects and
data objects' attributes map to attributes in the REST response payloads.

Figure 6-1 illustrates the runtime architecture of the MAF client data model by
reference to a specific implementation in a MAF application that reads and writes
department information from a REST service.

Figure 6-1 MAF Client Data Model Runtime Architecture

In Figure 6-1, the service object (DepartmentService) provides the CRUD actions
plus other custom actions that operate on the Department data object.

The Department data object has getter and setter methods for the department
attributes (name, ID, and so on) that map to the corresponding attributes in the REST
service request and response payloads. The DEPARTMENTS table in the SQLite
database has columns that map to the same data object attributes. The persistence-
mapping.xml file stores the information that maps the relationship between the
attributes in the various locations (database table columns, Java class attributes and
REST payload).

MAF provides a number of wizards in JDeveloper that you use to create the client data
model in your MAF application. For more information, see Overview of Creating a
Client Data Model in a MAF Application. Once you have created the client data
model, you can generate data controls from the service objects in the client data model.
MAF provides a further wizard (the MAF User Interface Generator) that generates a

Introduction to the Client Data Model in a MAF Application

6-2 Developing Mobile Applications with Oracle Mobile Application Framework

user interface in your MAF application based on the data controls and data model that
the MAF client data model generates. For more information, see Creating a User
Interface from a MAF Client Data Model.

6.2 Overview of Creating a Client Data Model in a MAF Application
MAF provides the MAF Business Objects From REST Web Service wizard to generate
a client data model (with all the required artefacts) for your MAF application.

Using this wizard, you can connect to a generic REST service or to REST services
hosted on Oracle Mobile Cloud Service (MCS). Once you connect, MAF displays
additional dialogs where you perform tasks to identify and retrieve the data you want
to use in your application. These tasks are:

1. Discover the data objects that are candidates for use in your MAF application.
MAF supports the discovery of data objects from the following data object
resources:

a. Sample REST resource URLs

b. Sample resource payloads

c. RAML files

2. Having discovered the candidate data objects for use in your MAF application,
MAF presents you with a dialog where you select the data objects that you want
to use. MAF also provides an option to create new data objects.

3. Additional dialogs let you inspect and modify data object attributes. Tasks you
can perform include edit the attribute name, the name that appears in the REST
service payload, the Java type and the database column type for each attribute in
addition to choosing not to persist sensitive data on the device. You also select a
key attribute. It is important that the key attribute you select be unique.

4. Specifying parent-child relationships for data objects.

5. Define the REST resources and associated HTTP methods to use for CRUD actions
plus specify resource details such as the query and path parameters.

6. Once you have identified the REST resources to use for CRUD actions, MAF
presents you with dialog where you set the runtime behavior of your MAF
application by, for example, enabling offline transactions, enabling remote read
and write in the background, or showing web service errors.

7. MAF finally presents a dialog where you specify the location in your application
of the artefacts that MAF generates for the client data model. Use this dialog to
determine the project location and package name(s) of Java classes that MAF
generates.

Once you complete the MAF Business Objects From REST Web Service wizard, MAF
generates a client data model for your MAF application. You can invoke the wizard
again to edit the generated client data model by, for example, identifying additional
data objects in the REST service that you want to include in the data model. If you
want to edit a client data model without connecting to the REST service to retrieve
additional data objects, invoke the Edit Persistence Mapping wizard. This latter
wizard shares dialogs with the MAF Business Objects From REST Web Service wizard,
but does not require a connection to REST services.

Overview of Creating a Client Data Model in a MAF Application

Creating the Client Data Model in a MAF Application 6-3

You can also generate data controls from the service objects in the client data model.
Once you generate data controls, you can drag and drop data and operations from the
Data Controls panel to AMX pages to create the UI of your MAF application. Creating
data controls is a prerequisite if you want to use the MAF UI Generator to generate a
prototype UI for your MAF application. For more information, see Creating a User
Interface from a MAF Client Data Model.

6.3 Connecting to a REST Service to Create the Client Data Model
Connect to the REST service to identify the data object resources that you want to
retrieve for use in the client data model of your MAF application.

You connect to the REST service (whether a generic service, or a service hosted on
MCS) by invoking MAF Business Objects From REST Web Service wizard. For more
information, see:

• How to Connect to the REST Service to Retrieve Data Objects

• If connecting to MCS, see What You May Need to Know About the MCS
Anonymous Access Key

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

6.3.1 How to Connect to the REST Service to Retrieve Data Objects
Use the MAF Business Objects From REST Web Service wizard to connect to the REST
resources and identify candidate data objects that you select for inclusion in the client
data model.

To create a MAF application data model:

1. Create a MAF application. For more information, see How to Create a MAF
Application.

2. In the main menu, choose File and then From Gallery.

3. In the New Gallery, in the Mobile Application Framework node of the Business
Tier category, double-click MAF Business Objects From REST Web Service.

4. In the Welcome page, click Next.

5. In the Connection page, shown in Figure 6-2, click the green plus icon beside the
REST Service Connection dropdown field to invoke a dialog where you define a
connection name the URL endpoint for the REST service that you want to connect
to.

Connecting to a REST Service to Create the Client Data Model

6-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 6-2 REST Connection Dialog

6. Enter a name for the connection and specify the URL endpoint for the REST service
in the Base URI for Service input field.

For your convenience, specify the part of the URL endpoint that is the same for all
REST resources that you want your MAF application to consume. This reduces the
amount of typing that you have to do on subsequent pages of the wizard. One
exception is when you specify the URL endpoint to an instance of MCS. In this
latter case, the URL endpoint should end in /mobile. This allows the MAF
application to use the connection for both custom API calls and MCS platform API
calls.

Note: Clicking the Test Connection button does not work here as you specify
an incomplete URL for the URL endpoint, as illustrated in Figure 6-2. Make
sure that the URL endpoint does not end with a forward slash (the wizard
checks this before it allows you to click Next).

7. If the REST resources you access are secured, enter the authentication information
in the respective fields.

For more information, see Accessing Secure Web Services.

8. Click OK to return to the Connection page and choose the appropriate option:

• Click Next if the REST service that you connect to is not hosted on MCS.

• Select the MCS Connection checkbox if the REST service that you connect to is
hosted on MCS. For more information about completing the MCS Mobile
Backend ID and MCS Anonymous Access Key input fields. See What You May
Need to Know About the MCS Anonymous Access Key.

Connecting to a REST Service to Create the Client Data Model

Creating the Client Data Model in a MAF Application 6-5

Once you connect to the REST service, you can discover the data objects in the REST
service to retrieve and use in your MAF application’s client data model. For more
information, see Discovering Candidate Data Objects for the Client Data Model.

6.3.2 What You May Need to Know About the MCS Anonymous Access Key
MAF uses the MCS anonymous access key value to create the authorization header
when the MAF application accesses MCS before the application has been
authenticated with MCS. This is useful if, for example, you want to send a
startSession MCS analytics event to MCS before your end user logs in.

The access key value that you use does not have to be the anonymous key. You can
use the authorization key of an MCS user defined in the user realm of your MCS
mobile backend. Do this if you want to, for example, access MCS storage collections or
other resources that are not accessible to anonymous users.

You do not need to prefix the access key with Basic. MAF adds or removes the
Basic prefix as needed. If your MAF application needs to support dynamic MCS
connections, you can specify an EL expression in the MCS Mobile Backend ID and
MCS Anonymous Access Key fields. After you authenticate against MCS, MAF
automatically injects the authorization header into every REST call based on the user’s
login credentials. That is, MAF ignores the MCS anonymous access key value in the
input field once the MAF application has been authenticated.

6.4 Discovering Candidate Data Objects for the Client Data Model
Identify the data objects that are candidates to use in the client data model of your
MAF application after you connect to the REST service.

The MAF Business Objects From REST Web Service wizard provides the following
options to discover data objects to use in your MAF application:

• REST resource URLs: Use this option to invoke the REST service to return
candidate data.

For more information, see How to Discover Data Objects Using a REST Resource
URL.

• Sample resource payloads: Use this option to enter a sample JSON or XML
payload. This option is useful if the first item returned by invoking a live REST
service has missing attributes or child data. It is also useful if you do not currently
have access to the REST service or if your application will not retrieve data, but will
post data.

For more information, see How to Discover Data Objects Using a Sample Payload.

• RAML file: A RAML file describes the REST service your application is going to
access. MCS automatically creates a RAML file when you define the endpoints for
an API in MCS.

For more information, see How to Discover Data Objects Using a RAML File.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

Discovering Candidate Data Objects for the Client Data Model

6-6 Developing Mobile Applications with Oracle Mobile Application Framework

6.4.1 How to Discover Data Objects Using a REST Resource URL
Specify one or more REST resources including the HTTP method (typically GET) to
invoke the REST service and return candidate data objects based on the structure of
the response payload.

Figure 6-3 shows the Data Object Resources dialog in the wizard where you specify
the REST resources to query.

Figure 6-3 Querying a REST Resource for Data Object Resources

Use the Add and Remove buttons to manage the list of REST resources that you enter
in the Resource list, as shown in Figure 6-3. Use the Set Headers button to invoke a
dialog where you enter header key-value pairs if specific HTTP headers are required
to invoke the REST resource. For example, if you want to make sure that the payload
returned by the REST service is in JSON format rather than XML, click Set Headers
and enter Content-Type as the key and application/json as the value in the
dialog that appears.

For information about the usage of the Flatten Nested Objects checkbox, see What
You May Need to Know About the Flatten Nested Data Objects Option.

Note the following before you click Next to query the REST service and return
candidate data objects based on the structure of the response payload:

• MAF inspects the first item in the collection of data that returns from the REST
service. If, for example, the first employee in a collection of employees is not a
salesperson and, as a result, does not have an associated commission attribute, then
the candidate data object for employee will not include a commission attribute.
Likewise, if the response payload returned from the REST service is a master-detail
structure of departments and employees, make sure that the first department
returned contains employees. If it does not, employee will not be identified as a
child data object. You can add data objects and attributes on later pages in the
wizard. However, it is best to avoid this work if possible.

• When you enter path parameters enclosed in curly brackets, the wizard presents a
dialog (Enter URI Parameter Values) to enter sample values for the path
parameter(s) when you click Next. In Figure 6-3, we specified {id} as the path

Discovering Candidate Data Objects for the Client Data Model

Creating the Client Data Model in a MAF Application 6-7

parameter in the employeesList resource to reference the current department ID
so the dialog appears. Make sure to enter a sample value that returns data. If, for
example, the department with the ID value of 20 does not contain employees, no
employee data object will be identified.

• The resources you specify in this page only identify candidate data objects to create
and use in your application. You use later pages to specify the exact resources to
use for the CRUD actions. The values you enter here will only be used as the
default value for the Find All Resource input field for each data object in the CRUD
Resources page later in the wizard. A situation where you use different resources
to discover data objects and the Find All Resource is where the Find All Resource
value returns a subset of the available attributes. For example, a Find All Resource
for employees that returns the attributes you show in a list view (employeeId,
firstName and lastName). When an end user clicks an employee in the list view to
navigate to a detail screen, the MAF application loads the additional employee
attributes by invoking a canonical employee REST resource that returns all
attributes for the selected employee. This optimizes performance when you have
large data sets where each data object has a lot of attributes. In such a scenario,
specify the canonical REST resource in the Data Object Resources wizard page to
identify all employee attributes.

6.4.2 How to Discover Data Objects Using a Sample Payload
Specify a sample payload to create candidate data objects and attributes.

This option is useful when the:

• First item of the data collection returned by invoking a REST service misses some
attributes and/or child data

• REST resource is not available yet because the back-end development team is still
working on it

• Your application is not retrieving data but only creating (posting) new data. In
other words, you do not have a GET resource that returns a response payload to
parse. In this case, you specify a sample payload that contains all the attributes that
you want to send in your REST call when creating new data. The full signature of
the REST call to create new data can be specified later on in the wizard.

When you specify a sample payload, any REST Resource you enter is not invoked.
Instead, it derives a default name for your data object and the default value for Find
All Resource value in the CRUD Resources page later in the wizard.

Figure 6-4 shows the Sample Return Payload dialog where you enter the sample
payload. Invoke this dialog by clicking in the Payload column.

Discovering Candidate Data Objects for the Client Data Model

6-8 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 6-4 Discovering Candidate Data Objects Using a Sample Payload

Click OK to return to the Data Object Resources dialog and Next to proceed to the
next page in the wizard.

6.4.3 How to Discover Data Objects Using a RAML File
Specify a RESTful API Modeling Language (RAML) file to create candidate data
objects and attributes based on the description in the RAML file.

MAF suggests data objects, parent-child relationships and CRUD resources based on
the content in the RAML file. That is, subsequent pages in the wizard present default
values based on the content of the RAML file.

Figure 6-5 Discovering Candidate Data Objects Using a RAML File

Discovering Candidate Data Objects for the Client Data Model

Creating the Client Data Model in a MAF Application 6-9

Use the Set Headers button to invoke a dialog where you enter header key-value pairs
if specific HTTP headers are required to invoke the REST resource. For example, if you
want to make sure that the payload returned by the REST service is in JSON format
rather than XML, click Set Headers and enter Content-Type as the key and
application/json as the value in the dialog that appears.

For information about the usage of the Flatten Nested Objects checkbox, see What
You May Need to Know About the Flatten Nested Data Objects Option.

6.4.4 What You May Need to Know About the Flatten Nested Data Objects Option
Select the Flatten Nested Data Objects checkbox when you have a JSON payload like
the following where, by default, manager will be created as its own data object.
Selecting the Flatten Nested Data Objects checkbox includes the two manager
attributes (name and email) within the department data object.

[
{
"departmentId" : 10,
"departmentName" :"Administration",
"locationId" : 1700,
"manager": {"name" :"Steven"
 "email" : "steven@oracle.com"
 }
}
, ...
]

6.5 Selecting and Persisting Data Objects for the Client Data Model
Select the data objects that you want to use in the client data model of your MAF
application from the list of candidate data objects that MAF identifies. Also select
those data objects that you want to persist so that the MAF application can access
instances of the data objects when offline.

The Select Data Objects and Data Object Attributes pages in the MAF Business Objects
From REST Web Service wizard help you to perform the following tasks:

• Select and persist data objects.

For more information, see How to Select and Persist Data Objects.

• Create new data objects

For more information, see How to Create New Data Objects.

• Modify data object attributes

For more information, see How to Modify Data Object Attributes.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

Selecting and Persisting Data Objects for the Client Data Model

6-10 Developing Mobile Applications with Oracle Mobile Application Framework

6.5.1 How to Select and Persist Data Objects
Select the data objects that you want to include and clear the checkboxes for unwanted
data objects. Modify the values for the data objects in the Class Name column so that
MAF generates valid Java class names when it creates the client data model.

Select the Persist checkbox for each data object that you want to persist the data for so
that the MAF application can access it in offline mode. This instructs MAF to create a
SQLite database table for the data object that is populated at runtime based on the
REST resources you specify later to retrieve the data.

Note: If you do not want to persist data objects for offline access because, for
example, the data is volatile, you can still use the MAF client data model for
offline transactions. The transactions are stored in a separate
DATA_SYNCH_ACTIONS table and synchronization is independent of the data
object tables.

The accuracy of the list of candidate data objects that the Select Data Objects page,
shown in Figure 6-6, presents to you depends on the method used to discover the
candidate data objects. A list of suggested data objects from a RAML file is, for
example, typically more accurate than the list returned by a sample REST resource like
the following:

[
 {
 "departmentId": 10,
 "departmentName": "Administration",
 "locationId": 1700,
 "_relationships": [
 {
 "_link": {
 "href": "http://localhost:7101/HRRest/persistence/v1.0/Model-1/entity/
Department/10/employees1",
 "rel": "employees1"
 }
 },
 {
 "_link": {
 "href": "http://localhost:7101/HRRest/persistence/v1.0/Model-1/entity/
Department/10/employeesList1",
 "rel": "employeesList1"
 }
 }
],
 "employeesList1": [
 {
 "_link": {
 "href": "http://localhost:7101/HRRest/persistence/v1.0/Model-1/entity/
Employee/200",
 "method": "GET",
 "rel": "self"
 }
 }
]
 },

Selecting and Persisting Data Objects for the Client Data Model

Creating the Client Data Model in a MAF Application 6-11

The sample REST resource displayed above shows candidate data objects for link
information that is included in the payload, as shown in Figure 6-6. As it is unlikely
that you want to include information about links in the data model, clear the checkbox
in the Select column for these candidate data objects. Also edit the value for Class
Name so that a valid Java class name appears.

Figure 6-6 Candidate Data Objects Retrieved from REST Resource

6.5.2 How to Create New Data Objects
Create data objects that only live on the mobile device and are not populated through
the REST web services that your MAF application connects to.

Click the Add button in the Select Data Objects page to add a new data object to the
data model. Edit the default generated name (NewDataObject) to a unique valid Java
class.

MAF creates a database table in the SQLite database for each data object that you add.
You can populate these database tables with data using the CRUD operations from the
service object that MAF generates for the data object when you complete the wizard.

6.5.3 How to Modify Data Object Attributes
Select or modify attributes of the data objects that you have selected for inclusion in
the client data model of the MAF application.

You can set or change the key, required, attribute name, name in payload, Java type
and database column type of each attribute as desired. For an attribute carrying
sensitive data you can choose to not persist it, which causes the attribute value to be
null when the application runs in offline mode.

It is important that the key attribute(s) be unique. The persistence runtime uses a data
object cache based on the selected key attribute. If you have multiple data object
instances with the same key, they will all be written to the same database table row.
Because of this, only one instance (with the attributes of the last instance processed)
appear in the UI of the MAF application. In other words, all instances are merged into
one because MAF thinks it is the same instance. For a child data object, the reference

Selecting and Persisting Data Objects for the Client Data Model

6-12 Developing Mobile Applications with Oracle Mobile Application Framework

attribute(s) to the parent might be part of the key. If your payload does not contain
such reference attribute(s) you can create them in the Parent Child Accessors page of
the wizard. Then return to this page (Data Object Attributes) to select the parent-
populated attributes as the key attribute.

When using sample resources to identify the candidate data objects, you usually need
to modify the Java type for the attributes as they typically show up as
java.lang.String. Some attributes may show up as java.math.BigDecimal
when the payload value is not enclosed in double quotes. You can change the Java
types using the class picker, and the database column type automatically updates
based on the Java type you select. Typical type changes include changing numeric
attributes from String or BigDecimal to Long or Integer. Date attributes should
be set to java.util.Date and a date format should be specified for use in the JSON
payload (for example, yyyy-MM-dd'T'HH:mm:ssZ). You specify the date format in
the Payload Date Format field of the CRUD Resources page that you access later in the
wizard.

If you used a RAML file to discover the data objects, the default attribute type is
usually correct and does not need modification.

Note: Select each data object from the Data object dropdown list to make the
necessary modifications to the object’s attributes.

Figure 6-7 Modify Data Object Attributes

6.6 Specifying Parent-Child Relationships for Data Objects
Specify parent-child relationships for data objects where you want the UI of your MAF
application to render master-detail screens.

Figure 6-8 shows the Parent Child Accessors page where you define such a
relationship. Use this dialog when you want to set up a relationship such as that which
exists between a department and a department’s employees.

Specifying Parent-Child Relationships for Data Objects

Creating the Client Data Model in a MAF Application 6-13

Figure 6-8 Parent-Child Accessors Page

When you specify REST resources that return parent and child data objects in the same
payload, and you selected both data objects, the Accessor dropdown list is populated
with the parent-child relationship. This also happens if you use a RAML file to access
REST resources. However, if you retrieve the child data object in a separate REST call
and the child object is not included in the payload of the parent data object, the
Accessor dropdown list will be empty. If this scenario occurs, you define the parent-
child relationship manually in the Parent-Child Accessors page, as described in How
to Specify a Parent-Child Relationship for Data Objects.

You need to specify attribute mappings for each parent-child relationship regardless
of whether MAF automatically completed the values in the Parent Child Accessors
page for you or you manually defined the parent-child relationship. You do this so
that MAF restores the one-to-many or one-to-one relationship when the application
runs in offline mode. In database terms, you set up a foreign key relationship between
the underlying parent and child data object tables. Figure 6-8 shows an example where
departmentID and departmentDepartmentId have been specified by adding
both attributes to the list in the lower part of the Parent Child Accessors page using
the Add button.

If the child data object contains a foreign key attribute that is in the response payload,
you select the parent key attribute in the Select Parent Attribute list and the child data
object foreign key attribute in the Select Child Attribute list, then click Add to add the
attribute mapping. However, this foreign key attribute might not be present in the
child data object because the payload did not include it. This typically happens
because the child data object is nested within the parent data object payload. In this
scenario, there is no need to include the foreign key attribute as the value is inferred
by the hierarchical nature of the payload. MAF still needs an attribute mapping for
offline mode, so you can select the parent attribute and click Add button without
selecting a matching child attribute. Figure 6-8 above shows such a use case where
departmentID has been selected in the Select Parent Attribute list and the Add
button was clicked. This added the departmentDepartmentId attribute to the
employee data object (and a column in the underlying database table. Although this
attribute is not included in the REST payload when querying the employee details for

Specifying Parent-Child Relationships for Data Objects

6-14 Developing Mobile Applications with Oracle Mobile Application Framework

a department, the runtime code populates this attribute (and underlying column
value) based on the department instance for which the employee details are retrieved.

Tip: The name of this parent-populated attribute is the name of the data
object suffixed with the selected parent attribute name. You can change these
attribute names to get clean attribute names. In the example above, do this by
clicking the Back button, select the department data object and rename the
departmentDepartmentId attribute to departmentId.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

6.6.1 How to Specify a Parent-Child Relationship for Data Objects
Access the Parent Child Accessors page from the MAF Business Objects from REST
Web Service wizard.

To specify a parent-child relationship for data objects:

1. In the Parent-Child Accessor page, click the Plus icon shown in Figure 6-9, and
complete the fields in the dialog that appears.

Figure 6-9, for example, shows a dialog where a parent-child accessor to retrieve
all employees in a department has been defined.

Figure 6-9 Parent-Child Accessor Page

Specifying Parent-Child Relationships for Data Objects

Creating the Client Data Model in a MAF Application 6-15

Note: MAF populates the Child Accessor Resource field with the resource
you used to identify a candidate data object in the Data Object Resources
page. In our example, this was /entity/Department/{id}/
employeesList1.The value in the Child Accessor Attribute field has been
set to employees. On completion of the wizard, a getEmployees method is
generated in the department data object, and an employees collection
appears under the department node in the data control that you create later.

6.7 Defining CRUD REST Resources
Define CRUD actions to enable the MAF application end user to edit the data objects
that the MAF application retrieves from the REST services it connects to.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

MAF provides the CRUD Resources page where you determine what actions to
perform on the data objects that you retrieve to use in the client data model of the
MAF application. Figure 6-10 shows the page where a number of operations, such as
create, update and delete have been specified for a Departments data object.

Figure 6-10 Defining the CRUD REST Resources for the Client Data Model

MAF populates values in the CRUD Resources page depending on values that you
entered previously plus the method that you used to discover the candidate data
objects. If, for example, you used a RAML file, MAF populates the page based on best-
practice conventions for REST as follows:

• A POST resource creates a resource

• A PUT or PATCH resource updates or merge a resource

• A DELETE resource to delete a resource

If you used sample resource URLs to discover your data objects, the Find All
Resource defaults to the sample resource. While the defaults are usually accurate you

Defining CRUD REST Resources

6-16 Developing Mobile Applications with Oracle Mobile Application Framework

might need to change the values of the resource and/or HTTP method if your REST
services do not follow best practice.

Select each data object from the Data Object dropdown list and enter values in the
input fields as follows:

• Quick Search Resource: Useful for large data sets. For a large data set you
typically do not want to execute a Find All Resource that returns all instances as
this may cause your application to run out of memory. In such a situation, define a
quick search facility in the user interface that returns only the instances that match
the search criterion. With a smaller data set, use the Find All Resource to return all
instances at once. Execute a quick search filter directly against the on-device SQLite
database. Performance is faster as no web service is invoked.

• Canonical Resource: Specify a value for Canonical Resource when you have a data
object with many attributes, and you only want to bring in all the attributes once a
specific data object instance has been selected from a list.

• Canonical Trigger Attribute: If you specify the Canonical Trigger Attribute, MAF
generates code in the data object class that automatically invokes the canonical
REST resource when the value of the attribute is retrieved through the getter
method.

For example, if a Department data object’s Find All Resource returns a list of
department IDs and names to display on a list page and you select a department
to go to the detail page which shows all department attributes, then we can set the
Canonical Trigger Attribute to locationId, the getLocationId method
invokes when you navigate to the detail page. MAF has generated code inside the
getLocationId method to automatically invoke the canonical REST resource.

• CRUD resources (Create Resource, Update Resource, and so on): The service
object, generated for each data object that has at least one REST resource specified
on this page, includes a save[DataObjectName] method. When you invoke the
save[DataObjectName] method by, for example, dragging and dropping it
from the Data Controls panel, MAF decides based on the data object state which
resource to call: Create, Update, or Merge. MAF makes its decision as follows:

– If the data object state is new, MAF calls Create resource. If the Create
resource is not specified, MAF calls the Merge resource. If neither resource is
specified, the MAF application will not make a REST call.

– If the data object state is not new, MAF calls the Merge resource. If Merge
resource is not specified, MAF calls the Update resource. If neither resource is
specified, the MAF application will not make a REST call. The data object state
is automatically set to New when you create a new data object through the data
control Create operation. If you programmatically create a new data object
instance using a subclass of
oracle.maf.api.cdm.persistence.model.Entity, call
setIsNewEntity(true).

• Sort Order: Define a comma-separated list of attribute names. You can suffix the
attribute name with desc to get a descending sort for the attribute. Note that the
sort order specified here is the default order in the user interface. The persistence
runtime code makes it easy to add UI controls to change the sort order at runtime.

• Payload Date Format: Specify the Java date pattern to convert date attribute string
values in the payload to a java.util.Date instance.

Defining CRUD REST Resources

Creating the Client Data Model in a MAF Application 6-17

6.8 Specifying CRUD REST Resource Details
Specify resource details, including query and path parameters and their values for the
various REST resources that you defined in your MAF application.

MAF provides the CRUD Resources Details page where you specify resource details.
The wizard page populates the fields with default values. It is good practice to check
whether these defaults make sense in your specific application. Figure 6-11 shows the
page. You select additional resources from the Resource dropdown to review or
customize. You can also add a custom resource by clicking the Plus icon beside the
Resource dropdown menu. For more information, see Defining a Custom Resource.

Figure 6-11 Specifying CRUD REST Resource Details

To understand the options on this page, distinguish between GET (read) and non-GET
(write) resources. Some fields only apply to one type of resource, or have a different
meaning depending on the type of resource.

The Resource Details page helps you to perform the following tasks:

• Specify GET (Read) Resource Details

For more information, see How to Specify GET (Read) Resource Details.

• Specify non-GET (Write) Resource Details

For more information, see How to Specify Non-GET (Write) Resource Details.

• Add Custom Resources

For more information, see How to Add Custom Resources.

• Specify Query and Path Parameters

For more information, see How to Specify Query and Path Parameters.

• Add HTTP Header Parameters

For more information, see How to Add HTTP Header Parameters.

Specifying CRUD REST Resource Details

6-18 Developing Mobile Applications with Oracle Mobile Application Framework

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

6.8.1 How to Specify GET (Read) Resource Details
Configure the following menu options to specify GET resource details.

• Delete Local Rows in SQLite DB before executing this REST resource

If you select the Delete Local Rows checkbox and the GET resource is used as Find
All Resource, then all rows in the table created for the corresponding data object
are deleted after the REST call is made and before the REST response is processed.
This is useful to ensure that any obsolete rows that are no longer included in the
GET response payload do not remain visible in the application just because that
data was downloaded before. If you select the Delete Local Rows checkbox and
the GET resource was defined in Parent-Child Accessor dialog to retrieve child
data objects, then all those child rows will be removed just before the REST call is
executed.

• Payload List Element Name

The Payload List Element Name instructs MAF how to find the actual array of
JSON objects representing the resource data object in the response payload. For
example, if the response payload looks like the following:

{"departmentList":[{"departmentId":10, "departmentName": "Accounting",
"locationId": 1400, "managerId": 103}, {"departmentId":20, "departmentName":
"Marketing", "locationId": 1400, "managerId": 102}]}

Then you should set the Payload List Element Name to departmentList. Note
that departmentList does not have to be an attribute of the top-level JSON
object, MAF recursively traverses the response object tree until it finds an object
with this attribute name. You can leave this field blank if the response payload
directly starts with the array you need.

• Payload Row Element Name

You can use the Payload Row Element Name field to instruct MAF how to find the
correct JSON object within a specific array instance. For example, with the
following response payload:

{"departmentList":["department":{"departmentId":10, "departmentName":
"Accounting", "locationId": 1400, "managerId": 103}}, "department":
{"departmentId":20, "departmentName": "Marketing", "locationId": 1400,
"managerId": 102})]}

Set the Payload Row Element Name to department. If you have to traverse a
deeper nested object tree to get to the actual JSON object that MAF should parse,
use the dot notation in this field. For example,
departmentTopObject.department

6.8.2 How to Specify Non-GET (Write) Resource Details
Configure the following menu options to specify non-GET resource details.

• Send Serialized Data Object as Payload

The Send Serialized Data Object as Payload checkbox should usually be selected
when making a PUT, POST or PATCH request. It might be checked with DELETE

Specifying CRUD REST Resource Details

Creating the Client Data Model in a MAF Application 6-19

request as well, depending on how the delete is implemented at the server side. By
selecting this checkbox, MAF creates a request payload with key value pairs for
each data object attribute that has the Name in Payload property set in the Data
Objects Attributes page, described in How to Modify Data Object Attributes:

{"departmentId":10, "departmentName": "Accounting", "locationId": 1400,
"managerId": 103}

• Send as Array

Select the Send as Array checkbox to enclose the JSON object that holds the key-
value pairs with brackets, as shown in the following example. This checkbox is
disabled until you select the Send Serialized Data Object as Payload checkbox.

 [{"departmentId":10, "departmentName": "Accounting", "locationId": 1400,
"managerId": 103}]

• Payload Row Element Name

Use to instruct MAF to nest the actual JSON object with key-value pairs inside
another object. For example, if the request payload should look like this:

{"department":{"departmentId":10, "departmentName": "Accounting", "locationId":
1400, "managerId": 103}}

Then you should set the Payload Row Element Name to department.

If your request payload requires payload attribute names different from the GET
resource, you cannot specify these write-specific payload attribute names here. You
need to create your own remote persistence manager that subclasses the
RestJSONPersistenceManager and overrides the
getPayloadKeyValuePairs method. You can register your custom remote
persistence manager on the next page of the wizard, or register it later, see Editing
the Client Data Model in a MAF Application.

• Attributes to Exclude

Specify a comma-delimited list of attribute names that should not be serialized into
the JSON object used as request payload. For example, if you specify
departmentId, the following payload exclude it from serialization into the JSON
object:

{"departmentName": "Accounting", "locationId": 1400, "managerId": 103}

You could achieve the same by nullifying the value for Name in Payload field in
the Data Object Attributes page, but then departmentId would also be ignored in
GET requests which is typically not what you want. Note that you should use the
data object attribute names in this field, not the payload names of these attributes.

6.8.3 How to Add Custom Resources
A custom resource is a REST call you make that does not map to a find, create, update
or delete action that you specified on the CRUD Resources page.

You can add a custom resource in the Resource Details page. Click the green plus icon,
as shown in Figure 6-12, to invoke the New Custom Resource dialog where you can
define the custom resource:

Specifying CRUD REST Resource Details

6-20 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 6-12 Adding a Custom Resource

In the service class that MAF generates for the data object, a method will be added
with the name you specified in the Name field. Calling this method invokes the REST
resource. Custom methods are also included in the data synchronization mechanism
of the MAF client data model, so, if you call the custom method in offline mode, it will
be registered as a pending synchronization action and the REST call will be executed
when the MAF application is online again.

6.8.4 How to Specify Query and Path Parameters
Path parameters enclosed in curly brackets that you specified in the REST resources of
the CRUD Resources page or the Parent-Child Accessors dialog appear by default in
the Parameters list.

Use the Add button to add additional query parameters.

Specifying CRUD REST Resource Details

Creating the Client Data Model in a MAF Application 6-21

Figure 6-13 Specifying Query and Path Parameters

When a MAF application executes the REST resource, it automatically populates the
resource query and path parameter values based on the Value Provider you choose:

• DataObjectAttribute: Populates the parameter with the value of a data object
attribute. When using this value provider, you need to choose a value from the
Data Object Attribute drop down list. The data object whose attributes are
displayed in the drop down list are determined by the usage of the resource. For
example, the above resource returns the employees within a department, so it is
assumed you want to select an attribute from the department data object to set the
context for the employees list.

• SerializedDataObject: If the data that must be persisted should be sent through a
query parameter rather than in the request body, you choose this setting. With this
value provider, the other columns should remain empty.

• LiteralValue: Populates the parameter with a literal value specified in the Value
column.

• ELExpression: Populates the parameter with a value obtained by evaluating an EL
Expression. You specify the EL Expression in the Value column. You can use EL
Expressions with any scope (applicationScope, pageFlowScope, viewScope,
deviceScope, preferenceScope) but it is your own responsibility that the expression
is valid in the execution context of the REST service call. Remember that when
making transactions in offline mode, the REST service will be invoked later and the
EL expression context will then be determined by the task flow and page that
triggers the data synchronization.

• SearchValue: Populates the parameter with the value of the quick search value
entered in the user interface. You will typically use this value provider only with
the Quick Search Resource that you define in the CRUD Resources page described
in Defining CRUD REST Resources.

Specifying CRUD REST Resource Details

6-22 Developing Mobile Applications with Oracle Mobile Application Framework

6.8.5 How to Add HTTP Header Parameters
The HTTP headers that you specified in Discover Objects Resources page are applied
by default to all resources that you have specified.

If you want to remove a header and/or add another header specific for one resource,
click the Set Headers button to invoke a dialog where you enter or modify header key-
value pairs if HTTP header parameter changes are required.

Figure 6-14 Setting HTTP Header Parameters

6.9 Setting Runtime Options for the Client Data Model
Set runtime options for the MAF application that you generate on completing this
wizard.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

Figure 6-15 shows the Runtime Options page where you determine how the generated
MAF application behaves at runtime.

Setting Runtime Options for the Client Data Model

Creating the Client Data Model in a MAF Application 6-23

Figure 6-15 Setting Runtime Options for a MAF Application

Configure the fields shown in Figure 6-15 as follows:

• Remote Read in Background: If selected, the GET requests (typically the Find All,
Find and Canonical resources) specified for the data object execute in a background
thread. It is a good idea to select this checkbox as it enhances the end user's
perception of the MAF application’s performance. MAF first queries the SQLite
database and show these results immediately on the screen (assuming you
persisted the data object, as described in How to Select and Persist Data Objects).
REST calls will be made in the background without blocking the user interface.
Once the MAF application receives the REST response, it automatically updates the
user interface.

• Remote Write in Background: If selected, non-GET requests (typically the Create,
Update, and Merge resources) specified for this data object execute in a
background thread. You will usually leave this checkbox selected as it enhances the
end user's perception of the MAF application’s performance. After triggering a
REST call through, for example, a Save button, the end user can continue to use the
application. The user interface is not blocked for the duration of the REST call.
Again, if the REST response includes some attributes with server-updated values,
the MAF application automatically refreshes the user interface.

• Auto Query: If selected, MAF automatically queries the on-device database for all
rows and/or call resource specified by Find All Resource when the service object
class for the data object is initialized. This is convenient when building your AMX
pages using the bean data control that you create for the service object class. The
bean data control exposes a collection element that you can drag and drop onto an
AMX page to, for example, create a list view or form view. When auto-query is
selected, this collection element returns all data objects. It initially returns what is
present in the SQLite database and refreshes with the remote collection once
execution of the Find All Resource completes. If you clear this checkbox, you will
need to execute a finder method in your task flow before navigating to the AMX
page. Otherwise the AMX page will show no data.

Setting Runtime Options for the Client Data Model

6-24 Developing Mobile Applications with Oracle Mobile Application Framework

• Generate Primary Key: If selected, the MAF application automatically generates a
primary key when a new data object is inserted into SQLite database when the
primary key attribute value is still null. This feature only works when the primary
key attribute is a numeric attribute. MAF queries the SQLite database for the
current maximum value and increments this value with 1.

• Enable Offline Transactions: If selected, write REST calls can be invoked while the
MAF application is offline. MAF registers the transaction (create, update, remove
or a custom action) as a pending data synchronization action. Once the MAF
application comes online, MAF synchronizes these actions and executes the
associated REST calls. Note that when the MAF application is online, and the REST
call fails because the server is not available or the server throws some error when
invoking the REST resource, the transaction is also registered as a pending
synchronization action. MAF retries execution the next time the MAF application
makes a REST call. If this checkbox is cleared, an error message appears to the end
user when the MAF application is offline or when the REST call fails.

• Show Web Service Errors: If selected, any REST Call failure shows an error
message popup in the user interface. This is a useful setting during development so
you can see errors. We recommend you clear this checkbox when publishing your
MAF application in production. You typically do not want to show technical details
about REST call failures to end users.

• Remote Persistence Manager: Register your own remote persistence manager. This
is useful if you want to extend the default behavior of the MAF remote persistence
manager.

• Local Persistence Manager: Register your own local persistence manager. This is
useful if you want to extend the default behavior of the MAF local persistence
manager.

6.10 Generating the Client Data Model
Specify the project and package names for the data objects that MAF generates for the
client data model.

This task is one in a series of tasks to generate a client data model in your MAF
application. For more information, see Overview of Creating a Client Data Model in a
MAF Application.

Figure 6-16 shows the Generator Settings page where you determine the location and
package names for the objects in the client data model.

Configure the fields in this page as follows:

• Add Classes to Project: Select the project within your application where you
generate the Java classes. MAF recommends using the default
ApplicationController project. This allows you to use the classes in application-
scoped managed beans as well as in the application lifecycle methods. It is also
avoids class loader issues when using the same data objects in multiple application
features. Each MAF application feature has its own class loader, but all share the
parent class loader of the ApplicationController project.

• Data Objects Package: Specify the Java package name used by the Java classes that
are generated for each data object.

• Service Objects Package: The Java package used by the Java classes that are
generated for each service object. Such a class is generated when a data object has
at least one REST resource associated.

Generating the Client Data Model

Creating the Client Data Model in a MAF Application 6-25

• Overwrite Data Object Classes: If selected, MAF overwrites existing data object
classes. If you added custom code to these classes after a previous generation, you
will lose this code.

• Overwrite Service Object Classes: If selected, MAF overwrites existing service
object classes. If you added custom code to these classes after the previous
generation, you will lose this code. This checkbox is clear by default because the
service object class typically does not need to change when payload structures
change. Also, this class is the most likely to contain custom code that you added
after generation.

Figure 6-16 Generating the Client Data Model

6.11 Editing the Client Data Model in a MAF Application
Describes how to invoke wizard(s) where you can modify a previously-generated
client data model in a MAF application.

MAF supports iterative development of the client data model in a MAF application.
You can extend and refine the client data model after its initial creation. Use one of the
following two options:

• Re-run the Business Objects from REST Service wizard to discover new data objects
or edit existing data objects. You can re-enter this wizard to discover new data
objects. If you do not want to modify existing data objects, clear the associated
Select checkboxes so the existing data objects do not show up in subsequent
wizard pages and no Java classes will be regenerated for these data objects,
regardless of the settings on the last generator settings wizard page.

• Run the Edit Persistence Mappings wizard shown in Figure 6-17. Invoke this
wizard from the Edit Persistence Mappings context menu entry that appears when
you right-click the project that contains the client data model.

The Edit Persistence Mappings wizard displays the same pages as the Business
Objects from REST Service wizard except that it does display pages to connect to
REST services or discover new data objects. As a result, you typically use this

Editing the Client Data Model in a MAF Application

6-26 Developing Mobile Applications with Oracle Mobile Application Framework

wizard to edit existing data objects although you can use it create data objects that
you store in the SQLite database which do not require REST calls to read or write
data from a REST service.

Figure 6-17 Editing the Client Data Model

6.12 Defining a Custom Resource
Describes how to add custom REST resources in your MAF application’s client data
model that do not map directly to the standard CRUD resources supported by the
MAF client data model.

The Resource Details wizard page, described in Specifying CRUD REST Resource
Details, allows you to add custom resources. When you do this, MAF generates an
additional method with the same name as your custom resource into your service
object with the following signature:

public void doSomething(Department department) {
 invokeCustomMethod(department, "doSomething");
}

The advantage of this approach is that it is fast and easy to implement. If your MAF
application is offline or the REST call fails due to a server error, the custom resource
action will be registered as a pending data synchronization action. MAF makes the call
later on when the MAF application returns to online mode. In other words, it is
handled in the same ways as standard CRUD transactions in offline mode, as
described in Synchronizing Offline Transactions from a MAF Application.

The disadvantage of this approach is that it limits you in how you supply query and
path parameters, and how you provide the request payload (this can only be the
serialized data object). The value of query and path parameters can be defined
declaratively using the options described in Specifying CRUD REST Resource Details.
If you need complete flexibility in how you construct your URI path with query and
path parameters, it is better to go for the programmatic approach and code your REST
call in Java.

You can invoke any REST resource using the invokeRestService method on the
remote persistence manager, which is either the RestJSONPersistenceManager, or
if you connect to Oracle Mobile Cloud Service (MCS), the MCSPersistenceManager.
For more information about these classes and methods, see Java API Reference for Oracle
Mobile Application Framework.

Defining a Custom Resource

Creating the Client Data Model in a MAF Application 6-27

You could also use the RESTServiceAdapter, described in Creating a Rest Service
Adapter to Access Web Services. However, the invokeRestService method has the
following advantages:

• One line of code makes the REST call

• It handles all responses with HTML status code in 200-299 range successfully. No
exception is thrown for status codes 201-299, as is the case with the
RESTServiceAdapter.

• If you have enabled web service logging, you can easily view the REST call details.

• If connecting to MCS, you do not need to specify the Oracle-Mobile-Backend-
Id and (anonymous) Authorization header parameters.

The invokeRestService method has the following signature:

public String invokeRestService(String connectionName, String requestType, String
requestUri,
 String payload, Map<String, String>
headerParamMap, int retryLimit, boolean secured)

Note: The last argument (secured) is not used. It included for backward
compatibility.

You typically add a method to your service object in which you invoke the
invokeRestService method. You can then make the REST call from the user
interface by dragging and dropping the method onto your AMX page. Here is a
sample method that makes such a REST call:

public void invokeSomeRestResource(String pathParamValue,String queryParamValue) {

 if (isOnline()) {
 RestJSONPersistenceManager rpm = new RestJSONPersistenceManager();
 String uri = "/someResourcePath/"+pathParamValue+"?
someQueryParam="+queryParamValue;
 String result = rpm.invokeRestService("MyRESTConn", "GET", uri, null, null, 0,
false);
 // do something with the result
 }
}

If you want to execute the REST call in the background, the code looks as follows:

public void invokeSomeRestResource(String pathParamValue,String queryParamValue) {
 TaskExecutor.getInstance().execute(true, () -> {
 if (isOnline())
 {
 RestJSONPersistenceManager rpm = new RestJSONPersistenceManager();
 String uri = "/someResourcePath/"+pathParamValue+"?
someQueryParam="+queryParamValue;
 String result = rpm.invokeRestService("MyRESTConn", "GET", uri, null, null, 0,
false);
 // do something with the result
 }
 });
}

Defining a Custom Resource

6-28 Developing Mobile Applications with Oracle Mobile Application Framework

If the response should be converted to a list of entities and stored in SQLite database,
like the standard Find All resource, use the handleReadResponse method on the
remote persistence manager do all this for you. This is the signature of this method:

public <E extends Entity> List<E> handleReadResponse(String jsonResponse, Class
entityClass,
 String collectionElementName,
String rowElementName,
 List<BindParamInfo>
parentBindParamInfos, boolean deleteAllRows)

The collectionElementName and rowElementName arguments map to the
Payload List Element Name and Payload Row Element Name that we specify for
standard GET resources. See Specifying CRUD REST Resource Details for an
explanation on how to set the values of these arguments based on the structure of the
response payload. If the response returns an array as top-level object, you need to
specify root as the value for collectionElementName.

You can leave the parentBindParamInfos argument null, and the
deleteAllRows argument is obsolete (It is included for backwards compatibility). If
you want to delete all local rows prior to processing the response payload, then you
need to add the code to do so yourself.

The following code sample illustrates how the above example can be extended to
process the response payload into a list of entities:

public void invokeSomeRestResource(String pathParamValue,String queryParamValue) {
 if (isOnline()) {
 RestJSONPersistenceManager rpm = new RestJSONPersistenceManager();
 String uri = "/someResourcePath/"+pathParamValue+"?
someQueryParam="+queryParamValue;
 String result = rpm.invokeRestService("MyRESTConn", "GET", uri, null, null, 0,
false);
 List<Employee> emps = rpm.handleReadResponse(result, Employee.class, "root",
null, null, false);
 setEntityList(emps);
 }
}

6.13 Getting Programmatic Access to Service Objects
Describes how to get programmatic access to an instance of a service object.

You typically create a data control for your service objects to create the user interface
of your MAF application using drag and drop from the Data Controls panel. If you
want to access a service object from a managed bean or a lifecycle listener method,
create an instance of your service object as follows:

DepartmentService service = new DepartmentService();

Where DepartmentService extends from
oracle.maf.impl.cdm.persistence.service.EntityCRUDService.

This triggers a REST call if you have selected Auto Query in the Runtime Options
page, as described in Setting Runtime Options for the Client Data Model, and you
specified a value for Find All Resource , as described in Defining CRUD REST
Resources. If you do not want to perform this automatic query for the instance you
create programmatically, use the following constructor that takes autoQuery as a
boolean argument:

Getting Programmatic Access to Service Objects

Creating the Client Data Model in a MAF Application 6-29

DepartmentService service = new DepartmentService(false);

If you do want to perform an automatic query, write code as follows:

DepartmentService service = new DepartmentService();
List<Department> deps = service.getDepartment();
// do something with the departments

This will not work reliably if the REST call executes in the background which happens
when the Remote Read in Background checkbox is selected in the Runtime Options
page. In that case, the getDepartment() method call only returns the departments
stored in the local database (if any), as the REST call executes in a background thread.
So, the safest way is to use the following constructor:

public DepartmentService(boolean doRemoteReadInBackground, boolean
doRemoteWriteInBackground)
{
 super(false);
 setDoRemoteReadInBackground(doRemoteReadInBackground);
 setDoRemoteWriteInBackground(doRemoteWriteInBackground);
}

This constructor calls super with the autoQuery argument set to false, and will set
the remoteReadInBackground and remoteWriteInBackground properties as
specified in your constructor call. In other words, using this constructor you can get an
instance that ignores the selections made in the Runtime Options page (and stored in
the persistence-mapping.xml file).

DepartmentService service = new DepartmentService(false,false);
// get latest department list from server by making synchronous REST call
service.findAllDepartmentRemote;
// get a handle in the department list
List<Department> deps = service.getDepartment();
// do something with the department list

In managed bean code, you might need access to the service object instance used by
the data control. Do this using the following convenience method:

DepartmentService service = (DepartmentService)
EntityUtils.getEntityCRUDService(Department.class);

This method looks up a data control instance by the name of your service object class.
Be aware though that if you use this method without the data control being
instantiated yet (that is, used on an AMX page), it creates a new instance using the
default constructor which might trigger an unwanted REST call as explained
previously. A data control instance lives in the context of an application feature. If you
have used the same data control in the AMX pages of two different application
features, you will have two instances of the underlying service object. The application
feature context in which you execute the getEntityCRUDService method
determines which instance returns.

Move as much logic as possible into your service class to reduce the need to get a
handle on the data control instance in your managed bean code. If you evaluate lots of
value binding and method binding expressions, and subsequently execute lots of these
method bindings, you might want to rethink your coding strategy.

Finally, if you only need access to the local SQLite database in your custom Java code
and do not require any REST calls to be made, you do not have to create a service
object instance. Instead, use an instance of
oracle.maf.api.cdm.persistence.manager.DBPersistenceManager to

Getting Programmatic Access to Service Objects

6-30 Developing Mobile Applications with Oracle Mobile Application Framework

query or manipulate data objects. For more information, see the Java API Reference for
Oracle Mobile Application Framework.

6.14 Creating a User Interface from a MAF Client Data Model
MAF applications where you have generated a client data model can avail of a number
of features provided by MAF that facilitate your development work.

Once you create the client data model, you typically create a data control for each
entity service class that the client data model generated. These data controls include a
large number of methods that allow you to build your MAF AMX pages by dragging
and dropping operations and collections from the Data Control palette in JDeveloper.
For more information, see How to Create Data Controls from the Client Data Model.

If you created your client data model as described in Overview of Creating a Client
Data Model in a MAF Application, you can make use of the following features that
MAF provides to make you productive as you build and test the user interface layer of
your MAF application:

• Use the MAF User Interface Generator wizard to test your client data model and
prototype the user interface of your MAF application. This wizard generates a
complete MAF application feature that includes a task flow, AMX pages, and data
bindings. To use this wizard, you create a data control and then generate the
application feature from the data control. For more information, see How to Use
the MAF User Interface Generator.

• View pending data synchronization actions using reusable data synchronization
application feature included with MAF. Alternatively, create your own AMX pages
using the data synchronization service data control.

• Force your MAF application to behave as if it is offline while it is actually
connected to the internet.

• Add a visual indicator to show end users that the MAF application is performing
work the background. You typically use this visual indicator to inform end users
that the MAF application is reading or writing data to or from a remote server.

• Inspect the REST calls your MAF application makes by using the web service calls
application feature included with MAF

6.14.1 How to Create Data Controls from the Client Data Model
Describes how to create data controls from the service objects created during the
generation of the MAF application’s client data model.

Once you complete the creation of the client data model, as described in Overview of
Creating a Client Data Model in a MAF Application, you typically create data controls
from the service objects generated during the latter task. These data controls facilitate
the creation of the user interface of your application. You can drag the collections,
attributes, or operations from the Data Controls panel in JDeveloper and drop them on
the AMX page where MAF prompts you to choose the appropriate AMX components
to render data or UI controls in the AMX page. Alternatively, you can generate an
application feature from the data control using the MAF User Interface Generator
wizard, as described in How to Use the MAF User Interface Generator.

To create data controls from the client data model:

1. In the Applications window, navigate to the service object that the client data
model wizard generated.

Creating a User Interface from a MAF Client Data Model

Creating the Client Data Model in a MAF Application 6-31

The location of the service objects depends on the options you chose in the client
data model wizard. Figure 6-18, for example, shows the DepartmentService and
EmployeeService service objects in the ApplicationController project of a MAF
application.

Figure 6-18 Client Data Model Service Object

2. In the Applications window, right-click the service object (for example,
DepartmentService.java) and choose Create Data Control from the context
menu that appears.

3. Complete the fields in the Create Bean Data Control wizard that appears and click
Finish.

6.14.2 What Happens When You Create a Data Control from the Client Data Model
MAF generates a data control from the service object with a range of elements and
operations that you can drag and drop to AMX pages.

This data control can also be used by the MAF User Interface Generator wizard to
create an application feature, as described in How to Use the MAF User Interface
Generator.

Creating a User Interface from a MAF Client Data Model

6-32 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 6-19 Data Control Created from a Client Data Model Service Object

6.14.3 How to Use the MAF User Interface Generator
Use the MAF User Interface Generator wizard to create a MAF application feature
with a task flow, AMX pages and data bindings if you generated a client data model in
your MAF application.

This wizard helps test your client data model and creates a prototype user interface for
your MAF application. Before you use the wizard, create a client data model as
described in Overview of Creating a Client Data Model in a MAF Application.
Generate data controls from the service objects that are created when you create a
client data model. Make sure that the data control for which you want to generate a
MAF application feature appears in the Data Control window of JDeveloper. You may
need to click the refresh icon.

Creating a User Interface from a MAF Client Data Model

Creating the Client Data Model in a MAF Application 6-33

The wizard generates a list view page and a form page for every data object that the
data control exposes. You can choose the data object attributes to expose in the list
view page. The form page displays all data object attributes.

To use the MAF User Interface Generator wizard:

1. In the main menu, choose File and then From Gallery.

2. In the New Gallery, in the Mobile Application Framework node of the Client Tier
category, double-click MAF User Interface Generator.

3. Click Next in the welcome page and in the Select Data Control page, select the
data control for which you want to generate a MAF application feature.

4. You can select the Enable Feature Security? checkbox in the Select Data Control
page if you have already configured security for your MAF application, as
described in Securing MAF Applications . You can perform this task at a later
time.

5. Click Next to navigate to the Data Object UI Settings page, shown in Figure 6-20,
and configure values as follows:

• Data Object: Choose the data object from the dropdown list and configure the
display title of this object plus the operations that the user interface exposes for
end users to perform (create, update, or delete the object, and so on). Select the
checkboxes for Create Allowed, Update Allowed and Deleted Allowed if you
have defined CRUD REST resources as described in Defining CRUD REST
Resources.

• Show on Parent Page: Select for child data objects where you want to include
the list view of the child data object inside the form page of the parent data
object. Clear the checkbox to display on a separate page. Use of this checkbox
assumes that you have configured a parent-child relationship, as described in
Specifying Parent-Child Relationships for Data Objects.

• List Attributes: Specify the data object attributes to display in the list view
page. You can also choose a list divider.

Creating a User Interface from a MAF Client Data Model

6-34 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 6-20 Configuring the User Interface for Pages Generated by MAF User
Interface Generator

6. Click Finish to generate the MAF application feature includes the user interface.

6.14.4 What Happens When You Generate a User Interface
MAF makes the following changes to your MAF application when you complete the
MAF User Interface Generator wizard:

• Adds the newly-created MAF application feature to the maf-feature.xml file.

• Generates a task flow in a sub-directory of the Web Content directory. The name
of the sub-directory derives from the name of the data object (for example,
Department).

• Generates AMX pages for every view activity in the generated task flow and
generates AMX page definitions for the generated AMX pages.

• Adds GoToFeature and Connectivity managed beans to the adfc-mobile-
config.xml file. The generated AMX pages use these managed beans.

• Adds references to the newly-created MAF application feature plus two other
application features that MAF includes when you generate the client data model.
These are the data synchronization application feature and the web services call
application feature. For more information about using these application features,
see Synchronizing Offline Transactions from a MAF Application and Inspecting
Web Service Calls in a MAF Application.

Creating a User Interface from a MAF Client Data Model

Creating the Client Data Model in a MAF Application 6-35

6.15 Synchronizing Offline Transactions from a MAF Application
MAF applications allow end users to perform transactions when the application is in
offline mode. MAF performs a data synchronization action for each transaction when
the application is next in online mode.

A transaction in this context is a method invocation on a service object that results in a
REST call to create, modify or delete data. If you invoke a service object’s method,
such as, saveDepartment(Department), MAF checks if there is a corresponding REST
resource to call. If there is no corresponding REST resource, MAF invokes the method
against the on-device SQLite database if applicable. If there is a corresponding REST
resource to call, MAF creates a data synchronization action. The data synchronization
action holds the type of resource to execute (Insert, Update, Remove, or a custom
action) and all data of the data object instance which the transaction requires.

If the MAF application is in online mode, MAF starts the synchronization action and
invokes the corresponding REST resource. If the MAF application is in offline mode
and you enabled offline transactions for the data object, MAF registers the data
synchronization action and stores it as a pending synchronization action. MAF
synchronizes the action when the MAF application is next in online mode. MAF
preserves the exact sequence in which transactions are committed when
synchronizing.

You enable offline transactions for a data object by selecting the Enable Offline
Transactions checkbox, as described in Setting Runtime Options for the Client Data
Model. If you disable offline transactions for a data object, MAF throws a “Device
is offline” exception if an end user attempts to perform an offline transaction on
the data object. Prevent this exception by disabling the UI controls when the MAF
application is in offline mode so that end users cannot create a transaction that throws
the exception.

MAF stores data synchronization actions in the PENDING_SYNCH_ACTIONS table of
the SQLite database. The data object’s SQLite database table does not store
information related to data synchronization actions. Assume, for example, an end user
deletes a department when the MAF application is in offline mode. This action
removes the corresponding row from the DEPARTMENTS table in the SQLite database
and a corresponding data synchronization action is added to the
PENDING_SYNCH_ACTIONS table. When the MAF application is next in online mode,
the REST action associated with the data synchronization action of deleting the
department is performed. This ensures that the local SQLite database tables reflect the
latest transactions performed by end users regardless of whether the associated REST
calls have been performed or not.

When a MAF application returns to online mode from offline mode, MAF waits for the
application to invoke a REST call. When this event occurs, MAF synchronizes the
pending data synchronization actions before processing the REST call. This
synchronization makes sure that the subsequent REST call(s) and responses to the
MAF application do not use obsolete data. You can explicitly invoke this automatic
synchronization when the MAF application returns to online mode, even if there are
no REST calls to trigger the automatic synchronization by invoking the
synchronize(boolean) method from any service object in your MAF application. The
oracle.maf.impl.cdm.persistence.service.EntityCRUDService class,
from which all service object classes extend provides the synchronize(boolean)
method. Invoking this method once from any service object class performs an
automatic synchronization for all pending data synchronization actions in the MAF
application. The boolean argument for synchronize determines whether
synchronization happens in the background (true) or in the foreground (false).

Synchronizing Offline Transactions from a MAF Application

6-36 Developing Mobile Applications with Oracle Mobile Application Framework

Although not recommended, you can disable the default behavior of MAF
applications to synchronize pending synchronization actions before invoking a REST
call. For more information, see What You May Need to Know About Disabling
Automatic Synchronization.

MAF applications cannot detect if data synchronization conflicts occur when a MAF
application returns to online mode and synchronizes data. Assume, for example, that
an end user of your MAF application updates a department when the MAF
application is in offline mode. Elsewhere, another user of a web application that
accesses the same data set modifies the same department information. MAF cannot
detect this latter change. When the MAF application returns online, MAF attempts to
synchronize the changes in the PENDING_SYNCH_ACTIONS table. To resolve and
work around the issue just described, you need to identify and resolve data
synchronization conflicts at the location where all applications (mobile, web, and so
on) access the data set that your MAF application accesses.

When MAF tries to synchronize pending synchronization actions by calling the
corresponding REST resource, the REST call may return an error response for an
action because, for example, the server is down. If this happens, MAF keeps the data
synchronization action in the PENDING_SYNCH_ACTIONS table. It also updates the
action with the timestamp of the synchronization attempt and the synchronization
error. MAF continues processing the remaining data synchronization actions in the
table despite the failure of one or more actions. MAF retries these pending data
synchronization actions the next time it performs synchronization. You can expose
these pending synchronization actions to end users so they can view and make a
decision on what do with actions that remain to be synchronized. For more
information, see How to View Pending Synchronization Actions. You can also write
custom logic to execute in your MAF application on completion of a synchronization
action. You can, for example, write code that executes in response to failure to
synchronize. For more information, see How to Add Custom Logic to Handle Failed
Synchronization Actions.

6.15.1 How to View Pending Synchronization Actions
Add the DataSyncFeature.jar feature archive to your MAF application to display
an application feature where end users can view and remove pending synchronization
actions.

Once added, your MAF application includes an application feature that includes a
menu to view pending synchronization actions. End users can tap each pending
synchronization action to view more detail and make a decision to remove the action
or leave it for MAF to re-attempt to synchronize it. Figure 6-21 shows a composite
image of the menu entry and the Pending Sync Actions screen in a MAF application
where this feature archive has been added.

Synchronizing Offline Transactions from a MAF Application

Creating the Client Data Model in a MAF Application 6-37

Figure 6-21 Viewing Pending Sync Actions

Note: The MAF User Interface Generator wizard automatically adds this FAR
to the MAF application on completion. For more information, see Creating a
User Interface from a MAF Client Data Model.

To add the DataSyncFeature.jar FAR:

1. In the main menu, choose Application and then Application Properties.

2. In the Application Properties dialog, navigate to the Libraries and Classpath page
and click Add JAR/Directory.

3. In the Add Archive or Directory dialog that appears, navigate to the
jdeveloper/jdev/extensions/oracle.maf/FARs/CDM directory in your
JDeveloper installation and select the DataSynchFeature.jar file so that it
appears under the Classpath entries for your MAF application.

4. Click OK to close the dialogs.

5. In the Feature References page of the maf-application.xml file’s overview
editor, add the data synchronization feature to your application by selecting it
from the Insert Feature Reference dialog, as shown in Figure 6-22.

Figure 6-22 Adding FAR to View Pending Synchronization Actions

Synchronizing Offline Transactions from a MAF Application

6-38 Developing Mobile Applications with Oracle Mobile Application Framework

6.15.2 How to Add Custom Logic to Handle Failed Synchronization Actions
Write custom code that executes in your MAF application once data synchronization
completes if you want to handle failed synchronization actions programmatically.

Perform the following steps to write Java code in and register it in your MAF
application:

1. Create a Java class that extends from
oracle.maf.impl.cdm.persistence.service.DataSynchManager.

2. Override the dataSynchFinished method to add custom logic after the data
synchronization action(s) complete.

protected void dataSynchFinished(java.util.List<DataSynchAction>
succeededDataSynchActions,
 java.util.List<DataSynchAction>
failedDataSynchActions)

The dataSynchFinished method has two arguments: a list of successful
synchronization actions and a list of failed synchronization actions. You can use
this method to, for example, warn end users that one or more transactions failed
and will be re-tried later, or you can inform them that all pending data
synchronization actions have been processed successfully.

Add the Java code to implement your synchronization policy to this method. The
following simple example informs the user about the number of successful and
failed synchronization actions:

package application.model.service;

import java.util.List;
import oracle.adfmf.framework.exception.AdfException;
import oracle.maf.impl.cdm.util.MessageUtils;
import oracle.maf.api.cdm.persistence.service.DataSynchAction;
import oracle.maf.impl.cdm.persistence.service.DataSynchManager;

public class MyDataSynchManager extends DataSynchManager {

 public DataSynchManager() {
 super();
 }

 @Override
 protected void dataSynchFinished(List<DataSynchAction>
succeededDataSynchActions,
 List<DataSynchAction>
failedDataSynchActions) {
 int ok = succeededDataSynchActions.size();
 int fails = failedDataSynchActions.size();
 int total = ok + fails;
 MessageUtils.handleMessage(AdfException.INFO,
 total + " data synch actions completed. Successful: " + ok + ", Failed: "
+ fails);
 }
}

3. Register your class in your application’s mobile-persistence-
config.properties file, as demonstrated by the following example:

Synchronizing Offline Transactions from a MAF Application

Creating the Client Data Model in a MAF Application 6-39

datasync.manager.class=application.model.service.MyDataSynch
Manager

The mobile-persistence-config.properties file is in
ApplicationRootDirectory/ApplicationController/src/META-INF/
folder.

6.15.3 What You May Need to Know About Disabling Automatic Synchronization
Automatic synchronization of transactions from a MAF application can be disabled.

To disable automatic synchronization of transactions from a MAF application:

1. Create a new abstract Java class that extends the
oracle.maf.impl.cdm.persistence.service.EntityCRUDService

2. Override the synchronize method and comment out the call to
super.synchronize so the method performs no execution

3. Modify your service object classes to extend from the just-created subclass instead
of extending from EntityCRUDService

If you disable automatic synchronization, configure your MAF application so that end
users can explicitly start a synchronization action. Use the following statement to
explicitly trigger data synchronization:

new DataSynchService().synchronize(true);

The boolean argument determines whether the synchronization happens in the
background (true) or in the foreground (false). The DataSynchService class is
located in the following package: oracle.maf.api.cdm.persistence.service.
For more information, see Java API Reference for Oracle Mobile Application Framework.

We do not recommend disabling automatic synchronization of transactions as it can
lead to out-of-date data in your application and a confusing user experience. The
following example use case for a user (John) illustrates this point. John performs the
following actions in his application:

• Gets the latest list of departments when starting the application in online mode

• Modifies the name of department 10 in offline mode

• Removes department 20 in offline mode

• Creates a new department 280 in offline mode

• Leaves the application

• John starts the application again in online mode and the latest list of departments is
retrieved from the server while the 3 pending sync actions are not yet processed

• John will now see the old department name of department 10

• John will now see department 20 again although he already removed it

• If you (the MAF application developer) selected the Delete Local Rows checkbox
for the Find All Resource for department data object, the new department (280)
that John created disappears again.

Only when John manually starts a synchronization action, will he see the latest data
again including the changes he made in offline mode once he refreshes the department

Synchronizing Offline Transactions from a MAF Application

6-40 Developing Mobile Applications with Oracle Mobile Application Framework

list again with the latest data from the server (through a user interface control or by
restarting the application).

Synchronizing Offline Transactions from a MAF Application

Creating the Client Data Model in a MAF Application 6-41

Synchronizing Offline Transactions from a MAF Application

6-42 Developing Mobile Applications with Oracle Mobile Application Framework

7
Localizing MAF Applications

This chapter describes how to use resource bundles where you can define text and
image resources that render if your MAF application runs on devices that use multiple
languages. The chapter also describes the design-time support that JDeveloper
provides to create and edit resource bundles.

This chapter includes the following sections:

• Introduction to MAF Application Localization

• Setting Resource Bundle Options for a MAF Application

• Defining Text Resources in a Base Resource Bundle

• Creating Locale-Specific Resource Bundles

• Editing Resources in Resource Bundles

• Localizing Image Files in a MAF Application

• MAF Support of Languages

• Localizable MAF Properties

7.1 Introduction to MAF Application Localization
Localization is the process that adapts a product to a specific locale. A localized MAF
application uses the same language as the mobile device on which it runs. For
example, if you set French as the device language, the text resources of the application
appear in French.

To help you localize an application, MAF provides design-time menus in one or more
resource bundles. Use these menus to define the text resources that the user interface
must display. Define your MAF application's text resources in a base resource bundle.
If your application has no locale-specific resource bundle for the device's locale, the
application on the user's device renders these text resources on its user interface.
Create locale-specific resource bundles for each locale that you want supported. In
these locale-specific resource bundles, provide translations of the text resources that
you had defined in the base resource bundle.

Figure 7-1 shows an example where an application renders commandButton and
outputText components. The language that you set on the mobile device decides the
text and image resources that appear in the components. On the left, the components
render a text resource in English because the base resource bundle contains text
resources with English values. The device where the application runs uses English (or
a language that is not French). On the right, the same components render text
resources in French. The MAF application contains a locale-specific resource bundle
(_fr) with translations of the values in the base resource bundle. French is set as the
mobile device's language.

Localizing MAF Applications 7-1

Figure 7-1 Localized Text Resources

Use the following steps to localize your MAF application:

1. Find the number of resource bundles in your MAF application, as described in
Setting Resource Bundle Options for a MAF Application.

2. Define the text resources in your base resource bundle so that they are rendered
when your MAF application runs in a locale for which no a locale-specific
resource bundle is provided.

For more information, see Defining Text Resources in a Base Resource Bundle.

3. Create locale-specific resource bundles where you provide translations of the text
resources that you had defined in the base resource bundle.

For more information, Creating Locale-Specific Resource Bundles.

4. Create locale-specific versions of image files and other resources that are needed
to localize your MAF application..

For more information, see Localizing Image Files in a MAF Application.

7.2 Setting Resource Bundle Options for a MAF Application
A MAF application's resource bundles use the XML Localization File format (XLIFF).
JDeveloper creates a .xlf file resource bundle the first time that you enter a display
value in the Select Text Resource dialog. Invoke Select Text Resource for each property
that supports a localized value.

By default, a MAF application has two resource bundles:

• A project-level resource bundle (default name
ViewControllerController.xlf)

• An application-level resource bundle

The naming convention for the application-level resource bundle uses the application
name and appends Bundle.xlf. So, a MAF application named
MyLocalizedMAFapp has an application-level resource bundle named
MyLocalizedMAFappBundle.xlf. The application-level resource bundle contains
application-level text resources. For example, you specify the application name as a
text resource in this resource bundle to translate the application name into different
languages. Project-level resource bundles contain the text resources that render in the
MAF AMX pages of a project, or the text resources of application feature properties.
For more information about these properties, see Localizable MAF Properties.

You can change the default behavior of a MAF application having one project-level
resource bundle by setting the resource bundle options for the project. A MAF
application can only have one application-level resource bundle.

Setting Resource Bundle Options for a MAF Application

7-2 Developing Mobile Applications with Oracle Mobile Application Framework

7.2.1 How to Set the Resource Bundle Options for a MAF Application
You set the resource bundle options for the view controller and application controller
projects using the Resource Bundle page in the Project Properties dialog. Options that
you can set include the number of project-level resource bundles that JDeveloper
creates.

To set the resource bundle options for a project:

1. In the Applications window, double-click the project.

2. In the Project Properties dialog, select Resource Bundle to view the Resource
Bundle page, as shown in Figure 7-2.

Figure 7-2 Project Properties Resource Bundle Page

3. Select Always Prompt for Description if you want to prevent the Select Text
Resource dialog from closing before you enter a description of the text resource in
the dialog.

4. Select one of the following resource bundle file options:

• One Bundle Per Project —JDeveloper creates one resource bundle in a file
named <ProjectName>.xlf.

• One Bundle Per File— Creates a resource bundle each time you define a text
resource for a file (maf-feature.xml, maf-application.xml, or an .amx
file). This option limits the number of resource bundles to one per file; if you
select this option, JDeveloper prevents you from creating a second bundle.

5. Click OK.

Setting Resource Bundle Options for a MAF Application

Localizing MAF Applications 7-3

7.3 Defining Text Resources in a Base Resource Bundle
JDeveloper provides the Select Text Resource dialog where you can define values in
resource bundles for a MAF application, application feature, and MAF AMX UI
component text resources that appear to end users. Access the Select Text Resource
dialog by clicking the icon beside the property for which you want to define a text
resource in the Properties window, and selecting Select Text Resource. These
properties are typically properties that display text which users can see. Examples
include the name properties for the MAF application and application features, in
addition to the label, text, and hintText properties that MAF AMX UI components
such as button, link, and input text expose. For more information about these
properties, see Localizable MAF Properties.

Figure 7-3 demonstrates how you display the Select Text Resource context menu for a
MAF application's name, an application feature's name and an inputText component's
Label property.

Defining Text Resources in a Base Resource Bundle

7-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 7-3 Context Menu to Display Select Text Resource Dialog

7.3.1 How to Define a Text Resource in a Base Resource Bundle
You define a text resource in a resource bundle using the Select Text Resource dialog
which can be invoked for properties that reference text resources defined in resource
bundles using EL expressions.

To define a text resource in a resource bundle:

1. Choose the artifact that has a property for which you want to define a text
resource. This could be the MAF application itself, an application feature or a
MAF AMX UI component.

2. In the Properties window, click the icon beside the property for which you want
to define a text resource and select Select Text Resource in the context menu that
appears.

Defining Text Resources in a Base Resource Bundle

Localizing MAF Applications 7-5

3. In the Select Text Resource dialog, define a text resource by entering a display
name, key, and then clicking Save and Select.

7.3.2 What Happens When You Define a Text Resource in a Base Resource Bundle
JDeveloper writes the display value and key that you enter to a resource bundle.
When you first define a text resource for a MAF application or project, JDeveloper
creates the resource bundle. If the text resource that you define is for an application-
level property (for example, the MAF application's name property), JDeveloper creates
an application-level resource bundle (ApplicationNameBundle.xlf). You can
view the bundle in the Application Resources panel, as shown in Figure 7-4. If you
define text resources for a project-level property (for example, an application feature's
name property), JDeveloper creates a project-level resource bundle
(ViewControllerBundle.xlf). You can view the bundle in the Projects panel, as
shown in Figure 7-4.

Figure 7-4 Newly-Created Resource Bundles

JDeveloper creates one application-level resource bundle for a MAF application. It
may create additional project-level resource bundles depending on the options that
you set, as described in Setting Resource Bundle Options for a MAF Application.

The XML syntax that JDeveloper writes to the resource bundle for the key and display
value is the same for application or project-level resource bundles, as shown by the
following example.

 ...
 <!-- The value of the id attribute is the value you enter in the Key input field of the

Defining Text Resources in a Base Resource Bundle

7-6 Developing Mobile Applications with Oracle Mobile Application Framework

 Select Text Resource Dialog -->
 <trans-unit id="FEATURE_ONE">
 <!-- The value of the source element is the value you enter in the Display Value input
 field of the Select Text Resource Dialog -->
 <source>Feature Name</source>
 <target/>
 </trans-unit>
 <trans-unit id="HEADER_VALUE_IN_PANEL">
 <source>Header Value in Panel Page</source>
 <target/>
 </trans-unit>
 <trans-unit id="COMMAND_BUTTON">
 <source>Text Display Value for a Command Button</source>
 <target/>
 </trans-unit>
 ...

Text resources are defined in resource bundles. Configurable properties reference the
text resources. JDeveloper makes the changes shown in Example 7-1 for the properties
files.

• When you localize an attribute the first time, JDeveloper adds an
<adfmf:loadbundle> element. The basename attribute of the element refers to
the newly created resource bundle.

• JDeveloper changes the localized attribute string to an EL expression. The EL
expression refers to the key of the text resource that is defined in the resource
bundle.

• JDeveloper adds every additional localized string to the same resource bundle file.
Only one resource bundle file exists at the application level. At the project level, the
behavior depends on the resource bundle settings that you selected in Setting
Resource Bundle Options for a MAF Application.

Example 7-1 Resource Bundle References in MAF AMX Page and MAF Configuration Files

<!-- maf-application.xml where a text resource has been defined for the MAF application's name -->
 <adfmf:applicationname="#{mylocalizedmafappBundle.MY_LOCALIZED_MAF_APPLICATION}"
 ...
 <adfmf:loadBundle basename="MyLocalizedMAFappBundle" var="mylocalizedmafappBundle"/>

<!-- maf-feature.xml where a text resource has been defined for the application feature's name -->
 <adfmf:loadBundle basename="mobile.ViewControllerBundle" var="viewcontrollerBundle"/>
 ...
 <adfmf:feature id="feature1" name="#{viewcontrollerBundle.FEATURE_ONE}">

<!-- MAF AMX page where a text resource has been defined for a command button's text attribute -->
 <amx:loadBundle basename="mobile.ViewControllerBundle" var="viewcontrollerBundle" id="lb1"/>
 ...
 <amx:commandButton id="cb1" text="#{viewcontrollerBundle.COMMAND_BUTTON}"/>

7.4 Creating Locale-Specific Resource Bundles
You create a locale-specific resource bundle if you want your MAF application to
render different text resources in a specific locale. For example, if you want to provide
translations of the text resources in the base resource bundle when the MAF
application runs on a device that has the language set to French or Arabic, you need to
create a locale-specific resource bundle for both the French and Arabic languages.

Creating Locale-Specific Resource Bundles

Localizing MAF Applications 7-7

Figure 7-5 shows a MAF application where the locale-specific versions of the
application-level (MyLocalizedMAFappBundle.xlf) and project-level
(ViewControllerBundle.xlf) resource bundles have been created to support the
Arabic and French locales. You must create the locale-specific resource bundle in the
same directory as the base resource bundle with a file name that uses the following
format:

<BASE_RESOURCE_BUNDLE_NAME>_<LANGUAGE_TOKEN>.xlf

Where:

• <BASE_RESOURCE_BUNDLE_NAME> is the base resource bundle name

• <LANGUAGE_TOKEN> is in the following format: <ISO-639-lowercase-
language-code>

For a list of the languages that MAF supports, see MAF Support of Languages.

Figure 7-5 Base Resource Bundle and Locale-Specific Resource Bundles

Creating Locale-Specific Resource Bundles

7-8 Developing Mobile Applications with Oracle Mobile Application Framework

7.4.1 How to Create a Locale-Specific Resource Bundle
JDeveloper facilitates the creation of project-level resource bundles by providing an
option in the XML category under General of its New Gallery menu to create a new
XML Localization File (XLIFF).

Alternatively, open the base bundle for which you want to create a locale-specific
resource bundle. Save a copy of the file with the right language code in the file name.
The second option has the following benefits:

• You create the locale-specific resource bundle in the same directory as the base
resource bundle. This is a requirement.

• A copy of all text resources in the base resource bundle appear in the locale-specific
resource base bundle where you can provide translated values.

To create a locale-specific resource bundle:

1. Open the base resource bundle for which you want to create a locale-specific
version:

• Application-level base resource bundle: double-click the .xlf file in the ADF
META-INF node under Descriptors of the Application Resources panel.

• Project-level base resource bundle: double-click the .xlf file in the
Application Sources node under ViewController of the Projects panel.

2. In JDeveloper, click File, and then Save As. Append the language code for the
locale that you want to support.

For example, append _fr if you want your MAF application to support the
French locale.

3. Edit the newly-created locale-specific resource bundle to include the appropriate
language codes.

The following example demonstrates the edits that you need to make to support
the French locale for an application-level and project-level resource bundle.

<!-- Application-level French locale-specific resource bundle -->
<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="fr" original="this" datatype="x-oracle-adf">

<!-- Project-level French locale-specific resource bundle -->
<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="fr" original="mobile.ViewControllerBundle_fr"
 datatype="x-oracle-adf">

4. Edit the resource bundle to provide translations of each text resource that you
want to appear in the target locale.

For more information about editing resource bundles, see Editing Resources in
Resource Bundles.

Creating Locale-Specific Resource Bundles

Localizing MAF Applications 7-9

7.5 Editing Resources in Resource Bundles
JDeveloper provides an Edit Resources Bundle dialog where you can add, delete, or
edit the resources in the resource bundles that a MAF application contains.

To edit text resources in a resource bundle:

1. In JDeveloper, double-click the resource bundle where you want to edit text
resources.

2. In JDeveloper's main menu, click Application, and then Edit Resource Bundles.

The Edit Resource Bundles dialog opens for the resource bundle that you selected
in Step 1. Figure 7-6 shows the dialog that opens for a French locale-specific
resource bundle. Double-click in the Display Value and Description fields to edit
existing text resources. Use the controls (Add, Delete, and Search) to add and
remove text resources, or to search for and open other resource bundles in the MAF
application.

Figure 7-6 Editing Text Resources in Resource Bundles

3. Click OK to close the dialog and save the changes.

7.6 Localizing Image Files in a MAF Application
You may want to render different image files in a MAF application depending on the
locale. For example, an image may contain text or a picture of a flag, as shown in
Figure 7-7.

Editing Resources in Resource Bundles

7-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 7-7 Rendering Different Images Based on Locale

Write an EL expression for the component attribute that references the image to an
entry in the resource bundle. The resource bundle entry contains the path to the
image. For example, the commandButton components shown in Figure 7-7 define the
following value for the icon attribute in the MAF AMX page that renders the
components:

<amx:commandButton id="cb1" text="#{viewcontrollerBundle.YES}"
 icon="#{viewcontrollerBundle.IMAGE_PATH}"/>

The base resource bundle (ViewControllerBundle.xlf) contains the following
entry with the path to the image to appear when the MAF application runs in a locale
that is not French.

<trans-unit id="IMAGE_PATH">
 <source>/images/uk.png</source>
 <target/>
 <note>Path to image file</note>
 </trans-unit>

The French resource bundle (ViewControllerBundle_fr.xlf) specifies a different
image to render when the MAF application runs in a French locale, as shown in the
following example.

<trans-unit id="IMAGE_PATH">
 <source>/images/fr.png</source>
 <target/>

Manually write the entries in the resource bundle that define the path to the image, or
use the Edit Resource Bundle dialog, as described in Editing Resources in Resource
Bundles.

Once you have defined the path to the image in the source bundle, you can use the
Expression Builder, as shown in Figure 7-8, to write an EL expression that references
the entry in the resource bundle.

Localizing Image Files in a MAF Application

Localizing MAF Applications 7-11

Figure 7-8 EL Expression Referencing an Image in a Resource Bundle

7.7 MAF Support of Languages
Lists the languages supported by MAF and the resource bundle names that can be
used to provide additional UI strings.

Table 7-1 lists the languages that are supported by MAF. System messages, such as
error messages, appear in these languages if the user’s device is configured to use one
of these languages. MAF supports language tokens for countries and regions.
However, full support is only available to the extent that they appear in the list of
languages. Error messages from MAF use the closest of languages provided in the list.
The language is usually English unless the device is configured to use one of the
languages in the table, or a more specific variant of one of these languages.

If you want an application to render additional resource strings in these languages,
you must define them. Create a locale-specific resource bundle using the language
token listed in Table 7-1. For example, to define resource strings for Brazilian
Portuguese, create a resource bundle named
BASE_RESOURCE_BUNDLE_NAME_pt_BR.xlf. To create resource bundles for
languages that are not included in the list, create resource bundles with the following

MAF Support of Languages

7-12 Developing Mobile Applications with Oracle Mobile Application Framework

name format: BASE_RESOURCE_BUNDLE_NAME_lowercase-ISO-639-1-
language-code.xlf. For more information about the naming convention, see
Creating Locale-Specific Resource Bundles.

During deployment, JDeveloper transforms the language tokens to the expected
values on the platform on which the application is deployed. For example, a MAF
application that you deploy on the iOS platform transforms the language token pt_BR
to pt, the expected language ID on the iOS platform.

Table 7-1 Resource Bundle Names for Languages Supported by MAF

Language Resource bundle name to provide
additional UI strings

Arabic BASE_RESOURCE_BUNDLE_NAME_ar.xlf

Brazilian Portuguese BASE_RESOURCE_BUNDLE_NAME_pt_BR.
xlf

Catalan BASE_RESOURCE_BUNDLE_NAME_ca.xlf

Czech BASE_RESOURCE_BUNDLE_NAME_cs.xlf

Danish BASE_RESOURCE_BUNDLE_NAME_da.xlf

Dutch BASE_RESOURCE_BUNDLE_NAME_nl.xlf

Finnish BASE_RESOURCE_BUNDLE_NAME_fit.xlf

French BASE_RESOURCE_BUNDLE_NAME_fr.xlf

German BASE_RESOURCE_BUNDLE_NAME_de.xlf

Greek (Modern) BASE_RESOURCE_BUNDLE_NAME_el.xlf

Hebrew BASE_RESOURCE_BUNDLE_NAME_iw.xlf

Hungarian BASE_RESOURCE_BUNDLE_NAME_hu.xlf

Italian BASE_RESOURCE_BUNDLE_NAME_it.xlf

Japanese BASE_RESOURCE_BUNDLE_NAME_ja.xlf

Korean BASE_RESOURCE_BUNDLE_NAME_ko.xlf

Norwegian BASE_RESOURCE_BUNDLE_NAME_no.xlf

Polish BASE_RESOURCE_BUNDLE_NAME_pl.xlf

Portuguese BASE_RESOURCE_BUNDLE_NAME_pt.xlf

Romanian BASE_RESOURCE_BUNDLE_NAME_ro.xlf

Russian BASE_RESOURCE_BUNDLE_NAME_ru.xlf

Simplified Chinese BASE_RESOURCE_BUNDLE_NAME_zh_C
N.xlf

Slovak BASE_RESOURCE_BUNDLE_NAME_sk.xlf

MAF Support of Languages

Localizing MAF Applications 7-13

Table 7-1 (Cont.) Resource Bundle Names for Languages Supported by MAF

Language Resource bundle name to provide
additional UI strings

Spanish BASE_RESOURCE_BUNDLE_NAME_es.xlf

Swedish BASE_RESOURCE_BUNDLE_NAME_sv.xlf

Traditional Chinese BASE_RESOURCE_BUNDLE_NAME_zh_T
W.xlf

Turkish BASE_RESOURCE_BUNDLE_NAME_tr.xlf

Thai BASE_RESOURCE_BUNDLE_NAME_th.xlf

7.8 Localizable MAF Properties
The maf-application.xml and maf-feature.xml files both expose properties
that can reference text resources in resource bundles. Table 7-2 and Table 7-3 list these
properties. Because these configuration files are read early in the application lifecycle,
these strings are not evaluated as EL statements at runtime. Instead, these strings are
taken as the full key for the translated string in the native device translation
infrastructure.

Table 7-4 lists the attributes of those MAF AMX UI components that can reference text
resources.

At the application level, you can localize strings for such attributes as application
name or preference page labels, which are listed in Table 7-2.

Table 7-2 Localizable MAF Application Attributes

Element Attribute

<adfmf:Application> name

<adfmf:PreferenceGroup> label

<adfmf:PreferencePage> label

<adfmf:PreferenceBoolean> label

<adfmf:PreferenceText> label

<adfmf:PreferenceNumber> label

<adfmf:PreferenceList> label

<adfmf:PreferenceValue> name

At the project (view controller) level, you can localize application feature-related
attributes listed in Table 7-3.

Table 7-3 Localizable Application Feature Attributes

Localizable MAF Properties

7-14 Developing Mobile Applications with Oracle Mobile Application Framework

Table 7-3 (Cont.) Localizable Application Feature Attributes

Element Attribute

<adfmf:Feature> name

<adfmf:Constraint> value

<adfmf:Parameter> value

<adfmf:PreferencePage> label

<adfmf:PrefrenceGroup> label

<adfmf:PreferenceBoolean> label

<adfmf:PreferenceText> label

<adfmf:PreferenceNumber> label

<adfmf:PreferenceList> label

<adfmf:PreferenceValue> name

You can create resource bundles for attributes of such MAF AMX UI components as
the text attribute of the Button component (<amx:commandButton>). Table 7-4 lists
these MAF AMX UI components.

Table 7-4 Localizable Attributes of MAF AMX UI Components

Component Attribute

<amx:inputDate> label

<amx:inputNumberSlider> label

<amx:panelLabelAndMessage> label

<amx:selectBooleanCheckBox> label

<amx:selectBooleanSwitch> label

<amx:selectItem> label

<amx:selectManyCheckBox> label

<amx:selectManyChoice> label

<amx:selectOneButton> label

<amx:selectOneChoice> label

<amx:selectOneRadio> label

<amx:commandButton> text

<amx:commandLink> text

<amx:goLink> text

Localizable MAF Properties

Localizing MAF Applications 7-15

Table 7-4 (Cont.) Localizable Attributes of MAF AMX UI Components

Component Attribute

<amx:inputText> label, value, hintText

<amx:outputText> value

Localizable MAF Properties

7-16 Developing Mobile Applications with Oracle Mobile Application Framework

8
Skinning MAF Applications

This chapter describes how to customize the appearance of a MAF application by
using skins.

This chapter includes the following sections:

• Introduction to MAF Application Skins

• Adding a Custom Skin to an Application

• Specifying a Skin for an Application to Use

• Registering a Custom Skin

• Versioning MAF Skins

• What Happens When You Version Skins

• Overriding the Default Skin Styles

• What You May Need to Know About Skinning

• Adding a New Style Sheet to a Skin

• Enabling End Users Change an Application's Skin at Runtime

• What Happens at Runtime: How End Users Change an Application's Skin

8.1 Introduction to MAF Application Skins
MAF uses cascading style sheet (CSS) language-based skins to make sure that all
application components within a MAF application (including those used in its
constituent application features) share a consistent look and feel. Rather than change
how a MAF application looks by re-configuring MAF AMX or HTML components,
you can create, or extend, a skin that changes how components display.

Creating or editing a skin to change the look and feel of your MAF application is an
iterative process. You can create a skin and deploy it to a device to view the result.
You can continue this process until your skin renders the result that you want. The
developer tools that the Android and iOS platforms provide to inspect and debug user
interface code like CSS, HTML, and JavaScript are an invaluable resource for this task.
For more information about how you can use these tools with your MAF application,
see How to Debug UI Code on the Android Platform and How to Debug UI Code on
the iOS Platform. Use Visual Studio to debug user interface code in MAF applications
that you deploy to the Universal Windows Platform. For more information, see How
to Debug UI Code on the Universal Windows Platform.

The following are the supported skin families and versions that MAF uses to define
the selectors that determine the appearance of MAF AMX pages:

Skinning MAF Applications 8-1

amx
 mobileAlta-1.0
 mobileAlta-1.1
 mobileAlta-1.2
 mobileAlta-1.3
 mobileAlta-1.4
 mobileAlta-1.5
 mobileAlta-1.6

By default, a new MAF application that you create uses the latest version of the
mobileAlta skin family. An application that you migrate from a previous release to
the current release continues to use the skin that it was configured to use prior to
migration. If you want the migrated application to use another skin (for example, the
latest version of mobileAlta), you need to edit the maf-config.xml file, as
described in Specifying a Skin for an Application to Use.

Figure 8-1 demonstrates the difference in look and feel between the mobileAlta skin
family and another skin family by showing the same application screen rendering
using the different skins. The mobileAlta skin family renders on the left.

Figure 8-1 Comparison of Look and Feel Provided by mobileAlta and Another Skin

You can view all the resources (CSS files and images) that the skin for your MAF
application uses by deploying your MAF application to a device, emulator or
simulator. Deployment moves these resources to a www\css directory that it creates
within the platform-specific artifacts that the deployment process generates. For iOS
deployments, the www\css directory is located within the
temporary_xcode_project directory. The iOS deployment packages these
resources into an Oracle_ADFmc_Container_Template.zip file that is added to
the created .IPA file. For Android deployments, the directory path is %app%\deploy
\Android1\framework\build\java_res\assets\www\css where Android1
is the name of the deployment profile. Android deployment packages these resources
into an assets.zip file that is added to the created .APK file. Note that

Introduction to MAF Application Skins

8-2 Developing Mobile Applications with Oracle Mobile Application Framework

JDeveloper’s Build > Clean All command removes the deploy directory and its sub-
directories, including the www\css directory.

Caution:

Do not write styles that rely on the MAF DOM structures. Furthermore, some
of the selectors defined in these files may not be supported.

You use the maf-config.xml file, described in About the maf-config.xml File, and
the maf-skins.xml file, described in About the maf-skins.xml File, to control the
skinning of the MAF application. The maf-config.xml file designates the default
skin family used to render application components and the maf-skins.xml file
enables you to customize the default skin family or to define a new skin family.

8.1.1 About the maf-config.xml File
After you create a MAF application, JDeveloper populates the maf-config.xml file
to the MAF application's META-INF node. The file itself is populated with the base
MAF skin family, mobileAlta, illustrated in the following example.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>mobileAlta</skin-family>
 <skin-version>v1.5</skin-version>

</adfmf-config>

Note:

You can determine the skin value at runtime using EL expressions. For more
information, see Enabling End Users Change an Application's Skin at
Runtime.

If you do not specify values for the <skin-family> or <skin-version>
tags, the MAF application automatically uses the latest skin family or skin
version.

MAF applies skins as a hierarchy, with device-specific skins being applied first,
followed by platform-specific skins, and then the base skin, mobileAlta. In terms of
MAF's mobileAlta skin family, this hierarchy is expressed as follows:

1. mobileAlta.<DeviceModel> (for example, mobileAlta.iPhone5,3)

2. mobileAlta.iOS or mobileAlta.Android

3. mobileAlta

Tip: Deploy the DeviceDemo sample application to the device or platform
you want to retrieve the values for if you plan to create a device-specific or
platform-specific skin. The Properties application feature in the DeviceDemo
sample application displays the values for the device model and platform the
application runs on. For more information, see MAF Sample Applications.

Introduction to MAF Application Skins

Skinning MAF Applications 8-3

Figure 8-2 provides a visual illustration of how MAF applies this hierarchy of skins at
runtime. Note also that the SkinningDemo sample application, described in MAF
Sample Applications, demonstrates this implementation.

MAF gives precedence to selectors defined at the device-specific level of this
hierarchy. In other words, MAF overwrites a selector defined in mobileAlta.iOS
with the mobileAlta.iPhone5,3 definition for the same selector. The <extends>
element, described in About the maf-skins.xml File, defines this hierarchy for the MAF
runtime. For more information on how skins are applied at various levels, see What
You May Need to Know About Skinning.

Figure 8-2 MAF Skin Hierarchy Application at Runtime

8.1.2 About the maf-skins.xml File
The maf-skins.xml file located in the META-INF node of the application controller
project allows you to either define a new skin by extending an existing skin, or, add a
new style sheet to an existing skin.

By default, this file is empty, but the elements listed in Table 8-1 describe the child
elements that you can use to populate this file to extend mobileAlta or to define the
CSS files that are available to the application. You use the <skin> element to create
new skins or to extend an existing skin.

Table 8-1 Child Elements of the <skin> Element

Elements Description

<id> A required element that identifies the skin in the maf-skins.xml file. The value
you specify must adhere to one of the following formats:

• skinFamily-version
• skinFamily-version.platform
For example, specify mySkin-v1.iOS if you want to register a skin for your
application that defines the appearance of your application when deployed to an
Apple iPad or iPhone. Substitute iOS by iPad or iPhone if the skin that you
register defines the appearance of your application on one or other of the latter
devices. Specify .android if you want to register a skin that defines the
appearance of your application when deployed to the Android platform.

<family> A required element that identifies the skin family.

Introduction to MAF Application Skins

8-4 Developing Mobile Applications with Oracle Mobile Application Framework

Table 8-1 (Cont.) Child Elements of the <skin> Element

Elements Description

<extends> Use this element to extend an existing skin by specifying the skin id of the skin
you want to extend.

<skin>
 <id>mySkin-v1</id>
 <family>mySkin</family>
 <extends>mobileAlta-v1.6</extends>
 <style-sheet-name>styles/myskin.css</style-sheet-name>
 <version>
 <name>v1</name>
 </version>
</skin>

<style-sheet-name> Use a relative URL to specify the location of the CSS file within your MAF
application's project. For example, the maf-skins.xml file in the SkinningDemo
sample application contains the following reference to the v1.css style sheet in
the css directory of the application controller project:

<style-sheet-name>css/v1.css</style-sheet-name>

<version> Specify different versions of a skin. For more information, see Versioning MAF
Skins.

Table 8-2 lists elements that you can use to define the <skin-addition> element in a
MAF CSS when you integrate a style sheet into an existing skin.

Table 8-2 The <skin-addition> Child Elements

Element Description

<skin-id> Specify the ID of the skin that you need to add an additional
style sheet to. Possible values include the skins provided by
MAF (for example, mobileAlta-v1.6.iOS) or a custom skin
that you create.

<style-sheet-name> Use a relative URL to specify the location of the CSS file within
your MAF application's project. For example, the maf-
skins.xml file in the SkinningDemo sample application
contains the following reference to the v1.css style sheet in
the css directory of the application controller project:

<style-sheet-name>css/v1.css</style-sheet-name>

The following example illustrates designating the location of the CSS file in the
<style-sheet-name> element and the target skin family in <skin-id>.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-addition>
 <skin-id>mobileAlta-v1.6.iOS</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

You can use the <skin-id> and <style-sheet-name> elements to render to a
particular iOS or Android device, or alternatively, you can define these elements to

Introduction to MAF Application Skins

Skinning MAF Applications 8-5

handle the styling for all of the devices of a platform. Table 8-3 provides examples of
using these elements to target all of the devices belonging to the iOS platform, as well
as specific iOS device types (tablets, phones, and simulators).

Tip:

Consider using the DeviceDemo sample application, described in MAF
Sample Applications, to retrieve information about the device model.

Table 8-3 Platform- and Device-Specific Styling

Device Example

iPhone
<skin-addition>
 <skin-id>mobileAlta-v1.6.iPhone5,1</skin-id>
 <style-sheet-name>iPhoneStylesheet.css</style-sheet-name>
</skin-addition>

iPad
<skin-addition>
 <skin-id>mobileAlta-v1.6.iPad4,2</skin-id>
 <style-sheet-name>iPadStylesheet.css</style-sheet-name>
</skin-addition>

iPhone Simulator
<skin-addition>
 <skin-id>mobileAlta-v1.6.iPhone Simulator x86_64</skin-id>
 <style-sheet-name>iPhoneSimStylesheet.css</style-sheet-name>
</skin-addition>

All iOS Devices
<skin-addition>
 <skin-id>mobileAlta-v1.6.iOS</skin-id>
 <style-sheet-name>iOSSimStylesheet.css</style-sheet-name>
</skin-addition>

8.2 Adding a Custom Skin to an Application
To add a custom skin to your application, create a CSS file within JDeveloper, which
places the CSS in a project's source file for deployment with the application.

To add a custom skin to an application:

1. In the Applications window, right-click the ApplicationController project and
choose New > CSS File.

2. In the Create Cascading Style Sheet dialog, specify a name and directory for the
CSS file.

3. Click OK.

You can now open the CSS in the CSS editor and define styles for your application.

8.3 Specifying a Skin for an Application to Use
You configure values in the maf-config.xml file that determine what skin the
application uses.

Adding a Custom Skin to an Application

8-6 Developing Mobile Applications with Oracle Mobile Application Framework

To specify a skin for an application to use:

1. In the Applications window, double-click the maf-config.xml file. By default,
this is in the Application Resources pane under the Descriptors and ADF META-
INF node.

2. In the maf-config.xml file, specify the value of the <skin-family> element for
the skin you want to use and, optionally, the <skin-version> element.

Example 8-1 shows the configuration required to make a MAF application use the
mobileAlta-v1.6 skin.

Example 8-1 Configuration to Specify a Skin for an Application

<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>mobileAlta</skin-family>
 <skin-version>v1.6</skin-version>
</adfmf-config>

Note:

Set an EL expression as the value for the <skin-family> element if you
want to dynamically select the skin the application uses at runtime. For more
information, see Enabling End Users Change an Application's Skin at
Runtime.

8.4 Registering a Custom Skin
You register a custom skin by adding the property values to the maf-skins.xml file
that identify the custom skin to your application.

To register a custom skin:

1. In the Applications window, expand ApplicationController > Application
Sources > META-INF and double-click maf-skins.xml.

2. In the Structure window, right-click the adfmf-skins node and choose Insert
Inside adfmf-skins > skin.

3. In the Insert skin dialog, complete the fields as follows:

• family—Enter a value for the family name of your skin.

You can enter a new name or specify an existing family name. If you specify an
existing family name, you need to version skins, as described in Versioning
MAF Skins, to distinguish between skins that have the same value for family.

The value you enter is set as the value for a <family> element in the maf-
skins.xml where you register the skin that you create. At runtime, the
<skin-family> element in the application's maf-config.xml uses this
value to identify the skin that an application uses.

• id—Enter an ID for the skin that uses one of the following naming formats:
skinFamily-version or skinFamily-version.platform. For example,
mySkinFamily-v1.2.android.

• extends—Enter the name of the parent skin that you want to extend. For
example, if you want your custom skin to extend the mobileAlta-v1.6 skin,
enter mobileAlta-v1.6.

Registering a Custom Skin

Skinning MAF Applications 8-7

• style-sheet-name—Enter or select the name of the style sheet.

4. Click OK.

8.5 Versioning MAF Skins
You can specify version numbers for your skins in the maf-skins.xml file using the
<version> element. Use this optional capability if you want to distinguish between
skins that have the same value for the <family> element in the maf-skins.xml file.
This capability is useful in scenarios where you want to create a new version of an
existing skin in order to change some existing behavior. Note that when you configure
an application to use a particular skin, you do so by specifying values in the maf-
config.xml file, as described in section Specifying a Skin for an Application to Use.

You specify a version for your skin by entering a value for the <version> element in
the maf-skins.xml file.

Best Practice:

Specify version information for each skin that you register in the application's
maf-skins.xml file.

To version a MAF skin:

1. In the Applications window, double-click the maf-skins.xml file. By default,
this is in the META-INF node of the application controller project.

2. In the Structure window, right-click the skin node for the skin that you want to
version and choose Insert inside skin > version.

3. In the Insert version dialog, select true from the default list if you want your
application to use this version of the skin when no value is specified in the <skin-
version> element of the maf-config.xml file, as described in Specifying a Skin
for an Application to Use.

4. Enter a value in the name field. For example, enter v1 if this is the first version of
the skin.

5. Click OK.

8.6 What Happens When You Version Skins
The version information that you configure for skins takes precedence over platform
and device values when an application applies a skin at runtime. At runtime, a MAF
application applies a device-specific skin before it applies a platform-specific skin. If
skin version information is specified, the application first searches for a skin that
matches the specified skin version value. If the application finds a skin that matches
the skin version and device values, it applies this skin. If the application cannot find a
skin with the specified skin version in the device-specific skins, it searches for a skin
with the specified version in the platform-specific skins. If it does not find a skin that
matches the specified version in the available platform-specific skins, it searches the
base skins.

Example 8-2 shows an example maf-skins.xml that references three skins
(customFamily-v1.iphone5,3, customFamily-v2.iPhone5,3 and
customFamily-v3.iPhone5,3). Each of these skins have the same value for the

Versioning MAF Skins

8-8 Developing Mobile Applications with Oracle Mobile Application Framework

<family> element (customFamily). The values for the child elements of the
<version> elements distinguish between each of these skins.

At runtime, an application that specifies customFamily as the value for the <skin-
family> element in the application's maf-config.xml file uses customFamily-
v1.iphone5,3 because this skin is configured as the default skin in the maf-
skins.xml file. You can override this behavior by specifying a value for the <skin-
version> element in the maf-config.xml file, as described in Specifying a Skin for
an Application to Use. For example, if you specify v2 as a value for the <skin-
version> element in the maf-config.xml file, the application uses
customFamily-v2.iPhone5,3 instead of customFamily-v1.iphone5,3 that is
defined as the default in the maf-skins.xml file.

If you do not specify the skin version to pick (using the <skin-version> element in
the maf-config.xml file), then the application uses the skin that is defined as the
default using the <default>true</default> element in the maf-skins.xml file.
If you do not specify a default skin, the application uses the last skin defined in the
maf-skins.xml file. In Example 8-2, the last skin to be defined is customFamily-
v3.iPhone5,3.

Example 8-2 maf-skins.xml File with Versioned Skin Files

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skin">
 <skin id="s1">
 <family>customFamily</family>
 <id>customFamily-v1.iphone5,3</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone.css</style-sheet-name>
 <version>
 <default>true</default>
 <name>v1</name>
 </version>
 </skin>
 <skin id="s2">
 <family>customFamily</family>
 <id>customFamily-v2.iPhone5,3</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone-v2.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 <skin id="s3">
 <family>customFamily</family>
 <id>customFamily-v3.iPhone5,3</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone-v3.css</style-sheet-name>
 <version>
 <name>v3</name>
 </version>
 </skin>
</adfmf-skins>

8.7 Overriding the Default Skin Styles
For a MAF AMX application, you can designate a specific style for the application
feature implemented as MAF AMX, thereby overriding the default skin styles set at
the application-level within the maf-config.xml and maf-skins.xml files. You
add individual styles to the application feature using a CSS file as the Includes file.

Overriding the Default Skin Styles

Skinning MAF Applications 8-9

The Includes table in the overview editor for the maf-feature.xml file enables you
to add a CSS to a MAF AMX application feature.

Figure 8-3 The Includes Table

Before you begin:

Create a MAF task flow as described in Creating Task Flows. Create or add a CSS file
for the skin. You can create the CSS file by selecting the view controller project and
then choosing New > CSS File. Alternatively, you can package the CSS file in a JAR
file as follows:

1. From the main menu, choose Application > Project Properties.

2. In the Project Properties dialog, select the Libraries and Classpath page and click
Add JAR/Directory.

3. In the Add Archive or Directory dialog, navigate to the JAR file that contains the
skin you want to import and click Select.

The JAR file appears in the Classpath Entries list.

4. Click OK.

How to add a style sheet to an application feature:

1. Click Add to create a new row in the Includes table.

2. In the Insert Include dialog, complete the following fields:

• File: Browse to select the CSS style sheet to add.

Overriding the Default Skin Styles

8-10 Developing Mobile Applications with Oracle Mobile Application Framework

• Type: Select StyleSheet from the drop-down list.

3. Click OK.

Note:

The .CSS file for the style sheet that you select must reside within the view
controller project.

8.8 What You May Need to Know About Skinning
The CSS files defined in the maf-skins.xml file, illustrated in Example 8-3, show
how to extend a skin to accommodate the different display requirements of the Apple
iPhone and iPad. These styles are applied in a descending fashion. The SkinningDemo
sample application provides a demonstration of how customized styles can be applied
when the application is deployed to different devices. This sample application is in the
PublicSamples.zip file at the following location within the JDeveloper installation
directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

For example, at the iOS level, the stylesheet (mobileAlta in Example 8-3) is applied
to both an iPhone or an iPad. For device-specific styling, define the <skin-id>
elements for the iPhone and iPad skins. The skinning demo application illustrates the
use of custom skins defined through this element.

Example 8-3 Skinning Levels Defined in the maf-skins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skins">
 <skin>
 <id>mobileAlta-v1.6.iPhone5,3</id>
 <family>mobileAlta</family>
 <extends>mobileAlta-v1.6.iOS</extends>
 <style-sheet-name>skins/mobileAlta-v1.6.iphone.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobileAlta-v1.6.iPad iPad4,1</id>
 <family>mobileAlta</family>
 <extends>mobileAlta-v1.6.iOS</extends>
 <style-sheet-name>skins/mobileAlta-v1.6.ipad.css</style-sheet-name>
 </skin>
 <!-- Skin Additions -->
 <skin-addition>
 <skin-id>mobileAlta-v1.6.iPhone5,3</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileAlta-v1.6.iPhone5,3</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition2.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileAlta-v1.6.iOS</skin-id>
 <style-sheet-name>skins/mystyles.ios.addition2.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

What You May Need to Know About Skinning

Skinning MAF Applications 8-11

8.9 Adding a New Style Sheet to a Skin
You can add a CSS file to an existing skin instead of extending a skin.

To add a new style sheet to a skin

1. Drag and drop a <skin-addition> element from the Components window to
the Structure window.

2. Populate the <skin-addition> element with the elements described in Table 8-2
by completing the Insert skin-addition dialog, shown in Figure 8-4.

• Enter the identifier of the skin to which you want to add a new style.

• Retrieve the location of the CSS file.

Figure 8-4 The Insert skin-addition Dialog

3. Click OK.

Caution:

Creating custom styles that use DOM-altering structures can cause MAF
applications to hang. Specifically, the display property causes rendering
problems in the HTML that is converted from MAF AMX. This property,
which uses such values as table, table-row, and table-cell to convert
components into a table, may result in table-related structures that are not
contained within the appropriate parent table objects. Although this problem
may not be visible within the application user interface itself, the logging
console reports it through a Signal 10 exception.

8.10 Enabling End Users Change an Application's Skin at Runtime
You can configure your application to enable end users select an alternative skin at
runtime. You might configure this functionality when you want end users to render
the application using a skin that is more suitable for their needs.

Figure 8-5 shows how you might implement this functionality by displaying buttons
to allow end users to change the skin the application uses at runtime. Configure the
buttons on the page to set a scope value that can later be evaluated by the skin-
family property in the application's maf-config.xml file.

Adding a New Style Sheet to a Skin

8-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 8-5 Changing an Application's Skin at Runtime (on iOS)

You enable end users change an application's skin by exposing a component that
allows them to update the value of the skin-family property in the application's
maf-config.xml file.

To enable end users change an application's skin at runtime:

1. Open the page where you want to configure the component(s) that you use to set
the skin family property in the maf-config.xml file.

2. Configure a number of components (for example, button components) that allow
end users to choose one of a number of available skins at runtime, as shown in
Figure 8-5.

The following example shows how you configure amx:commandButton
components that allow end users to choose available skins at runtime, as shown in
Figure 8-5. Each amx:commandButton component specifies a value for the
actionListener attribute. This attribute passes an actionEvent to a method
(skinMenuAction) on a managed bean named skins if an end user clicks the
button.

...
<amx:commandButton text="Switch to Alta"
 actionListener="#{applicationScope.SkinBean.switchToMobileAlta}" id="cb1"/>
<amx:commandButton text="Switch to Fusion Fx"
 actionListener="#{applicationScope.SkinBean.switchToMobileFusionFx}"
id="cb2"/>
...

3. Write a managed bean in the application's view controller project to store the value
of the skin selected by the end user. Example 8-4 shows a method that takes the
value the end user selected and uses it to set the value of skinFamily in the
managed bean. Example 8-4 also shows a method that resets all features in the
application to use the new skin. Example 8-4also makes use of the
PropertyChangeSupport and PropertyChangeListener objects described in
Working with Data Change Events.

4. In the Applications window, expand the Application Resources panel, expand
Descriptors > ADF Meta-INF node and double-click the maf.config.xml file.

Enabling End Users Change an Application's Skin at Runtime

Skinning MAF Applications 8-13

5. In the maf-config.xml file, write an EL expression to dynamically evaluate the
skin family:

<skin-family>#{applicationScope.SkinBean.skinFamily}</skin-
family>

Example 8-4 Managed Bean to Change an Application's Skin

package application;

import javax.el.ValueExpression;
import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.FeatureInformation;
import oracle.adfmf.framework.api.AdfmfContainerUtilities;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

public class SkinBean {

 private String skinFamily = "mobileAlta";
 private PropertyChangeSupport propertyChangeSupport = new
PropertyChangeSupport(this);

 public void setSkinFamily(String skinFamily) {
 String oldSkinFamily = this.skinFamily;
 this.skinFamily = skinFamily;
 propertyChangeSupport.firePropertyChange("skinFamily", oldSkinFamily,
skinFamily);
 }

 public String getSkinFamily() {
 return skinFamily;
 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void switchToMobileAlta(ActionEvent ev){
 this.switchSkinFamily("mobileAlta");
 }

 public void switchToMobileFusionFx(ActionEvent ev) {
 this.switchSkinFamily("mobileFusionFx");
 }

 public void switchSkinFamily(String family) {
 this.setSkinFamily(family);
 // reset all the features individually as follows to load the new skin
 FeatureInformation[] features = AdfmfContainerUtilities.getFeatures();
 for (int i = 0; i < features.length; i++) {
 AdfmfContainerUtilities.resetFeature(features[i].getId());
 }
 }
}

Enabling End Users Change an Application's Skin at Runtime

8-14 Developing Mobile Applications with Oracle Mobile Application Framework

8.11 What Happens at Runtime: How End Users Change an Application's
Skin

At runtime, the end user uses the component that you exposed to select another skin.
This component submits the value that the end user selected to a managed bean that,
in turn, sets the value of a managed bean property (skinFamily). At runtime, the
<skin-family> property in the maf-config.xml file reads the value from the
managed bean using an EL expression. The managed bean in Example 8-4 also reloads
the features in the application to use the newly-specified skin.

Tip:

Similar to the <skin-family> property, you can use an EL expression to set
the value of the <skin-version> property in the maf-config.xml file at
runtime.

What Happens at Runtime: How End Users Change an Application's Skin

Skinning MAF Applications 8-15

What Happens at Runtime: How End Users Change an Application's Skin

8-16 Developing Mobile Applications with Oracle Mobile Application Framework

9
Reusing MAF Application Content

This chapter introduces Feature Archive (FAR) files and describes how you can
package application feature content into these files for reuse in one or more MAF
applications.

This chapter includes the following sections:

• Introduction to Feature Archive Files

• Using FAR Content in a MAF Application

• What Happens When You Add a FAR as a Library

• What Happens When You Add a FAR as a View Controller Project

• What You May Need to Know About Enabling the Reuse of Feature Archive
Resources

9.1 Introduction to Feature Archive Files
Application features, when packaged into a JAR file known as a Feature Archive file
(FAR), provide reusable content that can be consumed by other MAF applications. A
MAF application can consume one or more FAR files. A FAR file contains everything
that an application feature requires, such as icon images, resource bundles, HTML
files, JavaScript files, and other implementation-specific files.

A FAR also contains one maf-feature.xml file, which identifies each of the
packaged application features by a unique ID. You can edit this file to update
application feature properties, such as content implementation (MAF AMX, Local
HTML, Remote URL), display properties based on such factors as user roles and
privileges, or device properties.

You can add a FAR as either an application library or as a view controller project. You
cannot customize the FAR's contents when you add it as project library, nor can you
reuse its individual artifacts. A MAF application consumes the FAR in its entirety
when it is added as a library file. For example, a FAR's task flow cannot be the target
of a task flow call activity. Adding a FAR as a view controller project, however,
enables you to customize its artifacts, as described in Customizing MAF Application
Artifacts with MDS .

9.2 Using FAR Content in a MAF Application
An application feature is made available to a MAF application by adding it to the
consuming application's class path.

Reusing MAF Application Content 9-1

Note:

You can only add the FAR to the application controller project; you cannot
add a FAR to the view controller project.

Before you begin:

Deploy the application feature as a Feature Archive file, as described in How to
Deploy the Feature Archive Deployment Profile.

How to add application feature content to a MAF application as a library:

1. Open the Resources window, and click New, then IDE Connections, and then
File System.

2. Complete the File Systems Connection dialog to create a file connection to the
directory that contains the Feature Archive JAR file. For more information, refer to
the Oracle JDeveloper Online help.

3. Right-click the Feature Archive file (which is noted as a JAR file) in the Resources
window.

4. Click Add to Application As, and then Library to add the consuming
application's classpath, as shown in Figure 9-1.

Figure 9-1 Adding a FAR to a MAF Application as a Library

Tip:

Click Remove Library from Application to remove the feature archive JAR
from the consuming application's classpath.

How to add a FAR as a view controller project:

Using FAR Content in a MAF Application

9-2 Developing Mobile Applications with Oracle Mobile Application Framework

1. Open the Resources window and click New, then IDE Connections, and then File
System.

2. Complete the File Systems Connection dialog to create a file connection to the
directory that contains the Feature Archive JAR file. For more information, refer to
the Oracle JDeveloper Online help.

3. Right-click the Feature Archive file (which is noted as a JAR file) in the Resources
window.

4. Click Add to Application As, and then ViewController Project as shown in Figure
9-2.

Figure 9-2 Adding a FAR to a MAF Application as a View Controller Project

9.3 What Happens When You Add a FAR as a Library
After you add a FAR as a library (or manually to the application's classpath):

• The contents of the FAR display in the Application Resources under the Libraries
node, as shown in Figure 9-3.

What Happens When You Add a FAR as a Library

Reusing MAF Application Content 9-3

Figure 9-3 The FAR JAR File in the Application Resources of the Consuming Application

• Every application feature declared in the maf-feature.xml files included in the
JARs becomes available to the consuming application, as illustrated by Figure 9-4
where the dropdown list IDs of the available application features in the JAR in
addition to the one that has already been defined in the application.

Figure 9-4 Referencing the Application Features Defined in Various maf-feature.xml Files

Tip:

Manually adding the Feature Archive JAR to the application classpath also
results in the application features displaying in the Insert Feature Reference
dialog.

Alternatively, you can add or remove an application feature from the Resources
window as follows:

What Happens When You Add a FAR as a Library

9-4 Developing Mobile Applications with Oracle Mobile Application Framework

1. Expand the feature archive JAR in the Resources window.

2. From the MAF Features folder, right-click an application feature.

3. Choose Add Feature Reference to maf-application.xml, as shown in Figure
9-5, or Remove Feature Reference from maf-application.xml, shown in Figure
9-6. Figure 9-5 illustrates adding an application feature called People from
MAF_DevGuideExample.jar.

Figure 9-5 Adding a Feature Reference

Figure 9-6 illustrates removing an application feature reference from the maf-
application.xml file.

What Happens When You Add a FAR as a Library

Reusing MAF Application Content 9-5

Figure 9-6 Removing a Feature Reference

• The information in the connections.xml file located in the Feature Archive JAR
is merged into the consuming application's connections.xml file. The Log
window, shown in Figure 9-7, displays naming conflicts.

Note:

You must verify whether the connections are valid in the consuming
application.

Figure 9-7 The Messages Log Window Showing Name Conflicts for Connections

9.4 What Happens When You Add a FAR as a View Controller Project
When you add a FAR as a view controller project:

• MAF generates a view controller project that bears the same name as the imported
FAR. Figure 9-8 illustrates how MAF creates a view controller project (a .jpr file)
for an imported FAR file called StockTracker (which is illustrated as

What Happens When You Add a FAR as a View Controller Project

9-6 Developing Mobile Applications with Oracle Mobile Application Framework

StockTrackerFAR.jar in Figure 9-2). This view controller project contains the
default structure and metadata files of a MAF view controller project, as described
in About the View Controller Project Resources. In particular, the FAR view
controller project includes the maf-feature.xml file. If the MAF application
contains other view controller projects, you must ensure that none of these projects
include application features with the same ID. See also What You May Need to
Know About Enabling the Reuse of Feature Archive Resources.

Figure 9-8 The Imported FAR as a View Controller Project within a MAF
Application

• As with a FAR imported as a library, the information in the connections.xml
file located in the Feature Archive JAR is merged into the consuming application's
connections.xml file. MAF will create a connections.xml file if one does not
already exist in the target application.

• MAF makes any .class and JAR files included in the FAR available as a library to
the view controller project by copying them into its lib directory (such as C:

What Happens When You Add a FAR as a View Controller Project

Reusing MAF Application Content 9-7

\jdeveloper\mywork\application\FAR view controller project
\lib). MAF compiles these files into a file called classesFromFar.jar.

• Unlike a FAR imported as a library, you can customize the files of a view controller
project.

Note:

Because the original resource bundles included in FAR might not be usable in
the generated view controller project, you must create new resources bundles
within the project as described in Enabling Customizations in Resource
Bundles.

• Like a FAR imported as a library, every application feature declared in the FAR's
maf-feature.xml file becomes available to the consuming application.

9.5 What You May Need to Know About Enabling the Reuse of Feature
Archive Resources

To ensure that the resources of a FAR can be used by an application, both the name of
the FAR and its feature reference IDs must be globally unique. Ensure that there are no
duplicate feature reference IDs in the maf-application.xml file. Within the FAR
itself, the DataControl.dcx file must be in a unique package directory. Instead of
accepting the default names for these package directories, create a unique package
hierarchy for the project. Use a similar package naming system for the feature
reference IDs too.

What You May Need to Know About Enabling the Reuse of Feature Archive Resources

9-8 Developing Mobile Applications with Oracle Mobile Application Framework

10
Using Plugins in MAF Applications

This chapter describes how to enable the core plugins that MAF provides for use in
MAF applications, how to register additional plugins, how to import a plugin from a
FAR, and how to package plugins in your MAF application for deployment.

This chapter includes the following sections:

• Introduction to Using Plugins in MAF Applications

• Enabling a Core Plugin in Your MAF Application

• Registering Additional Plugins in Your MAF Application

• Deploying Plugins with Your MAF Application

• Importing Plugins from a Feature Archive File

• Using a Plugin in a MAF Application

10.1 Introduction to Using Plugins in MAF Applications
MAF packages a number of Cordova plugins. A MAF application uses these plugins
to interact with the device on which it is deployed. Core plugins are the plugins that
MAF provides by default. View these plugins in the overview editor of maf-
application.xml. Examples include the Email and Contacts plugins that MAF
applications use to access email and contact functionality from a device.

View the Cordova versions used by the Android, iOS, and Windows platforms in the
overview editor of the maf-application.xml file.

Select a plugin in the Core Plugins list, as shown in Figure 10-1 to view a description
of the plugin. By default, a newly-created MAF application enables only one core
plugin, the Network Information plugin. Enable or disable these core plugins, as
described in Enabling a Core Plugin in Your MAF Application.

Note:

All applications on iOS devices have network access by default. You cannot
change this behavior. If an application that is deployed to an Android device
does not require network access, disable the Network Information plugin. The
Network Information plugin must be enabled to facilitate remote debugging
of an application running on an Android emulator or device.

You can register additional plugins if the core plugins that MAF provides by default
do not meet the requirements of your MAF application. For more information, see
“Introduction to custom Cordova plugin development” at http://blogs.oracle.com/
mobile/entry/introduction_to_custom_cordova_plugin and Registering Additional

Using Plugins in MAF Applications 10-1

http://blogs.oracle.com/mobile/entry/introduction_to_custom_cordova_plugin
http://blogs.oracle.com/mobile/entry/introduction_to_custom_cordova_plugin

Plugins in Your MAF Application. Once you have either enabled the core plugin or
registered any additional plugins for your MAF application, you create content in an
application feature that accesses the functionality of the plugin. For more information,
see Using a Plugin in a MAF Application.

The deployment of a MAF application may fail, after the registration of additional
plugins, for the following reasons:

• Filename conflicts between plugins that your MAF application uses.

• The additional plugins that were registered require dependent plugins for proper
functioning.

For more information, see Deploying Plugins with Your MAF Application.

To migrate a MAF application created with an earlier release of MAF, see the
“Migrating Cordova Plugins from Earlier Releases to MAF 2.3.0” section in Installing
Oracle Mobile Application Framework.

Note:

Editing the maf-application.xml file to manage plugins in an application
results in revisions to the maf-plugins.xml file. The ADF-META-INF node
of the Application Resources pane from which both files are accessed, is
shown in Figure 10-1.

Figure 10-1 Plugins in the Overview Editor of maf-application.xml

Introduction to Using Plugins in MAF Applications

10-2 Developing Mobile Applications with Oracle Mobile Application Framework

10.2 Enabling a Core Plugin in Your MAF Application
By default, newly-created MAF applications enables only one core plugin (Network
Information plugin). Enable or disable additional core plugins so that your MAF
application can access the associated device functionality.

10.2.1 How to Enable a Core Plugin in Your MAF Application
You enable a core plugin using the overview editor for your MAF application's maf-
application.xml file.

To enable a core plugin in your MAF application:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-application.xml file and in the overview editor that appears,
click the Plugins navigation tab

4. Expand the Core Plugins section and select the plugin that allows your application
access features.

For example, if you want your MAF application to be able to send an SMS message,
select the checkbox for the SMS plugin.

10.2.2 What Happens When You Enable a Core Plugin in Your MAF Application
Once you enable a plugin in the overview editor, JDeveloper edits the application's
maf-plugins.xml file with entries that identify the enabled plugins in your MAF
application. Example 10-1 shows the entries for a MAF application where the Email
and Network Information plugins have been enabled. Enabling these plugins is a
prerequisite to your MAF application using the device's email client and accessing the
internet.

Example 10-1 Enabled Core Plugins in maf-plugins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
xmlns.oracle.com/adf/mf">
 <cordova-plugins>
 <core-cordova-plugin id="c1" pluginId="cordova-plugin-network-information"/>
 <core-cordova-plugin id="c2" pluginId="com.oracle.maf.email"/>
 </cordova-plugins>
</maf-plugins>

10.3 Registering Additional Plugins in Your MAF Application
Register additional plugins in your MAF application when you require functionality
in your MAF application not provided by the core plugins that MAF delivers.

10.3.1 How to Register an Additional Plugin
To register an additional plugin for a MAF application, use the overview editor of the
maf-application.xml file of the application .

Enabling a Core Plugin in Your MAF Application

Using Plugins in MAF Applications 10-3

Before you begin, ensure that the application, and the plugin to be registered with the
application, are stored on the same drive. If, for example, you store your application
on the C: drive in a Windows environment, you must also store the plugin that you
want to register with the application on the C: drive. This ensures that JDeveloper,
using a relative path, successfully registers the plugin with your application.

To register an additional plugin for a MAF application:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-application.xml file and in the overview editor that appears,
click the Plugins navigation tab.

4. Expand the Additional Plugins section, and click the Add icon to display the
dialog.

5. Browse to and select the directory that stores the plugin to be registered with your
application.

10.3.2 What Happens When You Register an Additional Plugin for Your MAF Application
Once you select the source files for the plugin you want your MAF application to use,
JDeveloper edits the application's maf-plugins.xml file with entries that identify
the enabled plugins in your MAF application. Example 10-2 shows the entries in a
maf-plugins.xml file where the Globalization plugin shown in Figure 10-2 has been
registered with the MAF application.

Figure 10-2 Additional Plugins in the Overview Editor of maf-application.xml

Example 10-2 Additional Plugin in maf-plugins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
xmlns.oracle.com/adf/mf">
 <cordova-plugins>

Registering Additional Plugins in Your MAF Application

10-4 Developing Mobile Applications with Oracle Mobile Application Framework

 <core-cordova-plugin id="c1" pluginId="cordova-plugin-network-information"/>
 <cordova-plugin id="c2" pluginId="cordova-plugin-globalization"
 path="../../../../CordovaPlugins/cordova-plugin-globalization/">
 <platform id="p1" name="android" enabled="true"/>
 <platform id="p2" name="ios" enabled="true"/>
 <platform id="p3" name="windows" enabled="true"/>
 </cordova-plugin>
 </cordova-plugins>
</maf-plugins>

10.4 Deploying Plugins with Your MAF Application
The deployment of a plugin with your MAF application depends on the chosen
method of deployment.

Deployment to a FAR

A deployment to a FAR includes a copy of the maf-plugins.xml file of the
application named jar-maf-plugins.xml. It is identical to the maf-plugins.xml
file of the application with the exception that the path attribute value of each plugin is
an empty string. A FAR deployment does not include the source files for the plugin.

Deployment to a Mobile Application Archive File

A deployment to a Mobile Application Archive File includes a copy of the maf-
plugins.xml file of the application with all path attributes set to an empty string.

Deployment Using an Android, iOS, or Windows Deployment Profile

During deployments using an Android, iOS or Windows deployment profile,
JDeveloper invokes tools that build and deploy the application. These tools, in turn,
invoke the Cordova plugman tool to install the configured plugins from their source
location to the deployment folder.

Resolving Naming Conflicts Between Plugins

Deployment can fail due to naming conflicts if more than one plugin used by your
MAF application contains resource files with the same name. For example,
deployment fails if a MAF application uses two plugins that both have a resource file
name arrays.xml.

To resolve these naming conflicts, rename the resource file in the plugin that conflicts
with the resource file name in the other plugin. Update the reference to the resource
file in the plugin.xml file of the first plugin. In our example, this requires you to
rename the array.xml resource file name of the first plugin to
pluginone_arrays.xml and edit the plugin.xml file of the plugin as follows:

<source-file src="src/android/LibraryProject/res/values/pluginone_arrays.xml"
 target-dir="res/values"/>

Adding Missing Dependent Plugins

Deployment can fail if an additional plugin that your MAF application uses does not
locate the plugins that it requires (dependent plugins). This scenario can arise if you
work behind a firewall. At deployment time, JDeveloper invokes the tools of Apache
Cordova to manage plugins dependencies. These tools may fail to download
dependent plugins if their proxy settings are not configured to allow the download of
dependent plugins. To work around this scenario, download the missing dependent
plugin, and add it to your MAF application. You add the missing dependent plugin
the same way as other plugins that you want to add to your MAF application. For
more information, see Registering Additional Plugins in Your MAF Application. After

Deploying Plugins with Your MAF Application

Using Plugins in MAF Applications 10-5

you add the dependent plugin, make sure that it appears before the plugin that
requires it in the maf-plugins.xml file, as demonstrated in Example 10-3.

Example 10-3 Adding Dependent Plugins to the MAF Application

<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/adf/mf">
 <cordova-plugins>

 <cordova-plugin id="c2" pluginId="com.example.dependent.dependentPlugin"
 path="../../../../../plugins/Dependent-Plugin-Required-By-PluginWithID_c3/">
 ...
 <cordova-plugin id="c3" pluginId="com.example.plugin"
 path="../../../../../plugins/AdditionalPlugin/">
 ...
 </cordova-plugins>
</maf-plugins>

10.5 Importing Plugins from a Feature Archive File
When you import a FAR that contains a jar-maf-plugins.xml file to your
application, the content in the jar-maf-plugins.xml file merges with the maf-
plugins.xml file of the consuming application. JDeveloper logs information about
the merge to its Messages window.

If the plugin to import from the FAR already exists in the maf-plugins.xml file of
the consumer application, JDeveloper logs a message that the plugin exists in the
application, and will not be merged.

If the plugin to import from the FAR does not exist in the maf-plugins.xml file of
the consumer application, JDeveloper adds the plugin to the maf-plugins.xml file
of the application. In this scenario, you need to set the path to the newly-imported
plugin, as described in Registering Additional Plugins in Your MAF Application.

10.6 Using a Plugin in a MAF Application
Once you register a plugin or enable a core plugin in your MAF application, you can
create content in the MAF application that uses the plugin.

See "Integrating a custom Cordova plugin into a MAF app" at http://
blogs.oracle.com/mobile/entry/integrating_a_custom_cordova_plugin for
information about how you can invoke a plugin from Java, from a MAF AMX page,
and from local HTML.

The BarcodeDemo sample application also demonstrates how you can accomplish
this task.

Importing Plugins from a Feature Archive File

10-6 Developing Mobile Applications with Oracle Mobile Application Framework

http://blogs.oracle.com/mobile/entry/integrating_a_custom_cordova_plugin
http://blogs.oracle.com/mobile/entry/integrating_a_custom_cordova_plugin

Figure 10-3 Platform-Specific Content and Constraint To Access a Plugin

Figure 10-4 shows a button (Scan) in the MAF AMX page that the BarcodeDemo
sample application renders on the end user’s device at runtime. This button invokes a
managed bean method and the managed bean method invokes a JavaScript function
that calls the BarcodeScanner plugin.

Using a Plugin in a MAF Application

Using Plugins in MAF Applications 10-7

Figure 10-4 Command Button Invoking Managed Bean Method to Access Plugin

Example 10-4 shows a number of code extracts from the BarcodeDemo sample
application.

Other sample applications, apart from the BarcodeDemo sample application, that
demonstrate how to use additional plugins in MAF applications are BeaconDemo,
FakeBeacon, and DatePicker. For information about how to access and use these
sample applications, see MAF Sample Applications.

Example 10-4 Using the Barcode Scanner Plugin

<!-- The following code snippet from the scanner.amx file shows how the Scan button invokes the
scanBarcode method in the managed bean -->
<amx:commandButton text="Scan" id="cl2" actionListener="#{viewScope.BarcodeBean.scanBarcode}"/>

<!-- The following code snippet from the BarcodeBean.java file shows how the scanBarcode managed
bean method invokes a JavaScript function -->
 public void scanBarcode (ActionEvent event)
 {
 // Invokes a JavaScript function named “scanBarcodeFromJavaBean”
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(AdfmfJavaUtilities.getFeatureId(),
 "scanBarcodeFromJavaBean",
 new Object[] { });
 }

<!-- The following code snippet from the scanner.js file shows how the JavaScript function accesses

Using a Plugin in a MAF Application

10-8 Developing Mobile Applications with Oracle Mobile Application Framework

the barcode scanner and sets the resulting value in a managed bean field.-->
function scanBarcodeFromJavaBean(options)
 {
 cordova.plugins.barcodeScanner.scan(
 function(result)
 function onSuccess(result) {
 adf.mf.api.setValue({ "name": "#{viewScope.BarcodeBean.barcodeError}",
 "value": ""},
 function() {},
 function() {});

 adf.mf.api.setValue({ "name": "#{viewScope.BarcodeBean.barcodeResult}",
 "value": result.text},
 function() {},
 function() {});

 adf.mf.api.setValue({ "name": "#{viewScope.BarcodeBean.barcodeFormat}",
 "value": result.format},
 function() {},
 function() {});

 adf.mf.api.setValue({ "name": "#{viewScope.BarcodeBean.barcodeCancelled}",
 "value": result.cancelled == 1 ? "Yes" : "No"},
 function() {},
 function() {});
 }

 function onError(error) {
 adf.mf.api.setValue({ "name": "#{viewScope.BarcodeBean.barcodeError}",
 "value": "ERROR: " + error.text},
 function() {},
 function() {});
 }

 // Callable externally
 scanBarcodeFromJavaBean = function() {
 cordova.plugins.barcodeScanner.scan(onSuccess, onError);
 }

Using a Plugin in a MAF Application

Using Plugins in MAF Applications 10-9

Using a Plugin in a MAF Application

10-10 Developing Mobile Applications with Oracle Mobile Application Framework

11
Customizing MAF Application Artifacts with

MDS

This chapter describes how to use Oracle Metadata Services (MDS) to customize MAF
application-level artifacts.

This chapter includes the following sections:

• Introduction to Applying MDS Customizations to MAF Files

• Configuring Customization Layers

• Creating Customization Classes

• Consuming Customization Classes

• Understanding a Customization Developer Role

• Enabling Customizations in Resource Bundles

• Upgrading a MAF Application with Customizations

11.1 Introduction to Applying MDS Customizations to MAF Files
Use Oracle Metadata Services (MDS) to re-brand, customize, and personalize a MAF
application at design time. With MDS, an application adapts to different industries,
locations, or user groups. For example, MDS can tailor the application look and feel to
a user group or user responsibility.

A customized application contains a base application along with one or more layers of
customization. Each layer can have multiple layer values. These layer values can be
applied in a specified order, in terms of precedence, on top of the base metadata.

MAF supports the MDS seeded customization pattern. By defining layers of
customization that are applied at design time, a general application is adapted to a
particular group, such as a specific industry or a site. These seeded customizations
exist as part of the deployed application, and persist for the life of a given deployment.

Use MDS to customize the following artifacts of a MAF application:

• The maf-feature.xml file

• The maf-skins.xml file

• The maf-application.xml file

• The maf-config.xml file

• MAF AMX files and metadata files (see Customizing MAF AMX Application
Feature Artifacts).

Customizing MAF Application Artifacts with MDS 11-1

11.2 Customizing MAF Applications with MDS
To customize a MAF application using MDS, perform the following:

1. Define one or more global or application-specific customization layers. For more
information, see Configuring Customization Layers.

2. Create a customization class that MDS uses to determine which customization to
apply to the base application. Each customization class defines a base
customization layer. For more information, see Creating Customization Classes.

3. Enable JDeveloper design time to access the customization by packaging the
customization class (a .java file) as a JAR file. Then add the JAR file to one of the
projects of the MAF application. For more information, see Consuming
Customization Classes .

4. Add the customization class to the cust-config section of the adf-
config.xml file to register the customization classes in the order of precedence.

5. Launch JDeveloper in the Customization Developer role (or switch to that role).
For more information, see Understanding a Customization Developer Role.

6. Modify the files as required. The changes are recorded by MDS in the mdssys
directory of the ViewController project.

7. Select the customization layer from the Customization Context window, as shown
in Figure 11-1.

Customizing MAF Applications with MDS

11-2 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 11-1 Selecting the Customization Layer (Tip Layer)

Note:

When working in the Customization Developer role, the layer and layer value
that you select in the Customization Context window is called the tip layer.
The changes made while in the Customization Developer role are applied only
to this layer.

8. Deploy the application to a device, emulator, or as a platform-specific application
package. The Customization Developer role must be used to deploy a customized
application, as follows:

a. Launch the application in the Customization Developer role.

b. In the Customization Context window, shown in Figure 11-1, select the layer
and value for which you want to implement customizations.

c. Click Application , and then click Deploy to select the deployment option
and the deployment profile. For more information, see Deploying MAF
Applications .

d. Deploy each customization context separately.

During deployment, the base file and the delta files are merged to create the
customized version of the application at runtime. The deployed application has no
MDS dependencies.

Tip:

To perform additional customization and upgrades, deploy the customized
application as a MAF Application Archive (.maa) file, and then import it into
an application. The delta files included in the .maa file are merged with the
base files after deployment. For more information, see Upgrading a MAF
Application with Customizations.

When the customization process is complete, JDeveloper creates both a metadata
file for the customizations and a subpackage to store them. The metadata file
contains the customizations for the customized object, which are applied over the
base metadata at runtime. JDeveloper gives the new metadata file the same name

Customizing MAF Applications with MDS

Customizing MAF Application Artifacts with MDS 11-3

as the base file for the object, but includes an additional .xml extension, as
illustrated by maf-feature.xml.xml in Figure 11-2.

Figure 11-2 maf-feature.xml Metadata File

11.3 Configuring Customization Layers
To customize an application, specify the customization layers and their values in the
CustomizationLayerValues.xml file so that they are recognized by JDeveloper.

When you open a customizable application in the Customization Developer role,
JDeveloper reads the adf-config.xml file to determine the customization classes to
use and their order of precedence. JDeveloper also reads the
CustomizationLayerValues.xml file to determine the layer values to make
available in the Customization Context window. If there are layer values defined in
the CustomizationLayerValues.xml file that are not defined in the customization
classes listed in the adf-config.xml file, they are not displayed in the
Customization Context window.

Therefore, you can have a comprehensive list of layer values for all of your
customization projects in the CustomizationLayerValues.xml file, and only
those appropriate for the current application are available in the Customization
Context window. Conversely, you could have a comprehensive list of customization
classes for a MAF application in the adf-config.xml file, and only the subset of
layer values on which you would work in your CustomizationLayerValues.xml
file.

Note:

At design time, JDeveloper retrieves customization layer values from the
CustomizationLayerValues.xml file. However, at runtime the layer
values are retrieved from the customization class.

The names of the layers and layer values that you enter in the
CustomizationLayerValues.xml file must be consistent with those specified in
your customization classes. The following example shows the contents of a sample
CustomizationLayerValues.xml file.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry" id-prefix="i">
 <cust-layer-value value="financial"
 display-name="Financial"
 id-prefix="f"/>
 <cust-layer-value value="healthcare"
 display-name="Healthcare"
 id-prefix="h"/>
 </cust-layer>
 <cust-layer name="site" id-prefix="s">

Configuring Customization Layers

11-4 Developing Mobile Applications with Oracle Mobile Application Framework

 <cust-layer-value value="headquarters"
 display-name="HQ"
 id-prefix="hq"/>
 <cust-layer-value value="remoteoffices"
 display-name="Remote"
 id-prefix="rm"/>
 </cust-layer>
</cust-layers>

For each layer and layer value, you can add an id-prefix token. This helps to ensure
the uniqueness of the id, so that customizations are applied accurately. When you add
a new element during customization, JDeveloper adds the id-prefix of the layer
and layer value (determined by the selected tip layer) to the auto-generated identifier
for the element to create an id for the newly added element in the customization
metadata file. In the preceding example, the site layer has an id-prefix of s and the
headquarters layer value has an id-prefix of hq . Therefore, when you select site/
headquarters as the tip layer and add an element, that element's id will be set
to shqel in the metadata customization file.

For each layer value, you can also add a display-name token to provide a human-
readable name for the layer value. When you are working in the Customization
Developer role, the value of the display-name token is shown in the Customization
Context window for that layer value.

For each layer, you can optionally provide a value-set-size token that defines the
size of the value set for the customization layer. This can be useful, for example, when
using a design-time, application-specific CustomizationLayerValues.xml file. By
setting value-set-size to no_values you can exclude runtime-only layers at
design time.

<cust-layer name="runtime_only_layer" value-set-size="no_values"/>

You can either define the customization layer values globally for JDeveloper, or in an
application-specific file. If you use an application-specific file, it takes precedence over
the global file. For more information on configuring layer values globally for
JDeveloper, see How to Configure the Layer Values Globally. For more information on
configuring application-specific layer values, see Using the Studio Developer Role.

11.3.1 How to Configure the Layer Values Globally
Before you begin:

• Create your customization classes, as described in Creating Customization Classes

• Make your classes available to JDeveloper, as described in Consuming
Customization Classes

To configure design time customization layer values globally for JDeveloper:

1. Open the CustomizationLayerValues.xml file located in the jdev
subdirectory of your JDeveloper installation directory (jdev_install\jdev
\CustomizationLayerValues.xml).

2. For each layer, enter a cust-layer element, as shown in the following example:

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="company" id-prefix="c">
 <!-- Generated id-prefix would be "c1" and "c2" for values
 "company1" and "company2".-->
 <cust-layer-value value="company1" display-name="Acme Inc"

Configuring Customization Layers

Customizing MAF Application Artifacts with MDS 11-5

 id-prefix="1"/>
 <cust-layer-value value="company2" display-name="My Corp" id-prefix="2"/>
 <!-- Generated id-prefix would be "s" for value "site"
 since no prefix was specified on the value -->
 </cust-layer>
 </cust-layers>

3. For each layer value, enter a cust-layer-value element, as shown in the
preceding example.

4. Save and close the CustomizationLayerValues.xmlfile.

5. After you have made changes to the global CustomizationLayerValues.xml
file, restart JDeveloper.

Note: For procedures to configure the CustomizationLayerValues.xml file for
a specific application, see the sections Using the Studio Developer Role and
Using the Customization Developer Role.

11.3.2 How to Configure the Application-Level Layer Values
When configuring layer values for an application, you can use either the Studio
Developer role (see Using the Studio Developer Role) or the Customization Developer
role (see Using the Customization Developer Role). Note that when you configure an
application-specific CustomizationLayerValues.xml file, you can create and
modify layer values, but you cannot create additional customization layers. It is not
necessary to restart JDeveloper to pick up changes made to the application-specific
layer values.

When you create an application-specific CustomizationLayerValues.xml file,
JDeveloper stores it in an application-level directory (for example, workspace-
directory\.mds\dt\customizationLayerValues
\CustomizationLayerValues.xml). You can access this file in the Application
Resources window of the Applications window, under the MDS DT node.

11.3.2.1 Using the Studio Developer Role

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the Studio
Developer role.

Before you begin:

• Create your customization classes, as described in Creating Customization Classes

• Make your classes available to JDeveloper, as described in Consuming
Customization Classes

To configure design-time customization layer values at the workspace level from the
Studio Developer role:

1. In the Application Resources window, expand the Descriptors > ADF META-INF
node, and then double-click adf-config.xml.

2. In the Overview editor, click the MDS Configuration navigation tab.

3. On the MDS Configuration page, below the table of customization classes, click
Configure Design Time Customization Layer Values to open the workspace-level
CustomizationLayerValues.xml file in the Source editor.

Configuring Customization Layers

11-6 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

If the override file does not exist, JDeveloper displays a confirmation dialog.
Click Yes to create and open a copy of the global file.

4. In the file, specify layer values as necessary, as described in Configuring
Customization Layers.

5. Save your changes.

11.3.2.2 Using the Customization Developer Role

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the
Customization Developer role.

Before you begin:

• Create your customization classes, as described in Creating Customization Classes

• Make your classes available to JDeveloper, as described in Consuming
Customization Classes

To configure design-time customization layer values at the workspace level from the
Customization Developer role:

1. In the Customization Context window, click Configure application layer values to
open the CustomizationLayerValues.xml file in the Source editor.

Note:

If the override file does not exist, JDeveloper displays a confirmation dialog.
Click Yes to create and open a copy of the global file.

2. In the file, specify layer values as necessary, as described in Configuring
Customization Layers.

3. Save your changes.

After you make changes to the application-specific
CustomizationLayerValues.xml file while you are in the Customization
Developer role, any tip layer you have selected in the Customization Context window
is deselected. You can then select the desired tip layer.

11.4 Creating Customization Classes
A customization class is a POJO class that extends
oracle.mds.cust.CustomizationClass. It evaluates the current context and
returns a String result. This String result is used to locate the customization layer.

The customization class provides the following information:

• A name that represents the name of the layer.

• An IDPrefix, for objects created in the layer. When new objects are created in a
customization layer, they need a unique ID. The IDPrefix is added to the auto-
generated identifier for the object to create an ID for the newly added object. Each

Creating Customization Classes

Customizing MAF Application Artifacts with MDS 11-7

layer needs a unique IDPrefix so that objects created at different customization
layers have unique IDs.

• A cache hint (CacheHint), for the layer defined by the customization class. In MAF,
the cache hint defines a static customization layer and the getCacheHint method
always returns ALL_USERS which means the customization is applied globally
(unconditionally) for a given deployment.

Note:

Since customization classes are likely to be executed frequently, once for each
document being accessed to get the layer name and layer value, you must
ensure their efficiency.

Customizations can be used to tailor a MAF application to suit a specific industry
domain (verticalization). Every such domain denotes a customization layer and is
depicted using a customization class.

Static customizations have only one layer value, in effect, for all executions of the
application. A static customization has the same value for all users executing the
application.

In the customization class used in a MAF application, the getCacheHint method
always returns ALL_USERS meaning that the customization layer is always static.

All objects could have a static customization layer, depending on how the
customization classes are implemented.

Do not create the customization file in the MAF application that you plan to
customize. Instead, create a separate Java application for the customization class. After
you complete the Java class, import it into the MAF application to be customized.

To create a customization class:

1. Create a Java application.

2. On the File menu, click New, and then Project.

3. In New Gallery, select Java Application Project, and then complete the wizard.

4. In the Applications window, right-click the Java application project, and then
choose Project Properties.

5. In the Project Properties dialog, select Libraries and Classpath, and then click
Add Library.

6. In the Add Library dialog, select MDS Runtime and then click OK. Click OK to
close the Project Properties dialog.

7. In the Applications window, right-click the Java application project and then
select New and then Java Class.

8. In the Create Java Class dialog, enter the class' name and package.

9. In the Extends field, browse the class hierarchy and retrieve
oracle.mds.cust.CustomizationClass, as shown in Figure 11-3, and then
click OK.

Creating Customization Classes

11-8 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Implement Abstract Methods (the default setting) must be selected in the
Create Java Class dialog.

Figure 11-3 Creating the Customization Class

10. Update the stub file. The following example illustrates a customization class.

package mobile;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import oracle.mds.core.MetadataObject;
import oracle.mds.core.RestrictedSession;
import oracle.mds.cust.CacheHint;
import oracle.mds.cust.CustomizationClass;

public class SiteCC extends CustomizationClass {

 public SiteCC() {
 super();
 }

Creating Customization Classes

Customizing MAF Application Artifacts with MDS 11-9

 public CacheHint getCacheHint()
 {
 return CacheHint.ALL_USERS;
 }

 /** {@inheritDoc} */
 public String getName()
 {

 return "company";
 }

 /** {@inheritDoc} */
 public String[] getValue(RestrictedSession rs,
 MetadataObject metadataObject)
 {
 String sites[] = {"company1", "company2"};
 return sites;
 }
 }

11. Rebuild the Java application project.

11.5 Consuming Customization Classes
Customization classes that have been created are available at design time in the
Customization Developer role and at runtime in the application. The classes must be
packaged appropriately for use in an application or in JDeveloper.

Customization classes are reusable components. Create a separate project to store
them, and package them in their own JAR file. To make the customization classes
available to JDeveloper, import the JAR into the consuming application.

Package the customization class as a JAR file, and then register the class with the MAF
application. To package the customization class and any related artifacts into a JAR
file, create a deployment profile using the Create Deployment Profile wizard. For
more information, see About Automatically Generated Deployment Profiles.

To add customization classes to a JAR:

1. In the Applications window, right-click the Java application project and select
New, and then From Gallery.

2. In New Gallery, expand General, select Deployment Profiles, then select JAR
File, and click OK.

Tip:

Click the All Features tab if the Deployment Profiles node does not appear in
the Categories tree.

3. In the Create Deployment Profile -- JAR File dialog, enter a name for the project
deployment profile (for example, SiteCC in Figure 11-4) and then click OK.

Consuming Customization Classes

11-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 11-4 Creating the Deployment Profile for the Customization Class

4. In the Edit JAR Deployment Profile Properties dialog, select JAR Options.

5. If needed, enter a location for the JAR file. Otherwise, accept the default location.

6. Expand Files Groups, then Project Output, and then Filters to list the files that
can be selected to be included in the JAR.

7. On the Filters page, under the Files tab, select the customization classes that you
want to add to the JAR file, as illustrated in Figure 11-5.

Figure 11-5 Including the Customization Class in the JAR File

8. Click OK to exit the Edit JAR Deployment Profile Properties dialog.

9. Click OK again to exit the Project Properties dialog.

Consuming Customization Classes

Customizing MAF Application Artifacts with MDS 11-11

10. In the Applications window, right-click the Java application project and then
select the deployment profile. On the Deployment Action page, illustrated in
Figure 11-6, Deploy to JAR is selected by default. Click Next.

Figure 11-6 Deploying the Customization Class to a JAR File

11. Review the confirmation for the output location of the JAR file. Click OK.

Figure 11-7 Summary Page (Showing the Output Location for the JAR File)

The log file window, shown in Figure 11-8, displays the status of the deployment.

Figure 11-8 Deployment Log

Consuming Customization Classes

11-12 Developing Mobile Applications with Oracle Mobile Application Framework

Use the following procedure to make the customization classes visible to the
application, and then add the customization classes to the cust-config section of
the adf-config.xml file.

Note:

The following procedure is not required if you had created your
customization classes in the data model project of the consuming application.

Before you begin:

• Create your customization classes in an external project.

• Create a JAR file that includes the customization classes.

• Launch JDeveloper using the Studio Developer role, and open the application that
you want to customize.

To register the customization class with the MAF application:

1. In the Applications window, click the Application Menu icon and select
Application Properties.

2. In the Application Properties dialog, select Libraries and Classpath, and click
Add JAR/Directory.

3. In the Add Archive or Directory dialog, select the JAR file you created that
contains the customization classes, and click Open.

4. Click OK.

The next step is to add the customization class to the adf-config.xml file. The
application's adf-config.xml file must have an appropriate cust-config element
in the mds-config section. The cust-config element allows clients to define an
ordered and named list of customization classes. Use the Overview editor for the adf-
config.xml file to add customization classes (see Figure 11-9).

To identify customization classes in the adf-config.xml file:

1. In the Application Resources window, expand the Descriptors and ADF META-
INF nodes, and then double-click adf-config.xml.

2. In the Overview editor, select MDS navigation tab and then click Add (+).

3. In the Edit Customization Class dialog, search for or navigate to the customization
classes you have already created.

4. Select the appropriate classes and click OK.

5. After you have added all of the customization classes, you can use the arrow icons
to arrange them in the appropriate order.

Figure 11-9 shows the Overview editor for the adf-config.xml file with two
customization classes added.

Consuming Customization Classes

Customizing MAF Application Artifacts with MDS 11-13

Figure 11-9 adf-config.xml Overview Editor

The order of the customization-class elements defines the precedence of
customization layers. For example, in the following code that represents the
customization class order in the adf-config.xml file, the IndustryCC class is
listed before the SiteCC class. This means that customizations at the industry layer
are applied to the base application, and then customizations at the site layer are
applied.

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="com.mycompany.IndustryCC"/>
 <customization-class name="com.mycompany.SiteCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Upon completion, the customization classes are available to JDeveloper for
customization and for running your project locally in JDeveloper. The customization
classes will also be packaged to the EAR class path when you package the application.

11.6 Understanding a Customization Developer Role
In JDeveloper, the Customization Developer role is used to customize the metadata in
a project. Customization features are available only in this role. When working in a
Customization Developer role, you can do the following:

• Create and update customizations.

• Select and edit the tip layer of a customized application.

• Remove existing customizations.

Understanding a Customization Developer Role

11-14 Developing Mobile Applications with Oracle Mobile Application Framework

When you use JDeveloper in the Customization Developer role, the Source editor is
read-only and the following JDeveloper features are disabled:

• Workspace migration.

• Creation, deletion, and modification of application and IDE connections. You must
configure connections in the Default role before opening an application in
Customization Developer role.

When working with an application in the Customization Developer role, new objects
and files cannot be created, and noncustomizable objects cannot be modified. In
addition, you cannot edit noncustomizable files, such as Java classes, resource
bundles, security policies, deployment descriptors, and configuration files.

Note:

When you are working in the Customization Developer role, noncustomizable
files are indicated by a lock icon .

You are also restricted from modifying project settings, and you cannot refactor or
make changes to customizable files that would, in turn, necessitate changes in
noncustomizable files.

For more information, see the "Working with JDeveloper Roles" section in Developing
Applications with Oracle JDeveloper.

11.6.1 How to Switch to the Customization Developer Role in JDeveloper
The customization features of JDeveloper are available to you in the Customization
Developer role. To work in this role, you can either select it when you start JDeveloper
or, if JDeveloper is already running, you can use the Switch Roles menu to switch to
the Customization Developer role.

To switch to the Customization Developer role in JDeveloper:

From the main menu in JDeveloper, select Tools, then Switch Roles, and then
Customization Developer.

Optionally, you can select Tools, and then Switch Roles to toggle the Always Prompt
for Role Selection at Startup menu to specify whether or not you want to select the
role when JDeveloper is launched. If deselected, JDeveloper launches in the role in
which it was last closed.

11.6.2 What You May Need to Know About the Tip Layer
When working in the Customization Developer role, the layer and layer value
combination that is selected in the Customization Context window is called the tip
layer. The changes you make while in the Customization Developer role are applied to
this layer.

Note:

When working in the Customization Developer role, if the Customization
Context window is not displayed, you can access it from JDeveloper's
Window menu.

Understanding a Customization Developer Role

Customizing MAF Application Artifacts with MDS 11-15

The metadata displayed in the JDeveloper editors is a combination of the base
metadata and the customization layers up to and including the tip layer, according to
the precedence set in adf-config.xml, with the values specified in the
Customization Context window for each layer.

When working in the Customization Developer role, you can also see the
noncustomized state of the application. When you select View without
Customizations in the Customization Context window, there is no current tip layer.
Therefore, what you see is the noncustomized state. While you are in this view, all
customizable files show the lock icon (in the Applications window), indicating that
these files are read-only.

When you make customizations in a tip layer, these customizations are indicated by
an orange icon in the Properties window. A green icon indicates non-tip layer
customizations. When you see an orange icon beside a property, you have the option
of deleting that customization by choosing Remove Customization from the
dropdown menu for that property.

11.7 Enabling Customizations in Resource Bundles
To implement customization for resource keys, you must create additional resource
bundle files (You cannot use the base resource bundle file.).

In the Studio Developer role, create one of the following:

• An application resource bundle (see How to Create an Application Resource
Bundle).

• A project resource bundle (see How to Create a Project Resource Bundle).

Edit the bundle that you create to define string values for resource keys.

Before you begin:

Familiarize yourself with the "How to Use Multiple Resource Bundles" section in
Developing Fusion Web Applications with Oracle Application Development Framework.

11.7.1 How to Create an Application Resource Bundle
To create an application resource bundle:

1. In the Studio Developer role, click Application, then Application Properties, and
then Resource Bundles.

2. In the Resource Bundle page, click Application Bundle Search, then click the drop-
down menu icon to the right of the Add bundle icon and select Create Application
Bundle, as shown in Figure 11-10.

Enabling Customizations in Resource Bundles

11-16 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 11-10 Creating an Application Resource Bundle

3. In the Create Xliff File dialog that appears, enter a name for the resource bundle
and click OK.

4. Edit the resource bundle, as described in Editing Resources in Resource Bundles.

Note:

MAF does not support the Overridden property in the application-level
Resource Bundle page.

5. In the Customization Developer role, open the Select Text Resource dialog and
select from among the resource bundles that contain the appropriate string.
Because you cannot change strings or create new ones in the Customization
Developer role, you can only select from the strings in the selected bundle.

Note:

Do not select strings from the base resource bundle in the Customization
Developer role, as doing so may cause problems when upgrading the
application.

11.7.2 How to Create a Project Resource Bundle
To create a project resource bundle:

1. In the Studio Developer role, right-click the project where you want to create the
resource bundle and select New, then From Gallery, followed by General XML,
and XML Localization File (XLIFF).

2. In the Create Xliff File dialog that appears, enter a name for the resource bundle
and click OK.

3. Edit the resource bundle, as described in Editing Resources in Resource Bundles.

4. In the Bundle Search tab of the Resource Bundle page, register the resource
bundle by selecting a project (.jpr) file, as shown in Figure 11-11.

Enabling Customizations in Resource Bundles

Customizing MAF Application Artifacts with MDS 11-17

Figure 11-11 Selecting a Resource Bundle

Registering a resource bundle includes it in the Select Text Resource dialog,
shown in Figure 11-12.

Figure 11-12 Selecting a Resource Bundle for a Text Resource

5. Use the Select Text Resource dialog to define the key as follows:

a. Select the bundle from the Resource Bundle drop-down list.

The dialog displays the strings that are currently defined in the selected
resource bundle.

b. Enter a new string and then click Save and Select.

JDeveloper writes the string to the selected resource bundle.

6. In the Customization Developer role, open the Select Text Resource dialog and
select from among the resource bundles that contain the appropriate string.
Because you cannot change strings or create new ones in the Customization
Developer role, you can only select from the strings in the selected bundle.

Enabling Customizations in Resource Bundles

11-18 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Do not select strings from the base resource bundle in the Customization
Developer role, as doing so may cause problems when upgrading the
application.

11.8 Upgrading a MAF Application with Customizations
Customizations are upgrade-safe because they are saved separately from the base
applications. Because customizations retain changes, they enable you to upgrade an
application by applying these changes to newer versions of the application. The MAF
Application Archive (.maa) file provides the mechanism for upgrading MAF
applications. When you create an application from an .maa file, you can upgrade the
application using an updated version of the .maa file.

Using the Upgrade Mobile Application from Archive wizard, you can upgrade an
application to a higher version while retaining the customizations made prior to the
upgrade.

Before you begin:

You may want to familiarize yourself with the MAF Application Archive (.maa) file.
For more information, see Creating a Mobile Application Archive File and Creating
Unsigned Deployment Packages.

Ensure that the application that is packaged into the .maa file and used for the
upgrade has the same application ID as the application to which it will be applied. It
must also have a higher version number than the application targeted for the upgrade.

To upgrade a MAF application:

1. Create a MAF application from an .maa file.

2. Apply customization to the MAF application, as described in Enabling
Customizations in Resource Bundles.

3. Click Application, and then select Select Mobile Application from Archive.

4. Browse to and select the .maa file. The wizard discontinues the upgrade if the
application packaged in the .maa has the same (or lower) version number than
the current application, or a different application ID.

Upgrading a MAF Application with Customizations

Customizing MAF Application Artifacts with MDS 11-19

Figure 11-13 Selecting the .maa File

5. Review the Summary page for files that require a manual merge. As noted in
Figure 11-14, MAF saves the initial version (Version 1) of the application in the
Temp directory. The Summary page also notes the temporary location of the log
files.

Figure 11-14 Application Upgrade Information

6. If the upgrade completes successfully, restart JDeveloper. JDeveloper notifies you
if different versions of a configuration file require reconciliation, as shown in
Figure 11-15.

Upgrading a MAF Application with Customizations

11-20 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 11-15 Manual Merge Notification

During the upgrade, MAF copies a set of files that cannot be customized for both
Version 1 of the application and Version 2 (the upgraded version of the application).
These files include the connections.xml and adf-config.xml files. If MAF
detects differences between Version 1 and Version 2 connections.xml and adf-
config.xml files, it retains both copies of these files and writes an entry to the merge
log file. MAF differentiates Version 1 by appending a version number to the file name
if version numbers exist. If version numbers do not exist, MAF adds _old to the file
name, as illustrated by connections_old.xml in Figure 11-15. If needed, you can
manually merge the differences into the new version. As shown in Figure 11-16, MAF
places the merge file log in the temporary location noted in the Summary page. MAF
names the files as workspace name_timestamp.

Figure 11-16 The Merge Log File

11.8.1 What Happens in JDeveloper When You Upgrade Applications
In addition to copying Version 1 to the Temp directory and creating Version 1 and
Version 2 copies of the non-upgradable configuration files, MAF also performs the
following when you upgrade an application using the Upgrade Mobile Application
from Archive wizard:

• Saves the libraries and resource bundles settings for each project in a map keyed
with the project file name.

• Saves the resource bundle settings for the workspace.

• Saves the registered customization class in the adf-config.xml file.

• Imports the Version 2 .maa file to the temporary directory.

• Copies the application from the .maa file used for the upgrade to Version 1.

• Updates each Version 2 project (.jpr) file with the registered resource bundle and
library dependency map. The new version of the library overrides the previous
version. However, the Version 1 library remains unchanged if it shares the same
name as the library used in Version 1.

Upgrading a MAF Application with Customizations

Customizing MAF Application Artifacts with MDS 11-21

• Updates the Version 2 workspace (.jws) file with the registered resource bundle
settings.

• Updates the Version 2 adf-config.xml file to register the customization class.

11.8.2 What You May Need to Know About Upgrading FARs
If the application includes a FAR file that was not packaged in the original .maa file
that was used to create the application (or included in the .maa file that is used to
upgrade the application), then you must upgrade the FAR file separately. For
example, you can create an application from a .maa file, add a FAR file, and then
perform customization. You can upgrade the application to use a newer version of the
FAR by adding the updated FAR from the Resources window as described in Using
FAR Content in a MAF Application.

Upgrading a MAF Application with Customizations

11-22 Developing Mobile Applications with Oracle Mobile Application Framework

12
Using Lifecycle Listeners in MAF

Applications

This chapter describes the lifecycle listeners that MAF provides for you to write code
that can execute in response to events in your MAF application or application features.

This chapter includes the following sections:

• Introduction to Lifecycle Listeners in MAF Applications

• Registering a Lifecycle Listener for a MAF Application or an Application Feature

• What Happens When You Register a Lifecycle Listener

12.1 Introduction to Lifecycle Listeners in MAF Applications
Lifecycle listeners are useful locations to write code that executes in response to
specific events in your application. MAF provides lifecycle listeners where you can
write code in response to application or application feature events. A typical
implementation of an application lifecycle listener method may be to write code that
initializes your application's database when the application starts, as described in
Using the Local SQLite Database, or to update a security configuration from URL
parameters, as described in How to Update Connection Attributes of a Named
Connection at Runtime.

MAF provides the following two interfaces that you can implement to communicate
with event notifications:

• oracle.adfmf.application.LifeCycleListener

This interface specifies the following methods that an application lifecycle listener
must implement:

– activate()

– deactivate()

– start()

– stop()

• oracle.adfmf.feature.LifeCycleListener

This interface specifies the following methods that a feature lifecycle listener must
implement:

– activate()

– deactivate()

Using Lifecycle Listeners in MAF Applications 12-1

You create a lifecycle listener by creating a Java class that implements the appropriate
interface and registering the implementation in your MAF application, as described in
Registering a Lifecycle Listener for a MAF Application or an Application Feature.

A new MAF application that you create implements the
oracle.adfmf.application.LifeCycleListener interface through the default
creation of the application.LifeCycleListenerImpl.java class in your
application's ApplicationController project, as shown in Figure 12-1.

Figure 12-1 Implementation of Application Lifecycle Listener

Note that the application lifecycle listener is executed with an anonymous user (that is,
there is no user associated with any of its methods and no secure web service is
called).

Table 12-1 describes the specific times that MAF invokes application lifecycle methods
during an application's startup, shutdown, and hibernation.

Table 12-1 Timing of MAF's Invocation of Application Lifecycle Methods

Method Timing When Called Usage

start Called after the MAF
application has completely
loaded the application
features and immediately
before presenting the user
with the initial application
feature or the springboard.
This is a blocking call.

When the
application
process starts.

Uses include:

• Determining if there are
updates to the MAF
application.

• Requesting a remote server
to download data to the
local database.

Introduction to Lifecycle Listeners in MAF Applications

12-2 Developing Mobile Applications with Oracle Mobile Application Framework

Table 12-1 (Cont.) Timing of MAF's Invocation of Application Lifecycle Methods

Method Timing When Called Usage

stop Called as the MAF
application begins its
shutdown.

When the
application
process
terminates.

Uses include:

• Logging off from any
remote services.

• Uploading any data
change to the server before
the application is closed.

activate Called as the MAF
application activates from
being situated in the
background (hibernating).
This is a blocking call.

After the
start method
is called.

Uses include:

• Reading and re-populating
cache stores.

• Processing web service
requests.

• Obtaining required
resources.

deactiva
te

Called as the MAF
application deactivates and
moves into the background
(hibernating). This is a
blocking call.

Before the
stop method
is called.

Uses include:

• Writing the restorable
state.

• Closing the database
cursor and the database
connection.

Table 12-2 describes the specific times that MAF invokes feature lifecycle methods
during a feature's activation and deactivation.

Table 12-2 Timing of MAF's Invocation of Feature Lifecycle Methods

Method Timing When Called Usage

activate Called before
the current
application
feature is
activated.

Called when a
user selects the
application
feature for the
first time after
launching a MAF
application, or
when the
application has
been re-selected
(that is, brought
back to the
foreground).

Uses include:

• Reading the applicationScope
variable.

• Setting the current row on the first
MAF AMX view.

deactiva
te

Called before
the next
application
feature is
activated, or
before the
application
feature exits.

Called when the
user selects
another
application
feature.

You can, for example, use the
deactivate event to write the
applicationScope variable, or any
other state information, for the next
application feature to consume.

For more information about the
oracle.adfmf.application.LifeCycleListener and

Introduction to Lifecycle Listeners in MAF Applications

Using Lifecycle Listeners in MAF Applications 12-3

oracle.adfmf.feature.LifeCycleListener interfaces, see the Java API
Reference for Oracle Mobile Application Framework.

The LifecycleEvents sample application demonstrates declaring listener classes
that implement both the application and feature interfaces. It registers these listener
classes in the MAF application's maf-application.xml and maf-feature.xml
files. For more information about this and other sample applications, see MAF Sample
Applications.

12.2 Registering a Lifecycle Listener for a MAF Application or an
Application Feature

You register an application lifecycle listener by using the overview editor for the maf-
application.xml file and a feature lifecycle listener using the overview editor for
the maf-features.xml file.

To register an application lifecycle listener:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click maf-application.xml.

4. In the Application navigation tab, specify the Java class that implements the
oracle.adfmf.application.LifeCycleListener interface in the Lifecycle
Event Listener field. By default, this is set to
application.LifeCycleListenerImpl.

If you want to package the application lifecycle listener in a JAR library that will
be distributed for use elsewhere, you might use a custom class different from the
default implementation provided by MAF.

To register an application feature lifecycle listener:

1. In the Applications window, expand the ViewController project, Application
Sources, and then META-INF.

2. Double-click the maf-feature.xml file.

3. In the Features list, select the feature for which you want to register a feature
lifecycle listener.

4. In the Lifecycle Event Listener field, specify the Java class that implements the
oracle.adfmf.feature.LifeCycleListener interface.

12.3 What Happens When You Register a Lifecycle Listener
By default, a MAF application that you create implements an application lifecycle
listener through the creation of the application.LifeCycleListenerImpl.java
class in your application's ApplicationController project. The listener-class
attribute in the maf-application.xml file registers this class, as shown in the
following example.

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 version="1.0" name="NewMAFapp" id="com.company.NewMAFapp"
 appControllerFolder="ApplicationController" listener-

Registering a Lifecycle Listener for a MAF Application or an Application Feature

12-4 Developing Mobile Applications with Oracle Mobile Application Framework

class="application.LifeCycleListenerImpl">
...
</adfmf:application>

JDeveloper writes an entry to the maf-feature.xml file for the listener-class
attribute when you register a feature lifecycle listener. The following example shows
an entry in the LifecycleEvents sample application described in MAF Sample
Applications.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="Feature1" name="Feature1" listener-
class="mobile.Feature1Handler">
 <adfmf:description>This is a sample feature to show the feature lifecycle
handlers.
 </adfmf:description>
 <adfmf:content id="Feature1.1">
 <adfmf:amx file="Feature1/feature1.amx"/>
 </adfmf:content>
 </adfmf:feature>
...
</adfmf:features>

What Happens When You Register a Lifecycle Listener

Using Lifecycle Listeners in MAF Applications 12-5

What Happens When You Register a Lifecycle Listener

12-6 Developing Mobile Applications with Oracle Mobile Application Framework

13
Creating MAF AMX Pages

This chapter describes how to create the MAF AMX application feature, including
views and task flows.

This chapter includes the following sections:

• Introduction to the MAF AMX Application Feature

• Creating Task Flows

• Creating Views

13.1 Introduction to the MAF AMX Application Feature
MAF AMX is a subframework within Mobile Application Framework (MAF) that
provides a set of UI components that enable you to create an application feature
whose behavior is identical on all supported platforms. MAF AMX allows you to use
UI components declaratively by dragging them onto a page editor. A typical MAF
AMX application feature includes several interconnected pages that can be navigated
through various paths.

Note:

When developing interfaces for mobile devices, always be aware of the fact
that the screen space is very limited. In addition, touchscreen support is not
available on some mobile devices.

For more information, see the following:

• Getting Started with MAF Application Development

• Creating the MAF AMX User Interface

• Using Bindings and Creating Data Controls in MAF AMX

13.2 Creating Task Flows
Task flows allow you to define the navigation between MAF AMX pages. Using your
application workspace in JDeveloper (see Creating a MAF Application), you can start
creating the user interface for your MAF AMX application feature by designing task
flows. MAF AMX uses navigation cases and rules to define the task flow. These
definitions are stored in a file with the default name of ViewController-task-
flow.xml (see What You May Need to Know About the ViewController-task-
flow.xml File).

Creating MAF AMX Pages 13-1

A MAF sample application called Navigation (located in the PublicSamples.zip
file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer) demonstrates how to use various
navigation techniques, such as circular navigation, routers, and so on.

MAF enables you to create MAF AMX application features that have both bounded
and unbounded task flows. As described in What You May Need to Know About
Bounded and Unbounded Task Flows, a bounded task flow is also known as a task
flow definition and represents the reusable portion of an application. In MAF,
bounded task flows have a single entry point and no exit points. They have their own
collections of activities and control-flow rules, as well as their own memory scope and
managed-bean life span. Other characteristics of bounded task flows include accepting
input parameters (see Passing Parameters to a Bounded Task Flow) and generating
return values (see Configuring a Return Value from a Bounded Task Flow).

You use the MAF AMX Task Flow Designer to create bounded task flows for your
application feature. Like the overview editor for task flows, this tool includes a
diagrammer (see What You May Need to Know About the MAF Task Flow
Diagrammer) in which you build the task flow by dragging and dropping activities
and control flows (see What You May Need to Know About Task Flow Activities and
Control Flows) from the Components window. You then define these activities and
the transitions between them using the Properties window.

Unless a task flow has already been created, MAF automatically generates a default
unbounded task flow (adfc-mobile-config.xml file) when a new MAF AMX
page is created.

You can add each task flow as an application feature to your MAF application. For
more information, see Defining the Application Feature Content as a MAF AMX Page
or Task Flow.

13.2.1 How to Create a Task Flow
A task flow is composed of the task flow itself and a number of activities with control
flow rules between those activities (see What You May Need to Know About Task
Flow Activities and Control Flows). Typically, the majority of the activities are view
activities which represent different pages in the flow. When a method or operation
needs to be called (for example, before a page is rendered), you use a method call
activity with a control flow case from that activity to the appropriate next activity.
When you want to call another task flow, you use a task flow call activity. If the flow
requires branching, you use a router activity. At the end of a bounded task flow, you
use a return activity which allows the flow to exit and control is sent back to the flow
that called this bounded task flow.

You use the navigation diagrammer to declaratively create a bounded task flow for
your MAF AMX application feature. When you use the diagrammer, JDeveloper
creates the XML metadata needed for navigation to work in your MAF AMX
application feature in the ViewController-task-flow.xml file (default).

Before you begin:

To design a task flow, the MAF application must include a View Controller project file
(see Getting Started with MAF Application Development).

There are two ways to create a task flow in MAF:

• You can create a bounded task flow from the maf-feature.xml file. For more
information, see Defining the Application Feature Content as a MAF AMX Page or
Task Flow.

Creating Task Flows

13-2 Developing Mobile Applications with Oracle Mobile Application Framework

• You can use the New Gallery in JDeveloper. For more information, refer to the
following procedure.

To create a task flow from the New Gallery:

1. From the top-level menu in JDeveloper, click File, and then select New > From
Gallery.

2. In the New Gallery, expand the Client Tier node, select Mobile Application
Framework , and then MAF Task Flow (see Figure 13-1). Click OK.

Figure 13-1 Creating New MAF Task Flow

3. In the Create MAF Task Flow dialog (see Figure 13-2), specify the file name and
location for your new task flow, and then click OK to open the new <Name>-
flow.xml file in the navigation diagrammer that Figure 13-3 shows.

Note:

Task flows should be created within the HTML root of the View Controller
project of your MAF application.

Creating Task Flows

Creating MAF AMX Pages 13-3

Note:

JDeveloper increments the number of the task flow according to the number of
bounded task flows that already exist in the same pattern.

Figure 13-2 Create MAF Task Flow Dialog

Creating Task Flows

13-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-3 New Blank Task Flow

4. In the Components window, select MAF Task Flow.

Tip:

If the Components window is not displayed, choose Window > Components
from the main menu. By default, the Components window is displayed in the
upper right-hand corner of JDeveloper.

5. From MAF Task Flow > Components, select the component you wish to use and
drag it onto the diagram. JDeveloper redraws the diagram with the newly added
component, as Figure 13-4 shows.

Creating Task Flows

Creating MAF AMX Pages 13-5

Figure 13-4 Adding Components to Task Flow

For information on how to add activities to a task flow, see How to Add and Use
Task Flow Activities.

For information on how to add control flows, see How to Define Control Flows.

For information on how to define behavior of the new task flow, see What You
May Need to Know About Behavior of New Bounded Task Flows.

You can also open the Overview tab and use the overview editor to create navigation
rules and navigation cases. Press F1 for details on using the overview editor to create
navigation.

Creating Task Flows

13-6 Developing Mobile Applications with Oracle Mobile Application Framework

Additionally, you can manually add elements to the task flow file by directly editing
the page in the Source editor. To open the file in the Source editor, click the Source
tab.

Note:

When manually editing the task flow file, keep in mind that all the document
file names referring to MAF AMX pages, JavaScript files, and CSS files are
case-sensitive.

If special characters (such as an underscore, for example) are used in a file
name, you should consult the mobile device specification to verify whether or
not the usage of this character is supported.

Once the navigation for your MAF AMX application feature is defined, you can create
the pages and add the components that will execute the navigation. For more
information about using navigation components on a page, see How to Define Control
Flows.

After you define the task flow for the MAF AMX application feature, you can double-
click a view file to access the MAF AMX view. For more information, see Creating
Views .

13.2.1.1 What You May Need to Know About Behavior of New Bounded Task Flows

When a new bounded task flow is created, MAF automatically adds a page-flow-
scope-behavior element to the <Name>-flow.xml file. This element is added as a
child of the top-level task-flow-definition element.

Note:

The page-flow-scope-behavior element is appended to all newly created
task flows, even if they are created in projects built using previous versions of
MAF.

Creating Task Flows

Creating MAF AMX Pages 13-7

The value of the page-flow-scope-behavior element is set to push-new by
default and is displayed in the Overview and Source editors for the new task flow, as
well as the Properties window for the task-flow-definition element, as Figure
13-5 shows.

Figure 13-5 Page Flow Scope Behavior for Task Flows

If the Page Flow Scope Behavior is set to push-new, a new page flow scope is
created and the old pageFlowScope variables are saved and pushed on to a stack.
This allows for the previous page flow scope to be restored upon the execution of a
task flow return. If the Page Flow Scope Behavior is set to preserve, the
pageFlowScope variables are not cleared when the task flow is entered upon
execution of a task flow call resulting in the new task flow variables containing old
values.

In existing task flows, if the page-flow-scope-behavior element is not present,
then you should define it as either push-new or preserve.

For more information about the pageFlowScope, see About the Managed Beans
Category.

13.2.2 What You May Need to Know About Task Flow Activities and Control Flows
A task flow consists of activities and control flow cases that define the transitions
between activities.

The MAF Task Flow designer supports activities listed in Table 13-1.

Creating Task Flows

13-8 Developing Mobile Applications with Oracle Mobile Application Framework

Table 13-1 Task Flow Activities

Activity Description

View Displays a MAF AMX page. For more information, see Adding
View Activities.

Method Call Invokes a method (typically a method on a managed bean). You
can place a method call activity anywhere in the control flow of
a MAF AMX application feature to invoke logic based on
control flow rules. For additional information, see Adding
Method Call Activities.

You can also specify parameters that you pass into a method
call that is included in a task flow. These include standard
parameters for a method call action in a MAF AMX task flow.
When you use the designer to generate a method, it adds the
required arguments and type.

At runtime, you can define parameters for a method call in a
task flow and pass parameters into the method call itself for its
usage. For more information, see How to Add and Use Task
Flow Activities

Router Evaluates an Expression Language (EL) expression and returns
an outcome based on the value of the expression. These
outcomes can then be used to route control to other activities in
the task flow. For more information, see Adding Router
Activities.

Task Flow Call Calls a bounded task flow from either an unbounded or
bounded task flow. While a task flow call activity allows you to
call a bounded task flow located within the same MAF AMX
application feature, you can also call a bounded task flow from
a different MAF AMX application feature or from a Feature
Archive file (FAR) that has been added to a library (see Reusing
MAF Application Content .).

The task flow call activity supports task flow input parameters
and return values.

For more information, see Adding Task Flow Call Activities.

Task Flow Return Identifies the point in an application's control flow where a
bounded task flow completes and sends control flow back to
the caller. You can use a task flow return only within a
bounded task flow. For more information, see Adding Task
Flow Return Activities.

The MAF Task Flow designer supports control flows listed in Table 13-2.

Table 13-2 Control Flows

Control Flow Description

Control Flow Case Identifies how control passes from one activity to the next in the
MAF AMX application feature. For more information, see
Defining a Control Flow Case.

Wildcard Control Flow
Rule

Represents a control flow case that can originate from any
activities whose IDs match a wildcard expression.For more
information, see Adding a Wildcard Control Flow Rule.

Creating Task Flows

Creating MAF AMX Pages 13-9

13.2.3 What You May Need to Know About the ViewController-task-flow.xml File
The ViewController-task-flow.xml file enables you to design the interactions
between views (MAF AMX pages) by dragging and dropping MAF AMX task flow
components from the Components window onto the diagrammer.

Figure 13-6 shows a sample task flow file called Products-flow.xml. In this file, the
control flow is directed from the products page to the productdetails page. To
return to the products page from the productdetails page, the built-in __back
navigation is used (see What You May Need to Know About MAF Support for Back
Navigation).

Figure 13-6 Task Flow File

13.2.4 What You May Need to Know About the MAF Task Flow Diagrammer
As illustrated in Figure 13-6, the task flow diagram and Components window display
automatically after you create a task flow using the MAF Task Flow Creation utility.
The task flow diagram is a visual editor onto which you can drag and drop activities
and task flows from the Components window or from the Applications window. For
more information, see How to Add and Use Task Flow Activities.

13.2.5 How to Add and Use Task Flow Activities
You use the task flow diagrammer to drag and drop activities, views, and control
flows.

Before you begin:

You must select MAF Task Flow from the Components window, as Figure 13-7
shows.

To add an activity to a MAF task flow:

Creating Task Flows

13-10 Developing Mobile Applications with Oracle Mobile Application Framework

1. In the Applications window, double-click a task flow source file (such as
ViewController-task-flow.xml) to display the task flow diagram and the
Components window, as Figure 13-7 shows. The diagrammer displays the task
flow editor. The Components window automatically displays the components
available for a MAF task flow.

2. Drag an activity from the Components window onto the diagram. If you drag a
view activity onto the diagram and double-click on it, you can invoke the Create
MAF AMX Page wizard (see Adding View Activities).

Figure 13-7 The Diagrammer for the Task Flow Editor

Creating Task Flows

Creating MAF AMX Pages 13-11

Note:

There is a default activity that is associated with each bounded task flow.

13.2.5.1 Adding View Activities
One of the primary types of task flow activity is the view activity which displays a
MAF AMX page.

XML metadata in the source file of the task flow associates a view activity with a
physical MAF AMX page. An id attribute identifies the view activity.

You can configure view activities in your task flow to pass control to each other at
runtime. For example, to pass control from one view activity (view activity A) to a
second view activity (view activity B), you could configure a command component,
such as a Button or a Link on the page associated with view activity A. To do so, you
set the command component's Action attribute to the control flow case from-
outcome that corresponds to the task flow activity that you want to invoke (for
example, view activity B). At runtime, the end user initiates the control flow case by
invoking the command component. It is possible to navigate from a view activity to
another activity using either a constant or dynamic value on the Action attribute of the
UI component:

• A constant value of the component's Action attribute is an action outcome that
always triggers the same control flow case. When an end user clicks the
component, the activity specified in the control flow case is performed. There are
no alternative control flows.

• A dynamic value of the component's Action attribute is bound to a managed bean
or a method. The value returned by the method binding determines the next
control flow case to invoke. For example, a method might verify user input on a
page and return one value if the input is valid and another value if the input is
invalid. Each of these different action values trigger different navigation cases,
causing the application to navigate to one of two possible target pages.

For more information, see How to Specify Action Outcomes Using UI Components.

You can also write an EL expression that must evaluate to true before control passes
to the target view activity. You write the EL expression as a value for the <if> child
element of the control flow case in the task flow.

The following two examples demonstrate what happens when you pass control
between View activities:

1. This example shows a control flow case defined in the XML source file for a
bounded or unbounded task flow.

<control-flow-rule>
 <from-activity-id>Start</from-activity-id>
 <control-flow-case>
 <from-outcome>toOffices</from-outcome>
 <to-activity-id>WesternOffices</to-activity-id>
 </control-flow-case>
</control-flow-rule>

2. In this example, a Button on a MAF AMX page associated with the Start view
activity specifies toOffices as the action attribute. When the end user clicks
the button, control flow passes to the WesternOffices activity specified as the
to-activity-id in the control flow metadata.

Creating Task Flows

13-12 Developing Mobile Applications with Oracle Mobile Application Framework

<amx:commandButton text="Go" id="b1" action="toOffices">

For more information, see the following:

• Adding View Activities

• Creating MAF AMX Pages

As previously stated, the view activity is associated in metadata with an actual MAF
AMX page which it displays when added to a task flow. You add a view activity by
dragging and dropping it from the Components window. You can create an actual
MAF AMX page by double-clicking the View activity in the Diagram window and
then define characteristics for the page through the displayed dialog (see Figure
13-30). You can also create a View activity by dragging and dropping a MAF AMX file
in the Applications window onto the Overview editor's Diagram tab.

If you are creating a bounded task flow, you may want to designate a specific activity
as the default activity (see What You May Need to Know About Bounded and
Unbounded Task Flows). This allows the specific activity to execute first whenever the
bounded task flow runs. By default, JDeveloper makes the first activity you add to the
task flow the default. To change to a different activity, right-click the appropriate
activity in the Diagram window and choose Mark Activity > Default Activity (see
Figure 13-8).

Creating Task Flows

Creating MAF AMX Pages 13-13

Figure 13-8 Defining Default Activity

Creating Task Flows

13-14 Developing Mobile Applications with Oracle Mobile Application Framework

13.2.5.2 Adding Router Activities
Use a router activity to route control to activities based on the runtime evaluation of
EL expressions.

Each control flow corresponds to a different router case. Each router case uses the
following elements to choose the activity to which control is next routed:

• expression: an EL expression that evaluates to true or false at runtime.

The router activity returns the outcome that corresponds to the EL expression that
returns true.

• outcome: a value returned by the router activity if the EL expression evaluates to
true.

If the router case outcome matches a from-outcome on a control flow case,
control passes to the activity that the control flow case points to. If none of the cases
for the router activity evaluate to true, or if no router activity cases are specified,
the outcome specified in the router Default Outcome field (if any) is used.

Consider using a router activity if your routing condition can be expressed in an EL
expression: the router activity allows you to show more information about the
condition on the task flow.

When you drag a Router activity onto the diagram, you can use the Properties
window to create an expression whose evaluation determines which control flow rule
to follow. Using the Properties window, you configure the Activity ID and Default
Outcome properties of the router activity and add router cases to the router activity.

When defining the Activity ID attribute, write a value that identifies the router
activity in the task flow's source file.

When defining the Default Outcome attribute, specify an activity that the router
activity passes control to if no control flow cases evaluate to true or if no control flow
case is specified.

For each router case that you add, specify values by clicking Add (+) in the Cases
section that Figure 13-49 shows.

Creating Task Flows

Creating MAF AMX Pages 13-15

Figure 13-9 Configuring Router Activity

• Expression: An EL expression that evaluates to true or false at runtime.

For example, to reference the value in an input text field of a view activity, write an
EL expression similar to the following:

#{pageFlowScope.value=='view2'}

If this EL expression returns true, the router activity invokes the outcome that you
specify in the Outcome field.

• Outcome: The outcome the router activity invokes if the EL expression specified by
Expression returns true.

Create a control flow case or a wildcard control flow rule for each outcome in the
diagram of your task flow. For example, for each outcome in a control flow case,
ensure that there is a corresponding from-outcome.

When you configure the control flow using a router activity, JDeveloper writes values
to the source file of the task flow based on the values that you specify for the
properties of the router activity.

13.2.5.3 Adding Method Call Activities
When you drag a Method Call activity onto the diagram, you can use the Properties
window to configure the method to call.

Use a method call activity to call a custom or built-in method that invokes the MAF
AMX application feature logic from anywhere within the application feature's control
flow. You can specify methods to perform tasks such as initialization before displaying
a page, cleanup after exiting a page, exception handling, and so on.

You can set an outcome for the method that specifies a control flow case to pass
control to after the method finishes. You can specify the outcome as one of the
following:

• fixed-outcome: upon successful completion, the method always returns this
single outcome, for example, success. If the method does not complete

Creating Task Flows

13-16 Developing Mobile Applications with Oracle Mobile Application Framework

successfully, an outcome is not returned. If the method type is void, you must
specify a fixed-outcome and cannot specify to-string.

You define this outcome by setting the Fixed Outcome field in the Properties
window (see Figure 13-10).

• to-string: if specified as true, the outcome is based on calling the toString
method on the Java object returned by the method. For example, if the toString
method returns editBasicInfo, navigation goes to a control flow case named
editBasicInfo.

You define this outcome by setting the toString() field in the Properties window
(see Figure 13-10).

You can associate the method call activity with an existing method by dropping a data
control operation from the Data Controls window directly onto the method call
activity in the task flow diagram. You can also drag methods and operations directly
to the task flow diagram: a new method call activity is created automatically when you
do so. You can specify an EL expression and other options for the method.

You configure the method call by modifying its activity identifier in the Activity ID
field if you want to change the default value. If you enter a new value, the new value
appears under the method call activity in the diagram.

In the Method field, enter an EL expression that identifies the method to call.

Note:

The bindings variable in the EL expression references a binding from the
current binding container. In order to specify the bindings variable, you must
specify a binding container definition or page definition. For more
information, see What You May Need to Know About Generated Drag and
Drop Artifacts.

Creating Task Flows

Creating MAF AMX Pages 13-17

Figure 13-10 Configuring Method Call Activity

You can also use the Expression Builder to build the EL expression for the method:

• Choose Method Expression Builder from the Property Editor for the Method field.

• In the Expression Builder dialog, navigate to the method that you want to invoke
and select it.

If the method call activity is to invoke a managed bean method, double-click the
method call activity in the diagram. This invokes a dialog where you can specify
the managed bean method you want to invoke.

You can specify parameters and return values for a method by using the Parameters
section of the Properties window (see Figure 13-10). If parameters have not already
been created by associating the method call activity to an existing method, add the
parameters by clicking Add (+) and setting the following:

• Class: enter the parameter class. For example, java.lang.Double.

• Value: enter an EL expression that retrieves the value of the parameter. For
example:

#{pageFlowScope.shoppingCart.totalPurchasePrice}

• Return Value: enter an EL expression that identifies where to store the method
return value. For example:

#{pageFlowScope.Return}

13.2.5.4 Adding Task Flow Call Activities

You can use a task flow call activity to call a bounded task flow from either the
unbounded task flow (see Unbounded Task Flows) or a bounded task flow (see

Creating Task Flows

13-18 Developing Mobile Applications with Oracle Mobile Application Framework

Bounded Task Flows). This activity allows you to call a bounded task flow located
within the same or a different MAF AMX application feature.

The called bounded task flow executes its default activity first. There is no limit to the
number of bounded task flows that can be called. For example, a called bounded task
flow can call another bounded task flow, which can call another, and so on resulting in
the creation of chained task flows where each task flow is a link in a chain of tasks.

To pass parameters into a bounded task flow, you must specify input parameter
values on the task flow call activity. These values must correspond to the input
parameter definitions on the called bounded task flow. For more information, see
Specifying Input Parameters on a Task Flow Call Activity.

Note:

The value on the task flow call activity input parameter specifies the location
within the calling task flow from which the value is to be retrieved.

The value on the input parameter definition for the called task flow specifies
where the value is to be stored within the called bounded task flow once it is
passed.

Note:

When a bounded task flow is associated with a task flow call activity, input
parameters are automatically inserted on the task flow call activity based on
the input parameter definitions set on the bounded task flow. Therefore, you
only need to assign values to the task flow call activity input parameters.

By default, all objects are passed by reference. Primitive types (for example, int,
long, or boolean) are always passed by value.

The technique for passing return values out of the bounded task flow to the caller is
similar to the way that input parameters are passed. For more information, see
Configuring a Return Value from a Bounded Task Flow.

To use a task flow call activity:

1. Call a bounded task flow using a task flow call activity (see Calling a Bounded
Task Flow Using a Task Flow Call Activity)

2. Specify input parameters on a task flow call activity if you want to pass
parameters into the bounded task flow (see Specifying Input Parameters on a Task
Flow Call Activity).

13.2.5.4.1 Calling a Bounded Task Flow Using a Task Flow Call Activity

Add a task flow call activity to the calling bounded or unbounded task flow to call a
bounded task flow.

To call a bounded task flow:

1. Open a bounded task flow file in the Diagram view.

2. From the Components window, select Components > Activities.

3. Drag and drop a Task Flow Call activity onto the diagram.

Creating Task Flows

Creating MAF AMX Pages 13-19

4. Choose one of the following options to identify the called task flow:

• Double-click the newly-dropped task flow call activity to open the Create MAF
Task Flow dialog (see Figure 13-2) where you define settings for a new
bounded task flow.

• Drag an existing bounded task flow from the Applications window and drop
it on the task flow call activity.

• If you know the name of the bounded task flow that you want to invoke,
perform the following steps:

a. In the Diagram view, select the Task Flow Call activity.

b. In the Properties window shown in the following illustration, expand the
General section, and then select Static from the Task Flow Reference list.

c. In the Document field, enter the name of the source file for the bounded
task flow to call.

d. In the ID field, enter the bounded task flow ID contained in the XML
source file for the called bounded task flow.

Figure 13-11 Task Flow Call Activity That Invokes a Bounded Task Flow

If you do not know the name of the bounded task flow to invoke and it is
dependent on an end user selection at runtime, perform the following steps:

a. In the Diagram view, select the Task Flow Call activity.

b. In the Properties window, expand the General section, and select
Dynamic from the Task Flow Reference list.

c. Use the Expression Builder to set the value of the Dynamic Task Flow
Reference property field: write an EL expression that identifies the ID of
the bounded task flow to invoke at runtime.

13.2.5.4.2 Specifying Input Parameters on a Task Flow Call Activity

The suggested method for mapping parameters between a task flow call activity and
its called bounded task flow is to first specify input parameter definitions for the
called bounded task flow. Then you can drag the bounded task flow from the

Creating Task Flows

13-20 Developing Mobile Applications with Oracle Mobile Application Framework

Applications window and drop it on the task flow call activity. The task flow call
activity input parameters are created automatically based on the bounded task flow's
input parameter definition. For more information, see Passing Parameters to a
Bounded Task Flow.

You can, of course, first specify input parameters on the task flow call activity. Even if
you have defined them first, they will automatically be replaced based on the input
parameter definitions of the called bounded task flow, once it is associated with the
task flow call activity.

If you have not yet created the called bounded task flow, you may still find it useful to
specify input parameters on the task flow call activity. Doing so at this point allows
you to identify any input parameters you expect the task flow call activity to
eventually map when calling a bounded task flow.

To specify input parameters:

1. Open a task flow file in the Diagram view and select a Task Flow Call activity.

2. In the Properties window, expand the Parameters section, and click Add (+) to
specify a new input parameter in the Input Parameters list as follows:

• Name: enter a name to identify the input parameter.

• Value: enter an EL expression that identifies the parameter value. The EL
expression identifies the location within the calling task flow from which the
parameter value is to be retrieved. For example, enter an EL expression similar
to the following:

#{pageFlowScope.callingTaskflowParm}

By default, all objects are passed by reference. Primitive types (for example,
int, long, or boolean) are always passed by value.

3. After you have specified an input parameter, you can specify a corresponding
input parameter definition for the called bounded task flow. For more
information, see Passing Parameters to a Bounded Task Flow.

13.2.5.4.3 Specifying the Data Control Context

When one task flow calls another, the task flows can either share an instance of a data
control or create separate instances of the same data control allowing the task flows to
maintain independent state.

The internal object that task flows use to share their data controls or to store their own
isolated data control is known as a data control context. When a task flow specifies a
data-control-context value of shared, the called task flow uses the data control
context of the calling task flow rather than creating its own. This allows the called task
flow to share data control instances attached to the data control context. Alternatively,
if a called task flow specifies a data-control-context value of isolated, a new
data control context is created and a new instance of any data controls used by the task
flow is attached to the newly-created data control context.

You can define a data control context for a task flow call activity as follows:

1. In the Diagram view, select a Task Flow Call activity.

2. In the Properties window, expand the General section, and then provide a value
for the Data Control Context property:

Creating Task Flows

Creating MAF AMX Pages 13-21

• Select shared (default) from the drop-down field if the data control is to be
shared with the calling task flow. For example, changes made to a called task
flow are reflected when navigation back to the calling task flow occurs.

• Select isolated from the drop-down field if the task flow is to have its own
set of data control instances.

• Define an EL expression that evaluates to either “shared” or “isolated”.
You set this value in the Edit Property: Data Control Context dialog (see the
following illustration) that you can open by clicking the Property Menu icon
located to the right of the Data Control Context field in the Properties window.

Creating Task Flows

13-22 Developing Mobile Applications with Oracle Mobile Application Framework

Note: To choose the correct value for the data-control-context, consider
looking at your data model and decide how data should be shared across task
flow boundaries.

For information on setting depth of the data control context, see How to Define the
Data Control Context Depth for Task Flows.

13.2.5.5 Adding Task Flow Return Activities
A task flow return activity identifies the point in a MAF AMX application feature's
control flow where a bounded task flow completes and sends control flow back to the
caller. You can use a task flow return activity only within a bounded task flow.

A gray circle around a task flow return activity icon indicates that the activity is an exit
point for a bounded task flow. A bounded task flow can have zero or more task flow
return activities.

Each task flow return activity specifies an outcome that it returns to the calling task
flow.

The outcome returned to an invoking task flow depends on the end user action. You
can configure control flow cases in the invoking task flow to determine the next action
by the invoking task flow. Set the From Outcome property of a control flow case to the
value returned by the task flow return activity's outcome to invoke an action based on
that outcome. This determines control flow upon return from the called task flow.

To add a task flow return activity:

1. Open a bounded task flow file in the Diagram view.

2. From the Components window, select Components > Activities.

3. Drag and drop a Task Flow Return activity onto the diagram.

4. In the Properties window (see Figure 13-12), expand the General section and enter
an outcome in the Name field.

The task flow return activity returns this outcome to the calling task flow when
the current bounded task flow exits. You can specify only one outcome per task
flow return activity. The calling task flow should define control flow rules to
handle control flow upon return. For more information, see How to Define
Control Flows.

5. Expand the Behavior section and choose one of the options in the Reentry list.

If you specify reentry-not-allowed on a bounded task flow, an end user can still
click the back button on the mobile device and return to a page within the
bounded task flow. However, if the end user does anything on the page such as
activating a button, an exception (for example, InvalidTaskFlowReentry) is
thrown indicating the bounded task flow was reentered improperly.

6. From the End Transaction dropdown list, choose one of the following options:

• commit: select to commit the existing transaction to the database.

• rollback: select to roll back the transaction to what it was on entry of the called
task flow. This has the same effect as canceling the transaction, since it rolls
back a new transaction to its initial state when it was started on entry of the
bounded task flow.

Creating Task Flows

Creating MAF AMX Pages 13-23

If you do not specify commit or rollback, the transaction is left open to be
closed by the calling bounded task flow.

Figure 13-12 Configuring Task Flow Return Activity

13.2.5.6 Using Task Flow Activities with Page Definition Files

Page definition files define the binding objects that populate data at runtime. They are
typically used in a MAF AMX application feature to bind page UI components to data
controls. The following task flow activities can also use page definition files to bind to
data controls:

• Method call: You can drag and drop a data control operation from the Data
Controls window onto a task flow to create a method call activity or onto an
existing method call activity. In both cases, the method call activity binds to the
data control operation.

• Router: associating a page definition file with a router activity creates a binding
container. At runtime, this binding container makes sure that the router activity
references the correct binding values when it evaluates the router activity cases' EL
expressions. Each router activity case specifies an outcome to return if its EL
expression evaluates to true. For this reason, only add data control operations to
the page definition file that evaluate to true or false.

• Task flow call: associating a page definition file with a task flow call activity creates
a binding container. At runtime, the binding container is in context when the task
flow call activity passes input parameters. The binding container makes sure that
the task flow call activity references the correct values if it references binding
values when passing input parameters from a calling task flow to a called task
flow.

• View: you cannot directly associate a view activity with a page definition file.
Instead, you associate the page that the view activity references.

If you right-click any of the preceding task flow activities, except view activity, in the
Diagram window for a task flow, JDeveloper displays an option on the context menu
that enables you to create a page definition file if one does not yet exist. If a page
definition file does exist, JDeveloper displays a context menu option for all task flow
activities to go to the page definition file (see Accessing the Page Definition File).

Creating Task Flows

13-24 Developing Mobile Applications with Oracle Mobile Application Framework

JDeveloper also displays the Edit Binding context menu option when you right-click a
method call activity that is associated with a page definition file.

A task flow activity that is associated with a page definition file displays an icon in the
lower-right section of the task flow activity icon.

To associate a page definition file with a task flow activity:

1. In the Diagram view, right-click the task flow activity for which you want to
create a page definition file and select Create Page Definition from the context
menu.

2. In the resulting page definition file, add the bindings that you want your task flow
activity to reference at runtime.

For more information about page definition files, see What You May Need to Know
About Generated Drag and Drop Artifacts.

When the preceding steps are completed, JDeveloper generates a page definition file
for the task flow activity at design time. The file name of the page definition file
comprises the originating task flow and either the name of the task flow activity or the
data control operation to invoke. JDeveloper also generates an EL expression from the
task flow activity to the binding in the created page definition file. At runtime, a
binding container ensures that a task flow activity's EL expressions reference the
correct value.

13.2.6 How to Define the Data Control Context Depth for Task Flows
Configuring the data control context depth allows you to avoid an infinite drill into a
task flow by disabling certain functionality. For example, you can disable drilling into
nested task flow when a particular data control context stack depth is reached.

You can modify the maximum depth of the data control context (see Specifying the
Data Control Context) by setting the maximumDataControlContextDepth
property in your application’s maf-config.xml file, as the following illustration
shows. The default value is 10.

Creating Task Flows

Creating MAF AMX Pages 13-25

You can also define an EL expression of either
#{feature.dataControlContextDepth} or
#{feature.maximumDataControlContextDepth} using the Mobile Application
Framework feature object, as the following illustration shows.

Creating Task Flows

13-26 Developing Mobile Applications with Oracle Mobile Application Framework

In addition, you can use methods of the EmbeddedFeatureContext class that
provide access to the current data control context stack depth as well as the maximum
stack depth. For more information, see Java API Reference for Oracle Mobile Application
Framework.

For more information about the maf-config.xml file, see Table C-1.

For more information about EL expressions, see Creating EL Expressions.

13.2.7 How to Define Control Flows
You use the following task flow components to define the control flow in your MAF
AMX application feature:

• Control Flow Case (see Defining a Control Flow Case)

• Wildcard Control Flow Rule (see Adding a Wildcard Control Flow Rule)

Creating Task Flows

Creating MAF AMX Pages 13-27

13.2.7.1 Defining a Control Flow Case
You can create navigation using the Control Flow Case component, which identifies
how control passes from one activity to the next. To create a control flow, select
Control Flow Case from the Components window. Next, connect the Control Flow
Case to the source activity, and then to the destination activity.

JDeveloper creates the following after you connect a source and target activity:

• control-flow-rule: Identifies the source activity using a from-activity-id.

• control-flow-case: Identifies the destination activity using a to-activity-
id.

To define a control flow case directly in the MAF task flow diagram:

1. Open the task flow source file in the Diagram view.

2. Select Control Flow Case from the Components window.

3. On the diagram, click a source activity and then a destination activity. JDeveloper
adds the control flow case to the diagram. Each line that JDeveloper adds between
an activity represents a control flow case. The from-outcome contains a value that
can be matched against values specified in the action attribute of the MAF AMX UI
components.

4. To change the from-outcome, select the text next to the control flow in the
diagram. By default, this is a wildcard character.

5. To change the from-activity-id (the identifier of the source activity), or the
to-activity-id (the identifier for the destination activity), drag either end of
the arrow in the diagram to a new activity.

13.2.7.2 Adding a Wildcard Control Flow Rule
MAF task flows support the wildcard control flow rule, which represents a control
flow from-activity-id that contains a trailing wildcard (foo*) or a single
wildcard character. You can add a wildcard control flow rule to an unbounded or
bounded task flow by dragging and dropping it from the Components window. To
configure your wildcard control flow rule, use the Properties window.

To add a wildcard control flow rule:

1. Open the task flow source file in the Diagram view.

2. Select Wildcard Control Flow Rule in the Components window and drop it onto
the diagram.

3. Select Control Flow Case in the Components window.

4. In the task flow diagram, drag the control flow case from the wildcard control flow
rule to the target activity, which can be any activity type.

5. By default, the label below the wildcard control flow rule is *. This is the value for
the From Activity ID element. To change this value, select the wildcard control
flow rule in the diagram. In the Properties window for the wildcard control flow
rule, enter a new value in the From Activity ID field. A useful convention is to cast
the wildcard control flow rule in a form that describes its purpose. For example,
enter project*. The wildcard must be a trailing character in the new label.

Creating Task Flows

13-28 Developing Mobile Applications with Oracle Mobile Application Framework

Tip:

You can also change the From Activity ID value in the Overview editor for
the task flow diagram.

6. Optionally, in the Properties window expand the Behavior section and write an EL
expression in the If field that must evaluate to true before control can pass to the
activity identified by To Activity ID.

13.2.7.3 What You May Need to Know About Control Flow Rule Metadata

The following example shows the general syntax of a control flow rule element in the
task flow source file.

<control-flow-rule>
 <from-activity-id>from-view-activity</from-activity-id>
 <control-flow-case>
 <from-action>actionmethod</from-action>
 <from-outcome>outcome</from-outcome>
 <to-activity-id>destinationActivity</to-activity-id>
 <if>#{myBean.someCondition}</if>
 </control-flow-case>
 <control-flow-case>
 ...
 </control_flow-case>
</control-flow-rule>

Control flow rules can consist of the following metadata:

• control-flow-rule: a mandatory wrapper element for control flow case
elements.

• from-activity-id: the identifier of the activity where the control flow rule
originates (for example, source).

A trailing wildcard (*) character in from-activity-id is supported. The rule
applies to all activities that match the wildcard pattern. For example, login*
matches any logical activity ID name beginning with the literal login. If you
specify a single wildcard character in the metadata (not a trailing wildcard), the
control flow automatically converts to a wildcard control flow rule activity in the
diagram. For more information, see Adding a Wildcard Control Flow Rule.

• control-flow-case: a mandatory wrapper element for each case in the control
flow rule. Each case defines a different control flow for the same source activity. A
control flow rule must have at least one control flow case.

• from-action: an optional element that limits the application of the rule to
outcomes from the specified action method. The action method is specified as an
EL binding expression, such as, for example,
#{backing_bean.cancelButton_action}.

In the preceding example, control passes to destinationActivity only if
outcome is returned from actionmethod.

The value in from-action applies only to a control flow originating from a view
activity, not from any other activity types. Wildcards are not supported in from-
action.

• from-outcome: identifies a control flow case that will be followed based on a
specific originating activity outcome. All possible originating activity outcomes
should be accommodated with control flow cases.

Creating Task Flows

Creating MAF AMX Pages 13-29

If you leave both the from-action and the from-outcome elements empty, the
case applies to all outcomes not identified in any other control flow cases defined
for the activity, thus creating a default case for the activity. Wildcards are not
supported in from-outcome.

• to-activity-id: a mandatory element that contains the complete identifier of
the activity to which the navigation is routed if the control flow case is performed.
Each control flow case can specify a different to-activity-id.

• if: an optional element that accepts an EL expression as a value. If the EL
expression evaluates to true at runtime, control flow passes to the activity
identified by the to-activity-id element.

13.2.7.4 What You May Need to Know About Control Flow Rule Evaluation

At runtime, task flows evaluate control flow rules from the most specific to the least
specific match to determine the next transition between activities. Evaluation is based
on the following priority:

1. from-activity-id, from-action, from-outcome: first, searches for a match
in all three elements is performed.

2. from-activity-id, from-outcome: the search is performed in these elements
if no match in all three elements is found.

3. from-activity-id: if search in the preceding combinations did not result in a
match, search is performed in this element only.

13.2.8 What You May Need to Know About MAF Support for Back Navigation
In the task flow example that Figure 13-13 shows, it is possible to take two separate
paths to reach viewD based on the action outcome value (see How to Specify Action
Outcomes Using UI Components): either from viewA to viewB to viewD, or from
viewA to viewC to viewD.

Figure 13-13 Task Flow with Back Navigation

While you could theoretically keep track of which navigation paths had been followed
and then directly implement the __back navigation flow, it would be tedious and
error-prone, especially considering the fact that due to the limited screen space on
mobile devices transitions out of the navigation sequences occur very frequently. MAF
provides support for a built-in __back navigation that enables moving back through
optional paths across a task flow: by applying its "knowledge" of the path taken, MAF
performs the navigation back through the same path. For example, if the initial
navigation occurred from viewA to viewC to viewD, on exercising the __back option
on ViewD MAF would automatically take the end user back to ViewA through
ViewC rather than through ViewB.

For additional information, see the following:

• What You May Need to Know About the ViewController-task-flow.xml File

Creating Task Flows

13-30 Developing Mobile Applications with Oracle Mobile Application Framework

• How to Create and Reference Managed Beans

• Enabling the Back Button Navigation

13.2.9 How to Enable Page Navigation by Dragging
You can enable navigation from one MAF AMX page to another through the use of the
Navigation Drag Behavior operation. For more information, see How to Enable Drag
Navigation.

13.2.10 How to Specify Action Outcomes Using UI Components
Using the Properties window, you can specify an action outcome by setting the
action attribute of one of the following UI components to the corresponding control
flow case from-outcome leading to the next task flow activity:

• Command Button (see How to Use Buttons)

• Command Link (see How to Use Links)

• List Item

You use the UI component's Action field (see Figure 13-14) to make a selection from a
list of possible action outcomes defined in one or more task flow for a specific MAF
AMX page.

Figure 13-14 Setting Actions

A Back action (__back) is automatically added to every list to enable navigation to
the previously visited page.

Note:

A MAF AMX page can be referenced in both bounded and unbounded task
flows, in which case actions outcomes from both task flows are included in the
Action selection list.

13.2.11 How to Create and Reference Managed Beans
You can create and use managed beans in your MAF application to store additional
data or execute custom code. You can use JDeveloper's usual editing mechanism to
reference managed beans and create references to them for applicable fields. For more
information, see Creating and Using Managed Beans.

Creating Task Flows

Creating MAF AMX Pages 13-31

Figure 13-15 shows the Edit option for an action property in the Properties window.
You click this option to invoke the Edit Property dialog that Figure 13-16 shows.

Figure 13-15 Edit Dialog

Figure 13-16 Edit Property Dialog for Action

Table 13-7 lists MAF AMX attributes for which the Edit option in the Properties
window is available.

Table 13-3 Editable Attributes

Property Element

action amx:commandButton

action amx:commandLink

action amx:listItem

action amx:navigationDragBehavior

action dvtm:chartDataItem

action dvtm:ieDataItem

action dvtm:timelineItem

action dvtm:area

action dvtm:marker

Creating Task Flows

13-32 Developing Mobile Applications with Oracle Mobile Application Framework

Table 13-3 (Cont.) Editable Attributes

Property Element

actionListener amx:listItem

actionListener amx:commandButton

actionListener amx:commandLink

binding amx:actionListener

mapBoundsChangeListener dvtm:geographicMap

mapInputListener dvtm:geographicMap

moveListener amx:listView

rangeChangeListener amx:listView

selectionListener amx:listView

selectionListener amx:filmStrip

selectionListener dvtm:areaDataLayer

selectionListener dvtm:pointDataLayer

selectionListener dvtm:treemap

selectionListener dvtm:sunburst

selectionListener dvtm:timelineSeries

selectionListener dvtm:nBox

selectionListener dvtm:areaChart

selectionListener dvtm:barChart

selectionListener dvtm:bubbleChart

selectionListener dvtm:comboChart

selectionListener dvtm:lineChart

selectionListener dvtm:funnelChart

selectionListener dvtm:pieChart

selectionListener dvtm:scatterChart

valueChangeListener amx:inputDate

valueChangeListener amx:inputNumberSlider

valueChangeListener amx:inputText

valueChangeListener amx:selectBooleanCheckbox

Creating Task Flows

Creating MAF AMX Pages 13-33

Table 13-3 (Cont.) Editable Attributes

Property Element

valueChangeListener amx:selectBooleanSwitch

valueChangeListener amx:selectManyCheckbox

valueChangeListener amx:selectManyChoice

valueChangeListener amx:selectOneButton

valueChangeListener amx:selectOneChoice

valueChangeListener amx:selectOneRadio

valueChangeListener dvtm:statusMeterGauge

valueChangeListener dvtm:dialGauge

valueChangeListener dvtm:ratingGauge

viewportChangeListener dvtm:areaChart

viewportChangeListener dvtm:barChart

viewportChangeListener dvtm:comboChart

viewportChangeListener dvtm:lineChart

Clicking Edit for all other properties invokes a similar dialog, but without the Action
Outcome option, as Figure 13-17 shows.

Figure 13-17 Edit Property Dialog for Action Listener

The preceding dialogs demonstrate that you can either create a managed bean, or
select an available action outcome for the action property.

The Action Outcome list shown in Figure 13-16 contains the action outcomes from all
task flows to which a specific MAF AMX page belongs. In addition, this list contains a
__back navigation outcome to go back to the previously visited page (see How to
Specify Action Outcomes Using UI Components for more information). If a page is not
part of any task flow, the only available outcome in the Action Outcome list is
__back. When you select one of the available action outcomes and click OK, the
action property value is updated with the appropriate EL expression, such as the
following for a commandButton:

<amx:commandButton action="goHome"/>

Creating Task Flows

13-34 Developing Mobile Applications with Oracle Mobile Application Framework

The Method Binding option (see Figure 13-16) allows you to either create a new
managed bean class or select an existing one.

To create a new managed bean class:

1. Click New next to the Managed Bean field to open the Create Managed Bean
dialog that Figure 13-18 shows.

Figure 13-18 Create Managed Bean Dialog

MAF supports the following scopes:

• application

• view

• pageFlow

When you declare a managed bean to a MAF application or the MAF AMX
application feature, the managed bean is instantiated and identified in the proper
scope, and the bean's properties are resolved and its methods are called through
EL. For more information, see Creating EL Expressions.

2. Provide the managed bean and class names (see Figure 13-19), and then click OK.

Figure 13-19 Setting Managed Bean Name and Class

Creating Task Flows

Creating MAF AMX Pages 13-35

The following example shows the newly created managed bean class. The task
flow that this MAF AMX page is part of is updated to reference the bean.

<managed-bean id="__3">
 <managed-bean-name>MyBean</managed-bean-name>
 <managed-bean-class>mobile.MyBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Note:

If a given MAF AMX page is part of bounded as well as unbounded task
flows, both of these task flows are updated with the managed bean entry.

3. Click New next to the Method field (see Figure 13-16 and Figure 13-17) to open
the Create Method dialog that Figure 13-20 shows.

Figure 13-20 Create Method Dialog

Use this dialog to provide the managed bean method name (see Figure 13-21).

Figure 13-21 Naming Managed Bean Method

Upon completion, the selected property value is updated with the appropriate EL
expression, such as the following for a commandButton:

<amx:commandButton action="#{MyBean.getMeHome}"/>

The managed bean class is also updated to contain the newly created method, as
the following example shows.

package mobile;

public class MyBean {
 public MyBean() {
 }

 public String getMeHome() {
 // Add event code here...
 return null;
 }
}

Creating Task Flows

13-36 Developing Mobile Applications with Oracle Mobile Application Framework

To select an existing managed bean:

1. Make a selection from the Managed Bean list that Figure 13-22 shows.

Figure 13-22 Selecting Managed Bean

Similar to the action outcomes, the Managed Bean list is populated with managed
beans from all task flows that this MAF AMX page is part of.

Note:

If the MAF AMX page is not part of any task flow, you can still create a
managed bean.

For more information, see the following:

• About the Managed Beans Category

• APIDemo, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer.

13.2.12 How to Specify the Page Transition Style
By defining the page transition style on the task flow, you can specify how MAF AMX
pages transition from one view to another. The behavior of your MAF AMX page at
transition can be as follows:

• fading in

• sliding in from left

• sliding in from right

• sliding up from bottom

• sliding down from top

• sliding in from start

• sliding in from end

• flipping up from bottom

• flipping down from top

Creating Task Flows

Creating MAF AMX Pages 13-37

• flipping from left

• flipping from right

• flipping from start

• flipping from end

• none

Sliding in from start and end, as well as flipping from start and end are used on the
iOS platform and Android 4.2 or later platform to accommodate the right-to-left (RTL)
text direction. It is generally recommended to use the start and end transition style as
opposed to left and right.

You set the transition style by modifying the transition attribute of the control-
flow-case (Control Flow Case component), as the following example shows.

<control-flow-rule id="__1">
 <from-activity-id>products</from-activity-id>
 <control-flow-case id="__2">
 <from-outcome>details</from-outcome>
 <to-activity-id>productdetails</to-activity-id>
 <transition>fade</transition>
 </control-flow-case>
</control-flow-rule>

In the Properties window, the transition attribute is located under Behavior, as
Figure 13-23 shows. The default transition style is slideLeft.

Creating Task Flows

13-38 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-23 Setting Transition Style in Properties Window

Tip:

When defining the task flow, you should specify the control-flow-case's
transition value such that it is logical. For example, if the transition occurs
from left to right with the purpose of navigating back, then the transition
should return to the previous page by sliding right.

13.2.13 What You May Need to Know About Bounded and Unbounded Task Flows
Task flows provide a modular approach for defining control flow in a MAF AMX
application feature. Instead of representing an application feature as a single large
page flow, you can divide it into a collection of reusable task flows. Each task flow
contains a portion of the application feature's navigational graph. The nodes in the
task flows represent activities. An activity node represents a simple logical operation
such as displaying a page, executing application logic, or calling another task flow.
The transitions between the activities are called control flow cases.

There are two types of task flows in MAF AMX:

1. Unbounded Task Flows: a set of activities, control flow rules, and managed beans
that interact to allow the end user to complete a task. The unbounded task flow
consists of all activities and control flows in a MAF AMX application feature that
are not included within a bounded task flow.

Creating Task Flows

Creating MAF AMX Pages 13-39

2. Bounded Task Flows: a specialized form of task flow that, in contrast to the
unbounded task flow, has a single entry point and no exit points. It contains its
own collections of activities and control-flow rules, as well as their own memory
scope and managed-bean life span.

For a description of the activity types that you can add to unbounded or bounded task
flows, see What You May Need to Know About Task Flow Activities and Control
Flows.

A typical MAF AMX application feature contains a combination of one unbounded
task flow created at the time when the application feature is created and one or more
bounded task flows. At runtime, the MAF application can call bounded task flows
from activities that you added to the unbounded task flow.

13.2.13.1 Unbounded Task Flows

A MAF AMX application feature always contains one unbounded task flow, which
provides one or more entry points to that application feature. An entry point is
represented by a view activity. By default, the source file for the unbounded task flow
is the adfc-mobile-config.xml file.

Figure 13-24 displays the diagram for an unbounded task flow from a MAF AMX
application feature. This task flow contains a number of view activities that are all
entry points to the application feature.

Figure 13-24 Unbounded Task Flow Diagram

Consider using an unbounded task flow if the following applies:

• There is no need for the task flow to be called by another task flow.

• The MAF AMX application feature has multiple points of entry.

Creating Task Flows

13-40 Developing Mobile Applications with Oracle Mobile Application Framework

• There is no need for a specifically designated activity to run first in the task flow
(default activity).

An unbounded task flow can call a bounded task flow, but cannot be called by another
task flow.

13.2.13.2 Bounded Task Flows

By default, the IDE proposes a file name for the source file of a bounded task flow (see
How to Create a Task Flow). You can modify this file name to reflect the purpose of
the task to be performed.

A bounded task flow can call another bounded task flow, which can call another, and
so on. There is no limit to the depth of the calls.

Figure 13-25 displays the diagram for a bounded task flow from a MAF AMX
application feature.

Figure 13-25 Bounded Task Flow Diagram

The following are reasons for creating a bounded task flow:

• The bounded task flow always specifies a default activity, which is a single point of
entry that must execute immediately upon entry of the bounded task flow.

• It is reusable within the same or other MAF AMX application features.

• Any managed beans you use within a bounded task flow can be specified in a page
flow scope, making them isolated from the rest of the MAF AMX application

Creating Task Flows

Creating MAF AMX Pages 13-41

feature. These managed beans (with page flow scope) are automatically released
when the task flow completes.

The following is a summary of the main characteristics of a bounded task flow:

• Well-defined boundary: a bounded task flow consists of its own set of private
control flow rules, activities, and managed beans. A caller requires no internal
knowledge of page names, method calls, child bounded task flows, managed
beans, and control flow rules within the bounded task flow boundary. Data
controls can be shared between task flows.

• Single point of entry: a bounded task flow has a single point of entry—a default
activity that executes before all other activities in the task flow.

• Page flow memory scope: you can specify page flow scope as the memory scope for
passing data between activities within the bounded task flow. Page flow scope
defines a unique storage area for each instance of a bounded task flow. Its lifespan
is the bounded task flow, which is longer than request scope and shorter than
session scope.

• Addressable: you can access a bounded task flow by specifying its unique identifier
within the XML source file for the bounded task flow and the file name of the XML
source file.

• Reusable: you can identify an entire group of activities as a single entity, a bounded
task flow, and reuse the bounded task flow in another MAF AMX application
feature within a MAF application.

You can also reuse an existing bounded task flow by calling it.

In addition, you can use task flow templates to capture common behaviors for
reuse across different bounded task flows.

• Parameters and return values: a caller can pass input parameters to a bounded task
flow and accept return values from it (see Passing Parameters to a Bounded Task
Flow and Configuring a Return Value from a Bounded Task Flow).

In addition, you can share data controls between bounded task flows.

• On-demand loading of metadata: bounded task flow metadata is loaded on
demand when entering a bounded task flow.

13.2.13.3 Using Parameters in Task Flows

A task flow´s ability to accept input parameters and return parameter values allows
you to manipulate data in task flows and share data between task flows. Using these
abilities, you can optimize the reuse of task flows in your MAF AMX application
feature.

Figure 13-26 shows a task flow that specifies an input parameter definition to hold
information about a user in a pageFlow scope.

Creating Task Flows

13-42 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-26 Input Parameters in Task Flow

You can specify parameter values using standard EL expressions if you call a bounded
task flow using a task flow call activity. For example, you can specify parameters
using the following syntax for EL expressions:

• #{bindings.bindingId.inputValue}

• #{CustomerBean.zipCode}

Appending inputValue to the EL expression ensures that you assign to the
parameter the value of the binding rather than the actual binding object.

13.2.13.3.1 Passing Parameters to a Bounded Task Flow

A called bounded task flow can accept input parameters from the task flow that calls it
or from a task flow binding.

To pass an input parameter to a bounded task flow, you specify one or more of the
following:

• Input parameters on the task flow call activity in the calling task flow: input
parameters specify where the calling task flow stores parameter values.

• Input parameter definitions on the called bounded task flow: input parameter
definitions specify where the called bounded task flow can retrieve parameter
values at runtime.

Specify the same name for the input parameter that you define on the task flow call
activity in the calling task flow and the input parameter definition on the called
bounded task flow. Do this so you can map input parameter values to the called
bounded task flow.

If you do not specify an EL expression to reference the value of the input parameter,
the EL expression for value defaults to the following at runtime:

#{pageFlowScope.parmName}

where parmName is the value you entered for the input parameter name.

In an input parameter definition for a called bounded task flow, you can specify an
input parameter as required. If the input parameter does not receive a value at

Creating Task Flows

Creating MAF AMX Pages 13-43

runtime or design time, the task flow raises a warning in a log file of the MAF
application that contains the task flow. An input parameter that you do not specify as
required can be ignored during task flow call activity creation.

Task flow call activity input parameters can be passed by reference or passed by value
when calling a task flow using a task flow call activity (see Specifying Input
Parameters on a Task Flow Call Activity). By default, primitive types (for example,
int, long, or boolean) are passed by value (pass-by-value).

A called task flow can return values to the task flow that called it when it exits. For
more information, see Configuring a Return Value from a Bounded Task Flow.

When passing an input parameter to a bounded task flow, you define values on both
the calling task flow and the called task flow.

Before you begin:

• Create a calling and called task flow: the calling task flow can be bounded or
unbounded. The called task flow must be bounded. For more information about
creating task flows, see How to Create a Task Flow.

• Add a task flow call activity to the calling task flow.

Figure 13-27 shows an example where the view activity passes control to the task flow
call activity.

Figure 13-27 Calling Task Flow

To pass an input parameter to a bounded task flow:

1. Open a MAF AMX page that contains an input component where the end user
enters a value that is passed to a bounded task flow as a parameter at runtime.

Note:

The MAF AMX page that you open should be referenced by a view activity in
the calling task flow.

2. Select an input text component on the MAF AMX page where the end user enters
a value at runtime.

3. In the Properties window, expand the Common section and enter a value for the
input text component in the Value field.

You can specify the value as an EL expression (for example,
#{pageFlowScope.inputValue}), either manually or using the Expression
Builder.

Creating Task Flows

13-44 Developing Mobile Applications with Oracle Mobile Application Framework

4. Open the task flow that is to be called by double-clicking it in the Applications
window, then switch the view to the Overview tab and select the Parameters
navigation tab.

5. In the Input Parameter Definition section, click Add (+) to specify a new entry
(see Figure 13-26):

• In the Name field, enter a name for the parameter (for example,
inputParm1).

• In the Value field, enter an EL expression where the parameter value is stored
and referenced (for example, #{pageFlowScope.inputValue}), either
manually or using the Expression Builder.

6. In the Applications window, double-click the calling task flow that contains the
task flow call activity to invoke the called bounded task flow.

7. In the Applications window, drag the called bounded task flow and drop it on
top of the task flow call activity that is located in the diagram of the calling task
flow. This automatically creates a task flow reference to the bounded task flow. As
shown in Figure 13-28, the task flow reference contains the following:

• The bounded task flow ID (id): an attribute of the bounded task flow's task-
flow-definition element.

• The document name that points to the source file for the task flow that contains
the ID.

Figure 13-28 Task Flow Reference

8. In the Properties window for the task flow call activity, expand the Parameters
section to view the Input Parameters section.

• Enter a name that identifies the input parameter: since you dropped the
bounded task flow on a task flow call activity having defined input
parameters, the name should already be specified. You must keep the same
input parameter name.

• Enter a parameter value (for example, #{pageFlowScope.param1}): the
value on the task flow call activity input parameter specifies where the calling
task flow stores parameter values. The value on the input parameter definition
for the called task flow specifies the location from which the value is to be
retrieved for use within the called bounded task flow once it is passed.

Creating Task Flows

Creating MAF AMX Pages 13-45

At runtime, the called task flow can to use the input parameter. If you specified
pageFlowScope as the value in the input parameter definition for the called task
flow, you can use the parameter value anywhere in the called bounded task flow. For
example, you can pass it to a view activity on the called bounded task flow.

Upon completion, JDeveloper writes entries to the source files for the calling task flow
and called task flow based on the values that you select.

The following example shows an input parameter definition specified on a bounded
task flow.

<task-flow-definition id="sourceTaskflow">
...
 <input-parameter-definition>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.parmValue1}</value>
 <class>java.lang.String</class>
 </input-parameter-definition>
...
</task-flow-definition>

The following example shows the input parameter metadata for the task flow call
activity that calls the bounded task flow shown in the preceding example.

<task-flow-call id="taskFlowCall1">
...
 <input-parameter>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.newCustomer}</value>
 <pass-by-value/>
 </input-parameter>
...
</task-flow-call>

At runtime, the task flow call activity calls the bounded task flow and passes it the
value specified by its value element.

13.2.13.3.2 Configuring a Return Value from a Bounded Task Flow

You configure a return value definition on the called task flow and add a parameter to
the task flow call activity in the calling task flow that retrieves the return value at
runtime.

Before you begin:

Create a bounded or unbounded task flow (calling task flow) and a bounded task flow
(called task flow). For more information, see How to Create a Task Flow.

To configure a return value from a called bounded task flow:

1. Open the task flow that is to be called by double-clicking it in the Applications
window, then switch the view to the Overview tab and select the Parameters
navigation tab.

2. In the Return Value Definitions section, click Add (+) to define a return value
(see Figure 13-26):

• In the Name field, enter a name to identify the return value (for example,
returnValue1).

• In the Class field, enter a Java class that defines the data type of the return
value. The default value is java.lang.String.

Creating Task Flows

13-46 Developing Mobile Applications with Oracle Mobile Application Framework

• In the Value field, enter an EL expression that specifies from where to read the
return value (for example, #{pageFlowScope.ReturnValueDefinition}),
either manually or using the Expression Builder.

3. In the Applications window, double-click the calling task flow.

4. With the task flow page open in the Diagram view, select Components > Activities
from the Components window, and then drag and drop a task flow call activity
onto the diagram.

5. In the Properties window for the task flow call activity, expand the Parameters
section, click Add (+) for the Return Values entry, and then add values as follows
to define a return value:

• A name to identify the return value (for example, returnValue1). It must
match the value you entered for the Name field when you defined the return
value definition in step 2.

• A value as an EL expression that specifies where to store the return value (for
example, #{pageFlowScope.ReturnValueDefinition}).

Upon completion, JDeveloper writes entries to the source files for the calling task
flows that you configured.

The following example shows a sample entry that JDeveloper writes to the source file
for the calling task flow.

<task-flow-call id="taskFlowCall1">
 <return-value id="__3">
 <name id="__4">returnValue1</name>
 <value id="__2">#{pageFlowScope.ReturnValueDefinition}</value>
 </return-value>
</task-flow-call>

The following example shows a sample entry that JDeveloper writes to the source file
for the called task flow.

<return-value-definition id="__2">
 <name id="__3">returnValue1</name>
 <value>#{pageFlowScope.ReturnValueDefinition}/</value>
 <class>java.lang.String</class>
</return-value-definition>

At runtime, the called task flow returns a value. If configured to do so, the task flow
call activity in the calling task flow retrieves this value.

13.3 Creating Views
You can start creating a MAF AMX view by doing the following:

• Getting familiar with the MAF AMX page structure (see Interpreting the MAF
AMX Page Structure)

• Editing and previewing a MAF AMX page (see Using UI Editors)

• Dragging and dropping components onto a MAF AMX page (see How to Add UI
Components to a MAF AMX Page)

• Adding data controls to a view (see How to Add Data Controls to a MAF AMX
Page)

Creating Views

Creating MAF AMX Pages 13-47

13.3.1 How to Work with MAF AMX Pages
A MAF AMX page is represented by an XML file whose structure consists of layered
elements defining the page's presentation and functionality.

13.3.1.1 Interpreting the MAF AMX Page Structure

The following is a basic structure of the MAF AMX file:

<amx:view>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 …
 </amx:facet>
 </amx:panelPage>
</amx:view>

With the exception of data visualization components (see Providing Data
Visualization), UI elements are declared under the <amx> namespace.

For more information, see What Happens When You Create a MAF AMX Page.

13.3.1.2 Creating MAF AMX Pages
MAF AMX files are contained in the View Controller project of the MAF application.
You create these files using the Create MAF AMX Page dialog.

MAF offers two alternative ways of creating a MAF AMX page:

• From the New Gallery

• From an existing task flow

Before you begin:

To create a MAF AMX page, the MAF application must include a View Controller
project file (see Getting Started with MAF Application Development).

To create a MAF AMX page from the New Gallery:

1. From the top-level menu in JDeveloper, click File, and then select New > From
Gallery.

2. In the New Gallery, expand the Client Tier node, select Mobile Application
Framework, and then MAF AMX Page (see Figure 13-29). Click OK.

Creating Views

13-48 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-29 Creating MAF AMX Page

3. In the Create MAF AMX Page dialog, enter a name and, if needed, a location for
your new file, as Figure 13-30 shows.

4. Optionally, you may select which facets your new MAF AMX page will include as
a part of the page layout:

• Header

• Primary

• Secondary

• Footer

For more information, see What Happens When You Create a MAF AMX Page
and How to Use a Facet Component.

Note:

When you select or deselect a facet, the image representing the page changes
dynamically to reflect the changing appearance of the page.

Creating Views

Creating MAF AMX Pages 13-49

Figure 13-30 Create MAF AMX Page Dialog

Note:

MAF persists your facet selection and applies it to each subsequent invocation
of the Create MAF AMX Page dialog.

5. Click OK on the Create MAF AMX Page dialog.

To create a MAF AMX page from a View component of the task flow:

1. Open a task flow file in the diagrammer (see Figure 13-7, How to Create a Task
Flow and What You May Need to Know About the MAF Task Flow Diagrammer)

2. Double-click a View component of the task flow to open the Create MAF AMX
Page dialog that Figure 13-30 shows, and then enter a name and, if needed, a
location for your new file. Click OK.

13.3.1.3 What Happens When You Create a MAF AMX Page

When you use the Create MAF AMX Page dialog to create a MAF AMX page,
JDeveloper creates the physical file and adds it to the Web Content directory of the
View Controller project.

In the Applications window that Figure 13-31 shows, the Web Content node
contains a newly created MAF AMX file called department.amx.

Creating Views

13-50 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-31 MAF AMX File in Applications Window

JDeveloper also adds the code necessary to import the component libraries and
display a page. This code is illustrated in the Source editor shown in Figure 13-31.

Figure 13-33 shows how the Preview pane and the generated MAF AMX code would
look like if you selected all facet types listed in the Page Facet section of the Create
MAF AMX Page dialog when creating the page (see Figure 13-32).

Figure 13-32 Creating MAF AMX Page with All Facets

Creating Views

Creating MAF AMX Pages 13-51

Figure 13-33 MAF AMX Page With All Facets

Creating Views

13-52 Developing Mobile Applications with Oracle Mobile Application Framework

In the page created with all the facets selected (see Figure 13-32 and Figure 13-33), note
the following:

• The header is created with an Output Text component because this component is
typically used for the page title.

• The primary and secondary actions are created with Button components because it
is a typical pattern.

• Since there is no single dominant pattern for the footer, it is created with an Output
Text component by default because that component is used in some patterns and it
prevents JDeveloper from generating the initial code with audit violation.

• Adding either the primary or secondary action without adding the header facet still
causes the header section to appear in the Page Facets section of Create MAF AMX
Page dialog.

Figure 13-34 shows the Page Facet section of the Create MAF AMX Page dialog
without any facets selected and Figure 13-35 shows the Preview pane with the
generated MAF AMX code.

Figure 13-34 Creating MAF AMX Page Without Selected Facets

Creating Views

Creating MAF AMX Pages 13-53

Figure 13-35 MAF AMX Page Without Facets

13.3.1.4 Using UI Editors

When the page is first displayed in JDeveloper, it is displayed in the Source editor. To
view the page in a WYSIWYG environment, use the Preview pane (accessed by
clicking the Preview tab).

Figure 13-36 shows the Preview tab selected for a newly created MAF AMX page
called department.amx. This page is blank because it has not yet been populated
with MAF AMX UI components or data controls.

Creating Views

13-54 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-36 The Preview Pane for Newly Created Page

Using the Preview pane's tool bar that Figure 13-36 shows, you can do the following:

• Refresh the display of the MAF AMX page by clicking Refresh Page.

• Stop loading of the page by clicking Stop Loading Page.

• Modify the form factor for the page by selecting a different form factor from the
drop-down list. For more information on form factors, see the "Configuring the
Development Environment for Form Factors" section in Installing Oracle Mobile
Application Framework.

• Modify the scaling of the display by selecting a different percentage value from the
drop-down list. Since mobile device displays can be of various sizes and densities,
the Preview pane allows you to see the effect of scaling on your MAF AMX pages.

Note:

Scaling is available for both Portrait and Landscape mode.

Creating Views

Creating MAF AMX Pages 13-55

• Change orientation for the display to portrait and landscape by selecting Show
Portrait Orientation or Show Landscape Orientation respectively.

• Select the feature content for your MAF AMX page form the dropdown list of
available application features. By default, <No Feature Content Selected> is
displayed.

To view the source for the page in the Source editor, click the Source tab that Figure
13-31 shows. The Structure window, located in the lower left-hand corner of
JDeveloper (shown in Figure 13-31 and Figure 13-36), provides a hierarchical view of
the page. For more information, see Using the Preview.

13.3.1.5 Accessing the Page Definition File

MAF AMX supports JDeveloper's Go to Page Definition functionality that enables
you to navigate to the MAF AMX page definition (see Figure 13-37 and What You May
Need to Know About Generated Drag and Drop Artifacts) by using a context menu
that allows you to locate and edit the binding information quickly.

Figure 13-37 Page Definition File Accessed Through Go To Page Definition

You can invoke the context menu that contains the Go to Page Definition option from
the following:

• Source editor, as Figure 13-38 shows.

Creating Views

13-56 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-38 Go to Page Definition from Source Editor

• Applications window, as Figure 13-39 shows.

Creating Views

Creating MAF AMX Pages 13-57

Figure 13-39 Go to Page Definition from Applications Window

• Structure window, as Figure 13-40 shows.

Creating Views

13-58 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-40 Go to Page Definition from Structure Pane

In addition, you can open the Page Definition file using the Go to Page Definition
shortcut key defined under Tools > Preferences on the main menu, as Figure 13-41
shows.

Creating Views

Creating MAF AMX Pages 13-59

Figure 13-41 Opening Page Definition from Preferences

13.3.1.6 Sharing the Page Contents

You can enable sharing of contents of MAF AMX pages. Fragment (fragment) is a
dynamic declarative component that allows for reusable parts of a MAF AMX page
elements, including attributes and facets, to be inserted into the content represented by
a template. This enables you to standardize the look and feel of your application by
reusing the Fragment template across various pages within the application.

You can drag and drop a MAF AMX fragment file (.amxf) onto a MAF AMX page or
another fragment file to create a reference to the fragment and to define its attributes
(see Configuring the Fragment Content). The fragment file resides inside your project
and you can drop it from the Applications window.

Before you begin:

Ensure that the MAF application includes a View Controller project.

If the View Controller project does not contain a MAF AMX page or MAF AMX page
task flow from which to create a page, you can invoke the Create MAF AMX Page
dialog by double-clicking a view icon in a task flow diagram or by selecting Client
Tier > Mobile Application Framework > MAF AMX Page from the New Gallery (see
Creating MAF AMX Pages).

To create a Fragment from the New Gallery:

Creating Views

13-60 Developing Mobile Applications with Oracle Mobile Application Framework

1. From the top-level menu in JDeveloper, click File, and then select New > From
Gallery.

2. In the New Gallery, expand the Client Tier node, select Mobile Application
Framework, and then MAF AMX Page Fragment (see Figure 13-42). Click OK.

Figure 13-42 Creating New Fragment

3. Complete the Create MAF AMX Page Fragment dialog by entering the file name
and location of the new fragment, as Figure 13-43 shows. Click OK.

Figure 13-43 Create MAF AMX Page Fragment Dialog

Creating Views

Creating MAF AMX Pages 13-61

Upon completion of the dialog, a newly created file opens in the Source editor of
JDeveloper (see Figure 13-44).

Figure 13-44 Fragment File

4. Right-click Fragment in the Structure window and select Insert Inside Fragment.
Choose elements with which to populate the new fragment (see Figure 13-45):
Attribute, Attribute List, Description, Facet, or Popup.

Figure 13-45 Populating Fragment

5. Proceed by defining the Fragment's Attribute and other children by right-clicking
that child in the Structure view and selecting appropriate values (see Figure
13-46).

Creating Views

13-62 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-46 Defining Fragment's Attribute

You can also define the Fragment by dragging and dropping its elements onto the
MAF AMX fragment file by selecting MAF AMX Fragment in the Components
window (see Figure 13-47).

Creating Views

Creating MAF AMX Pages 13-63

Figure 13-47 Dragging and Dropping Fragment Elements

The following example shows a MAF AMX fragment file called fragment1.amxf.

<amx:fragmentDef
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment" id="f1">
 <description id="d1">Description of the fragment</description>
 <facet id="f2">
 <description id="d4">Description of the facet</description>
 <facet-name id="f3">facet1</facet-name>
 </facet>
 <attribute id="a1">
 <description id="d2">Description of an attribute</description>
 <attribute-name id="a2">text</attribute-name>
 <attribute-type id="at1">String</attribute-type>
 <default-value id="d3">defaultValue</default-value>
 </attribute>
 </fragment>
 <amx:panelGroupLayout id="pgl1">
 <amx:facetRef facetName="facet1" id="fr1"/>
 <amx:outputText value="#{text}" id="ot1"/>

Creating Views

13-64 Developing Mobile Applications with Oracle Mobile Application Framework

 </amx:panelGroupLayout>
</amx:fragmentDef>

To include the contents of the fragment in the MAF AMX page, you create a Fragment
component (see How to Use the Fragment Component) and set its src attribute to the
fragment file of your choice. The following example shows a fragment element
added to a MAF AMX page. This element points to the fragment1.amxf as its page
contents. At the same time, the facetRef element, which corresponds to the Facet
Definition MAF AMX component, points to facet1 as its facet (MAF AMX Facet
component). The facetRef element can only be specified in the .amxf file within the
fragmetDef. You can pass attributes to the facetRef by specifying the MAF AMX
attribute element as its child, which allows you to pass an EL variable from the
Fragment to a Facet through the attribute's value.

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:panelGroupLayout layout="vertical"
 id="itemPgl"
 styleClass="amx-style-groupbox">
 <amx:fragment id="f1"
 src="/simpleFragment.amxf"
 <amx:attribute id="a1"
 name="text"
 value="defaultValue" />
 <amx:facet name="facet">
 <amx:outputText id="ot5" value="Fragment"/>
 </amx:facet>
 </amx:fragment>
 </amx:panelGroupLayout>
 </amx:panelPage>
</amx:view>

The Fragment receives all the information through its attributes. In addition to
defining individual attributes, you can define a set of attributes to be passed to the
Fragment as a list which could be iterated through in the Fragment definition. For
more information, see Passing List of Attributes with Metadata to a Fragment.

Note:

EL expressions used within the Fragment file (.amxf) are not validated.

The Fragment supports the following:

• Embedded popups (see How to Use a Popup Component).

• Reusable user interface that can be placed on one or more other parent pages or
fragments. This allows you to create a component that is composed of other
components without bindings.

• Definition of its own facets. This allows you to create a component such as a layout
component that defines a header facet, summary facet, and detail facet, with each
facet having its own style class as well as look and feel.

• Data model with both attributes and collections.

Creating Views

Creating MAF AMX Pages 13-65

MAF sample applications called FragmentDemo and CompGallery demonstrate how
to create and use the fragment. These sample applications are located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

13.3.1.6.1 Configuring the Fragment Content

When you drag and drop a MAF AMX fragment file (.amxf) onto a MAF AMX page
or another fragment file, the Configure Fragment Content dialog (see Figure 13-48)
appears. This dialog displays and allows you to specify all Fragment attributes that are
defined as direct children of the Fragment.

Note:

Facets, Popup components, Attribute Lists and their artifacts are not available
through the Configure Fragment Content dialog.

Figure 13-48 Configure Fragment Content Dialog

Figure 13-49 demonstrates the Configure Fragment Content dialog that appears when
you drag and drop the MAF AMX fragment file whose contents is shown in the
following example onto a MAF AMX file.

<amx:fragmentDef
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment" id="f1">
 <description id="d1">Description of the fragment</description>
 <facet id="f2">
 <description id="d4">Description of the facet</description>
 <facet-name id="f3">facet1</facet-name>
 </facet>
 <attribute id="a1">

Creating Views

13-66 Developing Mobile Applications with Oracle Mobile Application Framework

 <description id="d2">Description of an attribute</description>
 <attribute-name id="a2">text</attribute-name>
 <attribute-type id="at1">String</attribute-type>
 <default-value id="d3">defaultValue</default-value>
 </attribute>
 </fragment>
 <amx:panelGroupLayout id="pgl1">
 <amx:facetRef facetName="facet1" id="fr1"/>
 <amx:outputText value="#{text}" id="ot1"/>
 </amx:panelGroupLayout>
</amx:fragmentDef>

Figure 13-49 Configure Fragment Content Dialog with Values

When completing the dialog, consider the following:

• If you are configuring an attribute defined as required in the Fragment, an asterisks
(*) is displayed at the end of the attribute name.

• The OK button of the dialog is disabled until all of the required attribute values
have been defined.

• If the Fragment attribute's default value is specified and at the same time the
required property is defined and set to true, this attribute is not treated as
required (the default value takes precedence). In this case, the following occurs:

– An audit warning is displayed in the Fragment.

– The Configure Fragment Content dialog does not add the asterisk to the
attribute's name and does not treat this attribute as required.

• The Type column displays the value of the attribute-type element from the
Fragment. It is used as a description of the attribute type (as opposed to the Java
class).

Creating Views

Creating MAF AMX Pages 13-67

Note:

Even though the attribute-type is a required element in the Fragment, it
might appear unspecified in the Fragment being dropped if you failed to
define its value. In this case the dialog displays String as a default value.

• The Value column allows you to specify the value to pass to the Fragment's
attribute. You can enter the value by typing it or clicking on the ellipsis (…) to
invoke the EL Builder and specify an EL expression. If the default element is
present for the given attribute in the Fragment, this default value is specified in the
Value column for the attribute. You can override the default value.

• If the description element is present in the Fragment for this attribute, the
bottom portion of the dialog displays the Attribute Description field when you
switch between rows of different attributes. If the description element is not
defined, the Attribute Description field is blank.

• You cannot add, remove, or reorder attributes using the Configure Fragment
Content dialog.

13.3.1.6.2 Passing List of Attributes with Metadata to a Fragment

When defining the Fragment attributes, MAF allows you to do the following:

• Pass in dynamic attributes.

• Have metadata associated with each attribute (see Passing List of Attributes with
Metadata to a Fragment).

• Loop over attributes in the Fragment definition.

• Nest dynamic attributes in an attribute.

• Pass dynamic attributes from one Fragment to an embedded Fragment.

Table 13-4 lists direct and indirect child elements of the MAF AMX fragment that
enable you to pass lists of attributes.

Table 13-4 Attribute-Related Child Elements of the Fragment

Child Attribute Name Description

attributeList Defines an attribute list to pass to a Fragment. Can be a direct child
of the MAF AMX fragment or attributeSet element.

There can be any number of the child attributeList elements
defined for a parent element.

The attributeList element may be referenced by another
attributeList through its ref attribute.

An attribute list may be passed from one Fragment to another by
reference, in which case both attribute lists must have the same
metadata.

Creating Views

13-68 Developing Mobile Applications with Oracle Mobile Application Framework

Table 13-4 (Cont.) Attribute-Related Child Elements of the Fragment

Child Attribute Name Description

attributeSet Can be specified as a child of the MAF AMX attributeList.

Defines one set of attributes to be used during an iteration of the
MAF AMX attributeListIterator. May be thought of as one
item in an array.

There can be any number of the child attributeSet elements
defined for a parent attributeList element.

attributeListItera
tor

Consumes a MAF AMX attributeList. Behaves similarly to
the MAF AMX Iterator in terms of stamping, but exposes
attributes differently, with its name attribute tying the iterator to
the attributeList.

When one attributeListIterator is nested inside another,
the name must point to the attributeList which is a child of
the attributeSet currently being processed by the
attributeListIterator.

During the iteration, the defined attribute names are exposed as
EL variables. For attributes that are not provided by the caller and
in cases when the attribute has no default value, the value
adf.mf.api.OptionalFragmentArgument is used as an EL
variable. You may test for this condition by using the empty EL
keyword (for example, rendered="#{not (empty
myAttribute)}").

For information on attributes and their values, see Tag Reference for Oracle Mobile
Application Framework.

The following example demonstrates the basic case of passing an Attribute List to a
MAF AMX Fragment.

<amx:fragment src="something.amxf">
 <amx:attributeList name="attributeToPass" ref="nameOfAnOuterAttributeList" />
</amx:fragment>

The following example shows the fragment element with the child attributeList
defined in the MAF AMX file.

<amx:fragment src="summaryView.amxf">
 <amx:attributeList name="attrs">
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.firstName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.lastName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.homePhone}"/>
 <amx:attribute name="displayType" value="phone" />
 </amx:attributeSet>
 </amx:attributeList>
</amx:fragment>

The following example shows nested attributeList elements defined within the
fragment element in the MAF AMX file.

Creating Views

Creating MAF AMX Pages 13-69

<amx:fragment src="summaryView.amxf">
 <amx:attributeList name="attrs">
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.firstName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.lastName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.homePhone}"/>
 <amx:attribute name="displayType" value="phone" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attributeList name="subAttributes">
 <amx:attributeSet>
 <amx:attribute name="attribute"
 value="#{bindings.spouseFirstName}"/>
 <amx:attribute name="displayType"
 value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute"
 value="#{bindings.spouseLastName}"/>
 <amx:attribute name="displayType"
 value="string" />
 </amx:attributeSet>
 </amx:attributeList>
 <amx:attribute name="label" value="Spouse"/>
 </amx:attributeSet>
 </amx:attributeList>
</amx:fragment>

The following example shows how a Fragment with defined Attribute List
components is used within the Fragment Definition. The amxf:attribute-list tag
defines the metadata for an Attribute List. This tag must be declared as a child of the
amxf:fragment or another amxf:attribute-list tag and its valid child tags are
amxf:name, amxf:description, amxf:attribute-list, and
amxf:attribute. The name child is required and must be unique within the current
XML node. Even though the name could be identical to the amxf:attribute that is
declared on the same level, such naming practice is not recommended.

<amx:fragmentDef
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment">
 <attribute-list>
 <name>attributes</name>
 <attribute>
 <attribute-name>attribute</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>displayType</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>label</attribute-name>
 </attribute>
 <attribute-list>
 <name>subAttributes</name>
 <attribute>

Creating Views

13-70 Developing Mobile Applications with Oracle Mobile Application Framework

 <attribute-name>attribute</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>displayType</attribute-name>
 </attribute>
 </attribute-list>
 </attribute-list>
 </fragment>
 ...
 <amx:attributeListIterator name="attributes">
 <amx:panelLabelAndMessage label="#{attribute.hints.label}"
 id="plam1"
 rendered="#{not (empty attribute)}">
 <amx:outputText value="#{attribute.inputValue}" id="ot1"/>
 </amx:panelLabelAndMessage>
 <amx:outputText value="#{label}"
 id="ot2"
 rendered="#{not (empty label)}"/>
 <amx:attributeListIterator name="subAttributes"
 rendered="#{not (empty subAttributes)}">
 <amx:panelLabelAndMessage label="#{attribute.hints.label}"
 id="plam2"
 rendered="#{not (empty attribute)}">
 <amx:outputText value="#{attribute.inputValue}" id="ot3"/>
 </amx:panelLabelAndMessage>
 </amx:attributeListIterator>
 </amx:attributeListIterator>
 ...
</amx:fragmentDef>

The attribute-list, attribute-set, and attribute tags could be used in the
fragment node to define the following:

• Attribute List components that are allowed.

• The information necessary to validate the page that is calling the Fragment.

13.3.2 How to Add UI Components to a MAF AMX Page
After you create a MAF AMX page, you can start adding MAF AMX UI components to
your page.

You can use the Components window to drag and drop MAF AMX components and
MAF AMX data visualization components onto the page. JDeveloper then adds the
necessary declarative page code and sets certain values for component attributes.

The Components window displays MAF AMX components by categories (see Figure
13-50):

• General Controls

• Text and Selection

• Data Views

• Layout, with the following subcategories:

– Interactive Containers and Headers

– Secondary Windows

Creating Views

Creating MAF AMX Pages 13-71

– Core Structure

• Operations, with the following subcategories:

– Behavior

– Listeners

– Validators and Converters

For information on adding and using specific components, see Creating and Using UI
Components.

The Components window also displays MAF AMX data visualization components by
categories (see Figure 13-50):

• Common, with the following subcategories:

– Chart

– Gauge

– Map

– Miscellaneous

• Shared Child Tags

• Other Type-Specific Child Tags, with the following subcategories:

– Chart

– Gauge

– NBox

– Thematic Map

– Timeline

– Sunburst and Treemap

Before you begin:

The MAF application must include a View Controller project, which may or may not
contain a MAF AMX page or MAF AMX page task flow from which to create a page.

As described in Creating MAF AMX Pages, you can invoke the Create MAF AMX
Page dialog by double-clicking a view icon in a task flow diagram or by selecting
Client Tier > Mobile Application Framework > MAF AMX Page from the New
Gallery.

To add a UI component to a page:

1. Open a MAF AMX page in the Source editor (default).

2. In the Components window, use the menu to choose MAF AMX, as Figure 13-50
shows.

Creating Views

13-72 Developing Mobile Applications with Oracle Mobile Application Framework

Tip:

If the Components window is not displayed, choose Window > Components
from the main JDeveloper menu. By default, the Components is displayed in
the upper right-hand corner of JDeveloper.

Creating Views

Creating MAF AMX Pages 13-73

Figure 13-50 MAF AMX Components Window

Creating Views

13-74 Developing Mobile Applications with Oracle Mobile Application Framework

3. Select the component you wish to use, and then drag and drop it onto the Source
editor or Structure window. You cannot drop components onto the Preview pane.

Note:

When building a MAF AMX page, you can only drop UI components into UI
containers such as, for example, a Panel Group Layout.

JDeveloper redraws the page in the Preview pane with the newly added
component.

Alternatively, you can add UI components and data visualization components from
the Structure window as follows:

1. On the Structure window, select an existing component that you want to use as a
starting point for inserting another component.

2. Right-click the selected component and choose one of the options: Insert Before
<component>, Insert Inside <component>, or Insert After <component>, as
Figure 13-51 shows.

Creating Views

Creating MAF AMX Pages 13-75

Figure 13-51 Inserting Components from Structure Window

3. From the context menu, select either MAF AMX or MAF AMX Data
Visualizations:

• If you select MAF AMX, the Insert MAF AMX Item dialog opens allowing
you to choose the UI component to add to the page, as Figure 13-52 shows.

Creating Views

13-76 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-52 Inserting MAF AMX Component

• If you select MAF AMX Data Visualizations, the Insert MAF AMX Data
Visualizations Item dialog opens allowing you to choose the data
visualization component to add to the page, as Figure 13-53 shows.

Figure 13-53 Inserting MAF AMX Data Visualization Component

JDeveloper redraws the page in the Preview pane with the newly added
component.

13.3.2.1 Using the Preview

JDeveloper's Preview provides WYSIWYG support for both the iOS and Android
platforms when you build the user interface using MAF AMX files. As illustrated in
Figure 13-54, splitting a view while adding the MAF AMX components to the MAF

Creating Views

Creating MAF AMX Pages 13-77

AMX file enables you to see both the code view through the Source editor and a UI
view through the Preview pane. As a result, you can modify the source and get instant
feedback in terms of the look and feel of that application on both the iOS and Android
platforms.

Creating Views

13-78 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-54 Splitting Design and Source Views

Creating Views

Creating MAF AMX Pages 13-79

In addition to being able to see the design and source views simultaneously, you can
also open and work with multiple design views at the same time, as well as set each
one to a different platform and screen size. By opening a combination of design views
for different devices, you can develop applications simultaneously for different
platforms and form factors using different orientation. Figure 13-55 shows a split
screen with iPhone on the top and iPad with 75% scaling on the bottom. You can split
the Preview pane using the default split functionality of JDeveloper.

Creating Views

13-80 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-55 Multiple Design Views

Note:

A MAF AMX page is rendered even for an invalid MAF AMX file. Errors are
indicated by the error icon on a component. By moving the mouse over the
error icon, you can view the error details.

Creating Views

Creating MAF AMX Pages 13-81

13.3.2.2 Configuring UI Components
Once you drop UI components onto a page, you can use the Properties window
(displayed by default at the bottom right of JDeveloper) to set attribute values for each
component.

Tip:

If the Properties window is not displayed, choose Window > Properties from
JDeveloper's main menu.

Figure 13-56 shows the Properties window displaying the attributes for an Output
Text component.

Figure 13-56 The Properties Window

To set component attributes:

1. Select the component for which you want to set attributes. You can select the
component in the Structure window or you can select its tag directly in the Source
editor.

2. In the Properties window, expand the section that contains the attribute you wish
to set.

Creating Views

13-82 Developing Mobile Applications with Oracle Mobile Application Framework

Tip:

Some attributes are displayed in more than one section. Entering or changing
the value in one section will also change it in any other sections. You can
search for an attribute by entering the attribute name in the search field at the
top of the Properties window.

3. In the Properties window, either enter values directly into the fields, or if the field
contains a list, use that list to select a value. You can also use the list to the right of
the field, which launches a popup containing tools you can use to set the value.
These tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder or Method Expression Builder where
applicable). For more information about using the Expression Builder, see How to
Create an EL Expression.

When you use the Properties window to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

Tip:

You can always change attribute values by directly editing the page in the
Source editor. To view the page in the Source editor, click the Source tab at the
bottom of the page.

13.3.2.3 What You May Need to Know About Element Identifiers and Their Audit

MAF generates a unique element identifier (id) and automatically inserts it into the
MAF AMX page when an element is added by dropping a component from the
Components window, or by dragging and dropping a data control. This results in a
valid identifier in the MAF AMX page that differentiates each component from others,
possibly similar components within the same page.

MAF provides an identifier audit utility that does the following:

• Checks the presence and uniqueness of identifiers in a MAF AMX page.

• If the identifier is not present or not unique, an error is reported for each required
id attribute of an element.

• Provides an automatic fix to generate a unique id for the element when a problem
with the identifier is reported.

Figure 13-57 and Figure 13-58 show the identifier error reporting in the Source editor
and Structure pane respectively.

Figure 13-57 Element Identifier Audit in Source Editor

Creating Views

Creating MAF AMX Pages 13-83

Figure 13-58 Element Identifier Audit in Structure Pane

In addition to the id, the audit utility checks the popupId and alignId attributes of
the Show Popup Behavior operation (see How to Use a Popup Component).

Figure 13-59 and Figure 13-60 show the Show Popup Behavior's Popup Id and Align
Id attributes error reporting in the Source editor respectively.

Figure 13-59 Popup Id Attribute Audit in Source Editor

Figure 13-60 Align Id Attribute Audit in Source Editor

For more information, see "Auditing and Monitoring Java Projects " in Developing
Applications with Oracle JDeveloper.

Creating Views

13-84 Developing Mobile Applications with Oracle Mobile Application Framework

13.3.3 How to Add Data Controls to a MAF AMX Page
After you create a MAF AMX page, you can start adding data controls to your page.

You can create databound UI components in a MAF AMX view by dragging data
control elements from the Data Controls window and dropping them into either the
Structure window or the Source editor. When you drag an item from the Data
Controls window to either of these places, JDeveloper invokes a context menu of
default UI components available for the item that you dropped. When you select the
desired UI component, JDeveloper inserts it into a MAF AMX page. In addition,
JDeveloper creates the binding information in the associated page definition file. If
such file does not exist, then JDeveloper creates one. MAF provides a visual indicator
for dropping data controls to inform you of the location of the new data control

Note:

A data control can only be dropped at a location allowed by the underlying
XML schema.

Depending on the approach you take, you can insert different types of data controls
into the Structure window of a MAF AMX page.

Dropping an attribute of a collection lets you create various input and output
components. You can also create Button and Link components by dropping a data
control operation on a page.

The respective action listener is added in the MAF AMX Button for each of these
operations.

The data control attributes and operations can be dropped as one or more of the
following MAF AMX UI components (see Creating and Using UI Components):

• Button

• Link

• Input Date

• Input Date with Label

• Input Text

• Input Text with Label

• Output Text

• Output Text with Label

• Iterator

• List Item

• List View

• Select Boolean Checkbox

• Select Boolean Switch

Creating Views

Creating MAF AMX Pages 13-85

• Select One Button

• Select One Choice

• Select One Radio

• Select Many Checkbox

• Select Many Choice

• Convert Date Time

• Convert Number

• Form

• Read Only Form

• Parameter Form

The following Date and Number types are supported:

• java.util.Date

• java.sql.Timestamp

• java.sql.Date

• java.sql.Time

• java.lang.Number

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

For information on how to use the Data Controls window in JDeveloper, see Creating
Databound UI Components from the Data Controls Panel.

13.3.3.1 Dragging and Dropping Attributes

If your MAF AMX page already contains a Panel Form Layout component or does not
require to have all the fields added, you can drop individual attributes from a data
control. Depending on the attributes types, different data binding menu options are
provided as follows:

13.3.3.1.1 Date

This category provides options for creating MAF Input Date and MAF Input Date with
Label controls. Figure 13-61 shows the context menu for adding date controls that
appears when you drag an attribute from the Data Controls window onto the Source
editor or Structure window of a MAF AMX page.

Creating Views

13-86 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-61 Context Menu for Date Controls

13.3.3.1.2 Single Selection

This category provides options for creating the following controls:

• MAF Select One Button

• MAF Select One Choice

• MAF Select One Radio

• MAF Select Boolean Checkbox

• MAF Select Boolean Switch

Figure 13-62 shows the context menu for adding selection controls that appears when
you drag an attribute from the Data Controls window onto the Source editor or
Structure window of a MAF AMX page.

Figure 13-62 Context Menu for Selection Controls

If you are working with an existing MAF AMX page and you select MAF Select One
Button or MAF Select One Choice option, an appropriate version of the Edit List
Binding dialog is displayed (see Figure 13-63). If you drop a control onto a completely
new MAF AMX page, the Edit Action Binding dialog opens instead. After you click
OK, the Edit List Binding dialog opens.

Note:

The Edit List Binding or Edit Boolean Binding dialog appears every time you
drop any data control attributes as any of the single selection or boolean
selection components, respectively.

Creating Views

Creating MAF AMX Pages 13-87

Figure 13-63 Edit List Binding Dialog for Select One Button and Choice Controls

If you select MAF Select One Radio option, another version of the Edit List Binding
dialog is displayed, as shown in Figure 13-64.

Creating Views

13-88 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-64 Edit List Binding Dialog for Select One Radio Control

If you select MAF Select Boolean Checkbox or MAF Select Boolean Switch option,
another version of the Edit List Binding dialog is displayed, as shown in Figure 13-65.

Creating Views

Creating MAF AMX Pages 13-89

Figure 13-65 Edit List Binding Dialog for Select Boolean Checkbox and Switch
Controls

13.3.3.1.3 Text

This category provides options for creating the following controls:

• MAF Input Text

• MAF Input Text with Label

• MAF Output Text

• MAF Output Text with Label

Figure 13-66 shows the context menu for adding text controls that appears when you
drag an attribute from the Data Controls window onto the Source editor or Structure
window of a MAF AMX page.

Figure 13-66 Context Menu for Text Controls

13.3.3.2 Dragging and Dropping Operations

In addition to attributes, you can drag and drop operations and custom methods.
Depending on the type of operation or method, different data binding menu options
are provided, as follows:

Creating Views

13-90 Developing Mobile Applications with Oracle Mobile Application Framework

13.3.3.2.1 Operation

This category is for data control operations. It provides the following options (see
Figure 13-67):

• MAF Button

• MAF Link

• MAF Parameter Form

Figure 13-67 Context Menu for Operations

Note:

If you drop an operation or a method as a child of the List View control, the
context menu does not appear and the List Item is created automatically
because no other valid control can be dropped as a direct child of the List
View control. JDeveloper creates a binding similar to the following for the
generated List Item:

<amx:listItem actionListener="#{bindings.getLocation.execute}"/>

13.3.3.2.2 Method

This category is for custom methods. It provides the following options (see Figure
13-68):

• MAF Button

• MAF Link

• MAF Parameter Form

Figure 13-68 Context Menu for Methods

The MAF Parameter Form option allows you to choose the method or operation
arguments to be inserted in the form, as well as the respective controls for each of the
arguments (see Figure 13-69).

Creating Views

Creating MAF AMX Pages 13-91

Figure 13-69 Edit Form Fields Dialog

The following data bindings are generated after you select the appropriate options in
the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:inputText id="it1"
 value="#{bindings.empId.inputValue}"
 label="#{bindings.empId.hints.label}" />
</amx:panelFormLayout>
<amx:commandButton id="cb1"
 actionListener="#{bindings.ExecuteWithParams1.execute}"
 text="ExecuteWithParams1"
 disabled="#{!bindings.ExecuteWithParams1.enabled}"/>

For more information about generated bindings, see What You May Need to Know
About Generated Bindings.

The following are supported control types for the MAF Parameter Form:

• MAF Input Date

• MAF Input Date with Label

• MAF Input Text

• MAF Input Text with Label

• MAF Output Text with Label

Creating Views

13-92 Developing Mobile Applications with Oracle Mobile Application Framework

13.3.3.3 Dragging and Dropping Collections

You can drag and drop collections onto a MAF AMX page. Depending on the type of
collection, different data binding menu options are provided, as follows:

• Multiple Selection

• Form

• Iterator

• List View

13.3.3.3.1 Multiple Selection

This category provides options for creating multiple selection controls. The following
controls can be created under this category (see Figure 13-70):

• MAF Select Many Checkbox

• MAF Select Many Choice

Figure 13-70 Context Menu for Multiple Selection Controls

If you select either MAF Select Many Choice or MAF Select Many Checkbox as the
type of the control you want to create, the Edit List Binding dialog is displayed (see
Figure 13-71).

Creating Views

Creating MAF AMX Pages 13-93

Figure 13-71 Edit List Binding Dialog for Multiple Selection Controls

13.3.3.3.2 Form

This category is used to create the MAF AMX Panel Form controls.

The following controls can be created under the Form category (see Figure 13-72):

• MAF Form

• MAF Read-only Form

Figure 13-72 Context Menu for Form Controls

If you select MAF Form as the type of the form you want to create, a JDeveloper
wizard is invoked that lets you choose the fields to be inserted in the form, as well as
the respective controls for each of the fields (see Figure 13-73).

Creating Views

13-94 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-73 Edit Form Fields Dialog for MAF Form

The following data bindings are generated after you select the appropriate options in
the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:panelLabelAndMessage id="plam1" label="#{bindings.jobId.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.jobId.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:inputText id="it4"
 value="#{bindings.title.inputValue}"
 label="#{bindings.title.hints.label}" />
 <amx:inputText id="it5"
 value="#{bindings.minSalary.inputValue}"
 simple="true" />
 <amx:inputText id="it3"
 value="#{bindings.maxSalary.inputValue}"
 simple="true" />
</amx:panelFormLayout>

For more information about generated bindings, see What You May Need to Know
About Generated Bindings.

The following are supported controls for MAF Form:

• MAF Input Date

Creating Views

Creating MAF AMX Pages 13-95

• MAF Input Date with Label

• MAF Input Text

• MAF Input Text with Label

• MAF Output Text with Label

Note:

Since MAF Output Text is not a valid Panel Form Layout child element as
defined by the MAF schema, it is not supported.

If you select MAF Read-only Form as the type of the form you want to create, a
JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form,
as well as the respective controls for each of the fields (see Figure 13-74).

Figure 13-74 Edit Form Fields Dialog for MAF Read-only Form

The following data bindings are generated after you select the appropriate options in
the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:panelLabelAndMessage id="plam4"

Creating Views

13-96 Developing Mobile Applications with Oracle Mobile Application Framework

 label="#{bindings.jobId.hints.label}">
 <amx:outputText id="ot4" value="#{bindings.jobId.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam1"
 label="#{bindings.title.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.title.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam3"
 label="#{bindings.minSalary.hints.label}">
 <amx:outputText id="ot3" value="#{bindings.minSalary.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam2"
 label="#{bindings.maxSalary.hints.label}">
 <amx:outputText id="ot2" value="#{bindings.maxSalary.inputValue}" />
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

For more information about generated bindings, see What You May Need to Know
About Generated Bindings.

The MAF Read-only Form only supports the MAF Output Text with Label control.

13.3.3.3.3 Iterator

This provides an option for creating the MAF AMX Iterator with child components
(see Figure 13-75).

Figure 13-75 Context Menu for Iterator Control

If you select MAF Iterator as the type of the control to create, a JDeveloper wizard is
invoked that lets you choose the fields to be inserted in the iterator, as well as the
respective controls for each of the fields, with MAF Output Text w/Label being a
default selection (see Figure 13-76).

Creating Views

Creating MAF AMX Pages 13-97

Figure 13-76 Edit Dialog for MAF Iterator

The following data bindings are generated after you select the appropriate options in
the Edit Iterator dialog:

<amx:iterator id="i1"
 var="row"
 value="#{bindings.jobs.collectionModel}">
 <amx:panelLabelAndMessage id="plam6"
 label="#{bindings.jobs.hints.jobId.label}">
 <amx:outputText id="ot6" value="#{row.jobId}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam5"
 label="#{bindings.jobs.hints.title.label}">
 <amx:outputText id="ot5" value="#{row.title}" />
 </amx:panelLabelAndMessage>
 <amx:inputText id="it1"
 value="#{row.bindings.minSalary.inputValue}"
 label="#{bindings.jobs.hints.minSalary.label}" />
 <amx:inputText id="it2"
 value="#{row.bindings.maxSalary.inputValue}"
 label="#{bindings.jobs.hints.maxSalary.label}" />
</amx:iterator>

For more information about generated bindings, see What You May Need to Know
About Generated Bindings.

Creating Views

13-98 Developing Mobile Applications with Oracle Mobile Application Framework

The following are supported controls for MAF Iterator:

• MAF Input Text

• MAF Input Text with Label

• MAF Output Text

• MAF Output Text with Label

13.3.3.3.4 List View

This provides an option for creating the MAF AMX List View with child components
(see Figure 13-77).

Figure 13-77 Context Menu for List View Control

If you select MAF List View as the type of the control to create, the ListView Gallery
opens that allows you to choose a specific layout for the List View, as Figure 13-78
shows.

Creating Views

Creating MAF AMX Pages 13-99

Figure 13-78 ListView Gallery

Table 13-5 lists the supported List Formats that are displayed in the ListView Gallery.

Table 13-5 List Formats

Format Element Row Values

Simple • Text

Main-Sub Text • Main Text
• Subordinate Text

Start-End • Start Text
• End Text

Creating Views

13-100 Developing Mobile Applications with Oracle Mobile Application Framework

Table 13-5 (Cont.) List Formats

Format Element Row Values

Quadrant • Upper Start Text
• Upper End Text
• Lower Start Text
• Lower End Text

The Variations presented in the ListView Gallery (see Figure 13-78) for a selected list
format consist of options to add either dividers, a leading image, or both:

• Selecting a variation with a leading image adds an Image row to the List Item
Content table (see Figure 13-79).

• Selecting a variation with a divider defaults the Divider Attribute field to the first
attribute in its list rather than the default No Divider value, and populates the
Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 13-78) allow you to
suppress chevrons, use an inset style list, or both:

• The selections do not modify any state in the Edit List View dialog (see Figure
13-79). They only affect the generated MAF AMX markup.

• Selecting a style with the inset list sets the adfmf-listView-insetList style
class on the listView element in the generated MAF AMX markup.

The following is an example of the Simple format with the inset list:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 id="listView2">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected
Variation. The format will include a brief description of the main style, followed by
the details of the selected variation. Four list formats with four variations on each
provide sixteen unique descriptions detailed in Table 13-6.

Table 13-6 List View Formats and Variations

List Format Variation Description

Simple Basic A text field appears at the start side of the list item."

Simple Dividers A text field appears at the start side of the list item, with
items grouped by dividers."

Simple Images A text field appears at the start side of the list item,
following a leading image.

Creating Views

Creating MAF AMX Pages 13-101

Table 13-6 (Cont.) List View Formats and Variations

List Format Variation Description

Simple Dividers and
Images

A text field appears at the start side of the list item,
following a leading image. The list items are grouped
by dividers.

Main-Sub Text Basic A prominent main text field appears at the start side of
the list item with subordinate text below.

Main-Sub Text Dividers A prominent main text field appears at the start side of
the list item with subordinate text below. The list items
are grouped by dividers.

Main-Sub Text Images A prominent main text field appears at the start side of
the list item with subordinate text below, following a
leading image.

Main-Sub Text Dividers and
Images

A prominent main text field appears at the start side of
the list item with subordinate text below, following a
leading image. The list items are grouped by dividers.

Start-End Basic Text fields appear on each side of the list item

Start-End Dividers Text fields appear on each side of the list item, with the
items grouped by dividers.

Start-End Images Text fields appear on each side of the list item,
following a leading image.

Start-End Dividers and
Images

Text fields appear on each side of the list item,
following a leading image. The list items are grouped
by dividers.

Quadrant Basic Text fields appear in the four corners of the list item.

Quadrant Dividers Text fields appear in the four corners of the list item,
with items grouped by dividers.

Quadrant Images Text fields appear in the four corners of the list item,
following a leading image.

Quadrant Dividers and
Images

Text fields appear in the four corners of the list item,
following a leading image. The list items are grouped
by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List
View wizard is invoked that lets you create the contents of a List Item by mapping
binding attributes to the elements of the selected List View format, as Figure 13-79
shows.

Creating Views

13-102 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-79 Edit Dialog for MAF AMX List View

When completing the dialog that Figure 13-79 shows, consider the following:

• The image at the start reflects the main content elements from the selected List
View format and provides a mapping from the schematic representation to the
named elements in the underlying table.

• The read-only cells in the Element column derive from the selected List View
format.

• The editable cells in the Value Binding column are based on the data control node
that was dropped.

• The List Item is generated as either an Output Text or Image component,
depending on whichever is appropriate for the particular element.

• Since the number of elements (rows) is predetermined by the selected List View
format, rows cannot be added or removed.

• The order of elements cannot be modified.

• The List Item Selection indicates the selection mode, which can be either a single
item selection (default) or no selection. The showLinkIcon attribute of the List
View is updated based on the selection mode: if the selection mode is set to None,
showLinkIcon attribute is set to false; otherwise showLinkIcon attribute is
not modified (for example, defaulted to true).

The following attributes of the listView enable the functioning of the selection
mode:

– selectionListener: defines a method reference to a selection listener.

– selectedRowKeys: indicates the selection state for this component.

Creating Views

Creating MAF AMX Pages 13-103

If the Single Item option is chosen, the Edit List View dialog automatically sets
these attributes as follows:

– selectionListener is set to
"bindings.treebinding.collectionModel.makeCurrent"

– selectedRowKeys is set to
"bindings.treebinding.collectionModel.selectedRow"

The selectionListener attribute has the Edit option available from the
Properties window which allows you to create a managed bean class, as well as an
appropriate managed bean method, similar to any other listener attributes (see
Figure 13-80 and Figure 13-81).

Figure 13-80 Editing Selection Listener Attribute

Figure 13-81 Edit Selection Listener Dialog

The following example shows the selection-related attributes of the listView
element in the MAF AMX file. This declaration is generated when Single Item is
chosen in the Edit List View dialog (see Figure 13-79.

Creating Views

13-104 Developing Mobile Applications with Oracle Mobile Application Framework

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 selectionListener=
 "#{bindings.employees.collectionModel.makeCurrent}"
 selectedRowKeys=
 "#{bindings.employees.collectionModel.selectedRow}">
 <amx:listItem id="listItem1">
 ...
 </amx:listItem>
</amx:listView>

If None was chosen as the List Item Selection option in the Edit List View dialog,
then the selectionListener and selectedRowKeys attributes are not set as
they do not have default values and do not appear in the MAF AMX file. At the
same time, the List Item's showLinkIcon attribute is set to false. The following
example demonstrates omitting selection attributes in a List View.

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1" showLinkIcon="false">
 ...
 </amx:listItem>
</amx:listView>

The List View selection state is preserved when navigation occurs to or from a
MAF AMX page.

Note:

The selected row is respected if there is the same iterator ID across MAF AMX
pages. For example, if you drag an Employees collection onto a page as a List
View with employeesIterator as its iterator and then add a Details
page, the selected row will only be respected if the Details page's employees
iterator has its ID set to employeesIterator.

• The default value of the Divider Attribute field is No Divider, in which case the
Divider Mode field is disabled. If you select value other than the default, then you
need to specify Divider Mode parameters, as Figure 13-82 and Figure 13-83 show.

Creating Views

Creating MAF AMX Pages 13-105

Figure 13-82 Specifying Divider Attribute

Figure 13-83 Specifying Divider Mode

For more information on List View dividers, see How to Use List View and List
Item Components.

Creating Views

13-106 Developing Mobile Applications with Oracle Mobile Application Framework

The following MAF AMX markup and data bindings are generated after you select
the appropriate options in the Edit List View dialog:

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 dividerAttribute="key"
 dividerMode="firstLetter"
 selectionListener=
 "#{bindings.employees.collectionModel.makeCurrent}"
 selectedRowKeys=
 "#{bindings.employees.collectionModel.selectedRow}">
 <amx:listItem id="listItem1" >
 <amx:outputText value="#{row.key}"
 styleClass="adfmf-listItem-subtext"
 id="outputText1"/>
 </amx:listItem>
</amx:listView>

For more information about generated bindings, see What You May Need to Know
About Generated Bindings.

The following are supported controls for MAF List View:

– MAF Output Text

– MAF Image

13.3.3.4 What You May Need to Know About Generated Bindings

Table 13-7 shows sample bindings that are added to a MAF AMX page when
components are dropped.

Table 13-7 Sample Data Bindings

Component Data Bindings

Button
<amx:commandButton id="commandButton1"
 actionListener="#{bindings.FindContacts.execute}"
 text="FindContacts"
 disabled="#{!bindings.FindContacts.enabled}">
</amx:commandButton>

Link
<amx:commandLink id="commandLink1"
 actionListener="#{bindings.FindContacts.execute}"
 text="FindContacts"
 disabled="#{!bindings.FindContacts.enabled}">
</amx:commandLink>

Input Date
with Label <amx:inputDate id="inputDate1"

 value="#{bindings.timeStamp.inputValue}"
 label="#{bindings.timeStamp.hints.label}">
</amx:inputDate>

Creating Views

Creating MAF AMX Pages 13-107

Table 13-7 (Cont.) Sample Data Bindings

Component Data Bindings

Input Date
<amx:inputDate id="inputDate1"
 value="#{bindings.timeStamp.inputValue}">
</amx:inputDate>

Input Text
with Label <amx:inputText id="inputText1"

 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.hints.label}">
</amx:inputText>

Input Text
<amx:inputText id="inputText1"
 value="#{bindings.contactData.inputValue}"
 simple="true">
</amx:inputText>

Output Text
<amx:outputText id="outputText1"
 value="#{bindings.contactData.inputValue}">
</amx:outputText>

Output Text
with Label <amx:panelLabelAndMessage id="panelLabelAndMessage1"

 label="#{bindings.contactData.hints.label}">
 <amx:outputText id="outputText1"
 value="#{bindings.contactData.inputValue}"/>
</amx:panelLabelAndMessage>

Select
Boolean
Checkbox

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
</amx:selectBooleanCheckbox>

Select
Boolean
Switch

<amx:selectBooleanSwitch id="selectBooleanSwitch"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
</amx:selectBooleanSwitch>

Select One
Button <amx:selectOneButton id="selectOneButton1"

 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 required="#{bindings.contactData.hints.mandatory}">
 <amx:selectItems value="#{bindings.contactData.items}"/>
</amx:selectOneButton>

Creating Views

13-108 Developing Mobile Applications with Oracle Mobile Application Framework

Table 13-7 (Cont.) Sample Data Bindings

Component Data Bindings

Select One
Choice <amx:selectOneChoice id="selectOneChoice1"

 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.contactData.items}"/>
</amx:selectOneChoice>

Select Many
Checkbox <amx:selectManyCheckbox id="selectManyCheckbox1"

 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.AssetView.items}"/>
</amx:selectManyCheckbox>

Select One
Radio <amx:selectOneRadio id="selectOneRadio1"

 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 <amx:selectItems id="selectItems1"
 value="#{bindings.contactData.items}"/>
</amx:selectOneRadio>

Select Many
Choice <amx:selectManyChoice id="selectManyChoice1"

 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.AssetView.items}"/>
</amx:selectManyChoice>

13.3.3.5 What You May Need to Know About Generated Drag and Drop Artifacts

The first drag and drop event generates the following directories and files:

Creating Views

Creating MAF AMX Pages 13-109

Figure 13-84 shows a sample DataBindings.cpx file generated upon drag and drop.

Figure 13-84 DataBindings.cpx File in Source View

Creating Views

13-110 Developing Mobile Applications with Oracle Mobile Application Framework

The DataBindings.cpx files define the binding context for the entire MAF AMX
application feature and provide the metadata from which the binding objects are
created at runtime. A MAF AMX application feature may have more than one
DataBindings.cpx file if a component was created outside of the project and then
imported. These files map individual MAF AMX pages to page definition files and
declare which data controls are being used by the MAF AMX application feature. At
runtime, only the data controls listed in the DataBindings.cpx files are available to
the current MAF AMX application feature.

JDeveloper automatically creates a DataBindings.cpx file in the default package of
the ViewController project when you for the first time use the Data Controls window
to add a component to a page or an operation to an activity. Once the
DataBindings.cpx file is created, JDeveloper adds an entry for the first page or task
flow activity. Each subsequent time you use the Data Controls window, JDeveloper
adds an entry to the DataBindings.cpx for that page or activity, if one does not
already exist.

Once JDeveloper creates a DataBindings.cpx file, you can open it in the Source
view (see Figure 13-84) or the Overview editor.

The Page Mappings (pageMap) section of the file maps each MAF AMX page or task
flow activity to its corresponding page definition file using an ID. The Page Definition
Usages (pageDefinitionUsages) section maps the page definition ID to the
absolute path for page definition file in the MAF AMX application feature. The Data
Control Usages (dataControlUsages) section identifies the data controls being used
by the binding objects defined in the page definition files. These mappings allow the
binding container to be initialized when the page is invoked.

You can use the Overview editor to change the ID name for page definition files or
data controls by double-clicking the current ID name and editing inline. Doing so will
update all references in the MAF AMX application feature. Note, however, that
JDeveloper updates only the ID name and not the file name. Ensure that you do not
change a data control name to a reserved word.

You can also click the DataBindings.cpx file's element in the Structure window
and then use the Properties window to change property values.

Figure 13-85 shows a sample PageDef file generated upon drag and drop.

Creating Views

Creating MAF AMX Pages 13-111

Figure 13-85 PageDef File

Page definition files define the binding objects that populate the data in MAF AMX UI
components at runtime. For every MAF AMX page that has bindings, there must be a
corresponding page definition file that defines the binding objects used by that page.
Page definition files provide design-time access to all the bindings. At runtime, the
binding objects defined by a page definition file are instantiated in a binding
container, which is the runtime instance of the page definition file.

The first time you use the Data Controls window to add a component to a page,
JDeveloper automatically creates a page definition file for that page and adds
definitions for each binding object referenced by the component. For each subsequent
databound component you add to the page, JDeveloper automatically adds the
necessary binding object definitions to the page definition file.

By default, the page definition files are located in the mobile.PageDefs package in
the Application Sources node of the ViewController project. If the corresponding MAF
AMX page is saved to a directory other than the default, or to a subdirectory of the
default, then the page definition is also be saved to a package of the same name.

For information on how to open a page definition file, see Accessing the Page
Definition File. When you open a page definition file in the Overview editor, you can
view and configure bindings, contextual events, and parameters for a MAF AMX page
using the following tabs:

• Bindings and Executables: this tab shows three different types of objects: bindings,
executables, and the associated data controls.

Note:

Data controls do not display unless you select a binding or executable.

Creating Views

13-112 Developing Mobile Applications with Oracle Mobile Application Framework

By default, the model binding objects are named after the data control object that
was used to create them. If a data control object is used more than once on a page,
JDeveloper adds a number to the default binding object names to keep them
unique.

• Contextual Events: you can create contextual events to which artifacts in a MAF
AMX application feature can subscribe.

• Parameters: parameter binding objects declare the parameters that the page
evaluates at the beginning of a request. You can define the value of a parameter in
the page definition file using static values or EL expressions that assign a static
value.

When you click an item in the Overview editor (or the associated node in the
Structure window), you can use the Properties window to view and edit the attribute
values for the item, or you can edit the XML source directly by clicking the Source tab.

13.3.3.6 Using the MAF AMX Editor Bindings Tab

JDeveloper's Bindings tab (see Figure 13-86) is available in the MAF AMX Editor. It
displays the data bindings defined for a specific MAF AMX page. If you select a
binding, its relationship to the underlying Data Control are shown and the link to the
PageDef file is provided.

Creating Views

Creating MAF AMX Pages 13-113

Figure 13-86 Bindings Tab

13.3.3.7 What You May Need to Know About Removal of Unused Bindings

When you delete or cut a MAF AMX component from the Structure window, unused
bindings are automatically removed from your page.

Note:

Deleting a component from the Source editor does not trigger the removal of
bindings.

Figure 13-87 demonstrates the deletion of a List View component that references
bindings. Upon deletion, the related binding entry is automatically removed from the
corresponding PageDef.xml file.

Creating Views

13-114 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-87 Deleting Bound Components from Page

Figure 13-88 demonstrates the removal of the List View component by cutting it from
the page.

Creating Views

Creating MAF AMX Pages 13-115

Figure 13-88 Cutting Bound Components from Page

After clicking Cut, you are presented with the Confirm Removal of Bindings dialog
that prompts you to choose whether or not to delete the corresponding bindings, as
shown in Figure 13-89.

Creating Views

13-116 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 13-89 Confirm Removal of Bindings Dialog

13.3.4 What You May Need to Know About the Server Communication
The security architecture used by MAF guarantees that the browser hosting a MAF
AMX page does not have access to the security information needed to make
connections to a secure server to obtain its resources. This has a direct impact on AJAX
calls made from MAF AMX pages: these calls are not supported, which poses
limitations on the use of JavaScript from within MAF AMX UI components.
Communication with the server must occur from the embedded Java code layer.

Creating Views

Creating MAF AMX Pages 13-117

Creating Views

13-118 Developing Mobile Applications with Oracle Mobile Application Framework

14
Creating the MAF AMX User Interface

This chapter describes how to create the user interface for MAF AMX pages.

This chapter includes the following sections:

• Introduction to Creating the User Interface for MAF AMX Pages

• Designing the Page Layout

• Creating and Using UI Components

• Enabling Gestures

• Providing Data Visualization

• Styling UI Components

• Localizing UI Components

• Understanding MAF Support for Accessibility

• Validating Input

• Using Event Listeners

14.1 Introduction to Creating the User Interface for MAF AMX Pages
MAF provides a set of UI components and operations that enable you to create MAF
AMX pages which behave appropriately for both the iOS and Android user
experience.

MAF AMX adheres to the typical JDeveloper development experience by allowing you
to drag UI components and operations onto a Source editor or Structure window from
either the Components window or the Data Controls window. In essence, MAF AMX
UI components render HTML equivalents of the native components on the iOS and
Android platforms, with their design-time behavior in JDeveloper being similar to
components used by other technologies. In addition, the UI components are integrated
with MAF's controller and model for declarative navigation and data binding.

Note:

When developing interfaces for mobile devices, always be aware of the fact
that screen space is very limited. In addition, touchscreen support is not
available on some mobile devices.

For more information, see the following:

• Creating MAF AMX Pages

Creating the MAF AMX User Interface 14-1

• Using Bindings and Creating Data Controls in MAF AMX

• Creating Custom MAF AMX UI Components

14.2 Designing the Page Layout
MAF AMX provides layout components (listed in Table 14-1) that let you arrange UI
components in a page. Usually, you begin building pages with these components, and
then add other components that provide other functionality either inside these
containers, or as child components to the layout components. Some of these
components provide geometry management functionality, such as the capability to
stretch when placed inside a component that stretches.

Table 14-1 MAF AMX Page Management, Layout, and Spacing Components

Component Type Description

View Core Page Structure
Component

Creates a view element in a MAF AMX file.
Automatically inserted into the file when the file
is created. For more information, see How to Use
a View Component.

Panel Page Core Page Structure
Component

Creates a panelPage element in a MAF AMX
file. Defines the central area in a page that scrolls
vertically between the header and footer areas.
For more information, see How to Use a Panel
Page Component.

For more information about MAF AMX files, see
Creating MAF AMX Pages.

Facet Core Page Structure
Component

Creates a facet element in a MAF AMX file.
Defines an arbitrarily named facet on the parent
component. For more information, see How to
Use a Facet Component.

Fragment Core Page Structure
Component

Creates a fragment element in a MAF AMX
file. Enables sharing of the page contents. For
more information, see How to Use the Fragment
Component.

Facet Definition Core Page Structure
Component

Creates a facetRef element in a MAF AMX
Fragment file. Used inside a page fragment
definition (fragmentDef) to reference a facet
defined in the page fragment usage. For more
information, see How to Use a Facet
Component.

Panel Group
Layout

Page Layout
Component

Creates a panelGroupLayout element in a
MAF AMX file. Groups child components either
vertically or horizontally. For more information,
see How to Use a Panel Group Layout
Component.

Panel Form
Layout

Page Layout
Component

Creates a panelFormLayout element in a MAF
AMX file. Positions components, such as Input
Text, so that their labels and fields line up
horizontally or above each component. For more
information, see How to Use a Panel Form
Layout Component.

Designing the Page Layout

14-2 Developing Mobile Applications with Oracle Mobile Application Framework

Table 14-1 (Cont.) MAF AMX Page Management, Layout, and Spacing Components

Component Type Description

Panel Label And
Message

Page Layout
Component

Creates a panelLabelAndMessage element in
a MAF AMX file. Lays out a label and its
children. For more information, see How to Use
a Panel Label And Message Component.

Panel Stretch
Layout

Page Layout
Component

Creates a panelStretchLayout element in a
MAF AMX file. Allows placement of a panel on
each side of another panel. For more
information, see How to Use a Panel Stretch
Layout Component.

Popup Secondary Window Creates a popup element in a MAF AMX file.
Displays a popup window. For more
information, see How to Use a Popup
Component.

Panel Splitter Interactive Page
Layout Container

Creates a panelSplitter element in a MAF
AMX file. Allows to display multiple content
areas that may be controlled by a left-side
navigation pane. For more information, see How
to Use a Panel Splitter Component.

Panel Item Interactive Page
Layout Component

Creates a panelItem element in a MAF AMX
file. Represents the content area of a Panel
Splitter. For more information, see How to Use a
Panel Splitter Component.

Deck Page Layout
Component

Creates a deck element in a MAF AMX file.
Shows one of its child components at a time. For
more information, see How to Use a Deck
Component.

Flex Layout Page Layout
Component

Creates a flexLayout element in a MAF AMX
file. Provides flexible flow for components
depending on the available space. For more
information, see How to Use a Flex Layout
Component.

Spacer Page Layout
Component

Creates a spacer element in a MAF AMX file.
Creates an area of blank space represented by a
spacer element in a MAF AMX file. For more
information, see How to Use a Spacer
Component.

Table Layout Page Layout
Component

Creates a tableLayout element in a MAF
AMX file. Represents a table consisting of rows.
For more information, see How to Use a Table
Layout Component.

Row Layout Page Layout
Component

Creates a rowLayout element in a MAF AMX
file. Represents a row consisting of cells in a
Table Layout component. For more information,
see How to Use a Table Layout Component.

Designing the Page Layout

Creating the MAF AMX User Interface 14-3

Table 14-1 (Cont.) MAF AMX Page Management, Layout, and Spacing Components

Component Type Description

Cell Format Page Layout
Component

Creates a cellFormat element in a MAF AMX
file. Represents a cell in a Row Layout
component. For more information, see How to
Use a Table Layout Component.

Masonry Layout Page Layout
Container

Creates a masonryLayout element in a MAF
AMX file. Presents its child components as tiles
arranged in columns and rows. For more
information, see How to Use a Masonry Layout
Component.

Accessory
Layout

Page Layout
Component

Creates an accessoryLayout element in a
MAF AMX file. Used within List View
component to enable dragging of the content left
or right to reveal optional content areas. For
more information, see How to Use an Accessory
Layout Component.

You add a layout component by dragging and dropping it onto a MAF AMX page
from the Components window (see How to Add UI Components to a MAF AMX
Page). Then you use the Properties window to set the component's attributes (see
Configuring UI Components). For information on attributes of each particular
component, see Tag Reference for Oracle Mobile Application Framework.

The following example demonstrates several page layout elements defined in a MAF
AMX file.

Note:

You declare the page layout elements under the <amx> namespace.

<amx:panelPage id="pp1">
 <amx:outputText id="outputText1"
 value="Sub-Section Title 1"
 styleClass="adfmf-text-sectiontitle"/>
 <amx:panelFormLayout id="panelFormLayout1" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="Name">
 <amx:commandLink id="commandLink1" text="Jane Don" action="editname" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage2" label="Street Address">
 <amx:commandLink id="commandLink2"
 text="123 Main Street"
 action="editaddr" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage3" label="Phone">
 <amx:outputText id="outputText2" value="212-555-0123" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:outputText id="outputText3"
 value="Sub-Section Title 2"
 styleClass="adfmf-text-sectiontitle" />
 <amx:panelFormLayout id="panelFormLayout2" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage4" label="Type">

Designing the Page Layout

14-4 Developing Mobile Applications with Oracle Mobile Application Framework

 <amx:commandLink id="commandLink3" text="Personal" action="edittype" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="Anniversary">
 <amx:outputText id="outputText4" value="November 22, 2005" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:panelFormLayout id="panelFormLayout3" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage5" label="Date Created">
 <amx:outputText id="outputText5" value="June 20, 2011" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
</amx:panelPage>

Figure 14-1 Page Layout Components at Design Time

You use the standard Cascading Style Sheets (CSS) to manage visual presentation of
your layout components. CSS are located in the Web Content/css directory of your
ViewController project, with default CSS provided by MAF. For more information, see
How to Use Component Attributes to Define Style.

The user interface created using MAF AMX displays correctly in both the left-to-right
(LTR) and right-to-left (RTL) language environments. In the latter case, the
components originate on the right-hand side of the screen instead of on the left-hand
side. Some of the MAF AMX layout components, such as the Popup (see How to Use a
Popup Component), Panel Item, and Panel Splitter (see How to Use a Panel Splitter
Component) can be configured to enable specific RTL behavior. For more information

Designing the Page Layout

Creating the MAF AMX User Interface 14-5

about the RTL configuration of MAF AMX pages, see Enabling Gestures and How to
Specify the Page Transition Style.

Note:

The right-to-left text direction is not supported on Android prior to version
4.2.

A MAF sample application called UILayoutDemo demonstrates how to use layout
components in conjunction with such MAF AMX UI components as a Button, to
achieve some of the typical layouts that follow common patterns. In addition, this
sample application shows how to work with styles to adjust the page layout to a
specific pattern. The UILayoutDemo application is located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

14.2.1 How to Use a View Component
A View (view element in a MAF AMX file) is a core page structure component that is
automatically inserted into a MAF AMX file when the file is created. This component
provides a hierarchical representation of the page and its structure and represents a
single MAF AMX page.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.2 How to Use a Panel Page Component
A Panel Page (panelPage element in a MAF AMX file) is a component that allows
you to define a scrollable area of the screen for laying out other components.

By default, when you create a MAF AMX page, JDeveloper automatically creates and
inserts a Panel Page component into the page. When you add components to the page,
they will be inserted inside the Panel Page component.

To prevent scrolling of certain areas (such as a header and footer of the page) and
enable stretching when orientation changes, you can specify a Facet component for
your Panel Page. The Panel Page's header Facet includes the title placed in the
Navigation Bar of each page. For information about other types of Facet components
that the Panel Page can contain, see How to Use a Facet Component.

The following example shows the panelPage element defined in a MAF AMX file.
This Panel Page contains a header Facet.

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 </amx:facet>
</amx:panelPage>

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.3 How to Use a Panel Group Layout Component
The Panel Group Layout component is a basic layout component that lays out its
children horizontally or vertically. In addition, there is a wrapping layout option that
enables child components to flow across and down the page.

To create the Panel Group Layout component, use the Components window:

Designing the Page Layout

14-6 Developing Mobile Applications with Oracle Mobile Application Framework

1. In the Components window, select MAF AMX > Layout, and then drag and drop a
Panel Group Layout to the MAF AMX page.

2. Insert the desired child components into the Panel Group Layout component.

3. To add spacing between adjacent child components, insert the Spacer (spacer)
component.

4. Use the Properties window to set the component attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

The following example shows the panelGroupLayout element defined in a MAF
AMX file.

<amx:panelGroupLayout styleClass="prod" id="pgl1">
 <amx:outputText styleClass="prod-label" value="Screen Size:" id="ot1"/>
</amx:panelGroupLayout>

14.2.3.1 Customizing the Scrolling Behavior
Scrolling behavior of the Panel Group Layout component is defined by its
scrollPolicy attribute which can be set to auto (default), none, or scroll. By
default, this behavior matches the one defined in the active skin.

To disable scrolling regardless of the behavior defined in the active skin, you set the
scrollPolicy attribute to none. When the Panel Group Layout component is not
scrollable, its content is not constrained.

To enable scrolling regardless of the behavior defined in the active skin, you set the
scrollPolicy attribute to scroll. If the Panel Group Layout component is
scrollable, the scrolling is provided when the component's dimensions are constrained.

Since scrolling consumes a lot of memory and may lead to the application crashing,
you should minimize its use. In the mobileAlta skin (see What You May Need to
Know About Skinning), scrolling of the Panel Group Layout, Panel Form Layout (see
How to Use a Panel Form Layout Component), and Table Layout (see How to Use a
Table Layout Component) is disabled. It is recommended that you use the
mobileAlta skin for your application and limit instances of setting the
scrollPolicy to scroll to when it is necessary. To simulate the scrolling behavior
for the Panel Form Layout and Table Layout, you can enclose them within a scrollable
Panel Group Layout component when scrolling is required.

For more information, see What You May Need to Know About Memory
Consumption by MAF AMX UI Components.

14.2.4 How to Use a Panel Form Layout Component
The Panel Form Layout (panelFormLayout) component positions components so
that their labels and fields align horizontally. In general, the main content of the Panel
Form Layout component is comprised of input components (such as Input Text) and
selection components (such as Choice). If a child component with a label attribute
defined is placed inside the Panel Form Layout component, the child component's
label and field are aligned and sized based on the Panel Form Layout definitions.
Within the Panel Form Layout, the label area can either be displayed on the start side
of the field area or on a separate line above the field area. Separate lines are used if the
labelPosition attribute of the Panel Form Layout is set to topStart, topCenter,
or topEnd. Otherwise the label area appears on the start side of the field area. Within
the label area, the labelPosition attribute controls where the label text can be
aligned:

Designing the Page Layout

Creating the MAF AMX User Interface 14-7

• to the start side (labelPosition="start" or labelPosition="topStart")

• to the center (labelPosition="center" or labelPosition="topCenter")

• to the end side (labelPosition="end" or labelPosition="topEnd")

Within the field area, the fieldHalign attribute controls where the field content can
be aligned:

• to the start side (fieldHalign="start")

• to the center (fieldHalign="center")

• to the end side (fieldHalign="end")

Within the Panel Form Layout, the child components can be placed in one or more
columns using maxColumns and rows attributes. These attributes should be used in
conjunction with labelWidth, fieldWidth, labelPosition, and
showHorizontalDividers attributes to obtain the optimal multi-column layout.

Note:

To switch from a single-column to multi-column layout, the value of the rows
attribute must be greater than 1, regardless of the value to which the
maxColumns attribute is set. When the rows attribute is specified, the
maxColumns attribute restricts the layout to that number of columns as a
maximum; however, there are as many rows as are required to lay out the
child components.

To add the Panel Form Layout component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Panel Form Layout component to the MAF AMX page.

2. In the Properties window, set the component's attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

The following example shows the panelFormLayout element defined in a MAF
AMX file.

<amx:panelFormLayout styleClass="prod" id="pfl1">
 <amx:panelLabelAndMessage label="Type" id="plm1">
 <amx:commandLink text="Personal" action="edittype" id="cl1"/>
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

14.2.5 How to Use a Panel Stretch Layout Component
The Panel Stretch Layout (panelStretchLayout) component manages three child
Facet components: top, bottom, and center, as shown in the following example. You
can use any number and combination of these facets.

<amx:panelStretchLayout id="psl1">
 <amx:facet name="top">
 </amx:facet>
 <amx:facet name="center">
 </amx:facet>
 <amx:facet name="bottom">

Designing the Page Layout

14-8 Developing Mobile Applications with Oracle Mobile Application Framework

 </amx:facet>
</amx:panelStretchLayout>

If an attempt is made to represent the Panel Stretch Layout component as a set of three
rectangles stacked one on top of another, the following would apply:

• The height of the top rectangle is defined by the natural height of the top facet.

• The height of the bottom rectangle is defined by the natural height of the bottom
facet.

• The rest of the vertical space is distributed to the rectangle in the middle. If the
height of this rectangle is smaller than the value defined for Center.height and
the scrollPolicy attribute of the panelStretchLayout is set to either scroll
or auto, then scroll bars are added.

To add the Panel Stretch Layout component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Panel Stretch Layout onto the MAF AMX page.

2. Review the created child Facet components and, if necessary, remove some of
them.

3. Use the Properties window to set the component attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

14.2.6 How to Use a Panel Label And Message Component
Use the Panel Label And Message (panelLabelAndMessage) component to place a
component which does not have a label attribute. These components usually include
an Output Text, Button, or Link.

To add the Panel Label And Message component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Panel Label And Message component into a Panel Group Layout component.

2. In the Properties window, set the component's attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

The following example shows the panelLabelAndMessage element defined in a
MAF AMX file. The label attribute is used for the child component.

<amx:panelLabelAndMessage label="Phone" id="plm1">
 <amx:outputText value="212-555-0123" id="ot1"/>
</amx:panelLabelAndMessage>

14.2.7 How to Use a Facet Component
You use the Facet (facet) component to define an arbitrarily named facet, such as a
header or footer, on the parent layout component. The position and rendering of the
Facet are determined by the parent component.

The MAF AMX page header is typically represented by the Panel Page component (see
How to Use a Panel Page Component) in combination with the Header, Primary, and
Secondary facets:

• Header facet: contains the page title.

Designing the Page Layout

Creating the MAF AMX User Interface 14-9

• Primary Action facet: represents an area that appears in the left corner of the
header bar and typically hosts Button or Link components, but can contain any
component type.

• Secondary Action facet: represents an area that appears in the right corner of the
header bar and typically hosts Button or Link components, but can contain any
component type.

The MAF AMX page footer is represented by the Panel Page component (see How to
Use a Panel Page Component) in combination with the footer facet:

• Footer facet: represents an area that appears below the content area and typically
hosts Button or Link components, but can contain any component type.

The following example shows the facet element declared inside the Panel Page
container. The type of the facet is always defined by its name attribute (see Table 14-2).

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2" icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action"move"/>
 </amx:facet>
</amx:panelPage>

Table 14-2 lists predefined Facet types that you can use with specific parent
components.

Table 14-2 Facet Types and Parent Components

Parent Component Facet Type (name)

Panel Page (panelPage) header, footer, primary,
secondary

List View (listView) header, footer

Carousel (carousel) nodeStamp

Panel Splitter (panelSplitter) navigator

Panel Stretch Layout (panelStretchLayout) top, center, bottom

Data Visualization Components.

For more information, see Providing Data
Visualization.

dataStamp, seriesStamp,
overview, rows (applicable to NBox),
columns (applicable to NBox), cells
(applicable to NBox), icon (applicable
to NBox Node), indicator
(applicable to NBox Node)

To add the Facet component:

You can use the context menu displayed on the Structure window or Source editor to
add a Facet component as a child of another component. The context menu displays
only facets that are valid for your selected parent component. To add a Facet, first
select and then right-click the parent component in the Structure window or Source
editor, and then select one of the following:

• If the parent component is a Panel Page, select Facets - Panel Page and then choose
the type of Facet from the list, as Figure 14-2 shows.

Designing the Page Layout

14-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-2 Using Context Menu to Add Facet to Panel Page

• If the parent component is a List View, select Facets - List View and then choose
the type of Facet from the list, as Figure 14-3 shows.

Designing the Page Layout

Creating the MAF AMX User Interface 14-11

Figure 14-3 Using Context Menu to Add Facet to List View

• If the parent component is a Carousel, select Facets - Carousel > Node Stamp, as
Figure 14-4 shows.

Designing the Page Layout

14-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-4 Using Context Menu to Add Facet to Carousel

• If the parent component is a Panel Splitter, select Facets - Panel Splitter >
Navigator, as Figure 14-5 shows.

Designing the Page Layout

Creating the MAF AMX User Interface 14-13

Figure 14-5 Using Context Menu to Add Facet to Panel Splitter

• If the parent component is a Panel Stretch Layout, select Facets - Panel Stretch
Layout and then choose the type of Facet from the list, as Figure 14-6 shows.

Designing the Page Layout

14-14 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-6 Using Context Menu to Add Facet to Panel Stretch Layout

• If the parent component is one of the data visualization components, select Facets >
<MAF AMX Data Visualizations Component Name> and then choose the type of
Facet from the list, as Figure 14-7 shows.

Designing the Page Layout

Creating the MAF AMX User Interface 14-15

Figure 14-7 Using Context Menu to Add Facet to Data Visualization Component

For more information about data visualization components and their attributes, see
Providing Data Visualization.

Alternatively:

1. In the Components window, select MAF AMX > Layout > Core Structure, and
then drag and drop a Facet component into another component listed in Table
14-2.

2. In the Properties window, set the component's attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

14.2.8 How to Use a Popup Component
Use the Popup (popup) component to display a popup window. You can declare this
component as a child of the View component.

You can use the following operations in conjunction with the Popup component:

Designing the Page Layout

14-16 Developing Mobile Applications with Oracle Mobile Application Framework

• Close Popup Behavior (closePopupBehavior) operation represents a declarative
way to close the Popup in response to a client-triggered event specified using the
type attribute of the Close Popup Behavior.

For more information about the Close Popup Behavior component's attributes and
their values, see Tag Reference for Oracle Mobile Application Framework.

• Show Popup Behavior (showPopupBehavior) operation represents a declarative
way to show the Popup in response to a client-triggered event specified using the
type attribute of the Show Popup Behavior.

The popupId attribute of the Show Popup Behavior specifies the unique identifier
of the Popup component relative to its parent component. The alignId attribute
of the Show Popup Behavior specifies the unique identifier of the UI component
relative to which the Popup is to be aligned. Since setting identifiers manually is
tedious and can lead to invalid references, you set values for these two attributes
using an editor that is integrated with the standard Properties window (see Figure
14-9). There is an Audit rule that is specifically defined to validate these identifiers
(see What You May Need to Know About Element Identifiers and Their Audit).

The decoration attribute of the Show Popup Behavior allows you to configure
the Popup to have an anchor pointing to the component that matches the specified
alignId. You do so by setting the decoration attribute to anchor (the default
value is simple).

Note:

There is no need to define decoration="anchor" to use the alignId
attribute. When using decoration="anchor", if the alignId attribute is
not specified or a match is not found for the alignId, the decoration
defaults to simple resulting in minimal ornamentation of the Popup
component.

Values you set for the align attribute of the Show Popup Behavior indicate where
the alignment of the Popup component is to be positioned if there is enough space
to satisfy that positioning. When there is not enough space, alternate positioning is
chosen by MAF.

Tip:

To center a Popup on the screen, you should set the alignId attribute of the
Panel Page component, and then use the align="center".

For more information on the Show Popup Behavior component's attributes and
their values, see Tag Reference for Oracle Mobile Application Framework.

The following example shows popup as well as its showPopupBehavior and
closePopupBehavior elements defined in a MAF AMX file.

<amx:view>
 <amx:panelPage id="panelPage1">
 <amx:commandButton id="commandButton1" text="Show Popup">
 <amx:showPopupBehavior popupId="popup1" type="action"
 align="topStart" alignId="panelPage1"
 decoration="anchor"/>
 </amx:commandButton>
 </amx:panelPage>
 <amx:popup id="popup1"

Designing the Page Layout

Creating the MAF AMX User Interface 14-17

 animation="slideUp"
 autoDismiss="true"
 backgroundDimming="off">
 <amx:panelGroupLayout id="pgl2" layout="vertical">
 <amx:commandButton id="commandButton3" text="Close Popup">
 <amx:closePopupBehavior type="action" popupId="popup1"/>
 </amx:commandButton>
 </amx:panelGroupLayout>
 </amx:popup>
</amx:view>

Popup components can display validation messages when the user input errors occur.
For more information, see Validating Input.

To set a Popup Id attribute:

1. Select either the showPopupBehavior or closeopupBehavior element in the
Source editor or Structure window.

2. Click the down arrow to the right of the Popup Id field to make a selection from a
list of available Popup components (see Figure 14-8), or click the Property Menu
icon to the right of the Popup Id field to open the Popup Id property editor (see
Figure 14-9).

Figure 14-8 Selecting Popup Id from List

Designing the Page Layout

14-18 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-9 Setting Popup Id Attribute

3. If you use the property editor, select Edit on the Popup Id property editor to open
the Edit Property: Popup Id dialog that Figure 14-10 shows.

Figure 14-10 Edit Property for Popup Id Dialog

Designing the Page Layout

Creating the MAF AMX User Interface 14-19

4. Select the Popup component to be displayed or the Popup component to be closed
when this Show Popup Behavior or Close Popup Behavior is invoked.

To set an Align Id attribute:

1. Select the showPopupBehavior element in the Source editor or Structure
window.

2. Click the Property Menu icon to the right of the Align Id field to open the Align
Id property editor, as Figure 14-11 shows.

Figure 14-11 Setting Align Id Attribute

3. Select Edit on the Align Id property editor to open the Edit Property: Align Id
dialog that Figure 14-12 shows.

Designing the Page Layout

14-20 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-12 Edit Property for Align Id Dialog

4. Select the parent component of the Show Popup Behavior operation.

When developing for both iOS platform and Android 4.2 or later platform, you can
configure the Popup to accommodate the right-to-left (RTL) language environment by
setting its animation attribute to either slideStart or slideEnd.

By setting the animation attribute to zoom, you can enable the Popup to zoom in and
out of its originating component.

A MAF sample application called UILayoutDemo demonstrates how to use the Popup
component and how to apply styles to adjust the page layout to a specific pattern. The
UIDemo application is located in the PublicSamples.zip file within the
jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples
directory on your development computer.

14.2.9 How to Use a Panel Splitter Component
Use the Panel Splitter (panelSplitter) component to display multiple content areas
that may be controlled by a left-side navigation pane. Panel Splitter components are
commonly used on tablet devices that have larger display size. These components are
typically used with a list on the left and the content on the right side of the display
area.

A Panel Splitter can contain a navigator Facet (see How to Use a Facet Component)
which is generated automatically when you drag and drop the Panel Splitter onto a
MAF AMX page, and a Panel Item component. The Panel Item (panelItem)
component represents the content area of a Panel Splitter. Since each Panel Splitter
component must have at least one Panel Item, the Panel Item is automatically added to

Designing the Page Layout

Creating the MAF AMX User Interface 14-21

the Panel Splitter when the Panel Splitter is created. Each Panel Item component can
contain any component that a Panel Group Layout can contain (see How to Use a
Panel Group Layout Component).

The left side of the Panel Splitter is represented by a navigator facet (navigator),
which is optional in cases where only multiple content with animations is desired (for
example, drawing a multicontent area with a Select Button that requires animation
when selecting different buttons to switch content). When in landscape mode, this
facet is rendered; in portrait mode, a button is placed above the content area and when
clicked, the content of the facet is launched in a popup.

When developing for both iOS platform and Android 4.2 or later platform, you can
configure the Panel Splitter and Panel Item to accommodate the right-to-left (RTL)
language environment by setting their animation attribute to either slideStart,
slideEnd, flipStart, or flipEnd. The animation attribute of the Panel Item
components overrides the Panel Splitter's animation attribute. For more information,
see Tag Reference for Oracle Mobile Application Framework.

The following example shows the panelSplitter element defined in a MAF AMX
file, with the navigator facet used as a child component.

<amx:panelSplitter id="ps1"
 selectedItem="#{bindings.display.inputValue}"
 animation="flipEnd">
 <amx:facet name="navigator">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport>
 ...
 </listView>
 </facet>
 <amx:panelItem id="x">
 <amx:panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
 <amx:panelItem id="y">
 <amx:panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
</panelSplitter>

For more examples, see the CompGallery application located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.10 How to Use a Spacer Component
Use the Spacer (spacer) component to create an area of blank space with a purpose to
separate components on a MAF AMX page. You can include vertical and horizontal
spaces in a page using the height (for vertical spacing) and width (for horizontal
spacing) attributes of the spacer.

To add the Spacer component:

Designing the Page Layout

14-22 Developing Mobile Applications with Oracle Mobile Application Framework

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Spacer onto the MAF AMX page.

2. Use the Properties window to set the attributes of the component. For more
information, see Tag Reference for Oracle Mobile Application Framework.

The following example shows the spacer element and its children defined in a MAF
AMX file.

<amx:outputText id="ot1" value="This is a long piece of text for this page..."/>
<amx:spacer id="s1" height="10"/>
<amx:outputText id="ot2" value="This is some more lengthy text..."/>

14.2.11 How to Use a Table Layout Component
Use the Table Layout (tableLayout) component to display data in a typical table
format that consists of rows containing cells.

The Row Layout (rowLayout) component represents a single row in the Table
Layout. The Table Layout component must contain either one or more Row Layout
components or Iterator components that can produce Row Layout components.

The CellFormat (cellFormat) component represents a cell in the Row Layout. The
Row Layout component must contain either one or more CellFormat components,
Iterator components, Attribute List Iterator components, or Facet Definition
components that can produce CellFormat components.

The Table Layout structure does not allow cell contents to use percentage heights nor
can a height be assigned to the overall table structure as a whole. For details, see the
description of the following attributes in the Tag Reference for Oracle Mobile Application
Framework:

• layout and width attributes of the Table Layout component

• width and height attributes of the Row Layout component

To add the Table Layout component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Table Layout onto the MAF AMX page.

2. Insert the desired number of Row Layout, Iterator, Attribute List Iterator, or Facet
Definition child components into the Table Layout component.

3. Insert Cell Format, Iterator, Attribute List Iterator, or Facet Definition child
components into each Row Layout component.

4. Use the Properties window to set the attributes of all added components. For
more information, see Tag Reference for Oracle Mobile Application Framework.

The following example shows the tableLayout element and its children defined in a
MAF AMX file.

<amx:tableLayout id="tableLayout1"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="#{pageFlowScope.pInlineStyle}"
 borderWidth="#{pageFlowScope.pBorderWidth}"
 cellPadding="#{pageFlowScope.pCellPadding}"
 cellSpacing="#{pageFlowScope.pCellSpacing}"
 halign="#{pageFlowScope.pHalign}"
 layout="#{pageFlowScope.pLayoutTL}"

Designing the Page Layout

Creating the MAF AMX User Interface 14-23

 shortDesc="#{pageFlowScope.pShortDesc}"
 summary="#{pageFlowScope.pSummary}"
 width="#{pageFlowScope.pWidth}">
 <amx:rowLayout id="rowLayout1">
 <amx:cellFormat id="cellFormatA" rowSpan="2" halign="center">
 <amx:outputText id="otA" value="Cell A"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatB" rowSpan="2" halign="center">
 <amx:outputText id="otB" value="Cell B (wide content)"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatC" rowSpan="2" halign="center">
 <amx:outputText id="otC" value="Cell C"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rowLayout2">
 <amx:cellFormat id="cellFormatD" halign="end">
 <amx:outputText id="otD" value="Cell D"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatE">
 <amx:outputText id="otE" value="Cell E"/>
 </amx:cellFormat>
 </amx:rowLayout>
</amx:tableLayout>

14.2.12 How to Use a Masonry Layout Component
The Masonry Layout (masonryLayout) is a container-type component that presents
its child components as tiles arranged in columns and rows similar to a dashboard.
The size of each column and row is fixed and defined in CSS. This size is independent
of the size of the Masonry Layout component itself: the number of displayed columns
may change depending on the Masonry Layout size, but the tile size does not change.
In addition, the tile size is independent of its content.

A tile is represented by the Masonry Layout Item (masonryLayoutItem) component
whose content is provided by various MAF AMX UI components. A tile can occupy
more than one column and row (for example, a tile can occupy three columns and one
row). MAF AMX provides the following predefined set of tile sizes available through
the dimension attribute of the masonryLayoutItem:

• 1x1: one column and one row.

• 1x2: one column and two rows.

• 1x3: one column and three rows.

• 2x1: two columns and one row.

• 2x2: two columns and two rows.

• 2x3: two columns and three rows.

• 3x1: three columns and one row.

• 3x2: three columns and two rows.

You can redefine the appearance of the Masonry Layout component by creating
additional sizes in the .amx-masonryLayoutItem section of the CSS.

The space between rows and columns is also specified in the CSS.

Designing the Page Layout

14-24 Developing Mobile Applications with Oracle Mobile Application Framework

The Masonry Layout component always attempts to make the best use of available
space by positioning tiles where they fit via filling gaps left earlier in the layout. When
the end user rotates the mobile device, the tiles rearrange themselves to fill the space
optimally. This functionality is enabled via the MasonryReorderEvent that is fired
by the Masonry Layout component every time the arrangement of the Masonry
Layout Item changes.

To add the Masonry Layout component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Masonry Layout onto the MAF AMX page.

2. Insert the desired number of Masonry Layout Item components and their child UI
components into the Masonry Layout component.

3. Use the Properties window to set the attributes of all added components. For
more information, see Tag Reference for Oracle Mobile Application Framework.

The following example shows the masonryLayout element and
masonryLayoutItem elements as well as their children defined in a MAF AMX file.

<amx:masonryLayout id="ml1"
 initialOrder="#{pageFlowScope.componentProperties.order}">
 <amx:masonryLayoutItem id="mt1"
 dimension="#{pageFlowScope.componentProperties.myTeamExpanded ? '3x1' : '1x1'}"
 rendered="#{pageFlowScope.componentProperties.myTeam}">
 <amx:panelGroupLayout id="pgl9"
 layout="vertical"
 inlineStyle="margin: 6px; padding: 0px; border: none">
 <amx:outputText value="My Team"
 id="ot4"
 inlineStyle="color: gray"/>
 <amx:panelGroupLayout id="pgl1"
 layout="horizontal"
 scrollPolicy="scroll"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:panelGroupLayout id="pgl10"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:image id="i8"
 source="/images/people/TerryLuca.png"
 shortDesc="Terry Luca"/>
 <amx:outputText value="Terry Luca"
 id="ot9"
 inlineStyle="font-size: 12px; color: gray"/>
 </amx:panelGroupLayout>
 <amx:panelGroupLayout id="pgl11"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:image id="i9"
 source="/images/people/SusanWong.png"
 shortDesc="Susan Wong"/>
 <amx:outputText value="Susan Wong"
 id="ot12"
 inlineStyle="font-size: 12px; color: gray"/>
 </amx:panelGroupLayout>
 <amx:panelGroupLayout id="pgl12"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:image id="i10"
 source="/images/people/RaviChouhan.png"
 shortDesc="Ravi Chouhan"/>
 <amx:outputText value="Ravi Chouhan"
 id="ot11"

Designing the Page Layout

Creating the MAF AMX User Interface 14-25

 inlineStyle="font-size: 12px; color: gray"/>
 </amx:panelGroupLayout>
 <amx:panelGroupLayout id="pgl13"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:image id="i11"
 source="/images/people/KathyGreen.png"
 shortDesc="Kathy Green"/>
 <amx:outputText value="Kathy Green"
 id="ot10"
 inlineStyle="font-size: 12px; color: gray"/>
 </amx:panelGroupLayout>
 <amx:panelGroupLayout id="pgl16"
 inlineStyle="margin: 0px; padding: 2px; border: none">
 <amx:image id="i5"
 source="/images/people/StellaBaumgardner.png"
 shortDesc="Stella Baum"/>
 <amx:outputText value="Stella Baum"
 id="ot3"
 inlineStyle="font-size: 12px; color: gray"/>
 </amx:panelGroupLayout>
 </amx:panelGroupLayout>
 </amx:panelGroupLayout>
 </amx:masonryLayoutItem>
 <amx:masonryLayoutItem id="mt2"
 dimension="#{pageFlowScope.componentProperties.socialExpanded ? '3x1' : '1x1'}"
 rendered="#{pageFlowScope.componentProperties.social}">
 <amx:panelGroupLayout id="pgl2"
 inlineStyle="margin: 6px; padding: 0px; border: none">
 <amx:panelGroupLayout id="pgl22"
 layout="vertical"
 inlineStyle="margin: 0px; padding: 0px; border: none">
 <amx:outputText value="Social"
 id="ot2"
 inlineStyle="color: gray"/>
 <amx:spacer id="s5" height="6"/>
 <amx:outputText value="New Conversations"
 id="ot14"
 inlineStyle="color: gray; font-size: 15px"/>
 <amx:outputText value="6"
 id="ot15"
 inlineStyle="font-size:34px; color: #EE8A11"/>
 <amx:outputText value="New Followers"
 id="ot17"
 inlineStyle="color: gray; font-size: 15px"/>
 <amx:outputText value="5"
 id="ot16"
 inlineStyle="font-size:34px; color: #EE8A11"/>
 </amx:panelGroupLayout>
 </amx:panelGroupLayout>
 </amx:masonryLayoutItem>
 <amx:masonryLayoutItem id="mt3"
 ...
 </amx:masonryLayoutItem>
</amx:masonryLayout>

For more information, see Tag Reference for Oracle Mobile Application Framework.

Designing the Page Layout

14-26 Developing Mobile Applications with Oracle Mobile Application Framework

14.2.13 How to Use an Accessory Layout Component
You use the Accessory Layout (accessoryLayout) component in a List View within
its List Item child component to enable dragging of the content left or right to reveal
optional content areas.

Typically, the Accessory Layout contains two child Facet components: start and end. If
the drag gesture exceeds sufficiently beyond the facet's width, you may allow such a
gesture to trigger a tap on one of the child components in that content area. The
revealed facet content is usually hidden when either another Accessory Layout's
content is revealed or when focus moves to some other component. However, if the
content was revealed using an accessibility trigger, it would not be hidden when the
focus moves; otherwise, the end user would not be able to use links in that content
area.

To add an Accessory Layout component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
an Accessory Layout onto the MAF AMX page.

2. Optionally, add child Facet components and populate them with other MAF AMX
UI components.

3. Use the Properties window to set the component attributes. For more information,
see Tag Reference for Oracle Mobile Application Framework.

The following example shows the accessoryLayout element defined in a MAF
AMX file, with a start and an end facet used as child components.

<amx:listView id="lv1">
 <amx:listItem id="liSimple">
 <amx:showPopupBehavior popupId="itemPopup"
 type="action"
 alignId="pp1"
 align="overlapMiddleCenter"/>
 <amx:accessoryLayout id="alSimple"
 rendered="#{pageFlowScope.componentProperties.rendered}"
 inlineStyle="#{pageFlowScope.componentProperties.inlineStyle}"
 styleClass="#{pageFlowScope.componentProperties.styleClass}"
 contentStyle="#{pageFlowScope.componentProperties.contentStyle}"
 contentClass="#{pageFlowScope.componentProperties.contentClass}"
 startDesc="#{pageFlowScope.componentProperties.startDesc}"
 startWidth="#{pageFlowScope.componentProperties.startWidth}"
 startStyle="#{pageFlowScope.componentProperties.startStyle}"
 startClass="#{pageFlowScope.componentProperties.startClass}"
 startFullTriggerSelector="#{pageFlowScope.componentProperties.
 startFullTriggerSelector}"
 endDesc="#{pageFlowScope.componentProperties.endDesc}"
 endWidth="#{pageFlowScope.componentProperties.endWidth}"
 endStyle="#{pageFlowScope.componentProperties.endStyle}"
 endClass="#{pageFlowScope.componentProperties.endClass}"
 endFullTriggerSelector="#{pageFlowScope.componentProperties.
 endFullTriggerSelector}">
 <amx:facet name="start">
 <amx:commandLink id="clStartSimple"
 text="Start"
 styleClass="full-trigger">
 <amx:showPopupBehavior popupId="startPopup"
 type="action"
 alignId="pp1"

Designing the Page Layout

Creating the MAF AMX User Interface 14-27

 align="overlapMiddleCenter"/>
 </amx:commandLink>
 </amx:facet>
 <amx:facet name="end">
 <amx:commandLink id="clEndSimple"
 text="End"
 styleClass="full-trigger">
 <amx:showPopupBehavior popupId="endPopup"
 type="action"
 alignId="pp1"
 align="overlapMiddleCenter"/>
 </amx:commandLink>
 </amx:facet>
 <outputText id="otContentSimple" value="Simple example"/>
 </amx:accessoryLayout>
 </amx:listItem>
 ...
</amx:listView>

If your goal is to have some of the links hidden when in a full gesture, you can set the
styleClass attribute of commandLink elements to adfmf-accessoryLayout-
hideWhenFull.

For more examples, see the CompGallery application located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.14 How to Use a Deck Component
The Deck (deck) component represents a container that shows one of its child
components at a time. The transition from one displayed child component (defined by
the displayedChild attribute) to another is enabled by the Transition
(transition) operation, which can take a form of animation. Transition occurs by
means of fading in, sliding and flipping from different directions, as well as covering
and revealing child components.

The Deck can be navigated forward and backward.

To add the Deck component:

1. In the Components window, select MAF AMX > Layout, and then drag and drop
a Deck onto the MAF AMX page.

2. Insert the desired number of Transition operations and child UI components into
the Deck component.

3. Use the Properties window to set the attributes of all added components. For
more information, see Tag Reference for Oracle Mobile Application Framework.

The following example shows the deck element and its children defined in a MAF
AMX file. The Deck component's displayedChild attribute is to define which child
component ID should be displayed. Typically, this is controlled by a component such
as a Select One Button or other selection component.

<amx:deck id="deck1"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="width:95px;height:137px;overflow:hidden;
 #{pageFlowScope.pInlineStyle}"

Designing the Page Layout

14-28 Developing Mobile Applications with Oracle Mobile Application Framework

 landmark="#{pageFlowScope.pLandmark}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 displayedChild="#{pageFlowScope.pDisplayedChild}">

 <amx:transition triggerType="#{pageFlowScope.pTriggerType}"
 transition="#{pageFlowScope.pTransition}"/>
 <amx:transition triggerType="#{pageFlowScope.pTriggerType2}"
 transition="#{pageFlowScope.pTransition2}"/>
 <amx:commandLink id="linkCardBack1" text="Card Back">>
 <amx:setPropertyListener from="linkCardA"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardA1" text="Card Front A">
 <amx:setPropertyListener id="setPL1"
 from="linkCardB"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardB1" text="Card Front B">
 <amx:setPropertyListener id="setPL2"
 from="linkCardC"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardC1" text="Card Front C">
 <amx:setPropertyListener id="setPL3"
 from="linkCardD"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardD1" text="Card Front D">
 <amx:setPropertyListener id="setPL4"
 from="linkCardE"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardE1" text="Card Front E">
 <amx:setPropertyListener id="setPL5"
 from="linkCardBack"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
</amx:deck>

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.15 How to Use a Flex Layout Component
The Flex Layout (flexLayout) component provides either horizontal or vertical
flexible flow for its child components that are allowed to grow, shrink, and wrap
depending on the available space. You can create nested Flex Layout components.

This component is based on the Flexible Box Layout defined by CSS and supports a
subset of its properties. For more information, see the W3C website at http://
www.w3.org/TR/css-flexbox-1/.

To add the Flex Layout component:

1. In the Components window, navigate to MAF AMX > Layout, and then drag and
drop a Flex Layout onto the MAF AMX page.

2. Insert the desired number of child UI components, including other Flex Layout
components, into the Flex Layout component.

3. Use the Properties window to set the attributes of all added components. For
more information, see Tag Reference for Oracle Mobile Application Framework.

Designing the Page Layout

Creating the MAF AMX User Interface 14-29

http://www.w3.org/TR/css-flexbox-1/
http://www.w3.org/TR/css-flexbox-1/

The following example shows the flexLayout element and its children defined in a
MAF AMX file.

<amx:flexLayout id="fl1"
 itemFlexibility="equal"
 orientation="#{pageFlowScope.componentProperties.layoutOrientation}"
 rendered="#{pageFlowScope.componentProperties.fl1Rendered}">

 <amx:panelStretchLayout inlineStyle="background-color: #ff0000; text-align: center;"
 rendered="#{pageFlowScope.componentProperties.p1Rendered}">
 <amx:facet name="center">
 <amx:outputText value="1" inlineStyle="font-size: 36px"/>
 </amx:facet>
 </amx:panelStretchLayout>

 <amx:panelStretchLayout inlineStyle="background-color: #00ff00; text-align: center;"
 rendered="#{pageFlowScope.componentProperties.p2Rendered}">
 <amx:facet name="center">
 <amx:outputText value="2" inlineStyle="font-size: 36px"/>
 </amx:facet>
 </amx:panelStretchLayout>

</amx:flexLayout>

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.2.16 How to Use the Fragment Component
The Fragment (fragment) component enables sharing of MAF AMX page contents.
This component is used in conjunction with a MAF AMX fragment file. For more
information, see Sharing the Page Contents.

To add a Fragment component:

1. In the Components window, drag and drop a Fragment to the MAF AMX page.

2. Use the Insert Fragment dialog to set the Src attribute of the Fragment to a
fragment file (.amxf).

3. Optionally, use the Structure view to add child components, such as an Attribute,
Attribute List, or Facet.

Designing the Page Layout

14-30 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-13 Populating Fragment

4. Use the Properties window to set the attributes of all added components. For more
information, see Tag Reference for Oracle Mobile Application Framework.

5. Add the Facet Definition (facetRef) to the MAF AMX fragment file whose
contents is to be included in the Fragment and set the facetRef's facetName
attribute to the name of a facet.

The following example shows a fragment element added to a MAF AMX page.

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:panelGroupLayout layout="vertical"
 id="itemPgl"
 styleClass="amx-style-groupbox">
 <amx:fragment id="f1"

Designing the Page Layout

Creating the MAF AMX User Interface 14-31

 src="/simpleFragment.amxf"
 <amx:attribute id="a1"
 name="text"
 value="defaultValue" />
 <amx:facet name="facet">
 <amx:outputText id="ot5" value="Fragment"/>
 </amx:facet>
 </amx:fragment>
 </amx:panelGroupLayout>
 </amx:panelPage>
</amx:view>

The following example shows the corresponding MAF AMX fragment file.

<amx:fragmentDef
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment" id="f1">
 <description id="d1">Description of the fragment</description>
 <facet id="f2">
 <description id="d4">Description of the facet</description>
 <facet-name id="f3">facet1</facet-name>
 </facet>
 <attribute id="a1">
 <description id="d2">Description of an attribute</description>
 <attribute-name id="a2">text</attribute-name>
 <attribute-type id="at1">String</attribute-type>
 <default-value id="d3">defaultValue</default-value>
 </attribute>
 </fragment>
 <amx:panelGroupLayout id="pgl1">
 <amx:facetRef facetName="facet1" id="fr1"/>
 <amx:outputText value="#{text}" id="ot1"/>
 </amx:panelGroupLayout>
</amx:fragmentDef>

A MAF sample application called FragmentDemo demonstrates how to create and use
the Fragment. This sample application is located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer.

14.3 Creating and Using UI Components
You can use the following UI components when developing your MAF AMX
application feature:

• Input Text (see How to Use the Input Text Component)

• Input Number Slider (see How to Use the Input Number Slider Component)

• Input Date (see How to Use the Input Date Component)

• Output Text (see How to Use the Output Text Component)

• Button (see How to Use Buttons)

• Link (see How to Use Links)

• Image (see How to Display Images)

Creating and Using UI Components

14-32 Developing Mobile Applications with Oracle Mobile Application Framework

• Checkbox (see How to Use the Checkbox Component)

• Select Many Checkbox (see How to Use the Select Many Checkbox Component)

• Select Many Choice (see How to Use the Select Many Choice Component)

• Boolean Switch (see How to Use the Boolean Switch Component)

• Choice (see How to Use the Choice Component)

• Select Button (see How to Use the Select Button Component)

• Radio Button (see How to Use the Radio Button Component)

• List View (see How to Use List View and List Item Components)

• Carousel (see How to Use a Carousel Component)

• Film Strip (see How to Use the Film Strip Component)

• Verbatim (see How to Use Verbatim Component)

• Output HTML (see How to Use an Output HTML Component)

• Iterator (see How to Enable Iteration)

• Refresh Container (see How to Refresh Contents of UI Components)

You can also use the following miscellaneous components that include operations,
listener-type components, and converters as children of the UI components when
developing your MAF AMX application feature:

• Load Bundle (see How to Load a Resource Bundle)

• Action Listener (see How to Use the Action Listener)

• Set Property Listener (see How to Use the Set Property Listener)

• Client Listener (see How to Use the Client Listener)

• Convert Date Time (see How to Convert Date and Time Values)

• Convert Number (see How to Convert Numeric Values)

• Navigation Drag Behavior (see How to Enable Drag Navigation)

• Loading Indicator Behavior (see How to Use the Loading Indicator)

• System Action Behavior (see How to Configure Behavior of the Android System
Back Button)

You add a UI component by dragging and dropping it onto a MAF AMX page from
the Components window (see How to Add UI Components to a MAF AMX Page).
Then you use the Properties window to set the component's attributes (see
Configuring UI Components). For information on attributes of each particular
component, see Tag Reference for Oracle Mobile Application Framework.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-33

Note:

On a MAF AMX page, you place UI components within layout components
(see Designing the Page Layout). UI elements are declared under the <amx>
namespace, except data visualization components that are declared under the
<dvtm> namespace.

You can add event listeners to some UI components. For more information, see Using
Event Listeners. Event listeners are applicable to components for the MAF AMX
runtime description on both iOS and Android-powered devices, but the listeners do
not have any effect at design time.

For information on the UI components' support for accessibility, see Understanding
MAF Support for Accessibility.

Note:

MAF does not evaluate EL expressions at design time. If the value of a
component's attribute is set to an expression, this value appears as such in
JDeveloper's Preview and the component may look different at runtime.

The user interface created for both the iOS platform and Android 4.2 or later platform
using MAF AMX displays correctly in both the left-to-right (LTR) and right-to-left
(RTL) language environments. In the latter case, the components originate on the
right-hand side of the screen instead of on the left-hand side.

A MAF sample application called CompGallery demonstrates how to create and
configure MAF AMX UI components. Another sample application called
UILayoutDemo shows how to lay out components on a MAF AMX page. These
sample applications are located in the PublicSamples.zip file within the
jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples
directory on your development computer.

14.3.1 How to Use the Input Text Component
The Input Text (inputText) component represents an editable text field. The
following types of Input Text components are available:

• Standard single-line Input Text, which is declared as an inputText element in a
MAF AMX file:

<amx:inputText id="text1"
 label="Text Input:"
 value="#{myBean.text}" />

• Password Input Text:

<amx:inputText id="text1"
 label="Password Input:"
 value="#{myBean.text}"
 secret="true" />

• Multiline Input Text (also known as text area):

<amx:inputText id="text1"
 label="Textarea:"
 value="#{myBean.text}"

Creating and Using UI Components

14-34 Developing Mobile Applications with Oracle Mobile Application Framework

 simple="true"
 rows="4" />

Figure 14-14 shows the Input Text component displayed in the Preview pane. This
component has its parameters set as follows:

<amx:inputText id="inputText1"
 label="Input Text"
 value="text"/>

Figure 14-14 Input Text at Design Time

The inputType attribute lets you define how the component interprets the user
input: as a text (default), email address, number, telephone number, or URL. These
input types are based on the values allowed by HTML5.

To enable conversion of numbers, as well as date and time values that are entered in
the Input Text component, you use the Convert Number (see How to Convert
Numeric Values) and Convert Date Time (see How to Convert Date and Time Values)
components.

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer.

On some mobile devices, when the end user taps an Input Text field, the keyboard is
displayed (slides up). If an Input Text is the only component on a MAF AMX page, the
input focus is on this field and the keyboard is displayed by default when the page
loads.

A multiline Input Text may be displayed on a secondary page where it is the only
component, in which case the multiline Input Text receives focus when the page loads
and the keyboard becomes visible.

Input Text components render and behave differently on iOS and Android-powered
devices: on iPhone and iPad, Input Text components may be displayed with or
without a border.

When creating an Input Text component, consider the following:

• To input or edit content, the end user has to tap in the field, which triggers a
blinking insertion cursor to be displayed at the point of the tap, allowing the end
user to edit the content. If the field does not contain content, the insertion cursor is
positioned at the start of the field.

• Fields represented by Input Text components may contain default text, typically
used as a prompt. When the end user taps a key on the keyboard in such a field, the
default text clears when Edit mode is entered. This behavior is enabled and
configured through the Input Text's hintText attribute.

• Fields represented by Input Text components do not have a selected appearance.
Selection is indicated by the blinking insertion cursor within the field.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-35

• If the end user enters more text than fits in the field, the text content shifts left one
character at a time as the typing continues.

• A multiline Input Text component is rendered as a rectangle of any height. This
component supports scrolling when the content is too large to fit within the
boundaries of the field: rows of text scroll up as the text area fills and new rows of
text are added. The end user may flick up or down to scroll rows of text if there are
more rows than can be displayed in the given display space. A scroll bar is
displayed within the component to indicate the area is being scrolled.

• Password field briefly echoes each typed character, and then reverts the character
to a dot to protect the password.

• The appearance and behavior of the Input Text component on iOS can be
customized (see Customizing the Input Text Component).

14.3.1.1 Customizing the Input Text Component

MAF AMX provides support for the input capitalization and correction on iOS-
powered devices. It also allows you to indicate whether the field is to be used for
navigating or for searching. Depending on the version of the operating system and
keyboard used, the return button located at the bottom right of the mobile devices's
soft keypad (see Figure 14-15) might visually change to a Go or Search button (see
Figure 14-16). In addition, upon activation the button triggers a DataChangeEvent
for a single-line Input Text component.

Creating and Using UI Components

14-36 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-15 Return Button on iOS-Powered Device at Runtime

Figure 14-16 Go and Search Buttons on iOS 7 at Runtime

Table 14-3 lists attributes of the Input Text component that allow you to customize the
appearance and behavior of that component and the soft keypad that is used to enter
values into fields represented by the Input Text.

Table 14-3 Input-Customizing Attributes of the Input Text Component

Creating and Using UI Components

Creating the MAF AMX User Interface 14-37

Table 14-3 (Cont.) Input-Customizing Attributes of the Input Text Component

Attribute Values Description

keyboardDismis
s

• normal: use the
operating system's
default.

• go: request the field
to act like a trigger
for behavior.

• search: request the
field to act like a
search field that
triggers a lookup.

Indicates how the text field is to be used.

If go or search is specified, dismissing the
keyboard will cause the input to blur.

Some operating systems or keyboards might
give special treatment to the keyboard,
whereas others show no visual distinction.
For example, instead of displaying a Return
button on a single-line input text field, that
button is replaced with a Go or a Search
button. Depending on the skin, this may
also alter the appearance of the input field.

autoCapitalize • auto: use the
operating system's
default.

• sentences: request
that sentences
comprising the
input start with a
capital letter.

• none: request that
no capitalization be
applied
automatically to the
input.

• words: request that
words comprising
the input start with
capital letters.

• characters:
request that each
character typed as
an input become
capitalized.

Requests special treatment by iOS for
capitalization of values while the field
represented by the Input Text is being
edited.

Note that setting this property has no
impact on Android.

autoCorrect • auto: use the
operating system's
default.

• on: request auto-
correct support for
the input.

• off: request auto-
correct of the input
be disabled.

Requests special treatment by iOS for
correcting values while the field represented
by the Input Text is being edited.

Note that setting this property has no
impact on Android.

Since iOS provides limited support for auto-capitalization and auto-correction on its
device simulator, you must test this functionality on an iOS device.

14.3.2 How to Use the Input Number Slider Component
The Input Number Slider (inputNumberSlider) component enables selection of
numeric values from a range of values by using a slider instead of entering the value

Creating and Using UI Components

14-38 Developing Mobile Applications with Oracle Mobile Application Framework

by using keys. The filled portion of the trough or track of the slider visually represents
the current value.

The Input Number Slider may be used in conjunction with the Output or Input Text
component to numerically show the value of the slider. The Input Text component
also allows direct entry of a slider value: when the end user taps the Input Text field,
the keyboard in numeric mode slides up; the keyboard can be dismissed by either
using the slide-down button or by tapping away from the slider component.

The Input Number Slider component always shows the minimum and maximum
values within the defined range of the component.

Note:

The Input Number Slider component should not be used in cases where a
precise numeric entry is required or where there is a wide range of values (for
example, 0 to 1000).

The following example demonstrates the inputNumberSlider element defined in a
MAF AMX file.

<amx:inputNumberSlider id="slider1" value="#{myBean.count}"/>

Figure 14-17 shows the Input Number Slider component displayed in the Preview
pane. This component has its parameters set as follows:

<amx:inputNumberSlider id="inputNumberSlider1"
 label="Input Number"
 minimum="0"
 maximum="20"
 stepSize="1"
 value="10"/>

Figure 14-17 Input Number Slider at Design Time

To enable conversion of numbers that are entered in the Input Number Slider
component, you use the Convert Number component (see How to Convert Numeric
Values).

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer.

Similar to other MAF AMX UI components, the Input Number Slider component has a
normal and selected state. The component is in its selected state at any time it is
touched. To change the slider value, the end user touches, and then interacts with the
slider button.

The Input Number Slider component has optional imageLeft and imageRight
attributes which point to images that can be displayed on either side of the slider to
provide the end user with additional information.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-39

14.3.3 How to Use the Input Date Component
The Input Date (inputDate) component presents a popup input field for entering
dates. The default date format is the short date format appropriate for the current
locale. For example, the default format in American English (ENU) is mm/dd/yy. The
inputType attribute defines if the component accepts date, time, or date and time as
an input. The time zone depends on the time zone configured for the mobile device,
and, therefore, it is relative to the device. At runtime, the Input Date component has
the device's native look and feel.

The following example demonstrates the inputDate element defined in a MAF AMX
file. The inputType attribute of this component is set to the default value of date. If
the value attribute is read-only, it can be set to either an EL expression or any other
type of value; if value is not a read-only attribute, it can be specified only as an EL
expression.

<amx:inputDate id="inputDate1" label="Input Date" value="#{myBean.date}"/>

For more information, see the following:

• Tag Reference for Oracle Mobile Application Framework

• HTML5 global dates and times defined by W3C

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.4 How to Use the Output Text Component
MAF AMX provides the Output Text (outputText) component for you to use as a
label to display text.

The following example demonstrates the outputText element defined in a MAF
AMX file.

<amx:outputText id="ot1"
 value="output"
 styleClass="#{pageFlowScope.pStyleClass}"/>

Figure 14-18 shows the Output Text component displayed in the Preview pane.

Figure 14-18 Output Text at Design Time

You use the Convert Number (see How to Convert Numeric Values) and Convert Date
Time (see How to Convert Date and Time Values) converters to facilitate the
conversion of numeric and date-and-time-related data for the Output Text
components.

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer.

Creating and Using UI Components

14-40 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.w3.org

14.3.5 How to Use Buttons
The Button (commandButton) component is used to trigger actions (for example,
Save, Cancel, Send) and to enable navigation to other pages within the application (for
example, Back: see Enabling the Back Button Navigation for more information).

You may use the Button in one of the following ways:

• Button with a text label.

• Button with a text label and an image icon.

Note:

You may define the icon image and placement as left or right of the text label.

• Button with an image icon only (for example, the " + " and " - " buttons for adding
or deleting records).

MAF supports one default Button type for the following three display areas:

1. Buttons that appear in the top header bar: in MAF AMX pages, the header is
represented by the Panel Page component (see How to Use a Panel Page
Component) in combination with the header, primary, and secondary facets,
which is typical on iPhones:

• Header Facet contains the page title.

• Primary Action Facet represents an area that appears in the left corner of the
header bar and typically hosts Button or Link components, but can contain any
component type.

• Secondary Action Facet represents an area that appears in the right corner of
the header bar and typically hosts Button or Link components, but can contain
any component type.

2. Buttons that appear in the content area of a page.

3. Buttons that appear in the footer bar of a page. In MAF AMX pages, the footer is
represented by the Panel Page component (see How to Use a Panel Page
Component) in combination with the footer facet:

• Footer Facet represents an area that appears below the content area and
typically hosts Button or Link components, but can contain any component
type.

All Button components of any type have three states:

1. Normal.

2. Activated: represents appearance when the Button is tapped or touched by the
end user. When a button is tapped (touch and release), the button action is
performed. Upon touch, the activated appearance is displayed; upon release, the
action is performed. If the end user touches the button and then drags their finger
away from the button, the action is not performed. However, for the period of
time the button is touched, the activated appearance is displayed.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-41

3. Disabled.

The appearance of a Button component is defined by its styleClass attribute that
you set to an adfmf-commandButton-<style>. You can apply any of the styles
detailed in Table 14-4 to a Button placed in any valid location within the MAF AMX
page.

Table 14-4 Main Button Styles

Button Style Name Description

Default The default style of a Button placed:

• In any of the Panel Page facets (Primary, Secondary, Header,
Footer). For more information, see Displaying Default Style Buttons.

• Anywhere in the content area of a MAF AMX page. This style is
used for buttons that are to perform specific actions within a page,
typically based on their location or context within the page.

Back The back style of a Button placed in any of the Panel Page facets
(Primary, Secondary, Header, Footer). This style may be applied to the
default Button to give the "back to page" appearance. This button style
is typical for "Back to Springboard" or any "Back to Page" buttons.

For more information, see Displaying Back Style Buttons.

Highlight The highlight style of a Button placed in any of the Panel Page facets
(Primary, Secondary, Header, Footer) or the content area of a MAF
AMX page. This style may be added to a Button to provide the iPhone
button appearance typical of Save (or Done) buttons.

For more information, see Displaying Highlight Style Buttons.

Alert The Alert style adds the delete appearance to a button. For more
information, see Displaying Alert Style Buttons.

There is a Rounded style (adfmf-commandButton-rounded) that you can apply to
a Button to decorate it with a thick rounded border (see Figure 14-19). You can define
this style in combination with any other style.

Figure 14-19 Rounded Button at Design Time

MAF AMX provides a number of additional decorative styles (see Using Additional
Button Styles).

There is a particular order in which MAF AMX processes the Button component's
child operations and attributes. For more information, see What You May Need to
Know About the Order of Processing Operations and Attributes.

14.3.5.1 Displaying Default Style Buttons

The following are various types of default style buttons that can be placed within
Panel Page facets or content area:

• Normal, activated, or disabled Button with a text label only.

• Normal, activated, or disabled Button with an image icon only.

The following example demonstrates the commandButton element declared in a MAF
AMX file. This element represents a default Button with a text label.

Creating and Using UI Components

14-42 Developing Mobile Applications with Oracle Mobile Application Framework

<amx:panelPage id="pp1">
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Cancel"
 action="cancel"
 actionListener="#{myBean.rollback}"/>
 </amx:facet>
</amx:panelPage>

The following example also demonstrates the commandButton element declared in a
MAF AMX file. This element represents a default Button with an image icon.

<amx:panelPage id="pp1">
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 icon="plus.png"
 action="add"
 actionListener="#{myBean.AddItem}"/>
 </amx:facet>
</amx:panelPage>

The following example shows a commandButton element declared inside the Panel
Page's footer facet. This element represent a default Button with a text label and an
image icon.

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2"
 icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action="move"/>
 </amx:facet>
</amx:panelPage>

The following example demonstrates a commandButton element declared as part of
the Panel Page content area. This element represent a default Button with a text label.

<amx:panelPage id="pp1">
 <amx:commandButton id="cb1"
 text="Reply"
 actionListener="#{myBean.share}"/>
</amx:panelPage>

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.5.2 Displaying Back Style Buttons

The following are various types of back style buttons that are placed within Panel
Page facets or content area:

• Normal, activated, or disabled Button with a text label only.

• Normal, activated, or disabled Button with an image icon only:

Creating and Using UI Components

Creating the MAF AMX User Interface 14-43

The following example demonstrates the commandButton element declared in a MAF
AMX file. This element represent a Back Button with a text label.

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="Details" id="ot1"/>
 </amx:facet>
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Back"
 action="__back"/>
 </amx:facet>
 ...
</amx:panelPage>

Every time you place a Button component within the primary facet and set its action
attribute to __back, MAF AMX automatically applies the back arrow styling to it, as
Figure 14-20

Figure 14-20 Back Button an Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.5.3 Displaying Highlight Style Buttons

Similar to other types of Buttons, highlight style buttons that are placed within Panel
Page facets or content area can have their state as normal, activated, or disabled.

The following example demonstrates the commandButton element declared in a MAF
AMX file. This element represent a highlight Button with a text label.

<amx:panelPage id="pp1">
 <amx:facet name="secondary">
 <amx:commandButton id="cb2"
 text="Save"
 action="save"
 styleClass="adfmf-commandButton-highlight"/>
 </amx:facet>
</amx:panelPage>

Figure 14-21 Highlight Button at Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

Creating and Using UI Components

14-44 Developing Mobile Applications with Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.5.4 Displaying Alert Style Buttons

Alert style buttons placed within the Panel Page can have normal, activated, or
disabled state.

The following example demonstrates the commandButton element declared in a MAF
AMX file. This element represent an Alert Button with a text label.

<amx:commandButton id="cb1"
 text="Delete"
 actionListener="#{myBean.delete}"
 styleClass="adfmf-commandButton-alert" />

Figure 14-22 Alert Button at Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.5.5 Using Additional Button Styles

MAF AMX provides the following additional Button styles:

• Dark style

• Bright style

• Small style

• Large style

• Highlight style

• Confirm style

• Two varieties of the Alternate style

Creating and Using UI Components

Creating the MAF AMX User Interface 14-45

Figure 14-23 Additional Button Styles

14.3.5.6 Using Buttons Within the Application

In your MAF application, you can use the Button component within the following
contexts:

• Navigation Bar

• The Content Area to perform specific actions

• Action Sheets

• Popup-style Alert Messages

14.3.5.6.1 Navigation Bar

MAF lets you create standard buttons for use on a navigation bar:

• Edit button allows the end user to enter an editing or content-manipulation mode.

• Cancel button allows the end user to exit the editing or content-manipulation mode
without saving changes.

• Save button allows the end user to exit the editing or content-manipulation mode
by saving changes.

• Done button allows the end user to exit the current mode and save changes, if any.

• Undo button allows the end user to undo the most recent action.

• Redo button allows the end user to redo the most recent undone action.

• Back button allows the end user to navigate back to the springboard.

• Back to Page button allows the end user to navigate back to the page identified by
the button text label.

Creating and Using UI Components

14-46 Developing Mobile Applications with Oracle Mobile Application Framework

• Add button allows the end user to add or create a new object.

14.3.5.6.2 Content Area

Buttons that are positioned within the content area of a page perform a specific action
given the location and context of the button within the page. These buttons may have
a different visual appearance than buttons positioned with the navigation bar:

14.3.5.6.3 Action Sheets

An example of buttons placed within an action sheet is a group of Delete Note and
Cancel buttons.

An action sheet button expands to the width of the display.

14.3.5.6.4 Alert Messages

An OK button can be placed within a validation message, such as a login validation
after a failed password input.

14.3.5.7 Enabling the Back Button Navigation

MAF AMX supports navigation using the back button, with the default behavior of
going back to the previously visited page. For more information, see How to Specify
Action Outcomes Using UI Components.

If any Button component is added to the primary facet of a Panel Page that is
equipped with the __back navigation, this Button is automatically given the back
arrow visual styling (see Displaying Back Style Buttons). To disable the styling, set the
styleClass attribute to amx-commandButton-normal.

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.5.8 What You May Need to Know About the Order of Processing Operations and
Attributes

The following is the order in which MAF AMX processes operations and attributes
when such components as a Button, Link, and List Item are activated:

1. The following child operations are processed in the order they appear in the XML
file:

• Set Property Listener

• Action Listener

• Show Popup Behavior

• Close Popup Behavior

2. The Action Listener (actionListener) attribute is processed and the associated
Java method is invoked.

3. The Action (action) attribute is processed and any navigation case is followed.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-47

14.3.6 How to Use Links
You use the Link (commandLink) component to trigger actions and enable navigation
to other views.

The Link component can have any type of component defined as its child. By using
such components as Set Property Listener (see How to Use the Set Property Listener),
Action Listener (see How to Use the Action Listener), Show Popup Behavior, Close
Popup Behavior see How to Use a Popup Component), and Validation Behavior (see
Validating Input) as children of the Link component, you can create an actionable area
within which clicks and gestures can be performed.

By placing an Image component (see How to Display Images) inside a Link you can
create a clickable image.

The following example demonstrates a basic commandLink element declared in a
MAF AMX file.

<amx:commandLink id="cl1"
 text="linked"
 action="gotolink"
 actionListener="#{myBean.doSomething}"/>

Figure 14-24 shows the basic Link component displayed in the Preview pane.

Figure 14-24 Link at Design Time

The following example demonstrates a commandLink element declared in a MAF
AMX file. This component is placed within the panelFormLayout and
panelLabelAndMessage components.

<amx:panelPage id="pp1">
 <amx:panelFormLayout id="form">
 <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="Label">
 <amx:commandLink id="cl1"
 text="linked"
 action="gotolink"
 actionListener="#{myBean.doSomething}"/>
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
</amx:panelPage>

Figure 14-25 shows the Link component placed within a form and displayed in the
Preview pane.

Creating and Using UI Components

14-48 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-25 Link Within Form at Design Time

There is a particular order in which MAF AMX processes the Link component's child
operations and attributes. For more information, see What You May Need to Know
About the Order of Processing Operations and Attributes.

MAF AMX provides another component which is similar to the Link, but which does
not allow for navigation between pages: Link Go (goLink) component. You use this
component to enable linking to external pages. Figure 14-26 shows the Link Go
component displayed in the Preview pane. This component has its parameters set as
follows:

<amx:goLink id="goLink1"
 text="Go Link"
 url="http://example.com"/>

Figure 14-26 Link Go at Design Time

Image is the only component that you can specify as a child of the Link Go
component.

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.7 How to Display Images
MAF AMX enables the display of images on iOS and Android-powered devices using
the Image (image) component represented by a bitmap.

In addition to placing an Image in a Button and List View, you can place it inside a
Link component (see How to Use Links) to create a clickable image.

The following example demonstrates the image element definition in a MAF AMX
file.

<amx:image id="i1"
 styleClass="prod-thumb"
 source="images/img-big-#{pageFlowScope.product.uid}.png" />

In addition to a URI to an image file, the source can contain a base 64 encoded image
data which is required for images loaded from REST web services. You use the

Creating and Using UI Components

Creating the MAF AMX User Interface 14-49

data:image/gif;base64, prefix to define the source of such images and set the
source attribute of the image element similar to the following:

<amx:image id="i2" source="data:image/gif;base64,#{row.ImageBase64}" />

where values supplied for the GIF file vary depending on the image type.

The following are supported formats on the Android platform:

• GIF

• JPEG

• PNG

• BMP

The following are supported formats on iOS platform:

• PNG

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample applications located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.8 How to Use the Checkbox Component
The Checkbox (selectBooleanCheckbox) component represents a check box that
you create to enable single selection of true or false values, which allows toggling
between selected and deselected states.

You can use the label attribute of the Checkbox component to place text to the left of
the checkbox, and the text attribute places text on the right.

The following example demonstrates the selectBooleanCheckbox element
declared in a MAF AMX file.

<amx:selectBooleanCheckbox id="check1"
 label="Agree to the terms:"
 value="#{myBean.bool1}"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 14-27 shows the unchecked Checkbox component displayed in the Preview
pane. This component has its parameters set as follows:

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 label="Checkbox"
 value="false"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 14-27 Unchecked Checkbox at Design Time

Creating and Using UI Components

14-50 Developing Mobile Applications with Oracle Mobile Application Framework

shows the checked Checkbox component displayed in the Preview pane. This
component has its parameters set as follows:

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 label="Checkbox"
 value="true"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 14-28 Checked Checkbox Definition

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.8.1 Support for Checkbox Components on the iOS Platform

iOS does not support a native Checkbox component. The Boolean Switch is usually
used in Properties pages to enable a boolean selection (see How to Use the Boolean
Switch Component).

14.3.8.2 Support for Checkbox Components on the Android Platform

Android provides support for a native Checkbox component. This component is used
extensively on Settings pages to turn on or off individual setting values.

14.3.9 How to Use the Select Many Checkbox Component
The Select Many Checkbox (selectManyCheckbox) component represents a group
of check boxes that you use to enable multiple selection of true or false values,
which allows toggling between selected and deselected states of each check box in the
group. The selection mechanism is provided by the Select Items or Select Item
component (see What You May Need to Know About Differences Between Select
Items and Select Item Components) contained by the Select Many Checkbox
component.

Note:

The Select Many Checkbox component can contain more than one Select Item
or Select Items components.

The following example demonstrates a selectManyCheckbox element declared in a
MAF AMX file.

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select shipping options"
 value="#{myBean.shipping}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1"
 label="Air"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-51

 value="#{myBean.shipping.air}"/>
 <amx:selectItem id="selectItem2"
 label="Rail"
 value="#{myBean.shipping.rail}"/>
 <amx:selectItem id="selectItem3"
 label="Water"
 value="#{myBean.shipping.water}"/>
</amx:selectManyCheckbox>

Figure 14-29 shows the Select Many Checkbox component displayed in the Preview
pane. This component has its parameters set as follows:

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select Many Checkbox"
 value="value2"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Selection 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Selection 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Selection 3" value="value3"/>
</amx:selectManyCheckbox>

Figure 14-29 Select Many Checkbox at Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.9.1 What You May Need to Know About the User Interaction with Select Many
Checkbox Component

MAF AMX provides two alternative ways for displaying the Select Many Checkbox
component: pop-up style (default) and list style that is used when the number of
available choices exceeds the device screen size.

The end user interaction with a pop-up style Select Many Checkbox component on
both iPhone and iPad occurs as follows: when the end user taps the component, the
list of choices is displayed in a popup. To make a choice, the end user taps one or more
choices. To save the selections, the end user either taps outside the popup or closes the
popup using the close (" x ") button.

Upon closing of the popup, the value displayed in the component is updated with the
selected value.

When the number of choices exceed the dimensions of the device, a full-page popup
containing a scrollable List View (see How to Use List View and List Item
Components) is generated.

Creating and Using UI Components

14-52 Developing Mobile Applications with Oracle Mobile Application Framework

The end user interaction with a list-style Select Many Checkbox component on both
iPhone and iPad occurs as follows: when the end user taps the component, the list of
choices is displayed. To make a choice, the end user scrolls up or down to browse
available choices, and then taps one or more choices. To save the selections, the end
user taps the close (" x ") button.

Upon closing of the list, the value displayed in the component is updated with the
selected value.

Note:

In both cases, there is no mechanism provided to cancel the selection.

14.3.10 How to Use the Choice Component
The Choice (selectOneChoice) component represents a combo box that is used to
enable selection of a single value from a list. The selection mechanism is provided by
the Select Items or Select Item component (see What You May Need to Know About
Differences Between Select Items and Select Item Components) contained by the
Choice component.

Note:

The Choice component can contain more than one Select Items or Select Item
components.

The following example demonstrates the selectOneChoice element definition with
the selectItems subelement in a MAF AMX file.

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Alaska" value="AK"/>
 <amx:selectItem id="selectItem2" label="Alabama" value="AL"/>
 <amx:selectItem id="selectItem3" label="California" value="CA"/>
 <amx:selectItem id="selectItem4" label="Connecticut" value="CT"/>
</amx:selectOneChoice>

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItems id="selectItems1" value="myBean.allStates"/>
</amx:selectOneChoice>

Figure 14-30 shows the Choice component displayed in the Preview pane. This
component has its parameters set as follows:

<amx:selectOneChoice id="selectOneChoice1"
 label="Choice"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>

Creating and Using UI Components

Creating the MAF AMX User Interface 14-53

 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneChoice>

Figure 14-30 Choice at Design Time

The initial value of the selectOneChoice element cannot be null. Instead, it must
be set to the value displayed in the Select One Choice component. To accomplish this,
you must ensure that the value in the model (in the bean or binding) is identical to the
default value displayed in JDeveloper at design time.

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.10.1 What You May Need to Know About the User Interaction with Choice
Component on iOS Platform

MAF AMX provides two alternative ways for displaying the Choice component: pop-
up style and drop-down style.

On an iPhone, the end user interaction with a native Choice component occurs as
follows: when the end user taps the components list of choices is displayed, with the
first option selected by default. To make a choice, the end user scrolls up or down to
browse available choices. To save the selection, the end user taps Done in the tool bar.

On an iPad, the user interaction is similar to the interaction on an iPhone, except the
following:

• The list of choices is displayed in a popup dialog.

• iPad styling is implemented around the list of choices, with a notch used to indicate
the source of the list.

To close the list of choices without selecting an item, the end user must tap outside the
popup dialog.

Note:

The UI to display the list of choices and the tool bar are native to the browser
and cannot be styled using CSS.

List values within the Choice component may be displayed as disabled.

When the number of choices exceeds the dimensions of the device display, a list page
is generated that may be scrolled in a native way.

14.3.10.2 What You May Need to Know About the User Interaction with Choice
Component on the Android Platform

The end user interaction with a native Choice component on an Android-powered
device occurs as follows: when the end user taps the component, the list of choices in

Creating and Using UI Components

14-54 Developing Mobile Applications with Oracle Mobile Application Framework

the form of a popup dialog is displayed. A simple popup is displayed if the number of
choices fits within the dimensions of the device, in which case:

• A single tap on an item from the selection list selects that item and closes the
popup; the selection is reflected in the Choice component label.

• A single tap outside the popup or a click on the Back key closes the popup with no
changes applied.

If the number of choices to be displayed does not fit within the device dimensions, the
popup contains a scrollable list, in which case:

• A single tap on an item from the selection list selects that item and closes the
popup; the selection is reflected in the Choice component label.

• A click on the Back key closes the popup with no changes applied.

14.3.10.3 What You May Need to Know About Differences Between Select Items and
Select Item Components

The Select Items (selectItems) component provides a list of objects that can be
selected in both multiple-selection and single-selection components.

The Select Item (selectItem) component represents a single selectable item of
selection components.

14.3.11 How to Use the Select Many Choice Component
The Select Many Choice (selectManyChoice) component allows selection of
multiple values from a list. The selection mechanism is provided by the Select Items or
Select Item component (see What You May Need to Know About Differences Between
Select Items and Select Item Components) contained by the Select Many Checkbox
component.

Note:

The Select Many Checkbox component can contain more than one Select Items
or Select Item components.

The following example demonstrates a selectManyChoice element declared in a
MAF AMX file. This component uses a Select Item (selectItem) component as a
child.

<amx:selectManyChoice id="check1"
 label="Select Option:"
 value="#{myBean.shipping}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1"
 label="Signature Required"
 value="signature" />
 <amx:selectItem id="selectItem2"
 label="Insurance"
 value="insurance" />
 <amx:selectItem id="selectItem3"
 label="Delivery Confirmation"
 value="deliveryconfirm"/>
</amx:selectManyChoice>

Creating and Using UI Components

Creating the MAF AMX User Interface 14-55

Figure 14-31 Select Many Choice at Design Time

<amx:selectManyChoice id="check1"
 label="Select Shipping Options:"
 value="#{myBean.shipping}">
 <amx:selectItems id="selectItems1" value="#{myBean.shippingOptions}"/>
</amx:selectManyChoice>

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

The look and behavior of the Select Many Choice component on all supported devices
is almost identical to the Select Many Checkbox component (see How to Use the Select
Many Checkbox Component for more information).

14.3.12 How to Use the Boolean Switch Component
The Boolean Switch (selectBooleanSwitch) component allows editing of boolean
values as a switch metaphor instead of a checkbox.

Similar to other MAF AMX UI components, this component has a normal and selected
state. To toggle the value, the end user taps (touches and releases) the switch once.
Each tap toggles the switch.

The following example demonstrates a selectBooleanSwitch element defined in a
MAF AMX file.

<amx:selectBooleanSwitch id="switch1"
 label="Flip switch:"
 onLabel="On"
 offLabel="Off"
 value="#{myBean.bool1}"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 14-32 shows the Boolean Switch component displayed in the Preview pane.
This component has its parameters set as follows:

<amx:selectBooleanSwitch id="selectBooleanSwitch1"
 label="Switch"
 value="value1"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 14-32 Boolean Switch at Design Time

For more information, illustrations, and examples, see the following:

Creating and Using UI Components

14-56 Developing Mobile Applications with Oracle Mobile Application Framework

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.12.1 What You May Need to Know About Support for Boolean Switch
Components on iOS Platform

On iOS, Boolean Switch components are often used on Settings pages to enable or
disable an attribute value.

14.3.12.2 What You May Need to Know About Support for Boolean Switch
Components on the Android Platform

The Android platform does not directly support a Boolean Switch component. Instead,
Android provides a toggle button that allows tapping to switch between selected and
deselected states.

14.3.13 How to Use the Select Button Component
The Select Button (selectOneButton) component represents a button group that
lists actions, with a single button active at any given time. The selection mechanism is
provided by the Select Items or Select Item component (see What You May Need to
Know About Differences Between Select Items and Select Item Components)
contained by the Select Button component.

Note:

The Select Button component can contain more than one Select Items or Select
Item components.

The following example demonstrates the selectOneButton element defined in a
MAF AMX file.

<amx:selectOneButton id="bg1"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Yes" value="yes"/>
 <amx:selectItem id="selectItem2" label="No" value="no"/>
 <amx:selectItem id="selectItem3" label="Maybe" value="maybe"/>
</amx:selectOneButton>

Figure 14-33 shows the Select Button component displayed in the Preview pane. This
component has its parameters set as follows:

<amx:selectOneButton id="selectOneButton1"
 label="Select Button"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneButton>

Creating and Using UI Components

Creating the MAF AMX User Interface 14-57

Figure 14-33 Select Button at Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.14 How to Use the Radio Button Component
The Radio Button (selectOneRadio) component represents a group of radio buttons
that lists available choices. The selection mechanism is provided by the Select Items or
Select Item component (see What You May Need to Know About Differences Between
Select Items and Select Item Components) contained by the Radio Button component.

Note:

The Radio Button component can contain more than one Select Items or Select
Item components.

The following example demonstrate the selectOneRadio element definition in a
MAF AMX file. This component uses a Select Item (selectItem) component as its
child.

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Cat" value="cat"/>
 <amx:selectItem id="selectItem2" label="Dog" value="dog"/>
 <amx:selectItem id="selectItem3" label="Hamster" value="hamster"/>
 <amx:selectItem id="selectItem4" label="Lizard" value="lizard"/>
</amx:selectOneRadio>

The following example also demonstrate the selectOneRadio element definition in
a MAF AMX file. This component uses a Select Items (selectItems) component as
its child.

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItems id="selectItems1" value="myBean.allPets"/>
</amx:selectOneRadio>

Figure 14-34 shows the Boolean Switch component displayed in the Preview pane.
This component has its parameters set as follows:

<amx:selectOneRadio id="selectOneRadio1"
 label="Radio Button"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">

Creating and Using UI Components

14-58 Developing Mobile Applications with Oracle Mobile Application Framework

 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneRadio>

Figure 14-34 Radio Button at Design Time

For more information, illustrations, and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.15 How to Use List View and List Item Components
Use the List View (listView) component to display data as a list of choices where the
end user can select one option.

Typically, the List Item (listItem) component represents a single item in the List
View component, where you place a List Item component inside the List View to lay
out and style a list of data items. Each item can contain more than one List Item
component, in which case List Item components fill the item (line) and excess List Item
components wrap onto the subsequent lines. You configure this by setting the List
View's layout attribute to cards (the default layout is rows and displays one List
Item component per item within the list). For more information, see Configuring the
List View Layout.

The List View allows you to define one of the following:

• A selectable item that is replicated based on the number of items in the list
(collection).

• A static item that is produced by adding a child List Item component without
specifying the List View's var and value attributes. You can add as many of these
static items as necessary, which is useful when you know the contents of the list at
design time. In this case, the list is not editable and behaves like a set of menu
items.

At runtime, List Item components respond to swipe gestures (see Enabling Gestures).

You can create the following types of List View components:

• Basic List

The following example shows the listView element defined in a MAF AMX file.
This definition corresponds to the basic component.

<amx:listView id="listView1"
 showMoreStrategy="autoScroll"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-59

 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 14-35 demonstrates a basic List View component at design time.

Figure 14-35 Basic List View at Design Time

The following example shows another definition of the listView element in a
MAF AMX file. This definition also corresponds to the basic component; however,
the value of this List View is provided by a collection.

<amx:listView id="list1"
 value="#{myBean.listCollection}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem actionListener="#{myBean.selectRow}"
 showLinkIcon="false"
 id="listItem1">
 <amx:outputText value="#{row.name}" id="outputText1"/>
 </amx:listItem>
</amx:listView>

Creating and Using UI Components

14-60 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Currently, when a text string in an Output Text inside a List Item is too long to
fit on one line, the text does not wrap at the end of the line. You can prevent
this by adding "white-space: normal;" to the inlineStyle attribute of
the subject Output Text child component.

• List with icons

The following example shows the listView element defined in a MAF AMX file.
This definition corresponds to the component with icons.

<amx:listView id="list1"
 value="#{myBean.listCollection}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11" width="40px" halign="center">
 <amx:image id="image1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12" width="100%" height="43px">
 <amx:outputText id="outputText1" value="#{row.desc}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-36 demonstrates a List View component with icons and text at design
time.

Figure 14-36 List View with Icons at Design Time

• List with search

• List with dividers. This type of list allows you to group data and show order.
Attributes of the List View component define characteristics of each divider. For
information about attributes, see Tag Reference for Oracle Mobile Application
Framework.

MAF AMX provides a list divider that can do the following:

– Collapse its contents independently.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-61

– Show a count of items in each divider.

– Collapse at the same time.

The following example shows the listView element defined in a MAF AMX file.
This definition corresponds to the component with collapsible dividers and item
counts.

<amx:listView id="list1"
 value="#{bindings.data.collectionModel}"
 var="row"
 collapsibleDividers="true"
 collapsedDividers="#{pageFlowScope.mylistDisclosedDividers}"
 dividerMode="all"
 dividerAttribute="type"
 showDividerCount="true"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 fetchSize="10">
 <amx:listItem>
 <amx:outputText id="ot1" value="#{row.name}">
 </amx:listItem>
</amx:listView>

Note:

Data in the list with dividers must be sorted by the dividerAttribute
because this type of list does not sort the data; instead, it expects the data it
receives to be already sorted.

Note:

Dividers are not displayed when a List View component is in edit mode (that
is, its editMode attribute is specified).

When dividers are visible, the end user can quickly navigate to a specific divider
using the List View's localized alphabetical index utility, which is available for List
View components whose dividerMode attribute is set to firstLetter. You can
disable this utility by setting the sectionIndex attribute to off.

The index utility (indexer) consists of an index bar and index item and has the
following characteristics:

– If the list contains unsorted data or duplicate dividers, the index item points to
the first occurrence in the list.

– Only available letters are highlighted in the index, and only those highlighted
become active. This is triggered by the change in the data model (for example,
when the end user taps on More row item).

– The index is not case-sensitive.

– Unknown characters are hidden under the hash (#) sign.

The indexer letters can only be activated (tapped) on rows that have been loaded
into the list. For example, if the List View, using its fetchSize attribute, has

Creating and Using UI Components

14-62 Developing Mobile Applications with Oracle Mobile Application Framework

loaded rows up to the letter C, the indexer enables letters from A to C. Other letters
appear on the indexer when more rows are loaded into it.

Table 14-5 describes styles that you can define for the index utility.

Table 14-5 The List View Index Styles

styleClass name Description

adfmf-listView-index Defines style of the index bar.

adfmf-listView-indexItem Defines style of one item in the index bar.

adfmf-listView-indexItem-active Defines style of the item in the index bar
which has link to a related divider.

adfmf-listView-indexCharacter Defines style of a character in the index bar.

adfmf-listView-indexBullet Defines style of a bullet between two
characters in index bar.

adfmf-listView-indexOther Defines style of a character that represents
all unknown characters in the index bar.

When the List View component with visible dividers functions as a container that
provides scrolling and it becomes a subject to scrolling, the dividers are pinned at
the top of the view. If this is the case, you must explicitly set the height of the List
View component. In all other cases, when the List View does not perform any
scrolling itself but instead uses the scrolling of its parent container (such as the
Panel Page), the List View does not have any height constraint set and its height is
determined by its child components. This absence of the defined height constraint
effectively disables the animated transition and pinning of dividers.

• Inset List

The following example shows the listView element defined in a MAF AMX file.
This definition corresponds to the inset component.

<amx:listView id="listView1"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 14-37 demonstrates an inset List View component at design time.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-63

Figure 14-37 Inset List View at Design Time

The following example shows another definition of the listView element in a
MAF AMX file. This definition also corresponds to the inset component, however,
the value of this List View is provided by a collection.

<amx:listView id="list1"
 value="#{CarBean.carCollection}"
 var="row"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 fetchSize="10">
 <amx:listItem id="li1" action="go">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:listItem>
</amx:listView>

There is a particular order in which MAF AMX processes the List Item component's
child operations and attributes. For more information, see What You May Need to
Know About the Order of Processing Operations and Attributes.

Unlike other MAF AMX components, when you drag and drop a List View onto a
MAF AMX page, a dialog called ListView Gallery appears (see Figure 14-38). This
dialog allows you to choose a specific layout for the List View.

Creating and Using UI Components

14-64 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-38 ListView Gallery Dialog

Table 14-6 lists the supported List Formats that are displayed in the ListView Gallery.

Table 14-6 List View Formats

Format Element Row Values

Simple • Text

Main-Sub Text • Main Text
• Subordinate Text

Start-End • Start Text
• End Text

Creating and Using UI Components

Creating the MAF AMX User Interface 14-65

Table 14-6 (Cont.) List View Formats

Format Element Row Values

Quadrant • Upper Start Text
• Upper End Text
• Lower Start Text
• Lower End Text

The Variations presented in the ListView Gallery (see Figure 14-38) for a selected list
format consist of options to add either dividers, a leading image, or both:

• Selecting a variation with a leading image adds an Image row to the List Item
Content table (see Figure 14-39).

• Selecting a variation with a divider defaults the Divider Attribute field to the first
attribute in its list rather than the default No Divider value, and populates the
Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 14-38) allow you to
suppress chevrons, use an inset style list, or both:

• The selections do not modify any state in the Edit List View dialog (see Figure
14-39). They only affect the generated MAF AMX markup.

• Selecting a style with the inset list sets the adfmf-listView-insetList style
class on the listView element in the generated MAF AMX markup.

The following is an example of the Simple format with the inset list:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 id="listView2"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected
Variation. The format includes a brief description of the main style, followed by the
details of the selected variation. Four main styles with four variations on each provide
sixteen unique descriptions detailed in Table 14-7.

Table 14-7 List View Variations and Styles

List Format Variation Description

Simple Basic A text field appears at the start side of the list item.

Simple Dividers A text field appears at the start side of the list item,
with items grouped by dividers.

Simple Images A text field appears at the start side of the list item,
following a leading image.

Creating and Using UI Components

14-66 Developing Mobile Applications with Oracle Mobile Application Framework

Table 14-7 (Cont.) List View Variations and Styles

List Format Variation Description

Simple Dividers and
Images

A text field appears at the start side of the list item,
following a leading image. The list items are grouped
by dividers.

Main-Sub Text Basic A prominent main text field appears at the start side of
the list item with subordinate text below.

Main-Sub Text Dividers A prominent main text field appears at the start side of
the list item with subordinate text below. The list items
are grouped by dividers.

Main-Sub Text Images A prominent main text field appears at the start side of
the list item with subordinate text below, following a
leading image.

Main-Sub Text Dividers and
Images

A prominent main text field appears at the start side of
the list item with subordinate text below, following a
leading image. The list items are grouped by dividers.

Start-End Basic Text fields appear on each side of the list item.

Start-End Dividers Text fields appear on each side of the list item, with the
items grouped by dividers.

Start-End Images Text fields appear on each side of the list item,
following a leading image.

Start-End Dividers and
Images

Text fields appear on each side of the list item,
following a leading image. The list items are grouped
by dividers.

Quadrant Basic Text fields appear in the four corners of the list item.

Quadrant Dividers Text fields appear in the four corners of the list item,
with items grouped by dividers.

Quadrant Images Text fields appear in the four corners of the list item,
following a leading image.

Quadrant Dividers and
Images

Text fields appear in the four corners of the list item,
following a leading image. The list items are grouped
by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List
View wizard is invoked that lets you create either an unbound List View component
that displays static text in the List Item child components (see Figure 14-39), or choose
a data source for the dynamic binding (see Figure 14-40).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-67

Figure 14-39 Creating Unbound List View

When completing the dialog that Figure 14-39 shows, consider the following:

• The List Data Collection and Element Type fields are disabled when the Bind
Data checkbox is in the deselected state.

• The image on the left reflects the main content elements from the selected List View
format

• The editable cells of the Value column are populated with static text strings (see
Table 14-8).

• If the List Item Content cell contains an Image, the Value cell is defaulted to the
<add path to your image> string. If this is the case, you must replace it with
the path to the image.

• The List Item Selection indicates the selection mode. For details, see the
description of this option following Figure 13-79.

• Since you cannot set the divider attribute when the List View contains List Item
child components, rather than being data bound, both the Divider Attribute and
the Divider Mode fields are disabled.

Table 14-8 Static Text Strings for List View

Creating and Using UI Components

14-68 Developing Mobile Applications with Oracle Mobile Application Framework

Table 14-8 (Cont.) Static Text Strings for List View

List Format Element Row Values Values for the Output Text

Simple • Text • 'ListItem Text'

Main-Sub Text • Main Text
• Subordinate Text

• 'Main Text'
• 'This is the subordinate text.'

Start-End • Start Text
• End Text

• 'Start Text'
• 'End Text'

Quadrant • Upper Start Text
• Upper End Text
• Lower Start Text
• Lower End Text

• 'Upper Start Text'
• 'Upper End Text'
• 'Lower Start Text'
• 'Lower End Text'

Figure 14-40 shows the Create List View dialog when you choose to bind the List
View component to data.

Figure 14-40 Creating Bound List View

When completing the dialog that Figure 14-40 shows, consider the following:

• When you select the Bind Data checkbox, the List Data Collection field becomes
enabled. The Element Type field becomes enabled if you set the List Data

Creating and Using UI Components

Creating the MAF AMX User Interface 14-69

Collection field to an EL expression by using the Expression Builder. If you choose
a data control from the Data Control Definitions tab, the Element Type field will
continue to be disabled.

• To select a data source, click Browse. This opens the Select List View Data
Collection dialog that enables you to either choose a data control definition (see
Figure 14-41) or to use the EL Builder to select an appropriate EL expression (see
Figure 14-42).

Figure 14-41 Selecting Data Control Definition

Creating and Using UI Components

14-70 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-42 Selecting EL Expression

• You may declare the type of the data collection using the Element Type field (see
Figure 14-40).

• After you have selected a valid data collection, the Value column in the List Item
Content table changes to Value Bindings whose editable cells are populated with
lists of attributes from the data collection. For a description of a special case setting,
refer to Figure 14-43.

• The image on the left reflects the main content elements from the selected List View
format and provides a mapping from the schematic representation to the named
elements in the underlying table.

• The List Item is generated as either an Output Text or Image component,
depending on whichever is appropriate for the particular element.

• Since the number of elements (rows) is predetermined by the selected List View
format, rows cannot be added or removed.

• The order of elements cannot be modified.

• The default value of the Divider Attribute field is No Divider, in which case the
Divider Mode field is disabled. If you select value other than the default, then you

Creating and Using UI Components

Creating the MAF AMX User Interface 14-71

need to specify Divider Mode parameters. In addition, if you chose a Variation in
the ListView Gallery that includes dividers, the default value will be set to the first
attribute in the list.

The following are special cases to consider when creating a bound List View:

• If a Java bean method returns a list without generics, you should use the Element
Type field to create the List Item content, as Figure 14-40 shows.

• If the list data collection value provided is not collection-based, a Value column
replaces the Value Bindings column with blank values, as Figure 14-43 shows.

Figure 14-43 Providing Non-Collection-Based Values

For more information, see the following:

• Tag Reference for Oracle Mobile Application Framework

• Configuring the List View Layout

• Dragging and Dropping Collections

• CompGallery and UILayoutDemo, MAF sample applications located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.
These samples demonstrate how to use various types of the List View component
and how to apply styles to adjust the page layout to a specific pattern.

Creating and Using UI Components

14-72 Developing Mobile Applications with Oracle Mobile Application Framework

14.3.15.1 Configuring Paging and Dynamic Scrolling
You can configure the List View component to display data in a list that is arbitrarily
long by appending data to the bottom of the list as requested by a user gesture.

The fetchSize attribute determines how many rows the List View component
should initially load. If there are more rows available than defined by the fetchSize,
the List View waits for a specific user gesture before loading and displaying more
rows (see List View Scrolling Strategies). The fetchSize attribute is then used to
determine how many rows will be loaded and displayed each time the user gestures
for more rows to be displayed.

If the fetchSize attribute is set to -1, all records are retrieved and displayed, in
which case neither paging nor dynamic scrolling behavior occurs.

When the List View component is created by dragging a collection from the Data
Controls window onto a MAF AMX page, the fetchSize attribute is by default set to
use an EL expression that points to the rangeSize of the PageDef iterator and
should not be modified. For more information, see the following:

• How to Reference Binding Containers

• What You May Need to Know About Generated Drag and Drop Artifacts

• Figure 13-85

The following example shows the listView element that was created from a
collection called testResults of a data control (see How to Add Data Controls to a
MAF AMX Page).

<amx:listView var="row"
 value="#{bindings.testResults.collectionModel}"
 fetchSize="#{bindings.testResults.rangeSize}">

In the preceding example, the fetchSize attribute points to the rangeSize on
bindings.testResults. The following example shows a line from the PageDef
file for this MAF AMX page. This PageDef file contains an accessorIterator
element called testResultsIterator to which the testResults is bound.

<accessorIterator MasterBinding="Class1Iterator"
 Binds="testResults"
 RangeSize="25"
 DataControl="Class1"
 BeanClass="mobile.Test"
 id="testResultsIterator"/>

You can specify the initial scroll position of a self-scrollable List View (that is, the List
View provides its own scrolling; see List View's Own Scrolling) using its
initialScrollRowKeys attribute. For convenience, the value of this attribute can
be set to the same EL expression as value of the selectedRowKeys attribute, as the
following example shows.

<amx:listView id="lv1"
 var="row"
 value="#{bindings.departments.collectionModel}"
 fetchSize="25"
 inlineStyle="height: 200px"
 selectedRowKeys="#{bindings.departments.collectionModel.selectedRow}
 selectionListener="#{bindings.departments.collectionModel.makeCurrent}"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-73

initialScrollRowKeys="#{bindings.departments.collectionModel.selectedRow}">
 <amx:listItem id="li1">
 <amx:outputText id="ot1" value="#{row.name} #{row.id}"/>
 </amx:listItem>
</amx:listView>

Since MAF AMX assigns the scroll position when the first set of rows is rendered, you
must ensure that the specified row key is a part of the initial set of fetched rows.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.3.15.1.1 List View Scrolling Strategies

The following attributes of the List View component enable its scrolling behavior:

• showMoreStrategy: defines the List View component's strategy for loading more
rows when required.

When a List View component provides its own scrolling (see List View's Own
Scrolling) and that List View is scrolled to the end, it automatically invokes the
showMoreStrategy based on the attribute's value, as follows:

– autoLink: If more rows are available from the model, the List View displays a
Load More Rows link at the bottom of the displayed list, as Figure 14-44 shows.

Figure 14-44 Loading More Rows in List View

The end user must tap on this link to cause the List View to load and display
more rows.

– autoScroll: If more rows are available from the model, the List View displays
a load indicator while it loads more rows for display.

– forceLink: A Load More Rows link is displayed (see Figure 14-44). When the
end user taps on the link, the List View attempts to load and display more rows.

– off: The List View does not perform any actions. Only the initially loaded rows
are displayed.

• bufferStrategy: defines the List View component's strategy for buffering
displayed rows.

When the List View's height is constrained allowing it to provide its own scrolling
(see List View's Own Scrolling), it retains rows in the rendering engine's buffer
based on the bufferStrategy attribute's value, as follows:

– additive: New rows are added to the rendering engine's buffer and all rows
are retained in the buffer. This option is useful for short lists where you are not
concerned about memory consumption.

– viewport: Rows are added to the rendering engine's buffer only when they
become visible within the List View's viewport. Rows are removed from the
buffer when they are no longer visible, based on the List View's bufferSize

Creating and Using UI Components

14-74 Developing Mobile Applications with Oracle Mobile Application Framework

attribute. This option is useful for reducing the amount of memory consumption
when displaying long lists.

• bufferSize: when the bufferStrategy attribute is set to viewport, the bufferSize
attribute defines the distance (in pixels) at which the row must be located from the
viewport to become hidden.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.3.15.1.2 List View's Own Scrolling

By default, the scrolling behavior of the List View component is controlled by its
parent container (which, in turn, may default to its parent container, and so forth).

To force the List View component to provide its own scrolling, you can do one of the
following

• Make the List View the only non-Facet child of a Panel Page.

• Set a fixed height for the List View. For example:

inlineStyle="height: 200px;"

14.3.15.1.3 Server-Side Paging

The List View component supports server-side paging through events such as the
oracle.adfmf.amx.event.RangeChangeEvent.

When the List View component is created by dragging a collection from the Data
Controls window onto a MAF AMX page, the List View component retrieves the rows
from the binding iterator (see Configuring Paging and Dynamic Scrolling). The
binding iterator retrieves rows from the data control's collection in batches defined by
the AttributeIterator's RangeSize attribute. When all the available data has
been exhausted, a RangeChangeEventis fired. To catch this event, the data control's
provider code must implement the
oracle.adfmf.amx.event.RangeChangeListener and provide a
rangeChange method. Within this method, you can load more data from the server
and append it to the collection. You must call the addDataControlProviders
method of the AdfmfJavaUtilities class to inform the data control framework of
the newly added rows so these rows can be displayed by the List View component.

public class Departments implements RangeChangeListener {
 public void rangeChange(RangeChangeEvent rce) {
 List newRows = null;
 if (rangeChangeEvent.isDataExhausted()) {
 newRows = loadMoreData(rangeChangeEvent.getFetchSize());
 AdfmfJavaUtilities.addDataControlProviders("Departments",
 rangeChangeEvent.getProviderKey(),
 rangeChangeEvent.getKeyAttribute(),
 newRows,
 newRows.size() > 0);
 }
 }
...
}

Creating and Using UI Components

Creating the MAF AMX User Interface 14-75

Note:

When instantiating the data control's provider class, the initial load of data
from the server should request the same number of rows as defined by the
binding iterator's RangeSize attribute.

When using a managed bean to provide the model for a List View, the
rangeChangeListener attribute (see Using Event Listeners) of the List View
component allows you to bind a Java handler method that is called when the end user
gestures for more rows to be loaded. This method uses the
oracle.adfmf.amx.event.RangeChangeEvent object as its parameter and is
created when you invoke the Edit Property: Range Change Listener dialog from the
Properties window, as Figure 14-45 and Figure 14-46 show.

Figure 14-45 Editing Range Change Listener Attribute

Figure 14-46 Edit Property Dialog

When you click OK on the dialog, the following setting is added to the listView
element definition in the MAF AMX page:

<amx:listView id="listView1" rangeChangeListener="#{pageFlowScope.HRBean.goGet}" >

In addition, the Java method shown in the following example is added to a sample
HRBean class:

public void goGet(RangeChangeEvent rangeChangeEvent) {
 // Add event code here
 ...
}

Creating and Using UI Components

14-76 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

When using the RangeChangeEvent to support server-side paging, you
should not set the ListView's fetchSize attribute to -1.

For additional examples, see a MAF sample application called RangeChangeDemo
located in the PublicSamples.zip file within the jdev_install/jdeveloper/
jdev/extensions/oracle.maf/Samples directory on your development
computer.

14.3.15.2 What You May Need to Know About Memory Consumption by MAF AMX UI
Components

All scrollable MAF AMX UI components, including the List View, are optimized to
conserve resources when a mobile device is running low on memory. These
components lose their flickability (that is, the end user cannot flick the component
with their finger in order for that component to continue to scroll after the end user
has stopped touching the screen) and scrolling is powered by inertia.

14.3.15.3 Rearranging List View Items

Items in a List View can be rearranged. This functionality is similar on iOS and
Android platforms: both show a Rearrange icon aligned along the right margin for
each list item. The Rearrange operation is initiated when the end user touches and
drags a list item using the Rearrange affordance as a handle. The operation is
completed when the end user lifts their finger from the display screen.

Note:

If the end user touches and drags anywhere else on the list item, the list scrolls
up or down.

The Rearrange Drag operation "undocks" the list item and allows the end user to move
the list item up or down in the list.

For its items to be rearrangeable, the List View must not be static, must be in an edit
mode, and must be able to listen to moves.

The following example shows the listView element defined in a MAF AMX file.
This definition presents a list with an Edit and Stop Editing buttons at the top that
allow switching between editable and read-only list mode.

<amx:panelPage id="pp1">
 <amx:commandButton id="edit"
 text="Edit"
 rendered="#{!bindings.inEditMode.inputValue}">
 <amx:setPropertyListener id="spl1"
 from="true"
 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:commandButton id="stop"
 text="Stop Editing"
 rendered="#{bindings.inEditMode.inputValue}">
 <amx:setPropertyListener id="spl2"
 from="false"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-77

 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row"
 editMode="#{bindings.inEditMode.inputValue}"
 moveListener="#{MyBean.Reorder}">
 <amx:listItem id="li1">
 <amx:outputText id= "ot1" value="#{row.description}">
 </amx:listItem>
 </amx:listView>
</amx:panelPage>

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.3.15.4 Configuring the List View Layout
The List View component can be laid out as either a set of rows, with each row
containing one List Item component (default), or s set of cards, with each card
containing one or more List Item components.

To define the layout, you use the List View's layout attribute and set it to either rows
or cards. When using the cards layout, consider the following:

• Each List Item component is presented as a card in a group of horizontally
arranged cards.

• If all available space is consumed, the next card wraps onto a new line.

• To control horizontal alignment of List Item components (cards) within the List
View, set the halign attribute of the List View to either start, center, or end.

• To generally customize the appearance of the List View:

– To override the card size defined by default in the skin, specify a new width
using the List Item's inlineStyle attribute. For more information, see How to
Use Component Attributes to Define Style.

Note:

You cannot set the value to auto or use percent units.

Alternatively, you can use skinning to override the width from the .amx-
listView-cards .amx-listItem selector (see What You May Need to
Know About Skinning).

– To override spacing around the cards defined by default in the skin, you can
specify new margin-top and margin-left using the List Item's
inlineStyle attribute (see How to Use Component Attributes to Define
Style), as well as new padding-bottom and padding-right using the List
View's contentStyle attribute.

Alternatively, you can use skinning to override the margin-top and margin-
left from the .amx-listView-cards .amx-listItem selector, as well as
padding-bottom and padding-right from the .amx-listView-
cards .amx-listView-content selector (see What You May Need to Know
About Skinning).

Creating and Using UI Components

14-78 Developing Mobile Applications with Oracle Mobile Application Framework

For the rows layout, you can use the halign attribute to change the alignment of
trivial List Item content. However, the use of this attribute might not have a visual
effect.

When the List View component with cards layout is in edit mode, its layout switches
to rows mode.

To adjust the MAF AMX page layout to a specific pattern, you can combine the use of
the various types of List View components and styles that are defined through the
styleClass attribute (see Styling UI Components) that uses a set of predefined
styles.

A MAF sample application called UILayoutDemo demonstrates all the optional styles
for each component and their associated rendering. This application is located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

The following example shows the listView element and its child elements defined in
a MAF AMX file. The way each outputText child element is laid out in the list is
specified by the tableLayout child element of the listItem. Alternatively, you
may use the styleClass attribute to lay out and style outputText elements: setting
this attribute to adfmf-listItem-startText places the Output Text component to
the start (left side) of the row and applies a black font to its text; setting this attribute to
adfmf-listItem-endText places the Output Text component to the end (right
side) of the row and applies a blue font to its text. Whether or not the arrow pointing
to the right is visible is configured by the showLinkIcon attribute of the listItem
element. Since the default value of this attribute is true, the example does not contain
this setting.

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-47 shows a List View component with differently styled text added to the
start (left side) and end (right side) of each row. Besides the text, rows are equipped
with a right-pointing arrow representing a link that expands each list item.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-79

Figure 14-47 List View with Start and End Text at Design Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. The way each outputText child element is laid out in the list is
specified by the tableLayout child element of the listItem. Alternatively, you
may use the styleClass attribute to lay out and style outputText elements: setting
this attribute to adfmf-listItem-startText places the Output Text component to
the start of the row and applies a black font to its text; setting this attribute to adfmf-
listItem-endText places the Output Text component to the end of the row and
applies a blue font to its text. Whether or not the arrow pointing to the right is visible
on each particular row is configured by the showLinkIcon attribute of the listItem
element. Since in this example this attribute is set to false for every listItem
element, arrows pointing to the right are not displayed.

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1" showLinkIcon="false">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-48 shows a List View component with differently styled text added to the
start and end of each row. The rows do not contain right-pointing arrows representing
links.

Creating and Using UI Components

14-80 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-48 List View with Start and End Text Without Expansion Links at Design
Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. In addition to the text displayed at the start and end of each row, this
List View contains subtext placed under the end text. The way each outputText
child element is laid out in the list is specified by the tableLayout child element of
the listItem. Alternatively, you may use the styleClass attribute to lay out and
style outputText elements: setting this attribute to adfmf-listItem-
upperStartText places the Output Text component to the left side of the row and
applies a black font to its text; setting this attribute to adfmf-listItem-
upperEndText places the Output Text component to the right side of the row and
applies a smaller gray font to its text; setting this attribute to adfmf-listItem-
captionText places the Output Text component under the Output Text component
whose styleClass attribute is set to adfmf-listItem-upperStartText and
applies a smaller gray font to its text.

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl11">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf11" width="60%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputTexta2"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl12">
 <amx:cellFormat id="cf13" columnSpan="3" width="100%" height="12px">
 <amx:outputText id="outputTexta3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-49 shows a List View component with differently styled text added to the
start and end of each row, and with a subtext added below the end text on the left.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-81

Figure 14-49 List View with Start and End Text and Subtext at Design Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. This List View is populated with rows containing a main text and
subtext. The way each outputText child element is laid out in the list is specified by
the tableLayout child element of the listItem. Alternatively, you may use the
styleClass attribute to lay out and style outputText elements: setting this
attribute to adfmf-listItem-mainText places the Output Text component to the
start of the row and applies a large black font to its text; setting this attribute to
adfmf-listItem-captionText places the Output Text component under the
Output Text component whose styleClass attribute is set to adfmf-listItem-
mainText and applies a smaller gray font to its text.

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tla1" width="100%">
 <amx:rowLayout id="rla1">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa1" width="100%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cfa2" width="100%" height="12px" >
 <amx:outputText id="outputTexta2"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-50 shows a List View component with differently styled text added as a
main text and subtext to each row.

Creating and Using UI Components

14-82 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-50 List View with Main Text and Subtext at Design Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. This List View is populated with cells containing an icon, main text,
and subtext. The way each outputText child element is laid out in the list is specified
by the tableLayout child element of the listItem. Alternatively, you may use the
styleClass attribute to lay out and style outputText elements: setting this
attribute to adfmf-listItem-mainText places the Output Text component to the
left side of the row and applies a large black font to its text; setting this attribute to
adfmf-listItem-captionText places the Output Text component under the
Output Text component whose styleClass attribute is set to adfmf-listItem-
mainText and applies a smaller gray font to its text. The position of the image
element is defined by its enclosing cellFormat.

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" rowSpan="2" width="40px" halign="center">
 <amx:image id="i1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf2" width="100%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl2">
 <amx:cellFormat id="cf3" width="100%" height="12px">
 <amx:outputText id="ot2"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-51 shows a List View component with icons and differently styled text
added as a main text and subtext to each row.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-83

Figure 14-51 List View with Icons, Main Text and Subtext at Design Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. In addition to the text displayed at the start and end of each row, this
List View contains two different types of text placed on each side of each row. The
way each outputText child element is laid out in the list is specified by the
tableLayout child element of the listItem. Alternatively, you may use the
styleClass attribute to lay out and style outputText elements: setting this
attribute to adfmf-listItem-upperStartText places the Output Text component
at the top left corner of the row and applies a large black font to its text; setting this
attribute to adfmf-listItem-upperEndText places the Output Text component at
the top right corner of the row and applies a large gray font to its text; setting this
attribute to adfmf-listItem-lowerStartText places the Output Text component
at the bottom left corner of the row and applies a smaller gray font to its text; setting
this attribute to adfmf-listItem-lowerEndText places the Output Text
component at the bottom right corner of the row and applies a smaller gray font to its
text. Whether or not the arrow pointing to the right is visible is configured by the
showLinkIcon attribute of the listItem element. Since the default value of this
attribute is true, the example does not contain this setting.

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf2" width="60%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf3" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf4" width="40%" halign="end">
 <amx:outputText id="ot2"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cf5" width="60%" height="12px">
 <amx:outputText id="ot3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf6" width="40%" halign="end">
 <amx:outputText id="ot4"
 value="#{row.priority}"

Creating and Using UI Components

14-84 Developing Mobile Applications with Oracle Mobile Application Framework

 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-52 shows a List View component with two types of differently styled text
added to the start and end of each row. Besides the text, rows are equipped with a
right-pointing arrow representing a link that expands each list item.

Figure 14-52 List View with Four Types of Text at Design Time

The following example shows the listView element and its child elements defined in
a MAF AMX file. In addition to the text displayed at the start and end of each row, this
List View contains two different types of text placed on each side of each row. The
way each outputText child element is laid out in the list is specified by the
tableLayout child element of the listItem. Alternatively, you may use the
styleClass attribute to lay out and style outputText elements: setting this
attribute to adfmf-listItem-upperStartText places the Output Text component
at the top left corner of the row and applies a large black font to its text; setting this
attribute to adfmf-listItem-upperEndText places the Output Text component at
the top right corner of the row and applies a large gray font to its text; setting this
attribute to adfmf-listItem-lowerStartTextNoChevron places the Output Text
component at the bottom left corner of the row and applies a smaller gray font to its
text; setting this attribute to adfmf-listItem-lowerEndTextNoChevron places
the Output Text component at the bottom right corner of the row and applies a smaller
gray font to its text. Whether or not the arrow pointing to the right is visible on each
particular row is configured by the showLinkIcon attribute of the listItem
element. Since in this example this attribute is set to false for every listItem
element, arrows pointing to the right are not displayed.

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1" showLinkIcon="false">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf2" width="60%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf3" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf4" width="40%" halign="end">
 <amx:outputText id="ot2"
 value="#{row.status}"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-85

 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl2">
 <amx:cellFormat id="cf5" width="60%" height="12px">
 <amx:outputText id="ot3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf6" width="40%" halign="end">
 <amx:outputText id="ot4"
 value="#{row.priority}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 14-53 shows a List View component with two types of differently styled text
added to the start and end of each row.

Figure 14-53 List View with Four Types of Text and Without Expansion Links at
Design Time

14.3.15.5 What You May Need to Know About Using Static List View

If you create a List View component that is not populated from the model but by hard-
coded values, this List View becomes static resulting in some of its properties that you
set at design time (for example, dividerAttribute, dividerMode, fetchSize,
moveListener) ignored at run time.

MAF AMX treats a List View component as static if its value attribute is not set. Such
lists cannot be editable (that is, you cannot specify its editMode attribute).

14.3.16 How to Use a Carousel Component
You use the Carousel (carousel) component to display other components, such as
images, in a revolving carousel. The end user can change the active item by using
either the slider or by dragging another image to the front.

The Carousel component contains a Carousel Item (carouselItem) component,
whose text represented by the text attribute is displayed when it is the active item of
the Carousel. Although typically the Carousel Item contains an Image component,
other components may be used. For example, you can use a Link as a child that
surrounds an image. Instead of creating a Carousel Item component for each object to

Creating and Using UI Components

14-86 Developing Mobile Applications with Oracle Mobile Application Framework

be displayed and then binding these components to the individual object, you bind the
Carousel component to a complete collection. The component then repeatedly renders
one Carousel Item component by stamping the value for each item. As each item is
stamped, the data for the current item is copied into a property that can be addressed
using an EL expression using the Carousel component's var attribute. Once the
Carousel has completed rendering, this property is removed or reverted back to its
previous value. Carousel components contain a Facet named nodeStamp, which is
both a holder for the Carousel Item used to display the text and short description for
each item, and also the parent component to the Image displayed for each item.

The Carousel Item stretches its sole child component. If you place a single Image
component inside of the Carousel Item, the Image stretches to fit within the square
allocated for the item (as the end user spins the carousel, these dimensions shrink or
grow).

Tip:

To minimize any negative effect on performance of your application, you
should avoid using heavy-weight components as children: a complex
structure creates a multiplied effect because several Carousel Items stamps are
displayed simultaneously.

By default, the Carousel displays horizontally. The objects within the horizontal
orientation of the Carousel are vertically-aligned to the middle and the Carousel itself
is horizontally-aligned to the center of its container. You can configure the Carousel so
that it can be displayed vertically, as you might want for a reference rolodex. By
default, the objects within the vertical orientation of the Carousel are horizontally-
aligned to the center and the Carousel itself is vertically aligned middle. You can
change the alignments using the Carousel's orientation attribute.

Instead of partially displaying the previous and next images, you can configure your
Carousel to display images in a filmstrip or circular design using the displayItems
attribute.

By default, if the Carousel is configured to display in the circular mode, when the end
user hovers over an auxiliary item (that is, an item that is not the current item at the
center), the item is outlined to show that it can be selected. Using the
auxiliaryPopOut attribute, you can configure the Carousel so that instead the item
pops out and displays at full size.

In JDeveloper, the Carousel is located under Data Views in the Components window
(see Figure 14-54).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-87

Figure 14-54 Carousel in Components Window

Creating and Using UI Components

14-88 Developing Mobile Applications with Oracle Mobile Application Framework

To create a Carousel component, you must first create the data model that contains
images to display, then bind the Carousel to that model and insert a Carousel Item
component into the nodeStamp facet of the Carousel. Lastly, you insert an Image
component (or other components that contain an Image component) as a child to the
Carousel Item component.

The following example demonstrates the carousel element definition in a MAF
AMX file. When defining the carousel element, you must place the carouselItem
element inside of a carousel elements's nodeStamp facet.

<amx:carousel id="carousel1"
 value="#{bindings.products.collectionModel}"
 var="item"
 auxiliaryOffset="0.9"
 auxiliaryPopOut="hover"
 auxiliaryScale="0.8"
 controlArea="full"
 displayItems="circular"
 halign="center"
 valign="middle"
 disabled="false"
 shortDesc="spin"
 orientation="horizontal"
 styleClass="AMXStretchWidth"
 inlineStyle="height:250px;background-color:#EFEFEF;">
 <amx:facet name="nodeStamp">
 <amx:carouselItem id="item1" text="#{item.name}"
 shortDesc="Product: #{item.name}">
 <amx:commandLink id="link1" action="goto-productDetails"
 actionListener="#{someMethod()}">
 <amx:image id="image1" styleClass="prod-thumb"
 source="images/img-big-#{item.uid}.png"/>
 <amx:setPropertyListener id="spl1"
 from="#{item}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:commandLink>
 </amx:carouselItem>
 </amx:facet>
</amx:carousel>

The Carousel component uses the CollectionModel class to access the data in the
underlying collection. You may also use other model classes, such as
java.util.List or array, in which case the Carousel automatically converts the
instance into a CollectionModel class, but without any additional functionality.

A slider allows the end user to navigate through the Carousel collection. Typically, the
thumb on the slider displays the current object number out of the total number of
objects. When the total number of objects is too great to calculate, the thumb on the
slider shows only the current object number.

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

Creating and Using UI Components

Creating the MAF AMX User Interface 14-89

14.3.17 How to Use the Film Strip Component
A Film Strip (filmStrip) is a container that visualizes data distributed among a set
of groups (pages) in a form of a vertical or horizontal strip. The UI components that
represent display items (filmStripItem) included in a group must be of the same
size and type, and only one group visible at a time. The end user can navigate pages of
the Film Strip, select an item and generate actions by tapping it.

In JDeveloper, the Film Strip is located under Data Views in the Components window
(see Figure 14-55).

Creating and Using UI Components

14-90 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-55 Film Strip in Components Window

Creating and Using UI Components

Creating the MAF AMX User Interface 14-91

The following example demonstrates the filmStrip element definition in a MAF
AMX file.

<amx:filmStrip id="fs1"
 var="item"
 value="#{bindings.contacts.collectionModel}"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="#{pageFlowScope.pInlineStyle}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 halign="#{pageFlowScope.pFsHalign}"
 valign="#{pageFlowScope.pFsValign}"
 itemsPerPage="#{pageFlowScope.pMaxItems}"
 orientation="#{pageFlowScope.pOrientation}"
 pageControlPosition="#{pageFlowScope.pageControlPosition}">
 <amx:filmStripItem id="fsi1"
 inlineStyle="text-align:center; width:200px;">
 <amx:commandLink id="ciLink"
 action="details"
 shortDesc="Navigate to details">
 <amx:image id="ciImage" source="images/people/#{item.first}.png"/>
 <amx:setPropertyListener id="spl1"
 from="#{item.rowKey}"
 to="#{pageFlowScope.currentContact}"
 type="action"/>
 <amx:setPropertyListener id="spl2"
 from="#{item.first}"
 to="#{pageFlowScope.currentContactFirst}"
 type="action"/>
 <amx:setPropertyListener id="spl3"
 from="#{item.last}"
 to="#{pageFlowScope.currentContactLast}"
 type="action"/>
 </amx:commandLink>
 </amx:filmStripItem>
</amx:filmStrip>

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.17.1 What You May Need to Know About the Film Strip Layout

In a vertically laid out Film Strip, the display items are placed in a top-down manner.
Depending on the text direction, the page control is located as follows:

• For the left-to-right text direction, the page control is on the right side;

• For the right-to-left text direction, the page control is on the left side.

A horizontally laid out Film Strip should reflect the text direction mode: in the left-to-
ride mode, the first item is located on the left; in the right-to-left mode, the first item is
located on the right. In both cases, the page control is at the bottom.

Using the pageControlPosition attribute of the Film Strip component, you can
configure the location of the page control to be either inside or outside of a Film Strip
Item.

Creating and Using UI Components

14-92 Developing Mobile Applications with Oracle Mobile Application Framework

14.3.17.2 What You May Need to Know About the Film Strip Navigation

The navigation of the Film Strip component is similar to the Deck (see How to Use a
Deck Component) and Panel Splitter component (see How to Use a Panel Splitter
Component): one page at a time is displayed and the page change is triggered by
selection of the page ID or number.

Since the child Film Strip Item component is not meant to be used for navigation to
other MAF AMX pages, it does not support the action attribute. When required, you
can enable navigation through the nested Command Link component.

14.3.18 How to Use Verbatim Component
You use the Verbatim (verbatim) operation to insert your own HTML into a page in
cases where such a component does not exist or you prefer laying it out yourself using
HTML.

In JDeveloper, Verbatim is located under General Controls in the Components
window (see Figure 14-58).

Figure 14-56 Verbatim in Components Window

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

Creating and Using UI Components

Creating the MAF AMX User Interface 14-93

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.18.1 What You May Need to Know About Using JavaScript and AJAX with
Verbatim Component

Inserting JavaScript directly into the verbatim content (within the amx:verbatim
element) is not a recommended practice as it may not execute properly on future
versions of the currently supported platforms or on other platforms that MAF might
support in the future. Instead, JavaScript and CSS inclusions should be done through
the existing adfmf:include elements in the maf-feature.xml file, which ensures
injection of the script into the page at the startup of the MAF AMX application feature.

In addition, the use of JavaScript with the Verbatim component is affected by the fact
that AJAX calls from an AMX page to a server are not supported. This is due to the
security architecture that guarantees that the browser hosting the MAF AMX page
does not have access to the security information needed to make connections to a
secure server to obtain its resources. Instead, communication with the server must
occur from the embedded Java code layer.

14.3.19 How to Use an Output HTML Component
The Output HTML (outputHtml) component allows you to dynamically and
securely obtain HTML content from an EL-bound property or method with the
purpose of displaying it on a MAF AMX page. The Output HTML component behaves
similarly to the Verbatim component (see How to Use Verbatim Component) and the
same restrictions with regards to JavaScript and AJAX usage apply to it (see What You
May Need to Know About Using JavaScript and AJAX with Verbatim Component).

In JDeveloper, Output HTML is located under General Controls in the Components
window (see Figure 14-57).

Creating and Using UI Components

14-94 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-57 Output HTML in Components Window

The following example demonstrates the outputHtml element definition in a MAF
AMX file. The value attribute provides an EL binding to a String property that is
used to obtain the HTML content to be displayed as the outputHTML in the final
rendering of the MAF AMX page.

<amx:tableLayout id="t1" width="100%">
 <amx:rowLayout id="r1">
 <amx:cellFormat id="cf1" width="100%">
 <amx:outputHtml id="ReceiptView"
 value="#{pageFlowScope.purchaseBean.htmlReceiptView}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="r2">
 <amx:cellFormat id="cf2" width="100%">
 <amx:outputHtml id="CheckView"
 value="#{pageFlowScope.purchaseBean.htmlCheckView}"/>
 </amx:cellFormat>

Creating and Using UI Components

Creating the MAF AMX User Interface 14-95

 </amx:rowLayout>
</amx:tableLayout>

The following example shows the code from the Java bean called MyPurchaseBean
that provides HTML for the Output HTML component shown in the preceding
example.

// The property accessor that gets the receipt view HTML
public String getHtmlReceiptView() {
 // Perform some URL remote call to get the HTML to be
 // inserted as a view of the Receipt and return that value
 return obtainReceiptHTMLFromServer();
}
// The property accessor that gets the check view HTML
public String getHtmlCheckView() {
 // Perform some URL remote call to get the HTML to be
 // inserted as a view of the Check and return that value
 return obtainCheckHTMLFromServer();
}

Since the Output HTML component obtains its HTML content from a Java bean
property as opposed to downloading it directly from a remote source, consider using
the existing MAF security features when coding the retrieval or generation of the
dynamically provided HTML. For more information, see Securing MAF Applications
and About Injection Attack Risks from Custom HTML Components. In addition,
ensure that the HTML being provided comes from a trusted source and is free of
threats.

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.20 How to Enable Iteration
You use the Iterator (iterator) operation to stamp an arbitrary number of items
with the same kind of data, which allows you to iterate through the data and produce
UI for each element.

In JDeveloper, the Iterator is located under Data Views in the Components window
(see Figure 14-58).

Creating and Using UI Components

14-96 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-58 Iterator in Components Window

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.3.21 How to Refresh Contents of UI Components
The Refresh Container (refreshContainer) component houses contents that can be
refreshed by the end user through a pull down gesture resulting in display of a status
indicator.

Upon release of a pull down gesture or reaching threshold, the contents' update begins
and the status indicator changes until the contents, such as List Item instances, are
refreshed.

In other words, the Refresh Container component allows you to expose refresh as a
gesture thus eliminating the need of adding a refresh button to a MAF AMX page.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-97

Note that Refresh Container should not be placed within a scrollable parent
component as it would result in an undesirable scrolling experience for the end user.
Instead, you may place a scrollable component, such as a List View, inside of the
Refresh Container. When the end user performs a pull down gesture anywhere within
the Refresh Container, MAF AMX determines if any UI component between the
Refresh Container and the finger of the end user is not scrolled to its top: if any of
these components are not scrolled to their tops, this Refresh Container ignores the
gesture so the end user can scroll the contents as usual; if all of the components are
scrolled to their tops, then the Refresh Container allows the end user to pull down the
content to reveal a previously-hidden informational pocket at the top of the Refresh
Container; if the finger is lifted prior to reaching a required threshold (a height
specified in the skin), the pocket becomes hidden again; when the end user drags the
finger down past that threshold, an action event is fired allowing the application to
perform operations that would result in data being refreshed. The pocket remains
open until the processing completes or, if specified, until a data change event is
triggered on the optional refreshCompleteExpression attribute of the Refresh
Container.

In JDeveloper, the Refresh Container is located under Data Views in the Components
window.

Creating and Using UI Components

14-98 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-59 Refresh Container in Components Window

Creating and Using UI Components

Creating the MAF AMX User Interface 14-99

The following example demonstrates the refreshContainer element definition in a
MAF AMX file. This component refreshes the contents of a List View. The pullText,
busyText, and subText attributes define text that appears at various stages of the
activated Refresh Container.

<amx:refreshContainer id="rc1"
 refreshDesc="#{pageFlowScope.componentProperties.refreshDesc}"
 pullText="#{pageFlowScope.componentProperties.pullText}"
 busyText="#{pageFlowScope.componentProperties.busyText}"
 subText="#{pageFlowScope.componentProperties.subText}"
 actionListener="#{PropertyBean.RefreshActionHandler}">
 <amx:setPropertyListener type="action"
 from="Last updated: Recently"
 to="#{pageFlowScope.componentProperties.subText}"/>
 <amx:listView id="listView1"
 var="row"
 value="#{bindings.contacts.collectionModel}"
 bufferStrategy="viewport"
 collapsibleDividers="true"
 dividerAttribute="last"
 dividerMode="firstLetter"
 rendered="#{pageFlowScope.componentProperties.rendered}"
 showDividerCount="true"
 showMoreStrategy="autoScroll">
 <amx:listItem id="listItem1" action="details">
 <amx:outputText id="outputText1"
 value="#{row.first} #{row.last}"/>
 <amx:setPropertyListener from="#{row.rowKey}"
 to="#{pageFlowScope.currentContact}"
 type="action"/>
 <amx:setPropertyListener from="#{row.first}"
 to="#{pageFlowScope.currentContactFirst}"
 type="action"/>
 <amx:setPropertyListener from="#{row.last}"
 to="#{pageFlowScope.currentContactLast}"
 type="action"/>
 <amx:setPropertyListener from="#{row.address}"
 to="#{pageFlowScope.currentContactAddress}"
 type="action"/>
 <amx:setPropertyListener from="#{row.city}"
 to="#{pageFlowScope.currentContactCity}"
 type="action"/>
 <amx:setPropertyListener from="#{row.state}"
 to="#{pageFlowScope.currentContactState}"
 type="action"/>
 <amx:setPropertyListener from="#{row.zip}"
 to="#{pageFlowScope.currentContactZip}"
 type="action"/>
 <amx:setPropertyListener from="#{row.phone}"
 to="#{pageFlowScope.currentContactPhone}"
 type="action"/>
 <amx:setPropertyListener from="#{row.mobile}"
 to="#{pageFlowScope.currentContactMobile}"
 type="action"/>
 </amx:listItem>
 </amx:listView>
</amx:refreshContainer>

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

Creating and Using UI Components

14-100 Developing Mobile Applications with Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.22 How to Load a Resource Bundle
The Load Bundle (loadBundle) operation allows you to specify the resource bundle
that provides localized text for the MAF AMX UI components on a page. For more
information, see Localizing UI Components.

In JDeveloper, the Load Bundle is located under Operations in the Components
window (see Figure 14-60).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-101

Figure 14-60 Load Bundle in Components Window

Creating and Using UI Components

14-102 Developing Mobile Applications with Oracle Mobile Application Framework

In your MAF AMX file, you declare the loadBundle element as a child of the view
element.

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.3.23 How to Use the Action Listener
The Action Listener (actionListener) component allows you to declaratively
invoke commands through EL based on the type of the parent component's usage.

The predominate reason for using the Action Listener component is to add gesture-
supported actions to its parent components, as well as ability to perform multiple
operations for a single gesture, including tap. For more information, see What You
May Need to Know About Differences Between the Action Listener Component and
Attribute.

In JDeveloper, the Action Listener component is located under Operations ->
Listeners in the Components window (see Figure 14-61).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-103

Figure 14-61 Action Listener in Components Window

Creating and Using UI Components

14-104 Developing Mobile Applications with Oracle Mobile Application Framework

You can add zero or more Action Listener components as children of any command
component (Button, Link, List Item, Film Strip Item). The type attribute of the Action
Listener component defines which gesture, such as swipeLeft, swipeRight,
tapHold, and so on, causes the ActionEvent to fire.

For more information, see the following:

• Using Event Listeners

• How to Use the Set Property Listener

• Enabling Gestures

• What You May Need to Know About Differences Between the Action Listener
Component and Attribute

• Tag Reference for Oracle Mobile Application Framework

14.3.23.1 What You May Need to Know About Differences Between the Action
Listener Component and Attribute

Components such as the Button, Link, and List Item have an actionListener
attribute, which by inference seems to make the Action Listener component
redundant. However, unlike the Action Listener component, these components do not
have the type attribute that supports gestures, which is the reason MAF provides the
Action Listener component in addition to the actionListener attribute of the
parent components.

14.3.24 How to Use the Set Property Listener
The Set Property Listener (setPropertyListener) component allows you to
declaratively copy values from one location (defined by the component's from
attribute) to another (defined by the component's to attribute) as a result of an end-
user action on a component, thus freeing you from the need to write Java code to
achieve the same result.

In JDeveloper, the Set Property Listener component is located under Operations ->
Listeners in the Components window (see Figure 14-62).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-105

Figure 14-62 Set Property Listener in Components Window

The following example demonstrates the setPropertyListener element definition
in a MAF AMX file.

<amx:listView value="#{bindings.products.collectionModel}" var="row" id="lv1">
 <amx:listItem id="li1" action="details">
 <amx:outputText value="#{row.name}" id="ot1" />
 <amx:setPropertyListener id="spl1"
 from="#{row}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:listItem>
</amx:listView>

Creating and Using UI Components

14-106 Developing Mobile Applications with Oracle Mobile Application Framework

You can add zero or more Set Property Listener components as children of any
command component (Button, Link, List Item, Film Strip Item, as well as a subset of
data visualization components and their child components). The type attribute of the
Set Property Listener component defines which gesture, such as swipeLeft,
swipeRight, tapHold, and so on, causes the ActionEvent to fire.

For more information, see the following:

• Using Event Listeners

• How to Use the Action Listener

• Enabling Gestures

• Tag Reference for Oracle Mobile Application Framework

14.3.25 How to Use the Client Listener
The Client Listener (clientListener) component allows you to declaratively
register a JavaScript listener script that is to be executed when a specific event type is
fired.

Before using the Client Listener component, you should check whether or not the
MAF AMX page contains any existing behavior components, such as the Navigation
Drag Behavior or Show Popup Behavior, because these components might eliminate
the need for scripts.

In JDeveloper, the Client Listener component is located under Operations ->
Listeners in the Components window (see Figure 14-63).

Creating and Using UI Components

Creating the MAF AMX User Interface 14-107

Figure 14-63 Client Listener in Components Window

The following example demonstrates the clientListener element definition in a
MAF AMX file. Both attributes are required and should be specified as follows:

Creating and Using UI Components

14-108 Developing Mobile Applications with Oracle Mobile Application Framework

• method: defines the client-side JavaScript method name to invoke when triggered
by an event of the specified type.

• type: defines the type of the client-side component event for which to listen. Note
that not all events exist for all components and not all events behave consistently
across platforms or versions of the same platform. Examples of events include
action if the parent component is a Button; valueChange if the parent
component is an Input Text. Depending on the parent component, there might be
some DOM events that you can use, such as touchstart, touchend, tap,
taphold, and so on. In addition, some components might have special DOM
events, such as the View component's showpagecomplete, mafviewvisible,
mafviewhidden, amxnavigatestart, and amxnavigateend (see What You
May Need to Know About Device Properties for more information on these
events).

The type attribute supports EL for its initial declaration, but it does not support
updates to that EL value—the value associated with the expression must not
change unless actions are taken that cause the parent component to rerender.

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:clientListener type="showpagecomplete" method="handleClientListenerBlue"/>
 <amx:clientListener type="mafviewvisible" method="handleClientListenerBlue"/>
 <amx:clientListener type="mafviewhidden" method="handleClientListenerBlue"/>
 <amx:clientListener type="amxnavigatestart" method="handleClientListenerBlue"/>
 <amx:clientListener type="amxnavigateend" method="handleClientListenerBlue"/>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="header" value="clientListener"/>
 </amx:facet>
 <amx:facet name="primary">
 <amx:commandButton id="back" action="__back" text="Back"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="props" text="Properties" action="properties"/>
 </amx:facet>
 <amx:commandButton id="button1" text="Click Me">
 <amx:clientListener type="#{bindings.pType}"
 method="#{bindings.pMethod}"/>
 </amx:commandButton>
 <amx:verbatim id="v1"><![CDATA[
 <script type="text/javascript">
 function handleClientListenerGray(clientEvent) {
 _handleClientListener(clientEvent, "gray");
 }
 function handleClientListenerBlue(clientEvent) {
 _handleClientListener(clientEvent, "blue");
 }
 function handleClientListenerOrange(clientEvent) {
 _handleClientListener(clientEvent, "orange");
 }
 function clearRecentEvents(clientEvent) {
 for (var i=9; i>=0; --i) {
 var row = document.getElementsByClassName("recent"+i)[0];
 row.textContent = "n/a";
 row.style.color = "";
 }
 }
 function _handleClientListener(clientEvent, color) {

Creating and Using UI Components

Creating the MAF AMX User Interface 14-109

 try {
 for (var i=9; i>0; --i) {
 var currentRow = document.getElementsByClassName("recent"+i)[0];
 var olderRow = document.getElementsByClassName
 ("recent"+(i-1))[0];
 currentRow.textContent = olderRow.textContent;
 currentRow.style.color = olderRow.style.color;
 }
 document.getElementsByClassName("recent0")[0].
 textContent = clientEvent;
 document.getElementsByClassName("recent0")[0].style.color = color;
 console.log("Handled clientListener: " + clientEvent, clientEvent);
 }
 catch (problem) {
 console.log("Error in verbatim code: " +
 clientEvent, clientEvent, problem);
 alert("Error in verbatim code: " + clientEvent + "\n\n" + problem);
 }
 }
 </script>
 <style type="text/css">
 .recentLine {
 white-space: normal;
 word-wrap: break-word;
 font-size: 12px;
 color: gray;
 }
 </style>
 <fieldset style="min-width: 50px;">
 <legend style="color: gray;">Recent Events</legend>
 <div id="recent0" class="recent0 recentLine">n/a</div>
 <div id="recent1" class="recent1 recentLine">n/a</div>
 <div id="recent2" class="recent2 recentLine">n/a</div>
 <div id="recent3" class="recent3 recentLine">n/a</div>
 <div id="recent4" class="recent4 recentLine">n/a</div>
 <div id="recent5" class="recent5 recentLine">n/a</div>
 <div id="recent6" class="recent6 recentLine">n/a</div>
 <div id="recent7" class="recent7 recentLine">n/a</div>
 <div id="recent8" class="recent8 recentLine">n/a</div>
 <div id="recent9" class="recent9 recentLine">n/a</div>
 </fieldset>
]]></amx:verbatim>
 </amx:panelPage>
</amx:view>

For more information, see the following:

• Using Event Listeners

• Tag Reference for Oracle Mobile Application Framework

14.3.26 How to Convert Date and Time Values
The Convert Date Time (convertDateTime) is not an independent UI component: it
is a converter operation that you use in conjunction with an Output Text and Input
Text component to display converted date, time, or a combination of date and time in
a variety of formats following the specified pattern.

In JDeveloper, the Convert Date Time is located under Validators and Converters in
the Components window (see Figure 14-64).

Creating and Using UI Components

14-110 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-64 Convert Date Time in Components Window

Creating and Using UI Components

Creating the MAF AMX User Interface 14-111

The following example demonstrates the convertDateTime element declared in a
MAF AMX file.

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Order Date" id="it1" >
 <amx:convertDateTime id="cdt1" type="both"/>
 </amx:inputText>
</amx:panelPage>

To convert date and time values:

1. From the Components window, drag a Convert Date Time component and insert
it within an Output Text or Input Text component, making it a child element of
that component.

2. Open the Properties window for the Convert Date Time component and define its
attributes. For more information, see Tag Reference for Oracle Mobile Application
Framework.

Note:

The Convert Date Time component does not produce any effect at design
time.

The Convert Date Time component allows a level of leniency while converting an
input value string to date:

• A converter with associated pattern MMM for month, when attached to any value
holder, accepts values with month specified in the form MM or M as valid.

• Allows use of such separators as dash (-) or period (.) or slash (/), irrespective
of the separator specified in the associated pattern.

• Leniency in pattern definition set by the pattern attribute.

For example, when a pattern on the converter is set to "MMM/d/yyyy", the following
inputs are accepted as valid by the converter:

Jan/4/2004
Jan-4-2004
Jan.4.2004
01/4/2004
01-4-2004
01.4.2004
1/4/2004
1-4-2004
1.4.2004

The converter supports the same parsing and formatting conventions as the
java.text.SimpleDateFormat (specified using the dateStyle, timeStyle,
and pattern attributes), except the case when the time zone is specified to have a
long display, such as timeStyle=full or a pattern set with zzzz. Instead of a long
descriptive string, such as "Pacific Standard Time", the time zone is displayed in the
General Time zone format (GMT +/- offset) or RFC-822 time zones.

The exact result of the conversion depends on the locale, but typically the following
rules apply:

Creating and Using UI Components

14-112 Developing Mobile Applications with Oracle Mobile Application Framework

• SHORT is completely numeric, such as 12.13.52 or 3:30pm

• MEDIUM is longer, such as Jan 12, 1952

• LONG is longer, such as January 12, 1952 or 3:30:32pm

• FULL is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST

14.3.26.1 What You May Need to Know About Date and Time Patterns

As per java.text.SimpleDateFormat definition, date and time formats are
specified by date and time pattern strings. Within date and time pattern strings,
unquoted letters from A to Z and from a to z are interpreted as pattern letters
representing the components of a date or time string. Text can be quoted using single
quotes (') to avoid interpretation. " ' ' " represents a single quote. All other
characters are not interpreted; instead, they are simply copied into the output string
during formatting, or matched against the input string during parsing.

Table 14-9 lists the defined pattern letters (all other characters from A to Z and from a
to z are reserved).

Table 14-9 Date and Time Pattern Letters

Letter Date or Time Component Presentation Examples

G Era designator Text • AD

y Year Year • 1996
• 96

M Month in year Month • July
• Jul
• 07

w Week in year Number • 27

W Week in month Number • 2

D Day in year Number • 189

d Day in month Number • 10

F Day of week in month Number • 2

E Day in week Text • Tuesday
• Tue

a Am/pm marker Text • PM

H Hour in day (0-23) Number • 0

k Hour in day (1-24) Number • 24

K Hour in am/pm (0-11) Number • 0

h Hour in am/pm (1-12) Number • 12

m Minute in hour Number • 30

s Second in minute Number • 55

Creating and Using UI Components

Creating the MAF AMX User Interface 14-113

Table 14-9 (Cont.) Date and Time Pattern Letters

Letter Date or Time Component Presentation Examples

S Millisecond Number • 978

z Time zone General time zone • Pacific Standard Time
• PST
• GMT-08:00

Z Time zone RFC 822 time zone • -0800

Pattern letters are usually repeated, as their number determines the exact presentation.

14.3.27 How to Convert Numeric Values
The Convert Number (convertNumber) is not an independent UI component: it is a
converter operation that you use in conjunction with an Output Text, Input Text, and
Input Number Slider components to display converted number or currency figures in
a variety of formats following a specified pattern.

The Convert Number component provides the following types of conversion:

• From value to string, for display purposes.

• From formatted string to value, when formatted input value is parsed into its
underlying value.

When the Convert Number is specified as a child of an Input Text component, the
numeric keyboard is displayed on a mobile device by default.

In JDeveloper, the Convert Number is located under Validators and Converters in the
Components window (see Figure 14-65).

Creating and Using UI Components

14-114 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-65 Convert Number in Components Window

Creating and Using UI Components

Creating the MAF AMX User Interface 14-115

The following example demonstrates the convertNumber element defined in a MAF
AMX file.

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Product Price" id="it1" >
 <amx:convertNumber id="cn1"
 type="percent"
 groupingUsed="false"
 integerOnly="true"/>
 </amx:inputText>
</amx:panelPage>

To convert numeric values:

1. From the Components window, drag a Convert Number component and insert it
within an Output Text, Input Text, or Input Number Slider component, making it
a child element of that component.

2. Open the Properties window for the Convert Number component and define its
attributes. For more information, see Tag Reference for Oracle Mobile Application
Framework.

Note:

The Convert Number component does not produce any effect at design time.

14.3.28 How to Enable Drag Navigation
The Navigation Drag Behavior (navigationDragBehavior) operation allows you
to invoke the action of navigating to the next or previous MAF AMX page by dragging
a portion of the mobile device screen in a specified direction (left or right). As the drag
in the specified direction occurs, an indicator is displayed on the appropriate side of
the screen to hint that an action will be performed if the dragging continues and then
stops as soon as the indicator is fully revealed. If the drag is released before the
indicator is fully revealed, the indicator slides away and no action is invoked.

Note:

This behavior does not occur if another, closer container consumes the drag
gesture.

A MAF AMX page cannot contain more than two instances of the
navigationDragBehavior element: one with its direction attribute set to back
and one set to forward.

In JDeveloper, the Navigation Drag Behavior is located under Operations in the
Components window (see Figure 14-66).

Creating and Using UI Components

14-116 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-66 Navigation Drag Behavior in Components Window

The following example demonstrates the navigationDragBehavior element
defined in a MAF AMX file. This element can only be a child of the view element.

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"

Creating and Using UI Components

Creating the MAF AMX User Interface 14-117

 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:navigationDragBehavior id="ndb1"
 direction="forward"
 action="gotoDetail"/> 1

 <amx:panelPage id="pp1">
 <amx:facet name="header">
 ...
 </amx:panelPage>
</amx:view>

Figure 14-67 shows the Navigation Drag Behavior at runtime (displayed using the
mobileFusionFx skin).

Figure 14-67 Navigation Drag Behavior Operation at Runtime

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.3.28.1 What You May Need to Know About the disabled Attribute

The value of the disabled attribute is calculated when one of the following occurs:

• A MAF AMX page is rendered.

• A PropertyChangeListener updates the component: If you wish to
dynamically enable or disable the end user's ability to invoke the Navigation Drag

1 See What You May Need to Know About the disabled Attribute for details.

Creating and Using UI Components

14-118 Developing Mobile Applications with Oracle Mobile Application Framework

Behavior, you use the PropertyChangeListener (similarly to how it is used
with other components that require updates from a bean).

The following example shows a MAF AMX page containing the
navigationDragBehavior element with a defined disabled attribute. The
functionality is driven by the Button (commandButton) that, when activated, changes
the backing bean boolean value (navDisabled in the MyBean example) from which
the disabled attribute reads its value. The backing bean, in turn, uses the Property
Change Listener.

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="Header1" id="ot1"/>
 </amx:facet>
 <amx:commandButton id="cb1"
 text="commandButton1"
 actionListener="#{pageFlowScope.myBean.doSomething}"/>
 </amx:panelPage>
 <amx:navigationDragBehavior id="ndb1"
 direction="forward"
 action="goView2"
 disabled="#{pageFlowScope.myBean.navDisabled}"/>
</amx:view>

The following example shows the backing bean (myBean in the
navigationDragBehavior example) that provides value for the
navigationDragBehavior's disabled attribute.

public class MyBean {
 boolean navDisabled = true;
 private PropertyChangeSupport propertyChangeSupport =
 new PropertyChangeSupport(this);

 public void setNavDisabled(boolean navDisabled) {
 boolean oldNavDisabled = this.navDisabled;
 this.navDisabled = navDisabled;
 propertyChangeSupport.firePropertyChange("navDisabled",
 oldNavDisabled,
 navDisabled);
 }

 public boolean isNavDisabled() {
 return navDisabled;
 }

 public void doSomething(ActionEvent actionEvent) {
 setNavDisabled(!navDisabled);
 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }
}

Creating and Using UI Components

Creating the MAF AMX User Interface 14-119

14.3.29 How to Use the Loading Indicator
The Loading Indicator Behavior (loadingIndicatorBehavior) operation allows
you to define the behavior of the loading indicator by overriding the following:

• The duration of the fail-safe timer (in milliseconds).

• An optional JavaScript function name that can be invoked to decide on the course
of action when the fail-safe threshold is reached.

For additional information, see the adf.mf.api.amx.showLoadingIndicator in
Table 20-1.

In JDeveloper, the Loading Indicator Behavior is located under Operations in the
Components window (see Figure 14-68).

Creating and Using UI Components

14-120 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-68 Loading Indicator Behavior in the Components Window

The following example demonstrates the loadingIndicatorBehavior element
defined in a MAF AMX file. This element can only be a child of the view element.

Creating and Using UI Components

Creating the MAF AMX User Interface 14-121

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:loadingIndicatorBehavior id="lib1"
 failSafeDuration="3000"
 failSafeClientHandler="window.customFailSafeHandler"/>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <!-- The loading indicator custom fail safe handler will appear
 if the long running operation runs longer than 3 seconds -->
 <amx:commandButton id="cb1"
 text="longRunningOperation"
 actionListener=
 "#{pageFlowScope.myBean.longRunningOperation} />
 </amx:panelPage>
</amx:view>

In the preceding example, the commandButton is bound to a long-running method to
illustrate that the loading indicator applies to long running operations once the page is
loaded (not when the page itself takes a long time to load).

The following example demonstrates the custom.js file included with the
application feature. It defines the client handler for the failSafeClientHandler in
the loadingIndicatorBehavior page. As per the API requirement, this function
returns a String of either hide, repeat, or freeze. For more information, see the
adf.mf.api.amx.showLoadingIndicator in Table 20-1.

window.customFailSafeHandler = function() {
 var answer =
 prompt(
 "This is taking a long time.\n\n" +
 "Use \"a\" to hide the indicator.\n" +
 "Use \"z\" to wait for it.\n" +
 "Otherwise, give it more time.");

 if (answer == "a")
 return "hide"; // don't ask again; hide the indicator
 else if (answer == "z")
 return "freeze" // don't ask again; wait for it to finish
 else
 return "repeat"; // ask again after another duration
};

For more information and examples, see the following:

• Tag Reference for Oracle Mobile Application Framework

• CompGallery, a MAF sample application located in the PublicSamples.zip file
within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/
Samples directory on your development computer

14.4 Enabling Gestures
You can configure Button, Link, List Item, as well as a number of data visualization
components to react to the following gestures:

• Swipe to the right

• Swipe to the left

Enabling Gestures

14-122 Developing Mobile Applications with Oracle Mobile Application Framework

• Swipe up

• Swipe down

• Tap-and-hold

• Action: as a gesture, Action represents a basic tap.

• Swipe to the start: this gesture is used for accommodating the right-to-left (RTL)
text direction. This gesture resolves as follows:

– Swipe to the left for the left-to-right text direction.

– Swipe to the right for the right-to-left text direction.

• Swipe to the end: this gesture is used for accommodating the right-to-left (RTL) text
direction. This gesture resolves as follows:

– Swipe to the right for the left-to-right text direction.

– Swipe to the left for the right-to-left text direction.

You can define swipeRight, swipeLeft, swipeUp, swipeDown, swipeStart,
swipeEnd, action, and tapHold values for the type attribute of the following
operations:

• Set Property Listener (see How to Use the Set Property Listener)

• Action Listener (see How to Use the Action Listener)

• Show Popup Behavior (see How to Use a Popup Component)

• Close Popup Behavior (see How to Use a Popup Component)

The values of the type attribute are restricted based on the parent component and are
supported only for Link (commandLink) and List Item (listItem) components.

Note:

There is no gesture support for the Link Go (linkGo) component.

Swiping from start and end is used for accommodating the right-to-left (RTL) text
direction. It is generally recommended to set the start and end swipe style as opposed
to left and right.

The following example demonstrates use of the tapHold value of the type attribute
in a MAF AMX file. In this example, the tap-and-hold gesture triggers the display of a
Popup component.

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem id="li1" action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener id="spl1"
 from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="tapHold"/>
 <amx:showPopupBehavior id="spb1"

Enabling Gestures

Creating the MAF AMX User Interface 14-123

 type="tapHold"
 alignid="pp1"
 popupid="pop1"
 align="startAfter"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>
<amx:popup id="pop1">
 <amx:panelGroupLayout id="pgl1" layout="horizontal">
 <amx:commandLink id="cm1" actionListener="#{mybean.doX}">
 <amx:image id="i1" source="images/x.png"/>
 <amx:closePopupBehavior id="cpb1" type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm2" actionListener="#{mybean.doY}">
 <amx:image id="i2" source="images/y.png"/>
 <amx:closePopupBehavior id="cpb2" type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm3" actionListener="#{mybean.doZ}">
 <amx:image id="i3" source="images/y.png"/>
 <amx:closePopupBehavior id="cpb3" type="action" popupid="pop1"/>
 </amx:commandLink>
 </amx:panelGroupLayout>
</amx:popup>

The following example demonstrates use of the swipeRight gesture in a MAF AMX
file.

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem id="li1" action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener id="spl1"
 from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="swipeRight"/>
 <actionListener id="al1" binding="#{mybean.DoX}" type="swipeRight"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>

For more information, see Tag Reference for Oracle Mobile Application Framework.

A MAF sample application called GestureDemo demonstrates how to use gestures
with a variety of MAF AMX UI components. This sample application is located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

14.5 Providing Data Visualization
MAF employs a set of data visualization components that you can use to create
various charts, gauges, and maps to represent data in your MAF AMX application
feature. You can declare the following elements under the <dvtm> namespace in a
MAF AMX file:

• areaChart (see How to Create an Area Chart)

• barChart (see How to Create a Bar Chart)

Providing Data Visualization

14-124 Developing Mobile Applications with Oracle Mobile Application Framework

• bubbleChart (see How to Create a Bubble Chart)

• comboChart (see How to Create a Combo Chart)

• lineChart (see How to Create a Line Chart)

• pieChart (see How to Create a Pie Chart)

• scatterChart (see How to Create a Scatter Chart)

• sparkChart (see How to Create a Spark Chart)

• funnelChart (see How to Create a Funnel Chart)

• stockChart (see How to Create a Stock Chart)

• ledGauge (see How to Create a LED Gauge)

• statusMeterGauge (see How to Create a Status Meter Gauge)

• dialGauge (see How to Create a Dial Gauge)

• ratingGauge (see How to Create a Rating Gauge)

• geographicMap (see How to Create a Geographic Map Component)

• thematicMap (see How to Create a Thematic Map Component)

• treemap (see How to Create a Treemap Component)

• sunburst (see How to Create a Sunburst Component)

• timeline (see How to Create a Timeline Component)

• nBox (see How to Create an NBox Component)

Chart, gauge, map, and advanced components' elements have a number of attributes
that are common to all or most of them. For more information, see Tag Reference for
Oracle Mobile Application Framework.

In JDeveloper, data visualization components are located as follows in the
Components window:

• Chart components are located under MAF AMX Data Visualizations > Common >
Chart

• Gauge components are located under MAF AMX Data Visualizations > Common
> Gauge

• Map components are located under MAF AMX Data Visualizations > Common >
Map

• Treemap, Sunburst, Timeline, and NBox are located under MAF AMX Data
Visualizations > Common > Miscellaneous

Providing Data Visualization

Creating the MAF AMX User Interface 14-125

Figure 14-69 Data Visualization Components in the Components Window

When you drag and drop a data visualization component, a dialog similar to one of
the following opens to display the information about the type of component you are
creating:

• Create Mobile Chart (see Figure 14-70)

Providing Data Visualization

14-126 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-70 Creating Chart Components

• Create Mobile Gauge (see Figure 14-71)

Providing Data Visualization

Creating the MAF AMX User Interface 14-127

Figure 14-71 Creating Gauge Components

• Component Gallery (see Figure 14-72)

Providing Data Visualization

14-128 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-72 Creating Map Components

• Create Sunburst or Treemap (see Figure 14-71)

Providing Data Visualization

Creating the MAF AMX User Interface 14-129

Figure 14-73 Creating Sunburst

Note:

After you created the component, you can relaunch the creation dialog by
selecting the component in the Source editor or Structure view, and then
clicking Edit Component Definition in the Properties window.

You can use the same editing functionality available from the Properties
window to edit child components (for example, the Data Point Layer) of some
data visualization components.

A MAF sample application called CompGallery demonstrates how to use various data
visualization components in your MAF AMX application feature. This sample
application is located in the PublicSamples.zip file within the jdev_install/

Providing Data Visualization

14-130 Developing Mobile Applications with Oracle Mobile Application Framework

jdeveloper/jdev/extensions/oracle.maf/Samples directory on your
development computer.

For more information on MAF AMX data visualization components, see the following:

• For information on how to add event listeners to data visualization components,
see Using Event Listeners. Event listeners are applicable to components for the
MAF AMX run-time description on both iOS and Android-powered devices, but
the listeners do not have any effect at design time.

• For information on databound data visualization components that are created from
the Data Controls window, see How to Create Databound Data Visualization
Components.

• For information on providing static data for charts and other data visualization
components, see How to Create Data Visualization Components Based on Static
Data.

• For information on chart components' interactivity, see How to Enable Interactivity
in Chart Components.

• For information on creating polar charts, see How to Create Polar Charts.

• For information on data visualization components' support for accessibility, see
Understanding MAF Support for Accessibility.

14.5.1 How to Create an Area Chart
You use the Area Chart (areaChart) to visually represent data where sets of data
items are related and categorized into groups and series. The series are visualized
using graphical elements with some common style properties (such as, for example, an
area color or pattern). Those properties have to be applied at the series level instead of
per each individual data item. You have an option to use the default or custom series
styles. For information about defining custom series styles, see How to Create a Line
Chart.

The Area Chart can be zoomed and scrolled along its X Axis. This is enabled through
the use of the zoomAndScroll attribute.

The following example shows the areaChart element defined in a MAF AMX file. To
create a basic area chart with default series style, you pass it a collection and specify
the dataStamp facet with a nested chartDataItem element.

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem
id="areaChartItem1" series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />

Providing Data Visualization

Creating the MAF AMX User Interface 14-131

 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

Figure 14-74 Area Chart at Design Time

Data items are initialized in the collection model and equipped with the stamping
mechanism. At a minimum, each collection row must include the following properties:

• series: name of the series to which this data item belongs;

• group: name of the group to which this data item belongs;

• value: the data item value.

The collection row might also include other properties, such as color or
markerShape, applicable to individual data items.

You can use Attribute Groups (attributeGroups element) to set style properties for
a group of data items based on some grouping criteria, as the following example
shows. In this case, the chartDataItem's color and markerShape attributes are set
based on the additional grouping expression.

The attributeGroups settings can be shared between data visualization
components and attribute values can be automatically applied across these
components. You enable this functionality by setting the discriminant attribute of
the attributeGroups: components with the same discriminant value share their
settings, including value of the attributeMatchRule child element of their
attributeGroups.

The attributeGroups can have the following child elements:

• attributeExceptionRule from the dvtm namespace: replaces an attribute
value with another when a particular boolean condition is met.

• attributeMatchRule from the dvtm namespace: replaces an attribute when the
data matches a certain value.

• attribute from the amx namespace.

Providing Data Visualization

14-132 Developing Mobile Applications with Oracle Mobile Application Framework

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Chart Title"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.brand}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

Note:

As the preceding example and Figure 14-74 show, since custom styles are not
set at the series level, series are displayed with the colors based on the default
color ramp.

The orientation attribute allows you to define the Area Chart as either horizontal
or vertical.

For information on attributes of the areaChart and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Area Chart component's top-level element by overwriting the
default CSS settings defined in the following class:

.dvtm-areaChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.2 How to Create a Bar Chart
You use a Bar Chart (barChart) to visually display data as vertical bars, where sets of
data items are related and categorized into groups and series. The series are visualized
using graphical elements with some common style properties that you have to apply
at the series level instead of per each individual data item.

The Bar Chart can be zoomed and scrolled along its X Axis. This is enabled through
the use of the zoomAndScroll attribute.

Providing Data Visualization

Creating the MAF AMX User Interface 14-133

The following example shows the barChart element defined in a MAF AMX file. The
dataStamp facet is specified with a nested chartDataItem element.

<dvtm:barChart id="barChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend id="l1" position="start" />
</dvtm:barChart>

Figure 14-75 Bar Chart at Design Time

The data model for a bar chart is represented by a collection of items (rows) that
describe individual bars. Typically, properties of each bar include the following:

• series: name of the series to which this bar belongs;

• group: name of the group to which this bar belongs;

• value: the data item value (required).

Data must include the same number of groups per series. If any of the series or data
pairs are missing, it is passed to the API as null.

The orientation attribute allows you to define the Bar Chart as either horizontal or
vertical.

Providing Data Visualization

14-134 Developing Mobile Applications with Oracle Mobile Application Framework

By setting the z attribute in addition to the x and y attributes of the chartDataItem,
you can enable the bar widths to behave as a third dimension. This is useful when
describing discrete data points where each bar carries a different weight.

For information on attributes of the barChart and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Bar Chart component's top-level element by overwriting the default
CSS settings defined in the following class:

.dvtm-barChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.3 How to Create a Range Chart
A range chart allows you to display the low and high values for a data item in a chart.

You can configure an area chart or bar chart to render as a range chart by specifying
values for the low and high attributes that the <dvtm:chartDataItem> child
component supports. The following example shows how you configure an area chart
to render a range chart. Figure 14-76 shows an example of a range chart rendered by
the bar chart component.

 <dvtm:areaChart var="row" value="#{bindings.rangeData.collectionModel}" id="ac1">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.group}" series="#{row.series}"
low="#{row.low}" high="#{row.high}" id="cdi1"/>
 </amx:facet>
 <dvtm:legend position="end" id="l1"/>
 </dvtm:areaChart>

Providing Data Visualization

Creating the MAF AMX User Interface 14-135

Figure 14-76 Range Chart Rendering in a Bar Chart

MAF treats the data item as null and does not render it on the chart if you only
specify a value for one range attribute (low or high). You must specify values for both
the low and high attribute in order to render a range chart. Tool tips and data cursors
display the high and low values for the data.

For more information, see:

• How to Create a Bar Chart

• How to Create an Area Chart

• Tag Reference for Oracle Mobile Application Framework

14.5.4 How to Create a Bubble Chart
A Bubble Chart (bubbleChart) displays a set of data items where each data item has
x, y coordinates and size (bubble). In addition, each data item can have various style
attributes, such as color and markerShape. You can either set properties of each
data item individually, or categorize the data items into groups based on various
criteria. You may use multiple grouping criteria at the same time, and may also use
different style attributes to visualize the relationships of the data items. However,
unlike line charts (see How to Create a Line Chart) or area charts (see How to Create
an Area Chart), bubble charts do not have a strict notion of the series and groups.

The Bubble Chart can be zoomed and scrolled along its X and Y Axis. This is enabled
through the use of the zoomAndScroll attribute.

The following example shows the bubbleChart element defined in a MAF AMX file.
The dataStamp facet is specified with a nested chartDataItem element. The color
and markerShape attributes of each data item are set individually based on the
values supplied in the data model. In addition, the underlying data control must
support the respective variable references of row.label, row.size, and
row.shape.

Providing Data Visualization

14-136 Developing Mobile Applications with Oracle Mobile Application Framework

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 inlineStyle="width: 400px; height: 300px;"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.group}"
 x="#{row.x}"
 y="#{row.y}"
 markerSize="#{row.size}"
 color="#{row.color}"
 markerShape="#{row.shape}" />
 </amx:facet>
</dvtm:bubbleChart>

Figure 14-77 Bubble Chart at Design Time

In the following example, the attributeGroups element is used to set common style
attributes for a related group of data items.

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Bubble Chart"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.label}"
 x="#{row.x}"
 y="#{row.y}" >
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.category}" />
 <dvtm:attributeGroups id="ag2" type="shape" value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:bubbleChart>

Providing Data Visualization

Creating the MAF AMX User Interface 14-137

The data model for a bubble chart is represented by a collection of items (rows) that
describe individual data items. Typically, properties of each bar include the following:

• label: data item label (optional);

• x, y: value coordinates (required);

• z: the size of data item (required).

The data must include the same number of groups per series. If any of the series or
data pairs are missing, it is passed to the API as null.

For information on attributes of the bubbleChart and dvtm child elements that you
can define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Bubble Chart component's top-level element by overwriting the
default CSS settings defined in the following class:

.dvtm-bubbleChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.5 How to Create a Combo Chart
A Combo Chart (comboChart) represents an overlay of two or more different charts,
such as a line and bar chart.

The following example shows the comboChart element defined in a MAF AMX file.
The dataStamp facet is specified with a nested chartDataItem element. The
seriesStamp facet overrides the default style properties for the series and sets
custom series styles using the seriesStyle elements.

<dvtm:comboChart id="comboChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle id="seriesStyle1"
 series="#{row.series}"
 type="bar"
 rendered="#{(row.series eq 'Series 1') or
 (row.series eq 'Series 2') or
 (row.series eq 'Series 3')}" />
 <dvtm:seriesStyle id="seriesStyle2"
 series="#{row.series}"
 type="line"
 lineWidth="5"

Providing Data Visualization

14-138 Developing Mobile Applications with Oracle Mobile Application Framework

 rendered="#{(row.series eq 'Series 4') or
 (row.series eq 'Series 5')}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend position="start" id="l1" />
</dvtm:comboChart>

Figure 14-78 Combo Chart at Design Time

The orientation attribute allows you to define the Combo Chart as either
horizontal or vertical.

For information on attributes of the comboChart and dvtm child elements that you
can define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Combo Chart component's top-level element by overwriting the
default CSS settings defined in the following class:

.dvtm-comboChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.6 How to Create a Line Chart
You use the Line Chart (lineChart) to visually represent data where sets of data
items are related and categorized into groups and series. The series are visualized
using graphical elements with some common style properties (such as, for example, a
line color, width, or style). Those properties have to be applied at the series level
instead of per each individual data item. You have an option to use the default or
custom series styles.

Providing Data Visualization

Creating the MAF AMX User Interface 14-139

The Line Chart can be zoomed and scrolled along its X Axis. This is enabled through
the use of the zoomAndScroll attribute.

The following example shows the lineChart element defined in a MAF AMX file. To
create a basic line chart with default series style, you pass it a collection and specify
the dataStamp facet with a nested chartDataItem element.

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
</dvtm:lineChart>

Figure 14-79 Line Chart at Design Time

Data items are initialized in the collection model and equipped with the stamping
mechanism. At a minimum, each collection row must include the following properties:

• series: name of the series to which this line belongs;

• group: name of the group to which this line belongs;

• value: the data item value.

The collection row might also include other properties, such as color or
markerShape, applicable to individual data items.

You can use attribute groups (attributeGroups element) to set style properties for
a group of data items based on some grouping criteria, as the following example
shows. In this case, the data item color and shape attributes are set based on the

Providing Data Visualization

14-140 Developing Mobile Applications with Oracle Mobile Application Framework

additional grouping expression. The attributeGroups can have the following child
elements:

• attributeExceptionRule from the dvtm namespace: replaces an attribute
value with another when a particular boolean condition is met.

• attributeMatchRule from the dvtm namespace: replaces an attribute when the
data matches a certain value.

• attribute from the amx namespace.

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:lineChart>

Note:

In the two preceding examples, since custom styles are not set at the series
level, series are displayed with the colors based on the default color ramp.

To override the default style properties for the series, you can define an optional
seriesStamp facet and set custom series styles using the seriesStyle elements, as
the following example shows.

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 lineStyle="#{row.lineStyle}"
 lineWidth="#{row.lineWidth}" />
 </amx:facet>
</dvtm:lineChart>

Providing Data Visualization

Creating the MAF AMX User Interface 14-141

In the preceding example, the seriesStyle elements are grouped based on the value
of the series attribute. Series with the same name are supposed to share the same set
of properties defined by other attributes of the seriesStyle, such as color,
lineStyle, lineWidth, and so on. When MAF AMX encounters different attribute
values for the same series name, it applies the value which was processed last.

Alternatively, you can control the series styles in a MAF AMX charts using the
rendered attribute of the seriesStyle element, as the following example shows.

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 color="red"
 lineWidth="3"
 lineStyle="solid"
 rendered="#{row.series == 'Coke'}" />
 <dvtm:seriesStyle series="#{row.series}"
 color="blue"
 lineWidth="2"
 lineStyle="dotted"
 rendered="#{row.series == 'Pepsi'}" />
 </amx:facet>
</dvtm:lineChart>

The orientation attribute allows you to define the Line Chart as either horizontal or
vertical.

For information on attributes of the lineChart and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Line Chart component's top-level element by overwriting the default
CSS settings defined in the following class:

.dvtm-lineChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.7 How to Create a Pie Chart
You use a Pie Chart (pieChart) to illustrate proportional division of data, with each
data item represented by a pie segment (slice). Slices can be sorted by size (from
largest to smallest), and small slices can be aggregated into a single "other" slice.

Providing Data Visualization

14-142 Developing Mobile Applications with Oracle Mobile Application Framework

The following example shows the pieChart element defined in a MAF AMX file. The
dataStamp facet is specified with a nested pieDataItem element.

<dvtm:pieChart id="pieChart1"
 inlineStyle="width: 400px; height: 300px;"
 value="#{bindings.pieData.collectionModel}"
 var="row"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:pieDataItem id="pieDataItem1"
 label="#{row.name}"
 value="#{row.data}" />
 </amx:facet>
 <dvtm:legend position="bottom" id="l1" />
</dvtm:pieChart>

Figure 14-80 Pie Chart at Design Time

You can configure the positioning of the pie slice labels using the
sliceLabelPosition attribute. By default (auto), labels are placed inside of a slice
if the slice is big enough to accommodate the label; otherwise the labels are placed
outside the slice.

You can also define the explosion (slice separation) effect for a Pie Chart component
by setting the selectionEffect attribute.

Using the sliceGaps attribute, you can create a Pie Chart component that contains
gaps between adjacent slices, as the following illustration show. The values of the
sliceGaps attribute range from 0 (default) for charts with no gaps to 1 for maximum
gaps allowed.

Providing Data Visualization

Creating the MAF AMX User Interface 14-143

The data model for a pie chart is represented by a collection of items that define
individual pie data items. Typically, properties of each data item include the
following:

• label: slice label;

• value: slice value.

The model might also define other properties of the data item, such as the following:

• borderColor: slice border color;

• color: slice color;

• explode: slice explosion offset.

For information on attributes of the pieChart and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a pieDataItem as its child (see Defining Pie Data Item).

14.5.7.1 Configuring the Pie Chart as a Ring Chart
You can create a Pie Chart component with an empty center so it looks like a ring.

The size of the empty space (and, subsequently, the width of the ring) is configured
using the innerRadius attribute of the pieChart. You may also specify text for the
center of the ring by setting the centerLabel attribute.

Providing Data Visualization

14-144 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-81 Ring Chart at Design Time

14.5.7.2 Styling the Pie Chart

You can style the Pie Chart component by overwriting the default CSS settings defined
in dvtm-pieChart, dvtm-chartPieLabel, dvtm-chartPieCenterLabel, and
dvtm-chartSliceLabel classes:

• The top-level element can be styled using

.dvtm-pieChart
 - supported properties: all

• The pie labels can be styled using

.dvtm-chartPieLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

• The pie slice labels can be styled using

.dvtm-chartSliceLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

• The ring center label can be styled using

.dvtm-chartPieCenterLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

For more information on chart styling, see How to Style Chart Components.

For more information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.8 How to Create a Scatter Chart
A Scatter Chart (scatterChart) displays data as unconnected dots that represent
data items, where each item has x, y coordinates and size. In addition, each data item
can have various style attributes, such as color and markerShape. You can either
set properties of each data item individually, or categorize the data items into groups
based on various criteria. You may use multiple grouping criteria at the same time,
and may also use different style attributes to visualize the data items relationships.
However, unlike line charts (see How to Create a Line Chart) or area charts (see How
to Create an Area Chart), scatter charts do not have a strict notion of the series and
groups.

Providing Data Visualization

Creating the MAF AMX User Interface 14-145

The Scatter Chart can be zoomed and scrolled along its X and Y Axis. This is enabled
through the use of the zoomAndScroll attribute.

The following example shows the scatterChart element defined in a MAF AMX
file. The dataStamp facet is specified with a nested chartDataItem element. The
color and markerShape attributes of each data item are set individually based on
the values supplied in the data model.

<dvtm:scatterChart id="scatterChart1"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="zoom"
 animationDuration="3000"
 value="#{bindings.scatterData.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.group}"
 color="#{row.color}"
 markerShape="auto"
 x="#{row.data.x}"
 y="#{row.data.y}">
 <dvtm:attributeGroups type="color"
 value="#{row.series}"
 id="ag1" />
 </dvtm:chartDataItem>
 </amx:facet>
 <dvtm:xAxis id="xAxis1" title="X Axis Title" />
 <dvtm:yAxis id="xAxis2" title="Y Axis Title" />
 <dvtm:legend position="bottom" id="l1" />
</dvtm:scatterChart>

Figure 14-82 Scatter Chart at Design Time

The data model for a scatter chart is represented by a collection of items (rows) that
describe individual data items. Attributes of each data item are defined by stamping
(dataStamp) and usually include the following:

• x, y: value coordinates (required);

• markerSize: the size of the marker (optional).

Providing Data Visualization

14-146 Developing Mobile Applications with Oracle Mobile Application Framework

The model might also define other properties of the data item, such as the following:

• borderColor: data item border color;

• color: data item color.

For information on attributes of the scatterChart and dvtm child elements that you
can define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a chartDataItem as its child (see Defining Chart Data Item).

You can style the Scatter Chart component's top-level element by overwriting the
default CSS settings defined in the following class:

.dvtm-scatterChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.9 How to Create a Spark Chart
A Spark Chart (sparkChart) is a simple, condensed chart that displays trends or
variations, often in the column of a table. The charts are often used in a dashboard to
provide additional context to a data-dense display.

The following example shows the sparkChart element defined in a MAF AMX file.
The dataStamp facet is specified with a nested sparkDataItem element.

<dvtm:sparkChart id="sparkChart1"
 value="#{bindings.sparkData.collectionModel}"
 var="row"
 type="line"
 inlineStyle="width:400px; height:300px; float:left;">
 <amx:facet name="dataStamp">
 <dvtm:sparkDataItem id="sparkDataItem1" value="#{row.value}" />
 </amx:facet>
</dvtm:sparkChart>

Providing Data Visualization

Creating the MAF AMX User Interface 14-147

Figure 14-83 Spark Chart at Design Time

The data model for a spark chart is represented by a collection of items (rows) that
describe individual spark data items. Typically, properties of each data item include
the following:

• value: spark value.

For information on attributes and dvtm child elements of the sparkChart, see Tag
Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a sparkDataItem as its child (see Defining Spark Data Item).

You can style the Spark Chart component's top-level element by overwriting the
default CSS settings defined in the following class:

.dvtm-sparkChart
 - supported properties: all

For more information on chart styling, see How to Style Chart Components.

For information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.10 How to Create a Funnel Chart
A Funnel Chart (funnelChart) component provides a visual representation of data
related to steps in a process. The steps appear as vertical slices across a horizontal
cylinder. As the actual value for a given step or slice approaches the quota for that
slice, the slice fills. Typically, a Funnel Chart requires actual values and target values
against a stage value, which might be time.

The following example shows the funnelChart element defined in a MAF AMX file.
The dataStamp facet is specified with a nested funnelDataItem element.

<dvtm:funnelChart id="funnelChart1"
 var="row"
 value="#{bindings.funnelData.collectionModel}"

Providing Data Visualization

14-148 Developing Mobile Applications with Oracle Mobile Application Framework

 styleClass="dvtm-gallery-component"
 sliceGaps="on"
 threeDEffect="#{pageFlowScope.threeD ? 'on' : 'off'}"
 orientation="#{pageFlowScope.orientation}"
 dataSelection="#{pageFlowScope.dataSelection}"
 footnote="#{pageFlowScope.footnote}"
 footnoteHalign="#{pageFlowScope.footnoteHalign}"
 hideAndShowBehavior="#{pageFlowScope.hideAndShowBehavior}"
 rolloverBehavior="#{pageFlowScope.rolloverBehavior}"
 seriesEffect="#{pageFlowScope.seriesEffect}"
 subtitle="#{pageFlowScope.titleDisplay ?
 pageFlowScope.subtitle : ''}"
 title="#{pageFlowScope.titleDisplay ? pageFlowScope.title : ''}"
 titleHalign="#{pageFlowScope.titleHalign}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 shortDesc="#{pageFlowScope.shortDesc}">
 <amx:facet name="dataStamp">
 <dvtm:funnelDataItem id="funnelDataItem1"
 label="#{row.label}"
 value="#{row.value}"
 targetValue="#{row.targetValue}"
 color="#{row.color}"
 shortDesc="This is a tooltip">
 </dvtm:funnelDataItem>
 </amx:facet>
 <dvtm:legend id="l1"
 position="#{pageFlowScope.legendPosition}"
 rendered="#{pageFlowScope.legendDisplay}"/>
</dvtm:funnelChart>

Figure 14-84 Funnel Chart at Design Time

The data model for a funnel chart is represented by a collection of items (rows) that
describe individual funnel data items. Typically, properties of each data item include
the following:

• value: funnel value

• label: funnel slice label

For information on attributes and dvtm child elements of the funnelChart, see Tag
Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a funnelDataItem as its child (see Defining Funnel Data Item).

Providing Data Visualization

Creating the MAF AMX User Interface 14-149

You can style the Funnel Chart component by overwriting the default CSS settings
defined in dvtm-funnelChart and dvtm-funnelDataItem classes:

• The top-level element can be styled using

.dvtm-funnelChart
 - supported properties: all

• The Funnel Chart data items cal be styled using

.dvtm-funnelDataItem
 - supported properties: border-color, background-color

For more information on chart styling, see How to Style Chart Components.

For more information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.11 How to Create a Stock Chart
A Stock Chart (stockChart) component displays open, close, minimum, and
maximum value for a stock at different points in time during a specific day. The
candle bars displaying opening and closing prices for a stock are typically colored
green when the price of the stock has risen during the day, and red when the closing
price is lower than the opening price.

The following example shows the stockChart element defined in a MAF AMX file.
The dataStamp facet contains a stockDataItem element.

<dvtm:stockChart id="stockChart1"
 dataCursor="#{pageFlowScope.dataCursor}"
 dataCursorBehavior="#{pageFlowScope.dataCursorBehavior}"
 dataSelection="#{pageFlowScope.dataSelection}"
 emptyText="No data found"
 footnote=""
 footnoteHalign="#{pageFlowScope.footnoteHalign}"
 inlineStyle="width: 100%; height:#{DvtProperties.hostedMode ?
 '400px' :
deviceScope.hardware.screen.availableHeight-200}px"
 shortDesc="Stock Chart"
 styleClass="dvtm-gallery-component"
 subtitle="#{pageFlowScope.subtitle}"
 title="#{pageFlowScope.title}"
 titleHalign="#{pageFlowScope.titleHalign}"
 value="#{bindings.stockChartData.collectionModel}"
 var="row"
 volumeColor="#{pageFlowScope.volumeColor}"
 zoomAndScroll="#{pageFlowScope.zoomAndScroll}"
 timeAxisType="mixedFrequency"
 animationOnDataChange="auto"
 animationOnDisplay="auto"
 viewportChangeListener="#{StockChartDataList.ViewportListener}">
 <amx:facet name="dataStamp">
 <dvtm:stockDataItem id="cdi1
 close="#{row.close}"
 high="#{row.high}"
 low="#{row.low}"
 open="#{row.open}"
 volume="#{row.volume}"
 x="#{row.x}"
 series="BTC"
 shortDesc="Stock Data Item">

Providing Data Visualization

14-150 Developing Mobile Applications with Oracle Mobile Application Framework

 </dvtm:stockDataItem>
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="BTC"
 type="#{pageFlowScope.seriesType}"
 id="ss1">
 </dvtm:seriesStyle>
 </amx:facet>
 <amx:facet name="overview">
 <dvtm:overview id="ovw" rendered="#{pageFlowScope.overview}">
 </dvtm:overview>
 </amx:facet>
 <dvtm:xAxis id="xAxis"
 viewportMinValue="#{pageFlowScope.viewportMinValue}"
 viewportMaxValue="#{pageFlowScope.viewportMaxValue}">
 </dvtm:xAxis>
 <dvtm:y2Axis id="y2Axis">
 <dvtm:tickLabel id="y2TickLabel"
 rendered="#{pageFlowScope.showY2}"
 scaling="none">
 <amx:convertNumber id="cn5"
 type="number"
 minFractionDigits="1"
 maxFractionDigits="1"/>
 </dvtm:tickLabel>
 </dvtm:y2Axis>
 <dvtm:chartValueFormat id="cvf2label"
 type="close">
 <amx:convertNumber id="closeConvertNumber"
 type="currency"
 minFractionDigits="1"
 maxFractionDigits="1"
 currencySymbol="$"/>
 </dvtm:chartValueFormat>
 <dvtm:chartValueFormat id="cvf2label1"
 type="high"
 scaling="none">
 <amx:convertNumber id="highConvertNumber"
 type="currency"
 minFractionDigits="1"
 maxFractionDigits="1"
 currencySymbol="$"/>
 </dvtm:chartValueFormat>
 <dvtm:chartValueFormat id="cvf2label2"
 type="low"
 scaling="none">
 <amx:convertNumber id="lowConvertNumber"
 type="currency"
 minFractionDigits="1"
 maxFractionDigits="1"
 currencySymbol="$"/>
 </dvtm:chartValueFormat>
 <dvtm:chartValueFormat id="cvf2label3"
 type="open"
 scaling="none">
 <amx:convertNumber id="openConvertNumber"
 type="currency"
 minFractionDigits="1"
 maxFractionDigits="1"
 currencySymbol="$"/>
 </dvtm:chartValueFormat>

Providing Data Visualization

Creating the MAF AMX User Interface 14-151

 <dvtm:chartValueFormat id="cvf2label4"
 type="volume"
 scaling="none">
 <amx:convertNumber id="cn6"
 type="number"
 minFractionDigits="1"
 maxFractionDigits="1"/>
 </dvtm:chartValueFormat>
 <dvtm:yAxis id="yAxis">
 <dvtm:tickLabel id="tc1" scaling="none">
 <amx:convertNumber id="yAxisConvertNumber"
 type="currency"
 minFractionDigits="1"
 maxFractionDigits="1"
 currencySymbol="$"/>
 </dvtm:tickLabel>
 <dvtm:referenceLine id="rl2"
 color="rgb(255,128,0)"
 lineWidth="1"
 lineStyle="solid"
 location="front"
 lineType="straight"
 text="Technical analysis"
 shortDesc="Technical Analysis"
 displayInLegend="off"
 rendered="#{pageFlowScope.technicalAnalysis}">
 <amx:iterator var="ref"
 value="#{bindings.stockReferenceData2.collectionModel}"
 id="i2">
 <dvtm:referenceLineItem value="#{ref.value}" x="#{ref.x}" id="rli2"/>
 </amx:iterator>
 </dvtm:referenceLine>
 <dvtm:referenceLine id="rl1"
 color="#008000"
 lineWidth="1"
 lineStyle="solid"
 location="front"
 lineType="straight"
 text=""
 shortDesc="Total Transaction Fees"
 displayInLegend="off"
 rendered="#{pageFlowScope.transactionFees}">
 <amx:iterator var="ref"
 value="#{bindings.stockReferenceData.collectionModel}"
 id="i1">
 <dvtm:referenceLineItem value="#{ref.value}" x="#{ref.x}" id="rli1"/>
 </amx:iterator>
 </dvtm:referenceLine>
 </dvtm:yAxis>
 <dvtm:chartValueFormat id="cvf1"
 type="y"
 scaling="none"/>
</dvtm:stockChart>

Providing Data Visualization

14-152 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-85 Stock Chart at Design Time

The data model for a stock chart is represented by a collection of items (rows) that
describe individual stock data items.

For information on attributes and dvtm child elements of the stockChart, see Tag
Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have
a stockDataItem as its child (see Defining Stock Data Item).

You can style the Stock Chart component by overwriting the default CSS settings
defined in the the following classes:

• dvtm-stockChart-rising

• dvtm-stockChart-falling

• dvtm-stockChart-range

For more information on chart styling, see How to Style Chart Components.

For more information on how to extend CSS files, see How to Style Data Visualization
Components.

14.5.12 How to Style Chart Components
With the exception of the Spark Chart, you can style chart components by overwriting
the default CSS settings defined in the following classes:

• A chart component's legend can be styled using

.dvtm-legend
 - supported properties used for text styling:
 font-family, font-size, font-weight, color, font-style
 - supported properties used for background styling: background-color
 - supported properties used for border styling:
 border-color (used when border width > 0)

.dvtm-legendTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-legendSectionTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

• A chart component's title, subtitle, and so on, can be styled using

Providing Data Visualization

Creating the MAF AMX User Interface 14-153

.dvtm-chartTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartSubtitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartFootnote
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartTitleSeparator
 - supported properties:
 visibility (is title separator rendered),
 border-top-color, border-bottom-color

• A chart component's axes can be styled using

.dvtm-chartXAxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartYAxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartY2AxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartXAxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartYAxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartY2AxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

In addition to styling the chart component's top-level element, you can style specific
child elements of some charts.

14.5.13 How to Use Events with Chart Components
You can use the ViewportChangeEvent to handle zooming and scrolling of chart
components. When either zooming or scrolling occurs, the component fires an event
loaded with information that defines the new viewport.

You can specify the viewportChangeListener as an attribute of Area Chart, Bar
Chart, Combo Chart, and Line Chart components.

You can use the DrillEvent to handle drilling of chart components. When drilling
occurs, the component fires this event.

You can specify the drillListener as an attribute of any chart component. In
addition, you can use the drilling attribute of the chartDataItem,

Providing Data Visualization

14-154 Developing Mobile Applications with Oracle Mobile Application Framework

funnelDataItem, pieDataItem, and seriesStyle to provide a fine-grained
drilling control.

For more information, see the following:

• Using Event Listeners

• Java API Reference for Oracle Mobile Application Framework

• Tag Reference for Oracle Mobile Application Framework

14.5.14 What You May Need to Know About Customization of Chart Tooltips
The Chart Value Format (chartValueFormat) child component of MAF AMX charts
allows you to customize a chart component's tooltip by specifying labels and disabling
the display of values within the tooltip, as the following example shows.

<dvtm:barChart id="bc1" var="row" value="bindings.Data.collectionModel">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="cdi1"
 series="row.series"
 group="row.group"
 value="row.value"/>
 </amx:facet>
 <dvtm:chartValueFormat id="cvf1" type="value" tooltipLabel="Revenue">
 <amx:convertNumber ... />
 </dvtm:chartValueFormat>
 <dvtm:chartValueFormat id="cvf2" type="series" tooltipLabel="Region"/>
 <dvtm:chartValueFormat id="cvf3" type="groups" tooltipLabel="Product Type"/>
</dvtm:barChart>

For more information, see Tag Reference for Oracle Mobile Application Framework.

14.5.15 How to Enable Sorting of Charts with Categorical Axis
You can use the sorting attribute of the Bar Chart, Line Chart, Area Chart, and
Combo Chart components to enable sorting of chart categories by their values. For
example, countries represented by bars in a Bar Chart can be sorted by their GDP and
displayed in either ascending or descending order. By default, sorting is disabled.

14.5.16 How to Define the Initial Zooming of Charts
You can use the initialZooming attribute of the Bar Chart, Line Chart, Area Chart,
and Combo Chart components to specify whether the chart should initially display the
first or the last data points while the chart's zoom level is automatically set to be
usable at the current chart size. By default, the initial zooming is disabled.

14.5.17 How to Define Stacking of Specific Chart Series
Bar Chart, Horizontal Bar Chart, Line Chart, Area Chart, and Combo Chart
components support a stack attribute that allows the data series to be rendered
stacked. If this attribute is used by its own, series stacking only allows for stacking to
be applied to all of the data series in a chart or none. To enable stacking of some series
within the chart and not others, you can use the stackCategory attribute of the
Series Style (seriesStyle) child component in conjunction with the stack attribute
of the parent chart: when the chart's stack attribute is set to on, you specify the
stackCategory attribute of the Series Style to define how specific series within the
chart are to be stacked.

Providing Data Visualization

Creating the MAF AMX User Interface 14-155

14.5.18 How to Enable Split Dual-Y Axis in Charts
You can use the splitDualY attribute of the Bar Chart, Line Chart, Area Chart, and
Combo Chart components to allow charts that use Y2 axis to render two data sets
separately in stacked plot areas that share the same X axis. By default, this
functionality is disabled.

14.5.19 How to Create a LED Gauge
Unlike charts, gauges focus on a single data point and examine that point relative to
minimum, maximum, and threshold indicators to identify problem areas. A LED
(lighted electronic display) gauge (ledGauge) graphically depicts a measurement,
such as key performance indicator (KPI). There are several styles of LED gauges. The
ones with arrows are used to indicate good (up arrow), fair (left- or right-pointing
arrow), or poor (down arrow). You can specify any number of thresholds for a gauge.
However, some LED gauges (such as those with arrow or triangle indicators) support
a limited number of thresholds because there is a limited number of meaningful
directions for them to point. For arrow or triangle indicators, the threshold limit is
three.

The following example shows the ledGauge element defined in a MAF AMX file.

<dvtm:ledGauge id="ledGauge1"
 value="65"
 type="circle"
 inlineStyle="width: 100px; height: 80px; float: left;
 border-color: navy; background-color: lightyellow;">
 <dvtm:threshold id="threshold1" text="Low" maxValue="40" />
 <dvtm:threshold id="threshold2" text="Medium" maxValue="60" />
 <dvtm:threshold id="threshold3" text="High" maxValue="80" />
</dvtm:ledGauge>

Figure 14-86 LED Gauge at Design Time

The data model for a LED gauge is represented by a single metric value which is
specified by the value attribute.

For information on attributes of the ledGauge and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define the following amx child elements:

• showPopupBehavior (see How to Use a Popup Component)

• closePopupBehavior (see How to Use a Popup Component)

• validationBehavior (see Validating Input)

14.5.20 How to Create a Status Meter Gauge
A Status Meter Gauge (statusMeterGauge) indicates the progress of a task or the
level of some measurement along a horizontal rectangular bar or a circle. One part of
the component shows the current level of a measurement against the ranges marked

Providing Data Visualization

14-156 Developing Mobile Applications with Oracle Mobile Application Framework

on another part. In addition, thresholds can be displayed behind the indicator whose
size can be changed.

MAF AMX data visualization provides support for the reference line
(referenceLine) on its status meter gauge component. You can use this line to
produce a bullet graph.

The following example shows the statusMeterGauge element defined in a MAF
AMX file.

<dvtm:statusMeterGauge id="meterGauge1"
 value="65"
 animationOnDisplay="auto"
 animationDuration="1000"
 inlineStyle="width: 300px;
 height: 30px;
 float: left;
 border-color: black;
 background-color: lightyellow;"
 minValue="0"
 maxValue="100">
 <dvtm:metricLabel/>
 <dvtm:threshold id="threshold1" text="Low" maxValue="40" />
 <dvtm:threshold id="threshold2" text="Medium" maxValue="60" />
 <dvtm:threshold id="threshold3" text="High" maxValue="80" />
</dvtm:statusMeterGauge>

Figure 14-87 Rectangular Status Meter Gauge at Design Time

To create a Status Meter Gauge represented by a vertical rectangle, you set its
orientation attribute to vertical. By default, this attribute is set to horizontal
resulting in a horizontal rectangle.

To create a Status Meter Gauge represented by a circle (see Figure 14-88), you set its
orientation attribute to circular.

Figure 14-88 Circular Status Meter Gauge at Design Time

The data model for a status meter gauge is a single metric value which is specified by
the value attribute. In addition, the minimum and maximum values can also be
specified by the minValue and maxValue attributes.

For information on attributes of the statusMeterGauge and dvtm child elements
that you can define for this component, see Tag Reference for Oracle Mobile Application
Framework.

You can define the following amx child elements:

• showPopupBehavior (see How to Use a Popup Component)

• closePopupBehavior (see How to Use a Popup Component)

• validationBehavior (see Validating Input)

Providing Data Visualization

Creating the MAF AMX User Interface 14-157

14.5.21 How to Create a Dial Gauge
A Dial Gauge (dialGauge) specifies ranges of values (thresholds) that vary from poor
to excellent. The gauge indicator specifies the current value of the metric while the
graphic allows for evaluation of the status of that value.

The following example shows the dialGauge element defined in a MAF AMX file.

<dvtm:dialGauge id="dialGauge1"
 background="#{pageFlowScope.background}"
 indicator="#{pageFlowScope.indicator}"
 value="#{pageFlowScope.value}"
 minValue="#{pageFlowScope.minValue}"
 maxValue="#{pageFlowScope.maxValue}"
 animationDuration="1000"
 animationOnDataChange="auto"
 animationOnDisplay="auto"
 shortDesc="#{pageFlowScope.shortDesc}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 styleClass="#{pageFlowScope.styleClass}"
 readOnly="true">
</dvtm:dialGauge>

Figure 14-89 Dial Gauge at Design Time

The data model for a dial gauge is a single metric value which is specified by the
value attribute. In addition, the minimum and maximum values can be specified by
the minValue and maxValue attributes.

For information on attributes of the dialGauge and dvtm child elements that you can
define for this component, see Tag Reference for Oracle Mobile Application Framework.

The following example shows the definition of dialGauge element with the dark
background theme and custom tick labels setting a range from -5000 to 5000.

<dvtm:dialGauge id="dialGauge1"
 background="circleDark"
 indicator="needleDark"
 value="#{pageFlowScope.value}"
 minValue="-5000"
 maxValue="5000"
 readOnly="false">
 <dvtm:metricLabel id="metricLabel1"
 scaling="thousand"

Providing Data Visualization

14-158 Developing Mobile Applications with Oracle Mobile Application Framework

 labelStyle="font-family: Arial, Helvetica;
 font-size: 20; color: white;"/>
 <dvtm:tickLabel id="tickLabel1"
 scaling="thousand"
 labelStyle="font-family: Arial, Helvetica;
 font-size: 18; color: white;"/>
</dvtm:dialGauge>

Figure 14-90 Dial Gauge with Metric and Tick Labels at Design Time

You can define the following amx child elements for the dialGauge:

• showPopupBehavior (see How to Use a Popup Component)

• closePopupBehavior (see How to Use a Popup Component)

• validationBehavior (see Validating Input)

14.5.22 How to Create a Rating Gauge
A Rating Gauge (ratingGauge) provides means to view and modify ratings on a
predefined visual scale. By default, a rating unit is represented by a star. You can
configure it as a circle, human, rectangle, star, triangle, or diamond by setting the
shape attribute of the ratingGauge. You can also configure it to render vertically or
horizontally by setting a value for its orientation property. By default, it renders
horizontally.

The following example shows the ratingGauge element defined in a MAF AMX file.

<dvtm:ratingGauge id="ratingGauge1"
 value="#{pageFlowScope.value}"
 minValue="0"
 maxValue="5"
 inputIncrement="full"
 shortDesc="#{pageFlowScope.shortDesc}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 readOnly="true"
 shape="circle"
 unselectedShape="circle">
</dvtm:ratingGauge>

Providing Data Visualization

Creating the MAF AMX User Interface 14-159

Figure 14-91 Rating Gauge at Design Time

The data model for a rating gauge is a single metric value which is specified by the
value attribute. In addition, the minimum and maximum values can be specified by
the minValue and maxValue attributes.

For information on attributes of the ratingGauge and dvtm child elements that you
can define for this component, see Tag Reference for Oracle Mobile Application Framework.

You can define the following amx child elements for the ratingGauge:

• showPopupBehavior (see How to Use a Popup Component)

• closePopupBehavior (see How to Use a Popup Component)

• validationBehavior (see Validating Input)

14.5.22.1 Overwriting the shortDesc Attribute

You can overwrite the value of the ratingGauge's shortDesc attribute by setting
the shortDesc attribute of the threshold child element. If provided, the
threshold's shortDesc replaces its parent's shortDesc every time the
ratingGauge's value attribute falls within the specified threshold.

The following example shows how to overwrite the shortDesc attribute of the
Rating Gauge component.

<dvtm:ratingGauge id="ratingGauge1"
 value="#{pageFlowScope.value}"
 minValue="#{pageFlowScope.minValue}"
 maxValue="#{pageFlowScope.maxValue}"
 shortDesc="#{pageFlowScope.shortDesc}"
 inputIncrement="#{pageFlowScope.inputIncrement}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 <dvtm:threshold id="tr1" maxValue="2" shortDesc="Performance: Poor"/>
 <dvtm:threshold id="tr2" maxValue="3" shortDesc="Performance: Average"/>
 <dvtm:threshold id="tr3" maxValue="4" shortDesc="Performance: Good"/>
 <dvtm:threshold id="tr4" maxValue="5" shortDesc="Performance: Excellent"/>
</dvtm:ratingGauge>

14.5.22.2 Applying Custom Styling to the Rating Gauge Component

Depending on the action performed by the end user on a rating gauge component, its
units (images) can acquire one of the following states:

• selected: the unit is selected.

• unselected: the unit is not selected.

• changed: the unit has been changed.

• hover: the unit is being hovered over.

Providing Data Visualization

14-160 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

On mobile devices with touch interface, the hover state is invoked through the
tap-and-hold gesture.

Each state can be represented by its own array of images, as well as properties that
define color and border color.

By default, the shape attribute of the ratingGauge determines the selection of the
hover and changed states. The unselected state can be set separately using the
unselectedShape attribute of the ratingGauge.

You can style the Rating Gauge component by overwriting the default CSS settings.
For more information on how to extend CSS files, see How to Style Data Visualization
Components.

The following shows the default CSS style definitions for the color and
borderColor of each state of the rating gauge unit.

.dvtm-ratingGauge {
}

.dvtm-ratingGauge .dvtm-ratingGaugeSelected {
 border-width: 1px;
 border-style: solid;
 border-color: #FFC61A;
 color: #FFBB00;
}

.dvtm-ratingGauge .dvtm-ratingGaugeUnselected {
 border-width: 1px;
 border-style: solid;
 border-color: #D3D3D3;
 color: #F4F4F4;
}

.dvtm-ratingGauge .dvtm-ratingGaugeHover {
 border-width: 1px;
 border-style: solid;
 border-color: #6F97CF;
 color: #7097CF;
}

.dvtm-ratingGauge .dvtm-ratingGaugeChanged {
 border-width: 1px;
 border-style: solid;
 border-color: #A8A8A8;
 color: #FFBB00;
}

14.5.23 How to Define Child Elements for Chart and Gauge Components
You can define a variety of child elements for charts and gauges. The following are
some of these child elements:

• chartDataItem (see Defining Chart Data Item)

• xAxis, yAxis, and y2Axis (see Defining and Configuring X Axis_YAxis_ and
Y2Axis)

Providing Data Visualization

Creating the MAF AMX User Interface 14-161

• legend (see Defining and Configuring Legend)

• pieDataItem (see Defining Pie Data Item)

• sparkDataItem (see Defining Spark Data Item)

• threshold (see Defining Threshold)

• funnelDataItem (see Defining Funnel Data Item)

• stockDataItem (see Defining Stock Data Item)

For more information on these and other child elements, see Tag Reference for Oracle
Mobile Application Framework.

In JDeveloper, child components of data visualization components are located under
MAF AMX Data Visualization > Shared Child Tags and MAF AMX Data
Visualization > Other Type-Specific Child Tags in the Components window (see
Figure 14-69).

Providing Data Visualization

14-162 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-92 Creating Chart and Gauge Child Components

Providing Data Visualization

Creating the MAF AMX User Interface 14-163

14.5.23.1 Defining Chart Data Item
The Chart Data Item (chartDataItem) element specifies the parameters that chart
data items use in all supported charts, except the pie chart.

You can enable the text display on Chart Data Items and control its label, the label
position, and the label style by setting relevant attributes of the chartDataItem
element, as well as the dataLabelPosition attribute of the chart itself to specify the
position of all data labels in a given chart.

Note:

The Spark Chart, Pie Chart, and Funnel Chart components do not support the
dataLabelPosition attribute.

For information on attributes of the chartDataItem element, see Tag Reference for
Oracle Mobile Application Framework.

14.5.23.2 Defining and Configuring Legend
The Legend (legend) element specifies the legend parameters.

You can customize sizes of chart areas dedicated to legend using the Legend
component's size and maxSize attributes.

For more information on attributes of the legend element, see Tag Reference for Oracle
Mobile Application Framework.

14.5.23.3 Defining and Configuring X Axis, YAxis, and Y2Axis

X Axis (xAxis) and Y Axis (yAxis) elements define the X and Y axis for a chart.
Y2Axis (y2Axis) defines an optional Y2 axis. These elements are declared as follows
in a MAF AMX file:

<dvtm:xAxis id="xAxis1" scrolling="on" axisMinValue="0.0" axisMaxValue="50.0" />

You can customize sizes of chart areas dedicated to axis using the size and maxSize
attributes of the X Axis, Y Axis, and Y2Axis components. In addition, you can
customize color, width, and style of the axis baseline by configuring its Major Tick
child element.

For more information on attributes and child elements of xAxis, yAxis, and y2Axis
elements, see Tag Reference for Oracle Mobile Application Framework.

14.5.23.4 Defining Pie Data Item

The Pie Data Item (pieDataItem) element specifies the parameters of the pie chart
slices (see How to Create a Pie Chart).

For information on attributes of the pieDataItem element, see Tag Reference for Oracle
Mobile Application Framework.

14.5.23.5 Defining Spark Data Item

The Spark Data Item (sparkDataItem) element specifies the parameters of the spark
chart items (see How to Create a Spark Chart).

For information on attributes of the sparkDataItem element, see Tag Reference for
Oracle Mobile Application Framework.

Providing Data Visualization

14-164 Developing Mobile Applications with Oracle Mobile Application Framework

14.5.23.6 Defining Funnel Data Item

The Funnel Data Item (funnelDataItem) element specifies the parameters of the
funnel chart items (see How to Create a Funnel Chart).

For information on attributes of the funnelDataItem element, see Tag Reference for
Oracle Mobile Application Framework.

14.5.23.7 Defining Stock Data Item

The Stock Data Item (stockDataItem) element specifies the parameters of the stock
chart items (see How to Create a Stock Chart).

For information on attributes of the stockDataItem element, see Tag Reference for
Oracle Mobile Application Framework.

14.5.23.8 Defining Threshold

The Threshold (threshold) element specifies the threshold ranges of a gauge (see
How to Create a LED Gauge and How to Create a Status Meter Gauge).

For information on attributes of the threshold element, see Tag Reference for Oracle
Mobile Application Framework.

14.5.24 How to Create a Geographic Map Component
A Geographic Map (geographicMap) represents data in one or more interactive
layers of information superimposed on a single map. You configure this component to
use either Google Maps or the Oracle Maps Cloud service (Oracle maps) as the
underlying map provider. If you do not specify a map provider, the component uses
Google Maps.

Figure 14-93shows the geographicMap component in the CompGallery sample
application.

Providing Data Visualization

Creating the MAF AMX User Interface 14-165

Figure 14-93 Geographic Map in CompGallery Sample Application

The geographicMap component uses the latest stable v3 version of the Google Maps
JavaScript API.

You can define a pointDataLayer child element for the geographicMap. The
pointDataLayer allows you to display data associated with a point on the map. The
pointDataLayer can have a pointLocation as a child element. The
pointLocation specifies the columns in the data layer's model that determine the
location of the data points. These locations can be represented either by address or by
X and Y coordinates.

Providing Data Visualization

14-166 Developing Mobile Applications with Oracle Mobile Application Framework

The pointLocation can have a marker as a child element. The marker is used to
stamp out predefined or custom shapes associated with data points on the map. The
marker supports a set of properties for specifying a URI to an image that is to be
rendered as a marker. The marker can have a convertNumber as its child element
(see How to Convert Numeric Values). In addition, you can enable a Popup (see How
to Use a Popup Component) to be displayed on a geographicMap's marker. To do
so, you declare the showPopupBehavior element as a child of the marker element,
and then set the showPopupBehavior's alignId attribute to the value of the
marker's id attribute, as the following example shows.

<dvtm:geographicMap id="geographicMap_1" shortDesc="#{pageFlowScope.shortDesc}">
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value=
 "#{bindings.geographicMapPointData.collectionModel}">
 <dvtm:pointLocation id="pl1"
 pointX="#{row.pointX}"
 pointY="#{row.pointY}">
 <dvtm:marker id="marker1"
 shortDesc="#{row.shortDesc}"
 rendered="true">
 <amx:showPopupBehavior id="spb1"
 popupId="popup1"
 alignId="marker1"
 align="topCenter"
 decoration="anchor"/>
 <amx:setPropertyListener from="#{row.shortDesc}"
 to="#{pageFlowScope.currentCity}"
 type="action"/>
 </dvtm:marker>
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:geographicMap>
...
<amx:popup id="popup1" backgroundDimming="off" autoDismiss="true">
 <amx:outputText id="otTest" value="City: #{pageFlowScope.currentCity}"/>
 ...
</amx:popup>

For information on attributes of the geographicMap element and its child elements,
see Tag Reference for Oracle Mobile Application Framework.

The geographicMap component allows for insertion of a pin (creation of a point on
the map) using a touch gesture. You can configure this functionality by using the
mapInputListener. For more information, see How to Use Events with Map
Components.

For more information about related tasks with the geographicMap component, see:

• Configuring Geographic Map Components With the Map Provider Information

• Displaying Route in Geographic Map Components

14.5.24.1 Configuring Geographic Map Components With the Map Provider
Information

To configure a geographicMap component to use a specific provider for the
underlying map (Google or Oracle), you can set the following properties as name-
value pairs in the application's adf-config.xml file:

Providing Data Visualization

Creating the MAF AMX User Interface 14-167

• mapProvider: specify either oraclemaps or googlemaps.

• geoMapKey: specify the license key if the mapProvider is set to googlemaps.

• geoMapClientId: if the mapProvider is set to googlemaps, specify the client
ID for Google Maps business license.

• mapViewerUrl: if the mapProvider is set to oraclemaps, specify the map
viewer URL for Oracle maps.

• baseMap: if the mapProvider is set to oraclemaps, specify the base map to use
with Oracle maps.

Note:

To configure the geographicMap component to use Google Maps, you must
obtain an appropriate license from Google.

The following example shows the configuration for Google Maps.

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="googlemaps"/>
 <adf-property name="geoMapKey" value="your key"/>
</adf-properties-child>

Without a license for Google Maps, you have limited access to the geocoding service
that enables address resolution. MAF provides a handler for error messages produced
by the geocoding service when you exceed the permitted limit. These messages are
displayed at runtime if the maximum allowed number of address points is exceeded.
The number of requests is limited to 10 requests per second and redundant requests
are not sent to the geocoding API.

Monitor the error messages listed in the following table.

Table 14-10

Error ID Message Description

OVER_QUERY_LIMIT GeoCoder quota
has been exceeded.

Indicates that you are over your quota.

REQUEST_DENIED Request denied!
Check your API
key and client ID.

Indicates that the request was denied,
possibly because the request includes a
result_type or location_type
parameter but does not include an API
key or client ID.

Note:

To use Oracle maps, you must abide by the Terms of Use and also abide by
the Supplier Notices. Applications developed using Oracle maps must present
the Terms of Use and the Supplier Notices to end users either in
documentation or through links accessible from your application.

The following example shows the configuration for Oracle maps.

Providing Data Visualization

14-168 Developing Mobile Applications with Oracle Mobile Application Framework

http://maps.oracle.com/elocation/legal.html
http://maps.oracle.com/elocation/nokia_supplier_notices.pdf
http://maps.oracle.com/elocation/legal.html
http://maps.oracle.com/elocation/nokia_supplier_notices.pdf

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="oraclemaps"/>
 <adf-property name="mapViewerUrl" value="your-mapviewer-server-url"/>
 <adf-property name="baseMap" value="your-basemap-id"/>
</adf-properties-child>

MAF applications that run on devices using iOS 9 or later must use HTTPS for all
connections from the application to services to meet the requirements of Apple iOS’s
App Transport Security (ATS) policy. If you deploy your MAF application to iOS 9 or
later, configure your application using one of the following options, so that the
geographicMap component can render Oracle maps on an iOS 9 device:

1. Disable ATS when you deploy the MAF application. For more information, see
Defining the iOS Build Options. This option is not recommended.

2. Configure the Oracle maps service to accept HTTPS requests and configure the
MAF application so that the geographicMap component uses HTTPS. You
perform the latter configuration in the application’s adf-config.xml file. The
following example demonstrates how you configure the application’s adf-
config.xml file so that the geographicMap component can render Oracle
maps on an iOS 9 device.

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="oracleMaps"/>
 <adf-property name="mapViewerUrl" value="https://elocation.myserver.com/
mapviewer"/>
 <adf-property name="eLocationUrl" value="https://elocation.myserver.com/
elocation"/>
 </adf:adf-properties-child>
. . .
</adf-config>

For information on the adf-config.xml file, see About the Application Controller
Project-Level Resources.

14.5.24.2 Displaying Route in Geographic Map Components
When using Google Maps as a provider for the geographicMap component, you can
specify route between two points with possible waypoints by adding a Route (route)
child component.

Each geographicMap component can have multiple Route child components, with
each specifying a single route. Route origin, destination and optional waypoints can be
specified using the Geographic Map's Point Location child component. By convention,
the first Point Location in the set defines the origin and the last defines the destination.
All points between these two Point Locations represent route waypoints.

You can define the color, width, and opacity of the line used for visualizing the route
in the map. In addition, you can specify a hint indicating whether the route should
preferably follow driving routes, bicycling tracks, or walking paths.

The following example shows how to define a route element in a MAF AMX page.

<dvtm:geographicMap id="gm1">

 <!-- route defined using a collection model -->
 <dvtm:route travelMode="driving" id="d1">
 <amx:iterator value="#{el.collectionModel}" var="row">
 <dvtm:pointLocation address="#{row.address}" type="address"/>
 </amx:iterator>
 </dvtm:route>

Providing Data Visualization

Creating the MAF AMX User Interface 14-169

 <!-- route with explicitly defined start and destination -->
 <dvtm:route travelMode="driving|walking|bicycling" id="d2">
 <!-- route origin -->
 <dvtm:pointLocation address="#{pageFlowScope.origin}" type="address">
 <!-- route destination -->
 <dvtm:pointLocation address="#{pageFlowScope.destination}" type="address"/>
 </dvtm:route/>

 <dvtm:pointDataLayer id="pdl1">
 ...
 </dvtm:pointDataLayer>

 <dvtm:pointDataLayer id="pdl2">
 ...
 </dvtm:pointDataLayer>

</dvtm:geographicMap>

When the end user clicks or taps on the line representing the route, an ActionEvent
is fired. The event can be used to either drive navigation through the action attribute
or to invoke a handler in the Java layer using the actionListener attribute. The
action can also be used to trigger event listeners and behaviors specified in child
setPropertyListener, actionListener, showPopupBehavior, and
showPopupBehavior elements. For more information, see Using Event Listeners.

14.5.25 How to Create a Thematic Map Component
A Thematic Map (thematicMap) represents business data as patterns in stylized
areas or associated markers. Thematic maps focus on data without the geographic
details.

The following example shows the thematicMap element and its children defined in a
MAF AMX file.

<dvtm:thematicMap id="tm1"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 animationOnMapChange="#{pageFlowScope.animationOnMapChange}"
 animationDuration="#{pageFlowScope.animationDuration}"
 basemap="#{pageFlowScope.basemap}"
 tooltipDisplay="#{pageFlowScope.tooltipDisplay}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 zooming="#{pageFlowScope.zooming}"
 panning="#{pageFlowScope.panning}"
 initialZooming="#{pageFlowScope.initialZooming}">
 <dvtm:areaLayer id="areaLayer1"
 layer="#{pageFlowScope.layer}"
 animationOnLayerChange=
 "#{pageFlowScope.animationOnLayerChange}"
 areaLabelDisplay="#{pageFlowScope.areaLabelDisplay}"
 labelType="#{pageFlowScope.labelType}"
 areaStyle="background-color"
 rendered="#{pageFlowScope.rendered}">
 <dvtm:areaDataLayer id="areaDataLayer1"
 animationOnDataChange=
 "#{pageFlowScope.dataAnimationOnDataChange}"
 animationDuration=
 "#{pageFlowScope.dataAnimationDuration}"
 dataSelection="#{pageFlowScope.dataSelection}"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}">

Providing Data Visualization

14-170 Developing Mobile Applications with Oracle Mobile Application Framework

 <dvtm:areaLocation id="areaLoc1" name="#{row.name}">
 <dvtm:area action="sales" id="area1" shortDesc="#{row.name}">
 <amx:setPropertyListener id="spl1"
 to=
 "#{DvtProperties.areaChartProperties.dataSelection}"
 from="#{row.name}"
 type="action"/>
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.cat1}" />
 </dvtm:area>
 </dvtm:areaLocation>
 </dvtm:areaDataLayer>
 </dvtm:areaLayer>
 <dvtm:legend id="l1" position="end">
 <dvtm:legendSection id="ls1" source="ag1"/>
 </dvtm:legend>
</dvtm:thematicMap>

Figure 14-94 Thematic Map at Design Time

Using the markerZoomBehavior attribute, you can enable scaling of the Thematic
Map's markers when the map experiences zooming. You can enable the Marker
rotation by setting its rotation attribute, whose value represents the angle at which
the marker rotates in clockwise degrees around the center of the image.

MAF AMX Thematic Map supports the following advanced functionality:

• Custom markers (see Defining Custom Markers)

• Area isolation (see Defining Isolated Areas)

• Initial zooming (see Enabling Initial Zooming

• Custom base maps (see Defining a Custom Base Map

For information on attributes of the thematicMap element and its child elements, see
Tag Reference for Oracle Mobile Application Framework.

14.5.25.1 Defining Custom Markers
MAF AMX Thematic Map does not support MAF AMX Image component. To use an
image in the map's pointLocation, you can specify an image within the
pointLocation's marker child element by using its source attribute. If the
source attribute is set on the Marker, its shape attribute is ignored by MAF AMX.

The sourceHover, sourceSelected, and sourceHoverSelected attributes
allow you to specify images for hover and selection effects. If one of these is not

Providing Data Visualization

Creating the MAF AMX User Interface 14-171

specified, the image specified by the source attribute is used for that particular
marker state. If sourceSelected is specified, then its value is used if
sourceHoverSelected is not specified. The image can be of any format supported
by the mobile device's browser, including PNG, JPG, SVG, and so on.

14.5.25.2 Defining Isolated Area Layers
A region outline is not always needed to convey the geographic location of data.
Instead, since the Thematic Map component has the option of centering an image or
marker within an area, you have the option of defining invisible area layers where
region outlines are not drawn.

To define an invisible area layer, you use the areaStyle attribute of the areaLayer
which accepts the CSS values of background-color and border-color as follows:

<dvtm:areaLayer id="areaLayer1"
 ...
 areaStyle="background-color:transparent;border-color:transparent">

This attribute allows you to override the default area layer color and border
treatments without using the dvtm-area skinning key.

14.5.25.3 Defining Isolated Areas
You can configure the MAF AMX Thematic Map component to render and zoom to fit
on a single isolated area of the map by using the isolatedRowKey attribute of the
areaDataLayer, in which case the rest of the areas in the area or area data layers is
not rendered.

Note:

You can isolate only one area on a map.

14.5.25.4 Enabling Initial Zooming

The initial zooming allows the map component to be rendered as usual, and then
zoom to fit on the data objects which includes both markers and areas. To enable this
functionality, you use the initialZooming attribute of the Thematic Map.

14.5.25.5 Defining a Custom Base Map

As part of the custom base map support, MAF AMX allows you to specify the
following for the Thematic Map component:

• Layers with images for different resolutions.

• Point layers with named points that can be referenced from the Point Location
(pointLocation).

• The Thematic Map's source attribute that points to the custom base map metadata
XML file.

Providing Data Visualization

14-172 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

MAF AMX does not support the following for custom base maps:

• Stylized areas: since area layers cannot be defined for custom base maps,
use point layers.

• Resource bundles: to add locale-specific tool tips, you can use EL in the
shortDesc attribute of the Marker (marker).

To create a custom base map, you specify an area layer which points to a definition in
the metadata file (see the following example). To define a basic custom base map, you
specify a background layer and a pointer data layer. In the metadata file, you can
specify different images for different screen resolutions and display directions, similar
to MAF AMX gauge components. Just like a gauge-type component, the Thematic
Map chooses the correct image for the layer based on the screen resolution and
direction. The display direction is left-to-right.

You can define any number of layers. All named points are accessible in all the layers.
The X and Y positions of the named points are mapped to the image dimensions of the
first image. The Thematic Map component calculates the position of the points when
one of the following occurs:

• Zooming in is performed.

• A different image is displayed in a different resolution.

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 </layer>
</basemap>

The following example shows a MAF AMX file that declares a custom area layer with
points. The MAF AMX file points to the metadata file shown in the preceding example
containing a list of possible images, which are, in fact, scaled versions of the same
image.

<dvtm:thematicMap id="tm1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" >
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
 </dvtm:areaLayer>
</dvtm:thematicMap>

Providing Data Visualization

Creating the MAF AMX User Interface 14-173

In the preceding example, the base map ID is matched with the basemap attribute of
the thematicMap, and the layer ID is matched with the layer attribute of the
areaLayer. The points are defined through the X and Y coordinates (just like for a
predefined base map) to accommodate dynamic points that can change at the time the
data are updated.

The following example shows an alternative way to declare a custom area layer with
points. In this example, the pointDataLayer is a direct child of the thematicMap.
Despite this variation, it renders the same result as the declaration demonstrated in
preceding example.

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

To create a custom base map with static points, you specify the points by name in the
metadata file shown in the following example. This process is similar to adding city
markers for a predefined base map.

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-800x800-rtl.png"
 width="2560"
 height="1920"
 dir="rtl" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 <image source="/maps/car-200x200-rtl.png"
 width="640"
 height="480"
 dir="rtl" />
 </layer>
 <points >
 <point name="hood" x="219.911" y="329.663" />
 <point name="frontLeftTire" x="32.975" y="32.456" />
 <point name="frontRightTire" x="10.334" y="97.982" />
 </points>
</basemap>

The X and Y positions of the named points are assumed to be mapped to the image
dimensions of the first image element in the layer.

Providing Data Visualization

14-174 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Since the points are global in scope within the base map and apply to all
layers, you cannot define points for a specific layer and its images.

The following example shows a MAF AMX file that declares a custom area layer with
named points.

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1" type="pointName" pointName="#{row.name}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

The preceding MAF AMX file refers to the metadata file shown in the following
example containing a list of points and their names.

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 </layer>
</basemap>

14.5.25.6 What You May Need to Know About the Marker Support for Event Listeners

MAF AMX data visualization does not support the actionListener attribute for the
marker. Instead, the same functionality can be achieved by using the action
attribute.

14.5.25.7 Applying Custom Styling to the Thematic Map Component

You can style the Thematic Map component by overwriting the default CSS settings or
using a custom JavaScript file. For more information on how to extend these files, see
How to Style Data Visualization Components.

The following example shows the default CSS styles for the Thematic Map component.

.dvtm-thematicMap {
 background-color: #FFFFFF;
 -webkit-user-select: none;
 -webkit-touch-callout: none;
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

.dvtm-areaLayer {
 background-color: #B8CDEC;
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;

Providing Data Visualization

Creating the MAF AMX User Interface 14-175

 color: #000000;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
}

.dvtm-area {
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;
}

.dvtm-marker {
 background-color: #61719F;
 opacity: 0.7;
 color: #FFFFFF;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
 border-style: solid
 border-color: #FFCC33
 border-width: 12px
}

Some of the style settings cannot be specified using CSS. Instead, you must define
them using a custom JavaScript file. The following example shows how to apply
custom styling to the Thematic Map component without using CSS.

my-custom.js:

 CustomThematicMapStyle = {
 // selected area properties
 'areaSelected': {
 // selected area border color
 'borderColor': "#000000",
 // selected area border width
 'borderWidth': '1.5px'
 },

 // area properties on mouse hover
 'areaHover': {
 // area border color on hover
 'borderColor': "#FFFFFF",
 // area border width on hover
 'borderWidth': '2.0px'
 },

 // marker properties
 'marker': {
 // separator upper color
 'scaleX': 1.0,
 // separator lower color
 'scaleY': 1.0,
 // should display title separator
 'type': 'circle'
 },

 // thematic map legend properties

Providing Data Visualization

14-176 Developing Mobile Applications with Oracle Mobile Application Framework

 'legend': {
 // legend position, such as none, auto, start, end, top, bottom
 'position': "auto"
 }
 };

})();

Note:

You cannot change the name and the property names of the
CustomThematicMapStyle object. Instead, you can modify specific
property values to suit the needs of your application. For information on how
to add custom CSS and JavaScript files to your application, see Defining the
Application Feature Content as a MAF AMX Page or Task Flow.

When the attributeGroups attribute is defined for the Thematic Map component,
you can use the CustomThematicMapStyle to define a default set of shapes and
colors for that component. In this case, the CustomThematicMapStyle object must
have the structure that the following example shows, where styleDefaults is a
nested object containing the following fields:

• colors: represents a set of colors to be used for areas and markers.

• shapes: represents a set of shapes to be used for markers.

window['CustomThematicMapStyle'] =
{
 // custom style values
 'styleDefaults': {
 // custom color palette
 'colors': ["#000000", "#ffffff"],
 // custom marker shapes
 'shapes' : ['circle', 'square']
 }
};

14.5.26 How to Use Events with Map Components
You can use the MapBoundsChangeEvent to handle the following map view
property changes in the Geographic Map component:

• Changes to the zoom level.

• Changes to the map bounds.

• Changes to the map center.

When these changes occur, the component fires an event loaded with new map view
property values.

You can define the mapBoundsChangeListener as an attribute of the Geographic
Map.

You can use the MapInputEvent to handle the end user actions, such as taps and
mouse clicks, in the Geographic Map component. When these actions occur, the
component fires an event loaded with the information on the latitude and longitude
for the map, as well as the type of the action (for example, mouse down, mouse up,
click, and so on).

Providing Data Visualization

Creating the MAF AMX User Interface 14-177

You can define the mapInputListener as an attribute of the Geographic Map
component.

For more information, see the following:

• Using Event Listeners

• Java API Reference for Oracle Mobile Application Framework

• Tag Reference for Oracle Mobile Application Framework

14.5.27 How to Create a Treemap Component
A Treemap (treemap) displays hierarchical data across two dimensions represented
by the size and color of its nodes (treemapNode).

In the Components window, the Treemap is located under MAF AMX Data
Visualizations > Common > Miscellaneous, and its child components are located
under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Sunburst
and Treemap and MAF AMX Data Visualizations > Shared Child Tags (see Figure
14-95).

Providing Data Visualization

14-178 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-95 Treemap and Other Advanced Components in Components Window

Providing Data Visualization

Creating the MAF AMX User Interface 14-179

The following example shows the treemap element and its children defined in a MAF
AMX file.

<dvtm:treemap id="treemap1"
 value="#{bindings.treemapData.collectionModel}"
 var="row"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 layout="#{pageFlowScope.layout}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rendered="#{pageFlowScope.rendered}"
 emptyText="#{pageFlowScope.emptyText}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 sizeLabel="#{pageFlowScope.sizeLabel}"
 styleClass="dvtm-gallery-component"
 colorLabel="#{pageFlowScope.colorLabel}"
 sorting="#{pageFlowScope.sorting}"
 selectedRowKeys="#{pageFlowScope.selectedRowKeys}"
 isolatedRowKey="#{pageFlowScope.isolatedRowKey}"
 legendSource="ag1">
 <dvtm:treemapNode id="node1"
 fillPattern="#{pageFlowScope.fillPattern}"
 label="#{row.label}"
 labelDisplay="#{pageFlowScope.labelDisplay}"
 value="#{row.marketShare}"
 labelHalign="#{pageFlowScope.labelHalign}"
 labelValign="#{pageFlowScope.labelValign}">
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.deltaInPosition}"
 attributeType="continuous"
 minLabel="-1.5%"
 maxLabel="+1.5%"
 minValue="-1.5"
 maxValue="1.5" >
 <amx:attribute id="a1" name="color1" value="#ed6647" />
 <amx:attribute id="a2" name="color2" value="#f7f37b" />
 <amx:attribute id="a3" name="color3" value="#68c182" />
 </dvtm:attributeGroups>
 </dvtm:treemapNode>
</dvtm:treemap>

Providing Data Visualization

14-180 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-96 Treemap at Design Time

By setting the attributeType attribute of the attributeGroups element to
continuous, you can enable visualization of a value associated with the Treemap
item using a gradient color where the color intensity represents the relative value
within a specified range.

For information on attributes of the treemap element and its child elements, see Tag
Reference for Oracle Mobile Application Framework.

14.5.27.1 Applying Custom Styling to the Treemap Component

You can style the Treemap component by overwriting the default CSS settings or
using a custom JavaScript file. For more information on how to extend these files, see
How to Style Data Visualization Components.

The following example shows the Treemap component's default CSS styles that you
can override.

.dvtm-treemap {
 border-style: solid;
 border-color: #E2E8EE;
 border-radius: 3px;
 background-color: #EDF2F7;
 ...
}

The following example shows the Treemap Node's default CSS styles that you can
override.

.dvtm-treemapNodeSelected {
 // Selected node outer border color
 border-top-color: #E2E8EE;
 // Selected node inner border color

Providing Data Visualization

Creating the MAF AMX User Interface 14-181

 border-bottom-color: #EDF2F7;
}

The following example shows the Treemap Node's label text CSS properties that you
can style using custom CSS.

.dvtm-treemapNodeLabel {
 font-family: Helvetica, sans-serif;
 font-size: 14px;
 font-style: normal;
 font-weight: normal;
 color: #7097CF;
 ...
}

Some of the style settings cannot be specified using CSS. Instead, you must define
them using a custom JavaScript file. The following example shows how to apply
custom styling to the Treemap component without using CSS.

my-custom.js:

 window["CustomTreemapStyle"] = {

 // treemap properties
 "treemap" : {
 // Specifies the animation effect when the data changes - none, auto
 "animationOnDataChange": "auto",

 // Specifies the animation that is shown on initial display - none, auto
 "animationOnDisplay": "auto",

 // Specifies the animation duration in milliseconds
 "animationDuration": "500",

 // The text of the component when empty
 "emptyText": "No data to display",

 // Specifies the layout of the treemap -
 // squarified, sliceAndDiceHorizontal, sliceAndDiceVertical
 "layout": "squarified",

 // Specifies the selection mode - none, single, multiple
 "nodeSelection": "multiple",

 // Specifies whether or not the nodes are sorted by size - on, off
 "sorting": "on"
 },

 // treemap node properties
 "node" : {
 // Specifies the label display behavior for nodes - node, off
 "labelDisplay": "off",

 // Specifies the horizontal alignment for labels displayed
 // within the node - center, start, end
 "labelHalign": "end",

 // Specifies the vertical alignment for labels displayed
 // within the node - center, top, bottom
 "labelValign": "center"
 },

Providing Data Visualization

14-182 Developing Mobile Applications with Oracle Mobile Application Framework

 }

14.5.28 How to Create a Sunburst Component
A Sunburst (sunburst) displays hierarchical data across two dimensions represented
by the size and color of its nodes (sunburstNode).

In the Components window, the Sunburst is located under MAF AMX Data
Visualizations > Common > Miscellaneous, and its child components are located
under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Sunburst
and Treemap and MAF AMX Data Visualizations > Shared Child Tags (see Figure
14-95).

The following example shows the sunburst element and its children defined in a
MAF AMX file.

<dvtm:sunburst id="sunburst1"
 value="#{bindings.sunburstData.collectionModel}"
 var="row"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 colorLabel="#{pageFlowScope.colorLabel}"
 emptyText="#{pageFlowScope.emptyText}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rendered="#{pageFlowScope.rendered}"
 rotation="#{pageFlowScope.rotation}"
 shortDesc="#{pageFlowScope.shortDesc}"
 sizeLabel="#{pageFlowScope.sizeLabel}"
 sorting="#{pageFlowScope.sorting}"
 rotationAngle="#{pageFlowScope.startAngle}"
 styleClass="#{pageFlowScope.styleClass}"
 legendSource="ag1">
 <dvtm:sunburstNode id="node1"
 fillPattern="#{pageFlowScope.fillPattern}"
 label="#{row.label}"
 labelDisplay="#{pageFlowScope.labelDisplay}"
 value="#{pageFlowScope.showRadius ? 1 : row.marketShare}"
 labelHalign="#{pageFlowScope.labelHalign}"
 radius="#{pageFlowScope.showRadius ? row.booksCount : 1}">
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.deltaInPosition}"
 attributeType="continuous"
 minLabel="-1.5%"
 maxLabel="+1.5%"
 minValue="-1.5"
 maxValue="1.5">
 <amx:attribute id="a1" name="color1" value="#ed6647" />
 <amx:attribute id="a2" name="color2" value="#f7f37b" />
 <amx:attribute id="a3" name="color3" value="#68c182" />
 </dvtm:attributeGroups>
 </dvtm:sunburstNode>
</dvtm:sunburst>

Providing Data Visualization

Creating the MAF AMX User Interface 14-183

Figure 14-97 Sunburst at Design Time

By setting the attributeType attribute of the attributeGroups element to
continuous, you can enable visualization of a value associated with the Sunburst
item using a gradient color where the color intensity represents the relative value
within a specified range.

For information on attributes of the sunburst element and its child elements, see Tag
Reference for Oracle Mobile Application Framework.

14.5.28.1 Applying Custom Styling to the Sunburst Component

You can style the Sunburst component by overwriting the default CSS settings or
using a custom JavaScript file. For more information on how to extend these files, see
How to Style Data Visualization Components.

The following example shows the Sunburst component's default CSS styles that you
can override.

.dvtm-sunburst {
 border-style: solid;
 border-color: #E2E8EE;
 border-radius: 3px;
 background-color: #EDF2F7;
 ...
}

The following example shows the Sunburst Node's default CSS styles that you can
override.

.dvtm-sunburstNode {
 // Node border color
 border-color: "#000000";
}

.dvtm-sunburstNodeSelected {
 // Selected node border color
 border-color: "#000000";
}

The following example shows the Sunburst Node's label text CSS properties that you
can style using custom CSS.

.dvtm-sunburstNodeLabel {
 font-family: Helvetica, sans-serif;

Providing Data Visualization

14-184 Developing Mobile Applications with Oracle Mobile Application Framework

 font-size: 14px;
 font-style: normal;
 font-style: normal;
 color: #7097CF;
 ...
}

Some of the style settings cannot be specified using CSS. Instead, you must define
them using a custom JavaScript file. The following example shows how to apply
custom styling to the Sunburst component without using CSS.

my-custom.js:

window["CustomSunburstStyle"] = {
 // sunburst properties
 "sunburst" : {
 // Specifies whether or not the client side rotation is enabled - on, off
 "rotation": "off",

 // The text of the component when empty
 "emptyText": "No data to display",

 // Specifies the selection mode - none, single, multiple
 "nodeSelection": "multiple",

 // Animation effect when the data changes - none, auto
 "animationOnDataChange": "auto",

 // Specifies the animation that is shown on initial display - none, auto
 "animationOnDisplay": "auto",

 // Specifies the animation duration in milliseconds
 "animationDuration": "500",

 // Specifies the starting angle of the sunburst
 "startAngle": "90",

 // Specifies whether or not the nodes are sorted by size - on, off
 "sorting": "on"
 },

 // sunburst node properties
 "node" : {
 // Specifies whether or not the label is displayed - on, off
 "labelDisplay": "off"
 }
}

14.5.29 How to Create a Timeline Component
A Timeline (timeline) is an interactive component that allows viewing of events in
chronological order, as well as navigating forward and backward within a defined yet
adjustable time range that can be used for zooming.

Events are represented by Timeline Item components (timelineItem) that include
the title, description, and duration fill color. You can configure the Timeline
component to display an overview window (overview child element) showing all
available events. The end user can zoom in and out of the events using pinch and
spread gestures on a mobile device. In addition, you can configure a dual timeline to
display two series of events for a side-by-side comparison of related information.

Providing Data Visualization

Creating the MAF AMX User Interface 14-185

You can define the Timeline component as either horizontal or vertical using its
orientation attribute.

Note:

MAF AMX does not support the following functionality, child elements, and
properties that are often available in components similar to the Timeline:

• Nested UI components

• Animation

• Attribute and time range change awareness

• Time fetching

• Custom time scales

• Time currency

• Partial triggers

• Data sorting

• Formatted time ranges

• Time zone

• Visibility

In the Components window, the Timeline is located under MAF AMX Data
Visualizations > Common > Miscellaneous, and its child components are located
under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Timeline
and MAF AMX Data Visualizations > Shared Child Tags (see Figure 14-95).

The following example shows the timeline element and its children defined in a
MAF AMX file.

<dvtm:timeline id="tl"
 itemSelection="#{pageFlowScope.itemSelection}"
 startTime="#{pageFlowScope.startTime}"
 endTime="#{pageFlowScope.endTime}">
 <dvtm:timelineSeries id="ts1"
 label="#{pageFlowScope.s1Label}"
 value="#{bindings.series1Data.collectionModel}"
 var="row"
 selectionListener=
 "#{PropertyBean.timelineSeries1SelectionHandler}">
 <dvtm:timelineItem id="ti1"
 startTime="#{row.startDate}"
 endTime="#{row.endDate}"
 title="#{row.title}"
 description="#{row.description}"
 durationFillColor="#AAAAAA"/>
 </dvtm:timelineSeries>
 <dvtm:timeAxis id="ta1" scale="#{pageFlowScope.scale}"/>
</dvtm:timeline>

Providing Data Visualization

14-186 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-98 Timeline at Design Time

You can control the fill color of a specific Timeline Item's duration bar using its
durationFillColor attribute.

To display two time scales at the same time on the Timeline, use the Time Axis' scale
attribute that determines the scale of the second axis.

The Timeline can be scrolled horizontally as well as vertically. When the component is
scrollable (that is, contains data outside of the visible display area), it is indicated by
arrows pointing in the direction of the scroll.

Tip:

If the Timeline start time is set to the same value as the start time of the first
Timeline Item, the bubbles of corresponding Timeline Item components might
appear truncated. In addition, if the Timeline end time is set to the same value
as the end time of the last Timeline Item, the bubbles of corresponding
Timeline Item components might appear truncated. You should set the start
and end time of the Timeline component such that it ensures full visibility of
all Timeline Item bubbles.

For information on attributes of the timeline element and its child elements, see Tag
Reference for Oracle Mobile Application Framework.

14.5.29.1 Applying Custom Styling to the Timeline Component

You can style the Timeline component by overwriting the default CSS settings or
using a custom JavaScript file. For more information on how to extend these files, see
How to Style Data Visualization Components.

The following CSS style classes that you can override are defined for the Timeline and
its child components:

• .dvtm-timeline

supported properties: all

• .timelineSeries-backgroundColor

supported properties: color

.timelineSeries-labelStyle

Providing Data Visualization

Creating the MAF AMX User Interface 14-187

supported properties: font-family, font-size, font-weight, color,
font-style

.timelineSeries-emptyTextStyle

supported properties: font-family, font-size, font-weight, color,
font-style

• .timelineItem-backgroundColor

supported properties: color

.timelineItem-selectedBackgroundColor

supported properties: color

.timelineItem-borderColor

supported properties: color

.timelineItem-selectedBorderColor

supported properties: color

.timelineItem-borderWidth

supported properties: width

.timelineItem-selectedBorderWidth

supported properties: width

.timelineItem-feelerColor

supported properties: color

.timelineItem-selectedFeelerColor

supported properties: color

.timelineItem-feelerWidth

supported properties: width

.timelineItem-selectedFeelerWidth

supported properties: width

.timelineItem-descriptionStyle

- supported properties: font-family, font-size, font-weight, color,
font-style

.timelineItem-titleStyle

- supported properties: font-family, font-size, font-weight, color,
font-style

• .timeAxis-separatorColor

supported properties: color

.timeAxis-backgroundColor

supported properties: color

.timeAxis-borderColor

supported properties: color

.timeAxis-borderWidth

Providing Data Visualization

14-188 Developing Mobile Applications with Oracle Mobile Application Framework

supported properties: width

.timeAxis-labelStyle

- supported properties: font-family, font-size, font-weight, color,
font-style

The following example shows a custom JavaScript file that you could use to override
the default styles of the Timeline component.

// Custom timeline style definition with listing
// of all properties that can be overriden
window["CustomTimelineStyle"] = {
 // Determines if items in the timeline are selectable
 "itemSelection": none

 // Timeline properties
 "timelineSeries" : {
 // Duration bars color palette
 "colors" : [comma separated list of hex colors]
 }
}

14.5.30 How to Create an NBox Component
An NBox (nBox) component presents data across two dimensions, with each
dimension split into a number of ranges whose intersections form distinct cells into
which each data item is placed.

In the Components window, the NBox is located under MAF AMX Data
Visualizations > Common > Miscellaneous, and its child components are located
under MAF AMX Data Visualizations > Other Type-Specific Child Tags > NBox
and MAF AMX Data Visualizations > Shared Child Tags (see Figure 14-95).

The following example shows the nBox element and its children defined in a MAF
AMX file.

<dvtm:nBox id="nBox1"
 var="item"
 value="#{bindings.NBoxNodesDataList.collectionModel}"
 columnsTitle="#{pageFlowScope.columnsTitle}"
 emptyText="#{pageFlowScope.emptyText}"
 groupBy="#{pageFlowScope.groupBy}"
 groupBehavior="#{pageFlowScope.groupBehavior}"
 highlightedRowKeys="#{pageFlowScope.showHighlightedNodes ?
 pageFlowScope.highlightedRowKeys : ''}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 legendDisplay="#{pageFlowScope.legendDisplay}"
 maximizedColumn="#{pageFlowScope.maximizedColumn}"
 maximizedRow="#{pageFlowScope.maximizedRow}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rowsTitle="#{pageFlowScope.rowsTitle}"
 selectedRowKeys="#{pageFlowScope.selectedRowKeys}"
 shortDesc="#{pageFlowScope.shortDesc}">
 <amx:facet name="rows">
 <dvtm:nBoxRow value="low" label="Low" id="nbr1"/>
 <dvtm:nBoxRow value="medium" label="Med" id="nbr2"/>
 <dvtm:nBoxRow value="high" label="High" id="nbr3"/>
 </amx:facet>
 <amx:facet name="columns">
 <dvtm:nBoxColumn value="low" label="Low" id="nbc2"/>
 <dvtm:nBoxColumn value="medium" label="Med" id="nbc1"/>

Providing Data Visualization

Creating the MAF AMX User Interface 14-189

 <dvtm:nBoxColumn value="high" label="High" id="nbc3"/>
 </amx:facet>
 <amx:facet name="cells">
 <dvtm:nBoxCell row="low"
 column="low"
 label=""
 background="rgb(234,153,153)"
 id="nbc4"/>
 <dvtm:nBoxCell row="medium"
 column="low"
 label=""
 background="rgb(234,153,153)"
 id="nbc5"/>
 <dvtm:nBoxCell row="high"
 column="low"
 label=""
 background="rgb(159,197,248)"
 id="nbc6"/>
 <dvtm:nBoxCell row="low"
 column="medium"
 label=""
 background="rgb(255,229,153)"
 id="nbc7"/>
 <dvtm:nBoxCell row="medium"
 column="medium"
 label=""
 background="rgb(255,229,153)"
 id="nbc8"/>
 <dvtm:nBoxCell row="high"
 column="medium"
 label=""
 background="rgb(147,196,125)"
 id="nbc9"/>
 <dvtm:nBoxCell row="low"
 column="high"
 label=""
 background="rgb(255,229,153)"
 id="nbc10"/>
 <dvtm:nBoxCell row="medium"
 column="high"
 label=""
 background="rgb(147,196,125)"
 id="nbc11"/>
 <dvtm:nBoxCell row="high"
 column="high"
 label=""
 background="rgb(147,196,125)"
 id="nbc12"/>
 </amx:facet>
 <dvtm:nBoxNode id="nbn1"
 row="#{item.row}"
 column="#{item.column}"
 label="#{item.name}"
 labelStyle="font-style:italic"
 secondaryLabel="#{item.job}"
 secondaryLabelStyle="font-style:italic"
 shortDesc="#{item.name + ': ' + item.job}">
 <dvtm:attributeGroups id="ag1"
 type="indicatorShape"
 value="#{item.indicator1}"
 rendered="#{pageFlowScope.showIndicator}"/>

Providing Data Visualization

14-190 Developing Mobile Applications with Oracle Mobile Application Framework

 <dvtm:attributeGroups id="ag2"
 type="indicatorColor"
 value="#{item.indicator2}"
 rendered="#{pageFlowScope.showIndicator}"/>
 <dvtm:attributeGroups id="ag3"
 type="color"
 value="#{item.group}"
 rendered="#{pageFlowScope.showColors}"/>
 </dvtm:nBoxNode>
</dvtm:nBox>

Figure 14-99 NBox at Design Time

For information on attributes of the nBox element and its child elements, see Tag
Reference for Oracle Mobile Application Framework.

14.5.31 How to Define Child Elements for Map Components, Sunburst, Treemap,
Timeline, and NBox

You can define a variety of child elements for map components, Sunburst, Treemap,
Timeline, and NBox. For information on available child elements and their attributes,
see Tag Reference for Oracle Mobile Application Framework.

In JDeveloper, the Map, Sunburst, Treemap, Timeline, and NBox child components are
located under MAF AMX Data Visualizations > Other Type-Specific Child Tags and
MAF AMX Data Visualizations > Shared Child Tags in the Components window
(see Figure 14-100).

Providing Data Visualization

Creating the MAF AMX User Interface 14-191

Figure 14-100 Creating Map, Sunburst, Treemap, Timeline, and NBox Child
Components

14.5.32 How to Create Databound Data Visualization Components
You can declaratively create a databound data visualization component using a data
collection inserted from the Data Controls window (see How to Add Data Controls to

Providing Data Visualization

14-192 Developing Mobile Applications with Oracle Mobile Application Framework

a MAF AMX Page). The Component Gallery dialog that Figure 14-114 shows allows
you to choose from a number of data visualization component categories, types, and
layout options.

Figure 14-101 Component Gallery to Create Chart Components

Providing Data Visualization

Creating the MAF AMX User Interface 14-193

Figure 14-102 Component Gallery to Create Gauge Components

Providing Data Visualization

14-194 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-103 Component Gallery to Create Thematic Map Component

Note:

Some data visualization component types require very specific kinds of data.
If you bind a component to a data collection that does not contain sufficient
data to display the component type requested, then the component is not
displayed and a message about insufficient data appears.

To trigger the display of the Component Gallery, you drag and drop a collection from
the Data Controls window onto a MAF AMX page, and then select either MAF Chart,
MAF Gauge, or MAF Thematic Map from the context menu that appears (see Figure
14-104).

Providing Data Visualization

Creating the MAF AMX User Interface 14-195

Figure 14-104 Creating Databound Data Visualization Components

After you select the category, type, and layout for your new databound component
from the Component Gallery and click OK, you can start binding the data collection
attributes in the data visualization component using data binding dialogs. The name
of the dialog and the input field labels depend on the category and type of the data
visualization component that you selected. For example, if you select Bar as the
category and Bar as the type, then the name of the dialog that appears is Create Mobile
Bar Chart, and the input field is labeled Bars, as Figure 14-105 shows.

Providing Data Visualization

14-196 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-105 Specifying Data Values for Databound Chart

The attributes in a data collection can be data values or categories of data values. Data
values are numbers represented by markers, like bar height, or points in a scatter
chart. Categories of data values are members represented as axis labels. The role that
an attribute plays in the bindings (either data values or identifiers) is determined by
both its data type (chart requires numeric data values) and where it is mapped (for
example, Bars or X Axis).

If you use the Component Gallery to create a databound gauge component, and then
you select LED as the category and Star LED as the type, then the name of the dialog
that appears is Create Mobile Star LED Gauge, as Figure 14-106 shows.

Providing Data Visualization

Creating the MAF AMX User Interface 14-197

Figure 14-106 Specifying Data Values for Databound Gauge

If you use the Component Gallery to create a databound thematic map component,
then regardless of your selection, the name of the dialog that appears is Create Data
Layer, but the fields that are displayed depend on the selection you made in the
Component Gallery. For example, if you select World as the base map and World
continents as the area layer, the dialog show in Figure 14-106 opens.

Figure 14-107 Create Data Layer Dialog

Providing Data Visualization

14-198 Developing Mobile Applications with Oracle Mobile Application Framework

After completing one or more data binding dialogs, you can use the Properties
window to specify settings for the component attributes. You can also use the child
elements associated with the component to further customize it (see How to Define
Child Elements for Chart and Gauge Components).

When you select MAF Geographic Map, MAF Sunburst, MAF NBox, MAF Timeline,
or MAF Treemap from the context menu upon dropping a collection onto a MAF
AMX page, one of the following dialogs appear:

Figure 14-108 Creating Databound Geographic Map

Providing Data Visualization

Creating the MAF AMX User Interface 14-199

Figure 14-109 Creating Databound Sunburst

Providing Data Visualization

14-200 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-110 Creating Databound Timeline

Providing Data Visualization

Creating the MAF AMX User Interface 14-201

Figure 14-111 Creating Databound Treemap

Providing Data Visualization

14-202 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-112 Creating Databound NBox

To complete the Create NBox dialog, you start by defining the number of rows and
columns. Then you can select a cell on the box and specify values for the whole row or
column in the bottom portion of the dialog, as Figure 14-113 shows.

Providing Data Visualization

Creating the MAF AMX User Interface 14-203

Figure 14-113 Setting Row and Column Values for Databound NBox

The NBox component is created when you complete all pages of the series of dialogs
by clicking Next.

For details on values for each field of each dialog, consult the online help by clicking
Help or pressing F1.

14.5.32.1 What You May Need to Know About Setting Series Style for Databound
Chart Components

When creating databound chart components from the Data Controls window, you can
declaratively specify styling information for the chart series data by adding
seriesStyle elements, and then using the Properties window to open a list for the
series attribute of the seriesStyle element. This list is already populated with the
values of the series attribute based on the values of the chartDataItem elements
within the dataStamp facet.

Providing Data Visualization

14-204 Developing Mobile Applications with Oracle Mobile Application Framework

14.5.33 How to Create Data Visualization Components Based on Static Data
For charts, as well as Treemap, Sunburst, and Timeline, you may choose not to specify
their var and value attributes. Instead, you can define the component structure
statically by enumerating elements that correspond to data items (for example,
charDataItem elements for charts, or timelineItems for Timeline Series). You can
add as many of these static items as necessary, which is useful when you know the
data at design time.

The following example shows a Pie Chart component that uses static data defined
through its pieDataItem child components.

<dvtm:pieChart id="pieChart1" >
 <amx:facet name="dataStamp">
 <dvtm:pieDataItem id="di1" value="80000" label="Salary"/>
 <dvtm:pieDataItem id="di2" value="7500" label="Bonus"/>
 <dvtm:pieDataItem id="di3" value="12000" label="Commision"/>
 </amx:facet>
 <dvtm:legend position="none" id="l1"/>
</dvtm:pieChart>

The following example shows the pieDataItem child component whose value is
specified based on an attribute binding instead of a collection.

<dvtm:pieDataItem id="di1" value="#{bindings.Salary.inputValue}" label="Salary"/>

14.5.34 How to Enable Interactivity in Chart Components
You can enable the end user interaction through tap with some chart components by
defining event-driven triggers for the following child components of charts:

• Chart Data Item

• Pie Data Item

• Series Style

In addition to using the supported operations, such as Set Property Listener and Show
Popup Behavior (see #unique_445/unique_445_Connect_42_CHDFFFDD for complete
list), you can set the action attribute to define the type of action to be fired.

<amx:panelPage id="pp1" styleClass="dvtm-gallery-panelPage">
...
 <dvtm:lineChart id="lineChart1"
 var="row"
 value="#{bindings.lineData1.collectionModel}"
 ... >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.group}"
 value="#{row.value}"
 series=" #{row.series}"
 label="#{pageFlowScope.labelDisplay ?
 row.value : ''}" >
 <amx:showPopupBehavior popupId="pAdvancedOptions"
 type="action"
 align="overlapTopCenter"
 alignId="pflOptionsForm"
 decoration="anchor"/>
 </dvtm:chartDataItem>
 </amx:facet>

Providing Data Visualization

Creating the MAF AMX User Interface 14-205

 ...
 </dvtm:lineChart>
 ...
</amx:panelPage>
<amx:popup id="pAdvancedOptions" styleClass="dvtm-gallery-options-dialog">
...

For information, see Tag Reference for Oracle Mobile Application Framework.

14.5.35 How to Create Polar Charts
You can enable the polar view for the following chart components by setting their
coordinateSystem attribute to polar:

• Area Chart

• Bar Chart

• Combo Chart

• Bubble Chart

• Line Chart

• Scatter Chart

When the polar setting is applied to any of the preceding charts except the Bar Chart,
you can define its polar grid as either circular or polygonal by using the
polarGridShape attribute.

The polar chart's radial axis can be customized through its Y Axis child component,
and the tangential axis are customized through the X Axis child component.

For information, see Tag Reference for Oracle Mobile Application Framework.

14.6 Styling UI Components
MAF enables you to employ CSS to apply style to UI components.

14.6.1 How to Use Component Attributes to Define Style
You style your UI components by setting the following attributes:

• styleClass attribute defines a CSS style class to use for your layout component:

<amx:panelPage styleClass="#{pageFlowScope.pStyleClass}">

You can define the style class for layout, command, and input components in a
MAF AMX page or in a skinning CSS file, in which case a certain style is applied to
all components within the MAF AMX application feature (see What You May Need
to Know About Skinning). Alternatively, you can use the public style classes
provided by MAF.

Note:

The CSS file is not accessible from JDeveloper. Instead, MAF injects this file
into the package at build or deploy time, upon which the CSS file appears in
the css directory under the Web Content root directory.

Styling UI Components

14-206 Developing Mobile Applications with Oracle Mobile Application Framework

• inlineStyle attribute defines a CSS style to use for any UI component and
represents a set of CSS styles that are applied to the root DOM element of the
component:

<amx:outputText inlineStyle="color:red;">

You should use this attribute when basic style changes are required.

Note:

Some UI components are rendered with such subelements as HTML div
elements and more complex markup. As a result, setting the inlineStyle
attribute on the parent component may not produce the desired effect. In such
cases, you should examine the generated markup and, instead of defining the
inlineStyle attribute, apply a CSS class that would propagate the style to
the subelement.

For information on how to configure JavaScript debugging, see How to Enable
Debugging of Java Code and JavaScript.

These attributes are displayed in the Style section in the Properties window, as Figure
14-114 shows.

Figure 14-114 Style Section of the Properties Window

Within the Properties window MAF AMX provides a drop-down editor that you can
use to set various properties of the inlineStyle attribute (see Figure 14-115).

Styling UI Components

Creating the MAF AMX User Interface 14-207

Figure 14-115 Inline Style Editor

For more information, see Tag Reference for Oracle Mobile Application Framework.

Styling UI Components

14-208 Developing Mobile Applications with Oracle Mobile Application Framework

14.6.2 What You May Need to Know About Skinning
Skinning allows you to define and apply a uniform style to all UI components within a
MAF AMX application feature to create a theme for the entire feature.

The default skin family for MAF is called mobileAlta and the default version is the
latest version of that skin. For more information, see Skinning MAF Applications.

14.6.3 What You May Need to Know About Using CSS ID Selectors for Skinning
MAF AMX does not support the use of CSS ID selectors in skinning elements. As a
result, a markup such as the following would cause rough MAF AMX page
transitions:

#tb1 {
 position:absolute;
 overflow:hidden;
 width: 300px;
 background-color: rgb(90,148,0);
}

The reason for this condition is that when a transition between MAF AMX pages
occurs, two pages are rendered on the screen at the same time, and therefore, to
prevent ID collisions, the page from which the transition occurs is stripped of all its
IDs just before the transition.

Instead of using CSS ID selectors, you must use class names. The following example
shows a MAF AMX UI component defined in a MAF AMX page, with its
styleClass attribute set to a specific custom class.

<amx:panelPage styleClass="MySpecialClassName"/>

The following example show how to use the custom class for skinning.

.MySpecialClassName {
 height: 420px;
}

14.6.4 How to Style Data Visualization Components
Most of the style properties of MAF AMX data visualization components are defined
in the dvtm.css file located in the css directory. You can override the default values
by adding a custom CSS file with custom style definitions at the application feature
level (see Overriding the Default Skin Styles).

Some of the style properties cannot be mapped to CSS and have to be defined in
custom JavaScript files. These properties include the following:

• Background and needle images for the Dial Gauge component (see How to Create
a Dial Gauge).

• Duration bars color palette for the Timeline component (see How to Create a
Timeline Component).

• Base maps for the Thematic Map component (see Defining a Custom Base Map).

• Style properties of the Geographic Map component (see How to Create a
Geographic Map Component).

Styling UI Components

Creating the MAF AMX User Interface 14-209

• Style properties of the Thematic Map component (see Applying Custom Styling to
the Thematic Map Component).

• Selected and unselected states of the Rating Gauge component (see Applying
Custom Styling to the Rating Gauge Component).

You should specify these custom JavaScript files in the Includes section at the
application feature level (see Defining the Application Feature Content as a MAF
AMX Page or Task Flow). By doing so, you override the default style values defined in
the XML style template. The following example shows a JavaScript file similar to the
one you would add to your MAF project that includes the MAF AMX application
feature with data visualization components which require custom styling of properties
that cannot be styled using CSS.

my-custom.js:

 CustomChartStyle = {

 // common chart properties
 'chart': {
 // text to be displayed, if no data is provided
 'emptyText': null,
 // animation effect when the data changes
 'animationOnDataChange': "none",
 // animation effect when the chart is displayed
 'animationOnDisplay': "none",
 // time axis type - disabled, enabled, mixedFrequency
 'timeAxisType': "disabled"
 },

 // chart title separator properties
 'titleSeparator': {
 // separator upper color
 'upperColor': "#74779A",
 // separator lower color
 'lowerColor': "#FFFFFF",
 // should display title separator
 'rendered': false
 },

 // chart legend properties
 'legend': {
 // legend position - none, auto, start, end, top, bottom
 'position': "auto"
 },

 // default style values
 'styleDefaults': {
 // default color palette
 'colors': ["#003366", "#CC3300", "#666699", "#006666", "#FF9900",
 "#993366", "#99CC33", "#624390", "#669933", "#FFCC33",
 "#006699", "#EBEA79"],
 // default shapes palette
 'shapes': ["circle", "square", "plus", "diamond",
 "triangleUp", "triangleDown", "human"],
 // series effect
 'seriesEffect': "gradient",
 // animation duration in ms
 'animationDuration': 1000,
 // animation indicators - all, none
 'animationIndicators': "all",

Styling UI Components

14-210 Developing Mobile Applications with Oracle Mobile Application Framework

 // animation up color
 'animationUpColor': "#0099FF",
 // animation down color
 'animationDownColor': "#FF3300",
 // default line width for line chart
 'lineWidth': 3,
 // default line style for line chart - solid, dotted, dashed
 'lineStyle': "solid",
 // should markers be displayed for line and area charts
 'markerDisplayed': false,
 // default marker color
 'markerColor': null,
 // default marker shape
 'markerShape': "auto",
 // default marker size
 'markerSize': 8,
 // pie feeler color for pie chart
 'pieFeelerColor': "#BAC5D6",
 // slice label position and text type for pie chart
 'sliceLabel': {
 'position': "outside",
 'textType': "percent" }
 }
 };

 CustomGaugeStyle = {
 // default animation duration in milliseconds
 'animationDuration': 1000,
 // default animation effect on data change
 'animationOnDataChange': "none",
 // default animation effect on gauge display
 'animationOnDisplay': "none",
 // default visual effect
 'visualEffects': "auto"
 };

 CustomTimelineStyle = {
 'timelineSeries' : {
 // duration bars color palette
 'colors' : ["#267db3", "#68c182", "#fad55c", "#ed6647"]
 };
...
}

After the JavaScript file has been defined, you can uncomment and modify any values.
You add this file as an included feature in the maf-feature.xml file, as the
following example shows.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="feature1" name="feature1">
 <adfmf:content id="feature1.1">
 <adfmf:amx file="feature1/untitled1.amx">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/custom.css"/>
 <adfmf:include type="JavaScript" file="feature1/js/my-custom.js"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>

Styling UI Components

Creating the MAF AMX User Interface 14-211

 </adfmf:feature>
</adfmf:features>

14.7 Localizing UI Components
In your MAF AMX page, you can localize the text that UI components display by
using the standard resource bundle provided by JDeveloper. You do so by selecting a
component and one of its text-presenting properties whose value you intend to
localize, and then choosing Select Text Resource in the appropriate box in the
Properties window (see Figure 14-116).

Figure 14-116 Selecting Text Resource

This displays the standard Select Text Resource dialog that Figure 14-117 shows. You
use this dialog to enter or find a string reference for the property you are modifying.

Localizing UI Components

14-212 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-117 Select Text Resource Dialog

After you have defined a localized string resource, the EL for that reference is
automatically placed in the property from which the Select Text Resource dialog was
launched. An XLIFF (XML Localization Interchange File Format) file is created, if it is
not already present. If it is present, the new entry is added to the existing XLIFF file. In
addition, a corresponding Load Bundle (loadBundle) component is created as a
child of the View component that points to the ViewControllerBundle.xlf file
(default name, but basically it would match the name of the project).

Note:

The ViewControllerBundle.xlf is a default file name. This name matches
the name of the project.

Figure 14-118 shows the changes in the MAF AMX file.

Localizing UI Components

Creating the MAF AMX User Interface 14-213

Figure 14-118 Localized String in MAF AMX File

For more information, see Localizing MAF Applications .

14.8 Understanding MAF Support for Accessibility
When developing MAF applications, you may need to accommodate visually and
physically impaired users by addressing accessibility issues. User agents, such as web
browsers rendering to nonvisual media (for example, a screen reader) can read text
descriptions of UI components to provide useful information to impaired users. MAF
AMX UI and data visualization components are designed to be compliant with the
following accessibility standards:

• The Accessible Rich Internet Applications (WAI-ARIA) 1.0 specification.

For more information, see the following:

– "Introduction" to WAI-ARIA 1.0 specification at http://www.w3.org/TR/
wai-aria/introduction

– "Using WAI-ARIA" at http://www.w3.org/TR/wai-aria/usage

Understanding MAF Support for Accessibility

14-214 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.w3.org/TR/wai-aria/introduction
http://www.w3.org/TR/wai-aria/introduction
http://www.w3.org/TR/wai-aria/usage

– What You May Need to Know About the Basic WAI-ARIA Terms

• The Oracle Global HTML Accessibility Guidelines (OGHAG).

For more information, see What You May Need to Know About the Oracle Global
HTML Accessibility Guidelines.

• iOS Accessibility guidelines.

For more information, see the Accessibility Programming Guide for iOS.

Accessible components do not change their appearance nor is the application logic
affected by the introduction of such components.

To enable the proper functioning of the accessibility in your MAF AMX application
feature, follow these guidelines:

• The navigation must not be more than three levels deep and it must be easy for the
user to traverse back to the home screen.

• Keep scripting to a minimum.

• Do not provide direct interaction with the DOM.

• Do not use JavaScript time-outs.

• Avoid unnecessary focus changes

• Provide explicit popup triggers

• If needed, use the WAI-ARIA live region (see What You May Need to Know About
the Basic WAI-ARIA Terms).

• Keep CSS use to a minimum.

• Try not to override the default component appearance.

• Choose scalable size units.

• Do not use CSS positioning.

For more information, see the following:

• "Mobile Accessibility" at http://www.w3.org/WAI/mobile

• "Web Content Accessibility and Mobile Web: Making a Web Site Accessible Both
for People with Disabilities and for Mobile Devices" at http://
www.w3.org/WAI/mobile/overlap.html

14.8.1 How to Configure UI and Data Visualization Components for Accessibility
MAF AMX UI and data visualization components have a built-in accessibility support,
with most components being subject to the accessibility audit (see Figure 14-121).

AMX UI components, such as commandButton, tableLayout expose one or more of
the following attributes to support accessibility:

• Shortdesc.

• Summary

• HintText

Understanding MAF Support for Accessibility

Creating the MAF AMX User Interface 14-215

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Introduction/Introduction.html
http://www.w3.org/WAI/mobile
http://www.w3.org/WAI/mobile/overlap.html
http://www.w3.org/WAI/mobile/overlap.html

• Landmark

You use the shortDesc attribute for different purposes for different components. For
example, if you set the shortDesc attribute for the Image component, in the MAF
AMX file it appears as a value of the alt attribute of the image element. The value of
the shortDesc attribute can be localized.

For the summary and shortDesc attributes that the tableLayout component
exposes, you do not need to specify values for either attribute if you use the
tableLayout component to lay out other components. In this scenario, MAF adds a
presentation role to the tableLayout component in the HTML that renders at
runtime. However, if you use the tableLayout component to present data, configure
each attribute with different values. At runtime, MAF uses the value you specify for
the shortDesc attribute as the title attribute in the HTML table. The value you
specify for the summary attribute renders as the summary in the HTML table.

You can set the attributes of the component through the Accessibility section of
the Properties window.

For more information about these attributes and the components, see Tag Reference for
Oracle Mobile Application Framework

For the Panel Group Layout and Deck components, you define the landmark role type
(see Table 14-14) that is applicable as per the context of the page. You can set one of
the following values for the landmark attribute:

• default (none)

• application

• banner

• complementary

• contentinfo

• form

• main

• navigation

• search

AMX UI components, such as inputDate and inputNumberSlider, have Label
and Value accessibility attributes defined by the WAI-ARIA specification. These
attribute values are automatically applied at run time and cannot be modified. For
more information, see Tag Reference for Oracle Mobile Application Framework.

For information on how to configure the accessibility audit rules, see Configuring the
Accessibility Audit Rules.

14.8.1.1 Configuring the Accessibility Audit Rules

You can configure the accessibility audit rules using JDeveloper's Preferences dialog as
follows:

1. In JDeveloper, select Tools > Preferences from the main menu (on a Windows
computer).

2. From the list of preferences, select Audit (see Figure 14-119).

Understanding MAF Support for Accessibility

14-216 Developing Mobile Applications with Oracle Mobile Application Framework

3. On the Audit pane that Figure 14-119 shows, click Manage Profiles to open the
Audit Profile dialog.

Figure 14-119 Setting Accessibility Audit Rules

4. In the Audit Profile dialog that Figure 14-120 shows, expand the Mobile
Application Framework node from the tree of rules, and then expand
Accessibility.

Understanding MAF Support for Accessibility

Creating the MAF AMX User Interface 14-217

Figure 14-120 Audit Profile Dialog

5. Select the accessibility audit rules to apply to your application, as Figure 14-120
shows.

Figure 14-121 shows the accessibility audit warning displayed in JDeveloper.

Understanding MAF Support for Accessibility

14-218 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-121 Accessibility Audit Warning

For information on how to test your accessible MAF AMX application feature, see
How to Perform Accessibility Testing on iOS-Powered Devices.

Note:

WAI-ARIA accessibility functionality is not supported on Android for data
visualization components.

Other MAF AMX UI components might not perform as expected when the
application is run in the Android screen reader mode.

14.8.2 What You May Need to Know About the Basic WAI-ARIA Terms
As stated in the WAI-ARIA 1.0 specification, complex web applications become
inaccessible when assistive technologies cannot determine the semantics behind
portions of a document or when the user cannot effectively navigate to all parts of it in
a usable way. WAI-ARIA divides the semantics into roles (the type defining a user
interface element), and states and properties supported by the roles. The following
semantic associations form the base for the WAI-ARIA terms:

• Role

• Landmark

• Live region

For more information, see "Important Terms" at http://www.w3.org/TR/wai-
aria/terms.

The following tables list role categories (as defined in the WAI-ARIA 1.0 specification)
that are applicable to MAF.

Table 14-11 lists abstract roles that are used to support the WAI-ARIA role taxonomy
for the purpose of defining general role concepts.

Table 14-11 Abstract Roles

Understanding MAF Support for Accessibility

Creating the MAF AMX User Interface 14-219

http://www.w3.org/TR/wai-aria/terms
http://www.w3.org/TR/wai-aria/terms

Table 14-11 (Cont.) Abstract Roles

Abstract Role Description

input A generic type of widget that allows the user input.

landmark A region of the page intended as a navigational landmark.

select A form widget that allows the user to make selections from a
set of choices.

widget An interactive component of a graphical user interface.

Table 14-12 lists widget roles that act as standalone user interface widgets or as part of
larger, composite widgets.

Table 14-12 Widget Roles

Widget Role Description Widget Required States

alertdialog A type of dialog that contains an alert
message, where initial focus moves to an
element within the dialog.

aria-labelledby, aria-
describedby

button An input that allows for user-triggered
actions when clicked or pressed.

aria-expanded (state),
aria-pressed (state)

checkbox A checkable input that has three possible
values: true, false, or mixed.

aria-checked (state)

dialog A dialog represented by an application
window that is designed to interrupt the
current processing of an application in
order to prompt the user to enter
information or require a response.

aria-labelledby, aria-
describedby

link An interactive reference to an internal or
external resource that, when activated,
causes the user agent to navigate to that
resource.

aria-disabled (state),
aria-describedby

option A selectable item in a select list. aria-labelledby, aria-
checked (state), aria-
selected (state)

radio A checkable input in a group of radio roles,
only one of which can be checked at a time.

aria-checked (state),
aria-disabled (state)

slider A user input where the user selects a value
from within a given range.

aria-valuemax, aria-
valuemin, aria-
valuenow, aria-disabled
(state)

listbox A widget that allows the user to select one
or more items from a list of choices.

aria-live

radiogroup A group of radio buttons. aria-disabled (state)

listitem A single item in a list or directory. aria-describedby

Understanding MAF Support for Accessibility

14-220 Developing Mobile Applications with Oracle Mobile Application Framework

Table 14-12 (Cont.) Widget Roles

Widget Role Description Widget Required States

textbox Input that allows free-form text as its value. aria-labelledby, aria-
readonly, aria-required,
aria-multiline, aria-
disabled (state)

Table 14-13 lists document structure roles that describe structures that organize
content in a page. Typically, document structures are not interactive.

Table 14-13 Document Structure Roles

Document Structure Role Description

img A container for a collection of elements that form an image.

list A group of non-interactive list items.

listitem A single item in a list or directory.

Table 14-14 lists landmark roles that represent regions of the page intended as
navigational landmarks.

Table 14-14 Landmark Roles

Landmark Role Description

application A region declared as a web application (as opposed to a web
document).

banner A region that contains mostly site-oriented content (rather than
page-specific content).

complementary A supporting section of a document designed to be
complementary to the main content at a similar level in the
DOM hierarchy, but that remains meaningful when separated
from the main content.

contentinfo A large perceivable region that contains information about the
parent document.

form A region that contains a collection of items and objects that, as a
whole, combine to create a form.

main The main content of a document.

navigation A collection of navigational elements (usually links) for
navigating the document or related documents.

search A region that contains a collection of items and objects that, as a
whole, combine to create a search facility.

For the majority of MAF UI components, you cannot modify accessible WAI-ARIA
attributes. For some components, you can set special accessible attributes at design
time, and for the Panel Group Layout and Deck, you can use the WAI-ARIA landmark

Understanding MAF Support for Accessibility

Creating the MAF AMX User Interface 14-221

role type. For more information, see How to Configure UI and Data Visualization
Components for Accessibility.

14.8.3 What You May Need to Know About the Oracle Global HTML Accessibility
Guidelines

The Oracle Global HTML Accessibility Guidelines (OGHAG) is a set of scripting
standards for HTML that Oracle follows. These standards represent a combination of
Section 508 (see http://www.section508.gov) and Web Content Accessibility
Guidelines (WCAG) 1.0 level AA (see http://www.w3.org/TR/WCAG10), with
improved wording and checkpoint measurements.

For more information, see Oracle's Accessibility Philosophy and Policies at http://
www.oracle.com/us/corporate/accessibility/policies/index.html.

14.9 Validating Input
MAF allows you to inform the end user about data input errors and other conditions
that occur during data input. Depending on their type (error or warning), validation
messages have a different look and feel.

The user input validation is triggered when an input is submitted: Input Text
components are automatically validated when the end user leaves the field; for
selection components, such as a Checkbox or Choice, the validation occurs when the
end user makes a selection. For validation purposes, UI components on a MAF AMX
page are grouped together within a Validation Group operation (validationGroup)
to define components whose input is to be validated when the submit operation takes
place. A Validation Behavior (validationBehavior) component defines which
Validation Group is to be validated before a command component's action is taken. A
command component can have multiple child Validation Behavior components.
Validation does not occur if a component does not have a Validation Behavior defined
for it.

Validating Input

14-222 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.section508.gov
http://www.w3.org/TR/WCAG10
http://www.oracle.com/us/corporate/accessibility/policies/index.html
http://www.oracle.com/us/corporate/accessibility/policies/index.html

Note:

You cannot define nested Validation Group operations.

The following is an invalid definition of a Validation Group:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 <amx:panelGroupLayout>
 <amx:validationGroup/>
 <amx:panelGroupLayout/>
 </amx:validationGroup>
 </amx:panelPage>
</amx:view>

The following is a valid definition:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 </amx:panelPage>
 <amx:popup>
 <amx:validationGroup>
 </amx:popup>
</amx:view>

If a MAF AMX page contains any validation error messages, you can use command
components, such as List Item, Link, and Button, to prevent the end user from
navigating off the page. Messages containing warnings do not halt the navigation.

The following example shows how to define validation elements, including multiple
Validation Group and Validation Behavior operations, in a MAF AMX file.

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Validate"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="commandButton2" action="go" text="Save">
 <amx:validationBehavior id="vb1"
 disabled="#{pageFlowScope.myPanel ne 'panel1'}"
 group="group1"/>
 <amx:validationBehavior id="vb2"
 disabled="#{pageFlowScope.myPanel ne 'panel2'}"
 group="group2"/>
 <!-- invalid, should be caught by audit rule but for any reason
 if group not found at run time, this validate is ignored -->
 <amx:validationBehavior id="vb3" disabled="false" group="groupxxx"/>
 <!-- group is not found at run time, this validate is ignored -->
 <amx:validationBehavior id="vb4" disabled="false" group="group3"/>
 </amx:commandButton>
 </amx:facet>
 <amx:panelSplitter id="ps1" selectedItem="#{pageFlowScope.myPanel}">
 <amx:panelItem id="pi1">
 <amx:validationGroup id="group1">
 <amx:panelFormLayout id="pfl1">
 <amx:inputText value="#{bindings.first.inputValue}"
 required="true"
 label="#{bindings.first.hints.label}"

Validating Input

Creating the MAF AMX User Interface 14-223

 id="inputText1"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText2"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelItem>
 <amx:panelItem id="pi2">
 <amx:validationGroup id="group2">
 <amx:panelFormLayout id="pfl2">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText3"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText4"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelItem>
 </amx:panelSplitter>
 <amx:panelGroupLayout id="pgl1" rendered="false">
 <amx:validationGroup id="group3">
 <amx:panelFormLayout id="pfl4">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText5"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText6"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelGroupLayout>
</amx:panelPage>

The following example shows how to define a validation message displayed in a
popup in a MAF AMX file.

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Login Demo"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="btnBack" action="__back" text="Back"/>
 </amx:facet>
 <amx:panelGroupLayout id="panelGroupLayout1">
 <amx:validationGroup id="group1">
 <amx:panelGroupLayout id="panelGroupLayout2">
 <amx:inputText value="#{bindings.userName.inputValue}"
 label="#{bindings.userName.hints.label}"
 id="inputText1"
 showRequired="true"
 required="true"/>
 <amx:inputText value="#{bindings.password.inputValue}"
 label="#{bindings.password.hints.label}"
 id="inputText2"
 required="true"
 showRequired="true"
 secret="true"/>
 <amx:outputText id="outputText2"
 value="#{bindings.timeToStayLoggedIn.hints.label}:
 #{bindings.timeToStayLoggedIn.inputValue} minutes"/>

Validating Input

14-224 Developing Mobile Applications with Oracle Mobile Application Framework

 </amx:panelGroupLayout>
 </amx:validationGroup>
 <amx:commandButton id="commandButton2"
 text="Login"
 action="navigationSuccess">
 <amx:validationBehavior id="validationBehavior2" group="group1"/>
 </amx:commandButton>
 </amx:panelGroupLayout>
</amx:panelPage>

Validation messages are displayed in a Popup component (see How to Use a Popup
Component). You cannot configure the title of a validation popup, which is
automatically determined by the relative message severity: the most severe of all of the
current messages becomes the title of the validation popup. That is, if all validation
messages are of type WARNING, then the title is "Warning"; if some of the messages are
of type WARNING and others are of type ERROR, then the title is set to "Error".

Figure 14-122 shows a popup validation message that appears in the StockTracker
sample application when you fail to enter a company name. For more information
about this and other sample applications, see MAF Sample Applications.

Figure 14-122 Validation Message in StockTracker Sample Application

14.10 Using Event Listeners
To invoke Java code from your MAF AMX pages and perform the application logic,
you define listeners as attributes of UI components in one of the following ways:

• Manually in the source of your MAF AMX file.

• From the Properties window for the selected component. For more information,
see Tag Reference for Oracle Mobile Application Framework

Using Event Listeners

Creating the MAF AMX User Interface 14-225

You may use the following listeners to add awareness of the UI-triggered events to
your MAF AMX page:

• valueChangeListener: listens to ValueChangeEvent that is constructed with
the following parameters:

– java.lang.Object representing an old value

– java.lang.Object representing a new changed value

• actionListener: listens to ActionEvent that is constructed without
parameters;

• selectionListener: listens to SelectionEvent that is constructed with the
following parameters:

– java.lang.Object representing an old row key

– java.lang.String[] representing selected row keys

• moveListener: listens to MoveEvent that is constructed with the following
parameters: of the RowKey type representing an old row key;

– java.lang.Object representing the moved row key

– java.lang.String[] representing the row key before which the moved row
key was inserted

• rangeChangeListener: listens to RangeChangeEvent that is constructed
without parameters.

• mapBoundsChangeListener: listens to MapBoundsChangeEvent that is
constructed with the following parameters:

– java.lang.Object representing the X coordinate (longitude) of minimum
map bounds

– java.lang.Object representing the Y coordinate (latitude) of minimum map
bounds

– java.lang.Object representing the X coordinate (longitude) of maximum
map bounds

– java.lang.Object representing the Y coordinate (latitude) of maximum map
bounds

– java.lang.Object representing the X coordinate (longitude) of the map
center

– java.lang.Object representing the Y coordinate (latitude) of the map center

– int representing the current zoom level

• mapInputListener: listens to MapInputEvent that is constructed with the
following parameters:

– java.lang.String representing the event type

– java.lang.Object representing the X coordinate of the event point

Using Event Listeners

14-226 Developing Mobile Applications with Oracle Mobile Application Framework

– java.lang.Object representing the Y coordinate of the event point

• viewportChangeListener: listens to ViewportChangeEvent that is
constructed with the following parameters:

– java.lang.Object representing the minimum X coordinate

– java.lang.Object representing the maximum X coordinate

– java.lang.Object representing the minimum Y coordinate

– java.lang.Object representing the maximum Y coordinate

– java.lang.Object representing the first visible group

– java.lang.Object representing the last visible group

• drillListener: listens to DrillEvent that is constructed with the following
parameters:

– java.lang.String representing the ID of the drilled object

– java.lang.String representing the rowkey of the drill data item

– java.lang.String representing the group name of the drilled object

– java.lang.String representing the series name of the drilled object

The value for your listener must match the pattern #{*} and conform to the following
requirements:

• Type name: EL Expression

• Base type: string

• Primitive type: string

For information on EL events, see About EL Events.

Most MAF AMX event classes extend the oracle.adfmf.amx.event.AMXEvent
class. When defining event listeners in your Java code, you need to pass the
oracle.adfmf.amx.event.AMXEvent class.

For more information, see the following:

• Java API Reference for Oracle Mobile Application Framework

• Tag Reference for Oracle Mobile Application Framework

• How to Use AmxEvent Classes

MAF allows you to create managed bean methods for listeners so that your managed
bean methods use MAF AMX-specific event classes. The following three examples
demonstrate a Button and a Link component calling the same managed bean method.
The source value of the AMXEvent determines which object invoked the event by
showing a message box with the component's ID.

The following example shows how to call a bean method from a MAF AMX File.

<amx:commandButton text="commandButton1"
 id="commandButton1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandButton>

Using Event Listeners

Creating the MAF AMX User Interface 14-227

<amx:commandLink text="commandLink1"
 id="commandLink1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandLink>

The following example shows how to use the AMXEvent.

private void actionListenerMethod(AMXEvent amxEvent) {
 // Some Java handling
}

The following example shows how to invoke the event method.

public Object invokeMethod(String methodName, Object[] params) {
 if (methodName.equals("actionListenerMethod")) {
 actionListenerMethod((AMXEvent) params[0]);
 }
 return null;
}

For additional examples, see a MAF sample application called APIDemo located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.
This sample demonstrates how to call listeners from Java beans.

14.10.1 What You May Need to Know About Constrained Type Attributes for Event
Listeners

You can define event listeners as children of some MAF AMX UI components. The
listeners' type attribute identifies which event they are to be registered to handle.
Since each parent UI component supports only a subset of the events (suitable for that
particular component), these supported events are presented in a constrained list of
types that you can select for a listener.

For information about the supported event listeners and event types for AMX UI
components, see the Tag Reference for Oracle Mobile Application Framework.

The type attribute (see Figure 14-123) of each of the child event listeners has a base set
of values that match the listener events. These values are filtered based on the
information presented in #unique_445/unique_445_Connect_42_CHDFFFDD such
that when the child event listener is within the context of the identified parent UI
component, only the events that the parent supports are shown. For example, under a
Button component, the Action Listener or Set Property Listener child would show only
the action Type value, as well as gestures.

Figure 14-123 shows values available in the constrained Type list of the Set Property
Listener for a parent List Item component.

Using Event Listeners

14-228 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 14-123 Selecting Event Type

Using Event Listeners

Creating the MAF AMX User Interface 14-229

Using Event Listeners

14-230 Developing Mobile Applications with Oracle Mobile Application Framework

15
Using Bindings and Creating Data Controls

in MAF AMX

This chapter describes how to use data bindings, data controls, and the data binding
expression language (EL) within a MAF AMX application feature. In addition, object
scope lifecycles, managed beans, UI hints, validation, and data change events are also
discussed.

This chapter includes the following sections:

• Introduction to Bindings and Data Controls

• About Object Scope Lifecycles

• Creating EL Expressions

• Creating and Using Managed Beans

• Exposing Business Services with Data Controls

• Creating Databound UI Components from the Data Controls Panel

• What Happens at Runtime: How the Binding Context Works

• Configuring Data Controls

• Working with Attributes

• Creating and Using Bean Data Controls

• Using the DeviceFeatures Data Control

• Validating Attributes

• Working with Data Change Events

15.1 Introduction to Bindings and Data Controls
Mobile Application Framework implements two concepts that enable the decoupling
of the user interface (UI) technology from the business service implementation: data
controls and declarative bindings. Data controls abstract the implementation technology
of a business service by using standard metadata interfaces to describe the service's
operations and data collections, including information about the properties, methods,
and types involved. Using JDeveloper, you can view that information as icons that you
can drag and drop onto a page. Declarative bindings abstract the details of accessing
data from data collections in a data control and invoking its operations. At runtime,
the model layer reads the information describing the data controls and bindings from
the appropriate XML files and then implements the two-way connection between the
user interface and the business service.

Using Bindings and Creating Data Controls in MAF AMX 15-1

The group of bindings supporting the user interface components on a page are
described in a page-specific XML file called the page definition file. The model layer
uses this file at runtime to instantiate the page's bindings. These bindings are held in a
request-scoped map called the binding container, accessible during each page request
using the EL expression #{bindings}. This expression always evaluates to the
binding container for the current page. You can design a databound user interface by
dragging an item from the Data Controls panel and dropping it on a page as a specific
UI component. When you use data controls to create a UI component, JDeveloper
automatically creates the code and objects needed to bind the component to the data
control you selected.

The Mobile Application Framework comes with two out-of-the box data controls: the
DeviceFeatures data control and the ApplicationFeatures data control. The
DeviceFeatures data control appears within the Data Controls panel in JDeveloper,
enabling you to drag and drop the primary data attributes of data controls to your
application as (text) fields, and the operations of data controls as command objects
(buttons). These drag and drop actions will generate EL bindings in your application
and the appropriate properties for the controls that are created. The bindings are
represented in a DataControls.dcx file, which points at the data control source,
and the page bindings link the specific page's reference to the data control. For
information about the ApplicationFeatures data control, see What You May Need to
Know About Custom Springboard Application Features with MAF AMX Content.

For more information about data controls and bindings, see the following:

• Exposing Business Services with Data Controls

• Creating Databound UI Components from the Data Controls Panel

• What Happens at Runtime: How the Binding Context Works

• Configuring Data Controls

• Working with Attributes

• Creating and Using Bean Data Controls

• Using the DeviceFeatures Data Control

15.2 About Object Scope Lifecycles
At runtime, you pass data to pages by storing the needed data in an object scope
where the page can access it. The scope determines the lifespan of an object. Once you
place an object in a scope, it can be accessed from the scope using an EL expression.
For example, you might create a managed bean named foo, and define the bean to
live in the view scope. To access that bean, you would use the expression
#{viewScope.foo}.

Mobile Application Framework variables and managed bean references are defined
within different object scopes that determine the variable's lifetime and visibility. MAF
supports the following scopes, listed in order of decreasing visibility:

• Application scope—The object is available for the duration of the application
(across features).

• Page flow scope—The object is available for the duration of a feature (single feature
boundary) or task flow, depending on where the page flow-scoped managed bean

About Object Scope Lifecycles

15-2 Developing Mobile Applications with Oracle Mobile Application Framework

is defined. If the bean is defined in an unbounded task flow, its scope is the feature.
If the bean is defined in a bounded task flow, its scope is limited to the task flow.

• View scope—The object is available for the duration of the view (single page of a
feature).

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher the availability of an object. During their
lifespan, these objects may expose certain interfaces, hold information, or pass
variables and parameters to other objects. For example, a managed bean defined in
application scope will be available for use during multiple page requests for the
duration of the application. However, a managed bean defined in view scope will be
available only for the duration of one page request within a feature.

EL expressions defined in the application scope namespace are available for the life of
the application, across feature boundaries. You can define an application scope in one
view of an application, and then reference it in another. EL expressions defined in the
page flow scope namespace are available for the duration of a feature, within the
bounds of a single feature. EL expressions defined in the view scope namespace are
available for the duration of the view, within the bounds of a single page of a feature.
In addition to these variable-containing scopes, MAF defines scopes that can expose
information about device properties and application preferences. These scopes have
application-level lifetime and visibility. For more information, see About the Managed
Beans Category and About the Mobile Application Framework Objects Category.

When determining what scope to register a managed bean with or to store a value in,
always try to use the narrowest scope possible. Use the application scope only for
information that is relevant to the whole application, such as user or context
information. Avoid using the application scope to pass values from one page to
another.

Note:

Every object you put in a memory scope is serialized to a JSON
DataChangeEvent, and objects returned by any getter method inside this
object are also serialized. This can lead to deeply nested object trees that are
serialized, which will decrease performance. To avoid serialization of a chain
of nested objects, you should define them as transient. See What You May
Need to Know About Serialization of Bean Class Variables for more
information.

15.2.1 What You May Need to Know About Object Scopes and Task Flows
When determining what scope to use for variables within a task flow, you should use
only view or page flow scopes. The application scope will persist objects in memory
beyond the life of the task flow and therefore compromise the encapsulation and
reusable aspects of a task flow. In addition, application scope may keep objects in
memory longer than needed, causing unneeded overhead.

When you need to pass data values between activities within a task flow, you should
use page flow scope. View scope should be used for variables that are needed only
within the current view activity, not across view activities.

About Object Scope Lifecycles

Using Bindings and Creating Data Controls in MAF AMX 15-3

15.3 Creating EL Expressions
You use EL expressions in MAF applications to bind attributes to object values
determined at runtime. For example, #{UserList.selectedUsers} might
reference a set of selected users, #{user.name} might reference a particular user's
name, while #{user.role == 'manager'} would evaluate whether a user is a
manager or not. At runtime, a generic expression evaluator returns the List, String,
and boolean values of these respective expressions, automating access to the
individual objects and their properties without requiring code.

Expressions are not evaluated until they are needed for rendering a value. Because
MAF AMX supports only deferred evaluation, an expression using the immediate
construction expression ("${}") still parses, but behaves the same as a deferred
expression ("#{}"). At runtime, the value of certain UI components (such as an
inputText component or an outputText component) is determined by its value
attribute. While a component can have static text as its value, typically the value
attribute will contain an EL expression that the runtime infrastructure evaluates to
determine what data to display. For example, an outputText component that
displays the name of the currently logged-in user might have its value attribute set to
the expression #{UserInfo.name}. Since any attribute of a component (and not just
the value attribute) can be assigned a value using an EL expression, it's easy to build
dynamic, data-driven user interfaces. For example, you could hide a component when
a set of objects you need to display is empty by using a boolean-valued expression like
#{not empty UserList.selectedUsers} in the UI component's rendered
attribute. If the list of selected users in the object named UserList is empty, the
rendered attribute evaluates to false and the component disappears from the page.

In a typical application, you would create objects like UserList as a managed bean.
The runtime manages instantiating these beans on demand when any EL expression
references them for the first time. When displaying a value, the runtime evaluates the
EL expression and pulls the value from the managed bean to populate the component
with data when the page is displayed. If the user updates data in the UI component,
the runtime pushes the value back into the corresponding managed bean based on the
same EL expression. For more information about creating and using managed beans,
see Creating and Using Managed Beans. For more information about EL expressions,
see the Java EE tutorial at http://www.oracle.com/technetwork/java/
index.html.

Creating EL Expressions

15-4 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Note:

When using an EL expression for the value attribute of an editable
component, you must have a corresponding set method for that component,
or else the EL expression will evaluate to read-only, and no updates to the
value will be allowed.

For example, say you have an inputText component (whose ID is it1) on a
page, and you have its value set to #{myBean.inputValue}. The myBean
managed bean would have to have get and set methods as follows, in order
for the inputText value to be updated:

 public void setIt1(RichInputText it1) {
 this.it1 = it1;
 }

 public RichInputText getIt1() {
 return it1;
 }

15.3.1 About Data Binding EL Expressions
When you use the Data Controls panel to create a component, the MAF data binding
expressions are created for you. The expressions are added to every component
attribute that will either display data from or reference properties of a binding object.
Each prebuilt expression references the appropriate binding objects defined in the
page definition file. You can edit these binding expressions or create your own, as long
as you adhere to the basic MAF binding expression syntax. MAF data binding
expressions can be added to any component attribute that you want to populate with
data from a binding object, if the attribute supports EL.

A typical MAF data binding EL expression uses the following syntax to reference any
of the different types of binding objects in the binding container:

#{bindings.BindingObject.propertyName}

where:

• bindings is a variable that identifies that the binding object being referenced by
the expression is located in the binding container of the current page. All MAF data
binding EL expressions must start with the bindings variable.

• BindingObject is the ID, or for attributes the name, of the binding object as it is
defined in the page definition file. The binding objectID or name is unique to
that page definition file. An EL expression can reference any binding object in the
page definition file, including parameters, executables, or value bindings.

• propertyName is a variable that determines the default display characteristics of
each databound UI component and sets properties for the binding object at
runtime. There are different binding properties for each type of binding object. For
more information about binding properties, see What You May Need to Know
About MAF Binding Properties.

For example, in the following expression:

#{bindings.ProductName.inputValue}

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-5

the bindings variable references a bound value in the current page's binding
container. The binding object being referenced is ProductName, which is an attribute
binding object. The binding property is inputValue, which returns the value of the
first ProductName attribute.

Tip:

While the binding expressions in the page definition file can use either a dollar
sign ($) or hash sign (#) prefix, the EL expressions in MAF pages can only use
the hash sign (#) prefix.

As stated previously, when you use the Data Controls panel to create UI components,
these expressions are built for you. However, you can also manually create them if
you need to. The JDeveloper Expression Builder is a dialog that helps you build EL
expressions by providing lists of binding objects defined in the page definition files, as
well as other valid objects to which a UI component may be bound. It is particularly
useful when creating or editing MAF databound expressions because it provides a
hierarchical list of MAF binding objects and their most commonly used properties. For
information about binding properties, see What You May Need to Know About MAF
Binding Properties.

15.3.2 How to Create an EL Expression
You can create EL expressions declaratively using the JDeveloper Expression Builder.
You can access the Expression Builder from the Properties window.

Before you begin:

It may be helpful to have an understanding of EL expressions. For more information,
see Creating EL Expressions.

To use the Expression Builder:

1. In the Properties window, locate the attribute you wish to modify and use the
right-most drop-down menu to choose Expression Builder.

2. Create expressions using the following features:

• Use the Variables drop-down to select items that you want to include in the
expression. These items are displayed in a tree that is a hierarchical
representation of the binding objects. Each icon in the tree represents various
types of binding objects that you can use in an expression.

To narrow down the tree, you can either use the drop-down filter or enter
search criteria in the search field. The EL accessible objects exposed by MAF are
located under the Mobile Application Framework Objects node, which is
under the ADF Managed Beans node.

Tip:

For more information about these objects, see the MAF Javadoc. See also
About the Categories in the Expression Builder.

Selecting an item in the tree causes it to be moved to the Expression box within
an EL expression. You can also type the expression directly in the Expression
box.

• Use the operator buttons to add logical or mathematical operators to the
expression.

Creating EL Expressions

15-6 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 15-1 shows an example of how to create an EL expression from the ADF
Managed Beans category. However, you can create EL expressions from any of the
categories described in About the Categories in the Expression Builder.

Figure 15-1 The Expression Builder Dialog

Tip:

For information about using proper syntax to create EL expressions, see the
Java EE tutorial at http://www.oracle.com/technetwork/java/
index.html.

Table 15-1 Icons Under the Bindings Node of the Expression Builder

Icon Description

Represents the bindings container variable, which references the
binding container of the current page. Opening the bindings node
exposes all the binding objects for the current page.

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-7

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Table 15-1 (Cont.) Icons Under the Bindings Node of the Expression Builder

Icon Description

Represents the data binding variable, which references the entire
binding context (created from all the.cpx files in the application).
Opening the data node exposes all the page definition files in the
application.

Represents an action binding object. Opening a node that uses this icon
exposes a list of valid action binding properties.

Represents an iterator binding object. Opening a node that uses this
icon exposes a list of valid iterator binding properties.

Represents an attribute binding object. Opening a node that uses this
icon exposes a list of valid attribute binding properties.

Represents a list binding object. Opening a node that uses this icon
exposes a list of valid list binding properties.

Represents a table or tree binding object. Opening a node that uses this
icon exposes a list of valid table and tree binding properties.

Represents a MAF binding object property. For more information about
MAF properties, see What You May Need to Know About MAF
Binding Properties.

Represents a parameter binding object.

Represents a bean class.

Represents a method.

15.3.2.1 About the Method Expression Builder

Table 15-2 shows properties that have the Method Expression Builder option
available in the Properties window instead of the Expression Builder option. The only
difference between them is that the Method Expression Builder filters out the
managed beans depending on the selected property.

Table 15-2 Properties for the Method Expression Builder

Property Element

action amx:commandButton

Creating EL Expressions

15-8 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-2 (Cont.) Properties for the Method Expression Builder

Property Element

action amx:commandLink

action amx:listItem

action amx:navigationDragBehavior

action dvtm:chartDataItem

action dvtm:ieDataItem

action dvtm:timelineItem

action dvtm:area

action dvtm:marker

actionListener amx:listItem

actionListener amx:commandButton

actionListener amx:commandLink

binding amx:actionListener

mapBoundsChangeListener dvtm:geographicMap

mapInputListener dvtm:geographicMap

moveListener amx:listView

rangeChangeListener amx:listView

selectionListener amx:listView

selectionListener amx:filmStrip

selectionListener dvtm:areaDataLayer

selectionListener dvtm:pointDataLayer

selectionListener dvtm:treemap

selectionListener dvtm:sunburst

selectionListener dvtm:timelineSeries

selectionListener dvtm:nBox

selectionListener dvtm:areaChart

selectionListener dvtm:barChart

selectionListener dvtm:bubbleChart

selectionListener dvtm:comboChart

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-9

Table 15-2 (Cont.) Properties for the Method Expression Builder

Property Element

selectionListener dvtm:horizontalBarChart

selectionListener dvtm:lineChart

selectionListener dvtm:funnelChart

selectionListener dvtm:pieChart

selectionListener dvtm:scatterChart

valueChangeListener amx:inputDate

valueChangeListener amx:inputNumberSlider

valueChangeListener amx:inputText

valueChangeListener amx:selectBooleanCheckbox

valueChangeListener amx:selectBooleanSwitch

valueChangeListener amx:selectManyCheckbox

valueChangeListener amx:selectManyChoice

valueChangeListener amx:selectOneButton

valueChangeListener amx:selectOneChoice

valueChangeListener amx:selectOneRadio

valueChangeListener dvtm:statusMeterGauge

valueChangeListener dvtm:dialGauge

valueChangeListener dvtm:ratingGauge

viewportChangeListener dvtm:areaChart

viewportChangeListener dvtm:barChart

viewportChangeListener dvtm:comboChart

viewportChangeListener dvtm:horizontalBarChart

viewportChangeListener dvtm:lineChart

15.3.2.2 About Non EL-Properties

Table 15-3 shows the properties that do not have the EL Expression Builder option
available in the Properties window, because they are not EL-enabled.

Table 15-3 Non EL-Properties

Creating EL Expressions

15-10 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-3 (Cont.) Non EL-Properties

Property Element

id all elements

facetName amx:facetRef

failSafeClientHandler amx:loadingIndicatorBehavior

failSafeDuration amx:loadingIndicatorBehavior

group amx:validationBehavior

name amx:attribute

name amx:attributeList

name amx:attributeListIterator

name amx:facet

ref amx:attributeList

type dvtm:attributeGroups

var amx:carousel

var amx:filmStrip

var amx:iterator

var amx:listView

var amx:loadBundle

var dvtm:areaChart

var dvtm:barChart

var dvtm:bubbleChart

var dvtm:comboChart

var dvtm:funnelChart

var dvtm:horizontalBarChart

var dvtm:lineChart

var dvtm:pieChart

var dvtm:scatterChart

var dvtm:sparkChart

var dvtm:geographicMap

varStatus amx:attributeListIterator

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-11

15.3.3 What You May Need to Know About MAF Binding Properties
When you create a databound component using the Expression Builder, the EL
expression might reference specific MAF binding properties. At runtime, these
binding properties can define such things as the default display characteristics of a
databound UI component or specific parameters for iterator bindings. The binding
properties are defined by Oracle APIs. For a full list of the available properties for each
binding type, see Table 15-4

Values assigned to certain properties are defined in the page definition file. For
example, iterator bindings have a property called RangeSize, which specifies the
number of rows the iterator should display at one time. The value assigned to
RangeSize is specified in the page definition file, as shown in the following example.

<iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator" ChangeEventPolicy="ppr"/>

15.3.4 How to Enable Retention of Data Provider State Across Iterators
You can create multiple instances of a data provider for the same data control. You
define the data provider instance to be used by a specific iterator. The new data
provider instance exists for the scope of the data control as the default data provider
instance does. This allows you to perform such operations as, for example, filter a
main list on a page and at the same time have another collection that contains an
unfiltered list.

To use this functionality, you specify the same RSIName attribute on the top-level
iterator (iterator) of each page that is to access the same data collection instance.

The following example shows a hierarchy of iterators in a pageDef file. The last two
accessor iterators enable iteration over a second collection of Employee objects as well
as the phone numbers of those employees.

<iterator Binds="root"
 RangeSize="25"
 DataControl="BusinessManager"
 id="BusinessManagerIterator"
 RSIName="secondCollection" />
<accessorIterator id="companyIterator"/
 MasterBinding="BusinessManagerIterator"
 Binds="company"
 RangeSize="25"
 DataControl="BusinessManager"
 BeanClass="mobile.Company"/>
<accessorIterator id="employeesIterator"
 MasterBinding="companyIterator"
 Binds="employees"
 RangeSize="25"
 DataControl="BusinessManager"
 BeanClass="mobile.Employee"/>
<accessorIterator id="phoneNumbersIterator"
 MasterBinding="employeesIterator"
 Binds="phoneNumbers"
 RangeSize="25"
 DataControl="BusinessManager"
 BeanClass="mobile.PhoneNumber"/>
<accessorIterator id="employeesIterator2"
 MasterBinding="companyIterator"
 Binds="employees"

Creating EL Expressions

15-12 Developing Mobile Applications with Oracle Mobile Application Framework

 RangeSize="25"
 DataControl="BusinessManager"
 BeanClass="mobile.Employee"
 RSIName="secondCollection" />
<accessorIterator id="phoneNumbersIterator2"
 MasterBinding="employeesIterator2"
 Binds="phoneNumbers"
 RangeSize="25"
 DataControl="BusinessManager"
 BeanClass="mobile.PhoneNumber" />

15.3.5 How to Reference Binding Containers
You can reference the active screen's binding container by the root EL expression
"#{bindings}" and you can reference another screen's binding container through
the expression "#{data.PageDefName}". The MAF AMX binding objects are
referenced by name from the binding container "#{bindings.Name}".

Table 15-4 shows a partial list of the properties that you can use in EL expressions to
access values of the MAF AMX binding objects at runtime. The properties appear in
alphabetical order.

Table 15-4 Runtime EL Properties of MAF Bindings

Runtime Property Description Iterator Action attributeValues Tree

class Returns the Java class object for the
runtime binding.

Yes Yes Yes Yes

collectionModel Exposes a collection of data. EL
expressions used within a
component that is bound to a
collectionModel can be
referenced with a row variable 1,
which will resolve the expression
for each element in the collection.

No No No Yes

collectionModel.m
akeCurrent

Causes the selected row to become
the current row in the iterator for
this binding.

No No No Yes

collectionModel.s
electedRow

Returns a reference to the selected
row.

No No No Yes

currentRow Returns a reference to the current
row or data object pointed to by the
iterator (for example, built-in
navigation actions).

Yes No No No

currentRow.datapr
ovider

Returns a reference to the current
row or data object pointed to by the
iterator. (This is the same object
returned by currentRow, just with
a different syntax).

Yes No No No

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-13

Table 15-4 (Cont.) Runtime EL Properties of MAF Bindings

Runtime Property Description Iterator Action attributeValues Tree

enabled Returns true or false,
depending on the state of the action
binding. For example, the action
binding may be enabled (true) or
disabled (false) based on the
currency (as determined, for
example, when the user clicks the
First, Next, Previous, or Last
navigation buttons).

No Yes No No

execute Invokes the named action or
methodAction binding when
resolved.

No Yes No No

format This is a shortcut for
hints.format.

No No Yes Yes

hints Returns a list of name-value pairs
for UI hints for all display
attributes to which the binding is
associated.

No No Yes Yes

inputValue Returns the value of the first
attribute to which the binding is
associated.

No No Yes No

items Returns the list of values associated
with the current list-enabled
attribute.

No No Yes No

label Available as a child of hints or
direct child of an attribute. Returns
the label (if supplied by control
hints) for the first attribute of the
binding.

No No Yes Yes

name Returns the id of the binding as
declared in the PageDef.xml file.

Yes Yes Yes Yes

rangeSize Returns the range size of the
iterator binding's row set. This
allows you to determine the
number of data objects to bind
from the data source.

Yes No No Yes

result Returns the result of a method that
is bound and invoked by a method
action binding.

No Yes No No

updateable Available as a child of hints or
direct child of an attribute. Returns
true if the first attribute to which
the binding is associated is
updateable. Otherwise, returns
false.

No No Yes Yes

Creating EL Expressions

15-14 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-4 (Cont.) Runtime EL Properties of MAF Bindings

Runtime Property Description Iterator Action attributeValues Tree

viewable Available as a child of Tree.
Resolves at runtime whether this
binding and the associated
component should be rendered or
not.

No No No Yes

1 The EL term row is used within the context of a collection component; row simply acts as an iteration
variable over each element in the collection whose attributes can be accessed by a MAF AMX binding
object when the collection is rendered. Attribute and list bindings can be accessed through the row
variable. The syntax for such expressions will be the same as those used for accessing binding objects
outside of a collection, with the row variable prepended as the first term:
#{row.bindings.Name.property}.

15.3.6 About the Categories in the Expression Builder
The following categories are available in the Expression Builder for MAF AMX pages:

• About the Bindings Category

• About the Managed Beans Category

• About the Mobile Application Framework Objects Category

15.3.6.1 About the Bindings Category

This section lists the options available under the Bindings category. The bindings
and data nodes display the same set of supported bindings and properties. Table 15-5
lists available binding types along with the properties that are supported for each
binding type. The securityContext node supports the following properties:

• authenticated

• userGrantedPrivilege

• userInRole

• userName

For example:

#{securityContext.authenticated}
#{securityContext.userGrantedPrivilege['submit_privilege']}
#{securityContext.userInRole[‘manager_role']}
#{securityContext.userName}

Table 15-5 Supported Binding Types

Binding Type Properties

accessorIterator class

currentRow: dataProvider

name

rangeSize

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-15

Table 15-5 (Cont.) Supported Binding Types

Binding Type Properties

action class

enabled

execute

name

attributeValues autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: allows.read, allows.update, autoSubmit,
category, controlType, displayHeight,
displayHint, displayWidth, filedorder, format,
label, mandatory, precision, tooltip,
updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

Creating EL Expressions

15-16 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-5 (Cont.) Supported Binding Types

Binding Type Properties

button autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: allows.read, allows.update, autoSubmit,
category, controlType, displayHeight,
displayHint, displayWidth, filedorder, format,
label, mandatory, precision, tooltip,
updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

invokeAction always

deferred

iterator class

currentRow: dataProvider

name

rangeSize

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-17

Table 15-5 (Cont.) Supported Binding Types

Binding Type Properties

list autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: format, allows.read, allows.update,
autoSubmit, category, controlType,
displayHeight, displayHint, displayWidth,
filedorder, format, label, mandatory,
precision, tooltip, updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

methodAction class

enabled

execute

name

operationEnabled

operationInfo

paramsMap

result

methodIterator class

currentRow: dataProvider

name

rangeSize

searchAction class

enabled

execute

name

operationEnabled

operationInfo

paramsMap

result

Creating EL Expressions

15-18 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-5 (Cont.) Supported Binding Types

Binding Type Properties

tree category

class

collectionModel: bindings, makeCurrent,
selectedRow, <AttrName>

displayHeight

displayHint

displayWidth

filedorder

format

hints: category, displayHeight, displayHint,
displayWidth, filedorder, format, label,
mandatory, precision, tooltip, updateable,
<AttrName>

iteratorBinding

label

mandatory

name

precision

rangeSize

tooltip

updateable

viewable

variable class

currentRow: dataProvider

name

variableIterator class

currentRow: dataProvider

name

15.3.6.2 About the Managed Beans Category

This section lists the options available under the Managed Beans category.

• applicationScope: Managed Beans > applicationScope node contains
everything that is defined at the application level (for example, application-scoped
managed beans).

• pageFlowScope: Managed Beans > pageFlowScope node contains everything
that is defined at the page flow level (for example, page flow-scoped managed
beans).

• viewScope: Managed Beans > viewScope node contains everything that is
defined at the view level (for example, view-scoped managed beans).

The MAF runtime will register itself as a listener on managed bean property change
notifications so that EL expressions bound to UI components that reference bean
properties will update automatically if the value of the property changes. Sourcing

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-19

these notifications requires some additional code in the beans' property accessors. To
automatically generate the necessary code to source notifications from your beans'
property accessors, select the Notify listeners when property changes checkbox in the
Generate Accessors dialog (see Figure 15-2).

Figure 15-2 Notify Listeners When Property Changes

It is not necessary to add this code to simply reference bean methods or properties
through EL, but it is necessary to keep the rendering of any EL expressions in the
active form that depend on values stored in the bean current if those values change,
especially if the change is indirect, such as a side effect of executing a bean method
that changes one or more property values. For information about property changes
and the PropertyChangeSupport class, see About Data Change Events.

The following example illustrates how to retrieve a value bound to another managed
bean attribute programmatically.

public void someMethod() {
 Object value = AdfmfJavaUtilities.evaluateELExpression(
 "#{applicationScope.MyManagedBean.someProperty}");
 ...
}

Creating EL Expressions

15-20 Developing Mobile Applications with Oracle Mobile Application Framework

The following example illustrates how to execute bindings programmatically from a
managed bean.

public void someMethod() {
 Object value = AdfmfJavaUtilities.evaluateELExpression(
 "#{bindings.someDataControlMethod.execute}");
 ...
}

Note:

If you declare a managed bean within the applicationScope of a feature
but then try to reference that bean through EL in another feature at design
time, you will see a warning in the design time about invalid EL. This warning
is due to the fact that the design time cannot find a reference in the current
project for that bean. You can reference that bean at runtime only if you first
visit the initial feature where you declared the bean and the bean is
instantiated before you access it through EL in another feature. This is not the
case for the PreferenceValue element as it uses the Name attribute value as
the node label.

15.3.6.3 About the Mobile Application Framework Objects Category

The Mobile Application Framework Objects category lists various objects defined in
MAF that can be referenced using EL, such as object scopes.

MAF variables and managed bean references are defined within different object
scopes that determine the variable's lifetime and visibility. In order of decreasing
visibility, they are application scope, page flow scope, and view scope. For more
information about the different object scopes, see About Object Scope Lifecycles.

In addition to these variable-containing scopes, MAF defines scopes that can expose
information about device properties and application preferences. These scopes have
application-level lifetime and visibility.

The following are available under the Mobile Application Framework Objects
category:

• applicationScope: The applicationScope node contains everything that is
defined at the application level (for example, application-scoped managed beans).
EL variables defined in the application scope are available for the life of the
application, across feature boundaries.

• deviceScope: The deviceScope node exposes information about device
properties. The deviceScope has application-level lifetime and visibility.

• feature: The feature node exposes feature-level data. The feature object
exposes the dataControlContextDepthand
maximumDataControlContextDepthproperties. You can obtain values for these
properties using #{feature.dataControlContextDepth}and
#{feature.maximumDataControlContextDepth}. These two properties are
read only.

• pageFlowScope: The pageFlowScope node contains everything that is defined
at the page flow level (for example, page flow-scoped managed beans). EL
variables defined in the page flow scope namespace are available for the duration
of a feature, within the bounds of a single feature.

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-21

• preferenceScope: The preferenceScope node contains all the application and
feature preferences.

Preference elements use the Id attribute value as the node label in the Expression
Builder, except for the PreferenceValue element. The PreferenceValue
element uses the Name attribute value as the node label in the Expression Builder.

Note:

Where string tokens in EL expressions contain a dot (".") or any special
character, or a reserved word like default, the Expression Builder surrounds
such string tokens with a single quote and bracket. When the feature ID or
preference component ID contains a dot, the Expression Builder displays each
part of the ID that is separated by a dot as a separate property in the
preferenceScope hierarchy. The expression generated also takes each part
of the ID separated by a dot as a separate property.

Following are some sample preferenceScope EL expressions:

"#{preferenceScope.feature.oracle.hello.SampleGroup1.label}"

"#{preferenceScope.application.OracleMobileApp.Edition['default']}"

• viewScope: This node contains everything that is defined at the view level (for
example, view-scoped managed beans). EL variables defined in the view scope
namespace are available for the duration of the view, within the bounds of a single
page of a feature.

• row: The row object is an intermediate variable that is a shortcut to a single
provider in the collectionModel. Its name is the value of the var attribute of
the parent component (such as List View or Carousel).

Note:

It is not possible to evaluate #{row} or properties of row using
AdfmfJavaUtilities.evaluateELExpression. These expressions will
return a null value.

• viewControllerBundle

This is the name of the resource bundle variable that points to a resource bundle
defined at the project level. This node is shown only after the amx:loadBundle
element has been dropped and a resource bundle has been created. The name of
this node will vary as it depends on the variable name of amx:loadBundle. This
node will display all strings declared in the bundle.

The following example shows an example of AMX code for
viewControllerBundle.

<amx:loadBundle basename="mobile.ViewControllerBundle"
var="viewcontrollerBundle"/>

15.3.7 About EL Events
EL events play a significant role in the functioning of the MAF AMX UI, enabling
expressions with common terms to update in sync with each other.

Creating EL Expressions

15-22 Developing Mobile Applications with Oracle Mobile Application Framework

EL expressions can refer to values in various contexts. The following example shows
the creation of two Input Number Slider components, with each component tied to an
applicationScope value. The output text then uses EL to display a simple addition
equation along with the calculated results. When the framework parses the EL
expression in the output text labels, it determines that the expression contains
references to two values and creates event listeners (see Using Event Listeners) for the
output text on those two values. When the value of the underlying expression
changes, an event is generated to all listeners for that value.

Note:

If you are referencing properties on a managed bean (as opposed to scope
objects) you have to add the listeners. For more information, see About the
Managed Beans Category.

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>

In the example above, two components are updating one value each, and one
component is consuming both values. The following example shows that the behavior
would be identical if a third Input Number Slider component is added that references
one of the existing values.

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>
<amx:inputNumberSlider id="slider3" label="X" value="#{applicationScope.X}"/>

In the example above, when either Input Number Slider component updates
#{applicationScope.X}, the other is automatically updated along with the
Output Text.

15.3.8 How to Use EL Expressions Within Managed Beans
While JDeveloper creates many needed EL expressions for you, and you can use the
Expression Builder to create those not built for you, there may be times when you
need to access, set, or invoke EL expressions within a managed bean.

The following example shows how you can get a reference to an EL expression and
return (or create) the matching object.

public static Object resolveExpression(String expression) {
 return AdfmfJavaUtilities.evaluateELExpression(expression);
}

The following example shows how you can resolve a method expression.

public static Object resloveMethodExpression(String expression,
 Class returnType,
 Class[] argTypes,
 Object[] argValues) {
 MethodExpression methodExpression =
AdfmfJavaUtilities.getMethodExpression(expression,
 returnTy
pe,

Creating EL Expressions

Using Bindings and Creating Data Controls in MAF AMX 15-23

 argTypes
);
 return methodExpression.invoke(AdfmfJavaUtilities.getAdfELContext(), argValues);
}

The following example shows how you can set a new object on a managed bean.

public static void setObject(String expression, Object newValue) {
 AdfmfJavaUtilities.setELValue(expression, newValue);
}

15.4 Creating and Using Managed Beans
Managed beans are Java classes that you register with the application using various
configuration files. When the MAF application starts up, it parses these configuration
files and the beans are made available and can be referenced in an EL expression,
allowing access to the beans' properties and methods. Whenever a managed bean is
referenced for the first time and it does not already exist, the Managed Bean Creation
Facility instantiates the bean by calling the default constructor method on the bean. If
any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how to use managed
beans, see the Java EE tutorial at http://www.oracle.com/technetwork/java/
index.html.

Best Practice:

Use managed beans to store only bookkeeping information, for example the
current user. All application data and processing should be handled by logic
in the business layer of the application.

Note:

EL expressions must explicitly include the scope to reference the bean. For
example, to reference the MyBean managed bean from the pageFlowScope
scope, your expression would be #{pageFlowScope.MyBean}.

15.4.1 How to Create a Managed Bean in JDeveloper
You can create a managed bean and register it with the MAF application at the same
time using the Overview editor for the adfc-mobile-config.xml file.

Before you begin:

It may be helpful to have an understanding of managed beans. For more information,
see Creating and Using Managed Beans.

To create and register a managed bean:

1. In the Applications window, double-click adfc-mobile-config.xml.

2. In the Editor window, click the Overview tab.

3. In the Overview editor, click the Managed Beans navigation tab.

Figure 15-3 shows the editor for the adfc-mobile-config.xml file.

Creating and Using Managed Beans

15-24 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Figure 15-3 Managed Beans in the adfc-mobile-config.xml File

4. Click the Add icon to add a row to the Managed Bean table.

5. In the Create Managed Bean dialog, enter values. Click Help for more information
about using the dialog. Select the Generate Class If It Does Not Exist option if you
want JDeveloper to create the class file for you. You can also open the Create
Managed Bean dialog from the Properties window, by selecting one of the listener
properties and clicking the Edit button. From there you can create a new managed
bean and corresponding method.

Note:

When determining what scope to register a managed bean with or to store a
value in, always try to use the narrowest scope possible. For more information
about the different object scopes, see About Object Scope Lifecycles.

6. You can optionally add managed properties for the bean. When the bean is
instantiated, any managed properties will be set with the provided value. With the
bean selected in the Managed Bean table, click the New icon to add a row to the
Managed Properties table. In the Properties window, enter a property name (other
fields are optional).

Creating and Using Managed Beans

Using Bindings and Creating Data Controls in MAF AMX 15-25

Note:

While you can declare managed properties using this editor, the
corresponding code is not generated on the Java class. You must add that code
by creating private member fields of the appropriate type, and then by
choosing the Generate Accessors menu item on the context menu of the code
editor to generate the corresponding get and set methods for these bean
properties.

15.4.2 What Happens When You Use JDeveloper to Create a Managed Bean
When you create a managed bean and elect to generate the Java file, JDeveloper
creates a stub class with the given name and a default constructor. The following
example shows the code added to the MyBean class stored in the view package.

package view;

public class MyBean {
 public MyBean() {
 }
}

You now must add the logic required by your page. You can then refer to that logic
using an EL expression that refers to the managed-bean-name given to the managed
bean. For example, to access the myInfo property on the my_bean managed bean, the
EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the adfc-mobile-config.xml
file (or to the task flow file that is being edited). The following example shows the
managed-bean element created for the MyBean class.

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

15.5 Exposing Business Services with Data Controls
Once you have your application's services in place, you can use JDeveloper to create
data controls that provide the information needed to declaratively bind UI
components to those services.

You generate data controls with the Create Data Control menu item. Data controls
consist of one or more XML metadata files that define the capabilities of the services
that the bindings can work with at runtime. The data controls work in conjunction
with the underlying services.

15.5.1 How to Create Data Controls
You create adapter-based data controls from within the Applications window of
JDeveloper.

Before you begin:

Exposing Business Services with Data Controls

15-26 Developing Mobile Applications with Oracle Mobile Application Framework

It may be helpful to have a general understanding of using data controls. For more
information, see Exposing Business Services with Data Controls.

You will need to complete this task:

Create an application workspace and add the business services on which you want
to base your data control. For information on creating an application workspace,
see Creating a MAF Application.

To create a data control:

1. Right-click the top-level node for the data model project in the application
workspace and choose New and then From Gallery.

2. In the New Gallery, expand Business Tier, select Data Controls, select the type of
data control that you want to create, and click OK.

3. Complete the remaining steps of the wizard.

Note:

In some cases, you can create a data control by right-clicking the class or object
on which the data control will be based and choosing Create Data Control.

15.5.2 What Happens in Your Project When You Create a Data Control
When you create a data control, JDeveloper creates the data control definition file
(DataControls.dcx), opens the file in the overview editor, and displays the file's
hierarchy in the Data Controls panel. This file enables the data control to work directly
with the services and the bindings.

You can see the code from the corresponding XML file by clicking the Source tab in the
editor window.

15.5.2.1 DataControls.dcx Overview Editor

The overview editor for the DataControls.dcx file provides a view of the
hierarchies of data control objects and exposed methods of your data model.

See Table 15-6 for a description of the icons that are used in the overview editor and
Data Controls panel.

You can change the settings for a data control object by selecting the object and
clicking the Edit icon. For more information about editing a data control, see How to
Edit a Data Control.

Figure 15-4 shows the DataControls.dcx file in the overview editor.

Exposing Business Services with Data Controls

Using Bindings and Creating Data Controls in MAF AMX 15-27

Figure 15-4 DataControls.dcx File in the Overview Editor

15.5.2.2 Data Controls Panel

The Data Controls panel serves as a palette, from which you can create databound UI
components by dragging nodes from the Data Controls panel to the design editor for a
page. The Data Controls panel appears in the Applications window once you have
created a data control. Figure 15-5 shows the Data Controls panel for a sample
application.

Figure 15-5 Data Controls Panel

15.5.3 Data Control Built-in Operations
The data control framework defines a standard set of operations for data controls.
These operations are implemented using functionality of the underlying business
service. At runtime, when one of these data collection operations is invoked by name
by the data binding layer, the data control delegates the call to an appropriate service
method to handle the built-in functionality. For example, in bean data controls, the
Next operation relies on the bean collection's iterator.

Exposing Business Services with Data Controls

15-28 Developing Mobile Applications with Oracle Mobile Application Framework

Most of the built-in operations affect the current row. However, the execute
operation refreshes the data control itself.

The operations available vary by data control type and the functionality of the
underlying business service. Here is the full list of built-in operations:

• Create: Creates a new row that becomes the current row. This new row is also
added to the row set.

• CreateInsert: Creates a new row that becomes the current row and inserts it
into the row set.

• Create With Parameters: Uses named parameters to create a new row that
becomes the current row and inserts it into the row set.

• Delete: Deletes the current row.

• Execute: Refreshes the data collection by executing or reexecuting the accessor
method.

ExecuteWithParams: Refreshes the data collection by first assigning new values
to variables that passed as parameters, then executing or reexecuting the associated
query. This operation is only available for data control collection objects that are
based on parameterized queries.

• First: Sets the first row in the row set to be the current row.

• Last: Sets the last row in the row set to be the current row.

• Next: Sets the next row in the row set to be the current row.

• Next Set: Navigates forward one full set of rows.

• Previous: Sets the previous row in the row set to be the current row.

• Previous Set: Navigates backward one full set of rows.

• removeRowWithKey: Tries to find a row using the serialized string representation
of the row key passed as a parameter. If found, the row is removed.

• setCurrentRowWithKey: Tries to find a row using the serialized string
representation of the row key passed as a parameter. If found, that row becomes
the current row.

• setCurrentRowWithKeyValue: Tries to find a row using the primary key
attribute value passed as a parameter. If found, that row becomes the current row.

15.5.3.1 addXXX and removeXXX Methods of Data Control

Most of the built-in operations operate on the collection automatically. There are
several operations that require the developer to write some method handlers in order
to have these operations work. In order to use the Create operation, it is necessary
for the developer to write method handler for addXXX. The Create operation also
does the operation of CreateInsert because it inserts the record into the current
collection. The CreateInsert operation is not used for MAF collections. Similarly,
for Delete operation, the developer will have to write method handler for
removeXXX.

The addXXX and removeXXX methods automatically refresh the collection and fire
data change events, and the developer does not have to exclusively refresh the

Exposing Business Services with Data Controls

Using Bindings and Creating Data Controls in MAF AMX 15-29

provider. The data object are used by the data control's built-in operations, such as
addXXX and removeXXX methods, which are used by the Create and Delete built-
in operations.

• addXXX: This method returns the unique Id to the Data Control framework. For
example,

public void addDeptBean(DeptBean dept)
{
deptCollection.add(dept);
}

where DeptBean is the class name and dept is the object.

• removeXXX: This method removes the object. For example,

public void removeDeptBean(DeptBean dept)
{
deptCollection.remove(dept);
}

where dept is the object of class DeptBean.

The CRUDDemo sample application is located in the PublicSamples.zip file within
the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples
directory on your development computer.

15.6 Creating Databound UI Components from the Data Controls Panel
You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component. When you use
data controls to create a UI component, JDeveloper automatically creates the various
code and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each data control object is represented by a specific icon.
Table 15-6 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Table 15-6 Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data
control.

Serves as a container for the other objects and is not used to
create anything.

Collectio
n

Represents a named data
collection returned by an
accessor method or
operation.

Forms, tables, graphs, trees, range navigation components,
master-detail components, and selection list components

Structure
d
Attribute

Represents a returned
object that is neither a
Java primitive type
(represented as an
attribute) nor a collection
of any type.

Forms, label, text field, date, list of values, and selection list
components.

Creating Databound UI Components from the Data Controls Panel

15-30 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-6 (Cont.) Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Attribute Represents a discrete
data element in an object
(for example, an attribute
in a row).

Label, text field, date, list of values, and selection list
components.

Key
Attribute

Represents an object
attribute that has been
declared as a primary
key attribute, either in
data control structure file
or in the business service
itself.

Label, text field, date, list of values, and selection list
components.

Method Represents a method or
operation in the data
control or one of its
exposed structures that
may accept parameters,
perform some business
logic and optionally
return single value, a
structure, or a collection.

Command components.

For methods that accept parameters: command components
and parameterized forms.

Method
Return

Represents an object that
is returned by a method
or other operation. The
returned object can be a
single value or a
collection.

A method return appears
as a child under the
method that returns it.
The objects that appear
as children under a
method return can be
attributes of the
collection, other methods
that perform actions
related to the parent
collection, or operations
that can be performed on
the parent collection.

For single values: text fields and selection lists.

For collections: forms, tables, trees, and range navigation
components.

When a single-value method return is dropped, the method is
not invoked automatically by the framework. To invoke the
method, you can drop the corresponding method as a button.
If the form is part of a task flow, you can create a method
activity to invoke the method.

Operatio
n

Represents a built-in data
control operation that
performs actions on the
parent object.

UI command components, such as buttons and links.

Paramete
r

Represents a parameter
value that is declared by
the method or operation
under which it appears.

Label, text, and selection list components.

Creating Databound UI Components from the Data Controls Panel

Using Bindings and Creating Data Controls in MAF AMX 15-31

15.6.1 How to Use the Data Controls Panel
JDeveloper provides you with a predefined set of UI components from which to
choose for each data control item you can drop.

Before you begin:

It may be helpful to have an understanding of the different objects in the Data
Controls panel. For more information, see Creating Databound UI Components from
the Data Controls Panel.

You will need to complete these tasks:

• Create a data control as described in How to Create Data Controls.

• Create a a MAF AMX page as described in Creating MAF AMX Pages.

To use the Data Controls panel to create UI components:

1. Select an item in the Data Controls panel and drag it onto the visual editor for your
page. For a definition of each item in the panel, see Table 15-6.

2. From the ensuing context menu, choose a UI component.

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped. The components displayed are based on the libraries in your
project.

Figure 15-6 shows the context menu displayed when a data collection from the
Data Controls panel is dropped on a page.

Figure 15-6 Dropping Component From Data Controls Panel

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look.
For example, if you select Form from the context menu, the Edit Form Fields dialog
opens. Once you select a component, JDeveloper inserts the UI component on the
page in the visual editor.

Creating Databound UI Components from the Data Controls Panel

15-32 Developing Mobile Applications with Oracle Mobile Application Framework

The UI components selected by default are determined first by any UI hints set on
the corresponding business object. If no UI hints have been set, then JDeveloper
uses input components for standard forms and tables, and output components for
read-only forms and tables. Components for lists are determined based on the type
of list you chose when dropping the data control object.

By default, the UI components created when you use the Data Controls are bound
to attributes in the MAF data control and may have built-in features, such as:

• Databound labels

• Tooltips

• Formatting

• Basic navigation buttons

• Validation, if validation rules are attached to a particular attribute.

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs.

Tip:

If you want to change the type of MAF databound component used on a page,
the easiest method is to use either the visual editor or the structure window to
delete the component, and then drag and drop a new one from the Data
Controls panel. When you use the visual editor or the structure window to
delete a databound component from a page, if the related binding objects in
the page definition file are not referenced by any other component, JDeveloper
automatically deletes those binding objects for you (automatic deletion of
binding objects will not happen if you use the source editor).

15.6.2 What Happens When You Use the Data Controls Panel
When an application is built using the Data Controls panel, JDeveloper does the
following:

• Creates a DataBindings.cpx file in the default package for the project (if one
does not already exist), and adds an entry for the page.

A DataBindings.cpx files defines the binding context for the application. The
binding context is a container object that holds a list of available data controls and
data binding objects. The DataBindings.cpx file maps individual pages to the
binding definitions in the page definition file and registers the data controls used
by those pages. For more information, see What You May Need to Know About
Generated Drag and Drop Artifacts.

• Creates the adfm.xml file in the META-INF directory. This file creates a registry
for the DataBindings.cpx file, which allows the application to locate it at
runtime so that the binding context can be created.

• Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage. The default subpackage is mobile.pageDefs in the
adfmsrc directory.

Creating Databound UI Components from the Data Controls Panel

Using Bindings and Creating Data Controls in MAF AMX 15-33

Tip:

You can set the package configuration (such as name and location) in the ADF
Model settings page of the Project Properties dialog (accessible by double-
clicking the project node).

The page definition file (pageNamePageDef.xml) defines the binding container
for each page in an application's view layer. The binding container provides
runtime access to all the binding objects for a page. For more information about the
page definition file, see What You May Need to Know About Generated Drag and
Drop Artifacts.

Tip:

The current binding container is also available from AdfContext for
programmatic access.

• Configures the page definition file, which includes adding definitions of the
binding objects referenced by the page.

• Adds the given component to the page.

These prebuilt components include the data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see About Data Binding EL Expressions.

• Adds all the libraries, files, and configuration elements required by the UI
components. For more information on the artifacts required for databound
components, see What Happens When You Create a MAF Application.

15.7 What Happens at Runtime: How the Binding Context Works
When a page contains MAF bindings, at runtime the interaction with the business
services initiated from the client or controller is managed by the application through a
single object known as the binding context. The binding context is a runtime map
(named data and accessible through the EL expression #{data}) of all data controls
and page definitions within the application.

The MAF creates the binding context from the application, DataBindings.cpx, and
page definition files, as shown in Figure 15-7. The union of all the
DataControls.dcx files and any application modules in the workspace define the
available data controls at design time, but the DataBindings.cpx file defines what
data controls are available to the application at runtime. The DataBindings.cpx file
lists all the data controls that are being used by pages in the application and maps the
binding containers, which contain the binding objects defined in the page definition
files, to web page URLs. The page definition files define the binding objects used by
the application pages. There is one page definition file for each page.

The binding context does not contain live instances of these objects. Instead, it is a map
that contains references that become data control or binding container objects on
demand. When the object (such as a page definition) is released from the application
(for example when a task flow ends or when the binding container or data control is
released at the end of the request), data controls and binding containers turn back into
reference objects. For more information about the DataBindings.cpx file, see What
You May Need to Know About Generated Drag and Drop Artifacts.

What Happens at Runtime: How the Binding Context Works

15-34 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 15-7 File Binding Context Runtime Usage

Note:

Carefully consider the binding styles you use when configuring components.
More specifically, combining standard bindings with managed bean bindings
will frequently result in misunderstood behaviors because the class instances
are unlikely to be the same between the binding infrastructure and the
managed bean infrastructure. If you mix bindings, you may end up calling
behavior on an instance that isn't directly linked to the UI.

For more information on working with bindings in MAF, see the following:

• What You May Need to Know About Generated Bindings

• Using the MAF AMX Editor Bindings Tab

• What You May Need to Know About Removal of Unused Bindings

15.8 Configuring Data Controls
When you create a data control, a standard set of values and behaviors are assumed
for the data control. For example, the data control determines how the label for an
attribute will display in a client. You can configure these values and behaviors by
creating and modifying data control structure files that correspond to the elements of
the data control. You first generate a data control structure file using the overview
editor for the.dcx file.

Configuring Data Controls

Using Bindings and Creating Data Controls in MAF AMX 15-35

15.8.1 How to Edit a Data Control
You can make a data control configurable by using the overview editor for the
DataControls.dcx file to create data control structure files that correspond to
objects encompassed by the data control. You can then edit the individual data control
structure files.

Before you begin:

It may be helpful to have a general understanding of data control configuration. For
more information, see Configuring Data Controls.

You will need to complete this task:

Create a data control, as described in How to Create Data Controls.

To edit a data control:

1. In the Applications window, double-click DataControls.dcx.

2. In the overview editor, select the object that you would like to configure and click
the Edit icon to generate a data control structure file, as shown in Figure 15-8.

Figure 15-8 Edit Button in Data Controls Registry

3. In the overview editor of the data control structure file, make the desired
modifications.

15.8.2 What Happens When You Edit a Data Control
When you edit a data control, JDeveloper creates a data control structure file that
contains metadata for the affected collection and opens that file in the overview editor.
This file stores configuration data for the data control that is specific to that collection,
such as any UI hints or validators that you have specified for the data object.

A data control structure file has the same base name as the data object with which it
corresponds. For example, if you click the Edit icon when you have a collection node
selected that corresponds with the Customer.java entity bean, the data control
structure file is named Customer.xml. The data control structure file is generated in
a package that corresponds to the package of the bean class, but with persdef
prepended to the package name. For example, if the Customer.java bean is in the
model package, the Customer.xml data control definition file is generated in the
persdef.model package. Once a data control structure file has been generated, you
can use the overview editor for that file to make further configurations.

A data control structure file contains the following information:

• Attributes: Describes all of the attributes on the service. For example, for entity
beans, there is an attribute for each bean property that is mapped to a database
column. You can also add transient attributes. You can set UI hints that define how
these attributes will display in the UI. You can also set other properties, such as

Configuring Data Controls

15-36 Developing Mobile Applications with Oracle Mobile Application Framework

whether the attribute value is required, whether it must be unique, and whether it
is visible. For more information, see Working with Attributes.

You can also set validation for an attribute and create custom properties. For more
information on validation, see Validating Attributes.

• Accessors: Describes data control elements that return result sets.

• Operations: Describes methods on the data object that are used by the data
control's built-in operations, such as add and remove methods, which are used by
the Create and Delete built-in operations, respectively.

Figure 15-9 shows the data control structure file for the Item bean.

Figure 15-9 Data Control Structure File in the Overview Editor

Configuring Data Controls

Using Bindings and Creating Data Controls in MAF AMX 15-37

Note:

The overview editor of a data control structure file shows all of the attributes,
accessors, and operations that are associated with the data object. However,
the data control structure file's XML source only contains definitions for
elements that you have edited. The base elements are introspected from the
data object. Also, when you make changes to the underlying data object, the
data control inherits those changes.

15.8.3 What You May Need to Know About MDS Customization of Data Controls
If you wish for all of the objects that are encompassed by the data control to be
available for Oracle Metadata Services (MDS) customization, the packaged application
must contain data control structure files for those objects.

When you create a data control based on the adapter framework, data control
structure files are not generated by default, since they are not needed by the data
control if you do not add metadata to a given object. Typically, a data control structure
file is only generated for a data control object once you edit the data control to add
declarative metadata (such as UI hints or validators) to that object, as described in
How to Edit a Data Control. To create data control structure files for each data control
object, you need to repeat that procedure for each data control object.

For more information on MDS, see Customizing MAF Application Artifacts with
MDS .

15.9 Working with Attributes
When you create a data control for your business services, you can create a data
control structure file for an individual data object in which you can declaratively
augment the functionality of the data object's persistent attributes. For example, you
can create validation rules and set UI hints to control the default presentation of
attributes in UI components.

You set these properties on the Attributes page of the overview editor of the data
control structure file. For information on creating a data control structure file, see How
to Edit a Data Control.

15.9.1 How to Designate an Attribute as Primary Key
In the overview editor for a data object's data control structure file, you can designate
an attribute as a primary key for that data object if you have not already done so in the
data object's underlying class.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For
more information, see Working with Attributes.

You will need to complete this task:

Create the desired data control structure files as described in How to Edit a Data
Control.

To set an attribute as a primary key:

1. In the Applications window, double-click the desired data control structure file.

Working with Attributes

15-38 Developing Mobile Applications with Oracle Mobile Application Framework

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to designate as the primary
key and then click the Details tab.

4. On the Details page, set the Key Attribute property.

Note:

If the attribute has already been designated as the primary key in the class, the
data control inherits that setting and the Key Attribute checkbox will be
selected. However, in this case, you can not deselect the Key Attribute option.

15.9.2 How to Define a Static Default Value for an Attribute
The Value field in the Details section allows you to specify a static default value for
the attribute when the value type is set to Literal. For example, you might set the
default value of a ServiceRequest entity bean's Status attribute to Open, or set the
default value of a User bean's UserRole attribute to user.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For
more information, see Working with Attributes.

To define a static default value for an attribute:

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the
Details tab.

4. On the Details page, select the Literal option.

5. In the text field below the Literal option, enter the default value for the attribute.

15.9.3 How to Set UI Hints on Attributes
You can set UI hints on attributes so that those attributes are displayed and labeled in
a consistent and localizable way by any UI components that use those attributes. UI
hints determine things such as the type of UI component to use to display the
attribute, the label, the tooltip, and whether the field should be automatically
submitted. You can also determine whether a given attribute is displayed or hidden.
To create UI hints for attributes, use the overview editor for the data object's data
control structure file, which is accessible from the Applications window.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For
more information, see Working with Attributes.

You will need to complete this task:

Create the desired data control structure files as described in How to Edit a Data
Control.

To set a UI hint:

Working with Attributes

Using Bindings and Creating Data Controls in MAF AMX 15-39

1. In the Applications window, double-click the desired data control structure file.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the attribute you want to edit, and then click the UI
Hints tab.

4. In the UI Hints section, set the desired UI hints.

15.9.4 What Happens When You Set UI Hints on Attributes
When you set UI hints on an attribute, those hints are stored as properties. Tags for the
properties are added to the data object's data control structure file and the values for
the properties are stored in a resource bundle file. If the resource bundle file does not
already exist, it is generated in the data control's package and named according to the
project name when you first set a UI hint.

The following example shows the code for the price attribute in the Item.xml data
control structure file, including tags for the Label and Format Type hints which have
been set for the attribute.

<PDefAttribute
 Name="price">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_LABEL']}"/>
 <FMT_FORMATTER ResId="${adfBundle['model.ModelBundle']
 ['model.Item.price_FMT_FORMATTER']}"/>
 </SchemaBasedProperties>
 </Properties>
</PDefAttribute>

The following example shows the corresponding entries for the Label and Format
Type hints in the ModelBundle.properties resource bundle file, which contains
the values for all of the project's localizable properties.

model.Item.price_LABEL=Price
. . .
model.Item.price_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter

15.9.5 How to Access UI Hints Using EL Expressions
You can access UI hints using EL expressions to display the hint values as data in a
page. You access UI hints through the binding instances that you create after dropping
databound components onto your pages.

The following example was produced using the DeviceFeatures data control. It shows
the EL expression that is produced by dragging and dropping Contact as a MAF form
and only keeping the displayName and nickname fields. The labels in bold are
examples of the retrieval of UI hints using EL.

<amx:panelFormLayout id="pfl2">
 <amx:inputText value="#{row.bindings.displayName.inputValue}"
 label="#{bindings.Contact.hints.displayName.label}"
id="it9"/>
 <amx:inputText value="#{row.bindings.nickname.inputValue}"
 label="#{bindings.Contact.hints.nickname.label}"
 id="it10"/>
</amx:panelFormLayout>af:panelHeader id="ph1"

Working with Attributes

15-40 Developing Mobile Applications with Oracle Mobile Application Framework

15.10 Creating and Using Bean Data Controls
A bean data control serves as a metadata wrapper for a bean class and exposes the
bean’s code elements as data control objects, which can then be used to bind those
code elements to UI components. Java bean data controls obtain their data structure
from POJOs (plain old Java objects). To create a Java bean data control, right-click a
Java class file (in the Applications window), and choose Create Data Control. You
create Java bean data controls from within the Applications window of JDeveloper.

Before you begin:

It may be helpful to have a general understanding of data controls. For more
information, see How to Create Data Controls.

Note:

If the Java bean is using a background thread to update data in the UI, you
need to manually call
oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataCha
ngeEvent. For information about the flushDataChangeEvent method, see
About Data Change Events.

For a sample of to build CRUD operations using the local SQLite database and Java
bean data controls, see the MAF sample application called CRUDDemo located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

15.10.1 What You May Need to Know About Serialization of Bean Class Variables
MAF does not serialize to JavaScript Object Notation (JSON) data bean class variables
that are declared as transient. To avoid serialization of a chain of nested objects, you
should define them as transient. This strategy also helps to prevent the creation of
cyclic objects due to object nesting.

Consider the following scenario: you have an Employee object that has a child
Employee object representing the employee's manager. If you do not declare the child
object transient, a chain of serialized nested objects will be created when you attempt
to calculate the child Employee object at runtime.

To serialize and deserialize Java objects into JSON objects, use the
JSONBeanSerializationHelper class. The JSONBeanSerializationHelper
class enables you to implement your own custom JSON serialization and
deserialization, and it provides a hook to alter the JSON object after the JSON
serialization (and deserialization) process. For more information, see the
oracle.adfmf.framework.api.JSONBeanSerializationHelper class in Java
API Reference for Oracle Mobile Application Framework.

MAF does not support serializing objects of the GregorianCalendar class. The
JSONBeanSerializationHelper class cannot serialize objects of the
GregorianCalendar class because the GregorianCalendar class has cyclical
references in it. Instead, use java.util.Date or java.sql.Date for date
manipulation. The following example shows how to convert a GregorianCalendar
object using java.util.Date:

Creating and Using Bean Data Controls

Using Bindings and Creating Data Controls in MAF AMX 15-41

Calendar calDate = new GregorianCalendar();
calDate.set(1985, 12, 1); // "January 1, 1986"
Date date = calDate.getTime();

15.11 Using the DeviceFeatures Data Control
MAF exposes device-specific features that you can use in your application through the
DeviceFeatures data control, a component that appears in the Data Controls panel
when you create a new MAF application. The Cordova Java API is abstracted through
this data control, enabling the application features implemented as MAF AMX to
access various services embedded on a device. By dragging and dropping the
operations provided by the DeviceFeatures data control into a MAF AMX page, you
can add functions to manage the user contacts stored on a device, create and send both
email and SMS text messages, ascertain the location of a device, use a device's camera,
and retrieve images stored in a device's file system. The following sections describe
each of these operations in detail, including how to use them declaratively and how to
implement them with Java code and JavaScript.

Figure 15-10 MAF DeviceFeatures Data Control in the Overview Editor

The DeviceFeatures data control appears in the Data Controls panel automatically
when you create an application using the MAF application template. Figure 15-10

Using the DeviceFeatures Data Control

15-42 Developing Mobile Applications with Oracle Mobile Application Framework

shows the DeviceFeatures data control in the overview editor. The following methods
are available:

• addLocalNotification

• cancelLocalNotification

• createContact

• displayFile

• findContacts

• getPicture

• removeContact

• sendEmail

• sendSMS

• startLocationMonitor

• updateContact

After you create a page, you can drag DeviceFeatures data control methods (or other
objects nested within those methods) from the Data Controls panel to a MAF AMX
view to create command buttons and other components that are bound to the
associated functionality. You can accept the default bindings or modify the bindings
using EL. You can also use JavaScript or Java to implement or configure functionality.
For information on how to include data controls in your MAF application, see How to
Add Data Controls to a MAF AMX Page.

The DeviceManager is the object that enables you to access device functionality. You
can get a handle on this object by calling
DeviceManagerFactory.getDeviceManager. The following sections describe
how you can invoke methods like getPicture or createContact using the
DeviceManager object.

[[dev ER 19938192 addressed below]]

With the exception of network access, access to all of the Apache Cordova-enabled
device capabilities is not enabled by default for MAF applications. The operations that
the DeviceFeatures data control expose require that the associated plugin be enabled
in the MAF application for the operation to function correctly at runtime. If, for
example, you want to use the sendSMS operation from the DeviceFeatures data
control, you must enable the SMS plugin in the MAF application. You can enable
plugins manually or you can choose the appropriate option in the dialog that
JDeveloper displays when you drag and drop an operation that does not have the
associated plugin enabled in the MAF application. For example, JDeveloper displays
the dialog in Figure 15-11 when you drag and drop the sendSMS operation to a MAF
AMX page in a MAF application that has yet to enable the SMS plugin.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-43

Figure 15-11 Enabling Plugin for a DeviceFeatures Data Control Operation

If the plugin that an operation requires is not enabled, a warning message appears in
the source file of the MAF AMX page. Assume, for example, that the MAF application
does not enable the SMS plugin. The warning message shown in Figure 15-12 appears
in MAF AMX pages where the application attempts to invoke the sendSMS operation.
You resolve this issue by manually enabling the plugin, as described in Using Plugins
in MAF Applications .

Figure 15-12 DeviceFeatures Data Control Operation Requires Plugin

15.11.1 How to Use the getPicture Method to Enable Taking Pictures
The DeviceFeatures data control includes the getPicture method, which enables
MAF applications to leverage a device's camera and photo library so end users can
take a photo or retrieve an existing image. At the end of this section there are examples
that show:

• JavaScript code that enables an end user to take a picture with a device's
camera.Java code that allows the user to take a picture with a device's camera.

• Java code that allows the user to retrieve a previously-saved image.

For information about the getPicture method, see the DeviceDataControl class in
the MAF Javadoc and refer to the Cordova documentation (http://
cordova.apache.org/).

The following parameters control where the image is taken from and how it is
returned:

Using the DeviceFeatures Data Control

15-44 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

If you do not specify a targetWidth, targetHeight, and quality for the
picture being taken, the default values used are maximum values, and this can
cause memory failures.

• quality: Set the quality of the saved image. Range is 0 to 100, inclusive. A higher
number indicates higher quality, but also increases the file size. Only applicable to
JPEG images (specified by encodingType).

• destinationType: Choose the format of the return value:

– DeviceManager.CAMERA_DESTINATIONTYPE_DATA_URL (0)—Returns the
image as a Base64-encoded string. This value is also specified as an enum using
DeviceManager.CAMERA_DESTINATION_DATA_URL when used
programmatically. You need to prefix the value returned with "data:image/
gif;base64," in order to see the image in an image component.

– DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI (1)—Returns the
image file path. This value is also specified as an enum using
DeviceManager.CAMERA_DESTINATION_FILE_URI when used
programmatically.

Note:

If a file URI is returned by the getPicture method, it should be stripped of
any query parameters before being used to determine the size of the file. For
example:

String fileURI = ...getPicture(...);

fileURI = fileURI.substring(0, result.lastIndexOf("?"));

• sourceType: Set the source of the picture:

– DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY (0)—Enables the
user to choose from a previously saved image. This value is also specified as an
enum using DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY when
used programmatically.

– DeviceManager.CAMERA_SOURCETYPE_CAMERA (1)—Enables the user to
take a picture with device's camera. This value is also specified as an enum
using DeviceManager.CAMERA_SOURCETYPE_CAMERA when used
programmatically.

– DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM (2)—Allows
the user to choose from an existing photo album. This value is also specified as
an enum using DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM
when used programmatically.

• allowEdit: Choose whether to allow simple editing of the image before selection
(boolean).

• encodingType: Choose the encoding of the returned image file:

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-45

– DeviceManager.CAMERA_ENCODINGTYPE_JPEG (0)—Encodes the returned
image as a JPEG file. This value is also specified as an enum using
DeviceManager.CAMERA_ENCODINGTYPE_JPEG when used
programmatically.

– DeviceManager.CAMERA_ENCODINGTYPE_PNG (1)—Encodes the returned
image as a PNG file. This value is also specified as an enum using
DeviceManager.CAMERA_ENCODINGTYPE_PNG when used
programmatically.

• targetWidth: Set the width in pixels to scale the image. Aspect ratio is
maintained. A negative or zero value indicates that the original dimensions of the
image will be used.

• targetHeight: Set the height in pixels to scale the image. Aspect ratio is
maintained. A negative or zero value indicates that the original dimensions of the
image will be used.

To customize a getPicture operation using the DeviceFeatures data control:

1. Drag the getPicture operation from the DeviceFeatures data control in the Data
Controls panel and drop it on the page as a Button.

If you want to provide more control to the user, drop the getPicture operation as a
Parameter Form. This allows the end user to specify settings before taking a
picture or choosing an existing image.

2. In the Edit Action dialog, set the values for all parameters described above. Be
sure to specify destinationType = 1 so that the image is returned as a
filename.

3. Drag the return value of getPicture and drop it on the page as an Output Text.

4. From the Common Components panel, drag an Image from the Component
Palette and drop it on the page.

5. Set the source attribute of the Image to the return value of the getPicture
operation. The bindings expression should be:
#{bindings.Return.inputValue}.

Figure 15-13 shows the bindings for displaying an image from the end user's photo
library:

Using the DeviceFeatures Data Control

15-46 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 15-13 Bindings for Displaying an Image from the Photo Library at Design
Time

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-47

When this application is run, the image chooser will automatically be displayed and
the end user can select an image to display. The image chooser is displayed
automatically because the Image control is bound to the return value of the
getPicture operation, which in turn causes the getPicture operation to be
invoked.

Note:

The timeout value for the getPicture method is set to 5 minutes. If the
device operation takes longer than the timeout allowed, a timeout error is
displayed.

Keep in mind the following platform-specific issues:

• iOS

– Set quality below 50 to avoid memory error on some devices.

– When destinationType FILE_URI is used, photos are saved in the
application's temporary directory.

– The contents of the application's temporary directory are deleted when the
application ends. You may also delete the contents of this directory using the
navigator.fileMgr APIs if storage space is a concern.

– targetWidth and targetHeight must both be specified to be used. If one or
both parameters have a negative or zero value, the original dimensions of the
image will be used.

• Android

– Ignores the allowEdit parameter.

– Camera.PictureSourceType.PHOTOLIBRARY and
Camera.PictureSourceType.SAVEDPHOTOALBUM both display the same
photo album.

– Camera.EncodingType is not supported. The parameter is ignored, and will
always produce JPEG images.

– targetWidth and targetHeight can be specified independently. If one
parameter has a positive value and the other uses a negative or zero value to
represent the original size, the positive value will be used for that dimension,
and the other dimension will be scaled to maintain the original aspect ratio.

– When destinationType DATA_URL is used, large images can exhaust
available memory, producing an out-of-memory error, and will typically do so
if the default image size is used. Set the targetWidth and targetHeight to
constrain the image size.

The following example shows JavaScript code that allows the user to take a picture
with a device's camera. The result will be the full path to the saved image.

// The camera, like many other device-specific features, is accessed
// from the global 'navigator' object in JavaScript.
// Note that in the Cordova JavaScript APIs, the parameters are passed
// in as a dictionary, so it is only necessary to provide key-value pairs
// for the parameters you want to specify.

Using the DeviceFeatures Data Control

15-48 Developing Mobile Applications with Oracle Mobile Application Framework

navigator.camera.getPicture(onSuccess, onFail, { quality: 50 });

function onSuccess(imageURI) {
 var image = document.getElementById('myImage');
 image.src = imageURI;
}

function onFail(message) {
 alert('Failed because: ' + message);
}

The following example shows Java code that allows the user to take a picture with a
device's camera. The result will be the full path to the saved image.

import oracle.adf.model.datacontrols.device;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Take a picture with the device's camera.
// The result will be the full path to the saved PNG image.
String imageFilename = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI,
 DeviceManager.CAMERA_SOURCETYPE_CAMERA, false,
 DeviceManager.CAMERA_ENCODINGTYPE_PNG, 0, 0);

The following example shows Java code that allows the user to retrieve a previously-
saved image. The result will be a base64-encoded JPEG.

import oracle.adf.model.datacontrols.device;

// Retrieve a previously-saved image. The result will be a base64-encoded JPEG.
String imageData = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URL,
 DeviceManager.CAMERA_SOURCETYPE__PHOTOLIBRARY, false,
 DeviceManager.CAMERA_ENCODINGTYPE_JPEG, 0, 0);

15.11.2 How to Use the SendSMS Method to Enable Text Messaging
The DeviceFeatures data control includes the sendSMS method, which enables MAF
applications to leverage a device's Short Message Service (SMS) text messaging
interface so end users can send and receive SMS messages. MAF enables you to
display a device's SMS interface and optionally pre-populate the following fields:

• to: List recipients (comma-separated).

• body: Add message body.

After the SMS text messaging interface is displayed, the end user can choose to either
send the SMS or discard it. It is not possible to automatically send the SMS due to
device and carrier restrictions; only the end user can actually send the SMS.

The timeout value for the sendSMS method is set to 5 minutes. If the device's
operation takes longer than the timeout allowed, a timeout error appears.

In Android, if an end user switches away from their application while editing an SMS
message and then subsequently returns to it, they will no longer be in the SMS editing
screen. Instead, that message will have been saved as a draft that can then manually be
selected for continued editing.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-49

MAF applications on the Universal Windows Platform do not support the use of SMS
text messaging at present.

To customize a sendSMS operation using the DeviceFeatures data control:

To display an interactive form on the page for sending SMS, drag the sendSMS
operation from the DeviceFeatures data control in the Data Controls panel and drop it
on the page designer as a Parameter Form. You can then customize the form in the
Edit Form Fields dialog. At runtime, an editable form will be displayed on the page,
which enables the application user to enter values for the various fields described
above. Below this form will be a button to display the device's SMS interface, which
will display an SMS that is ready to send with all of the specified fields pre-populated.

Figure 15-14 shows the bindings for sending an SMS using an editable form on the
page.

Figure 15-14 Bindings for Sending an SMS Using an Editable Form at Design Time

The following examples show code examples that allow the end user to send an SMS
message with a device's text messaging interface.

For information about the sendSMS method, see the DeviceDataControl class in
the MAF Javadoc and refer to the Cordova documentation (http://
cordova.apache.org/).

The following example shows JavaScript code that allows the end user to send an SMS
message:

adf.mf.api.sendSMS({to: "5551234567", body: "This is a test message"});

The following example shows Java code that allows the end user to send an SMS
message:

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Send an SMS to the phone number "5551234567"
DeviceManagerFactory.getDeviceManager().sendSMS("5551234567", "This is a test
message");

Using the DeviceFeatures Data Control

15-50 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/
http://cordova.apache.org/

15.11.3 How to Use the sendEmail Method to Enable Email
The DeviceFeatures data control includes the sendEmail method, which enables
MAF applications to leverage a device's email messaging interface so end users can
send and receive email messages. MAF enables you to display a device's email
interface and optionally pre-populate the following fields:

• to: List recipients (comma-separated).

• cc: List CC recipients (comma-separated).

• subject: Add message subject.

• body: Add message body.

• bcc: List BCC recipients (comma-separated).

• attachments: List file names to attach to the email (comma-separated).

• mimeTypes: List MIME types to use for the attachments (comma-separated).
Specify null to let MAF automatically determine the MIME types. It is also possible
to specify only the MIME types for selected attachments as shown in the examples
at the end of this section.

After the device's email interface is displayed, the user can choose to either send the
email or discard it. It is not possible to automatically send the email due to device and
carrier restrictions; only the end user can actually send the email. The device must also
have at least one email account configured to send email or an error will be displayed
indicating that no email accounts could be found.

Note:

The timeout value for the sendEmail method is set to 5 minutes. If the
device's operation takes longer than the timeout allowed, a timeout error is
displayed.

Note:

In Android, if an end user switches away from their application while editing
an email and then subsequently returns to it, they will no longer be in the
email editing screen. Instead, the message will be saved as a draft that can
then be manually selected for continued editing.

To customize a sendEmail operation using the DeviceFeatures data control:

In JDeveloper, drag the sendEmail operation from the DeviceFeatures data control in
the Data Controls panel to the page designer and drop it as a Parameter Form. You
can then customize the form in the Edit Form Fields dialog. At runtime, an editable
form will be displayed on the page, which enables the application user to enter values
for the various fields described above. Below this form will be a button to display the
device's email interface, which will display an email ready to send with all of the
specified fields pre-populated.

Figure 15-15 shows the bindings for sending an email using an editable form on the
page.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-51

Figure 15-15 Bindings for Sending an Email Using an Editable Form at Design Time

Following are code examples that allow the end user to send an email message with
the device's email interface

For information about the sendEmail method, see the DeviceDataControl class in
the MAF Javadoc and refer to the Cordova documentation (http://
cordova.apache.org/).

The following example shows JavaScript code that allows the end user to send an
email message:

// Populate an email to 'ann.li@example.com',
// copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'

Using the DeviceFeatures Data Control

15-52 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/
http://cordova.apache.org/

// No BCC recipients or attachments
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By not specifying a value for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});

// For iOS only: Same as previous email, but this time, explicitly specify
// all the MIME types.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "text/plain,image/png"});

// For iOS only: Same as previous email, but this time, only specify
// the MIME type for the second attachment and let the system determine
// the MIME type for the first one.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: ",image/png"});

// For Android only: Same as previous e-mail, but this time, explicitly specify
// the MIME type.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "image/*"});
// You can also use "plain/text" as the MIME type as it just determines the type
// of applications to be filtered in the application chooser dialog.

The following example shows Java code that allows the end user to send an email
message:

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Populate an email to 'ann.li@example.com', copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'.
// No BCC recipients or attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-53

 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 null,
 null,
 null);

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By specifying null for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.co
m",
 "path/to/file1.txt,path/to/file2.png",
 null);

// Same as previous email, but this time, explicitly specify all the MIME types.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.co
m",
 "path/to/file1.txt,path/to/file2.png",
 "text/plain,image/png");

// Same as previous email, but this time, only specify the MIME type for the
// second attachment and let the system determine the MIME type for the first one.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.co
m",
 "path/to/file1.txt,path/to/file2.png",
 ",image/png");

15.11.4 How to Use the createContact Method to Enable Creating Contacts
The DeviceFeatures data control includes the createContact method, which
enables MAF applications to leverage a device's interface and file system for managing
contacts so end users can create new contacts to save in the device's address book.
MAF enables you to display the device's interface and optionally pre-populate the
Contact fields. The createContact method takes in a Contact object as a
parameter and returns the created Contact object, as shown in the examples at the
end of this section.

For more information about the createContact method and the Contact object,
see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova
documentation (http://cordova.apache.org/). Also see How to Use the

Using the DeviceFeatures Data Control

15-54 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/

findContacts Method to Enable Finding Contacts for a description of Contact
properties.

Note:

The timeout value for the createContact method is set to 1 minute. If the
device's operation takes longer than the timeout allowed, a timeout error is
displayed.

Note:

If a null Contact object is passed in to the method, an exception is thrown.

To customize a createContact operation using the DeviceFeatures data control:

1. In JDeveloper, drag the createContact operation from the DeviceFeatures data
control in the Data Controls panel and drop it on the page designer as a Link or
Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter
the Contact object parameter to the createContact operation. This parameter
must be an EL expression that refers to the property of a managed bean that is used
to return the Contact from a Java bean class. Assuming a managed bean already
exists with a getter for a Contact object, you can use the EL Expression Builder to
set the value of the parameter. At runtime, a button or link will be displayed on the
page, which will use the entered values to perform a createContact operation
when pressed. The following code example shows an example of managed bean
code for creating a Contact object.

2. You can also drag a Contact return object from under the createContact
operation in the Data Controls panel and drop it on to the page as a Form. You can
then customize the form in the Edit Form Fields dialog. When the
createContact operation is performed, the results will be displayed in this form.

private Contact contactToBeCreated;

public void setContactToBeCreated(Contact contactToBeCreated) {
 this.contactToBeCreated = contactToBeCreated;
}

public Contact getContactToBeCreated() {
 String givenName = "Mary";
 String familyName = "Jones";
 String note = "Just a Note";
 String phoneNumberType = "mobile";
 String phoneNumberValue = "650-555-0111";
 String phoneNumberNewValue = "650-555-0199";
 String emailType = "home";
 String emailTypeNew = "work";
 String emailValue = "Mary.Jones@example.com";
 String addressType = "home";
 String addressStreet = "500 Barnacle Pkwy";
 String addressLocality = "Redwood Shores";
 String addressCountry = "USA";
 String addressPostalCode = "94065";
 ContactField[] phoneNumbers = null;

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-55

 ContactField[] emails = null;
 ContactAddresses[] addresses = null;

 /*
 * Create contact
 */
 this.contactToBeCreated = new Contact();

 ContactName name = new ContactName();
 name.setFamilyName(familyName);
 name.setGivenName(givenName);
 this.contactToBeCreated.setName(name);

 ContactField phoneNumber = new ContactField();
 phoneNumber.setType(phoneNumberType);
 phoneNumber.setValue(phoneNumberValue);

 phoneNumbers = new ContactField[] { phoneNumber };

 ContactField email = new ContactField();
 email.setType(emailType);
 email.setValue(emailValue);

 emails = new ContactField[] { email };

 ContactAddresses address = new ContactAddresses();
 address.setType(addressType);
 address.setStreetAddress(addressStreet);
 address.setLocality(addressLocality);
 address.setCountry(addressCountry);

 addresses = new ContactAddresses[] { address };

 this.contactToBeCreated.setNote(note);
 this.contactToBeCreated.setPhoneNumbers(phoneNumbers);
 this.contactToBeCreated.setEmails(emails);
 this.contactToBeCreated.setAddresses(addresses);

 return this.contactToBeCreated;
}

The following examples show code examples that allow the end user to create contacts
on devices.

The following example shows JavaScript code for createContact.

// Contacts, like many other device-specific features,
// are accessed from the global 'navigator' object in JavaScript
var contact = navigator.contacts.create();

var name = new ContactName();
name.givenName = "Mary";
name.familyName = "Jones";

contact.name = name;

// Store contact phone numbers in ContactField[]
var phoneNumbers = [1];
phoneNumbers[0] = new ContactField('home', '650-555-0123', true);

contact.phoneNumbers = phoneNumbers;

Using the DeviceFeatures Data Control

15-56 Developing Mobile Applications with Oracle Mobile Application Framework

// Store contact email addresses in ContactField[]
var emails = [1];
emails[0] = new ContactField('work', 'Mary.Jones@example.com');

contact.emails = emails;

// Save
contact.save(onSuccess, onFailure);

function onSuccess()
{
 alert("Create Contact successful.");
}

function onFailure(Error)
{
 alert("Create Contact failed: " + Error.code);
}

The following example shows Java code for createContact.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

import oracle.adf.model.datacontrols.device.ContactAddresses;
import oracle.adf.model.datacontrols.device.ContactField;
import oracle.adf.model.datacontrols.device.ContactName;

String givenName = "Mary";
String familyName = "Jones";
String note = "Just a Note";
String phoneNumberType = "mobile";
String phoneNumberValue = "650-555-0111";
String phoneNumberNewValue = "650-555-0199";
String emailType = "home";
String emailTypeNew = "work";
String emailValue = "Mary.Jones@example.com";
String addressType = "home";
String addressStreet = "500 Barnacle Pkwy";
String addressLocality = "Redwood Shores";
String addressCountry = "USA";
String addressPostalCode = "91234";
ContactField[] phoneNumbers = null;
ContactField[] emails = null;
ContactAddresses[] addresses = null;
ContactField[] emails = null;

/*
* Create contact
*/
Contact aContact = new Contact();

ContactName name = new ContactName();
name.setFamilyName(familyName);
name.setGivenName(givenName);
aContact.setName(name);

ContactField phoneNumber = new ContactField();
phoneNumber.setType(phoneNumberType);
phoneNumber.setValue(phoneNumberValue);

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-57

phoneNumbers = new ContactField[] { phoneNumber };

ContactField email = new ContactField();
email.setType(emailType);
email.setValue(emailValue);

emails = new ContactField[] { email };

ContactAddresses address = new ContactAddresses();
address.setType(addressType);
address.setStreetAddress(addressStreet);
address.setLocality(addressLocality);
address.setCountry(addressCountry);

addresses = new ContactAddresses[] { address };

aContact.setNote(note);
aContact.setPhoneNumbers(phoneNumbers);
aContact.setEmails(emails);
aContact.setAddresses(addresses);

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Invoking the createContact method, using the DeviceDataControl object.
Contact createdContact = DeviceManagerFactory.getDeviceManager()
 .findContacts.createContact(aContact);

15.11.5 How to Use the findContacts Method to Enable Finding Contacts
The DeviceFeatures data control includes the findContacts method, which enables
MAF applications to leverage a device's interface and file system for managing
contacts so end users can find one or more contacts from the device's address book.
MAF enables you to display the device's interface and optionally pre-populate the
findContacts fields. The findContacts method takes in a filter string and a list of
field names to look through (and return as part of the found contacts). The filter string
can be anything to look for in the contacts. For more information about the
findContacts method, see the DeviceDataControl class in the MAF Javadoc and
refer to the Cordova documentation (http://cordova.apache.org/).

The findContacts operation takes the following arguments:

• contactFields: Required parameter. Use this parameter to specify which fields
should be included in the Contact objects resulting from a findContacts
operation. Separate fields with a comma (spacing does not matter).

• filter: The search string used to filter contacts. (String) (Default: "")

• multiple: Determines if the findContacts operation should return multiple
contacts. (Boolean) (Default: false)

Note:

Passing in a field name that is not in the following list may result in a null
return value for the findContacts operation. Also, only the fields specified
in the Contact fields argument will be returned as part of the Contact
object.

Using the DeviceFeatures Data Control

15-58 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/

The following list shows the possible Contact properties that can be passed in to look
through and be returned as part of the found contacts:

• id: A globally unique identifier

• displayName: The name of this contact, suitable for display to end-users

• name: An object containing all components of a person's name

• nickname: A casual name for the contact. If you set this field to null, it will be
stored as an empty string.

• phoneNumbers: An array of all the contact's phone numbers

• emails: An array of all the contact's email addresses

• addresses: An array of all the contact's addresses

• ims: An array of all the contact's instant messaging (IM) addresses (The ims
property is not supported in this release.)

Note:

MAF does not support the Contact property ims in this release. If you create
a contact with the ims property, MAF will save the contact without the ims
property. As a result, if a user tries to perform a search based on ims, the user
will not be able to find the contact. Also, if a user tries to enter ims in a search
field, the ims will be returned as null.

• organizations: An array of all the contact's organizations

• birthday: The birthday of the contact. Although you cannot programmatically
set a contact's birthday field and persist it to the address book, you can still use the
operating system's address book application to manually set this field.

• note: A note about the contact. If you set this field to null, it will be stored as an
empty string.

• photos: An array of the contact's photos

• categories: An array of all the contact's user-defined categories.

• urls: An array of web pages associated to the contact

Note:

The timeout value for the findContacts method is set to 1 minute. If the
device's operation takes longer than the timeout allowed, a timeout error is
displayed.

To customize a findContacts operation using the DeviceFeatures data control:

1. In JDeveloper, drag the findContacts operation from the DeviceFeatures data
control in the Data Controls panel and drop it on the page designer as a Link,
Button, or Parameter Form.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-59

Link or Button: You will be prompted with the Edit Action Binding dialog to
enter values for arguments to the findContacts operation. At runtime, a button
or link will be displayed on the page, which will use the entered values to perform
a findContacts operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime,
an editable form will be displayed on the page, which enables the application user
to enter values for the various Contact fields described above. Below this form
will be a button, which will use the entered values to perform a findContacts
operation when pressed.

2. You can also drag a Contact return object from under the findContacts
operation in the Data Controls panel and drop it on to the page as a Form. You
can then customize the form in the Edit Form Fields dialog. When the
findContacts operation is performed, the results will be displayed in this form.

The following example shows possible argument values for the findContacts
method.

// This will return just one contact with only the ID field:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("",
"", false);

// This will return all contacts with only ID fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("",
"", true);

// This will return just one contact with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*",
"", false);

// This will return all contacts with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*",
"", true);

// These will throw an exception as contactFields is a required argument and cannot
be null:
DeviceManagerFactory.getDeviceManager().findContacts(null, "", false);
DeviceManagerFactory.getDeviceManager().findContacts(null, "", true);

// These will throw an exception as the filter argument cannot be null:
DeviceManagerFactory.getDeviceManager().findContacts("", null, false);
DeviceManagerFactory.getDeviceManager().findContacts("", null, true);

Note:

The Contact fields passed are strings (containing the comma-delimited
fields). If any arguments are passed as null to the method, an exception is
thrown.

The following JavaScript example shows how to find a contact by family name and get
the contact's name, phone numbers, email, addresses, and note.

var filter = ["name", "phoneNumbers", "emails", "addresses", "note"];

var options = new ContactFindOptions();
options.filter="FamilyName";

// Contacts, like many other device-specific features, are accessed from

Using the DeviceFeatures Data Control

15-60 Developing Mobile Applications with Oracle Mobile Application Framework

// the global 'navigator' object in JavaScript.
navigator.contacts.find(filter, onSuccess, onFail, options);

function onSuccess(contacts)
{
 alert ("Find Contact call succeeded! Number of contacts found = " +
contacts.length);
}

function onFail(Error)
{
 alert("Find Contact failed: " + Error.code);
}

The following Java example shows how to find a contact by family name and get the
contact's name, phone numbers, email, addresses, and note.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Find Contact - Find contact by family name.
 *
 * See if we can find the contact that we just created.
 */

String familyName = "FamilyName"

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

15.11.6 How to Use the updateContact Method to Enable Updating Contacts
The DeviceFeatures data control includes the updateContact method, which
enables MAF applications to leverage a device's interface and file system for managing
contacts so end users can update contacts in the device's address book. MAF enables
you to display the device's interface and optionally pre-populate the updateContact
fields. The updateContact method takes in a Contact object as a parameter and
returns the updated Contact object, as shown in as shown in the example at the end
of this section.

For more information about the updateContact method and the Contact object,
see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova
documentation (http://cordova.apache.org/). Also see How to Use the
findContacts Method to Enable Finding Contacts for a description of Contact
properties.

Note:

The Contact object that is needed as the input parameter can be found using
the findContacts method as described in How to Use the findContacts
Method to Enable Finding Contacts. If a null Contact object is passed in to
the method, an exception is thrown.

To customize an updateContact operation using the DeviceFeatures data control:

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-61

http://cordova.apache.org/

1. In JDeveloper, drag the updateContact operation from the DeviceFeatures data
control in the Data Controls panel and drop it on the page designer as a Link or
Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter
the Contact object parameter to the updateContact operation. This parameter
must be an EL expression that refers to the property of a managed bean that is used
to return the Contact from a Java bean class. Assuming a managed bean already
exists with a getter for a Contact object, you can use the EL Expression Builder to
set the value of the parameter. At runtime, a button or link will be displayed on the
page, which will use the entered values to perform a updateContact operation
when pressed. How to Use the createContact Method to Enable Creating Contacts
shows an example of managed bean code for creating a Contact object.

2. You can also drag a Contact return object from under the updateContact
operation in the Data Controls panel and drop it on to the page as a Form. You can
then customize the form in the Edit Form Fields dialog. When the
updateContact operation is performed, the results will be displayed in this form.

The following examples show how to update and add a contact's phone number.

The following JavaScript example shows how to use updateContact.

function updateContact(contact)
{
 try
 {
 if (null != contact.phoneNumbers)
 {
 alert("Number of phone numbers = " + contact.phoneNumbers.length);
 var numPhoneNumbers = contact.phoneNumbers.length;
 for (var j = 0; j < numPhoneNumbers; j++)
 {
 alert("Type: " + contact.phoneNumbers[j].type + "\n" +
 "Value: " + contact.phoneNumbers[j].value + "\n" +
 "Preferred: " + contact.phoneNumbers[j].pref);

 contact.phoneNumbers[j].type = "mobile";
 contact.phoneNumbers[j].value = "408-555-0100";
 }

 // save
 contact.save(onSuccess, onFailure);
 }
 else
 {
 //alert ("No phone numbers found in the contact.");
 }
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

Using the DeviceFeatures Data Control

15-62 Developing Mobile Applications with Oracle Mobile Application Framework

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);
}

The following JavaScript example shows how to use updateContact to add a phone
number to existing phone numbers.

function updateContact(contact)
{
 try
 {
 var phoneNumbers = [1];
 phoneNumbers[0] = new ContactField('home', '650-555-0123', true);
 contact.phoneNumbers = phoneNumbers;

 // save
 contact.save(onSuccess, onFailure);
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);
}

The following Java code example shows how to use updateContact to update a
contact's phone number, email type, and postal code.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Update Contact - Updating phone number, email type, and adding address postal code
 */
String familyName = "FamilyName";
String phoneNumberNewValue = "650-555-0123";
String emailTypeNew = "work";
String addressPostalCode = "91234";

Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

// Assuming there was only one contact returned, we can use the first contact in the
array.
// If more than one contact is returned then we have to filter more to find the
exact contact
// we need to update.

foundContacts[0].getPhoneNumbers()[0].setValue(phoneNumberNewValue);
foundContacts[0].getEmails()[0].setType(emailTypeNew);
foundContacts[0].getAddresses()[0].setPostalCode(addressPostalCode);

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-63

Contact updatedContact =
DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

The following Java example shows how to use updateContact to add a phone
number to existing phone numbers.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

String additionalPhoneNumberValue = "408-555-0123";
String additionalPhoneNumberType = "mobile";
// Create a new phoneNumber that will be appended to the previous one.
ContactField additionalPhoneNumber = new ContactField();
additionalPhoneNumber.setType(additionalPhoneNumberType);
additionalPhoneNumber.setValue(additionalPhoneNumberValue);

foundContacts[0].setPhoneNumbers(new ContactField[] { additionalPhoneNumber });

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
Contact updatedContact =
DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

Note:

The timeout value for the updateContact method is set to 1 minute. If the
device's operation takes longer than the timeout allowed, a timeout error is
displayed.

15.11.7 How to Use the removeContact Method to Enable Removing Contacts
The DeviceFeatures data control includes the removeContact method, which
enables MAF applications to leverage a device's interface and file system for managing
contacts so end users can remove contacts from the device's address book. MAF
enables you to display the device's interface and optionally pre-populate the
removeContact fields. The removeContact method takes in a Contact object as a
parameter, as shown in the examples at the end of this section.

Note:

The Contact object that is needed as the input parameter can be found using
the findContacts method as described in How to Use the findContacts
Method to Enable Finding Contacts.

To customize a removeContact operation using the DeviceFeatures data control:

1. In JDeveloper, drag the removeContact operation from the DeviceFeatures data
control in the Data Controls panel and drop it on the page designer as a Link,
Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter
values for arguments to the removeContact operation. At runtime, a button or
link will be displayed on the page, which will use the entered values to perform a
removeContact operation when pressed.

Using the DeviceFeatures Data Control

15-64 Developing Mobile Applications with Oracle Mobile Application Framework

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an
editable form will be displayed on the page, which enables the application user to
enter values for the various Contact fields. Below this form will be a button, which
will use the entered values to perform a removeContact operation when pressed.

2. You can also drag a Contact return object from under the removeContact
operation in the Data Controls panel and drop it on to the page as a Form. You can
then customize the form in the Edit Form Fields dialog. When the
removeContact operation is performed, the results will be displayed in this form.

The examples at the end of this section show you how to delete a contact that you
found using findContacts. For information about the removeContact method
and the Contact object, see the DeviceDataControl class in the MAF Javadoc and
refer to the Cordova documentation (http://cordova.apache.org/).

Note:

In Android, the removeContact operation does not remove the contact fully.
After a contact is removed by calling the removeContact method, a contact
with the "(Unknown)" display name shows in the contacts list in the
application.

The following JavaScript code example shows how to use removeContact.

// Remove the contact from the device
contact.remove(onSuccess,onError);

function onSuccess()
{
 alert("Removal Success");
}

function onError(contactError)'
{
 alert("Error = " + contactError.code);
}

The following Java code example shows how to use removeContact.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Remove the contact from the device
 */
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses", familyName, true);

// Assuming there is only one contact returned, we can use the first contact in the
array.
// If more than one contact is returned we will have to filter more to find the
// exact contact we want to remove.

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
DeviceManagerFactory.getDeviceManager().removeContact(foundContacts[0]);

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-65

http://cordova.apache.org/

Note:

The timeout value for the removeContact method is set to 1 minute. If the
device's operation takes longer than the timeout allowed, a timeout error is
displayed.

15.11.8 How to Use the startLocationMonitor Method to Enable Geolocation
The DeviceFeatures data control includes the startLocationMonitor method,
which enables MAF applications to use a device's geolocation services in order to
obtain and track the device's location. MAF enables you to display a device's interface
and optionally pre-populate the startLocationMonitor fields.

MAF exposes APIs that enable you to acquire a device's current position, allowing you
to retrieve the device's current location for one instant in time or to subscribe to it on a
periodic basis. The examples at the end of this section show how to use geolocation to
subscribe to changes in a device's location and how to obtain a device's location. For
information about the startLocationMonitor method, see the
DeviceDataControl class in the Java API Reference for Oracle Mobile Application
Framework and refer to the Cordova documentation (http://
cordova.apache.org/).

Note:

The altitudeAccuracy property is not supported by Android devices.

Updates do not occur as frequently on the Android platform as on iOS.

To listen for changes in a device's location using the DeviceFeatures data control:

In JDeveloper, drag the startLocationMonitor operation from the DeviceFeatures
data control in the Data Controls panel to the page designer and drop it as a Link or
Button. When prompted by the Edit Action Dialog, populate the fields with values
for the parameters that the operation supports, as described in the following list or see
the DeviceDataControl class’s startLocationMonitor method in Java API
Reference for Oracle Mobile Application Framework.

• enableHighAccuracy: If true, use the most accurate possible method of
obtaining a location fix. This is just a hint; the operating system may not respect it.
Devices often have several different mechanisms for obtaining a location fix,
including cell tower triangulation, Wi-Fi hotspot lookup, and true GPS. Specifying
false indicates that you are willing to accept a less accurate location, which may
result in a faster response or consume less power.

• updateInterval: Defines how often, in milliseconds, to receive updates.
Location updates may not be delivered as frequently as specified; the operating
system may wait until a significant change in the device's position has been
detected before triggering another location update.

• locationListener: EL expression that resolves to a bean method with the
following signature:

void methodName(Location newLocation)

This EL expression will be evaluated every time a location update is received. For
example, enter viewScope.LocationListenerBean.locationUpdated

Using the DeviceFeatures Data Control

15-66 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/
http://cordova.apache.org/

(without the surrounding#{}), then define a bean named
LocationListenerBean in viewScope and implement a method with the
following signature:

public void locationUpdated(Location currentLocation) {
 System.out.println(currentLocation);
 // To stop subscribing to location updates, invoke the following:
 // DeviceManagerFactory.getDeviceManager().clearWatchPosition(
 // currentLocation.getWatchId());
}

Note:

Do not use the EL syntax #{LocationListenerBean.locationUpdate}
to specify the locationListener, unless you truly want the result of
evaluating that expression to be the name of the locationListener.

The example at the end of this section shows how to subscribe to changes in the
device's location using the DeviceManager.startUpdatingPosition method.
For more information about the parameters that this method takes, see Java API
Reference for Oracle Mobile Application Framework.

For an example of how to subscribe to changes in the device's position using
JavaScript, refer to the Cordova documentation (http://cordova.apache.org/).

Parameters returned in the callback function specified by the locationListener are
as follows:

• double getAccuracy—Accuracy level of the latitude and longitude coordinates
in meters

• double getAltitude—Height of the position in meters above the ellipsoid

• double getLatitude—Latitude in decimal degrees

• double getLongitude—Longitude in decimal degrees

• double getAltitudeAccuracy—Accuracy level of the altitude coordinate in
meters

• double getHeading—Direction of travel, specified in degrees counting
clockwise relative to the true north

• double getSpeed—Current ground speed of the device, specified in meters per
second

• long getTimestamp—Creation of a timestamp in milliseconds since the Unix
epoch

• String getWatchId—Only used when subscribing to periodic location updates.
A unique ID that can be subsequently used to stop subscribing to location updates

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.GeolocationCallback;
import oracle.adf.model.datacontrols.device.Location;

// Subscribe to location updates that will be delivered every 20 seconds, with high
accuracy.
// As you can have multiple subscribers, let's identify this one as
'MyGPSSubscriptionID'.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-67

http://cordova.apache.org/

// Notice that this call returns the watchID, which is usually the same as the
watchID passed in.
// However, it may be different if the specified watchID conflicts with an existing
watchID,
// so be sure to always use the returned watchID.
String watchID =
DeviceManagerFactory.getDeviceManager().startUpdatingPosition(20000, true, "
 "MyGPSSubscriptionID", new GeolocationCallback() {
 public void locationUpdated(Location position) {
 System.out.println("Location updated to: " + position);
 }
});

// The previous call returns immediately so that you can continue processing.
// When the device's location changes, the locationUpdated() method specified in
// the previous call will be invoked in the context of the current feature.

// When you wish to stop being notified of location changes, call the following
method:
DeviceManagerFactory().getDeviceManager().clearWatchPosition(watchID);

For more information about the startLocationMonitor and
startHeadingMonitor methods, see the DeviceDataControl class in the Java
API Reference for Oracle Mobile Application Framework and refer to the Cordova
documentation (http://cordova.apache.org/).

The following example shows how to get a device's current location (one time) using
the DeviceManager.getCurrentPosition. For information about the parameters
that this method accepts, see Java API Reference for Oracle Mobile Application Framework.

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.Location;

// Get the device's current position, with highest accuracy, and accept a cached
location that is
// no older than 60 seconds.
Location currentPosition =
DeviceManagerFactory.getDeviceManager().getCurrentPosition(60000, true);
System.out.println("The device's current location is: latitude=" +
currentPosition.getLatitude() +
 ", longitude=" + currentPosition.getLongitude());

15.11.9 How to Use the displayFile Method to Enable Displaying Files
The DeviceFeatures data control includes the displayFile method, which enables
MAF applications to display files that are local to the device. Depending on the
platform, application users can view PDFs, image files, Microsoft Office documents,
and various other file types. On iOS, the application user has the option to preview
supported files within the MAF application. Users can also open those files with third-
party applications, email them, or send them to a printer. On Android, all files are
opened in third-party applications. In other words, the application user leaves the
MAF application while viewing the file. The user may return to the MAF application
by pressing the Android Back button. If the device does not have an application
capable of opening the given file, an error is displayed. For an example of how the
displayFile method opens files on both iOS- and Android-powered devices, see the
DeviceDemo sample application. This application is available in the
PublicSamples.zip file at the following location within the JDeveloper installation
directory of your development computer:

Using the DeviceFeatures Data Control

15-68 Developing Mobile Applications with Oracle Mobile Application Framework

http://cordova.apache.org/

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

The displayFile method is only able to display files that are local to the device. This
means that remote files first have to be downloaded. Use the call
AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.Downl
oadDirectory) to return the directory root where downloaded files should be
stored. Note that on iOS, this location is specific to the application, but on Android this
location refers to the external storage directory. The external storage directory is
publicly accessible and allows third-party applications to read files stored there.

Table 15-7 Supported File Types

iOS Android

For more information about supported file types,
see the Quick Look preview controller
documentation at the Apple iOS development site
(http://developer.apple.com/
library/ios/navigation/).

MAF will start the viewer associated
with the given MIME type if it is
installed on the device. There is no
built-in framework for viewing specific
file types. If the device does not have
an application installed that handles
the file type, the MAF application
displays an error.

iWork documents

Microsoft Office documents (Office '97 and newer)

Rich Text Format (RTF) documents

PDF files

Images

Text files whose uniform type identifier (UTI)
conforms to the public.text type

Comma-separated value (csv) files

To customize a displayFile operation using the DeviceFeatures data control:

1. In JDeveloper, drag the displayFile operation from the DeviceFeatures data control
in the Data Controls panel and drop it on the page designer as a Link, Button, or
Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter
values for arguments to the displayFile operation. At runtime, a button or link
will be displayed on the page, which will use the entered values to perform a
displayFile operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an
editable form will be displayed on the page, which enables the application user to
enter values for the various fields. Below this form will be a button, which will use
the entered values to perform a displayFile operation when pressed.

The following example shows you how to view files using the displayFile
method. For information about the displayFile method, see the
DeviceDataControl class in the MAF Javadoc).

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-69

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

 URL remoteFileUrl;
 InputStream is;
 BufferedOutputStream fos;
 try {

 // Open connection to remote file; fileUrl here is a String containing
the URL to the remote file.
 remoteFileUrl = new URL(fileUrl);
 URLConnection connection = remoteFileUrl.openConnection();
 is = new BufferedInputStream(connection.getInputStream());
 // Saving the file locally as 'previewTempFile.<extension>'
 String fileExt = fileUrl.substring(fileUrl.lastIndexOf('.'),
fileUrl.length());
 String tempFile = "/previewTempFile" + fileExt;
 File localFile = null;
 // Save the file in the DownloadDirectory location
 localFile = new
File(AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory) +
tempFile);
 if (localFile.exists()) {
 localFile.delete();
 }
 // Use buffered streams to download the file.
 fos = new BufferedOutputStream(new FileOutputStream(localFile));
 byte[] data = new byte[1024];
 int read = 0;
 while ((read = is.read(data)) != -1) {
 fos.write(data, 0, read);
 }
 is.close();
 fos.close();

 // displayFile takes a URL string which has to be encoded on iOS.
 // iOS does not handle "+" as an encoding for space (" ") but
 // expects "%20" instead. Also, the leading slash MUST NOT be
 // encoded to "%2F". We will revert it to a slash after the
 // URLEncoder converts it to "%2F".
 StringBuffer buffer = new StringBuffer();
 String path = URLEncoder.encode(localFile.getPath(), "UTF-8");
 // replace "+" with "%20"
 String replacedString = "+";
 String replacement = "%20";
 int index = 0, previousIndex = 0;
 index = path.indexOf(replacedString, index);
 while (index != -1) {
 buffer.append(path.substring(previousIndex,
index)).append(replacement);
 previousIndex = index + 1;
 index = path.indexOf(replacedString, index +
replacedString.length());
 }
 buffer.append(path.substring(previousIndex, path.length()));
 // Revert the leading encoded slash ("%2F") to a literal slash ("/").
 if (buffer.indexOf("%2F") == 0) {
 buffer.replace(0, 3, "/");
 }

 // Create URL and invoke displayFile with its String representation.
 URL localURL = null;

Using the DeviceFeatures Data Control

15-70 Developing Mobile Applications with Oracle Mobile Application Framework

 if (Utility.getOSFamily() == Utility.OSFAMILY_ANDROID) {
 localURL = new URL("file", "localhost", localFile.getAbsolutePath());
 }
 else if (Utility.getOSFamily() == Utility.OSFAMILY_IOS)
 {
 localURL = new URL("file", "localhost", buffer.toString());
 }
 DeviceManagerFactory.getDeviceManager().displayFile(localURL.toString(),
"remote file");
 } catch (Throwable t) {
 System.out.println("Exception caught: " + t.toString());
 }

15.11.10 How to Use the addLocalNotification and cancelLocalNotification Methods to
Manage Local Notifications

The DeviceFeatures data control includes the addLocalNotification and
cancelLocalNotification methods, which enable MAF applications to leverage a
device's interface for managing notifications so end users can schedule or cancel local
notifications.

To customize an addLocalNotification or cancelLocalNotification operation using the
DeviceFeatures data control:

1. In JDeveloper, drag the addLocalNotification or cancelLocalNotification operation
from the DeviceFeatures data control in the Data Controls panel and drop it on the
page designer as a Button, Link, List Item, or Parameter Form.

Button, Link, or List Item: You will be prompted with the Edit Action Binding
dialog to enter values for arguments to the addLocalNotification or
cancelLocalNotification operation. For more information on this dialog, see
the online help for Oracle JDeveloper. At runtime, a button, link, or list item will be
displayed on the page, which will use the entered values to perform the
addLocalNotification or cancelLocalNotification operation when
pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. For more
information on this dialog, see the online help for Oracle JDeveloper. At runtime,
an editable form will be displayed on the page, which enables the application user
to enter values for the various fields. Below this form will be a button, which will
use the entered values to perform the addLocalNotification or
cancelLocalNotification operation when pressed.

Figure 15-16 shows the Edit Action Binding dialog, which you use to configure the
parameters of the selected operation. In this example, the notificationID of the
cancelLocalNotification operation is bound to the result of the
addLocalNotification operation.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-71

Figure 15-16 Setting Bindings for Scheduling Local Notifications

Figure 15-17 shows how you can use the expression builder to bind the result of the
addLocalNotification operation to the cancelLocalNotification operation.

Using the DeviceFeatures Data Control

15-72 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 15-17 Binding cancelLocalNotification to the result of addLocalNotification

For information about the addLocalNotification and
cancelLocalNotification methods, see the DeviceDataControl class in the
MAF Javadoc). For more information about managing local notifications, including
code examples, see Managing Local Notifications. For general information about
notifications, see Introduction to Notifications.

15.11.11 What You May Need to Know About Device Properties
There may be features of your application that rely on specific device characteristics or
capabilities. For example, you may want to present a different user interface
depending on the device's screen orientation, or there may be a mapping feature that
you want to enable only if the device supports geolocation. MAF provides a number
of properties that you can access from Java, JavaScript, and EL in order to support this
type of dynamic behavior. Table 15-8 lists these properties, along with information
about how to query them, what values to expect in return, and whether the property
can change during the application's lifecycle. The example at the end of this section
shows how you can access these properties using JavaScript.

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-73

Note:

The timeout value for device properties is set to 1 minute. If the device's
operation takes longer than the timeout allowed, a timeout error is displayed.

Table 15-8 Device Properties and Corresponding EL Expressions

Property Static/
Dynamic

EL Expression Sample Value Java API

device.name Static #{deviceScope.de
vice.name}

"iPhone
Simulator",
"Joe Smith's
iPhone"

DeviceManager.getName(
)

device.platform Static #{deviceScope.de
vice.platform}

"iPhone
Simulator",
"iPhone"

DeviceManager.getPlatf
orm()

device.version Static #{deviceScope.de
vice.version}

"4.3.2",
"5.0.1"

DeviceManager.getVersi
on()

device.os Static #{deviceScope.de
vice.os}

"iOS" DeviceManager.getOs()

device.model Static #{deviceScope.de
vice.model}

"x86_64",
"i386",
"iPhone3,1"

DeviceManager.getMode
l()

device.phonegap Static #{deviceScope.de
vice.phonegap}

"1.0.0" DeviceManager.getPhone
gap()

hardware.hasCam
era

Static #{deviceScope.ha
rdware.hasCamera
}

"true", "false" DeviceManager.hasCamer
a()

hardware.hasCon
tacts

Static #{deviceScope.ha
rdware.hasContac
ts}

"true", "false" DeviceManager.hasConta
cts()

hardware.hasTou
chScreen

Static #{deviceScope.ha
rdware.hasTouchS
creen}

"true", "false" DeviceManager.hasTouch
Screen()

hardware.hasGeo
location

Static #{deviceScope.ha
rdware.hasGeoloc
ation}

"true", "false" DeviceManager.hasGeolo
cation()

hardware.hasAcc
elerometer

Static #{deviceScope.ha
rdware.hasAccele
rometer}

"true", "false" DeviceManager.hasAccel
erometer()

hardware.hasCom
pass

Static #{deviceScope.ha
rdware.hasCompas
s}

"true", "false" DeviceManager.hasCompa
ss()

hardware.hasFil
eAccess

Static #{deviceScope.ha
rdware.hasFileAc
cess}

"true", "false" DeviceManager.hasFileA
ccess()

Using the DeviceFeatures Data Control

15-74 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-8 (Cont.) Device Properties and Corresponding EL Expressions

Property Static/
Dynamic

EL Expression Sample Value Java API

hardware.hasLoc
alStorage

Static #{deviceScope.ha
rdware.hasLocalS
torage}

"true", "false" DeviceManager.hasLocal
Storage()

hardware.hasMed
iaPlayer

Static #{deviceScope.ha
rdware.hasMediaP
layer}

"true", "false" DeviceManager.hasMedia
Player()

hardware.hasMed
iaRecorder

Static #{deviceScope.ha
rdware.hasMediaR
ecorder}

"true", "false" DeviceManager.hasMedia
Recorder()

hardware.networ
kStatus

Dynamic #{deviceScope.ha
rdware.networkSt
atus}

"wifi", "2g",
"unknown",
"none"1

DeviceManager.getNetwo
rkStatus()

hardware.screen
.width

Dynamic #{deviceScope.ha
rdware.screen.wi
dth}

320, 480 DeviceManager.getScree
nWidth()

hardware.screen
.height

Dynamic #{deviceScope.ha
rdware.screen.he
ight}

480, 320 DeviceManager.getScree
nHeight()

hardware.availa
bleWidth

Dynamic #{deviceScope.ha
rdware.screen.av
ailableWidth}

<= 320, <= 480 DeviceManager.getAvail
ableScreenWidth()

hardware.availa
bleHeight

Dynamic #{deviceScope.ha
rdware.screen.av
ailableHeight}

<= 480, <= 320 DeviceManager.getAvail
ableScreenHeight()

hardware.screen
.dpi

Static #{deviceScope.ha
rdware.screen.dp
i}

160, 326 DeviceManager.getScree
nDpi()

hardware.screen
.diagonalSize

Static #{deviceScope.ha
rdware.screen.di
agonalSize}

9.7, 6.78 DeviceManager.getScree
nDiagonalSize()

hardware.screen
.scaleFactor

Static #{deviceScope.ha
rdware.screen.sc
aleFactor}

1.0, 2.0 DeviceManager.getScree
nScaleFactor()

1 If both wifi and 2G are turned on, network status will be wifi, as wifi takes precedence over 2G.

The following example shows how you can access device properties using JavaScript.

<!DOCTYPE html>
<html>
 <head>
 <title>Device Properties Example</title>

 <script type="text/javascript" charset="utf-8" src="cordova-2.2.0.js"></script>
 <script type="text/javascript" charset="utf-8">

Using the DeviceFeatures Data Control

Using Bindings and Creating Data Controls in MAF AMX 15-75

 // Wait for Cordova to load
 //
 //document.addEventListener("deviceready", onDeviceReady, false);
 document.addEventListener("showpagecomplete",onDeviceReady,false);

 // Cordova is ready
 //
 function onDeviceReady() {
 adf.mf.api.getDeviceProperties(properties_success, properties_fail);
 }

 function properties_success(response) {
 try {
 var element = document.getElementById('deviceProperties');
 var device = response.device;
 var hardware = response.hardware;
 element.innerHTML = 'Device Name: ' + device.name +
'
' +
 'Device Platform: ' + device.platform +
'
' +
 'Device Version: ' + device.version +
'
' +
 'Device OS: ' + device.os +
'
' +
 'Device Model: ' + device.model +
'
' +
 'Hardware Screen Width: ' + hardware.screen.width +
'
' +
 'Hardware Screen Height: ' + hardware.screen.height +
'
' +
 } catch (e) {alert("Exception: " + e);}
 }

 function properties_fail(error) {
 alert("getDeviceProperties failed");
 }

 </script>
 </head>
 <body>
 <p id="deviceProperties">Loading device properties...</p>
 </body>
</html>

Note:

You can declaratively bind a JavaScript function to the showpagecomplete
event by adding an amx:clientListener tag as a direct child of
<amx:view>, as in the following example:

<amx:clientListener type="showpagecomplete"
method="myShowPageCompleteHandler"/>

For more information about the Client Listener (clientListener)
component, see How to Use the Client Listener.

Using the DeviceFeatures Data Control

15-76 Developing Mobile Applications with Oracle Mobile Application Framework

15.12 Validating Attributes
In the Mobile Application Framework, validation occurs in the data control layer, with
validation rules set on binding attributes. Attribute validation takes place at a single
point in the system, during the setValue operation on the bindings.

You can define the following validators for attributes exposed by the data controls:

• Compare validator

• Length validator

• List validator

• Range validator

All validators for a given attribute are executed, and nested exceptions are thrown for
every validator that does not pass. You can define a validation message for attributes,
which is displayed when a validation rule is fired at runtime. For more information,
see Validating Input and How to Add Validation Rules.

Note:

Due to a JSON limitation, the value that a BigDecimal can hold is within the
range of a Double, and the value that a BigInteger can hold is within the
range of a Long. If you want to use numbers greater than those allowed, you
can call toString on BigDecimal or BigInteger to (de)serialize values as
String.

Table 15-9 lists supported validation combinations for the length validator.

Table 15-9 Length Validation

Compare type Byte Character

Equals Supported Supported

Not Equals Supported Supported

Less Than Supported Supported

Greater Than Supported Supported

Less Than Equal To Supported Supported

Greater Than Equal To Supported Supported

Between Supported Supported

Table 15-10 and Table 15-11 list supported validation combinations for the range
validator.

Table 15-10 Range Validation

Validating Attributes

Using Bindings and Creating Data Controls in MAF AMX 15-77

Table 15-10 (Cont.) Range Validation

Compare type Byte Char Double Float Integer Long Short

Between Supported Supported Supported Supported Supported Supported Supported

Not
Between

Supported Supported Supported Supported Supported Supported Supported

Table 15-11 Range Validation - math, sql, and util Packages

Compare
type

java.math.BigDecimal java.math.
BigInteger

java.sql.Date java.sql.Time java.sql.Time
stamp

java.util.Date

Betwee
n

Supported Supported Not
supported

Not
supported

Not
supported

Not
supported

Not
Betwee
n

Supported Supported Not
supported

Not
supported

Not
supported

Not
supported

Table 15-12 lists supported validation combinations for the list validator.

Table 15-12 List Validation

Compare type String

In Supported

Not In Supported

Table 15-13 and Table 15-14 lists supported validation combinations for the compare
validator.

Table 15-13 Compare Validation

Compare
type

Byte Char Double Float Integer Long Short String

Equals Supporte
d

Supported Supported Supported Supported Supported Supporte
d

Supporte
d

Not
Equals

Supporte
d

Supported Supported Supported Supported Supported Supporte
d

Supporte
d

Less
Than

Not
supporte
d

Supported Supported Supported Supported Supported Supporte
d

Not
supported

Greater
Than

Not
supporte
d

Supported Supported Supported Supported Supported Supporte
d

Not
supported

Less
Than
Equal
To

Not
supporte
d

Supported Supported Supported Supported Supported Supporte
d

Not
supported

Validating Attributes

15-78 Developing Mobile Applications with Oracle Mobile Application Framework

Table 15-13 (Cont.) Compare Validation

Compare
type

Byte Char Double Float Integer Long Short String

Greater
Than
Equal
To

Not
supporte
d

Supported Supported Supported Supported Supported Supporte
d

Not
supported

Table 15-14 Compare Validation - java.math, java.sql, and java.util Packages

Compare type java.math.
BigDecimal

java.math.
BigInteger

java.sql.Date java.sql.Time java.sql.Timestamp java.util.Date

Equals Supported Supported Not
supported

Not
supported

Not supported Not
supported

Not Equals Supported Supported Not
supported

Not
supported

Not supported Not
supported

Less Than Supported Supported Not
supported

Not
supported

Not supported Not
supported

Greater
Than

Supported Supported Not
supported

Not
supported

Not supported Not
supported

Less Than
Equal To

Supported Supported Not
supported

Not
supported

Not supported Not
supported

Greater
Than Equal
To

Supported Supported Not
supported

Not
supported

Not supported Not
supported

15.12.1 How to Add Validation Rules
You can define validation rules for a variety of use cases. To add a declarative
validation rule to an entity object, use the Overview Editor for Data Control Structure
Files - Attributes Page.

To add a validation rule:

1. From the Data Controls panel, right-click on a data controls object and choose Edit
Definition.

2. In the Overview Editor for Data Control Structure Files, select the Attributes page.

Validating Attributes

Using Bindings and Creating Data Controls in MAF AMX 15-79

3. Select the Validation Rules tab in the lower part of the page and then click Add. In
the resulting Add Validation Rule dialog, define the validation rule and the failure
handling.

Validating Attributes

15-80 Developing Mobile Applications with Oracle Mobile Application Framework

15.12.2 What You May Need to Know About the Validator Metadata
The validator metadata is placed into the data control structure metadata XML files at
design time. The following example shows a sample length validator.

<?xml version="1.0" encoding="windows-1252" ?>
<!DOCTYPE PDefViewObject SYSTEM "jbo_03_01.dtd">
<PDefViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Product"
 Version="12.1.1.61.36"
 xmlns:validation="http://xmlns.oracle.com/adfm/validation">
 <DesignTime>
 <Attr Name="_DCName" Value="DataControls.ProductListBean"/>
 <Attr Name="_SDName" Value="mobile.Product"/>
 </DesignTime>
 <PDefAttribute
 Name="name">

Validating Attributes

Using Bindings and Creating Data Controls in MAF AMX 15-81

 <validation:LengthValidationBean
 Name="nameRule0"
 OnAttribute="name"
 CompareType="GREATERTHAN"
 DataType="BYTE"
 CompareLength="5"
 Inverse="false"/>
 </PDefAttribute>
</PDefViewObject>

15.13 Using Background Threads
You can use background Java threads to update data model values, but you must take
care to ensure the updates are properly synchronized with the user interface.

A background thread may be useful when fetching data (say from a remote server) or
computing values with a complex algorithm. You can also use background threads to
fetch or compute data values, but you should not use them to update the application’s
data model objects directly, because this could result in conflicts with the application’s
user interface threads.

To update model objects from a background thread, use the MafExecutorService
API to submit a Java Runnable that will perform the model updates. First, obtain the
new or updated model values (fetched or computed) and then submit a Runnable to
update the values in the application’s data model objects, as shown in the following
example.

 // First, fetch/compute new data values.
 fetchUpdatedValues();

 // Next, use a Runnable to update the model objects.
 MafExecutorService.execute(new Runnable()
 {
 public void run()
 {
 doModelUpdates();
 AdfmfJavaUtilities.flushDataChangeEvent();
 }
 });

Note: To ensure the application does not become unresponsive, the submitted
task must be of short duration. Feature locks may be acquired before
executing the task, which will not be released until the task completes.

For more information on the
oracle.adfmf.framework.api.MafExecutorService.execute class, see the
MAF Javadoc.

15.14 Working with Data Change Events
To simplify data change events, JDeveloper uses the property change listener pattern.
In most cases you can use JDeveloper to generate the necessary code to source
notifications from your beans' property accessors by selecting the Notify listeners
when property changes checkbox in the Generate Accessors dialog (see About the
Managed Beans Category for details). The PropertyChangeSupport object is
generated automatically, with the calls to firePropertyChange in the newly-
generated setter method. Additionally, the addPropertyChangeListener and
removePropertyChangeListener methods are added so property change listeners

Using Background Threads

15-82 Developing Mobile Applications with Oracle Mobile Application Framework

can register and unregister themselves with this object. This is what the framework
uses to capture changes to be pushed to the client cache and to notify the user interface
layer that data has been changed.

Note:

If you are manually adding a PropertyChangeSupport object to a class,
you must also include the addPropertyChangeListener and
removePropertyChangeListener methods (using these explicit method
names).

Property changes alone will not solve all the data change notifications, as in the case
where you have a bean wrapped by a data control and you want to expose a collection
of items. While a property change is sufficient when individual items of the list
change, it is not sufficient for cardinality changes. In this case, rather than fire a
property change for the entire collection, which would cause a degradation of
performance, you can instead refresh just the collection delta. To do this you need to
expose more data than is required for a simple property change, which you can do
using the ProviderChangeSupport class. Provider change events are like property
change events but apply to the entire provider instead of just an individual property.

Note:

The ProviderChangeSupport object is not generated automatically—you
must manually add it to your class—along with the
addProviderChangeListener, removeProviderChangeListener, and
getKey() methods (using these explicit method names). The getKey()
method must return a string that produces a unique value for the provider. As
an alternative to adding the getKey() method to your class, designate an
attribute in the data control as the key attribute in the data control structure
file using the overview editor shown in Figure 15-18.

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-83

Figure 15-18 Selecting a Key Attribute in the Data Control Structure File of a Data
Control

Since the provider change is required only when you have a dynamic collection
exposed by a data control wrapped bean, there are only a few types of provider
change events to fire:

• fireProviderCreate—when a new element is added to the collection

• fireProviderDelete—when an element is removed from the collection

• fireProviderChange—when a single element is changed in the collection
(necessary to prevent the whole list from refreshing)

• fireProviderRefresh—when multiple changes are done to the collection at
one time and you decide it is better to simply ask for the client to refresh the entire
collection (this should only be used in bulk operations)

The ProviderChangeSupport class is used for sending notifications relating to
collection elements, so that components update properly when a change occurs in a
Java bean data control. It follows a similar pattern to the automatically-generated
PropertyChangeSupport class, but the event objects used with
ProviderChangeSupport send more information, including the type of operation
as well as the key and position of the element that changed.
ProviderChangeSupport captures structural changes to a collection, such as
adding or removing an element (or provider) from a collection.
PropertyChangeSupport captures changes to the individual items in the collection.

The following example shows how to use ProviderChangeSupport for sending
notifications relating to structural changes to collection elements (such as when adding
or removing a child). For more information on the ProviderChangeListener

Working with Data Change Events

15-84 Developing Mobile Applications with Oracle Mobile Application Framework

interface as well as the ProviderChangeEvent and ProviderChangeSupport
classes, see the MAF Javadoc.

public class NotePad {
 private static List s_notes = null;

/* manually adding property change listener as well as provider change listener. */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);
 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 …
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this) {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])
 s_notes.toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this) {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderCreate("notes", n.getUid(), n);
 }

 public void removeNote() {
 System.out.println("Removng a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this) {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderDelete("notes", n.getUid());
 }
 }

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-85

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 providerChangeSupport.fireProviderRefresh("notes");
 }

 public void addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }
}

Data changes are passed back to the client (to be cached) with any response message
or return value from the JVM layer. This allows JDeveloper to compress and reduce
the number of events and updates to refresh to the user interface, allowing the
framework to be as efficient as possible.

However, there are times where you may need to have a background thread handle a
long-running process (such as web-service interactions, database interactions, or
expensive computations) and notify the user interface independent of a user action. To
update data on an AMX page to reflect the current values of data fields whose values
have changed, you can avoid the performance hit associated with reloading the whole
AMX page by calling AdfmfJavaUtilities.flushDataChangeEvent to force the
currently queued data changes to the client.

Note:

The flushDataChangeEvent method can only be executed from a
background thread.

The following example shows how you can use the flushDataChangeEvent
method to force pending data changes to the client. For more information about

Working with Data Change Events

15-86 Developing Mobile Applications with Oracle Mobile Application Framework

oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEve
nt, see Java API Reference for Oracle Mobile Application Framework.

/* Note – Simple POJO used by the NotePad managed bean or data control wrapped bean
*/

package mobile;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

/**
 * Simple note object
 * uid - unique id - generated and not mutable
 * title - title for the note - mutable
 * note - note comment - mutable
 */
public class Note {
 /* standard JDeveloper generated property change support */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);

 private static boolean s_backgroundFlushTestRunning = false;

 public Note() {
 this("" + (System.currentTimeMillis() % 10000));
 }

 public Note(String id) {
 this("UID-"+id, "Title-"+id, "");
 }

 public Note(String uid, String title, String note) {
 this.uid = uid;
 this.title = title;
 this.note = note;
 }

 /* update the current note with the values passed in */
 public void updateNote(Note n) {
 if (this.getUid().compareTo(n.getUid()) == 0) {
 this.setTitle(n.getTitle());
 this.setNote(n.getNote());
 }
 else {
 throw new IllegalArgumentException("note");
 }
 }

 /* background thread to simulate some background process that make changes */
 public void startNodeBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 System.out.println("startBackgroundThread enter - " +

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-87

 s_backgroundFlushTestRunning);

 s_backgroundFlushTestRunning = true;
 for(int i = 0; i <= iterations; ++i) {
 try {
 System.out.println("executing " + i + " of " + iterations + "
 " iterations.");

 /* update a property value */
 if(i == 0) {
 setNote("thread starting");
 }
 else if(i == iterations) {
 setNote("thread complete");
 s_backgroundFlushTestRunning =
false;
 }
 else {
 setNote("executing " + i + " of " + iterations + "
iterations.");
 }
 setVersion(getVersion() + 1);
 setTitle("Thread Test v" + getVersion());
 AdfmfJavaUtilities.flushDataChangeEvent(); /* key line */
 }
 catch(Throwable t) {
 System.err.println("Error in the background thread: " + t);
 }

 try {
 Thread.sleep(delay); /* sleep for 6 seconds */
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

 protected String uid;
 protected String title;
 protected String note;
 protected int version;

 protected int iterations = 10;
 protected int delay = 500;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public String getUid() {

Working with Data Change Events

15-88 Developing Mobile Applications with Oracle Mobile Application Framework

 return uid;
 }

 public void setTitle(String title) {
 String oldTitle = this.title;
 this.title = title;
 propertyChangeSupport.firePropertyChange("title", oldTitle, title);
 }

 public String getTitle() {
 return title;
 }

 public void setNote(String note) {
 String oldNote = this.note;
 this.note = note;
 propertyChangeSupport.firePropertyChange("note", oldNote, note);
 }

 public String getNote() {
 return note;
 }

 public void setVersion(int version) {
 int oldVersion = this.version;
 this.version = version;
 propertyChangeSupport.firePropertyChange("version", oldVersion, version);
 }

 public int getVersion() {
 return version;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.
 firePropertyChange("iterations", oldIterations, iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.
 firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

/* NotePad – Can be used as a managed bean or wrapped as a data control */

package mobile;

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-89

import java.util.ArrayList;
import java.util.List;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;
import oracle.adfmf.java.beans.ProviderChangeListener;
import oracle.adfmf.java.beans.ProviderChangeSupport;

public class NotePad {
 private static List s_notes = null;
 private static boolean s_backgroundFlushTestRunning = false;

 protected transient PropertyChangeSupport propertyChangeSupport =
 new PropertyChangeSupport(this);

 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 if (s_notes == null) {
 s_notes = new ArrayList();

 for(int i = 1000; i < 1003; ++i) {
 s_notes.add(new Note(""+i));
 }
 }
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this) {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])s_notes.
 toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this) {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");

 /* update the note count property on the screen */
 propertyChangeSupport.

Working with Data Change Events

15-90 Developing Mobile Applications with Oracle Mobile Application Framework

 firePropertyChange("noteCount", s-1, s);

 /* update the notes collection model with the new note */
 providerChangeSupport.
 fireProviderCreate("notes", n.getUid(), n);

 /* to update the client side model layer */
 AdfmfJavaUtilities.flushDataChangeEvent();
 }

 public void removeNote() {
 System.out.println("Removing a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this) {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");

 /* update the client side model layer */
 providerChangeSupport.fireProviderDelete("notes", n.getUid());

 /* update the note count property on the screen */
 propertyChangeSupport.firePropertyChange("noteCount", -1, end);
 }
 }

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 /* update the entire notes collection on the client */
 providerChangeSupport.fireProviderRefresh("notes");
 }

 public int getNoteCount() {
 int size = 0;

 synchronized (this) {
 size = s_notes.size();
 }
 return size;
 }

 public void addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 public void startListBackgroundThread(ActionEvent actionEvent) {
 for(int i = 0; i < 10; ++i) {
 _startListBackgroundThread(actionEvent);
 try {
 Thread.currentThread().sleep(i * 1234);
 }

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-91

 catch (InterruptedException e) {
 }
 }
 }

 public void
 _startListBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 s_backgroundFlushTestRunning = true;

 for(int i = 0; i <= iterations; ++i) {
 System.out.println("executing " + i +
 " of " + iterations + " iterations.");

 try {
 /* update a property value */
 if(i == 0) {
 setStatus("thread starting");
 addNote(); // add a note
 }
 else if(i == iterations) {
 setStatus("thread complete");
 removeNote(); // remove a note
 s_backgroundFlushTestRunning =
false;
 }
 else {
 setStatus("executing " + i + " of " +
 iterations + " iterations.");

 synchronized (this) {
 if(s_notes.size() > 0) {
 Note n =(Note)s_notes.get(0);

 n.setTitle("Updated-" +
 n.getUid() + " v" + i);
 }
 }
 }
 AdfmfJavaUtilities.flushDataChangeEvent();
 }
 catch(Throwable t) {
 System.err.
 println("Error in bg thread - " + t);
 }

 try {
 Thread.sleep(delay);
 }
 catch (InterruptedException ex) {
 setStatus("inturrpted " + ex);
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

Working with Data Change Events

15-92 Developing Mobile Applications with Oracle Mobile Application Framework

 protected int iterations = 100;
 protected int delay = 750;

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.firePropertyChange("iterations", oldIterations,
iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

The StockTracker sample application provides an example of how data change events
use Java to enable data changes to be reflected in the user interface. For more
information about this and other sample applications, see MAF Sample Applications.

Working with Data Change Events

Using Bindings and Creating Data Controls in MAF AMX 15-93

Working with Data Change Events

15-94 Developing Mobile Applications with Oracle Mobile Application Framework

16
Configuring End Points Used in MAF

Applications

This chapter describes how to use the Configuration Service to configure end points
that a MAF application can use.

This chapter includes the following sections:

• Introduction to Configuring End Points in MAF Applications

• Defining the Configuration Service End Point

• Creating the User Interface for the Configuration Service

• About the URL Construction

• Setting Up the Configuration Service on the Server

• Configuring Properties For Use By Enterprise Mobile Management

16.1 Introduction to Configuring End Points in MAF Applications
The Configuration Service is a tool that allows you to configure end points used by
web services, login utilities, and other parts of MAF applications.

Note:

MAF applications on the Universal Windows Platform do not support the use
of the Configuration Service.

16.2 Defining the Configuration Service End Point
The end point URL is defined in the connections.xml file and a new connection
entry must be added to that file. This new connection should be of type
HttpURLConnection, with its url value pointing to the configuration server end
point URL and its name set to an arbitrary value which will eventually be referenced
in a Java bean code.

The following example shows how to define the Configuration Service end point in
the connections.xml file.

 <RefAddresses>
 <XmlRefAddr addrType="ConfigServiceConnection">
 <Contents>
 <urlconnection name="ConfigServiceConnection" url="http://127.0.0.1"/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>

Configuring End Points Used in MAF Applications 16-1

 </Reference>

<!-- Login Server connection for secured configuration service -->
 <Reference name="ConfigServerLogin" className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="ConfigServerLogin" partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://127.0.0.1"/>
 <logout url="http://127.0.0.1"/>
 <authenticationMode value="remote"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <maxFailuresBeforeCredentialCleared value="3"/>
 <injectCookiesToRestHttpHeader value="true"/>
 <rememberCredentials>
 <enableRememberUserName value="true"/>
 <rememberUserNameDefault value="true"/>
 <enableRememberPassword value="false"/>
 <enableStayLoggedIn value="false"/>
 </rememberCredentials>
 <accessControl/>
 <userObjectFilter/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>

If security is enabled for the configuration server, the connections.xml file has to
include a login connection that points to the same end point URL as the URL
connection. The login connection and HttpURLConnection should share the same
adfCredentialStoreKey, as the previous example shows.

Most of the time, the end point URL needs to be retrieved from the end user. To
address this use case, create a user interface to retrieve the value of the end point URL
from the end user and set it in an application preference. The retrieved value can then
be used in a Java bean method to override the connection URL value, as Example 16-1
shows.

Example 16-1 Overriding the Connection Definition

AdfmfJavaUtilities.clearSecurityConfigOverrides(<ConfigService_ConnectionName>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_ConnectionName>, "urlconnection",
 "url", <ConfigService_EndpointURL>);

// Required if Config Service is secured and the authentication endpoints are input by the user
AdfmfJavaUtilities.clearSecurityConfigOverrides(<ConfigService_AuthenticationConnectionName>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_AuthenticationConnectionName>,
 "login", "url", <Login_EndpointURL>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_AuthenticationConnectionName>,
 "logout", "url", <Logout_EndpointURL>);

// Final step is to apply the changes.
AdfmfJavaUtilities.updateApplicationInformation(false);

16.3 Creating the User Interface for the Configuration Service
If there is a requirement for the Configuration Service user interface, you should create
it in a new or existing application feature.

Creating the User Interface for the Configuration Service

16-2 Developing Mobile Applications with Oracle Mobile Application Framework

MAF provides a set of APIs within the
oracle.adfmf.config.client.ConfigurationService class that allow to
check for new changes on the server and download the updates. You can use these
APIs in a Java bean to activate the respective methods through the Configuration
Service application feature.

In the following list of APIs and their sample usage, the _configservice variable
represents an instance of the
oracle.adfmf.config.client.ConfigurationService class:

• setDeliveryMechanism method sets the delivery mechanism for the
Configuration Service. Since the communication with the previous release's
configuration server is enabled through HTTP, http is passed in as an argument to
this method:

_configservice.setDeliveryMechanism("http");

Note:

The method argument refers to the web transport that is to be used for the
Configuration Service and should not be confused with HTTP or HTTPS: if the
end point is an HTTPS URL, setting the transport to http is still valid.

• setDeliveryMechanismConfiguration method sets additional attributes on
the Configuration Service to associate the configuration server connection and the
end point URL:

_configservice.setDeliveryMechanismConfiguration("connectionName",
 <ConfigService_ConnectionName>);

• isThereAnyNewConfigurationChanges method checks whether or not there
are any changes on the server that are available for download, and if there are, this
method returns true:

_configservice.isThereAnyNewConfigurationChanges(<APPLICATION_ID>, <VERSION>);

• stageAndActivateVersion method triggers download of updates by the
Configuration Service. The application version is passed in as an argument to this
method, either as a hard-coded value or obtained through the
Application.getApplicationVersion API:

_configservice.stageAndActivateVersion("1.0");

_configservice.stageAndActivateVersion(Application.getApplicationVersion);

• addProgressListener method registers an update progress listener on the
Configuration Service to receive update messages and progress status. The
underlying class should implement the ProgressListener interface and the
updateProgress method which is to be called from the Configuration Service.
The updateProgress method receives the progress update message and the
update percentage complete:

_configservice.addProgressListener(this);

• removeProgressListener method unregisters the update progress listener:

_configservice.removeProgressListener(this);

The ConfigServiceDemo sample application demonstrates how to use these APIs to
communicate with the configuration server. The ConfigServiceDemo application is

Creating the User Interface for the Configuration Service

Configuring End Points Used in MAF Applications 16-3

located in the PublicSamples.zip file within the jdev_install/jdeveloper/
jdev/extensions/oracle.maf/Samples directory on your development
computer.

For more information about the
oracle.adfmf.config.client.ConfigurationService class, see Java API
Reference for Oracle Mobile Application Framework.

16.4 About the URL Construction
The Configuration Service takes the endpoint URL that the user provides or that is
specified in the connections.xml file and uses it to construct the URL to download
the connections.xml file.

For example, if a user provides the following endpoint URL for an application that has
an application ID value of com.mycompany.appname:

http://my.server.com:port/SomeLocation

Then, the Configuration Service constructs the following URL to download the
connections.xml file:

http://my.server.com:port/SomeLocation/com.mycompany.appname/connections.xml

16.5 Setting Up the Configuration Service on the Server
The Configuration Service can be implemented as a service that accepts HTTP GET
requests and returns the connections.xml file.

The URL used by the Configuration Service client is in the following format:

url configured in adf-config.xml/application bundle id/
connections.xml

The Configuration Service end point may be secured using basic authentication
(BASIC_AUTH) over HTTP and HTTPS.

16.6 Configuring Properties For Use By Enterprise Mobile Management
Describes how you configure properties in your MAF application that an
administrator using Enterprise Mobile Management (EMM) software can configure
values for when the application is deployed to end users.

You can configure the properties in your application’s maf-application.xml file
using the <adfmf:emmAppConfig> element, as shown by the following sample maf-
application.xml file, where a number of properties are defined.

<adfmf:emmAppConfig>
<adfmf:property name="serverURL" type="String" description=“URL to
connect the backend service"/>
<adfmf:property name="port" type="Integer" description=“Port number of the backend
service”/>
<adfmf:property name=“enableEncryption" type=“Boolean" description=“Turn on app
level encryption”/>
<adfmf:property name=“refreshDate" type=“Date" description=“Date on which
application will be refreshed”/>
</adfmf:emmAppConfig>

An EMM administrator configures values for these properties in an EMM console and
then the EMM software pushes the values to the devices where your MAF application
is installed. This feature is only supported for MAF applications deployed to Android

About the URL Construction

16-4 Developing Mobile Applications with Oracle Mobile Application Framework

and iOS. Make sure that the EMM software supports the data types that you specify in
the <adfmf:emmAppConfig> element. In the example above, the specified properties
have the following data types: String, Integer, Boolean, and Date.

See the EMM vendor’s documentation for information about how to configure the
corresponding property values in the EMM console and the data types that the EMM
software supports.

You can read the property values at any time in the application lifecycle of your MAF
application using the #{EMMConfigProperties}EL expression. For example, write
an EL expression as follows to read the value of the serverURL property:
#{EMMConfigProperties.serverURL}

You can also register your property change listener to listen to property changes by
invoking the following:

EMMAppConfigScope.getInstance().addPropertyChangeListener(this);

Configuring Properties For Use By Enterprise Mobile Management

Configuring End Points Used in MAF Applications 16-5

Configuring Properties For Use By Enterprise Mobile Management

16-6 Developing Mobile Applications with Oracle Mobile Application Framework

17
Using Web Services in a MAF Application

This chapter describes how to access REST web services from a MAF application.

This chapter includes the following sections:

• Introduction to Using Web Services in MAF Applications

• Creating a Rest Service Adapter to Access Web Services

• Accessing Secure Web Services

• Configuring the Browser Proxy Information

17.1 Introduction to Using Web Services in a MAF Application
MAF supports the consumption of REST web services with JSON objects (REST-JSON)
in MAF applications. This type of web service is recommended by MAF over
alternative web services as the smaller payloads that REST-JSON web services
generate typically mean lower response times for communication between an
application and the services that it accesses.

Using a REST-JSON web service in a MAF application requires you to configure a
connection to the URL end point for the web service in your application. MAF stores
this end point in the connections.xml file of your application. You also write an
adapter (RESTServiceAdapter) that takes the value you configured in
connections.xml and uses it to construct the request URI that you submit to the
web service. You must also write Java classes to model the data that the web service
returns. Use these classes to generate data controls that bind your application’s AMX
pages to the data that the web service accesses. If your application accesses secured
web services, you must associate a security policy with the connection to the URL end
point for the web service. If your application must access services hosted outside your
corporate firewall, you may also need to configure entries in your application’s
maf.properties file.

Note: As an alternative to writing a RESTServiceAdapter, use the design-
time support provided by MAF to generate the client data model that accesses
REST web services. For more information, see Creating the Client Data Model
in a MAF Application.

The WorkBetter sample application provides examples of programmatically
consuming REST services using the RESTServiceAdapter. For more information
about how to access the source code of the WorkBetter sample application, see MAF
Sample Applications.

Using Web Services in a MAF Application 17-1

17.2 Creating a Rest Service Adapter to Access Web Services
Use a rest service adapter RestServiceAdapter to access data sent using REST calls
and to trigger execution of web service operations. The
RestServiceAdapterFactory.createRestServiceAdapter() API from the
oracle.maf.api.dc.ws.rest package creates adapters that implement
RestServiceAdapter.

Ensure that the connection to the URL end point for the service exists in the
connections.xml file, and then add your code to the bean class, as the following
examples demonstrate.

Use the RestServiceAdapterFactory.createMcsRestServiceAdapter()
API if you want to create an adapter that sends diagnostic information to Mobile
Cloud Service, as described in Sending Diagnostic Information to Oracle Mobile Cloud
Service.

For more information about RestServiceAdapterFactory and
RestServiceAdapter, see Java API Reference for Oracle Mobile Application Framework.

....
import oracle.maf.api.dc.ws.rest.RestServiceAdapterFactory;
import oracle.maf.api.dc.ws.rest.RestServiceAdapter;
....
RestServiceAdapterFactory factory = RestServiceAdapterFactory.newFactory();
RestServiceAdapter restServiceAdapter = factory.createRestServiceAdapter();

// Clear any previously set request properties, if any
restServiceAdapter.clearRequestProperties();

// Set the connection name
restServiceAdapter.setConnectionName("RestServerEndpoint");

// Specify the type of request
restServiceAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_GET);

// Specify the number of retries
restServiceAdapter.setRetryLimit(0);

// Set the URI which is defined after the endpoint in the connections.xml.
// The request is the endpoint + the URI being set
restServiceAdapter.setRequestURI("/WebService/Departments/100");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For GET request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

The following example demonstrates the use of the RestServiceAdapter for the
POST request.

String id = "111";
String name = "TestName111";
String location = "TestLocation111";

Creating a Rest Service Adapter to Access Web Services

17-2 Developing Mobile Applications with Oracle Mobile Application Framework

....

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_POST);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String postData = makeDepartmentPost("DEPT", id, name, location);
 response = restServiceAdapter.send(postData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPost(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";
 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

The following example demonstrates the use of the RestServiceAdapter for the
PUT request.

String id = "111";
String name = "TestName111";
String location = "TestLocation111";

....

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_PUT);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String putData = makeDepartmentPut("DEPT", id, name, location);
 response = restServiceAdapter.send(putData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPut(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";

Creating a Rest Service Adapter to Access Web Services

Using Web Services in a MAF Application 17-3

 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

The following example demonstrates the use of the RestServiceAdapter for the
DELETE request.

....

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_DELETE);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments/44");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For DELETE request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

System.out.println("The response is: " + response);

When you use the RestServiceAdapter, you should set the Accept and
Content-Type headers to ensure that your request and response payloads are not
deemed invalid due to mismatched MIME type.

Note:

The REST web service adapter only supports UTF-8 character set on MAF
applications. UTF-8 is embedded in the adapter program.

17.2.1 Accessing Input and Output Streams
You can use the following RestServiceAdapter methods to obtain and customize
the javax.microedition.io.HttpConnection, as well as access and interact
with the connection's input and output streams which allows you to read data from
the HttpConnection and write to it for further upload to the server:

• Get an HttpConnection:

HttpConnection getHttpConnection(String requestMethod,
 String request,
 Object httpHeadersValue)

• Get the HttpConnection's OutputStream:

OutputStream getOutputStream(HttpConnection connection)

• Get the HttpConnection's InputStream:

InputStream getInputStream(HttpConnection connection)

Creating a Rest Service Adapter to Access Web Services

17-4 Developing Mobile Applications with Oracle Mobile Application Framework

• Close the HttpConnection:

void close (HttpConnection connection)

• Look up a connection name in the connections.xml file and return the
connection's end point:

String getConnectionEndPoint(String connecionName)

These methods, while accomplishing the same functionality as the
RestServiceAdapter's send and sendReceive methods, provide opportunity for
customization of the connection and the process of sending requests and receiving
responses.

The following example initializes and returns an HttpConnection using the
provided request method, request, and HTTP headers value. In addition, it injects
basic authentication into the request headers from the credential store, obtains the
input stream and closes the connection.

....
import oracle.maf.api.dc.ws.rest.RestServiceAdapterFactory;
import oracle.maf.api.dc.ws.rest.RestServiceAdapter;
....

RestServiceAdapterFactory factory = RestServiceAdapterFactory.newFactory();
RestServiceAdapter restServiceAdapter = factory.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();

// Specify the type of request
String requestMethod = RestServiceAdapter.REQUEST_TYPE_GET;

// Get the connection end point from connections.xml
String requestEndPoint = restServiceAdapter.getConnectionEndPoint("GeoIP");

// Get the URI which is defined after the end point
String requestURI = "/xml/" + someIpAddress;

// The request is the end point + the URI being set
String request = requestEndPoint + requestURI;

// Specify some custom request headers
HashMap httpHeadersValue = new HashMap();
httpHeadersValue.put("Accept-Language", "en-US");
httpHeadersValue.put("My-Custom-Header-Item", "CustomItem1");

// Get the connection
HttpConnection connection =
 restServiceAdapter.getHttpConnection(requestMethod,
 request,
 httpHeadersValue);

// Get the input stream
InputStream inputStream = restServiceAdapter.getInputStream(connection);

// Define data
ByteArrayOutputStream byStream = new ByteArrayOutputStream();

int res = 0;
int bufsize = 0, bufread = 0;

Creating a Rest Service Adapter to Access Web Services

Using Web Services in a MAF Application 17-5

byte[] data = (bufsize > 0) ? new byte[bufsize] : new byte[1024];

// Use the input stream to read data
while ((res = inputStream.read(data)) > 0) {
 byStream.write(data, 0, res);
 bufread = bufread + res;
}
data = byStream.toByteArray();

// Use data
...

restServiceAdapter.close(connection);
...

17.2.2 Support for Non-Text Responses
You can use the RestServiceAdapter to handle binary (non-text) responses
received from web service calls. These responses can include any type of binary data,
such as PDF or video files. The RestServiceAdapter method to use is
sendReceive.

The following example shows how to send a request for a file to a REST server, and
then save the file to a disk.

RestServiceAdapterFactory factory = RestServiceAdapterFactory.newFactory();
RestServiceAdapter restServiceAdapter = factory.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("JagRestServerEndpoint");
restServiceAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_GET);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/ftaServer/v1/kpis/123/related/1");

// Set credentials needed to access the REST server
String theUsername = "hr_spec_all";
String thePassword = "Welcome1";
String userPassword = theUsername + ":" + thePassword;
String encoding = new sun.misc.BASE64Encoder().encode(userPassword.getBytes());

restServiceAdapter.addRequestProperty("Authorization", "Basic " + encoding);

// Execute the SEND and RECEIVE operation.
// Since it is a GET request, there is no payload.
try {
 this.responseRaw = restServiceAdapter.sendReceive("");
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + this.responseRaw);

// Write the response to a file
writeByteArrayToFile(this.responseRaw);

The following example demonstrates a method that is called by the code from the
preceding example. This method saves a byte[] response to a file on disk:

public void writeByteArrayToFile(byte[] fileContent) {
 BufferedOutputStream bos = null;
 try {

Creating a Rest Service Adapter to Access Web Services

17-6 Developing Mobile Applications with Oracle Mobile Application Framework

 FileOutputStream fos = new FileOutputStream(new File(fileToSavePath));
 bos = new BufferedOutputStream(fos);
 // Write the byte [] to a file
 System.out.println("Writing byte array to file");
 bos.write(fileContent);
 System.out.println("File written");
 }
 catch(FileNotFoundException fnfe) {
 System.out.println("Specified file not found" + fnfe);
 }
 catch (IOException ioe) {
 System.out.println("Error while writing file" + ioe);
 }
 finally {
 if(bos != null) {
 try {
 // Flush the BufferedOutputStream
 bos.flush();
 // Close the BufferedOutputStream
 bos.close();
 }
 catch (Exception e) {
 }
 }
 }
}

17.3 Accessing Secure Web Services
MAF supports both secured and unsecured web services. When a REST web service is
secured, you must associate the REST connection with the predefined security policy
that supports the REST web service, as described in How to Enable Access to Web
Services.

Table 17-1 lists the predefined security policies that you can associate with connections
to REST web services.

Table 17-1 Security Policies Supported for REST-Based Web Services

Authentication Type REST Policy Description

HTTP Basic oracle/
wss_http_token_over_s
sl_client_policy

This policy includes
credentials in the HTTP
header for outbound client
requests and authenticates
users against the Oracle
Platform Security Services
identity store. This policy also
verifies that the transport
protocol is HTTPS. Requests
over a non-HTTPS transport
protocol are refused. This
policy can be enforced on any
HTTP-based client.

Accessing Secure Web Services

Using Web Services in a MAF Application 17-7

Table 17-1 (Cont.) Security Policies Supported for REST-Based Web Services

Authentication Type REST Policy Description

HTTP Basic oracle/
wss_http_token_client
_policy

This policy includes
credentials in the HTTP
header for outbound client
requests. This policy can be
enforced on any HTTP-based
or HTTPS-based client.

HTTP Basic oracle/
wss_http_token_over_s
sl_client_policy

This policy includes
credentials in the HTTP
header for outbound client
requests and authenticates
users against the Oracle
Platform Security Services
identity store. This policy also
verifies that the transport
protocol is HTTPS. Requests
over a non-HTTPS transport
protocol are refused. This
policy can be enforced on any
HTTP-based client.

HTTP Basic

Web SSO

oracle/
http_cookie_client_po
licy

This policy injects cookies
obtained after authentication
in the HTTP request header,
e.g: accessing OAM Webgate
resources. This policy also
sets response cookies. This
policy can be enforced on any
REST-based client.

OAuth oracle/
http_oauth2_token_mob
ile_client_policy

This policy injects bearer
token (OAuth access token) in
the HTTP request header
while communicating with
the endpoint. This token can
be obtained from any OAuth2
server. This policy can be
enforced on any REST-based
client.

For more information on these policies and their usage, see the Determining Which
Predefined Policies to Use and Predefined Policies chapters in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

17.3.1 How to Enable Access to Web Services

When a web service is secured and expects an authentication token, you must
associate the login connection with the predefined security policy that supports the
web service. For a list of predefined security policies are supported for the
authentication type available for REST-based web services, see Accessing Secure Web
Services.

Accessing Secure Web Services

17-8 Developing Mobile Applications with Oracle Mobile Application Framework

You create the login server connection using the Create MAF Login Connection dialog
in the maf-application.xml overview editor. For details about creating the login
server connection, see How to Create a MAF Login Connection.

To associate a security policy with a web service:

1. In the Applications window, expand the Descriptors node and then ADF META-
INF, and double-click maf-application.xml. Then, in the overview editor for the
maf-application.xml file, expand the Security - Web Services Security
Policies section and choose the web service connection that you created in the
Name field.

2. In the Login Server Connection field, choose the login server connection that you
defined.

3. In the Policy field, double-click the Edit Policy icon button and in the Edit Data
Control Policies dialog, select the policy that you want to associate with the service
for the current web service connection and click OK.

Figure 17-1 shows the policy associated with RESTConnection1 and
RESTConnection2.

For a list of the security policies that you may select in the Edit Data Control dialog
and associate with a REST-based web service, see Accessing Secure Web Services.

Figure 17-1 Associating a Security Policy with a Web Service Connection

17.3.2 What Happens When You Enable Access to Web Services
JDeveloper stores the web service policy definitions in the wsm-assembly.xml file
(located in META-INF directory of the application workspace).

You can view the security policy already associated with the REST web service using
the Edit Data Control Policies dialog shown in Figure 17-2. Click Override Properties
to invoke a dialog where you can specify alternative values for properties that the
selected policy permits you to override.

Accessing Secure Web Services

Using Web Services in a MAF Application 17-9

Figure 17-2 Editing Web Service Data Control Policies

17.3.3 What You May Need to Know About Accessing Web Services and Containerized
MAF Applications

When the MAF application is containerized at deployment time, access to secured web
services behind the corporate firewall will rely on the Mobile Security Access Server
(MSAS), a component in the Oracle Mobile Security Suite (OMSS), to provide a central
access point for securing traffic from mobile devices to corporate resources. In this
case, the MSAS instance is configured to enforce an authentication endpoint for use in
the initial authentication of the user.

Additionally, the backend service endpoints must be associated 1.) with a MSAS proxy
application that ensures the URL of the resource is protected by an access policy that
MSAS enforces and 2.) a client policy that MSAS adds to the proxied request, for
example Single Sign-On (SSO).

In order to allow the MAF application to communicate with MSAS, the user installs
and registers a Secure Workspace app for the type of authentication that has been
configured for the MSAS instance. Then when the user attempts to access a protected
resource, the MAF application and the Secure Workspace rely on a MSAS-generated

Accessing Secure Web Services

17-10 Developing Mobile Applications with Oracle Mobile Application Framework

Proxy Auto-Configuration file to determine which requests to proxy using the MSAS
AppTunnel.

For more information about the role of MSAS AppTunnel in the authentication
process of containerized MAF applications, see Overview of the Authentication
Process for Containerized MAF Applications.

For an overview of OMSS support for containerized MAF applications, see
Containerizing a MAF Application for Enterprise Distribution.

In the OMSS documentation library, see Policy and Assertion Template Reference for
Oracle Mobile Security Access Server for reference information about MSAS predefined
security and management policies.

17.3.4 What You May Need to Know About Credential Injection
For secured web services, the user credentials are dynamically injected into a web
service request at the time when the request is invoked.

MAF uses Oracle Web Services Manager (OWSM) Mobile Agent to propagate user
identity through web service requests.

Before web services are invoked, the user must respond to an authentication prompt
triggered by the user trying to invoke a secured MAF application feature. The user
credentials are stored in a credential store—a device-native and local repository used
for storing credentials associated with the authentication provider's server URL and
the user. At runtime, MAF assumes that all credentials have already been stored in the
IDM Mobile credential store before the time of their usage.

In the connections.xml file, you have to specify the login server connection's
adfCredentialStoreKey attribute value in the adfCredentialStoreKey
attribute of the web service connection reference in order to associate the login server
to the web service security (see the following two examples).

Note:

Since JDeveloper does not provide an Overview editor for the
connections.xml file, you can use the Properties window to update the
<Reference> element's adfcredentialStoreKey attribute with the name
configured for the adfCredentialStoreKey attribute of the login server
connection. Alternatively, you can add or update the attribute using the
Source editor.

The following example shows the definition of the web service connection referenced
as adfCredentialStoreKey="MyAuth", where MyAuth is the name of the login
connection reference.

<Reference name="URLConnection1"
 className="oracle.adf.model.connection.url.HttpURLConnection"
 adfCredentialStoreKey="MyAuth"
 xmlns="">
 <Factory className="oracle.adf.model.connection.url.URLConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="URLConnection1">
 <Contents>
 <urlconnection name="URLConnection1"
 url="http://myhost.us.example.com:7777/
 SecureRESTWebService1/Echo">
 <authentication style="challange">

Accessing Secure Web Services

Using Web Services in a MAF Application 17-11

 <type>basic</type>
 <realm>myrealm</realm>
 </authentication>
 </urlconnection>
 </Contents>
 </XmlRefAddr>
 <SecureRefAddr addrType="username"/>
 <SecureRefAddr addrType="password"/>
 </RefAddresses>
</Reference>

The following example shows the definition of the login connection, where MyAuth is
used as the credential store key value in the login server connection.

<Reference name="MyAuthName"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="MyAuth"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://172.31.255.255:7777/
 SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <logout url="http://172.31.255.255:7777/
 SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <accessControl url="http://myhost.us.example.com:7777/
 UserObjects/jersey/getUserObjects" />
 <idleTimeout value="10"/>
 <sessionTimeout value="36000"/>
 <userObjectFilter>
 <role name="testuser1_role1"/>
 <role name="testuser2_role1"/>
 <privilege name="testuser1_priv1"/>
 <privilege name="testuser2_priv1"/>
 <privilege name="testuser2_priv2"/>
 </userObjectFilter>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

If a web service request is rejected due to the authentication failure, MAF returns an
appropriate exception and invokes an appropriate action (see Using and Configuring
Logging). If none of the existing exceptions correctly represent the condition, a new
exception is added.

The connections.xml file is deployed and managed under the Configuration
Service. For more information, see Configuring End Points Used in MAF
Applications .

The connections.xml files in FARs are aggregated when the MAF application is
deployed. The credentials represent deployment-specific data and are not expected to
be stored in FARs.

Accessing Secure Web Services

17-12 Developing Mobile Applications with Oracle Mobile Application Framework

17.3.5 What You May Need to Know About Cookie Injection
Each time a MAF application requests a REST web service for cookie-based
authorization, MAF's security framework enables the transport layer of the REST web
service to execute cookie injection for the login connection associated with the URL
endpoint of the REST web service. This is handled at runtime without configuration of
the MAF application by the MAF developer.

17.4 Configuring the Browser Proxy Information
If the web service you are to call resides outside your corporate firewall, you need to
ensure that you have set the appropriate Java system properties to configure the use of
an HTTP proxy server.

By default, MAF determines the proxy information using the system settings on the
platform where you deploy the application. For example, if the proxy information is
set using the Settings utility on an iOS-powered device, then JVM automatically
absorbs it.

Note:

It is possible to define a different proxy for each MAF application.

If you do not want to obtain the proxy information from the device settings, first you
need to add the -Dcom.oracle.net.httpProxySource system property. The
default value of this property is native, which means that the proxy information is to
be obtained from the device settings. You need to disable it by specifying a different
value, such as user, for example: -Dcom.oracle.net.httpProxySource=user

JVM uses two different mechanisms for enabling the network connection:

1. The generic connection framework (GCF). If this mechanism is used, the proxy is
defined through the system property -
Dcom.sun.cdc.io.http.proxy=<host>:<port>

2. java.net API. If this mechanism is used, the proxy is defined through the
standard http.proxyHost and http.proxyPort.

In either case, it is recommended to define all three properties in the
maf.properties file, which would look similar to the following:

java.commandline.argument=-Dcom.oracle.net.httpProxySource=user
java.commandline.argument=-Dcom.sun.cdc.io.http.proxy=www-proxy.us.mycompany.com:80
java.commandline.argument=-Dhttp.proxyHost=www-proxy.us.mycompany.com
java.commandline.argument=-Dhttp.proxyPort=80

Note:

These properties affect only the JVM side of network calls.

Configuring the Browser Proxy Information

Using Web Services in a MAF Application 17-13

Configuring the Browser Proxy Information

17-14 Developing Mobile Applications with Oracle Mobile Application Framework

18
Using the Local Database in MAF AMX

This chapter describes how to use the local SQLite database within a MAF AMX
application feature.

This chapter includes the following sections:

• Introduction to the Local SQLite Database Usage

• Using the Local SQLite Database

18.1 Introduction to the Local SQLite Database Usage
SQLite is a relational database management system (RDBMS) specifically designed for
embedded applications.

SQLite has the following characteristics:

• It is ACID-compliant: like other traditional database systems, it has the properties
of atomicity, consistency, isolation, and durability.

• It is lightweight: the entire database consists of a small C library designed to be
embedded directly within an application.

• It is portable: the database is self-contained in a single file that is binary-compatible
across a diverse range of computer architectures and operating systems

For more information, see the SQLite website at http://www.sqlite.org.

For sample usage of the local SQLite database, see the MAF sample application called
CRUDDemo located in the PublicSamples.zip file within the jdev_install/
jdeveloper/jdev/extensions/oracle.maf/Samples directory on your
development computer. The CRUDDemo sample application uses a custom SQLite
database file that is packaged within this application. The database file contains a table
with records which include information on employees. When the application is
activated, it reads data from the table and displays a list of employees. The
information about the employees can be subject to CRUD operations: employees can
be created, reordered, updated, and deleted through the user interface. All the CRUD
operations are updated in the SQLite database.

If you plan to use the SQLite database to provide offline access and synchronization
with a REST data service in your MAF application, see Creating the Client Data Model
in a MAF Application.

18.1.1 Differences Between SQLite and Other Relational Databases
SQLite is designed for use as an embedded database system, one that is typically used
by a single user, and often linked directly into the application. Enterprise databases,
on the other hand, are designed for high concurrency in a distributed client-server

Using the Local Database in MAF AMX 18-1

http://www.sqlite.org

environment. Because of these differences, there are a number of limitations compared
to Oracle databases. Some of the most important differences are:

• Concurrency

• SQL Support and Interpretation

• Data Types

• Foreign Keys

• Database Transactions

• Authentication

For more information, see the following:

• Documentation section of the SQLite website at http://www.sqlite.org/
docs.html

• "Limits In SQLite" available from the Documentation section of the SQLite website
at http://www.sqlite.org/limits.html

18.1.1.1 Concurrency
At any given time, a single instance of the SQLite database may have either a single
read-write connection or multiple read-only connections.

Due to its coarse-grained locking mechanism, SQLite does not support multiple read-
write connections to the same database instance. For more information, see "File
Locking And Concurrency In SQLite Version 3" available from the Documentation
section of the SQLite website at http://www.sqlite.org/lockingv3.html.

18.1.1.2 SQL Support and Interpretation

Although SQLite complies with the SQL92 standard, there are a few unsupported
constructs, including the following:

• RIGHT OUTER JOIN

• FULL OUTER JOIN

• GRANT

• REVOKE

For more information, see "SQL Features That SQLite Does Not Implement" available
from the Documentation section of the SQLite website at http://
www.sqlite.org/omitted.html.

For information on how SQLite interprets SQL, see "SQL As Understood by SQLite"
available from the Documentation section of the SQLite website at http://
www.sqlite.org/lang_createtable.html.

18.1.1.3 Data Types

While most database systems are strongly typed, SQLite is dynamically typed and
therefore any value can be stored in any column, regardless of its declared type.
SQLite does not return an error if, for instance, a string value is mistakenly stored in a
numeric column. For more information, see "Datatypes In SQLite Version 3" available

Introduction to the Local SQLite Database Usage

18-2 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html
http://www.sqlite.org/limits.html
http://www.sqlite.org/lockingv3.html
http://www.sqlite.org/omitted.html
http://www.sqlite.org/omitted.html
http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_createtable.html

from the Documentation section of the SQLite website at http://
www.sqlite.org/datatype3.html.

18.1.1.4 Foreign Keys

SQLite supports foreign keys. It parses and enforces foreign key constraints. For more
information, see the SQLite Foreign Key Support available from the Documentation
section of the SQLite site at http://www.sqlite.org/foreignkeys.html.

18.1.1.5 Database Transactions

Although SQLite is ACID-compliant and hence supports transactions, there are some
fundamental differences between its transaction support and Oracle's:

• Nested transactions: SQLite does not support nested transactions. Only a single
transaction may be active at any given time.

• Commit: SQLite permits either multiple read-only connections or a single read-
write connection to any given database. Therefore, if you have multiple
connections to the same database, only the first connection that attempts to modify
the database can succeed.

• Rollback: SQLite does not permit a transaction to be rolled back until all open
ResultSets have been closed first.

For more information, see "Distinctive Features of SQLite" available from the
Documentation section of the SQLite website at http://www.sqlite.org/
different.html.

18.1.1.6 Authentication

SQLite does not support any form of role-based or user-based authentication. By
default, anyone can access all the data in the file. However, MAF provides encryption
routines that you can use to secure the data, and prevent access by users without a
valid set of credentials. For more information, see How to Encrypt and Decrypt the
Database.

18.2 Using the Local SQLite Database
MAF contains an encrypted SQLite 3.8.5 database.

A typical SQLite usage requires you to know the following:

• How to Connect to the Database

• How to Use SQL Script to Initialize the Database or How to Initialize the Database
on a Desktop

• How to Encrypt and Decrypt the Database

• How to Use the VACUUM Command

18.2.1 How to Connect to the Database
Connecting to the SQLite database differs from opening a connection to an Oracle
database. Once you have acquired the initial connection, you can use most of the same
JDBC APIs and SQL syntax to query and modify the database.

Using the Local SQLite Database

Using the Local Database in MAF AMX 18-3

http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html
http://www.sqlite.org/foreignkeys.html
http://www.sqlite.org/different.html
http://www.sqlite.org/different.html

You use the java.sql.Connection object associated with your application to
connect to the SQLite database. When creating the connection, ensure that every
SQLite JDBC URL begins with the text jdbc:sqlite:.

The following example shows how to open a connection to an unencrypted database.
Before obtaining the connection, load the JDBC driver.

public static Connection getConnection() throws Exception {
 if (conn == null) {
 try {
 // create a database connection
 String Dir = AdfmfJavaUtilities.getDirectoryPathRoot(
 AdfmfJavaUtilities.ApplicationDirectory);
 String connStr = "jdbc:sqlite:" + Dir + "/portfolio.db";
 // Load the driver
 Class.forName("SQLite.JDBCDriver");
 conn = DriverManager.getConnection(connStr);
 }
 catch (SQLException e) {
 // If the error message is "out of memory", it probably
 // means that no database file is found
 System.err.println(e.getClass().getName() + ": " + e.getMessage());
 e.printStackTrace();
 }
 }
 return conn;
}

The following example shows how to open a connection to an encrypted database.

java.sql.Connection connection = new SQLite.JDBCDataSource(
 "jdbc:sqlite:/path/to/database").getConnection(null,"password");

In the preceding example, the first parameter of the getConnection method is the
user name, but since SQLite does not support user-based security, this value is
ignored.

Note:

SQLite does not display any error messages if you open an encrypted
database with an incorrect password. Likewise, you are not alerted if you
mistakenly open an unencrypted database with a password. Instead, when
you attempt to read or modify the data, an SQLException is thrown with the
message "Error: file is encrypted or is not a database".

18.2.2 How to Use SQL Script to Initialize the Database
An SQL script is used to initialize the database when the application starts. The
following example shows the SQL initialization script that demonstrates some of the
supported SQL syntax (described in SQL Support and Interpretation) through its use
of the DROP TABLE, CREATE TABLE, and INSERT commands and the NUMBER and
VARCHAR2 data types.

DROP TABLE IF EXISTS PERSONS;

CREATE TABLE PERSONS
(
PERSON_ID NUMBER(15) NOT NULL,
FIRST_NAME VARCHAR2(30),

Using the Local SQLite Database

18-4 Developing Mobile Applications with Oracle Mobile Application Framework

LAST_NAME VARCHAR2(30),
EMAIL VARCHAR2(25) NOT NULL
);

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (100, 'David',
'King', 'steven@king.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (101, 'Neena',
'Kochhar', 'neena@kochhar.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (102, 'Lex',
'De Haan', 'lex@dehaan.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (103,
'Alexander', 'Hunold', 'alexander@hunold.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (104, 'Bruce',
'Ernst', 'bruce@ernst.net');

To use the SQL script, add the script as a resource to the ApplicationController project
of your MAF application. Assume that a sample script has been saved as
initialize.sql in the META-INF directory. The following example shows the code
that you must add to parse the SQL script and execute the statements.

private static void initializeDatabaseFromScript() throws Exception {
 InputStream scriptStream = null;
 Connection conn = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.
 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // If the database does not exist, a new database is automatically
 // created when the SQLite JDBC connection is created
 conn = new SQLite.JDBCDataSource("jdbc:sqlite:" + docRoot +
 "/sample.db").getConnection();

 // To improve performance, the statements are executed
 // one at a time in the context of a single transaction
 conn.setAutoCommit(false);

 // Since the SQL script has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 scriptStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/initialize.sql");
 BufferedReader scriptReader = new BufferedReader
 (new InputStreamReader(scriptStream));
 String nextLine;
 StringBuffer nextStatement = new StringBuffer();

 // The while loop iterates over all the lines in the SQL script,
 // assembling them into valid SQL statements and executing them as
 // a terminating semicolon is encountered
 Statement stmt = conn.createStatement();
 while ((nextLine = scriptReader.readLine()) != null) {

Using the Local SQLite Database

Using the Local Database in MAF AMX 18-5

 // Skipping blank lines, comments, and COMMIT statements
 if (nextLine.startsWith("REM") ||
 nextLine.startsWith("COMMIT") ||
 nextLine.length() < 1)
 continue;
 nextStatement.append(nextLine);
 if (nextLine.endsWith(";")) {
 stmt.execute(nextStatement.toString());
 nextStatement = new StringBuffer();
 }
 }
 conn.commit();
 }
 finally {
 if (conn != null)
 conn.close();
 }
}

Note:

To keep the example simple, the preceding example omits error handling.

Invoke the database initialization code (see the preceding example) from the start
method of the LifeCycleListenerImpl, as the following example shows.

public void start() {
 try {
 initializeDatabaseFromScript();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

18.2.3 How to Initialize the Database on a Desktop
Because SQLite databases are self-contained and binary-compatible across platforms,
you can use the same database file on iOS, Android, Windows, Linux, and Mac OS
platforms. In complex cases, you can initialize the database on a desktop using third-
party tools (such as MesaSQLite, SQLiteManager, and SQLite Database Browser), and
then package the resulting file as a resource in your application.

To use the database, add the database as a resource to the ApplicationController
project of your MAF application. Assume that a database has been saved as
sample.db in the META-INF directory. The following example shows the code that
you must add to copy the database from your application to the mobile device's file
system to enable access to the database.

private static void initializeDatabase() throws Exception {
 InputStream sourceStream = null;
 FileOutputStream destinationStream = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.

Using the Local SQLite Database

18-6 Developing Mobile Applications with Oracle Mobile Application Framework

 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // Since the database has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 sourceStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/sample.db");
 destinationStream = new FileOutputStream(dbName);
 byte[] buffer = new byte[1000];
 int bytesRead;
 while ((bytesRead = sourceStream.read(buffer)) != -1) {
 destinationStream.write(buffer, 0, bytesRead);
 }
 }
 finally {
 if (sourceStream != null)
 sourceStream.close();
 if (destinationStream != null)
 destinationStream.close();
 }
}

Note:

To keep the example simple, the preceding example omits error handling.

Invoke the database initialization code (see the preceding example) from the start
method of the LifeCycleListenerImpl, as the following example shows.

public void start() {
 try {
 initializeDatabase();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

18.2.4 What You May Need to Know About Commit Handling
Commit statements are ignored when encountered. Each statement is committed as it
is read from the SQL script. This auto-commit functionality is provided by the SQLite
database by default. To improve your application's performance, you can disable the
auto-commit to allow a regular execution of commit statements by using the
Connection's setAutoCommit(false) method.

Using the Local SQLite Database

Using the Local Database in MAF AMX 18-7

18.2.5 Limitations of MAF SQLite JDBC Driver
The following methods from the java.sql package have limited or no support in
MAF:

• The getByte method of the ResultSet is not supported. If used, this method
throws an SQLException when executed.

• The execute method of the Statement always returns true (as opposed to
returning true only for statements that return a ResultSet).

18.2.6 How to Use the VACUUM Command
When records are deleted from an SQLite database, its size remains unchanged. This
constant size leads to fragmentation and, ultimately, results in degraded performance.
To prevent performance degradation, run the VACUUM command, periodically.

Note:

The VACUUM command uses long periods of time when run on large databases
(approximately 0.5 seconds per megabyte on the Linux computer on which
SQLite is developed). It can also use up to twice as much temporary disk
space as the original file while it is running.

The VACUUM command must be run from a properly registered LifeCycleListener
implementation (see Using Lifecycle Listeners in MAF Applications.).

18.2.7 How to Encrypt and Decrypt the Database
MAF allows you to provide the SQLite database with an initial or subsequent
encryption through the use of various APIs. Some of these APIs enable you to specify
your own password for encrypting the database. Others are used when you prefer
MAF to generate and, optionally, manage the password.

18.2.7.1 Encrypting the Database with Your Own Password

To encrypt the database with your own password:

1. Establish the database connection (see How to Connect to the Database).

2. Use the following utility method to encrypt the database with a new key:

AdfmfJavaUtilities.encryptDatabase(connection, "newPassword");

18.2.7.2 Permanently Decrypting the Database Encrypted with Your Own Password

To permanently decrypt the database encrypted with your own password:

1. Open the encrypted database with the correct password.

2. Use the following utility method:

AdfmfJavaUtilities.decryptDatabase(connection);

Using the Local SQLite Database

18-8 Developing Mobile Applications with Oracle Mobile Application Framework

Caution:

If you open a database incorrectly (for example, use an invalid password to
open an encrypted database), and then encrypt it again, neither the old correct
password, the invalid password, nor the new password can unlock the
database resulting in the irretrievable loss of data.

18.2.7.3 Encrypting the Database with a Password Generated by MAF

To encrypt the database using the MAF-generated password:

1. Generate a password using the following method:

GeneratedPassword.setPassword("databasePasswordID", "initialSeedValue");

This method requires both a unique identifier and an initial seed value to aid the
cryptographic functions in generating a strong password.

2. Retrieve the created password using the previously-specified ID as follows:

char[] password = GeneratedPassword.getPassword("databasePasswordID");

3. Establish the database connection (see How to Connect to the Database).

4. Encrypt the database as follows:

AdfmfJavaUtilities.encryptDatabase(connection, new String(password));

18.2.7.4 Decrypting the Database Encrypted with a Password Generated by MAF

To decrypt the database and delete the MAF-generated password:

1. Obtain the correct password as follows:

char[] password = GeneratedPassword.getPassword("databasePasswordID");

2. Establish the database connection and decrypt the database as follows:

java.sql.Connection connection =
 SQLite.JDBCDataSource("jdbc:sqlite:/path/to/database").
 getConnection(null, new String(password));

3. Optionally, delete the generated password using the following method:

GeneratedPassword.clearPassword("databasePasswordID");

Using the Local SQLite Database

Using the Local Database in MAF AMX 18-9

Using the Local SQLite Database

18-10 Developing Mobile Applications with Oracle Mobile Application Framework

19
Customizing MAF AMX Application Feature

Artifacts

This chapter describes how to preform customization of existing MAF AMX pages,
task flows, and page definition files.

This chapter includes the following sections:

• Introduction to Customizing MAF AMX Pages and Artifacts

• Customizing MAF AMX Pages and Artifacts

19.1 Introduction to Customizing MAF AMX Pages and Artifacts
You can use the standard customization mechanism provided by JDeveloper and
Oracle Metadata Service (MDS) to customize your existing MAF AMX application
feature artifacts and metadata files, including the following:

• MAF AMX files (.amx)

• Task flow files, such as ViewController-task-flow.xml

• Page definition files (<page name>.PageDef.xml)

• Data control XML file—a package file that contains a data control structure file
(that is, a package file named for a data control and prepended with persdef.).

The customization changes that you make at design time are applied to your files
during deployment and become visible at runtime. MAF AMX supports the static
seeded customization, where the final version for a specific customization context is
seeded during deployment and work statically at runtime for that customization
context. For each customization context you have to deploy a separate MAF
application.

Note:

MAF AMX does not support the user customization that both creates and
applies customization at runtime.

For information about customizing the MAF application-level artifacts, see
Customizing MAF Application Artifacts with MDS .

19.2 Customizing MAF AMX Pages and Artifacts
You customize your MAF AMX pages and artifacts by following steps outlined in
Introduction to Applying MDS Customizations to MAF Files.

Customizing MAF AMX Application Feature Artifacts 19-1

When configuring customization layers, to help ensure the uniqueness of the identifier
so that customizations are applied accurately, you can add an id-prefix token.
When you add a new element, such as, for example, a commandButton to a MAF
AMX page during customization, JDeveloper adds the id-prefix of the layer and
layer value to the autogenerated identifier for the element to create an id for the
newly added element in the customization metadata file. As shown in the following
example, the site layer has an id-prefix of " s " and the headquarters layer
value has an id-prefix of " hq ".

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry" id-prefix="i">
 <cust-layer-value value="financial"
 display-name="Financial"
 id-prefix="f"/>
 <cust-layer-value value="healthcare"
 display-name="Healthcare"
 id-prefix="h"/>
 </cust-layer>
 <cust-layer name="site" id-prefix="s">
 <cust-layer-value value="headquarters"
 display-name="HQ"
 id-prefix="hq"/>
 <cust-layer-value value="remoteoffices"
 display-name="Remote"
 id-prefix="rm"/>
 </cust-layer>
</cust-layers>

When you select site/headquarters as the tip layer and add a MAF AMX Button
component to a page, the commandButton element will have an id of " shqcb1 " in
the metadata customization file.

When the customization process is complete, JDeveloper creates a metadata file for the
customizations and a subpackage for storing them. The metadata file contains the
customizations for the customized object, which are applied over the base metadata at
runtime. JDeveloper gives the new metadata file the same name as the base file for the
object, but includes an additional .xml extension, as Figure 19-1, Figure 19-2, Figure
19-3, and Figure 19-4 show.

Figure 19-1 Customization File for MAF AMX Page

Customizing MAF AMX Pages and Artifacts

19-2 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 19-2 Customization File for Task Flow

Figure 19-3 Customization File for Page Definition

Figure 19-4 Customization File for Data Control XML File

Customizing MAF AMX Pages and Artifacts

Customizing MAF AMX Application Feature Artifacts 19-3

Customizing MAF AMX Pages and Artifacts

19-4 Developing Mobile Applications with Oracle Mobile Application Framework

20
Creating Custom MAF AMX UI Components

This chapter describes how to create custom MAF AMX UI components and specify
them as part of the development environment.

This chapter includes the following sections:

• Introduction to Creating Custom UI Components

• Using MAF APIs to Create Custom Components

• Creating Custom Components

20.1 Introduction to Creating Custom UI Components
Using a combination of JavaScript and APIs provided by MAF, you can create new,
fully functional interactive UI components and add them to a tag library to be used in
your MAF AMX application feature.

20.2 Using MAF APIs to Create Custom Components
MAF provides the following APIs for creating custom components:

• Static APIs (see How to Use Static APIs)

• AmxEvent Classes (see How to Use AmxEvent Classes)

• TypeHandler (see How to Use the TypeHandler)

• AmxNode (see How to Use the AmxNode)

• AmxTag (see How to Use the AmxTag)

• VisitContext (see How to Use the VisitContext)

• AmxAttributeChange (see How to Use the AmxAttributeChange)

• AmxDescendentChanges (see How to Use the AmxDescendentChanges)

• AmxCollectionChange (see How to Use the AmxCollectionChange)

• AmxNodeChangeResult (see How to Use the AmxNodeChangeResult)

• AmxNodeStates (see How to Use the AmxNodeStates)

• AmxNodeUpdateArguments (see How to Use the AmxNodeUpdateArguments)

20.2.1 How to Use Static APIs
Table 20-1 lists static APIs that you can use to create custom UI components.

Creating Custom MAF AMX UI Components 20-1

Table 20-1 Static APIs

Return
Type

Function Name Parameters Description

Functio
n

adf.mf.api.amx.TypeHandler.regi
ster

String
namespaceUrl
,

String
tagName,

adf.mf.api.a
mx.TypeHandl
er
precreatedCl
ass

Registers a TypeHandler class
with a tag namespace and name.

Returns the registered
adf.mf.api.amx.TypeHandler
subclass so that prototype functions
can be added.

The precreatedClass is optional
but can be used if you first create a
class that inherits from
adf.mf.api.amx.TypeHandler.

void adf.mf.api.amx.addBubbleEventLi
stener

Node
domNode,

String
eventType,

Function
listener,

Object
eventData

Registers a bubble event listener
(such as tap, taphold, keydown,
touchstart, touchmove, touchend,
focus, blur, resize, and so on).

Note that web browsers do not
support all event types on all DOM
nodes (see the browser
documentation for details).

The eventData is optional and
serves as extra data to be made
available to the listener function.

void adf.mf.api.amx.removeBubbleEven
tListener

Node
domNode,

String
eventType,

Function
listener

Unregisters a bubble event listener
that was added through
adf.mf.api.amx.addBubbleEve
ntListener.

Note that the removal of the meta
events tap and taphold will cause all
touchstart and touchend listeners,
including those of other meta
events, to become removed from the
element as opposed to only the
specified listener being removed.

Using MAF APIs to Create Custom Components

20-2 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-1 (Cont.) Static APIs

Return
Type

Function Name Parameters Description

void adf.mf.api.amx.addDragListener Node
domNode,

Object
payload,

Object
eventData

Allows an element to trigger MAF
AMX drag events.

The Object payload defines three
member functions: start, drag,
end. The first parameter of each
function is the DOM event, the
second parameter is a dragExtra
Object with the following
members:

• eventSource: the DOM event
source.

• pageX: the x coordinate of the
event.

• pageY: the y coordinate of the
event.

• startPageX: the original
pageX.

• startPageY: the original
pageY.

• deltaPageX: the change in
pageX.

• deltaPageY: the change in
pageY.

• originalAngle: if defined, it is
the original angle of the drag in
degrees where 0 degrees is East,
90 is North, -90 is South, 180 is
West.

and the following modifiable
member flags:

• preventDefault

• stopPropagation

The eventData is optional and
serves as extra data to be made
available to the listener functions.

void adf.mf.api.amx.removeDomNode Node domNode Removes a DOM node and its
children, but prior to that removes
event listeners added through
adf.mf.api.amx.addBubbleEve
ntListener.

void adf.mf.api.amx.emptyHtmlElement Node domNode Empties an HTML element by
removing children DOM nodes and
calling
adf.mf.api.amx.removeDomNod
e on each of the children nodes.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-3

Table 20-1 (Cont.) Static APIs

Return
Type

Function Name Parameters Description

void adf.mf.api.amx.processAmxEvent adf.mf.api.a
mx.AmxNode
amxNode,

String
amxEventType
,

String
attributeVal
ueName,

String
newValue,

AmxEvent
amxEvent,

Function
successCallb
ack

Function
failureCallb
ack

Processes an AmxEvent.

Change the value if
attributeValueName is defined,
process the appropriate
setPropertyListener and
actionListener subtags, and
then process the
[amxEventType]Listener
attribute.

A success callback is invoked when
the event has been successfully
processed. Otherwise, the failure
callback is invoked. Both the
successCallback and
failureCallback are optional.

void adf.mf.api.amx.acceptEvent None Determines whether it is safe to
proceed with invoking
adf.mf.api.amx.processAmxEv
ent in order to avoid preparing
anything you might need to pass
into that function (for example,
when in the middle of a page
transition or in an environment such
as a design-time preview).

void adf.mf.api.amx.invokeEl String
expression,

Array<String
> params,

String
returnType,

Array<String
>
paramTypes,

Function
successCallb
ack,

Function
failureCallb
ack

Represents a utility similar to
adf.mf.el.invoke() for
invoking an EL method, with a
difference that it refrains from
execution in environments such as
design-time previews.

Using MAF APIs to Create Custom Components

20-4 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-1 (Cont.) Static APIs

Return
Type

Function Name Parameters Description

void adf.mf.api.amx.enableAmxEvent adf.mf.api.a
mx.AmxNode
amxNode,

Node
domNode,

String
eventType

Allows a DOM node to trigger
custom MAF AMX events such as
tapHold and swipe for
amx:showPopupBehavior,
amx:setPropertyListener, and
so on.

void adf.mf.api.amx.doNavigation String
outcome

Tells the controller that there is an
intention to perform navigation for
a given outcome.

void adf.mf.api.amx.validate Node
domNode,

Function
successCallb
ack

Prevents an operation, such as
navigation, when there are
unsatisfied validators (required or
amx:validationBehavior).

The successCallback is invoked
if allowed to proceed.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-5

Table 20-1 (Cont.) Static APIs

Return
Type

Function Name Parameters Description

void adf.mf.api.amx.showLoadingIndic
ator

Number
failSafeDura
tion,

Function
failSafeClie
ntHandler

Shows the busy indicator.

The parameters:

• failSafeDuration: The
approximate duration
(nonnegative integer in
milliseconds) that MAF waits
between showing and hiding the
loading indicator (assuming
some other trigger has not
already shown the indicator). If
this parameter is not specified or
is set to null, then MAF uses
the value of 10000 (10 seconds).

• failSafeClientHandler:
The optional JavaScript function
that is invoked when the
failSafeDuration has been
reached. This function can be
used to decide how to proceed.
This function must return a
String defined by one of the
following values:

- hide: to hide the indicator as
in the default fail-safe.

- repeat: to restart the timer for
another duration where the
function may get invoked again.

- freeze: to keep the indicator
up and wait indefinitely; the
page may become stuck in a
frozen state until restarted.

To prevent the indicator from being
displayed for longer than necessary,
hide it.

void adf.mf.api.amx.hideLoadingIndic
ator

None Hides one instance of the loading
indicator.

Object adf.mf.api.amx.createIterator Object
dataItems

Creates an iterator that supports
either a JavaScript array of objects or
iterator over a tree node iterator
(collection model).

Returns an iterator Object with
next, hasNext, and
isTreeNodeIterator functions
where next returns undefined if no
more objects are available.

Using MAF APIs to Create Custom Components

20-6 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-1 (Cont.) Static APIs

Return
Type

Function Name Parameters Description

void adf.mf.api.amx.bulkLoadProvider
s

Object
treeNodeIter
ator,

Number
startingPoin
t,

Number
maximumNumbe
rOfRowsToLoa
d,

Function
successCallb
ack,

Function
failCallback

Bulk-loads a set of data providers so
they are cached and are locally
accessible.

String adf.mf.api.amx.buildRelativePat
h

String url Builds the relative path based on the
specified resource assuming it is
relative to the current MAF AMX
page. If there is a protocol on the
resource, then it is assumed to be an
absolute path and left unmodified.

void adf.mf.api.amx.markNodeForUpdat
e

adf.mf.api.a
mx.AmxNodeUp
dateArgument
s args

Function for TypeHandler
instances to notify MAF of a state
change to an AmxNode that requires
the AmxNode hierarchy to be
updated at that node and below.

If a custom
createChildrenNodes method
exists on the TypeHandler, it is
called again for these AmxNode
instances. This allows AmxNode
instances that stamp their children
to add new stamps due to a user
change. The refresh method is
called on the AmxNode with the
provided properties if the AmxNode
is ready to render. If the AmxNode is
not ready to render, MAF waits for
any EL to be resolved and the
refresh method is called once all
the data are available.

Note:

Other public APIs are available in the adf.mf.el package for logging,
translation, and data channel.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-7

20.2.2 How to Use AmxEvent Classes
Table 20-2 lists AMXEvent classes that you can use when creating custom UI
components.

Table 20-2 AMXEvent Classes

Class Name Parameters Description

adf.mf.api.amx.ActionEvent None An event triggering an outcome-based
navigation.

See also
oracle.adfmf.amx.event.ActionEvent
in Java API Reference for Oracle Mobile
Application Framework.

adf.mf.api.amx.MoveEvent Object
rowKeyMoved,

Object
rowKeyInsertedBefo
re

An event for notifying that a specified row has
been moved. It contains the key for the row
that was moved along with the key for the row
before which it was inserted.

See also
oracle.adfmf.amx.event.MoveEvent in
Java API Reference for Oracle Mobile Application
Framework.

adf.mf.api.amx.SelectionEve
nt

Object oldRowKey,

Array<Object>
selectedRowKeys

An event for changes of selection for a
component.

See also
oracle.adfmf.amx.event.SelectionEv
ent in Java API Reference for Oracle Mobile
Application Framework.

adf.mf.api.amx.ValueChangeE
vent

Object oldValue,

Object newValue

An event for changes of value for a
component.

See also
oracle.adfmf.amx.event.ValueChange
Event in Java API Reference for Oracle Mobile
Application Framework.

20.2.3 How to Use the TypeHandler
Table 20-3 lists TypeHandler APIs that you can use to create custom UI components.

Table 20-3 TypeHandler APIs

Return Type Function Name Parameters Description

HTMLElement render adf.mf.api.amx.AmxN
ode amxNode,

String id

Creates an initial DOM
structure and returns the
root element of the structure.

This member function is
required and must be
defined.

Using MAF APIs to Create Custom Components

20-8 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-3 (Cont.) TypeHandler APIs

Return Type Function Name Parameters Description

void init HTMLElement
rootElement,

adf.mf.api.amx.AmxN
ode amxNode

Represents the handler
invoked after all create
functions that belong to the
set of components created
with this component are
invoked.

void postDisplay HTMLElement
rootElement,

adf.mf.api.amx.AmxN
ode amxNode

Represents the handler
invoked after all init
functions that belong to the
set of components created
with this component are
invoked.

Boolean createChildrenNodes adf.mf.api.amx.AmxN
ode amxNode

Selectively adds AmxNode
children for processing. Note
that if one of the children is
shown, the use of this
function prevents processing
of the other children.

Should return false if MAF
is to create the children
nodes instead of the custom
implementation.

This function is optional.

adf.mf.api.amx.
AmxNodeChangeRe
sult

updateChildren adf.mf.api.amx.AmxN
ode amxNode,

adf.mf.api.amx.AmxA
ttributeChange
attributeChanges

Represents a handler for one
of the following:

• removing any old
children and creating
and adding any new
children to the AmxNode.

• through the return value,
declaring what
adf.mf.api.amx.Amx
NodeChangeResult
action should be taken.

This function is optional.

adf.mf.api.amx.
AmxNodeChangeRe
sult

getDescendentChangeAc
tion

adf.mf.api.amx.AmxN
ode amxNode,

adf.mf.api.amx.AmxD
escendentChanges
descendentChanges

Allows a type handler to
customize the handling of
changes to descendent
AmxNode instances.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-9

Table 20-3 (Cont.) TypeHandler APIs

Return Type Function Name Parameters Description

void refresh adf.mf.api.amx.AmxA
ttributeChange
attributeChanges,

adf.mf.api.amx.AmxD
escendentChanges
descendentChanges

Allows a type handler to
selectively refresh the HTML
in response to a change. This
method is called after the
updateChildren method.

The attributeChanges
defines the changed
attributes. If
descendentChanges is not
null, it defines the changes
for any descendent nodes
that need to be refreshed.

Boolean isFlattenable None Declares whether or not the
AmxNode is flattenable.Note
that a flattened AmxNode
might not have any behavior
related to rendering: a type
handler for a flattened
AmxNode can only control
child node creation and
visiting, but cannot influence
rendering.

Boolean visit adf.mf.api.amx.Visi
tContext
visitContext,

Function
visitCallback

Handles an AmxNode tree
visitation starting from this
AmxNode.

The visitCallback
function to invoke when
visiting uses parameters
visitContext and
AmxNode. Returns whether
or not the visitation is
complete and should not
continue.

Boolean visitChildren adf.mf.api.amx.AmxN
ode amxNode,

adf.mf.api.amx.Visi
tContext
visitContext,

Function
visitCallback

Handles an AmxNode tree
visitation starting from the
children of this AmxNode.

The visitCallback
function to invoke when
visiting uses parameters
visitContext and
AmxNode. Returns whether
or not the visitation is
complete and should not
continue.

Using MAF APIs to Create Custom Components

20-10 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-3 (Cont.) TypeHandler APIs

Return Type Function Name Parameters Description

void preDestroy HTMLElement
rootElement,

adf.mf.api.amx.AmxN
ode amxNode

Handles anything just before
the current view is
destroyed; when about to
navigate to a new view.
Typically used to save client
state such as scroll positions
(see
adf.mf.api.amx.setCli
entState).

void destroy HTMLElement
rootElement,

adf.mf.api.amx.AmxN
ode amxNode

Handles anything after the
new view is displayed and
the old view is being
removed.

20.2.4 How to Use the AmxNode
Table 20-4 lists AmxNode APIs that you can use to create custom UI components.

Table 20-4 AmxNode APIs

String Function Name Parameters Description

String getId None Gets the unique identifier for
this AmxNode. This value
contributes to the ID on the root
DOM element.

adf.mf.api.amx.Amx
Tag

getTag None Gets the AmxTag that created
this AmxNode.

adf.mf.api.amx.Typ
eHandler

getTypeHandler None Gets the TypeHandler object
associated with this AmxNode.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-11

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

void setClientState Object
payloadJsonObj
ect

Stores or replaces the client
state for the specified AmxNode
ID.

Type handlers should call this
function whenever a state
change happens (for example,
something that should be
cached so that when the user
navigates to a new page and
then comes back, it would be
restored like a scroll position).
That said, it is not always
feasible to detect when a state
change happens so you may
need to update the state for
your component just before the
view is going to be discarded.
There are two possible
scenarios for which you need to
account:

1. refresh: for redrawing
pieces of the DOM
structure (within the same
view).

2. preDestroy: for
navigating to a new view
and later navigating back.

The payloadJsonObject is
the client state data to store for
the lifetime of this view
instance.

Object getClientState None Gets the payloadJsonObject
that was previously stored
through the setClientState
function during this view
instance (undefined if not
available).

void setVolatileState Object
payloadJsonObj
ect

Stores or replaces the client
state for the specified AmxNode
ID. Type handlers should call
this function whenever a
volatile state change happens
(for example, something that
should be forgotten when
navigating to a new MAF AMX
page but should be kept in case
a component is redrawn).

The payloadJsonObject is
the volatile state data to store
until navigation occurs.

Using MAF APIs to Create Custom Components

20-12 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

Object getVolatileState None Gets the payloadJsonObject
that was previously stored
through the
setVolatileState function
since the last navigation
(undefined if not available).

Object getConverter None Get the converter, if applicable,
for this AmxNode.

void setConverter Object
converter

Set the converter for this
AmxNode.

String storeModifyableEl String
nameOfTheAttri
bute

For an attribute, creates and
stores an EL expression that
may be used to set EL values
into the model.

The value is context-insensitive
and may be used to set a value
at any time. Common use is to
set a value based on user
interaction.

This function may be called by
type handlers.

Returns null if the subject
attribute is not bound to an EL
value.

Object getStampKey None Gets the stamp key for the
AmxNode. The stamp key
identifies AmxNode instances
that are produced inside of
iterating containers.

This is provided by the parent
AmxNode. An example tag that
uses stamp keys is the
amx:iterator tag.

Returns null if the AmxNode is
not stamped.

Array<String> getDefinedAttributeNa
mes

None Gets a list of the attribute
names that have been defined
for this node.

Object getAttribute String name Gets an attribute value for the
attribute of the given name.

Return value may be null.

Returns undefined if the
attribute is not set or is not yet
loaded.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-13

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

void setAttributeResolvedV
alue

String name,

Object value

Used by the type handler or
MAF to store the attribute value
for an attribute onto the
AmxNode.

This function does not update
the model.

void setAttribute String name,

String value

Sets the value of an attribute on
the model.

This value is sent to the Java
side to update the EL value.
The value on the AmxNode is
not updated by this call.
Instead, it is expected that a
data change event will update
the AmxNode.

Boolean isAttributeDefined String name Checks whether the attribute
was defined by the user.

adf.mf.api.amx.Amx
Node

getParent None Gets either the parent AmxNode
or null if at the top level.

void addChild adf.mf.api.amx
.AmxNode
child,

String
facetName

Adds a child AmxNode to this
AmxNode.

The facetName should be
null if the child does not
belong in a facet.

Boolean removeChild adf.mf.api.amx
.AmxNode child

Removes a child AmxNode from
this AmxNode.

Note that the child is removed
from the hierarchy, but not the
DOM for it. It is up to the caller
to remove the DOM.

This is to allow type handlers to
handle animation and other
transitions when DOM is
replaced.

Returns whether or not the
child was found and removed.

Boolean replaceChild adf.mf.api.amx
.AmxNode
oldChild,

adf.mf.api.amx
.AmxNode
newChild

Replaces an existing child with
another child.

Returns whether or not the old
one was found and replaced.

Using MAF APIs to Create Custom Components

20-14 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

Array<adf.mf.api.a
mx.AmxNode>

getChildren String
facetName,

Object
stampKey

Gets children AmxNodes.

The two parameters are
optional. The facetName can
be null to get the non-facet
children.

Returns an empty array if no
children exist or if there are no
children for the given
qualifiers.

Map<String,
Array<adf.mf.api.a
mx.AmxNode>>

getFacets Object
stampKey

Gets all of the facets of the
AmxNode.

The stampKey is optional; if
provided, it retrieves the facet
AmxNode instances for a given
stamp key.

Boolean visit adf.mf.api.amx
.VisitContext
visitContext,

Function
visitCallback

Performs a tree visitation
starting from this AmxNode.

The visitCallback function
should accept the
visitContext and the
AmxNode as arguments.

Returns whether or not the
visitation is complete and
should not continue.

Boolean visitChildren adf.mf.api.amx
.VisitContext
visitContext,

Function
visitCallback

Performs a tree visitation
starting from the children of
this AmxNode.

The visitCallback function
should accept the
visitContext and the
AmxNode as arguments.

Returns whether the visitation
is complete and should not
continue.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-15

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

Boolean visitStampedChildren Object
stampKey,

Array<String>
facetNamesToIn
clude,

Function
filterCallback
,

adf.mf.api.amx
.VisitContext
visitContext,

Function
visitCallback

Convenience function for type
handlers that stamp their
children to visit the children
AmxNode from inside of a
custom visitChildren
function.

When
facetNamesToInclude is
empty, no facets are processed
for this stamp. When
facetNamesToInclude is
null, all facets are processed
for this stamp.

The filterCallback may be
null. The filterCallback
must return a Boolean of
true, meaning the tag will be
used to create children, or
false, meaning the tag will
not be processed.

The visitCallback should
accept the visitContext and
AmxNode as arguments.

Returns whether or not the
visitation is complete and
should not continue.

Array<adf.mf.api.a
mx.AmxNode>

getRenderedChildren String
facetName,

Object
stampKey

Gets the rendered children of
the AmxNode.

The facetName indicates from
which facet to retrieve the
rendered children, or null for
the non-facet children.

If the stampKey is provided, it
retrieves the children AmxNode
instances for a given stamp key.

Returns the children that
should be rendered for the
given stamp key. It flattens any
components that can be
flattened (flattenable) and does
not return any non-rendered
ones.

Using MAF APIs to Create Custom Components

20-16 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

Boolean isFlattenable None Determines whether or not the
AmxNode is flattenable.

Note that a flattened AmxNode
might not have any behavior
related to rendering: a type
handler for a flattened
AmxNode can only control
child node creation and
visiting, but cannot influence
rendering.

adf.mf.api.amx.Amx
NodeStates

getState None Gets the current state of the
AmxNode (as a constant value
from
adf.mf.api.amx.AmxNodeS
tates).

void setState state Moves the
adf.mf.api.amx.AmxNodeS
tates state of the AmxNode.
Should only be called by MAF
or the AmxNode's type handler.

HTMLElement render None Renders the AmxNode.

Returns the root element
rendered or null if the child is
not rendered or if there is no
type handler for this AmxNode.

Array<HTMLElement> renderDescendants String
facetName,

Object key

Renders the subnodes of this
AmxNode (if applicable, it
flattens to the nearest
descendant).

If facetName is not null, it
renders the children of that
facet. If facetName is null, the
non-facet children are rendered.

The optional key is used for
rendering the children
AmxNode instances for that
stamping key.

Returns an array of the root
elements for each subNode.

void rerender None Rerenders the AmxNode.

Boolean isRendered None Checks the state of the
AmxNode to see whether or not
it should be rendered.

The AmxNode is considered to
be renderable if it is in the
ABLE_TO_RENDER,
RENDERED or
PARTIALLY_RENDERED state.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-17

Table 20-4 (Cont.) AmxNode APIs

String Function Name Parameters Description

void refresh adf.mf.api.amx
.AmxAttributeC
hange
attributeChang
es,

adf.mf.api.amx
.AmxDescendent
Changes
descendentChan
ges

Refreshes the DOM of an
AmxNode.

This method is called after the
updateChildren method and
should be implemented by type
handlers that want to update
their DOM in response to a
change.

void createStampedChildren Object
stampKey,

Array<String>
facetNamesToIn
clude,

Function
filterCallback

Convenience function for type
handlers that stamp their
children to create child
AmxNode instances from inside
of a custom
createChildrenNodes
function.

This function creates children
for any UI tags.

If facetNamesToInclude is
empty, the facets are not
processed for this stamp. If
facetNamesToInclude is
null, all the facets are
processed. If the
facetNamesToInclude
includes a null value inside
the array, children for non-facet
tags are created.

The filterCallback is an
optional function to filter the
children that are created. The
filterCallback function is
invoked with the AmxNode, the
stampKey, the child tag, and
the facet name (or null for
non-facets). The
filterCallback function
must return a boolean. If
true, the tag is used to create
children; if false, the tag is
not processed.

20.2.5 How to Use the AmxTag
Table 20-5 lists AmxTag APIs that you can use to create custom UI components.

Table 20-5 AmxTag APIs

Using MAF APIs to Create Custom Components

20-18 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-5 (Cont.) AmxTag APIs

Return Type Function Name Parameters Description

String getNamespace None Gets the XML
namespace URI
for the tag.

String getNsPrefixedName None Returns the tag
name including
the namespace as
its prefix (not the
local xmlns
prefix).

This is the full
XML name such
as "http://
xmlns.example
.com/
custom:custom
".

String getName None Gets the tag name.

This is the local
XML tag name
without the
prefix.

adf.mf.api.amx.AmxTag getParent None Gets the parent
tag or null if it is
the top-level tag.

String getTextContent None Returns the text
content of the tag.

Array<adf.mf.api.amx.Amx
Tag>

findTags String namespace,

String tagName

Recursively
searches the tag
hierarchy for tags
with the given
namespace and
tag name.

Returns the
current tag if it
matches.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-19

Table 20-5 (Cont.) AmxTag APIs

Return Type Function Name Parameters Description

Array<adf.mf.api.amx.Amx
Tag>

getChildren String namespace,

String tagName

Gets the children
of the tag.

Provides for
optional filtering
of the children
namespaces and
tag names. If a
namespace is
null, all the
children are
returned. If
tagName is null,
the children are
not filtered by tag
name.

Array<adf.mf.api.amx.Amx
Tag>

getChildrenFacetT
ags

None Get all of the
children facet
tags.

This function is
meant to assist the
creation of the
AmxNode process.

adf.mf.api.amx.AmxTag getChildFacetTag String name Gets the facet tag
with the given
name.

This function is
meant to assist the
code if the
presence of a facet
changes the
behavior of a type
handler.

Returns null if
the facet is not
found.

Array<adf.mf.api.amx.Amx
Tag>

getChildrenUITags None Gets all children
tags that are UI
tags.

This function is
meant to assist in
creation of the
AmxNode process.

This function not
return any facet
tags.

Array<String> getAttributeNames None Gets all of the
attribute names
for the attributes
that are specified
on the tag.

Using MAF APIs to Create Custom Components

20-20 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-5 (Cont.) AmxTag APIs

Return Type Function Name Parameters Description

Boolean isAttributeElBoun
d

String name Determines
whether or not the
given attribute is
bound to an EL
expression (as
opposed to a
static value).

String getAttribute String name Gets the attribute
value (may be an
EL string) for the
attribute of the
given name.

Returns
undefined if the
attribute is not
specified.

Map<String, String> getAttributes None Gets a key-value
pair map of the
attributes and
their values.

Boolean isUITag None Determines
whether or not the
node is a UI tag
with a type
handler and
renders content.

Object{name:string,
children:Array<adf.mf.ap
i.amx.AmxTag>}

getFacet None Gets the tags for
the children of
this facet and the
name of the facet
if this tag is a facet
tag.

This is a
convenience
function for
building the
AmxNode tree.

Returns an object
with the name of
the facet and the
children tags of
the facet. Returns
null if the tag is
not an
amx:facet tag.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-21

Table 20-5 (Cont.) AmxTag APIs

Return Type Function Name Parameters Description

adf.mf.api.amx.AmxNode buildAmxNode adf.mf.api.amx.AmxNode
parentNode,

Object stampKey

Creates a new
instance of an
AmxNode for this
tag given the
stamp ID.

If the tag is a facet
tag, the tag creates
an AmxNode for
the child tag.

This function does
not initialize the
AmxNode. Instead,
it returns either an
uninitialized
AmxNode or null
for non-UI tags.

adf.mf.api.amx.TypeHandl
er

getTypeHandler None Gets the type
handler for this
tag.

20.2.6 How to Use the VisitContext
Table 20-6 lists VisitContext APIs that you can use when creating custom UI
components.

Table 20-6 VisitContext APIs

Return Type Function Name Parameters Description

Boolean isVisitAll None Determines whether or
not all nodes should be
visited.

Array<adf.mf.api.amx.Amx
Node>

getNodesToWalk None Gets the nodes that
should be walked during
visitation.

This list does not
necessarily include the
nodes that should be
visited (callback
invoked).

Array<adf.mf.api.amx.Amx
Node>

getNodesToVisi
t

None Get the list of nodes to
visit.

Using MAF APIs to Create Custom Components

20-22 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-6 (Cont.) VisitContext APIs

Return Type Function Name Parameters Description

Array<adf.mf.api.amx.Amx
Node>

getChildrenToW
alk

adf.mf.api.amx.AmxN
ode parentAmxNode

Determine which child
AmxNode instances,
including facets (if any),
should be walked of the
given parent AmxNode.

Allows for type handlers
to optimize how to walk
the children if not all are
being walked.

May return null.

20.2.7 How to Use the AmxAttributeChange
Table 20-7 lists AmxAttributeChange APIs that you can use when creating custom
UI components.

Table 20-7 AmxAttributeChange APIs

Return Type Function Name Parameters Description

Array<String> getChangedAttributeN
ames

None Gets the names of the
attributes that have
been affected during
the current change.

Boolean isCollectionChange String name Determines whether
the attribute change is
a collection change.

adf.mf.api.amx.AmxCollectionC
hange

getCollectionChange String name Gets the collection
model change
information for an
attribute. Returns null
if no change object is
available.

String getOldValue String name Gets the value of the
attribute before the
change was made.

Boolean hasChanged String name Determines whether
the attribute with the
given name has
changed.

Number getSize None Gets the number of
attribute changes.

20.2.8 How to Use the AmxDescendentChanges
Table 20-8 lists AmxAttributeChange APIs that you can use when creating custom
UI components.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-23

Table 20-8 AmxDescendentChanges APIs

Return Type Function Name Parameters Description

Array<adf.mf.api.am
x.AmxNode>

getAffectedNodes None Gets the unrendered changed
descendent AmxNode instances.

adf.mf.api.amx.AmxA
ttributeChange

getChanges adf.mf.api.am
x.AmxNode
amxNode

Gets the changes for a given
AmxNode.

adf.mf.api.amx.AmxN
odeStates

getPreviousNodeState adf.mf.api.am
x.AmxNode
amxNode

Gets the state of the descendent
AmxNode before the changes
were applied.

20.2.9 How to Use the AmxCollectionChange
Table 20-9 lists AmxCollectionChange APIs that you can use when creating custom
UI components.

Table 20-9 AmxCollectionChange APIs

Return Type Function Name Parameters Description

Boolean isItemized None Determines whether or not
the change to the collection
may be itemized: the keys and
elements on that collection
were identified, so the
TypeHandler can update
just the appropriate items as
opposed to rerendering the
entire list from scratch.

Array<String> getCreatedKeys None Gets either an array of keys
that were created, or null if
the change cannot be
itemized.

Array<String> getDeletedKeys None Gets either an array of the
keys that were removed, or
null if the change cannot be
itemized.

Array<String> getUpdatedKeys None Gets either an array of the
keys that were updated, or
null if the change cannot be
itemized.

Array<String> getDirtiedKeys None Gets either an array of the
keys that were dirtied, or null
if the change cannot be
itemized.

20.2.10 How to Use the AmxNodeChangeResult
Table 20-10 lists AmxNodeChangeResult APIs that you can use when creating
custom UI components.

Using MAF APIs to Create Custom Components

20-24 Developing Mobile Applications with Oracle Mobile Application Framework

Table 20-10 AmxNodeChangeResult APIs

Members Description

adf.mf.api.amx.AmxNodeChangeResult["NONE"] Takes no action in response to an attribute change
on a non-rendered descendent AmxNode.

adf.mf.api.amx.AmxNodeChangeResult["REFRESH"
]

The attribute and its child AmxNode instances
have been updated by the type handler and the
DOM will be updated by the type handler's
refresh function.

adf.mf.api.amx.AmxNodeChangeResult["RERENDER
"]

The AmxNode and its child AmxNode instances
been updated by the type handler, but the DOM
should only be recreated as there is no need to
modify the AmxNode hierarchy so the refresh
function will not be called on the type handler.

adf.mf.api.amx.AmxNodeChangeResult["REPLACE"
]

The type handler cannot handle the change. The
DOM, as well as the AmxNode hierarchy should
be recreated.

This value may only be returned from the
updateChildren method on a type handler and
cannot be returned from the
getDescendentChangeAction method.

20.2.11 How to Use the AmxNodeStates
Table 20-11 lists AmxNodeStates APIs that you can use when creating custom UI
components.

Table 20-11 AmxNodeStates APIs

Members Description

adf.mf.api.amx.AmxNodeStates["INITIAL"] Initial state. The AmxNode has been
created but not populated.

adf.mf.api.amx.AmxNodeStates["WAITING_ON_EL_EVALUATION
"]

EL-based attributes needed for
rendering have not been fully
loaded yet.

adf.mf.api.amx.AmxNodeStates["ABLE_TO_RENDER"] EL attributes have been loaded, but
the AmxNode has not yet been
rendered.

adf.mf.api.amx.AmxNodeStates["PARTIALLY_RENDERED"] The EL is not fully loaded, but the
AmxNode has partially rendered
itself (reserved for future use).

adf.mf.api.amx.AmxNodeStates["RENDERED"] The AmxNode has been fully
rendered.

adf.mf.api.amx.AmxNodeStates["UNRENDERED"] The AmxNode is not to be rendered.

Using MAF APIs to Create Custom Components

Creating Custom MAF AMX UI Components 20-25

20.2.12 How to Use the AmxNodeUpdateArguments
Table 20-12 lists AmxNodeUpdateArguments APIs that you can use when creating
custom UI components.

Table 20-12 AmxNodeUpdateArguments APIs

Return Type Function Name Parameters Description

Array<adf.mf.api.
amx.AmxNode>

getAffectedNodes None Gets an array of affected
AmxNode instances.

Map<String,Boolea
n>

getAffectedAttribu
tes

String amxNodeId Gets an object representing the
affected attributes for a given
AmxNode ID.

Map<String,adf.mf
.api.amx.AmxColle
ctionChange>

getCollectionChang
es

String amxNodeId Gets the collection changes for a
given AmxNode and property.

The returned map is keyed by
attribute name.

Returns undefined if there are
no changes for the AmxNode.

void setAffectedAttribu
te

adf.mf.api.amx.AmxN
ode amxNode,

String
attributeName

Marks an attribute of an
AmxNode as affected.

void setCollectionChang
es

String amxNodeId,

String
attributeName,

adf.mf.api.amx.AmxC
ollectionChange
collectionChanges

Sets the collection changes for a
given AmxNode's attribute.

20.3 Creating Custom Components
You can create a custom UI component through the use of JavaScript and MAF APIs.
This component's JavaScript file can be added to your project through the application
feature-level includes. When you add your custom tag library, it is entered into the
Components window's list of tag libraries and, when this library is selected, your
custom component becomes available in the Components window, with its attributes
displayed in the Properties window.

Before you begin:

Familiarize yourself with APIs described in Using MAF APIs to Create Custom
Components.

To create a custom component:

1. Produce a JavaScript file that registers a tag namespace and series of one or more
type handlers using the adf.mf.api.amx.TypeHandler.register API (see
Table 20-1 and an example that follows this procedure).

2. For each type handler, implement a rendering member function.

3. Optionally, implement other functions.

Creating Custom Components

20-26 Developing Mobile Applications with Oracle Mobile Application Framework

4. Attach one or more of your JavaScript and CSS files to the MAF AMX application
feature. For examples, see the following sample applications located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer:

• custom.js and custom.css files included in the MAF sample application
called CompGallery.

• WorkBetter sample application contains a custom search component.

Alternatively, you can perform a design-time packaging.

5. For each MAF AMX page that uses one of the customs components, add an xmlns
entry in the view element:

xmlns:custom="http://xmlns.example.com/custom"

The following example shows a JavaScript file that declares custom components.

(function() {
 // TypeHandler for custom "x" elements
 var x = adf.mf.api.amx.TypeHandler.register("http://xmlns.example.com/custom",
 "x");
 x.prototype.render = function(amxNode) {
 var rootElement = document.createElement("div");
 rootElement.appendChild(document.createTextNode("Hello World"));
 return rootElement;
 };

 // TypeHandler for custom "y" elements
 var y = adf.mf.api.amx.TypeHandler.register("http://xmlns.example.com/custom",
 "y");

 y.prototype.render = function(amxNode) {
 var rootElement = document.createElement("div");
 rootElement.appendChild(document.createTextNode("Goodbye World"));
 return rootElement;
 };

})();

For examples of how to create custom UI components, see the following:

• The custom.amx, customOther.amx, exampleEvents.amx, and
exampleList.amx files included in the MAF sample application called
CompGallery.

• The DatePicker MAF sample application.

The sample applications are located in the PublicSamples.zip file within the
jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples
directory on your development computer.

Creating Custom Components

Creating Custom MAF AMX UI Components 20-27

Creating Custom Components

20-28 Developing Mobile Applications with Oracle Mobile Application Framework

21
Implementing Application Feature Content

Using Remote URLs

This chapter describes how application features with content from remote URLs can
access (or be restricted from) device services. It also describes how to implement a
whitelist in a MAF plus enable a navigation bar on remote URL pages that render in
the MAF application’s web view.

This chapter includes the following sections:

• Introduction to Remote URL Applications

• Enabling Remote Applications Access Container Services

• Whitelisting Remote URLs in Your MAF Application

• Enabling the Browser Navigation Bar on Remote URL Pages

21.1 Introduction to Remote URL Applications
By configuring the content type for an application feature as Remote URL in the
overview editor for the maf-feature.xml file, as shown in Figure 21-1, you create a
browser-based application that is served from the specified URL. Such server-hosted
applications differ from client applications written in MAF AMX, local HTML, or a
platform-specific language such as Objective-C in that they are intended for occasional
use and cannot directly access the device's memory or services (such as the camera,
contacts, or GPS). These interactions are instead contingent upon the capabilities of the
device's browser. For details about configuring Remote URL content, see Defining the
Application Feature Content as Remote URL or Local HTML.

Implementing Application Feature Content Using Remote URLs 21-1

Figure 21-1 Configuring Remote URL Content

21.2 Enabling Remote Applications Access Container Services
Remote URL applications that open within the MAF web view use Apache Cordova
JavaScript APIs to access device features and MAF JavaScript APIs to access the MAF
container services. You use a JavaScript <script> tag that references the base.js
libraries to enable this access.

To access MAF or Cordova JavaScript APIs from within a server-rendered web
application (for example, getting and setting EL expressions, getting information
about the application, taking a photo, or accessing contacts), you must use the virtual
path /~maf.device~/ when including base.js so that the browser will identify the
request as being for a MAF resource and not for the remote server. This approach
works in both remote as well as local HTML pages and is the best way to include
base.js in an HTML feature (regardless of where it is being served from).The
following example shows how to include base.js from a device HTML page or from
a remote HTML page:

<html>
 <head>
 <script src="/~maf.device~/www/js/base.js"></script>
...

When the container code reads /~maf.device~/ in the requested URL it then
resolves the URL locally, as shown in the following example, and treats it as a native
request.

<script src="http://your.domain.ip/~maf.device~/www/js/base.js"></script>

where your.domain.ip is the domain from the remote URL.

Enabling Remote Applications Access Container Services

21-2 Developing Mobile Applications with Oracle Mobile Application Framework

MAF then reads the file from the file system in the container code and sends the local
file content to the web view.

In addition to using the virtual path /~maf.device~/, as already described, verify
that the Allow Native Access property (allowNativeAccess) is set to the default
value of true in the maf-application.xml file for the application feature that
specifies the remote URL application as its content type. The following example shows
this property in a maf-application.xml source file:

<adfmf:featureReference refId="remoteAppfeature1" id="fr1" allowNativeAccess="true"/>

If this property is false, the remote URL application feature cannot access the
container services.

21.3 Whitelisting Remote URLs in Your MAF Application
Use a whitelist if you allow a remote URL application feature to access container
services and you want to restrict the list of URLs that can access the services.

Performing this task is commonly known as whitelisting. For example, Figure 21-2
shows a remote URL application that renders http://www.oracle.com. Assume
that the Watch the Webcast on demand link in Figure 21-2 navigates to a non-
oracle.com URL. This is not desirable as you do not know and cannot trust what
actions the non-oracle URL may perform if you have granted access to container
services. Implementing a whitelist in your MAF application can restrict access to
oracle.com URLs and prevent untrusted URLs from accessing container services if you
have granted a remote URL application feature access to container services.

Use a Cordova plugin if you want to implement a whitelist in your MAF application.
For an overview of how Cordova plugins implement whitelists, see the “Whitelist
Guide” in the Apache Cordova documentation at https://cordova.apache.org/
docs/en/latest/guide/appdev/whitelist/index.html.

Apache Cordova provides a plugin (cordova-plugin-whitelist) that you can
configure to implement a whitelist in a MAF application that you deploy to Android.
You download this plugin, modify it, configure it with whitelist entries, and register it
in your MAF application. For iOS and UWP, you configure whitelist entries in the
plugin.xml of a plugin that you develop or modify.

Tip:

Configure the plugin.xml file in Apache Cordova plugin’s for Android
(cordova-plugin-whitelist) with whitelist entries for each of Android,
iOS and UWP. With this approach, you register one plugin in your MAF
application that implements whitelists for all platforms to which you deploy
your MAF application. The following sections provide sample plugin.xml
entries that demonstrate how you can implement a whitelist for each platform.

For specific information, see:

• Android platform, see How to Whitelist Remote URLs on the Android Platform.

• iOS platform, see How to Whitelist Remote URLs on the iOS Platform.

• Universal Windows Platform, see How to Whitelist Remote URLs on Universal
Windows Platform.

Whitelisting Remote URLs in Your MAF Application

Implementing Application Feature Content Using Remote URLs 21-3

https://cordova.apache.org/docs/en/latest/guide/appdev/whitelist/index.html
https://cordova.apache.org/docs/en/latest/guide/appdev/whitelist/index.html

Figure 21-2 Remote URL in MAF Web View

21.3.1 How to Whitelist Remote URLs on the Android Platform
Implementing a whitelist in a MAF application that you deploy to Android can be
accomplished by writing a Cordova plugin.

Alternatively, download the cordova-plugin-whitelist plugin and modify it as
follows:

• Open the file src/android/WhitelistPlugin.java in a text editor

• In each of the following methods, change “return null;” to “return
false;”:

– shouldAllowNavigation(String url)

– shouldAllowRequest(String url)

– shouldOpenExternalUrl(String url)

• Save the modified file

Whitelisting Remote URLs in Your MAF Application

21-4 Developing Mobile Applications with Oracle Mobile Application Framework

Configure the whitelist entries in the plugin.xml file, and register it in your MAF
application. For more information about cordova-plugin-whitelist, see the
Apache Cordova documentation at https://cordova.apache.org/docs/en/latest/
cordova-plugin-whitelist/. The latter documentation provides examples that
demonstrate how you can implement navigation and network request whitelists plus
implement content security policies using the plugin.

The following sample illustrates how the plugin.xml file could be configured to
whitelist HTTP and HTTPS URLs from the oracle.com domain.

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://apache.org/cordova/ns/plugins/1.0" id="cordova-plugin-
whitelist" version="1.2.2">

 <name>Whitelist</name>
 <description>Cordova Network Whitelist Plugin</description>
 <license>Apache 2.0</license>
 <keywords>cordova,whitelist,policy</keywords>

 <engines>
 <engine name="cordova-android" version=">=4.0.0" />
 </engines>

 <platform name="android">
 <config-file target="res/xml/config.xml" parent="/*">
 <allow-navigation href="http://*.oracle.com/*"/>
 <allow-navigation href="https://*.oracle.com/*"/>
 <feature name="Whitelist" >
 <param name="android-package"
value="org.apache.cordova.whitelist.WhitelistPlugin"/>
 <param name="onload" value="true" />
 </feature>
 </config-file>

 <source-file src="src/android/WhitelistPlugin.java" target-dir="src/org/
apache/cordova/whitelist" />

 <info>
 This plugin is only applicable for versions of cordova-android greater
than 4.0. If you have a previous
 platform version, you do *not* need this plugin since the whitelist will
be built in.
 </info>
 </platform>
</plugin>

Once you complete implementing the whitelist that you want, add the plugin to your
MAF application, as described in Registering Additional Plugins in Your MAF
Application.

For more information about developing a plugin for use in a MAF application, see
Introduction to Using Plugins in MAF Applications.

Whitelisting Remote URLs in Your MAF Application

Implementing Application Feature Content Using Remote URLs 21-5

https://cordova.apache.org/docs/en/latest/cordova-plugin-whitelist/
https://cordova.apache.org/docs/en/latest/cordova-plugin-whitelist/

21.3.2 How to Whitelist Remote URLs on the iOS Platform
Implementing a whitelist in a MAF application that you deploy to iOS can be
accomplished by writing a Cordova plugin.

Develop and/or register a Cordova plugin in your MAF application that enables
whitelisting. The following sample illustrates a plugin that can be used to whitelist
HTTP and HTTPS URLs from the oracle.com domain.

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://apache.org/cordova/ns/plugins/1.0" id="maf-ios-whitelist-
plugin" version="1.0.0">

 <name>Whitelisting</name>
 <description>Plugin to white list remote URLs in a MAF app on iOS.</description>

 <platform name="ios">
 <config-file target="config.xml" parent="/*">
 <allow-navigation href="http://*.oracle.com/*"/>
 <allow-navigation href="https://*.oracle.com/*"/>
 <feature name="CDVIntentAndNavigationFilter">
 <param name="ios-package" value="CDVIntentAndNavigationFilter"/>
 <param name="onload" value="true"/>
 </feature>
 </config-file>
 </platform>
</plugin>

Whitelisting works for hyperlinks and top level URIs. Whitelisting does not work for
resource loading, includes, XMLHttpRequests, and URIs used in HTML src
attributes.

For more information about developing a plugin for use in a MAF application, see
Introduction to Using Plugins in MAF Applications. Once you complete development
of your plugin, register it in your MAF application, as described in Registering
Additional Plugins in Your MAF Application.

21.3.3 How to Whitelist Remote URLs on Universal Windows Platform
Implementing a whitelist in a MAF application that you deploy to UWP can be
accomplished by writing a Cordova plugin.

Develop and/or register a Cordova plugin in your MAF application that enables
whitelisting.

See the following annotated sample for a number of examples that demonstrate how
you can implement whitelist(s) in a plugin.

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns=http://apache.org/cordova/ns/plugins/1.0 xmlns:uap=http://
schemas.microsoft.com/appx/manifest/uap/windows10
 id="maf-
cordova-plugin-windows-whitelist" version="1.0.0">

 <name>MAF Windows Whitelist</name>
 <description>MAF Windows Plugin to whitelist URLs that have Window RT access</
description>
 <keywords>cordova,whitelist</keywords>

 <!-- windows 10 -->

Whitelisting Remote URLs in Your MAF Application

21-6 Developing Mobile Applications with Oracle Mobile Application Framework

 <platform name="windows">

 <!-- In a MAF application, local package URLs have access to all Windows
Runtime(RT) API. Access to Windows RT API is essential
 for Cordova plugins that need to make device calls. External website
URLs like: http:// and https:// do NOT have access to
 Windows RT API by default in MAF. This plugin allows modifications to
the application manifest so that Windows RT API
 access and hence Cordova device access can be granted to external URLs.
 -->

 <config-file target="package.appxmanifest" parent="/Package/Applications/
Application/uap:ApplicationContentUriRules">

 <!-- The following example provides access to the Window RT API to a
single page -->
 <uap:Rule Match="http://example.com/crmapp/contacts/contact.html"
Type="include" WindowsRuntimeAccess="all" />

 <!-- The following example denies access to Window RT API to specific
directories inside the package -->
 <uap:Rule Match="ms-appx-web:///FARs/ViewController/public_html/
noNativeAcessFeature/*" Type="include" WindowsRuntimeAccess="none" />

 <!— The following example allows everything in the oracle.com domain to
access the Windows RT API in the application-->
 <uap:Rule Match="http://*.oracle.com/*" Type="include"
WindowsRuntimeAccess="all" />

 </config-file>
 </platform>
</plugin>

Once you complete implementing the whitelist that you want, add the plugin to your
MAF application, as described in Registering Additional Plugins in Your MAF
Application.

For more information about developing a plugin for use in a MAF application, see
Introduction to Using Plugins in MAF Applications.

21.4 Enabling the Browser Navigation Bar on Remote URL Pages
MAF enables you to add a navigation bar with buttons for back, forward, and refresh
actions for application features implemented as remotely served web content that
open within the MAF web view, as shown in Figure 21-3. The forward and back
buttons are disabled when either navigation forward or back is not possible.

Note:

The back button is disabled on Android-powered devices.

Enabling the Browser Navigation Bar on Remote URL Pages

Implementing Application Feature Content Using Remote URLs 21-7

Figure 21-3 A Remote Web Page Displaying the Navigation and Refresh Buttons

21.4.1 How to Add the Navigation Bar to a Remote URL Application Feature
You enable users to navigate through, or refresh remote content through the Content
tab of the overview editor for the maf-feature.xml file.

Before you begin:

Designate an application feature's content be delivered from a remotely hosted
application by first selecting Remote URL and then by creating the connection to the
host server, as described in Defining the Application Feature Content as Remote URL
or Local HTML.

To enable a navigation bar:

1. Select the Remote URL application feature listed in the Features table in the maf-
feature.xml file.

Enabling the Browser Navigation Bar on Remote URL Pages

21-8 Developing Mobile Applications with Oracle Mobile Application Framework

2. Click Content.

3. Select Show Browser Navigation Buttons, as shown in Figure 21-4.

Figure 21-4 Selecting Navigation Options

21.4.2 What Happens When You Enable the Browser Navigation Buttons for a Remote
URL Application Feature

JDeveloper updates the adfmf:remoteURL element with an attribute called
showNavButtons, which is set to true, as shown in the following example.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="oraclemobile" name="oraclemobile">
 <adfmf:content id="oraclemobile.1">
 <adfmf:remoteURL connection="connection1"
 showNavButtons="true"/>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

After you deploy the application, MAF applies the forward, back, and refresh buttons
to the web pages that are traversed from the home page of the Remote URL
application feature, as shown in Figure 21-5.

Enabling the Browser Navigation Bar on Remote URL Pages

Implementing Application Feature Content Using Remote URLs 21-9

Figure 21-5 Traversing Through a Remote URL Application Feature

Enabling the Browser Navigation Bar on Remote URL Pages

21-10 Developing Mobile Applications with Oracle Mobile Application Framework

22
Enabling User Preferences

This chapter describes how to create both application-level and application feature-
level user preference pages.

This chapter includes the following sections:

• Creating User Preference Pages for a Mobile Application

• Creating User Preference Pages for Application Features

• Using EL Expressions to Retrieve Stored Values for User Preference Pages

• Platform-Dependent Display Differences

22.1 Creating User Preference Pages for a Mobile Application
Preferences enable you to add settings that can be configured by end users. Within
both the maf-application.xml and maf-feature.xml files, the user preference
pages are defined with the <adfmf:preferences> element. You also use the
<adfmf:preferences> element to create the preferences that users manage within each
application feature.

As shown in the following example, the child element of <adfmf:preferences>
called <adfmf:preferenceGroup> and its child elements define the user
preferences by creating pages that present options in various forms, such as text
strings, dropdown menus, or in this case, as a child page that can present the user with
additional options for application settings.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 name="MobileApplication"
 id="com.company.MobileApplication"
 appControllerFolder="ApplicationController"
 version="1"
 vendor="oracle"
 listener-class="application.LifeCycleListenerImpl">
 <adfmf:description>This app created by Mobile Application Framework</
adfmf:description>
 <adfmf:featureReference id="PROD"/>
 <adfmf:featureReference id="HCM"/>
 <adfmf:featureReference id="Customers"/>
 <adfmf:preferences>
<adfmf:preferenceGroup id="a" label="Prefs Group A">
 <adfmf:preferenceBoolean id="a1_sound" label="Sound Effects"/>
 <adfmf:preferenceNumber id="a2_retries" label="Retries" default="3"/>
 <adfmf:preferenceList id="a3_background" label="Background" default="3">
 <adfmf:preferenceValue name="None" value="0" id="pv4"/>
 <adfmf:preferenceValue name="Field" value="1" id="pv1"/>
 <adfmf:preferenceValue name="Galaxy" value="2" id="pv5"/>

Enabling User Preferences 22-1

 <adfmf:preferenceValue name="Mountain" value="3" id="pv6"/>
 </adfmf:preferenceList>
 <adfmf:preferenceText id="a4_name" label="Default Name"/>
 <adfmf:preferencePage id="aa" label="Prefs SubGroup AA">
 <adfmf:preferenceGroup id="aa_sec" label="Security">
 <adfmf:preferenceBoolean id="aa_sec_useSec" label="Use Security"/>
 <adfmf:preferenceNumber id="aa_sec_timeout" label="Timeout (secs)"
default="120"/>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
 </adfmf:preferenceGroup>
 <adfmf:preferenceGroup id="b" label="Prefs Group B">
 <adfmf:preferenceBoolean id="b_cloudSync" label="Cloud Sync"/>
 <adfmf:preferenceList id="b_dispUsage" label="Display Usage As" default="1">
 <adfmf:preferenceValue name="Percent" value="1" id="pv2"/>
 <adfmf:preferenceValue name="Minutes" value="2" id="pv3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:application>

Figure 22-1 shows an example of how opening a child user preference page can offer
subsequent options.

Creating User Preference Pages for a Mobile Application

22-2 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-1 User Preferences Pages

Preference pages are defined within the <adfmf:preferenceGroup> element and
have the following child elements:

• <adfmf:preferencePage>—Specifies a new page in the user interface.

• <adfmf:preferenceList>—Provides users with a specific set of options.

– <adfmf:preferenceValue>—A child element that defines a list element.

• <adfmf:preferenceBoolean>—A boolean setting.

• <adfmf:preferenceText>—A text preference setting.

See Tag Reference for Oracle Mobile Application Framework for more information on these
elements and their attributes.

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-3

For an example of creating preference pages at both the application and application-
feature levels, refer to the PrefDemo sample application. This sample application is
located in the PublicSamples.zip file at the following location within the
JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

The PrefDemo application is comprised of an application-level settings page as well as
three application feature preference pages, which are implemented as MAF AMX.
Figure 22-2 shows the PrefDemo application settings page, which you invoke from the
general settings page. In this illustration, the preference settings page is invoked from
the iOS Settings application.

Figure 22-2 The PrefDemo Application Settings Page

The application feature preference pages, illustrated by App, Feature1 (which is
selected), and Feature 2 in Figure 22-3, provide examples of preferences pages
constructed from the MAF AMX Boolean Switch, Input Text, and Output Text
components that use EL (Expression Language) to access the application feature and
the various <adfmf:preferences> components configured within it. For more
information, see Using EL Expressions to Retrieve Stored Values for User Preference
Pages.

Creating User Preference Pages for a Mobile Application

22-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-3 An Application Feature Preference Page from the PrefDemo
Application

In the PrefDemo application, each MAF AMX preference page is referenced by a single
bounded task flow comprised of a view activity and a control flow case that enables
the page refresh.

22.1.1 How to Create Mobile Application-Level Preferences Pages
The Preferences page of the maf-application.xml overview editor, shown in
Figure 22-4, enables you to build sets of application-level preference pages by nesting
the child preference page elements within <adfmf:preferenceGroup>. The page
presents the <adfmf:preferenceGroup> and its child elements as similarly named
options (such as Preference Page, Preference List, Boolean Preference), which you
assemble into a hierarchy (or tree), similar to the Structure window in JDeveloper.

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-5

Figure 22-4 Adding Mobile Application-Level Preferences Using the Preferences
Page

To ensure that the maf-application.xml file is well-formed, use the Preferences
page's Add drop-down list, shown in Figure 22-4, to construct the user preferences
pages. While you can also drag components from the Preferences palette, shown in
Figure 22-5, into either the editor, the Source window, or the Structure window, the
page's drop-down list presents only the elements that can have the appropriate parent,
child, or sibling relationship to a selected preferences element. For example, Figure
22-4 shows only the components that can be inserted within the Preference Group
element, MobileApp. The editor also enables you to enter the values for the attributes
specific to each preference element.

Creating User Preference Pages for a Mobile Application

22-6 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-5 Preferences in the Component Palette

To create preferences pages:

1. In the maf-application.xml overview editor, click Preferences.

2. Click Add to create the parent <adfmf:preferenceGroup> element.

3. Enter the following information in the Insert Preference Group dialog, shown in
Figure 22-6.

Figure 22-6 Defining the Parent Preference Group Element

• Enter a unique identifier for the Preference Group element.

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-7

• Enter the descriptive text that displays in the user interface. For an example of
how this text displays in the user interface, see Sample in Figure 22-1.

4. Click Add to further define the preference pages using the Insert Before, Insert
Inside, Insert After options to ensure that the XML document is well formed.

22.1.1.1 How to Create a New User Preference Page

The Preference Page component enables you to create a new user interface page. You
create a Preference Page using the Insert Before, Insert Inside, Insert After options.

Before you begin:

You must create a Preference Group element.

To create a new user preference page:

1. In the Preferences Page of the maf-application.xml overview editor, select the
Preference Group element. In this example, the Preference Group is called
MobileApp.

2. Click Add, then choose Insert Inside Preference Group > Preference Page, as
shown in Figure 22-7.

Figure 22-7 Selecting the Preference Page Component

3. Define the following Preference Page attributes in the Insert Preference Page
dialog, shown in Figure 22-8:

• Enter a unique identifier for the Preference Page element.

• Enter the descriptive text that displays in the user interface.

Creating User Preference Pages for a Mobile Application

22-8 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-8 The Insert Preference Page Dialog

4. Create the body of the preference page by inserting a child Preference Group
element by selecting the Preference Page, and then first choosing Insert Inside
Preference Page and then Preference Group, as shown in Figure 22-9. After you
define a unique identifier and display name for the child Preference Group, you
can populate it with other elements, such as a Preference List element, as shown in
What Happens When You Add a Preference Page.

Figure 22-9 Adding a Preference Group to a Preference Page

22.1.1.2 What Happens When You Add a Preference Page

After you define the Preference Page and its child Preference Group components in
the overview editor, JDeveloper generates an <adfmf:preferencePage> with
attributes, as shown in the following example. The <adfmf:preferencePage> is
nested within a parent <adfmf:preferenceGroup> element.

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="MobileApp">
 <adfmf:preferencePage id="application_version"
 label="Version">
 <adfmf:preferenceGroup id="version_select"
 label="Select Your Version">
 <adfmf:preferenceList id="edition"
 label="Edition"
 default="PERSONAL">

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-9

 adfmf:preferenceValue name="Enterprise"
 id="pv2"/>
 <adfmf:preferenceValue name="Personal"
 value="PERSONAL"
 id="pv1"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
</adfmf:preferences>

22.1.1.3 How to Create User Preference Lists

Add a Preference List component to create a list of options.

Before you begin:

You must create Preference Group as the parent to the Preference List or any other
list-related component.

To create a user preference list:

1. Select a Preference Group or Preference Page and then click Add, then Insert
Inside, and then Preference List. Figure 22-10 shows adding a Preference List as a
child of a Preference Group component called Select Your Version.

Figure 22-10 Adding a Preference List Component to a Preference Group

2. Define the following attributes using the Insert Preference List dialog, shown in
Figure 22-11, and then click OK.

• Enter a unique identifier.

• Enter the descriptive text that displays in the user interface.

Creating User Preference Pages for a Mobile Application

22-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-11 The Insert Preference List Dialog

3. Define a list of items by clicking Add in the Preference Value table, shown in
Figure 22-12. You can also remove a preference value by selecting it and then
clicking Delete. You can change the order in which the preference values display
by selecting the preference value and then using the up- and down-arrows.

You can present the user with a default setting by choosing Default. As illustrated
in What Happens When You Add a Preference Page, the default status is defined
within the <adfmf:preferenceList> element as default="ENTERPIRSE".

Tip:

In addition to clicking Add, you can add Preference Value components by
dragging them either into the Structure window or the Source window.

Figure 22-12 Adding Preference Values

22.1.1.4 What Happens When You Create a Preference List

After you add a Preference List component to a Preference Group and then define a
series of Preference Values, JDeveloper updates the <adfmf:preferences> section
with an <adfmf:preferenceList> element, as shown in What Happens When You
Add a Preference Page.

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-11

22.1.1.5 How to Create a Boolean Preference List

See, for example, Creating User Preference Pages for a Mobile Application.

Before you begin:

Because an <adfmf:preferenceBoolean> element must be nested within an
<adfmf:preferenceGroup> element, you must first insert a Preference Group
component to the hierarchy.

To create a user boolean list:

1. Select a Preference Group element, such as GPS Settings in Figure 22-13.

Figure 22-13 Adding a Boolean Preference to a Preference Group

2. Define the following attributes using the Insert Boolean Preference dialog, shown
in Figure 22-14, and then click OK.

• Enter a unique identifier.

• Enter the descriptive text that displays in the user interface.

Figure 22-14 The Insert Boolean Preference Dialog

Creating User Preference Pages for a Mobile Application

22-12 Developing Mobile Applications with Oracle Mobile Application Framework

3. Accept the default value of false, or select true.

22.1.1.6 What Happens When You Add a Boolean Preference

When you add a Boolean Preference and designate its default value, JDeveloper
updates the <adfmf:preferences> section of the maf-application.xml file
with a <adfmf:preferenceBoolean> element, as illustrated in the following
example.

<adfmf:preferencePage id="gps_tracking"
 label="Your_GPS_Locations">
 <adfmf:preferenceGroup id="gps"
 label="GPS Settings">
 <adfmf:preferenceBoolean id="track_gps"
 label="Automatically Track Location"
 default="true"/>
</adfmf:preferencePage>

22.1.1.7 How to Add a Text Preference

Use the insert options, shown in Figure 22-15, to create a Text Preference, a dialog that
enables users to store information or view default text. Figure 22-15 shows creating a
text preference within a Preference Group called Security.

Figure 22-15 Inserting a Text Preference

Before you begin:

Create a Preference Group element.

To create a text preference:

1. Select a Preference Group element.

2. Select Insert Inside and then Text Preference.

Creating User Preference Pages for a Mobile Application

Enabling User Preferences 22-13

3. Enter the following information into the Insert Text Preference dialog, shown in
Figure 22-16, and then click OK.

• Enter a unique identifier.

• Enter the descriptive text that displays in the user interface.

Figure 22-16 The Insert Text Preference Dialog

4. Define the following for the preference text dialog:

• Enter the default text value.

• Select Secret to hide the text preference.

Figure 22-17 Defining the Text Preference

22.1.1.8 What Happens When You Define a Text Preference

When you add a Text Preference and designate its default value, JDeveloper updates
the <adfmf:preferences> section of the maf-application.xml file with a
<adfmf:preferenceText> element, as illustrated in the following example.

Creating User Preference Pages for a Mobile Application

22-14 Developing Mobile Applications with Oracle Mobile Application Framework

 <adfmf:preferenceGroup id="security" label="Security">
 <adfmf:preferenceText id="serviceURL"
 label="Security URL"
 default="http://security.example.com/provider"/>
 <adfmf:preferenceText id="username"
 label="User Name"/>
 <adfmf:preferenceText id="password"
 label="Password"
 secret="true"/>
 </adfmf:preferenceGroup>

The Preference Group elements that define a security URL, user name, and password
preference setting display similarly to Figure 22-18.

Figure 22-18 Text Preferences

Figure 22-18 illustrates <adfmf:preferenceText> elements with a seeded value for
the Security URL and an input value for the User Name. Because the MAF preferences
are integrated with the iOS Settings application, the secret="true" attribute for the
Password input text results in the application following the iOS convention of
obscuring the user input with bullet points. For more information, see the description
for the isSecure text field element in Settings Application Schema Reference, available
from the iOS Developer Library (http://developer.apple.com/library/ios/
navigation/) and Platform-Dependent Display Differences.

22.1.2 What Happens When You Create an Application-Level Preference Page
After you deploy the mobile application, the application-wide preference settings page
is propagated to the device's global settings application, such as the Settings
application on iOS-powered devices. For more information, see Converting
Preferences for Deployment.

22.2 Creating User Preference Pages for Application Features
As described in Reusing MAF Application Content , you can distribute an application
feature independently of its mobile application by adding a Feature Application
Archive (FAR) .jar file containing the application feature to the library of another
mobile application. You then reference the application feature in the application's
maf-application.xml file. If an application feature requires a specific set of user
preferences in addition to the general preferences defined for the consuming
application, you can define them using the Preferences tab of the maf-feature.xml
overview editor, shown in Figure 22-19. You build application feature preferences in

Creating User Preference Pages for Application Features

Enabling User Preferences 22-15

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

the same manner as the application-level preferences, which are described in Creating
User Preference Pages for a Mobile Application. After you define the preferences in
the maf-feature.xml file, you then create the actual preference page by creating an
application feature that references a MAF AMX page that is embedded with the
Boolean Switch, Input, and Output components described in Creating and Using UI
Components.

Figure 22-19 Setting Application Feature-Level Preferences

22.3 Using EL Expressions to Retrieve Stored Values for User Preference
Pages

When creating an application feature-level preference page, you add EL expressions to
the MAF AMX components, such as the Input Text component in the following
example.

<amx:inputText label="Number" id="it1" inputType="number"
 value="#{preferenceScope.feature.Feature1.f1top.f1Number}"/>

As illustrated in this example, EL expressions use the preferenceScope object to
enable applications to access an application feature-level preference. These EL
expressions are in the following format:

Using EL Expressions to Retrieve Stored Values for User Preference Pages

22-16 Developing Mobile Applications with Oracle Mobile Application Framework

preferenceScope.feature.feature-id.group-id.property-id

Figure 22-20 illustrates using the Expression Builder to create the EL expression. The
preference itself is designated by the IDs configured for various components in maf-
feature.xml, such as the ID of the application feature <adfmf:feature
id="Feature1">), the ID of a Preference Group (<adfmf:preferenceGroup
id="f1top">), and the ID of a preference property (<adfmf:preferenceNumber
id="f1Number">).

The EL expression may include zero or more group-id and property-id elements.

Figure 22-20 Building an EL Expression for a Preference

Using EL Expressions to Retrieve Stored Values for User Preference Pages

Enabling User Preferences 22-17

22.3.1 What You May Need to Know About preferenceScope
An EL expression has the following resolution pattern:

• From the JavaScript layer, EL value expressions are resolved using the following
JavaScript function:

adf.mf.el.getValue(expression, success, failed)

The resolution of adf.mf.el.getValue begins with an attempt to resolve the
expression locally using the JS-EL parser and JavaScript Context Cache. If the
expression cannot be resolved locally, the expression is passed to the embedded
Java layer for evaluation where it is resolved by the Java EL parser. This is done
through the GenericInvokeRequest to the Model's getValue method.

• At the Java layer, an EL value expression is resolved using the following approach:

String val = AdfmfJavaUtilities.evaluateELExpression("#{preferenceScope.feature.f0.vendor}");

For a setValue method, the expression is resolved as follows:

ValueExpression ve =
AdfmfJavaUtilities.getValueExpression("#{preferenceScope.feature.f0.vendor}");
ve.setValue(AdfmfJavaUtilities.getADFELContext(), value);

Evaluation of the EL expression involves looking up the preferenceScope
object. The evaluation is from left to right, where each token is resolved
independently. After a token is resolved, it is used to resolve the next token (which
is on its right).

Preferences cannot be exposed without the preferenceScope object. For more
information about the preferenceScope object, see About the Mobile Application
Framework Objects Category.

22.3.2 Reading Preference Values in iOS Native Views
MAF integrates APIs provided for a native UI (such as UIView or
UIViewController) to allow certain configurations on iOS platform.

When the native UI is initialized, an instance of the ADFSession object becomes
available. You can use its getPreferences method to instruct MAF to provide a
listing of the available preferences for the application as defined in the maf-
application.xml file. As shown in the following example, this method returns a
NSArray* of preference property objects that can include the id, value, and label
for the preference. This API call ensures that either the end user provided the value for
a particular preference, or that the default value of the preference is returned.

//...
-(id) initWithADFSession:(id<ADFSession>) providedSession
{
 id me = [self init];
 session = providedSession;
 //...
 // Dump the preferences to the data display
 NSArray* prefsArray = [session getPreferences];
 NSString* prefs = [prefsArray JSONRepresentation];
 self.theData.text = [[NSString alloc] initWithFormat:
 :@"%@\nUser Preferences = --> %@ <--", self.theData.text, prefs];
 //...

Using EL Expressions to Retrieve Stored Values for User Preference Pages

22-18 Developing Mobile Applications with Oracle Mobile Application Framework

 return me;
}

22.4 Platform-Dependent Display Differences
The MAF preference pages maintain the native look-and-feel for both the iOS and
Android platforms. Consequently, the MAF preference pages display differently on
the two platforms. As shown in Table 22-1, preferences display inline on the iOS
platform, meaning that the system does not invoke dialog pages. With a few
exceptions, the Android platform presents these components as dialogs.

Table 22-1 Preference Component Comparison by Platform

Component iOS iOS Display
Examples

Android Android Display
Examples

Preference
Groups
(Category
Selection)

The iOS platform
displays the
preference elements
within their parent
preference group.

The Android platform
displays the
preference elements
within their parent
preference group.

Boolean
Preference
List

The Boolean
preference is
represented as value
pair, such as on and
off.

Android presents the
Boolean preference as
a check box.

Platform-Dependent Display Differences

Enabling User Preferences 22-19

Table 22-1 (Cont.) Preference Component Comparison by Platform

Component iOS iOS Display
Examples

Android Android Display
Examples

Text
Preference

iOS displays the text
inline.

Android displays the
default text within an
input field.

Text
Preference (as
secret input
text)

On iOS platforms,
user enter text inline,
with each character
obscured by a bullet
point after it has been
entered. For more
information, see
What Happens When
You Define a Text
Preference.

Android launches an
input text dialog and
obscures each
character with a bullet
point after it has been
entered.

Platform-Dependent Display Differences

22-20 Developing Mobile Applications with Oracle Mobile Application Framework

Table 22-1 (Cont.) Preference Component Comparison by Platform

Component iOS iOS Display
Examples

Android Android Display
Examples

Single Item
Selection List
(from a
Preference
List)

iOS platforms
display the single
item selection list in a
separate preferences
page.

Android displays the
single item selection
list in a dialog.

Preference
Page

iOS launches a child
preference page from
a preference group.

Android launches a
child preference page
from a preference
group.

Platform-Dependent Display Differences

Enabling User Preferences 22-21

Although iOS and Android platforms have a Settings application, only the iOS
platform supports integrating application-level preferences into the Settings
application, as shown by the preferences in Figure 22-21.

Figure 22-21 Oracle Mobile Preferences in the iOS Settings Application

On Android-powered devices, users access application-specific preferences pages
similar to the one shown in Figure 22-22 only when the application is running.

Platform-Dependent Display Differences

22-22 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 22-22 The Preferences Menu on an Android-Powered Device

Platform-Dependent Display Differences

Enabling User Preferences 22-23

Platform-Dependent Display Differences

22-24 Developing Mobile Applications with Oracle Mobile Application Framework

23
Setting Constraints on Application Features

This chapter describes how to set constraints that can restrict an application feature
based on user access privileges or device requirements.

This chapter includes the following sections:

• Introduction to Constraints

• Defining Constraints for Application Features

23.1 Introduction to Constraints
A constraint describes when an application feature or application content should be
used. Constraints can restrict access based on users and user roles, the characteristics
of the device on which the mobile application is targeted to run, and the hardware
available on the device. You can set constraints at two levels: at the application feature
level, where you control the visibility of an application feature on a user's device, and
at the content level, where you can specify which type of MAF content can be
delivered for an application feature. The overview editor for the maf-feature.xml
file enables you to set both of these types of constraints. Constraints are evaluated by
the MAF runtime and must evaluate to true to enable the end user to view or use
specific content, or even access the application feature itself.

23.1.1 Using Constraints to Show or Hide an Application Feature
The Constraints tab, shown in Figure 23-1, enables you to set the application feature-
level constraints. For example, an application feature that uses the device's camera
displays within the mobile application's navigation bar or springboard only if the
MAF runtime determines that the device actually has a camera function. You can also
use feature level constraints to secure an application based on user roles and
privileges. Figure 23-1 illustrates creating constraints that would allow only a user
with administrator privileges to access the application feature, should the MAF
runtime evaluate the constraint to true. If the runtime evaluates the constraint to
false, then it prevents an end user from accessing the application feature, because it
does not appear on the navigation bar or within the springboard.

Setting Constraints on Application Features 23-1

Figure 23-1 Setting Application Feature-Level Constraints

23.1.2 Using Constraints to Deliver Specific Content Types
To accommodate such factors as device hardware properties or user privileges, a
single application feature can have more than one type of content to deliver different
versions of the user interface. By setting constraints on the content of an application
feature, you designate the conditions for determining what end users can see or how
application pages can be used.

Using the Content tab, shown in Figure 23-2, you can, for example, specify content
that delivers one type of user interface for users who have been granted administrative
privileges and a separate user interface for those who have basic user privileges. In
addition, content-level constraints can accommodate the layout considerations of a
device. Figure 23-2 illustrates how a sample application performs this using a
constraint based on the screen width of a device to deliver AMX Mobile task flows that
call pages tailored to the layout of the iPhone and the iPad. When an end user
launches the sample application, the MAF runtime evaluates the constraint that is set
for the Employees application feature. If the runtime ascertains that the diagonal
width of the device's screen exceeds six inches, it selects the
Employees_pad_taskflow.xml file, which calls the MAF AMX pages designed for
the iPad. If this constraint evaluates to false (that is, the diagonal width of the screen
is less than six inches), then the runtime selects the MAF task flow that calls iPhone-
specific pages, Employees_phone_taskflow.xml. In addition, the Content tab
enables you to select navigation bar and springboard images that display when the
runtime selects specific content. If you do not select content-specific images, then MAF
instead uses the application feature-level images that are designated in the General
tab.

Introduction to Constraints

23-2 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Images must adhere to the platform-specific guidelines, as described in Setting
Display Properties for an Application Feature.

Figure 23-2 Setting Content-Level Constraints

For more information on the sample applications, see MAF Sample Applications.

23.2 Defining Constraints for Application Features
When setting application feature-level constraints, the property, operator, and
value attributes of the <adfmf:constraint> element (a child element of
<adfmf:constraints>) enable you to restrict application usage based on a user, a
device, or hardware. An example of defining these attributes, shown in the following
example, illustrates defining these attributes to restrict access to an application feature
to a Field Rep and to also restrict the application to run only on an iOS-powered
device.

<adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"

Defining Constraints for Application Features

Setting Constraints on Application Features 23-3

 value="Field Rep"/>
 <adfmf:constraint property="device.model"
 operator="contains"
 value="ios"/>
</adfmf:constraints>

23.2.1 How to Define the Constraints for an Application Feature
You declaratively configure the constraints for a selected application feature using the
Constraints tab in the Features page, shown in Figure 23-2.

To define the constraints for an application feature:

1. Click the Constraints tab.

2. Click Add.

3. Select a property and an appropriate operator and then enter a value. For more
information on using properties, see About the property Attribute.

23.2.2 What Happens When You Define a Constraint
Entering the values in the Constraints tab updates the descriptor file's
<adfmf:constraints> element with defined <adfmf:constraint> elements,
similar to the example shown in Defining Constraints for Application Features.

23.2.3 About the property Attribute
MAF provides a set of property attributes that reflect users, devices, and hardware
properties. Using these properties in conjunction with the following operators and an
appropriate value determines how an application feature can be used.

• contains

• equal

• less

• more

• not

23.2.4 About User Constraints and Access Control
After a user logs into a mobile application, the MAF runtime reconciles the user role-
based constraints configured for each application feature against the user roles and
privileges retrieved by the Access Control Service (ACS). MAF then presents only the
application feature (or application feature content) to end users whose privileges
satisfy the constraints. In addition to setting these user privilege and role constraints,
you create access control for the mobile application by entering the following in the
Create MAF Login Connection dialog, shown in Figure 23-3 (and described in How to
Designate the Login Page):

• The URL of the REST Web service that transmits a list of user roles and privileges.

• A list the user roles checked by the application feature.

• A list of privileges.

See also What You May Need to Know About the Access Control Service.

Defining Constraints for Application Features

23-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 23-3 Configuring Retrieval of User Roles and Privileges

You control access to application features using constraints based on user.roles
and user.privileges. For example, to allow only a user with the manager role to
access an application feature, you must add a constraint of user.roles contains
manager to the definition of the application feature.

The user.roles and user.privileges use the contains and not operators as
follows:

• contains—If the collection of roles or privileges contains the named role or
privilege, then the runtime evaluates the constraint to true. The following
example shows how to use the user.roles property with the contains
operator. The application feature will appear in the mobile application if the user's
roles include the role of employee.

<feature ...>
 ...
 <constraints>

Defining Constraints for Application Features

Setting Constraints on Application Features 23-5

 <constraint property="user.roles"
 operator="contains"
 value="employee" />
 </constraints>
 ...
</feature>

• not—If the collection of roles or privileges does not contain the named role or
privilege, then the runtime evaluates the constraint to true. In the following
example, the application feature is not included if the user's privileges contain the
manager privilege.

<feature ...>
 ...
 <constraints>
 <constraint property="user.privileges"
 operator="not"
 value="manager" />
 </constraints>
 ...
</feature>

23.2.5 About Hardware-Related Constraints
The hardware object references the hardware available on the device, such as the
presence of a camera, the ability to provide compass heading information, or to store
files. These properties use the equal operator.

• hardware.networkStatus—Indicates the state of the network at the startup of
the application. This property can be modified with three attribute values:
NotReachable, CarrierDataConnection, and WiFiConnection. The
following example illustrates the latter value. As illustrated in this example, setting
this value means that this mobile application feature only displays in the mobile
application if the device hardware indicates that there is a Wi-Fi connection. In
other words, if the device does not have a Wi-Fi connection when the mobile
application loads, then this application feature will not display.

<feature ...>
...
 <constraints>
 <constraint property="hardware.networkStatus"
 operator="equal"
 value="WiFiConnection" />
 </constraints>
...
</feature>

Note:

This constraint is evaluated at startup on iOS-powered devices. If a device
does not have a Wi-Fi connection at startup but subsequently attains one (for
example, when a user enters a Wi-Fi hotspot), then the application feature
remains unaffected and does not become available until the user stops and
then restarts the mobile application.

• hardware.hasAccelerometer—Indicates whether or not the device has an
accelerometer. This property is defined by a true or false value. The following

Defining Constraints for Application Features

23-6 Developing Mobile Applications with Oracle Mobile Application Framework

example shows a true value, indicating that this application feature is only
available if the hardware has an accelerometer.

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasAccelerometer"
 operator="equal"
 value="true" />
 </constraints>
...
</feature>

Note:

Because all iOS-based hardware have accelerometers, this property must
always have a value of true for the application feature to be available on iOS-
powered devices.

• hardware.hasCamera—Indicates whether or not the device has a camera. This
constraint is defined using a value attribute of true or false. In the following
example, the value is set to true, indicating that the application feature is only
available if the device includes a camera.

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasCamera"
 operator="equal"
 value="true" />
 </constraints>
...
</feature>

Note:

Not all iOS-based hardware have cameras. This value is dynamically
evaluated at the startup of mobile applications on an iOS-powered device. At
this time, the mobile application removes the application features that do not
evaluate to true.

• hardware.hasCompass—Indicates whether the device has a compass. You
define this constraint with the attribute value of true or false, as shown in the
following example.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasCompass"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Defining Constraints for Application Features

Setting Constraints on Application Features 23-7

Note:

Not every iOS-powered device has a compass. This value is dynamically
evaluated at the startup of mobile applications on an iOS-powered device. At
this time, the mobile application removes the application features that do not
evaluate to true.

• hardware.hasContacts—Indicates whether the device has an address book or
contacts. You define this constraint with the attribute value of true or false, as
shown in the following example.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasContacts"
 operator="equal"
 value"=true" />
 </constraints>
 ...
</feature>

Note:

Because contacts on iOS-based hardware are accessed through Apache
Cordova, the value attribute is always set to true for iOS-powered devices.

• hardware.hasFileAccess—Indicates whether the device provides file access.
You define this constraint with the attribute value of true or false, as shown in
the following example. The application feature is only available if the runtime
evaluates this constraint to true.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasFileAccess"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Note:

Because file access on iOS-based hardware is accessed through Apache
Cordova, the value attribute is always true for iOS-powered devices.

• hardware.hasGeoLocation—Indicates whether or not the device provides
geolocation services. You define this constraint with the attribute value of true or
false, as shown in the following example. The application feature is only
available if the device supports geolocation.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasGeoLocation"
 operator="equal"

Defining Constraints for Application Features

23-8 Developing Mobile Applications with Oracle Mobile Application Framework

 value="true"/>
 </constraints>
 ...
</feature>

Note:

Apache Cordova does not provide access to the geolocation service for all iOS-
powered devices. Depending on the device, the application feature may not be
available when the constraint is evaluated by the runtime.

• hardware.hasLocalStorage—Indicates whether the device provides local
storage of files. You define this constraint with the value attribute of true or
false, as shown in the following example. The application feature only displays if
the device supports storing files locally.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasLocalStorage"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Note:

Because Apache Cordova provides access to local file storage on all iOS
hardware, the value attribute is always true for iOS-powered devices.

• hardware.hasMediaPlayer—Indicates whether or not the device has a media
player. You define this constraint with the value attribute of true or false, as
shown in the following example. The application feature only displays if the device
has a media player.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaPlayer"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Note:

For iOS-powered devices, the value attribute is always true, because
Apache Cordova provides access to media players on iOS-based hardware.

• hardware.hasMediaRecorder—Indicates whether or not the device has a
media recorder. You define this constraint with the value of true or false, as
shown in the following example. The application feature is only included if the
device hardware supports a media recorder.

Defining Constraints for Application Features

Setting Constraints on Application Features 23-9

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaRecorder"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Note:

Set this value to true for all iOS-powered devices because all iOS-based
hardware have media recorders which can be accessed through Apache
Cordova. Some devices, such as the Apple iTouch, do not have a microphone
but can allow end users to make recordings by attaching an external
microphone.

• hardware.hasTouchScreen—Indicates whether or not the hardware provides a
touch screen. You define this constraint with the value attribute of true or
false, as shown in the following example. The application feature is only
included if the device hardware supports a touch screen.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasTouchScreen"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

Note:

Set the value attribute to true for iOS-powered devices, because all iOS-
based hardware provides touch screens.

• hardware.screen.width—Indicates the width of the screen for the device in its
current orientation. Enter a numerical value that reflects the screen's width in terms
of logical device pixels (such as such as 320 in the following example), not physical
device pixels, which represent the actual pixels that appear on a device. The value
depends on the orientation of the device.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.width"
 operator="equal"
 value="320" />
 </constraints>
 ...
</feature>

Defining Constraints for Application Features

23-10 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

This value is evaluated at the startup of the mobile application when the
runtime evaluates constraints and dismisses application features with
constraints that do not evaluate to true. If a user rotates the device after the
mobile application starts, MAF's runtime does not re-evaluate this constraint
because the set of application features is fixed after the mobile application
starts.

• hardware.screen.height—Indicates the height of screen for the device in its
current position. Enter a numerical value that reflects the screen's height in terms of
logical pixels, such as 320 or 480, as shown in the following example. The value
depends on the orientation of the device.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.height"
 operator="equal"
 value="480" />
 </constraints>
 ...
</feature>

Note:

When the mobile application starts, the MAF runtime evaluates the screen
height value for this constraint as part of the process of dismissing application
features with constraints that do not evaluate to true. If a user changes the
orientation of the device after the mobile application starts, the runtime does
not re-evaluate this constraint, because the set of application features is fixed
after the mobile application starts.

• hardware.screen.availableWidth—Indicates the available width of the
device's screen in its current orientation. Enter a numerical value that reflects the
screen's width in terms of logical pixels, such as 320 or 480, as shown in the
following example. The value depends on the orientation of the device.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableWidth"
 operator="equal"
 value"320" />
 </constraints>
 ...
</feature>

• hardware.screen.availableHeight—Indicates the available height of the
screen for the device in its current position. Enter a numerical value that reflects the
screen's width in terms of logical pixels, such as 320 or 480, as shown in the
following example. The value depends on the orientation of the device.

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableHeight"

Defining Constraints for Application Features

Setting Constraints on Application Features 23-11

 operator="equal"
 value"480" />
 </constraints>
 ...
</feature>

23.2.6 Creating Dynamic Constraints on Application Features and Content
In addition to displaying or hiding an application feature or user interface content
based on the static constraints that are defined by the name, operator, and value
attributes, you can enable a mobile application to render its application features and
content dynamically by defining constraints with EL expressions. The dynamic
evaluation of constraints based on EL expressions enables you to write expressions
that can call your own bean logic, write complex EL expressions, or even write logic-
accessing application preferences. Defining constraints as EL expressions provides
flexibility in that the MAF runtime may initially hide an application feature if it
evaluates an EL expression as false, but may display it at a later point when it
evaluates the same EL expression as true. The <adfmf:constraintExpression>
element enables you to define constraints on an application feature using EL
expressions, as illustrated by the deferred method expression in the following
example.

<adfmf:constraints>
 <adfmf:constraint id="c1" property="hardware.screen.dpi" operator="more" value="120"/>
 <adfmf:constraint id="c2" property="device.model" operator="equal" value="iPad"/>
 <adfmf:constraintExpression id="c3" value="#{myBean.checkConstraint}"/>
</adfmf:constraints>

This example also shows how you can nest the <adfmf:constraintExpression> element
among the static constraints defined within the <adfmf:constraints> element of
the maf-feature.xml file. For more information, see Tag Reference for Oracle Mobile
Application Framework.

23.2.6.1 About Combining Static and EL-Defined Constraints

The MAF runtime must evaluate all the criteria of a static constraint as true to enable
it to be displayed. The runtime displays application features and content when it
evaluates the constraint EL expressions as true, but hides them when it evaluates the
expressions as false.

23.2.6.2 How to Define a Dynamic Constraint

Unlike static constraints, you neither create nor update a dynamic constraint using the
maf-feature.xml overview editor. Instead, you create an
<adfmf:constraintExpression> by dragging the Constraint Expression
component into either the Source editor or the Structure window and then use the
Expression Builder to populate this component with the EL expression.

To define a Constraint Expression component:

1. Choose the Source editor for the maf-feature.xml file.

2. Navigate to the <adfmf-constraints> element.

3. In the Components window, select the Common components, as shown in Figure
23-4.

Defining Constraints for Application Features

23-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 23-4 The Constraint Expression Component

4. Choose the Constraint Expression component and add it to the <adfmf-
constraints> element using any of the following methods:

• Double-click the Constraint Expression component in the Components
window.

• Drag the Constraint Expression component into the <adfmf-constraints>
element in the Source editor.

• Drag the Constraint Expression component into the Constraints node of the
Structure window.

5. Enter the EL expression in the Insert constraintExpression dialog, shown in Figure
23-5, or create an EL expression with the Expression Builder, which you access by
clicking the Property Menu icon (the gear) in this dialog.

Figure 23-5 Defining an EL Constraint Using the InsertconstraintExpession
Dialog

Figure 23-6 shows how to create an EL expression from the ADF Managed Bean
category. However, you can create a constraint's EL expression from any of the
categories described in About the Categories in the Expression Builder.

Note:

Only application scope managed beans defined in adfc-mobile-
config.xml can be used in a constraint's EL expression.

Defining Constraints for Application Features

Setting Constraints on Application Features 23-13

Figure 23-6 Building a Constraint's EL Expression

6. Click OK.

Defining Constraints for Application Features

23-14 Developing Mobile Applications with Oracle Mobile Application Framework

24
Enabling and Using Notifications

This chapter describes how to enable MAF applications to display local notifications as
well as register for, and handle, push notification messages.

This chapter includes the following sections:

• Introduction to Notifications

• Enabling Push Notifications

• Managing Local Notifications

24.1 Introduction to Notifications
Notifications are signals delivered to the end user outside of a mobile application's
regular user interface. These notifications can appear as messages in the form of an
alert, or as a banner, depending on the state of the application and user settings. The
notifications may be presented visually or as a sound or both.

The following are the two main types of notifications:

• Push notifications are sent from an external source, such as a server, to an
application on a mobile device. When end users are notified, they can either launch
the application or they can choose to ignore the notification in which case the
application is not activated.

Figure 24-1 shows a push notification alert on an iOS-powered device.

Enabling and Using Notifications 24-1

Figure 24-1 Push Notification

Applications must register with a notification service to receive push notifications.
If the registration succeeds, then the notification service issues a token to the
application. The application shares this token with its provider (located on a
remote server), and in doing so, enables the provider to send notifications to the
application through the notification service. MAF registers on behalf of the
application using application-provided registration configuration, described in
Enabling Push Notifications. Registration occurs upon every start of the MAF
application to ensure a valid token. After a successful registration, MAF shares the
token obtained from the platform-specific notification service with the provider.
On iOS, the notification service is Apple Push Notification Service (APNs). Google
Cloud Messaging (GCM) for Android provides the notification service for
applications installed on Android-powered devices.

A MAF application can receive push notifications regardless of its state: the display
of these messages, which can appear even when the application is not in the
foreground, depends on the state of the MAF application and the user settings.
Table 24-1 describes how the iOS operating system handles push notifications
depending on the state of the MAF application.

Table 24-1 Handling Push Notifications on an iOS-Powered Device

State Action

The MAF application is installed, but not
running.

The notification message displays with the
registered notification style (none, banner,
or alert). When the user taps the message
(if its a banner-style notification) or
touches the action button (if the message
appears as an alert), the MAF application
launches, invoking the application
notification handlers.

Introduction to Notifications

24-2 Developing Mobile Applications with Oracle Mobile Application Framework

Table 24-1 (Cont.) Handling Push Notifications on an iOS-Powered Device

State Action

The MAF application is running in the
background.

The notification message displays with the
registered notification style (none, banner,
alert). When the user taps the message (if
it is a banner-style notification), or touches
the action button (if the message appears
as an alert), the MAF application launches,
invoking the application notification
handlers.

The MAF application is running in the
foreground.

No notification message displays. The
application notification handlers are
invoked.

On the iOS and Android platforms, if the application is not running in the
foreground, then any push notification messages associated with it are queued in a
specific location, such as the iOS Notification Center or the notification drawer on
Android-powered devices.

• Local notifications originate within a mobile application and are received by the
same application. The notifications are delivered to the end user through standard
mechanisms supported by the mobile device platform (for example, banner,
sound).

Using the Local Notification Abstraction API provided by MAF, you can configure
the application to raise a notification immediately or schedule a notification for a
future date and time. In addition, you can set a repeat pattern for a notification (for
example, daily or weekly) as well as cancel a scheduled notification.

On both the iOS and Android platform, if the MAF application is running in the
foreground, the notification is delivered directly to the application without the end
user interaction. If the application is either running in the background or not
running at all, the notification is delivered to the application once the end user taps
on the notification.

MAF applications on the Universal Windows Platform do not support local or
push notifications.

24.2 Enabling Push Notifications
You can enable push notifications by performing the following tasks:

1. Allow the MAF application to receive push notifications by choosing PushPlugin
in the Core Plugins section of the Plugins page of the maf-application.xml
overview editor, as shown in the following illustration.

Note:

By default, a MAF application does not allow push notifications.

Enabling Push Notifications

Enabling and Using Notifications 24-3

For more information, see Using Plugins in MAF Applications.

2. In the application controller project, register an application lifecycle event listener
(ALCL) class. For more information, see Setting Display Properties for an
Application Feature and Using Lifecycle Listeners in MAF Applications .

3. Implement the oracle.adfmf.application.PushNotificationConfig
interface in the ALCL. This interface provides the configuration required to
successfully register with the push notification service.

Override and implement the getNotificationStyle and
getSourceAuthorizationId methods of the PushNotificationConfig
interface. The getNotificationStyle method enables you to specify the
notification styles for which the application registers. The
getSourceAuthorizationId method enables you to enter the Google Project
Number of the accounts authorized to send messages to the MAF application. For
more information, see Java API Reference for Oracle Mobile Application Framework.

4. In the application controller project, create a push notification event listener class
(for example, NativePushNotificationListener) that handles push
notification events. This class must implement the
oracle.adfmf.framework.event.EventListener interface that defines an
event listener. For more information on the
oracle.adfmf.framework.event.EventListener interface, see Java API
Reference for Oracle Mobile Application Framework.

Override and implement the onOpen, onMessage, and onError methods to
register for and receive notification events. After a successful registration with the
push notification service, MAF calls the onOpen method with the registration
token that must be shared with the provider by the application developer. The
onError method is invoked if there is an error when registering with the
notification service, with the error returned by the push notification service
encapsulated as an AdfException.

MAF calls the onMessage(Event e) method with the notification payload
whenever the application receives a notification. The Event object can be used to
retrieve useful information about notification payload and the application state. To
get the notification payload, use the Event.getPayload method. To get the
application state at the time of notification, use the

Enabling Push Notifications

24-4 Developing Mobile Applications with Oracle Mobile Application Framework

Event.getApplicationState method. For more information, see the Event
class in Java API Reference for Oracle Mobile Application Framework.

5. Get an EventSource object in the start method of the ALCL class that
represents the source of a native push notification event:

EventSource evtSource = EventSourceFactory.getEventSource(
 EventSourceFactory.NATIVE_PUSH_NOTIFICATION_REMOTE_EVENT_SOURCE_NAME);

6. Create and add an object of the push notification events listener class to the event
source:

evtSource.addListener(new NativePushNotificationListener());

MAF sample applications called PushDemo and PushServer demonstrate how to
handle push notifications. These sample applications are located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

24.2.1 What You May Need to Know About the Push Notification Payload
MAF respects the following keys for a JSON-formatted payload:

• alert: the text message shown in the notification prompt.

• sound: a sound that is played when the notification is received.

• badge: the number to badge the application icon on iOS.

Note:

On Android, the payload can be a JSON object with key-value pairs. The value
is always stringified, because the GCM server converts non-string values to
strings before sending them to an application. This is not the case with the
APNs, which preserves the value types. For more information, refer to the
description of the "data" message parameter in the "Implementing GCM
Server" section of Google Cloud Messaging. This document is available from the
Android Developers website at http://developer.android.com/
index.html or the Android SDK documentation.

24.3 Managing Local Notifications
You can manage local notifications by using the following:

• Java APIs provided by MAF (see How to Manage Local Notifications Using Java).

• JavaScript APIs provided by MAF (see How to Manage Local Notifications Using
JavaScript).

• Methods of the DeviceFeatures data control that is available to all MAF
applications at the application design time (see How to Manage Local Notifications
Using the DeviceFeatures Data Control).

A MAF sample application called LocalNotificationDemo demonstrates how to
schedule and handle local notifications. This sample application is located in the
PublicSamples.zip file within the jdev_install/jdeveloper/jdev/
extensions/oracle.maf/Samples directory on your development computer.

Managing Local Notifications

Enabling and Using Notifications 24-5

http://developer.android.com/index.html
http://developer.android.com/index.html

24.3.1 How to Manage Local Notifications Using Java
You can schedule local notifications using the following methods of the
oracle.adfmf.framework.api.AdfmfContainerUtilities class:

• addLocalNotification(MafNativeLocalNotificationOptions
options). This method returns a String that represents the ID of the notification
being scheduled.

In your Java code, you use this method in a manner similar to the following:

try {
 // Configure local notification
 MafNativeLocalNotificationOptions options =
 new MafNativeLocalNotificationOptions();

 options.setTitle("some title text");
 options.setAlert("some alert text");

 // Set the date in UTC
 options.setDate(LocalDateTime.now(Clock.systemUTC()).plusSeconds(5));
 // Set the notification to repeat every minute
 options.setRepeat(MafNativeLocalNotificationOptions.RepeatInterval.MINUTELY);
 // Set the application badge to be '1' everytime notification is triggered
 options.setBadge(1);
 // Play the default system sound when notification triggers
 options.setSound(MafNativeLocalNotificationOptions.SYSTEM_DEFAULT_SOUND);
 // Vibrate using default system vibration motion when notification triggers
 options.setVibration(
 MafNativeLocalNotificationOptions.SYSTEM_DEFAULT_VIBRATION);

 // Add custom payload that is to be delivered through the local notification
 HashMap<String,Object> payload = new HashMap<String, Object>();

 payload.put("somenumber", 1);
 payload.put("somestring", "value2");
 payload.put("someboolean", true);
 options.setPayload(payload);

 // Schedule local notification
 String notificationID = AdfmfContainerUtilities.
 addLocalNotification(options);
 System.out.println("Notification added successfully. ID is "+notificationID);
}
catch(Exception e) {
 System.err.println("There was a problem adding notification");
}

The notification options' impact on the behavior of your application depends on
your target platform. For more information, see What You May Need to Know
About Local Notification Options and the Application Behavior.

• cancelLocalNotification(String notificationId). This method
returns a String that represents the ID of the successfully canceled notification.

In your Java code, you use this method in a manner similar to the following:

try {
 String cancelledNotificationId = AdfmfContainerUtilities.
 cancelLocalNotification("a83b696d-53e7-4242-ab4d-4a771d8d178f");

Managing Local Notifications

24-6 Developing Mobile Applications with Oracle Mobile Application Framework

 System.out.println("Notification successfully canceled");
}
catch(AdfException e) {
 System.err.println("There was a problem canceling notification");
}

For more information, see Java API Reference for Oracle Mobile Application Framework.

24.3.2 How to Manage Local Notifications Using JavaScript
MAF allows you to manage local notifications using JavaScript APIs in the
adf.mf.api.localnotification namespace. The following methods are
available:

• add, defined as follows:

/**
* Schedule a local notification
*
* @param {Object} options - notification options
* @param {string} options.title - notification title
* @param {string} options.alert - notification alert
* @param {Date} options.date - date at which notification is to be triggered
* @param {Number} options.badge - application icon is to be badged by this
* number when notification is triggered
* @param {string} options.sound - set it to 'SYSTEM_DEFAULT' to play the
* default system sound upon a notification
* @param {string} options.vibration - set it to 'SYSTEM_DEFAULT' for default
* system vibration upon a notification
* @param {Object} options.payload - custom payload to be sent via notification
* @param {successCallback} scb - success callback
* @param {errorCallback} ecb - error callback
*/
adf.mf.api.localnotification.add(options,scb,ecb);

{Object} options : json representing notification options
 {
 // notification title (only Android and iOS 8.2 or later)
 "title" : String,
 // notification alert text
 "alert" : String,
 // date-time at which notification should be fired (UTC time zone)
 "date" : Date,
 // either 'minutely', 'hourly', 'daily',
 // 'weekly', 'monthly', or 'yearly'
 "repeat" : String,
 // badge application icon with this number (iOS only)
 "badge" : Number,
 // if set, the default system sound is played
 "sound" : "SYSTEM_DEFAULT",
 // if set to "SYSTEM_DEFAULT", the default vibration is
 // enabled upon an incoming notification (Android only)
 "vibration" : String,
 // custom JSON data to be passed through the notification
 "payload" : Object,
 }

/**
* Success Callback
*

Managing Local Notifications

Enabling and Using Notifications 24-7

* @param {Object} request - request
* @param {Object} response - response
* @param {string} response.id - id of the scheduled notification
*/
function scb(request, response) {}

/**
* Error Callback
*
* @param {Object} request - request
* @param {Object} response - response
*/
 function fcb(request, response) {}

The notification options' impact on the behavior of your application depends on
your target platform. For more information, see What You May Need to Know
About Local Notification Options and the Application Behavior.

• cancel, defined as follows:

/**
* Cancel a scheduled local notification
*
* @param {string} notificationId - id of the scheduled notification
* that needs to be canceled
* @param {successCallback} scb - success callback
* @param {errorCallback} ecb - error callback
*/
adf.mf.api.localnotification.cancel(notificationId, scb, ecb);

{var} notificationId : id of notification that is to be canceled.

/**
* Success Callback
*
* @callback successCallback
* @param {Object} request - request
* @param {Object} response - response
* @param {string} response.id - id of the notification
*/

/**
* Error Callback
*
* @callback errorCallback
* @param {Object} request - request
* @param {Object} response - response
*/

For more information, see JSDoc Reference for Oracle Mobile Application Framework.

24.3.3 How to Manage Local Notifications Using the DeviceFeatures Data Control
You can schedule and cancel a local notification using the addLocalNotification
and cancelLocalNotification methods of the DeviceFeatures data control
shown in Figure 24-2.

Managing Local Notifications

24-8 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 24-2 Methods of DeviceFeatures Data Control

For information about the DeviceFeatures data control, see Using the DeviceFeatures
Data Control.

24.3.4 How to Handle Local Notifications
To enable handling of local notifications, MAF provides the following:

• The EventListener interface that you must implement to create a listener for
local notification events. When a notification is triggered, the onMessage method
is called with the notification details:

NativeLocalNotificationListener implements EventListener {
 @Override
 public void onOpen(String id) {
 }

 @Override
 public void onMessage(Event event) {
 //Application state at the time of this notification
 int appState = event.getApplicationState();

 //Get local notification event details
 if (event instanceof NativeLocalNotificationEvent) {
 NativeLocalNotificationEvent localNotificationEvent =
 (NativeLocalNotificationEvent) event;
 HashMap<String, Object> notification =
 localNotificationEvent.getPayloadObject();

 // do something with the notification payload, such as navigate
 // to an application feature, call a web service, and so on
 }

 @Override
 public void onError(AdfException error) {
 }
}

• The NativeLocalNotificationEvent class that extends the
oracle.adfmf.framework.event.Event.

To receive events related to local notifications, you need to add your listener in the
registered ApplicationLifeCycleEventListener#start method as follows:

EventSource evtSource = EventSourceFactory.getEventSource(
 EventSourceFactory.NATIVE_LOCAL_NOTIFICATION_EVENT_SOURCE_NAME);
evtSource.addListener(new NativeLocalNotificationListener());

Managing Local Notifications

Enabling and Using Notifications 24-9

For more information, see Java API Reference for Oracle Mobile Application Framework.

24.3.5 What You May Need to Know About Local Notification Options and the
Application Behavior

Table 24-2 lists the local notification options and describes how setting certain values
or failing to set values for each option affects the notification behavior of a MAF
application.

Table 24-2 Local Notification Options

Option Value Behavior on iOS Behavior on Android

title Either:

• null

• not specified

The application name is
displayed as the
notification title.

The notification title in the
notification center appears
blank.

alert Either:

• null

• not specified

If the notification has
other properties specified,
such as badge or sound,
the notification is
delivered to the operating
system so that it plays a
sound or updates the
application icon badge,
but the notification is not
displayed in the
notification center.

If the application is
running in the
foreground at the time of
the notification delivery,
the notification is
delivered to the
application's local
notification listener.

The notification is displayed
as a banner with a title but
without the alert text.

date Either:

• null

• not specified
• time or date in

the past

The notification is
triggered immediately.

The notification is triggered
immediately.

repeat Either:

• null

• not specified

The notification does not
repeat.

The notification does not
repeat.

badge Either:

• null

• not specified
• negative

number

The notification does not
badge the application
icon.

Any existing badge is
maintained.

NA 1

badge 0 Any existing badge is
removed from the
application icon.

NA 2

Managing Local Notifications

24-10 Developing Mobile Applications with Oracle Mobile Application Framework

Table 24-2 (Cont.) Local Notification Options

Option Value Behavior on iOS Behavior on Android

sound Other than
SYSTEM_DEFAUL
T_SOUND

An error message is
displayed.

The notification does not
play sound.

An error message is
displayed.

The notification does not
play sound.

sound Not specified The notification does not
play sound.

The notification does not
play sound.

vibratio
n

Other than
SYSTEM_DEFAUL
T_VIBRATION

NA 3 An error message is
displayed.

The notification does not
trigger vibration of a mobile
device.

vibratio
n

Not specified NA 4 The notification does not
trigger vibration of a mobile
device.

1 There is no concept of application badging. The setting is ignored.
2 There is no concept of application badging. The setting is ignored.
3 You cannot control vibration. The setting is ignored. However, if you specify that the default system

sound should be played upon receipt of a notification and if the end user enables the Vibrate on Ring
setting on the mobile device, then the device will also vibrate when the notification is received.

4 You cannot control vibration. The setting is ignored. However, if you specify that the default system
sound should be played upon receipt of a notification and if the end user enables the Vibrate on Ring
setting on the mobile device, then the device will also vibrate when the notification is received.

Managing Local Notifications

Enabling and Using Notifications 24-11

Managing Local Notifications

24-12 Developing Mobile Applications with Oracle Mobile Application Framework

25
Caching Data in a MAF Application

This chapter describes how to cache data in MAF applications.

This chapter includes the following sections:

• Introduction to Data Caching in MAF Applications

• Enable Data Caching in a MAF Application

• Specifying Cached Resources and Cache Policies in the sync-config.xml File

• Caching Policies Provided by MAF

• Using Configuration Service End Points in the sync-config.xml File

• Encrypting Cached Data in a MAF Application

• Packaging the sync-config.xml File in a FAR

25.1 Introduction to Data Caching in MAF Applications
Data caching plays a key part providing a positive user experience to the users of
mobile applications. Users expect mobile applications to be available and to work, at
all times. Unfortunately, mobile application connectivity can be unreliable, as network
connectivity may not be available, or it may come and go as connections are
established and subsequently dropped. MAF provides a number of capabilities to
enable you to develop MAF applications that continue to work even when the end
user’s device is offline. When network connectivity is unavailable, your MAF
application can access locally stored cached data to ensure a seamless user experience.

Figure 25-1 shows how caching works in MAF. The cache layer intercepts REST calls
that originate from the Business Logic layer. The cache layer reads the sync-
config.xml file, and based on the file’s entries, stores responses from the REST
service in the cached data store. The sync-config.xml file is where you specify URI
(end point) resources to cache and the cache policies for the URI. The cache layer uses
the URI that you specify as the key to identify a specific resource in the cache.

Caching Data in a MAF Application 25-1

Figure 25-1 Caching Data in a MAF Application

MAF provides a set of policies that you can apply and configure to determine the
refresh and expiration frequency of the data in the cache. These policies tell the cache
layer how to process requests and, as a result, enable you to improve application
performance because it is quicker for applications to use an offline read to fetch data
stored on a device than it is to retrieve data from a server. These policies also enable
the application caching to maintain an optimal user experience by enabling offline
reads when an internet connection becomes unavailable.

Implementing the functionality described in your MAF application requires you to:

• Enable Data Caching in a MAF Application

• Specifying Cached Resources and Cache Policies in the sync-config.xml File

• Encrypting Cached Data in a MAF Application

Note: MAF applications only support the caching of data retrieved by REST
services with JSON payloads.

25.2 Enable Data Caching in a MAF Application
To enable data caching, uncomment the following line in the maf.properties file:

#java.commandline.argument=-DsyncEnabled=true

Enable Data Caching in a MAF Application

25-2 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

When you enable data caching, any data that passes over the network will be
cached. Once your application is deployed with caching enabled, there is no
way to turn it off at runtime.

For information about configuring the resources to cache and the cache policies to use,
see Specifying Cached Resources and Cache Policies in the sync-config.xml File.

25.3 Specifying Cached Resources and Cache Policies in the sync-
config.xml File

JDeveloper creates the sync-config.xml file in the /.adf/META-INF directory of
the MAF application by default when you create a MAF application. Use this file to
specify caching policies to apply when your MAF application makes calls to end
points (URIs) that you specify. By default, the sync-config.xml file includes a
default policy that applies when you enable caching. This default caching policy
applies to all end points other than those that you specify in the sync-config.xml
file.

Example 25-1 demonstrates how you define two separate policies (policy1 and
policy2) for two separate end points (URIs) that originate from the same server. The
example also shows a default policy that applies when the MAF application makes
REST calls to all other URIs other than those specified for policy1 and policy2.
Finally, the example shows how you enable encryption.

You can view another example of a caching policy in use in the WorkBetter sample
application's sync-config.xml file. For more information about the sample
applications, see MAF Sample Applications.

In Example 25-1, TaskConn in the BaseURI element of the sync-config.xml is a
reference to a connection that is defined in the MAF application's connections.xml
file, as follows:

<Reference name="TaskConn"
className="oracle.adf.model.connection.url.HttpURLConnection" xmlns="">
 <Factory className="oracle.adf.model.connection.url.URLConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="TaskConn">
 <Contents>
 <urlconnection name="TaskConn" url="http://localhost:7101/TaskService/
rest/v1"/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

The benefit of this configuration is that, if connection details change (for example, a
host name changes), you only need to make a change in the connections.xml file.
The sync-config.xml file requires no changes.

Example 25-1 Sample sync-config.xml File Defining Two Policies

<Settings xmlns="http://xmlns.oracle.com/sync/config">
 <!-- The connection.xml file defines the URL that the value of the BaseURI
element references. -->
 <BaseUri>TaskConn</BaseUri>

Specifying Cached Resources and Cache Policies in the sync-config.xml File

Caching Data in a MAF Application 25-3

 ...
 <EnableEncryption>true</EnableEncryption>
 <Policies>
 <ServerGroup id="tasklist" baseUri="TaskConn">
 <Policy id="policy1">
 <Path>/taskservice1/rest/v1/TaskList/*</Path>

 <!-- This caching policy applies to a REST service accessed by a call to an end
point constructed from
 a concatenation of the baseURI value for TaskConn and the <Path> element's
value. That is,
 http://localhost:7101/TaskService/rest/v1/taskservice1/rest/v1/TaskList/*

 When the end point above is used by the business logic layer in the MAF
application, the cache layer checks sync-config.xml
 to see if there is a cache policy defined for the end point. If it finds the
policy, it applies the policy. -->

 <FetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</FetchPolicy>
 <UpdatePolicy>QUEUE_IF_OFFLINE</UpdatePolicy>
 <ExpirationPolicy>EXPIRE_AFTER</ExpirationPolicy>
 <ExpireAfter>30</ExpireAfter>
 <EvictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</EvictionPolicy>
 </Policy>
 </ServerGroup>

 <ServerGroup id="taskdetail" baseUri="TaskConn">
 <Policy id="policy2">
 <Path>/taskservice1/rest/v1/TaskDetail/*</Path>

 <!-- This caching policy applies to a different REST service accessed by a call
to an end point constructed from
 a concatenation of the baseURI value for TaskConn and the <Path> element's
value. That is,
 http://localhost:7101/TaskService/rest/v1/taskservice1/rest/v1/TaskDetail/*

 When the end point above is used by the business logic layer in the MAF
app, the cache layer checks sync-config.xml
 to see if there is a cache policy defined for the end point. If it finds
the policy, it applies the policy. -->

 <FetchPolicy>FETCH_FROM_SERVICE_IF_ONLINE</FetchPolicy>
 <UpdatePolicy>UPDATE_IF_ONLINE</UpdatePolicy>
 <ExpirationPolicy>EXPIRE_AFTER</ExpirationPolicy>
 <ExpireAfter>30</ExpireAfter>
 <EvictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</EvictionPolicy>
 </Policy>
 </ServerGroup>

 <DefaultPolicy>
 <FetchPolicy>FETCH_FROM_SERVICE_IF_ONLINE</FetchPolicy>
 <UpdatePolicy>UPDATE_IF_ONLINE</UpdatePolicy>
 <ExpirationPolicy>NEVER_EXPIRE</ExpirationPolicy>
 <EvictionPolicy>MANUAL_EVICTION</EvictionPolicy>
 </DefaultPolicy>
 </Policies>
</Settings>

Specifying Cached Resources and Cache Policies in the sync-config.xml File

25-4 Developing Mobile Applications with Oracle Mobile Application Framework

25.4 Caching Policies Provided by MAF
You define caching policies for a mobile application in the sync-config.xml file.
Combine policies to provide appropriate content for any mobile application.

For information about configuring data storage policy settings, see Specifying Cached
Resources and Cache Policies in the sync-config.xml File.

The policies that enable you to configure your application's caching behavior fall
under the following groups:

• Fetch Policies—Tells the cache layer to fetch resources (from server, from local
cache, a combination of the two, and so on). See Table 25-1 for a list of these
policies.

• Expiration Policies—Sets the time period (in seconds) after which the cache layer
notes the resources stored in the local cache as out-dated or stale and therefore
requiring either updating in accordance with the update policies (described in
Table 25-4) or deletion from the local cache in accordance with the eviction policies
(see Table 25-3). For more information on the expiration policies, see Table 25-2.

• Eviction Policies—Designates when the cache layer deletes resources stored in the
local cache. The eviction policies apply only to the data in the local cache, not to
server-side resources. See Table 25-3for a list of policies.

• Update Policies—Defines when expired resources stored in the local cache will be
updated. See Table 25-4 for a list of policies.

Table 25-1 Fetch Policies

Policy Description

Fetch from Cache Instructs the cache layer to fetch the data
from cache only, not from the server. If the
cache layer cannot find the data in the cache,
it returns an error or a null object. Because the
cache layer retrieves data directly from the
cache when it applies this policy, it can carry
out this policy when the client application is
online or offline.

Fetch from Service Instructs the cache layer to fetch the data
directly from the server only, not from the
cache. The cache layer can only apply this
policy when the client application is online.
Otherwise, it returns an error or a null object
to the client application.

Fetch from Service, if Online Instructs the cache layer to fetch the data
from the server when the client application is
online, or to fetch data from the cache when
the application is offline.

Fetch from Service on Cache-Miss Instructs the cache layer to fetch data from
the cache. If it cannot find the requested data,
the cache layer fetches it from the server.

Caching Policies Provided by MAF

Caching Data in a MAF Application 25-5

Table 25-1 (Cont.) Fetch Policies

Policy Description

Fetch from Service on Cache-Miss or Expiry Instructs the cache layer to fetch data in the
cache if it exists in the cache and is not stale
(expired). Otherwise, the cache layer fetches
the request data from the server.

Fetch from Cache, Schedule Refresh Instructs the cache layer to fetch data from
the cache and schedule a background refresh
to update the cache from the server's latest
copy. If there is a cache-miss (meaning that
the cache does not have the requested data),
the cache layer returns a null object to the
client application.

Fetch with Refresh Instructs the cache layer to:
• Fetch data from the cache if the requested

data exists and has not expired.
• Schedule a background refresh to update

the cache from the server's latest copy.
If there is a cache-miss (meaning that the
cache does not have the requested data) or if
the data has expired, the cache layer fetches
the data directly from the server as it does for
the Fetch from Service policy.

Table 25-2 Expiration Policies

Policy Description

Expire on Restart Instructs the cache layer to note the data for
any URI as expired when the client
application restarts, or to update the local
data with the server copy the next time it is
called by the client application.

Expire After Instructs the cache layer to expire the data
after a specified time (in seconds) that is set in
the Expire After Duration policy. Use
this policy for data that refreshes on a regular
basis.

Expire After Duration The number of seconds after which the cache
layer notes that the data in the cache has
expired.

Never Expire Instructs the cache layer that it cannot
designate the local data as expired.

Table 25-3 Eviction Policies

Policy Description

Evict on Expiry at Startup Instructs the cache layer to delete the expired
data from cache when the client application
restarts, or to update the local data with the
server copy the next time it's called by the
client application.

Caching Policies Provided by MAF

25-6 Developing Mobile Applications with Oracle Mobile Application Framework

Table 25-3 (Cont.) Eviction Policies

Policy Description

Manual Eviction The cache layer cannot remove data from the
local cache automatically. To evict data
manually, use an API.

Table 25-4 Update Policies

Policy Description

Update if Online Instructs the cache layer to update the local
cache with server-side data only when the
client application is online. Otherwise, the
cache layer returns an error.

25.5 Using Configuration Service End Points in the sync-config.xml File
The BaseUri element and baseUri attribute on the ServerGroup element in sync-
config.xml can refer to end points defined in connections.xml. To take
advantage of this functionality, replace the values to point to a valid connection
reference rather than a URL as follows:

baseUri="<connection_reference_name_in_connections_xml>"

If an end point is changed at runtime using connection overrides, the cache policies
remain the same for the new URL. For more information, see Chapter 16, "Configuring
End Points Used in MAF Applications . The WorkBetter sample application
demonstrates an implementation of this configuration. For information about how to
access this and other sample applications, see MAF Sample Applications.

25.6 Encrypting Cached Data in a MAF Application
MAF provides you with the ability to encrypt data that the MAF application caches.

Once enabled, all data cached by the MAF application is encrypted. By default, it is
disabled. You configure the sync-config.xml file to enable encryption, as shown in
the following example.

<?xml version="1.0" encoding="UTF-8"?>
<Settings xmlns="http://xmlns.oracle.com/sync/config">
 <BaseUri>TaskConn</BaseUri>
 ...
 <EnableEncryption>true</EnableEncryption>
 <Policies>
 ...
</Settings>

25.7 Packaging the sync-config.xml File in a FAR
The sync-config.xml file is included in the Feature Archive file when the view
controller project is deployed as a FAR. Like the connections.xml file, MAF merges
the contents of the sync-config.xml file in the FAR (jar-sync-config.xml)
with those of the consuming application's sync-config.xml file after you add the
FAR to the application. Because the sync-config.xml file describes the web service

Using Configuration Service End Points in the sync-config.xml File

Caching Data in a MAF Application 25-7

endpoints used by the mobile application, you can update the endpoints for all of the
web services used by the application features that comprise a mobile application by
adding a FAR as described in What Happens When You Add a FAR as a View
Controller Project.

After you add the FAR to the application, MAF logs messages that prompt you to
verify and, if needed, modify the application's sync-config.xml and
connections.xml files. As illustrated in Figure 25-2, these messages reflect the state
of the sync-config.xml file in the consuming application.

Figure 25-2 The Messages Log

If the consuming application lacks the sync-config.xml file, then MAF adds the file
to the application and writes a message similar to the following:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logNoSyncConfigInAppUsingFar
WARNING: The application does not contain a synchronization file, "sync-config.xml". Creating one
containing the synchronization configuration in the Feaure Archive.

MAF writes a log message similar to the following requesting that you verify (or
create) a connection if the sync-config.xml file's <ServerGroup> elements do not
have corresponding <Reference> elements defined in the consuming application's
connections.xml file:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logAddedServerGroups
WARNING: The following server groups were added sync-config.xml by the Add to Application
operation:
{
 ServerGroup1 - there is no existing application connection defined for this server group.
Please create the connection.

 ServerGroup2 - verify its configuration.
}

If the <ServerGroup> definitions in the consuming application's sync-config.xml
file duplicate those of the counterpart sync-config.xml file included in the FAR,
then MAF writes the following SEVERE-level message to the log:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logDuplicateServerGroups
SEVERE: Cannot merge the server groups from the Feature Archive because the following definitions
already exist:
ServerGroup1
ServerGroup2

Packaging the sync-config.xml File in a FAR

25-8 Developing Mobile Applications with Oracle Mobile Application Framework

26
Displaying Error Messages in MAF

Applications

This chapter describes how to use the AdfException class to invoke errors and how
to localize error messages.

This chapter includes the following sections:

• Introduction to Error Handling in MAF Applications

• Displaying Error Messages and Stopping Background Threads

• Localizing Error Messages

26.1 Introduction to Error Handling in MAF Applications
Errors arising from mobile applications might be unexpected, such as a failed
connection to a remote server. Other errors, such as a violation of an application
business rule, may be expected. Errors or exceptions might occur in the primary
request thread or in a secondary thread that runs a background task. If the application
supports multiple languages, then it must display the error message in the user's
language.

To enable a MAF application to throw an exception, use
oracle.adfmf.framework.exception.AdfException class. For more
information, see Java API Reference for Oracle Mobile Application Framework.

The following code enables MAF to handle an exception as expected. A popup
message, similar to the one shown in Figure 26-1displays within the application and
shows the severity and provides explanatory text.

throw new AdfException("My error message", AdfException.ERROR);

Displaying Error Messages in MAF Applications 26-1

Figure 26-1 An Error Message

Note:

Similar error messages display within an application when the exception is
thrown within a managed bean or a data control bean.

26.2 Displaying Error Messages and Stopping Background Threads
The MessageUtils class, illustrated in the following example, enables an application
to stop a thread and display an error by first making a JavaScript call
(invokeContainerJavaScriptFunction) and then throwing an exception. The
addMessage method enables the error to display. For more information, see How
Applications Display Error Message for Background Thread Exceptions. See also
invokeContainerJavaScriptFunction.

The MessageUtils class uses the BundleFactory and Utility methods for
retrieving the resource bundle and the error message and dynamically checks if a
thread is running in the background. Using this class, you can move code from the
main thread to the background thread.

package oracle.errorhandling.demo.mobile;

Displaying Error Messages and Stopping Background Threads

26-2 Developing Mobile Applications with Oracle Mobile Application Framework

import java.util.ResourceBundle;

import oracle.adfmf.framework.api.AdfmfContainerUtilities;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.framework.exception.AdfException;
import oracle.adfmf.util.BundleFactory;
import oracle.adfmf.util.Utility;

public class MessageUtils {

 public static void handleError(AdfException ex) {
 handleMessage(ex.getSeverity(), ex.getMessage());
 }

 public static void handleError(String message) {
 handleMessage(AdfException.ERROR, message);
 }
 public static void handleError(Exception ex) {
 handleMessage(AdfException.ERROR, ex.getLocalizedMessage());
 }

 public static void handleMessage(String severity, String message) {
 if (AdfmfJavaUtilities.isBackgroundThread()) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(
 AdfmfJavaUtilities.getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {severity,
 null,
 null});
 if (AdfException.ERROR.equals(severity)) {
 // need to throw an exception to stop background thread processing
 throw new AdfException(message,severity);
 }
 }
 else {
 throw new AdfException(message,severity);
 }
 }

 public static void addJavaScriptMessage(String severity, String message) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(
 AdfmfJavaUtilities.getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {severity,
 message,
 null,
 null });
 }

}

26.2.1 How Applications Display Error Message for Background Thread Exceptions
Applications do not display error messages when exceptions are thrown for
background threads. To enable error messages to display under these circumstances,
applications call the addMessage method. The addMessage method takes the
following parameters:

• The severity of the error

• The summary message

Displaying Error Messages and Stopping Background Threads

Displaying Error Messages in MAF Applications 26-3

• The detail message

• a clientComponentId.

The following example illustrates how you can enable the application to alert the user
when an error occurs in the background by using the addMessage method.

Runnable runnable = new Runnable() {
 public void run() {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(
 AdfmfJavaUtilities.getFeatureName(),
 "adf.mf.api.amx.addMessage", new Object[]
{AdfException.ERROR,
 "My error message for background thread",
 null,
 null });
 }
};
Thread thread = new Thread(runnable);
thread.start();

Because the adf.mf.api.amx.addMessage JavaScript function is the same method
that is used when the application throws AdfException in the primary request
thread, users receive the same popup error message whether the error message is
referring to exceptions in the main thread or from a background thread.

Note:

As illustrated in the preceding example, the detail message and the
clientComponentId can be a Null value. A detail message displays on a
new line in the same font size as the summary message.

However, you can prevent an error message from appearing if you place the code
within a piece of Java logic that runs in a background thread, as illustrated in the
following example. Using the method illustrated in the first example of Localizing
Error Messages enables the background thread to stop silently without notifying the
user.

Runnable runnable = new Runnable() {
 public void run() {
 // this exception will be lost because no popup error
 // message will display in the MAF application
 throw new AdfException("My (lost) error message in background",
 AdfException.ERROR);
 }
};
Thread thread = new Thread(runnable);
thread.start();

26.3 Localizing Error Messages
MAF uses standard Java resource bundles to display an exception error message in the
language of the application user. As illustrated in the following example, the resource
bundle name (the .xlf file) and bundle message key is passed to the AdfException
constructor method to enable the error message to be read from a resource bundle.

private static final String XLF_BUNDLE_NAME=
 "oracle.errorhandling.mobile.ViewControllerBundle";

Localizing Error Messages

26-4 Developing Mobile Applications with Oracle Mobile Application Framework

 throw new AdfException(AdfException.ERROR,
 XLF_BUNDLE_NAME,
 "MY_ERROR_MESSAGE",
 null);

To ensure that the application does not throw an MissingResourceException
error, use the oracle.adfmf.util.BundleFactory method to retrieve the
resource bundle and then use the oracle.adfmf.util.Utility method to retrieve
the error message, as illustrated in the following example.

ResourceBundle bundle = BundleFactory.getBundle(XLF_BUNDLE_NAME);
String message = Utility.getResourceString(bundle, "MY_ERROR_MESSAGE",null);
throw new AdfException(message,AdfException.ERROR);

The following example illustrates using the adf.mf.api.amx.addMessage
JavaScript function to display the localized error message when an exception is
thrown from a background thread.

ResourceBundle bundle = BundleFactory.getBundle(XLF_BUNDLE_NAME);
String message = Utility.getResourceString(bundle, "MY_ERROR_MESSAGE_BG",null);
AdfmfContainerUtilities.invokeContainerJavaScriptFunction(
 AdfmfJavaUtilities.getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {AdfException.ERROR,
 message,
 null,
 null });

Localizing Error Messages

Displaying Error Messages in MAF Applications 26-5

Localizing Error Messages

26-6 Developing Mobile Applications with Oracle Mobile Application Framework

27
Deploying MAF Applications

This chapter describes how to deploy MAF applications for testing and for publishing.

This chapter includes the following sections:

• Introduction to Deployment of MAF Applications

• Working with Deployment Profiles

• Deploying an Android Application

• Deploying an iOS Application

• Deploying a MAF Application to the Universal Windows Platform

• Overview of MAF Quick Deployment of Applications

• Deploying Feature Archive Files (FARs)

• Creating a Mobile Application Archive File

• Creating Unsigned Deployment Packages

• Deploying MAF Applications from the Command Line

• Deploying with Oracle Mobile Security Suite

27.1 Introduction to Deployment of MAF Applications
Before you can publish an application for distribution to end users, you must test it on
a device or virtual device to assess its behavior and ease of use. MAF provides ready-
to-use deployment profiles for each platform to which you can deploy a MAF
application. Use the ready-to-use deployment profile or create your own to deploy
your MAF application to the device or virtual device (emulator or simulator) where
you want to test your MAF application.

MAF uses the deployment profile to execute the deployment of an application by
copying a platform-specific template application to a temporary location, updating
that application with the code, resources, and configuration defined in the MAF
project. MAF then builds and deploys the application using the tools of the target
platform. You can deploy a mobile application as the platform-specific package which
you can make available from a download site or application marketplace (for example,
the Apple App Store). For testing and debugging, you can deploy to a device or virtual
device. You can reuse the application features by deploying the view controller
projects as a feature archive (FAR). You also have the option to reuse the entire mobile
application by deploying it as a Mobile Application Archive (.maa) file.

Each MAF deployment profile (Android, iOS, Windows) includes a set of different
libraries that are specific to the type of deployment (release or debug) in combination

Deploying MAF Applications 27-1

with the deployment target (simulators or actual devices). In addition, each set of
these libraries includes a JVM JAR file. The application binding layer resides within
this virtual machine, which is a collection of Objective-C libraries. For example, MAF
deploys a JVM JAR file and a set of libraries for a debug deployment targeted at an
iOS simulator, but deploys a different JVM JAR file and set of libraries to a debug
deployment targeted to an actual iOS-powered device. The libraries that you declare
for the project are included in the deployment artifacts for the project.

27.2 Working with Deployment Profiles
You deploy a MAF application to the platform that you want your application to run
on using a deployment profile. MAF provides a ready-to-use deployment profile for
each platform that it supports (Android, iOS, Windows) or you can create a
customized deployment profile. A deployment profile defines how an application is
packaged into the archive that will be deployed to the platform device (for example,
an Android-powered device or Android emulators). The deployment profile does the
following:

• Specifies the format and contents of the archive.

• Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged into the archive file.

• Describes the type and name of the archive file to be created.

• Highlights dependency information, platform-specific instructions, and other
information.

In addition to the platform-specific deployment profiles, MAF also provides a
deployment profile that enables you to package the MAF application as a MAF
Application Archive (.maa) file. Using this file, you can create a new MAF application
using a pre-existing application that has been packaged as an .maa file. By default,
this deployment file bears the name of the MAF application followed by _archive. For
more information, see Creating a Mobile Application Archive File.

27.2.1 About Automatically Generated Deployment Profiles
MAF generates deployment profiles that are seeded with default settings and image
files when you create an application. Provided that you have configured the
environment correctly, you can use these profiles to deploy a MAF application
immediately after creating it by choosing Application and then Deploy, as shown in
Figure 27-1.

Working with Deployment Profiles

27-2 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-1 Default Deployment Profiles

Using the Deployment Action page, shown in Figure 27-2, you then select the
appropriate deployment target.

Figure 27-2 Selecting a Deployment Target

Each deployment profile has distinct environment set up and configuration
requirements. For more information, see:

Working with Deployment Profiles

Deploying MAF Applications 27-3

• Deploying an Android Application

• Deploying an iOS Application

• Deploying a MAF Application to the Universal Windows Platform

You can accept the default values used for these profiles, or edit them by selecting the
profile from the Deployment page of the Application Properties dialog and then
clicking Edit. Figure 27-3 illustrates the Android Options page for a default Android
application profile.

Figure 27-3 Editing a Default Deployment Profile

MAF packages the application and view controller projects as separate Feature
Archive (FAR) files. These JAR files of MAF files are used as resources for other
applications and are described in Deploying Feature Archive Files (FARs). Because
MAF creates these FAR files as dependencies to the MAF application profile, you can
include or exclude them using the Profile Dependencies page of the Application
Properties dialog, shown in Figure 27-4.

Note:

The application controller project must contain a single FAR profile
dependency; otherwise, the deployment will fail.

Working with Deployment Profiles

27-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-4 Editing FAR Contents from MAF Projects

Using the File Groups-related pages of the Project Properties dialog, you can
customize the contents of the view controller FAR file, as shown in Figure 27-5. For
more information on the Project Properties dialog, see the Oracle JDeveloper online
help and also the "Configuring Deployment Profiles" in Developing Applications with
Oracle JDeveloper.

Working with Deployment Profiles

Deploying MAF Applications 27-5

Figure 27-5 Editing the View Controller Project's FAR

For more information on editing deployment profiles using the Application
Properties dialog pages, see the "Viewing and Changing Deployment Profile
Properties" section in Developing Applications with Oracle JDeveloper and the Oracle
JDeveloper online help for the Application Properties and Project Properties dialogs.

27.2.2 How to Create a Deployment Profile
MAF creates a set of deployment profiles when you create a mobile application. You
can deploy an application using these profiles, edit them, or construct new ones using
the MAF-specific deployment profile pages. The Create Deployment Profile wizard,
shown in Figure 27-6, enables you to create a default deployment profile from these
pages. You can create as many deployment profiles as needed. For more information
on these standard deployment profile pages, click Help to see the JDeveloper online
help.

Note:

MAF application deployment only requires the creation of an application-level
deployment profile; you do not have to create a view controller-level
deployment profile.

Working with Deployment Profiles

27-6 Developing Mobile Applications with Oracle Mobile Application Framework

Before you begin:

To enable JDeveloper to deploy mobile applications, you must designate the SDKs for
the target platforms as described in the "Configuring the Development Environment
for Platforms and Form Factors" section in Installing Oracle Mobile Application
Framework.

Tip:

For iOS deployments, run iTunes and the iOS Simulator at least once before
you configure their directory locations.

To create a deployment profile:

1. Choose Application and then Deploy.

2. Choose New Deployment Profile.

3. Choose the profile for the platform that you want to target from the Profile Type
drop-down list, as shown in Figure 27-6.

4. Accept the default name for the profile or enter a new one. Click OK.

5. If needed, use the Options and Application Images pages as required for the
applications and then click OK.

Figure 27-6 The Create Deployment Profile Wizard

27.2.3 What Happens When You Create a Deployment Profile
After you complete the wizard, JDeveloper creates a deployment profile and opens the
Deployment Profile Properties editor.

Table 27-1 lists the MAF-specific pages in the Deployment Profile Properties editor,
shown in Table 27-1.

Table 27-1 MAF-Specific Deployment Profile Pages

Working with Deployment Profiles

Deploying MAF Applications 27-7

Table 27-1 (Cont.) MAF-Specific Deployment Profile Pages

Page Function

iOS Options Enables you to modify the settings for an application to be
deployed on an iOS-powered device or iOS simulator.

Android Options Enables you to modify the settings for an application deployed
to an Android-powered device or Android emulator.

Windows Options Enables you to modify the settings for an application that you
deploy to the Universal Windows Platform.

Application Images Enables you to assign custom icons to an application by adding
the appropriate graphics file.

Device Orientations Enables you to restrict the display of an application to certain
device orientations. This page is used only for iOS deployment
profiles.

Note:

Deployment depends on the needs of your application. You can deploy an
application using the default values seeded in the pages listed in Table 27-1.

When you deploy an application, JDeveloper creates a deployment directory and
related subdirectory. It also creates Feature Archive files (FARs) for the view controller
projects (which must have different names) and application controller project. In
addition to these two FARs, JDeveloper creates copies of any FARs that were imported
into the project. Changes to the compilation profiles require the removal of the
deployment directory. You can remove this directory, as well as the deployment
directory within the view controller project that contains the FAR, by selecting Build
and then Clean All.

27.3 Deploying an Android Application
MAF provides a ready-to-use deployment profile (Android1) that deploys your MAF
application. You can use this ready-to-use deployment profile or create one or more
other deployment profiles to deploy your MAF application to the Android platform.
Using a deployment profile, you can deploy your MAF application in debug mode or
release mode to an Android device, emulator or package (.APK). Use this last option
when you want to publish the application to end users through an application
marketplace, such as Google Play.

Tip:

As an alternative to the Deployment Action dialog, you can deploy a mobile
application to the Android platform in a headless mode using the OJDeploy
command line tool as described in Deploying MAF Applications from the
Command Line.

Deploying an Android Application

27-8 Developing Mobile Applications with Oracle Mobile Application Framework

27.3.1 How to Create an Android Deployment Profile
The deployment profile creates the template for the application deployment to an
Android device or emulator, or for creating an application as an Android application
package (.apk) file.

To create the deployment profile for Android, you must define the signing options for
the application, the behavior of the javac compiler, and if needed, override the
default Oracle images used for application icons with custom ones.

Before you begin:

Install and download the Android SDK as described in the "How to Install the
Android SDK" section in Installing Oracle Mobile Application Framework.

If you deploy to an Android emulator, you must create a virtual device for each
emulator instance using the Android Virtual Device Manager, as described in the
"Managing Virtual Devices" document, available from the Android Developers
website (http://developer.android.com/tools/devices/index.html).

You must also set the MAF preferences for the Android platform SDKs (accessed by
choosing Tools > Preferences > Mobile Application Framework > Android Platform)
to the locations for the SDK, platform, and build tools, which are part of the Android
SDK package download. Figure 27-7 shows these locations.

Note:

To enable deployment, the Android Build Tools Location field must reference
the location of the build tools aapt file (appt.exe on Windows systems).

MAF populates the Android Build Tools Location field with the latest version
of the build-tools directory installed on the development computer.

Note:

Push notifications require devices and emulators running Android 4.0.3 (API
15) platform (or later). The Google Play store must be installed on these
devices, and the Google API must be installed in the SDK to enable push
notifications on emulators. Users must create a Google account (and be logged
in).

See also the "GCM Architectural Overview" chapter in Google Cloud Messaging
for Android, available from the Android Developers website (http://
developer.android.com/index.html).

Deploying an Android Application

Deploying MAF Applications 27-9

http://developer.android.com/tools/devices/index.html
http://developer.android.com/index.html
http://developer.android.com/index.html

Figure 27-7 Setting the Android SDK, Platform, and Signing Properties

Tip:

For details about setting preferences using startup parameters when you launch
JDeveloper from the command line, see Setting Preferences from the Command Line
Using Startup Parameters.

Using the Android Platform preferences page, you also define the debug and release
properties for a key that is used to sign the MAF application that you deploy to the
Android platform. Within the deployment profile, you subsequently designate a
mobile application's release type as either debug or release. You only need to define
the signing key properties once. For more information, see Defining the Android
Signing Options. See also the application publishing information in the "Signing Your
Applications" document, available from the Android Developers website (http://
developer.android.com/tools/publishing/app-signing.html).

27.3.1.1 Setting Preferences from the Command Line Using Startup Parameters
You can specify overrides for MAF preferences when you launch JDeveloper from the
command line. Using startup parameters, you can set various preferences, such as the
location for the Android SDK and platform, or the location of the iTunes Media folder.

To launch JDeveloper from the command line with startup parameters, use the -J-D
options. All strings must be enclosed in double-quotes, as shown in the examples.

The following example shows how to override the location of the Android SDK:

jdeveloper.exe -J-
Doracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.androidPlatformDir="C:
\<my_Android_SDK_path>"

Deploying an Android Application

27-10 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html

These are the startup parameters you can use to set Android preferences from the
command line:

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.andro
idSdkDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.andro
idPlatformDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.andro
idBuildToolsDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.andro
idReleaseSigningKeystorePath

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.andro
idReleaseSigningKeystorePath

The following example shows how to override the location of the iTunes Media folder:

 ./jdev -J-Doracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iOSiTunesDir="/
Users/<my_username>/Music/iTunes/iTunes Media/Automatically Add to iTunes.localized"

These are the startup parameters you can use to set iOS preferences from the
command line:

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosPr
ovisioningProfileName

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosPr
ovisioningProfileTeamName

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iOSiT
unesDir

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosCe
rtificate

• oracle.adfmf.framework.dt.preferences.PlatformSDKsPrefs.iosPr
ovisioningProfile

27.3.1.2 Setting the Options for the Application Details

Use the Android Application Details page to specify the application package name,
application name, version name, and version code.

For more information about versioning, see the "Versioning Your Applications"
document, available from the Android Developers website (http://
developer.android.com/tools/publishing/versioning.html).

To set the application options:

1. From JDeveloper’s main menu, choose Application and then Application
Properties.

2. In the Deployment page of the Application Properties dialog, choose the
deployment profile that you use to deploy the MAF application (for example,
Android1) and click the pencil icon to edit it.

Deploying an Android Application

Deploying MAF Applications 27-11

http://developer.android.com/tools/publishing/versioning.html
http://developer.android.com/tools/publishing/versioning.html

3. In the MAF for Android Deployment Profile Properties dialog that appears,
navigate to Android Options and then Application Details.

4. Accept the default values, or define the following options:

• Package Name—A unique package name ID for the application, as set in the id
attribute of the maf-application.xml file. Each application deployed to an
Android device has a unique ID, one that cannot start with a numeric value. For
more information, see About Automatically Generated Deployment Profiles,

If needed, you can override this value in the deployment file. However, for the
application to deploy, this name must follow the <manifest> element's
package attribute of the Android manifest file. This element is described in the
document entitled "The AndroidManifest.xml File," which is available from the
Android Developers website (http://developer.android.com/guide/
topics/manifest/manifest-intro.html). Specifically, the ID uses a
reverse package format of an internet domain (com.company.application). To
avoid naming collisions, the package name reflects domain ownership, such as
com.oracle.application.

Note:

The package name cannot contain spaces.

• Application Name—The name for the .apk file created by MAF. Accept the
default name or enter an alternative value if you want to change the filename of
the .apk file.

By default, MAF bases the name of the .apk file on the application id attribute
configured in the maf-application.xml file. For more information, see
Setting Display Properties for an Application Feature.

• Version Name—The release version of the application code that displays for the
user. See also Setting Display Properties for an Application Feature.

• Version Code—An integer value that represents the version of the application
code, which is checked programmatically by other applications for upgrades or
downgrades. The minimum and default value is 1. You can select any value and
increment it by 1 for each successive release.

27.3.1.3 Setting Deployment Options

The Android Options page enables you to set values that are passed in by the javac
compiler tool options, set the zipalign options, and also set the Android API levels.

To set the JDK-Compatibility level for the R.java and .class files:

1. Select the JDK-Compatibility level from the Source Files drop-down list. The value
is specified when the deployment runs the javac tool to compile R.java, the
Android-generated file for referencing application resources, using the javac -
source option.

For information on R.java, see the "Accessing Resources" document, available
from the Android Developers website (http://developer.android.com/
guide/topics/resources/accessing-resources.html).

Deploying an Android Application

27-12 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/resources/accessing-resources.html
http://developer.android.com/guide/topics/resources/accessing-resources.html

2. Select the JDK version compatibility for the compiled .class files from the Class
Files drop-down list. The value is specified when the deployment runs the javac
tool to compile the R.java file using the javac -target option.

3. The Target SDK API Level shows the target API Level on which the application is
designed to run. This value cannot be changed. For more information, refer to the
description of the <uses-sdk> attribute in the document entitled "The
AndroidManifest.xml File," available through the Android Developers website
(http://developer.android.com/guide/topics/manifest/manifest-
intro.html).

4. Select the minimum API Level on which the application is able to run from the
Minimum SDK API Level drop-down list. The minimum and default value is 15,
which corresponds to Android 4.0.3 platform. You may increase the minimum SDK
version to exclude devices running older Android versions from installing your
application.

5. Select the native-encoding name that controls how the compiler interprets
characters beyond the ASCII character set from the Character Encoding drop-
down list. The default is UTF-8.

To set the ZIP alignment options:

Select the byte alignment (32-bit or 64-bit). Selecting 32-bit (the default) provides 4-
byte boundary alignment.

To set the preferred storage location for the deployed mobile application:

By default, mobile applications are stored on a Android-powered device's internal
storage after they have been deployed from JDeveloper to a device, or downloaded
from an application marketplace, such as Google Play. The following options, which
are available from the Preferred Storage Location drop-down list, enable you to
specify a preferred storage location for the mobile application.

• Internal—Forces the mobile application to be installed on the device's internal
storage.

• External—Allows the application to be installed on the device's SD card. However,
if the Android system determines that the application cannot be installed on the SD
card (for example, no SD card has been mounted, or the SD card exists but has
insufficient space), then it installs the application on the device's internal storage
instead. The mobile device user can move the application between internal and
external storage using the system settings.

• Auto—Specifies that the application may be installed on the device's external or
internal storage. The mobile device user can move the application between internal
and external storage using the system settings.

Selecting the External or Auto options enables the deployment framework to update
the <manifest> element in the AndroidManifest.xml file with an
android:installLocation attribute and a value of "preferExternal" or
"auto". Populating the AndroidManifest.xml file with this attribute enables
mobile applications to be stored on an external SD card or internal storage. For more
information, see the "App Install Location" chapter in Data Storage Guide, available
from the Android Developers website (http://developer.android.com/guide/
topics/data/install-location.html) or from the Android SDK
documentation.

To set the logging level:

Deploying an Android Application

Deploying MAF Applications 27-13

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/data/install-location.html
http://developer.android.com/guide/topics/data/install-location.html

Select Verbose Output for the Android deployment to log the full output provided by
each of the command-line tools invoked by the deployment while building the .apk.
If you do not select this option, then the deployment does not log the full output.

27.3.1.4 Defining the Android Signing Options

An application must be signed before it can be deployed to an Android device or
emulator. Android does not require a certificate authority; an application can instead
be self-signed.

Defining how the deployment signs a mobile application is a two-step process: within
the MAF Platforms preference page, you first define debug and release properties for
a key that is used to sign Android applications. You only need to configure the debug
and release signing properties once. After you define these options, you configure the
deployment profile to designate if the application should be deployed in the debug or
release mode.

Before you begin:

If no keystore file exists, you can create one using the keytool utility, as illustrated in
the following example.

keytool -genkeypair
 -v
 -keystore c:\jdeveloper\mywork\releasesigning.keystore
 -alias releaseKeyAlias
 -keyalg RSA
 -keysize 2048
 -validity 10000

In this example, the keystore contains a single key, valid for 10,000 days. As described
in the "Signing Your Applications" document, available from the Android Developers
website (http://developer.android.com/tools/publishing/app-
signing.html), the keytool prompts you to provide passwords for the keystore and
key, and to provide the Distinguished Name fields for your key before it generates the
keystore. Refer to Java SE Technical Documentation (http://
download.oracle.com/javase/index.html) for information on how to use the
keytool utility.

To configure the key options for the debug mode:

1. Choose Tools, then Preferences, and then Mobile Application Framework.

2. Choose Platforms.

3. Select the Debug tab, shown in Figure 27-8.

Deploying an Android Application

27-14 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://download.oracle.com/javase/index.html
http://download.oracle.com/javase/index.html

Figure 27-8 Configuring a Debug Deployment

4. Enter a password used by the deployment to create a keystore file and key needed
for a debug deployment in the Key and Keystore Password field. This password,
which generates a keystore and keyfile for deployment to an Android-powered
device or emulator, can be any value, but must be at least six characters long. The
default password is Android.

To configure the key options for a release mode:

1. Choose Tools, then Preferences, and then Mobile Application Framework.

2. Choose Platforms.

3. Select the Release tab and then define the following:

• Keystore Location—Enter, or browse to and retrieve, the directory of the
keystore containing the private key used for signing the application for
distribution.

• Keystore Password—Enter the password for the keystore. This password
allows access to the physical file.

• Key Alias—Enter an alias for the key. This is the value set for the keytool's -
alias argument. Only the first eight characters of the alias are used.

Deploying an Android Application

Deploying MAF Applications 27-15

• Key Password—Enter the password for the key. This password allows access
to the key (identified by the alias) within the keystore.

Tip:

Enter the password and key password requested by the keytool utility before
it generates the keystore.

In addition to designating how the application will be signed, these parameters
designate how the R.Java classes are compiled.

4. Click OK.

To set the Android build mode:

1. In the Android Platform page, select either Debug or Release as the build mode:

• Select Debug for developing and testing an application (such as Java and
JavaScript debugging). This option enables you to deploy an application on the
Android platform without having to provide a private key. Use this option
when deploying an application to an Android emulator or to an Android-
powered device for testing. See also How to Enable Debugging of Java Code
and JavaScript.

Note:

You cannot publish an application signed with the debug keystore and key;
this keystore and key are used for testing purposes only and cannot be used to
publish an application to end users.

• When the application is ready to be published, select Release. Use this option
when the application is ready to be published to an application marketplace,
such as Google Play.

Tip:

Use the release mode, not the debug mode, to test application performance.

2. Click OK.

After the .apk file is signed in either debug or release mode, you can deploy it to a
device or to an emulator. At runtime, MAF indicates that an application has been
deployed in debug mode by overlaying a debugging symbol that is represented by
an exclamation point within a red triangle, as shown in Figure 27-9.

Deploying an Android Application

27-16 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-9 Deployment Modes

27.3.1.5 What You May Need to Know About Credential Storage

MAF stores passwords for the key and keystore in the file-based credential store,
cwallet.sso. This file, which manages credential storage and retrieval, is located
within the o.maf folder in the user's JDeveloper system folder. For example, in a
Windows 7 environment, the cwallet.sso file is located at C:\Users\jsmith
\AppData\Roaming\JDeveloper\system12.1.3\o.maf.

For more information, see the "About Oracle Wallet" section in Administering Oracle
Fusion Middleware and the "Credential Store Basics" section in Securing Applications with
Oracle Platform Security Services.

Note:

MAF stores the key and keystore credentials in a file called product-
preferences.xml. MAF migrates these credentials to the cwallet.sso file
if you preserve the preference settings by clicking Yes in the Confirm Import
Preferences dialog during the installation process of the current version of
JDeveloper and MAF. However, the cwallet.sso file is not migrated to
other installations of the current version of Oracle JDeveloper with MAF. If
you reinstall (or create a separate installation), you must either copy the
cwallet.sso file to the o.maf folder or reconfigure the release mode
credentials in the Platforms preferences page.

27.3.1.6 How to Add a Custom Image to an Android Application

Enabling MAF application icons to display properly on Android-powered devices of
different sizes and resolutions requires low, medium, high, extra-high, extra-extra-
high density, and extra-extra-extra-high density versions of the same images. MAF
provides default Oracle images that fulfill these display requirements. However, if the
application requires custom icons, you can use the Application Images page, shown in
Figure 27-10, to override default images by selecting PNG-formatted images for the
application icon and for the splash screen. For the latter, you can add portrait and
landscape images. If you do not add a custom image file, then the default Oracle icon

Deploying an Android Application

Deploying MAF Applications 27-17

is used instead. MAF provides 9-patch images for the default Android splash screens.
The 9-patch images indicate which areas of the image may be stretched, and which
may not. These images can be stretched to fit any size while maintaining the integrity
of designated portions within the image (such as the logo and copyright notice in the
default MAF splash screen images).

To create custom images, refer to the "Iconography" document, available from the
Android Developers website (http://developer.android.com/design/
style/iconography.html).

Figure 27-10 Setting Custom Images for an Android Application

Before you begin:

Obtain the images in the PNG, JPEG, or GIF file format that use the dimensions,
density, and components that are appropriate to Android theme and that can also
support multiple screen types. For more information, see "Supporting Multiple
Screens" document, available from the Android Developers website (http://
developer.android.com/guide/practices/screens_support.html).

To add custom images:

1. Click Application Images.

2. Use the Browse function to select the splash screen and icon image files from the
project file. Figure 27-10 shows selecting images for application icons and portrait

Deploying an Android Application

27-18 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html

orientation splash screen images that applications use for displaying on devices
with low, medium, high, extra-high, extra-extra-high density, and extra-extra-
extra-high density displays.

3. Click OK.

27.3.1.7 What Happens When JDeveloper Deploys Images for Android Applications

During deployment, MAF enables JDeveloper to copy the images from their source
location to a temporary deployment folder. For the default images that ship with the
MAF extension (located at application workspace directory\Application
Resources\Resources\images), JDeveloper copies them from their seeded
location to a deployment subdirectory of the view controller project (application
workspace\ViewController\deploy). As shown in Table 27-2, each image file is
copied to a subdirectory called drawable, named for the drawable object, described
on the Android Developers website (http://developer.android.com/
reference/android/graphics/drawable/Drawable.html). Each drawable
directory matches the image density (ldpi, mdpi, hdpi, xhdpi, xxhdpi, and
xxxhdpi) and orientation (port, land). Within these directories, JDeveloper renames
each icon image file as adfmf_icon.png and each splash screen image as
adfmf_loading.9.png or adfmf_loading.png (depending on whether 9-patch
images are used).

Table 27-2 Deployment File Locations for Seeded Application Images

Source File (...\resource\Android) Temporary Deployment File (...ViewController
\deploy)

display-ldpi-icon.png drawable-ldpi\adfmf_icon.png

display-mdpi-icon.png drawable-mdpi\adfmf_icon.png

display-hdpi-icon.png drawable-hdpi\adfmf_icon.png

display-xhdpi-icon.png drawable-xhdpi\adfmf_icon.png

display-xxhdpi-icon.png drawable-xxhdpi\adfmf_icon.png

display-xxxhdpi-icon.png drawable-xxxhdpi\adfmf_icon.png

display-port-ldpi-splashscreen.9.png drawable-port-ldpi\adfmf_loading.9.png

display-port-mdpi-splashscreen.9.png drawable-port-mdpi\adfmf_loading.9.png

display-port-hdpi-splashscreen.9.png drawable-port-hdpi\adfmf_loading.9.png

display-port-xhdpi-splashscreen.9.png drawable-port-xhdpi\adfmf_loading.9.png

display-port-xxhdpi-splashscreen.9.png drawable-port-xxhdpi\adfmf_loading.9.png

display-land-ldpi-splashscreen.9.png drawable-land-ldpi\adfmf_loading.9.png

display-land-mdpi-splashscreen.9.png drawable-land-mdpi\adfmf_loading.9.png

display-land-hdpi-splashscreen.9.png drawable-land-hdpi\adfmf_loading.9.png

display-land-xhdpi-splashscreen.9.png drawable-land-xhdpi\adfmf_loading.9.png

display-land-xxhdpi-splashscreen.9.png drawable-land-xxhdpi\adfmf_loading.9.png

Deploying an Android Application

Deploying MAF Applications 27-19

http://developer.android.com/reference/android/graphics/drawable/Drawable.html
http://developer.android.com/reference/android/graphics/drawable/Drawable.html

For custom images, JDeveloper copies the set of application icons from their specified
location to the corresponding density and orientation subdirectory of the temporary
deployment location.

27.3.2 How to Deploy an Android Application to an Android Emulator
You can deploy the mobile application directly to an Android emulator, also known as
an Android Virtual Device (AVD).

Before you begin:

Deployment to an Android emulator requires the following:

• Install Android Platform version 21 (Android 5.0).

• Ensure that the Android Virtual Device instance configuration reflects the ARM or
Intel Atom x86 system image.

• In the Android Options page of the deployment profile:

1. Ensure that Debug is selected.

2. Click OK.

Note:

The Android Platform preferences page must be configured with the
password that is used to generate the keystore and key for debug-mode
deployment. See Defining the Android Signing Options.

• Start the Android emulator (Android Virtual Device) before you deploy an
application.

You can start the emulator using the Android Virtual Device Manager, as
illustrated in Figure 27-11, or from the command line by first navigating to the
tools directory (located in Android\android-sdk) and then starting the
emulator by first entering emulator -avd followed by the emulator name (such
as -avd AndroidEmulator1).

Note:

You can run only one Android emulator during a deployment.

Deploying an Android Application

27-20 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-11 Starting an Emulator Using Android Virtual Device Manager

To deploy an application to an Android emulator:

1. Choose Applications, then Deploy, and then select an Android deployment
profile.

2. Choose Deploy application to emulator and then choose Next.

3. Review the Summary page, shown in Figure 27-6, choose Back to select another
deployment activity or choose Finish. The Summary page displays the following
parameters from the deployment profile:

• Application Bundle Id—The unique Java language-like package name
identifying the application.

This corresponds to the value in the Package Name field of the Application
Details page for the deployment profile you use.

Note:

The Summary page shown in Figure 27-12 shows that the application bundle
ID is in the reverse package format required for a successful deployment to an
emulator. Deploying an application that does not follow the reverse-package
format causes the emulator to shut down, which prevents the deployment
from completing.

• File—The name of the .apk that is deployed to an Android target.

• Deploy Mode—The build mode. This value is either Release or Debug,
depending on the value set in the deployment profile.

Deploying an Android Application

Deploying MAF Applications 27-21

Figure 27-12 Summary for Android Emulator Deployment

4. Review the deployment log, as shown in Figure 27-13. The deployment log notes
that the deployer starts the Android Debug Bridge server when it detects a
running instance of an Android emulator. See also What You May Need to Know
About Using the Android Debug Bridge.

Figure 27-13 The Deployment Log

27.3.3 How to Deploy an Application to an Android-Powered Device
You can deploy a mobile application directly to an Android-powered device that runs
on API 15 or later (that is, Platform 4.0.3.).

Deploying an Android Application

27-22 Developing Mobile Applications with Oracle Mobile Application Framework

Before you begin:

In order to deploy directly to an Android-powered device, connect the device to the
development computer that hosts JDeveloper, set the device to developer mode, and
turn on USB debugging. For more information, see "How to Set Up an Android-
Powered Device" in Installing Oracle Mobile Application Framework.

In the Android Options page, select Debug as the build mode. Ensure that the debug
signing credentials are configured in the Android Platform preference page. For
details, see Setting the Options for the Application Details.

To deploy an application to an Android device:

1. Choose Applications, then Deploy, then select an Android deployment profile.

2. Choose Deploy application to device and then choose Next.

3. Review the Summary page. Click Back or Next.

4. Click Finish.

27.3.4 How to Publish an Android Application
After you have tested and debugged the application, as described in Testing and
Debugging MAF Applications , you can publish it to an application marketplace (such
as Google Play) by following the instructions provided on the Android Developers
website (http://developer.android.com/tools/publishing/
publishing_overview.html).

Before you begin:

In the Android Options page of the deployment profile, select Release as the build
mode.

Note:

You must configure the signing options in the Android Platform preference
page (accessed by choosing Tools > Preferences > Mobile Application
Framework) as described in Defining the Android Signing Options.

To deploy an application as an .apk file:

1. Choose Applications, then Deploy, then select an Android deployment profile.

2. Choose Deploy application to package and then choose Next.

3. Review the Summary page, shown in Figure 27-12. Click Back or Next.

4. Click Finish.

5. Publish the application to an application marketplace.

27.3.5 What Happens in JDeveloper When You Create an .apk File
Deploying an application results in the following being deployed in an .apk file.

• The content in the adfmsrc

• The content in the .adf folder

Deploying an Android Application

Deploying MAF Applications 27-23

http://developer.android.com/tools/publishing/publishing_overview.html
http://developer.android.com/tools/publishing/publishing_overview.html

• maf-application.xml and maf-feature.xml files

• logging.properties file

• The JVM files

27.3.6 Selecting the Most Recently Used Deployment Profiles
After you select a deployment action, JDeveloper creates a shortcut on the Deploy
menu that enables you to easily redeploy the application using that same deployment
action.

27.3.7 What You May Need to Know About Using the Android Debug Bridge
The deployment restarts the Android Debug Bridge server five times until it detects a
device (if deploying to a device) or emulator (if deploying to an Android emulator). If
it detects neither, then it ends the deployment process, as shown in Figure 27-14.

Figure 27-14 Deployment Terminated

If you are using the Android Debug Bridge command line tool prior to deployment,
then you must enter the same command again after the deployment has completed.
For example, if you entered adb logcat to view logging information for an emulator
or device prior to deployment, you would have to enter adb logcat again after the
application has been deployed to resume the retrieval of the logging output. For more
information about the Android Debug Bridge command line tool, which is located
within (and executed from) the platform-tools directory of the Android SDK
installation, refer to the Android Developers website (http://
developer.android.com/tools/help/adb.html).

27.4 Deploying an iOS Application
The Deployment Action dialog, shown in Figure 27-15, enables you to deploy an iOS
application directly to an iOS simulator or to a device through iTunes. You can only
deploy an iOS application from an Apple computer. Deployment to the iOS simulator
does not require membership to either the iOS Developer Program or the iOS
Developer Enterprise Program; registration as an Apple developer, which provides

Deploying an iOS Application

27-24 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

access to versions of Xcode that are not available through the App Store, will suffice.
For more information on iOS developer programs, which are required for deployment
to iOS-powered devices (and are described at How to Deploy an Application to an
iOS-Powered Device, and How to Distribute an iOS Application to the App Store), see
https://developer.apple.com/programs/.

Figure 27-15 The Deployment Action Dialog (for iOS Applications)

Tip:

As an alternative to the Deployment Action dialog, you can deploy a mobile
application to the iOS platform manually using the OJDeploy command line
tool as described in Deploying MAF Applications from the Command Line.

Deploying an iOS Application

Deploying MAF Applications 27-25

https://developer.apple.com/programs/

27.4.1 How to Create an iOS Deployment Profile
For iOS, use the Deployment Profiles Properties editor to define the iOS application
build configuration as well as the locations for the application icons.

Before you begin:

Download Xcode (which includes the Xcode IDE, performance analysis tools, the iOS
simulator, and the Mac OS X and iOS SDKs) to the Apple computer that also runs
JDeveloper.

Tip:

Refer to the Certification and Support Matrix on Oracle Technology Network
(http://www.oracle.com/technetwork/developer-tools/maf/
documentation) for the minimum supported version required to compile
applications.

Because Xcode is used during deployment, you must install it on the Apple computer
before you deploy the mobile application from JDeveloper.

Tip:

While the current version of Xcode is available through the App Store, you
can download prior versions through the following site:

https://developer.apple.com/xcode/

Access to this site requires an Apple ID and registration as an Apple
developer.

After you download Xcode, you must enter the location of its xcodebuild tool and, for
deployment to iOS simulators, the location of the iOS simulator's SDK, in the iOS
Platform preference page. For more information, see the "Configuring the
Development Environment for Platforms and Form Factors" section in Installing Oracle
Mobile Application Framework.

Note:

Run both iTunes and the iOS simulator at least once before entering their
locations in the iOS Platform preference page.

To deploy a mobile application to an iOS-powered device (as opposed to deployment
to an iOS simulator), you must obtain both a provisioning profile and a certification
from the iOS Provisioning Profile as described in Setting the Device Signing Options.

To create a deployment profile:

1. Choose Application > Application Properties > Deployment.

2. In the Deployment page, double-click an iOS deployment profile.

3. Choose iOS Options.

4. Accept the default values, or define the following:

• Application Bundle Id—If needed, enter a bundle ID to use for this application
that identifies the domain name of the company. The application bundle Id

Deploying an iOS Application

27-26 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.oracle.com/technetwork/developer-tools/maf/documentation
http://www.oracle.com/technetwork/developer-tools/maf/documentation
https://developer.apple.com/xcode/

must be unique for each application installed on an iOS device and must adhere
to reverse-package style naming conventions (that is, com.<organization
name>.<company name>). For more information, see the App Distribution Guide,
which is available through the iOS Developer Library at http://
developer.apple.com/library/ios/navigation/). For information on
obtaining the Bundle Seed Id using the iOS Provisioning Portal, see Registering
an Application ID. See also Setting Display Properties for an Application
Feature.

Note:

The application bundle ID cannot contain spaces.

Because each application bundle ID is unique, you can deploy multiple mobile
applications to the same device. Two applications can even have the same name
as long as their application bundle IDs are different. Mobile applications
deployed to the same device are in their own respective sandboxes. They are
unaware of each other and do not share data (they have only the Device scope
in common).

• Application Archive Name—If needed, enter the name for the .ipa file or
the .app file. MAF creates an .ipa file when you select either the Deploy to
distribution package or Deploy to iTunes for synchronization to device
options in the Deployment Action dialog, shown in Figure 27-15. It creates
an .app file when you select the Deploy application to simulator option.
Otherwise, accept the default name. For more information, see How to Deploy
an Application to an iOS-Powered Device and How to Distribute an iOS
Application to the App Store.

By default, MAF bases the name of the .ipa file (or .app file) on the
application id attribute configured in the maf-application.xml file. For
more information, see Setting Display Properties for an Application Feature.

• Minimum iOS Version—Indicates the earliest version of iOS to which you can
deploy the application. The default value is the current version. The version
depends on the version of the installed SDK.

• Simulator—Select the hardware and iOS version of the simulator to which you
are deploying the application. Available versions are displayed in the drop-
down list along with the device ID. For more information, see the iOS Simulator
User Guide, which is available through the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/).

• Family—Select the family of iOS products on which the application is intended
to run. The default option is for both iPad and iPhone.

27.4.1.1 Defining the iOS Build Options

The iOS build options enable you to deploy an application with debug or release bits
and libraries. The iOS Options page is also where you can enable containerization with
Oracle Mobile Security Suite (OMSS).

Before you begin:

Deployment of an iOS application (that is, an .ipa file) to an iOS-powered device
requires a provisioning profile, which is a required component for installation, and
also a signed certificate that identifies the developer and an application on a device.

Deploying an iOS Application

Deploying MAF Applications 27-27

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

You must obtain these from the iOS Provisioning portal as described in What You
May Need to Know About Deploying an Application to an iOS-Powered Device. In
addition, you must enter the location for a provisioning profile and the name of the
certificate in the iOS Platform preference page, as described in Setting the Device
Signing Options.

To set the build options:

1. Choose Application > Application Properties > Deployment.

2. In the Deployment page, double-click an iOS deployment profile.

3. Choose iOS Options.

4. Choose from the following build options.

• Disable Application Transport Security—App Transport Security (ATS) is a
security policy that restricts network requests from the application to use only
approved secured transport protocols. MAF enables ATS by default. Select
Disable Application Transport Security to deploy your MAF application
without ATS enabled.

• Debug—Select this option for development builds. Designating a debug build
results in the inclusion of debugging symbols. See also How to Debug on the
iOS Platform and How to Enable Debugging of Java Code and JavaScript.

• Release—Select to compile the build with release bits and libraries.

Tip:

Use the release mode, not the debug mode, to test application performance.

• Additional Build Arguments—Specify additional arguments that Xcode can
use when it builds the MAF application.

• Enable Oracle Mobile Security Suite—Select to enable containerization with
Oracle Mobile Security Suite. For more information, see Deploying with Oracle
Mobile Security Suite.

At runtime, MAF indicates that an application has been deployed in debug mode by
overlaying a debugging symbol that is represented by an exclamation point within a
red triangle, as shown in Figure 27-9.

27.4.1.2 Setting the Device Signing Options

The iOS Platform preferences page for iOS includes fields for the location of the
provisioning profile on the development computer and the name of the signing
identity. You must define these parameters if you deploy an application to a
distribution package or to iTunes for synchronization to a device. You use a signing
identity to code sign your application. When Xcode requests your development
certificate, the certificate and its public key is stored in the Member Center, and the
signing identity (the certificate with its public and private key) is stored in your
keychain. You will not be able to code sign without this private key.

Note:

Neither a signing identity nor a provisioning profile are required if you
deploy a mobile application to an iOS simulator.

Deploying an iOS Application

27-28 Developing Mobile Applications with Oracle Mobile Application Framework

To set the signing options:

1. Choose JDeveloper > Preferences > Mobile Application Framework > iOS
Platform.

2. From the Provisioning Profile drop-down list, choose the provisioning profile.

3. In the Signing Identity field, enter the name of the developer or distribution
certificate that identifies the originator of the code (such as a developer or a
company). You can view the name of the certificate using the Keychain Access
utility (accessed from the Applications folder). Copy the entire name from the
Keychain Access utility. The name entered into this field may look similar to the
following example.

iPhone Developer: John Smith (Oracle123)

Figure 27-16 The Device Signing Section of the iOS Platform Preferences Page

Tip:

For details about setting preferences using startup parameters when you launch
JDeveloper from the command line, see Setting Preferences from the Command
Line Using Startup Parameters.

Note:

There are provisioning profiles used for both development and release
versions of an application. While a provisioning profile used for the release
version of an application can be installed on any device, a provisioning profile
for a development version can only be installed on the devices whose IDs are
embedded into the profile. For more information, see the App Distribution
Guide, which is available from the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/).

27.4.1.3 Adding a Custom Image to an iOS Application

The Application Images page enables you to rebrand an application by overriding the
default Oracle image used for application icons and artwork with custom images. The
options in this page, shown in Figure 27-17, enable you to enter the locations of
custom images used for different situations, device orientation, and device resolutions.
For more information on iOS application icon images, see the "Icon and Image Design"
section in iOS Human Interface Guidelines. This document is available from the iOS
Developer Library (http://developer.apple.com/library/ios/
navigation/).

Deploying an iOS Application

Deploying MAF Applications 27-29

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

Note:

All images must be in the PNG format.

To add custom images:

1. Choose Application > Application Properties > Deployment.

2. In the Deployment page, double-click an iOS deployment profile.

3. Select iOS Options > Application Images from the tree on the left of the iOS
deployment profile properties editor.

4. Choose Browse to select an icon image to override the default Apple image that
iTunes assigns to .ipa files. This image is required for all applications and must be
512 x 512 pixels for both iPhone and iPad applications. For more information, see
What You May Need to Know About iTunes Artwork.

5. Select the device type to display the available image types in the tree. By default,
MAF displays all of the image styles and types available to iPad and iPhone
devices. However, you can narrow the selection by selecting the device type, as
shown in Figure 27-17. In the Icon Folder field, MAF displays the location within
the application's Resources directory where these image files are stored.

Figure 27-17 Selecting the Application Images

6. Select an image type from the tree.

7. In the File field, choose Browse to select another image. This image file must exist
within the current application.

Deploying an iOS Application

27-30 Developing Mobile Applications with Oracle Mobile Application Framework

During deployment, JDeveloper copies the custom image file into the deployment
profile and renames it to match the name of the default image.

8. Click OK.

27.4.1.4 What You May Need to Know About iTunes Artwork

By default, mobile applications deployed to an iOS device through iTunes use the
default Oracle image unless otherwise specified.

By selecting an iTunes artwork image as the icon for the deployed application, you
override the default image. You can use an image to differentiate between versions of
the application. Figure 27-18 illustrates the difference between the default image and a
user-selected image, where Application4 is displayed with the default image and
Application6 is displayed with a user-selected image (the Oracle icon, scaled to 512 x
512 pixels).

Figure 27-18 Custom and Default Application Icons

During deployment, MAF ensures that the icon displays in iTunes by adding the
iTunes artwork image to the top-level of the .ipa file in a file called iTunesArtwork.

Deploying an iOS Application

Deploying MAF Applications 27-31

Note:

iTunes artwork is only packaged into the application when you select the
deployment type called Deploy to iTunes for synchronization to device.

27.4.1.5 How to Restrict the Display to a Specific Device Orientation

By default, MAF supports all orientations for both iPhone and iPad. If, for example, an
application must display only in portrait and in upside-down orientations on iPads,
you can limit the application to rotate only to these orientations using the Device
Orientation page, shown in Figure 27-19

Figure 27-19 Select a Device Orientation

To limit the display of an application to a specific device orientation:

1. Choose Device Orientations, as shown in Figure 27-19.

2. Clear all unneeded orientations from among those listed in Table 27-3. By default,
MAF deploys to all of these device orientations. By default, all of these orientations
are selected.

Table 27-3 iPhone Device Orientations

Icon Description

iPad, portrait—The home button is at the bottom of
the screen.

iPad, upside-down—The home button is at the top
of the screen.

Deploying an iOS Application

27-32 Developing Mobile Applications with Oracle Mobile Application Framework

Table 27-3 (Cont.) iPhone Device Orientations

Icon Description

iPad, landscape left—The home button is at the left
side of the screen.

iPad, landscape right—The home button is at the
right side of the screen.

iPhone, portrait—The home button is at the bottom
of the screen.

iPhone, upside-down—The home button is at the
top of the screen.

iPhone, landscape left—The home button is at the
left side of the screen.

iPhone, landscape right—The home button is at the
right side of the screen.

3. Click OK.

27.4.1.6 What Happens When You Deselect Device Orientations

Deselecting a device orientation updates the source .plist file.

All iPad orientations must be supported (selected) to enable iPad multitasking. When
iPad multitasking is enabled, features such as split view mode can be used on
compatible iOS devices.

27.4.2 How to Deploy an iOS Application to an iOS Simulator
The Deployment Actions dialog enables you to deploy an iOS application directly to
an iOS simulator.

Before you begin:

To enable deployment to an iOS simulator, you must perform the following tasks:

• Run Xcode after installing it, agree to the licensing agreements, and perform other
post-installation tasks, as prompted.

Deploying an iOS Application

Deploying MAF Applications 27-33

Note:

You must run Xcode at least once before you deploy the application to the iOS
simulator. Otherwise, the deployment will not succeed.

• In the iOS Options page of the deployment profile, select Debug, and then click
OK.

• Before you deploy an application, shut down the iOS simulator if it is running. If
you do not shut down the simulator, the deployment will do it for you.

• Refer to the iOS Simulator User Guide, available through the iOS Developer Library
(http://developer.apple.com/library/ios/navigation/). The iOS
simulator is installed with Xcode.

To deploy an application to an iOS simulator:

1. Choose Applications, then Deploy, then select an iOS deployment profile.

2. Choose Deploy application to simulator and then choose Next.

3. Review the Summary page, shown in Figure 27-20, which displays the following
values. Click Finish.

• Application Bundle Id—The unique name that includes a Java language-like
package name (com.<organization name>.<application name>) prefixed with the
Bundle Seed that is generated from the iOS Provisioning Portal.

• File—The file name of the final image deployed to an iOS target.

• Signature—The developer or company that authored the application. If this
value has not been configured in the iOS Platform preferences page, then the
Summary page displays <Not Specified>.

• Provisioning Profile—The name of the provisioning profile that associates one
or more development certificates and devices with an application ID. If this
value is not configured in the iOS Platform preferences page, then the Summary
page displays <Not Specified>.

Note:

Deployment to an iOS simulator does not require that the values for Signing
Identity and Provisioning Profile be defined. In this deployment scenario, the
Summary page displays <Not Specified> for these values.

Deploying an iOS Application

27-34 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios/navigation/

Figure 27-20 The Deployment Actions Summary Dialog

27.4.3 How to Deploy an Application to an iOS-Powered Device
The Deploy to iTunes for Synchronization to device option enables you to deploy a
mobile application to an iOS-powered device for debugging and testing. Deployment
to an iOS-powered device or to a distribution site requires membership to either the
iOS Developer Program or the iOS Developer Enterprise Program. For more
information, see https://developer.apple.com/programs/.

Before you begin:

You cannot deploy an application directly from JDeveloper to a iOS device; an
application must instead be deployed from the Applications folder in Apple iTunes.
To accomplish this, you must perform the following tasks:

• Download Apple iTunes to your development computer and run it at least once to
create the needed folders and directories.

• Set the location of the Automatically Add to iTunes folder (the location used
for application deployment) in the iOS Platform preference page, shown in Figure
27-21.

Deploying an iOS Application

Deploying MAF Applications 27-35

https://developer.apple.com/programs/

Tip:

Although your user home directory (/Users/<username>/Music/
iTunes/iTunes Media/Automatically Add to iTunes.localized)
is the default directory for the iTunes Media folder, you can change the
location of this folder as follows:

1. In iTunes, select Edit, Preferences, then Advanced.

2. Click Change and then browse to the new location.

3. Consolidate the library.

4. Delete the original iTunes Media folder.

For instructions, refer to Apple Support (http://support.apple.com).

You must also update the location in the iOS Platform preferences page.

Figure 27-21 Setting the Location for the iTunes Media Folder

• Enter the name and location of the provisioning profile and the signing identity in
the iOS Platform preference page. The OS Provisioning Portal generates the
certificate and provisioning profile needed for deployment to iOS devices, or for
publishing .ipa files to the App Store or to an internal download site.

Note:

The deployment will fail unless you set the iOS provisioning profile and
signing identity to deploy to a device or to an archive. MAF logs applications
that fail to deploy under such circumstances. For more information, see What
You May Need to Know About Deploying an Application to an iOS-Powered
Device.

Deploying an iOS Application

27-36 Developing Mobile Applications with Oracle Mobile Application Framework

http://support.apple.com

• In the iOS Options page of the deployment profile, select Debug as the build mode
and then OK.

• Refer to the App Distribution Guide, which is available through the iOS Developer
Library (http://developer.apple.com/library/ios/navigation/).

To deploy an application to an iOS-powered device:

1. Choose Applications, then Deploy, and then select an iOS deployment profile.

2. Choose Deploy to iTunes for Synchronization to device and then choose Next.

3. Review the Summary page, which displays the following values. Click Finish.

• Application Bundle Id—The unique name that includes a Java language-like
package name (com.<organization name>.<application name>) prefixed with the
Bundle Seed that is generated from the iOS Provisioning Portal.

• File—The file name of the final image deployed to an iOS target.

• Signature—The developer (or company) who authored the application. If this
value has not been configured in the iOS Platform preferences page, then the
Summary page displays <Not Specified>.

• Provisioning Profile—The name of the provisioning profile that associates one
or more development certificates and devices with an application ID. If this
value is not configured in the iOS Platform preferences page, then the
Summary page displays <Not Specified>.

Note:

You must specify the Signature and Provisioning Profile values in the iOS
Platform preferences page to enable deployment to iTunes.

4. Connect the iOS-powered device to the development computer.

5. Open iTunes and then synchronize the device.

27.4.4 What Happens When You Deploy an Application to an iOS Device
The application appears in the iTunes Apps Folder, similar to the one illustrated in
Figure 27-18 after a successful deployment.

27.4.5 What You May Need to Know About Deploying an Application to an iOS-Powered
Device

You cannot deploy an iOS application (that is, an .ipa file) to an iOS-powered device
or publish it to either the App Store or to an internal hosted download site without
first creating a provisioning profile using the iOS Provisioning Portal, which is
accessible only to members of the iOS Developer Program. You enter the location of
the provisioning profile and the name of the certificate in the iOS Platform preferences
page as described in Setting the Device Signing Options.

As noted in the App Distribution Guide, (which is available through the iOS Developer
Library at http://developer.apple.com/library/ios/navigation/), a
provisioning profile associates development certificates, devices, and an application

Deploying an iOS Application

Deploying MAF Applications 27-37

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

ID. The iOS Provisioning Portal enables you to create these entities as well as the
provisioning profile.

Tip:

After you download the provisioning profile, double-click this file to add it to
your Library/MobileDevice/Provisioning Profile directory.

Figure 27-22 The iOS Provisioning Portal

27.4.5.1 Creating iOS Development Certificates

A certificate is an electronic document that combines information about a developer's
identity with a public key and private key. After you download a certificate, you
essentially install your identity into the development computer, as the iOS
Development Certificate identifies you as an iOS developer and enables the signing of
the application for deployment. In the iOS operating environment, all certificates are
managed by the Keychain.

Using the Certificates page in the iOS Provisioning Portal, you log a CSR (Certificate
Signing Request). The iOS Provisioning Portal issues the iOS Development Certificate
after you complete the CSR.

27.4.5.2 Registering an Apple Device for Testing and Debugging

After you install a certificate on your development computer, review the Current
Available Devices tab (located in the iOS Provisioning Portal's Devices page) to
identify the Apple devices used by you (or your company) for testing or debugging.
The application cannot deploy unless the device is included in this list, which
identifies each device by its serial number-like Unique Device Identifier (UDID).

27.4.5.3 Registering an Application ID

An application ID is a unique identifier for an application on a device. An application
ID is comprised of the administrator-created reverse domain name called a Bundle
Identifier in the format described in Setting Display Properties for a MAF Application
prefixed by a ten-character alpha-numeric string called a bundle seed, which is
generated by Apple. Figure 27-23 illustrates an application ID that is unique, one that
does not share files or the Keychain with any other applications.

Deploying an iOS Application

27-38 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-23 An Explicit Application ID

Using a wildcard character (*) for the application name, such as
8E549T7128.com.oracle.*, enables a suite of applications to share an application ID. For
example, if the administrator names com.oracle.MAF.* on the iOS Provisioning Portal, it
enables you to specify different applications (com.oracle.MAF.application1 and
com.oracle.MAF.application2).

Note:

For applications that receive push notifications, the application ID must be a
full, unique ID, not a wildcard character; applications identified using
wildcards cannot receive push notifications. For more information, see the
"Provisioning and Development" section of Local and Push Notification
Programming Guide, available from the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/)

When applications share the same prefix, such as 8E549T7128, they can share files or
Keychains.

Note:

The Bundle ID must match the application ID set in the iOS Platform
preferences page.

27.4.6 How to Distribute an iOS Application to the App Store
After you test and debug an application on an iOS device, you can distribute the
application to a wider audience through the App Store or an internal download site.
To publish an application to the App Store, you must submit the .ipa file to iTunes
Connect, which enables you to add .ipa files to iTunes, as well as update applications
and create test users.

Before you begin:

Before you distribute the application, you must perform the following tasks:

Deploying an iOS Application

Deploying MAF Applications 27-39

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

• In the iOS Platform preference page, shown in Figure 27-21, enter the location of
the Automatically Add to iTunes directory.

Tip:

Run iTunes at least once before entering this location. See also How to Deploy
an Application to an iOS-Powered Device.

• Test the application on an actual iOS device. See How to Deploy an Application to
an iOS-Powered Device.

• Obtain a distribution certificate through the iOS Provisioning Portal.

Note:

Only the Team Agent can create a distribution certificate.

• Obtain an iTunes Connect account for distributing the .ipa file to iTunes. For
information, refer to the App Store distribution guidelines at http://
developer.apple.com/.

• You may want to review the iTunes Connect Developer Guide available through the
iOS Developer Library (http://developer.apple.com/library/ios/
navigation/).

• In the iOS Options page of the deployment profile, select App Distribution Guide
Release as the build mode and then click OK.

To distribute an iOS application to the App Store:

1. Choose Applications, then Deploy, and then select an iOS deployment profile.

2. Choose Deploy to Distribution Package.

3. Review the Summary page, which displays the following values. Click Finish.

• Application Bundle Id—The unique name that includes a Java language-like
package name (com.<organization name>.<application name>) prefixed with the
Bundle Seed that is generated from the iOS Provisioning Portal.

• File—The file name of the final image deployed to an iOS target.

• Signature—The application's author. If this value has not been configured in the
iOS Platform preference page of the deployment profile, then the Summary
page displays <Not Specified>.

• Provisioning Profile—The name of the provisioning profile that associates one
or more development certificates and devices with an application ID. If this
value is not configured in the iOS Platform preference page, then the Summary
page displays <Not Specified>.

Note:

You must specify the Signature and Provisioning Profile values in the iOS
Platform preferences page to enable the .ipa file to be accepted by iTunes.

4. Log in to iTunes Connect.

Deploying an iOS Application

27-40 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

5. Submit the .ipa file to iTunes Connect for consideration. Refer to the iTunes
Connect Developer Guide for information (http://developer.apple.com/library/ios/
navigation/).

6. Refer to the iTunes Connect Developer Guide for information on updating the binary
(http://developer.apple.com/library/ios/navigation/).

27.5 Deploying a MAF Application to the Universal Windows Platform
Describes how to deploy a MAF application to the Universal Windows Platform
(UWP).

MAF applications can be deployed to the local machine where you develop the
application or to an installation package that you use to install the application on a
supported UWP device.

MAF provides two build modes for an application that you deploy to the UWP. Use
debug mode to test and debug your application as you go through the development
cycle. Use release mode to deploy an application that is release ready.

Release ready applications cannot be published to the Windows Store. Choose another
mechanism to distribute your application. MAF provides a PowerShell script in the
installation package that, when executed, installs the application on the UWP device.

Perform the following setup and configuration tasks before you attempt to deploy an
application to the UWP:

1. Verify that your development machine meets the requirements to deploy a MAF
application to the UWP. Among these requirements are that your machine be a
UWP device. That is, it runs the Windows 10 operating system. You must enable
Developer mode on this machine.

For more information, see the Installation Requirements for MAF Applications to
be Deployed to the Windows Platform section in Installing Oracle Mobile
Application Framework.

2. Install the Visual Studio software from Microsoft. This software contains the
Windows SDK that enables deployment to the UWP.

For more information, see the Setting Up Development Tools for the Universal
Windows Platform section in Installing Oracle Mobile Application Framework.

3. Create a certificate (a personal information exchange file) to digitally sign the
application you want to deploy.

For more information, see the Creating a PFX File for MAF Applications section in
Installing Oracle Mobile Application Framework.

4. Enter the following values in the Windows Platform dialog shown in Figure
27-24:

• The location of the Windows SDK that is installed with the Visual Studio
software from Microsoft

• The location and password (if required) for the certificate that you use to sign
the application. Do this in both the Debug and Release tabs if you intend to
deploy your MAF application in both modes.

• Ignore the Hash Algorithm drop-down list. MAF does not use it.

Deploying a MAF Application to the Universal Windows Platform

Deploying MAF Applications 27-41

You access the Windows Platform dialog from JDeveloper’s Tools > Preferences
> Mobile Application Framework menu, as shown in Figure 27-24.

Figure 27-24 Windows Platform Preferences to Deploy a MAF Application

MAF provides a ready-to-use deployment profile (Windows1) that deploys your MAF
application in debug mode to a local machine or package if your development
machine and environment meet the setup and configuration requirements for
deployment.

You can edit this ready-to-use deployment profile or create one or more new
deployment profiles. Creating a new deployment profile or editing an existing profile,
you can:

• Specify additional library and profile dependencies for your application

• Choose between debug or release build modes

• Specify options such as the application bundle ID, the archive name and version

• Specify the images that the application uses to render its logo in the splash screen
and the icon that appears on the user’s device.

For more information about how to edit or create a deployment profile, see Working
with Deployment Profiles. Click Help in the deployment profile dialogs to view
information about the respective tasks that you can perform in each dialog.

Before you deploy your application, note the following issues that can prevent
deployment:

• Microsoft Windows imposes a maximum length for the path to directories and
files. MAF application deployment fails if the path for a MAF application exceeds
the maximum path length. To work around this issue, place the MAF application in
a location where the directory path length is less than the maximum length

Deploying a MAF Application to the Universal Windows Platform

27-42 Developing Mobile Applications with Oracle Mobile Application Framework

mandated by Windows. For more information about the maximum path length
limitation, see Microsoft’s documentation.

• Ensure no other process uses the MAF application’s data folder before you deploy
the MAF application using the Deploy application to local machine
option. The application data folder is typically located at C:\Users\[userName]
\AppData\Local\Packages\[appBundleId]_[id]. An example of a scenario
where another process uses this folder is if you have a file in the folder open with
an application, such as Notepad. If you cannot determine what application process
is using the directory/file(s), reboot your machine to resolve the issue.

For information about how to debug an application that you deploy in debug mode,
see How to Debug Java Code on the Universal Windows Platform.

27.5.1 How to Deploy a MAF Application to the Universal Windows Platform
Deploy the application using a MAF for Windows deployment profile that deploys the
application to the UWP.

To deploy a MAF application to the UWP:

1. From JDeveloper’s main menu, select Application, then Deploy, and then
Windows1.

Where Windows1 is a MAF for Windows deployment profile.

2. Select the appropriate deployment option from the list in the dialog that appears.

3. Click Finish.

27.5.2 What Happens When You Deploy a MAF Application to the Universal Windows
Platform

If you chose the Deploy application to local machine option, MAF deploys the
application to the machine that you are using and installs the application there. In the
foreground of Figure 27-25 is an instance of the WorkBetter sample application that
has been deployed to a local machine in release mode. In the background of Figure
27-25, you can view the WorkBetter sample application listed among the installed
applications on the Windows 10 machine’s Apps & features page.

A red icon appears in the upper-left of a MAF application screen that you deploy in
debug mode to indicate that the application is in debug mode. As with the application
deployed in release mode, you can view and uninstall this application in Windows
10’s Apps & features page.

Deploying a MAF Application to the Universal Windows Platform

Deploying MAF Applications 27-43

Figure 27-25 MAF Application Deployed in Release Mode on Windows Local
Machine

If you choose the Deploy application to package option, MAF deploys the application
to an installation package in the following directory:

C:\path\to\appRoot\deploy\[DeploymentProfileName]\[deployMode]\MafTemplate
\AppPackages

For example, the WorkBetter sample application, shown in Figure 27-25, that deployed
in release mode using the Windows1 deployment profile deployed to the following
directory:

C:\...\PublicSamples\WorkBetter\deploy\Windows1\release\MafTemplate\AppPackages

The AppPackages directory contains another directory (MafTemplate_*_Test).
Distribute the contents of this latter directory to the end users with supported UWP
devices who want to install your MAF application. The directory includes a
PowerShell script (Add-AppDevPackage.ps1) that end users execute to install the
application. In addition to the script, the directory contains the application package,

Deploying a MAF Application to the Universal Windows Platform

27-44 Developing Mobile Applications with Oracle Mobile Application Framework

dependent packages, and the certificate that signed the application. The following
example lists the contents:

Add-AppDevPackage.ps1
Add-AppDevPackage.resources
Dependencies
MafTemplate_1.0.0.0_x64.appx
MafTemplate_1.0.0.0_x64.appxsym
MafTemplate_1.0.0.0_x64.cer

The name of the MafTemplate_*_Test directory and files depends on the Version
number and Build mode that you specify in the Windows Options dialog, shown in
Figure 27-26. You access this dialog from JDeveloper’s Deployment page when you
edit a deployment profile. To access the Deployment page, click Application and then
Application Properties.

For example, if you specify 2 as the Version number and select the Debug build mode,
the directory name is MafTemplate_2.0.0.0_x64_Debug_Test. A version
number of 3 and the Release build mode produces a
MafTemplate_3.0.0.0_x64_Test directory.

Figure 27-26 Windows Options Dialog for Deployment Profile

27.6 Overview of MAF Quick Deployment of Applications
Provides an overview of the quick deployment of an application to an Android
emulator or an iOS simulator.

MAF quick deployment ensures developer productivity by providing competitive
deployment times without deterioration of performance.

Quick Deployment of Applications

A quick deployment, as opposed to the normal full deployment, saves deployment
time by skipping some deployment steps. A quick deployment passes only new or
changed file content to an emulator or a simulator.

To use quick deployment on an Android emulator, select the Deploy application to
emulator deployment action. For example, for a deployment profile named Android2,
on the Application menu, select Deploy, then Android2, and then select a
deployment action. For more information, see Deploy an Android Application to an

Overview of MAF Quick Deployment of Applications

Deploying MAF Applications 27-45

Android Emulator. To use quick deployment on an iOS simulator, for a deployment
profile named iOS2, from the Application menu, select Deploy, then iOS2, and then
select a deployment action. For more information, see Deploy an iOS Application to an
iOS Simulator.

Note: The first deployment is a full deployment. A quick deployment may
follow an initial full deployment.

The deployment of an application to an emulator or a simulator starts a Quick
Deployment Session Analysis. The results of the analysis decide whether the
deployment must be a quick deployment or a full deployment.

The Quick Deployment Session Analysis is initiated to detect application file changes.
The MAF tool that analyzes application file changes triggers a quick deployment. If
the analysis fails to find deployment artifacts from a previous Quick Deployment
Session that used the same deployment profile, a full deployment is triggered.

MAF simplifies the deployment functionality. When you make changes to application
files in JDeveloper, those changes are moved to the application that is deployed to an
emulator or a simulator, thus removing the need for redeployment.

Key Features of Quick Deployment

The following features define quick deployment.

• Quick deployment is supported for applications that are deployed to an Android
emulator or an iOS simulator.

• Virtual box images can be used for quick deployment provided that root access is
configured for the images.

• Changes made to an application in JDeveloper pushes the changes to the
application deployed to an emulator or a simulator, without a full deployment, for
example, changes to AMX pages or task flows. For the complete list of application
changes, see Artifacts That Support Quick Deployment.

• Deletion of files triggers a full deployment.

• The quick deployment of an application only updates new or modified files. Quick
deployment does no additional deployment processing.

27.6.1 About the Artifacts That Support Quick Deployment
Lists the artifacts that support MAF quick deployment.

Artifact Changes That Support MAF Quick Deployment

The following artifact changes support quick deployment:

• Changes to AMX pages

• Changes to task flows

• Changes to bindings

• Changes to maf-skins.xml

• Addition of new style sheets and referencing them in maf-skins.xml

Overview of MAF Quick Deployment of Applications

27-46 Developing Mobile Applications with Oracle Mobile Application Framework

• Changes to maf-config.xml

• Changes to adf-config.xml

• Changes to connections.xml

• Changes to wsm-assembly.xml

• Changes to sync-config.xml

27.6.2 About Requirements for Quick Deployment
Lists the requirements for the quick deployment of an application.

Prerequisites for the Quick Deployment of a MAF Application

The quick deployment of an application starts when the following requirements are
met:

• An installed application is available on the target Android emulator or iOS
simulator.

• A unique bundle id for the MAF application.

• An initial, full deployment must have been completed.

27.6.3 What Happens During a Quick Deployment Session
Lists the steps in the Quick Deployment Session of a MAF application’s quick
deployment.

The deployment of an application to an emulator or a simulator starts a Quick
Deployment Session. The session analyzes and decides whether the deployment must
be a quick deployment or a full deployment.

MAF Quick Deployment Session and Analysis

A quick deployment session proceeds as follows:

• Conducts an initial quick deployment session analysis

• Notes the application file changes:

– Since the last quick deployment session

– With the same deployment profile

• Determines whether the deployment must be a quick deployment or a full
deployment

• Deploys an application to an emulator or simulator

27.6.4 How to Start the Full Deployment of an Application
Lists the actions that can trigger the full deployment of an application.

Actions That Trigger the Full Deployment of an Application

The following actions trigger the full deployment of an application:

• JDeveloper is restarted.

Overview of MAF Quick Deployment of Applications

Deploying MAF Applications 27-47

• Files are changed in non-MAF projects.

• Java files in a MAF feature project are created, changed, or deleted.

• Files are changed in a non-MAF project, and a Clean All is performed before
deployment.

• Files are deleted in the application, outside of MAF feature projects.

• An application is deployed using a different deployment profile, a profile other
than the one used in the previous quick deployment.

• Some artifacts at the application level can trigger a full deployment. Changes to the
following artifacts trigger a full deployment:

– maf-application.xml

– maf-feature.xml

– maf-plugins.xml

– maf.properties

– logging.properties

27.6.5 How to Force the Full Deployment of an Application
Lists the actions with which you can force the full deployment of a MAF application.

Certain user actions force the full deployment of a MAF application.

Actions That Force the Full Deployment of a MAF Application

The full deployment of an application can be forced in multiple ways. Use any of the
following actions to trigger the full deployment of a MAF application:

• Change any file that does not support quick deployment.

• Click Build, and then click Clean All.

• Uninstall an application on the Android emulator or iOS simulator.

• Restart JDeveloper.

27.6.6 What You May Need to Know About Quick Deployment Limitations
Lists the limitations of the MAF quick deployment of applications.

Quick Deployment Limitations: Files Deployment and User Actions

The following limitations are associated with the MAF quick deployment of
applications.

• The following actions become necessary if a user switches between a Run session
and a Debug session by means of Run or Debug: Click Build, and then click Clean-
All.

• The following actions become necessary if a user switches between a normal
deployment and a Run or Debug session: Click Build, and then click Clean-All.

Overview of MAF Quick Deployment of Applications

27-48 Developing Mobile Applications with Oracle Mobile Application Framework

• If the run or debug configurations change, a full deployment must be forced. The
following user actions become necessary: Click Build, and then click Clean-All.

The following files cannot be deployed by means of quick deployment because they
need additional processing during deployment:

• Files that are created, updated, or deleted in any project other than a MAF
ViewController or ApplicationController project

• Application files that are deleted outside MAF feature projects

• Files that are deleted from within any MAF feature project

• New, changed, or deleted Java files

• Changes to the following artifacts at the application level trigger a full deployment:

– maf-application.xml

– maf-feature.xml

– maf-plugins.xml

– maf.properties

– logging.properties

A quick deployment cannot be initiated in the context of the following user actions:

• Changes or removes the emulator application that was installed by the previous
quick deployment.

• Deploys an application using a deployment profile other than the one used in the
previous quick deployment.

• Changes in any deployment profile content necessitates a clean build, and the
following actions are needed: Click Build, and then click Clean-All.

Quick deployment neither detects nor handles the following changes:

• The quick deployment of an application to a different emulator.

• MAF project changes that affect which files are included in any workspace project.

• Content changes in a deployment profile.

• JDeveloper restart. After JDeveloper restarts, the first deployment is a full
deployment. No user action is needed to ensure a full deployment after the restart.
A quick deployment may follow an initial full deployment.

27.7 Deploying Feature Archive Files (FARs)
To enable re-use by MAF view controller projects, application features— typically,
those implemented as MAF AMX or Local HTML— are bundled into an archive
known as a Feature Archive (FAR). As stated in Reusing MAF Application Content , a
FAR is a JAR file that contains the application feature artifacts that can be consumed
by mobile applications, such as icon images, resource bundles, HTML, JavaScript, or
other implementation-specific files. (A FAR may contain Java classes, though these
classes must be compiled.) The following example illustrates the contents of a FAR,
which includes a single maf-feature.xml file and a connections.xml file. For

Deploying Feature Archive Files (FARs)

Deploying MAF Applications 27-49

more information on connections.xml, see Configuring End Points Used in MAF
Applications ..

/* Contents of a Feature Archive File */
connections.xml (or some form of connection metadata)

 META-INF
 adfm.xml
 maf-feature.xml
 MANIFEST.MF
 task-flow-registry.xml

 oracle
 application1
 mobile
 Class1.class
 DataBindings.cpx
 pageDefs
 view1PageDefs

 model
 adfc-mobile-config.adfc.diagram
 ViewController-task-flow.adfc.diagram

 public_html
 adfc-mobile-config.xml
 index.html
 navbar-icon.html
 springboard-icon.html
 view1.amx
 ViewController-task-flow.xml

Working with Feature Archive files involves the following tasks:

1. Creating a Feature Archive file—You create a Feature Archive by deploying a
feature application as a library JAR file.

2. Using the Feature Archive file when creating a mobile application—This includes
importing FARs and re-mapping the imported connection.

3. Deploying a mobile application that includes features from FARs—This includes
unpacking the FAR to a uniquely named folder within the deployment template.

Note:

MAF generates FARs during the deployment process. You only need to
deploy a view controller project if you use the FAR in another application.

27.7.1 How to Create a Deployment Profile for a Feature Archive
Use the Create Deployment Profile dialog, shown in Figure 27-27.

Deploying Feature Archive Files (FARs)

27-50 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-27 Create MAF Feature Archive Dialog

Before you begin:

Create the appropriate connections for the application. Because FARs may be used in
different MAF applications with different connection requirements, choose a
connection name that represents the connection source or the actual standardized
connection name.

To create a deployment profile for a Feature Archive:

1. Right-click a view controller project, choose New, then Deploy, and then New
Deployment Profile.

Note:

You do not need to create a separate, application-level deployment profile.

2. Select MAF Feature Archive in the Create Deployment Profile dialog.

3. Enter a profile name, or accept the default, and then click OK.

Note:

Name the profile appropriately. Otherwise, you may encounter problems if
you upload more than one application feature with the same archive name.
For more information, see What You May Need to Know About Enabling the
Reuse of Feature Archive Resources.

4. Select the connections that you want to include in the Feature Archive JAR file, as
shown in Figure 27-28.

Deploying Feature Archive Files (FARs)

Deploying MAF Applications 27-51

Figure 27-28 Selecting a Connection for the FAR

5. Click Next, review the options, and then click Finish.

27.7.2 How to Deploy the Feature Archive Deployment Profile
The Deployment Actions dialog enables you to deploy the FAR as a JAR file. This
dialog, shown in Figure 27-29, includes only one deployment option, Deploy to
feature archive JAR file.

Deploying Feature Archive Files (FARs)

27-52 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-29 Deployment Actions

To deploy the Feature Archive deployment profile:

1. Right-click the view controller project and then select the Feature Archive
deployment profile.

2. Click Finish. The Summary page, shown in Figure 27-30, displays the full path of
where the Feature Archive file's JAR path is deployed.

Deploying Feature Archive Files (FARs)

Deploying MAF Applications 27-53

Figure 27-30 Deployment Summary Page

27.7.3 What Happens When You Deploy a Feature Archive File Deployment Profile
After you complete the deployment action dialog, MAF creates a library JAR in the
path shown in the Summary page. To make this JAR available for consumption by
other applications, you must first make it available through the Resource Palette,
shown in Figure 27-31 (and described in Using FAR Content in a MAF Application) by
creating a connection to the location of the Feature Archive JAR. Figure 27-31 shows
Feature Archives that can be made available to a mobile application through a file
system connection.

Deploying Feature Archive Files (FARs)

27-54 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-31 Deployed Feature Archive JARs in the Resource Palette

27.8 Creating a Mobile Application Archive File
You can create a new mobile application from an existing mobile application by:

• Packaging the original mobile app as a Mobile Application Archive (.maa) file

• Create a new mobile application from the .maa file, as described in Creating a New
Application from an Application Archive.

An .maa file preserves the structure of the mobile application. Table 27-4 describes the
contents of this file.

Table 27-4 Contents of a Mobile Application Archive File

Directory Description

adf Contains the META-INF directory, which contains the metadata files, including:

• The adf-config.xml file
• The maf-application.xml file
• The maf-config.xml file
• Other applicable application-level files, such as the connections.xmlfile

Creating a Mobile Application Archive File

Deploying MAF Applications 27-55

Table 27-4 (Cont.) Contents of a Mobile Application Archive File

Directory Description

Projects Contains a JAR file for each project in the workspace. For example, a
ViewController.jar file and a ApplicationController.jar file are located in
this directory when you deploy a default mobile application to an .maa file. The
Projects directory of the .maa file does not include the .java files from the original
project. Instead, the .java files are compiled and the resulting .class files are placed
in a separate JAR file that is contained in the project JAR file (such as
ApplicationController.JAR/classlib/mobileApplicationArchive.jar).

ExternalLibs Contains the application-level libraries (including FARs) that are external to the original
mobile application.

META-INF Includes the maf.properties and logging.properties files.

resources Includes the following directories:

• android—Contains Android-specific image files for application icons and splash
screens.

• ios—Contains iOS-specific image files for application icons.
• security—Includes the cacerts file (the keystore file).

In addition to the artifacts listed in Table 27-4, the .maa file includes any folder
containing FARs or JAR files that are internal to the original mobile application, as
well as its control (.jws)file. See also What Happens When You Import a MAF
Application Archive File.

Note:

Importing an .maa file into an existing application overwrites the workspace
and project container files (the.jws and .jpr files, respectively). As a result,
all prior changes to MAF AMX pages and configuration files, such as maf-
application.xml, maf-config.xml, connections.xml, and adf-
config.xml, will not be retained.

27.8.1 How to Create a Mobile Application Archive File
JDeveloper creates a default MAF Application Archive deployment profile after you
create a mobile application. Using the Mobile Application Archive wizard, you can
create the .maa file.

Tip:

You can also create an .maa file using OJDeploy, as described in Deploying
MAF Applications from the Command Line.

To create a Mobile Application Archive file:

1. Click Application, then Deploy, then New Deployment Profile.

2. In the Create Deployment Profile dialog, choose MAF Application Archive and
then click OK, as shown in Figure 27-32.

Creating a Mobile Application Archive File

27-56 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-32 Creating an MAA Deployment Profile

3. If needed, enter a name for the Mobile Application Archive in the Application
Archives Options page, shown in Figure 27-33, or accept the default name (and
path). Click OK.

Creating a Mobile Application Archive File

Deploying MAF Applications 27-57

Figure 27-33 Entering a Name and Path for the Mobile Application Archive File

4. If needed, perform the following:

a. In the Application Descriptors page, shown in Figure 27-34, enter the file
group name (or accept the default name) used for the contents of the META-
INF folder (application_workspace\src\META-INF).

Creating a Mobile Application Archive File

27-58 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-34 Entering a File Group Name for the META-INF Contents

b. Select the Contributors sub-page of this Application Descriptors page to edit
the list of directories and JAR files that provide the contents for the file group.

Creating a Mobile Application Archive File

Deploying MAF Applications 27-59

Figure 27-35 Editing Contributors to the Mobile Application Archive File

c. Use the Filters page, shown in Figure 27-36 to edit the files that will be
included in the .maa file or set the content inclusion or exclusion rules.

Creating a Mobile Application Archive File

27-60 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-36 Including (or Excluding) Files and Directories

d. Use the Profile Dependencies page, shown in Figure 27-37, to specify
dependent profiles within the project.

Creating a Mobile Application Archive File

Deploying MAF Applications 27-61

Figure 27-37 Selecting Deployment Profiles

To package a mobile application as a MAF Application Archive file:

1. Choose Application, then Deploy and then choose the MAF Application Archive
deployment profile.

2. In the Deployment Action wizard, select Deploy application to MAA, as shown
in Figure 27-38.

Creating a Mobile Application Archive File

27-62 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 27-38 Deployment to a MAF Application Archive File

3. Click Next to review the deployment summary, as shown in Figure 27-39.

Creating a Mobile Application Archive File

Deploying MAF Applications 27-63

Figure 27-39 MAF Application Archive Deployment Summary

4. Click Finish.

27.9 Creating a New Application from an Application Archive
You or others (for example, a colleague or a partner) can create a new MAF
application using an application archive file (.maa) as a starting point. By deriving a
mobile application from an .maa file, you enable various customizations, which
include:

• Giving an application a unique application ID (to enable push notifications, for
example).

• Signing an application with a company-specific credential or certificate.

• Replacing the resources with customized splash screens and application icons.

The MAF Application Archive (.maa) file format enables you to provide third-parties
with an unsigned mobile application.

Creating a New Application from an Application Archive

27-64 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Importing an .maa file into an existing application overwrites the workspace
and project container files (the.jws and .jpr files, respectively). As a result,
all prior changes to MAF AMX pages and configuration files, such as maf-
application.xml, maf-config.xml, connections.xml, and adf-
config.xml, will not be retained.

27.9.1 How to Create a New Application from an Application Archive
You import an .maa file into a new mobile application.

To create a new application from an application archive:

1. Choose File and then New.

2. In the New Gallery, choose Applications and then MAF Application from
Archive File.

Note:

Alternatively, you can choose File, then Import, and then MAF Application
from Archive File.

3. In the Location page, choose Browse in the MAA File field to navigate to the
location of the MAA file.

4. If needed, perform the following, or accept the default values:

a. Enter a name for the mobile application derived from the .maa file in the
Application File field, as shown in Figure 27-40.

b. Click Browse to retrieve the directory of the mobile application.

Creating a New Application from an Application Archive

Deploying MAF Applications 27-65

Figure 27-40 Entering the Directory Location

5. Click Next to review the import summary information and then click Finish.

27.9.2 What Happens When You Import a MAF Application Archive File
MAF performs the following after you import an .maa file:

1. Creates an application folder.

2. Unpacks the workspace container (.jws) file from the .maa file to the application
file and renames it per the user-specified value.

3. Unpacks the adf directory and its contents to the application folder. This
directory is renamed .adf.

4. Unpacks the META-INF directory and its contents and places them in a src
directory in the application folder.

5. Unpacks the ExternalLibs directory and its contents to the application folder.

Creating a New Application from an Application Archive

27-66 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

While any of the external resources contained in this directory are available in
the mobile application that has been packaged as an .maa file (and imported
into the application), the references to these resources will be invalid for a
mobile application derived from the .maa file.

6. Unpacks the resources directory to the application folder.

7. Unpacks all folders that contain FARs (or other libraries) that are internal to the
original mobile application. MAF preserves the original locations of these
artifacts.

8. For each JAR file within the original mobile application's Projects directory,
MAF performs the following:

• Creates a project folder under the application directory that corresponds to the
name of the JAR file (but without the .jar extension).

• Unpacks the contents of the JAR files into the appropriate project folder. MAF
includes the following in these project folders:

– The original .jpr file.

– The standard directories, such as META-INF, public_html, src, and
adfmsrc.

– The contents of the ExternalLibs directory.

Note:

While any of the external resources contained in this directory are available in
the MAF project that has been packaged with the imported .maa file, the
references to these resources will be invalid for an existing project, or a project
created by importing the .maa file.

– The classlib directory, which contains any Java classes packaged in a
JAR file.

Note:

If the .maa file includes a classlib directory, then MAF adds all of the JAR
files from this directory as library dependencies in the newly created mobile
application.

27.10 Deploying MAF Applications from the Command Line
You can deploy iOS or Android applications from JDeveloper without starting the
JDeveloper IDE using the OJDeploy command line tool. Command line deployment
can serve as a tool for testing, as well as a means of deploying applications using a
script.

After you have created iOS or Android deployment files using Deployment Profile
Properties editor, you can use OJDeploy to deploy applications in the headless mode

Deploying MAF Applications from the Command Line

Deploying MAF Applications 27-67

to iOS simulators and iOS-powered devices (through iTunes), or as iOS bundles (.ipa
and .app files), or Feature Archive JAR files. Likewise, OJDeploy enables you to
deploy applications to both Android emulators and Android-powered devices, or
deploy them as an Android application package (.apk) file or as Feature Archive JAR
files.

Note:

To use OJDeploy on a Mac, add the following line to the ojdeploy.conf file:

SetSkipJ2SDKCheck true

This file is located at: jdev_install/jdeveloper/jdev/bin

At present, you cannot use the OJDeploy command line tool to deploy to the
Universal Windows Platform.

27.10.1 Using OJDeploy to Deploy Mobile Applications
The following commands enable you to deploy MAF deployment profiles:

• deployToDevice—Deploys an application to iOS- or Android-powered devices.
For iOS applications, this command is used in debugging scenarios where the
application is deployed to a device using iTunes. For more information, see How to
Distribute an iOS Application to the App Store.

• deployToSimulator—Deploys an application to an iOS simulator (as an .app
file) or Android emulator. You can only deploy a mobile application to an iOS
simulator on an Apple computer.

• deployToPackage—Deploys an iOS application as an .ipa file or an Android
application as an .apk file. You can only package an application as an .ipa file on
an Apple computer.

• deployToFeatureArchive—Deploys a Feature Archive to a JAR file.

• deployToApplicationArchive—Packages a mobile application as a MAF
Application Archive (.maa) file.

You use these commands in conjunction with the ojdeploy command line tool,
OJDeploy's arguments, and its options as follows:

ojdeploy deployToSimulator -profile <profile name> -workspace <jws file location>

Note:

OJDeploy commands and arguments are case-sensitive.

Table 27-5 lists the OJDeploy arguments that you use to modify the MAF deployment
commands.

Tip:

Using the -help option with any command (such as ojdeploy
deployToSimulator -help) retrieves usage and syntax information.

Deploying MAF Applications from the Command Line

27-68 Developing Mobile Applications with Oracle Mobile Application Framework

Table 27-5 OJDeploy Arguments for MAF Deployments

Argument Description

-profile The name of the Android or iOS deployment profile. For example:

ojdeploy deployToSimulator -profile iosDeployProfile ...

-workspace The full path to the mobile application workspace container (.jws) file. For example:

... -workspace /usr/jsmith/mywork/Application1/Application1.jws

To package a mobile application as a mobile Application Archive:

ojdeploy deployToApplicationArchive
 -profile applicationArchiveProfile
 -workspace /usr/jdoe/Application1/application1.jws

-project For the deployToFeatureArchive command, you must provide the name of the
project (that is, a view controller project) that contains the Feature Archive
deployment profile. For example:

ojdeploy deployToFeatureArchive
 -profile farProfileName
 -project ViewController
 ...

-buildfile The full path to a build file for batch deploy.

-buildfileschema Print XML Schema for the build file.

In addition to the arguments listed in Table 27-5, you can also use OJDeploy options
described in the "Command Usage" section of Developing Applications with Oracle
JDeveloper.

Note:

The following options are not supported:

• -forcerewrite

• -nocompile

• -nodatasources

• -nodepdendents

• -outputfile

• -updatewebxmlejbrefs

Table 27-6 provides examples of how to use the OJDeploy options with the MAF
deployment commands.

Table 27-6 OJDeploy Options for MAF Deployments

Deploying MAF Applications from the Command Line

Deploying MAF Applications 27-69

Table 27-6 (Cont.) OJDeploy Options for MAF Deployments

Option Description

-clean Deletes all files from the project output directory before compiling. For example:

ojdeploy deployToSimulator
 -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean

-stdout, -stderr Redirects the standard output and error logging streams to a file for each profile and
project. For example:

ojdeploy deployToSimulator -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean
 -stdout /usr/jsmith/stdout/stdout.log
 -stderr /usr/jsmith/stderr/stderr.log

Table 27-7 lists the macros used with the deployToApplicationArchive
command:

Table 27-7 Macros Used with MAF Application Archive Packaging

Macros Description

workspace.name The name of the application workspace container file (without the .jws extension).

workspace.dir The directory of the application workspace container (.jws) file.

profile.name The name of the profile being deployed.

profile.dir The default deployment directory for the profile.

base.dir Override the current OJDeploy directory using this parameter. You can also override
the current OJDeploy directory using the basedir attribute in the build script.

27.11 Deploying with Oracle Mobile Security Suite
Oracle Mobile Security Suite (OMSS) provides enterprise-level security for mobile
applications. It offers data leakage prevention and encryption of application data and
database content through containerization at deployment time. For more information
about containerizing your MAF application with OMSS, see Containerizing a MAF
Application for Enterprise Distribution.

You can containerize MAF applications that you deploy to the iOS and Android
platforms with OMSS. MAF applications that you deploy to the Universal Windows
Platform cannot be containerized with OMSS.

Before you begin:

You must have the OMSS containerization tool installed. This tool is a command-line
utility with the file name c14n. You can download OMSS and read instructions on
installation on the Oracle Technology Network:

Deploying with Oracle Mobile Security Suite

27-70 Developing Mobile Applications with Oracle Mobile Application Framework

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Note:

For iOS, you must also have selected the name of the provisioning profile in
the iOS Platform preferences page as described in Setting the Device Signing
Options.

To containerize an application using Oracle Mobile Security Suite:

1. Choose Tools, then Preferences, and then Mobile Application Framework.

2. Select Containerization.

3. Click the Browse icon and browse to the install location of the Mobile Security
App Containerization Tool on your local file system, as shown in Figure 27-41.

Figure 27-41 Specifying the Location of the Containerization Tool

4. Click OK to select the containerization tool.

5. Choose Application > Application Properties > Deployment.

6. In the Deployment page, double-click a deployment profile, then select Options.

7. At the bottom of the iOS Options page, select Enable Oracle Mobile Security
Suite.

To deploy an application using Oracle Mobile Security Suite:

1. Choose Application, then Deploy, and then select a deployment profile.

2. In the Deployment Action dialog, choose how to deploy the application.

Deploying with Oracle Mobile Security Suite

Deploying MAF Applications 27-71

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Note:

For iOS, containerization is supported for iTunes deployment only.
Deployment to a distribution package or simulator will not create a
containerized .ipa file.

For Android, containerization is supported for deployment only to a device or
distribution package. Deployment to an emulator will not create a
containerized apk file.

3. Deploy the application. A platform-specific file (.ipa for iOS, .apk for Android)
secured by Oracle Mobile Security Suite will be created. After you add the
containerized application to your device, it will display a lock icon, as shown in
Figure 27-42.

Figure 27-42 Mobile Application Displaying the Lock Icon for Containerization

27.11.1 What Happens When You Containerize Your Application with OMSS
When you deploy a MAF application containerized with Oracle Mobile Security Suite
(OMSS), you can then upload it to the OMSS Mobile App Catalog, which displays a
list of currently available applications. Before publishing the application to end users,
the OMSS administrator applies various policies to the application to manage its

Deploying with Oracle Mobile Security Suite

27-72 Developing Mobile Applications with Oracle Mobile Application Framework

functionality. By applying specific policies on the OMSS server side, the OMSS
administrator can manage the security and sharing requirements for applications
containerized with the Oracle Mobile Security App Containerization Tool. Data in
transit and data stored locally inside containerized applications on the mobile device
is encrypted. Encrypted data storage includes application data, including files,
databases, application cache, and user preferences.

After applying OMSS data leakage protection and encryption, you can then make the
application available to users from a download site.

Note: iOS MAF applications that are containerized with OMSS can only be
distributed to users through an internal download site or enterprise
application store. Containerized iOS MAF applications cannot be uploaded to
the Apple App store. This restriction is not applicable to Android MAF
applications that are containerized with OMSS. These applications can be
distributed through an internal download site, enterprise application store, or
Google Play.

For details about how system administrators use the OMSS Mobile App Catalog to
manage the MAF application provisioned to devices and workspaces, see the
"Managing Devices and Workspaces" chapter in Administering Oracle Mobile Security
Suite.

The following OMSS data leakage protection policies restrict how and if users can
share data within an application:

• Email allowed can restrict the ability to send email from an application.

• Instant Message allowed can restrict the ability to send Instant Message from an
application.

• Video chat allowed restricts the ability to share information via services such as
FaceTime.

• Social Share allowed restricts the ability to share information via services such as
Facebook or Twitter.

• Print allowed restricts the ability of the user to print.

• Restrict file sharing restricts the ability of the user to share files outside the secure
enterprise workspace.

• Restrict copy/paste allows copy/paste inside the secure container, containerized
applications or between containerized applications, but not to applications outside
the secure enterprise workspace.

• Redirects to container allowed prevents any application outside the Mobile
Security Container workspace from redirecting a URL into the container.

• Save to media gallery allowed prevents images, videos and audio files from being
saved to media gallery and photo stores.

• Save to local contacts allowed prevents contacts inside secure enterprise
workspace applications from being saved down to native device contacts
application.

Deploying with Oracle Mobile Security Suite

Deploying MAF Applications 27-73

• Redirects from container allowed prevents any vApp from the Mobile Security
Container workspace or containerized application from redirecting a URL outside
the Mobile Security Container workspace or containerized application.

Deploying with Oracle Mobile Security Suite

27-74 Developing Mobile Applications with Oracle Mobile Application Framework

28
Understanding Secure Mobile Development

Practices

This chapter describes how Mobile Application Framework provides protection from
common security risks identified by the Open Web Application Security Project
(OWASP).

This chapter includes the following sections:

• Weak Server-Side Controls

• Insecure Data Storage on the Device

• Insufficient Transport Layer Protection

• Side-Channel Data Leakage

• Poor Authorization and Authentication

• Broken Cryptography

• Client-Side Injection From Cross-Site Scripting

• Security Decisions From Untrusted Inputs

• Improper Session Handling

• Lack of Binary Protections Resulting in Sensitive Information Disclosure

28.1 Weak Server-Side Controls
Build security into a mobile application. Even in the earliest stages of designing a
mobile application, you must assess not only the risks that are unique to mobile
applications, but also those that are common to the sever-side resources that the
mobile application accesses. Like their desktop counterparts, mobile applications can
be made vulnerable by attacks on the backend services that store their data. Because
this risk is not unique to mobile applications, the standards described by the OWASP
Top Ten Project (https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project) also apply when you create mobile
applications. Because client applications running on mobile devices can be vulnerable,
do not use them to enforce access control. Because this function should be performed
by the server-side application, MAF does not provide anything out-of-the box for
validating data sent from the client. You must ensure that the data intended for a
mobile application is valid. For more information, see the following:

• "Understanding Web Service Security Concepts" in Understanding Oracle Web
Services Manager

• "Web Service Security Standards" in Understanding Oracle Web Services Manager

Understanding Secure Mobile Development Practices 28-1

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

• Securing Applications with Oracle Platform Security Services

28.2 Insecure Data Storage on the Device
Shortcomings in a mobile application's design can make local files accessible to users,
thereby exposing sensitive data stored on a device's local file system. This data may
include usernames and passwords, cookies, and authentication tokens. Although most
users may not be aware that their data is vulnerable—or that it is even stored on the
device itself—a malicious user could exploit this situation by having the tools to open
the local database and view credentials. When assessing the security requirements for
an application, you should assume the likelihood of a phone falling into the wrong
hands. MAF provides the API to secure data stored on the device by encrypting the
device database and local data stores.

28.2.1 Encrypting the SQLite Database
MAF's embedded SQLite database protects locally stored data. MAF applications do
not share the SQLite database; the application that creates the database is the only
application that can access it. Further, only users with the correct username and
password can access this database. The AdfmfJavaUtilities class enables you to
create keys to secure the password for this database and also to encrypt the data
stored within it. To provide a secure key to the database, the AdfmfJavaUtilities
class includes the GeneratedPassword utility class that generates a strong password
and then stores it securely. The AdfmfJavaUtilities class also provides the
encryptDatabase method for encrypting the database with a password. For general
information about the SQLite database, see Using the Local Database in MAF AMX
For more information on the GeneratedPassword, the encryptDatabase (and its
counterpart, decryptDatabase), see Java API Reference for Oracle Mobile Application
Framework and How to Encrypt and Decrypt the Database. For a sample application,
see the StockTracker sample in the PublicSamples.zip, as described in MAF
Sample Applications.

Note:

Always use the GeneratedPassword utility. Do not hard-code the key.

28.2.2 Securing the Device's Local Data Stores
You can store files in the local file system programmatically on both the iOS and
Android platforms using the adfmfJavaUtilties class' getDirectoryPathRoot
method. Using this method provides agnostic access to store application data on the
device. The following options are available for this method:

• Temporary directory

• Application directory

• Cache directory

• Download directory

Insecure Data Storage on the Device

28-2 Developing Mobile Applications with Oracle Mobile Application Framework

Tip:

When users synchronize their devices to their desktop computers, the data
stored in the device's Application directory is transferred to the desktop
system where it can be exposed. Store data in the Temporary directory. For
iOS, data stored in the temporary directory is not synchronized with the
desktop when the device is synchronized using iTunes.

For any files that require security, you can encrypt and decrypt them using the Java
cryptographic APIs (javax.crypto). For more information on the javax.crypto
package, see Java Platform, Standard Edition 1.4 API. For more information, refer to
Java API Reference for Oracle Mobile Application Framework and Accessing Files Using the
getDirectoryPathRoot Method. See also the "File System Basics" section in File System
Programming Guide, available from the iOS Developer Library (https://
developer.apple.com/library/).

28.2.3 About Security and Application Logs
Ensure that no sensitive data can be written to log files because they can be viewed if
the device is synchronized with a desktop computer. When users connect their iOS
devices to a desktop system to synchronize data, the application log files are
ultimately stored on the desktop in an unencrypted format. Log files synchronized
from Android devices can be viewed using the Android Device Monitor tool. See also
Side-Channel Data Leakage.

28.3 Insufficient Transport Layer Protection
Mobile applications may use SSL/TLS when accessing data over a provider network,
or neither of these protocols if they use WiFi. Because provider networks can be
hacked, never assume that they are safe. You should therefore enforce SSL when the
application transports sensitive data and validate that all certificates are legitimate and
signed by public authorities.

Because all of the endpoints used by a mobile application must be secured with SSL,
MAF provides a set of web service policies that support SSL. For more information
about these policies, see Accessing Secure Web Services.

MAF provides a cacerts file seeded with entries of known and trusted Certificate
Authorities. Application developers can add other certificates to this file, if needed.
For more information, see Supporting SSL.

28.4 Side-Channel Data Leakage
Unintended data leakage can originate from such sources as:

• Disabling screen shots (backgrounding) -- iOS and Android take screen shots of the
application before backgrounding the application for improving perceived
performance of the application reactivation. However, these screen shots are a
cause of security concern due to the potential leak of customer data.

• Key stroke logging -- On iOS and Android, some of the information entered via
keyboard is automatically logged in the application directory for use with type-
ahead capabilities. This feature could lead to potential leaks of customer data.

• Debugging messages -- Applications can write sensitive data in debugging logs.
Setting the logging level to FINE results in log messages being written for all of the
data transmitted between the user's device and the server.

Insufficient Transport Layer Protection

Understanding Secure Mobile Development Practices 28-3

https://developer.apple.com/library/
https://developer.apple.com/library/
http://developer.android.com/tools/help/monitor.html

• Disable clipboard copy and open-in functionality for sensitive documents
displayed as part of the application. MAF currently does not provide the capability
to disable copy and open-in functionality and is being targeted for a future release.

• Temporary directories -- They may contain sensitive information.

• Third-party libraries -- These libraries (such as ad libraries) can leak user
information about the user, the device, or the user's location.

To prevent data leakage:

• Do not log credential, personally identifiable information (PII), or other sensitive
data to the application log. Store all sensitive information in the native keychain or
an encrypted database or file system.

• When debugging an application, review any files that are created and anything
written to them.

• Remove debugging messages before publishing the application.

28.5 Poor Authorization and Authentication
Weak authentication mechanisms and client-side access control both compromise
security.

Although it may be easier for end users to authenticate a device using a phone number
or some type of identifier (IMEI, IMSI, or UUID) rather than a user name and
password, these identifiers can easily be discovered through brute force attacks and
should never be used as a sole authenticator. Mobile applications must instead use
strong credentials when accessing sensitive data. The authentication should reflect the
user, not the device. Further, you can enhance authentication by using contextual
identifiers (such as location), voice, fingerprints, or behavioral information.

A developer can use either the default login page provided by MAF or a custom login
page that they create. For more information, see How to Designate the Login Page.

All features in a MAF application that require secure access must enable security, as
described in How to Enable Application Features to Require Authentication.

Additionally, access control must be enforced by the server, not the client. Locating
this function on the client mobile application is less secure. Access Control Service
(ACS) allows developers to use roles/privileges defined on the server to enforce
access control in the mobile application. Access Control Service is a RESTful service
that could be implemented by application developers to filter the user roles/privileges
that are valid for the application. While an application may support thousands of user
roles, the service only returns the roles that you designate for the mobile application.
For more information, see How to Configure Access Control.

28.6 Broken Cryptography
Encryption becomes fallible because:

1. Applications use broken implementations or use known algorithms improperly.

2. Data is insecure because of easily defeated cryptography.

In addition, Base-64 encoding, obfuscation, and serialization are not encryption (and
should not be mistaken for encryption).

To encrypt data successfully:

Poor Authorization and Authentication

28-4 Developing Mobile Applications with Oracle Mobile Application Framework

• Do not store the key with the encrypted data.

• Use the platform-specific file encryption API or another trusted source. Do not
create your own cryptography.

In addition to securing the embedded SQLite database using the encryption methods
mentioned in Insecure Data Storage on the Device. Also, apply SSL to create secure
web service calls as described in Insufficient Transport Layer Protection. MAF uses
Oracle Access Manager for Mobile and Social IDM SDK for secure handling of
credentials.

28.7 Client-Side Injection From Cross-Site Scripting
Because mobile applications draw content and data from many different sources, they
can be vulnerable to Cross-Site Scripting (XSS) injections, which co-opt the user
session. MAF protects against XSS through encoding.

In addition to injection attacks, mobile applications are vulnerable to Cross-Site
Request Forgery (CSRF), where a malicious page performs an unintended action in a
targeted application on behalf of a user through the cookies cached in a web browser
that store user identity. Application sandboxing addresses CSRF concerns.

Also consider disabling application features (particularly application features with
Remote URL content) access to the native container. You can prevent selected
application features within a MAF application from accessing the native container. For
example, your MAF application includes an application feature that references remote
content from a web application that you do not trust (Remote URL content application
feature). In this scenario, you prevent this specific application feature from accessing
the native container, as shown in the following example:

<adfmf:featureReference refId="remoteAppfeature1" id="fr1"
allowNativeAccess="false"/>

The default value of the allowNativeAccess property is true.

28.7.1 Protecting MAF Applications from Injection Attacks Using Device Access
Permissions

The URIs that can access data stored on the user's device and its various device
capabilities, such as its camera or address book. Such access is not granted by default;
as described in Enabling a Core Plugin in Your MAF Application, you can configure a
MAF application to limit the device's capabilities that a URI can access to any of the
following:

• open network sockets (must be granted when user authentication is configured)

• GPS and network-based location services

• contact

• e-mail

• SMS

• phone

• push notifications

• locally stored files

Client-Side Injection From Cross-Site Scripting

Understanding Secure Mobile Development Practices 28-5

Tip:

You can programmatically protect users against such security risks as fake
login pages injected by XSS through the
updateSecurityConfigWithURLParameters method, which detects
changes in the login configuration and then prompts users to confirm the
change by re-authenticating, as described in How to Update Connection
Attributes of a Named Connection at Runtime. Additionally, MAF informs
users whenever they open a secured application feature. Authentication can
be deferred when the default application does not participate in security. For
more information, see Java API Reference for Oracle Mobile Application
Framework.

28.7.2 About Injection Attack Risks from Custom HTML Components
Using HTML to create a custom user interface component in a MAF AMX page may
leave an application open to an injection attack. MAF provides two components for
HTML content in MAF AMX pages: the <amx:verbatim> component and the
<amx:outputHTML> component. Because the <amx:verbatim> component does
not allow dynamic HTML, it is not susceptible to an injection attack. However, the
<amx:outputHTML> component, which delivers dynamic HTML content through an
EL binding, may be vulnerable when you configure its security attribute to none.
By default, this attribute is set to high to enable the framework to escape various
HTML tags and remove JavaScript, such as an onClick event. Because setting it to
none enables iFrame components and JavaScript (which allows AJAX requests within
the AMX page), you must ensure that the HTML and JavaScript are properly encoded.
For more information, see How to Use Verbatim Component and How to Use an
Output HTML Component. See also Security Decisions From Untrusted Inputs.

28.7.3 About SQL Injections and XML Injections
Mobile applications are vulnerable to SQL injections, which can enable an attacker to
read the data stored in the embedded SQLite database.

To prevent SQL injections:

• Application developers are required to validate and encode all data stored in the
local database.

• Application developers are expected to encode and validate XML and HTML
content processed by the application.

28.8 Security Decisions From Untrusted Inputs
On both iOS and Android platforms, applications (such as Skype) may not always
request permissions from outside parties, providing an entry point for attackers that
may result in malicious applications circumventing security. As a result, applications
are vulnerable to client-side injection and data leakages. Always prompt for additional
authorization or provide additional steps to launch sensitive applications when
additional authorization is not possible.

You must ensure that all of the data that the application receives from (or sends to) an
untrusted third-party application can be subject to input validation. The client side
XML input to the application must be encoded and validated. Although MAF AMX
components can validate user input, data must be validated on the server, which
should never trust the data it receives from a client. In other words, the server is

Security Decisions From Untrusted Inputs

28-6 Developing Mobile Applications with Oracle Mobile Application Framework

responsible for ensuring that the XML, JSON, and JavaScript that is sent back and
forth between it and the client is properly encoded.

When you configure the URL scheme that launches a MAF application from another
application, you must validate the parameters sent through the URL to ensure that no
malicious data or URIs can be passed to the MAF application. For more information,
see Invoking MAF Applications Using a Custom URL Scheme. See also Weak Server-
Side Controls.

About JSON Parsing

Use MAF's JSON encoding API where possible. For scenarios requiring custom JSON
composition, be careful when composing JSON with user-entered data. For more
information about processing JSON data, see the Java API Reference for Oracle Mobile
Application Framework.

28.9 Improper Session Handling
Usability requirements for mobile applications often require sessions to last for long
periods. Mobile applications use cookies, SSO services, and OAUTH tokens for session
management.

Note:

OAuth access tokens can be revoked remotely.

To enable proper session handling:

• Configure session timeout in the Login Server connection to a value less than
server-side session timeout.

Do not use a device ID as a session token because it never expires. An application
should expire tokens, even though doing so forces users to re-authenticate.

• Ensure that proper best practices (see OWASP Top Ten Project, https://
www.owasp.org/index.php/Category:OWASP_Top_Ten_Project) are
followed for token generation on the server.

Do not use session tokens that can be easily guessed or are poorly generated. A
session token should be unpredictable and have high entropy.

Oracle Identity Management (IDM) stack provides support for standards-based
tokens (such as, OAuth Access Token, JWT Token) for use with mobile
applications. MAF provides out of the box support for Oracle IDM OAuth server
and Oracle recommends using such standards-based authentication mechanisms
with MAF applications.

As described in How to Configure Basic Authentication, configuring an application
that requires users to authenticate against a login server includes options to set the
duration of the session and idle timeouts. By default, the duration of an application
feature session lasts eight hours. The default time for an application feature to remain
idle is five minutes. MAF expires user credentials when either of the configured time
periods expire and prompts users to re-authenticate.

Improper Session Handling

Understanding Secure Mobile Development Practices 28-7

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

28.10 Lack of Binary Protections Resulting in Sensitive Information
Disclosure

Using reverse engineering, attackers can discover such sensitive data as API keys,
passwords, and sensitive business logic. To protect this information:

• Store API keys and sensitive business logic on the server.

• Do not store passwords in the application binary.

• Never hard-code a password. Instead, use the GeneratedPassword utility
described in Insecure Data Storage on the Device.

• Because log files can be monitored, ensure that applications do not write sensitive
information to the log files. See also Side-Channel Data Leakage.

• Keep in mind that information stored on a file system (that is, stored externally
from the mobile application). Store sensitive data in an encrypted database or file
system, or in the native keychain. See also Risk 1: Insecure Data Storage on the
Device.

Lack of Binary Protections Resulting in Sensitive Information Disclosure

28-8 Developing Mobile Applications with Oracle Mobile Application Framework

29
Securing MAF Applications

This chapter provides an overview of the security framework within MAF and also
describes how to configure MAF applications to participate in security.

This chapter includes the following sections:

• Introduction to MAF Security

• About the User Login Process

• Overview of the Authentication Process for MAF Applications

• Overview of the Authentication Process for Containerized MAF Applications

• Configuring MAF Connections

• Configuring Security for MAF Applications

• Allowing Access to Device Capabilities

• Enabling Users to Log Out from Application Features

• Using MAF Authentication APIs

• Creating Certificates to Access Servers That Use Self-Signed Certificates for SSL

• Configuring a MAF Application to Enable Two-Way SSL for Authentication

29.1 Introduction to MAF Security
MAF presents users with a login page when a secured application feature has been
activated. For example, users are prompted with login pages when an application
feature is about to be displayed within the web view or when the operating system
returns an application to the foreground. MAF determines whether access to the
application feature requires user authentication when an application feature is secured
by an authentication server, or when it includes constraints based on user roles or user
privileges. Only when the user successfully enters valid credentials does MAF render
the intended web view, UI component, or application page.

While the presence of these conditions in any of the application features can prevent
users from accessing a MAF application without a successful login, you can enable
users to access a MAF application that contains both secured and non-secured
application features by including a default application feature that is neither secured
nor includes user access-related constraints. In this situation, users can access the MAF
application without authentication. The default application feature provides the
entrance point to the MAF application for these anonymous users, who can both view
non-secured data and authenticate against the remote server when accessing a secured
application feature. You can designate a non-secure default application feature by:

Securing MAF Applications 29-1

• Allowing anonymous users access to public information through the default
application feature, but only enabling authorized users to access secured
information.

• Allowing users to authenticate only when they require access to a secured
application feature. Users can otherwise access the MAF application as anonymous
users, or login to navigate to secured features.

• Allowing users to log out of secured application features when secured access is
not wanted, thereby explicitly prohibiting access to secured application features by
unauthorized users.

Note:

MAF enables anonymous users because the application login process is
detached from the application initialization flow; a user can start a MAF
application and access unsecured application features as an anonymous user
without having to provide authentication credentials. In such a case, MAF
limits the user's actions by disabling privileged UI components.

For more information, see How to Enable Application Features to Require
Authentication, and About User Constraints and Access Control.

A MAF application uses either the default page or a customized login page that is
written in HTML.

Application features defined with user.roles or user.privileges constraints
can be accessed only by users who have been granted the specific role and privileges.
When users log into such an application feature, a web service known as the Access
Control Service (ACS) returns the user objects that grant them access to this
application feature. For more information about ACS, see What You May Need to
Know About the Access Control Service.

The developer can elect to containerize the MAF application at the time of
deployment. Containerization allows the application to utilize the Secure Networking
and Network Tunneling capabilities of the enterprise networking platform configured
with Oracle Mobile Security Suite (OMSS). Distribution of containerized applications
is managed by OMSS administrators through the Oracle Mobile Security Access Server
(MSAS) component App Catalog and Secure Workspace container features.
Authentication of users is performed by MSAS configured for the desired
authentication type. For more information about developing the MAF application and
OMSS containerization, see Containerizing a MAF Application for Enterprise
Distribution.

29.2 About the User Login Process
From the end-user perspective, the login process is as follows:

Note:

For more information about how containerizing the MAF application changes
the login process, see Overview of the Authentication Process for
Containerized MAF Applications.

About the User Login Process

29-2 Developing Mobile Applications with Oracle Mobile Application Framework

1. MAF presents a web view of a login page, shown in Figure 29-1 whenever the
user attempts to access an application feature that is secured. If the secured
application feature is the default, then MAF prompts users with the default login
page when they launch the application.

Figure 29-1 Default Login Page

Note:

As described in The Custom Login Page, MAF provides not only a default
login page, but also supports the use of a custom login page.

2. The user enters a user name and password and then clicks Sign In.

About the User Login Process

Securing MAF Applications 29-3

Note:

MAF allows multiple users for the same application. Users may freely log in to
an application after a previous user logs out.

3. If the user name and password are verified, MAF displays the intended web view,
page, or user interface component.

4. MAF presents challenges to the user name and password until the user logs in
successfully. When users cannot login, they can only navigate to another
application feature.

Note:

Authentication times out when a predefined time period has passed since the
last activation of an application feature. MAF only renews the timer for the
idle time-out when one of the application features that use the connection to
the authentication server has been activated.

29.3 Overview of the Authentication Process for MAF Applications
MAF applications may require that user credentials be verified against a remote login
server (such as the Oracle Access Manager Identity Server used by Oracle ADF Fusion
web applications) or a local credential store that resides on the user's device. To
support local and remote connectivity modes, MAF supports these authentication
protocols:

• HTTP Basic

• OAuth

• Web SSO

Note:

At present, MAF applications that you deploy to the Universal Windows
Platform support HTTP Basic only.

By default, authentication of the MAF application user is against the remote login
server regardless of the authentication protocol chosen at design time. Developers
may configure the application, if using basic authentication, to enable local
authentication. However, initially, because the local credential store is not populated
with credentials, login to access secured application features requires authentication
against a remote login server. Successful remote authentication enables the subsequent
use of the local credential store, which houses the user's login credentials from the
authentication server on the device. Thus, after the user is authenticated against the
server within the same application session (that is, within the lifecycle of the
application execution), MAF stores this authentication context locally, allowing it to be
used for subsequent authentication attempts. In this case, MAF does not contact the
server if the local authentication context is sufficient to authenticate the user. Although
a connection to the authentication server is required for the initial authentication,
continual access to this server is not required for applications using local
authentication.

Overview of the Authentication Process for MAF Applications

29-4 Developing Mobile Applications with Oracle Mobile Application Framework

Tip:

While authentication against a local credential store can be faster than
authentication against a remote login server, Oracle recommends
authentication using OAuth or Web SSO authentication protocols, which only
support remote connectivity.

Table 29-1 summarizes the login configuration options of a MAF application. The
connectivity mode depends on the chosen authentication protocol.

Table 29-1 MAF Connectivity Modes and Supported Authentication Protocols

Connectivity Mode Support Protocols Mode Description

local • HTTP Basic Requires the application to authenticate against a
remote login server only when locally stored
credentials are unavailable on the device. The
initial login is always against the remote login
server. After the initial successful login, MAF
persists the credentials locally within a credential
store in the device. These credentials will be used
for subsequent access to the application feature.
See also What You May Need to Know About
Web Service Security.

remote • HTTP Basic
• OAuth
• Web SSO

Requires the application to authenticate against a
remote login server, such as Oracle Access
Manager (OAM) Identity Server or a secured web
application. Authentication against the remote
server is required each time a user logs in. If the
device cannot contact the server, then a user
cannot access the secured MAF feature despite a
previously successful authentication.

hybrid • HTTP Basic Requires the application to authenticate against a
remote login server when network connectivity is
available, even when local credentials are
available on the device. Only when a lack of
network connectivity prevents access to the login
server will local credentials on the device will be
used.

For information about how containerizing the MAF application changes the
authentication process, see Overview of the Authentication Process for Containerized
MAF Applications.

29.4 Overview of the Authentication Process for Containerized MAF
Applications

When you develop the MAF application, you must define a login connection to
develop and test secure features. During testing, the MAF login page will be used to
authenticate before accessing the protected resources. At deployment time, you may
choose to containerize the MAF application to utilize the Secure Networking and
Network Tunneling capabilities of the enterprise networking platform configured with
Oracle Mobile Security Suite (OMSS) and thus eliminates the need for mobile VPN.

Post deployment of the containerized MAF application, access to backend resources
behind the corporate firewall will rely on the Mobile Security Access Server (MSAS), a

Overview of the Authentication Process for Containerized MAF Applications

Securing MAF Applications 29-5

component of OMSS, to provide a central access point for securing traffic from mobile
devices to corporate resources. In this case, the MSAS instance is configured to enforce
an authentication endpoint to use for the initial authentication of the user.

User authentication is handled by container Single Sign-On (SSO) integration
provided by MSAS to the registered MAF application. To allow the MAF application
to communicate with MSAS, the user installs and registers a Secure Workspace app for
the type of authentication that has been configured for the MSAS instance. Then when
the user attempts to access a protected resource, the MAF login page will be
suppressed and MSAS will present its own login through the Secure Workspace app
on the user’s mobile device.

Note:

To enable authentication by MSAS and to utilize the AppTunnel, the MSAS
instance must be configured to proxy the login URL or authentication
endpoint that the MAF application defines. For details about how MSAS is
configured for a MAF login connection, see What You May Need to Know
About Login Connections and Containerized MAF Applications.

Whether backend resource requests are proxied using the MSAS AppTunnel is
determined by a MSAS-generated Proxy Auto-Configuration file used by the MAF
application and Secure Workspace app. The AppTunnel is a mutually authenticated
SSL tunnel from each Secure Workspace app that provides secure access to the
containerized MAF application. The AppTunnel encrypts all data in transit and
provides protection from rogue apps on a user's mobile device that device-level
mobile VPNs are subject to.

For an overview of OMSS support for containerized MAF applications, see
Containerizing a MAF Application for Enterprise Distribution.

29.5 Configuring MAF Connections
You must define at least one connection to the application login server for an
application feature that participates in security. The absence of a defined connection to
an application login server results in an invalid configuration. As a result, the
application will not function properly.

29.5.1 How to Create a MAF Login Connection
As Figure 29-2shows, you can use the Create MAF Connection dialog to select the
connection type and, depending on the connection type, enable both local and remote
authentication (hybrid). Depending on application requirements, you can configure a
connection to servers that support the following authentication protocols:

• HTTP Basic

• OAuth

• Web SSO

Configuring MAF Connections

29-6 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Oracle recommends that you configure a connection to the login server using
the OAuth or Web SSO connection type. OAuth and Web SSO require
authentication against a remote login server and do not allow users to
authenticate on the device from a local credential store.

Figure 29-2 Configuring Authentication

To create a login server connection:

1. Perform one of the following actions.

• In the Navigator, expand the Descriptors node and then ADF META-INF, and
double-click maf-application.xml. Then, in the overview editor for the maf-

Configuring MAF Connections

Securing MAF Applications 29-7

application.xml file, expand the Security - Authentication and Access
Control section and click Create, as shown in Figure 29-3.

Figure 29-3 Adding a Server Connection

• Alternatively, choose Connections in the New Gallery and then MAF Login
Server Connection.

2. In the Create MAF Login Connection dialog, choose the desired Authentication
Server Type.

3. Configure the connection type as described in the following sections.

Note that options that appear in the dialog with an asterisk are required fields. The
dialog enables the Test Connection button only after all required fields are
completed. This button appears only when basic authentication is selected in the
dialog.

29.5.2 How to Create a Multi-Tenant Aware MAF Login Connection

As Figure 29-4 shows, you can use the Create MAF Login Connection dialog to create
a MAF application connection that supports the notion of multi-tenancy, where an
application includes a hosted application feature that can be shared by different
organizations (tenants), but can appear as though it is owned by a particular tenant.
You can configure a multi-tenant aware connection to servers that support the HTTP
Basic authentication protocol.

Figure 29-4 Configuring a Multi-Tenant Aware Connection

Configuring MAF Connections

29-8 Developing Mobile Applications with Oracle Mobile Application Framework

As Figure 29-5 shows, the default login page displayed by the MAF application with a
multi-tenant aware connection defined, will prompt the user to enter the domain ID to
propagate the tenant value on the HTTP Request:

Figure 29-5 Default Login Page for Multi-Tenant Aware Connection

To create a multi-tenant aware login server connection:

1. Perform one of the following actions.

• In the Navigator, expand the Descriptors node and then ADF META-INF, and
double-click maf-application.xml. Then, in the overview editor for the maf-
application.xml file, expand the Security - Authentication and Access
Control section and click Create, as shown in Figure 29-6.

Configuring MAF Connections

Securing MAF Applications 29-9

Figure 29-6 Adding a Server Connection

• Alternatively, choose Connections in the New Gallery and then MAF Login
Server Connection.

2. In the Create MAF Login Connection dialog, choose an Authentication Server
Type that supports multi-tenant login.

3. Click the Custom Header tab and configure the following, as shown in Figure 29-4.

• Multi-Tenant Aware—Select to define multi-tenancy awareness for the MAF
application connection. See also What Happens When You Create a Multi-
Tenant Aware Connection.

• Multi-Tenant Aware Scheme—Select the scheme used to propagate the tenant
domain ID to the authentication server. Select Custom Header (default) to send
as a separate header. The Username option supports backward compatibility
and sends the tenant ID as part of the user ID (called username mingling).

• Header Name—Enter the tenant header name expected by the authentication
server. For example, to solicit the tenant ID from the end user during login,
enter the multi-tenant header name: X-ID-TENANT-NAME. As Figure 29-5
shows, the default login page will prompt the user to enter the domain name

• Custom Headers—Optionally, enter the name of additional custom headers
required to perform authentication. These may be configured in addition to the
multi-tenant header. See also What You May Need to Know About Custom
Headers.

If the header value of the custom header is known, enter the value. If the value
for the named custom header is to be overridden during login, leave the
corresponding Value field empty. When you want to provide the header value
at runtime, you must set the value programmatically using the
OverrideConnectionHandler API. For information about using the API to
configure headers, see How to Configure Login Credentials Programmatically
Prior to Authentication.

4. Configure the connection type as described in the following sections

Note that options that appear in the dialog with an asterisk are required fields. The
dialog enables the Test Connection button only after all required fields are
completed. This button appears only when basic authentication is selected in the
dialog.

29.5.3 How to Configure Basic Authentication
As Figure 29-7 shows, you can select the HTTP Basic authentication server type in the
Create MAF Login Connection dialog to configure a connection for basic
authentication.

Configuring MAF Connections

29-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-7 Configuring Basic Authentication

To configure basic authentication:

1. In the Create MAF Login Connection dialog, choose HTTP Basic for
Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see How
to Create a MAF Login Connection.

2. In the General tab, define the following:

• Connectivity Mode—Select the type of authentication, as described in Table
29-1.

• Connection Name—Enter a name for the connection.

• Idle Timeout—Enter the time for an application feature to remain idle after
MAF no longer detects the activation of an application feature. After this period

Configuring MAF Connections

Securing MAF Applications 29-11

expires, the user is timed-out of all the application features that are secured by
the login connection. In this situation, MAF prompts users with the login page
when they access the feature again. By default, MAF presents the login page
when an application remains idle for 300 seconds (five minutes).

Note:

MAF authenticates against the local credential store after an idle timeout, but
does not perform this authentication after a session timeout.

• Session Timeout—Enter the time, in seconds, that a user can remain logged in
to an application feature. After the session expires, MAF prompts the user with
a login page if the idle timeout period has not expired. By default, a user session
lasts for 28,800 seconds (eight hours).

• Maximum Login Attempts—Set the maximum number of failed login attempts
allowed for a user before local credentials will be cleared. By default, MAF
grants a user three unsuccessful login attempts before it clears the user's locally
stored credentials and contacts the remote login server for subsequent login
attempts. Subsequent to contacting the remote server, the user is allowed an
indefinite number of login attempts.

Note that when the user fails login attempts for the number of times specified,
the local credentials will be cleared and MAF will thus execute authentication
against the server. This ensures that users can login with a new password after
an administrator changes their password and it is not yet stored on a device.
Where local authentication is allowed, the password will be stored securely on a
device when the user successfully logs into the server connection.

Note:

MAF clears locally stored user credentials even when the application feature is
configured to use local authentication.

3. Click the HTTP Basic tab and configure the following, as shown in Figure 29-8.

• Login URL—Enter the login URL for the login page.

The login URL should not be a login page on the remote server, but rather a
page that is secured and presents the HTTP Basic user name/password
challenge. The login URL must point to a web resource that does not result in
file transfer when requested; it must not point to a file resource.

• Logout URL—Enter the logout URL for the authentication server.

The logout URL may be the same as the login URL, but alternatively may be a
URL to the remote server that performs additional actions on the session, such
as invalidating it. The logout URL must point to a web resource that does not
result in file transfer when requested; it must not point to a file resource.

Configuring MAF Connections

29-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-8 Configuring Basic Authentication

4. Optionally, click the Custom Header tab and configure the following, as shown in
Figure 29-4.

• Custom Headers—Enter the name of any custom headers required to perform
authentication. See also What You May Need to Know About Custom Headers.

If the header value of the custom header is known, enter the value. If the value
for the named custom header is to be overridden during login, leave the
corresponding Value field empty. When you want to provide the header value
at runtime, you must set the value programmatically using the
OverrideConnectionHandler API. For information about using the API to
configure headers, see How to Configure Login Credentials Programmatically
Prior to Authentication.

• Multi-Tenant Aware—You can define multi-tenancy awareness for the MAF
application connection by selecting this option. For more information, see How
to Create a Multi-Tenant Aware MAF Login Connection.

5. Click the Auto Login tab and configure the parameters as described in How to
Store Login Credentials.

6. Click the Authorization tab and configure the parameters as described in How to
Configure Access Control.

7. Click the General tab, and then click Test Connection.

8. Click OK.

29.5.4 How to Configure OAuth Authentication
Use the Create MAF Login Connection dialog, shown in Figure 29-9, to configure
how to configure your application’s access to protected data or services stored on a
remote server.

Configuring MAF Connections

Securing MAF Applications 29-13

Figure 29-9 Configuring OAuth

Before you begin:

Configure the server to use the OM_PROP_OAUTH_OAUTH20_SERVER property key.

To configure authentication with an OAuth server:

1. In the Create MAF Login Connection dialog, choose OAuth for Authentication
Server Type.

For information about opening the Create MAF Login Connection dialog, see How
to Create a MAF Login Connection.

2. In the General tab, configure the following:

• Connection Name—Enter a name for the connection.

3. Click the OAuth tab and configure the following, as shown in Figure 29-10:

Configuring MAF Connections

29-14 Developing Mobile Applications with Oracle Mobile Application Framework

• Choose the appropriate grant type from the Grant Type dropdown list.

– Select Authorization Code when you want the server login page to display.

– Select Resource Owner Credentials when you want the MAF application to
display the default login page, or custom login page, when one is
configured.

– Select Client Credentials when you want the MAF application to access
resources anonymously without requiring an end user ID or user credentials.

• Enter enter the Client Identifier and, optionally, enter a connection password
value in the Client Secret field.

• Enter the authorization server's Redirect Endpoint and the URIs for the
endpoints for the Authorization Server Endpoint itself and the Token
Endpoint.

• Enter the Logout URL to redirect to upon user logout. This field is mandatory
and the URL parameters are determined by the specific authentication provider.

• Select Enable Embedded Browser Mode when you want the login page to
display within the embedded browser within the application. Deselect to
display the login page in an external browser. Note that when single sign-on
(SSO) is desired, you must deselect this option to force the application to use the
external browser.

Configuring MAF Connections

Securing MAF Applications 29-15

Figure 29-10 Configuring the Client ID and Endpoints

4. Click the Authorization tab and configure the parameters as described in How to
Configure Access Control.

29.5.5 How to Configure Web SSO Authentication
As Figure 29-11 shows, you can use the Create MAF Login Connection dialog to
configure a cross-domain single sign-on.

Configuring MAF Connections

29-16 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-11 Configuring Federated SSO Authentication

To configure authentication with a Web SSO server:

1. In the Create MAF Login Connection dialog, choose Web SSO for Authentication
Server Type.

For information about opening the Create MAF Login Connection dialog, see How
to Create a MAF Login Connection.

2. In the General tab, configure the following:

• Connection Name—Enter a name for the connection.

• Session Timeout—Enter the time, in seconds, that a user can remain logged in
to an application feature. After the session expires, MAF prompts the user with
a login page if the idle timeout period has not expired. By default, a user session
lasts for 28,800 seconds (eight hours).

Configuring MAF Connections

Securing MAF Applications 29-17

3. Click the Web SSO tab and configure the following URLs that enable successful
and unsuccessful logins, as shown in Figure 29-12:

• Login URL—Enter the URL that when visited, the user will be prompted to
enter credentials. The login URL must point to a web resource that does not
result in file transfer when requested; it must not point to a file resource.

• Logout URL—Enter a server side URL that logs out the user by terminating the
server session. The logout URL must point to a web resource that does not
result in file transfer when requested; it must not point to a file resource.

• Login Success URL—Enter a target URL to redirect the user to after the user
successfully authenticates.

The login success URL can be the same as the login URL. For example, if the
login URL and login success URL is http://www.mysite.com, then when the
user points the browser to http://www.mysite.com, the browser will
redirect to the login page for the site before it redirects upon successful
authentication back to http://www.mysite.com. Then, when MAF detects
the page named by the login success URL, MAF completes the login process and
activates the requested feature. Thus, the contents of the login success URL page
will not be displayed to the user and user will have access to the MAF feature.

• Login Failure URL—Enter a URL to redirect the user to after unsuccessful
authentication. Alternatively, when no failure URL exists, enter any URL.

As the browser loads the login failure URL, MAF first detects the error and
returns control to the application. This is useful when the MAF application
limits the user to attempt login a maximum number of times. In this case, MAF
will redirect user to the login failure URL after the user fails to authenticate by
the last allowed attempt.

In the case where no failure URL exists, it is permissible to enter any URL. In
this case, authentication will be terminated either when the user clicks the
Cancel button in the login page or when login times out due to no user action
for a given period of time (the inactivity timeout is two minutes).

Configuring MAF Connections

29-18 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-12 Configuring the Authentication URLs

4. Click the Authorization tab and configure the parameters, as described in How to
Configure Access Control.

29.5.6 How to Configure a Placeholder Connection for MAF Application Login
As Figure 29-13 shows, you can use the Create MAF Login Connection dialog to
create a named connection during development and populate the login attributes to
fully define the connection at runtime. This connection type is particularly useful
when the connection attributes are not all known at design time.

Application developers must use
AdfmfJavaUtilities.updateSecurityConfigWithURLParameters API to
fully define the placeholder connection created at design time, as described in How to
Update Connection Attributes of a Named Connection at Runtime.

Configuring MAF Connections

Securing MAF Applications 29-19

Figure 29-13 Configuring a Placeholder Connection

To configure a placeholder connection for definition at runtime:

1. In the Create MAF Login Connection dialog, choose Specify Values at Runtime
for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see How
to Create a MAF Login Connection.

2. In the General tab, enter a name for the connection.

This identifier will be used by the application developer to identify the connection
to update, as described in How to Update Connection Attributes of a Named
Connection at Runtime.:

3. Click the Authorization tab and configure the parameters, as described in How to
Configure Access Control.

Configuring MAF Connections

29-20 Developing Mobile Applications with Oracle Mobile Application Framework

29.5.7 How to Update Connection Attributes of a Named Connection at Runtime
The AdfmfJavaUtilities class provides the overrideConnectionProperty and
updateSecurityConfigWithURLParameters methods that application
developers can use to define or to redefine the connection attributes of a connection
that already exists: either by placeholder (when you select Specify Values at Runtime
in the Create MAF Login Connection dialog) or by a fully populated connection
definition. Both methods must be invoked in conjunction with the
clearSecurityConfigOverrides and updateApplicationInformation APIs
that the AdfmfJavaUtilities class also provides.

The updateSecurityConfigWithURLParameters method updates parameters
required for authentication only. Additional parameters that a connection in
connections.xml may specify cannot be updated using the
updateSecurityConfigWithURLParameters method. Use
overrideConnectionProperty to update all the non-authentication parameters as
well as all the parameters that can be updated with
updateSecurityConfigWithURLParameters.

Note:

The typical timing is to call the
AdfmfJavaUtilities.updateSecurityConfigWithURLParameters
API in a start() method implementation within an application lifecycle
listener. You must not call this method from within the feature lifecycle
listener.

To update connection attributes associated with the configUrlParam parameter, call
the updatedSecurityConfigWithURLParameters method in conjunction with
the other methods shown in the following example:

AdfmfJavaUtilities.clearSecurityConfigOverrides(loginConnectionName);
AdfmfJavaUtilities.updateSecurityConfigWithURLParameters(configUrlParam, key,
message, showConfirmation);
// Final step to apply the changes
AdfmfJavaUtilities.updateApplicationInformation(false);

The key parameter is set as a String object from the value defined for the
adfCredentialStoreKey parameter in the connections.xml file. Use this key
parameter in all references to the configuration, such as subsequent updates. The
method may be invoked with the showConfirmation parameter set to true to allow
MAF to display a confirmation prompt to the end user once MAF detects a connection
configuration change to an existing attribute of the connection.

The string value that you pass to the configUrlParam parameter must be UTF-8
encoded and formatted as follows:

String parameterString = "http://settings?" +
 "&<Parameter Name1>::=<Parameter Value1>" +
 "&<Parameter Name2>::=<Parameter Value2>" +
 ...
 "&<Parameter NameN>::=<Parameter ValueN>";

For example, passing the following values to the configUrlParam parameter:

http://settings?AuthServerType::=HTTPBasicAuthentication
&ApplicationName::=Approvals

Configuring MAF Connections

Securing MAF Applications 29-21

&LoginURL::=http://hostname.com:8008/OA_HTML/RF.jsp?function_id=mLogin
&LogoutURL::=http://hostname.com:8008/OA_HTML/RF.jsp?function_id=mLogout
&SessionTimeOutValue::=28800
&IdleTimeOutValue::=7200
&CryptoScheme::=PlainText

Requires you to create a URL as follows:

http://settings?
AuthServerType::=HTTPBasicAuthentication&ApplicationName::=Approvals&LoginURL::=http
%3A%2F%2Fhostname.com%3A8008%2FOA_HTML%2FRF.jsp%3Ffunction_
id%3DmLogin&LogoutURL::=http%3A%2F%2Fhostname.com%3A8008%2FOA_HTML%2FRF.jsp
%3Ffunction_id%3DmLogout&SessionTimeOutValue::=28800&IdleTimeOutValue::=7200&CryptoS
cheme::=PlainText

Note the following additional points about the
updateSecurityConfigWithURLParameters and
overrideConnectionProperty methods:

• The updateSecurityConfigWithURLParameters method persists the new
configuration immediately while overrideConnectionProperty does not
persist the configuration change until the next time the MAF application uses the
login connection. For example, an end user navigates to a feature that is protected
by the login connection and MAF shows the login view.

• You can use overrideConnectionProperty to reconfigure any top-level
properties in a connection reference and connection references not limited to login
connections in the connections.xml file. The
updateSecurityConfigWithURLParameters method can be only used to
update login connections.

• Calls to overrideConnectionProperty calls are cumulative while calls to
updateSecurityConfigWithURLParameters reconfigure previous calls to
updateSecurityConfigWithURLParameters and result in a new login URL
each time updateSecurityConfigWithURLParameters is called. The
following example demonstrates how a sequence of
overrideConnectionProperty calls overrides the values of the login,
logout, and accessControl properties for a connection named
MyLoginConnection.

AdfmfJavaUtilities.clearSecurityConfigOverrides("MyLoginConnection");
AdfmfJavaUtilities.overrideConnectionProperty("MyLoginConnection", "login",
"url", newLoginUrl);
AdfmfJavaUtilities.overrideConnectionProperty("MyLoginConnection", "logout",
"url", newLogoutUrl);
AdfmfJavaUtilities.overrideConnectionProperty("MyLoginConnection",
"accessControl", "url", newAccessControlUrl);
AdfmfJavaUtilities.updateApplicationInformation(false);

• The second parameter value in overrideConnectionProperty (String
node) is the parameter named used in the connections.xml file. For example,
to update the following connection:

<Reference name="remotePage"
className="oracle.adf.model.connection.url.HttpURLConnection" xmlns="">
 <Factory className="oracle.adf.model.connection.url.URLConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="remotePage">
 <Contents>
 <urlconnection name=" remotePage_urlconnectionName " url="http://

Configuring MAF Connections

29-22 Developing Mobile Applications with Oracle Mobile Application Framework

www.google.com"/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

You call overrideConnectionProperty to change the URL as follows:

overrideConnectionProperty("remotePage", "urlconnection", "url", "http://
www.oracle.com");

This is not the same parameter name as in
updateSecurityConfigWithURLParameters. Follow the URL construction
pattern described above when using
updateSecurityConfigWithURLParameters. Knowledge of the contents of
the connections.xml file is not required.

For more information on the
oracle.adfmf.framework.api.AdfmfJavaUtilities class and the usage of
the configUrlParam parameter, see the Java API Reference for Oracle Mobile
Application Framework.

For more information about how to override a connection property value using
overrideConnectionProperty, see How to Configure Login Credentials
Programmatically Prior to Authentication. The ConfigServiceHandler.java in
the ConfigServiceDemo sample application demonstrates how to invoke the
overrideConnectionProperty method to override a number of connection
properties. For more information about the ConfigServiceDemo sample application,
see MAF Sample Applications.

29.5.8 How to Store Login Credentials
When security is not critical, MAF supports storing user credentials, which can be
replayed to the login server or used to authenticate users locally (depending on the
mode defined for the login connection. Storing credentials enhances the user
experience by enabling users to access the MAF application without having to login.
The IDM Mobile SDKs enable MAF to support the following modes:

• remember user name—MAF caches the user name and populates the login page's
username field. After the user enters the password and confirms by tapping the
login button, MAF replays these credentials to the authentication server.

• remember credentials—MAF caches the user credentials and populates the login
page's user name and password fields. After the user confirms these credentials by
tapping the login button, MAF replays them to the authentication server.

• auto login—MAF caches the user credentials and then replays them to the
authentication server during subsequent authentications. In this mode, users can
start an application without MAF prompting them to enter or confirm their
credentials. MAF can, however, inform users that it has started a new application
session.

Note:

Users can decide whether MAF stores their credentials.

Configuring MAF Connections

Securing MAF Applications 29-23

As Figure 29-14 shows, you can use the AutoLogin page of the Create MAF Login
Connection dialog to select credential storing options. Selecting credential options
populates the login page with options to remember the user name and password and
should not be selected when a device is shared by multiple end users.

Figure 29-14 Caching User Credentials

29.5.9 What Happens When You Create a Connection for a MAF Application
MAF aggregates all of the connection information in the connections.xml file
(located in the Applications window's Application Resources panel under the
Descriptors and ADF META-INF nodes). This file, shown in the following example,
can be bundled with the application or can be hosted for the Configuration Service. In
the latter case, MAF checks for the updated configuration information each time an
application starts.

Configuring MAF Connections

29-24 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

As a requirement for MAF application authentication, JDeveloper sets the
adfCredentialStoreKey attribute to the same name as the login
connection reference (for example, Connection_1). When editing the
adfCredentialStoreKey attribute or the login connection name in the
connections.xml file be sure to set the value to be identical for each.
Failure to maintain identical values will result in a MAF runtime exception.

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="Connection_1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="Connection_1"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://10.0.0.0/SecuredWebServicelogin/login"/>
 <logout url="http://10.0.0.0/SecuredWebServicelogout/logout"/>
 <accessControl url="http://10.0.0.0/Identity/Authorize"/>
 <isAcsCalledAutomatically value="false"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <isMultiTenantAware value="true"/>
 <multiTenantHeaderName value="Oracle_Multi_Tenant"/>
 <injectCookiesToRESTHttpHeader value="true"/>
 <userObjectFilter>
 <role name="manager"/>
 <privilege name="account manager"/>
 <privilege name="supervisor"/>
 <privilege name=""/>
 </userObjectFilter>
 <rememberCredentials>
 <enableRememberUserName value="true"/>
 <rememberUserNameDefault value="true"/>
 <enableRememberPassword value="true"/>
 <rememberPasswordDefault value="true"/>
 <enableStayLoggedIn value="true"/>
 <stayLoggedInDefault value="true"/>
 </rememberCredentials>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

For more information, see the "Lookup Defined in the connections.xml File" section in
Developing Fusion Web Applications with Oracle Application Development Framework.

29.5.10 What Happens When You Create a Multi-Tenant Aware Connection
After you complete the Create MAF Login Connection dialog with the Multi-Tenant
Aware option enabled, MAF populates the connections.xml file with the

Configuring MAF Connections

Securing MAF Applications 29-25

<isMultiTenantAware> element set to true. In multi-tenant connection, the user
name is the aggregation of tenant name and user name.

The login page uses a JavaScript utility to discern if a connection is multi-tenant
aware. If the login page detects such a connection, it provides an additional field that
requires the user to enter the tenant name configured in the Create MAF Login
Connection, as shown in Figure 29-5. After a successful login (which includes entering
the correct tenant ID), MAF stores the tenant ID in the local credential store.

29.5.11 What You May Need to Know About the Login Connection Configuration
When you define the login URL to grant access to secured MAF features, either in the
connections.xml file or programmatically, the login URL must not point to a file
resource, such as mydocument.txt. The login URL must point to a web resource that
does not result in file transfer when requested. If a file resource is used instead, the
MAF application may hang or login will fail, thus preventing the user from accessing
the secured MAF feature.

29.5.12 What You May Need to Know About Login Connections and Containerized MAF
Applications

In order to use the Oracle Mobile Security Suite (OMSS) AppTunnel feature to access
corporate resources, the Mobile Security Access Server (MSAS) instance must be
configured to proxy the URI or endpoint used by the MAF application to access the
resources. For more information, see the "Managing Mobile Security Access Server
Applications" and "Configuring a Mobile Security Access Server Instance" chapters in
Administering Oracle Mobile Security Access Server.

Note that HTTP Basic authentication is supported by OMSS but the MAF login page
will not be suppressed by the OMSS authentication process and therefore will require
the user to authenticate two times.

For more information about authentication in containerized MAF applications, see
Overview of the Authentication Process for Containerized Applications.

29.5.13 What You May Need to Know About Multiple Identities for Local and Hybrid
Login Connections

Like a remote connection, local and hybrid login connection modes allow a user to log
in and log out using any number of identities within an application lifecycle. When
you define a login connection to use these connectivity modes, you enable users to log
back into a secured application feature using the local credential store if they have
previously logged into a secured application feature within the current session
timeout duration. In this case, users who have logged out explicitly, or have been
logged out because the idle timeout has expired, can log back into a secured
application feature (or any other application feature secured by the login server that
protects that application feature).

Note:

Local and hybrid connections are only available for basic authentication and
authentication to Oracle Access Management Mobile and Social (OAMMS).
Because OAuth and Federate SSO use remote authentication, application users
cannot log back into an application unless they authenticate successfully.

Configuring MAF Connections

29-26 Developing Mobile Applications with Oracle Mobile Application Framework

29.5.14 What You May Need to Know About Migrating a MAF Application and
Authentication Modes

When you migrate a MAF application, you must verify that the authentication mode
defined in maf-feature.xml (such as <adfmf:feature id="feature1"
name="feature1" credentials="remote">) is defined by the
authenticationMode attribute in the connections.xml file. Use JDeveloper's
audit rules, which detect the presence of the credentials attribute, to assist you in
removing it from maf-feature.xml.

Because the authenticationMode attribute in the connections.xml file can only
be defined as either remote or local, do not migrate the value of none
(<adfmf:feature id="feature1" name="feature1"
credentials="none">), as doing so causes the deployment to fail.

29.5.15 What You May Need to Know About Custom Headers
After you complete the Create MAF Login Connection dialog with custom headers
defined, MAF populates the connections.xml file with the customAuthHeaders
element and individual header subelements.

If the value of the custom headers is to be supplied at runtime, the MAF application
can use the OverrideConnectionHandler API in the
oracle.adfmf.framework.api.AdfmfJavaUtilities class to configure header
values. The oracle.adfmf.framework.api.AdfmfAuthConnection class
provides convenience methods to access the connection.xml XML elements and
retrieve the most recent value when they have been overridden. For information about
using the API to configure headers, see How to Configure Login Credentials
Programmatically Prior to Authentication.

After a successful login (which includes entering the correct header values), MAF
stores the header details in the local credential store, and allows secure calls, such as
those made to REST services, to include custom headers on the HTTP Request.

29.5.16 What Happens at Runtime: When MAF Calls a REST Web Service
After a user is authenticated locally, MAF silently authenticates the user against the
login server when the MAF application calls a REST web service. After the user's
credentials are authenticated, MAF executes the application's request to the REST web
service. If the REST web service returns a 401 status code (Unauthorized), MAF
prompts the user to authenticate again. If the REST web service returns a 302 code
(Found or temporarily moved), MAF checks the login server to confirm if the user is
authenticated. If so, then the code is handled as a 302 redirect.

If the user has not been authenticated against the login server, then MAF prompts the
user to authenticate again. In some cases, a login server may prompt users to
authenticate using its own web page when it returns a 302 status code. MAF does not
support redirection in these instances and instead prompts the user to login again
using a MAF login page.

29.5.17 What You May Need to Know About Injecting Basic Authentication Headers
MAF enables application features to access secure resources by injecting a basic
authentication header into the HTTP requests made by the web view in an application
feature. This is useful in situations where a remote web resource is protected by basic
authentication and cookies are not sufficient for authentication, or the server does not

Configuring MAF Connections

Securing MAF Applications 29-27

honor cookies at all. Specify a requesting realm in the Realm input field of the Create
MAF Login Connection dialog's Authorization tab if known at the time of
development. If not known at the time of development, the requesting realm can be
modified using AdfmfJavaUtilities.overrideConnectionProperty at
runtime.

The following example shows the entry that appears in the connections.xml file
when you specify a value in the Realm input field (realm element).

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="connection1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="connection1"
 partial="false" manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className=
 "oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://www.us.example.com/userInfo"/>
 <logout url="http://www.us.example.com/userInfo"/>
 <accessControl url="http://10.0.0.0/identity/authorize"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <cookieNames/>
 <realm value="Secure Area"/>
 <userObjectFilter/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

29.5.18 What You May Need to Know About Web Service Security
There are no login pages for web services; user access is instead enabled by MAF
injecting credentials into the header of the web service call. Web services gain access to
application data using the locally stored credentials persisted by MAF after the user's
first successful login to the authentication server.

The name of the local credential store is reflected by the adfCredentialStoreKey
attribute of the login server connection (such as
adfCredentialStoreKey="Connection_1" in What Happens When You Create
a Connection for a MAF Application). To enable a web service to use this credential
store, the name defined for the adfCredentialStoreKey attribute of a REST web
service connection must match the name defined for the login server's
adfCredentialStoreKey attribute. When editing the adfCredentialStoreKey
attribute or the login connection name in the connections.xml file be sure to set the
value to be identical for each. Failure to maintain identical values will result in a MAF
runtime exception.

Configuring MAF Connections

29-28 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Because there is no overview editor for the connections.xml file, you can
use the Properties window to update the <Reference> element's
adfcredentialStoreKey attribute with the name configured for
adfCredentialStoreKey attribute of the login server connection.
Alternatively, you can add or update the attribute using the Source editor.

For more information, see What You May Need to Know About Credential Injection.

29.5.19 How to Configure Access Control
Access Control Service (ACS) is a RESTful web service with JSON that may be
optionally deployed onto an external server that is separate from your MAF
application. Typically, you provide the ACS service for your MAF application to
consume when your application features contain secured components and you want
to allow users to download their user roles and privileges through a single HTTP
POST message. If you intend to provide this service with your application, then you
must implement and host the ACS service; MAF does not provide this service. Figure
29-15 shows the Authorization page of the Create MAF Login Connection dialog that
you would use to configure the MAF application to support access control.

Configuring MAF Connections

Securing MAF Applications 29-29

Figure 29-15 Configuring Access Control

The access control granted by the application login server is based on the evaluation of
the user.roles and user.privileges constraints configured for an application
feature, as described in About User Constraints and Access Control. For example, to
allow only a user with manager_role role to access an application feature, you must
define the <adfmf:constraints> element in the maf-feature.xml file with the
following:

<adfmf:constraint property="user.roles"
 operator="contains"
 value="manager_role"/>
</adfmf:constraints>

At the start of application, the RESTful web service known as the Access Control
Service (ACS) is invoked for the application login server connection and the roles and
privileges assigned to the user are then fetched. MAF then challenges the user to login
against the application login server connection.

Configuring MAF Connections

29-30 Developing Mobile Applications with Oracle Mobile Application Framework

MAF evaluates the constraints configured for each application against the retrieved
user roles and privileges and makes only the application features available to the user
that satisfy all of the associated constraints.

To configure access control:

1. In the Create MAF Login Connection dialog, click the Authorization tab.

For information about opening the Create MAF Login Connection dialog, see How
to Create a MAF Login Connection.

2. On the Authorization page, complete the authorization requirements, as shown in
Figure 29-15.

• Realm—Specify a requesting realm, if known at the time of development, for
inclusion in the basic authentication header that MAF injects into HTTP
requests.

• Access Control Service URL—Enter the URL that is the endpoint for the Access
Control Service (ACS).

• Filter List of User Roles—Enter the user roles checked by the application
feature. Because there may be thousands of user roles and privileges defined in
a security system, use the manifest provided by the application feature
developer that lists the roles specific to the application feature to create this list.

• Filter List of Privileges—Enter the privileges checked by the application
feature.

29.5.20 What You May Need to Know About the Access Control Service
The Access Control Service (ACS) is a RESTful web service with JSON that enables
users to download their user roles and privileges through a single HTTP POST
message. This is a request message, one which returns the roles or privileges (or both)
for a given user. It can also return specific roles and privileges by providing lists of
required roles and privileges. The request message is comprised of the following:

• Request header fields: If-Match, Accept-Language, User-Agent,
Authorization, Content-Type, Content Length.

• A request message body (a request for user information).

• The requested JSON object that contains:

– userId—The user ID.

– filterMask—A combination of "role" and "privilege" elements are used
to determine if either the filters for user roles, or for privileges, should be used.

– roleFilter—A list of roles used to filter the user information.

– privilegeFilter—A list of privileges used to filter the user information.

Configuring MAF Connections

Securing MAF Applications 29-31

Note:

If all of the roles should be returned, then do not include the "role" element
in the filterMask array.

If all of the privileges should be returned, then do not include the
"privilege" element in the filterMask array.

The following example illustrates an HTTP POST message and identifies a JSON object
as the payload, one that requests all of the filters and roles assigned to a user, John
Smith.

Protocol: POST
Authoization: Basic xxxxxxxxxxxx
Content-Type: application/json

{
 "userId": "johnsmith",
 "filterMask": ["role", "privilege"],
 "roleFilter": ["role1", "role2"],
 "privilegeFilter": ["priv1", "priv2", "priv3"]
}

The response is comprised of the following:

• A response header with the following fields: Last-Modified, Content-Type,
and Content-Length.

• A response message body that includes the user information details.

• The returned JSON object, which includes the following:

– userId—the ID of the user.

– roles—A list of user roles, which can be filtered by defining the roleFilter
array in the request. Otherwise, the response returns an entire list of roles
assigned to the user.

– privileges—A list of the user's privileges, which can be filtered by defining
the privilegeFilter array in the request. Otherwise, the response returns an
entire list of privileges assigned to the user.

The following example illustrates the returned JSON object that contains the user
name and the roles and privileges assigned to the user, John Smith.

Content-Type: application/json

{
 "userId": "johnsmith",
 "roles": ["role1"],
 "privileges": ["priv1", "priv3"]
}

Configuring MAF Connections

29-32 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

There are no login pages for web services; user access is instead enabled by
MAF, which automatically adds credentials to the header of the web service.
For more information, see What You May Need to Know About Credential
Injection.

Note:

You must implement and host the ACS service; MAF does not provide this
service.

29.5.21 How to Alter the Application Loading Sequence
MAF invokes the Access Control Service (ACS) after a user successfully authenticates
against a login connection that defines the ACS endpoint, such as http://
10.0.0.0/Identity/Authorize in Figure 29-15. By changing this behavior to
prevent the ACS from being called immediately after a successful login, you can insert
a custom process between the login and the invocation of the ACS. This additional
logic may be a security context called by MAF after a successful login that is based on
the specifics of an application, or related to the user's responsibilities, organization, or
security group.

You can change the sequence by updating the connections.xml file with
<isAcsCalledAutomatically value = "false"/> and through the following
method of the AdfmfJavaUtilities class, which enables MAF application features
to call the ACS whenever it is required:

invokeACS(String key, String OptionalExtraPayLoad, boolean appLogin)

The invokeACS method enables you to inject extra payload into an ACS request. The
key parameter is returned as a String object from the value defined for the
adfCredentialStoreKey parameter in the connections.xml file, as illustrated in
What You May Need to Know About Injecting Basic Authentication Headers. The
appLogin parameter may be set to true to cause ACS to reevaluate the feature
access. The OptionalExtraPayLoad parameter is reserved for future use and is not
used.

Invoking ACS through either the invokeACS method or the
isAcsCalledAutomatically parameter retrieves the role-based constraints for an
application.

Note:

MAF automatically invokes the ACS after a successful login if
<isAcsCalledAutomatically value = "false"/> is not included in
the connections.xml file.

When a secured application feature calls the invokeACS method, MAF fetches the
user constraints for all of the application features associated with the application login
connection, including those configured for the secured application feature. When an
unsecured application feature calls this method, MAF only retrieves the constraints
associated with the login connection.

Configuring MAF Connections

Securing MAF Applications 29-33

Note:

In addition to the invokeACS method, the AdfmfJavaUtilities class
includes the following lifecycle methods:

• applicationLogout—Logs out the application login connection.

• featureLogout(<feature_ID>)—Logs out the login connection
associated with the application feature.

For more information, see the Java API Reference for Oracle Mobile Application
Framework.

29.5.22 How to Configure Login Credentials Programmatically Prior to Authentication
Before the MAF application invokes the login connection to authenticate the user, it is
possible to set connection values programmatically. This technique is often required,
for example, when custom header names are defined in the Create MAF Login
Connection dialog but the values are to be supplied at runtime. To programmatically
configure the connection details, the MAF application can invoke the
OverrideConnectionHandler API in the
oracle.adfmf.framework.api.AdfmfJavaUtilities class. The API overrides
the current connection property value with a new value and allows the application to
initiate login with the overridden values.

To override the connection values programmatically, the general process entails:

1. Obtaining the names of the XML elements that define the properties to override
from the connections.xml file.

2. Obtaining the override value prior to authentication. For example, the MAF
application may define an AMX page to solicit the values from the end user for
this purpose.

3. Invoking a managed bean that implements the override methods (one for each
connection property override) and defines connection property getter and setter
methods. For example, in the case of an AMX page, a command button that the
end user clicks may submit their entered values on the managed bean.

To specify connection property overrides, examine the connections.xml file to
obtain the following XML element definitions:

• The connection reference name. For example, ConnWithCustomHeader.

• The XML element name of the property that defines the attribute to override. For
example multiTenantScheme for the scheme used to propagated a tenant
domain name.

• The XML subelement name of the property’s attribute to override. In the case of
unique connection properties, this is always the value element.

Configuring MAF Connections

29-34 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

In the case of custom headers, do not use the XML elements header and value
since all custom header definitions use the same element names to specify
values. Instead, for custom headers use Contents and customAuthHeaders
for the property and attribute to pass to the override method, respectively.

Obtain XML Element Names

For example, to override the value of custom headers, in the following
connections.xml file you would pass the connection name
ConnWithCustomHeader, the Contents element, and the customAuthHeaders
subelement, which defines the header name / value pairs:

package mobile;

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="ConnWithCustomHeader"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="ConnWithCustomHeader" partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 ...
 <isMultiTenantAware value="true"/>
 <multiTenantScheme value="custom_header"/>
 <multiTenantHeaderName value="X-ID-TENANT-NAME"/>
 <customAuthHeaders>
 <header name="State" value="Georgia"/>
 <header name="City" value="Atlanta"/>
 </customAuthHeaders>
 ...
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

Obtain Override Values

To perform the connection value override at runtime, the MAF application may solicit
the values with a default unsecured feature that invokes an AMX page with prompts
for the values and a command button to submit the values. The following sample
shows the command button defines an action listener that triggers the override
method in a managed bean:

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="Home" id="ot1"/>
 </amx:facet>
 <amx:facet name="primary">
 <amx:commandButton id="cb1"/>
 </amx:facet>
 <amx:facet name="secondary">

Configuring MAF Connections

Securing MAF Applications 29-35

 <amx:commandButton id="cb2"/>
 </amx:facet>
 <amx:inputText label="Name1" id="it1"
value="#{applicationScope.OverrideBean.headerName1}"/>
 <amx:inputText label="Value1" id="it2"
value="#{applicationScope.OverrideBean.headerValue1}"/>
 <amx:inputText label="Name2" id="it3"
value="#{applicationScope.OverrideBean.headerName2}"/>
 <amx:inputText label="Value1" id="it4"
value="#{applicationScope.OverrideBean.headerValue2}"/>
 <amx:inputText label="TenantHeader" id="it5"

value="#{applicationScope.TestBean.tenantHeaderName}"/>
 <amx:inputText label="Scheme" id="it6"
value="#{applicationScope.OverrideBean.scheme}"/>
 <amx:commandButton text="Override headers" id="cb3"

actionListener="#{OverrideBean.overrideAndGotoOverrideFeature}"/>
 </amx:panelPage>
</amx:view>

Override the Connection Properties

To override the connection property values programmatically, the managed bean
implements the override method for each connection property override. Note that in
the following sample a headers HashMap is created to pass in the custom header
values. The map is only necessary for custom headers that you want to override since
the values of other properties (like MultiTenantHeaderName) are uniquely defined
by the XML elements of the connections.xml definition.

package mobile;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

import java.util.HashMap;

public class OverrideBean {

 private String headerName1 = "", headerName2 = "", headerValue1 = "",
headerValue2 = "";
 private String tenantHeaderName = "";
 private String scheme = "";

 // Bean setter and getter methods omitted for brevity
 ...

 // Command button action listener invokes override method implementation
 public void overrideAndGotoOverrideFeature(ActionEvent e) {
 overrideAndGotoOverrideFeature();
 }

 // Override method implementation configures custom headers and other connection
properties
 public void overrideAndGotoOverrideFeature()
 {
 AdfmfJavaUtilities.clearSecurityConfigOverrides("ConnWithCustomHeader");
 HashMap<String, String> headers = new HashMap<String, String>();
 headers.put(headerName1, headerValue1);

Configuring MAF Connections

29-36 Developing Mobile Applications with Oracle Mobile Application Framework

 headers.put(headerName2, headerValue2);
 AdfmfJavaUtilities.overrideConnectionProperty("ConnWithCustomHeader",
"Contents",
 "customAuthHeaders", headers);
 AdfmfJavaUtilities.overrideConnectionProperty("ConnWithCustomHeader",
 "multiTenantHeaderName",
"value",
 tenantHeaderName);
 AdfmfJavaUtilities.overrideConnectionProperty("ConnWithCustomHeader",
"multiTenantScheme",
 "value", scheme);
 AdfmfJavaUtilities.updateApplicationInformation(false);

 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }
}

29.6 Configuring Security for MAF Applications
You configure security using the overview editors for the maf-feature.xml and
maf-application.xml files, as well as the Create MAF Login Connection dialog.
The overview editors enable you to designate the type of login page (default or
custom) that MAF presents to users when they select application features that require
authentication or to include user role- or user privilege-based constraints. They also
enable you to select which embedded application features require security.

29.6.1 How to Enable Application Features to Require Authentication
You can define each application feature to participate in security. You perform the
security configuration using the Security page of the maf-application.xml
overview editor.

The maf-feature.xml overview editor, shown in Figure 29-16, enables you to
designate which application features participate in security.

Configuring Security for MAF Applications

Securing MAF Applications 29-37

Figure 29-16 Designating User Credentials Options for an Application Feature

Before you begin:

When you enable security for a feature, the application requires access the network to
authenticate the user. For more information about granting the application access to
network sockets, see Enabling a Core Plugin in Your MAF Application.

To designate user access for an application feature:

1. In the Navigator, in the user interface project, expand Application Sources and
then META-INF folder nodes, and then double-click maf-feature.xml.

2. In the overview editor for the maf-feature.xml file, select an application feature
listed in the Features table or click Add to add an application feature.

3. Select Enable Security for any application feature that requires login.

Tip:

If you do not apply this option to the default application, you enable users to
login anonymously (that is, without presenting login credentials). Users can
then access unsecured data and features and, when required, login
(authenticated users can access both secured and unsecured data). Providing
unsecured application features within a MAF application enables users to
logout of secured application features, but remain within the application itself
and continue to access both unsecured application features and data.

29.6.2 How to Designate the Login Page
After you designate security for the application features, you use the Security page of
the maf-application.xml overview editor, shown in Figure 29-17, to configure the
login page as well as create a connection to the login server and assign it to each of the
application features that participate in security. All of the application features listed in
this page have been designated in the maf-feature.xml file as requiring security.

Typically, a group of application features are secured with the same login server
connection, enabling users to open any of these applications without MAF prompting
them to login again. In some cases, however, the credentials required for the
application features can vary, with one set of application features secured by one login
server and another set secured by a second login server. To accommodate such
situations, you can define any number of connections to a login server for a MAF

Configuring Security for MAF Applications

29-38 Developing Mobile Applications with Oracle Mobile Application Framework

application. In terms of the maf-application.xml file, the authentication server
connections associated with the feature references are designated using the
loginConnRefId attribute as follows:

<adfmf:featureReference refId="feature1" loginConnRefId="BasicAuthentication"/>
<adfmf:featureReference refId="feature2" loginConnRefId="OAMMS"/>

MAF applications can be authenticated against any standard login server that
supports basic authentication over HTTP or HTTPS. MAF also supports authentication
against Oracle Identity Management. You can also opt for a custom login page for a
specific application feature. For more information, see What You May Need to Know
About Login Pages.

Note:

By default, all secured application features share the same connection, which,
as shown in Figure 29-17, is denoted as <application login server>.
The Properties window for a Feature Reference notes this default option in its
Login Server Connection drop-down menu as <default> (application
login server). You can select other connections that are defined for the
MAF application using the Create MAF Login Connection dialog.

Configuring Security for MAF Applications

Securing MAF Applications 29-39

Figure 29-17 The Security Page of the maf-application.xml Overview Editor

Before you begin:

If the MAF application uses a custom login page, add the file to the public_html
directory of the application controller project (JDeveloper\mywork\Application
\ApplicationController\public_html) to make it available from the Web
Content node in the Application Navigator, as shown in Figure 29-18. See also How to
Create a Custom Login HTML Page and What You May Need to Know About
Selecting External Resources .

Add constraints for user privileges and roles, as described in About User Constraints
and Access Control.

Provision an Access Control Service (ACS) server. For more information, What You
May Need to Know About the Access Control Service.

Configuring Security for MAF Applications

29-40 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-18 Adding a Custom Login Page

To designate the login page:

1. In the Navigator, expand the Application Resources panel, expand Descriptors
and then ADF META-INF folder nodes, and then double-click maf-
application.xml.

2. In the overview editor for the maf-application.xml file, click the Security
navigation tab.

3. On the Security page, designate the type of login page:

• Choose Login Page for a view that accepts a user name and password.

4. Select the content (or user interface) for the selected login page:

• Default—The default login page used for all of the selected embedded
application features. For more information, see The Default Login Page. The
default login page is provided by MAF.

• Custom—Click Browse to retrieve the path location of the file within the
application controller project. Alternatively, click New to create a custom
HTML page within the application controller project for the login page. For
more information, see The Custom Login Page and How to Create a Custom
Login HTML.

Tip:

Rather than retrieve the location of the login page using the Browse function,
you can drag the login page from the Application Navigator into the field.

29.6.3 How to Create a Custom Login HTML Page
You can create the custom login page by modifying the default login page,
adf.login.html, artifacts generated by the MAF deployment in the www directory.

Before you begin:

To access the login page within the www directory, deploy a MAF application and then
traverse to the deploy directory. For iOS deployments, the pages are located at the
following:

application workspace directory/deploy/deployment profile name/
temporary_xcode_project/www/adf.login.html

For Android deployments, the page is located within the Android application package
(.apk) file at the following:

Configuring Security for MAF Applications

Securing MAF Applications 29-41

application workspace directory/application name/deploy/deployment profile name/
deployment profile name.apk/assets/www/adf.login.html

To create a custom login page:

1. Copy the default login page to a location within the user interface project's
public_html directory, such as JDeveloper\mywork\application name
\ApplicationController\public_html.

2. Rename the login page.

3. Update the page.

4. In the Security page for the overview editor of the maf-application.xml file,
select Custom and then click Browse to retrieve the location of the login page.

29.6.4 What You May Need to Know About Login Pages
The entry point for the authentication process to an application feature is the
activate lifecycle event, described at Using Lifecycle Listeners in MAF
Applications . Every time an application feature is activated (that is, the activate
event handler for the application feature is called), the application feature login
process is executed. This process navigates to the login page (which is either the
default or a custom login page) where it determines if user authentication is needed.
Before the process navigates to the login page, however, the originally intended
application feature must be registered with MAF. When authentication succeeds, the
login page retrieves the originally intended destination from MAF and navigates to it.

If you want to use Java classes or resources, such as resource bundles, from your login
page using the built-in Cordova support, you must place these classes and resources
in the ApplicationController project.

29.6.4.1 The Default Login Page

The default login page provided by MAF is comprised of a login button, input text
fields for the user name, password, and, optionally, multi-tenant name, and an error
message section. This is a cross-platform page, one written in HTML. Figure 29-19
shows a default login page with the multi-tenant aware option enabled at design time
to solicit the domain name of the tenant, in addition to the user name and password.

Configuring Security for MAF Applications

29-42 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 29-19 The Default Login Page with Multi-Tenant Domain Field

29.6.4.2 The Custom Login Page

When you add a custom login page for a selected application feature using the
overview editor for the maf-application.xml file, JDeveloper adds the
<adfmf:login> element and populates its child <adfmf:LocalHTML> element, as
shown in the following example. As with all <adfmf:LocalHTML> elements, its url
attribute references a location within the public_html directory. The user
authentication mechanism and navigation control are identical to the default login
page.

<adfmf:login defaultConnRefId="Connection_1">
 <adfmf:localHTML url="newlogin.html"/>
</adfmf:login>

Custom login pages are written in HTML. The fields for the login page must include
specifically defined <input> and <label> elements.

Configuring Security for MAF Applications

Securing MAF Applications 29-43

Tip:

Use the default login pages that are generated when you deploy a MAF
application as a guide for creating custom login pages. To access the login
pages within the www directory, deploy a MAF application and then traverse
to the deploy directory, as described in How to Create a Custom Login
HTML Page.

The following example illustrates the required <input> and <label> elements for a
default login page.

<input type="text"
 autocorrect="off"
 autocapitalize="none"
 name="oracle_access_user_id"
 id="oracle_access_user_id" value="">
 </input>

<input type="text"
 autocorrect="off"'
 autocapitalize="none"
 name="oracle_access_iddomain_id"
 id="oracle_access_iddomain_id" value="">
 </input>

<input type="password"
 name="oracle_access_pwd_id"
 id="oracle_access_pwd_id" value="">
 </input>

<input type="checkbox"
 class="message-text"
 name="oracle_access_auto_login_id"
 id="oracle_access_auto_login_id">
 </input>Keep me logged in

<input type="checkbox"
 class="message-text"
 name="oracle_access_remember_username_id"
 id="oracle_access_remember_username_id">
 </input>Remember my username

<input type="checkbox"
 class="message-text"
 name="oracle_access_remember_credentials_id"
 id="oracle_access_remember_credentials_id">
 </input>Remember my password

<label id="oracle_access_error_id"
 class="error-text">
 </label>

<input class="commandButton"
 type="button"
 onclick="oracle_access_sendParams(this.id)"
 value="Login" id="oracle_access_submit_id"/>

Configuring Security for MAF Applications

29-44 Developing Mobile Applications with Oracle Mobile Application Framework

29.6.5 What You May Need to Know About Login Page Elements
Every HTML login page should include the user interface elements listed in Table
29-2.

Table 29-2 Login Page Fields and Their Associated IDs

Page Element ID

username field oracle_access_user_id

password field oracle_access_pwd_id

login button oracle_access_submit_id

cancel button oracle_access_cancel_id

identity domain/tenant
name field

oracle_access_iddomain_id

error field oracle_access_error_id

auto login check box oracle_access_auto_login_id

remember credentials
check box

oracle_access_remember_credentials_id

remember username check
box

oracle_access_remember_username_id

Table 29-3 lists the recommended JavaScript code used by the OnClick event.

Table 29-3 JavaScript Used by the OnClick Event

Button JavaScript

login button oracle_access_sendParams(this.id)

cancel button oracle_access_sendParams(this.id)

29.6.6 What Happens in JDeveloper When You Configure Security for Application
Features

After an application feature has been designated to participate in security, JDeveloper
updates the Features With Security Enabled table with a corresponding feature
reference. If each of the referenced application features authenticate against the same
login server connection defined in the connections.xml file, JDeveloper updates
the maf-application.xml file with a single <adfmf:login> element defined with
a defaultConnRefId attribute (such as <adfmf:login
defaultConnRefId="Connection_1">).

For application features configured to use different login server connections defined in
the connections.xml file JDeveloper updates each referenced application feature
with a loginConnReference attribute (<adfmf:featureReference
refId="feature2" loginConnRefId="Connection2"/>). For more
information, see How to Enable Application Features to Require Authentication. See
also the Tag Reference for Oracle Mobile Application Framework.

Configuring Security for MAF Applications

Securing MAF Applications 29-45

29.7 Allowing Access to Device Capabilities
Access to device capabilities is defined by the Cordova plugins that are included in the
MAF application. A set of core plugins are provided by MAF. Enabling one of these
plugins enables any device access permissions that the application requires. Any
additional Cordova plugins that you include in your MAF application will also enable
the device access permissions required.

Because the vast majority of MAF applications require network access, permission to
access the network is enabled by default (the only device capability that is enabled by
default):

• Network Information—Allows the application to open network sockets. You must
leave the network access capability enabled when security is enabled for at least
one device feature.

Because you can enable or restrict device capabilities, the various platform-specific
configuration files and manifest files that are updated by the deployment framework
list only the device capabilities in use (or rather, the plugins that the MAF application
is registered to use). These files enable MAF to share information about the use of
these capabilities with other applications. For example, a MAF application can report
to the AppStore or to Google Play that it does not use location-based capabilities (even
though MAF applications have this capability).

For more information about Cordova plugins in MAF applications, see Using Plugins
in MAF Applications .

You can prevent selected application features within a MAF application from
accessing the native container, and by extension, the device capabilities that the MAF
application can access. For example, your MAF application includes an application
feature that references remote content from a web application that you do not trust
(Remote URL content application feature). In this scenario, you prevent this specific
application feature from accessing the native container, as shown in the following
example:

<adfmf:featureReference refId="remoteAppfeature1" id="fr1"
allowNativeAccess="false"/>

The default value of the allowNativeAccess property is true.

29.8 Enabling Users to Log Out from Application Features
MAF does not terminate application features when a user logs out of one that contains
secured content or is restricted through constraints; a user can remain within the
application and access its unsecured content and features as an anonymous user.
Because MAF enables constraints to be re-initialized, it allows a user to login to an
application repeatedly using the same identity. It also enables multiple identities to
share the access to the application by allowing the user to login using different
identities.

The logoutFeature and logout methods of the AdfmfJavaUtilities class,
described in the Java API Reference for Oracle Mobile Application Framework, enable users
to explicitly login and logout from the authentication server after launching an
application. In addition, they enable a user to login to the authentication server after
the user invokes a secured application feature. Although a user can log out from
individual application features, a user will be simultaneously logged out of
application features secured by the same connection.

Allowing Access to Device Capabilities

29-46 Developing Mobile Applications with Oracle Mobile Application Framework

These methods enable users to perform the following the following:

• out of an application feature but continuing to access its unsecured content (that is,
MAF does not terminate the application).

• Authenticate with the login server while in an application to enable its secured
content and UI components.

• Log out of a MAF application or application feature and then logging in again
using a different identity.

• Log out of a MAF application or application feature and then logging in again
using the same identity but with updated roles and privileges.

To enable logging out of the current authentication server, call the logout method of
the AdfmfJavaUtilities class as follows. For example:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.logout();

To enable logging from the authentication server associated with the key parameter,
call the logoutFeature method as follows:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.logoutFeature(adfCrendentialStorykey);

The adfCredentialStorykey parameter is returned as a String object from the
value defined for the adfCredentialStoreKey parameter in the
connections.xml file. For more information on the AdfmfJavaUtilties class
and the usage of the key parameter, see the Java API Reference for Oracle Mobile
Application Framework.

29.9 Using MAF Authentication APIs
MAF provides a number of authentication classes that include APIs to assist you with
authentication-related tasks in your MAF application.

These APIs reside in the authentication classes of the
oracle.maf.api.authentication package. Examples include the
AuthenticationHandler, AuthenticationPlatform, and
AuthenticationUtility classes.

Tasks that you can perform by implementing these APIs include processing for a
logged-in user before the user accesses a secured application. You can, for example,
retrieve authorization header information and use the information to determine what
content an end user navigates to upon a successful login. AuthenticationPlatform also
provides an addLogoutCallback API that you can implement to perform some
processing once an end user logs out from a secured application feature. Use of this
callback API may be useful in scenarios where your end users share a device. For more
information about these authentication classes, see the Java API Reference for Oracle
Mobile Application Framework.

The following example shows snippets of code from an implementation class where
an instance of AuthenticationPlatform gets the authorization header information
using its getToken() API.

Using MAF Authentication APIs

Securing MAF Applications 29-47

Example 29-1 Getting the Authorization Header from the Authentication Platform

import oracle.maf.api.authentication.AuthenticationPlatform;
import oracle.maf.api.authentication.AuthenticationUtility;
…
AuthenticationPlatform ap =
AuthenticationUtility.getInstance().lookupByCredentialStoreKey("credentialStoreKey");
String authorization = ap.getToken("Authorization");
…

29.10 Creating Certificates to Access Servers That Use Self-Signed
Certificates for SSL

MAF provides a cacerts certificate file, the Java mechanism for HTTPS handshakes
between the client application and the server. JDeveloper creates this file within the
Application Resources Security folder (located at JDeveloper\mywork
\application name\resources\Security\cacerts). The MAF cacerts file
identifies a set of certificates from well-known and trusted sources to the JVM and
enables deployment.

You need to add private certificates to the MAF cacerts file when your application
has to access server resources where the server uses a self-signed certificate. You also
need to add a private certificate if your application requires custom certificates, such
as cases where RSA cryptography is not used. Add a private certificate before you
deploy the application.

Before you begin:

It may be helpful to have an understanding of the contents of the cacerts file. For
more information, see the "Migrating to New cacerts Files for SSL in MAF" section in
Installing Oracle Mobile Application Framework.

You may also find it helpful to understand how JDeveloper creates the cacerts file.
For more information, see About the Application Controller Project-Level Resources.

Refer to Java SE Technical Documentation (http://download.oracle.com/
javase/index.html) for information on the cacerts file and how to use the
keytool utility.

To add private certificates:

1. Create a private certificate. For example, create a certificate file called new_cert.

2. Add the private certificate to the application as follows:

a. Create a copy of the seeded cacerts file (cp cacerts cacerts.org).

b. Use the Java SE keytool utility to add certificates to a cacerts file. The
following example illustrates adding a single certificate to a cacerts file
called new_cert.

keytool -importcert
 -keystore cacerts
 -file new_cert
 -storepass changeit
 -noprompt

Repeat this procedure for each certificate. Table 29-4 lists the keytool options

Table 29-4 Options For Adding Certificates

Creating Certificates to Access Servers That Use Self-Signed Certificates for SSL

29-48 Developing Mobile Applications with Oracle Mobile Application Framework

http://download.oracle.com/javase/index.html
http://download.oracle.com/javase/index.html

Table 29-4 (Cont.) Options For Adding Certificates

Option Description

-importcert Imports a certificate.

-keystore cacerts file Identifies the file location of the imported
certificate.

-file certificate file Identifies the file containing the new certificate.

-storepass changeit Provides a password for the cacerts file. By
default, the password is changeit.

-noprompt Instructs the keytool not to ask the user (through
stdin) whether to trust the certificate or not.

c. Visually inspect the contents of the new cacerts file to ensure that all of the
fields are correct. Use the following command:

keytool -list -v -keystore cacerts | more

d. Verify that the certificate is for the given hostname.

Note:

The certificate's common name (CN) must match the hostname exactly.

e. Ensure that the customized certificate file is located within the Security
directory (JDeveloper\mywork\application name\resources
\Security) so that it can be read by the JVM.

3. Deploy the application.

Note:

During deployment, if a certificate file exists within the Security directory,
MAF copies it into the Android or Xcode template project, replacing any
default copies of the cacerts file.

4. Validate that you can access the protected resources over SSL.

29.11 Configuring a MAF Application to Enable Two-Way SSL for
Authentication

MAF application end users can install digital certificates (client certificate) into their
application’s keystore to enable authentication using a process known variously as
two-way SSL, mutual authentication or two-way authentication.

Once the end user installs a client certificate into the application’s keystore, the MAF
application can present it to a server so that a two-way SSL communication session is
used to perform authentication between the client and the server.

To implement this functionality, you need to register the client certificate file extension
in your application. Doing this enables the MAF application to open and install the
certificate when the end user opens the client certificate file after downloading it to

Configuring a MAF Application to Enable Two-Way SSL for Authentication

Securing MAF Applications 29-49

their device. If the MAF application is the only application on the device to register the
client certificate file extension, it will be the application that the device’s operating
system proposes to the end user to open the certificate. If other applications register
the file extension, the device’s operating system presents a list of applications from
which your end user must choose the MAF application.

Administrators can distribute client certificates to MAF application end users by email
attachment or by hosting the certificate in a location from which the end user can
download it using a URL.

The iOS platform does not permit third party applications to open files with the
default extension for client certificates (.p12). To work around this restriction, you
(the application developer) must register an alternative certificate extension (for
example, .cert). Administrators who distribute the certificates can rename the client
certificate files to use the alternative extension so that the MAF application end user
can open the client certificate directly from the email attachment or URL used to
distribute the client certificate.

How to Configure a MAF Application to Enable Two-Way SSL

You register the client certificate file extension in your application by entering the file
extension in the Client SSL Certificate Extension field on the Application page of the
maf-application.xml file’s overview editor.

To configure a MAF application to enable two-way SSL:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-application.xml file and in the overview editor that appears,
click the Application navigation tab.

4. In the Application page, enter the file extension in the Client SSL Certificate
Extension field.

What Happens When You Configure a MAF Application to Enable Two-Way SSL

JDeveloper writes the value that you enter in the Client SSL Certificate Extension
field to the maf-application.xml file, as shown in Example 29-2.

At runtime, the end user downloads the client certificate to the device from the
location where the administrator put the certificate or opens it automatically from an
email attachment. The download behavior from a server location depends on the
operating system of the end user’s device. For example, a MAF application end user
with an Android device downloads the certificate to Android’s Download directory.
Once downloaded, the end user extracts (opens) the certificate in order to install it to
the MAF application’s keystore. To complete this step, the end user must enter a
password provided by the administrator who distributed the client certificate. After
the end user has installed the client certificate in their application’s keystore, the MAF
application can present it to a server to establish a two-way SSL session.

Example 29-2 Client Certificate File Extension in maf-application.xml File

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 version="1.0" name="twowayssltest" id="com.company.twowayssltest"
 appControllerFolder="ApplicationController" listener-
class="application.LifeCycleListenerImpl"

Configuring a MAF Application to Enable Two-Way SSL for Authentication

29-50 Developing Mobile Applications with Oracle Mobile Application Framework

 client-ssl-certificate-extension="cert">
 ….

Configuring a MAF Application to Enable Two-Way SSL for Authentication

Securing MAF Applications 29-51

Configuring a MAF Application to Enable Two-Way SSL for Authentication

29-52 Developing Mobile Applications with Oracle Mobile Application Framework

30
Testing and Debugging MAF Applications

This chapter provides information on testing and debugging MAF applications.

This chapter includes the following sections:

• Introduction to Testing and Debugging MAF Applications

• Testing MAF Applications

• Configuring JDeveloper and MAF Applications to Debug Code

• Debugging MAF Applications Deployed on the Android Platform

• Debugging MAF Applications Deployed on the iOS Platform

• Debugging MAF Applications Deployed on the Universal Windows Platform

• Using and Configuring Logging in MAF Applications

• Measuring MAF Application Performance

• Sending Diagnostic Information to Oracle Mobile Cloud Service

• Sending Analytics Information to Oracle Mobile Cloud Service

• Inspecting Web Service Calls in a MAF Application

30.1 Introduction to Testing and Debugging MAF Applications
To test or debug your MAF application, deploy it in debug mode to a device on one of
the platforms (Android, iOS, or Universal Windows Platform) that MAF supports.
MAF and respective platform provides tools that let you connect the JDeveloper
development environment with the MAF application executing on a device or a
virtual device. For example, if you want to test your MAF application on an Android
device, you deploy your MAF application in debug mode from JDeveloper to an
Android device or to an Android Virtual Device (AVD). The Universal Windows
Platform and iOS provide similar tools.

The high-level steps to debug a MAF application include the following tasks:

1. Configure the deployment profile that you use to deploy the MAF application to
the test environment so that it deploys the MAF application in debug mode.

2. Configure the MAF application’s maf.properties file to enable debugging.

3. Deploy the MAF application to the test environment.

4. Use the appropriate tools for the debugging task that you want to complete. If, for
example, you want to debug Java code in your MAF application, use the tools that
JDeveloper provides. If you want to debug the code that renders the user interface

Testing and Debugging MAF Applications 30-1

(HTML, CSS, or JavaScript) of your MAF application, use the tools that each
platform provides for this task.

MAF provides other features to assist testing your application. These include the
ability to monitor your application’s performance, plus send analytics and diagnostic
information to Oracle Mobile Cloud service (if your application accesses resources
from that service).

30.2 Testing MAF Applications
There are two approaches to test a MAF application:

1. Testing on a mobile device: this method always provides the most accurate
behavior, and is also necessary to gauge the performance of your application.
However, you may not have access to all the devices on which you want to test,
making device testing inconclusive.

2. Testing on a mobile device emulator or simulator: this method usually offers
better performance and faster deployment, as well as convenience. However, even
though a device emulator or simulator closely approximates the corresponding
physical device, there might be differences in behavior and limitations on the
capabilities that can be emulated.

Typically, a combination of both approaches yields the best results.

30.2.1 How to Perform Accessibility Testing on iOS-Powered Devices
You should use a combination of the following methods to test the accessibility of
your MAF application developed for iOS-powered devices:

• Testing with the Accessibility Inspector on an iOS-powered device simulator.

For detailed information, see the "Test Accessibility on Your Device with
VoiceOver" section in the Accessibility Programming Guide for iOS available through
the iOS Developer Library.

• Testing with the VoiceOver on an iOS-powered device.

For more information, see the "Using VoiceOver to Test Your Application" section
in the Accessibility Programming Guide for iOS available through the iOS Developer
Library.

30.3 Configuring JDeveloper and MAF Applications to Debug Code
JDeveloper is equipped with debugging mechanisms that allow you to execute a Java
program in debug mode and use standard breakpoints to monitor and control
execution of an application. For more information, see the section on debugging
applications in Developing Applications with Oracle JDeveloper.

Since a MAF application cannot be run inside JDeveloper, the debugging approach is
different: you can use the JDeveloper debugger to connect to a Java Virtual Machine
instance on a mobile device or simulator and control the Java portions of your
deployed MAF application.

MAF automatically configures the project properties for debugging (see What You
May Need to Know About the Debugging Configuration). The following are the steps
you need to take to use JDeveloper to debug the Java code in your MAF application:

To test or debug an application:

Testing MAF Applications

30-2 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Testing_Accessibility/Testing_Accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Testing_Accessibility/Testing_Accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Testing_Accessibility/Testing_Accessibility.html

1. From JDeveloper's main menu, click Run > Choose Active Run Configuration to
select an active run configuration.

2. In the Applications window, right-click on any file that you want to test and
choose Run.

Alternatively, choose Debug if you want to run the application with debugging
enabled.

Tip:

You can also open any file in the MAF application in Source view, right-click
on it, and then select Run or Debug.

Note:

If you are using an existing application that does not have the predefined set
of run configurations, you can create new run configurations (see What You
May Need to Know About the Debugging Configuration).

For additional information, see the following:

• What You May Need to Know About the Debugging Configuration

30.3.1 What You May Need to Know About the Debugging Configuration
When a new MAF application is created, the creation wizard automatically configures
the application properties for debugging. This includes the creation of default run
configurations that may be used to run or debug the MAF application on an iOS
simulator or Android emulator or device. These run configurations allow you to build,
deploy, run, or debug a MAF application by clicking the JDeveloper Run or Debug
buttons. When you click the Run or Debug button in JDeveloper and select a MAF run
configuration, the deployment profile associated with the run configuration is
executed to build and deploy the application to the targeted device. Once the
application has been deployed, it automatically starts. If the Debug button was
selected, the application will start with the debugger.

For information on how to create and edit run configurations, see Creating and
Configuring a Run Configuration.

30.3.1.1 Creating and Configuring a Run Configuration

To create a new configuration or to modify an existing one, complete the Edit Run
Configuration dialog (see Figure 30-1) as follows:

1. From JDeveloper's main menu, click Application > Project Properties to open the
Project Properties dialog.

2. In the Project Properties dialog, select the Run/Debug node from the tree on the
left.

Alternatively, choose Run > Choose Active Run Configuration > Manage Run
Configurations.

3. Create a new configuration or modify an existing one.

If using Shared Settings, click Edit Shared Settings to open a dialog that allows
you to create or edit new MAF run configurations. If using Project Settings, click
New or Edit. With shared settings, the run configurations are shared across all

Configuring JDeveloper and MAF Applications to Debug Code

Testing and Debugging MAF Applications 30-3

projects. Use Shared Settings is the default option so you can use the MAF run
configurations that exist at the time the project was added.

4. Complete the Edit Run Configuration dialog as follows:

• Select Mobile Run Configuration from the tree on the left.

• Select your target platform.

• Select a deployment profile.

• Enter the port number, up to five digits long. This number is initially seeded
with the value of the java.debug.port property contained in the
maf.properties file and appears as hint text. If a value is not specified for the
port, the seeded value is used.

• For iOS, set the following options:

– Application Arguments—Enter arguments that can be passed to the MAF
application upon startup for customizing the runtime behavior of the
application. For example, -consoleRedirect=/<path>/<to>/log.txt
directs the log output to the file specified. The path must be an absolute path
to receive the log file. The location must be writable for the current user.

– Simulator—Choose which simulator you are deploying the application to.
The options depend on which versions of the iOS SDK have been installed.

– iOS version—Choose which version of iOS the simulator should use. The
the drop-down menu displays the iOS versions that the selected device
supports.

• For Android, set the following options:

– Target—Select the deployment target (Emulator or Device).

– Max Attempts—Choose the maximum number of connection attempts to
allow.

– Interval (seconds)— Choose the length of time in seconds between
connection attempts.

Tip:

If the Android device or emulator is slow or times out, try increasing the Max
Attempts or the Interval to allow sufficient time for Java to initialize and to
force the Android starter to wait longer or try more attempts before quitting.

Configuring JDeveloper and MAF Applications to Debug Code

30-4 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-1 Mobile Run Configuration Dialog

30.3.2 How to Enable Debugging of Java Code and JavaScript
A maf.properties file allows you to specify startup parameters for the JVM and
web views of MAF to enable debugging of the Java code and JavaScript. The
maf.properties file is automatically created and placed in the Descriptors/
META-INF directory under the Application Resources (see Using and Configuring
Logging), which corresponds to the <application_name>/src/META-INF location
in your application file system.

When you execute a MAF run configuration, the following debugging properties are
automatically set in the maf.properties file:

• java.debug.enabled: Set to true if doing a debug session; set to false if
doing a run session.

Caution:

When java.debug.enabled is set to true, the JVM waits for a debugger to
establish a connection to it. Failure of the debugger to connect will result in
the failure of the MAF AMX application feature to load.

Configuring JDeveloper and MAF Applications to Debug Code

Testing and Debugging MAF Applications 30-5

• java.debug.port: Set to the port number configured in the MAF run
configuration being executed.

• javascript.debug.enabled: Set to true if doing a debug session; set to
false if doing a run session. Applies to Android only.

Note:

The javascript.debug.enabled property is not required for enabling
JavaScript debugging when the MAF application is running on an iOS-
powered simulator or iOS-powered device.

The contents of the maf.properties file may be similar to the following:

java.debug.enabled=true
java.debug.port=8000

javascript.debug.enabled=true

For information on how to use JDeveloper to debug the Java code, see Debugging
MAF Applications.

30.3.3 How to Debug the MAF AMX Content
If your MAF application includes the MAF AMX content, after you configure the
device or emulator, you can set breakpoints, view the contents of variables, and
inspect the method call stack just as you would when debugging other types of
applications in JDeveloper.

Note:

You can only debug your Java code and JavaScript (see How to Enable
Debugging of Java Code and JavaScript). Debugging of EL expressions or
other declarative elements is not supported.

30.4 Debugging MAF Applications Deployed on the Android Platform
Describes how to debug the Java and UI code of MAF applications that you deploy to
Android.

To debug Java code, you configure the maf.properties file in your application and
create a run configuration in JDeveloper. For more information about these tasks, see
How to Enable Debugging of Java Code and JavaScript and Configuring JDeveloper
and MAF Applications to Debug Code. Once you complete these tasks, you can
deploy your MAF application in debug mode to debug your Java code, as described in
How to Debug Java Code on the Android Platform.

To debug UI code (JavaScript, HTML, and CSS), you configure the maf.properties
file in your application (javascript.debug.enabled=true). Once you complete
this task, you can debug your UI code, as described in How to Debug UI Code on the
Android Platform.

Debugging MAF Applications Deployed on the Android Platform

30-6 Developing Mobile Applications with Oracle Mobile Application Framework

30.4.1 How to Debug Java Code on the Android Platform
To debug a MAF application’s Java code on the Android platform using JDeveloper,
follow the debugging procedure described in Configuring JDeveloper and MAF
Applications to Debug Code.

For information on how to configure an Android-powered device or emulator and
how to deploy a MAF application for debugging, see How to Deploy an Android
Application to an Android Emulator.

To allow debugging of a MAF application running on an Android-powered device or
its emulator, verify that the Network Information plugin is enabled, as described in
Introduction to Using Plugins in MAF Applications.

30.4.2 How to Debug UI Code on the Android Platform
When developing a MAF application, you may need to debug code that renders the
user interface (UI) of your application on an Android device. The code that renders the
UI can include JavaScript, HTML, and CSS. You can debug this code using Google’s
Chrome DevTools when you deploy the MAF application from your development
machine to the Android device. Figure 30-2 shows the Chrome DevTools inspecting an
AMX page from a MAF application.

Figure 30-2 Chrome DevTools Inspecting an AMX Page from a MAF application

For more information on the Chrome DevTools, including the requirements to use it,
see Remote Debugging on Android with Chrome DevTools on the Google Developers’
site.

See also the “Debugging HTML in Oracle MAF Applications on Android” video on
the Oracle Mobile Platform YouTube channel for an overview of how to debug UI

Debugging MAF Applications Deployed on the Android Platform

Testing and Debugging MAF Applications 30-7

https://developers.google.com/web/tools/chrome-devtools/debug/remote-debugging/remote-debugging
https://www.youtube.com/watch?v=GTLQfmYKSU0&list=PL2ux0DjE-RYflnTHz3Ttri0hxnZyxKVYS&index=1

code on Android. Note that the latter video makes reference to a cvm.properties
file. This file has been renamed to maf.properties in the current release.

To deploy a MAF application to an Android device to debug its UI code, you need to:

• Configure the maf.properties file to include the following entry:
javascript.debug.enabled=true

For more information on the maf.properties file, see How to Enable Debugging
of Java Code and JavaScript.

• Deploy in debug mode. For more information, see Deploying MAF Applications.

30.5 Debugging MAF Applications Deployed on the iOS Platform
Describes how to debug the Java and UI code of MAF applications that you deploy to
iOS.

Before you can debug Java code, you configure the maf.properties file in your
application and create a run configuration in JDeveloper. For more information about
these tasks, see How to Enable Debugging of Java Code and JavaScript and
Configuring JDeveloper and MAF Applications to Debug Code. Once you complete
these tasks, you can deploy your application in debug mode to the iOS device and
debug your Java code. For more information about how to deploy in debug mode, see
How to Debug Java Code on the iOS Platform.

To debug UI code (JavaScript, HTML, and CSS), you configure the maf.properties
file in your application (javascript.debug.enabled=true). Once you complete
this task, you can debug your UI code, as described in How to Debug UI Code on the
iOS Platform.

30.5.1 How to Debug Java Code on the iOS Platform
To debug a MAF application’s Java code on the iOS platform using JDeveloper, follow
the debugging procedure described in Configuring JDeveloper and MAF Applications
to Debug Code.

For information on how to configure an iOS-powered device or simulator and how to
deploy a MAF application for debugging, see the following:

• How to Deploy an iOS Application to an iOS Simulator

• How to Deploy an Application to an iOS-Powered Device

• Registering an Apple Device for Testing and Debugging

30.5.2 How to Debug UI Code on the iOS Platform
If you are working with the iOS platform, you can use the Safari browser to debug
JavaScript. To do so, open the Safari preferences, select Advanced, and then enable the
Develop menu in the browser by selecting Show Develop menu in menu bar.

When the Develop menu is enabled, select either iPhone Simulator or iPad
Simulator, as Figure 30-3 and Figure 30-4 show, and then select a UIWebView that
you are planning to debug, as Figure 30-5 shows.

Debugging MAF Applications Deployed on the iOS Platform

30-8 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Whether the Develop menu displays an iPhone Simulator or iPad Simulator
option depends on which device simulator is launched.

Use the featureContentDelay additional build argument to record log messages
and errors from your custom JavaScript before the first page from your application
loads. This argument specifies a delay before the WebView is populated with content.
Set the additional build argument -featureContentDelay to 20. For more
information about setting additional build arguments, see Defining the iOS Build
Options.

Figure 30-3 Using Develop Menu on Safari Browser for Debugging on iPhone
Simulator

Debugging MAF Applications Deployed on the iOS Platform

Testing and Debugging MAF Applications 30-9

Figure 30-4 Using Develop Menu on Safari Browser for Debugging on iPad
Simulator

Figure 30-5 Using Develop Menu on Safari Browser to Select UIWebView

Figure 30-6 and Figure 30-7 show the CSS, DOM, and HTML Safari Remote Web
Inspector in action.

Debugging MAF Applications Deployed on the iOS Platform

30-10 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-6 Remote Web Inspector

Debugging MAF Applications Deployed on the iOS Platform

Testing and Debugging MAF Applications 30-11

Figure 30-7 AMX Page Analyzed by Remote Web Inspector at Runtime

Debugging MAF Applications Deployed on the iOS Platform

30-12 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-8 and Figure 30-9 show JavaScript debugging using breakpoints inside the
Safari browser.

Debugging MAF Applications Deployed on the iOS Platform

Testing and Debugging MAF Applications 30-13

Figure 30-8 JavaScript Debugging in Safari Browser

Debugging MAF Applications Deployed on the iOS Platform

30-14 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-9 AMX Page Debugged at Runtime

Debugging MAF Applications Deployed on the iOS Platform

Testing and Debugging MAF Applications 30-15

30.6 Debugging MAF Applications Deployed on the Universal Windows
Platform

Describes how to debug the Java and UI code of MAF applications that you deploy to
the UWP.

You can debug the Java code in MAF applications that you deploy to the UWP using
JDeveloper’s debugging tools. For more information, see How to Debug Java Code on
the Universal Windows Platform.

Use Visual Studio to debug the JavaScript, HTML, and CSS code in your MAF
application, as described in How to Debug UI Code on the Universal Windows
Platform.

30.6.1 How to Debug Java Code on the Universal Windows Platform
Describes how to debug Java code in a MAF application that you deploy to the
Universal Windows Platform (UWP).

Perform the following steps so that you can debug Java code in a MAF application that
you deploy to the UWP:

1. Configure the MAF application’s maf.properties file entries to enable
debugging. Ensure that the following values appear in the maf.properties file.

java.debug.enabled=true
java.debug.port=8000
java.debug.mode=client
java.debug.host=localhost

For more information about the maf.properties file, see How to Enable
Debugging of Java Code and JavaScript.

2. Configure the Windows deployment profile for the MAF application to use
Debug mode, as shown in Figure 30-10. Click Application > Application
Properties > Deployment to access this dialog.

Debugging MAF Applications Deployed on the Universal Windows Platform

30-16 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-10 Enabling Debug Mode for the MAF Application

3. Add a custom project to your MAF application so that it can access the standard
JDeveloper application run/debug configuration dialogs. Once you add this
custom project to your MAF application, enable the Remote Debugging option
with a connection that listens for the JPDA protocol. Start a debug listener in the
custom project. For more information about these tasks, see How to Enable
Remote Debugging of a MAF Application on the Universal Windows Platform.

4. Deploy the MAF application using the local Windows machine option. For more
information, see Deploying a MAF Application to the Universal Windows
Platform.

Once you deploy the MAF application using the Windows Local Machine deployment
option, the application starts and establishes a debug session with JDeveloper.

30.6.1.1 How to Enable Remote Debugging of a MAF Application on the Universal
Windows Platform
Add a custom project to your MAF application to expose the Run/Debug
configuration panels that the MAF application creation template does not display
when you create a MAF application.

Using these configuration panels, you can enable remote debugging for a MAF
application that you deploy to the UWP. After you add and configure the custom
project, you start the debug listener from the custom project.

To add a custom project to enable remote debugging of a MAF application on the
UWP:

1. From JDeveloper’s main menu, click File > New > Project, select Custom Project in
the New Gallery dialog and click OK.

2. Click Finish in the Create Custom Project to create a custom project named Project
1.

Debugging MAF Applications Deployed on the Universal Windows Platform

Testing and Debugging MAF Applications 30-17

The new custom project (Project 1) appears in the Projects panel of your MAF
application between the ApplicationController and ViewController
projects.

3. Select the project, and from JDeveloper’s main menu select Application > Project
Properties.

4. In the Run/Debug page of the Project Properties dialog, select the Default run
configuration and click the Pencil icon to display the Launch Settings dialog
where you select Remote Debugging checkbox.

5. Navigate to Tool Settings > Debugger > Remote and configure the following
properties, as illustrated in Figure 30-11:

a. Protocol:Select Listen for JPDA from the drop-down menu.

b. Port: Enter the port number that you have configured for java.debug.port
in the maf.properties file.

c. Timeout: specify the number of seconds to time out. 0 means do not time out.

d. Local address: localhost.

Figure 30-11 Enable Remote Debugging of a MAF Application Deployed to the
UWP

6. Click OK to close the open dialogs.

7. In the Applications window’s Project panel, right-click the custom project (for
example, Project 1) and choose Debug from the context menu that appears.

Debugging MAF Applications Deployed on the Universal Windows Platform

30-18 Developing Mobile Applications with Oracle Mobile Application Framework

8. In the Listen for JPDA dialog, review the connection information to confirm it is
correct and click OK.

9. From JDeveloper’s main menu, click Windows > Processes to verify that the debug
listener starts, as shown in Figure 30-12.

Figure 30-12 Debug Listener Started in MAF Application

Once you deploy the MAF application using the Windows Local Machine deployment
option, the application starts and establishes a debug session with JDeveloper.

30.6.2 How to Debug UI Code on the Universal Windows Platform
When developing a MAF application on the Universal Windows Platform (UWP), you
may need to debug code that renders the user interface (UI) of your application. The
code that renders the UI can include JavaScript, HTML, and CSS. You debug this code
using Visual Studio.

For information about installing Visual Studio for use in MAF application
development, see the Setting Up Development Tools for the Universal Windows
Platform section in Installing Oracle Mobile Application Framework.

Before debugging your MAF application, you need to develop and deploy the
application. For information on developing and deploying application, see Getting
Started with MAF Application Development and Deploying MAF Applications.

To debug UI code in MAF applications deployed on the UWP:

1. Deploy your MAF application in debug mode. For more information, see
Deploying a MAF Application to the Universal Windows Platform.

2. Once you deploy your application to your local machine, navigate to the following
directory: C:\path\to\appRoot\deploy\[DeploymentProfileName]
\debug\.

3. Double-click the MafTemplate.sln template file that is configured with the
application artifacts to open it in Visual Studio.

Debugging MAF Applications Deployed on the Universal Windows Platform

Testing and Debugging MAF Applications 30-19

4. In Visual Studio as shown in Figure 30-13, set the value of CPU to x64.

Figure 30-13 Visual Studio IDE

5. If Script Only option is selected, you should be able to debug the UI code of AMX
as shown in Figure 30-14.

Debugging MAF Applications Deployed on the Universal Windows Platform

30-20 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-14 Visual Studio Workspace

30.7 Using and Configuring Logging in MAF Applications
For your MAF application, you can enable logging on all supported platforms through
JavaScript (see How to Use JavaScript Logging) and embedded code (see How to Use
Embedded Logging) using a single configuration with the log output directed to a
single file. This log output includes the output produced by System.out.println
and System.err.println statements.

The default MAF's logging process is as follows:

• The logging begins at application startup.

• The existing log file from the previous application run is deleted, so only the
contents of the current run are available.

• When you are running your application on an iOS-powered device simulator, you
can only access the Java logging output through a file of whose name and location
you are notified as soon as the output redirection occurs and the file is generated.
One of the typical locations for this file is /Users/<userid>/Library/
Developer/CoreSimulator/Devices/<device_id>/data/Containers/
Data/Application/<container_id>/application.log, where
<device_id> and <container_id> references represent long UUID strings

Using and Configuring Logging in MAF Applications

Testing and Debugging MAF Applications 30-21

created by iOS during the installation of the application. The values of these
references cannot be predicted and when multiple simulators or applications are
installed, it is difficult to determine which folder corresponds with the simulator
used during deployment. When using JDeveloper for deployment, the -
consoleRedirect option is automatically set to direct the log output to a known
location. If you set it on a MAF run configuration for iOS using the Edit Run
Configuration > Mobile Run Configuration dialog and that run configuration is
used to deploy or run the MAF application on an iOS-powered device simulator,
the log file is created at the configured location and its contents is displayed on a
console in JDeveloper. If you do not set the value using the Edit Run
Configuration > Mobile Run Configuration dialog or you choose to perform a
regular deployment (for example, such that it does not use a MAF run
configuration for iOS), the log file is created in the <appRoot>/<deployRoot>/
<iOSProfileName>/log<appName>.log file and its contents is displayed on a
console in JDeveloper. For more information, see Creating and Configuring a Run
Configuration.

Note:

The path must be an absolute path to receive the log file and the location must
be writable for the current user.

When you are running your application on an iOS-powered device, the console
output is redirected to an application.log file that is placed in the
Documents/logs directory of your application. You can access this directory as
follows on your iOS-powered device:

1. Navigate to Xcode > Devices.

2. Select the application from the list in the Installed Apps section.

3. Click the gear icon.

4. Select Download Container.

5. Right-click the downloaded *.xcappdata file and select Show Package
Contents.

6. Open AppData > Documents > Logs.

7. Double-click the application.log file.

On Android, the output is forwarded to a text file with the same name as the
application. The output file location is /sdcard. If this location is not present or is
configured as read-only, the log output is rerouted to the application's writable
data directory. The contents of the log file is replicated in the Android Logcat
utility (see http://developer.android.com/tools/debugging/
debugging-log.html). JDeveloper displays the logging output from the Logcat
when you use JDeveloper to deploy your MAF application to an Android-powered
device or emulator.

For both iOS and Android, the logging output appears in JDeveloper’s run or
debug Log page immediately after the deployment. In case of a regular
deployment, the deployment log is displayed in the Deployment Log page,
whereas the application log is displayed in a separate Log page. If you use a Run/
Debug run configuration to build, deploy, and launch the MAF application, the

Using and Configuring Logging in MAF Applications

30-22 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/tools/debugging/debugging-log.html
http://developer.android.com/tools/debugging/debugging-log.html

Terminate option in the Processes tab of the Applications window terminates the
MAF application along with the process that performs the log redirection. The
View Log option enables you to see the log page, as the following illustration
shows.

If you use a deployment profile to build, deploy, and launch the MAF application,
the Terminate option in the Processes tab terminates only the log redirection
process, whereas the MAF application remains running.

• The logging.properties file is automatically created and placed in the
Descriptors/META-INF directory under the Application Resources (see Using
and Configuring Logging), which corresponds to the
<application_name>/src/META-INF location in your application file system.
In this file, it is defined that all loggers use the
java.util.logging.ConsoleHandler and SimpleFormatter, and the log
level is set to SEVERE. You can edit this file to specify different logging behavior
(see How to Configure Logging Using the Properties File).

Note:

In your MAF application, you cannot use loggers from the
java.util.logging package.

MAF loggers are declared in the oracle.adfmf.util.Utility class as follows:

public static final String APP_LOGNAME = "oracle.adfmf.application";
public static final Logger ApplicationLogger = Logger.getLogger(APP_LOGNAME);

public static final String FRAMEWORK_LOGNAME = "oracle.adfmf.framework";
public static final Logger FrameworkLogger = Logger.getLogger(FRAMEWORK_LOGNAME);

The logger that you are to use in your MAF application is the ApplicationLogger.

You can also use methods of the oracle.adfmf.util.logging.Trace class.

For more information, see Java API Reference for Oracle Mobile Application Framework.

30.7.1 How to Configure Logging Using the Properties File
The following example shows the logging.properties file that you use to
configure logging.

default - all loggers to use the ConsoleHandler
.handlers=java.util.logging.ConsoleHandler
default - all loggers to use the SimpleFormatter
.formatter=java.util.logging.SimpleFormatter

oracle.adfmf.util.logging.ConsoleHandler.formatter=

Using and Configuring Logging in MAF Applications

Testing and Debugging MAF Applications 30-23

 oracle.adfmf.util.logging.PatternFormatter
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

#configure the framework logger to only use the adfmf ConsoleHandler
oracle.adfmf.framework.useParentHandlers=false
oracle.adfmf.framework.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.framework.level=SEVERE

#configure the application logger to only use the adfmf ConsoleHandler
oracle.adfmf.application.useParentHandlers=false
oracle.adfmf.application.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.application.level=SEVERE

The oracle.adfmf.util.logging.ConsoleHandler plays the role of the
receiver of the custom formatter.

The oracle.adfmf.util.logging.PatternFormatter allows the following
advanced formatting tokens that enable log messages to be printed:

• %LEVEL%—the logging level.

• %LOGGER%—the name of the logger to which the output is being written.

• %CLASS%—the class that is being logged.

• %METHOD%—the method that is being logged.

• %TIME%—the time the logging message was sent.

• %MESSAGE%—the actual message.

The following logging levels are available:

• SEVERE: this is a message level indicating a serious failure.

• WARNING: this is a message level indicating a potential problem.

• INFO: this is a message level for informational messages.

• FINE: this is a message level providing tracing information.

• FINER: this level indicates a fairly detailed tracing message.

• FINEST: this level indicates a highly detailed tracing message.

Caution:

When selecting the amount of verbosity for a logging level, keep in mind that
by increasing the verbosity of the output at the SEVERE, WARNING, and INFO
level negatively affects performance of your application.

The logger defined in the logging.properties file matches the logger obtained
from the oracle.adfmf.util.Utility class (see Using and Configuring Logging).
The logging levels also match. If you decide to use the logging level that is more fine-
grained than INFO, you must change the ConsoleHandler's logging level to the
same level, as the following example shows.

oracle.adfmf.util.logging.ConsoleHandler.formatter=
 oracle.adfmf.util.logging.PatternFormatter

Using and Configuring Logging in MAF Applications

30-24 Developing Mobile Applications with Oracle Mobile Application Framework

oracle.adfmf.util.logging.ConsoleHandler.level=FINEST
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

30.7.2 How to Use JavaScript Logging
JavaScript writes the output to the console.log or.error/.warn/.info. This
output is redirected into the file through the System.out utility.

You customize the log output by supplying a message. The following JavaScript code
produces "Message from JavaScript" output:

<script type="text/javascript" charset="utf-8">
 function test_function() { console.log("Message from JavaScript"); }
</script>

To make use of the properties defined in the logging file, you need to use the
adf.mf.log package and the Application logger that it provides.

The following logging levels are available:

• adf.mf.log.level.SEVERE

• adf.mf.log.level.WARNING

• adf.mf.log.level.INFO

• adf.mf.log.level.CONFIG

• adf.mf.log.level.FINE

• adf.mf.log.level.FINER

• adf.mf.log.level.FINEST

To trigger logging, use the adf.mf.log.Application logger's logp method and
specify the following through the method's parameters:

• the logging level

• the current class name as a String

• the current method as a String

• the message string as a String

The following example shows how to use the logp method in a MAF application.

adf.mf.log.Application.logp(adf.mf.log.level.WARNING,
 "myClass",
 "myMethod",
 "My Message");

Upon execution of the logp method, the following output is produced:

[WARNING - oracle.adfmf.application - myClass - myMethod] My Message

For more information, see JSDoc Reference for Oracle Mobile Application Framework.

Using and Configuring Logging in MAF Applications

Testing and Debugging MAF Applications 30-25

30.7.3 How to Use Embedded Logging
Embedded logging uses the java.util.logging.Logger, as illustrated in the
following example. The EmbeddedClass represents a Java class defined in the
project.

import java.util.logging.Level;
import java.util.logging.Logger;
import oracle.adfmf.util.logging.*;
...
 Utility.ApplicationLogger.logp(Level.WARNING,
 EmbeddedClass.class.getName(),
 "onTestMessage",
 "embedded warning message 1");
 Logger.getLogger(Utility.APP_LOGNAME).logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 2");
 Logger.getLogger("oracle.adfmf.application").logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 3");

The preceding code produces the following output:

[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 1
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 2
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 3

30.7.4 How to Use Xcode for Debugging and Logging on the iOS Platform
Even though it is not recommended to manipulate your MAF projects with Xcode
because you can lose some or all of your changes during the next deployment with
JDeveloper, you may choose to do so in exceptional circumstances.

Before you begin:

Deploy the application to the iOS simulator from JDeveloper.

To open the generated project directly in Xcode:

1. Navigate to the workspace_directory\deploy\deployment profile
name\temporary_xcode_project\.

2. Open the Xcode project called
Oracle_ADFmc_Container_Template.xcodeproj.

If you are debugging your MAF application using Xcode, you cannot see the Java
output in the IDE (on neither JDeveloper console nor Xcode console). Instead, the
output is redirected to a file (see Using and Configuring Logging). By adding the
following argument to your application's schema, you can disable this behavior and
enable access to the Java, JavaScript, and Objective-C log output in Xcode in real time
when debugging on either an iOS-powered device or simulator:

-consoleRedirect=FALSE

30.7.5 How to Access the Application Log
You can retrieve the application log file for your MAF application from a user’s device
to analyze issues that occur with your MAF application. One way to accomplish this is

Using and Configuring Logging in MAF Applications

30-26 Developing Mobile Applications with Oracle Mobile Application Framework

to copy the application log file from its on-device location to a directory from where
the application can then send the file from the device.

The following example demonstrates how you access the application log file location
and copy it to a location from where it can be attached to an email message to send to
a recipient who can analyse the content of the log file.

// Create an instance of device manager to access the device’s email functionality
later
DeviceManager dm = DeviceManagerFactory.getDeviceManager();

//Construct path to application log file

String path =
Utility.ensureTrailingForwardSlash(AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaU
tilities.DownloadDirectory));
String appName = AdfmfContainerUtilities.getApplicationInformation().getName();
String mobileOS = dm.getOs();

String logFilePath = "";

if ("iOS".equalsIgnoreCase(mobileOS)) {
 logFilePath = path + "/logs/application.log";
}
else if ("Android".equalsIgnoreCase(mobileOS)) {
 logFilePath = path + "/../../../../" + appName + ".txt";
}

//1. Determine device location to save a copy of the log file
String mailAccessiblePath =
Utility.ensureTrailingForwardSlash(AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaU
tilities.DeviceOnlyDirectory));
String targetFileNameAndPath = mailAccessiblePath + appName + ".log";

//2. Copy file to a location accessible from a mail client
try {
 Utility.copy(new File(logFilePath), new File(targetFileNameAndPath));
}
catch (IOException e) {
 // If something goes wrong, log the failure to copy.
 Utility.ApplicationLogger.logp(Level.SEVERE, this.getClass().getSimpleName(),
"sendLogAsMail", "Could not copy file " + logFilePath + " to " +
targetFileNameAndPath);
 Utility.ApplicationLogger.logp(Level.SEVERE, this.getClass().getSimpleName(),
"sendLogAsMail", e.getLocalizedMessage());
}

//3. Set the attachment property referenced by sendEmail(...)
this.setMailAttachment(targetFileNameAndPath);

//4. Send mail: open the mail client
dm.sendEmail(mailTo, mailCc, mailSubject, mailBody, mailBcc, mailAttachment,
mailMimeType);

Note: If you deploy your application from JDeveloper to a virtual device (iOS
simulator or Android emulator), MAF writes the log output to JDeveloper’s
Log window instead of to the application log file.

Using and Configuring Logging in MAF Applications

Testing and Debugging MAF Applications 30-27

Once you obtain the location of the application log file, choose a mechanism to send it
from the user’s device to the server side. Options to consider include uploading the
file using a REST web service to a specific server-side location that is associated with
your application. This option may offer a more consistent user experience to the
alternative option of transmitting the log file as an email attachment. The latter option
can exhibit different behaviors based on the platform device (iOS, Android, UWP) or
how the email client is configured on the device.

The level of detail that the MAF application’s log file captures depends on the
configuration entries in the logging.properties file unless you change the logging level
dynamically at runtime by, for example, using an API as demonstrated in the
following example:

Logger l = Utility.ApplicationLogger;
// Select a new log level. Note that OFF disables logging. In our example, we select
ALL.
// Level newLevel = Level.<ALL | CONFIG | INFO | FINE | FINER | FINEST | OFF |
SEVERE | WARNING>
Level newLevel = Level.ALL;
l.setLevel(newLevel);

30.7.6 How to Disable Logging
You can prevent the logging output from being directed to the application log file, in
which case the log file either remains blank or is not created in the first place. When
logging is disabled, trace statements are absent from the application log and any
output directed to stderr and stdout is redirected to either a null location or other
location that is not accessible to the end user.

To disable all logging, set the disableLogging property to true in the application's
adf-config.xml file, as follows:

<adf-property name="disableLogging" value="true"/>

By default, logging is enabled in MAF applications and the disableLogging
property is set to false.

For information on the adf-config.xml file, see Introduction to MAF Application
and Project Files.

30.8 Measuring MAF Application Performance
MAF assists you in monitoring and measuring the performance of your MAF
application. You can, for example, measure the time it takes for the following events in
your application to complete:

• An action that a button invokes to complete

• A page to load

• A REST call to return a response

In addition, you can print statistics that show the mean and standard deviation time of
operations that you monitor in your MAF application.

You enable performance measurement by configuring logging levels for the following
performance loggers in your application’s logging.properties file. The values
assigned to the loggers in the following example are for illustrative purposes. See
Table 30-1 for descriptions of all possible values.

Measuring MAF Application Performance

30-28 Developing Mobile Applications with Oracle Mobile Application Framework

oracle.adfmf.amx.useParentHandlers=false
oracle.adfmf.amx.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.amx.level=SEVERE

used to control what monitors are captured in the list of monitors
oracle.maf.performance.monitor.captured.level = FINEST

used to control what monitors are reported in the dumpStatistics
oracle.maf.performance.monitor.reported.useParentHandlers=false
oracle.maf.performance.monitor.reported.handlers=oracle.adfmf.util.logging.ConsoleHan
dler
oracle.maf.performance.monitor.reported.level = FINEST

used to control what monitor observations (start/stop times) are logged.
oracle.maf.performance.monitor.observations.reported=false
oracle.maf.performance.monitor.observations.reported.handlers=oracle.adfmf.util.loggi
ng.ConsoleHandler
oracle.maf.performance.monitor.observations.reported.level = FINEST

Once performance measurement completes, you can review the data that MAF
collected while it measured the performance of your application. The following
example shows an extract of the output that MAF produces after it monitors
performance. In the example, the monitor observed 5 occurrences of a Process AMX
event that had a mean completion time of 1435.5 milliseconds with a standard
deviation of 1990.567….

[INFO - oracle.maf.performance.monitor.reported - MonitorFactory - dumpStatistics]
PERFMON-JAVA STATS: Monitor
'com.company.WorkBetter.**Perf_Monitor**.Springboard.Container.Process AMX event'
description:
'Time to process event' observations: 5 mean: 1435.4 standard deviation:
1990.5674567821106

Table 30-1 describes the available performance monitor levels that you can set in the
logging.properties file.

Table 30-1 Performance Monitor Levels

Level Description

Level.INFO This is the coarsest monitor level. It monitors
events and actions. Using this level, you can,
for example, monitor the loading of a page or
the completion of an end user action, such as
a button click. Use of this monitor level has
minimal impact on performance.

Measuring MAF Application Performance

Testing and Debugging MAF Applications 30-29

Table 30-1 (Cont.) Performance Monitor Levels

Level Description

Level.FINE This level monitors more performance
indicators that it orders into the following
categories:
• JavaScript and rendering (System Level)
• Business logic processing (Application

Level)
• Framework processing (System Level)
• External data access

– REST Calls (System Level)
– Database access (System Level)

Use of this monitor level impacts the
performance of your application and should
not be enabled by default. Consider using
this level to gain insight into how your code
executes with a view to restructuring or
refining your application.

Level.FINER Use to monitor significant performance
issues, such as how it long it takes to process
nodes in an AMX page, data change events or
EL expressions.

Level.FINEST Use this monitor level to debug the
performance of your application.

The monitor level that you specify in logging.properites takes effect when you
first start the application.

Note: MAF provides a number of setPerformanceMonitor methods in
the oracle.adfmf.framework.api package’s PerfMon class that enable
you to change the performance monitor level at runtime. For more
information, see the Java API Reference for Oracle Mobile Application Framework.

In addition to specifying a monitor level in the logging.properties file, you can
add monitors to your application to collect the performance data. MAF uses the Java
class, oracle.adfmf.performance.Monitor (monitor), to collect performance
data. A monitor is a stop watch that can be started, stopped and can add observations.
By adding observations, you can use monitors to gain insights, such as the standard
deviation for a given measurement. Each monitor has a unique ID and an optional
description.

Monitor exposes a number of addObservation() methods that enable a monitor to
measure the duration of an event or the number of occurrences of an event. When
measuring duration, start the monitor before the event. After the event occurs, invoke
an addObservation() method from the monitor. This stops the monitor. Duration is
the time between the start() and the addObservation() method. You can restart
a monitor that was never stopped. As you might expect, you cannot stop a monitor
that was never started. An attempt to stop such a monitor logs an error.

A monitor that measures the number of occurrences of an event does not need to be
started or stopped. Use the addObservation(double duration) method that
does not stop the monitor, as demonstrated in the following example that counts the

Measuring MAF Application Performance

30-30 Developing Mobile Applications with Oracle Mobile Application Framework

number of occurrences of JSON serialization in the application where you monitor
performance. The duration parameter specifies the time since the monitor last added
an observation.

The following example demonstrates how you create a monitor to measure the
duration of an event. The example also shows a sample of the statistical information
that this monitor produces.

import oracle.adfmf.performance.Monitor;
....

 public void measurePerformance()
 {
 Monitor monitor = null;

 try
 {
 //// Check that the appropriate monitor level is set before you create the
monitor
 if (Utility.PerformanceMonitorCaptured.isLoggable(Level.INFO))
 {
 monitor = MonitorFactory.getInstance().getMonitor("REST call", Level.INFO,
"REST call timing");
 monitor.start();
 }

 //
 // Perform your custom logic here:
 //
 }
 finally
 {
 if (monitor != null)
 {
 monitor.addObservation();
 }
 }
 }

 public void countCalls()
 {
 Monitor monitor = null;

 try
 {
 if (Utility.PerformanceMonitorCaptured.isLoggable(Level.FINE))
 {
 monitor = MonitorFactory.getInstance().getMonitor("Call count", Level.FINE,
"Count number of calls");
 monitor.start();
 }

 //
 // Perform your custom logic here:
 //
 }
 finally
 {
 if (monitor != null)
 {
 monitor.addObservation(1);

Measuring MAF Application Performance

Testing and Debugging MAF Applications 30-31

 }
 }
 }

To create a monitor that collects performance data in your application, you configure
the logging.properties file to enable the performance monitor capture level to
collect the data. In the example aboves, MAF will not collect performance data for the
monitor if the application’s logging.properties file does not contain the following
entry:

used to control what monitors are captured in the list of monitors
oracle.maf.performance.monitor.captured.level = FINEST

For more information about monitor (oracle.adfmf.performance.Monitor), see
Java API Reference for Oracle Mobile Application Framework.

In addition to monitor, MAF also provides oracle.adfmf.performance.Story
(story). A story allows you to start and end the collection of performance data. Once
you end collection of the performance data for a story, MAF presents a hierarchical
view of the collected performance data using a story ID that you assigned when you
started the story. The hierarchical view shows the individual timing measurements for
events that took place during the story. In addition, MAF performs a health of the
system (HOTS) checkpoint at the end of the story. As part of this HOTS checkpoint,
standard deviations for all of the monitor data collected during the story will be
computed, so you can gain insight into how individual story events measure up
statistically. All monitor data will then be cleared from the MonitorFactory.

Note: You can perform a HOTS checkpoint independently of a story by
invoking the oracle.adfmf.util.HOTS.checkpoint() method. This
determines information for your application, such as total memory used by
the JVM, free memory, used memory (total minus free), and the number of
active features. The following shows a sample of the data returned by
checkpoint():

HOTS.memory.used (N/A) count: 1.0335056E7
HOTS.memory.free (N/A) count: 1.365112E7
HOTS.memory.total (N/A) count: 2.3986176E7
HOTS.memory.max (N/A) count: 4.9152E7
HOTS.threads.active (N/A) count: 20.0
HOTS.features.active (N/A) count: 6.0

The following example shows a managed bean that exposes methods to start a story
with a story ID (**Perf_Monitor**) and stop the story. This story could be started
and ended from a button in the UI of the application that you want to measure the
performance. For example, you may want to measure the loading of a page, so you
expose a UI button that enables you to start the story prior to navigating to the page
and another button that ends the story once the page loads.

package mobile;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.performance.Story;

public class PerfBean
{
 public PerfBean()

Measuring MAF Application Performance

30-32 Developing Mobile Applications with Oracle Mobile Application Framework

 {
 super();
 }
 public void startStory(ActionEvent ae)
 {
 Story.startStory("**Perf_Monitor**");
 }

 public void endStory(ActionEvent ae)
 {
 Story.endStory();
 }

}

The performance monitor level that you specify in the logging.properties file
determines how much data the story captures. That is, a logging.properties file
entry of oracle.maf.performance.monitor.reported.level = FINEST
produces a more verbose story than an entry of INFO. When the story ends, all
performance data captured during a story is sorted based on timing. This sorting
presents monitor observations corresponding to JavaScript events at a correct time,
since the time when these observations were recorded might be different from the
time when the measured events took place. MAF then iterates through the sorted
records and produces indented output, as demonstrated in the following example.

MAF writes the story into the application log file. A sample output for an application
that navigates from one AMX page to another AMX page might look like the
following:

Example 30-1 MAF Performance Monitor Data Generated using Story

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
 PERFMON-JAVA START: **Perf_Monitor**.Navigation.Embedded.Story
Perf_Monitor (Story Book) at 1452728427473

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
 PERFMON-JAVA START:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type action on node cb2 (Time to process
event) at 1452728427416

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
 PERFMON-JAVA STOP:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type action on node cb2 (Time to process
event) took: 14897.0ms
 (started at 1452728427416)

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
 PERFMON-JAVA START:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type action on node cb1 (Time to process
event) at 1452728442323

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
PERFMON-JAVA STOP:
 Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type action on node cb1 (Time to process
event) took:
 586.0ms (started at 1452728442323)

Measuring MAF Application Performance

Testing and Debugging MAF Applications 30-33

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
PERFMON-JAVA START:
 Perf_Monitor.Navigation.Container.Load page /view2.amx
 (Time to fully render the page) at 1452728442441

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
PERFMON-JAVA STOP:
 Perf_Monitor.Navigation.Container.Load page /view2.amx
 (Time to fully render the page) took: 468.0ms (started at
1452728442441)

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
PERFMON-JAVA START:
 Perf_Monitor.Navigation.Embedded.Evaluate method
expression #{myBean2.endStory}
 (UserSpace) at 1452728450665

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
PERFMON-JAVA STOP:
 Perf_Monitor.Navigation.Embedded.Evaluate method
expression #{myBean2.endStory}
 (UserSpace) took: 78.0ms (started at 1452728450665)

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - start]
PERFMON-JAVA START:
 Perf_Monitor.Navigation.Container.Process AMX event
Page: /view2.amx
 event of type action on node cb2 (Time to process event) at
1452728450626

[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
PERFMON-JAVA STOP:
 Perf_Monitor.Navigation.Container.Process AMX event
Page: /view2.amx
 event of type action on node cb2 (Time to process event)
 took: 85.0ms (started at 1452728450626)
[INFO - oracle.maf.performance.monitor.observations.reported - Monitor - stop]
PERFMON-JAVA STOP:
 Perf_Monitor.Navigation.Embedded.Story **Perf_Monitor**
(Story Book)
 took: 23367.0ms (started at 1452728427473)

[INFO - oracle.maf.performance.monitor.reported - MonitorFactory - dumpStatistics]
PERFMON-JAVA STATS:
 Monitor
'com.company.aPerfMonDocApp.**Perf_Monitor**.Navigation.Container.Process AMX event'
 description: 'Time to process event' observations: 3
 mean: 5189.333333333333 standard deviation: 8410.817102596711

[INFO - oracle.maf.performance.monitor.reported - MonitorFactory - dumpStatistics]
PERFMON-JAVA STATS:
 Monitor
'com.company.aPerfMonDocApp.**Perf_Monitor**.Navigation.Container.Load page'
 description: 'Time to fully render the page' observations:
1
 mean: 468.0 standard deviation: NaN

[INFO - oracle.maf.performance.monitor.reported - MonitorFactory - dumpStatistics]
PERFMON-JAVA STATS:
 Monitor
'com.company.aPerfMonDocApp.**Perf_Monitor**.Navigation.Embedded.Evaluate

Measuring MAF Application Performance

30-34 Developing Mobile Applications with Oracle Mobile Application Framework

 method expression' description: 'UserSpace' observations: 1
mean: 78.0
 standard deviation: NaN

[INFO - oracle.maf.performance.monitor.reported - MonitorFactory - dumpStatistics]
PERFMON-JAVA STATS:
 Monitor
'com.company.aPerfMonDocApp.**Perf_Monitor**.Navigation.Embedded.Story'
 description: 'Story Book' observations: 1 mean: 23367.0
standard deviation: NaN

1452728427473 0001.0001 [0000] Start: **Perf_Monitor**.Navigation.Embedded.Story
Perf_Monitor (INFO)
1452728442323 0002.0002 [0001] Start:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type
action on node cb1 (INFO)

1452728442441 0003.0003 [0002] Start:
Perf_Monitor.Navigation.Container.Load page /view2.amx (INFO)
1452728442909 0003.0003 [0002] Stop: **Perf_Monitor**.Navigation.Container.Load
page /view2.amx
 (took = 468.0) started
at 1452728442441 (INFO)

1452728442909 0002.0002 [0001] Stop:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view1.amx event of type action on
node cb1 (took = 586.0)
 started at 1452728442323 (INFO)

1452728450626 0004.0002 [0001] Start:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view2.amx event of type action on
node cb2 (INFO)

1452728450665 0005.0003 [0004] Start:
Perf_Monitor.Navigation.Embedded.Evaluate
 method expression
#{myBean2.endStory} (INFO)

1452728450711 0004.0002 [0001] Stop:
Perf_Monitor.Navigation.Container.Process AMX event Page:
 /view2.amx event of type action on
node cb2 (took = 85.0)
 started at 1452728450626 (INFO)

1452728450743 0005.0003 [0004] Stop:
Perf_Monitor.Navigation.Embedded.Evaluate method
 expression #{myBean2.endStory} (took =
78.0)
 started at 1452728450665 (INFO)

1452728450840 0001.0001 [0000] Stop: **Perf_Monitor**.Navigation.Embedded.Story
Perf_Monitor
 (took = 23367.0) started at
1452728427473 (INFO)

Measuring MAF Application Performance

Testing and Debugging MAF Applications 30-35

30.9 Sending Diagnostic Information to Oracle Mobile Cloud Service
Describes how to insert diagnostic information from MAF applications that access
REST web services hosted by Oracle Mobile Cloud service (MCS).

MAF applications that access REST web services use RestServiceAdapter to access
these services. If your application accesses REST services hosted by MCS and you
want to use MCS Diagnostics to monitor and/or debug your application’s calls to
REST services hosted by MCS, create a McsRestServiceAdapter to send the
following information to MCS:

• Mobile diagnostic session ID.

This attribute maps an application session on a specific device. The application
sends this information through the Oracle-Mobile-DIAGNOSTIC-SESSION-ID
HTTP request header.

• Mobile device ID

Correlates the REST API requests sent to MCS with the physical device that makes
the request. The mobile application supplies this information through the Oracle-
Mobile-Device-ID HTTP request header.

• Client request time,

Indicates the API call time stamp that is captured on the client side immediately
before the application submits the request. The mobile application supplies this
information using the HTTP request header Oracle-Mobile-CLIENT-
REQUEST-TIME attribute.

The following example shows the type of information that a MAF application using
this type of adapter inserts into HTTP request headers:

Oracle-Mobile-Diagnostic-Session-ID: 19975
Oracle-Mobile-Device-ID: d09379504b0a3247
Oracle-Mobile-Client-Request-Time: 2016-02-09T09:03:17.777Z

The following example shows how you create the McsRestServiceAdapter:

...
import oracle.maf.api.dc.ws.rest.RestServiceAdapterFactory;
import oracle.maf.api.dc.ws.rest.RestServiceAdapter;

...
RestServiceAdapterFactory factory = RestServiceAdapterFactory.newFactory();
RestServiceAdapter mcsRestServiceAdapter = factory.createMcsRestServiceAdapter();

For more information about creating an adapter, see Creating a Rest Service Adapter
to Access Web Services.

30.10 Sending Analytics Information to Oracle Mobile Cloud Service
A MAF application with one or more mobile backends (MBE) hosted on MCS can send
analytics information about application usage to MCS Analytics.

Analytics information that MAF generates to send to MCS provides information about
the application lifecycle and an end user’s interaction with the MAF application. MAF
categorizes analytics events into MAF Framework events and business events. You
send information captured in response to MAF Framework events to MCS by
configuring properties in your application’s logging.properties file. Examples of

Sending Diagnostic Information to Oracle Mobile Cloud Service

30-36 Developing Mobile Applications with Oracle Mobile Application Framework

MAF framework events includes application start, feature events like activate and
feature navigation, and user authentication events. MAF logs these events by default
when you configure your application to send analytics information to MCS.

The following example shows the payload that MAF generates and transfers to MCS
for a FeatureNavigation MAF framework event that occurs when an end user is
redirected to a login application feature (LF1) before navigating to secured application
features (secure-feature-1, and secure-feature-2). MAF logs all MAF
framework events within a session that starts when a MAF application that is
configured to send analytics information activates. The session ends when the MAF
application deactivates. In the following example, the sessionID property identifies
the session.

JDeveloper’s Log window displays this payload when you deploy your MAF
application to a device in debug mode.

"name":"FeatureNavigation", "properties":{"SourceId":"null","DestinationId":"LF1"},
"type":"custom", "timestamp":"2015-11-06T20:35:27.384Z",

"sessionID":"com.company.MafAnalytics_736ad3d4-3443-4f65-8378-4e653ade2d30_1601211149
22"

"name":"FeatureNavigation", "properties":{"SourceId":"LF1","DestinationId":"secure-
feature-1"}, "type":"custom",
 "timestamp":"2015-11-06T20:35:27.384Z",
"sessionID":"com.company.MafAnalytics_736ad3d4-3443-4f65-8378-4e653ade2d30_1601211149
22"

"name":"FeatureNavigation", "properties":{"SourceId":"secure-
feature-1","DestinationId":"secure-feature-2"}, "type":"custom",
 "timestamp":"2015-11-06T20:35:27.384Z",
"sessionID":"com.company.MafAnalytics_736ad3d4-3443-4f65-8378-4e653ade2d30_1601211149
22"

Business events are events that you (the application developer) define in your
application. You capture the analytics information for the event using the APIs that
MAF provides in oracle.maf.api.analytics.AnalyticsUtilities. MAF
also exposes a data control method (fireEventListener) on the
ApplicationFeatures data control. Drag and drop this data control method to an AMX
page where you can configure it to listen for the event that you define. These APIs can
also be used to send analytics from MAF Framework events to MCS.

MAF also enables you to send context event information (device model, country, time
zone, and so on) to MCS or to another repository that you choose.

You can also send analytics to repositories other than MCS.

For more information, see:

• How to Configure the Transfer of Analytics to Oracle Mobile Cloud Service

• How to Programmatically Send Analytics to Oracle Mobile Cloud Service

• How to Send Context Events to Oracle Mobile Cloud Service

• How to Send Analytics to Other Repositories

• MAF Framework Events that Capture Analytics Information (Describes the MAF
Framework events that MAF provides.)

Sending Analytics Information to Oracle Mobile Cloud Service

Testing and Debugging MAF Applications 30-37

• For information about the classes in the oracle.maf.api.analytics package
that you can extend and customize, see Java API Reference for Oracle Mobile
Application Framework.

30.10.1 How to Configure the Transfer of Analytics to Oracle Mobile Cloud Service
MAF populates the logging.properties file in a new MAF application with the
properties that you need to configure to send analytics information from your MAF
application to MCS Analytics.

The following example shows the ready-to-use entries that the
logging.properties file contains when you create a new MAF application.

Configure the analytics logger
Analytics events are logged only if oracle.maf.api.analytics.level=ALL
Set to OFF or any level other than ALL to disable analytics
oracle.maf.api.analytics.level=ALL
oracle.maf.api.analytics.handlers=oracle.maf.api.analytics.LoggerAnalyticsHandler,
oracle.maf.api.analytics.McsAnalyticsHandler
oracle.maf.api.analytics.custom.level=INFO
oracle.maf.api.analytics.LoggerAnalyticsHandler.level=INFO

Configure MCSHandler
oracle.maf.api.analytics.McsAnalyticsHandler.level=INFO
oracle.maf.api.analytics.McsAnalyticsHandler.connectionId=Mcs_Connection_Id
oracle.maf.api.analytics.McsAnalyticsHandler.batchSize=25
oracle.maf.api.analytics.McsAnalyticsHandler.offlineWrite=false
oracle.maf.api.analytics.McsAnalyticsHandler.recordUsername=false
oracle.maf.api.analytics.McsAnalyticsHandler.contextProviderClassName=oracle.maf.api.
analytics.McsContextProvider

Of the properties listed in the previous example, only connectionId is mandatory.
Table 30-2 describes the optional properties. The connectionId property is where
you define a valid connection to a MCS MBE. Use the connectionId defined in your
application’s connection.xml as the value for this property. If you do not specify a
valid connectionId, MAF does not send events to MCS. Instead, MAF appends
these events on disk until the maximum number of events allowed by the device is
reached.

A valid connectionId in your application’s connection.xml file uses the ID of the
MBE (oracle-mobile-backend-id) and the application key (oracle-mobile-
application-key) that is generated when the MAF application registers with the
MBE. MAF adds these two values to the HTTP header that creates a connection to
MCS. These values identify the MBE to which the MAF application sends analytic
events and identify the application from which the analytics events originate.

Note: You do not need to register your MAF application as a client on MCS
for all 3 platforms (Android, iOS, and Universal Windows Platform). Register
the MAF application for one platform and use the generated application key
as a value for oracle-mobile-application-key.

If the connection to the MCS MBE uses HTTP basic authentication type, associate
oracle/wss_http_token_client_policy with the connection. For connections
that use Oauth, associate oracle/http_oauth2_token_mobile_client_policy
with the connection. If you do not associate the correct policy with the connection,
MAF does not flush analytics events to MCS. For more information about associating a
security policy with a connection, see Accessing Secure Web Services.

Sending Analytics Information to Oracle Mobile Cloud Service

30-38 Developing Mobile Applications with Oracle Mobile Application Framework

The following example shows extracts of an application connections.xml file with
values for the properties just discussed.

<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="Mcs_Connection_Id"
className="oracle.adf.model.connection.url.HttpURLConnection"
 adfCredentialStoreKey="McsLoginConn" xmlns="">
 ...
 <RefAddresses>
 <XmlRefAddr addrType="Mcs_Connection_Id">
 <Contents>
 <urlconnection name="Mcs_Connection_Id" url="http://
mcs_instance.oracle.com:7201"/>
 ...
 </Reference>
 <Reference name="McsLoginConn"
className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="McsLoginConn" partial="false"
manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://mcs_instance.oracle.com:7201/mobile/platform/users/
login"/>
 <logout url="http://mcs_instance.oracle.com:7201/mobile/platform/users/
logout"/>
 <customAuthHeaders>
 <header name="oracle-mobile-backend-id" value="0e4a9dfa-046a-4aaa-
b8dd-331044ad81f4"/>
 <header name="oracle-mobile-application-key"
value="be53201a-8674-48d7-96d0-bb02f4cd06c5"/>
 </customAuthHeaders>
 ...
</References>

Configure the following optional entries in the logging.properties file to
implement the described functionality.

Table 30-2 Optional Properties to Manage the Transfer of Analytics from a MAF
Application

Property Description

batchSize An optional property that determines the number of events saved locally
before the MAF application sends them to an associated MCS instance. Events
will be uploaded in batches to MCS. There is a limit on maximum batch size
(65). If batchSize is not provided or exceeds the maximum limit of 65, a
default batchSize of 25 applies.

Sending Analytics Information to Oracle Mobile Cloud Service

Testing and Debugging MAF Applications 30-39

Table 30-2 (Cont.) Optional Properties to Manage the Transfer of Analytics from a
MAF Application

Property Description

offlineWrite An optional property that determines if offline buffering of events should be
enabled or not. It is possible that events get generated while a device is offline
or the client is not able to establish a connection with MCS. Configure the
offlineWrite property if you do not want to lose these events. Once the
connection is re-established, MAF flushes these saved events to MCS. The
offlineWrite property ensures that those events get cached to disk to
enable their buffering while offline. MAF provides support for up to 250
events. Events will be saved on a rolling basis. That is, MAF saves the last 250
events. This ensures offline buffering of the latest events. MAF also flushes
events to MCS when the application deactivates, irrespective of whether
batchSize has been reached or not. By default, offlineWrite is disabled.
Set it to True to enable it.

recordUsern
ame

An optional property that determines if username should be captured or not.
Set to True so that MAF captures the username when a user logs into a
secured feature. If an application does not contain any secured feature or if the
user has not yet logged into the secured feature then username remains null. If
the application contains several secured features, then username will be
updated based upon the credentials (username) used to log into that feature.
The username captured will be sent as one of the fields in the context event.
Therefore, if you intend to capture username, configure
logging.properties so that the recordUsername property is True and
contextProviderClassName has a valid class name for generating the
context event. For example,
oracle.maf.api.analytics.McsAnalyticsHandler.recordUsernam
e=true .

contextProv
iderClassNa
me

Optional. Provide a value for this property when the context event is
generated. The value you specify determines the class that generates the
context event for MCS. The context event contains information like timezone
offset, geolocation and device information. It can also contain username if
recordUsername is set to True. The contextProviderClassName
property is disabled by default. The following example shows how you enable
it:
oracle.maf.api.analytics.McsAnalyticsHandler.contextProvid
erClassName=oracle.maf.api.analytics.McsContextProvider

30.10.2 How to Programmatically Send Analytics to Oracle Mobile Cloud Service
MAF provides an API in oracle.maf.api.analytics.AnalyticsUtilities
that you can use to send events to MCS.

The AnalyticsUtilities class provides the following API:

public static void fireEvent(Level level, String category, String eventName)
// Send an event without a payload

public static void fireEvent(Level level, String category, String eventName,
JSONObject payload)
// Send an event with a JSON payload

level: The logging level of the event. Set to any standard level supported by
Java logging.

category: The category of the event. Set to 'custom' for all events except context,

Sending Analytics Information to Oracle Mobile Cloud Service

30-40 Developing Mobile Applications with Oracle Mobile Application Framework

 sessionStart(MAF Framework event) and sessionEnd(MAF Framework event).
Set the latter events to 'system'.

eventName: Provide your own event name if you do not use an event provided in the
AnalyticsUtilities class.
 Throws an exception if null.

payload: A JSONObject that contains key-value pairs for custom events. The
JSONObject must be of type String.
 No other data type is supported.

Configure your application’s logging.properties file with the values necessary to
transfer analytics to MCS before you use this API. Specify, for example, the MCS
connectionID.

The following example demonstrates how to use this API to send analytics from a
MAF application to MCS.

// Sending events from your application.

 // The following logs event when there is no payload to register for an event.
 AnalyticsUtilities.fireEvent(Level.WARNING, AnalyticsUtilities.CATEGORY_CUSTOM,
"EVENT_VIDEO_ACTIONS");

 // The following logs event when there is a JSON payload to send for a custom
event.
 try
 {
 JSONObject payload = new JSONObject();
 payload.put("PAYLOAD_VIDEONAME", getFileName());
 payload.put("PAYLOAD_ACTION", getAction());
 // Creating a custom event 'EVENT_VIDEO_ACTIONS' of level INFO
 AnalyticsUtilities.fireEvent(Level.INFO,
AnalyticsUtilities.CATEGORY_CUSTOM, "EVENT_VIDEO_ACTIONS" , payload);
 }

 catch(Throwable t)
 {
 // log the error
 }

You can set different log levels to capture events based on user interaction. For
example, the EVENT_VIDEO_ACTIONS event in the previous example could be of
INFO level when your end user performs a play action. Alternatively, it could be set to
WARNING level to capture events in case of failure. You manage the logging level in the
logging.properties file. For example, to manage the logging of
EVENT_VIDEO_ACTIONS events, configure the logging.properties file as
follows:

// Set to WARNING to log events for the play action. Set to INFO (or a lower level)
// to log events for the play action plus failure events
oracle.maf.api.analytics.custom.EVENT_VIDEO_ACTIONS.level=WARNING

// Disable logging of EVENT_VIDEO_ACTIONS
oracle.maf.api.analytics.custom.EVENT_VIDEO_ACTIONS.level=OFF

Sending Analytics Information to Oracle Mobile Cloud Service

Testing and Debugging MAF Applications 30-41

30.10.3 How to Send Context Events to Oracle Mobile Cloud Service
MAF applications can capture context events and send the collected information to
MCS or to a repository other than MCS.

A context event defines the context of subsequent events until another context event is
logged. An event can be logged from a MAF Framework event or from events that you
define in your application.

Table 30-3 lists key names that MCS accepts in the key-value pairs of the JSON
object(s) that transmit context events from the MAF application. MCS requires that all
properties be of type String. All properties in the following table are optional.

Note:

MCS translates latitude and longitude information to city, state, country, and
postal code. Provide latitude and longitude information or locality, region,
postalCode and country, but not both.

Table 30-3 Valid Key Names to Send Context Event Information to MCS

Key Name Description

userName The user of the device who was logged in to
the secured feature when the context events
were logged.

timezone Device's offset from UTC in seconds

model Device's model name

osName Device operating system name

osVersion Device operating system version

latitude Device's GPS latitude

longitude Device's GPS longitude

locality Device's locality

region Device's region

postalCode Device's postal code

country Device's country

To send context event information from your MAF application to MCS, configure the
following entry in your logging.properties file:

oracle.maf.api.analytics.McsAnalyticsHandler.contextProviderClas
sName= oracle.maf.api.analytics.McsContextProvider

With this entry configured in your logging.properties file, MAF sends the
context event information listed in Table 30-3 to MCS. You also need to set
recordUsername to True in the logging.properties file if you want the MAF
application to send the user name to MCS.

If you want to generate context events that contain fields you define, configure the
following entry in your logging.properties file:

Sending Analytics Information to Oracle Mobile Cloud Service

30-42 Developing Mobile Applications with Oracle Mobile Application Framework

oracle.maf.api.analytics.McsAnalyticsHandler.contextProviderClas
sName=oracle.maf.demo.CustomContextProvider

Where oracle.maf.demo.CustomContextProvider is a class that implements
oracle.maf.api.analytics.ContextProvider, as shown in Example 30-2. The
generated context event contains the timezone, carrier, and manufacturer information.

Example 30-2 Custom Context Provider to Send Context Information

package oracle.maf.demo;

import java.util.Date;
import java.util.TimeZone;
import oracle.maf.api.analytics.ContextProvider;
import oracle.adfmf.json.JSONObject;

public class CustomContextProvider
 implements ContextProvider
 {
 public CustomContextProvider()
 {
 super();
 }

 public JSONObject generateContext()
 {
 JSONObject myCustomCtx = new JSONObject();

 //
 // TimeZone - Mobile device's offset from UTC in seconds
 //
 Date date = new Date();
 int offset = TimeZone.getDefault().getOffset(date.getTime()) / 1000;

 try
 {
 myCustomCtx.put("timezone", new Integer(offset).toString());
 myCustomCtx.put("carrier", "AT&T");
 myCustomCtx.put("manufacturer", "Apple");
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }

 return myCustomCtx;
 }
 }

30.10.4 How to Send Analytics to Other Repositories
MAF applications can send analytics to repositories other than MCS.

To achieve this, you write a custom class that extends
oracle.maf.api.analytics.McsAnalyticsHandler and overrides
processEvent() method, as shown in the following example.

package oracle.maf.demo;

import java.io.IOException;
import oracle.adfmf.framework.exception.AdfException;

Sending Analytics Information to Oracle Mobile Cloud Service

Testing and Debugging MAF Applications 30-43

import oracle.adfmf.json.JSONArray;
import oracle.adfmf.resource.CDCErrorBundle;
import oracle.adfmf.util.ResourceBundleHelper;
import oracle.maf.api.analytics.McsAnalyticsHandler;
import oracle.maf.api.dc.ws.rest.RestServiceAdapter;
import oracle.maf.api.dc.ws.rest.RestServiceAdapterFactory;

public class CustomHandler extends McsAnalyticsHandler
{
 public CustomHandler()
 {
 super();
 }

 //
 // Establish the connection to a different repository and flush the events.
 //
 protected void processEvents() throws AdfException
 {
 // Extract the events to be flushed
 _events = super.getEvents();

 RestServiceAdapter restAdapter =
RestServiceAdapterFactory.newFactory().createRestServiceAdapter();
 restAdapter.clearRequestProperties();

 // Get valid connectionId of the repository.
 restAdapter.setConnectionName(getConnectionId());
 restAdapter.setRequestMethod(RestServiceAdapter.REQUEST_TYPE_POST);
 restAdapter.addRequestProperty("Content-Type", "application/json");
 restAdapter.setRequestURI(_ANOTHER_REPOSITORY_URI);
 restAdapter.setGenerateAnalyticsEvents(false);

 // make REST call to send events
 try
 {
 String responseMessage = restAdapter.send(_events.toString());
 }
 catch (IOException ex)
 {
 throw new AdfException(AdfException.ERROR,
ResourceBundleHelper.CDC_ERROR_BUNDLE,
 CDCErrorBundle.ERR_ANALYTICS_FLUSH_EVENTS, new Object[]
{ ex });
 }
 }

 private JSONArray _events = new JSONArray();
 private static final String _ANOTHER_REPOSITORY_URI = "_repository_uri";
}

You also need register the custom class in the logging.properties file. For
example, to register CustomHandler, configure logging.properties as shown in
the following example:

Configure the analytics logger
oracle.maf.api.analytics.level=ALL
oracle.maf.api.analytics.handlers=oracle.maf.demo.CustomHandler
oracle.maf.api.analytics.custom.level=INFO

Sending Analytics Information to Oracle Mobile Cloud Service

30-44 Developing Mobile Applications with Oracle Mobile Application Framework

Configure CustomHandler
oracle.maf.demo.CustomHandler.level=INFO
oracle.maf.demo.CustomHandler.connectionId=RepositoryConn
oracle.maf.demo.CustomHandler.batchSize=7
oracle.maf.demo.CustomHandler.offlineWrite=true
oracle.maf.demo.CustomHandler.recordUsername=false
oracle.maf.demo.CustomHandler.contextProviderClassName=oracle.maf.api.analytics.McsCo
ntextProvider

30.10.5 MAF Framework Events that Capture Analytics Information
MAF provides a range of MAF Framework events that capture analytics information.

These events are grouped into two categories (custom and system). Configure your
application’s logging.properties file so that the application sends these events to
MCS. First, configure your application’s logging.properties file to enable the
sending of analytics information by, among other things, specifying the MCS
connectionID. You then specify the events that you want to send. Use the
information in the following tables for this latter task.

Table 30-4 lists the MAF Framework events (custom category) that you can configure
in the logging.properties file to send analytics information to MCS from your
application. You can disable each event by setting it to OFF or to a higher logging level
than the level that enables logging of the event.

Table 30-4 MAF Framework Events (Custom Category)

Event Name Loggin
g Level

Enable or Disable Logging

UpdateAuthen

ticationStat

us

FINE oracle.maf.api.analytics.custom.UpdateAuthentica

tionStatus.level= FINE

oracle.maf.api.analytics.custom.UpdateAuthentica

tionStatus.level= OFF

FeatureNavig

ation

INFO oracle.maf.api.analytics.custom.FeatureNavigatio

n.level=INFO

oracle.maf.api.analytics.custom.FeatureNavigatio

n.level=OFF

Login INFO oracle.maf.api.analytics.custom.Login.level=INFO

oracle.maf.api.analytics.custom.Login.level=OFF

LoginCallbac

k

FINER oracle.maf.api.analytics.custom.LoginCallback.le

vel=FINER

oracle.maf.api.analytics.custom.LoginCallback.le

vel=OFF

Sending Analytics Information to Oracle Mobile Cloud Service

Testing and Debugging MAF Applications 30-45

Table 30-4 (Cont.) MAF Framework Events (Custom Category)

Event Name Loggin
g Level

Enable or Disable Logging

Timer INFO
for
Operati
ons:
Warnin
g and
Expire
d

FINE
for
Operati
on:
Adjust

oracle.maf.api.analytics.custom.Timer.level=INFO

oracle.maf.api.analytics.custom.Timer.level=FINE

oracle.maf.api.analytics.custom.Timer.level=OFF

Logout INFO oracle.maf.api.analytics.custom.Logout.level=INF

O

oracle.maf.api.analytics.custom.Logout.level=OFF

LogoutCallba

ck

FINER oracle.maf.api.analytics.custom.LogoutCallback.l

evel=FINER

oracle.maf.api.analytics.custom.LogoutCallback.l

evel=OFF

PageNavigati

on

INFO oracle.maf.api.analytics.custom.PageNavigation.l

evel=INFO

oracle.maf.api.analytics.custom.PageNavigation.l

evel=OFF

FeatureTrans

ition

INFO oracle.maf.api.analytics.custom.FeatureTransitio

n.level=INFO

oracle.maf.api.analytics.custom.FeatureTransitio

n.level=OFF

ApplicationT

ransition

INFO oracle.maf.api.analytics.custom.ApplicationTrans

ition.level=INFO

oracle.maf.api.analytics.custom.ApplicationTrans

ition.level=OFF

RESTWebServi

ce

INFO oracle.maf.api.analytics.custom.RESTWebService.l

evel=INFO

oracle.maf.api.analytics.custom.RESTWebService.l

evel=OFF

Table 30-5 lists the MAF Framework events (system category) that you can configure
in the logging.properties file to send analytics information to MCS from your
application

Sending Analytics Information to Oracle Mobile Cloud Service

30-46 Developing Mobile Applications with Oracle Mobile Application Framework

Table 30-5 MAF Framework Events (System Category)

Event Name Logging
Level

Description

sessionSt

art

INFO MAF reserves the use of this event name to identify the session
that it starts when a MAF application activates and starts to log
analytics information. Do not define events in your MAF
application that use this event name.

sessionEn

d

INFO MAF reserves the use of this event name to identify the session
that it stops when a MAF application deactivates and stops
logging analytics information. Do not define events in your MAF
application that use this event name.
MAF flushes events to MCS when sessionEnd occurs,
irrespective of whether batchSize has been reached or not.

context INFO Sends context event information (for example, the timezone,
carrier, and manufacturer of the device). Enable this event as
follows:

oracle.maf.api.analytics.McsAnalyticsHandler
 .contextProviderClassName=oracle.maf.api
 .analytics.McsContextProvider

For more information about the context event information, see
How to Send Context Events to Oracle Mobile Cloud Service

30.11 Inspecting Web Service Calls in a MAF Application
If your MAF application accesses REST services that were configured using the
design-time support for the creation of the client data model, you can add a reusable
application feature to view the request and response details of every REST call made
by the application. For more information about the client data model, see Creating the
Client Data Model in a MAF Application.

To add this feature to your application, perform the following steps:

1. In JDeveloper, go to the Application menu, and select the Application Properties...
option. The Application Properties dialog is displayed.

2. In the Application Properties dialog, click the Libraries and Classpath option,
shown in Figure 30-15.

Inspecting Web Service Calls in a MAF Application

Testing and Debugging MAF Applications 30-47

Figure 30-15 Application Properties dialog

3. In the Application Properties dialog, click the Add JAR/Directory button. The
Add Archive or Directory dialog is displayed.

4. In the Add Archive or Directory dialog, navigate to the directory ./
jdevinstall/jdeveloper/jdev/extensions/oracle.maf/FARs/CDM and
select the WebServiceCallsFeature.jar file and click the Open button, shown
in Figure 30-16.

Inspecting Web Service Calls in a MAF Application

30-48 Developing Mobile Applications with Oracle Mobile Application Framework

Figure 30-16 Add Archive or Directory dialog

5. The WebServiceCallsFeature.jar file appears under Library and Classpath.
Click OK to close the Application Properties dialog.

6. Open the maf-application.xml file in the editor and select the Feature
References option. Click the green plus icon on the right and select
oracle.maf.impl.cdm.wscalls from the Feature Id drop-down list, shown in
Figure 30-17.

Figure 30-17 maf-application.xml file

Inspecting Web Service Calls in a MAF Application

Testing and Debugging MAF Applications 30-49

7. Deploy your MAF application to view the application feature that allows you to
inspect web service calls, shown in Figure 30-18.

Figure 30-18 View Rest Calls

8. You can click on one of the REST call in the list to view all request and response
details.

Inspecting Web Service Calls in a MAF Application

30-50 Developing Mobile Applications with Oracle Mobile Application Framework

A
Troubleshooting MAF Applications

This appendix describes problems with various aspects of MAF applications, as well
as how to diagnose and resolve them.

This appendix includes the following sections:

• Problems with Input Components on iOS Simulators

• Code Signing Issues Prevent Deployment

• The credentials Attribute Causes Deployment to Fail

A.1 Problems with Input Components on iOS Simulators
Issue:

On MAF applications deployed to iOS simulators, text entered into one
<amx:inputText> component field becomes attached to the beginning of the text
entered in subsequent field when navigating from one field to another using a mouse.
For example, on a page with First Name, Middle Name, and Last Name input text
fields, if you enter John in the First Name field, then click the Middle Name field, and
enter P, the text displays as JohnP. Likewise, when you click the Last Name field, and
enter Smith, the text in that field displays as JohnPSmith, as shown in Figure A-1.

Figure A-1 Text Values Concatenate in Subsequent <amx:inputText> fields

Note:

This behavior only occurs on iOS simulators and in web pages, not on actual
devices.

Solution:

Use the keyboard on the simulator to traverse the input text fields rather than the
mouse.

Troubleshooting MAF Applications A-1

A.2 Code Signing Issues Prevent Deployment
Issue:

In some iOS development environments, MAF application deployment fails because of
code signing errors.

Solution:

To ensure that the MAF application is signed, add code signing data to the Mach-O
(Mach object) file by configuring the environment with CODESIGN_ALLOCATE. For
example, enter the following from the Terminal:

export CODESIGN_ALLOCATE="/Applications/Xcode.app/Contents/Developer/usr/bin/
codesign_allocate"

For more information, see codesign_allocate(1) OS X Manual Page and OS X ABI Mach-O
File Format Reference, both available from the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/).

A.3 The credentials Attribute Causes Deployment to Fail
Issue:

The presence of the credentials attribute defined for the adfmf:feature element
in the maf-feature.xml file causes JDeveloper to cancel deployment and write an
error similar to the following to the deployment log:

XML validation failed for file
/Users/jsmith/jdeveloper/mywork/MobileApplication/ViewController/src/META-INF/maf-
feature.xml.
[12:26:44 PM] The file contains the following errors:
Error (Line 3, Column 44): Attribute credentials not defined on element adfmf:feature
Error (Line 10, Column 49): Attribute credentials not defined on element
adfmf:feature
Error (Line 19, Column 51): Attribute credentials not defined on element
adfmf:feature
Error (Line 35, Column 69): Attribute credentials not defined on element
adfmf:feature
Error (Line 50, Column 65): Attribute credentials not defined on element
adfmf:feature
[12:26:50 PM] Deployment canceled.
[12:26:50 PM] ---- Deployment incomplete ----.
[12:26:50 PM] XML validation failed.

Solution:

When you migrate an application created by ADF Mobile, you must verify that the
authentication mode once defined in maf-feature.xml (such as <adfmf:feature
id="feature1" name="feature1" credentials="remote">) is now defined
using the authenticationMode attribute in the connections.xml file.
JDeveloper's audit rules can detect the presence of the credentials attribute and
assist you in removing it from the maf-feature.xml file.

Because only the local and remote values are valid for the autneticationMode
attribute, do not migrate the value of none (<adfmf:feature id="feature1"
name="feature1" credentials="none">) to the authenticateionMode
attribute, as doing so will cause the deployment will fail. For more information, see
Overview of the Authentication Process for MAF Applications.

Code Signing Issues Prevent Deployment

A-2 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

B
Local HTML and Application Container APIs

This chapter describes the MAF JavaScript API extensions, the MAF Container
Utilities API, and how to use the AdfmfJavaUtilities API for HTML application
features, including custom HTML springboard applications.

This chapter includes the following sections:

• Using MAF APIs to Create a Custom HTML Springboard Application Feature

• The MAF Container Utilities API

• Accessing Files Using the getDirectoryPathRoot Method

B.1 Using MAF APIs to Create a Custom HTML Springboard Application
Feature

Using JavaScript to call the JavaScript API extensions enables you to add the
navigation functions to a custom springboard page authored in HTML. As stated in
What You May Need to Know About Custom Springboard Application Features with
HTML Content, you can enable callbacks and use Apache Cordova by including
methods in the JavaScript <script> tag. The following example illustrates using this
tag to call Cordova.

...
<script type="text/javascript">if (!window.adf) window.adf = {};
 adf.wwwPath =
 "/~maf.device~/www/";</script>
 <script type="text/javascript" src="/~maf.device~/www/js/base.js"></script>
...

It is recommended that you use the virtual path /~maf.device~/ when including
base.js so that the browser will identify the request as being for a MAF resource and
not for the remote server. This approach works in both remote as well as local HTML
pages and is the best way to include base.js in an HTML feature (regardless of
where it is being served from). For more information, see Enabling Remote
Applications to Access Container Services.

Local HTML and Application Container APIs B-1

Tip:

To access (and determine the location of) the www/js directory, you must first
deploy a MAF application and navigate to the deploy directory. The www/js
directory resides within the platform-specific artifacts generated by the
deployment. For iOS deployments, the directory is located within the
temporary_xcode_project directory. For Android deployments, this
directory is located in the assets directory of the Android application
package (.apk) file. For a Windows deployment in the Release mode, the
directory location is appLocationOnMachine\deploy
\deploymentprofilename\release\MafTemplate\www\js. See also
What You May Need to Know About Custom Springboard Application
Features with HTML Content.

Note:

Because the path does not exist during design time, JDeveloper notes the
JavaScript includes in the source editor as an error by highlighting it with a
red, wavy underline. This path is resolved at runtime.

The MAF extension to the Cordova API enables the API of the mobile device to access
the configuration metadata in the maf-feature.xml and maf-application.xml
files, which in turn results in communication between the mobile device and the MAF
infrastructure. These extensions also direct the display behavior of the application
features.

For information on the default MAF springboard page, springboard.amx, and
about the ApplicationFeatures data control that you can use to build a customized
springboard, see What You May Need to Know About Custom Springboard
Application Features with MAF AMX Content.

B.1.1 About Executing Code in Custom HTML Pages
The following example illustrates a script defining the showpagecomplete event on
the handlePageShown callback function. By listening to this event using standard
DOM (Document Object Model) event listening, custom HTML pages (such as login
pages) can invoke their own code after MAF has loaded and displayed the page for
the first time.

<script>
 function handlePageShown()
 {
 console.log("Page is shown!");
 }
 document.addEventListener("showpagecomplete", handlePageShown, false);
</script>

Note:

The showpagecomplete event guarantees the appropriate MAF state; other
browser and third-party events, such as load and Cordova's deviceready,
may not. Do not use them.

Using MAF APIs to Create a Custom HTML Springboard Application Feature

B-2 Developing Mobile Applications with Oracle Mobile Application Framework

B.2 The MAF Container Utilities API
The methods of the MAF Container Utilities API provide MAF applications with such
functionality as navigating to the navigation bar, displaying a springboard, or
displaying application features. You can use these methods at the Java and JavaScript
layers of MAF.

In Java, the Container Utilities API is implemented as static methods on the
AdfmfContainerUtilities class, which is located in the
oracle.adfmf.framework.api package. The following example illustrates calling
the gotoSpringboard method. For more information on
oracle.adfmf.framework.api.AdfmfContainerUtilities, see Java API
Reference for Oracle Mobile Application Framework.

import oracle.adfmf.framework.api.AdfmfContainerUtilities;
...
AdfmfContainerUtilities.gotoSpringboard();
...

B.2.1 Using the JavaScript Callbacks
The signatures of Java and JavaScript both match. In Java, they are synchronous and
return results directly. Because JavaScript is asynchronous, there are two callback
functions added for every function: a success callback that returns the results and a
failed callback that returns any exception that is thrown. Within a Java method, the
success value is returned from the function, or method, and the exception is thrown
directly from the method. The pseudocode in the following example illustrates how a
call with no arguments, public static functionName() throws, is executed
within Java using try and catch blocks.

...
 try {
 result = AdfmfContainerUtilities.functionName();
 }
 catch() {
 ...
 }

...

Because JavaScript calls are asynchronous, the return is required through the callback
mechanism when the execution of the function is complete. The pseudocode in the
following example illustrates the signature of the JavaScript call.

adf.mf.api.functionName(
 function(successFunction, failureFunction) { alert("functionName complete"); },
 function(successFunction, failureFunction) { alert("functionName failed with " +
 adf.mf.util.stringify(failureFunction); }
);

JavaScript calls cannot return a result because they are asynchronous. They instead
require a callback mechanism when the execution of the function has completed. The
signature for both the success and failed callbacks is function(request,
response), where the request argument is a JSON representation for the actual
request and the response is the JSON representation of what was returned by the
method (in the case of success callback functions) or, for failed callback functions,
a JSON representation of the thrown exception.

The MAF Container Utilities API

Local HTML and Application Container APIs B-3

Note:

The callback functions must be invoked before subsequent JavaScript calls can
be made to avoid problems related to stack depth or race conditions.

The pseudocode in the following example illustrates how a call with one or more
arguments, such as public static <return value> <function
name>(<arg0>, <arg1>, ...) throws <exceptions>, is executed within Java
using a try-catch block.

try {
 result = AdfmfContainerUtilities.<function_name>(<arg0>, <arg1>, ...);
}
catch(<exception>) {
 ...
}

For information on how to invoke MAF JavaScript APIs from pages defined as local
HTML or remote URL, see Enabling Remote Applications to Access Container
Services.

B.2.2 Using the Container Utilities API
The Container Utilities API provides the following methods:

• getApplicationInformation—Retrieves the metadata for the MAF application.

• gotoDefaultFeature—Activates the default application feature.

• gotoFeature—Activates a specific application feature.

• getFeatures—Retrieves the application features.

• getFeatureByName—Retrieves information about the application feature using the
application feature's name.

• getFeatureById—Retrieves an application feature using its ID.

• resetFeature—Resets the application feature to the same state as when it was
loaded.

• resetApplication—Resets the application.

• gotoSpringboard—Activates the springboard.

• showSpringboard—Shows the springboard

• hideSpringboard—Hides the springboard

• showNavigationBar—Displays the navigation bar.

• hideNavigationBar—Hides the navigation bar.

• showPreferences—Displays the preferences page.

• invokeMethod—Invokes a Java method.

• invokeContainerMethod—Invokes a native method on the specified class with the
given arguments.

The MAF Container Utilities API

B-4 Developing Mobile Applications with Oracle Mobile Application Framework

• invokeContainerJavaScriptFunction—Invokes a JavaScript method.

• sendEmail—Displays the mobile device's email interface.

• sendSMS—Displays the mobile device's text messaging (SMS) interface.

The Container Utilities API also include methods for placing badges and badge
numbers on applications. For more information, see Application Icon Badging.

B.2.3 getApplicationInformation
This method returns an ApplicationInformation object that contains information
about the application. This method returns such metadata as the application ID,
application name, version, and the vendor of an application.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.ApplicationInformation
 getApplicationInformation()
 throws oracle.adfmf.framework.exception.AdfException

The following example illustrates calling this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 ApplicationInformation ai =
AdfmfContainerUtilities.getApplicationInformation();
 String applicationId = ai.getId();
 String applicationName = ai.getName();
 String vendor = ai.getVendor();
 String version = ai.getVersion();
 ...
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void getApplicationInformation(success, failed)

The success callback must be in the form of function(request, response),
where the request argument contains the original request and the response
argument contains the associated AdfmfContainerUtilities method's return
value, which is the ApplicatiaonInformation object containing application-level
metadata. This includes the application name, vendor, version, and application ID.

The failed callback must be in the form of function(request, response),
where the request contains the original request and the response contains the error.

The following example illustrates using these callback functions to retrieve the
application information.

adf.mf.api.getApplicationInformation(
 function(req, res) { alert("getApplicationInformation complete"); },
 function(req, res) { alert("getApplicationInformation failed with " +
 adf.mf.util.stringify(res); }
);

The MAF Container Utilities API

Local HTML and Application Container APIs B-5

B.2.4 gotoDefaultFeature
This method requests that MAF display the default application feature. The default
application feature is the one that is displayed when the MAF application is started.

Note:

This method may not be able to display an application feature if it has
authentication- or authorization-related problems.

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void gotoDefaultFeature(success, failed)

The success callback function must be in the form of function(request,
response), where the request argument contains the original request and the
response argument contains the associated AdfmfContainerUtilities method's
return value (void).

The failed callback function must be in the form of function(request,
response), where the request argument contains the original request and the
response argument contains the error.

The following example illustrates using these callbacks to call the default application
feature.

adf.mf.api.gotoDefaultFeature(
 function(req, res) { alert("gotoDefaultFeature complete"); },
 function(req, res) { alert("gotoDefaultFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.5 gotoFeature
This method requests that MAF display the application feature identified by its ID.

Note:

This method may not be able to display an application feature if it has
authentication- or authorization-related problems.

Within Java, this method is called as follows:

public static void gotoFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in the following example, is the ID of the
application feature.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.gotoFeature("feature.id");
 }

The MAF Container Utilities API

B-6 Developing Mobile Applications with Oracle Mobile Application Framework

 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void gotoFeature(featureId, success, failed)

The featureId parameter is the application feature ID. This parameter activates the
success callback function and must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions to call an application
feature.

adf.mf.api.gotoFeature("feature0",
 function(req, res) { alert("gotoFeature complete"); },
 function(req, res) { alert("gotoFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.6 getFeatures
This method returns an array of FeatureInformation objects that represent the
available application features. The returned metadata includes the feature ID, the
application feature name, and the file locations for the image files used for the
application icons. This call enables a custom springboard implementation to access the
list of application features that are available after constraints have been applied.

Note: These application features would also display within the default
springboard.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation[] getFeatures()
 throws oracle.adfmf.framework.exception.AdfException

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 FeatureInformation[] fia = null;
 fia = AdfmfContainerUtilities.getFeatures();

 for(int f = 0; f < fia.length; ++f) {
 FeatureInformation fi = fia[i];
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 ...

The MAF Container Utilities API

Local HTML and Application Container APIs B-7

 }
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned values
and the exceptions to be passed back to the JavaScript calling code as follows:

public void getFeatures(success, failed)

The success callback function must be in the form of function(request,
response), where the request argument contains the original request and the
response argument contains the associated AdfmfContainerUtilities method's
return value (the array of FeatureInformation objects).

The failed callback function must be in the form of function(request,
response), where the request argument contains the original request and the
response argument contains the error (AdfException).

adf.mf.api.getFeatures(
 function(req, res) { alert("getFeatures complete"); },
 function(req, res) { alert("getFeatures failed with " +
 adf.mf.util.stringify(res); }
);

B.2.7 getFeatureByName
This method returns information about the application feature using the passed-in
name of the application feature.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation getFeatureByName(java.lang.String
 featureName)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in the following example, is the name of the
application feature.

 ...
 try {
 FeatureInformation fi =
AdfmfContainerUtilities.getFeatureByName("feature.name");
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureByName(featureName, success, failed)

The featureName parameter is the name of the application feature. The success
callback function and must be in the form of function(request, response),

The MAF Container Utilities API

B-8 Developing Mobile Applications with Oracle Mobile Application Framework

where the request contains the original request and the response contains the
associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.getFeatureByName("feature.name",
 function(req, res) { alert("getFeatureByName complete"); },
 function(req, res) { alert("getFeatureByName failed with " +
 adf.mf.util.stringify(res); }
);

B.2.8 getFeatureById
This method retrieves an application feature using its application ID.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation getFeatureById(String featureId)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in the following example, is the ID of the
application feature.

 try {
 FeatureInformation fi = AdfmfContainerUtilities.getFeatureById("feature.id");
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureById(featureId, success, failed)

The featureId parameter is the ID of the application feature. The success callback
function and must be in the form of function(request, response), where the
request contains the original request and the response contains the associated
AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions to retrieve an
application feature.

adf.mf.api.getFeatureById("feature.id",
 function(req, res) { alert("getFeatureById complete"); },
 function(req, res) { alert("getFeatureById failed with " +
 adf.mf.util.stringify(res); }
);

B.2.9 resetFeature
This method resets the state of the application feature. It resets the Java-side model for
the application feature and then restarts the user interface presentation as if the MAF

The MAF Container Utilities API

Local HTML and Application Container APIs B-9

application had just been loaded and displayed the application feature for the first
time.

Within Java, this method is called as follows:

public static void resetFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

The method's parameter, as shown in the following example, is the ID of the
application feature that is to be reset.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.resetFeature("feature.id");
 }
 catch(AdfException e) {
 // handle the exception
}

In JavaScript, the success and failed callback functions enable the returned value
and exception to be passed back to the JavaScript calling code as follows:

public void resetFeature(featureId, success, failed)

The success callback function and must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (The ID of the application feature).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions to call an application
feature.

adf.mf.api.resetFeature("feature0",
 function(req, res) { alert("resetFeature complete"); },
 function(req, res) { alert("resetFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.10 resetApplication
This method resets the running application and it should be used only when resetting
individual application features is not sufficient. For more information, see Java API
Reference for Oracle Mobile Application Framework.

Within Java, this method is called as follows:

public static void resetApplication(java.lang.String message)

The method's parameter, as shown in the following example, is either a message
describing the reason for which the application is being restarted, or null if no
message is required.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.resetApplication("New content is available");

The MAF Container Utilities API

B-10 Developing Mobile Applications with Oracle Mobile Application Framework

 }
 catch(Exception e) {
 // handle the exception
}

In JavaScript, the success and failed callback functions enable the returned value
and exception to be passed back to the JavaScript calling code as follows:

public void resetApplication(message, success, failed)

The success callback function and must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (The ID of the application feature).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions to call an application.

adf.mf.api.resetApplication("message1",
 function(req, res) { alert("resetApplication complete"); },
 function(req, res) { alert("resetApplication failed with " +
 adf.mf.util.stringify(res); }
);

B.2.11 gotoSpringboard
This method requests that MAF activate the springboard.

Note:

This method may not be able to display the springboard if it has not been
designated as a feature reference in the maf-application.xml file, or if it
has authentication or authorization-related problems. See also Configuring
Application Navigation.

Within Java, this method is called as follows:

public static void gotoSpringboard()

The following example illustrates using this method

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.gotoSpringboard();
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void gotoSpringboard(success, failed)

The MAF Container Utilities API

Local HTML and Application Container APIs B-11

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.gotoSpringboard(
 function(req, res) { alert("gotoSpringboard complete"); },
 function(req, res) { alert("gotoSpringboard failed with " +
 adf.mf.util.stringify(res); }
);

B.2.12 showSpringboard
This method requests that MAF display the springboard.

Within Java, this method is called as follows:

public static void showSpringboard()

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showSpringboard();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void showSpringboard(success, failed)

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.showSpringboard(
 function(req, res) { alert("showSpringboard complete"); },
 function(req, res) { alert("showSpringboard failed with " +
 adf.mf.util.stringify(res); }
);

B.2.13 hideSpringboard
This method requests that MAF hide the springboard.

Within Java, this method is called as follows:

The MAF Container Utilities API

B-12 Developing Mobile Applications with Oracle Mobile Application Framework

public static void hideSpringboard()

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.hideSpringboard();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void hideSpringboard(success, failed)

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.hideSpringboard(
 function(req, res) { alert("hideSpringboard complete"); },
 function(req, res) { alert("hideSpringboard failed with " +
 adf.mf.util.stringify(res); }
);

B.2.14 showNavigationBar
This method requests that MAF display the navigation bar.

Within Java, this method is called as follows:

public static void showNavigationBar()

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showNavigationBar();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void showNavigationBar(success, failed)

The MAF Container Utilities API

Local HTML and Application Container APIs B-13

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.showNavigationBar(
 function(req, res) { alert("showNavigationBar complete"); },
 function(req, res) { alert("showNavigationBar failed with " +
 adf.mf.util.stringify(res); }
);

B.2.15 hideNavigationBar
This method requests that MAF hide the navigation bar.

Within Java, this method is called as follows:

public static void hideNavigationBar()

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.hideNavigationBar();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void hideNavigationBar(success, failed)

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.hideNavigationBar(
 function(req, res) { alert("hideNavigationBar complete"); },
 function(req, res) { alert("hideNavigationBar failed with " +
 adf.mf.util.stringify(res); }
);

B.2.16 showPreferences
This method requests that MAF display the preferences page.

Within Java, this method is called as follows:

The MAF Container Utilities API

B-14 Developing Mobile Applications with Oracle Mobile Application Framework

public static void showPreferences()

The following example illustrates using this method.

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showPreferences();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value
and the exception to be passed back to the JavaScript calling code as follows:

public void showPreferences(success, failed)

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value (void).

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

The following example illustrates using these callback functions.

adf.mf.api.showPreferences(
 function(req, res) { alert("showPreferences complete"); },
 function(req, res) { alert("showPreferences failed with " +
 adf.mf.util.stringify(res); }
);

B.2.17 invokeMethod
This method is not available in Java. The following example illustrates using the
JavaScript callback methods to invoke a Java method from any class in a classpath.

adf.mf.api.invokeMethod(classname,
 methodname,
 param1,
 param2,
 ...
 paramN,
 successCallback,
 failedCallback);

Table B-1 lists the parameters taken by this method.

Table B-1 Parameters Passed to invokeMethod

Parameter Description

classname The class name (including the package information) that MAF
uses to create an instance when calling the Java method.

methodname The name of the method that should be invoked on the instance
of the class specified by the classname parameter.

The MAF Container Utilities API

Local HTML and Application Container APIs B-15

The success callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the associated method's return value.

The failed callback function must be in the form of function(request,
response), where the request contains the original request and the response contains
the error.

Examples of using this method with multiple parameters are as follows:

• adf.mf.api.invokeMethod("TestBean", "setStringProp", "foo", success, failed);

• adf.mf.api.invokeMethod("TestBean", "getStringProp", success, failed)

An example of using an integer parameter is as follows:

adf.mf.api.invokeMethod("TestBean", "testSimpleIntMethod", "101", success, failed);

The following illustrates using complex parameters:

adf.mf.api.invokeMethod("TestBean", "testComplexMethod",
 {"foo":"newfoo","baz":"newbaz",".type":"TestBeanComplexSubType"}, success, failed);

The following illustrates using no parameters:

adf.mf.api.invokeMethod("TestBean", "getComplexColl", success, failed);

The following illustrates using String parameters:

adf.mf.api.invokeMethod("TestBean", "testMethodStringStringString", "Hello ",
 "World", success, failed);

B.2.18 invokeContainerMethod
The invokeContainerMethod invokes a native method on the specified class with
the given arguments. Table B-2 lists the parameters passed by this method.

Table B-2 Parameters Passed to invokeContainerMethod

Parameter Description

className The class name (including the package information) that MAF
uses to create an instance.

methodName The name of the method that should be invoked.

args An array of arguments that are passed to the method. Within
this array, these arguments should be arranged in the order
expected by the method.

This method returns an Object.

public static java.lang.Object invokeContainerMethod(java.lang.String className,
 java.lang.String methodName)
 java.lang.Object[] args)

B.2.19 invokeContainerJavaScriptFunction
The invokeContainerJavaScriptFunction invokes a JavaScript method. Table
B-3 lists the parameters passed by this method.

The MAF Container Utilities API

B-16 Developing Mobile Applications with Oracle Mobile Application Framework

Table B-3 Parameters Passed to invokeContainerJavaScriptFunction

Parameter Description

featureId The ID of the application feature used by MAF to determine the
context for the JavaScript invocation. The ID determines the
web view in which this method is called.

method The name of the method that should be invoked.

args An array of arguments that are passed to the method. Within
this array, these arguments should be arranged in the order
expected by the method.

This method returns a JSON object.

Note:

The invokeContainerJavaScriptFunction API expects the JavaScript
function to finish within 15 seconds for applications running on an Android-
powered device or emulator, or it will return a timeout error.

public static java.lang.Object invokeContainerJavaScriptFunction(java.lang.String
featureId,
 java.lang.Object[]
args)
 throws oracle.adfmf.framework.exception.AdfException

The pseudocode in the following example illustrates a JavaScript file called
appFunctions.js that is included in the application feature, called feature1. The
JavaScript method, application.testFunction, which is described within this
file, is called by the invokeContainerJavaScriptFunction method, shown in
the next example.

(function()
 {
 if (!window.application) window.application = {};

 application.testFunction = function()
 {
 var args = arguments;

 alert("APP ALERT " + args.length + " ");
 return "application.testFunction - passed";
 };
 })();

Because the application includes a command button that is configured with an action
listener that calls this function, an end user sees the following alerts after clicking this
button:

• APP ALERT 0

• APP ALERT 1

• APP ALERT 2

The MAF Container Utilities API

Local HTML and Application Container APIs B-17

The pseudocode in the following example illustrates how the
invokeApplicationJavaScriptFunction method calls the JavaScript method
(application.testFunction) that is described in the preceding example.

invokeApplicationJavaScriptFuntions
 public void invokeApplicationJavaScriptFuntions(ActionEvent actionEvent) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",

"application.testFunction",
 new Object[] {});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",

"application.testFunction",
 new Object[]
{"P1"});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",

"application.testFunction",
 new Object[]
{"P1", "P2"});
 }

For more information, see Java API Reference for Oracle Mobile Application Framework
and the APIDemo sample application. This sample application is in the
PublicSamples.zip file at the following location within the JDeveloper installation
directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

B.2.20 sendEmail
For information, see How to Use the sendEmail Method to Enable Email.

B.2.21 sendSMS
For information, see How to Use the SendSMS Method to Enable Text Messaging.

B.2.22 Application Icon Badging
The AdfmfContainerUtilities class includes methods to place or retrieve a badge
number on a MAF application icon. Table B-4 describes these methods.

Table B-4 Icon Badging Methods

Method Description Parameters

getApplicationIconBadgeNu
mber

Gets the current
badge value on
the MAF
application icon.
Returns zero (0)
if the application
icon is not
badged.

None

setApplicationIconBadgeNu
mber

Sets the badge
number on a
MAF application
icon.

The value of the badge (int
badge).

The MAF Container Utilities API

B-18 Developing Mobile Applications with Oracle Mobile Application Framework

Note:

Application icon badging is not supported either on the Android or the
Windows platforms.

B.3 Accessing Files Using the getDirectoryPathRoot Method
The AdfmfJavaUtilties API includes the getDirectoryPathRoot method. This
method, which can only be called from the Java layer, enables access to files on the
iOS, Android, and Windows systems. As shown in the following example, this
method enables access to the location of the temporary files, application files (on iOS
systems), and the cache directory on the device using the TemporaryDirectory,
ApplicationDirectory, and DeviceOnlyDirectory constants, respectively.
Files stored in the DeviceOnlyDirectory location are not synchronized when the
device is connected.

Note:

Verify that any directories or files accessed by an application exist before the
application attempts to access them.

For more information on
oracle.adfmf.framework.api.AdfmfJavaUtilities, see Java API Reference for
Oracle Mobile Application Framework.

import oracle.adfmf.framework.api.AdfmfJavaUtilities;

...

public void getDirectoryPathRoot() {
 // returns the directory for storing temporary files
 String tempDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.TemporaryDirectory);

 // returns the directory for storing application files
 String appDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.ApplicationDirectory
);

 // returns the directory for storing cache files
 String deviceDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DeviceOnlyDirectory)
;

 // returns the directory for storing downloaded files
 String downloadDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory);
}

B.3.1 Accessing Platform-Independent Download Locations
File storage requirements differ by platform. The Android platform does not prescribe
a central location from which applications can access files; instead, an application can
write a file to any location to which it has write permission. iOS platforms, on the
other hand, generally store files within an application directory. In Windows,

Accessing Files Using the getDirectoryPathRoot Method

Local HTML and Application Container APIs B-19

applications do not access external files or directories: files are stored within the
application package. Because of these differences, passing ApplicationDirectory
to the getDirectoryPathRoot method can return the file location needed to
display attachments for applications running on iOS-powered or Windows-powered
devices, but not on Android-powered devices. Rather than writing platform-specific
code to retrieve these locations for applications intended to run on both iOS- and
Android-powered devices, you can enable the getDirectoryPathRoot method to
return the paths to both the external storage location and the default attachments
directory by passing it DownloadDirectory. This constant (an enum type) reflects
the locations used by the displayFile method of the DeviceManager API, which
displays attachments by using platform-specific functionality to locate these locations.

On Android, DownloadDirectory refers to the path returned by the
Environment.getExternalStorageDirectory method (which retrieves the
external Android storage directory, such as an SD card). For MAF applications
running on iOS-powered devices, it returns the same location as
ApplicationDirectory. For more information on the
getExternalStorageDirectory, see the package reference documentation
available from the Android Developers website (http://
developer.android.com/reference/packages.html). See also Files System
Programming Guide, available from the iOS Developer Library (http://
developer.apple.com/library/ios/navigation/).

Accessing Files Using the getDirectoryPathRoot Method

B-20 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

C
MAF Application and Project Files

This appendix provides a reference for the files that JDeveloper generates when you
create a MAF application using the Mobile Application Framework Application
template.

This appendix includes the following section:

• Introduction to MAF Application and Project Files

• About the Application Controller Project-Level Resources

• About the View Controller Project Resources

• About the MAF Application Configuration File

• About the MAF Application Feature Configuration File

C.1 Introduction to MAF Application and Project Files
By default, JDeveloper creates a MAF application with two projects
(ApplicationController and ViewController). The ApplicationController project
contains application-wide resources such as a login page if you configure security for
your MAF application. The ViewController project contains application feature
resources such as HTML, AMX, or task flow files that render the content of an
application feature.

Use the ViewController project to create or store artifacts that you may want to use in
more than one MAF application. Consider, for example, a MAF skin that determines
the look and feel of a MAF application. You may intend to reuse this artifact in
multiple MAF applications. Similarly, you may want to share one or more data
controls in multiple MAF applications. For this reason, create an additional
ViewController project in your MAF application to store artifacts such as these that
you may intend to share among multiple MAF applications. This additional
ViewController project can be reused by packaging it into a FAR, as described in
Reusing MAF Application Content .

For more information about these projects, see About the Application Controller
Project-Level Resources and About the View Controller Project Resources.

JDeveloper also generates files within these projects that you use to configure your
MAF application and application features or files that your MAF application needs
when you deploy it to the targeted platform. Example C-1 shows the files that
JDeveloper generates for a newly-created MAF application.

Two of the files that you use most frequently as you develop a MAF application are
the maf-application.xml file (application configuration) and the maf-
features.xml file (feature configuration). For more information about these files,
see About the MAF Application Configuration File and About the MAF Application
Feature Configuration File.

MAF Application and Project Files C-1

Example C-1 Files in a Newly-Created MAF Application

Folder PATH listing
Volume serial number is 52FC-1121
C:.
| Application1.jws
|
+---.adf
| \---META-INF
| adf-config.xml
| maf-application.xml
| maf-config.xml
| maf-plugins.xml
| sync-config.xml
| wsm-assembly.xml
|
+---.data
| +---00000000
| | 00000000.jdb
| | je.lck
| |
| \---ApplicationController
| \---00000000
| 00000000.jdb
| je.lck
|
+---ApplicationController
| | ApplicationController.jpr
| |
| +---adfmsrc
| | +---application
| | | DataControls.dcx
| | |
| | \---META-INF
| | adfm.xml
| |
| +---public_html
| \---src
| +---application
| | LifeCycleListenerImpl.java
| |
| \---META-INF
| maf-skins.xml
|
+---resources
| +---android
| | display-hdpi-icon.png
| | display-land-hdpi-splashscreen.9.png
| | // Additional image files omitted for brevity
| | display-xxxhdpi-icon.png
| |
| +---default
| | MissingIcon_144x144.png
| |
| +---ios
| | Default-1104h@2x.png
| | Default-568h@2x.png
| | Default-667h@2x.png
| | Default-Landscape-621@2x.png
| | Default-LandscapeRetina.png
| | Default-LandscapeRetina@2x.png

Introduction to MAF Application and Project Files

C-2 Developing Mobile Applications with Oracle Mobile Application Framework

| | Default-PortraitRetina.png
| | Default-PortraitRetina@2x.png
| | Default@2x.png
| | Icon-120.png
| | // Additional image files omitted for brevity
| | iTunesArtwork.png
| |
| +---security
| | cacerts
| | java.security
| |
| \---windows
| BadgeLogo.scale-100.png
| // Additional image files omitted for brevity
| splashscreen.scale-100.png
|
| Square150x150Logo.scale-100.png
|
| Wide310x150Logo.scale-100.png
| // Additional image files omitted for brevity
|
+---src
| \---META-INF
| logging.properties
| maf.properties
|
\---ViewController
 | ViewController.jpr
 |
 +---public_html
 \---src
 \---META-INF
 maf-feature.xml

C.2 About the Application Controller Project-Level Resources
JDeveloper generates the files for the MAF application in the application controller
project. These files, described in Table C-1, contain configuration information
describing the metadata of the MAF application. You access these files from the
Application Resources pane of the Applications window, shown in Figure C-1.

About the Application Controller Project-Level Resources

MAF Application and Project Files C-3

Figure C-1 MAF Application Artifacts Accessed from the Application Resources
Pane

The application controller project, which contains the application-wide resources,
provides the presentation layer of the MAF application in that it includes metadata
files for configuring how the application will display on a mobile device. This project
dictates the security for the MAF application and can include the application's login
page, an application-wide resource. The application controller project is essentially a
consumer of the view controller project, which defines the application features and
their content. For more information, see About the View Controller Project Resources.

Table C-1 MAF Application-Level Artifacts Accessed Through Application Resources

Artifact(s) File Location Description

maf-
application.xm
l

application workspace directory
\.adf\Meta-INF

For example:

JDevloper\mywork\application
name\.adf\META-INF

An XML file that defines application-level
information. You can define the content for an
application, its navigation behavior, and its
user authentication requirements.

About the Application Controller Project-Level Resources

C-4 Developing Mobile Applications with Oracle Mobile Application Framework

Table C-1 (Cont.) MAF Application-Level Artifacts Accessed Through Application Resources

Artifact(s) File Location Description

maf-config.xml application workspace directory
\.adf\Meta-INF

For example:

JDeveloper\mywork\application
name\.adf\META-INF

Use to configure the default skin used for
MAF applications. For more information, see
Skinning MAF Applications.

Application
images

application workspace directory
\Application Resources
\resources\

A set of images required for the deployment
of applications. For Android and Windows,
these include images for application icons and
splash screens. For iOS, these include images
for application icons. MAF applications that
you deploy to iOS devices use a HTML page
as the launch screen.

The filename for each image indicates the
purpose it serves. For example, use the
display-port-ldpi-splashscreen.
9.png image that appears under Android
resources as a splash screen in portrait mode
on Android devices.

For information about how to override the
application icons and splash screens for MAF
applications you deploy to Android, see How
to Add a Custom Image to an Android
Application.

For information about how to override the
application icons for MAF applications you
deploy to iOS, see Adding a Custom Image to
an iOS Application. To change the launch
screen for iOS devices, see Changing the
Launch Screen for Your MAF Application on
iOS.

cacerts application workspace directory
\Application Resources
\resources\Security\cacerts

For example:

JDeveloper\mywork\application
name\resources\Security\cacerts

The cacerts certificate file, a system-wide
keystore that identifies the CA certificates to
the Java virtual machine (JVM). You can
update this file using the Java keytool utility.
You can create a custom certificate file using
keytool as described in Supporting SSL. Any
certificate file must reside within the
Security directory.

logging.proper
ties

application workspace directory\
src\.META-INF\logging.properties

For example:

JDeveloper\mywork\application
name\src\META-INF
\logging.properties

Enables you to set the application error
logging, such as the logging level and logging
console. For more information, see Using and
Configuring Logging.

maf.properties application workspace directory
\src\.META-INF\maf.properties

For example:

JDeveloper\mywork\application
name\src\META-INF\maf.properties

The configuration file for the JVM. Use this
file to configure the application startup and
heap space allotment, as well as Java and
JavaScript debugging options. For more
information, see How to Enable Debugging of
Java Code and JavaScript.

About the Application Controller Project-Level Resources

MAF Application and Project Files C-5

Table C-1 (Cont.) MAF Application-Level Artifacts Accessed Through Application Resources

Artifact(s) File Location Description

adf-config.xml application workspace directory
\.adf\META-INF

For example:

JDeveloper\mywork\application
\.adf\META-INF

Used to configure application-level settings,
including the Configuration Service
parameters. See also Configuring End Points
Used in MAF Applications .

connections.xm
l

application workspace directory
\.adf\META-INF

For example:

JDeveloper\mywork\application
name\.adf\META-INF

The repository for all of the connections
defined in the MAF application.

wsm-
assembly.xml

application workspace directory
\.adf\META-INF

For example:

JDeveloper\mywork\application
name\.adf\META-INF

Stores the web service policy definitions used
for secured web services.

Tip:

Place code that supports application-wide functionality, such as an
application-level lifecycle listener, in the application controller project.

Within the application controller project itself, JDeveloper creates the artifacts listed in
Table C-2.

Table C-2 Application Controller Artifacts

Artifact(s) File Location Description

LifeCycleLis
tenerImpl.ja
va

application workspace directory
\ApplicationController\src
\application

For example:

JDeveloper\mywork\application name
\ApplicationController\src
\application

The default application lifecycle listener
(ALCL) for the MAF application.

For more information, see Using
Lifecycle Listeners in MAF Applications .

maf-
skins.xml

application workspace directory
\ApplicationController\src\META-INF

For example:

JDeveloper\mywork\application name
\ApplicationController\src\META-INF

Defines the available skins and also
enables you to define new skins.

For more information, see Skinning MAF
Applications.

adfm.xml application workspace directory
\ApplicationController\adfmsrc\META-
INF

For example:

JDeveloper\mywork\application name
\ApplicationController\adfmsrc\META-
INF

Maintains the paths (and relative paths)
for the .cpx, .dcx, .jpx, and .xcfg
files (registries of metadata).

About the Application Controller Project-Level Resources

C-6 Developing Mobile Applications with Oracle Mobile Application Framework

Table C-2 (Cont.) Application Controller Artifacts

Artifact(s) File Location Description

DataControls
.dcx

application workspace directory
\ApplicationController\adfmsrc\

For example:

JDeveloper\mywork\application name
\ApplicationController\adfmsrc\

The data controls registry. For
information on using the DeviceFeatures
data control, which leverages the
services of the device, see Using
Bindings and Creating Data Controls in
MAF AMX . For information on the
ApplicationFeatures data control, which
enables you to create a springboard page
that calls the embedded application
features, see What You May Need to
Know About Custom Springboard
Application Features with MAF AMX
Content.

C.3 About the View Controller Project Resources
The view controller project (which is generated with the default name,
ViewController) contains the resources for application features. Unlike the
application controller project, the view controller project's metadata files describe the
resources at the application feature-level, in particular the various application features
that can be aggregated into a MAF application so that they can display on a mobile
device within the springboard of the MAF application itself or its navigation bar at
runtime. Furthermore, the application feature metadata files describe whether the
application feature is comprised of HTML or MAF AMX pages. In addition, the view
controller project can include these application pages as well as application feature-
level resources, such as icon images to represent the application feature on the
springboard and navigation bar defined for the MAF application.

Tip:

Store code specific to an application feature within the view controller project.
Use the application controller project as the location for code shared across
application features, particularly those defined in separate view controller
projects.

The view controller project can be decoupled from the application controller project
and deployed as an archive file for reuse in other MAF applications as described in
Reusing MAF Application Content . In rare cases, an application controller project can
consume more than one view controller project.

Note:

Adding a MAF view controller project as a dependency of another MAF view
controller project, or as a dependency of a MAF application controller project,
prevents the deployment of a MAF application. For more information, see
What You May Need to Know About Feature Reference IDs and Feature IDs.

As shown in Table C-3, these resources include the configuration file for application
features called maf-feature.xml.

About the View Controller Project Resources

MAF Application and Project Files C-7

Table C-3 View Controller Artifacts

Artifact(s) File Location Description

maf-feature.xml application workspace
directory\src\META_INF\maf-
feature.xml

For example:

JDeveloper\mywork
\application name
\ViewController\src\META-
INF

A stub XML descriptor file
that enables you to define
application features. After
you have configured the
Mobile Preferences, as
described in Installing
Oracle Mobile Application
Framework, you can deploy
this application using the
default deployment profile
settings. For more
information, see Deploying
MAF Applications .

Application-Specific
Content

application workspace
directory\ViewController
\public_html

For example:

JDeveloper\mywork
\application name
\ViewController\public_html

The application features
defined in maf-
feature.xml display in
the public_html
directory. Mobile content
can include MAF AMX
pages, CSS files, and task
flows. Any custom images
that you add to an
application feature must be
located within this
directory. For more
information, see What You
May Need to Know About
Selecting External
Resources .

C.4 About the MAF Application Configuration File
The maf-application.xml file specifies the basic configuration of the MAF
application by designating its display name, a unique application ID (to prevent
naming collisions) and selecting the application features that display on the MAF
application's springboard at runtime. Furthermore, the maf-application.xml file
enables you to create the user preferences pages for the MAF application.

This file, which is generated by JDeveloper after you complete the application creation
wizard as described in Creating a MAF Application, contains the elements listed in
Table C-4.

Table C-4 Elements of the Application Descriptor File

Element Description

<adfmf:application> The root element of maf-application.xml.

<adfmf:description> A description of the application.

About the MAF Application Configuration File

C-8 Developing Mobile Applications with Oracle Mobile Application Framework

Table C-4 (Cont.) Elements of the Application Descriptor File

Element Description

<adfmf:featureReference> A feature reference denotes which of the
application features packaged in the FAR
(Feature archive file) or defined in the maf-
feature.xml file is relevant to the content of
the MAF application. You define the character
and content of MAF applications by selecting
feature references. For more information about
FARs, see Reusing MAF Application Content .

<adfmf:preferences> Enables you to set the user preference options
and behavior at the application level. You can
also set how user preferences display and behave
for the application features in the maf-
feature.xml file. For more information, see
Enabling User Preferences .

<adfmf:login> Enables you to set the login page for an
application feature. For more information, see
Securing MAF Applications .

<adfmf:navigation> Enables you to define the behavior of the
navigation bar and the springboard. A
springboard is a home page in which all of the
application icons and labels for the embedded
application features are organized in a List View.
A springboard provides a top-level view of all of
the applications available to a user, who can page
through and select applications. For more
information, see Configuring the Application
Navigation .

C.5 About the MAF Application Feature Configuration File
The maf-feature.xml file configures the application features that the
<adfmf:featureReference> elements in the MAF application's maf-
application.xml file references. Example C-2 shows the People and Organization
application features of the WorkBetter sample application in that application's maf-
feature.xml file.

The <adfmf:features> root element in the maf-feature.xml file accepts one or
more <adfmf:feature> elements where you define the properties of the application
feature(s) in your MAF application. In Example C-2, values are provided for the
properties that define the name and identify of the People and Organization
application features in addition to the icons that render in the springboard and
navigation bars for these application features in the WorkBetter sample application.
Furthermore, the <adfmf:feature> elements reference the content that the
application features render. The People and Organization application features
reference task flows, .CSS and .JS files.

MAF applications implement security at the application feature level. One step in
securing an application feature is to require that end users be authenticated before
they can access the application feature. You do this by configuring the Enable Security
property (securityEnabled) for the application feature in the maf-feature.xml
file. For more information, see Configuring Security for MAF Applications.

About the MAF Application Feature Configuration File

MAF Application and Project Files C-9

Table C-5 Child Elements of <Feature> Element

Element Description

<adfmf:content> Describes the format that the application feature uses for a
particular device or user. The content (generally, the user
interface) of an application feature can be written as MAF AMX
pages, HTML5 pages, or be delivered from web pages hosted
on a remote web server. For more information on designating
content as a web application, see Implementing Application
Feature Content Using Remote URLs .

<adfmf:constraint> Determines whether a given application feature can be
displayed in the application at runtime. Constraints can be used
to allow or prevent the use of an application feature based on
such criteria as user roles or device properties. For more
information, see Setting Constraints on Application Features .

Example C-2 WorkBetter Sample Application's maf-feature.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:adfmf="http://
xmlns.oracle.com/adf/mf">
<adfmf:feature id="People" name="People" icon="images/people.png" image="images/people.png">
 <adfmf:content id="People.1">
 <adfmf:amx file="People/taskflow.xml#taskflow">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/WorkBetter.css" id="i1"/>
 <adfmf:include type="JavaScript" file="js/customsearch.js" id="i2"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
 <adfmf:feature id="Organizations" name="Organizations" icon="images/departments.png"
 image="images/departments.png">
 <adfmf:content id="Organizations.1">
 <adfmf:amx file="Organizations/taskflow.xml#taskflow">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/WorkBetter.css" id="i3"/>
 <adfmf:include type="JavaScript" file="js/customsearch.js" id="i4"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
 ...
 </adfmf:features>

About the MAF Application Feature Configuration File

C-10 Developing Mobile Applications with Oracle Mobile Application Framework

D
Converting Preferences for Deployment

This appendix describes how MAF converts user preferences during deployment.

This document includes the following sections:

• Naming Patterns for Preferences

• Converting Preferences for Android

• Converting Preferences for iOS

• Converting Preferences for Windows

D.1 Naming Patterns for Preferences
Conversion of MAF application preferences to a mobile-platform representation
occurs when a deployment target is invoked. Following conversion, the naming
pattern described in Table D-1 ensures that each preference can be uniquely identified
on the mobile platform. Each preference element in the maf-application.xml and
maf-feature.xml files must be uniquely identified within the scope of its sibling
elements prior to deployment.

The following are examples of identifier values:

• application.gen.gps.trackGPS

• feature.f0.gen.gps.trackGPS

Table D-1 describes how to generate fully qualified preference identifiers.

Table D-1 MAF Naming Patterns for Preferences

Expression Description Syntax

PreferenceIdentifi
er

Represents an identifier
value of a preference
element that has been
converted to a mobile
platform
representation.

ApplicationPreferences | FeaturePreferences

Converting Preferences for Deployment D-1

Table D-1 (Cont.) MAF Naming Patterns for Preferences

Expression Description Syntax

ApplicationPrefere
nces

Use this expression to
build a preference
identifier value that is
generated from the
maf-
application.xml
file.

application.ApplicationElementPath

ApplicationElementPath represents a dot-separated
list of id attribute values beginning with the top-most
parent element, <adfmf:preferences>, and ending
with the element that is to be identified. In the following
segment from the maf-application.xml file, this
generated identifier is shown in the comment as
application.gen.gps.trackGPS.

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be
"application.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean
id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
</adfmf:preferences>

FeaturePreferences Use this expression to
build a preference
identifier value that is
generated from the
maf-feature.xml
file.

feature.FeatureElementPath

FeatureElementPath represents a dot-separated list of
id attribute values beginning with <adfmf:feature>,
the top-most parent element, and ending with the element
that is to be identified. In the following segment from the
maf-feature.xml file, this generated identifier is
displayed in the comment as
feature.f0.gen.gps.trackGPS.

<adfmf:feature id="f0">
 <adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be
"feature.f0.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean
id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>

The <adfmf:preferences> element cited in the code examples in Table D-1 does
not have an id attribute and is therefore not represented in any preference identifiers.

D.2 Converting Preferences for Android
The MAF deployment uses XML and XLS to transform the user preference pages
defined at both the application feature and application-level into the following three
XML documents:

• maf_preferences.xml

Converting Preferences for Android

D-2 Developing Mobile Applications with Oracle Mobile Application Framework

• maf_arrays.xml

• maf_strings.xml

D.2.1 maf_preferences.xml
This file contains the transformed preferences from both of the maf-feature.xml
and maf-application.xml files.

D.2.1.1 Preferences Element Mapping

Table D-2 shows the mapping of MAF's preference definitions to Android template
preferences, and Android native preferences:

Table D-2 Mapping MAF Preferences to Android Preferences

MAF Preference Definition Custom or Android Native
Preference Definition (Used by MAF
Deployment)

Android Native
Preference
Definition (Not used
by MAF Deployment)

<adfmf:preferenceBool
ean>

oracle.adfmf.preferences.Adf
MFPreferenceBoolean

CheckBoxPreferen
ce

<adfmf:preferenceNumb
er>

oracle.adfmf.preferences.Adf
MFPreferenceText

EditPreferenceTe
xt

<adfmf:preferenceText
>

oracle.adfmf.preferences.Adf
MFPreferenceText

EditTextPreferen
ce

<adfdmf:preferenceLis
t>

oracle.adfmf.preferences.Adf
MFPreferenceList

ListPreference

<adfmf:PreferenceGrou
p>

PreferenceCategory PreferenceCatego
ry

<adfmf:PreferencePage
>

PreferenceScreen PreferenceScreen

D.2.1.2 Preference Attribute Mapping

The maf_preferences.xml file contains references to string resources contained in
both the maf_strings.xml and maf_arrays.xml files. The Android SDK defines
the syntax for resources in XML files as @[<package_name>:]<resource_type>/
<resource_name>. This file contains references to string values as well as the name and
value pairs of list preferences. The XSL constructs the following for the strings and list
preferences:

• <package_name> is the name of the package in which the resource is located (not
required when referencing resources from the same package). This component of
the reference will not be used.

• <resource_type> is the R subclass for the resource type. This component will
have a value of string if constructing a string reference or array if constructing a
list preference.

• <resource_name> is the android:name attribute value in the XML element. The
value for this component will be the value of the
<PreferenceIdentifier>_title when specifying the android:title

Converting Preferences for Android

Converting Preferences for Deployment D-3

attribute (see Naming Patterns for Preferences. for the definition of
<PreferenceIdentifier>.

Table D-3 and Table D-4 show the mapping of MAF attributes for a given MAF
preference to the Android preference.

In this table:

• Entries of the form {X} (such as {default} in Table D-3) indicate the value of a
MAF attribute named X.

• Entries having <PreferenceIdentifier> indicate the value of the preference
identifier, as defined in Naming Patterns for Preferences.

• Attributes with an asterisk (*) are custom template attributes defined in a MAF
namespace and must appear in the maf_preferences.xml file in the form
adfmf:<attributeName>. Otherwise, the attributes are part of the Android
namespace and must appear in the maf_preferences.xml file as
android:<attributeName>.

Table D-3 Mapping of MAF Preference Attributes to Android Preferences

MAF
Attribute
Definition

Template Custom or
Android Native
Preference Attribute

Android Attribute Value Applies to

id key <PreferenceIdentifier> AdfMFPreferenceBoolean,
AdfMFPreferenceText,
AdfMFPreferenceList,
PreferenceScreen,
PreferenceCategory

default defaultValue {default} AdfMFPreferenceBoolean,
AdfMFPreferenceText,
AdfMFPreferenceList

label title @string/
<PreferenceIdentifier>___ti
tle if the given {label} value is
not a reference to a string resource
bundle. References a string in
maf_strings.xml having the given
{label}.

AdfMFPreferenceBooleanA
dfM, FPreferenceNumber,
AdfMFPreferenceText,
AdfMFPreferenceList,
PreferenceScreen,
PreferenceCategory

secret password {secret} AdfMFPreferenceText

min min* {min} AdfMFPreferenceText

max max* {max} AdfMFPreferenceText

name entryValues @array/
<PreferenceIdentifier>___en
tryValues

AdfMFPreferenceList

value entries @array/
<PreferenceIdentifier>___en
tries

AdfMFPreferenceList

Converting Preferences for Android

D-4 Developing Mobile Applications with Oracle Mobile Application Framework

D.2.1.3 Attribute Default Values

The overview editors for the maf-application.xml and maf-feature.xml files
exclude an attribute name and value from the XML if:

• The attribute type is xsd:boolean.

• The attribute value has a <default> value option.

• The user specifies <default> as the value.

The XSL must know the MAF attributes that are boolean typed and their
corresponding default values. The XSL, then, specifies the appropriate Android or
template custom attribute value where has been selected by the user.

Table D-4 indicates what the deployment will specify for the
android:defaultValue attribute if the MAF preference being transformed does
not contain a default attribute:

Table D-4 Transforming Attributes with Non-Default Values

MAF Preference Element Android Preference Equivalent Default
Attribute Value

preferenceBoolean AdfMFPreferenceBoolean false

preferenceText AdfMFPreferenceText Empty string

preferenceList AdfMFPreferenceList Empty string

D.2.1.4 Preferences Screen Root Element

The maf_preferences.xml file has a root element called <PreferenceScreen>.
The Android template requires that this element have the following XML namespace
definition:

xmlns:adfmf="http://schemas.android.com/apk/res/<Application
Package Name>

The <Application Package Name> element is defined as the same application
package name in the AndroidManifest.xml file. <Android Package Name>
defines the definition for the Android package name specified in the
AndroidManifest.xml file. For more information, see Setting Display Properties for
a MAF Application .

The deployment uses the Package Name value from the Android deployment profile if
it exists. If it does not exist in the profile, the deployment obtains this value from the
application display name and Application Id contained in the maf-
application.xml file. The deployment Java code will pass the value to the XSL
document as a parameter.

The following example shows MAF preferences contained in the maf-feature.xml
file.

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"

Converting Preferences for Android

Converting Preferences for Deployment D-5

 image="oracle.hello/springboard-icon.png">
 <adfmf:content id="Hello.Generic">
 <adfmf:localHTML url="oracle.hello/index.html"/>
 </adfmf:content>
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup"
 label="preference group">
 <adfmf:preferenceBoolean id="boolPref"
 label="boolPref perference"
 default="true"/>
 <adfmf:preferenceNumber id="numPref"
 label="numPref preference"
 default="1"
 min="1"
 max="10"/>
 <adfmf:preferenceText id="textPref"
 label="textPref preferences"
 default="Foo"/>
 <adfmf:preferenceList id="listPref"
 label="listPref preference"
 default="value2">
 <adfmf:preferenceValue name="name1"
 value="value1"/>
 <adfmf:preferenceValue name="name2"
 value="value2"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>
</adfmf:features>

D.2.2 maf_arrays.xml
The maf_arrays.xml file consists of string-array elements that enumerate the names
and values of list preferences that are referenced from the maf_preferences.xml
file. Each <preferenceList> element contained in the maf-application.xml
and maf-feature.xml files is transformed into two string-array elements, one
element for the name and one element for the values. The following example shows a
MAF preferenceList definition.

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">

<adfmf:feature id="oracle.hello" name="Hello" icon="oracle.hello/navbar-icon.png"
image="oracle.hello/springboard-icon.png">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceList id="MyList" label="My List">
 <adfmf:preferenceValue name="name1" value="value1"/>
 <adfmf:preferenceValue name="name2" value="value2"/>
 <adfmf:preferenceValue name="name3" value="value3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>
...

The following example illustrates the pair of string array elements in the
maf_arrays.xml file that are transformed from a <preferenceList> element. The

Converting Preferences for Android

D-6 Developing Mobile Applications with Oracle Mobile Application Framework

MAF preferenceList definition in the preceding example results in <string-
array
name="feature.oracle.hello.prefGroup.MyList___entry_values"> and
<string-array
name="feature.oracle.hello.prefGroup.MyList___entries"> in the
maf_arrays.xml file shown in the following example.

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">

 <string-array name="feature_oracle_hello_prefGroup.MyList___entry_values">
 <item>name1</item>
 <item>name2</item>
 <item>name3</item>
 </string-array>

 <string-array name="feature_oracle_hello_prefGroup.MyList___entries">
 <item>value1</item>
 <item>value2</item>
 <item>value3</item>
 </string-array>
</resources>

The following example shows the <string-arrays> referenced in
maf_preferences.xml.

<oracle.adfmf.preferences.AdfMFPreferenceList
android:key="feature.oracle.hello.MyList"
android:title="@string/feature_oracle_hello_prefGroup.MyList___title"
android:entries="@array/feature_oracle_hello_prefGroup.MyList___entries"
android:entryValues="@array/feature_oracle_hello_prefGroup.MyList___entry_values" />

D.2.3 maf_strings.xml
The maf_strings.xml file, shown in the following example, consists of string
elements that are referenced by the maf_preferences.xml file, as well as any
resource bundle references defined in the maf-application.xml and maf-
feature.xml files. Each string element has a name attribute that uniquely identifies
the string and the string value.

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">
...
 <string name="feature.PROD.bundle.FeatureName">Products</string>
 <string name="feature.oracle.hello.prefGroup.MyBooleanPreference___title">My
feature boolean pref</string>
...
</resources>

If the source of the string is not a reference to a resource bundle string, the naming
convention for the name attribute is
<PreferenceIdentifier>___<androidAttributeName>.

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:loadBundle basename="mobile.ViewControllerBundle"
 var="bundle"/>
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"
 image="oracle.hello/springboard-icon.png">

Converting Preferences for Android

Converting Preferences for Deployment D-7

 <adfmf:feature id="PROD"
 name="#{bundle.FeatureName}"
 icon="openMore.png"
 image="G.png"
 credentials="none">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceBoolean default="true"
 id="MyBooleanPreference"
 label="My feature boolean pref"/>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>

D.3 Converting Preferences for iOS
The MAF deployment transforms the MAF preferences listed in Table D-4 to the
preference list (.plist) file representation required by an iOS Settings application.

Table D-5 MAF Preferences and Their iOS Counterparts

MAF Preferences Component iOS Representation

<adfmf:preferencePage> PSChildPaneSpecifier

<adfmf:preferenceGroup> PSGroupSpecifier

<adfmf:preferenceBoolean> PSToggleSwitchSpecifier

<adfmf:preferenceList> PSMultiValueSpecifier

<adfmf:preferenceText> PSTextFieldSpecifier

<adfmf:preferenceNumber> PSTextFieldSpecifier

For information on the iOS requirement for preference list (.plist) files, see
Preferences and Settings Programming Guide, which is available through the iOS
Developer Library (http://developer.apple.com/library/ios/
navigation/).

The following example shows XML of MAF preferences based on the maf-
application.xml file.

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="Oracle Way Cool Mobile App">
 <adfmf:preferenceGroup id="SubPage01"
 label="Child Page">
 </adfmf:preferenceGroup>
</adfmf:preferences>

D.4 Converting Preferences for Windows
Provides information on preferences for the Windows platform

For the Windows platform, from the maf-feature.xml and maf-
application.xml metadata, MAF generates a single maf-preferences.json file
and multiple maf-preferences.resjson files, one each for every supported locale

Converting Preferences for iOS

D-8 Developing Mobile Applications with Oracle Mobile Application Framework

http://developer.apple.com/library/ios/navigation/
http://developer.apple.com/library/ios/navigation/

in the application. MAF uses the JSON file, saves it as Windows settings for the
application, and also uses it to display the settings screen.

Converting Preferences for Windows

Converting Preferences for Deployment D-9

Converting Preferences for Windows

D-10 Developing Mobile Applications with Oracle Mobile Application Framework

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for MAF Release 2.3.1
	New and Changed Features for MAF Release 2.3.1
	Other Significant Changes in this Document for MAF Release 2.3.1

	1 Introduction to Oracle Mobile Application Framework
	1.1 Introduction to Mobile Application Framework
	1.2 About the MAF Runtime Architecture
	1.3 About Developing Applications with MAF
	1.3.1 About Connected and Disconnected Applications

	1.4 MAF Sample Applications

	2 Getting Started with MAF Application Development
	2.1 Introduction to Declarative Development for MAF Applications
	2.2 Creating a MAF Application
	2.2.1 How to Create a MAF Application
	2.2.2 What Happens When You Create a MAF Application

	2.3 Defining Application Features for a MAF Application
	2.3.1 How to Define an Application Feature

	2.4 Adding Content to an Application Feature
	2.5 Adding Application Features to a MAF Application
	2.5.1 How to Add an Application Feature to a MAF Application
	2.5.2 What You May Need to Know About Feature Reference IDs and Feature IDs

	2.6 Creating MAF AMX Pages and MAF Task Flows
	2.6.1 How to Create a MAF AMX Page
	2.6.2 How to Create MAF Task Flows
	2.6.3 What Happens When You Create MAF AMX Pages and Task Flows

	2.7 Containerizing a MAF Application for Enterprise Distribution

	3 Configuring the Content of a MAF Application
	3.1 Introduction to Configuring MAF Application Display Information
	3.2 Setting Display Properties for a MAF Application
	3.3 Changing the Launch Screen for Your MAF Application on iOS
	3.4 Setting Display Properties for an Application Feature

	4 Configuring the Application Navigation
	4.1 Introduction to the Display Behavior of MAF Applications
	4.2 Configuring Application Navigation
	4.2.1 How to Set the Display Behavior for the Navigation Bar
	4.2.2 How to Set the Display Behavior for the Springboard
	4.2.3 How to Set the Slideout Behavior for the Springboard
	4.2.4 How to Set the Display Order for Application Features

	4.3 What Happens When You Configure the Navigation Options
	4.4 What Happens When You Set the Animation for the Springboard
	4.5 What You May Need to Know About Custom Springboard Application Features with HTML Content
	4.6 What You May Need to Know About Custom Springboard Application Features with MAF AMX Content
	4.7 What You May Need to Know About the Runtime Springboard Behavior
	4.8 Navigating a MAF Application Using Android’s Back Button
	4.8.1 How to Configure Behavior of the Android System Back Button

	4.9 Creating a Sliding Window in a MAF Application
	4.10 Using Custom URL Schemes in MAF Applications

	5 Defining the Content Type of MAF Application Features
	5.1 Introduction to Content Types for an Application Feature
	5.2 Defining the Application Feature Content as Remote URL or Local HTML
	5.3 Defining the Application Feature Content as a MAF AMX Page or Task Flow
	5.4 What You May Need to Know About Selecting External Resources

	6 Creating the Client Data Model in a MAF Application
	6.1 Introduction to the Client Data Model in a MAF Application
	6.2 Overview of Creating a Client Data Model in a MAF Application
	6.3 Connecting to a REST Service to Create the Client Data Model
	6.3.1 How to Connect to the REST Service to Retrieve Data Objects
	6.3.2 What You May Need to Know About the MCS Anonymous Access Key

	6.4 Discovering Candidate Data Objects for the Client Data Model
	6.4.1 How to Discover Data Objects Using a REST Resource URL
	6.4.2 How to Discover Data Objects Using a Sample Payload
	6.4.3 How to Discover Data Objects Using a RAML File
	6.4.4 What You May Need to Know About the Flatten Nested Data Objects Option

	6.5 Selecting and Persisting Data Objects for the Client Data Model
	6.5.1 How to Select and Persist Data Objects
	6.5.2 How to Create New Data Objects
	6.5.3 How to Modify Data Object Attributes

	6.6 Specifying Parent-Child Relationships for Data Objects
	6.6.1 How to Specify a Parent-Child Relationship for Data Objects

	6.7 Defining CRUD REST Resources
	6.8 Specifying CRUD REST Resource Details
	6.8.1 How to Specify GET (Read) Resource Details
	6.8.2 How to Specify Non-GET (Write) Resource Details
	6.8.3 How to Add Custom Resources
	6.8.4 How to Specify Query and Path Parameters
	6.8.5 How to Add HTTP Header Parameters

	6.9 Setting Runtime Options for the Client Data Model
	6.10 Generating the Client Data Model
	6.11 Editing the Client Data Model in a MAF Application
	6.12 Defining a Custom Resource
	6.13 Getting Programmatic Access to Service Objects
	6.14 Creating a User Interface from a MAF Client Data Model
	6.14.1 How to Create Data Controls from the Client Data Model
	6.14.2 What Happens When You Create a Data Control from the Client Data Model
	6.14.3 How to Use the MAF User Interface Generator
	6.14.4 What Happens When You Generate a User Interface

	6.15 Synchronizing Offline Transactions from a MAF Application
	6.15.1 How to View Pending Synchronization Actions
	6.15.2 How to Add Custom Logic to Handle Failed Synchronization Actions
	6.15.3 What You May Need to Know About Disabling Automatic Synchronization

	7 Localizing MAF Applications
	7.1 Introduction to MAF Application Localization
	7.2 Setting Resource Bundle Options for a MAF Application
	7.2.1 How to Set the Resource Bundle Options for a MAF Application

	7.3 Defining Text Resources in a Base Resource Bundle
	7.3.1 How to Define a Text Resource in a Base Resource Bundle
	7.3.2 What Happens When You Define a Text Resource in a Base Resource Bundle

	7.4 Creating Locale-Specific Resource Bundles
	7.4.1 How to Create a Locale-Specific Resource Bundle

	7.5 Editing Resources in Resource Bundles
	7.6 Localizing Image Files in a MAF Application
	7.7 MAF Support of Languages
	7.8 Localizable MAF Properties

	8 Skinning MAF Applications
	8.1 Introduction to MAF Application Skins
	8.1.1 About the maf-config.xml File
	8.1.2 About the maf-skins.xml File

	8.2 Adding a Custom Skin to an Application
	8.3 Specifying a Skin for an Application to Use
	8.4 Registering a Custom Skin
	8.5 Versioning MAF Skins
	8.6 What Happens When You Version Skins
	8.7 Overriding the Default Skin Styles
	8.8 What You May Need to Know About Skinning
	8.9 Adding a New Style Sheet to a Skin
	8.10 Enabling End Users Change an Application's Skin at Runtime
	8.11 What Happens at Runtime: How End Users Change an Application's Skin

	9 Reusing MAF Application Content
	9.1 Introduction to Feature Archive Files
	9.2 Using FAR Content in a MAF Application
	9.3 What Happens When You Add a FAR as a Library
	9.4 What Happens When You Add a FAR as a View Controller Project
	9.5 What You May Need to Know About Enabling the Reuse of Feature Archive Resources

	10 Using Plugins in MAF Applications
	10.1 Introduction to Using Plugins in MAF Applications
	10.2 Enabling a Core Plugin in Your MAF Application
	10.2.1 How to Enable a Core Plugin in Your MAF Application
	10.2.2 What Happens When You Enable a Core Plugin in Your MAF Application

	10.3 Registering Additional Plugins in Your MAF Application
	10.3.1 How to Register an Additional Plugin
	10.3.2 What Happens When You Register an Additional Plugin for Your MAF Application

	10.4 Deploying Plugins with Your MAF Application
	10.5 Importing Plugins from a Feature Archive File
	10.6 Using a Plugin in a MAF Application

	11 Customizing MAF Application Artifacts with MDS
	11.1 Introduction to Applying MDS Customizations to MAF Files
	11.2 Customizing MAF Applications with MDS
	11.3 Configuring Customization Layers
	11.3.1 How to Configure the Layer Values Globally
	11.3.2 How to Configure the Application-Level Layer Values
	11.3.2.1 Using the Studio Developer Role
	11.3.2.2 Using the Customization Developer Role

	11.4 Creating Customization Classes
	11.5 Consuming Customization Classes
	11.6 Understanding a Customization Developer Role
	11.6.1 How to Switch to the Customization Developer Role in JDeveloper
	11.6.2 What You May Need to Know About the Tip Layer

	11.7 Enabling Customizations in Resource Bundles
	11.7.1 How to Create an Application Resource Bundle
	11.7.2 How to Create a Project Resource Bundle

	11.8 Upgrading a MAF Application with Customizations
	11.8.1 What Happens in JDeveloper When You Upgrade Applications
	11.8.2 What You May Need to Know About Upgrading FARs

	12 Using Lifecycle Listeners in MAF Applications
	12.1 Introduction to Lifecycle Listeners in MAF Applications
	12.2 Registering a Lifecycle Listener for a MAF Application or an Application Feature
	12.3 What Happens When You Register a Lifecycle Listener

	13 Creating MAF AMX Pages
	13.1 Introduction to the MAF AMX Application Feature
	13.2 Creating Task Flows
	13.2.1 How to Create a Task Flow
	13.2.1.1 What You May Need to Know About Behavior of New Bounded Task Flows

	13.2.2 What You May Need to Know About Task Flow Activities and Control Flows
	13.2.3 What You May Need to Know About the ViewController-task-flow.xml File
	13.2.4 What You May Need to Know About the MAF Task Flow Diagrammer
	13.2.5 How to Add and Use Task Flow Activities
	13.2.5.1 Adding View Activities
	13.2.5.2 Adding Router Activities
	13.2.5.3 Adding Method Call Activities
	13.2.5.4 Adding Task Flow Call Activities
	13.2.5.4.1 Calling a Bounded Task Flow Using a Task Flow Call Activity
	13.2.5.4.2 Specifying Input Parameters on a Task Flow Call Activity
	13.2.5.4.3 Specifying the Data Control Context

	13.2.5.5 Adding Task Flow Return Activities
	13.2.5.6 Using Task Flow Activities with Page Definition Files

	13.2.6 How to Define the Data Control Context Depth for Task Flows
	13.2.7 How to Define Control Flows
	13.2.7.1 Defining a Control Flow Case
	13.2.7.2 Adding a Wildcard Control Flow Rule
	13.2.7.3 What You May Need to Know About Control Flow Rule Metadata
	13.2.7.4 What You May Need to Know About Control Flow Rule Evaluation

	13.2.8 What You May Need to Know About MAF Support for Back Navigation
	13.2.9 How to Enable Page Navigation by Dragging
	13.2.10 How to Specify Action Outcomes Using UI Components
	13.2.11 How to Create and Reference Managed Beans
	13.2.12 How to Specify the Page Transition Style
	13.2.13 What You May Need to Know About Bounded and Unbounded Task Flows
	13.2.13.1 Unbounded Task Flows
	13.2.13.2 Bounded Task Flows
	13.2.13.3 Using Parameters in Task Flows
	13.2.13.3.1 Passing Parameters to a Bounded Task Flow
	13.2.13.3.2 Configuring a Return Value from a Bounded Task Flow

	13.3 Creating Views
	13.3.1 How to Work with MAF AMX Pages
	13.3.1.1 Interpreting the MAF AMX Page Structure
	13.3.1.2 Creating MAF AMX Pages
	13.3.1.3 What Happens When You Create a MAF AMX Page
	13.3.1.4 Using UI Editors
	13.3.1.5 Accessing the Page Definition File
	13.3.1.6 Sharing the Page Contents
	13.3.1.6.1 Configuring the Fragment Content
	13.3.1.6.2 Passing List of Attributes with Metadata to a Fragment

	13.3.2 How to Add UI Components to a MAF AMX Page
	13.3.2.1 Using the Preview
	13.3.2.2 Configuring UI Components
	13.3.2.3 What You May Need to Know About Element Identifiers and Their Audit

	13.3.3 How to Add Data Controls to a MAF AMX Page
	13.3.3.1 Dragging and Dropping Attributes
	13.3.3.1.1 Date
	13.3.3.1.2 Single Selection
	13.3.3.1.3 Text

	13.3.3.2 Dragging and Dropping Operations
	13.3.3.2.1 Operation
	13.3.3.2.2 Method

	13.3.3.3 Dragging and Dropping Collections
	13.3.3.3.1 Multiple Selection
	13.3.3.3.2 Form
	13.3.3.3.3 Iterator
	13.3.3.3.4 List View

	13.3.3.4 What You May Need to Know About Generated Bindings
	13.3.3.5 What You May Need to Know About Generated Drag and Drop Artifacts
	13.3.3.6 Using the MAF AMX Editor Bindings Tab
	13.3.3.7 What You May Need to Know About Removal of Unused Bindings

	13.3.4 What You May Need to Know About the Server Communication

	14 Creating the MAF AMX User Interface
	14.1 Introduction to Creating the User Interface for MAF AMX Pages
	14.2 Designing the Page Layout
	14.2.1 How to Use a View Component
	14.2.2 How to Use a Panel Page Component
	14.2.3 How to Use a Panel Group Layout Component
	14.2.3.1 Customizing the Scrolling Behavior

	14.2.4 How to Use a Panel Form Layout Component
	14.2.5 How to Use a Panel Stretch Layout Component
	14.2.6 How to Use a Panel Label And Message Component
	14.2.7 How to Use a Facet Component
	14.2.8 How to Use a Popup Component
	14.2.9 How to Use a Panel Splitter Component
	14.2.10 How to Use a Spacer Component
	14.2.11 How to Use a Table Layout Component
	14.2.12 How to Use a Masonry Layout Component
	14.2.13 How to Use an Accessory Layout Component
	14.2.14 How to Use a Deck Component
	14.2.15 How to Use a Flex Layout Component
	14.2.16 How to Use the Fragment Component

	14.3 Creating and Using UI Components
	14.3.1 How to Use the Input Text Component
	14.3.1.1 Customizing the Input Text Component

	14.3.2 How to Use the Input Number Slider Component
	14.3.3 How to Use the Input Date Component
	14.3.4 How to Use the Output Text Component
	14.3.5 How to Use Buttons
	14.3.5.1 Displaying Default Style Buttons
	14.3.5.2 Displaying Back Style Buttons
	14.3.5.3 Displaying Highlight Style Buttons
	14.3.5.4 Displaying Alert Style Buttons
	14.3.5.5 Using Additional Button Styles
	14.3.5.6 Using Buttons Within the Application
	14.3.5.6.1 Navigation Bar
	14.3.5.6.2 Content Area
	14.3.5.6.3 Action Sheets
	14.3.5.6.4 Alert Messages

	14.3.5.7 Enabling the Back Button Navigation
	14.3.5.8 What You May Need to Know About the Order of Processing Operations and Attributes

	14.3.6 How to Use Links
	14.3.7 How to Display Images
	14.3.8 How to Use the Checkbox Component
	14.3.8.1 Support for Checkbox Components on the iOS Platform
	14.3.8.2 Support for Checkbox Components on the Android Platform

	14.3.9 How to Use the Select Many Checkbox Component
	14.3.9.1 What You May Need to Know About the User Interaction with Select Many Checkbox Component

	14.3.10 How to Use the Choice Component
	14.3.10.1 What You May Need to Know About the User Interaction with Choice Component on iOS Platform
	14.3.10.2 What You May Need to Know About the User Interaction with Choice Component on the Android Platform
	14.3.10.3 What You May Need to Know About Differences Between Select Items and Select Item Components

	14.3.11 How to Use the Select Many Choice Component
	14.3.12 How to Use the Boolean Switch Component
	14.3.12.1 What You May Need to Know About Support for Boolean Switch Components on iOS Platform
	14.3.12.2 What You May Need to Know About Support for Boolean Switch Components on the Android Platform

	14.3.13 How to Use the Select Button Component
	14.3.14 How to Use the Radio Button Component
	14.3.15 How to Use List View and List Item Components
	14.3.15.1 Configuring Paging and Dynamic Scrolling
	14.3.15.1.1 List View Scrolling Strategies
	14.3.15.1.2 List View's Own Scrolling
	14.3.15.1.3 Server-Side Paging

	14.3.15.2 What You May Need to Know About Memory Consumption by MAF AMX UI Components
	14.3.15.3 Rearranging List View Items
	14.3.15.4 Configuring the List View Layout
	14.3.15.5 What You May Need to Know About Using Static List View

	14.3.16 How to Use a Carousel Component
	14.3.17 How to Use the Film Strip Component
	14.3.17.1 What You May Need to Know About the Film Strip Layout
	14.3.17.2 What You May Need to Know About the Film Strip Navigation

	14.3.18 How to Use Verbatim Component
	14.3.18.1 What You May Need to Know About Using JavaScript and AJAX with Verbatim Component

	14.3.19 How to Use an Output HTML Component
	14.3.20 How to Enable Iteration
	14.3.21 How to Refresh Contents of UI Components
	14.3.22 How to Load a Resource Bundle
	14.3.23 How to Use the Action Listener
	14.3.23.1 What You May Need to Know About Differences Between the Action Listener Component and Attribute

	14.3.24 How to Use the Set Property Listener
	14.3.25 How to Use the Client Listener
	14.3.26 How to Convert Date and Time Values
	14.3.26.1 What You May Need to Know About Date and Time Patterns

	14.3.27 How to Convert Numeric Values
	14.3.28 How to Enable Drag Navigation
	14.3.28.1 What You May Need to Know About the disabled Attribute

	14.3.29 How to Use the Loading Indicator

	14.4 Enabling Gestures
	14.5 Providing Data Visualization
	14.5.1 How to Create an Area Chart
	14.5.2 How to Create a Bar Chart
	14.5.3 How to Create a Range Chart
	14.5.4 How to Create a Bubble Chart
	14.5.5 How to Create a Combo Chart
	14.5.6 How to Create a Line Chart
	14.5.7 How to Create a Pie Chart
	14.5.7.1 Configuring the Pie Chart as a Ring Chart
	14.5.7.2 Styling the Pie Chart

	14.5.8 How to Create a Scatter Chart
	14.5.9 How to Create a Spark Chart
	14.5.10 How to Create a Funnel Chart
	14.5.11 How to Create a Stock Chart
	14.5.12 How to Style Chart Components
	14.5.13 How to Use Events with Chart Components
	14.5.14 What You May Need to Know About Customization of Chart Tooltips
	14.5.15 How to Enable Sorting of Charts with Categorical Axis
	14.5.16 How to Define the Initial Zooming of Charts
	14.5.17 How to Define Stacking of Specific Chart Series
	14.5.18 How to Enable Split Dual-Y Axis in Charts
	14.5.19 How to Create a LED Gauge
	14.5.20 How to Create a Status Meter Gauge
	14.5.21 How to Create a Dial Gauge
	14.5.22 How to Create a Rating Gauge
	14.5.22.1 Overwriting the shortDesc Attribute
	14.5.22.2 Applying Custom Styling to the Rating Gauge Component

	14.5.23 How to Define Child Elements for Chart and Gauge Components
	14.5.23.1 Defining Chart Data Item
	14.5.23.2 Defining and Configuring Legend
	14.5.23.3 Defining and Configuring X Axis, YAxis, and Y2Axis
	14.5.23.4 Defining Pie Data Item
	14.5.23.5 Defining Spark Data Item
	14.5.23.6 Defining Funnel Data Item
	14.5.23.7 Defining Stock Data Item
	14.5.23.8 Defining Threshold

	14.5.24 How to Create a Geographic Map Component
	14.5.24.1 Configuring Geographic Map Components With the Map Provider Information
	14.5.24.2 Displaying Route in Geographic Map Components

	14.5.25 How to Create a Thematic Map Component
	14.5.25.1 Defining Custom Markers
	14.5.25.2 Defining Isolated Area Layers
	14.5.25.3 Defining Isolated Areas
	14.5.25.4 Enabling Initial Zooming
	14.5.25.5 Defining a Custom Base Map
	14.5.25.6 What You May Need to Know About the Marker Support for Event Listeners
	14.5.25.7 Applying Custom Styling to the Thematic Map Component

	14.5.26 How to Use Events with Map Components
	14.5.27 How to Create a Treemap Component
	14.5.27.1 Applying Custom Styling to the Treemap Component

	14.5.28 How to Create a Sunburst Component
	14.5.28.1 Applying Custom Styling to the Sunburst Component

	14.5.29 How to Create a Timeline Component
	14.5.29.1 Applying Custom Styling to the Timeline Component

	14.5.30 How to Create an NBox Component
	14.5.31 How to Define Child Elements for Map Components, Sunburst, Treemap, Timeline, and NBox
	14.5.32 How to Create Databound Data Visualization Components
	14.5.32.1 What You May Need to Know About Setting Series Style for Databound Chart Components

	14.5.33 How to Create Data Visualization Components Based on Static Data
	14.5.34 How to Enable Interactivity in Chart Components
	14.5.35 How to Create Polar Charts

	14.6 Styling UI Components
	14.6.1 How to Use Component Attributes to Define Style
	14.6.2 What You May Need to Know About Skinning
	14.6.3 What You May Need to Know About Using CSS ID Selectors for Skinning
	14.6.4 How to Style Data Visualization Components

	14.7 Localizing UI Components
	14.8 Understanding MAF Support for Accessibility
	14.8.1 How to Configure UI and Data Visualization Components for Accessibility
	14.8.1.1 Configuring the Accessibility Audit Rules

	14.8.2 What You May Need to Know About the Basic WAI-ARIA Terms
	14.8.3 What You May Need to Know About the Oracle Global HTML Accessibility Guidelines

	14.9 Validating Input
	14.10 Using Event Listeners
	14.10.1 What You May Need to Know About Constrained Type Attributes for Event Listeners

	15 Using Bindings and Creating Data Controls in MAF AMX
	15.1 Introduction to Bindings and Data Controls
	15.2 About Object Scope Lifecycles
	15.2.1 What You May Need to Know About Object Scopes and Task Flows

	15.3 Creating EL Expressions
	15.3.1 About Data Binding EL Expressions
	15.3.2 How to Create an EL Expression
	15.3.2.1 About the Method Expression Builder
	15.3.2.2 About Non EL-Properties

	15.3.3 What You May Need to Know About MAF Binding Properties
	15.3.4 How to Enable Retention of Data Provider State Across Iterators
	15.3.5 How to Reference Binding Containers
	15.3.6 About the Categories in the Expression Builder
	15.3.6.1 About the Bindings Category
	15.3.6.2 About the Managed Beans Category
	15.3.6.3 About the Mobile Application Framework Objects Category

	15.3.7 About EL Events
	15.3.8 How to Use EL Expressions Within Managed Beans

	15.4 Creating and Using Managed Beans
	15.4.1 How to Create a Managed Bean in JDeveloper
	15.4.2 What Happens When You Use JDeveloper to Create a Managed Bean

	15.5 Exposing Business Services with Data Controls
	15.5.1 How to Create Data Controls
	15.5.2 What Happens in Your Project When You Create a Data Control
	15.5.2.1 DataControls.dcx Overview Editor
	15.5.2.2 Data Controls Panel

	15.5.3 Data Control Built-in Operations
	15.5.3.1 addXXX and removeXXX Methods of Data Control

	15.6 Creating Databound UI Components from the Data Controls Panel
	15.6.1 How to Use the Data Controls Panel
	15.6.2 What Happens When You Use the Data Controls Panel

	15.7 What Happens at Runtime: How the Binding Context Works
	15.8 Configuring Data Controls
	15.8.1 How to Edit a Data Control
	15.8.2 What Happens When You Edit a Data Control
	15.8.3 What You May Need to Know About MDS Customization of Data Controls

	15.9 Working with Attributes
	15.9.1 How to Designate an Attribute as Primary Key
	15.9.2 How to Define a Static Default Value for an Attribute
	15.9.3 How to Set UI Hints on Attributes
	15.9.4 What Happens When You Set UI Hints on Attributes
	15.9.5 How to Access UI Hints Using EL Expressions

	15.10 Creating and Using Bean Data Controls
	15.10.1 What You May Need to Know About Serialization of Bean Class Variables

	15.11 Using the DeviceFeatures Data Control
	15.11.1 How to Use the getPicture Method to Enable Taking Pictures
	15.11.2 How to Use the SendSMS Method to Enable Text Messaging
	15.11.3 How to Use the sendEmail Method to Enable Email
	15.11.4 How to Use the createContact Method to Enable Creating Contacts
	15.11.5 How to Use the findContacts Method to Enable Finding Contacts
	15.11.6 How to Use the updateContact Method to Enable Updating Contacts
	15.11.7 How to Use the removeContact Method to Enable Removing Contacts
	15.11.8 How to Use the startLocationMonitor Method to Enable Geolocation
	15.11.9 How to Use the displayFile Method to Enable Displaying Files
	15.11.10 How to Use the addLocalNotification and cancelLocalNotification Methods to Manage Local Notifications
	15.11.11 What You May Need to Know About Device Properties

	15.12 Validating Attributes
	15.12.1 How to Add Validation Rules
	15.12.2 What You May Need to Know About the Validator Metadata

	15.13 Using Background Threads
	15.14 Working with Data Change Events

	16 Configuring End Points Used in MAF Applications
	16.1 Introduction to Configuring End Points in MAF Applications
	16.2 Defining the Configuration Service End Point
	16.3 Creating the User Interface for the Configuration Service
	16.4 About the URL Construction
	16.5 Setting Up the Configuration Service on the Server
	16.6 Configuring Properties For Use By Enterprise Mobile Management

	17 Using Web Services in a MAF Application
	17.1 Introduction to Using Web Services in a MAF Application
	17.2 Creating a Rest Service Adapter to Access Web Services
	17.2.1 Accessing Input and Output Streams
	17.2.2 Support for Non-Text Responses

	17.3 Accessing Secure Web Services
	17.3.1 How to Enable Access to Web Services
	17.3.2 What Happens When You Enable Access to Web Services
	17.3.3 What You May Need to Know About Accessing Web Services and Containerized MAF Applications
	17.3.4 What You May Need to Know About Credential Injection
	17.3.5 What You May Need to Know About Cookie Injection

	17.4 Configuring the Browser Proxy Information

	18 Using the Local Database in MAF AMX
	18.1 Introduction to the Local SQLite Database Usage
	18.1.1 Differences Between SQLite and Other Relational Databases
	18.1.1.1 Concurrency
	18.1.1.2 SQL Support and Interpretation
	18.1.1.3 Data Types
	18.1.1.4 Foreign Keys
	18.1.1.5 Database Transactions
	18.1.1.6 Authentication

	18.2 Using the Local SQLite Database
	18.2.1 How to Connect to the Database
	18.2.2 How to Use SQL Script to Initialize the Database
	18.2.3 How to Initialize the Database on a Desktop
	18.2.4 What You May Need to Know About Commit Handling
	18.2.5 Limitations of MAF SQLite JDBC Driver
	18.2.6 How to Use the VACUUM Command
	18.2.7 How to Encrypt and Decrypt the Database
	18.2.7.1 Encrypting the Database with Your Own Password
	18.2.7.2 Permanently Decrypting the Database Encrypted with Your Own Password
	18.2.7.3 Encrypting the Database with a Password Generated by MAF
	18.2.7.4 Decrypting the Database Encrypted with a Password Generated by MAF

	19 Customizing MAF AMX Application Feature Artifacts
	19.1 Introduction to Customizing MAF AMX Pages and Artifacts
	19.2 Customizing MAF AMX Pages and Artifacts

	20 Creating Custom MAF AMX UI Components
	20.1 Introduction to Creating Custom UI Components
	20.2 Using MAF APIs to Create Custom Components
	20.2.1 How to Use Static APIs
	20.2.2 How to Use AmxEvent Classes
	20.2.3 How to Use the TypeHandler
	20.2.4 How to Use the AmxNode
	20.2.5 How to Use the AmxTag
	20.2.6 How to Use the VisitContext
	20.2.7 How to Use the AmxAttributeChange
	20.2.8 How to Use the AmxDescendentChanges
	20.2.9 How to Use the AmxCollectionChange
	20.2.10 How to Use the AmxNodeChangeResult
	20.2.11 How to Use the AmxNodeStates
	20.2.12 How to Use the AmxNodeUpdateArguments

	20.3 Creating Custom Components

	21 Implementing Application Feature Content Using Remote URLs
	21.1 Introduction to Remote URL Applications
	21.2 Enabling Remote Applications Access Container Services
	21.3 Whitelisting Remote URLs in Your MAF Application
	21.3.1 How to Whitelist Remote URLs on the Android Platform
	21.3.2 How to Whitelist Remote URLs on the iOS Platform
	21.3.3 How to Whitelist Remote URLs on Universal Windows Platform

	21.4 Enabling the Browser Navigation Bar on Remote URL Pages
	21.4.1 How to Add the Navigation Bar to a Remote URL Application Feature
	21.4.2 What Happens When You Enable the Browser Navigation Buttons for a Remote URL Application Feature

	22 Enabling User Preferences
	22.1 Creating User Preference Pages for a Mobile Application
	22.1.1 How to Create Mobile Application-Level Preferences Pages
	22.1.1.1 How to Create a New User Preference Page
	22.1.1.2 What Happens When You Add a Preference Page
	22.1.1.3 How to Create User Preference Lists
	22.1.1.4 What Happens When You Create a Preference List
	22.1.1.5 How to Create a Boolean Preference List
	22.1.1.6 What Happens When You Add a Boolean Preference
	22.1.1.7 How to Add a Text Preference
	22.1.1.8 What Happens When You Define a Text Preference

	22.1.2 What Happens When You Create an Application-Level Preference Page

	22.2 Creating User Preference Pages for Application Features
	22.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages
	22.3.1 What You May Need to Know About preferenceScope
	22.3.2 Reading Preference Values in iOS Native Views

	22.4 Platform-Dependent Display Differences

	23 Setting Constraints on Application Features
	23.1 Introduction to Constraints
	23.1.1 Using Constraints to Show or Hide an Application Feature
	23.1.2 Using Constraints to Deliver Specific Content Types

	23.2 Defining Constraints for Application Features
	23.2.1 How to Define the Constraints for an Application Feature
	23.2.2 What Happens When You Define a Constraint
	23.2.3 About the property Attribute
	23.2.4 About User Constraints and Access Control
	23.2.5 About Hardware-Related Constraints
	23.2.6 Creating Dynamic Constraints on Application Features and Content
	23.2.6.1 About Combining Static and EL-Defined Constraints
	23.2.6.2 How to Define a Dynamic Constraint

	24 Enabling and Using Notifications
	24.1 Introduction to Notifications
	24.2 Enabling Push Notifications
	24.2.1 What You May Need to Know About the Push Notification Payload

	24.3 Managing Local Notifications
	24.3.1 How to Manage Local Notifications Using Java
	24.3.2 How to Manage Local Notifications Using JavaScript
	24.3.3 How to Manage Local Notifications Using the DeviceFeatures Data Control
	24.3.4 How to Handle Local Notifications
	24.3.5 What You May Need to Know About Local Notification Options and the Application Behavior

	25 Caching Data in a MAF Application
	25.1 Introduction to Data Caching in MAF Applications
	25.2 Enable Data Caching in a MAF Application
	25.3 Specifying Cached Resources and Cache Policies in the sync-config.xml File
	25.4 Caching Policies Provided by MAF
	25.5 Using Configuration Service End Points in the sync-config.xml File
	25.6 Encrypting Cached Data in a MAF Application
	25.7 Packaging the sync-config.xml File in a FAR

	26 Displaying Error Messages in MAF Applications
	26.1 Introduction to Error Handling in MAF Applications
	26.2 Displaying Error Messages and Stopping Background Threads
	26.2.1 How Applications Display Error Message for Background Thread Exceptions

	26.3 Localizing Error Messages

	27 Deploying MAF Applications
	27.1 Introduction to Deployment of MAF Applications
	27.2 Working with Deployment Profiles
	27.2.1 About Automatically Generated Deployment Profiles
	27.2.2 How to Create a Deployment Profile
	27.2.3 What Happens When You Create a Deployment Profile

	27.3 Deploying an Android Application
	27.3.1 How to Create an Android Deployment Profile
	27.3.1.1 Setting Preferences from the Command Line Using Startup Parameters
	27.3.1.2 Setting the Options for the Application Details
	27.3.1.3 Setting Deployment Options
	27.3.1.4 Defining the Android Signing Options
	27.3.1.5 What You May Need to Know About Credential Storage
	27.3.1.6 How to Add a Custom Image to an Android Application
	27.3.1.7 What Happens When JDeveloper Deploys Images for Android Applications

	27.3.2 How to Deploy an Android Application to an Android Emulator
	27.3.3 How to Deploy an Application to an Android-Powered Device
	27.3.4 How to Publish an Android Application
	27.3.5 What Happens in JDeveloper When You Create an .apk File
	27.3.6 Selecting the Most Recently Used Deployment Profiles
	27.3.7 What You May Need to Know About Using the Android Debug Bridge

	27.4 Deploying an iOS Application
	27.4.1 How to Create an iOS Deployment Profile
	27.4.1.1 Defining the iOS Build Options
	27.4.1.2 Setting the Device Signing Options
	27.4.1.3 Adding a Custom Image to an iOS Application
	27.4.1.4 What You May Need to Know About iTunes Artwork
	27.4.1.5 How to Restrict the Display to a Specific Device Orientation
	27.4.1.6 What Happens When You Deselect Device Orientations

	27.4.2 How to Deploy an iOS Application to an iOS Simulator
	27.4.3 How to Deploy an Application to an iOS-Powered Device
	27.4.4 What Happens When You Deploy an Application to an iOS Device
	27.4.5 What You May Need to Know About Deploying an Application to an iOS-Powered Device
	27.4.5.1 Creating iOS Development Certificates
	27.4.5.2 Registering an Apple Device for Testing and Debugging
	27.4.5.3 Registering an Application ID

	27.4.6 How to Distribute an iOS Application to the App Store

	27.5 Deploying a MAF Application to the Universal Windows Platform
	27.5.1 How to Deploy a MAF Application to the Universal Windows Platform
	27.5.2 What Happens When You Deploy a MAF Application to the Universal Windows Platform

	27.6 Overview of MAF Quick Deployment of Applications
	27.6.1 About the Artifacts That Support Quick Deployment
	27.6.2 About Requirements for Quick Deployment
	27.6.3 What Happens During a Quick Deployment Session
	27.6.4 How to Start the Full Deployment of an Application
	27.6.5 How to Force the Full Deployment of an Application
	27.6.6 What You May Need to Know About Quick Deployment Limitations

	27.7 Deploying Feature Archive Files (FARs)
	27.7.1 How to Create a Deployment Profile for a Feature Archive
	27.7.2 How to Deploy the Feature Archive Deployment Profile
	27.7.3 What Happens When You Deploy a Feature Archive File Deployment Profile

	27.8 Creating a Mobile Application Archive File
	27.8.1 How to Create a Mobile Application Archive File

	27.9 Creating a New Application from an Application Archive
	27.9.1 How to Create a New Application from an Application Archive
	27.9.2 What Happens When You Import a MAF Application Archive File

	27.10 Deploying MAF Applications from the Command Line
	27.10.1 Using OJDeploy to Deploy Mobile Applications

	27.11 Deploying with Oracle Mobile Security Suite
	27.11.1 What Happens When You Containerize Your Application with OMSS

	28 Understanding Secure Mobile Development Practices
	28.1 Weak Server-Side Controls
	28.2 Insecure Data Storage on the Device
	28.2.1 Encrypting the SQLite Database
	28.2.2 Securing the Device's Local Data Stores
	28.2.3 About Security and Application Logs

	28.3 Insufficient Transport Layer Protection
	28.4 Side-Channel Data Leakage
	28.5 Poor Authorization and Authentication
	28.6 Broken Cryptography
	28.7 Client-Side Injection From Cross-Site Scripting
	28.7.1 Protecting MAF Applications from Injection Attacks Using Device Access Permissions
	28.7.2 About Injection Attack Risks from Custom HTML Components
	28.7.3 About SQL Injections and XML Injections

	28.8 Security Decisions From Untrusted Inputs
	28.9 Improper Session Handling
	28.10 Lack of Binary Protections Resulting in Sensitive Information Disclosure

	29 Securing MAF Applications
	29.1 Introduction to MAF Security
	29.2 About the User Login Process
	29.3 Overview of the Authentication Process for MAF Applications
	29.4 Overview of the Authentication Process for Containerized MAF Applications
	29.5 Configuring MAF Connections
	29.5.1 How to Create a MAF Login Connection
	29.5.2 How to Create a Multi-Tenant Aware MAF Login Connection
	29.5.3 How to Configure Basic Authentication
	29.5.4 How to Configure OAuth Authentication
	29.5.5 How to Configure Web SSO Authentication
	29.5.6 How to Configure a Placeholder Connection for MAF Application Login
	29.5.7 How to Update Connection Attributes of a Named Connection at Runtime
	29.5.8 How to Store Login Credentials
	29.5.9 What Happens When You Create a Connection for a MAF Application
	29.5.10 What Happens When You Create a Multi-Tenant Aware Connection
	29.5.11 What You May Need to Know About the Login Connection Configuration
	29.5.12 What You May Need to Know About Login Connections and Containerized MAF Applications
	29.5.13 What You May Need to Know About Multiple Identities for Local and Hybrid Login Connections
	29.5.14 What You May Need to Know About Migrating a MAF Application and Authentication Modes
	29.5.15 What You May Need to Know About Custom Headers
	29.5.16 What Happens at Runtime: When MAF Calls a REST Web Service
	29.5.17 What You May Need to Know About Injecting Basic Authentication Headers
	29.5.18 What You May Need to Know About Web Service Security
	29.5.19 How to Configure Access Control
	29.5.20 What You May Need to Know About the Access Control Service
	29.5.21 How to Alter the Application Loading Sequence
	29.5.22 How to Configure Login Credentials Programmatically Prior to Authentication

	29.6 Configuring Security for MAF Applications
	29.6.1 How to Enable Application Features to Require Authentication
	29.6.2 How to Designate the Login Page
	29.6.3 How to Create a Custom Login HTML Page
	29.6.4 What You May Need to Know About Login Pages
	29.6.4.1 The Default Login Page
	29.6.4.2 The Custom Login Page

	29.6.5 What You May Need to Know About Login Page Elements
	29.6.6 What Happens in JDeveloper When You Configure Security for Application Features

	29.7 Allowing Access to Device Capabilities
	29.8 Enabling Users to Log Out from Application Features
	29.9 Using MAF Authentication APIs
	29.10 Creating Certificates to Access Servers That Use Self-Signed Certificates for SSL
	29.11 Configuring a MAF Application to Enable Two-Way SSL for Authentication

	30 Testing and Debugging MAF Applications
	30.1 Introduction to Testing and Debugging MAF Applications
	30.2 Testing MAF Applications
	30.2.1 How to Perform Accessibility Testing on iOS-Powered Devices

	30.3 Configuring JDeveloper and MAF Applications to Debug Code
	30.3.1 What You May Need to Know About the Debugging Configuration
	30.3.1.1 Creating and Configuring a Run Configuration

	30.3.2 How to Enable Debugging of Java Code and JavaScript
	30.3.3 How to Debug the MAF AMX Content

	30.4 Debugging MAF Applications Deployed on the Android Platform
	30.4.1 How to Debug Java Code on the Android Platform
	30.4.2 How to Debug UI Code on the Android Platform

	30.5 Debugging MAF Applications Deployed on the iOS Platform
	30.5.1 How to Debug Java Code on the iOS Platform
	30.5.2 How to Debug UI Code on the iOS Platform

	30.6 Debugging MAF Applications Deployed on the Universal Windows Platform
	30.6.1 How to Debug Java Code on the Universal Windows Platform
	30.6.1.1 How to Enable Remote Debugging of a MAF Application on the Universal Windows Platform

	30.6.2 How to Debug UI Code on the Universal Windows Platform

	30.7 Using and Configuring Logging in MAF Applications
	30.7.1 How to Configure Logging Using the Properties File
	30.7.2 How to Use JavaScript Logging
	30.7.3 How to Use Embedded Logging
	30.7.4 How to Use Xcode for Debugging and Logging on the iOS Platform
	30.7.5 How to Access the Application Log
	30.7.6 How to Disable Logging

	30.8 Measuring MAF Application Performance
	30.9 Sending Diagnostic Information to Oracle Mobile Cloud Service
	30.10 Sending Analytics Information to Oracle Mobile Cloud Service
	30.10.1 How to Configure the Transfer of Analytics to Oracle Mobile Cloud Service
	30.10.2 How to Programmatically Send Analytics to Oracle Mobile Cloud Service
	30.10.3 How to Send Context Events to Oracle Mobile Cloud Service
	30.10.4 How to Send Analytics to Other Repositories
	30.10.5 MAF Framework Events that Capture Analytics Information

	30.11 Inspecting Web Service Calls in a MAF Application

	A Troubleshooting MAF Applications
	A.1 Problems with Input Components on iOS Simulators
	A.2 Code Signing Issues Prevent Deployment
	A.3 The credentials Attribute Causes Deployment to Fail

	B Local HTML and Application Container APIs
	B.1 Using MAF APIs to Create a Custom HTML Springboard Application Feature
	B.1.1 About Executing Code in Custom HTML Pages

	B.2 The MAF Container Utilities API
	B.2.1 Using the JavaScript Callbacks
	B.2.2 Using the Container Utilities API
	B.2.3 getApplicationInformation
	B.2.4 gotoDefaultFeature
	B.2.5 gotoFeature
	B.2.6 getFeatures
	B.2.7 getFeatureByName
	B.2.8 getFeatureById
	B.2.9 resetFeature
	B.2.10 resetApplication
	B.2.11 gotoSpringboard
	B.2.12 showSpringboard
	B.2.13 hideSpringboard
	B.2.14 showNavigationBar
	B.2.15 hideNavigationBar
	B.2.16 showPreferences
	B.2.17 invokeMethod
	B.2.18 invokeContainerMethod
	B.2.19 invokeContainerJavaScriptFunction
	B.2.20 sendEmail
	B.2.21 sendSMS
	B.2.22 Application Icon Badging

	B.3 Accessing Files Using the getDirectoryPathRoot Method
	B.3.1 Accessing Platform-Independent Download Locations

	C MAF Application and Project Files
	C.1 Introduction to MAF Application and Project Files
	C.2 About the Application Controller Project-Level Resources
	C.3 About the View Controller Project Resources
	C.4 About the MAF Application Configuration File
	C.5 About the MAF Application Feature Configuration File

	D Converting Preferences for Deployment
	D.1 Naming Patterns for Preferences
	D.2 Converting Preferences for Android
	D.2.1 maf_preferences.xml
	D.2.1.1 Preferences Element Mapping
	D.2.1.2 Preference Attribute Mapping
	D.2.1.3 Attribute Default Values
	D.2.1.4 Preferences Screen Root Element

	D.2.2 maf_arrays.xml
	D.2.3 maf_strings.xml

	D.3 Converting Preferences for iOS
	D.4 Converting Preferences for Windows

