Oracle9

XML Developer’s Kits Guide - XDK

Release 2 (9.2)

March 2002
Part No. A96621-01

ORACLE

Oracle9i XML Developer’s Kits Guide - XDK, Release 2 (9.2)

Part No. A96621-01

Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

Primary Author: Jack Melnick

Contributing Authors: Mark Bauer, Shelley Higgins, Steve Muench, Mark Scardina, Jinyu Wang

Contributors: Sandeepan Banerjee, Kishore Bhamidipati, Bill Han, K. Karun, Murali Krishnaprasad,
Bruce Lowenthal, Anjana Manian, Meghna Mehta, Nick Montoya, Ravi Murthy, Den Raphaely, Blaise
Ribet, Tarvinder Singh, Tomas Saulys, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Press, Oracle8i, Oracle9i, PL/SQL, Pro*C/C++, Pro*COBOL,
SQL*Plus, OracleMobile, Oracle Discoverer, Oracle Store, Express, Oracle7, and Pro*C are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

SeNA US YOUI COMIMENES oo oot e ettt ettt et et et et et et et et et et et et et et et et et et esee e XXVii
o (=) =01 < U XXiX
WNALE'S INEW IN XD 2 oo oottt et e r et e e e s et e et et e e e e s et et e e e es et et e e er et e e ee s XXXVii

Partl XML Developer's Kits (XDK)

1 Overview of XML Developer’s Kits and Components

Oracle XML COmMPONENTS: OVEIVIEWc..oiuiiiiiiiiieeieeieeie ettt sttt st sbe e b b e 1-2
Development Tools and Other XML-Enabled Oracle9i Features...........cccoevevevvniviivinninnnnnens 1-3
DB S (o] G-\ - TSSOSO PSPPI 1-6
XDK FOF JAVABEANSetiiiititeie ettt b et bbbt se e e et e bt b et ebe et e be bbb e 1-6
D5 G o] 1-7
D] S (0] GO TSSO PPN 1-7
D] S {0 = IV 45 TP PPN 1-7
XIMIL PAFSEIS ...ttt ettt ettt ekttt e b e bt e bt e e bt e ke s et e e ke e e ab e e bt e s bbeenbe e s b b e enteenene s 1-8
XSL Transformation (XSLT) PrOCESSOI.........cciiiieieieisie sttt sttt a e re st sresresre e 1-9
XML ClaSS GENEIALON ...ttt ettt sttt ettt ettt b et b e s be bt s be b e b et e e et e se e st e neantebeebeaaesbeneas 1-10
XML TranNSVIEWET JAVABEANSccviiiiiiiirieiestiiee et e e sse et steste e stesaesaeseessesseseesaesessessesnens 1-11
Oracle XSQL Page Processor and SErVIEL...........cccoviiciiiiiiiciscse st 1-12
Servlet Engines That SUPPOrt XSQL ServIet. ... 1-13
JavaServer Pages Platforms That Support XSQL Serviet..........cccovvvrnniinninninnieneee 1-13
Oracle XML SQL ULHHTY (XSUD) .cuiiiiiiiiiiieseee sttt 1-16

Generating XML from QUEIY RESUILS..........cciiiiiiiiice ettt 1-17

XML Document Structure: Columns Are Mapped to Elements.........ccocccvvvnciniineinene, 1-17
LT3, L 1] 1 Y2 1-18
L@ 17 To] [1= ST TS OO USRS PR PR 1-19
XML GATEWAY ...ttt sttt et b ekt b e r b b r et r et e 1-19
Oracle XML Components: Generating XML DOCUMENLScccccvvvererinieneieeeeese e 1-19
Using Oracle XML Components to Generate XML Documents: Javacccceoeevevnencneenne. 1-20
Using Oracle XML Components to Generate XML Documents: C.........ccccoeevernininiencnenne, 1-22
Using Oracle XML Components to Generate XML Documents: C++ccccevveevcvcivinnnnnn, 1-24
Using Oracle XML Components to Generate XML Documents: PL/SQLccccccoveiinene. 1-26
Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology..........ccccccevvnvennne. 1-28

Frequently Asked Questions About the XDK ..o s 1-28

What XML Components Do | Need to Install?............ccooiiiiiiiiieeeeee 1-28

What Software Is Needed to Build an XML Application?..........ccccoeviennennensieneeneeee 1-29

XML QUESTIONS.....ccviiiiite ettt ettt ettt ettt et ebe et e s be e et e s be e s be s reesbeesaesbeesbesbeesbesbsenbesasebeensesbeannes 1-29

Are There XDK Utilities That Translate Data from Other Formats to XML? 1-30

Can Oracle Generate a Database Schema from a Rational Rose Generated XML File?... 1-30

Does Oracle Offer Any Tools to Create and Edit XML Documents?...........cccoevvvevveivinnnnns 1-31

How Can | Format XML Documents as PDF7?........ccooiiiiie e 1-31

How Do | Load a Large XML Document into the Database?...........cccocovvnieneeneeneennnns 1-31

Can SQL*Loader SUPPOIt NESTING? ...ccviiieiereiree et ere e 1-32
Frequently Asked Questions About Previous Oracle Releases..........cccoeveieieiiicncicicnn, 1-33

Can | Use Parsers from Different Vendors?.........ooiiiiiiniesee s 1-33

Is There XML Support in Oracle Release 8.0.67........cccccvvivrivvieiininne s 1-34

Can | Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.47........ 1-34

If I Use Versions Prior to Oracle8i Can | Use Oracle XML TOOIS?.......ccccoeveveieiniiicinnn 1-34

Can | Create Magnetic Tape Files with Oracle XIML?cccccoovivviinie v 1-35
Frequently Asked Questions About Browsers that SUpport XML........cccoceveiiiiiiiininne, 1-35

Which Browsers SUPPOIt XIMIL? ..ot 1-35
Frequently Asked Questions About XML Standards...........cccccoevvieveninieiencneneseseeese e 1-35

Are There Advantages of XML OVEr EDI?ccoovoiiiiiiiccce e 1-35

What B2B Standards and Development Tools Does Oracle SUpPpOrt?.........cccccoeveereenen. 1-36

What Is Oracle Corporation’s Direction Regarding XML?.........cccccocvvierivnineieneiecesiennanens 1-37

What Is Oracle Corporation’s Plans for XML QUEIY?........cccciiiiiinineieneeeeeeeeseseanens 1-37

Are There Standard DTDs That We Can Use for Orders, Shipments, and So On”?........... 1-37

3

Frequently Asked Questions About XML, CLOBS, and BLOBScccceeeiiiiiciineniicnee
Is There Support for XML Messages in BLOBS? ...
Frequently Asked Questions About Maximum File SizZeS.........cccccoovivriivinieinicieise e
What Is the Maximum XML File Size When Stored in CLOBS?ccccoceieiiniicneieeee,
Are There Any Limitations on the Size of an XML File? ..o
What Is the Maximum Size for an XML DOCUMENT?..........ccoviirniinniininei e
Frequently Asked Questions About Inserting XML Data into Tables............ccccccovviiiiinnn
What Do | Need to Insert Data Into Tables USing XIML? ...
Frequently Asked Questions About XML Performance in the Database.............cc.ccccvevnene.
Where Can | Find Information About the Performance of XML and Oracle?...................
How Can | Speed Up the Record Retrieval in XML DOCUMENtS?.......ccccovevierieeeinencneene,
Frequently Asked Questions About Multiple National Languages.........ccccoceververvnvcivennnenns
How Do | Put Information in Chinese into XML?........cccooiiiiinine e
Frequently Asked Questions About Reference Material............cccoeoviiniiniiniiiciieies
What Are Some Recommended XML and XSL BOOKS?cccveirniinnieneieneienenese e

Getting Started with XDK for Java and JavaBeans

Installation of the XDK FOr JAVAcccoeiiiiiii e
Installation Steps for XDK fOr JAVA ..o e
What Are the XDK for Java COMPONENTS?cooiiiiiiiirieinieisieisieesiee e
Environment Settings for XDK fOr JAVAcccveiiiiiiiin e
HKSEU SBLUP ..ttt sttt h e bt h ekt h e e b e b e bt st b e e r e bt e n e n e e e nnenrean
XSQL SEIVIEE SETUP ...ttt b b et nr et nb bbb sne e
XDK for Java with Globalization SUPPOITcccv e
XDK DEPENAENCIES.cviieititeie ittt sttt bbb ettt e e et e e et e bt et eebeabeebenees

Installation of the XDK fOr JAVABEANS..........c.coeiiiiiiiieieiese e
XDK for JavaBeans COMPONENTS........ccceiuerieieieeeeeesiesestesseseessesieseessesseseeseessessssesssssesesessens
Setting Up the XDK for JavaBeans ENVIrONMENT...........c.cooiiiiiiiineneeceeeecesese e
XDK for JavaBeans with Globalization SUPPOIT..........cccieiiiiienneeee e

Getting Started with XDKs for C/C++ and PL/SQL

INStallation OF XDK FOF C ..o ettt sre e e
GEetting the XDK FOF C...oviiiie ettt et se s re e erenreseenrenes
UNDX ENVIFONMENT SETUP ..ottt ettt sne b snen
WiINdows NT ENVIFONMENT SETUPc.coviiiiiiiiitiiiieeeee ettt

1-38
1-38
1-38
1-38
1-38
1-39
1-39
1-39
1-39
1-40
1-40
1-40
1-41
1-41

2-3

Installation Of the XDK FOr Ct....oo et ba e s e 3-13

Getting the XDK FOF CH ...ttt ene b 3-14
Setting the UNIX ENVIironment for CH+ ..o 3-15
WiIndows NT ENVIFONMENT SETUPocviviiiieieieeeiee st 3-16
Installation of XDK fOr PL/SQL ..ottt 3-25
Setting the Environment for XDK fOr PLZSQLcovooviieiceie e 3-26
Installing XDK for PL/SQL into the Databasecccccevieiiiieiisc e 3-27
Loading XDK fOr PLZSQL ...ttt 3-29

Part I XDK for Java

4 XML Parser for Java

XML Parser fOr JAVA: FEATUIES.........coi ettt ettt et st sbe st e 4-2
XSL Transformation (XSLT) PrOCESSONccciveiieieierieeeresesestesestessesieseessesesaeseessssessesssssesseses 4-4
NAIMESPACE SUPPOIT ...ttt ettt e bt e st e b e e s b e sb e e bt sneennesneenneaneas 4-5
Oracle XML Parsers Validation MOOESccoeeiiiiiiieiesse e 4-5

Parsers Access XML Document’s Content and StrUCLUe.........ccoevvieiieniencenceee e 4-6

DOM ANA SAX APIS ...ttt ettt b ettt s e be ettt s be st nrns 4-7
DOM: Tree-Based AP ...ttt sbe e 4-8
SAX: EVENE-BASEA AP ..ottt 4-8
Guidelines for Using DOM and SAX APIS ..ottt 4-9

XML COMIPIESSON ..ttt bbb e bt r bt e e r b e et e e e bt b et 4-10
XML Serialization/COmMPIESSIONccciviirereriirieieieeeereeiese e se e ste e sre e seesaeseeseesessessenses 4-10

Running the XML Parser for Java SAmPIEs ..o 4-11
XML Parser for Java - XML Example 1: class.Xml........cccooiiiiiiiniiniiccees 4-13
XML Parser for Java - XML Example 2: Using DTD employee — employee.xml 4-14
XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml................. 4-14
XML Parser for Java - XSL Example 1: XSL (Iden.XS1)ccoviiiiniiniincinencesieens 4-14
XML Parser for Java - DTD Example 1; (NSEXample)ccccccovivviviiininiiinineie e 4-15

Using XML Parser for Java: DOMPArSer() Class.........cccoveieiieiieieeie e sve e 4-15
XML Parser for Java Example 1: Using the Parser and DOM APlcccocconiiiniininnenn 4-17
Comments on DOMParser() EXampPle L. 4-21

Using XML Parser for Java: DOMMNamespace() Class ... 4-22
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java............c.cccoo..... 4-22

Using XML Parser for Java: SAXPArser() Class.......c.cocovueieiviieiieninniesesene e eese e snenes 4-26

vi

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java) 4-28

XML Parser for Java Example 4: (SAXNaMESPACE.JAVA)......c.ccivrerirreririenieienisienieie e 4-32
OraxXmMI - Oracle XML PAISEF.....c.cieiuireiieriesieieeee e s e e st sa e e e e e s ene e e e e anesresnesnens 4-36
USING JAXP ettt sttt bbbtk ekt b e s et e et et et e R e b s et et e ere e 4-37
JAXP Example: (JAVAEXAMPIES.JAVA).......cciiiiiiiiiiiie ettt 4-37
JAXP Example: (oraContentHandIer.java...........ccocvcoviiieiiiene e 4-45
Frequently Asked QUEStioNS ADOUL DTScoiiiiiiiiieiieeeese e 4-48
Why Can’t My Parser Find the DTD File? ... 4-48
Can | Validate an XML File Using an External DTD?........cccccvovvivvevineieneseiee s eesese e 4-48
Does Oracle Perform DTD CaChing?.......ccovcviiieiiiiice et 4-48
How Does the XML Parser for Java Recognize External DTDS?.......cccccovveiiennenincisennns 4-49
How Do | Load External DTDs from a JAR File? ..o 4-49
Can | Check the Correctness of an XML Document Using Their DTD?c.cccccvevvenee 4-50
How Do | Parse a DTD Object Separately from My XML Document?..........cccccoeovvnnnennae 4-50
IS the XML Parser Case-SENSITIVE? ..ottt 4-50
How Do | Extract Embedded XML from a CDATA SeCtion?cccceoeveieieieiieisenceenes 4-51
Why Am | Getting an Error When | Call DOMParser.parseDTD()?......cccceoverinennernennas 4-52
Is There a Standard Extension for External Entity References in an XML Document? ... 4-54
Frequently Asked Questions About DOM and SAX APIS......cccciiiiinineieeeseeiee 4-55
How Do | Use the DOM API to Count Tagged EIements?..........cccoevveiniincnncnscieceas 4-55
How Does the DOM Parser WOTK? ... e 4-55
How Do | Create a Node with a Value to Be Set Later?.........ccovviieniienciccceineee 4-55
HOW DO | Traverse the XIML TEEE? ..ottt 4-55
How Do | Extract Elements from an XML File?.......ccccooiiiiiiiiiiineesese i 4-55
Does a DTD Validate the DOM TIEE?cc.oouiiiiiieiiieeeeere et 4-56
How Do | Find the First Child Node Element Value?ccccooviiiieneneiereeeeeccee 4-56
How Do | Create DOCTYPE NOUE?ccoieiiieie ettt e e re e sne e 4-56
How Do | Use the XMLNode.selectNodes() Method?...........cccocevieieviciicicsc e, 4-56
How Does the SAX API Determine the Data Value? ..o 4-57
How Does SAXSample.java Call Methods?..........ccooveviiiiiiiiic e 4-58
Does the DOMParser Use the org.xml.sax.Parser Interface?cccoccevvvvvvevvicicv i, 4-58
How Do | Create a New Document Type Node with DOM API? ... 4-58
How Do | Query for First Child Node’s Value of a Certain Tag?ccccecevevevvevecvnnennnn 4-59
Can | Generate an XML Document from Data in Variables?...........cccooeieiiiiiiiiinincnee 4-59
How Do | Use the DOM API to Print Data in the Element Tags?........ccccoovvviiieniciiennas 4-60

Vii

viii

How Do | Build XML Files from Hash Table Value Pairs?ccccoconininiiciiiice
XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild()..................
Will WRONG_DOCUMENT_ERR Result from This Code Fragment?..........cccccevvivinnnne
Why Are Only the Child NOdes INSErted?..........cccveiiiiiiiiicce e
Why Do | Get DOMException when Setting Node Value? ...,
How Can | Force the SAX Parser to Not Discard Characters Following Whitespace?
Frequently Asked Questions About Validation ...
What Are the Rules for LOCating DTDS? ..ottt
Can Multiple Threads Use a Single XSLProcessor/Stylesheet?cccvvvvvvevcieieccnennn,
Can | Use Document Clones in Multiple Threads? ...
Frequently Asked Questions About Character SEtsS ...
How Do | Parse is0-8859-1-encoded Documents with Special Characters?
How Do | Parse XML Stored in NCLOB with UTF-8 Encoding?.........ccccccevvvveviviicniesnne,
Is There Globalization Support Within XML? ..o
How Do | Parse a Document Containing Accented Characters?ccocoeevevvivcieivnnnnnns
How Do | Store Accented Characters in an XML DOCUMENt?cocceieniiiieinieieeneaiae
Frequently Asked Questions: Adding an XML Documentasa Childcccccceoniinn.
How Do | Add an XML Document as a Child to Another Element?............ccococevvineenn.
How Do | Add an XML Document Fragment as a Child to an XML Document?

How Do | Remove the XML Parser from the Database?..........ccocveveieiineieeiiieiseseie
What D0oes an XML Parser DO? ...ttt sttt ne s
How Do | Convert XML Files into HTML FIleS?cooviiiiiiiiiineseee e
Does the XML Parser Validate Against XML Schema?...........ccccoovviiieiie v
How Do | Include Binary Data in an XML DOCUMENT?ccoviiiiiineniniseeeee e
What IS XML SCHEMAY ...t
Does Oracle Participate in Defining the XML/XSL Standard?.........ccccoceveieieiiininiencnnens
How Do | Find XDK Version NUMDEIS? ...ttt
Are Namespace and Schema SUPPOITEA?cveveveicire e
Can | Use JDK 1.1.x with XML Parser for JaVa V27.........ccccoiiiiiiiine e
How Do | Sort the Result Within the Page?...........ccooiiiiiiiccee e
Do | Need Oracle9i to Run XML Parser for JaVa? ...
Can | Dynamically Set the Encoding in an XML File? ..o,
HOW DO | PArSe @ STIHNG?. ..ottt

4-60
4-60
4-61
4-61
4-61
4-62
4-62
4-62
4-62
4-63
4-63
4-63
4-63
4-65
4-65
4-66
4-67
4-67
4-68

4-69
4-70
4-70
4-70
4-70
4-71
4-71
4-71
4-71
4-71
4-71
4-72
4-72
4-72

How Do | Display an XML DOCUMENT?couiiiiiiiiiiieiiniesie st 4-72

How Do | Use System.out.printIn() and Special Characters?cccoceoveinenienicnnennas 4-72
How Do | Insert Characters <, >, =,°, ", and & in XML DOCUMENtS?cccccevvverinerinnennas 4-73
How Do | Use Special Characters in the Tags? ... 4-73
How Do | Parse XML from Data Of TYPe StrNg?cccoeriiriineineinceseesee e 4-74
How Do | Extract Data from an XML Document into a String?.......cccccocevevevevvciniesnennn, 4-74
Is Disabling Output ESCapiNg SUPPOITEA?ooviiiiiiiieieirere e 4-74
Can | Delimit Multiple XML Documents with a Special Character?............cc.cccovvvneennn 4-74
How Do | Use Entity References with the XML Parser for Java?........cc.ccocevevvvveicivnnennn, 4-75
Can | Divide and Store an XML Document Without a DDL Insert?...........ccccovovininenncne 4-75
In Querying, Can | Perform Hierarchical Searches Across XML Documents? 4-75
How Do | Merge XML DOCUMENTS?c.coiieiiiieiise et sae st ete e nee e nne e 4-75
How Do | Find the Value 0f @ Tag?.......cccocviieiieeceee et 4-77
How Do | Grant the JAVASYSPRIV RoIe 10 @ USEI?.......ccioiiiiiiiniieeee e 4-77
How Do | Include an External XML File in Another XML File?ccccocooviiiniiiniicinennas 4-78
Does the Parser Come with a Utility to View the Parsed Output?cccceoeivinencnnne. 4-78
From Where Can | Download OraXSL, the Parser’s Command Line Interface?.............. 4-80
Does Oracle Support Hierarchical Mapping?ccocoovoivririiviinninsie s e e 4-80
What Good Books for XML/XSL Can You Recommend?.........cccoeveienineiciecneneee 4-81
Are There XML Developer Kits for the HP/ZUX Platform?..........cccoccoviiiiinciiiniecs 4-82
How Do | Compress Large Volumes of XML Documents?ccccoevvvvenerercieeesiese e 4-82
How Do | Generate an XML Document Based on Two Tables?........c.ccocevviiieiiiniencinnne, 4-83

5 XSLT Processor for Java

Using XML Parser fOr Java: XSLT PrOCESSONcccccueiiiiierieeiesieeiesteeiesteevesseessesseessesseessesneessesnens 5-2
XSLT Processor for Java EXamMPIe ..o 5-3
XSLT Processor for Java: Command-Line Interface, oraxsl ... 5-6
Oraxsl - Oracle XSL PrOCESSONc.coviieieieieiieieee ettt bbb ettt ettt eb et sbe e 5-6
XML Extension FUNCioNS fOr XSLT ProCeSSINGccccceriiiriirieinieienieisiee et 5-7
XSLT Processor Extension Functions: INtroduction ..o 5-7
Static Versus NOon-Static MEthOdS. ... s 5-8
Constructor EXteNSION FUNCHIONoouiiiiiiiiececese et 5-8
Return Value EXtENSION FUNCLIONcociiiiiiiiieie e 5-9
Datatypes EXteNSION FUNCHION ..ot 5-10
Oracle XSLT Built-In Extensions: ora:node-set and Ora:ouUtPUL...........cccveerereeneeneennee 5-10

6

Frequently Asked Questions About the XSLT Processor and XSL.........cccceeeveiiiieiniencnenne 5-13

Why Am | Getting an HTML EFror in XSL?cocoiiiiiiieesese e 5-13
Is the Output Method “htmI” Supported in the XSL Parser?c.ccccevvvivvevcieierecncnnnnns 5-14
Can | Prevent XSL from Returning a Meta-Tag in Netscape 4.07......c.cccceveveveicininnenne. 5-15
How Do | Work Around a Display Bug in the BroWSer? ..o 5-16
Where Can | Get More Information on XSL Error MeSSages?ccecvevrerverieriereeseeesiesiennens 5-16
How Do | Generate the HTML "Less Than" (<) Character?ccccccooevevieveveeiiesicsesenn, 5-16
Why Does HTML “<* Conversion Work in oraxsl But Not in XSLSample.java?............. 5-17
Where Can | Find XSLT EXaMPIES?cvoiiiieieeiceeese s e ne s e ane s 5-18
Where Can | Find a List Of XSLT FEAtUIES?ccciiiiiiiiiie e 5-18
How Do | Use XSL to Convert an XML Document to Another FOrm?..........cccoceoeviennne 5-18
Where Can | Find More INformation 0n XSL?.......cccociiiiiniinenesesese e 5-20
Can the XSL Processor Produce Multiple OULPULS?.........ccooiiiiiiiiineieneee e 5-20

XML Schema Processor for Java

INtroducing XML SCREMIAc.veciiiicicce ettt et be e sae e e reanees 6-2
How DTDs and XML Schema DIffer ... 6-2
XML SCREMA FEATUIESc.iiiiiiiteicteete ettt et ettt e bbb b e b e b 6-3
Oracle XML Schema Processor for Java FEAtUIES ... 6-6
SUPPOITEd CRATACTEN SELScuiiveiiieeiiit ettt 6-6
What’s Needed to Run XML Schema Processor for Java..........cococevvennennensiensieneeseees 6-7
XML Schema Processor for Java Directory StrUCTUIE..........ccvccvviieii e 6-7
XML Schema Processor FOr JAVa USAQE.........cvviiiiiiiiieinieie e 6-8
Modes for Schema Validation ... e 6-8
Using the XIML SChemM@a APlc.oo ettt st 6-9
How to Run the XML Schema for Java Sample Program...........cccoceoviniinineneinenenens 6-10
Makefile for XML Schema Processor fOr JAVA ... 6-11
XML Schema for Java Example 1: Cat.XSAc.coeiiiiiiiiiiinn e 6-12
XML Schema for Java Example 2: catalogue.Xml ... 6-14
XML Schema for Java Example 3: catalogue_e.Xml.......c..ccoovoivviviiiiinieiininese e 6-14
XML Schema for Java Example 4: report. Xml ... 6-15
XML Schema for Java Example 5: rePOrt.XSAccoeiiiiiiiniiniiceseeeeeeee s 6-16
XML Schema for Java Example 6: report_ €. XMlccccooovvviiiiiiiininsinne e 6-18
XML Schema for Java Example 7: XSDSamPIe.javaccccocveiiiiieneneie e 6-18
XML Schema for Java Example 8: XSDSetSChema.java.........ccccueoverieniinsincinecsiecnenns 6-20

XML Schema for Java Example 9: XSDLAXJAVA.......cccciiiririrerieiienieiie e 6-23
XML Schema for Java Example 10: embeded_XSQI.XS......ccccocoiirnennennineeeeee e 6-25
XML Schema for Java Example 11: embeded XSQL.XMI.......ccooviviiiiniieicceecrceese s 6-26

XML Class Generator for Java

Accessing XML Class GeNErator fOr JAVA..........ccccovcieiiieiisisie s sre s 7-2
XML Class Generator for JaVa: OVEIVIEBWccccuciiiiiiiiire ettt sre e 7-2
oracg CommaNd LiNe ULHILY ..o 7-3
Class Generator for Java: XIML SChEMA........ccccciiiiiiiiieese e 7-4
NAMESPACE FEALUIESc..eiiiiiiieiiiie et nb et e bt e e b sb e b e enrenneenes 7-4
Using XML Class Generator for Java with XML Schema ..o 7-5
Generating Top LeVel EIEMENTt CIaSSEScc.civiviiiieieiesi et 7-6
Generating Top Level ComplexType Element Classes.........ccooeoeieiiieiiecieinencccsene e 7-7
Generating SimpleType EIemMent CIaSSES ..ot 7-7
Using XML Class Generator for Java With DTDScccccviiirieninene e 7-8
Examples Using XML Java Class Generator with DTDs and XML Schema..........c.ccccoceeene. 7-9
Running XML Class Generator for Java: DTD EXamples........ccooiiriiniinniinnincincninns 7-10
Running XML Class Generator for Java: XML Schema Examples.........ccccoceveveiviivcrcnnnnnn, 7-11
XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java........... 7-12
XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd 7-14
XML Class Generator for Java, DTD Example 1c: Input — widl.xml........c.cccoovvoviviivinnnne 7-15
XML Class Generator for Java, DTD Example 1d: TestWidl.javaccccccoviiiiinicncnnne. 7-16
XML Class Generator for Java, DTD Example 1le: XML Output — widl.out 7-18
XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd...........cc.co..... 7-18
XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java.......... 7-20
XML Class Generator for Java, Schema Example 2a: Schema: book.xsdcccccevnnee. 7-22
XML Class Generator for Java, Schema Example 2b: BookCatalogue.java...........c..cccce.... 7-23
XML Class Generator for Java, Schema Example 3a: Schema: po.XSd........ccoceevevnieiennnne. 7-24
XML Class Generator for Java, Schema Example 3b: Application: TestPo.java................ 7-26
Frequently Asked Questions About the Class Generator for Java..........cccccocevevveivnivcncnnnnnns 7-29
How Do | Install the XML Class Generator for JAVAa? ... 7-30
What Does the XML Class Generator for Java DO? ... 7-30
Which DTDS Are SUPPOITEA?oce ettt ne e ene e 7-30
Why Do | Get a "Classes NOt FOUNA™ EFTOr?ccoiviiieieiie e 7-30
In XML Class Generator, How Do | Create the Root Object More Than Once?................ 7-30

Xi

8

Xii

How Can | Create XML Files from Scratch Using the DOM API?..........cccoovviveiiivicinennnn, 7-31
Can | Create an XML Document in @ Java Class? ... 7-31

XML SQL Utility (XSU)

What IS XML SQL ULHHTY (XSU)? ..ot 8-2
XSU FALUIES ...tttk b bbb b b e et e st e bbb r b 8-3
XSU Oracle9i NEW FEATUIEScciiiiiieiieiee ettt sttt sttt ettt be bt sne 8-3

XSU Dependencies and INSTallation ... 8-4
(1= o =T T =T o ol LTSS 8-4
INSTAITATION ...t bbb ettt be bbb sne 8-4

XML SQL Utility and the Bigger PICTUIE..........cioiiiiiiircceceseee e 8-5
XML SQL Utility in the Databaseccccvereieriirceiecie e 8-5
XML SQL Utility in the Middle TIerccoii i 8-6
XML SQL Utility in @ WED SEIVENc.oiiiiiicee e 8-7
XML SQL Utility in the CHENt TIer ... 8-8

SQL-to-XML and XML-to-SQL Mapping Primercccociiiiiiiiniinieieneeie e 8-8
Default SQL-tO-XML MaPPINGciiiiiiieieieieieseie ettt 8-8
Customizing the Generated XML: Mapping SQL t0 XMLcccccocvvivrvvincnesceeieee e 8-12
Default XML-t0-SQL MaPPING ...cveiviieieiieieieeeeeees ettt ane s 8-13

HOW XML SQL ULHITY WOIKS......c.citiiiiiiitiiitieie ettt 8-14
SEIECTING WITN XSU ..ottt sttt naen e e neenenns 8-14
INSEITING WILN XSU ..ottt et e ne e ae e e sreannas 8-15
UPAating WIth XSU ...t e 8-15
Deleting WIth XSU ..ottt et e e neene e nnennens 8-16

Using the XSU Command Line Front End, OracleXMLccccooveiiiiiiiicie v 8-17
Generating XML Using the XSU Command LiNecccoeireiineiniineneseeseese e 8-17
XSU’s OracleXML getXML OPLtiONS......cccciieiiriiieeieceees e e e eneens 8-19
Inserting XML Using XSU’s Command Line (PUEXML)ccccooriiiiinineicceeeeeceeee 8-20
XSU OracleXML PUEXIML OPLIONS......cooiuiiitiietiiieierieiisieiest st 8-22

XSU JAVA AP ..ot b bbb bttt r e r e 8-22

Generating XML with XSU’s OracleXMLQUEIYcccvcveieiiiiie et 8-23
Generating XML from SQL Queries USING XSUccooeiiiiniiineineinieeseiesesese e 8-23
XSU Generating XML Example 1: Generating a String from Table emp (Java) 8-24
XSU Generating XML Example 2: Generating DOM From Table emp (Java)................... 8-27

Paginating Results: SKipROWS and MaXROWSccoceoiiiiniineieeesie e 8-29

Keeping the Object Open for the Duration of the USer’s SesSion............ccccoeveveinencnenne. 8-29

When the Number of Rows or Columns in a ROW IS TOO Large.......ccoccovveivnerinenncrnennas 8-29
[GLE] 01O o (=T (@] o =] o I =¥ o1 o] o S S 8-30
XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java) 8-30
Generating XML from ResUltSet ODJECTS ...t 8-32
XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)........... 8-32
XSU Generating XML Example 5: Generating XML from Procedure Return Values...... 8-34
RaiSING NO ROWS EXCEPTION.......c.oiuiiiiiiiitiiietirieie ettt ettt sn e ene e 8-35
XSU Generating XML Example 6: No Rows EXCeption (JaVa).........ccccevevverieeerecinenniennnnnns 8-36
Storing XML Back in the Database Using XSU OracleXMLSaVecccccevvevviievecveieenn, 8-37
Insert Processing UsiNg XSU (JAVA API)oiiiiiie e 8-38
XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java) 8-38
XSU Inserting XML Example 8: Inserting XML Values into Columns (Java).................... 8-39
Update Processing Using XSU (JAVA AP ... 8-40
XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java) 8-41
XSU Updating XML Example 10: Updating a Specified List of Columns (Java) 8-42
Delete Processing UsSing XSU (JaVa AP ..o 8-43
XSU Deleting XML Example 11: Deleting Operations Per Row (Java)cccccceveveivinnnne 8-43
XSU Deleting XML Example 12: Deleting Specified Key Values (Java).........cccccceevvvnuenne. 8-44
Advanced XSU Usage TEChNIQUES........ccceiiiriiiiie ettt 8-45
XSU Exception HaNdliNg iN JAVA.........cccooiiiiciccc s sne s 8-45
Frequently Asked Questions About XML SQL Utility (XSU)ccccceirininiiiiiicncce 8-46
What Schema Structure Should | Use with XSU to Store XML?cccoceiiiiiencinieneee, 8-46
Can XSU Store XML Data Across Tables? ... e 8-48
Can | Use XSU to Load XML Stored in AttribUeS?..........ocoviiiiiiiiiieeeceesee e 8-48
Is XSU Case-Sensitive? Can | USe igNOreCase?.......ccoveiieiineiineiseise e 8-48
Will XSU Generate the Database Schema from a DTD?ccocvvvivviniineineeseese e 8-49
Can You Provide a Thin Driver Connect String Example for XSU?cccocoiiiiiiinne 8-49
Does XSU Commit After INSERT, DELETE, or UPDATE? ... 8-49
Can You Explain How to Map Table Columns to XML Attributes Using XSU?.............. 8-50

9 XSQL Pages Publishing Framework

XSQL Pages Publishing Framework OVEIrVIEWccccucviiiiviienienie s e e se e e 9-2
What Can | Do with Oracle XSQL PageS?......ccccieiieiiiieie e 9-2
Where Can | Obtain Oracle XSQL PAgES?.......cccuiiiiiiiiieiieinieesiesiee s 9-4

Xiii

What’s Needed to RUN XSQL PAQgES?......cc.coiiiiiicie sttt 9-4

Overview oOf BasiC XSQL Pages FEATUIES..........ccuiiiiiirieiseisie sttt 9-5
Producing XML Datagrams from SQL QUETIESccccvvvrerirniereneseseeseeie s e s 9-6
Transforming XML Datagrams into an Alternative XML Formatc.ccccooceviveveiieinnnnns 9-9
Transforming XML Datagrams into HTML for Display.........cccccoveriininnininenennes 9-12

Setting Up and Using XSQL Pages in Your ENVIroNmMentc..ccocvvveveneneneieeeese e 9-15
Using XSQL Pages with Oracle JDEVEIOPET ... 9-15
Setting the CLASSPATH Correctly in Your Production Environment ..o 9-16
Setting Up the Connection DefiNitioNS........ccccoviieieicecicecn e 9-17
Using the XSQL Command-Line ULIHILY ... iiiiiiic e 9-18

Overview of All XSQL Pages Capabilities ... 9-19
Using All of the Core BUilt-in ACHIONS........cccoveiiiiiiii e 9-19
Aggregating Information Using <xsgl:include-Xsql>cccocconininiiniiieeienee 9-39
Including XMLTYpe QUENY RESUILS ..ot 9-41
Handling Posted INFOrmMation ..o ene s 9-44
Using Custom XSQL ACtION HaNAIErScovoiiiieeccccece e 9-49

Description of XSQL Serviet EXamMPIEs........coooiiiiii s 9-51
Setting Up the DemMO Data.......cc.ccviviiiiiiiire e sne e 9-53

AdVvanced XSQL PageS TOPICSccuuiuirireitiiterie sttt sbe bt e bt e e e e st sbestesbesnen 9-54
Understanding Client Stylesheet-Override OPLioNScccoeiieniennenseeeee e 9-54
Controlling How Stylesheets Are ProCessSedccovveveviviinienieseneseseesesee e nese s 9-55
Using XSQLConfig.xml to Tune Your ENVIFONMENT..........c.ccoveieiieeie i 9-59
Using the FOP Serializer to Produce PDF OUEPUL.........ccoeiiiiiiieneseeeee e 9-64
Using XSQL Page Processor Programmaticallycccccoovvivvivnieiininnie i 9-66
Writing Custom XSQL Action HaNAIErS..........cccooveiiiiiciccce e 9-68
Writing Custom XSQL SerialiZers ..o 9-73
Writing Custom XSQL ConNection Managerscccvivevrierienerieseseneseseesieesesssesesesennens 9-76
Formatting XSQL ACtion HaNdIEr EXTOrSccoiiiieiiiieii ettt 9-77

XSQL Servlet LIMITatioNS.........cooiiiiieiie ettt sttt sne e 9-78
HTTP Parameters with Multibyte Names.........cccovoiiiviii i 9-78
CURSOR() Function in SQL StatemMeNtS.........cccveciiiiii et sre e 9-79

Frequently Asked Questions About the XSQL ServIet.........ccceoiiiieiiinnennenseee e 9-79
Can | Specify a DTD While Transforming XSQL Output to a WML Document?............. 9-79
Can | Write XSQL Servlet Conditional Statements?..........cccccoeiivieiiccce s, 9-79
Can | Use a Value Retrieved in One Query in Another Query’s Where Clause? 9-80

Xiv

Can | Use the XSQL Servlet with Non-Oracle Databases?ccccvvvvievviievvece s, 9-80

How Do | Use the XSQL Servlet to Access the JSEerv Process?........cccccveveeievecieeecvveseenne, 9-81
How Do | Run XSQL 0N Oracle8i LIte?cccci ittt 9-81
How Do | Handle Multi-Valued HTML Form Parameters?ccocooeveneieneieinenceenes 9-82
Can | Run the XSQL Serviet With Oracle 7.37.........ccoiiiiiiiiiiine e 9-84
Why Isn’t the Out Variable Supported in <xsgl:dmI>? ..o, 9-84
Why Am | Receiving "Unable to CONNECE” EFTOrS?ccccvceieiieiiee st 9-85
Can | Use Other File Extensions BeSides *.XSOI?ccooveriiriiiniiniineneseee e 9-86
How Do | Avoid Errors for Queries Containing XML Reserved Characters?................... 9-87
Why Do | Get "No Posted Document to Process” When | Try to Post XML?................... 9-88
Can XSQL SUPPOIT SOAP? ..ottt et are s 9-88
How Do | Pass the Connection fOr XSQL?......cccccciiiiiiiiiiiiee et 9-88
How Do | Control How Database Connections and Passwords Are Stored? 9-89
How Do | Access Authentication Information in a Custom Connection Manager? 9-89
How Do | Retrieve the Name of the Current XSQL Page?.......cccccvvvivvevinereieeieeesesesennens 9-89
How Do | Resolve Errors When | Try to Use the FOP Serializer?..........cccccccovvvvvvvvcvicinennn, 9-90
How Do | Tune XSQL Pages for Fastest PErformance?ccoeoveineineineinensenseeas 9-91
How Do | Use XSQL with Other Connection Pool Implementations?...........cccccccoevvevennne. 9-92
How Do | Include XML Documents Stored in CLOBS?..........cocvvviiiieneeeeeeeese e 9-92
How Do | Combine JSP and XSQL in the Same Page?..........c.cccveineiineineieneieseese e 9-92
Can | Choose a Stylesheet Based on INnput ArgumentS?.......ccccocvvevenereneenieiesiesneeseseanens 9-92

10 XDK JavaBeans

Accessing Oracle XML TranSVIEWETN BEANS..........ccccvcviiiiiinie e stese e eaeae e eeerese e snenes 10-2
XDK for Java: XML Transviewer Bean FEAtUIESccociiiiiiiiiene e 10-2
Direct AcCess fromM JDEVEIOPETciiiirieiriciiteese ettt 10-2
Sample Transviewer Bean APPLICALIONcccoveveieiirieiicr e 10-2
Database CONNECLIVILYcceoiiiieieiie et te et e sreesbe e e sreanees 10-2
XML TranSVIBWEE BEANS.ccuciuiiiiieieieieiieieee ettt sttt st st see sttt e et e s et enestestesnesbeneas 10-2
Using the XML TranSVIEWET BEANSccccvvvieiiriiereseeiees et snesnenne s 10-4
8] [[o [B I@ 1Y S U T] o [T gl =T=- Uq PSSR 10-5
Used for Asynchronous Parsing in the Background............ccccoeoiiniinincincccen 10-5
DOMBuilder Bean Parses Many Files Fast ... 10-5
DOMBUIIAEr BEAN USAQEccveiveeiiiieitieiieite ettt sttt ste s ste e ste et estaenbesnsenne e e sreannes 10-6
USIiNg XSLTransformMer BEAN..........coociiiiiecee et 10-9

XV

Do You Have Many Files to Transform? Use XSLTransformer Bean..........c..cccccccevenennen. 10-10

Do You Need a Responsive User Interface? Use XSLTransformer Bean.......................... 10-10
XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes 10-10
XSLTransformer Bean USAQEcc.ccveiuiiiiie ettt te st sve e sre s nestesne e annens 10-11
USING TrEEVIEWET BEANeiiiiieiiiieii ettt 10-13
USING XMLSOUICEVIEW BEANccviiviiiiiiiiiiesie ettt sttt se e enaesesneanens 10-15
XMLSOUICEVIEW BEAN USAQJEecviiviiii ittt ettt saaesbe e ste e ste e e steennens 10-16
Using XMLTransformPanel BEaN............cociiiiiiiiiiceseese s 10-20
XMLTransformPanel Bean FEATUIES ..ot 10-20
USING DBVIEWET BEANcviciiiiicice ettt ettt ntesne e ste e e steanaenteaneens 10-23
DBVIEWET BEAN USAQJEc.ciueiiiiiiiiiiiti ettt 10-26
USING DBACCESS BERAN ...ttt sttt sttt e seeneeneereaneenens 10-30
DBACESS BEAN USAJEcoiiieiiiiiiee ittt sttt sttt st e s e bbb e e be e ntb e e teessneebe s 10-30
USING the XIMLDITF BEANcoiiiiiiiicec e 10-32
XMLDIFf MEENOUS.......ooviiiiciece et 10-32
Running the Transviewer Bean SAMPIES ... 10-34
Installing the Transviewer Bean SAmpPIeS..........ccooiiiiiiiiiciie e 10-36
Using Database CONNECLIVILYcc.civiiiiiiiisise s 10-37
RUNNING MAKEFIIE ..ot 10-38
Transviewer Bean Example 1: AsyncTransformSample.java..........ccocovniiniinninninnnns 10-39
Transviewer Bean Example 2: VIEWSamPIle.jaVacccccveveviieiieninniesienenie e 10-45
Transviewer Bean Example 3: XMLTransformPanelSample.java.........c.ccocoeviiiiienne, 10-49
Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.javac.c.ccoceeneee 10-50
Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.javaccccccvevane. 10-53
Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java..........ccccccoeuee.e. 10-54
XMLDIFFSAMPIEJAVA ...ttt b bbb 10-55
XIMLDITTFIAME.JAVA ... eciceieececee ettt st sa et n e e e e e e eneeneas 10-60

11 Using XDK and SOAP

WAL IS SOAPT? ..ot sttt e s e s e e se e s e et e e be e b e s teste st et e tese e e enteneeneenenrennennens 11-2
What Are UDDI N WSDL?.......co ottt sttt sttt et vaate e ane 11-3
WHRAL IS OFaCle SOAPTY ...ttt et e et e bt e beeae e s beeneesreeneas 11-4
HOW D0ES SOAP WOTK?ociiiieieite ettt sttt st e e e e e e e enaenanrenneanens 11-4
WHhat 1S @ SOAP CHENT? ...ttt eere s 11-5
SOAP CHENE AP ...ttt ettt ettt st ettt et et et naetseneeaeebeeras 11-5

XVi

12

WAL IS @ SOAP SEIVEI ...ttt et e e s st e s s bt e e sebe e e s sbbe e s sbaeeanes 11-6

Oracle SOAP SECUNILY FEALUIES ..ottt 11-6
1@ 7 N e I =1 g] 0 0] o (S 11-6
AMINISTrAtiVE CHENTS ... 11-6
SOAP ReqUEST HANAIET ..ot 11-7
SOAP Provider Interface and PrOVIAEIS ..o e 11-7
SOAP SEIVICES ...ttt sttt ettt b bbbtk e bt e b e b nb e b e e b et e st e b e e bt bt ebeebenbe b 11-7
JDeveloper SUPPOIT FOr SOAP ..ottt 11-7
See the DeVEIOPEI'S GUITES.........ccv i e e nenrenresnens 11-8
Oracle TransX Utility
Overview of the TransSX ULTHIILY ... 12-2
Primary TransX ULIlity FEAtUIESc.cov ittt 12-2
INSTAHIING TranNSX UTTHTITY ...oveiiiii e 12-4
DependenCies OF TIANSXo i se ettt se et e e e e e enaereaneenenen 12-4
Installing TransX Using the Oracle INStaller.............ccooveiiicii i 12-5
Installing TransX Downloaded from OTNccociiiiiiiiii e 12-5
TransX Utility Command-Line SYNTaX........cccvveiiiieiiiiiiesc s sne s 12-6
TransX Utility Command-Line EXamPIEs..........ccoiiiiiiiiiiiiii s 12-6
Sample Code FOr TranSX ULHTITYccoeiiiiiiiic s 12-8

Partlll XDK for C/C++

13

XML Parser for C
ACCESSING XML PArSEE TOI € ..ot 13-2
XML PArser FOr C FEATUIESc.oiiiriiirieirieete sttt ettt naenes 13-2
SPECITICALIONS ...ttt bbb bbb bbbt b e bt bt eb bbb 13-2
MEMOTY AOCALION.ttt et ekttt sb et eb e e ar e 13-2
QLI Lo T BTV =] Y2 13-3
DAta TYPES TNAEX ...ttt bbb bbbttt ettt et bbb 13-3
Error MESSAQGE FIESc.oiiiiiiiiiecee ettt 13-3
Validation MOGESoviiiiic bbbt b e sb e bbb 13-3
DY L eV T=T g (o] g O U LY Vo TSRS 13-3
XML Parser for C Default BENAVIOKcocooiiiiiicee e 13-5

XVii

14

15

Xviii

DOM AN SAX APIS ...ttt bbbttt 13-6

USING thE SAX AP ..ottt 13-7
INVOKING XIML PArSer TOF C ..ottt na s nenne s 13-7
ComMMANA LINE USAQE.......iiieiieiieiieeie sttt ettt e e e e e st et e s teenbeensesteensesreannes 13-8
Writing C Code to Use SUPPHEA APIS.......cociiiiiee e 13-8
Using the Sample Files Included with Your Softwarecc.ccoccoivvniiencnccccece e, 13-8
Running the XML Parser for C Sample Programs...........ccccoiiiininine e 13-9
Building the SAample Programs ... 13-9
SAMPIE PrOGIAMIS .. .ottt sttt e esa e seebestesaesresbesaesae s e aeseeneeneeneanenneas 13-10
XSLT Processor for C
ACCESSING XSLT TOF C oottt ettt bt e st e e et et e s e e e aneerenrens 14-2
XSLT TOF € FRALUIES ...ttt ettt b ekt b e bbb bbbt e st e e bt et e et 14-2
SPPECIFICALIONS ...ttt bbbt ettt rb bbbt b et b et r et n e b 14-2
XML XSLT for C (DOM INterface) USAQE.......ccoeveieiiieese et siesiesesie e saea e e sne e sse e 14-2
INVOKING XSLT TOF € ..ottt ettt e st e et e sbeesaesaaesresraeseenneeas 14-4
ComMMAN LINE USBQE......ciitiieiiiietiieeteit ettt ettt sb bbb e b b e b ene e 14-5
Using the Sample Files Included with the Softwarec..ccocooviviie i, 14-5
Running the XSLT for C SAmpPle Programs ... 14-6
Building the SAample Programs ..o 14-6
T] o] LSl ad oo | s o 1SS 14-6
XSLT for C Examplel: XSL — iden. XS] ..o 14-6
XSLT for C Example 2: C — XSLSAMPIE.C ...oveviiiiiiiieiicesee s 14-6
XSLT for C Example 3: C — XSLSample.std........ccccovvveiiieiiiecese e 14-9
XML Schema Processor for C
Oracle XML Schema Processor FOF C.......oiiiiieiee et 15-2
Oracle XML Schema fOr C FEATUIEScciiiiiiieieie ettt 15-2
Standards CONTOIMANCEc.ooiiiii ittt ene e 15-2
XML Schema Processor for C: Supplied SOftware. ... 15-3
Invoking XML Schema Processor fOr C.........cooiiiiiiiee ettt 15-3
XML Schema Processor for C Usage Diagram.........cccceieiiereenieenieesreeseeesienesie e seene e 15-4
How to Run XML Schema for C Sample Programs...........cccceoiieiinnnienenieneseesesesessesesesesnens 15-5

16

17

XML Parser for C++
ACCESSING XML ParSEr FOI Ct..ociiiiiiiiieeee bbb 16-2
XML PArser fOr CH+ FEAUIESooiiiiiriiiiiecte sttt 16-2
SPECITICALIONS ...ttt bbb bbb bbbt b e bt bbb nbenre s 16-2
MEMOTY AOCALION.ttt et ekttt sb et eb e e ar e 16-2
QLI Lo T BTV =] Y2 16-3
DAta TYPES TNAEX ...ttt bbb bbbttt ettt et bbb 16-3
Error MESSAQGE FIESc.oiiiiiiiiiecee ettt 16-3
Validation MOGESoviiiiic bbbt b e sb e bbb 16-3
XML PArser fOr CHt USAQE......ccveiiiiiciece ettt te e saa et tesna e teenaesbaeneenneenes 16-3
XML Parser for C++ Default BENAVIONcccooiiiiiiece s 16-6
DOM AN SAX APIS ..ot sb et b ettt ettt e bbb nnne 16-7
USING The SAX AP ..ottt et b et e aae e be s neente e e nreaneas 16-7
INVOKING XML PArser TOr C ...ttt e 16-8
CoMMAN LINE USAQEvvveiiiiiirieiiesiesiesie st e st sttt e e e e e e s enaeseanaanenrensesnens 16-8
Writing C++ Code to Use SUPPHEA APISo.oiiiiic s 16-9
Using the Sample Files Included with YOUr SOFtWAreccccoeiiiiniiicnccseeseee s 16-9
Running the XML Parser for C++ Sample Programs.........ccocvcoviviiviininieseniese e 16-10
Building the Sample Programs ... e 16-10
SAMPIE PrOGIAIMS. ...ttt b bbbt ettt 16-10
XSLT Processor for C++
ACCESSING XSLT FOI Crrt ottt b et bbb 17-2
XSLT FOF CHF FRALUIES ...ttt bbbt b ettt bbbt 17-2
SPECITICALIONS ...ttt bbb b bbb et b et eeb et b nre s 17-2
XSLT for C++ (DOM INTErface) USAQE......ccoveiriiiriiiriiisieisie ettt 17-2
INVOKING XSLT FOr CHa oottt et e e nesresnenrenns 17-5
(070l aa 0 aF: TaTe I | TcT U LT Vo 1< SRS 17-5
Writing C++ Code to Use SUPPHIEd APIS ..o 17-5
Using the Sample Files Included with Your Softwarec..ccocvivvvie i 17-5
Running the XSLT for C++ Sample Programs ... e 17-6
Building the SAample Programs ... s 17-6
T] o] LS ad oo -t 1SS 17-6

Xix

18

19

XML Schema Processor for C++
Oracle XML Schema Processor for C++ FEALUIESccciiiiiiieneiene e 18-2
Oracle XML Schema fOr CH+ FEATUIEScviiiieieeieie et 18-2
Standards CONTOIMEANCEc.cciiiiiiii bbbt be e 18-2
XML Schema Processor for C++: Provided SOftWare............ccocoocviiiinenene e 18-3
Invoking XML Schema Processor fOr CH. ..o 18-3
XML Schema Processor for C++ Usage Diagram.........cccccvevieieiieiese e se e see e sae e 18-4
Running the Provided XML Schema Sample Programscccccoeoieinennennenseneeseee 18-5
XML Class Generator for C++
ACCESSING XML CH+ Class GENETALONc.eiviuiiiririeiinieiisieiesieesie sttt 19-2
USING XML CH+ Class GENEIALON........ccccvieiiirieierieieieieieete e e e te e ste e e e ssesseae s eseesessesnessesses 19-2
EXEErnal DTD ParSIiNQccooiiiieiicie sttt sttt et te s e saeesnesraesresnaestenreens 19-2
Error MESSAgE FIES........coiiiiieiieet ettt 19-2
XML C++ Class GENErator USAQEcccciuerueierieiieieisesesesese e stestessesseseesaessessesessssssssessesssssensenes 19-3
Input to the XML C++ Class GENETALOF.........cc.cueiiieieieieeise e 19-3
XIMHUCG USAJE. ...ttt etttk b bbbt b et b e e bbbt ekt e b b e e b bt b et eb et ab e eb e b 19-5
Using the XML C++ Class Generator Examples in sample ..o 19-5

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml. 19-6
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd .. 19-6
XML C++ Class Generator Example 3: CG Sample Programccccocvvveveveneieiesnennnn, 19-7

Part IV XDK for PL/SQL

20

XX

XML Parser for PL/SQL
Accessing XML Parser fOr PLISQL ..ot 20-2
What’s Needed to Run XML Parser for PL/SQL ..o 20-2
Using XML Parser for PL/SQL (DOM INtErface).........cccoiiriiniineineisesesisessesee e 20-2
XML Parser for PL/SQL: Default BENAVIOKc.cooveviiiiieiiecececeee et 20-5
Using XML Parser for PL/SQL Examples in the Sample Directoryccccceeevevieinicncncne. 20-5
Setting Up the Environment to Run the Sample Programs..........ccoccoveiiennenncnscneennas 20-5
RUNNING AOMSAMPIEeiiieiiiee e st eeneere e e eneerenns 20-6
RUNNING XSISAMIPIE ..o ettt 20-7
XML Parser for PL/SQL Example: XML — family. xml.........cccocooiniininiiice 20-9

XML Parser for PL/SQL Example: DTD — family.dtdcccccociiniiininiicc 20-10

XML Parser for PL/SQL Example: PL/SQL — domsample.sglccccocoeviiviinciincnnnn 20-10
XML Parser for PL/SQL Example: PL/SQL — xslsample.sgl......ccccccovvvvvevernnvcincnnnnnn, 20-13
Frequently Asked Questions About the XML Parser for PL/SQLcccooeiiiiiciiininne, 20-16
Why Do | Get an "Exception in Thread" Parser Error?ccocoveriineineieneienee e 20-16
How Do | Use the xmldom.GetNodeValue in PLZSQL?.......c.cocoveiiiieieeieceece e 20-16
Can | Run the XDK for PL/SQL in an IS ENVIrONMEeNt?cccocevievveieveeie e 20-17
How Do | Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?........ 20-17
How Do | Use Local Variables with the XML Parser for PL/SQL?cccccoevveviiieireennenn, 20-19
Why Do | Get a Security Error When | Grant JavaSysPriv to a User?..........cccccceeeevvennenn 20-19
How Do | Install the XML Parser for PL/SQL with the JServer (JVM) Option?............. 20-20
How Do | Use the domsample Included with XML Parser for PL/SQL?........c.cccccvevnene 20-21
How Do | Extract Part 0f @ CLOB?.......cccoiiiieiceeeeee ettt 20-21
Why Do | Get "Out of Memory" Errors in the XML Parser?ccccoveineineinencnenennen, 20-22
What Are the Memory Requirements for Using the PL/SQL Parser?ccccoecvvvevvevenas 20-23
Is JServer (JVM) Needed to Run XML Parser for PL/ZSQL?.......cccovevevivcieiieecree e, 20-23
Frequently Asked Questions About Using the DOM APl ..o 20-23
What Does the XML Parser for PLZSQL DO?.......coovciiiiiiiiecee et 20-23
Can | Dynamically Set the Encoding in the XML Document?...........cccoovevevvevvevvecie e, 20-24
How Do | Get the Number of Elements in a Particular Tag?.........c.ccccovveneiieineincnnnnn, 20-24
HOW DO | Parse @ STINQ?. ..ottt sttt s se e ene e anens 20-24
How Do | Display My XML DOCUMENT?.........coiiiiiiiieinene sttt 20-24
How Do | Write the XML Data Back Using Special Character Sets?...........c.cccvevvrennen. 20-25
How Do | Obtain an Ampersand from Character Data?..........cc.ccoovevvvveneneseieisiesinnnnns 20-25
How Do | Generate a Document Object from a File?.........ccccccvvviviiiiie i 20-25
Can the Parser RUN ON LINUX?c.ciiiiiieeeesese e s 20-25
Is Support for Namespaces and Schema Included?ccccoovvvvivvievininvencnesec e 20-26
Why Doesn’t My Parser Find the DTD File? ..o 20-26
Can | Validate an XML File Using an EXternal DTD?........cccocoiiiiniinsineincsesieeniens 20-26
Does the Parser Have DTD Caching?.....cccccoviiiiicieieeiecesesn st sne s 20-26
How Do | Get the DOCTYPE Tag into the XML Document After It Is Parsed? 20-26
How Does the XML DOM Parser WOIK?coooeoieeeese e 20-26
How Do | Create a Node Whose Value | Can Set Later?..........ccovoevvevvieneieneienene e, 20-26
How Do | Extract Elements from the XML File?.......cccooiiiiiiiiiie e 20-27
How Do | Append a Text Node to a DOMElement Using PL/SQL Parser?................... 20-27

XXi

21

22

23

XXii

I Am Using XML Parser with DOM; Why Can | Not Get the Actual Data?.................... 20-27

Can the XML Parser for PL/SQL Produce Non-XML Documents?...........cccceeveeveinnennenn, 20-27
I Cannot Run the Sample File. Did | Do Something Wrong In the Installation?............. 20-27
How Do I Parse a DTD iN @ CLOB?c..ooiiiiiiieeee e 20-27
Why Do | Get Errors When Parsing @ DOCUMENT? ..o 20-32
How Do | Use PLXML to Parse @ GIVEN URL?.......cccoiiiiriiiniiiineceecseses s 20-32
How Do | Use the XML Parser to Parse HTIML?........ccccooiiiiiininene e 20-32
How Do | Move Data to a Web Browser Using PL/SQL and Oracle 7.3.47ccc....... 20-33
Does the XML Parser for Java Work with Oracle 7.3.47.......cccccovninnincneeseens 20-33
getNodeValue(): Getting the Value of DOMNOE...........cccccvevieiiiie i 20-34
How Do | Retrieve All Children or Grandchildren of a Node?..........cccceveveieiiicininnene 20-34
What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"...... 20-34
XSLT Processor for PL/SQL
Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface).......c.cccceovvveeveivirnnnnnn, 21-2
XML Parser for PL/SQL: XSLT Processor — Default Behaviorc.cccccccevveceivccieinenen, 21-4
XML Parser for PL/SQL Example: XSL — iden.Xsl.......ccocooviiiiniiniiccceseis 21-5
XML Schema Processor for PL/SQL
Oracle XML Schema Processor fOr PLISQLccoviiiiiiiiiieiiiene e 22-2
Building Server-Side XML Schema Validation............ccocoiviiiiiniiinnninie e 22-2
Creating the Java Classes for XML Schema Validation..............ccccccooovviiiiicinccccn e, 22-3
Loading and ResolVing the Java Class.........cccovieiiiiiiiiineese e 22-4
Publishing the Java Class by Defining the Specification.............ccccocooveniieniinciensieneeene 22-6
Example Using the Stored ProCEAUIES ..ot 22-6
XSU for PL/SQL
XSU PLISQL AP ..ottt ettt ettt sttt sb e sbe e et e s e st e e ebe e abe e ete e 23-2
Generating XML with DBMS_XMLQUENY() ..c.viveiiriiiiiiei it 23-2
XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)..... 23-2
XSU Generating XML Example 2: Printing CLOB to Output Bufferccccccoeiinene 23-3
XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names................. 23-3
XSU Generating XML Example 4: Using setMaxRows() and setSKipRows()c........ 23-4
Setting Stylesheets iN XSU (PL/SQL) ..ottt 23-5

Binding Values in XSU (PL/ISQL) ...ccioiiiiiie ettt sttt ste e steesae e sre e saennaens 23-6

XSU Generating XML Example 5: Binding Values to the SQL Statementc........... 23-7
Storing XML in the Database Using DBMS_XMLSAVEccccvcvrvreninene e seseanens 23-7
Insert Processing Using XSU (PL/SQL AP ..ot 23-8

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)................ 23-8

XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)........ 23-9
Update Processing Using XSU (PL/SQL AP ..o 23-10

XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL).. 23-11
XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL).... 23-12

Delete Processing Using XSU (PL/SQL AP ..o 23-12
XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL) 23-12
XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)ccccoevvvvvevennnnnn. 23-13
XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)ccccceue... 23-14
XSU Exception Handling in PLZSQLcoouiiiiiieeeee e 23-16

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQLccccceevevennee. 23-16
How Can | Use XMLGEN.IiNSertXML With LOBS?........ccccoiiiiiiniiine e 23-16

PartV Tools and Frameworks That Support XDK

24 Developing XML Applications with JDeveloper

INTrOAUCING JDEVEIOPET ...ttt bbb ettt sbe e 24-2
JDeveloper Covers the Complete Development Life Cycle ... 24-2
JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment................ 24-3
Java AlONE IS NOL ENOUQGNocuicice ettt sttt 24-3
XML TOOIS IN JDEVEIOPET ...ttt bttt 24-3
Business Components for Java (BCAJ)cccoveicieieieeesese st 24-5
Integrated Web Services DeVEIOPMENT ..o 24-6

What's Needed t0 RUN JDEVEIOPENcciiiiiieieie ettt 24-7
XSQL ComMPONENt PAltte......ccoieiiiiiiee et re e sne s 24-7
Yo [T= [Tot (o] G VAV T U o OSSR 24-8

XDK Features iN JDEVEIOPETcooiiiiiiiieiiieiiie sttt 24-9
Oracle XDK Integration in JDEVEIOPETccvcveieieise s snens 24-9
Developing Web Applications in JDeveloper Using XSQL Pagescccceverriveiniencnnnnn. 24-9

Building XML Applications With JDEVEIOPETccccvviiiiiiiiiiiee e 24-11
JDeveloper XDK Example 1: BC4J Metadata.........ccccevveveeieenieincnsese e 24-11

XXili

25

26

XXV

Procedure for Building Applications in JDEVEIOPEr ... 24-12

Using XSQL Servilet from JDEVEIOPEToociiiiiiciriciriestces et 24-12
JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsqlcccceevenenne. 24-13
JDeveloper XSQL Example 3: Employee Data with Stylesheet Addedccccccoeee. 24-14

Frequently Asked Questions About JDeveloper and XML Applications ... 24-15
How Do | Construct an XML Document in JSP2........ccoviiiiiiiescecnec s 24-15
Is There a Way to Use the @code Directly in the document() Line?c.c.cccccveveveinenns 24-16
How Do | Retrieve Data from messages.XmI?. ... 24-17
How Do | Move Complex XML Documents to a Database?.........ccccocvvvvvvencievecieennnnn, 24-18

Introduction to BC4J

Introducing Business Components for Java (BCAJ) ... 25-2
What Is the Business Components FrameWorK?...........ccocviiiiiienenineie e 25-4
USIiNG BUSINESS COMPONENTS........c.oouiiiiiietiiieiesiete ettt 25-4
Advantages at BC4J DeSIGN TIME......coiiiiiiieririeeieeieeee ettt ae e nasresneans 25-5
Advantages at BCAJ RUNTIME.........ccooiiiiiee ettt 25-5

Implementing XIML MESSAGINGooveuiiiiirieirieiieeie ettt ene e 25-6
Test BC4J Applications using JDEVEIOPENcc.civeveieieieeise e 25-7
BC4J Uses XML t0 Store Metadata..........coevviiiiiiiiiiirere e 25-7

Creating a Mobile Application in JDEVEIOPET ..o 25-9
Create the BCAJ APPlICALION........ccccv i e eneas 25-10
Create JSP Pages Based on a BC4J APPlICationccciiiiiininiiiiene e 25-11
Create XSLT Stylesheets According to the Devices Needed to Read the Data................ 25-12
Building XSQL Clents With BCAJcooviiiiiieie e 25-15

Building XSQL CHENtS WIth BCA........ccooiiiiiieiicisiesesee et 25-15
WED ODJECTS GAIIEIY ...t 25-16
Generating and Managing Code When Building XML and Java Applications 25-17

Frequently Asked QUESEIONS FOr BCAJ ..o 25-18
Can Applications Built Using BC4J Work With Any J2EE-Compliant Container? 25-18
Can J2EE Applications Built Using BC4J Work with Any Database?..........cccccocevevvvrnenns 25-18
Is There Runtime Overhead from the Framework for Features That | Do Not Use? 25-19
Where Can | Find More Information About BCAJ?..........cociiiiiiiie i 25-19

Introduction to UIX
WAL IS ULX? oottt sttt s et s et b ettt b et b et n et n et nentenes 26-2

VAV A o L= IR (o L LU) SR 26-2

WHEN NOTT0 USE ULX ..ottt ettt be et s be s e e st eesbesbeeneesreenns 26-3
What Are the UILX TEChNOIOGIES?ccuiieieeceeccee st 26-3
ULX COMPONENTS ...ttt sb ettt skt eb e bt ebeennesneenbe e e nreaneas 26-4
(0] QO] o)1 (o] 1 L1 oSSR OP TSP STRTRO 26-4
L0 G -V o [- T =TSR 26-5
UILX DYNAMIC IMAGESveveeieiiieie ettt ettt sttt ste e e et s a e ae e e e sta e e asaebeestenbeansesteaneesreaneas 26-5
U DX SEYIES. ..t bbb bbbttt 26-5
U DX SBIE .ttt bbbt b btk bttt 26-6
Which UIX TeChNOIOGIES 10 USE?......ccieiicieiecece ettt sttt sne s 26-6
For More Information ADOUL ULX ..ottt 26-8

XDK for Java: Specifications and Quick References

XML Parser for Java QUICK REFEIENCEc.voiiiiiiece e A-2
XML Parser for Java SPeCIfiCatiONScccoceiiiiiiicc e A-2
REGUITEIMENTS ...t b bbbt bt bbb et e st e st e st e bt et e s beebenbenbe e A-2
ONIINE DOCUMENTALION........iitiiiiiiiiie ittt sttt se b e s e neebesbeseesaeneas A-2
REIEaSE SPECITIC NOLES......cui it e e e e snesresrenrens A-3
Standards CONTOIMANCEooiiiiiiee e ettt sttt sae s A-3
Supported Character St ENCOTINGSccoiiiiiiiiiiieieieree et A-3
XDK for Java: XML SChema PrOCESSONccviiiiiiieirieirie st A-5
XDK for Java: XML Class Generator TOr JAVA..........cccoieiiiiiiiiiine e A-5
XDK for Java: XSQL SEIVIEBTc.ooiiiiiiie ettt sre e A-5
Downloading and Installing XSQL SErVIEL...........ccoiiiiiiiieiese e A-5
Windows NT: Starting the Web-10-GO SEIVEr ..o A-6
Setting Up the Database Connection Definitions for Your Environment.............ccccoceeue.ee. A-7
UNIX: Setting Up Your Servlet Engine to RUN XSQL Pages........ccccvvverierieieiniesesesesennens A-8
XSQL Servlet SPECITICAtIONSoiiiiiiiiie ettt b bbb A-8
CharaCter SET SUPPOIT ..ottt bbbttt A-9

XDK for PL/SQL: Specifications

XML PArser FOr PLISQLcuooiiiiiiiie ettt sttt sttt s e st et sbe b bt e B-2
Oracle XML Parser FEATUIEScccovirreeiereeessreee s B-2
NAIMESPACE SUPPOIT ...ttt b e bt e b e be e b e b e e b e st e e bt eb e nneenrenneenes B-3
Validating and Non-Validating Mode SUPPOIT........ccceiiieiieriiine e B-3

XXV

EXAMPIE COAR ... bbb bbbttt be bbb b B-3

IXML Parser for PL/SQL DireCtory StrUCTUIE..........covvuiiiiiiieicieeese et B-3

DOM @NA SAX APIS ..ot B-4

XML Parser for PL/SQL SPECITICAtIONScviuiiiiiiiiiiiiere e B-5
Glossary

Index

XXVi

Send Us Your Comments

Oracle9/ XML Developer’s Kits Guide - XDK, Release 2 (9.2)
Part No. A96621-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXVil

XXViii

Preface

The Preface has the following sections:

About this Guide

How to Order this Manual

Downloading Release Notes, Installation Guides, White Papers
How to Access this Manual On-Line

Conventions

Documentation Accessibility

XXiX

About this Guide

This manual describes Oracle9i’s XML-enabled database technology. It describes
how XML data can be stored, managed, and queried in the database using Oracle
XML-enabled technology and the appropriate Oracle development tools.

After introducing you to the main criteria to consider when designing your Oracle
XML application, this manual describes an overview of several scenarios that are
based on real-life existing business applications. You are then introduced to the
XML Developer’s Kits (XDKs) and how the XDK componoents can work together
to generate and store XML data in a database. Examples and sample applications
are introduced where possible.

Other Documentation on XML

For more about building XML applications:
See Also:
« Oracle9i XML Database Developer’s Guide - Oracle XML DB
« Oracle9i XML API Reference - XDK and Oracle XML DB

= Oracle9i Application Developer’s Guide - Advanced Queuing

Examples and Sample Code

Many of the XDK examples in the manual are provided with your software in the
following directories:

« $ORACLE_HOME/xdk/java/demo/

« $ORACLE_HOME/xdk/C/demo/ and so on
« $ORACLE_HOME/xdk/java/sample/

« $ORACLE_HOME/rdbms/demo

How to Order this Manual

XXX

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
http://tahiti.oracle.com

Downloading Release Notes, Installation Guides, White Papers

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
http://tahiti.oracle.com

How to Access this Manual On-Line
You can find copies of or download this manual from any of the following locations:
« On the Document CD that accompanies your Oracle9i software CD

« From Oracle Technology Network (OTN) at
http://otn.oracle.com/docs/index.html , under Data Server (or
whatever other product you have). For example, select Oracle9i > General
Documentation Release 1 (9.0.1) (or whatever other section you need to

XXXi

specify). Select HTML then select HTML or PDF for your particular of interest,
such as, “Oracle Documentation Library”. Note that you may only be able to
locate the prior release manuals at this site.

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:
« Conventions in Text
« Conventions in Syntax and Code Examples
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER

monospace elements supplied by the system. Such column.

(fixed-width elements include parameters, privileges, .

font) datatypes, RMAN keywords, SQL E&%ﬁﬂéﬁﬁg;ﬂtge database by using the
keywords, SQL*Plus or utility commands, ’
packages and methods, as well as Query the TABLE_NAMEolumn in the USER _

system-supplied column names, database TABLESdata dictionary view.

?(?IJ:S“S and structures, usernames, and . 1he pEMS_STATSENERATE_STATS
' procedure.

XXX

Convention

Meaning

Example

lowercase
monospace
(fixed-width
font)

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase monospace italic font
represents placeholders or variables.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Conventions in Syntax and Code Examples

Syntax examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospaced (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in syntax examples and
in code examples, and provides examples of their use.

Convention Meaning Example

[1 In syntax examples, brackets enclose one DECIMAL (digits [, precision)
or more optional items. Do not enter the
brackets.

{} In syntax examples, braces enclose two or {ENABLE | DISABLE}

more items, one of which is required. Do
not enter the braces.

Xxxiii

Convention

Meaning

Example

Other notation

Italics

UPPERCASE

XXXIV

In syntax examples, a vertical bar
represents a choice of two or more
options within brackets or braces. Enter
one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« Or, in syntax examples, that you can
enter more arguments

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery ;

SELECT col1 , coln FROM

employees;

col2 , ...,

SQL> SELECT NAME FROM V$DATAFILE;
NAME

fslidbsftbs_01.dbf
fsl/dbsftbs_02.dbf

fislidbsftbs _09.dbf
9 rows selected.

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) = 3;

CONNECT SYSTEMystem_password
DB_NAME = database_name

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

Convention

Meaning Example

lowercase

Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names salolus hr/hr
of tables, columns, or files. aip
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

XXXV

XXXVI

What's New in XDK?

These sections describe the new features in the following releases:
« XDK Features Introduced with Oracle9i, Release 2 (9.2)

« XDK Features Introduced with Oracle9i, Release 1 (9.0.1)

« XDK Features Introduced with Oracle8i Release 3 (8.1.7)

XXXVii

XDK Features Introduced with Oracle9 1/, Release 2 (9.2)

XXXViii

XML Schema Processor for Java
Supports the W3C Schema recommendation.

Schema Identity-constraint validation no longer needs external DocumentBuilder.

XSL Stylesheets
Support for threadsafe XSLStylesheet objects.

XSQL Servlet
New Performance Improvement Option for <xsql:include-owa>.

<xsql:set-page-param> now supports xpath="Expr" Attribute.
Simplified inclusion of XML from CLOB and VARCHAR2 Columns.
New <xsql:include-posted-xml> action handler to include posted XML.
Support for the Apache FOP 0.19 release.

Supports Immediately Read Values Set as Cookies.

Supports Setting Multiple Parameter Values with a Single SQL Statement.

Class Generator for Java
Data Binding Feature is added in this release to the DTD Class Generator.

An XML instance document could be given as input to load the instance data to the
generated classes.

XDK for Java
XSU support for SAX 2.0 and generating the XML Schema of a SQL Query.

DOM level compression support.

Oracle SOAP APIs added.

SAX2 Extension support in the Java XML Parser.

JAXP 1.1 support is now provided by the XDK for Java.

Oracle TransX Utility aids loading data and text.

XML Schema Processor for Java supports both LAX Mode and STRICT Mode.

XML Compression now supported in the Java XML Parser.

XDK for C
Released on Linux.

XDK for C++
Released on Linux.

XDK for JavaBeans
New XMLDiff Bean.

Internal DTD support is added to the SourceViewer Bean.

OTN
New XDK Live demo is online at:

http://otn.oracle.com/tech/xml/xdk_sample/xdkdemo_fag.html
http://otn.oracle.com/tech/xml/xdk_sample/xdkdemo_xsqgl.html

New XDK technical Paper for "Building Server-Side XML Schema Validation" is
online at:

http://otn.oracle.com/tech/xml/xdk_sample/xdksample_093001i.h
tml

XDK Features Introduced with Oracle9 |, Release 1 (9.0.1)

Here are the new XDK features in Oracle9i Release 1 (9.0.1):
XDK for Java
« XML Schema Processor for Java

« XML Parser for Java— DOM 2.0 and SAX 2.0 support

« Improved XSLT performance

See:
« Chapter 4, "XML Parser for Java"

« Chapter 6, "XML Schema Processor for Java"

« Class Generator for Java now includes XML Schema based Class Generator
as well as a DTD based Class Generator

XXXIX

xl

See: Chapter 7, "XML Class Generator for Java"

XSQL Servlet and Pages

Support for Database Bind Variables. Now both lexical subsitution and true
database bind variables are supported for improved performance.

Support for PDF Output Using Apache FOP. You can now combine XSQL
Pages with the Apache FOP processor to produce Adobe PDF output from
any XML content.

Trusted Host Support for XSLT Stylesheets. New security features insure
that stylesheets cannot be executed from non-trusted hosts.

Full Support for Non-Oracle JDBC Drivers. Now all query, insert, update,
and delete features with with both Oracle and Non-Oracle JDBC drivers.

Process Dynamically Constructed XSQL Pages. The XSQLRequest APl can
now process programmatically constructed XSQL pages.

Use a Custom Connection Manager. You can now implement your own
Connection Manager to handle database connections in any way you like.

Produce Inline XML Schema. You can now optionally produce an inline
XML Schema that describes the structure of your XML query results.

Set Default Date Format for Queries. You can now supply a date format
mask to change the default way date data is formatted.

Write Custom Serializers. You can create and use custom serializers that
control what and how the XSQL page processor will return to the client.

Dynamic Stylesheet Assignment. Assign stylesheets dynamically based on
parameters or the result of a SQL query.

Update or Delete Posted XML. In addition to inserting XML, now updating
and deleting is also supported.

Insert or Update Only Targeted Columns. You can now explicitly list what
columns should be included in any insert or update request.

Page-Request Scoped Obijects. Your action handlers can now get/set objects
in the page request context to share state between actions within a page.

Access to ServletContext. In addition to accessing the HttpRequest and
HttpResponse objects, you can also access the ServletContext.

See: Chapter 9, "XSQL Pages Publishing Framework"

« XDK for JavaBeans

« DBViewer Bean (new). Displays database queries or any XML by applying
XSL stylesheets and visualizing the resulting HTML in a scrollable swing
panel.

« DBAccess Bean (new). DB Access bean maintains CLOB tables that hold
multiple XML and text documents.

See: Chapter 10, "XDK JavaBeans"

« XDKforC
« XML Parser for C — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)
« XML Schema Processor for C

« Improved XSLT performance

See: Chapter 15, "XML Schema Processor for C"

XDK for C++
« XML Parser for C++ — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)
« XML Schema Processor for C++

« Improved XSLT performance

See: Chapter 18, "XML Schema Processor for C++"

XDK for PL/SQL

« Improved XSLT performance

See: Chapter 20, "XML Parser for PL/SQL"

XML SQL Utility (XSU) Features
« Ability to generate XML Schema given an SQL Query

« Support for XMLType and Uri-ref
« Ability to generate XML as a stream of SAX2 callbacks

« XML attribute support when generation XML from the database. This
provides an easy way of specifying that a particular column or group of

xli

columns should be mapped to an XML attribute instead of an XML
element.

XSU is also considered part of the XDK for Java and XDK for PL/SQL.

See: Chapter 8, "XML SQL Utility (XSU)"

XDK Features Introduced with Oracle8 i Release 3 (8.1.7)

xlii

New XDK features introduced in Oracle8i, Release 3 (8.1.7) were enhanced and
improved versions of the following components:

« XDK forJava

« XDKforC

« XDK for C++

« XDK for PL/SQL
« XML SQL Utility

Part |

XML Developer’s Kits (XDK)

Part | of the book introduces you to Oracle XML-enabled technology and features,
Oracle XML Developer’s Kits (XDKs) and XML components, and how to install the
XDKs. Part I contains the following chapters:

« Chapter 1, "Overview of XML Developer’s Kits and Components”
« Chapter 2, "Getting Started with XDK for Java and JavaBeans"
« Chapter 3, "Getting Started with XDKs for C/C++ and PL/SQL"

1

Overview of XML Developer’s Kits and
Components

This chapter contains the following sections:

« Oracle XML Components: Overview

« Development Tools and Other XML-Enabled Oracle9i Features

=« XML Parsers

« XSL Transformation (XSLT) Processor

« XML Class Generator

« XML Transviewer JavaBeans

« Oracle XSQL Page Processor and Servlet

« Oracle XML SQL Utility (XSU)

« Oracle Text

« Oracle XML Components: Generating XML Documents

« Using Oracle XML Components to Generate XML Documents: Java

« Using Oracle XML Components to Generate XML Documents: C

« Using Oracle XML Components to Generate XML Documents: C++

« Using Oracle XML Components to Generate XML Documents: PL/SQL
« Frequently Asked Questions (FAQSs): Oracle XML-Enabled Technology

Overview of XML Developer’s Kits and Components 1-1

Oracle XML Components: Overview

Oracle XML Components: Overview

Oracle9i provides several components, utilities, and interfaces you can use to take
advantage of XML technology in building your Web-based database applications.
Which components you use depends on your application requirements,
programming preferences, development, and deployment environments.

Starting with XDK 9.0.2 (shipped with iAS v2) and XDK 9.2 (shipped with Oracle9i
Release 2), XSLStylesheet is thread-safe and can be used across threads in multiple
XSLProcessor.processXSL calls. But XSLProcessor, a light-weight object, will
not be made thread safe.

The following XML components are provided with Oracle9i and Oracle9i
Application Server:

« XML Developer’s Kits (XDKSs). There are Oracle XDKs for Java, C, C++, and
PL/SQL. These development kits contain building blocks for reading,
manipulating, transforming, and viewing XML documents. Oracle XDKs are
fully supported and come with a commercial redistribution license. Table 1-1
lists the XDK components.

« XML SQL Utility (XSU). This utility, for Java and PL/SQL: Generates and
stores XML data to and from the database from SQL queries or result sets or
tables. It achieves data transformation, by mapping canonically any SQL query
result to XML and vice versa.

The following figures schematically illustrate how the XDK components can be
used to generate XML.:

« Figure 1-8, "Generating XML Documents Using XDK for Java"

« Figure 1-9, "Generating XML Documents Using XDK for C"

« Figure 1-10, "Generating XML Documents Using XDK for C++"

« Figure 1-11, "Generating XML Documents Using XDK for PL/SQL"

Table 1-1 XDK Component Descriptions

XDK Component

Languages Description

XML Parser

Java, C, C++, PL/SQL Creates and parses XML using Internet standard DOM and
SAX interfaces.

XSLT Processor

Java, C, C++, PL/SQL Transforms or renders XML into other text-based formats
such as HTML and WML

XML Schema Processor Java, C, C++, PL/SQL Enables the use of XML simple and complex datatypes by

means of your XML Schema definitions.

1-2 Oracle9i XML Developer's Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features

Table 1-1 XDK Component Descriptions (Cont.)

XDK Component Languages Description

XML Class Generator Java, C++ Automatically generates Java and C++ classes from DTDs
and XML Schemas to send XML data from Web forms or
applications.

XML Transviewer Java View and transform XML documents and data through Java

JavaBeans components.

XML SQL Utility (XSU) Java, PL/SQL Generates XML documents, DTDs, and XML Schemas from
SQL queries.

XSQL Servlet Java Combines XML, SQL, and XSLT in the server to deliver
dynamic Web content.

TransX Utility Java Loads data encapsulated in XML into the database with
additional SQL functionality useful for installations.

Oracle SOAP Server Java See also Chapter 11, "Using XDK and SOAP"

XML Compressor Java See also "XML Compressor” on page 4-10.

Development Tools and Other XML-Enabled Oracle9 i Features
The following list includes Oracle’s XML-enabled development tools:
Oracle Text: A querying, search and retrieval tool.

Oracle JDeveloper9i and BC4J: JDeveloper9i is an integrated development tool for
building Java web-based applications. Oracle Business Components for Java (BC4J)
is a Java, XML-powered framework that enables productive development, portable
deployment, and flexible customizing of multitier, database-savvy applications
from reusable business components. These applications can be deployed as CORBA
Server Objects or EJB Session Beans on enterprise-scale server platforms supporting
Java technology.

See Also:
« Chapter 21, "XSLT Processor for PL/SQL"
« Chapter 22, "XML Schema Processor for PL/SQL"
« Oracle9i Internet File System (9iFS): An application interface in which data can
be viewed as documents and the documents can be treated as data. 9iFS is a

simple way for developers to work with XML, where 9iFS serves as the
repository for XML. 9iFS can perform the following tasks on XML documents:

Overview of XML Developer’s Kits and Components 1-3

Development Tools and Other XML-Enabled Oracle9i Features

« Automatically parse XML and store content in tables and columns
« Render the XML file’s content

See Also: Oracle9i XML Case Studies and Applications, the chapter,
"Using Internet File System (9iFS) to Build XML Applications".

« Oracle Reports. Oracle Reports Developer and Reports Server enable you to
build and publish high-quality, dynamically generated Web reports. Each major
task is expedited by the use of a wizard, while the use of report templates and a
live data preview enables easy customizing of the report structure. Reports can
be published throughout the enterprise through a standard Web browser, in any
chosen format, including HTML, HTML Cascading Style Sheets (HTML CSS),
Adobe's Portable Document Format (PDF), delimited text, Rich Text Format
(RTF), PostScript, PCL, or XML. Reports can be integrated with Oracle Portal
(WebDB).

« You can schedule reports to run periodically and update the information in
an Oracle Portal site. Reports can also be personalized for a user.

« Oracle Reports Developer is part of Oracle's e-business intelligence
solution, and integrates with Oracle Discoverer and Oracle Express.

1-4 Oracle9i XML Developer's Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features

Figure 1-1 Oracle XML Components and E-Business Solutions: What Is Involved

i

User / Browser /

Oracle Development Tools:

- XSQL Pages Publishing Framework
- 9/F S (Internet file System)

- JDeveloper and BC4J

- Oracle portal (WebDb)

- Oracle Reports

Typical XML-Based

Business Solutions
See manual case studies
XML Applications

Business Data Exchange with

Client / Application . Metadata AP XML (data stored in or out of
(Business or Consumer) database in relational tables
SQL Query or LOBs): |
| - Buyer-Supplier Transparent
* X'\?LZ%IW B2C Trading Automation
Usir?gs,sAa(gmg - Seamless integration of partners
Faati - HTTP-Based commercial and other
XML Application IDAP A data exchanged
- Integration of commercial
XDK for Java transactions and work flow
Web Services provided with XML:
Interface - Data mining and report-generation
XDK for C = [See Discoverer 4iViewer]
XML BE - Phone number portability
Documents =
XDK for C++ =
> = XML Gateway
XDK for PL/SQL = =
v XDK for Java Beans =
JDBC, — -
OCl, (3(20‘; 29',5,_%'%{) =% Content and Document
OCCl, management with XML
or (XML documents stored in or out
Pro*C/C++ A of database):
- Personalized publishing and
portals
Middle Tier: - Customized presentation according
- Oracle9i Application Server to customer)]
- Apache Server - Dynamically creating composite
v - Java-enabled web server documents from fragments
Object - Data displayed on different
Relational devices [see Wireless edition]
data Oracle To search and retrieve
< Text XA/CI:LLdOOé:gments stored =P Dynamic Services and Oracle
B , in Syndication Server (OSS)

XML Doc in CLOB or XMLType

Oracle or other database

XML Data stored:

- In relational tables in LOBs

- As XML documents in CLOBs (XMLType)
- DBUri-type

Overview of XML Developer’s Kits and Components 1-5

XML Application in
the database or
middle tier

Development Tools and Other XML-Enabled Oracle9i Features

XDK for Java

XDK for Java is composed of the following components:

XML Parser for Java. Creates and parses XML using Internet standard DOM
and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that
transforms XML to XML or other text-based formats, such as HTML.

XML Schema Processor for Java. Supports simple and complex types and is
built on the Oracle XML Parser for Java v2.

XML Class Generator for Java. Creates source files from an XML DTD or XML
Schema definition.

XSQL Servlet. Processes SQL queries embedded in an XSQL file, xxxx.xsql.
Returns results in XML format. Uses XML SQL Utility and XML Parser for Java.

XML SQL Utility (XSU) for Java. Enables you to transform data retrieved from
object-relational database tables or views into XML, extract data from an XML
document and:

— Use canonical mapping to insert data into appropriate columns or attributes
of a table or a view

— Apply this data to update or delete values of the appropriate columns or
attributes

SOAP Server. A protocol for sending and receiving responses across the
Internet.

TransX Utility. Simplifies the loading of translated seed data and messages into
a database.

XML Compressor. An XML document is compressed into a binary stream by
the XML Parser.

XDK for JavaBeans
XDK for JavaBeans is composed of the following component:

XML Transviewer JavaBeans. View and transform XML documents and data
through Java

XMLDiff Bean. The XML Diff Bean performs a tree comparison on two XML
DOM trees. It displays the two XML trees and shows the differences between
the XML trees.

1-6 Oracle9i XML Developer's Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features

XDK for C

XDK for C is composed of the following component:

XDK for C++

XML Parser for C: Creates and parses XML using Internet standard DOM and
SAX interfaces. Includes an XSL Transformation (XSLT) Processor that
transforms XML to XML or other text-based formats, such as HTML.

XSLT Processor. Transforms or renders XML into other text-based formats such as
HTML and WML.

XDK for C++ is composed of the following:

XDK for PL/SQL

XML Parser for C++. Creates and parses XML using Internet standard DOM
and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that
transforms XML to XML or other text-based formats, such as HTML.

XML Schema Processor for C++. A companion component to XML Parser for
C++. It enables support for simple and complex datatypes in XML applications
with Oracle9i. The Schema Processor supports the XML Schema Working Draft.

XML C++ Class Generator: Creates source files from an XML DTD or XML
Schema definition.

XSLT Processor.Transforms or renders XML into other text-based formats such as
HTML and WML.

XDK for PL/SQL is composed of the following:

XML Parser for PL/SQL.: Creates and parses XML using Internet standard
DOM and SAX interfaces. Includes an XSL Transformation (XSLT) Processor
that transforms XML to XML or other text-based formats, such as HTML.

XML Schema Processor for PL/SQI. Supports simple and complex types.

XML SQL Utility (XSU) for PL/SQL. Enables you to transform data retrieved
from object-relational database tables or views into XML, extract data from an
XML document and:

— Use canonical mapping to insert data into appropriate columns or attributes
of atable or a view

Overview of XML Developer’s Kits and Components 1-7

XML Parsers

XML Parsers

— Apply this data to update or delete values of the appropriate columns or
attributes

« XSLT Processor.

« XML Schema Processor. Transforms or renders XML into other text-based formats
such as HTML and WML.

The Oracle XML parser includes implementations in C, C++, PL/SQL, and Java for
the full range of platforms on which Oracle9i runs.

Based on conformance tests, xml.com ranked the Oracle parser in the top two
validating parsers for its conformance to the XML 1.0 specification, including
support for both SAX and DOM interfaces. The SAX and DOM interfaces conform
to the W3C recommendations 2.0.

Version 2 (v2) of the Oracle XML parser provides integrated support for the
following features:

« XPath. XPath is the W3C recommendation that specifies the data model and
grammar for navigating an XML document utilized by XSLT, XLink and XML

Query

« Incremental XSL transformation of document nodes. XSL transformations are
compliant with version 1.0 of the W3C recommendations. This support enables
the following:

« Transformations of XML documents to another XML structure
« Transformations of XML documents to other text-based formats
The parsers are available on all Oracle platforms.

Figure 1-2 illustrates the Oracle XML Parser for Java. Figure 1-3 illustrates the
Oracle XML parsers’ overall functionality.

See Also: Chapter 4, "XML Parser for Java" and Chapter A, "XDK
for Java: Specifications and Quick References".

1-8 Oracle9i XML Developer's Kits Guide - XDK

XSL Transformation (XSLT) Processor

Figure 1-2 Oracle XML Parser for Java

XML Parser for Java

p—p | Parsed XML j

. < DOM / SAX Parser> XSL-T Processor [y | —
Original 1 Transfered
XML Parsed XSL XML
Document — Commands Document

>
110l

Stylesheet

Figure 1-3 The XML Parsers: Java, C, C++, PL/SQL

Parsers
|
I I
P | XML Parser for Java |j===p-| DOM /SAX for Java | <===P| Java Application
=1 | XML Parser for PLISQL |===»| DOM for PL/SQL 4P| PL/SQL Application
P XML Parser for C++ e [DOM / SAX fOr C++ | C++ Application
XML
document
orDTD Lp XML Parser for C P | DOM/SAXfOrC | g C Application

XSL Transformation (XSLT) Processor

The Oracle XSLT engine fully supports the W3C 1.0 XSL Transformations
recommendation. It has the following features:

Overview of XML Developer’s Kits and Components 1-9

XML Class Generator

« Enables standards-based transformation of XML information inside and outside
the database on any platform.

« Supports Java extensibility and for additional performance comes natively
compiled from Oracle8i Release 3 (8.1.7) and higher.

The Oracle XML Parsers, Version 2 include an integrated XSL Transformation
(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT
processor, you can transform XML documents from XML to XML, HTML, or
virtually any other text-based format.

How to use the XSLT Processor is described in Chapter 4, "XML Parser for Java".

See Also: Chapter A, "XDK for Java: Specifications and Quick
References".

XML Class Generator

XML Class Generator creates a set of Java or C++ classes for creation of XML
documents corresponding to an input DTD or XML Schema. Figure 1-4 shows
Oracle XML Class Generator functionality.

How to use the XML Class Generators is described in the following chapters:
« Chapter 7, "XML Class Generator for Java"
« Chapter 19, "XML Class Generator for C++"

1-10 Oracle9i XML Developer’s Kits Guide - XDK

XML Transviewer JavaBeans

Figure 1-4 Oracle XML Java Class Generator

ey | XML Parser for Java

DTD or

XML Schema Parsed
DTD or
XML ﬁL
Schema ﬁ
Jc q
XML Class Generator cl—> P e
o Javn e = 0 Java Application [y | ——
Jc
Valid XML
document
based on
Java classes based
DTD or XML
on DTD or XML Schema Schema

(one class per element)

XML Transviewer JavaBeans

Oracle XML Transviewer JavaBeans are a set of XML components that constitute
XML for JavaBeans. These are used for Java applications or applets to view and
transform XML documents.

They are visual and non-visual Java components that are integrated into Oracle
JDeveloper to enable the fast creation and deployment of XML-based database
applications. In this release, the following beans are available:

« DOM Builder Bean. This wraps the Java XML (DOM) parser with a bean
interface, allowing multiple files to be parsed at once (asynchronous parsing).
By registering a listener, Java applications can parse large or successive
documents having control return immediately to the caller.

« XML Source Viewer Bean. This bean extends JPanel by enabling the viewing of
XML documents. It improves the viewing of XML and XSL files by
color-highlighting XML and XSL syntax. This is useful when modifying an
XML document with an editing application. Easily integrated with the DOM
Builder Bean, it enables pre-parsing and post-parsing and validation against a
specified DTD.

« XML Tree Viewer Bean. This bean extends JPanel by enabling viewing XML
documents in tree form with the ability to expand and collapse XML parsers. It

Overview of XML Developer's Kits and Components 1-11

Oracle XSQL Page Processor and Servlet

displays a visual DOM view of an XML document, enabling users to easily
manipulate the tree with a mouse to hide or view selected branches.

« XSL Transformer Bean. This wraps the XSLT Processor with a bean interface
and performs XSL transformations on an XML document based on an XSL
stylesheet. It enables users to transform an XML document to almost any
text-based format including XML, HTML and DDL, by applying an XSL
stylesheet. When integrated with other beans, this bean enables an application
or user to view the results of transformations immediately. This bean can also
be used as the basis of a server-side application or servlet to render an XML
document, such as an XML representation of a query result, into HTML for
display in a browser.

« XML TransPanel Bean. This bean uses the other beans to create a sample
application which can process XML files. This bean includes a file interface to
load XML documents and XSL stylesheets. It uses the beans as follows:

— Visual beans to view and edit files

— Transformer bean to apply the stylesheet to the XML document and view
the output

=« DBAccess Bean.

« DBViewer Bean.

« Compression Bean.
« Differ Bean.

As standard JavaBeans, they can be used in any graphical Java development
environment, such as Oracle JDeveloper. The Oracle XML Transviewer Beans
functionality is described in Chapter 10, "XDK JavaBeans".

Oracle XSQL Page Processor and Servlet

XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.
This processor is implemented as a Java servlet and takes as its input an XML file
containing embedded SQL queries. It uses XML Parser for Java, XML- SQL Ultility,
and Oracle XSL Transformation (XSLT) Engine to perform many of its operations.

You can use XSQL Servlet to perform the following tasks:

« Build dynamic XML data pages from the results of one or more SQL queries
and serve the results over the Web as XML datagrams or HTML pages using
server-side XSLT transformations.

1-12 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XSQL Page Processor and Servlet

Receive XML posted to your web server and insert it into your database.

Servlet Engines That Support XSQL Servlet

XSQL Servlet has been tested with the following servlet engines:

Allaire JRun 2.3.3

Apache 1.3.9 with JServ 1.0 and 1.1

Apache 1.3.9 with Tomcat 3.1 Betal Servlet Engine

Apache Tomcat 3.1 Betal Web Server + Servlet Engine

Caucho Resin 1.1

NewAtlanta ServletExec 2.2 for 11IS/PWS 4.0

Oracle9i Lite Web-to-Go Server

Oracle Application Server 4.0.8.1 (with JSP Patch)

Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine and higher
Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

JavaServer Pages Platforms That Support XSQL Servlet

JavaServer Pages can use <jsp:forward> or <jsp:include> to collaborate with
XSQL Pages as part of an application. The following JSP platforms have been tested
to support XSQL Servlet:

Apache 1.3.9 with Tomcat 3.1 Betal Servlet Engine

Apache Tomcat 3.1 Betal Web Server + Tomcat 3.1 Betal Servlet Engine
Caucho Resin 1.1 (Built-in JSP 1.0 Support)

NewAtlanta ServletExec 2.2 for 11S/PWS 4.0 (Built-in JSP 1.0 Support)
Oracle9i Lite Web-to-Go Server with Oracle JSP 1.0

Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine with Oracle JSP 1.0 and
higher

Any Servlet Engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, it should work with the following:

Any servlet engine supporting the Servlet 2.1 specification or higher

Overview of XML Developer’'s Kits and Components 1-13

Oracle XSQL Page Processor and Servlet

Oracle JSP 1.0 reference implementation or functional equivalent from another
vendor

XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.
This processor is implemented as a Java servlet and takes as its input an XML file
containing embedded SQL queries. It uses XML Parser for Java and XML SQL
Utility to perform many of its operations.

Figure 1-5 shows how data flows from a client, to the servlet, and back to the client.
The sequence of events is as follows:

1.

The user enters a URL through a browser, which is interpreted and passed to
the XSQL Servlet through a Java Web Server. The URL contains the name of the
target XSQL file (.xsqgl) and optionally, parameters, such as values and an XSL
stylesheet name. Alternatively, the user can invoke the XSQL Servlet from the
command line, bypassing the browser and Java web server.

The servlet passes the XSQL file to the XML Parser for Java, which parses the
XML and creates an API for accessing the XML contents.

The page processor component of the servlet uses the API to pass XML
parameters and SQL statements (found between <query></query> tags) to
XML SQL Utility. The page processor also passes any XSL processing
statements to the XSLT Processor.

XML SQL Utility sends the SQL queries to the underlying Oracle9i database,
which returns the query results to the utility.

XML SQL Utility returns the query results to the XSLT Processor as XML
formatted text. Results are embedded in the XML file in the same location as the
original <query> tags.

If desired, the query results and any other XML data are transformed by the
XSLT processor using a specified XSL stylesheet. The data can be transformed
to HTML or any other format defined by the stylesheet. The XSLT processor can
selectively apply different stylesheets based on the type of client that made the
original URL request. This HTTP_USER_AGENihformation is obtained from
the client through an HTTP request.

The XSLT Processor passes the completed document back to the client browser
for presentation to the user.

See Also: Chapter 9, "XSQL Pages Publishing Framework"

1-14 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XSQL Page Processor and Servlet

Figure 1-5 Oracle XSQL Page Processor and Servlet Functional Diagram

Servlet-Compatible Web Server

Browser 2] XML Formatted
> SQL Queries
L -
User Web Form XSQL Servlet
0 XML Parser
for Java
— |, Query *
—— | Results
— ! XSQL Page
——| in XML,
— | HrmL Processor 9
or Other
ﬁ Format XSL Tags l l SQL Queries
XSLT XML SQL
POrcessor | <mm— Parser
@ Query
[| \ Results

6]

11111 -

Stylesheet

Overview of XML Developer’'s Kits and Components 1-15

Oracle XML SQL Utility (XSU)

Oracle XML SQL Utility (XSU)
Oracle XML SQL Utility (XSU) supports Java and PL/SQL.

« XML SQL Utility is comprised of core Java class libraries for automatically and
dynamically rendering the results of arbitrary SQL queries into canonical XML.
It includes the following features:

— Supports queries over richly-structured user-defined object types and object
views.

— Supports automatic XML Insert of canonically-structured XML into any
existing table, view, object table, or object view. By combining with XSLT
transformations, virtually any XML document can be automatically
inserted into the database.

XML SQL Utility Java classes can be used for the following tasks:

— Generate from an SQL query or Result set object a text or XML document, a
Document Object Model (DOM), Document Type Definition (DTD), or XML
Schema.

— Load data from an XML document into an existing database schema or
view.

« XML SQL Utility for PL/SQL is comprised of a PL/SQL package that wraps
the XML SQL Utility for Java.

Figure 1-6 shows the Oracle XML SQL Utility overall functionality.

Figure 1-6 Oracle XML SQL Utility Functional Diagram

XML-SQL Utilty |

for Java

P
£ LI
=

Document

XML SQL Utility for Java consists of a set of Java classes that perform the following
tasks:

« Pass a query to the database and generate an XML document (text or DOM)
from the results or the DTD which can be used for validation.

1-16 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML SQL Utility (XSU)

— Write XML data to a database table

See Also: Chapter 8, "XML SQL Utility (XSU)"

Generating XML from Query Results
Figure 1-7 shows how XML SQL Utility processes SQL queries and returns the

results as an XML document.

Figure 1-7 XMI-SQL Utility Processes SQL Queries and Returns the Result as an XML

Document
XML-SQL Utility —
for Java
i A
SQL or Object XML Document of
Queries Query Results as a

string or DOM tree

Store and retrieve
XML documents
in the database

\ /

XML Document Structure: Columns Are Mapped to Elements

The structure of the resulting XML document is based on the internal structure of
the database schema that returns the query results:

« Columns are mapped to top level elements
« Scalar values are mapped to elements with text-only content
« Object types are mapped to elements with attributes appearing as sub-elements

« Collections are mapped to lists of elements

Overview of XML Developer’'s Kits and Components 1-17

TransX Utility

TransX Utility

XSU Generates the XML Document as a String or DOM Element Tree
The XML SQL Utility (XSU) generates either of the following:

« Astring representation of the XML document. Use this representation if you are
returning the XML document to a requester.

« Anin-memory XML DOM tree of elements. Use this representation if you are
operating on the XML programmatically, for example, transforming it using the
XSLT Processor using DOM methods to search or modify the XML in some way.

XSU Generates a DTD Based on Queried Table's Schema

You can also use the XML SQL Utility (XSU) to generate a DTD based on the
schema of the underlying table or view being queried. You can use the generated
DTD as input to the XML Class Generator for Java or C++. This generates a set of
classes based on the DTD elements. You can then write code that uses these classes
to generate the infrastructure behind a Web-based form. See also "XML Class
Generator".

Based on this infrastructure, the Web form can capture user data and create an XML
document compatible with the database schema. This data can then be written
directly to the corresponding database table or object view without further
processing.

See Also: Chapter 8, "XML SQL Utility (XSU)" and Oracle9i XML
Case Studies and Applications, the chapter, "B2B XML Application:
Step by Step", for more information about this approach.

Note: To write an XML document to a database table, where the
XML data does not match the underlying table structure, transform
the XML document before writing it to the database. For techniques
on doing this, see Chapter 8, "XML SQL Utility (XSU)".

TransX Utility is a data transfer utility that enables you to populate your database
with multilingual data. It uses XML to specify the data, so that you can take
advantage of easy data transfer from XML to the database, a simple data format
that is intuitive for both developers and translators, and validation capability that is
less error prone than previous techniques.

1-18 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML Components: Generating XML Documents

See Also: Chapter 12, "Oracle TransX Utility"

Oracle Text
Oracle Text extends Oracle9i by indexing any text or documents stored in Oracle9i.
Use Oracle Text to perform searches on XML documents stored in Oracle9i by
indexing the XML as plain text, or as document sections for more precise searches,
such as find Oracle WITHIN title where title is a section of the document.
See Also: For more information on using Oracle Text and XML,
see:
« Oracle Text Reference
« Oracle Text Application Developer’s Guide
« http://otn.oracle.com/products/text
XML Gateway

XML Gateway is a set of services that enables easy integration with the Oracle
e-Business Suite to create and consume XML messages triggered by business
events. It integrates with Oracle Advanced Queuing to enqueue/dequeue a
message which is then transmitted to/from the business partner through any
message transport agent.

See Also:
« Oracle9i Application Developer’s Guide - Advanced Queuing
« Oracle9i XML Database Developer’s Guide - Oracle XML DB

Oracle XML Components: Generating XML Documents

Figure 1-8 through Figure 1-11 illustrate the relationship of the Oracle XML
components and how they work together to generate XML documents from
Oracle9i through a SQL query. The options are depicted according to language

used:
« Java
| C

Overview of XML Developer's Kits and Components 1-19

Using Oracle XML Components to Generate XML Documents: Java

. C++

. PL/SQL

Using Oracle XML Components to Generate XML Documents: Java

Figure 1-8 shows the Oracle XML Java components and how they can be used to
generate an XML document. Available XML Java components are:

=« XDK for Java:
— XML Parser for Java, Version 2 including the XSLT
— XMl Schema Processor for Java
— XML Class Generator for Java
— XSQL Servlet
— XML Transviewer Beans
« XML SQL Utility (XSU) for Java

In the Java environment, when a user or client or application sends a query (SQL),
there are three possible ways of processing the query using the Oracle XML
components:

« By the XSL Servlet (this includes using XSU and XML Parser)
« Directly by the XSU (this includes XML Parser)
« Directly by JDBC which then accesses XML Parser

Regardless of which way the stored XML data is generated from the database, the
resulting XML document output from the XML Parser is further processed,
depending on what you or your application needs it for.

The XML document is formatted and customized by applying stylesheets and
processed by the XSLT.

1-20 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: Java

Figure 1-8 Generating XML Documents Using XDK for Java

HTML
- ! Text
-
#q I I XML
User / Browser / >
Client Application Browser /
Application
O soL Query
> XSQL Servlet
XML SQL XML
ili 1
Utility Parser A A ' xMLDocument
—| with or without
A ——| aDTDor
XML Schema
XML SQL Utility Dom or String -
9 _> Class Checks for
XML Generator | errors
PN XML Document from |
LOB / XML Type Creates Java
= source files
Queryin &4 | DataOut Stream » [XML Dom or Sax —
< Rarser] . s&f:cetg DTD Tragsviewer Integrated in
eans
@ —> JDBC * . Parsed HTML Jdeveloper
1 I—
l XML Parser .
iswithin user f—
hin | = ——
Object application fp— XSLT XSL-T API
Relational Processor is in the
data DTD or XML
Oracle text XML | \ Parser
| — Schema
v p—
LOBs —
Oracle9 i or other database — —
XML documents stored: XSL
- As single object with tags Formatted Stylesheet
in CLOB or BLOB and customized
- As data distributed XML Document
untagged across tables I

- Via views that combine
the documents and data

Overview of XML Developer's Kits and Components 1-21

Using Oracle XML Components to Generate XML Documents: C

Using Oracle XML Components to Generate XML Documents: C

Figure 1-9 shows the Oracle XML C language components used to generate an
XML document. The XML components are:

= XML Parser/XSLT Processor for C
« XML Schema Processor for C

SQL queries can be sent to the database by OCI or as embedded statements in the
Pro*C/C++ precompiler.

The resulting XML data can be processed in the following ways:
« With the XML Parser
« From the CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by
an XML-enabled browser, or sent for further processing to an application or AQ
Broker.

1-22 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: C

Figure 1-9 Generating XML Documents Using XDK for C

L1

User / Browser /

Client Application Browser /| <2

Application
XML
N |
A A
—— | XML Document
—| with or without
—— | aDTD or XML
Schema
XSL-T API
XSL-T is in the
XML Document from LOB / XML Type Processor XML
| ‘ Parser
Stream XML |L.DOM or Sax v &
SQL Parser| . parsed DTD |— —
ery ; f— —
Qu » OCl or objects _— —
Pro*C/C++ 4 pasedHTML | T—
] XSL
_ . Formatted Stylesheet
XML Parser is and customized
within the user p— XML Document
Object application j— I
Relational
data Oracle D1D or
Text XML
| | Schema
_'/ LOBs

Oracle9/ or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

Overview of XML Developer’'s Kits and Components 1-23

Using Oracle XML Components to Generate XML Documents: C++

Using Oracle XML Components to Generate XML Documents: C++

Figure 1-10 shows the Oracle XML components used to generate an XML
document. The XDK for C++ components used here are:

« XML Parser for C++, Version 2 including the XSLT
« XML Schema Processor for C++
« XML Class Generator for C++

In the C++ environment, when a user or client or application sends a SQL query,
there are two possible ways of processing the query using the XDK for C++:

« Directly by JDBC which then accesses the XML Parser
« Through OCCI or Pro*C/C++ Precompiler

1-24 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents; C++

Figure 1-10 Generating XML Documents Using XDK for C++

!

User / Browser /

Client Application Browser or <
Application
XML
1
A A [——} XML Document
| with or without
——| aDTD or XML
Schema
—
Class Checks for
Generator | errors
I— |
Creates C++
_’source files
XSL-T API
XSL-T isin the
XML Document from LOB Processor XML
| \ Parser
Stream » [xmL DOM or Sax v t —
S(Sé‘r Type | . Parsed DTD |=— —
Query ’ OCCl or objects — —
Pro*C/C++ * - Parsed HTML —
1 XSL
) . Formatted Stylesheet
XML Parser is and customized
within the user _ XML Document
Object application — I
Relational 07D
data or
L (- O{gi{e XML Schema
7—'— =
Q*LOBS

Oracle9/ or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

Overview of XML Developer’'s Kits and Components 1-25

Using Oracle XML Components to Generate XML Documents: PL/SQL

Using Oracle XML Components to Generate XML Documents: PL/SQL

Figure 1-11 shows the XDK for PL/SQL components used to generate an XML
document:

« XML Parser for PL/SQL, Version 2 including XSLT
« XML SQL Utility (XSU) for PL/SQL

In the PL/SQL environment, when a user or client or application sends a SQL
guery, there are two possible ways of processing the query using the Oracle XML
components:

« Directly by JDBC which then accesses the XML Parser
« Through XML SQL Utility (XSU)

1-26 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: PL/SQL

Figure 1-11 Generating XML Documents Using XDK for PL/SQL

&7

User / Browser / -
Client Application Browser /
Application
XML
A A
—— | XML Document
—— | with or without
——| aDTDor XML
Schema
SQL]
Query > XML-SQL Utility DOM or String
e XSL-T API
REISE] XML Document from XSL-T is in the
LOB / XML Type Processor XML
* I .\ Parser
JDBC / SQL &
AccessQ Stream > XML L.DOM or Sax \ 4 —
Parser| . parsed DTD |— —
objects — —
A pasedHTML |T—=
1 XSL
| . Formatted Stylesheet
XML Parser is and customized
within the user — XML Document
Object application fp— |
Relational
data Oracle DTD or
Text XML
- — Schema

LOBs

Oracle9 i or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

Overview of XML Developer’'s Kits and Components 1-27

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

This section includes general questions about Oracle XML-enabled technology in
the following categories:

« Frequently Asked Questions About the XDK

« Frequently Asked Questions About Previous Oracle Releases

« Frequently Asked Questions About Browsers that Support XML

« Frequently Asked Questions About XML Standards

« Frequently Asked Questions About XML, CLOBs, and BLOBs

« Frequently Asked Questions About Maximum File Sizes

« Frequently Asked Questions About Inserting XML Data into Tables

« Frequently Asked Questions About XML Performance in the Database
« Frequently Asked Questions About Multiple National Languages

« Frequently Asked Questions About Reference Material

There are Frequently Asked Questions at the end of several other chapters in this
manual.

Frequently Asked Questions About the XDK

What XML Components Do | Need to Install?

I am going to develop a small application using XML and Oracle. Here is the
scenario: Company A has is a central purchasing system with Departments B, C,
and D. Company A gets purchase orders in XML format from B, C, and D.

Company A needs to collect all purchase orders and store them in an Oracle
database. Then, it has to create another request for proposal for its preferred
vendors in XML. | am writing queries to insert or update into the database. What
XML components do | need to install in Oracle?

Answer: Assuming you are using Java, you need the XML Parser and XML SQL
Utility. If you are using a Java-based front end to generate the purchase orders, then
the XML Class Generator can provide you with the classes you need to populate
your purchase orders. Finally, the XSQL Servlet can help you build a Web interface.

1-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

What Software Is Needed to Build an XML Application?

I have a CGlI, Perl, and Oracle7 application on Solaris™ Operating Environment 2.6
and | want to convert it to an XML/XSL, Java, and Oracle application. I know most
parts of the technologies, for example, SGML, XML, and Java, but | don't know how
to start it in Oracle. What software do | need from Oracle? Specifically,

1.

2
3.
4

Can | use Apache instead of the Oracle Web server? If so, how?
How far can | go with Oracle 7.3?
Do I still need an XML parser if all XML was created by my programs?

What should be between the Web server and Oracle DB server? XSQL Servlet?
A parser? Java VM? EJB? CORBA? SQLJ? JDBC? Oracle packages such as
UTL_HTTP

Answer:

1.

XML Questions

Yes you can. The Apache Web server must now interact with Oracle through
JDBC or other means. You can use the XSQL servlet. This is a servlet that can
run on any servlet-enabled Web server. This runs on Apache and connects to
the Oracle database through a JDBC driver.

You can go a long way with Oracle 7.3. The only problem would be that you
cannot run any of the Java programs inside the server; that is, you cannot load
all the XML tools into the server. But you can connect to the database by
downloading the Oracle JDBC utility for Oracle7 and run all the programs as
client-side utilities.

Whether you still need an XML parser if all XML was created by your programs
depends on what you intend to do with the generated XML. If your task is just
to generate XML and send it out then you might not need it. But if you wanted
to generate an XML DOM tree then you would need the parser. You would also
need it if you have incoming XML documents and you want to parse and store
them. See the XML SQL utility for some help on this issue.

As in the first part of this answer, you would need to have a servlet (or CGI)
that interacts with Oracle through OCI or JDBC.

My project requires converting master-details data to XML for clients.

1.

What is the best way to design tables and generate XML flat tables, objects, or
collections?

Overview of XML Developer’'s Kits and Components 1-29

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

2. Can | use XML SQL Utilities in Pro*C/C++?
3. Isthere a limiting size for generating XML documents from database?

Answer:

1. It really depends on what your application calls for. The generalized approach
is to use object views and have the schema define the tag structure with
database data as the element content.

2. Yes.

3. We are not aware of any limits beyond those imposed by the object view and
the underlying table structure.

Are There XDK Utilities That Translate Data from Other Formats to XML?

I know that the XSLT will translate from XML to XML, HTML, or another
text-based format. What about the other way around?

Answer: For HTML, you can use utilities like Tidy or JTidy to turn HTML into
well-formed HTML that can be transformed using XSLT. For unstructured text
formats, you can try utilities like XFlat at the following Web site:

http://www.unidex.com/xflat.htm

Can Oracle Generate a Database Schema from a Rational Rose Generated XML File?

Is it possible to generate a database schema in Oracle using a script with CREATE
TABLE, from an XML file generated by a Rational Rose design tool?

Answer: All the parser and generator files (such as petal files, XML, and so on) are
developed in our project. All the components are designed for reuse, but developed
in the context of a larger framework. You have to follow some guidelines, such as
modeling in UML, and you must use the base class to get any benefit from our

work.

Oracle only generates object types and delivers full object-oriented features such as
inheritance in the persistence layer. If you do not need this, the Rational Rose petal
file parser and Oracle packages, as the base of the various generators, may interest

you.

1-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

Does Oracle Offer Any Tools to Create and Edit XML Documents?

Does Oracle have any tools for creating XML documents based on DTDs or the
XML schema definition DOM, or for editing XML documents with DTD or schema
validation?

Answer: JDeveloper9i has an integrated XML schema-driven code editor for
working on XML schema-based documents such as XML schemas and XSLT
stylesheets, with tag insight to help you easily enter the correct elements and
attributes as defined by the schema.

See Also: Chapter 21, "XSLT Processor for PL/SQL"

How Can | Format XML Documents as PDF?

I have been asked to take stored XML docs in release 8.1.6 and format them as PDF.
We are using JDeveloper release 3.1.1.2 as our development environment and the
client wants to stick to OAS 4082 on Windows NT if possible. Any suggestions or
recommended resources?

Answer: Oracle XSQL Pages release 1.0.2 supports integration with Apache FOP
0.14.0 for rendering PDF output from XML or SQL input.

It is possible to format XML into PDF using Formatting Object (FOP). See
information on this at the following Web sites:

http://xml.apache.org/fop/
http://www.xml.com/pub/rg/75)

How Do | Load a Large XML Document into the Database?

| have a large (27 MB) data-centric XML document. | could not load it into the
database when it was split into relational tables with the XML SQL utility, because
the DOM parser failed due to a memory leak during the XSLT processor execution.
Do you have a work-around for this problem? Should | use the SAX parser? How
do I use the XSLT processor and the Sax parser?

Answer: If this is a one time load, or if the XML document always has the same
tags, then you might consider using the SQL*Loader (direct path). All you have to
do is compose a loader control file. See the Oracle9i Database Utilities manual,
Chapter 3, for examples. You can use the enclosed by option to describe the
fields. For example, in the files list, enter something like the following:

(empno number(10) enclosed by “<empno>" and “<fempno>"....)

Overview of XML Developer's Kits and Components 1-31

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology

Except for the data parsing, which has to be done the same regardless of what you
are using, the actual loading into the database will be fastest with SQL*Loader, as
the direct path writes data straight to data blocks, bypassing the layers in between.

If the document is 27 MB because it is a very large number of repeating
sub-documents, then you can use the sample code that comes in Chapter 14, of the
book Building Oracle XML Applications by Steve Muench (O’Reilly) to load XML of
any size into any number of tables. In this chapter, called “Advanced XML Loading
Techniques,” the example builds an XML Loader utility that does what you are
looking for.

Can SQL*Loader Support Nesting?

1-32

If you have the following scenario:

<something>
<price>10.00</price>
</something>

<somethingelse>
<price>55.00</price>
</somethingelse>

Is there a way to uniquely identify the two <price> elements?

Answer: Not really. The field description in the control file can be nested, which is
part of the support for object relational columns. The data record to which this
maps is, of course, flat but using all the data field description features of the
SQL*Loader one can get a lot done. For example:

sample.xml

<resultset>

<emp>
<first>...<ffirst>
<ast>..<last>
<middle>....</middle>

<emp>

<friend>
<first>...<ffirst>
<last>..<last>
<middie>....</middle>

<ffiend>

Oracle9/ XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Previous Oracle Releases

<lresultset>
sample.ctl -- field definition part of the SQL Loader control file
field list
(
emp COLUMN OBJECT ...
(

fist char(30) enclosed by "<first>" and "<ffirst>",
last char(30) enclosed by "ast>"and "<last>",
middle char(30) enclosed by "<middie>" and </middle>"

)
fiend COLUMN OBJECT ...

(
fist char(30) enclosed by "<first>" and "<ffirst>",

last char(30) enclosed by "ast>"and"<last>",
middle char(30) enclosed by "<middie>" and </middle>"
)

Keep in mind that the COLUMN OBJECTield names have to match the object
column in the database. You will have to use a custom record terminator, otherwise
it defaults to newline (that is, the newline separates data for a complete database
record).

If your XML is more complex and you are trying to extract only select fields, you
can use FILLER fields to reposition the scanning cursor, which scans from where it
has left off toward the end of the record (or for the first field, from the beginning of
the record).

The SQL*Loader has a very powerful text parser. You can use it for loading XML
when the document is very big.

Frequently Asked Questions About Previous Oracle Releases

Can | Use Parsers from Different VVendors?

I am currently investigating SAX. | understand that both the Oracle and IBM
parsers use DOM and SAX from W3C.

« What is the difference between the parsers from different vendors like Oracle
and IBM?

« If I use the Oracle XML Parser now, and for some reason | decide to switch to
parser by other vendor, will I have to change my code?

Overview of XML Developer’'s Kits and Components 1-33

Frequently Asked Questions About Previous Oracle Releases

Answer: You will not have to change your code if you stick to SAX interfaces or
DOM interfaces for your implementation. That is what the standard interfaces are
in place to assist you with.

Is There XML Support in Oracle Release 8.0.67

We are currently architecting some of our future systems to run on XML-based
interfaces. Our current systems are all running Oracle release 8.0.6, and we would
like to have some of our XML concepts implemented on the existing systems due to
high demand. Are there current or future plans to support XML-based code within
the database, or are there any adapters or cartridges that we can use to get by?

Answer: All of our XML Developer's Kit components, including the XML Parser,
XSLT Processor, XSQL Servlet, and utilities like the XML SQL Utility all work
outside the database against Oracle 8.0.6. However, you will not be able to run XML
components inside the database or use Oracle Text XML searching, which are both
features in Oracle8i and higher.

Can | Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4?

My company has Oracle release 7.3.4 and my group is thinking of using XML for

some data transfers between us and our vendors. From what I could see from this
Web site, it looks like we would need to move to Oracle8i or higher in order to do
so. Is there any way of leveraging Oracle release 7 to do XML?

Answer: As long as you have the appropriate JDBC 1.1 drivers for Oracle release
7.3.4 you should be able to use the XML SQL Utility to extract data in XML.

For JDBC drivers, refer to the following Web site for information about Oracle7
JDBC OCI and JDBC Thin Drivers:

http://otn.oracle.com/tech/java/sqlj_jdbc/

If | Use Versions Prior to Oracle8 i/ Can | Use Oracle XML Tools?

If I am using an Oracle version earlier than Oracle8i, can | supply XML based
applications using Oracle XML tools? If yes, then what are the licensing terms?

Answer: The Oracle XDKs for Java, C, and C++ can work outside the database,
including the XML SQL Utility and XSQL Pages framework. Licensing is the same,
including free runtime. See OTN for the latest licenses.

1-34 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Standards

Can | Create Magnetic Tape Files with Oracle XML?

Is Oracle XML technology suitable for creating magnetic tape files where the file is
just a string of characters like ‘abcdefg........ "in a particular format? Is it is
possible to create a stylesheet that will create these kind of files?

Answer:

Yes. Just use <xsl:output method="text"/> to output plain text.

Frequently Asked Questions About Browsers that Support XML

Which Browsers Support XML?
Answer: The following browsers support the display of XML.:
« Opera. XML, in version 4.0 and higher
« Citec Doczilla. XML and SGML browser
« Indelv. Will display XML documents only using XSL
« Mozilla Gecko. Supports XML, CSS1, and DOM1
« HP ChaiFarer. Embedded environment that supports XML and CSS1
« ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML
« Microsoft IE5. Has a full XML parser, IE5.x or higher

« Netscape 5.x or higher

Frequently Asked Questions About XML Standards

Are There Advantages of XML Over EDI?

We are considering implementing EDI to communicate requirements with our
vendors and customers. | understand that XML is a cheaper alternative for smaller
companies. Do you have any information on the advantages of XML over EDI?

Answer: Here are some thoughts on the subject:

« EDI is a difficult technology: EDI enables machine-to-machine communication
in a format that developers cannot easily read and understand.

Overview of XML Developer's Kits and Components 1-35

Frequently Asked Questions About XML Standards

« EDI messages are very difficult to debug. XML documents are readable and
easier to edit.

« EDIis not flexible: it is very hard to add a new trading partner as part of an
existing system; each new trading partner requires its own mapping. XML is
extremely flexible with the ability to add new tags on demand and to transform
an XML document into another XML document, for example, to map two
different formats of purchase order numbers.

« EDI is expensive: developer training costs are high, and deployment of EDI
requires very powerful servers that need a specialized network. EDI runs on
VANS, which are expensive. XML works with inexpensive Web servers over
existing internet connections.

The next question then becomes: is XML going to replace EDI? Probably not. The
technologies will likely coexist, at least for a while. Large companies with an
existing investment in EDI will probably use XML as a way to extend their EDI
implementation, which raises a new question of XML and EDI integration.

XML is a compelling approach for smaller organizations, and for applications
where EDI is inflexible.

What B2B Standards and Development Tools Does Oracle Support?

What B2B XML standards (such as ebXML, cxml, and BizTalk) does Oracle support?
What tools does Oracle offer to create B2B exchanges?

Answer: Oracle participates in several B2B standards organizations:

« OBI (Open Buying on the Internet)

« ebXML (Electronic Business XML)

« RosettaNet (E-Commerce for Supply Chain in IT Industry)

« OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer
needs, such as the following:

« Oracle Exchange delivers an out-of-the-box solution for implementing
electronic marketplaces

« Oracle Integration Server (and primarily Message Broker) for in-house
implementations

« Oracle Gateways for exchanges at data level

1-36 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Standards

« Oracle XML Gateway to transfer XML-based messages from our e-business
suite.

Oracle Internet Platform provides an integrated and solid platform for B2B
exchanges.

What Is Oracle Corporation’s Direction Regarding XML?

Answer: Oracle Corporation’s XML strategy is to use XML in ways that exploit all
of the benefits of the current Oracle technology stack. Today you can combine
Oracle XML components with the Oracle8i (or higher) database and Advanced
Queueing (AQ) to achieve conflict resolution, transaction verification, and so on.
Oracle is working to make future releases more seamless for these functions, as well
as for functions such as distributed two phase commit transactions.

XML data is stored either object-relational tables or views, or as CLOBs. XML
transactions are transactions with one of these datatypes and are handled using the
standard Oracle mechanisms, including rollback segments, locking, and logging.

From Oracle9i, Oracle supports sending XML payloads using AQ. This involves
making XML queriable from SQL.

Oracle is active in all XML standards initiatives, including W3C XML Working
Groups, Java Extensions for XML, Open Applications Group, and XML.org for
developing and registering specific XML schemas.

What Is Oracle Corporation’s Plans for XML Query?

Answer: Oracle is participating in the W3C Working Group for XML Query. Oracle
is considering plans to implement a language that enables querying XML data, such
as in the XQL proposal. While XSLT provides static XML transformation features, a
guery language will add data query flexibility similar to what SQL does for
relational data.

Oracle has representatives participating actively in the following 3C Working
Groups related to XML and XSL: XML Schema, XML Query, XSL, XLink/XPointer,
XML Infoset, DOM, and XML Core.

Are There Standard DTDs That We Can Use for Orders, Shipments, and So On?

We have implemented Oracle8i and the XDK. Where can we find basic, standard
DTDs to build on for orders, shipments, and acknowledgements?

Overview of XML Developer’'s Kits and Components 1-37

Frequently Asked Questions About XML, CLOBs, and BLOBs

Answer: A good place to start would be this Web site, which has been set up for
that purpose:

http://www.xml.org

Frequently Asked Questions About XML, CLOBs, and BLOBs

Is There Support for XML Messages in BLOBS?

Is there any support for XML messages enclosing BLOBSs, or | should do it on an
application level by encoding my binary objects in a suitable text format such as
UUENCODE with a MIME wrapper?

Answer: XML requires all characters to be interpreted, therefore there is no
provision for including raw binary data in an XML document. That being said, you
can UUENCODE the data and include it in a CDATA section. The limitation on the
encoding technique is to be sure it only produces legal characters for a CDATA
section.

Frequently Asked Questions About Maximum File Sizes

What Is the Maximum XML File Size When Stored in CLOBs?

If we store XML files as CLOBs in the Oracle database, what is the maximum file
size?

Answer: The maximum file size is 2 GB. See the Oracle9i Application Developer’s
Guide - Large Objects (LOBs) for more information on LOBs and CLOBs. For sample
code, see:

http://otn.oracle.com/tech/java/sqlj_jdbc/index2.htm?Codeé&fil
es/advanced/advanced.htm

Are There Any Limitations on the Size of an XML File?
Answer: There are no XML limitations to an XML file size.

What Is the Maximum Size for an XML Document?

Is there a maximum size for an XML document to provide data for PL/SQL (or
SQL) across tables, given that no CLOBs are used?

1-38 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Performance in the Database

Also, what is the maximum size of XML document generated from Oracle to an
XML document?

Answer:

The size limit for an XML document providing data for PL/SQL across tables
should be what can be inserted into an object view.

The size limit for an XML document generated from Oracle to an XML document
should be what can be retrieved from an object view.

Frequently Asked Questions About Inserting XML Data into Tables

What Do | Need to Insert Data Into Tables Using XML?

To select data for display and insert data to tables by XML what software do | need?
We are using Oracle8i on Solaris™ Operating Environment.

Answer: You need the following software:
. XML SQL Utility

« XML Parser for Java,V2

« JDBCdriver

« JDK

The first three can be obtained from Oracle. The fourth can be obtained from Sun
Microsystems. If you want to perform the tasks from a browser, you will also need
the following:

« AlJava compliant Web server
« XSQL Servlet

Frequently Asked Questions About XML Performance in the Database

Where Can | Find Information About the Performance of XML and Oracle?
Is there a whitepaper that discusses the performance of XML and Oracle?

Answer: Currently, we do not have any official performance analyses due to the
lack of a performance standard or benchmark for XML products.

Overview of XML Developer’'s Kits and Components 1-39

Frequently Asked Questions About Multiple National Languages

How Can | Speed Up the Record Retrieval in XML Documents?

I have a database with millions of records. | give a query based on some 4/5
parameters, and retrieve the records corresponding to that. | have added indexes in
the database for faster retrieval of the same, but since the number of records
returned is quite high and | planned to put a Previous and Next link to show only
10 records at a time, | had to get the count(*) of the number of records that match.

Since there are so many records, and count(*) does not consider the indexes, it
takes nearly 30 seconds for the retrieved list to be seen on the browser window. If |
remove that count(*) , the retrieval is quite fast, but then there is no Previous and
Next as | had linked them to count(*)

Answer: | presume you are referring to finding a faster way to retrieve XML
documents. The solution is to use the SAX interface instead of DOM.

Make sure to select the COUNT(*) of an indexed column (the more selective the
index the better). This way the optimizer can satisfy the count query with a few
I/0s of the index blocks instead of a full-table scan.

Frequently Asked Questions About Multiple National Languages

How Do | Put Information in Chinese into XML?

My application requires communication with outside entities that may have a
totally different language system. If | need to put information in other languages
(for instance, Chinese) into XML, do | need to treat and process them differently?
For example, do | need to know which encoding they use, or would the parser be
able to recognize it? Would there be any problems when dealing with the database?

Answer: XML inherently supports multiple languages in a single document. Each
entity can use a different encoding from the others; that is, you can add a Chinese
entity encoded in a Chinese encoding to the rest of the document. You can also treat
all portions uniformly, regardless of the language used, by encoding in Unicode.
Using the former, you must have an encoding declaration in the XML text
declaration.

Oracle XML parsers are designed to be able to handle most external entities and
recognize a wide range of encoding, including most widely used ones from all over
the world.

The database should support all the languages you are going to use on XML.
Chinese character sets such as ZHS16GBK and ZHT16BIG5 are a superset of ASCII

1-40 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Reference Material

S0 you may be able to use one of them to serve for English and Chinese, but you
may want to use Unicode to use more languages.

Frequently Asked Questions About Reference Material

Here are some other XML Frequently Asked Question sites of interest:

http://www.ucc.ie/xml/

http://www.oasis-open.org/cover/

What Are Some Recommended XML and XSL Books?

Answer:

The publisher WROX has a number of helpful books. One of these, XML Design
and Implementation by Paul Spencer, covers XML, XSL and development well.

Building Oracle XML Applications by Steve Muench (published by O'Reilly) See
http://www.oreilly.com/catalog/orxmlapp/

The XML Bible. Read the updated chapter 14 from:
http://metalab.unc.edu/xml/books/bible/

far a good understanding of XSLT. Downloading this chapter is free.

Oracle9i XML Handbook by the Oracle XML Product Development Team at
http://www.osborne.com/oracle/

Overview of XML Developer’'s Kits and Components 1-41

Frequently Asked Questions About Reference Material

1-42 Oracle9i XML Developer’s Kits Guide - XDK

2

Getting Started with XDK for Java and
JavaBeans

This chapter contains the following sections:
« Installation of the XDK for Java

« Installation of the XDK for JavaBeans

See Also: Chapter 3, "Getting Started with XDKs for C/C++ and
PL/SQL"

Getting Started with XDK for Java and JavaBeans 2-1

Installation of the XDK for Java

Installation of the XDK for Java

XDK for Java contains the basic building blocks for reading, manipulating,
transforming and viewing XML documents.

Note: The XDKs for Java and JavaBeans are now bundled
together.

Oracle XDK for Java consists of the following components:

XML Parser: supports parsing XML documents with both the DOM or SAX
interfaces.

XSL Processor: is included as part of the XML Parser and supports transforming
XML documents.

XML Schema Processor: supports parsing and validating XML files against an
XML Schema definition file (default extension .xsd).

Class Generator: generates a set of Java source files based on an input DTD or
XML Schema.

XML SQL Utility: generates an XML Document from SQL queries and inserts
the document into the database.

TransX Utility: makes it easier to load translated seed data and messages into
the database.

XSQL Servlet: produces dynamic XML documents based on one or more SQL
gueries.

Installation Steps for XDK for Java

XDK for Java comes with the Oracle database and with the application server. Or,
you can download the latest beta or production version of XDK for Java from OTN.

If you installed XDK with Oracle database or iAS, you can skip the following steps
and change into the XDK home directory ($XDK_HOME).

If you need to download the XDK from OTN, follow these steps:
Go to the URL:
http://otn.oracle.com/itech/xmlixdk_java/contenthtml

Click on the ‘Software’ icon at the left side of the page.

2-2 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

« Logon with your OTN username and password (registration is free if you do
not already have an account).

« Select the version you want to download.

« Accept all terms of the licensing agreement and download the software. Here
are the instructions found on the download site for Solaris™ Operating
Environment:

Oracle XML Developer’s Kit for Java on Sun Solaris™ Operating Environment- 9i
Download the Complete File

Directions
Install GNU gzip.
Download the Oracle XDK for Java in .tar format

Extract the distribution package into a directory.
(Ex #gzip -dc xdk_javatar | tar xvf-)

The result should be the following files and directories:
oin - xdk executables and utiliies
Nib - directory for libraries
Ixdk - top xdk directory
xdk/demo - directory for demo files
xdk/doc - directory for documentation
Ixdk/admin - direcory for dband config files
Ixdkhtml. - doc navigation files
Ixdkflicense.html - copy of license agreement

« For Windows NT, choose a directory under which you would like the \xdk
directory and subdirectories to go (for example, C:\ on NT), change the
directory to C:\ then extract the files using the WinZip visual tool.

What Are the XDK for Java Components?
After installing the XDK, the directory structure is:

-$XDK_HOME
| - bin: executable files and setup scriptbatch files.
| - lib: liorary files.
| - xdk:
| - admin: (Administration): XSU PL/SQL APl setup SQL script

Getting Started with XDK for Java and JavaBeans 2-3

Installation of the XDK for Java

and XSL Serviet Configuration file(XSQLConfig.xml).
| - demo: demonstration code
| - doc: documents including release notes and javadocs.

All the packages in XDK for Java are certified and supported with JDK 1.2 or JDK
1.1.8, so make sure that your CLASSPATH includes all the necessary libraries:

Table 2-1 XDK for Java Libraries

Component Library Notes

XML Parser xmlparserv2.jar XML Parser V2 for Java, which includes JAXP 1.1,
DOM, SAX and XSLT APIs.

Message files for XML Parser. If you want to use

XSL Processor

xmimesg.jar XML Parser with a language other than English, you
need to set this JAR file in your CLASSPATH
XML Schema xschema.jar XML Schema Processor for Java
Processor
XML SQL xsul2.jar XML SQL Utility for JDK 1.2 and above
Utility xsulll jar XML SQL Utility for JDK 1.1.1
XSQL Servlet oraclesql.jar Oracle XSQL Servlet

xsqlserializers.jar Oracle XSQL Serializers for FOP/PDF Integration
classgen.jar XML Class Generator for Java

transx.zip Oracle TransX Utility

In addition, XML SQL Utility, XSQL Servlet and TransX Utility all depend on JDBC,
which is listed in the following table:

Table 2-2 XDK Libraries for Java

Component Library Notes

JDBC classes12.zip JDBC for JDK 1.2 and above
classes111.zip JDBC for JDK 1.1.8

Globalization nls_charset12.jar Globalization support for JDK 1.2 and above
nls_charsetl1l.jar Globalization support for JDK 1.1.8

2-4 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

Environment Settings for XDK for Java
These files will set up the environment:

UNIX: $XDK_HOME/bin/env.csh
NT: $XDK_HOME/bin/env.bat

The following tables list the environment variables, with the ones that must be
customized marked with "Y™:

Table 2-3 NT Environment Settings

Variable Notes Y/N
%JDBCVER% Directory where the Java™ 2 SDK, Standard Edition, version 1.3.1is installed Y
%JDKVER% Include the following: Y

.. %XDK_HOME%\lib\xmmlparserv2.jar;%XDK_HOME%\lib\xsul2.jar;
%INSTALL_ROOT% Installation root of XDK which is the directory we refer to as %XDK_HOME%. N

%JAVA_HOME% JAVA_HOME=C:\JIDK%JDKVER% Y

%CLASSPATHI% CLASSPATHIJ=%ORACLE_HOME%\jdbc\lib\classes%JDBCVER%.zip; Y
%ORACLE_HOME%\jdbc\lib\nls_charset%JDBCVER%.jar

%PATHY% PATH=%JAVA_HOME%\bin;%0ORACLE_HOME%\bin;%PATH%;%INSTALL_ N

ROOT%\bin

%CLASSPATH% . %CLASSPATHI%;%INSTALL_ROOT%\lib\xmlparserv2.jar; N
%INSTALL_ROOT%\Ilib\xschema.jar;
%INSTALL_ROOT%\Ilib\xsu%JDBCVER%.jar;
%INSTALL_ROOT%\lib\oraclexsql.jar;%INSTALL_ROOT%\lib\classgen.jar

The following table shows the UNIX environment variables (the ones that must be
customized are marked with "Y"):

Getting Started with XDK for Java and JavaBeans 2-5

Installation of the XDK for Java

Table 2-4 UNIX Environment Settings

Variable Notes YIN

$JDBCVER JDBC Version. If using JDK 1.2 and above, it should be set to 12. Y
If using JDK 1.1.8, it should be set to 111

$IDKVER JDK Version which you can get from: Y

$INSTALL_ROOT
$IAVA_HOME
$CLASSPATHI

$CLASSPATH

$PATH
$LD_LIBRARY_PATH

Java -version

For example, the default value is: 1.2.2_07

Installation root of XDK, which is the directory referred to as $XDK_HOME. N
Directory where the Java SDK, Standard Edition is installed.

Path linked to the Java SDK needs to be modified. Y

${ORACLE_HOME}/jdbc/lib/classes${JDBCVER}.zip:
${ORACLE_HOME}/jdbc/lib/nls_charset${JDBCVER}.jar

If you are running the XSU on a system different then where the Oracle RDBMS
is installed, you will have to update CLASSPATHJ path with the correct
locations of the JDBC library (classes12.jar). The nls_charset12.jar is needed to
support certain character sets. Refer to Globalization setup with XDK for Java

Note that if you don't have these libraries on your system, these are both
available on OTN (http://otn.oracle.com) -- part of JDBC driver download

Include the following: N
${CLASSPATHI}L:${INSTALL_ROOT}/lib/xmlparserv2 jar:
${INSTALL_ROOT}/lib/xschema.jar:

${INSTALL_ROOT}/lib/xsu${IDBCVER} jar:
${INSTALL_ROOT}/lib/oraclexsql.jar:

${INSTALL_ROOT}/lib/classgen.jar
${JAVA_HOME}/bin:${PATH}:${INSTALL_ROOT}/bin N
For OCI JDBC connections. ${ORACLE_HOME}/Iib:${LD_LIBRARY_PATH} N

XSU Setup

XSU installation is discussed in "Installation of XDK for PL/SQL" on page 3-25.

2-6 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

XSQL Servlet Setup

The XSQL Servlet is designed to run on any Java VM, using any JDBC driver,
against any database. In practice, we are able to test it against only the most popular
configurations; we document the supported configurations that have been tested in
the Oracle labs.

XSQL Pages and XSQL Servlet have been successfully tested only with:

« JDK1.1.8
« JDK1.22
« JDK13

These are the only three JDK versions thakm@vwork correctly

Note: Numerous users have reported problems using XSQL Pages
and XSQL Servlet with JDK 1.1.7. These problems are in the
character set conversion routines for UTF-8 and make JDK 1.1.7
unusable for processing XSQL Pages.

Supported Servlet Engines
This XSQL Servlet has been tested with the following servlet engines:

« Oracle9iAS Apache/JServ Servilet Engine

« Oracle9iAS OC4J Servlet Engine

« Allaire JRun 2.3.3 and 3.0.0

« Apache 1.3.9 with JServ 1.0 and 1.1

« Apache 1.3.9 with Tomcat 3.1 or 3.2 Servlet Engine

« Apache Tomcat 3.1 or 3.2 Web Server + Servlet Engine
« Caucho Resin 1.1

« Java Web Server 2.0

« Weblogic 5.1 Web Server

« NewAtlanta ServletExec 2.2 and 3.0 for 1IS/PWS 4.0
« Oracle8i Lite Web-to-Go Server

« Oracle8i 8.1.7 Oracle Servlet Engine

Getting Started with XDK for Java and JavaBeans 2-7

Installation of the XDK for Java

« SunJavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

Supported JSP Implementations

JavaServer Pages can use <jsp:forward> and/or <jsp:include> to collaborate
with XSQL Pages as part of an application. The following JSP platforms have been
tested:

« Oracle9iAS Apache/JServ Servlet Engine

« Oracle9iAS OC4J Servlet Engine

« Apache 1.3.9 with Tomcat 3.1 or 3.2 Servlet Engine

« Apache Tomcat 3.1 or 3.2 Web Server + Tomcat 3.1 or 3.2 Servlet Engine

« Caucho Resin 1.1 (Built-in JSP 1.0 Support)

« NewAtlanta ServletExec 2.2 and 3.0 for 11IS/PWS 4.0 (Built-in JSP 1.0 Support)
« Oracle8i Lite Web-to-Go Server with Oracle JSP 1.0

« Oracle8i 8.1.7 Oracle Servlet Engine

« Any Servlet Engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, it should work with any servlet engine supporting the Servlet 2.1
Specification or higher, and the Oracle JSP 1.0 reference implementation or
functional equivalent from another vendor.

JDBC Drivers and Databases

The Oracle XSQL Page processor has been designed to exploit the maximum set of
features against the Oracle JDBC drivers, but gracefully works against any database
with a reasonable JDBC driver. While numerous users have reported successfully
using XSQL Pages with many other JDBC drivers, the ones that we have tested
in-house are:

« Oracle8i 8.1.5 Driver for JDBC 1.x
« Oracle8i 8.1.6 Driver for JDBC 1.x
« Oracle8i 8.1.7 Driver for JDBC 1.x
« Oracle8i Lite 4.0 Driver for JDBC 1.x
« Oracle8i 8.1.6 Driver for JDBC 2.0
« Oracle8i 8.1.7 Driver for JDBC 2.0
« Oracle9i 9.0.1 Driver for JDBC 2.0

2-8 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

Setting Up the Database Connection Definitions for Your Environment

The demos are set up to use the SCOTT schema on a database on your local
machine (the machine where the web server is running). If you are running a local
database and have a SCOTT account whose password is TIGER, then you are all set.
Otherwise, you need to edit the .\xdk\admin\XSQLConfig.xml file to
correspond to your appropriate values for username, password, dburl, and driver
values for the connection named demo:

<?ml version="1.0" 7>
<XSQLConfig>

<connectiondefs>
<connection name="demo'>
<usemame>scott</usemame>
<password>tiger</password>
<dbur>jdbc:oracle:thin:@localhost:1521:0RCL</dburt>
<driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>
<connection name="lite">
<usemame>system</usemame>
<password>manager</password>
<dbur>jdbc:Palite:POlite</dburt>
<driver>oracle lite.polidbc.POLIDBCDriver</driver>
</connection>
</connectiondefs>

</XSQLConfig>

Setting Up Your Servlet Engine to Run XSQL Pages

UNIX users and any user wanting to install the XSQL Servlet on other Web servers
should continue with the instructions below depending on the Web server you're
trying to use. In every case, there are these basic steps:

1. Include the list of XSQL Java archives:
» Xsul2.jar - Oracle XML SQL Utility

« Xmlparserv2.jar - Oracle XML Parser for Java V2

« oraclexsql.jar - Oracle XSQL Pages

« Xsglserializers.jar - Oracle XSQL Serializers for FOP/PDF
Integration

Getting Started with XDK for Java and JavaBeans 2-9

Installation of the XDK for Java

« classesl2.jar - Oracle JDBC Driver or the JAR file for the JDBC driver you
will be using instead

. Include as well as the directory where XSQLConfig.xml resides (by default
Ixdk/admin) in the server CLASSPATH

2. Map the .xsql file extension to the oracle.xml.xsgl.XSQLServlet
servlet class.

3. Map a virtual directory /xsqgl to the directory where you extracted the XSQL
files (to access the online help and demos).

Oracle Internet Application Server Oracle IAS release 1.0 and higher comes
preconfigured to run XSQL Servlet. By default its Apache JServ servlet engine
contains all of the wrapper.classpath entries in jserv.conf to include the
necessary Java archives to run XSQL. The XSQLConfig.xml file is found in the
Ixdk/admin subdirectory of the IAS installation home.

Oracle 9iAS Oracle Containers for Java (OC4J) Servlet Container The easiest way to install
XSQL Servlet in the Oracle9iAS OC4J servlet container is to install it as a global
application. Assuming your OC4J installation home is C:\j2ee\home , and that
you've extracted the XDK distribution into the C:\xdk902 directory, here are the
setup steps:

1. Verify that the following JAR files are already in your C:\j2ee\homel\lib
directory (they should come pre-installed):

« xmlparserv2.jar - Oracle XML Parser for Java V2
« classesl2.jar - Oracle JDBC Driver

2. Copy the following additional JAR files from C:\xdk902\lib to
C:\j2ee\homellib

« Xxsul2.jar - Oracle XML SQL Utility
« oraclexsgl.jar - Oracle XSQL Pages

« Xxsglserializers.jar - Oracle XSQL Serializers for FOP/PDF
Integration

3. Copy the C:\xdk\admin\XSQLConfig.xml configuration file to the
C:\j2ee\home\default-web-app\WEB-INF\classes directory.

4. Edit the C:\j2ee\home\config\global-web-application.xml
server configuration file to add a <servlet> and <servlet-mapping>
entry as child elements of the <web-app> element as follows:

2-10 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

<orion-web-app ...and soon... >
etc
<web-app>
<senvet>
<senet-name>xsgl</servietname>
<senet-class>oracle.xml.xsgl.XSQLSenet</senet-class>
</senvet>
<seniet-mapping>
<sendet-name>xsg</servietname>
<urkpattern>f*xsgl</ur-pattem>
</senlet-mapping>

etc
<veb-app>
<Meb-app>

At this point, you can refer to any XSQL page in any virtual path and it will be
processed by the XSQL Servlet. If you want to try the XSQL built-in samples,
demos, and online help, then you need to perform the following additional step to
map a virtual path of /xsgl/ to the C:\xdk\demo\java\xsq|l directory.

Edit the file:
c\2ee\home\application-deployments\defauliidefaulivWebApp\orion-web.xml

to add the following <virtual-directory> entry:
<orion-web-app ..and soon...>

efc

<virtual-directory

virtual-path="/xso"

real-path="/c./xdk/xdk/demoaljavalxsal" />

efc
</orion-web-app>

Then, you can browse the demos using the URL:
http:/Ayoursever.yourport/xsglindex.html

Getting Started with XDK for Java and JavaBeans 2-11

Installation of the XDK for Java

Apache JServ1.00or 1.1 Setup the server CLASSPATHorrectly for the XSQL Servlet.
This is done by editing the JServ configuration file named jserv.properties
Assuming you installed the XSQL Servlet files into C:\, you need to add the
following entries to use the Oracle JDBC 1.x Driver

Oracle XML SQL Utility (XSU)
wrapper.classpath=C:\xdk902\ib\xsu111 jar

Oracle XSQL Serviet
wrapper.classpath=C:\xdk902\ib\oraclexsgl jar

Oracle JDBC (8.1.6) — JDBC 1.x driver

wrapper.classpath= directory where JDBC Driver_resides \classes111.zip
Oracle XML Parser V2 (with XSLT Engine)
wrapper.classpath=C:\xdk902\ib\miparserv2 jar

XSQLConfigxml File location

wrapper.classpath= directory where_XSQLConfig.xml_resides
FOR Apache FOP Generation, Add
#wrapper.classpath=C:\xdk902\ib\sgjiserializers jar
#wrapper.classpath= FOPHOMEp jar

#wrapper.classpath= FOPHOMIiBbatik jar

To use the Oracle JDBC 2.0 Driver, the list looks like:

Oracle XML SQL Utility (XSU)
wrapper.classpath=C:\xdk902\ib\xsu12 jar

Oracle XSQL Serviet
wrapper.classpath=C:\xdk902\ib\oraclexsgl jar

Oracle JDBC (8.1.6) — JDBC 2.0 driver

wrapper.classpath= directory where JDBC Driver resides \classes12.zip
Oracle XML Parser V2 (with XSLT Engine)
wrapper.classpath=C:\xdk902\ibmiparsen2 jar

XSQLConfig.xml File location

wrapper.classpath= directory where_XSQLConfig.xml_resides
FOR Apache FOP Generation, Add
#wrapper.classpath=C:\xdko02\ib\sgjiserializers.jar

wrapper.classpath= FOPHOMEp jar

#wrapper.classpath= FOPHOMIBA3C jar

Map the .xsql file extension to the XSQL Servlet ~ To do this, you need to edit the JServ
configuration file named jserv.conf (in JServ 1.0 this was named
mod_jserv.conf on some platforms). Add the following lines:

Executes a serviet passing filename with proper extension in PATH_TRANSLATED
property of serviet request.

Syntax: ApJServAction [extension] [senviet-ur]

Defaults: NONE

2-12 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

ApJServAction xsql /senvetsioracle xmlxsgl.XSQLSenvlet

Map an /xsql/ virtual directory In this step, we want to map the virtual path \xsgl\ to
C:\xdk902\xdk\demo\java\xsql\ (or wherever you installed the XSQL Servlet
files). To do this, you need to edit the Apache configuration file named

httpd.conf and add the following line:

Alias /xsgl/ "C:\xdko02\xdk\demo\javaixsgl'

Restart the Apache server and browse the URL:
http:/ocalhostixsglindex html

Jakarta Tomcat 3.1 or 3.2

Set up the Server CLASSPATH for the XSQL Servlet ~ This is done by editing the Tomcat
startup script named tomcat.bat in ./jakarta-tomcat/bin and adding five
lines to append the appropriate entries onto the system CLASSPATHbefore the
Tomcat server is started as shown below:

For Oracle JDBC 1.x Driver:
rem Set up the CLASSPATH that we need

set cp=%CLASSPATHY

set CLASSPATH=.

set CLASSPATH=9%6TOMCAT_HOME%\classes

set CLASSPATH=%CLASSPATHY6;% TOMCAT_HOME%a\ibwebserver jar
set CLASSPATH=%CLASSPATHY6;% TOMCAT_HOME%\lib\jasper.jar

set CLASSPATH=%CLASSPATHY:;%TOMCAT_HOMEYa\ibxml jar

set CLASSPATH=%CLASSPATHY6;%TOMCAT_HOME%a\ib\senvetjar

set CLASSPATH=%CLASSPATH%;%6JAVA_HOMEYA\ib\tools jar

REM Added for Oracle XSQL Serviet

REM

set CLASSPATH=%CLASSPATHY6,C:dk02\ib\xsu111 jar

set CLASSPATH=%CLASSPATHY6;C:\xdk902\ib\oraclexsql.jar

set CLASSPATH=%CLASSPATHY;C:xdk02\ibmiparsen2 jar

set CLASSPATH=%CLASSPATHYgjirectory where JDBC Driver_resides \classes111.zip
set CLASSPATH=%CLASSPATHYglirectory where XSQLCorifig.xml_resides
REM FOR Apache FOP Generation, Add

REM set CLASSPATH=%CLASSPATHY0,C:\xdk902\ib\sglserializers jar
REM set CLASSPATH=%CLASSPATHY&OPHOMBD jar

REM set CLASSPATH=%CLASSPATH%:OPHOMB/batik jar

Getting Started with XDK for Java and JavaBeans 2-13

Installation of the XDK for Java

For Oracle JDBC 2.0 Driver:
rem Set up the CLASSPATH that we need

set cp=%CLASSPATH%

set CLASSPATH=.
set CLASSPATH=%%TOMCAT HOME%\classes

set CLASSPATH=%CLASSPATHY:26TOMCAT _HOMEY\ibwebserverjar
set CLASSPATH=%CLASSPATHY::26TOMCAT_HOMEYA\ibjasper jar

set CLASSPATH=%CLASSPATHY6:26TOMCAT_HOMEYa\iom jar

set CLASSPATH=%CLASSPATHY6:%TOMCAT_HOME%\ib\servietjar

set CLASSPATH=%CLASSPATHY::26JAVA_HOME4\ibitoolsjar

REM Added for Oracle XSQL Serviet

REM

set CLASSPATH=%CLASSPATHY0,C:\xdko02\ib\xsu12 jar

set CLASSPATH=%CLASSPATHY;C:xdk02\ib\oraclexsal jar

set CLASSPATH=%CLASSPATHY,;C:xdk902\libwmlparsenv2.jar

set CLASSPATH=%CLASSPATHYfrectory where JDBC Driver resides \classes12.zip
set CLASSPATH=%CLASSPATHYlrectory where XSQLConfig.xm|_resides
REM FOR Apache FOP Generation, Add

REM set CLASSPATH=%CLASSPATHY6;C:\xdk902\ib\xsqjiserializers jar
REM set CLASSPATH=%CLASSPATHY:OPHOMEBD.jar

REM set CLASSPATH=%CLASSPATHY:OPHOMBbatik jar

Map the .xsql File Extension to the XSQL Servlet ~ Tomcat supports creating any number
of configuration contexts to better organize the web applications your site needs to
support. Each context is mapped to a virtual directory path, and has its own
separate servlet configuration information. XSQL Servlet comes with a
preconfigured context file to make XSQL Servlet setup easier.

By default, Tomcat 3.1 and 3.2 come preconfigured with the following contexts
(defined by <Context> entries in the ./jakarta-tomcat/conf/server.xml
file).

« The root context
« /examples
« /test

« /admin

2-14 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java

We could install XSQL Servlet into one of these, but for simplicity we'll create a new
context just for the XSQL Servlet that maps to the directory where you installed the
XSQL Servlet distribution.

Edit the ./jakarta-tomcat/conf/server.xml file to add the following
<Context> entry with path="/xsql"

<Context path="ftest" docBase="webappsftest’ debug="0" reloadable="true" />

<

| Define a Senviet context for the XSQL Senviet

I

| The XSQL Senvlet ships with a \WEB-INF directory

| with its web.xml file preconfigured for C:\xdk902xdk\demo\javaixsal
| installation.

+—>

<Context path="/xsql" docBase="C:\xdk902xdk\demo\javaxsql'/>

Note that the docBase= "C:\xsql" points to the physical directory where you
installed the XSQL Servlet distribution. You then need to create a WEB-INF
subdirectory in the C:\xdk902\xdk\demo\java\xsq|l directory and save the
following ./WEB-INF/web.xml file in it:

<?xml version ='1.0' encoding = 'UTF-8"7>
<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2/[EN" "http:/java.sun.com/j2ee/didsiveb-app 2 2.dtd™>
<web-app>
<senet>
<senlet-name>oracle-xsgl-senet</serviet-name>
<senviet-class>oracle xml.xsgl. XSQLServiet</senet-class>
</senet>
<senet-mapping>
<senlet-name>oracle-xsgl-senvet</serviet-name>
<urkpatterm> * xsgl </url-pattem>
</senviet-mapping>
<Meb-app>

Note: To add the XSQL Servlet to an existing context, add the
servlet and servlet-mapping entries that you find in the web.xml
file preceding, into the web.xml file for the context in question.

Getting Started with XDK for Java and JavaBeans 2-15

Installation of the XDK for Java

Map an /xsql/ Virtual Directory ~ This is already achieved by creating the /xsql context
preceding.

Restart the Tomcat server and browse the URL:

http:/localhost:8080/xsqlindex.html

If you use Tomcat with an XML Parser (such as the Sun Crimson Parser) that only
supports DOM Level 1 interfaces, then you must edit tomcat.bat to insure that
the Oracle XML Parser's archive xmlparser.jar comes before the DOM Level 1

parser's archive in the CLASSPATHFor example, you could edit tomcat.bat to
add the following lines:

REM NEED TO PUT xmiparsenv2 jar FIRST before parser.jar
set CP=C:\xdk902\ibmiparsenv2 jar,%CP%
just before the lines:

echo Using CLASSPATH: %CP%
echo.
set CLASSPATH=%CP%

XDK for Java with Globalization Support
Here is a summary on the setting that related to Globalization Support.

« Using xmimesg.jar : If you are using the language other than English you
would need to set the xmimesg.jar into your CLASSPATHo let the parser get
correct messages in your language.

« Using nls_charsetl12.jar . If you are using a multibyte character set other
than one of the following,

« UTF-8
« 1S0O8859-1
« JAIL6SIIS

then you must set this JAR file into your Java CLASSPATHo that JDBC can
convert the character set of the input file to the database character set during
the loading of XML files using either XSU, TransX or XSQL Servlet.

XDK Dependencies

The following figure shows the dependencies of XDK when using JDK 1.2 and
higher:

2-16 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans

Figure 2-1 XDK Dependencies Using JDK 1.2.x and Higher

TransX Utility XSQL Servlet

(transx.zip) (oraclexsql.jar, xsqlserializers.jar)

XML SQL Utility WebServer

(xsul2.jar) that

Supports

Class Generator XML Schema Processor | JDBC Driver %aval ;
(classgen.jar) (xschema.jar) (classes12.jar) erviets
XML Parser / XSL Processor NLS
(xmlparserv2.jar, xmimesg.jar) (nls_charset12.jar)
JDK 1.2

After you correctly setup the environment, include all the necessary JAR files in
your CLASSPATHYou can then start writing your Java programs and compiling
them with the javac command:

javac your_program.java

If the compilation finishes without errors, then you can just test your program using
the command line or the Web Server.

See Also: Chapter 4, "XML Parser for Java" for further discussion
of the XDK for Java components

Installation of the XDK for JavaBeans

The XDK for JavaBeans permit easily adding visual or non-visual interfaces to XML
applications. The bean encapsulation includes documentation and descriptors that
can be accessed directly from Java Integrated Development Environments like
JDeveloper.

Note: The XDKs for Java and JavaBeans are now bundled
together.

Oracle XDK for JavaBeans consists of the following components:

« DOMBuilder Bean encapsulates the DOMParser and provides asynchronous
XML document parsing.

Getting Started with XDK for Java and JavaBeans 2-17

Installation of the XDK for JavaBeans

« TreeViewer Bean displays XML formatted files graphically as a tree. These
branches and leaves of this tree can be manipulated with a mouse.

« SourceViewer Bean displays XML and XSL formatted files with color syntax
highlighting for easy viewing and editing.

« Transformer Bean accepts an input XML document and applies the
transformation specified by an input XSL stylesheet to create an output file.

« TransPanel Bean encapsulates the preceding beans in an application component
for retrieving, transforming, and viewing XML files.

« DBAccess Bean can be used for programmatic access to all features that
XMLTransformPanel offers in interactive mode with support of XMLType.

« DBView Bean can be used in any application that requires visualization of
database information using XML and stylesheet transformations.

« XMLD:Iff Utility can be used to compare two XML files and represent the
difference visually, or by the generated XSL code.

« XMLCompression Utility: can used to serialize XML document in Compressed
format.

XDK for JavaBeans comes with Oracle Database or iAS application server. You can
also download the latest versions of XDK for JavaBeans from OTN.

If you installed XDK with Oracle Database or iAS application server, you can skip
the following steps and direct to refer to the XDK home directory (we will refer to
this directory as $XDK_HOME

If you need to download the XDK from OTN, follow these steps:
Use this URL in your browser:
http://otn.oracle.com/tech/xml/xdk_jbeans/index.html

Click on the Software icon at the left-hand side of the page.

« Log in with your OTN username and password (registration is free if you don
not already have an account).

« Select the version you want to download.

« Accept all the terms of the licensing agreement and download the software.
Here are the instructions found on the download site for Solaris™ Operating
Environment:

Oracle XML Developer's Kit for Java on Sun Solaris™ Operating Environment-
9i

2-18 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans

Download the Complete File

Directions

Install GNU gzip.
Download the Oracle XDK for JavaBeans in .tar format
Extract the distribution package into a directory.

(Ex #gzip -dc xdk_javadtar | tar xvf-)

The result should be the following files and directories:
/bin - xdk executables and utilities

Jib - directory for libraries

xdk - top xdk directory

Ixdk/demo - directory for demo files

xdk/doc - directory for documentation

Ixdkfadmin - direcory for dband config fles

xdkPhtml - doc navigation files

Ixdkflicense.html - copy of license agreement

» For Windows NT, choose a directory under which you would like the .\xdk
directory and subdirectories to go (for example, \C: on NT), change the
directory to \C: then extract the files using the WinZip visual tool.

XDK for JavaBeans Components
After installing the XDK, the directory structure is:

-$XDK_HOME
| - bin: executable files and setup scriptbatch files.
| - lib: library files.
| - xdk
| - admin (Administration): XSU PL/SQL API setup SQL scriptand XSL Serviet
Configuration file (XSQLConfig.xml).
| - demo: demonstration code
| - doc: documents including release notes and javadocs.

All the packages in XDK for JavaBeans are certified and supported with JDK 1.2 or
1.1.8, so make sure that your CLASSPATHnNcludes all the necessary libraries.

For JDK versions lower that JDK 1.2, you will need to include the JDK library in
your CLASSPATH, as well as the Swing library, swingall.jar at "Java
Foundation Classes (JFC)/Swing 1.0.3" in page

Getting Started with XDK for Java and JavaBeans 2-19

Installation of the XDK for JavaBeans

http://java.sun.com/products/archive/index.html
The following table lists the libraries of XDK for JavaBeans:

Table 2-5 XDK for JavaBeans Libraries

Component Library Notes

XML Parser xmlparserv2.jar XML Parser V2 for Java, which includes

XSL Processor JAXP 1.1, DOM, SAX, and XSLT APIs.

xmlmesg.jar Messages for XML Parser. If you want to use
XML Parser with a language other than
English, you need to set this jar file in your

CLASSPATH.
XML Schema Processor xschema.jar XML Schema Processor for Java
XML SQL Utility xsul2.jar XML SQL Utility for JDK 1.2 and above
xsulll.jar XML SQL Utility for JDK 1.1.8
oraclexsqgl.jar Oracle XSQL Servlet
xsqlserializers.jar ~ Oracle)§SQL Serializers for FOP/PDF
Integration
Class Generator classgen.jar Class Generator for Java
TransX Utility transx.zip Oracle TransX Utility
JavaBeans xmlcomp.jar Oracle JavaBeans Utilities

xmlcomp2.jar

In addition, XML SQL Utility, XSQL Servlet and TransX Utility all depend on other
components, whose libraries are listed in the following table:

Table 2-6 XDK for JavaBeans: Dependent Libraries

Component Library Notes
JDBC classes12.zip JDBC for JDK 1.2 and above
classes111.zip JDBC for JDK 1.1.8

Globalization nls_charsetl2.jar Globalization support for JDK 1.2 and above
nls_charsetlll.jar Globalization support for JDK 1.1.8

XMLType xdb_g.jar XMLType Java APIs.
$ORACLE_HOME/rdbms/jlib

2-20 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans

Table 2-6 XDK for JavaBeans: Dependent Libraries (Cont.)

Component Library Notes

Jdev Runtime jdev-rt.zip Java GUI libraries

Setting Up the XDK for JavaBeans Environment
Use this script file provided on UNIX:
$XDK_HOMEMin/env.csh

For Windows, use this provided batch file:

%XDK_HOMEMin/env.bat

The following tables list the environment variables needed during XDK setup.
Variables that must be customized before running the script or batch file are marked
as "Y" in the column "Customize".

Table 2-7 JavaBeans Environment Settings for UNIX

Variable Name Values Customize
$IDBCVER JDBC version. If using JDK 1.2 and above, set to 12. Y
$IDKVER JDK version (default is 1.2.2_07), obtained by: Y

Java -version
$INSTALL _ROOT Installation root of XDK, the directory referred to as $XDK_HOME
$IAVA_HOME Directory where the Java SDK, Standard Edition is installed. The path Y

linked to the Java SDK must be modified.
$CLASSPATH) ${ORACLE_HOME}/jdbc/lib/classes${IDBCVERY}.zip: Y

${ORACLE_HOME}/jdbc/lib/nls_charset${JDBCVER}.jar

f you are running the XSU on a system other than where the Oracle
RDBMS is installed, you will have to update CLASSPATHJ path with
the correct locations of the JDBC library (classes12.jar).

The nls_charset12 jar is needed to support certain character sets. Refer
to Globalization Support setup with XDK for JavaBeans

Note that if you do not have these libraries on your system, these are
both available on OTN: (http://otn.oracle.com) which is part of the
JDBC driver download.

Getting Started with XDK for Java and JavaBeans 2-21

Installation of the XDK for JavaBeans

Table 2-7 JavaBeans Environment Settings for UNIX (Cont.)

Variable Name Values Customize

$CLASSPATH Include the following: N
${CLASSPATHI}L${INSTALL_ROOT}H/lib/xmlparserv2.jar:${INSTALL _
ROOTY/lib/xschema.jar: ${INSTALL_ROOT}/lib/xsu${IDBCVER}.jar:
${INSTALL_ROOT}/lib/oraclexsql.jar:
${INSTALL_ROOT}/lib/classgen.jar

$PATH ${JAVA_HOME}/bin:${PATH}:${INSTALL_ROOT}/bin N

$LD_LIBRARY_PATH For OCI JDBC connections. N
${ORACLE_HOME}/Iib:${LD_LIBRARY_PATH}

For Windows NT see the following table for the settings:

Table 2-8 JavaBeans Environment Settings for Windows NT

Variable Name Values Customize

%JDBCVER% DBC Version. If using JDK 1.2 and above, it is 12. If using JDK 1.1.8,it Y
is 111.

%JDKVER% JDK version (default is 1.2.2_07), obtained by: Y
Java -version

%INSTALL_ROOT% Installation root of XDK, which is the directory referred to as N
%XDK_HOME%

%JAVA_HOME% Directory where the Java SDK, Standard Edition, is installed. The Y
path linked to the Java SDK must be modified.

%CLASSPATHI% CLASSPATHI=%ORACLE_HOME%\jdbc\lib\classes%JDBCVER%. Y
zip; %ORACLE_HOME%\jdbc\lib\nls_charset%JDBCVER%.jar

%PATHY% PATH=%JAVA_HOME%\bin;%0ORACLE_HOME%\bin;%PATH%;% N
INSTALL_ROOT%\bin

%CLASSPATH% ;% CLASSPATH%;%INSTALL_ROOT%\lib\xmlparserv2.jar; N

%INSTALL_ROOT%\lib\xschema.jar;
%INSTALL_ROOT%\Ilib\xsu%JDBCVER%.jar;%INSTALL_ROOT%
\lib\oraclexsql.jar;%INSTALL_ROOT%\lib\classgen.jar

XDK for JavaBeans with Globalization Support
Here is a summary of the settings that are related to Globalization Support.

« If you use languages other than English, set the xmlmesg.jar into your Java
CLASSPATHo let the parser obtain the correct messages in your language.

2-22 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans

If you use a multibyte character set other than one of the following,

. UTF-8

. 1SO8859-1
. JA16SJIS
then set nls_charset12.jar into your Java CLASSPATHo that JDBC can

convert the character set of the input file to the database character set during
loading of XML files.

See Also: Chapter 10, "XDK JavaBeans" for further discussion of
the XDK for JavaBeans components

Getting Started with XDK for Java and JavaBeans 2-23

Installation of the XDK for JavaBeans

2-24 Oracle9i XML Developer’s Kits Guide - XDK

3

Getting Started with XDKs for C/C++ and

PL/SQL

This chapter contains the following sections:

Installation of XDK for C
Installation of the XDK for C++
Installation of XDK for PL/SQL

See Also: Chapter 2, "Getting Started with XDK for Java and
JavaBeans"

Getting Started with XDKs for C/C++ and PL/SQL 3-1

Installation of XDK for C

Installation of XDK for C

XDK for C contains the basic building blocks for reading, manipulating,
transforming XML documents.

Note: The XDKs for C and C++ are now bundled together.

Oracle XDK for C consists of the following components:

« XML Parser: supports parsing XML documents with the DOM or SAX
interfaces.

« XSL Processor: supports transforming XML documents.

« XML Schema Processor: supports parsing and validating XML files against an
XML Schema definition file (default extension.xsd).

Getting the XDK for C

If you have installed the Oracle database or iAS (Application Server), you will
already have the XDK for C installed.

You can also download the latest versions of XDK for C from OTN.
In order to download the XDK from OTN, follow these steps:

« Use this URL in your browser:
http://otn.oracle.com/tech/xml/xdk_c/content.html

« Click the ‘Software’ icon at the left-hand side of the page.

« Logon with your OTN username and password (registration is free if you don’t
already have an account).

« Select the version that you want to download.

« Accept all conditions in the licensing agreement.
« Click the appropriate file

« Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the
details of downloading an XDK (use the XDK for C).

After installing the XDK, the directory structure is:
-$XDK_HOME

3-2 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C

| - bin: executable files
| - lib: library files.
|- nisdata: Globalization Support data files(*.nlb)
[- xdk
| - demo: demonstration code
| - doc: documents including release notes.
| - include: header files.

| - mesg: message files. (*msb)
Here are all the libraries that come with the UNIX version of XDK for C:

Table 3-1 C for XDK Libraries

Component Library Notes

XML Parser libxml9.a XML Parser V2 for C, which includes DOM, SAX,
and XSLT APIs

XSL Processor

XML Schema Processor libxsd9.a XML Schema Processor for C

The XDK for C (UNIX) depends on the Oracle CORE and Globalization Support
libraries in the following table:

Table 3-2 Dependent Libraries of XDK for C on UNIX

Component Library Notes

CORE Library xmlparser Oracle CORE library

Globalization libnls9.a Oracle Globalization Support common library

Support Library libunls9.a Oracle Globalization Support library for Unicode
support

UNIX Environment Setup

Check if the environment variable ORA_NLS33 is set to point to the location of the
Globalization Support data files.

If you install the Oracle database, you can set it to be:
setenv ORA _NLS33 ${ORACLE_HOME}ocommon/nisladmin/data

If no Oracle database is installed, you can set use the Globalization Support data
files that come with the XDK release by setting:

setenv ORA_NLS33 ${XDK_HOME}nisdata

Getting Started with XDKs for C/C++ and PL/SQL 3-3

Installation of XDK for C

Check if the environment variable ORA_XML_MESG is set to point to the absolute
path of the mesg directory:

If you install the Oracle database, you can set it to be:
setenv ORA NLS33 ${ORACLE_HOME}xdkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files that come with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}/xdk/imesg

Currently, all of the message files are in English. The message files for other
languages will be provided in a future release.

Now you can use the Makefile to compile and link the demo code.

Windows NT Environment Setup
After installation, the directory structure is:

-$XDK_HOME
| - bin: executable files and dynamic libraries
| - lib: static library files.
|- nisdata: Globalization Support data files (*.nlb)
| - xdk
| - demo: demonstration code
| - doc: documents including release notes.
| -include: header files.

| - mesg: message files. (*msb)
These are the Widows NT libraries that come with the XDK for C:

Table 3-3 XDK for C Libraries on NT

Component Library Notes

XML Parser oraxml9.lib XML Parser V2 for C, which includes DOM, SAX, and
XSL Processor oraxml9.dll XSLT APIs

XML Schema oraxsd9.a XML Schema Processor for C

Processor oraxsd9.dll

The XDK for C (NT) depends on the Oracle CORE and Globalization Support
libraries in the following table:

3-4 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C

Table 3-4 Dependent Libraries of XDK for C on NT

Component Library Notes

CORE Library oracore9.a Oracle CORE library

Globalization oranls9.a Oracle Globalization Support common library
Support Library oranls9.dll
oraunls9.a Oracle Globalization Support library for Unicode
oraunls9.dll support

Environment for Command Line Usage

Check that the environment variable ORA_NLS33 is set to point to the location of
the Globalization Support data files.

If you install the Oracle database, you can set it this way:

setORA NLS33 =%0RACLE_HOME%\nisrthadmin\nisdata

If no Oracle database is installed, you can set use the Globalization Support data
files that come with the XDK release:

set ORA_NLS33 =%XDK_HOMEYo\nisdata

You must check if the environment variable ORA_XML_MESG is set to point to the
absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:

set ORA_NLS33 =%0RACLE_HOMEYoxdkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files that come with the XDK release:

setORA NLS33 =%XDK_HOME%Wxdkimesg

Currently, all of the message files are in English. The message files for other
language will be provide in a future release.

Set the path for the cI compiler (if you need to compile the code using a Make.bat)
in command line environment.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will be popped up. Select Environment Tab and input the path of

Getting Started with XDKs for C/C++ and PL/SQL 3-5

Installation of XDK for C

cl.exe tothe PATH variable shown in Figure 3-1, "Setting the Path for the cl
Compiler in NT".

Figure 3—1 Setting the Path for the cl Compiler in NT

System Properties EE
StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erironment

Syztem Yariables:

Y ariable | Yalue |:|
Path d:hwelickhwind: vweb_zervicehtomcat-3_2 3.
PATHERT LCOM:EXE . BAT, CMD.VBS. VBE J5 J5E;...
PROCESSOR_AR... =86 —I
PROCESSOR_IDE... =86 Family & bModel B Stepping 5, Genuinelntel
PROCESSOR LE.. 6 hd

Uzer Variables for jiwan;

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

ariable: IF'ath

e I2_D_DE"~I::in;D:"~F'ngram Files'Microsoft Visual 5tudiotC955bin

Set Delete |

ak | Cancel | Apply |

You need to update the Make.bat by adding the path of the libraries and the
header files to the compile and link commands as shown in the following example
of a Make.bat file:

:COMPILE
set flename=%1

3-6 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C

d ¢ -Fo%filename%.obj Yoopt_fig% /DCRTAPI1=_cdec /IDCRTAPI2=_cdec! /nologo /2|
/Gy [DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL/D_MT /D_X86_=1
[Doratext=OraText-I. 1.\.\.\include -

ID:\Progra~1\Micros~1\VC98\Include Y%flename%o.c

goto :EOF

LINK

setflename=%1

link %link_dbg% /fout..\.\.\.\binYsfilenames.exe fibpath:%6ORACLE_HOME%a\ib
Nibpath:D:\Progra~1\Micros~1\VC98\ib Nibpath:..\.\.\.\ib %filename%.obj

oraxmi9.lib oracore.lib oranis9.lib oraunis9.lib user32.lib kemel32.lib
msvertlib ADVAPI32.lib oldnames lib winmm.lib

‘EOF

where:

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and
D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Using the XDK for C with Visual C++
If you are using Microsoft Visual C++ for your compiler:

Check that the environment variable ORA_NLS33 is set to point to the location of
the Globalization Support data files.

If you install the Oracle database, you can set it to be:

setORA NLS33 =%0RACLE_HOME%\nisrthadmin\nisdata

If no Oracle database is installed, you can use the Globalization Support data files
that come with the XDK release:

setORA_NLS33 =%XDK_HOME%\nisdata

In order to use Visual C++, you need to employ the system setup for Windows NT
to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input ORA_NLS33.

Getting Started with XDKs for C/C++ and PL/SQL 3-7

Installation of XDK for C

Figure 3-2 Setting Up the ORA_NLS33 Environment Variable

System Properties EHE |

StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erviranment

Syztem Yariables:

Y ariable | Yalue |i|
UMBEH_DF_F'H... 1

L] D:Memphotnzhipbedk ¢ 9 0 2 0 0C
05 Weindows_MT
Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;
Path dwelickwind:web zervicehtomcat-3 2 3. LI

Uzer Waniables for jiwang:

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

Wariable: |ORA_NLS33

e ID:'xtemp'xu:utnship'wdk c 9 02 0 0Chnlzdata

Sel | Delete |

(] I Cancel | Apply |

Check that the environment variable ORA_XML_MESG is set to point to the
absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:
set ORA_NLS33 =%0RACLE_HOMEYo\&dkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files that come with the XDK release:

setORA NLS33 =%6XDK_HOME6xdkimesg

3-8 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C

In order for Visual C++ to use the environment variable, you need to employ the
system setup for windows NT to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will be popped up. Select Environment Tab and input
ORA_XML_MESG.

Figure 3-3 Setting Up the ORA_XML_MESG Environment Variable

System Properties EE
StartupsS hutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erviranment

Syztem Yanables:

Y ariable | Yalue |:|
HUMBER_OF_FR... 1

ORA_MLS33 O:stemphotnghipbedk_c_ 9 0 2 0_0C\wnlzdata _I
05 Weindows_MT

Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;

Fath d:hwelickhwind:vweb zervicehtomcat-3 2 3. LI

zer Wariables for jiwana;

Y ariable | Yalue |
TEMP CATEMP
THMP CATEMP

Wariable: |ORA_XML_MESG

" alue: ID:'xtemp'xu:utnship'wdk c 9 02 0 0Cwmdk\mesg

Set Delete |

ak | Cancel | Apply |

Currently, all the message files are in English. The message files for other languages
will be provided in future releases.

Getting Started with XDKs for C/C++ and PL/SQL 3-9

Installation of XDK for C

The following figure shows the setup of the PATH for DLLSs:

Figure 3—-4 Setup of the PATH for DLLs

System Properties EE
StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erironment

Syztem Yariables:

Y ariable | Yalue |:|
ORA_MLS33 O:stemphotnghipbedk_c_ 9 0 2 0_0C\wnlzdata

05 Weindows_MT

Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;

Path d:hwelickhwind: vweb_zervicehtomcat-3_2 3.
PATHEXT LCOMEXE . BAT . CMD VBS.VBE . JS J5E.... LI

U zer Yariables for jmang:

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

ariable: IF'ath

W alue: IEL'xEILITF'LIT”'I LBIN.D:Mtemphotrshipbedk_c_9 0 2_0 0Ckbir|

Set Delete |

ak | Cancel | Apply |

After you open a workspace in Visual C++ and include the *.c files for your
project, you must set the path for the project. Go to the Tools menu and select
Options. A window will pop up. Select the Directory tab and set your include path
as shown in the following figure:

3-10 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C

Figure 3-5 Setting Your Include Path in Visual C++

E ditar | Tabs | [ebug | Compatibility | Build Directories | .:; EE

Platformm; Show directaries for:

[RTIEZINE - | |[1rcl.c fi=s [

T+

|Qireu:tu:uries:

kMinclude

O:\Pragram Files\Microzoft Yisual StudicWWC985 nelude

Mk I Canrel

Then set your library path as shown in the following figure:

Getting Started with XDKs for C/C++ and PL/SQL 3-11

Installation of XDK for C

Figure 3—-6 Setting Your Static Library Path

E ditar | Tabs | [ebug | Compatibility | Build Directories | .:; EE

Platformm; Show directaries for:

| win32 =l |Library files =l

Directories; R N R
0:%Program Files\Microsaoft Wisual StudiobWCIENLIE
D:\Pragram Files\Microzoft Visual StudichWWCISWMFCALIB

© DiMtemphatnshiphedk_c 9 02 0_0CHib

(] I Cancel

After setting the paths for the static libraries in %XDK_HOME\lIib, you also need to
set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window will pop up.

Please select the Link tab in the Object/Library Modules field enter the name of
XDK for C libraries:

3-12 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++

Figure 3—7 Setting Up the Static Libraries in Visual C++ Project

| Project Settings HE
1

Win32 Debug j General | Diebug | CAC++ Link | Hesu:uuru:(: EE

[10
S8 FulDOM Cateqgony: IGeneraI j Beset |

Cutput file narme:
|Debug/FUIDOM. exe

Settings For:

Object/library modules:

|d|:||:|:|:|32.lil:| oracored.ib oranlz9.ib orasmi9.lib oraunl3.lib

¥ Generate debuginfo [lgnore all default libraries
W Link incrementally [Generate mapfile
1 [Enable profiling

! Project Options:

kernel32 lib uzerdZ ib gdi32. lib winzpoal ib comdlg32. b
advapi32 lib shell32 1k ole32 ik oleaut 32 lib uuid.ib
odbc32 lib odboop3d2 b oracore8.lib aranlz9.lib ;I

ak I Cancel |

Compile and run the demo programs, and then start using XDK for C.

See Also: Chapter 13, "XML Parser for C" for further discussion
of the XDK for C components.

Installation of the XDK for C++

XDK for C++ contains the basic building blocks for reading, manipulating,
transforming XML documents.

Note: The XDKs for C and C++ are now bundled together.

Oracle XDK for C consists of the following components:

Getting Started with XDKs for C/C++ and PL/SQL 3-13

Installation of the XDK for C++

« XML Parser: supports parsing XML documents with the DOM or SAX
interfaces.

« XSL Processor: supports transforming XML documents.

« XML Schema Processor: supports parsing and validating XML files against an
XML Schema definition file (default extension.xsd).

« Class Generator for C++: generates a set of C++ source files based on an input
DTD or XML Schema.

Getting the XDK for C++

If you have installed the Oracle database or iAS (Application Server), you will
already have the XDK for C++ installed.

You can also download the latest versions of XDK for C++ from OTN.
In order to download the XDK from OTN, follow these steps:

« Use this URL in your browser:
http://otn.oracle.com/tech/xml/xdk_cpp/content.html

« Click the ‘Software’ icon at the left-hand side of the page.

« Logon with your OTN username and password (registration is free if you don’t
already have an account).

« Select the version that you want to download.

« Accept all conditions in the licensing agreement.
« Click the appropriate file

« Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the
details of downloading an XDK (use XDK for C++).

After installing the XDK, the directory structure is:

-$XDK_HOME
| - bin: executable files
| - lib: library files.
|- nisdata: Globalization Support data files(*.nlb)
[- xdk
| - demo: demonstration code
| - doc: documents including release notes.
| - include: header files.

3-14 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++

| - mesg: message files. (*msb)

The libraries that come with the UNIX version of XDK for C++ are listed in the
following table:

Table 3-5 XDK Libraries for C++ (UNIX)

Component Library Notes

XML Parser libxml9.a XML Parser V2 for C++, which includes DOM,
SAX, and XSLT APIs

XSL Processor
XML Schema Processor libxsd9.a XML Schema Processor for C++

Class Generator libxmlg.a Class Generator for C++

The XDK for C++ package depends on the Oracle CORE and Globalization Support
libraries, which are listed in the following table:

Table 3-6 Dependent Libraries of XDK for C++ on UNIX

Component Library Notes
CORE Library xmlparser Oracle CORE library
Globalization libnls9.a Oracle Globalization Support common library
Support Library
libunls9.a Oracle Globalization Support library for Unicode
support

Setting the UNIX Environment for C++

Check that the environment variable ORA_NLS33 is set to point to the location of
the Globalization Support data files.

If you install the Oracle database, you can set it to be:
setenv ORA _NLS33 ${ORACLE_HOME}ocommon/nisladmin/data

If no Oracle database is installed, you can use the Globalization Support data files
that come with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}nisdata

Check that the environment variable ORA_XML_MESG is set to point to the
absolute path of the mesg directory.

Getting Started with XDKs for C/C++ and PL/SQL 3-15

Installation of the XDK for C++

If you install the Oracle database, you can set it to be:
setenv ORA NLS33 ${ORACLE_HOME}xdkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files that comes with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}/xdk/imesg

Currently, all of the message files are in English. The message files for other
languages will be provided in a future release.

You can now use the Makefiles to compile and link the demo code and start
developing your program using XDK for C++ on a UNIX platform.

Windows NT Environment Setup
After installation, the directory structure is:

-$XDK_HOME
| - bin: executable files and dynamic libraries
| - lib: static library files.
|- nisdata: Globalization Support data files (*.nlb)
| - xdk
| - demo: demonstration code
| - doc: documents including release notes.
| -include: header files.

| - mesg: message files. (*msb)
These are the Widows NT libraries that come with the XDK for C++:

Table 3-7 XDK for C++ Libraries on NT

Component Library Notes
XML Parser oraxml9.lib XML Parser V2 for C++, which includes DOM, SAX,
XSL Processor oraxml9.dll and XSLT APIs.
XML Schema oraxsd9.a XML Schema Processor for C++
Processor oraxsd9.dll
Class Generator oraxmlg.a Class Generator for C++
oraxmlg.dll

The XDK for C++ (NT) depends on the Oracle CORE and Globalization Support
libraries in the following table:

3-16 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++

Table 3-8 Dependent Libraries of XDK for C++ on NT

Component Library Notes
CORE Library oracore9.a Oracle CORE library
oracore9.dll
Globalization oranls9.a Oracle Globalization Support common library
Support Library oranls9.dll
oraunls9.a Oracle Globalization Support library for Unicode
oraunls9.dll support

Command Line Usage

Check that the environment variable ORA_NLS33 is set to point to the location of
the Globalization Support data files.

If you install the Oracle database:

set ORA_NLS33 =%0RACLE_HOMEYo\nisrhadmin\nisdata

If no Oracle database is installed, you can use the Globalization Support data files
that come with the XDK release:

set ORA_NLS33 =%XDK_HOMEYo\nisdata

Check that the environment variable ORA_XML_MESG is set to point to the
absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:

setORA_NLS33 =%0RACLE_HOME%6\&dkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files, which comes with the XDK release:

set ORA_NLS33 =%XDK_HOMEYowdkimesg

Currently, all of the message files are in English. The message files for other
languages will be provided in a future release.

Set the path for cI compiler, if you need to compile the code using make.bat ina
command line.

Go to the Start Menu and select Settings > Control Panel. In the pop up window of
Control Panel, select System icon and double click. A window named System

Getting Started with XDKs for C/C++ and PL/SQL 3-17

Installation of the XDK for C++

Properties will pop up. Select Environment Tab and input the path of cl.exe to the
PATH variable shown in Figure 3-8, "Setting the PATH for the cl Compiler".

Figure 3-8 Setting the PATH for the cl Compiler

System Properties EE
StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erironment
Syztem Yariables:
Y ariable | Yalue |:|
Path d:hwelickhwind: vweb_zervicehtomcat-3_2 3.
PATHERT

PROCESSOR_AR...
PROCESSOR_IDE...
PROCESSOR LE...

Uzer Variables for jiwan;

LCOM:EXE . BAT, CMD.VBS. VBE J5 J5E;...
¥36 [
w86 Family & Model B Stepping 5, Genuinelntel

5 hd

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

ariable: IF'ath

e I2_D_DE"~I::in;D:"~F'ngram Files'Microsoft Visual 5tudiotC955bin

Set Delete |

You must update the

ak | Cancel | Apply |

file Make.bat by adding the path of the libraries and header

files to the compile and link commands:

:COMPILE
set flename=%1

d ¢ -Fo%filename%.obj Yoopt_fig% /DCRTAPI1=_cdec /IDCRTAPI2=_cdec! /nologo /2|

3-18 Oracle9i XML Developer's Kits Guide - XDK

Installation of the XDK for C++

/Gy IDWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D MT/D_X86 =1
/Doratext=OraText. -..\.\.\include -

ID:\Progra~1\Micros~1\VC98\Include Y%flename%.c

goto :EOF

LINK

set flename=%1

link %6link_dbg%s /out..\.\.\.\inYsfilename%s.exe Nibpath:%6ORACLE_HOMEYa\ib
Nibpath:D:\Progra~1\Micros~1\VC98\ib fNibpath:..\.\.\.\ib %filename%.obj

oraxml9.lib oracore9.lib oranis9.lib oraunis9.lib user32.lib kemel32.lib
mesvertlib ADVAPI32.lib oldnames lib winmm.lib

‘EOF

where

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and
D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Now you can start developing with XDK for C++.

Using XDK for C++ with Visual C ++

Check that the environment variable ORA_NLS33 is set to point to the location of
the Globalization Support data files.

If you install the Oracle database, you can set it to be

set ORA_NLS33 =%0RACLE_HOMEYo\nisrihadmin\nisdata

If no Oracle database is installed, you can use the Globalization Support data files
that come with the XDK release:

set ORA_NLS33 =%XDK_HOMEYo\nisdata

In order for Visual C++ to know the environment variable, you need to use the
system setup for windows NT to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will be popped up. Select Environment Tab and input ORA_NLS33.

Getting Started with XDKs for C/C++ and PL/SQL 3-19

Installation of the XDK for C++

Figure 3-9 Setting Up the ORA_NLS33 Environment Variable

System Properties EE |
StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erironment

Syztem Yariables:

Y ariable | Walue B
MUMEBER_OF PR... 1
i] D:Memphotnzhiphedk e 9 0 ;

os Wwindows_MT
Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;
Fath d:hwelickhwind:vweb zervicehtomcat-3 2 3. LI

Uzer Waniables for jiwang:

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

Wariable: |ORA_NLS33

e ID:'xtemp'xu:utnship'wdk c 9 02 0 0Chnlzdata

Sel | Delete |

(] I Cancel | Apply |

Check that the environment variable ORA_XML_MESG is set to point to the
absolute path of the mesg directory.

If you install the Oracle database, you can set it:

SetORA NLS33 =%ORACLE.HOME%\xdkimesg

If no Oracle database is installed, you can set it to be the directory of the error
message files that comes with the XDK release:

set ORA_NLS33 =9XDK_HOME%oWxdkimesg

3-20 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++

In order for Visual C++ to employ the environment variable, you need to use the
system setup for Windows NT to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of
Control Panel, select System icon and double click. A window named System
Properties will pop up. Select Environment Tab and input the ORA_XML_MESG.

Figure 3-10 Setting Up ORA_XML_MESG Environment Variable

System Properties EE
StartupsS hutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erviranment
Syztem Yanables:
Y ariable | Yalue |:|
HUMBER_OF_FR... 1
ORA_MLS33 O:stemphotnghipbedk_c_ 9 0 2 0_0C\wnlzdata _I
05 Weindows_MT
Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;
Path dwelickwind:web zervicehtomcat-3 2 3. LI

zer Wariables for jiwana;

Y ariable | Yalue |
TEMP CATEMP
THMP CATEMP

Wariable: |ORA_XML_MESG

" alue: ID:'xtemp'xu:utnship'wdk c 9 02 0 0Cwmdk\mesg

Set Delete |

ak | Cancel | Apply |

Currently, all of the message files are in English. The message files for other
languages will be provided in a future release.

Getting Started with XDKs for C/C++ and PL/SQL 3-21

Installation of the XDK for C++

Figure 3-11 Setup of the PATH for DLLs

System Properties EE
StartupShutdown I Hardware Profiles | IJzer Profiles |
General I Performance Erironment

Syztem Yariables:

" aniable | Walue |:|
ORA_MLS33 O:stemphotnghipbedk_c_ 9 0 2 0_0C\wnlzdata

05 Weindows_MT

Oz2LibPath C:Waf MM T Sapgtem32hoz24dll;

Path d:hwelickhwind: vweb_zervicehtomcat-3_2 3.
PATHEXT LCOMEXE . BAT . CMD VBS.VBE . JS J5E.... LI

U zer Yariables for jmang:

Y ariable | Yalue |
TEMF CATEMP
TMF CATEMP

ariable: IF'ath

W alue: IEL'xEILITF'LIT”'I LBIN.D:Mtemphotrshipbedk_c_9 0 2_0 0Ckbir|

Set Delete |

ak | Cancel | Apply |

After you open a workspace in Visual C++ and include the *.c files for your
project, you must set the path for the project. Go to the Tools menu and select
Options. A window will pop up. Select the Directory tab and set your include path
as shown in the following figure:

3-22 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++

Figure 3-12 Setting Your Include Path in Visual C++

E ditar | Tabs | [ebug | Compatibility | Build Directories | .:; EE

Platformm; Show directaries for:

[RTIEZINE - | |[1rcl.c fi=s [

T+

|Qireu:tu:uries:

kMinclude

O:\Pragram Files\Microzoft Yisual StudicWWC985 nelude

Mk I Canrel

Then set your library path as shown in the following figure:

Getting Started with XDKs for C/C++ and PL/SQL 3-23

Installation of the XDK for C++

Figure 3—13 Setting Your Static Library Path

E ditar | Tabs | [ebug | Compatibility | Build Directories | .:; EE

Platformm; Show directaries for:

| win32 =l |Library files =l

Directories; R N R
0:%Program Files\Microsaoft Wisual StudiobWCIENLIE
_ D:\Pragram Files\Microzoft Visual StudichWWCISWMFCALIB

(] I Cancel

After setting the paths for the static libraries in %XDK_HOME\lIib, you also need to
set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window will pop up.

Please select the Link tab in the Object/Library Modules field enter the name of
XDK for C++ libraries:

3-24 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL

Figure 3—-14 Setting Up the Static Libraries in Visual C++ Project

| Project Settings HE
1

Win32 Debug j General | Diebug | CAC++ Link | Hesu:uuru:(: EE

[10
S8 FulDOM Cateqgony: IGeneraI j Beset |

Cutput file narme:
|Debug/FUIDOM. exe

Settings For:

Object/library modules:

|d|:||:|:|:|32.lil:| oracored.ib oranlz9.ib orasmi9.lib oraunl3.lib

¥ Generate debuginfo [lgnore all default libraries
W Link incrementally [Generate mapfile
1 [Enable profiling

! Project Options:

kernel32 lib uzerdZ ib gdi32. lib winzpoal ib comdlg32. b
advapi32 lib shell32 1k ole32 ik oleaut 32 lib uuid.ib
odbc32 lib odboop3d2 b oracore8.lib aranlz9.lib ;I

ak I Cancel |

You can now compile and run the demo programs, and start using XDK for C++.

See Also: Chapter 16, "XML Parser for C++" for further
discussion of the XDK for C++ components

Installation of XDK for PL/SQL

XDK for PL/SQL contains the basic building blocks for reading, manipulating, and
transforming XML documents. Oracle XDK for PL/SQL consists of the following
components:

« XML Parser: supports parsing XML documents with the DOM interfaces.
=« XSL Processor: supports transforming XML documents.

« XML SQL Utility: generates an XML Document from SQL queries and inserts
an XML document into the database.

Getting Started with XDKs for C/C++ and PL/SQL 3-25

Installation of XDK for PL/SQL

Setting the Environment for XDK for PL/SQL

If you have installed the Oracle database or iAS (Application Server), you will
already have the XDK for PL/SQL installed.

You can also download the latest versions of XDK for PL/SQL from OTN.
In order to download the XDK from OTN, follow these steps:

« Use this URL in your browser:
http://otn.oracle.com/tech/xml/xdk_plsql/content.html

« Click the *Software’ icon at the left-hand side of the page.

« Logon with your OTN username and password (registration is free if you don’t
already have an account).

« Select the version that you want to download.

« Accept all conditions in the licensing agreement.
« Click the appropriate file

« Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the
details of downloading an XDK (using the XDK for PL/SQL).

After installing the XDK, the directory structure is:

-$XDK_HOME

| - bin: executable files and setup scriptbatch files.

| - lib: library files.

|- xdk:
| - admin: (Administration): XSU PL/SQL APl setup SQL script

and XSL Senviet Configuration file(XSQLConfig.xmi).

| - demo: demonstration code
| - doc: documents including release notes and javadocs.

The following table lists all the Java libraries that come with XDK for PL/SQL.:

3-26 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL

Table 3-9 XDK Libraries for PL/SQL

Component Library

Notes

XML Parser xmlparserv2.jar
XSL Processor

xmlmesg.jar

XML Schema xschema.jar
Processor

XML SQL Utility xsul2.jar
xsulll.jar

XML PL/SQL xmlplsql.jar
Package

XML Parser V2 for Java, which includes JAXP
1.1, DOM, SAX and XSLT APIs.

Message files for XML Parser. If you want to
use XML Parser with a language other than
English, you need to set this JAR file in your
CLASSPATH.

XML Schema Processor for Java.

XML SQL Utility for JDK 1.2 and above.
XML SQL Utility for JDK 1.1.8.

XML PL/SQL package.

The PL/SQL packages provided are listed in the following table:

Table 3-10 XDK Packages for PL/SQL

PL/SQL Library Package Name Notes
XML Parser xmlparser XML Parser.
xmidom DOM API for XML.
XSL Processor xslprocessor XML Schema Processor for PL/SQL.

XML SQL Utility ~ DBMS_XMLQuery

DBMS_XMLSave

XML SQL Utility PL/SQL package reflects the
functions in the Java classes —
OracleXMLQuery. It is used to generate XML
from SQL queries.

XML SQL Utility PL/SQL package reflects the
functions in the Java classes —
OracleXMLSave. It is used to store XML into
the database.

Installing XDK for PL/SQL into the Database

Before installing the XDK for PL/SQL packages into the database, you need to
check the status of the packages and the related Java libraries.

Getting Started with XDKs for C/C++ and PL/SQL 3-27

Installation of XDK for PL/SQL

Checking PL/SQL Package Status

You can use the following command to check if any of the PL/SQL packages is in
your current database schema:

SQL*PLUS>desc package _name

For example:

SQL*PLUS> desc xmidom

If you see the content of the package, then the package is available to be used in
your schema and you can skip all of the rest of the installation steps.

If you see the following error messages:

SQL> desc xmidom
ERROR:
OrA-04043: object “SYS”."XMLDOM'’ does not exists.

it means that the XDK for PL/SQL packages have not been defined in your
database schema. You need to do the status checking for the related Java libraries.

Checking Java Libraries Status

The libraries, including xmlparserv2.jar , Xmlplsql.jar and xsul2.jar (or
xsulll.jar), are required to be loaded to the database. You can use SQL
commands to check the status of a specific library by the classes that the library
contains.

For example, to check the status of xmlparserv2.jar, you can check the classes within
oracle.xml.parser.v2.DOMParser class by using the following SQL statement:

SELECT SUBSTR(dbms_javalongname(object_name),1,35) AS class, status
FROM all_objects
WHERE object_type ='JAVA CLASS'
AND object nhame =dbms_java.shortname(oraclexmliparserh’2/DOMParser);

If you see the result:
CLASS STATUS

oraclelxml/parseri’2/DOMParser INVALID

then try the command:
ALTER JAVA CLASS _oraclefxmlfparseriv2/DOMParser Resolve

3-28 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL

If the verification procedure produces the SQL*Plus message “no rows selected”,
you need to use the XDKLOAULDutility in "Loading XDK for PL/SQL" on page 3-29.

If you see the preceding result, but the status is VALID, that means the Oracle XML
Parser for Java is already installed and ready to be used. If all of the Java libraries
have already been loaded into the database, then you can run the SQL scripts to
define the PL/SQL packages.

For SYS users who would like to create public synonyms in addition to the
packages:

For XML Parser and PL/SQL.:

$XDK_HOME/xdk/admin/xmipkg.sa
$XDK_HOME/xdkiadmin/xmisyn.sal

For XSU:

$XDK_HOME/xdk/admin/xsupkg.sd
$XDK_HOME/xdk/admin/xsusyn.sql

For all other users:
For XML Parser and PL/SQL.:
$XDK_HOME/xdk/admin/xmipkg.sa

For XSU:

$XDK_HOME/xdk/admin/xsupkg.sd

If any single library is not valid you can load the package by directly using the load
Java utility:

loadjava -resolve -verbose -user xdktempixdktemp xmiparsenv2.jar

Loading XDK for PL/SQL

Before using LOADJAVAULtility to load the Java libraries into the database schema,
you need to get the Java VM properly installed. You have to run the INITIVM.SQL
and INITDBJ.SQL scripts to initialize the Java environment before running the
LOADJAVAutility. Usually these are in the $ORACLE_HOME/javavm/install
subdirectory of your Oracle Home directory.

Getting Started with XDKs for C/C++ and PL/SQL 3-29

Installation of XDK for PL/SQL

Using xdkload

To load the XDK for PL/SQL packages into the database schema, you can use the
script or batch files provided by XDK.

UNIX:
$XDK_HOMEMin/xdkioad

Windows:
$XDK_HOMEMin/xdkioad.bat

The xdkload command syntax is:

xdkload -u usemame/password [-s] [-noverify] [-dover]

s Creates public synonyms for the loaded java APIs; this can be invoked
only if the target user has dba privileges.

-noverify Use thisif you are loading into an older version of the db and ar
running into an error about missing method (for example, if
you are loading xsu version 9.0.1.0.0 into Oracle 8.1.7).

-dbver Used to specify the version of the database into which you are
loading XDK. This is amust if Oracle older than the version of
the XDK). This option also sets the -noverify option.

For example:

xdkioad -u "system/manager” -s -dbver "816"

This example uses xdkload to load the XDK for PL/SQL packages to system user.

Before using xdkload, you need to check if any of the libraries including
xmlparserv2.jar , Xmlixsql.jar and xsul2.jar (xsulll.ar)isalready
loaded to the database. If so, you need to drop them before using xdkload

dropjava -verbose -user xdktemp/xdktemp xmliparsenv2 jar xschema.jar

Moreover, you need to set up the environment variables by using the script or batch
file XDK provides:

UNIX:

$XDK_HOMEMin/env.csh

Windows:
$XDK_HOMEMin/env.bat

3-30 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL

You can refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for
the detailed information of this environment setup.

After running the xdkload script or batch file, if the target user name used to run
xdkload has DBA privileges, then the XDK for PL/SQL package will be available

to all the users and the public synonyms for the PL/SQL packages are also created.
Otherwise, the XDK for PL/SQL packages will be available only to the target user.

See Also: Chapter 20, "XML Parser for PL/SQL" or further
discussion of the XDK for PL/SQL components

Getting Started with XDKs for C/C++ and PL/SQL 3-31

Installation of XDK for PL/SQL

3-32 Oracle9i XML Developer’s Kits Guide - XDK

Part ||

XDK for Java

These chapters describe how to access and use the XDK for Java:

Chapter 4, "XML Parser for Java"

Chapter 5, "XSLT Processor for Java"

Chapter 6, "XML Schema Processor for Java"
Chapter 7, "XML Class Generator for Java"
Chapter 8, "XML SQL Utility (XSU)"

Chapter 9, "XSQL Pages Publishing Framework"
Chapter 10, "XDK JavaBeans"

Chapter 11, "Using XDK and SOAP"

Chapter 12, "Oracle TransX Utility"

Note:

« XML-SQL Utility (XSU) is also considered part of the XDK for
Java (and the XDK for PL/SQL). In this manual, XSU is
described in Chapter 8, "XML SQL Utility (XSU)".

« XSQL Servlet is considered part of XDK for Java. In this manual
XSQL Servlet is described in Chapter 9, "XSQL Pages
Publishing Framework"

A

XML Parser for Java

This chapter contains the following sections:

XML Parser for Java: Features

Parsers Access XML Document’s Content and Structure
DOM and SAX APlIs

XML Compressor

XML Parser for Java: Features

Running the XML Parser for Java Samples

Using XML Parser for Java: DOMParser() Class

Using XML Parser for Java: DOMNamespace() Class
Using XML Parser for Java: SAXParser() Class

Using JAXP

Frequently Asked Questions About DTDs

Frequently Asked Questions About DOM and SAX APIs
Frequently Asked Questions About Validation
Frequently Asked Questions About Character Sets

Frequently Asked Questions: Adding an XML Document as a Child

Frequently Asked General Questions About XML Parser

XML Parser for Java 4-1

XML Parser for Java: Features

XML Parser for Java: Features

Oracle provides a set of XML parsers for Java, C, C++, and PL/SQL. Each of these
parsers is a standalone XML component that parses an XML document (or a
standalone DTD or XML Schema) so that it can be processed by an application. This
chapter discusses the parser for Java only. The other language versions are
discussed in later chapters.

Library and command-line versions are provided supporting the following
standards and features:

XML. W3C XML 1.0 Recommendation

DOM. Integrated DOM (Document Object Model) API, compliant with:
« W3C DOM 1.0 Recommendation

« W3C DOM 2.0 CORE Recommendation and Mutation Event.

« W3C DOM 2.0 Traversal Recommendation, including Treewalker, Node
Iterator, and Node Filter.

« DOM level XML compression.

These APIs permit applications to access and manipulate an XML document as
a tree structure in memory. This interface is used by such applications as
editors.

SAX. Integrated SAX (Simple API for XML) API, compliant with the SAX 2.0
recommendation and with SAX2-ext. These APIs permit an application to
process XML documents using an event-driven model.

W3C Proposed Recommendation for XML Namespaces 1.0 thereby avoiding
name collision, increasing reusability and easing application integration.
Supports Oracle XML Schema Processor.

See Also:
http://www.w3.0rg/TR/1999/REC-xml-names-19990114/
XSLT. XSLT Processor for Java includes the following features:
« Integrated support for W3C XSLT 1.1 Working Draft
« Provides new APIs to get XSL Transformation as SAX Output

XML Schema Processor. Supports XML Schema Processor that parses and
validates XML files against an XML Schema Definition file (.xsd). It includes the
following features:

4-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java: Features

= Built on the XML Parser for Java v2
« Supports the three parts of the XML Schema Working Draft
* Part 0: Primer XML Schema
* Part 1: Structures XML Schema
* Part 2: Datatypes
« Runs on Oracle9i and Oracle9i Application Server
Additional features include:
= Built-in error recovery until fatal error
« Support for JAXP 1.1.
The parsers are available on all Oracle platforms.

Figure 4-1 shows an XML document inputting XML Parser for Java. The DOM or
SAX parser interface parses the XML document. The parsed XML is then
transferred to the application for further processing.

If a stylesheet is used, the DOM or SAX interface also parses and outputs the XSL
commands. These are sent together with the parsed XML to the XSLT Processor
where the selected stylesheet is applied and the transformed (new) XML document
is then output.

See Also:

« Appendix A, "XDK for Java: Specifications and Quick
References"

« Chapter 5, "XSLT Processor for Java"

« Chapter 6, "XML Schema Processor for Java"

XML Parser for Java 4-3

XML Parser for Java: Features

Figure 4-1 Oracle XML Parser

XML Parser for Java

p—p | Parsed XML j
— < DOM / SAX Parser> XSL-T Processor |y —
Original 1 Transfered
XML Parsed XSL XML
Document — Commands Document

||

<
a1l

Stylesheet

DOM and SAX APIs are explained in "DOM and SAX APIs".

The classes and methods used to parse an XML document are illustrated in the
following diagrams:

« Figure 4-4, "XML Parser for Java: DOMParser()"
« Figure 4-5, "Using SAXParser() Class"

The classes and methods used by the XSLT Processor to apply stylesheets are
illustrated in the following diagram:

« Figure 5-1, "Using XSL Processor for Java"

XSL Transformation (XSLT) Processor

The V2 versions of the XML Parsers include an integrated XSL Transformation
(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT
processor, you can transform XML documents from XML to XML, XML to HTML,
or to virtually any other text-based format. See Figure 4-1.

See Also: Chapter 5, "XSLT Processor for Java" for complete
details.

4-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java: Features

Namespace Support

The Java XML parser also supports XML Namespaces. Namespaces are a
mechanism to resolve or avoid name collisions between element types (tags) or
attributes in XML documents.

This mechanism provides "universal" hamespace element types and attribute names
whose scope extends beyond this manual.

Such tags are qualified by uniform resource identifiers (URISs), such as:

<oracle:EMP xmins:oracle="http:/Amwv.oracle.com/xml'/>

For example, namespaces can be used to identify an Oracle <EMP> data element as
distinct from another company's definition of an <EMP> data element.

This enables an application to more easily identify elements and attributes it is
designed to process. The Java parser supports namespaces by being able to
recognize and parse universal element types and attribute names, as well as
unqualified "local" element types and attribute names.

See Also:
« Chapter 6, "XML Schema Processor for Java"

« Oracle9i XML API Reference - XDK and Oracle XML DB

Oracle XML Parsers Validation Modes
The Java parser can parse XML in validating or non-validating modes.

« Non-Validating Mode. The parser verifies that the XML is well-formed and
parses the data into a tree of objects that can be manipulated by the DOM API.

« DTD Validating Mode. The parser verifies that the XML is well-formed and
validates the XML data against the DTD (if any).

« Partial Validation Mode. Partial validation validates an input XML document
according to the DTD if a DTD or XMLS Schema is present else it will be in
Non-Validating mode.

« Schema Validation Mode. The XML Document is validated according to the
XML Schema specified for the document.

« Auto Validation Mode. In this mode the parser does its best to validate with
whatever is available. If DTD is available, it is set to DTD_VALIDATION, if
Schema is present then it is set to SCHEMA_VALIDATION. If none is available,
it is set to NON_VALIDATING mode.

XML Parser for Java 4-5

Parsers Access XML Document’s Content and Structure

Validation involves checking whether or not the attribute names and element tags
are legal, whether nested elements belong where they are, and so on.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Parsers Access XML Document’s Content and Structure

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup.

Markup encodes a description of the document's storage layout and logical
structure. XML provides a mechanism to impose constraints on the storage layout
and logical structure.

A software module called an XML processor is used to read XML documents and
provide access to their content and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the application.

This parsing process is illustrated in Figure 4-2.

4-6 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APlIs

Figure 4-2 XML Parsing Process

XML Parser
(Processor)
Reads * * Content and Structure
XML
document
I

Storage Units

(entities)
Parsed Unparsed
Data Data
/
Characters
y4 AN
Character
Data Markup
DOM and SAX APIs

XML APIs generally fall into the following two categories:

« Event-based

« Tree-

based

See Figure 4-3. Consider the following simple XML document:

<?xmlversion="1.0"?>
<EMPLIST>

<EMP>

<ENAME>MARY</ENAME>

<EMP>
<EMP>

<ENAME>SCOTT</ENAME>

</EMP>

<EMPLIST>

XML Parser for Java 4-7

DOM and SAX APIs

DOM: Tree-Based API

A tree-based API (such as DOM) builds an in-memory tree representation of the
XML document. It provides classes and methods for an application to navigate and
process the tree.

In general, the DOM interface is most useful for structural manipulations of the
XML tree, such as reordering elements, adding or deleting elements and attributes,
renaming elements, and so on. For example, for the XML document preceding, the
DOM creates an in-memory tree structure as shown inFigure 4-3.

SAX: Event-Based API

An event-based API (such as SAX) uses calls to report parsing events to the
application. The application deals with these events through customized event
handlers. Events include the start and end of elements and characters.

Unlike tree-based APIs, event-based APIs usually do not build in-memory tree
representations of the XML documents. Therefore, in general, SAX is useful for
applications that do not need to manipulate the XML tree, such as search
operations, among others.

The preceding XML document becomes a series of linear events as shown in
Figure 4-3.

4-8 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APlIs

Figure 4-3 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

XML Document

<?XML Version = "1.0"?>
<EMPLIST>
<EMP>
<ENAME>MARY</ENAME>
</EMP>
<EMP>
<ENAME>SCOTT</ENAME>
</EMP>
</EMPLIST>

The DOM interface creates a
TREE structure based on the
XML Document

<EMPLIST>
7/ AN
<EMP> <EMP>
I I
<ENAME> <ENAME>
I I
MARY SCOTT

Useful for applications that include
changes eg. reordering, adding, or
deleting elements.

Guidelines for Using DOM and SAX APIs
Here are some guidelines for using the DOM and SAX APIs:

DOM:

The SAX interface creates
a series of linear events
based on the XML
document

start document

start element: EMPLIST
start element: EMP
start element: ENAME
characters: MARY

end element: EMP

start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP

end element; EMPLIST
end document

Useful for applications such
as search and retrieval that do
not change the "XML tree".

« Use the DOM API when you need to use random access.

« DOM consumes more memory.

« Use DOM when you are performing transformations.

« Use DOM when you want to have tree iterations and need to walk through the
entire document tree.

« When using the DOM interface, try to use more attributes over elements in your
XML, to reduce the pipe size.

SAX:

Use the SAX API when your data is mostly streaming data.

XML Parser for Java 4-9

XML Compressor

XML Compressor

This release supports binary compression of XML documents. The compression is
based on tokenizing the XML tags. The assumption is that any XML document has
a repeated number of tags and so tokenizing these tags will give considerable
amount of compression. Therefore the compression achieved depends on the type
of input document; the larger the tags and the lesser the text content, then the better
the compression.

The goal of compression is to reduce the size of the XML document without loosing
the structural and hierarchical information of the DOM tree. The compressed stream
contains all the "useful” information to create the DOM tree back from the binary
format. The compressed stream can also be generated from the SAX events. The
binary stream generated from DOM and SAX are compatible. The compressed
stream generated from SAX could be used to generate the DOM tree and vice versa.

Sample programs to illustrate the compression feature is included in demos.

Oracle XML Parser can also compress XML documents. Using the compression
feature, an in-memory DOM tree or the SAX events generated from an XML
document can be compressed to generate a binary compressed output.

The compressed stream generated from DOM and SAX are compatible, that is, the
compressed stream generated from SAX could be used to generate the DOM tree
and vice versa. The compression is based on tokenizing the XML tags. This is based
on the assumption that XML files typically have repeated tags and tokenizing the
tags compresses the data. The compression depends on the type of input XML
document: the larger the number of tags, the less the text content, and the better the
compression.

As with XML documents in general, you can store the compressed XML data output
as a BLOB (Binary Large Obiject) in the database.

XML Serialization/Compression

An XML document is compressed into a binary stream by means of the serialization
of an in-memory DOM tree. When a large XML document is parsed and a DOM
tree is created in memory corresponding to it, it may be difficult to satisfy memory
requirements and this could affect performance. The XML document is compressed
into a byte stream and stored in an in-memory DOM tree. This can be expanded at a
later time into a DOM tree without performing validation on the XML data stored
in the compressed stream.

4-10 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for Java Samples

The compressed stream can be treated as a serialized stream, but note that the
information in the stream is more controlled and managed, compared to the
compression implemented by Java's default serialization.

In this release, there are two kinds of XML compressed streams:

« SAX based Compression: The compressed stream is generated when an XML
file is parsed using a SAX Parser. SAX events generated by the SAX Parser are
handled by the SAX Compression utility. It handles the SAX events to generate
a compressed binary stream. When the binary stream is read back, the SAX
events are generated.

« DOM based compression; The in-memory DOM tree, corresponding to a parsed
XML document, is serialized, and a compressed XML output stream is
generated. This serialized stream when read back regenerates the DOM tree.

The compressed stream is generated using SAX events and that generated using
DOM serialization are compatible. You can use the compressed stream generated
by SAX events to create a DOM tree and vice versa. The compression algorithm
used is based on tokenizing the XML tag's. The assumption is that any XML file has
repeated number of tags and therefore tokenizing the tags will give considerable
compression.

Running the XML Parser for Java Samples

The directory demol/java/parser contains some sample XML applications to
show how to use the Oracle XML parser.

The following are the sample Java files in the sub-directories:
« XSLSample - A sample application using XSL APIs.
« DOMSample - A sample application using DOM APIs.

« DOMNamespace - A sample application using Namespace extensions to DOM
APIs.

« DOM2Namespace - A sample application using DOM Level 2.0 APIs

« DOMRangeSample - A sample application using DOM Range APIs

« EventSample - A sample application using DOM Event APIs

« NodelteratorSample - A sample application using DOM Iterator APls

« TreeWalkerSample - A sample application using DOM TreeWalker APIs
« SAXSample - A sample application using SAX APIs.

XML Parser for Java 4-11

Running the XML Parser for Java Samples

SAXNamespace - A sample application using Namespace extensions to SAX
APIs.

SAX2Namespace - A sample application using SAX 2.0
Tokenizer - A sample application using XMLToken interface APIs.

The Tokenizer application implements XMLToken interface, which must be
registered using the setTokenHandler() method. A request for the XML tokens
is registered using the setToken() method. During tokenizing, the parser doesn’t
validate the document and does not include or read internal/external utilities.

DOMCompression - A sample application to compress a DOM tree

DOMDeCompression - A sample to read back a DOM from a compressed
stream

SAXCompression - A sample application to compress the SAX output from a
SAX Parser.

SAXDeCompression - A sample application to regenerate the SAX events from
the compressed stream.

JAXPExamples - a few samples of using JAXP 1.1 API to run Oracle engine.

To run these sample programs:

Use make to generate .class files.

Add xmlparserv2.jar and the current directory to the CLASSPATH
Run the sample program for DOM/SAX APIs:

java classname sample_xmi_fie

Run the sample program for XSL APIs:
java XSLSample sample xsl file sample xml_fie

Run the sample program for Tokenizer APIs:

java Tokenizer sample_xml_file token_string

Run the sample program for compressing a DOM tree

java DOMCompression sample.dat

The compressed output is generated in a file called "xml.ser"

Run the sample program to build the DOM tree from the compressed stream.

4-12 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for Java Samples

java DeCompression xml.ser

« Run the sample program for compressing the SAX events
java SAXCompression sample.dat

« Run the sample program for regenerating the SAX events from the compressed
stream.

java SAXDeCompression xmil.ser

« Run the sample program for JAXP 1.1 API
java JAXPExamples

the .xml and .xsl are given inside JAXPExamples.java
A few .xml and files are provided as test cases in directory common

The XSL stylesheet iden.xsl can be used to achieve an identity transformation of
the XML files in a commondirectory.

XML Parser for Java - XML Example 1: class.xml

<?mlversion="1.0"?>
<IDOCTYPE course |
<IELEMENT course (Name, Dept, Instructor, Student)>
<IELEMENT Name (#PCDATA)>
<IELEMENT Dept #PCDATA)>
<IELEMENT Instructor (Name)>
<IELEMENT Student (Name*)>
P

<course>
<Name>Calculus</Name>
<Dept>Math</Dept>

<Instructor>

<Name>Jim Green</Name>
</Instructor>

<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>

</course>

XML Parser for Java 4-13

Running the XML Parser for Java Samples

XML Parser for Java - XML Example 2: Using DTD employee — employee.xml

<?xml version="1.0"?>
<IDOCTYPE employee [
<IELEMENT employee (Name, Dept, Title)>
<IELEMENT Name (#PCDATA)>
<IELEMENT Dept (#PCDATA)>
<IELEMENT Title #PCDATA)>

P

<employee>

<Name>John Goodman</Name>
<Dept>Manufacturing</Dept>
<Title>Supervisor</Title>
</femployee>

XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml

<?xml version="1.0" standalone="no"?>

<IDOCTYPE family SYSTEM "family.dtd">

<family lastname="Smith">

<member memberid="m1">Sarah</member>

<member memberid="m2">Bob</member>

<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
<ffamily>

DTD: family.dtd

<IELEMENT family (member*>

<IATTLIST family lastname CDATA #REQUIRED>
<IELEMENT member (#PCDATA)>

<IATTLIST member memberid ID #REQUIRED>
<IATTLIST member dad IDREF #IMPLIED>
<IATTLIST member mom IDREF #IMPLIED>

XML Parser for Java - XSL Example 1: XSL (iden.xsl)

<?xml version="1.0"?>
<!- Identity transformation —>
<xslstylesheet xmins:xsi="http:/imww.w3.0rg/1999/XSL/Transform"* version="1.0">
<xsltemplate match="*@*/comment()|processing-instruction()ftext()">
<xsl:copy>
<xslapply-templates
select="*@*lcomment()|processing-instruction()jtext()"/>
</xsl.copy>

4-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class

</xsltemplate>

</xslstylesheet>

XML Parser for Java - DTD Example 1. (NSExample)

<IDOCTYPE doc|

<IELEMENT doc (child*)>

<IATTLIST doc xmins:nsprefix CDATA#IMPLIED>
<IATTLIST doc xmins CDATA #MPLIED>
<IATTLIST doc nsprefixal CDATA #MPLIED>
<IELEMENT child #PCDATA)>

P

<doc nsprefixal ="v1" xmins="http:/Amwww.w3c.org"
xmins:nsprefix="http:/Amwv.oracle.com”>

<child>

This element inherits the default Namespace of doc.
</child>

</doc>

Using XML Parser for Java: DOMParser() Class
To write DOM based parser applications you can use the following classes:
« DOMNamespace() class
« DOMParser() class
« XMLParser() class

Since DOMParser extends XMLParser, all methods of XMLParser are also available
to DOMParser. Figure 4-4 shows the main steps you need when coding with the
DOMParser() class:

« Without DTD Input

1. Anew DOMParser() class is called. Available properties to use with this
class are:

* setValidateMode

* setPreserveWhiteSpace
* setDocType

* setBaseURL

* showWarnings

XML Parser for Java 4-15

Using XML Parser for Java: DOMParser() Class

2. The results of 1) are passed to XMLParser.parse() along with the XML
input. The XML input can be a file, a string buffer, or URL.

3. Use the XMLParser.getDocument() method.
4. Optionally, you can apply other DOM methods such as:
* print()
* DOMNamespace() methods
5. The Parser outputs the DOM tree XML (parsed) document.

6. Optionally, use DOMParser.reset() to clean up any internal data
structures, once the Parser has finished building the DOM tree.

« Witha DTD Input

1. Anew DOMParser() class is called. The available properties to apply to
this class are:

* setValidateMode

* setPreserveWhiteSpace
* setDocType

* setBaseURL

* showWarnings

2. The results of 1) are passed to XMLParser.parseDTD() method along
with the DTD input.

3. XMLParser.getDocumentType() method then sends the resulting DTD
object back to the new DOMParser() and the process continues until the
DTD has been applied.

The example, "XML Parser for Java Example 1: Using the Parser and DOM API",
shows hoe to use DOMParser() class.

4-16 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class

Figure 4-4 XML Parser for Java: DOMParser()

XDK for Java: XML Parser for Java — DOM Parser()

4

d Available properties:

-| - setValidationMode
[default = not]

- setPreserveWhiteSpace
[default = not]

- setDocType
[if input type is a DTD]

- setBaseURL
[refers other locations to
base location if reading
from outside source]

- showWarnings

new
DOMParser()

DOMParser.
reset()

file, string
buffer, or URL
xml input

XMLParser.
parse()

XMLParser.
getDocument

Apply other
DOM methods

DOM
document

Typically Node
Vi class methods

XMLParser.
parseDTD()

XMLParser.
getDocument-
Type()

DTD
object

To print, use the
print method.
Thisis a
nonstandard
DOM method

XML Parser for Java Example 1: Using the Parser and DOM API

The examples represent the way we write code so it is required to present the
examples with Java coding standards (like all imports expanded), with

documentation headers before the methods, and so on.

/I This file demonstates a simple use of the parser and DOM API.
1/ The XML file given to the application is parsed.

I The elements and attributes in the document are printed.

/I This demonstrates setting the parser options.

XML Parser for Java 4-17

Using XML Parser for Java: DOMParser() Class

I

import java.io®,

import java.net;

import orgw3c.dom.*;
import orgw3c.dom.Node;

import oracle xml.parser.v2.%;

public class DOMSample
{
static public void main(String[] argv)
{
ry

if (argvlength '=1)

{
/I Must pass in the name of the XML file.
System.err.printin("Usage: java DOMSample flename');
System.exit(1);

}

I Getaninstance of the parser
DOMParser parser = new DOMParsex();

/| Generate a URL from the flename.
URL url = createURL (argvi0]);

Il Set various parser options: validation on,

I/l wamings shown, emror stream set to stderr.
parser.setErrorStream(System.en);
parser.setValidationMode(DTD_validation);
parser.show\Wamings(true);

/I Parse the document.
parser.parse(ur);

1/ Obtain the document.
XMLDocument doc = parser.getDocument();

I/ Print document elements
System.out.print(The elements are: "),
printElements(doc);

I/ Print document element attributes

4-18 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class

System.out.printin(The attributes of each element are: *);

printElementAttributes(doc);
parser.reset();

}

catch (Exception €)

{
Systemn.out.printin(e.toString();

}

}

static void printElements(Document doc)

{
NodeList nl = doc.getElementsByTagName(*);
Noden;

for (inti=0; i<nl.getLength(); i++)
{
n = nlitem();
Systemn.out.print(n.getNodeName() +"*);
}

System.out.printn();
}

static void printElementAttributes(Document doc)
{

NodeList nl = doc.getElementsByTagName(*";

Elemente;
Noden;
NamedNodeMap nnm;

String attmame;
String attrval;
inti, len;

len =nl.getLength();
for (intj=0; j <len; j++)
{
e = (Element)nl.item();
System.out printin(e.getTagName() +"");
nnm = e.getAttributes();
if (nnm = null)
{
for (F0; i<nnm.getLength(); i++)
{

XML Parser for Java 4-19

Using XML Parser for Java: DOMParser() Class

n=nnm.item(j);
attmame = n.getNodeName();
atirval = n.getNodeValue();
System.outprint(* " + attmame +" =" + attrval);
}
}
System.out.printn();
}
}

static URL createURL(String fleName)

{
URL ur =null;
try
{
url = new URL(fleName);

}
catch (MalformedURLException ex)

{

File f = new File(fleName);

try

{
String path =f.getAbsolutePath();
String fs = System.getProperty(file.separator”);
if (fs.length() = 1)
{

char sep =fs.charAt(Q);
if (sep =)

path = path.replace(sep, /);
if (path.charAt(0) =)

path ="+ path;

}
path = "file://" + path;
url = new URL(path);
}
catch (MalformedURLEXxception €)

{
System.out printin(*Cannot create url for: " + fleName);
System.exit(0);
}
}
retumn url;
}
}

4-20 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class

Comments on DOMParser() Example 1
See also Figure 4-4. The following provides comments for Example 1:

1. Declare a new DOMParser() . In Example 1, see the line:

DOMParser parser = new DOMParser();

This class has several properties you can use. Here the example uses:

parser.setErrorStream(System.er);
parser.setValidationMode(DTD_validation);
parser.showWamings(true);

2. The XML input is a URL as declared by:

URL url = createURL (argv{0])

3. The XML document is input as a URL. This is parsed using parser.parse():
parser.parse(url);

4. Gets the document:
XMLDocument doc = parser.getDocumenty();

5. Applies other DOM methods. In this case:
= Node class methods:
* getElementsByTagName()
* getAttributes()
* getNodeName()
* getNodeValue()
« Method, createURL() to convert the string name into a URL.

6. parser.reset() is called to clean up any data structure created during the parse
process, after the DOM tree has been created. Note that this is a new method
with this release.

7. Generates the DOM tree (parsed XML) document for further processing by
your application.

Note: No DTD input is shown in Example 1.

XML Parser for Java 4-21

Using XML Parser for Java: DOMNamespace() Class

Using XML Parser for Java: DOMNamespace() Class

Figure 4-3 illustrates the main processes involved when parsing an XML document
using the DOM interface. The DOMNamespace() method is applied in the parser
process at the “bubble” that states “Apply other DOM methods”. The following
example illustrates how to use DOMNamespace():

« "XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java"

XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java

I This file demonstates a simple use of the parser and Namespace
Il extensions to the DOM APIs.

/I The XML file given to the application is parsed and the

Il elements and attributes in the document are printed.

/]

import java.io*;
import java.net;

import oracle xml.parserv2.DOMParser,

import orgw3c.dom.*;
import orgw3c.dom.Node;

I/ Extensions to DOM Interfaces for Namespace support.
import oracle xml.parserv2.XMLElement;
import oracle xml.parserv2 XMLAMr;

pulblic class DOMNamespace
{
static public void main(String[] argv)
{
try

if (argvlength '=1)

{
/I Must pass in the name of the XML file.
System.err.prinin("Usage: DOMNamespace flename");
System.exit(1);

}

I/ Getaninstance of the parser
Class cls = Class forName("oracle xml.parser.v2. DOMParser”);

4-22 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMNamespace() Class

DOMParser parser = (DOMParser)cls.newinstance();

/| Generate a URL from the flename.
URL url = createURL (argvi0]);

I/ Parse the document.
parser.parse(ur);

I/ Obtain the document.
Document doc = parser.getDocument();

I/ Print document elements
printElements(doc);

I/ Print document element attributes
System.out.printin(The attributes of each element are: ;
printElementAttributes(doc);

}

catch (Exception €)

System.outprintin(e.toString();
}
}

static void printElements(Document doc)

{
NodeList nl = doc.getElementsByTagName(*";
XMLElement nsElement;

String gName;
String localName;
String nsName;
String expName;

System.outprintin(The elements are: ");
for (inti=0; i < nl.getLength(); i++)
{

nsElement = (XMLElement)nl.item(i);

I/ Use the methods getQualifiedName(), getLocalName(), getNamespace()
I and getExpandedName() in NSName interface to get Namespace
I/ information.

gName = nsElement.getQualifiedName();
System.outprintin(* ELEMENT Qualified Name:" + gName);

XML Parser for Java 4-23

Using XML Parser for Java: DOMNamespace() Class

localName = nsElement.getl_ocalName();
System.outprinin(* ELEMENT Local Name " +localName);

nsName = nsElement.getNamespace();
System.outprinin(* ELEMENT Namespace "+ nsName);

expName = nsElement.getExpandedName();
System.outprintin(* ELEMENT Expanded Name " + expName);

}

System.out.printin();
}

static void printElementAttributes(Document doc)
{

NodeList nl = doc.getElementsByTagName(*;

Elemente;

XMLAtr nsAtr;

String attmame;

String attrval;

String attrgname;

NamedNodeMap nnm;

inti, len;

len = nl.getLength();

for (intj=0; j <len; j++)

{
e = (Element) nlitem());
System.out printin(e.getTagName() +"");
nnm = e.getAttributes();

if ("nm '=null)
{
for (=0; i < nnm.getLength(); i++)

{
nsAttr = (XMLAtr) nnm.item(j);

I Use the methods getQualifiedName(), get.ocalName(),
I getNamespace() and getExpandedName() in NSName
Ilinterface to get Namespace information.

attmame = nsAttr. getExpandedName();

atirgname = nsAttr.getQualifiedName();
attrval = nsAttr.getNodeValue();

4-24 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMNamespace() Class

System.outprintin(* " + atrgname + (" + attmame +)" + " ="

+ atrval);
}
}
System.out.printin();
}
}

static URL createURL(String fleName)

{
URL ud =null;
try
{

url = new URL(fleName);

}
catch (MalformedURLException ex)

{
File f = new File(fleName);
ry

{
String path =f.getAbsolutePath();

String fs = System.getProperty(file.separator”);

if (fslength() = 1)
{

char sep =fs.charAt(0);
if(sep'=1)

path = path.replace(sep, /);
if (path.charAt(0) =)

path =7+ path;

}
path = "file://" + path;
url = new URL(path);
}
catch (MalformedURLException €)

{

System.out.printin(*Cannot create url for: " + fleName);

System.exit(0);
}
}
retum ur;
}
}

XML Parser for Java 4-25

Using XML Parser for Java: SAXParser() Class

Note: No DTD is input is shown in Example 2.

Using XML Parser for Java: SAXParser() Class

Applications can register a SAX handler to receive notification of various parser
events. XMLReader is the interface that an XML parser's SAX2 driver must
implement. This interface enables an application to set and query features and
properties in the parser, to register event handlers for document processing, and to

initiate a document parse.

All SAX interfaces are assumed synchronous: the parse methods must not return
until parsing is complete, and readers must wait for an event-handler callback to
return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The
XMLReader interface contains two important enhancements over the old Parser

interface:

« Itadds astandard way to query and set features and properties.

« Itadds Namespace support, which is required for many higher-level XML

standards.

Table 4-1 lists the class SAXParser() methods.

Table 4-1 Class SAXParser() Methods

Method

Description

getContentHandler()

Returns the current content handler.

getDTDHandler()

Returns the current DTD handler.

getEntityResolver()

Returns the current entity resolver.

getErrorHandler()

Returns the current error handler.

getFeature(java.lang.String name)

Looks up the value of a feature.

getProperty(java.lang.String name)

Looks up the value of a property.

setContentHandler(ContentHandler handler)

enables an application to register a content event
handler.

setDocumentHandler(DocumentHandler handler)

Deprecated. as of SAX2.0 - Replaced by
setContentHandler

4-26 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class

Table 4-1 Class SAXParser() Methods(Cont.)

Method Description

setDTDHandler(DTDHandler handler) enables an application to register a DTD event
handler.

setEntityResolver(EntityResolver resolver) enables an application to register an entity
resolver.

setErrorHandler(ErrorHandler handler) enables an application to register an error event
handler.

setFeature(java.lang.String name, boolean value) Sets the state of a feature.

setProperty(java.lang.String name, java.lang.Object value) Sets the value of a property.

Figure 4-5 shows the main steps for coding with the SAXParser() class.
1. Declare a new SAXParser() class. Table 4-1 lists the available methods.

2. The results of 1) are passed to .parse() along with the XML input in the form of
afile, string, or URL.

3. Parse methods return when parsing completes. Meanwhile the process waits for
an event-handler callback to return before reporting the next event.

4. The parsed XML document is available for further processing by your
application.

The example, "XML Parser for Java Example 3: Using the Parser and SAX API
(SAXSample.java)", illustrates how you can use SAXParser() class and several
handler interfaces.

XML Parser for Java 4-27

Using XML Parser for Java: SAXParser() Class

Figure 4-5 Using SAXParser() Class

XML Parser for Java: SAXParser()

file,
string buffer,
or URL

xml input

Methods

- - - setValidationMode

- setPreserveWhiteSpace
- setDocType

- setBaseURL

- setDocumentHandler

- setDTDHandler

- setEntity Resolver

- setErrorHandler

new
SAXParser()

Callback
methods

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)

/I This file demonstates a simple use of the parser and SAX AP
I The XML file given to the application is parsed and

I prints out some information about the contents of this file.

I

import org.xml.sax*;

import javalio*;

import java.net*;

import oracle xml.parserv2.*,

public class SAXSample extends HandlerBase

{
/I Store the locator

Locator locator;
static public void main(String[] argv)
{

try

if (argvlength 1= 1)

4-28 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class

{
/I Must pass in the name of the XML file.

System.err.printin("Usage: SAXSample flename”);
System.exit(1);
}
I/ (2) Create a new handler for the parser
SAXSample sample = new SAXSample();

I/ (2) Get an instance of the parser
Parser parser = new SAXParser();

I/ (3) Set Handlers in the parser
parser.setDocumentHandler(sample);
parser.setEntityResolver(sample);
parser.setDTDHandler(sample);
parser.setErrorHandler(sample);

J1 (4) Convert file to URL and parse
try

{ parser.parse(fle TOURL(new File(argv0])).toString());
}c;atch (SAXParseException €)

{ System.outprintin(e.getMessage();

E:atch (SAXException €)

i System.out printin(e.getMiessage();

}
catch (Exception €)

System.out.printin(e.toString());
}
}

static URL fleTOURL(File file)
{
String path =file.getAbsolutePath();
String fSep = System.getProperty(file.separator”);
if fSep = null && fSep.length() — 1)
path = path.replace(fSep.charAt(0), /);
if (path.length() > 0 && path.charAt(0) =)
path =7+ path;

XML Parser for Java 4-29

Using XML Parser for Java: SAXParser() Class

try
{
retum new URL(file", null, path);
}
catch (java.net MalformedURLException €)
{
throw new Emor("“unexpected MalformedURLException”);

}
}

T
11 (5) Sample implementation of DocumentHandler interface.
M

public void setDocumentl_ocator (Locator locator)

{
System.outprintin(‘SetDocumentlocator:");
this locator = locator;

}

public void startDocument()

{ System.out.printin("StartDocument');

i)ublic void endDocument() throws SAXException
{ System.out.printin("EndDocument’);

}

public void startElement(String name, AttributeList atts)
throws SAXException

{
System.out.printin('StartElement."+name);
for (int i=0;i<atts.getlength();i++)
{
String aname = atts.getName(i);
String type = atts getType();
String value = atts.getValue(i);

System.outprintin(' "+aname+'"(+Hype+')+'="+value);
}

public void endElement(String name) throws SAXException
{

4-30 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class

System.out.printin('EndElement."+name);
}

public void characters(char{] chuf, int start, int len)
{
System.outprint("Characters:”);
System.out.printin(hew String(cbuf,start len));
}

public void ignorableWhitespace(char{] chuf, int start, int len)
{

System.out.printin(‘lgnorable\WhiteSpace');
}

public void processingInstruction(String target, String data)
throws SAXException
{
System.out.printin("ProcessingInstruction: +arget+* "+data);
}

I
11 (6) Sample implementation of the EntityResolver interface.
H i

public InputSource resolveEntity (String publicld, String systemid)
throws SAXException
{
System.out.printin(‘ResolveEntity:"+publicid+" "+systemlid);
System.out.printin(“Locator:"Hocator.getPublicld()+" "+
locator.getSystemid()+
""+Hocator.getl ineNumber()+" “Hocator.getColumnNumber();
retum null;

}

My
11 (7) Sample implementation of the DTDHandler interface.
HH iy

public void notationDecl (String name, String publicld, String systemid)

{
System.out.printn(“NotationDecl:"+name+" "+publicld+" "+systemid);

}

public void unparsedEntityDec! (String name, String publicld,

XML Parser for Java 4-31

Using XML Parser for Java: SAXParser() Class

String systemid, String notationName)
{
System.out printin(*UnparsedEntityDecl:+name + " *+publiclo+" "+
systemid+""+notationName);
}

H i
11 (8) Sample implementation of the ErrorHandler interface.
HH iy

public void waming (SAXParseException €)
throws SAXException
{
System.out.printin("\Waming:"+e.getMessage());
}

public void error (SAXParseException €)
throws SAXException
{
throw new SAXException(e.getMessage();
}

public void fatalError (SAXParseException €)
throws SAXException
{
System.out.printin("Fatal emor");
throw new SAXException(e.getMessage();
}
}

XML Parser for Java Example 4: (SAXNamespace.java)

/I This file demonstrates a simple use of the Namespace extensions to
/the SAX APIs.

import org.xml.sax;

import java.io*;

import java.net URL,;

import java.net MalformedURLException;

Il Extensions to the SAX Interfaces for Namespace support.
import oracle xml.parser.v2 XMLDocumentHandler;

import oracle xml.parser.v2.DefaultXMLDocumentHandler;
import oracle xml.parserv2.NSName;

4-32 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class

import oracle xml.parser.v2.SAXAtrList;
import oracle xml.parser.v2.SAXParser;

public class SAXNamespace {
static public void main(String[] args) {
String fileName;

/IGet the file name
if (args.length=0)
{

System.err.printin('No file Specified!!!");
System.err.prinin(*USAGE: java SAXNamespace <flename>");
retum;

}
else

fleName = args|[0];
}

try{
Il Create handlers for the parser

I Use the XMLDocumentHandler interface for namespace support
Ilinstead of org.xml.sax.DocumentHandler
XMLDocumentHandler xmiDocHandler = new XMLDocumentHandlerimpl();

Il For all the other interface use the default provided by
/I Handler base
HandlerBase defHandler = new HandlerBase();

Il Get an instance of the parser
SAXParser parser = new SAXParser();

Il Set Handlers in the parser
Il Set the DocumentHandler to XMLDocumentHandler
parser.setDocumentHandler(xmiDocHandler);

/I Set the other Handler to the defHandler
parser.setErrorHandler(defHandler);
parser.setEntityResolver(defHandler);
parser.setDTDHandler(defHandler);

fry

{
parser.parse(fleToURL(new File(fleName)).toString();

XML Parser for Java 4-33

Using XML Parser for Java: SAXParser() Class

}
catch (SAXParseException €)

System.err.printin(args[0] + " " + e.getMessage());
catch (SAXException €)
System.err.prinin(args[0] +": " + e.getMessage());

}
catch (Exception €)

System.er.printin(e.toString());
}
}

static public URL fle TOURL (File file)
{
String path = file.getAbsolutePath();
String fSep = System.getProperty(file.separator);
if (Sep '=null && fSep.length() = 1)
path = path.replace(fSep.charAt(0), /);
if (path.length() > 0 && path.charAt(0) I="7)
path =7+ patf
fry{
retum new URL(file", null, path);
}
catch (java.net MalformedURLEXxception €) {
F According to the spec this could only happen if the file
* protocol were not recognized. */
throw new Error(“unexpected MalformedURLException”);
}
}

private SAXNamespace() throws IOException
{
}

}

/

Implementation of XMLDocumentHandler interface. Only the new
startElement and endElement interfaces are implemented here. All other
interfaces are implemented in the class HandlerBase.

!

4-34 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class

class XMLDocumentHandlerimpl extends DefaultXMLDocumentHandler
{

public void XMLDocumentHandlerimpl()

{
}

public void startElement(NSName name, SAXAtirList atts) throws SAXException
{

I/ Use the methods getQualifiedName(), getLocalName(), getNamespace()
I'and getExpandedName() in NSName interface to get Namespace
I/ information.

String gName;

String localName;

String nsName;

String expName;

gName = name.getQualifiedName();

System.outprinin"ELEMENT Qualified Name:" + gName);
localName = name.getl ocalName();

System.outprinin(‘ELEMENT Local Name "+ localName);

nsName = name.getNamespace();
System.outprinin’ELEMENT Namespace "+ nsName);

expName = name.getExpandedName();
System.outprinin(‘ELEMENT Expanded Name ;" + expName);

for (inti=0; i<atts.getLength(); i++)
{

I/ Use the methods getQualifiedName(), getocalName(), getNamespace()
Iland getExpandedName() in SAXAttrList interface to get Namespace
Ilinformation.

gName = atts.getQualifiedName(j);

localName = atts.getl ocalName(j);

nsName = atts.getNamespace();

expName = atts.getExpandedName(i);

System.out printin(* ATTRIBUTE Qualified Name "+ gName);
System.outprinin(* ATTRIBUTE Local Name "+ localName);
System.outprintin(* ATTRIBUTE Namespace "+ nsName);
System.outprintin(* ATTRIBUTE Expanded Name "+ expName);

XML Parser for Java 4-35

Using XML Parser for Java: SAXParser() Class

II'You can get the type and value of the attributes either
/by index or by the Qualified Name.

String type = atts.getType(qName);

String value = atts.getValue(qName);

System.outprinin(* ATTRIBUTE Type " +type);
System.outprintin(* ATTRIBUTE Value "+ value);
System.out.printin();
}
}
public void endElement(NSName name) throws SAXException
{

I/ Use the methods getQualifiedName(), get ocalName(), getNamespace()
I'and getExpandedName() in NSName interface to get Namespace
Ilinformation.
String expName = name.getExpandedName();
System.outprinin(’ ELEMENT Expanded Name "+ expName);
}
}

oraxml - Oracle XML parser

oraxml is a command-line interface to parse an XML document. It checks for
well-formedness and validity.

To use oraxml ensure the following:

« Your CLASSPATH environment variable is set to point to the

xmlparserv2.jar file that comes with Oracle XML V2 parser for Java.
Because oraxml supports schema validation, include xschema.jar also in
your CLASSPATH

« Your PATH environment variable can find the java interpreter that comes with
JDK 1.1.x or IDK 1.2,

Use the following syntax to invoke oraxml :

oraxml options source

oraxml expects to be given an XML file to parse. Table 4-2 lists oraxml’s command
line options.

4-36 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

Table 4-2 oraxml: Command Line Options

Option Purpose

-comp fileName Compresses the input XML file.

-decomp fileName Decompresses the input compressed file.
-dtd fileName Validates the input file with DTD Validation.
-enc fileName Prints the encoding of the input file

-help Prints the help message.

-log logfile Writes the errors/logs to the output file.
-novalidate fileName Checks whether the input file is well-formed.
-schema fileName Validates the input file with Schema Validation.
-version Prints the release version

-warning Show warnings.

Using JAXP

The Java API for XML Processing (JAXP) gives you the ability to use the SAX,
DOM, and XSLT processors from your Java application. JAXP enables applications
to parse and transform XML documents using an API that is independent of a
particular XML processor implementation.

JAXP has a pluggability layer that enables you to plug in an implementation of a
processor. The JAXP APIs have an API structure consisting of abstract classes
providing a thin layer for parser pluggability. Oracle has implemented JAXP based
on the Sun Microsystems reference implementation.

See Also: More examples can be found at the URL
http://technet.oracle.com/tech/xml

and in the directory xdk/demol/java/parser/jaxp

JAXP Example: (JAVAExamples.java)

import javaxxml.parsers.*;

import javaxxml.ransform.*;

import javaxxml.transform.sax.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

XML Parser for Java 4-37

Using JAXP

import javaio*;

import java.util.*;

import javanet URL,;

import java.net MalformedURLException;

import orgxml.sax.*;

import orgxml.sax.ext*;
import org.xml.sax.helpers.*;
import orgw3c.dom.*;

public class JAXPExamples
{
public static void main(String argv{])
throws TransformerException, TransformerConfigurationException,
IOException, SAXException,
ParserConfigurationException, FileNotFoundException
{
try{
URL xmlURL = createURL(jaxponexml’);
String xmlID = xmIURL.toString();
URL xslURL = createURL(jaxpone.xsl'’);
String xslID = xsIURL.toString();
I
System.out.printin(“— basic —*);
basic(xmllD, xslD);
System.out.printin();
System.out.printin(*— identity —");
identity(xmlID);
"
URL generalURL = createURL(‘general xml");
String generallD = generalURL toString();
URL ageURL = createURL("age.xsl");
String agelD = ageURL.toString();
System.out.printin();
System.out printin(— namespaceURI —');
namespaceURI(generallD, agelD);
"
System.out.printin();
System.out.printin(*— templatesHandler —*);
templatesHandler(xmlD, xslID);
System.out.printin();
System.out.printin("— contentHandler2contentHandler —);
contentHandler2contentHandler(xmlD, xslID);

System.out.printin();

4-38 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

System.out.printin(“— contentHandlier2DOM —);
contentHandler2DOM(XmIID, xslID);
System.out.printin();
System.out.printin(*— reader —");
reader(xmlID, xslID);
System.out.printin();
System.out.printin(“*— xmiFitter —");
xmlFitter(xmllD, xslID);
"
URL xslURLtwo = createURL (jaxptwo.xsl);
String xsliDwo = xsIURLtwo.toString();
URL xslURLthree = createURL (' jaxpthree xsl");
String xsliDthree = xslURLthree.toString();
System.out.printin();
System.out.printin("— xmlFiterChain —");
xmiFiterChain(xmllD, xslID, xsliDtwo, xsliDthree);
}catch(Exception err) {
err.printStackTrace();
}

}
1

public static void basic(String xmlID, String xsliD)
throws TransformerException, TransformerConfigurationException
{
TransformerFactory tfactory = TransformerFactory.newinstance();
Transformer transformer = tfactory.newTransformer(new
StreamSource(xslD));
StreamSource source = new StreamSource(xmliD);
transformer.transform(source, new StreamResult(System.out));
}
/]
public static void identity(String xmiID)

throws TransformerException, TransformerConfigurationException

{

TransformerFactory tfactory = TransformerFactory.newinstance();
Transformer transformer = tfactory.newTransformer();
transformer.setOutputProperty(Outputkeys. METHOD, "html');
transformer.setOutputProperty(Outputkeys.INDENT, "no');
StreamSource source = new StreamSource(xmliD);

transformer.transform(source, new StreamResult(System.out));

}

I
public static void namespaceURI(String xmlID, String xslD)

throws TransformerException, TransformerConfigurationException
{

XML Parser for Java

4-39

Using JAXP

TransformerFactory tfactory = TransformerFactory.newinstance();
Transformer transformer
=tfactory.newTransformer(new StreamSource(xsliD));
System.out.printin('default 99");
transformer.transform(new StreamSource(xmiID),
new StreamResult(System.out));
transformer.setParameter(thttp:/Awwv.oracle.com/agesiage”, "20";
System.out.printin();
System.out.printin(“should say: 20");
transformer.transform(new StreamSource(xmiiD),
new StreamResult(System.out));
transformer.setParameter(thttp:/Awwv.oracle.com/agesiage”, "40";
transformer.setOutputProperty(Outputkeys. METHOD, "html');
System.out.printin();
System.out.printin(“should say: 40");
transformer.transform(new StreamSource(xmiiD),
new StreamResult(System.out));
}
/]
public static void templatesHandler(String xmllD, String xslID)
throws TransformerException, TransformerConfigurationException,
IOException, SAXException,
ParserConfigurationException, FileNotFoundException
{
TransformerFactory tfactory = TransformerFactory.newinstance();
if (ffactory.getFeature(SAXTransformerFactory FEATURE))
{

SAXTransformerFactory stfactory = (SAXTransformerFactory) tfactory;

TemplatesHandler handler = stfactory.newTemplatesHandler();

handler.setSystemid(xslID);

//1IDK1.1.8

Properties driver = System.getProperties();

driver.put(“org.xml.sax.driver”, "oracle xml.parser.v2.SAXParser”);

System.setProperties(driver);

F*JDK 122

System.setProperty(‘org.xml.sax.driver’,
“oraclexml.parserv2.SAXParser”),

¥

XMLReader reader = XMLReaderFactory.createXMLReader();

reader.setContentHandler(handler);

reader.parse(xsliD);

Templates templates = handler.getTemplates();

Transformer transformer = templates.newTransformer();

transformer.transform(new StreamSource(xmliD), new
StreamResult(System.out));

4-40 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

}

}
i

public static void reader(String xmlID, String xsliD)
throws TransformerException, TransformerConfigurationException,
SAXException, IOException, ParserConfigurationException

{
TransformerFactory tfactory = TransformerfFactory.newinstance();
SAXTransformerFactory stfactory = (SAXTransformerFactory)tfactory;
StreamSource streamSource = new StreamSource(xsliD);
XMLReader reader = stfactory.newXMLFitter(streamSource);
ContentHandler contentHandler = new oraContentHandler();
reader.setContentHandler(contentHandler);
InputSource is = new InputSource(xmliD);
reader.parse(is);

}
"

public static void xmiFitter(String xmliD, String xsliD)
throws TransformerException, TransformerConfigurationException,
SAXException, IOException, ParserConfigurationException
{
TransformerFactory tfactory = TransformerFactory.newinstance();
XMLReader reader = null;
ty{
javaxxml.parsers.SAXParserFactory factory=
javaxxml.parsers.SAXParserfactory.newinstance();
factory.setNamespaceAware(true);
javaxxml.parsers.SAXParser jaxpParser=
factory.newSAXParser();
reader = jaxpParser.getXMLReader();
}catch(javaxxml.parsers.ParserConfigurationException ex) {
throw new org.xml.sax. SAXException(ex);
} catch(javaxxml.parsers.FactoryConfigurationEror ex1) {
throw new org.xml.sax. SAXException(ex1.toString());
} catch(NoSuchMethodError ex2) {
}
if (reader == null)
reader = XMLReaderFactory.create XMLReader();
XMLFitter fitter
= ((SAXTransformerFactory) tlactory).newXMLFitter(new
StreamSource(xsliD));
filter.setParent(reader);
fiter.setContentHandler(new oraContentHandler());
fiter.parse(new InputSource(xmliD));

}

XML Parser for Java 4-41

Using JAXP

/]
public static void xmiFitterChain(
String xmlD, String xsliD_1,
String xsliD_2, String xsliD_3)
throws TransformerException, TransformerConfigurationException,
SAXException, IOException
{
TransformerFactory tfactory = TransformerFactory.newinstance();
if (factory.getFeature(SAXSource. FEATURE))
{
SAXTransformerFactory stf = (SAXTransformerFactory)tfactory;
XMLReader reader = null;
try{
javaxxml.parsers.SAXParserFactory factory =
javaxxml.parsers.SAXParserFactory.newinstance();
factory.setNamespaceAware(true);
javaxxml.parsers.SAXParser jaxpParser =
factory.newSAXParser();
reader = jaxpParser.getXMLReader();
} catch(javaxxml.parsers.ParserConfigurationException ex) {
throw new org.xml.sax.SAXException(ex);
} catch(javaxxml.parsers.FactoryConfigurationError ex1) {
throw new org.xml.sax.SAXException(ex1.toString());
} catch(NoSuchMethodError ex2) {

if (reader == null) reader = XMLReaderFactory.createXMLReader();
XMLFitter fitter] = stf.newXMLFitter(new StreamSource(xsliD_1));
XMLFitter fitter2 = stf.newXMLFitter(new StreamSource(xsliD_2));
XMLFitter fitter3 = stf.newXMLFitter(new StreamSource(xsliD_3));
if (fiterl = null && fitter2 = null && filter3 1= null)
{
filterl.setParent(reader);
filter2.setParent(filterl);
fiter3.setParent(fitter2);
fitter3.setContentHandler(new oraContentHandler());
fitter3.parse(new InputSource(xmliD));
}
}

}
i

public static void contentHandler2contentHandler(String xmilD, String xslID)
throws TransformerException,
TransformerConfigurationException,
SAXException, IOException

{

4-42 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

TransformerFactory tfactory = TransformerFactory.newinstance();
if (factory.getFeature(SAXSource. FEATURE))
{

SAXTransformerFactory stfactory = (SAXTransformerFactory) tfactory);
TransformerHandler handler
= stfactory.newTransformerHandler(new StreamSource(xslD));
Result result = new SAXResuli(new oraContentHandler());
handler.setResult(resuf);
XMLReader reader = null;
try{
javaxxml.parsers.SAXParserfactory factory=
javaxxml.parsers.SAXParserFactory.newinstance();
factory.setNamespaceAware(true);
javaxxml.parsers.SAXParser jaxpParser=
factory.newSAXParser();
reader=jaxpParser.getXMLReader();
} catch(javaxxml.parsers.ParserConfigurationException ex) {
throw new org.xml.sax.SAXException(ex);
} catch(javaxxml.parsers.FactoryConfigurationError ex1) {
throw new org.xml.sax.SAXException(ex1.toString());
} catch(NoSuchMethodEror ex2) {
}
ift reader = null) reader = XMLReaderFactory.createXMLReader();
reader.setContentHandler(handler);
reader.setProperty("httpz/xml.org/saxipropertiesfiexical-handler”,
handler);
InputSource inputSource = new InputSource(xmiiD);
reader.parse(inputSource);
}

}
I

public static void contentHandler2DOM(String xmlD, String xsliD)
throws TransformerException, TransformerConfigurationException,
SAXException, IOException, ParserConfigurationException

{
TransformerFactory tfactory = TransformerFactory.newinstance();

if (factory.getFeature(SAXSource. FEATURE)
&& tfactory.getFeature(DOMSource. FEATURE))

{
SAXTransformerFactory sfactory = (SAXTransformerFactory) tfactory;

DocumentBuilderFactory dfactory
= DocumentBuilderFactory.newinstance();

XML Parser for Java 4-43

Using JAXP

DocumentBuilder docBuilder = dfactory.newDocumentBuilder();
orgw3c.dom.Document outNode = docBuilder.newDocument();

TransformerHandler handler
= sfactory.newTransformerHandler(new StreamSource(xsliD));
handler.setResult(new DOMResult(outNode));

XMLReader reader = nul;

try{

javaxxml.parsers.SAXParserfactory factory =
javaxxml.parsers.SAXParserFactory.newinstance();

factory.setNamespaceAware(true);
javaxxml.parsers.SAXParser jaxpParser=
factory.newSAXParser();
reader = jaxpParser.getXMLReader();

} catch(javaxxml.parsers.ParserConfigurationException ex) {
throw new org.xml.sax.SAXException(ex);

} catch(javaxxml.parsers.FactoryConfigurationError ex1) {
throw new org.xml.sax. SAXException(exL.toString());

} catch(NoSuchMethodEror ex2) {

}

ifreader = null) reader = XMLReaderFactory.createXMLReader();

reader.setContentHandler(handler);

reader.setProperty("hitp://xml.org/sax/properties/iexical-handler,
handler);

reader.parse(xmliD);

printDOMNode(outNode);

}

}
I

private static void printDOMNode(Node node)

throws TransformerException, TransformerConfigurationException,
SAXException, IOException,

ParserConfigurationException

{
TransformerFactory tfactory = TransformerFactory.newinstance();
Transformer serializer = tfactory.newTransformer();
serializer.setOutputProperty(Outputkeys. METHOD, "xml");
serializer.setOutputProperty(Outputkeys.INDENT, "'no');
serializer transform(new DOMSource(node),

new StreamResult(System.out));

}

/]

private static URL createURL(String fleName)

4-44 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

{
URL ur =null;
try
{
url = new URL(fleName);
catch (MalformedURLException ex)
{
File f=new File(fleName);
try
{

String path = f.getAbsolutePath();

/I This is a bunch of weird code that is required to

/I make a valid URL on the Windows platform, due
Ilo inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);

if (fs.length() = 1)

{

char sep =fs.charAt(0);
if (sep =)

path = path.replace(sep, 7);
if (path.charAt(0) I="7)

path ="/ + path;

}
path = "file://" + path;
url = new URL(path);
}
catch (MalformedURLException €)
{
System.out printin(‘Cannot create uri for: " + fleName);
System.exit(0);
}
}
retum url;
}
}

JAXP Example: (oraContentHandler.java

import org.xml.sax.ContentHandler;
import org.xml.sax.Attributes;
import org.xml.sax. SAXException;
import org.xml.sax.Locator;

public class oraContentHandler implements ContentHandler

XML Parser for Java 4-45

Using JAXP

private static final String TRADE_MARK ="Oracle 9i",

public void setDocumentl_ocator(Locator locator)
{

System.outprinin(TRADE_MARK + - setDocumentLocator');
}

public void startDocument()

throws SAXException
{

System.outprinin(TRADE_MARK + "~ startDocument’);
}

public void endDocument()

throws SAXException
{

System.outprintin(TRADE_MARK + "- endDocument’);
}

public void startPrefixMapping(String prefix, String un)
throws SAXException
{
System.outprinin(TRADE_MARK + - startPrefixMapping: "
+ prefix +", " + uri);

}

public void endPrefixMapping(String prefix)
throws SAXException
{
System.outprinin(TRADE_MARK + " - endPrefixMapping: "
+ prefix);
}

public void startElement(String namespaceURI, String localName,
String gName, Attributes atts)
throws SAXException
{
System.outprint(TRADE_MARK +"- startElement: "
+namespaceURI +", " + namespaceURI +
", "+ aName),
int n = atts.getength();
for(inti=0;i<n;i++)
System.out.print(", " + atts.getQName());
System.out.printin(*);

4-46 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP

}

}

public void endElement(String namespaceURI, String localName,
String gName)
throws SAXException
{
System.out.prinin(TRADE_MARK + "- endElement: *
+namespaceURI +", " + namespaceURI

+","+gName);
}
public void characters(char ch[], int start, int length)
throws SAXException
{
String s = new String(ch, start, (length >30) ? 30 : length);
filength > 30)
System.out printin(TRADE_MARK + "- characters: \™
+s+"\");
else
System.out.prinin(TRADE_MARK + " characters:\™*
+s+"\");
}
public void ignorableWhitespace(char ch[], int start, int length)
throws SAXException
{

System.out.prinin(TRADE_MARK + "- ignorable\Whitespace”);
}

public void processingInstruction(String target, String data)
throws SAXException
{
System.out.printin(TRADE_MARK + "- processingInstruction: "
+target+"," + target);
}

public void skippedEntity(String name)

throws SAXException
{

System.outprintin(TRADE_MARK + "- skippedEntity: " + name);
}

XML Parser for Java 4-47

Frequently Asked Questions About DTDs

Frequently Asked Questions About DTDs

This section lists DTD questions and answers.

Why Can’'t My Parser Find the DTD File?

Answer: The DTD file defined in the <IDOCTYPE>declaration must be relative to
the location of the input XML document. Otherwise, you'll need to use the
setBaseURL(url) functions to set the base URL to resolve the relative address of
the DTD if the input is coming from InputStream.

Can | Validate an XML File Using an External DTD?

Answer: You need to include a reference to the applicable DTD in your XML
document. Without it there is no way for the parser to know what to validate
against. Including the reference is the XML standard way of specifying an external
DTD. Otherwise you need to embed the DTD in your XML Document.

Does Oracle Perform DTD Caching?

Do you have DTD caching? How do | set the DTD using version 2 of the parser for
DTD Cache purpose?

Answer: Yes, DTD caching is optional and is not enabled automatically.
The method to set the DTD is setDoctype() . Here is an example:

/I Test using InputSource

parser = new DOMParse();
parser.setErrorStream(System.out);
parser.showWamings(true);

FileReader r = new FileReader(args[0]);

InputSource inSource = new InputSource(r);
inSource.setSystemld(createURL (args[0]).toString());
parser.parseDTD(inSource, args[1]);

ditd = (DTD)parser.getDoctype();

r=new FleReader(args[2]);

inSource = new InputSource(r);
inSource.setSystemld(createURL (args[2]).toString());
I
parser.setDoctype(dtd);
I
parser.setValidationMode(DTD_validation);

4-48 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs

parser.parse(inSource);

doc = (XMLDocument)parser.getDocument();
doc print(new PrintWhiter(System.out));

How Does the XML Parser for Java Recognize External DTDs?

How does the XML Parser for Java version 2 recognize external DTDs when
running from the server? The Java code has been loaded with loadjava and runs in
the Oracle9i server process. My XML file has an external DTD reference.

1. Isthere a generic way, as there is with the SAX parser, to redirect it to a stream
or string or something if my DTD is in the database?

2. Isthere a generic way to redirect the DTD, as there is with the SAX parser, with
resolveEntity() ?

Answer:

1. We only have the setBaseURL() method at this time.

2. You can achieve your desired result using the following:
a. Parse your External DTD using a DOM parser's parseDTD() method.
b. Call getDoctype() to get an instance of oracle.xml.parser.v2.DTD

c. On the document where you want to set your DTD programmatically, use
the setDoctype(yourDTD) . We use this technique to read a DTD out of
our product's JAR file.

How Do | Load External DTDs from a JAR File?

I would like to put all my DTDs in a JAR file, so that when the XML parser needs a
DTD it can get it from the JAR. The current XML parser supports a base URL
(setBaseURL()), but that just points to a place where all the DTDs are exposed.

Answer: The solution involves the following steps:
1. Load the DTD as an InputStream using:

InputStream is =
YourClass.class.getResourceAsStream(foo/lbarfyour.dtd”);

This will open ./foo/bar/your.dtd in the first relative location on the
CLASSPATHhat it can be found, including out of your JAR if it’s in the
CLASSPATH

XML Parser for Java 4-49

Frequently Asked Questions About DTDs

2. Parse the DTD with the code:

DOMParser d =new DOMParser();
d.parseDTD(s, "rootelementname’);

d.setDoctype(d.getDoctype();
3. Now parse your document with the following code:
d.parse(yourdoc”);

Can | Check the Correctness of an XML Document Using Their DTD?

I am exporting Java objects to XML. | can construct a DOM with an XML document
and use its print method to export it. However, | am unable to set the DTD of these
documents. | construct a parser, parse the DTD, and then get the DTD through
document doc = parser.getDocument() and DocType dtd =
doc.getDocumentType()

How do | set the DTD of the freshly constructed XML documents to use this one in
order to be able to check the correctness of the documents at a later time?

Answer: Your method of getting the DTD object is correct. However, we do not do
any validation while creating the DOM tree using DOM APIs. So setting the DTD in
the document will not help validate the DOM tree that is constructed. The only way
to validate an XML file is to parse the XML document using the DOM parser or the
SAX parser.

How Do | Parse a DTD Object Separately from My XML Document?

How do | parse and get a DTD object separately from parsing my XML document?

Answer: The parseDTD() method enables you to parse a DTD file separately and
get a DTD object. Here is a sample code to do that:

DOMParser domparser = new DOMParser();
domparser.setValidationMode(DTD_validation);
F parse the DTD file */
domparser.parseDTD(new FileReader(dtdfile));
DTD dtd = domparser.getDocType();

Is the XML Parser Case-Sensitive?

The XML file has a tag like: <xn:subjectcode> .Inthe DTD, it is defined as
<xn:subjectCode> . When the file is parsed and validated against the DTD, it

4-50 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs

returns the error: XML-0148: (Error) Invalid element
'xn:subjectcode’ in content of 'xn:Resource’,...

When | changed the element name to <xn:subjectCode> instead of
<xn:subjectcode> it works. Is the parser case-sensitive as far as validation
against DTDs go - or is it because, there is a namespace also in the tag definition of
the element and when a element is defined along with its namespace, the
case-sensitivity comes into effect?

Answer: XML is inherently case-sensitive, therefore our parsers enforce case
sensitivity in order to be compliant. When you run in non-validation mode only
well-formedness counts. However <test></Test> would signal an error even in
non-validation mode.

How Do | Extract Embedded XML from a CDATA Section?
Given:

<PAYLOAD>
<|[CDATA[<?xml version = "1.0' encoding ='ASCII' standalone ='no?>
<ADD_PO_003>
<CNTROLAREA>
<BSR>
<VERB value="ADD">ADD<NVERB>
<NOUN value="PO">PO</NOUN>
<REVISION value="003">003</REVISION>
<BSR>
</CNTROLAREA>
</ADD_PO_003>]>
</PAYLOAD>

1. How do | extract PAYLOADXo do extra processing on it?

2. When I select the value of PAYLOADt does not parse the data because itisin a
CDATA section. Why?

3. How do I extract embedded XML using just XSLT? | have done this using SAX
before but in the current setup all | can use is XSLT.

Answer:
1. Here are the answers:

The CDATA strategy is kind of odd. You won't be able to use a different
encoding on the nested XML document included as text inside the CDATA, so
having the XML declaration of the embedded document seems of little value to

XML Parser for Java 4-51

Frequently Asked Questions About DTDs

me. If you don't need the XML declaration, then why not just embed the
message as real elements into the <PAYLOAD>=>instead of as a text chunk which
is what CDATA does for you.

Just use the following code:
String s = YourDocumentObject selectSingleNode('/OES_MESSAGE/PAYLOAD');

2. Itshouldn't parse the data, you've asked for it to be a big text chunk, which is
what it will give you. You'll have to parse the text chunk yourself (another
benefit of not using the CDATA approach) by doing something like:

YourParser.parse(new StringReader(s));

where s is the string you got in the previous step.

3. There is nothing special about the content of your CDATA, it's just text. If you
want the text content to be output without escaping the angle-brackets, then
you'll do:

<xslvalue-of select="/OES_MESSAGE/PAYLOAD" disable-output-escaping="yes"/>

Why Am | Getting an Error When | Call DOMParser.parseDTD()?

I am having trouble creating a DTD and parsing it using Oracle XML Parser for Java
version 2. | got the following error when I call DOMParser.parseDTD() function:

Attribute value should start with quote.

Please check my DTD and tell me what's wrong.

<?xmlversion ="1.0" encoding="UTF-8" 7>
<l- RCS_ID ="$Header. XMLRenderer.dtd 115.0 2000/09/18 03:00:10 fi noship $"
-
<I-RCS_ID_RECORDED = Versioninfo.recordClassVersion(RCS_ID,
"oracle.apps.mwa.admin) —>
<l- Copyright: This DTD file is owned by Oracle Mobile Application Server
Group. —>
<IELEMENT page (header?,form,footer?)>
<IATTLIST page
name CDATA #REQUIRED
lov (YIN) N>
<IELEMENT header EMPTY >
<IATTLIST header
name CDATA #REQUIRED
tite CDATA
home (Y|N) N

4-52 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs

portal (Y|N) ‘N

logout (Y|N) 'N'>
<IELEMENT footer EMPTY >
<IATTLIST footer

name CDATA #REQUIRED

home (Y|N) N

portal (Y|N) ‘N

logout (Y|N) 'N'

copyright (YIN) N'>

<IELEMENT form
(styledTextjtextinput|listlinkjmenujsubmitButtonftablejseparator)+ >
<IATTLIST form

name CDATA #REQUIRED

tite CDATA

type CDATA>

<ELEMENT styledText (#PCDATA)>

<IELEMENT textinput EMPTY >
<IATTLIST textinput
name CDATA #REQUIRED
prompt CDATA #IMPLIED
password (Y|N) N
required (Y|N) N
maxlength #IMPLIED
size #IMPLIED
format #MPLIED
default #MPLIED >

<IELEMENT ' link (postfielc) >
<ATTLIST link
name CDATA #REQUIRED
fte CDATA #REQUIRED
baseui CDATA #REQUIRED >

Answer: Your DTD syntax is not valid. When you declare ATTLIST with CDATA,
you must put #REQUIRED#IMPLIED , #FIXED, “any value”
or%paramatic_entity . For example, your DTD contains:

<IELEMENT header EMPTY >
<IATTLIST header
name CDATA #REQUIRED
tile CDATA
home (Y|N) N

XML Parser for Java 4-53

Frequently Asked Questions About DTDs

portal (YIN) ‘N
logout (Y|N) 'N'>

should change as follows:

<IELEMENT header EMPTY >
<IATTLIST header

name CDATA#REQUIRED

tite CDATA#REQUIRED<!—can be replaced by #FHXED, #IMPLIED, or
"tilel" —>

home (Y|N) N

portal (YIN) N

logout (Y|N) 'N'>

Is There a Standard Extension for External Entity References in an XML Document?

Is there a standard extension (other than .xml or .txt) that should be used for
external entities referenced in an XML document? These external entities are not
complete XML files, but rather only part of an XML file, starting with the
<!/[CDATA[designation. Mostly they contain HTML, or Javascript code, but may
also contain just some plain text. As an example, the external entity is A.txt

which is being referenced in the XML document B.xml .

A.txt looks like this:
<|[CDATA[<!- This is just an html comment —>]}>

B.xml looks like this:

<?xmlversion="1.0"?>

<IDOCTYPE B[

<IENTITY htmiComment SYSTEM "Atxt*>
P

&htmiComment;

Currently we are using .txt as an extension for all such entities, but need to
change that, otherwise the translation team assumes that these files need to get
translated, whereas they don't. Is there a standard extension that we should be
using?

Answer: The file extension for external entities is unimportant so you can change it
to any convenient extension, including no extension.

4-54 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs

Frequently Asked Questions About DOM and SAX APIs

How Do | Use the DOM API to Count Tagged Elements?

How do | get the number of elements in a particular tag using the parser?

Answer: You can use the getElementsByTagName() = method that returns a node
list of all descent elements with a given tag name. You can then find out the number
of elements in that node list to determine the number of the elements in the
particular tag.

How Does the DOM Parser Work?

Answer: The parser accepts an XML-formatted document and constructs in
memory a DOM tree based on its structure. It will then check whether the
document is well-formed and optionally whether it complies with a DTD. It also
provides methods to support DOM Level 1 and 2.

How Do | Create a Node with a Value to Be Set Later?

Answer: If you check the DOM spec referring to the table discussing the node type,
you will find that if you are creating an element node, its node value is null and
hence cannot be set. However, you can create a text node and append it to the
element node. You can then put the value in the text node.

How Do | Traverse the XML Tree?
How to traverse the XML tree

Answer: You can traverse the tree by using the DOM API. Alternately, you can use
the selectNodes() method which takes XPath syntax to navigate through the
XML document. selectNodes() is part of

oracle.xml.parser.v2.XMLNode

How Do | Extract Elements from an XML File?
How do | extract elements from the XML file?

Answer: If you're using DOM, the getElementsByTagName() = method can be
used to get all of the elements in the document.

XML Parser for Java 4-55

Frequently Asked Questions About DOM and SAX APls

Does a DTD Validate the DOM Tree?
If add a DTD to an XML document, does it validate the DOM tree?

Answer: No, we do not do any validation while creating the DOM tree using the
DOM APIs. So setting the DTD in the document will not help in validating the
DOM tree that is constructed. The only way to validate an XML file is to parse the
XML document using the DOM parser or SAX parser. Set the validation mode of

the parser using setValidationMode()

How Do | Find the First Child Node Element Value?
How do | efficiently obtain the value of first child node of the element without
going through the DOM tree?

Answer: If you do not need the entire tree, use the SAX interface to return the
desired data. Since it is event-driven, it does not have to parse the whole document.

How Do | Create DocType Node?

How do | create a DocType node?

Answer: The only current way of creating a doctype node is by using the parseDTD
functions. For example, emp.dtd has the following DTD:

<IELEMENT employee (Name, Dept, Tite)>
<IELEMENT Name (#PCDATA)>
<IELEMENT Dept (#PCDATA)>
<IELEMENT Title ¢#PCDATA)>

You can use the following code to create a doctype node:

parser.parseDTD(new FilelnputStream(emp.ditd), "employee”);
dtd = parser.getDocType();

How Do | Use the XMLNode.selectNodes() Method?

How do | use the selectNodes() method in XMLNodeclass?

Answer: The selectNodes() method is used in XMLElement and XMLDocument
nodes. This method is used to extract contents from the tree or subtree based on the
select patterns allowed by XSL. The optional second parameter of selectNodes , is
used to resolve namespace prefixes (that is, it returns the expanded namespace URL
given a prefix). XMLElement implements NSResolver , so it can be sent as the

second parameter. XMLElement resolves the prefixes based on the input document.

4-56 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs

You can use the NSResolver interface, if you need to override the namespace
definitions. The following sample code uses selectNodes

public class SelectNodesTest {

public static void main(String[] args) throws Exception {
String pattem ="ffamily/memberftext()";

Stingfle =args[0];

if (args.length =—=2)
pattem = args[1];

DOMParser dp = new DOMParser();

dp.parse(createURL(file)); // Include createURL from DOMSample
XMLDocument xd = dp.getDocument();
XMLElement e = (XMLElement) xd.getDocumentElement();
NodeList nl = e.selectNodes(pattem, €);
for (inti=0; i <nl.getLength(); i++) {

System.out printin(nl.item(j).getNodeValue());

}

}
}

> java SelectNodesTest famity.xml
Sarah

Bob

Joanne

Jm

> java SelectNodesTest family.xml /fmember/@memberid
ml
m2
m3
m4

How Does the SAX API Determine the Data Value?

I am using the SAX parser to parse an XML document. How does it get the value of
the data?

Answer: During a SAX parse the value of an element will be the concatenation of
the characters reported from after the startElement event to before the
corresponding endElement event is called.

XML Parser for Java 4-57

Frequently Asked Questions About DOM and SAX APls

How Does SAXSample.java Call Methods?

Inside the SAXSample program, | did not see any line that explicitly calls
setDocumentLocator and some other methods. However, these methods are run.
Can you explain when they are called and from where?

Answer: SAX is a standard interface for event-based XML parsing. The parser
reports parsing events directly through callback functions such as
setDocumentLocator() and startDocument() . The application, in this case,
the SAXSample, uses handlers to deal with the different events. The following Web
site is a good place to help you start learning about the event-driven API, SAX:
http://www.megginson.com/SAX/index.html

Does the DOMParser Use the org.xml.sax.Parser Interface?

Does the XML Parser DOMParser implement org.xml.sax.Parser interface?
The documentation says it uses XML constants and the API does not include that
class at all.

Answer: You'll want oracle.xml.parser.v2.SAXParser to work with SAX
and to have something that implements the org.xml.sax.Parser interface.

How Do | Create a New Document Type Node with DOM API?

I am trying to create a XML file on the fly. | use the NodeFactory to construct a

document using createDocument() . | have then setStandalone(*no”) and
setVersion(“1.0") . When | try to add a DOCTYPHmode with
appendChild(new XMLNode(“test”, Node. DOCUMENT_TYPE_NODE)) , | get

a ClassCastException . How do | add a node of this type? | noticed that the
NodeFactory did not have a method for creating a DOCTYPHode.

Answer: There is no way to create a new DOCUMENT_TYPE_NODigect using the
DOM APIs. The only way to get a DTD obiject is to parse the DTD file or the XML
file using the DOM parser, and then use the getDocType() method.

Note that new XMLNode(“test’,Node.DOCUMENT_TYPE_NODE) does not create
a DTD object. It creates an XMLNode object with the type set to
DOCUMENT_TYPE_NOQDhich in fact should not be allowed. The
ClassCastException is raised because appendChild expects a DTD object
(based on the type).

Also, we do not do any validation while creating the DOM tree using the DOM
APIs. So setting the DTD in the document will not help in validating the DOM tree

4-58 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs

that is constructed. The only way to validate an XML file is to parse the XML
document using the DOM parser or the SAX Parser.

How Do | Query for First Child Node’s Value of a Certain Tag?

I am using the XML Parser for Java version 2. | want to obtain the value of first
child node value of a tag. | could not find any method that can do that efficiently.
The nearest match is method getElementsByTag(“Name”), which traverses the
entire tree under.

Answer: Your best bet, if you do not need the entire tree, is to use the SAX interface
to return the desired data. Since it is event driven it does not have to parse the
whole document.

Can | Generate an XML Document from Data in Variables?

Is there an example of XML document generation starting from information
contained in simple variables? For example, a client fills a Java form and wants to
obtain an XML document containing the given data.

Answer: Here are two possible interpretations of your question and answers to
both. Let's say you have two variables in Java:

String firsthame ="Gianfranco";
String lastname = "Pietraforte”;

The two ways to get this information into an XML document are as follows:
1. Make an XML document in a string and parse it.

String xml = "<person><first>"+irsthame-+"<first>"+
"<ast>"Hastname+"<last></person”;

DOMParser d = new DOMParser();

d.parse(new StringReader(xml));

Document xmidoc = d.getDocument();

2. Use DOM APIs to construct the document and append it together:

Document xmidoc = new XMLDocument();
Element e1 = xmldoc.createElement(‘person”);
xmidoc.appendChild(el);

Element e2 = xmlidoc.createElement(first’);
el.appendChild(e2);

Textt=xmldoc.create Text(firstname);
e2.appendChild(t);

/landsoon

XML Parser for Java 4-59

Frequently Asked Questions About DOM and SAX APls

How Do | Use the DOM API to Print Data in the Element Tags?
Can you suggest how to get a print out using the DOM API in Java:
<name>macy</name>
I want to print out "macy". Don’t know which class and what function to use. | was
successful in printing "name" on to the console.

Answer: For DOM, you need to first realize that <name>macy</name> is actually
an element named "name" with a child node (Text Node) of value "macy".

So, you can do the following:
String value = myElement.getFirstChild().getNodeValue();

How Do | Build XML Files from Hash Table Value Pairs?

We have a hash table of key value pairs, how do we build an XML file out of it
using the DOM API? We have a hashtable key = value name = george zip = 20000.
How do we build this?

<key>value<key><name>george</name><zip>20000</zip>'

Answer:
1. Get the enumeration of keys from your hash table.
2. Loop while enum.hasMoreElements()

3. For each key in the enumeration, use the createElement() on DOM
document to create an element by the name of the key with a child text node
with the value of the *value* of the hash table entry for that key.

XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild()

I have a question regarding our XML parser (version 2) implementation. | have the
following scenario:

Document docl = new XMLDocument();
Element elementl = docl.creatElement(foo");
Document doc2 = new XMLDocument();
Element element2 = doc2.createElement('bar”);
elementl.appendChild(element2);

My question is whether or not we should get a DOM exception of
WRONG_DOCUMENT_BRRalling the appendChild() routine.

4-60 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs

Answer: Yes, you should get this error, since the owner document of elementl is
docl while that of element2 is doc2 . AppendChild() only works within a
single tree and you are dealing with two different ones.

Will WRONG_DOCUMENT_ERR Result from This Code Fragment?
In XSLSample.java that's shipped with the XML parser version 2;

DocumentFragment result = processor.processXSL(xsl, xml);

I/ create an output document to hold the resuit
out =new XMLDocument();

Il create a dummy document element for the output document
Element root = out.createElement('root);
outappendChild(root);

Il append the transformed tree to the dummy document element
rootappendChild(resul);

Nodes root and result are created from different XML documents. Wouldn't this
result in the WRONG_DOCUMENT_ERRN we try to append result to root?

Answer: This sample uses a document fragment that does not have a root node,
therefore there are not two XML documents.

Why Are Only the Child Nodes Inserted?

When appending a document fragment to a node, only the child nodes of the
document fragment (but not the document fragment itself) are inserted. Wouldn't
the parser check the owner document of these child nodes?

Answer: A document fragment should not be bound to a root node, since, by
definition, a fragment could very well be just a list of nodes. The root node, if any,
should be considered a single child. That is, you could for example take all the lines
of an Invoice document, and add them into a ProviderOrder document, without
taking the invoice itself. How do we create a document fragment without root? As
the XSLT processor does, so that we can append it to other documents.

Why Do | Get DOMException when Setting Node Value?
I get the following error:

oracle xml.parser XMLDOMException: Node cannot be modified while trying to set
the value of a newly created node as below:

String eName="Mynode";

XMLNode aNode = new XMLNode(eName, Node.ELEMENT_NODE);

XML Parser for Java 4-61

Frequently Asked Questions About Validation

aNode.setNodeValue(eValue);

How do | create a node whose value | can set later on?

Answer: You will see that if you are creating an element node, its nodeValue is null
and hence cannot be set.

How Can | Force the SAX Parser to Not Discard Characters Following Whitespace?

| receive the following error when reading the attached file using the SAX parser: if
character data starts with a whitespace, characters() method discards characters
that follow whitespace.

Is this a bug or can | force the parser to not discard those characters?

Answer: Use XMLParser.setPreserveWhitespace(true) to force the parser to not
discard whitespace.

Frequently Asked Questions About Validation

What Are the Rules for Locating DTDs?

I have an XML string containing the following reference to a DTD, that is physically
located in the directory where | start my program. The validating XML parser
returns a message that this file cannot be found.

<IDOCTYPE xyz SYSTEM "xyz.dtd" >

What are the rules for locating DTDs on the disk?

Answer: Are you parsing an InputStream or a URL? If you are parsing an
InputStream, the parser doesn't know where that InputStream came from so it
cannot find the DTD in the “same directory as the current file”. The solution is to
setBaseURL()on DOMParser() to give the parser the URL hint information to be
able to derive the rest when it goes to get the DTD.

Can Multiple Threads Use a Single XSLProcessor/Stylesheet?

Can multiple threads use a single XSLProcessor/XSLStylesheet instance to perform
concurrent transformations?

Answer: As long as you are processing multiple files with no more than one
XSLProcessor/XSLStylesheet instance for each XML file you can do this
simultaneously using threads. If you take a look at the readme.html file in the bin

4-62 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Character Sets

directory, it describes ORAXSLwhich has a threads parameter for multithreaded
processing.

Can | Use Document Clones in Multiple Threads?

Is it safe to use clones of a document in multiple threads? Is the public void
setParam(String,String) throws XSLExceptionmethod of Class
oracle.xml.parser.v2.XSLStylesheet supported? If no, is there another
way to pass parameters at runtime to the XSLT processor?

Answer: If you are copying the global area set up by the constructor to another
thread then it should work.

That method is supported since XML parser release 2.0.2.5.

Frequently Asked Questions About Character Sets

How Do | Parse is0-8859-1-encoded Documents with Special Characters?
I have some XML documents with 1SO-8859-1 encoding. | am trying to parse these

with the XML parser SAX API. In characters (char[], int, int), would like to
output the content in 1SO-8859-1 (Latinl) too.
With System.out.printin() it doesn't work correctly. German umlauts result

in '?" in the output stream. What do | have to do to get the output in Latinl? The
host system here is a Solaris™ Operating Environment 2.6.

Answer: You cannot use System.out.printin() . You need to use an output
stream which is encoding aware, for example, OutputStreamWriter

You can construct an outputstreamwriter and use the write(char[], int,
int) method to:

print. Ex:OutputStreamWiter out = new OutputStream\Writer(System.out, "8859_1");
* Java enc string for 1ISO8859-1*/

How Do | Parse XML Stored in NCLOB with UTF-8 Encoding?

I'm having trouble with parsing XML stored in NCLOB column using UTF-8
encoding. Here is what I'm running:

« Windows NT 4.0 Server
« Oracle 8i (8.1.5)

XML Parser for Java 4-63

Frequently Asked Questions About Character Sets

« EEJDeveloper 3.0
« JDK1.1.38
« Oracle XML Parser v2 (2.0.2.5?)

The following XML sample that | loaded into the database contains two UTF-8
multibyte characters:

<?xml version="1.0" encoding="UTF-8"?>
<G>

<A>GAptingen, BrA ck W

<G>

The text is supposed to be:
G(0xc2, 0x82)otingen, Br(0xc3, Oxbc)ck W

If | am not mistaken, both multibyte characters are valid UTF-8 encodings and they
are defined in 1SO-8859-1 as:

OxC2 LATIN CAPITAL LETTER AWITH CIRCUMFLEX
OxFC LATIN SMALL LETTER U WITH DIAERESIS

| wrote a Java stored function that uses the default connection object to connect to
the database, runs a Select query, gets the OracleResultSet |, calls the
getCLOB() method and calls the getAsciiStream() method on the CLOB
object. Then it executes the following piece of code to get the XML into a DOM
object:

DOMParser parser = new DOMParser();
parser.setPreserveWhitespace(true);

parser.parse(istr);

Iistr getAsciiStreamXMLDocument xmidoc = parser.getDocument();

Before the stored function can do other tasks, this code throws an exception stating
that the preceding XML contains invalid UTF-8 encoding.

« When I remove the first multibyte character (0xc2, 0x82) from the XML, it
parses fine.

« When I do not remove this character, but connect through the JDBC Oracle thin
driver (note that now I'm not running inside the RDBMS as stored function
anymore) the XML is parsed with no problem and | can do what ever | want
with the XML document.

4-64 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Character Sets

| loaded the sample XML into the database using the thin JDBC driver. I tried two
database configurations with WE8ISO8859P1/WE8ISO8859P1 and
WEB8IS08859P1/UTF8 and both showed the same problem.

Answer: Yes, the character (Oxc2, 0x82) is valid UTF-8. We suspect that the
character is distorted when getAsciiStream() is called. Try to use
getUnicodeStream() and getBinaryStream() instead of
getAsciiStream()

If this does not work, try to print out the characters to make sure that they are not
distorted before they are sent to the parser in step: parser.parse(istr)

Is There Globalization Support Within XML?

I've got Japanese data stored in an nvarchar2 field in the database. | have a
dynamic SQL procedure that uses the PL/SQL web toolkit that enables me to access
data using OAS and a browser. This procedure uses the XML parser to correctly
format the result set in XML before returning it to the browser.

My problem is that the Japanese data is returned and displayed on the browser as
upside down question marks. Is there anything | can do so that this data is correctly
returned and displayed as Kanji?

Answer: Unfortunately, the Java and XML default character set is UTF-8 while |
haven't heard of any UTF-8 operating systems nor people using it as in their
database and people writing their web pages in UTF-8. All this means is that you
have a character code conversion problem. The answer to your last question is yes.
We do have both PL/SQL and Java XML parsers working in Japanese.
Unfortunately, we cannot provide a simple solution that will fit in this space.

How Do | Parse a Document Containing Accented Characters?
This is my XML document:

Documento de Prueba de gestin de contenidos. Roberto P%orez Lita
This is the way in which | parse the document;

DOMParser parser=new DOMParser();
parser.setPreserveWhitespace(true);
parser.setErorStream(System.en);

parser.setValidationMode(false);

parser.showWamings(true);

parser.parse (new FilelnputStream(new File('PruebaA3inglesxml)));

XML Parser for Java 4-65

Frequently Asked Questions About Character Sets

I get the following error:
XML-0231 : (Error) Encoding 'UTF-16'is not currently supported

I am using the XML Parser for Java version 2 and | am confused because the
documentation says that the UTF-16 encoding is supported in this version of the
Parser. Does anybody know how can | parse documents containing Spanish
accents?

Answer: Oracle just uploaded a new release of the version 2 parser. It should
support UTF-16. However, other utilities still have some problems with UTF-16
encoding.

How Do | Store Accented Characters in an XML Document?

I need to store accented characters in my XML documents. If | manually add an
accented character, for example, an é, to my XML file and then attempt to parse the
XML doc with the XML Parser for Java, the parser throws the following exception:

Invalid UTF-8 encoding'

Here's the encoding declaration in my XML header:

<?xml version="1.0" encoding="UTF-8"?>

Also, if | specify UTF-16 as the default encoding the parser states that UTF-16 is not
currently supported. From within my Java program if | define a Java string object as
follows:

String name ="ééé¢";

and programmatically generate an XML document and save it to file then the é
character is correctly written out to file. Can you tell me how I can successfully read
in character data consisting of accented characters? | know that | can read in
accented characters once | represent them in their hex or decimal format within the
XML document, for example:

&ixe9,

but I'd prefer not to do this.

Answer: You need to set the encoding based on the character set you were using
when you created the XML file - | ran into this problem and solved it by setting the
encoding to 1SO-8859-1 (Western European ASCII) - you may need to use something
different depending on the tool or operating system you are using.

4-66 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions: Adding an XML Document as a Child

If you explicitly set the encoding to UTF-8 (or do not specify it at all), the parser
interprets your accented character (which has an ASCII value > 127) as the first byte
of a UTF-8 multibyte sequence. If the subsequent bytes do not form a valid UTF-8
sequence, you get this error.

This error just means that your editor is not saving the file with UTF-8 encoding.
For example, it might be saving it with 1SO-8859-1 encoding. Remember that the
encoding is a particular scheme used to write the Unicode character number
representation to disk. Just adding the string to the top of the document like:

<?xml version="1.0" encoding="UTF-8"?>

does not cause your editor to write out the bytes representing the file to disk using
UTF-8 encoding. | believe Notepad uses UTF-8, so you might try that.

Frequently Asked Questions: Adding an XML Document as a Child

How Do | Add an XML Document as a Child to Another Element?

I am trying to add an XML document as a child to an existing element. Here’s an
example:

import orgw3c.dom.*;

import java.util.;

import javaio*;

import java.net;

import oraclexml.parser.v2.%;

public class ggg {public static void main (String [] args) throws Exception
{

new ggg().dowWork();;
public void dowWork() throws Exception {XMLDocument doc1 = new XMLDocument();

Element root1=doc].createElement(‘root1");

XMLDocument doc2= new XMLDocument();Element root2=doc2.createElement('root2");
rootl.appendChild(root2);

docl.print(System.out)};};

This reports:

D:\Temp\Oracle\sample>c:\dk1.2.2\bin\avac -classpath
D:\Temp\Oracle\ibxmliparsenv2 jar;.
gag.javaD\Temp\Oracle\sample>ci\idk1.2.2\bin\java -classpath
D:Temp\Oracle\ibwmliparserv2 jar;. gggException in thread "main”
javalang.NullPointerException at

oracle. xml.parser.v2. XMLDOMException.XMLDOMExceptionjava:67) at

XML Parser for Java 4-67

Frequently Asked Questions: Adding an XML Document as a Child

oraclexml.parserv2.XMLNode.checkDocument(XMLNode java:919) at
oraclexml.parserv2.XMLNode.appendChild(XMLNode java, Compiled Code) ~ at
oracle.xml.parserv2.XMLNode.appendChid(XMLNode java:494) at
ggg.doWork(gggjava:20) atggg.main(gggjava:12)

Answer 1: The following works for me:

DocumentFragment rootNode = new XMLDocumentFragment(); DOMParserd =new
DOMParser(); d.parse(http:/../pfgrfffxml);

Document doc = d.getDocument();

Element e = doc.getDocumentElement();

/lmportant to remove it from the first doc

II'before adding it to the other doc. doc.removeChid(e);

rootNode.appendChild(e);

You need to use the DocumentFragment class to do this as a document cannot
have more than one root.

Answer 2: Actually, isn’t this specifically a problem with appending a node created
in another document, since all nodes contain a reference to the document they are
created in. While DocumentFragment solves this, it isn’t a more than one root
problem, is it? Is there a quick or easy way to convert a com.w3c.dom.Document
to org.w3c.dom.DocumentFragment ?

How Do | Add an XML Document Fragment as a Child to an XML Document?
I have this piece of code:

XSLStylesheet XSLProcessorStylesheet = new XSLStylesheet(XSLProcessorDoc,
XSLProcessorURL);

XSLStylesheet XSLRendererStylesheet = new XSLStylesheet(XSLRendererDoc,
XSLRendererURL);

XSLProcessor processor = new XSLProcessor();

/I configure the processorprocessor.showMWamings(true);
processor.setErrorStream(System.err);

XMLDocumentFragment processedXML = processor.processXSL(XSLProcessorStylesheet,
XMLInputDoc);

XMLDocumentFragment renderedXML = processor.processXSL(XSLRendererStylesheet,
processedXML);

Document resultXML = new XMLDocument();

resultXML.appendChild(renderedXML);

The last line causes an exception in thread “main” oracle.xml.parser.v2

XMLDOMException: Node of this type cannot be added.

4-68 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

Do | have to create a root element every time, even if | know that the resulting
document fragment is a well formed XML document having only one root element?

Answer: It happens, as you have guessed, because a fragment can have more than
one root element (for lack of a better term). In order to work around this, use the
node functions to extract the one root element from your fragment and cast it into
an

Frequently Asked General Questions About XML Parser

Why Do | Get an Error on Installing the XML Parser?

I get an error message when | try installing the XML parser:

loadjava -user usemame/manager -r -v xmiparserv2 jar
Enor:

Exception in thread "main” java.lang.NoClassDefFounderr:
oraclefjdbc/driver/OracleDriver at oracle.aurora.server.tools.

Answer: This is a failure to find the JDBC classes111.zip in your CLASSPATH.
The loadjava utility connects to the database to load your classes using the JDBC
driver.

I checked 'loadjava’ and the path to classes111.zip is
<ORACLE_HOME>/jdbcliblclasses111.zip

In version 8.1.6, classes111.zip resides in:
<ORACLE_HOME/dbc/admin

How Do | Remove the XML Parser from the Database?

How do | uninstall a version of the XML Parser and install a newer version? | know
that there is something like dropjava , but still there are other packages which are
loaded into the schema. | want to clean out the earlier version and install the new
version in a clean manner.

Answer: You'll need to write SQL based on the USER_OBJECT$able where:

SELECT 'drop java class "| |
dbms_javalongname(object_name)| |",
from user_objects where

OBJECT_TYPE ='JAVA CLASS'and DBMS_JAVA.LONGNAME(OBJECT_NAME) LIKE

XML Parser for Java 4-69

Frequently Asked General Questions About XML Parser

‘oraclelxml/parser/%o'
This will return a set of DROP JAVA CLASScommands which you can capture in a
file using the SQL*Plus command SPOOL somefilenamecommand .

Then, run that spool file as a SQL script and all the right classes will be dropped.

What Does an XML Parser Do?

Answer: The parser accepts any XML document giving you a tree-based API
(DOM) to access or modify the document’s elements and attributes. It also includes
an event API (SAX) that provides a listener to be registered, and report specific
elements or attributes and other document events.

How Do | Convert XML Files into HTML Files?

Answer: You need to create an XSL stylesheet to render your XML into HTML. You
can start with an HTML document in your desired format and populated with
dummy data. Then you can replace this data with the XSLT commands that will
populate the HTML with data from the XML document completing your stylesheet.

Does the XML Parser Validate Against XML Schema?

Does the XML Parser version 2 validate against an XML Schema?

Answer: Yes.

How Do | Include Binary Data in an XML Document?
How do | include binary data in an XML document?

Answer: There is no way to directly include binary data within the document;
however, there are two ways to work around this:

« Binary data can be referenced as an external unparsed entity that resides in a
different file.

« Binary data can be uuencoded (meaning converted into ASCII data) and be
included in a CDATA section. The limitation on the encoding technique is to
ensure that it only produces legal characters for the CDATA section.

4-70 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

What Is XML Schema?

Answer: XML Schema is a W3C XML standards effort to bring the concept of data
types to XML documents and in the process replace the syntax of DTDs to one
based on XML. For more details, visit the following Web sites:

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
XML Schema is supported in Oracle9i and higher.

Does Oracle Participate in Defining the XML/XSL Standard?

Answer: Oracle has representatives participating actively in the following 3C
Working Groups related to XML/XSL: XML Schema, XML Query, XSL,
XLink/XPointer, XML Infoset, DOM, and XML Core.

How Do | Find XDK Version Numbers?
How do | determine the version number of the XDK toolkit that | downloaded?

Answer: You can find out the full version number by looking at the readme.html
file included in the archive and linked to the Release Notes page.

Are Namespace and Schema Supported?

Answer: The current XML parsers support Namespaces. Schema support is
provided in Oracle9i and higher.

Can | Use JDK 1.1.x with XML Parser for Java v2?
Can | use JDK 1.1.x with XML Parser v2 for Java?

Answer: Version 2 of the XML Parser for Java has nothing to do with Java2. It is
simply a designation that indicates that it is not backward compatible with the
version 1 parser and that it includes XSLT support. Version 2 of the parser will work
fine with JDK 1.1.x.

How Do | Sort the Result Within the Page?

I have a set of 100 records, and | am showing 10 at a time. On each column name |
have made a link. When that link is clicked, | want to sort the data in the page
alone, based on that column. How do | go about this?

XML Parser for Java 4-71

Frequently Asked General Questions About XML Parser

Answer: If you are writing for IE5 alone and receiving XML data, you could just use
Microsoft's XSL to sort data in a page. If you are writing for another browser and
the browser is getting the data as HTML, then you have to have a sort parameter in
XSQL script and use it in ORDER BYclause. Just pass it along with the skip-rows
parameter.

Do | Need Oracle9 / to Run XML Parser for Java?

Answer: XML Parser for Java can be used with any of the supported version
JavaVMs. The only difference with Oracle9i is that you can load it into the database
and use JServer, which is an internal JVM. For other database versions or servers,
you simply run it in an external JVM and as necessary connect to a database
through JDBC.

Can | Dynamically Set the Encoding in an XML File?

Answer: No, you need to include the proper encoding declaration in your
document according to the specification. You cannot use setEncoding() to set the
encoding for you input document. SetEncoding() is used with
oracle.xml.parser.v2. XMLDocument to set the correct encoding for the
printing.

How Do | Parse a String?

Answer: We do not currently have any method that can directly parse an XML
document contained within a string. You would need to convert the string into an
InputStream or InputSource before parsing. An easy way is to create a
ByteArraylnputStream using the bytes in the string.

How Do | Display an XML Document?

Answer: If you are using IE5 as your browser you can display the XML document
directly. Otherwise, you can use the Oracle XSLT Processor version 2 to create the
HTML document using an XSL Stylesheet. The Oracle XML Transviewer bean also
enables you to view your XML document.

How Do | Use System.out.printin() and Special Characters?

Answer: You can't use System.out.printin() . You need to use an output
stream which is encoding aware (for example, OutputStreamWriter). You can

4-72 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

construct an OutputStreamWriter and use the write(char[], int, int)
method to print.

F* Example ¥/

OutputStreamWhiter out = new OutputStreamWhiter

(System.out, "8859_1");

F* Java enc string for ISO8859-1*/

How Do I Insert Characters <, >, =, ", ", and & in XML Documents?
How do | insert these characters in the XML documents: greater than (>), less than
(<), apostrophe, double quotes, or equals (=)?

Answer: You need to use the entity references &eq; for equals (=), > for greater
than (>), and < for less than (<). Use ' for an apostrophe or single quote.
Use " for straight double quotes. Use & for ampersand.

How Do | Use Special Characters in the Tags?
I have a tag in XML <COMPANYNAME>
When we try to use A&B the parser gives an error with invalid character. How do

we use special characters when parsing companyname tag? We are using the Oracle
XML Parser for C.

Answer: You can use special characters as part of XML name. For example:
<A&B>abc</A&B>

If this is the case, using name entity doesn't solve the problem. According to XML
1.0 spec, NameChar and Nameare defined as follows:

NameChar ::=Letter | Digit|"'|*'|"_"| :' | CombiningChar |Extender
Name :=(Letter|' '|") (NameChar)*

To answer your question, special characters such as &, $, and #, and so on are not
allowed to be used as NameChar. Hence, if you are creating an XML document from
scratch, you can use a workaround by using only valid NameChars. For example,
<A B>, <AB>, <A AND B> andsoon.

They are still readable.

If you are generating XML from external data sources such as database tables, then
this is a problem which XML 1.0 does not address.

In Oracle, the new type, XMLType, will help address this problem by offering a
function which maps SQL names to XML names. This will address this problem at

XML Parser for Java 4-73

Frequently Asked General Questions About XML Parser

the application level. The SQL to XML name mapping function will escape invalid
XML NameChar in the format of _XHHHH_where HHHHs a Unicode value of the

invalid character. For example, table name V$SESSIONwiill be mapped to XML
name V_X0024_SESSION.

Finally, escaping invalid characters is a workaround to give people a way to
serialize names so that they can reload them somewhere else.

How Do | Parse XML from Data of Type String?
Answer: Check out the following example:

FxmiDoc is a String of xml */

byte aByteAr [| = xmiDoc.getBytes();

ByteArayinputStream bais = new ByteArrayinputStream (aByteAr, O,
aByteArr length);

domParser.parse(bais);

How Do | Extract Data from an XML Document into a String?
Answer: Here is an example to do that:

XMLDocument Your Document;
f* Parse and Make Mods */

StringWriter sw = new StringWhiter();
PrintWriter pw = new PrinfWhiter(sw);
YourDocument. print(pw);

String YourDocInString = sw.toString();

Is Disabling Output Escaping Supported?

Answer: Yes, since release 2.022, the XML Parser for Java provides an option to
xsl:text to disable output escaping.

Can | Delimit Multiple XML Documents with a Special Character?

We need to be able to read and separate several XML documents as a single string.
One solution would be to delimit these documents using some program-generated
special character that we know for sure can never occur inside an XML document.

The individual documents can then be easily tokenized and extracted or parsed as
required.

4-74 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

Has any one else done this before? Any suggestions for what character can be used
as the delimiter? For instance can characters in the range #x0-#x8 ever occur inside
an XML document?

Answer: As far as legality is concerned, and if you limit it to 8-bit, then #x0-#x8 ;
#xB, #xC, #xE, and #xF are not legal. However, this assumes that you preprocess
the doc and do not depend upon exceptions as not all parsers reject all illegal
characters.

How Do | Use Entity References with the XML Parser for Java?

The XML parser for Java does not expand entity references, such as
&[whatever] . Instead, all values are null. How can I fix this?

Answer: You probably have a simple error defining or using your entities, since
we have a number of regression tests that handle entity references fine. A
simple example is:]> Alpha , then &status

Can | Divide and Store an XML Document Without a DDL Insert?

We would like to break apart an arbitrary XML document and store it in the
database without creating a DDL to insert. Is this possible?

Answer: In Oracle8i release 8.1.6 and higher, Oracle Text can do this.

In Querying, Can | Perform Hierarchical Searches Across XML Documents?

Answer: No this is not possible. Either the schema must already exist or and XSL
stylesheet to create the DDL from the XML must exist.

How Do | Merge XML Documents?

Answer: This is not possible with the current DOML1 specification. The DOM2
specification may address this.

As a workaround, you can use a DOM approach or an XSLT-based approach to
accomplish this. If you use DOM, then you'll have to remove the node from one
document before you append it into the other document to avoid ownership errors.

Here is an example of the XSL-based approach. Assume your two XML source files
are:

demol.xml

<messages>

XML Parser for Java 4-75

Frequently Asked General Questions About XML Parser

<mSg>
<key>AAA<key>
<num>01001</num>

</msg>

<msg>
<key>BBB</key>
<num>01011</num>

</msg>

</messages>

demo2.xml

<messages>
<msg>
<key>AAA<key>
<text>This is a Message<ftext>
</msg>
<m$g>
<key>BBB</key>
<text>This is another Message</text>
</msg>
</messages>

Here is a stylesheet that joins demol.xml to demo2.xml based on matching the
<key> values.

demomerge.xsl

<xslkstylesheet xmins:xsi="http:/Amwwv.w3.0rg/1999/XSL/ Transform'>
<xsloutput indent="yes'"/>
<xslvariable name="doc2" select="document(demo2.xml)"/>
<xsltemplate match="@*node()">
<xsl.copy>
<xslapply-templates select="@*node()"/>
</xsl.copy>
<xsltemplate>
<xsltemplate match="msg">
<xsl:copy>
<xslapply-templates select="@*node()"/>
<text><xslvalue-of select="$doc2/messagesimsglkey=current()keyjtext'/>
<ftext>
</xsl:copy>
</xsltemplate>
</xslstylesheet>

If you use the command line oraxsl to test this, you would enter:

4-76 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

$ oraxsl demolxml demomerge.xs|

Then, you will get the following merged result:

<messages>

<msg>
<key>AAA<key>
<num>01001</num>
<text>This is a Message<ftext>

</msg>

<msg>
<key>BBB</key>
<num>01011</num>
<text>This is another Message</text>

</msg></messages>

This is obviously not as efficient for larger files as an equivalent database join
between two tables, but this illustrates the technique if you have only XML files to
work with.

How Do | Find the Value of a Tag?

I am using SAX to parse an XML document. How | can get the value of a particular
tag? For example, in Java, how do | get the value for title ? | know there are
startElement , endElement , and characters methods.

Answer: During a SAX parse the value of an element will be the concatenation of
the characters reported from after startElement to before the corresponding
endElement is called.

How Do | Grant the JAVASYSPRIV Role to a User?

We are using Oracle XML Parser for Java on Windows NT 4.0. When we are parsing
an XML document with an external DTD we get the following error:

<IDOCTYPE listsamplereceipt SYSTEM
"fle/E/ORACLE/U_file_dir/dadm/ae.dtd™>

java.lang.SecurityExceptionat
oracle.aurora.rdbms.SecurityManagerimpl.checkFile(SecurityManagerimpl java)at
oracle.aurora.rdbms.SecurityManagerimpl.checkRead(SecurityManagerimpl java)at
javaio.FilelnputStream.<init>(FilelnputStream java)at
javaio.FilelnputStream.<init>(FilelnputStream java)at
sun.netwwww.MimeTable.load(MimeTable java)at

sun.netwwww.MimeTable <init>(MimeTable java)at
sun.netwwww.MimeTable.getDefault Table(MimeTable java)at

XML Parser for Java 4-77

Frequently Asked General Questions About XML Parser

sun.netwwwv.protocol file. FileURLConnection.connect(FileURLConnection java)at
sun.netwwwv.protocol file. FileURLConnection.getinputStream(FileURLConnection.
java)at

java.net URL.openStream(URL java)at
oraclexml.parserv2.XMLReader.openURL(XMLReader.java:2313)at
oraclexml.parserv2.XMLReader.pushXMLReader(XMLReader.java:176)at

What is causing this?

Answer: Grant the JAVASYSPRIV role to your user running this code to allow it to
open the external file or URL.

How Do | Include an External XML File in Another XML File?

I am trying to include an external XML file in another XML file. Do the XML Parser
for Java version 1 and version 2 support external parsed entities?

Answer: |IE 5.0 will parse an XML file and show the parsed output. Just load the file
as you would an HTML page.

The following works, both browsing it in IE5 as well as parsing it with the XML
Parser for Java version 2. Even though I'm sure it works fine in the XML Parser for
Java version 1, you should be using the latest parser version as it is faster than
version 1.

File: axml

<2xmlversion="1.0"?>

<IDOCTYPE a[<IENTITY b SYSTEM "bxml*>]>
<a>&b

File: bxml
<okf>
When | browse and parse a.xml | get the following:

<a>
<ok/>
<Ja>

Does the Parser Come with a Utility to View the Parsed Output?

We are using the XML Parser for Java version 1.0, because that is what is shipped to
the customers with release 10.7 and 11.0 of our application. Can you refer me to this,
or some other sample code to do this.

4-78 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

Shouldn't file b.xml be in the format:

<?xmlversion="1.0"?>

<ok/>

Does the Oracle XML Parser come with a utility to parse an XML file and see the
parsed output?

Answer: Not strictly. The parsed external entity only needs to be a well-formed
fragment. The following program (with xmlparser.jar from version 1) in your
CLASSPATHhows parsing and printing the parsed document. It's parsing here
from a string but the mechanism would be no different for parsing from a file, given
its URL.

import oracle xml.parser.*;
import javalio*;
import java.net*;
import orgw3c.dom.*;
import orgxml.sax.*,
P
** Simple Example of Parsing an XML File from a String
* and, if successful, printing the resullts.
*k
* Usage: java ParseXMLFromString <hello><world/></hello>
¥
public class ParseXMLFromString {
public static void main(String] arg) throws IOException, SAXException {
String theStringToParse =
"<?xmlversion=1.0?7>"+
"<hello>"+
" <world/>"+
"<hello>";
XMLDocument theXMLDoc = parseString(theStringToParse);
/I Print the document out to standard out
theXMLDoc.print(System.out);

public static XMLDocument parseString(String xmiString) throws
IOException, SAXException {

XMLDocumenttheXMLDoc =null;

/I Create an oracle xml.parser.v2.DOMParser to parse the document.
XMLParser theParser = new XMLParser();

// Open an input stream on the sfring

ByteAmayinputStream theStream =

XML Parser for Java 4-79

Frequently Asked General Questions About XML Parser

new ByteArraylnputStream(xmiString.getBytes());

Il Set the parser to work in non-Validating mode
theParser.setValidationMode(DTD_validation);
try{

I/ Parse the document from the InputStream

theParser.parse(theStream);

I/ Get the parsed XML Document from the parser

theXMLDoc = theParser.getDocument();

}
catch (SAXParseException s) {

System.out prinin(xmlEmor(s));
throw's;

}
retum theXMLDoc;

}
private static String xmIEmor(SAXParseException s) {
int ineNum = s.getlineNumber();
int colNum = s.getColumnNumber();
String file = s.getSystemid();
Sting e =s.getMessage();
retum "XML parse error infile " + file +
"\n" +"atline " + ineNum + ", character " + colNum +
\n"+erm;

From Where Can | Download OraXSL, the Parser's Command Line Interface?
From where | can download oracle.xml.parser.v2.0raXSL ?

Answer: It's part of our integrated XML Parser for Java version 2 release. Our XML
Parser, DOM, XPath implementation, and XSLT engine are nicely integrated into a
single cooperating package. To download it, please refer to the following Web site:

http://otn.oracle.com/tech/xml/xdk_java/

Does Oracle Support Hierarchical Mapping?

We are interested in using the Oracle database primarily to store XML. We would
like to parse incoming XML documents and store data and tags in the database. We
are concerned about the following two aspects of XML in Oracle;

First, the relational mapping of parsed XML data. We prefer hierarchical storage of
parsed XML data. Is this a valid concern? Will XMLType in Oracle9i address this
concern?

4-80 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

Second, a lack of an ambiguous content mode in the Oracle Parser for Java is
limiting to our business. Are there plans to add an ambiguous content mode to the
Oracle Parser for Java?

Answer: Many customers initially have this concern. It depends on what kind of
XML data you are storing. If you are storing XML datagrams that are really just
encoding of relational information (for example, a purchase order), then you will
get much better performance and much better query flexibility (in SQL) to store the
data contained in the XML documents in relational tables, then reproduce
on-demand an XML format when any particular data needs to be extracted.

If you are storing documents that are mixed-content, like legal proceedings,
chapters of a book, reference manuals, and so on, then storing the documents in
chunks and searching them using Oracle Text’s XML search capabilities is the best
bet.

The book, Building Oracle XML Applications, by Steve Muench, covers both of these
storage and searching techniques with lots of examples.

See Also: ?For more information on using Oracle Text and XML,

see:

« Oracle Text Reference

« Oracle Text Application Developer’s Guide

« http://otn.oracle.com/products/text
For the second point, the Oracle XML Parser implements all the XML 1.0 standard,
and the XML 1.0 standard requires XML documents to have unambiguous content

models. Therefore, there is no way a compliant XML 1.0 parser can implement
ambiguous content models.

See Also:
http://www.xml.com/axml/target.html#determinism

What Good Books for XML/XSL Can You Recommend?
Can any one suggest good books for learning about XML and XSL?

Answer: There are many excellent articles, white papers, and books that describe all
facets of XML technology. Many of these are available on the World Wide Web. The
following are some of the most useful resources we have found:

XML Parser for Java 4-81

Frequently Asked General Questions About XML Parser

« XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems
http://metalab.unc.edu/pub/sun-info/standards/xml/why/xml
apps.htm

« XML for the Absolute Beginner by Mark Johnson, Javaworld
http://www.javaworld.com/jw-04-1999/jw-04-xml|_p.html

« XML And Databases by Ronald Bourret, Technical University of Darmstadt
http://www.informatik.tu-darmstadt.de/DVS1/staff/bourret/
XML/

« XMLAnNdDatabases.htm and the XML Specifications by the World Wide Web
Consortium (W3C) http://www.w3.org/XML/

« XML.com, a broad collection of XML resources and commentary
http://www.xml.com/

« Annotated XML Specification by Tim Bray, XML.com
http://www.xml.com/axml/testaxml.htm

« The XML FAQ by the W3C XML Special Interest Group (the industry clearing
house for XML DTDs that allow companies to exchange XML data)
http://www.ucc.ie/xml/ XML.org

« http://xml.org/

« xDev (the DataChannel XML Developer pages)
http://xdev.datachannel.com/

Are There XML Developer Kits for the HP/UX Platform?

Answer: HP-UX ports for our C/C++ Parser as well as our C++ Class Generator are
available. Look for an announcement on http://technet.oracle.com

How Do | Compress Large Volumes of XML Documents?

Can we compress XML documents when saving them to the database as a CLOB? If
they are compressed, what is the implication of using Oracle Text against the
documents? We have large XML documents that range up to 1 MB and they need to
be minimized.

The main requirement is to save cost in terms of disk storage as the XML
documents stored are history information (more of a datawarehouse environment).
We could save a lot of disk space if we could compress the documents before
storage. The searching capability is only secondary, but a big plus.

4-82 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

Answer: The XDK for Java supports a compression mechanism in Oracle9i. It
supports streaming compression and uncompression. The compression is achieved
by removing the markup in the XML Document. The initial version does not
support searching the compressed data. This is planned for a future release.

If you want to store and search your XML docs, Oracle Text can handle this. | am
sure that the size of individual document is not a problem for Oracle Text.

If you want to compress the 1 MB docs for saving disk space and costs, Oracle Text
will not be able to automatically handle a compressed XML document.

Try looking at XMLZip:

http/Amwwv xmis.com/resourcesikmizipxml?id=resources_xmizip

My only concern would be the performance hit to do the uncompression. If you are
just worried about transmitting the XML from client to server or vice versa, then
HTTP compression could be easier.

How Do | Generate an XML Document Based on Two Tables?

I would like to generate an XML document based on two tables with a master detail
relationship. Suppose | have two tables:

« PARENT with columns: ID and PARENT_NAME (Key = ID)

. CHILD with columns: PARENT_ID, CHILD_ID, CHILD_NAME (Key =
PARENT ID + CHILD_ID)

There is a master detail relationship between PARENTand CHILD. How can |
generate a document that looks like this?

<?xmlversion="1..07>
<ROWSET>
<ROW num="1">
<parent_name>Bill</parent_name>
<child_name>Child 1 of 2</chid_name>
<child_name>Child 2 of 2</chid_name>
</ROW>
<ROW num="2">
<parent_name>Lany</parent_name>
<chid_name>Only one child</child_name>
</ROW>
</ROWSET>

XML Parser for Java 4-83

Frequently Asked General Questions About XML Parser

Answer: You should use an object view to generate an XML document from a
master-detail structure. In your case, use the following code:

create type child_type is object
(child_name <data type child_name>);
/

create type child_type_nst

is table of child_type ;

/

create view parent_chid
as
select p.parent_name
,cast
(multiset
(selectc.chid_name
from chidc
where c.parent_id=p.id
)aschild_type nst
) child_type
from parent p
/

A SELECT * FROM parent_child , processed by an SQL to XML utility would
generate a valid XML document for your parent child relationship. The structure
would not look like the one you have presented, though. It would look like this:

<?xml version="1.0"7>
<ROWSET>
<ROW num="1">
<PARENT_NAME>Bil/PARENT_NAME>
<CHILD_TYPE>
<CHILD TYPE_ITEM>
<CHILD_NAME>Child 1 of 2</CHILD_NAME>
</CHILD_TYPE_ITEM>
<CHILD_TYPE_ITEM>
<CHILD_NAME>Child 2 of 2</CHILD_NAME>
</CHILD_TYPE_[TEM>
</CHILD TYPE>
</ROW>
<ROW num="2">
<PARENT_NAME>Lanmy</PARENT NAME>
<CHILD _TYPE>
<CHILD_TYPE_ITEM>
<CHILD_NAME>Only one child</CHILD_NAME>

4-84 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser

</CHILD_TYPE_ITEM>
</CHILD TYPE>
</ROW>
</ROWSET>

XML Parser for Java 4-85

Frequently Asked General Questions About XML Parser

4-86 Oracle9i XML Developer’s Kits Guide - XDK

D

XSLT Processor for Java

This chapter contains the following sections:

« Using XML Parser for Java: XSLT Processor

« XSLT Processor for Java: Command-Line Interface, oraxsl
« XML Extension Functions for XSLT Processing

« Frequently Asked Questions About the XSLT Processor and XSL

XSLT Processor for Java 5-1

Using XML Parser for Java: XSLT Processor

Using XML Parser for Java: XSLT Processor

The XSLT processor operates on two inputs: the XML document to transform, and
the XSLT stylesheet that is used to apply transformations on the XML. Each of these
two can actually be multiple inputs. One stylesheet can be used to transform
multiple XML inputs. Multiple stylesheets can be mapped to a single XML input.

To implement the XSLT Processor in the XML Parser for Java use XSLProcessor
class.

Figure 5-1 shows the overall process used by class XSLProcessor . Here are the
steps:

Create an XSLProcessor object and then use methods from the following list in
your Java code. Some of the available methods are:

« removeParam() -remove parameter
« resetParam() - remove all parameters
« setParam() - set parameters for the transformation

« setBaseURL() - setabase URL for any relative references in the
stylesheet

« setEntityResolver() - set an entity resolver for any relative references
in the stylesheet

« setlLocale - setlocale for error reporting

Use one of the following input parameters to the function
XSLProcessor.newXSLStylesheet() to create a stylesheet object:

= java.io.Reader

« java.io.InputStream
« XMLDocument

« java.net.URL

This creates a stylesheet object which is thread-safe and can be used in multiple
XSL Processors.

Use one of the input parameters on the XML input.

Your XML inputs and the stylesheet object are input (each using one of the
input parameters listed above) to the XSL Processor:

XSLProcessor.processXSL(xslstylesheet, xml instance)

5-2 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: XSLT Processor

The results can be one of the following:
« create an XML document object
« Wwrite to an output stream

« reportas SAX events

Figure 5-1 Using XSL Processor for Java

XSLProcessor
object methods:

* removeParam()
« resetParam()

« setParam()
setBaseURLY()
setEntityResolver()
 setLocale()

'

XSL input)| XSLProcessor jmp| XSL Stylesheet

object

java.io.Reader
java.io.InputStream
XMLDocument
java.net.URL

v v

: XSLT
XML input —) —
P Transformation

v v v

Create an XML Write to an Repart as
document object output stream SAX events

XSLT Processor for Java Example
This example uses one XML document and one XSTT stylesheet as inputs.

public class XSLSample

XSLT Processor for Java 5-3

Using XML Parser for Java: XSLT Processor

{
public static void main(String args]]) throws Exception

{
if (argslength<2)
{

System.err.printin("Usage: java XSLSample xslFle xmiFile.");
System.exit(1);
}

Il Create a new XSLProcessor.
XSLProcessor processor = new XSLProcessor();

I/ Register a base URL to resolve relative references
I processor.setBaseURL (baseURL);

I/ Or register an org.xml.sax.EntityResolver to resolve
I relative references
I processor.setEntityResolver(myEntityResolver);

I/ Register an error log
I processor.setErorStream(new FileOutputStream(error.log'));

I/ Set any global paramters to the processor
I processor.setParam(namespace, paraml, valuel);
I processor.setParam(namespace, param2, value2);

Il resetParam is for multiple XML documents with different parameters

String xslFile = args[0];
String xmiFile = args[1];

I/ Create a XSLStylesheet

Il The stylesheet can be created using one of following inputs:

I

I XMLDocument xslinput = / using DOMParser; see below in this code */
TURL xslinput =new URL(xsIFile);

//Reader xslinput = new FileReader(xslFile);

InputStream xslinput = new FilelnputStream(xsiFile);
XSLStylesheet stylesheet = processor.newXSLStylesheet(xslinput);
I/ Prepare the XML instance document

II' The XML instance can be given to the processor in one of
Il following ways:

5-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: XSLT Processor

I

JTURL xmlinput=new URL(xmIFile);

//Reader xmllinput = new FileReader(xmiFile);

Il InputStream xmiinput = new FilelnputStream(xmiFile);
I/ Or using DOMParser

DOMParser parser = new DOMParser();
parser.retainCDATASection(false);
parser.setPreserveWhitespace(true);
parser.parse(xmiFie);

XMLDocument xmlilnput = parser.getDocumenty();

I Transform the XML instance

II' The result of the transformation can be one of the following:
]

/' 1. Retum a XMLDocumentFragment

112. Print the results to a OutputStream

/' 3. Report SAX Events to a ContentHandler

/' 1. Retum a XMLDocumentFragment
XMLDocumentFragment resullt;
result = processor.processXSL(stylesheet, xmlinput);

I/ Print the result to System.out
result.print(System.out);

I12. Print the results to a OutputStream
I processor.processXSL(stylesheet, xmlinput, System.ou);

/' 3. Report SAX Events to a ContentHandler
I/ ContentHandler cntHandler = new MyContentHandler();
I processor.processXSL(stylesheet, xmlinput, cntHandler);

See Also: .See "SAX: Event-Based API" on page 4-8

XSLT Processor for Java 5-5

XSLT Processor for Java: Command-Line Interface, oraxsl

XSLT Processor for Java: Command-Line Interface, oraxsl

oraxsl - Oracle XSL processor

oraxsl is a command-line interface used to apply a stylesheet on multiple XML
documents. It accepts a number of command-line options that dictate how it should
behave.

To use oraxsl ensure the following:

=« Your CLASSPATH environment variable is set to point to the xmlparserv2.jar
file that comes with Oracle XML V2 parser for Java.

« Your PATH environment variable can find the java interpreter that comes with
JDK 1.1.x or DK 1.2.

Use the following syntax to invoke oraxsl

oraxsl options source stylesheet result

oraxsl expects to be given a stylesheet, an XML file to transform, and optionally, a
result file. If no result file is specified, it outputs the transformed document to
standard out. If multiple XML documents need to be transformed by a stylesheet,

the -1 or -d options in conjunction with the -s and -r options should be used instead.
These and other options are described in Table 5-1.

Table 5-1 oraxsl: Command Line Options

Option Purpose

-d directory Directory with files to transform (the default behavior is to
process all files in the directory). If only a certain subset of the
files in that directory, for example, one file, need to be
processed, this behavior must be changed by using -l and
specifying just the files that need to be processed. You could
also change the behavior by using the '-x' or '-i' option to select
files based on their extension).

-debug New - Debug mode (by default, debug mode is turned off)

-e error_log A file to write errors to (specify a log file to write errors and
warnings).

-h Help mode (prints oraxsl invocation syntax)

-i source_extension Extensions to include (used in conjunction with -d. Only files

with the specified extension will be selected).

5-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing

Table 5-1 oraxsl: Command Line Options (Cont.)

Option

Purpose

-1 xml_file_list

List of files to transform (enables you to explicitly list the files
to be processed).

-0 result_directory

Directory to place results (this must be used in conjunction
with the -r option).

-p param_list

List of Parameters.

-r result_extension

Extension to use for results (if -d or -l is specified, this option
must be specified to specify the extension to be used for the
results of the transformation. So, if one specifies the extension
"out", an input document "foo" would get transformed to
"foo.out". By default, the results are placed in the current
directory. This is can be changed by using the -o option which
enables you to specify a directory to hold the results).

-s stylesheet

Stylesheet to use (if -d or -1 is specified, this option needs to be
specified to specify the stylesheet to be used. The complete
path must be specified).

-t num_of_threads

Number of threads to use for processing (using multiple
threads could provide performance improvements when
processing multiple documents).

-V Verbose mode (some debugging information is printed and
could help in tracing any problems that are encountered
during processing)

-wW Show warnings (by default, warnings are turned off)

-X source_extension

Extensions to exclude (used in conjunction with -d. All files
with the specified extension will not be selected).

XML Extension Functions for XSLT Processing

XML extension functions for XSLT processing allow users of XSLT processor to call
any Java method from XSL expressions.

XSLT Processor Extension Functions: Introduction
Java extension functions should belong to the namespace that starts with the

following:

http/Amwwv.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace:

XSLT Processor for Java 5-7

XML Extension Functions for XSLT Processing

http/Amww.oracle.com/XSL/Transformjavalclassname

refers to methods in class classname . For example, the following namespace:
http:/Amww.oracle.comVXSL/Transform/javaljava.lang.String

can be used to call java.lang.String methods from XSL expressions.

Static Versus Non-Static Methods

If the method is a non-static method of the class, then the first parameter will be
used as the instance on which the method is invoked, and the rest of the parameters
are passed on to the method.

If the extension function is a static method, then all the parameters of the extension
function are passed on as parameters to the static function.

XML Parser for Java - XSL Example 1: Static function
The following XSL, static function example:

<xslstylesheet
xmins:math="http:/Amw.oracle.com/XSL/Transformfjavajjavalang.Math">
<xsltemplate match="">
<xslvalue-of select="math:ceil(12.34)/>
</xsltemplate>
</xslstylesheet>

prints out '13".

Note: The XSL class loader only knows about statically added
JARs and paths in the CLASSPATH - those specified by
wrapper.classpath . Files added dynamically using the
repositories’ keyword in Jserv are not visible to XSL processor.

Constructor Extension Function

The extension function 'new’ creates a new instance of the class and acts as the
constructor.

XML Parser for Java - XSL Example 2: Constructor Extension Function
The following constructor function example:

5-8 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing

<xslstylesheet
xmins;jstring="http:/Avww.oracle.com/XSL/Transform/javajava.lang.String>
<xsltemplate match="/">
<l- creates a new javalang.String and stores it in the variable strl —
<xslvariable name="strl" select="jstring:new(Hello World) />
<xslvalue-of select="jstring:toUpperCase($strl) />
</xsltemplate>
</xslstylesheet>

prints out 'HELLO WORLD".

Return Value Extension Function

The result of an extension function can be of any type, including the five types
defined in XSL:

« NodeList
= boolean

« String

« Number

« resulttree
They can be stored in variables or passed onto other extension functions.

If the result is of one of the five types defined in XSL, then the result can be returned
as the result of an XSL expression.

XML Parser for Java XSL- XSL Example 3: Return Value Extension Function
Here is an XSL example illustrating the Return value extension function:

<!- Declare extension function namespace —>

<xsl:stylesheet xmins:parser =

“http/Amww.oracle.comVXSL/ Transformjava/oracle xml.parserv2.DOMParser”
xmins:document =
"http:/Avww.oracle.comyXSL/Transformijava/oracle xml.parser.v2 XMLDocument” >

<xsltemplate match ="/"> <!- Create a new instance of the parser, store itin
myparser variable —

<xslvariable name="myparser" select="parsernew()'>

<l- Call a non-static method of DOMParser. Since the method is anon-static
method, the first parameter is the instance on which themethod is called. This

is equivalent to $myparser.parse(testxml) —>

XSLT Processor for Java 5-9

XML Extension Functions for XSLT Processing

<xslvalue-of select="parser:parse(@myparser, testxml)/>

<I- Get the document node of the XML Dom tree —>

<xslvariable name="mydocument" select="parser.getDocument($myparser)"/>

<I- Invoke getelementsbytagname on mydocument —

<xslfor-each select="documentgetElementsByTagName($mydocument,elementname’) >

</xslfor-each> </xsltemplate>
</xslstylesheet>

Datatypes Extension Function

Overloading based on number of parameters and type is supported. Implicit type
conversion is done between the five XSL types as defined in XSL.

Type conversion is done implicitly between (String, Number, Boolean, ResultTree)
and from NodeSet to (String, Number, Boolean, ResultTree).

Overloading based on two types which can be implicitly converted to each other is
not permitted.

XML Parser for Java - XSL Example 4: Datatype Extension Function

The following overloading will result in an error in XSL, since String and Number
can be implicitly converted to each other:

« abc(inti){}
« abc(String s){}
Mapping between XSL type and Java type is done as following:

String -> javalang.String

Number - int, float, double

Boolean -> boolean

NodeSet -> XMLNodeList

ResultTree -> XMLDocumentFragment

Oracle XSLT Built-In Extensions: ora:node-set and ora:output
The following example illustrates both ora:node-set and ora:output in action.

If you enter:
$ oraxs| foo.xml slides.xsl toc.html

where "foo.xml" is any XML file, you get:

5-10 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing

« A"toc.html" slide with a table of contents
« A"slide0l.html" file with slide 1
« A"slide02.html" file with slide 2

<

| llustrate using ora:node-set and ora:output

I

| Both extensions depend on defining a namespace

| with the uri of "http/Amww.oracle.com/XSL/Transform/java"
+—>
<xslstylesheet version="1.0"

xmins:xsi="http/Amwv.w3.0rg/1999/XSL/ Transform"™
xmins:ora="http/Amwwv.oracle.comVXSL/Transformjava™>

<l- <xsl:output> affects the primary result document —>
<xsl:output mode="html" indent="no"/>

<l-
| <ora:output>at the top-evel enables all attributes
| that <xsl:output>enables, but you must provide the
| additional "name" atfribute to assign a name to
| these output settings to be used later.
+—>
<ora:output name="myOutput' mode="html" indent="no"/>
<l-
| This top-level variable is a result-tree fragment
+—>
<xslvariable name="fragment">
<slides>
<slide>
<tite>First Slide<fitle>
<bullet>Point One</bullet>
<bullet>Paint Two</bullet>
<bullet>Paint Three</bullet>
</slide>
<slide>
<tite>Second Slide<fitle>
<bullet>Point One</bullet>
<bullet>Point Two</bullet>
<bullet>Point Three</bullet>
</slide>
</slides>

XSLT Processor for Java 5-11

XML Extension Functions for XSLT Processing

</xslvariable>
<xsltemplate match="/">
<l- | We cannot "de-reference” a result-tree-fragment to
| navigate into it with an XPath expression. However, using
| the ora:node-set() builtt-in extension function, you can
| "cast" a result-tree fragment to a node-set which *can*
| then be navigated using XPath. Since well use the node-set
| of <slides> twice below, we save the node-set in a variable.
+—>
<xslvariable name="slides" select="ora:node-set($fragment)’/>
<l-
| This <htm[> page will go to the primary result document.
| Itis a"table of contents" for the slide show, with
| links to each slide. The "slides" will each be generated
| into *secondary* resuft documents, each slide having
| afile name of "slideNN.html" where NN is the two-digit
| slide number
+—>
<himb>
<body>
<h1>List of Al Slides</h1>
<xslapply-templates select="$slides" mode="toc"/>
</body>
<htmb>
<
| Now go apply-templates to format each slide
+—>
<xslapply-templates select="$slides"/>
</xsltemplate>
<l-In toc' mode, generate a link to each slide we match —>
<xsltemplate match="slide" mode="toc">

<xslvalue-of select="tile"/>
<fa>

</xsltemplate>
<
| For each slide matched, send the output for the current
| <slide> to a file named "slideNN.html". Use the named
| output style defined above called "myOutput”.
<xsltemplate match="slide">
<oraoutput use="myOutput href="slide{format-number(position(),00)}.html">
<html>
<body>
<xslapply-templates select="title"/>
<ub>

5-12 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL

<xslapply-templates select="*[not(self:titie)] />
<u>

</body>

<htmi>

</ora:output>

</xsltemplate>

<xsltemplate match="bullet">
<xslvalue-of select="."/></l>

</xsltemplate>

<xsltemplate match="title">
<h1><xslvalue-of select=""f></h1>

</xsltemplate>

</xslstylesheet>

Frequently Asked Questions About the XSLT Processor and XSL

This section lists XSL and XSLT Processor questions and answers.

Why Am | Getting an HTML Error in XSL?

I don't know what is wrong here. This is my news_xsl.xsl file:

<?xml version ="1.0"?>
<xslstylesheet xmins:xsl="http:/Amww.w3.org/ TRAWD-xsI">
<xsltemplate match="/">
<HTML>
<HEAD>
<TITLE> Sample Foom </TITLE>
<HEAD>
<BODY>
<FORM>
<input type="text' name="country" size="15> <FORM>
</BODY>
<HTML>
</xsltemplate>
</xsl:stylesheet>

ERROR:End tag 'FORM' does not match the start tag ‘input. Line 14, Position 12
</[FORM>-

"news.xml

<?xmlversion="1.0" 7>

<xml-stylesheet type="text/xsl" href="news_xsl.xsl"?>

<GREETING/>

XSLT Processor for Java 5-13

Frequently Asked Questions About the XSLT Processor and XSL

Answer: Unlike in HTML, in XML every opening or starting tag must have an
ending tag. Even the input that you are giving should have a matching ending tag,
so you should modify your script like this:

<FORM>
<input type="text" name="country" size="15"> </input>
</[FORM>

Or:

<FORM>
<input type="text"' name="country" size="15"/>
</FORM>

Also, remember that in XML the tags are case sensitive, unlike in HTML.

s the Output Method “html” Supported in the XSL Parser?

Is the output method html supported in the recent version of the XSL parser? | was
trying to use the
tag with the <xsl output method="xml"/> declaration
but I got an XSL error message indicating a not well-formed XML document. Then |
tried the following output method declaration: <xsl output method="html"/>

but I got the same result.

Here's a simple XSL stylesheet | was using:

<?xml version="1.0"?> <xsl:stylesheet version="1.0"
xmins:xsi="http:/Amvwvw3.0rg/1999/XSL/ Transform™> <xsl output method="html"/>
<xsltemplate match="/"> <HTML> <HEAD></HEAD> <BODY>
<P> Blah blah
 More blah blah
 </P>

<BODY> <HTML> </xsltemplate>

How do | use a not well-formed tag like or
in an XSL stylesheet?

Answer: We fully support all options of <xsl output> . The problem here is that
your XSL stylesheet must be a well-formed XML document, so everywhere you are
using the
element, you need to use
 instead. The <xsl output
method="html"/> requests that when the XSLT engine writes out the result of
your transformation, it is a proper HTML document. What the XSLT engine reads in
must be well-formed XML.

Question: | have a question regarding your reply. | have an XSL stylesheet that
preforms XML to HTML conversion. Everything works correctly with the exception
of those HTML tags that are not well formed. Using your example if | have
something like:

5-14 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL

<xslstylesheet xmins:xst="http:/Amwv.w3.0rg/1999/XSL/Transform'™>
<xsl:output method="html"/>

<input type="text' name="{NAME}" size="{DISPLAY_LENGTH}" maxlength="{LENGTH}">
<finput>

It would render HTML in the format of
<HTML>.....<input type="text' name="in1" size="10" maxlength="20"/>

While Internet Explorer can handle this, Netscape cannot. Is there any way to
generate completely cross-browser-compliant HTML with XSL?

Answer 2: If you are seeing:
<input... >

instead of:
<input>

then you are likely using the incorrect way of calling
XSLProcessor.processXSL() , since it appears that it's not doing the HTML
output for you. Use:

void processXSL(style,sourceDoc,PrintWiiter)

instead of:
DocumentFragment processXSL(style,sourceDoc)

and it will work correctly.

Can | Prevent XSL from Returning a Meta-Tag in Netscape 4.0?
I'm using <xsl output method="html” encoding="is0-8859-1"

indent = “no” /> . Is it possible to prevent XSLT from outputting <META
http-equiv="Content-Type” content="text/html;
charset=iso-8859-1"> in the HEADelement because Netscape 4.0 has

difficulties with this statement. It renders the page twice.

XSLT Processor for Java 5-15

Frequently Asked Questions About the XSLT Processor and XSL

Answer: The XSLT 1.0 recommendation says in Section 16.2 (“HTML Output
Method”) that if there is a HEADelement, then the HTML output method should
add a METAelement immediately after the start-tag of the HEADelement specifying
the character encoding actually used.

For example:

<HEAD><META http-equiv="Content-Type" content="texthtml; charset=EUC-JP">.
So any XSLT 1.0-compliant engine needs to add this.

How Do | Work Around a Display Bug in the Browser?
Netscape 4.0 has following bug:

When Mozilla hits the meta-encoding tag it stops rendering the page and does a
refresh, thereby producing an annoying flickering. | probably have to do a
replacement in the servlets Outputstream, but | don't like doing so. Are there any
alternatives?

Answer: The only alternatives | can think of are:

« Don'tinclude a <HEAD>section in your HTML page. According to the XSLT
specification, this will suppress the inclusion of the <META>tag.

« Don't use method="HTML" for the output. Since it defaults to “HTML",
according to the specification for result trees that start with <HTML>(in any
mixture of case), you'd have to explicitly set it to method="xml" or
method="text”

Neither is pretty, but either one might provide a workaround.

Where Can | Get More Information on XSL Error Messages?

| get the error XSL-1900, exception occurred. What does this mean? How can | find
out what caused the exception?

Answer: If you are using Java, you could write exception routines to trap errors.
Using tools such as JDeveloper also helps.

The error messages of our components are usually clearer. XSL-1900 indicates
possible internal error or incorrect usage.

How Do | Generate the HTML "Less Than" (<) Character?

I am trying to generate an HTML form for inputting data using column names from
the user_tab_columns table and the following XSL code:

5-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL

<xsltemplate match="ROW">

<xslvalue-of select="COLUMN_NAME'/>

<: I5INPUT NAME="<xsl:value-of select="COLUMN_NAME'/>>
</xsltemplate>

although gt; is generated as the greater than (>) character, It; is generated as
#60; . How do | generate the less than (<) character?

Answer: Use the following code:
<xsltext disable-output-escaping="yes">entity-reference</xsltext>

Why Does HTML “<* Conversion Work in oraxsl But Not in XSLSample.java?

I cannot display HTML from XML. In my XML file, | store the HTML snippet in an
XML tag:

<PRE>

<body.htmicontent>

<<table width="540" border="0" cellpadding="0"
cellspacing="0">&8#60;ir><td><font face="Helvetica, Arial"

size="2"><'- STILL IMAGE GOES HERE —><img

src="graphicsimagegoeshere.jpg" width="200" height="175" align="right"

vspace="0" hspace="7">8#60;- END STILL IMAGE TAG —><- CITY OR TOWN NAME
GOES FIRST FOLLOWED BY TWO LETTER STATE ABBREVIATION —>City, state
abbreviation - <1- CITY OR TOWN NAME ENDS HERE —><!- STORY
TEXT STARTS HERE —>Story text goes here.. <- STORY TEXT ENDS HERE
—><td><ir>8#60;table>

</body.htmicontent>

</PRE>

| use the following in my XSL.:
<xslvalue-of select="body. HTMLcontent" disable-output-escaping="yes"l>

However, the HTML output

<PRE><,</PRE>

still appears and all of the HTML tags are displayed in the browser. How do |
display the HTML properly?

That doesn't look right. All of the less than (<) characters are #60; in the code with
an ampersand in front of them. They are still that way when they are displayed in
the browser.

XSLT Processor for Java 5-17

Frequently Asked Questions About the XSLT Processor and XSL

Even more confusing is that it works with oraxsl , but not with
XSLSample.java
Answer: Here's why:

« oraxsl internally uses void XSLProcessor.processXSL
(style,source,printwriter);

« XSLSample.java uses DocumentFragment XSLProcessor.processXSL
(style,source);

The former supports <xsl:output> and all options related to writing output that
might not be valid XML (including the disable output escaping). The latter is pure
XML-to-XML tree returned, so no <xsl:output> or disabled escaping can be used
since nothing's being output, just a DOM tree fragment of the result is being
returned.

Where Can | Find XSLT Examples?

Is there any site which has good examples or short tutorials on XSLT?

Answer: This site is an evolving tutorial on lots of different XML, XSLT, and
XPath-related subjects:

http://zvon.vscht.cz/ZvonHTML/Zvon/zvonTutorials_en.html

Where Can | Find a List of XSLT Features?
Is there a list of features of the XSLT that the Oracle XDK uses?

Answer: Our version 2 parsers support the W3C Recommendation of w3c XSLT
version 1.0, which you can see at http://www.w3.0rg/TR/XSLT

How Do | Use XSL to Convert an XML Document to Another Form?

I am in the process of trying to convert an XML document from one format to
another by means of an XSL (or XSLT) stylesheet. Before incorporating it into my
Java code, | tried testing the transformation from the command line:

> java oraclexml.parser.v2.oraxsl jynemp.xml jwnemp.xsl newjwnemp.xm

The problem is that instead of returning the transformed XML file

(newjwnemp.xml), the above command just returns a file with the XSL code from
jwnemp.xsl init. | cannot figure out why this is occurring. | have attached the two
input files.

5-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL

<?xml version="1.0"?>
<employee_data>
<employee_row>
<employee_number>7950</employee_number>
<employee_name>CLINTON</employee_name>
<employee_tite>PRESIDENT</employee_title>
<manager>1111</manager>
<date_of hire>20-JAN-93</date_of hire>
<salary>125000</salary>
<commission>1000</commission>
<department_number>10</department_number>
</employee_row>
<lemployee_data>

<?xml version=1.07>
<ROWSET xmins:xsl="HT TP/imww.w3.0rg/1999/XSL/ Transform'>
<xslfor-each select="employee_data/employee_row">
<ROW>
<EMPNO><xsl:value-of select="employee_number'/></EMPNO>
<ENAME><xslvalue-of select="employee_name'/></ENAME>
<JOB><xslvalue-of select="employee_title"/></JOB>
<MGR><xsl:value-of select="manager /></MGR>
<HIREDATE><xsl:value-of select="date_of_hire"/></HIREDATE>
<SAL><xslvalue-of select="salary /></SAL>
<COMM><xsl:value-of select="commission"/></COMM>
<DEPTNO><xslvalue-of select="department_number'/></DEPTNO>
</ROW>
</xslfor-each>
</ROWSET>

Answer: This is occurring most likely because you have the wrong XSL namespace
URI for your xmins:xsl="..." namespace declaration.
If you use the following URI:

xmins:xsi="http/Amwv.w3.0rg/1999/XSL/ Transform”
then everything will work.

If you use xmins:xsl="-- any other string here --" it will do what
you're seeing.

XSLT Processor for Java 5-19

Frequently Asked Questions About the XSLT Processor and XSL

Where Can | Find More Information on XSL?

I cannot find anything about using XSL. Can you help? | would like to get an XML
and XSL file to show my company what they can expect from this technology. XML

alone is not very impressive for users.
Answer: A pretty good starting place for XSL is the following page:
http://metalab.unc.edu/xml/books/bible/updates/14.html

It provides a simple discussion of the gist of XSL. XSL isn't really anything more
than an XML file, so | don't think that it will be anymore impressive to show to a
customer. There's also the main Web site for XSL which is:

http/Amww.w3.org/style/XSL/

Can the XSL Processor Produce Multiple Outputs?

I recall seeing discussions about the XSL processor producing more than one result
from one XML and XSL. How can this can be achieved?

Answer: The XML Parser version 2 release 2.0.2.8 and above supports
<ora:output> to handle this.

5-20 Oracle9i XML Developer’s Kits Guide - XDK

6

XML Schema Processor for Java

This chapter contains the following sections:

« Introducing XML Schema

« Oracle XML Schema Processor for Java Features
« XML Schema Processor for Java Usage

« How to Run the XML Schema for Java Sample Program

XML Schema Processor for Java 6-1

Introducing XML Schema

Introducing XML Schema

XML Schema was created by the W3C to describe the content and structure of XML
documents in XML. It includes the full capabilities of DTDs (Document Type
Descriptions) so that existing DTDs can be converted to XML Schema. XML
Schemas have additional capabilities compared to DTDs.

How DTDs and XML Schema Differ

Document Type Definition (DTD) is a mechanism provided by XML 1.0 for
declaring constraints on XML markup. DTDs allow the specification of the
following:

« Which elements can appear in your XML documents
« What elements can be in the elements
« The order the elements can appear

XML Schema language serves a similar purpose to DTDs, but it is more flexible in
specifying XML document constraints and potentially more useful for certain
applications. See the following section "DTD Limitations".

Consider the XML document:

<?XML version="1.0">
<publisher pubid="ab1234">
<publish-year>2000</publish-year>

<tite>The Catin the Hat<fitle>
<author>Dr. Seuss</author>
<artist>Ms. Seuss</artist>
<ishn>123456781111</isbn>

</publisher>

Consider a typical DTD for the foregoing XML document:

<IELEMENT publisher (yeariitle, author+, artist?, isbn)>
<IELEMENT publish-year (#PCDATA)>

<IELEMENT tifle (#°CDATA)>

<IELEMENT author (#PCDATA)>

<IELEMENT isbn (#PCDATA)>

6-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Features

DTD Limitations

DTDs, also known as XML Markup Declarations, are considered to be deficient in
handling certain applications including the following:

« Document authoring and publishing
« Exchange of metadata

« E-commerce

« Inter-database operations

DTD limitations include:

« DTD is not integrated with Namespace technology so users cannot import and
reuse code

« DTD does not support data types other than character data, a limitation for
describing metadata standards and database schemas

« Applications need to specify document structure constraints more flexibly than
the DTD allows for

XML Schema Features

Table 6-1, "XML Schema Features" lists XML Schema features. Note that XML
Schema features include DTD features.

Table 6-1 XML Schema Features

XML Schema Feature DTD

Built-In Data Types

XML schema specifies a set of builtin datatypes. Some of DTDs do not support data
them are defined and called primitive datatypes, and they types other than character
form the basis of the type system: strings.

string, boolean, float, decimal, double, duration, dateTime,
time, date, gYearMonth, gYear, gMonthDat, gMonth, gDay,
Base64Binary, HexBinary, anyURI, NOTATION, QName.

Others are derived datatypes that are defined in terms of
primitive types.

XML Schema Processor for Java 6-3

XML Schema Features

Table 6-1 XML Schema Features (Cont.)

XML Schema Feature DTD

User-Defined Data Types

Users can derive their own datatypes from the builtin data The publish-year element in
types. There are three ways of datatype derivation: the DTD example cannot be
restriction, list and union. Restriction defines a more constrained further.
restricted data type by applying constraining facets to the

base type, list simply allows a list of values of its item type,

and union defines a new type whose value can be of any of

its member types.

For example, to specify that the value of publish-year type to
be within a specific range:

<SimpleType name = "publish-year">
<restriction base="gYear">
<minlnclusive value="1970"/>
<maxInclusive value="2000"/>
</restriction>
</SimpleType>
The constraining facets are:

length, minLength, maxLength, pattern, enumeration,
whiteSpace, maxInclusive, maxExclusive, mininclusive,
minExclusive, totalDigits, fractionDigits.

Some facets only apply to certain base types.

Note that several facets have been changed since the first release of
Oracle XML Schema Processor for Java.

6-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Features

Table 6-1 XML Schema Features (Cont.)
XML Schema Feature DTD

Occurrence Indicators (Content Model or Structure) Control by DTDs over the
number of child elements in
an element are assigned
with the following symbols:

In XML Schema, the structure (called complexType) of the
instance document or an element is defined in terms of model
group and attribute group. A model group may further

contain model groups or element particles, while attribute « ?=zeroorone. Inthe
group contains attributes. Wildcards can be used in both foregoing DTD

model group and attribute group to indicate any element or example, artist? implied
attribute. There are three varies of model group: sequence, artist is optional - there
all, and choice, representing the sequence, conjunction and may or may not be an
disjunction relationships among particles respectively. The artist.

range of the number of occurrence of each particle can also be

. * = zero or more
specified.

+ = one or more (in the
foregoing DTD
example, author+
implies more than one
author is possible)

Like the data type, complexType can be derived from other
types. The derivation method can be either restriction or
extension. The derived type inherits the content of the base
type plus corresponding modifications. In addition to
inheritance, a type definition can make references to other
components. This feature allows a component being defined « (none) = exactly one
once and used in many other structures.

The type declaration and definition mechanism in XML
Schema is much more flexible and powerful than the DTD.

Identity Constraints

XML Schema extends the concept of XML ID/IDREF
mechanism with the declarations of unique, key and keyref.
They are part of the type definition and allow not only
attributes, but also element contents as keys. Each constraint
has a scope within which it holds and the comparison is in
terms of their value rather than lexical strings.

Import/Export Mechanisms (Schema Import, Inclusion

and Modification) You cannot use constructs

All components of a schema need not be defined in asingle ~ defined in external schemas.
schema file. XML Schema provides a mechanism of

assembling multiple schemas. Import is used to integrate

schemas of different namespace while inclusion is used to

add components of the same hamespace. Components can

also be modified using redefinition when included.

XML Schema can be used to define a class of XML documents. “Instance document”
describes an XML document that conforms to a particular schema.

XML Schema Processor for Java 6-5

Oracle XML Schema Processor for Java Features

Although these instances and schemas need not exist specifically as “documents”,
they are commonly referred to as files. They may exist as any of the following:

« Streams of bytes
« Fields in a database record

« Collections of XML Infoset “Information Items”

See Also:
« http://www.w3.0rg/TR/xmlschema-0/

« Appendix A, "XDK for Java: Specifications and Quick
References"

=« Oracle9i XML API Reference - XDK and Oracle XML DB

Oracle XML Schema Processor for Java Features
Oracle XML Schema Processor for Java has the following features:

« Supports streaming (SAX) precessing, constant memory usage, and linear
processing time.

« Built on the Oracle XML Parser for Java v2

« Fully supports the W3C XML Schema specifications of the Candidate
Recommendation (October 24, 2000) and the Recommendation (May 2, 2001).

« XML Schema Part 0: Primer
« XML Schema Part 1: Structures
« XML Schema Part 2: Datatypes

Supported Character Sets

XML Schema Processor for Java supports documents in the following encodings:

« BIG

« EBCDIC-CP-*
« EUC-IP

« EUC-KR

« GB2312

6-6 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML Schema Processor for Java Features

« 1SO-2022-)P

« 1SO-2022-KR

« 1SO-8859-1to -9

« 1SO-10646-UCS-2
« 1SO-10646-UCS-4

. KOI8R
. Shift JIS
. US-ASCII
. UTF8

. UTF-16

What's Needed to Run XML Schema Processor for Java
To run XML Schema Processor for Java, you need the following:

« Operating Systems: Any OS with Java 1.1.x support

« Java: JDK 1.1.x. or above.

Online Documentation

Documentation for Oracle XML Schema Processor for Java is located in the doc/
directory in your install area.

Release Specific Notes

The readme.html file in the root directory of the archive, contains release specific
information including bug fixes, and API additions.

Oracle XML Schema Processor is an early adopter release and is written in Java. It
includes the production release of the XML Parser for Java v2.

XML Schema Processor for Java Directory Structure

Table 6-2 lists the directory structure after installing XML Schema Processor for
Java.

XML Schema Processor for Java 6-7

XML Schema Processor for Java Usage

Table 6-2 Directory Structure for an Installation of XML Schema Processor

Directory and File Description

license.html copy of license agreement
readme.html release and installation notes
doc directory for documents

lib directory for class files
sample directory for sample code files

XML Schema Processor for Java Usage
As shown in Figure 6-1, Oracle’s XML Schema processor performs two major tasks:
« A builder assembles schema from schema XML documents
= Avalidator use the schema to validate instance document.

When building the schema, the builder first calls the DOM Parser to parse the
schema XML documents into corresponding DOM trees. It then compiles them into
an internal schema object. The validator works as a filter between the SAX parser
and your applications for the instance document. The validator takes SAX events of
the instance document as input and validates them against the schema. If the
validator detects any invalid XML component it sends an error message. The output
of the validator is:

« Input SAX events
« Default values it supplies

» Post-Schema Validation (PSV) information

Modes for Schema Validation

The XML Parser supports various modes for schema or DTD validation. The
setValidationMode method allows different validation parameters to be set. For
schema validations, there are these modes available:

« SCHEMA_VALIDATION. With this mode, the schema validator locates and
builds schemas and validates the whole or a part of the instance document
based on the schemalLocation and noNamespaceSchemalocation
attributes. See code example XSDSample.java

6-8 Oracle9/ XML Developer’s Kits Guide - XDK

XML Schema Processor for Java Usage

« SCHEMA LAX VALIDATION. The validator tries to validate part or all of the
instance document as long as it can find the schema definition. It will not raise
an error if it cannot find the definition. See code example XSDLax.java

« SCHEMA STRICT_VALIDATION. The validator tries to validate the whole
instance document, raising errors if it cannot find the schema definition or if the
instance does not conform to the definition.

In addition to the validator to build the schema itself, you can use XSDBuilde r to
build schemas and set it to the validator using setXMLSchema method . See code
example XSDSetSchema.java . By using the setXMLSchema method, the
validation mode is automatically set to SCHEMA_STRICT_VALIDATION, and both
schemalocation and noNamespaceSchemalocation attributes are ignored.
You can also change the validation mode to SCHEMA _LAX_ VALIDATION.

Using the XML Schema API

The API of the XML Schema Processor for Java is simple. You can either use either
of the following:

« setSchemaValidationMode () in the DOMParser as shown in "XML Schema
for Java Example 7: XSDSample.java"

« Explicitly build the schema using XSDBuilder and set the schema for
XMLParser as shown in"XML Schema for Java Example 8:
XSDSetSchema.java".

There is no clean-up call similar to xmiclean . If you need to release all memory
and reset the state before validating a new XML document, terminate the context
and start over.

XML Schema Processor for Java 6-9

How to Run the XML Schema for Java Sample Program

Figure 6-1 XML Schema Processor for Java Usage

DOM Schema DOM
> [o rcor > DOM tee | parser

Schema ‘

XML Document

Schema

SAX + PSV
+ Default

SAX SAXI Schema value p| DOM Builder
I Parser Validator or Application

Instance
Document

m
2 111+

Messages

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB, under
XDK for Java, XML Schema Processor

How to Run the XML Schema for Java Sample Program

XML Schema Processor for Java directory sample contains sample XML
applications that illustrate how to use Oracle XML parser with XML Schema
Processor for Java. Here are excerpts from the README file:

The sample Java files provided in this directory are:
XSDSample, a sample driver that processes XML instance documents.

XSDSetSchema, a sample driver to process XML instance documents by overriding
the schemalLocation

XSDLax, based on XSDSetSchema, but uses lax validation mode.
To run the sample program:

1. Execute the program make to generate .class files.

6-10 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

2. Add xmlparserv2.jar , Xschema.jar , and the current directory to the
CLASSPATH.

3. Run the sample program with the *.xml files:

java XSDSample reportxml
java XSDSetSchema report.xsd reportxml
java XSDLax embeded xsgl.xsd embeded xsglxml

XML Schema Processor uses the XML Schema specification from report.xsd
to validate the contents of report.xml

4. Run the sample program with the catalogue.xml file, as follows:
java XSDSample cataloguexml
java XSDSetSchema cat.xsd catalogue.xml
XML Schema Processor uses the XML Schema specification from cat.xsd to
validate the contents of catalogue.xml.

5. The following are examples with XML Schema errors:

java XSDSample catalogue_exml
java XSDSample report_exml

Makefile for XML Schema Processor for Java
This is the file Makefile

Makefile for sample java files

#

#If notinstalled in ORACLE_HOME, set ORACLE_HOME to installation root
#
#

SUFFIXES : java .class
CLASSES = XSDSample.class XSDSetSchema.class XSDLax.class

Change it to the appropriate separator based on the OS.
PATHSEP =:

Assumes that the CLASSPATH contains JDK classes.

MAKE_CLASSPATH =

SPATHSEP)$(ORACLE._HOME)libixmiparsen2 jary(PATHSEP)S(ORACLE._HOME)ibixschem
ajar$(PATHSEP)$(CLASSPATH)

XML Schema Processor for Java 6-11

How to Run the XML Schema for Java Sample Program

java.class:
@javac -classpath "$(MAKE_CLASSPATH)" $<

#make all class files
al: $(CLASSES)

demo: $(CLASSES)

@java -classpath "$(MAKE_CLASSPATH)" XSDSample reportxml > report.out

@java -classpath "$(MAKE_CLASSPATH)" XSDSetSchema report.xsd reportxml >
reportout

@java -classpath "$(MAKE_CLASSPATH)" XSDSample catalogue xml > catalogue.out
@java -classpath "S(MAKE_CLASSPATH)" XSDSetSchema cat.xsd catalogue.xml >
catalogue.out

@ijava classpath "S(MAKE_CLASSPATH)" XSDSample catalogue_e.xml > catalogue_e.out
@java -classpath "S(MAKE_CLASSPATH)" XSDSample report_exml >report_e.out

@java -classpath "S(MAKE_CLASSPATH)" XSDLax embeded_xsglxsd embeded xsglxmi>
embeded_xsgl.out

Clean:
@m f*class
@m -f*out

XML Schema for Java Example 1: cat.xsd

This is the sample XML Schema Definition file that supplies input to the
XSDSetSchema.java program. XML Schema Processor uses the XML Schema
specification from cat.xsd to validate the contents of catalogue.xml

<?xml version="1.0"?>

<schema xmins="http:/Amwv.w3.0rg/2000/10/XMLSchema
targetNamespace="http:/Awv.publishing.orginamespaces/Catalogue”
elementFormDefault="qualified"
xmins:xsi="http:/Amwv.w3.0org/1999/XMLSchema-instance”
xmins:cat="http:/Amwwv.publishing.org/namespaces/Catalogue>

<complexType name="PublicationType">
<sequence>
<element name="Title" type="string" minOccurs="1"
maxOccurs="unbounded'/>
<element name="Author" type="string" minOccurs="1"
maxOccurs="unbounded'/>
<element name="Date" type="year" minOccurs="1" maxOccurs="1"/>
</sequence>

6-12 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

</complexType>
<element name="Publication" type="cat:PublicationType" abstract="true'/>
<element name="Book" substitutionGroup="cat:Publication">
<complexType>
<complexContent>
<extension base="cat:PublicationType">
<sequence>
<element name="ISBN" type="string" minOccurs="1"
maxOccurs="1"/>
<element name="Publisher" type="string" minOccurs="1"
maxOccurs="1"/>
</sequence>
</extension>
</complexContent>
</complexType>
</element>
<element name="Magazine" substitutionGroup="cat:Publication">
<complexType>
<complexContent>
<restriction base="catPublicationType">
<segquence>
<element name="Title" type="string" minOccurs="1"
maxOccurs="unbounded'/>
<element name="Author" type="string" minOccurs="0"
maxOccurs="0"/>
<element name="Date" type="year" minOccurs="1" maxOccurs="1"/>
</sequence>
</restriction>
</complexContent>
</complexType>
</element>
<element name="Catalogue">
<complexType>
<seguence>
<element ref="cat:Publication" minOccurs="0"
maxOccurs="unbounded'/>
</sequence>
</complexType>
</element>
</schema>

XML Schema Processor for Java 6-13

How to Run the XML Schema for Java Sample Program

XML Schema for Java Example 2: catalogue.xml

This is the sample XML file that is validated by XML Schema processor against the
XML Schema Definition file, cat.xsd, using the program, XSDSetSchema.java

<?xml version="1.0"?>
<Catalogue xmins="http:/Amww.publishing.org/namespaces/Catalogue”
xmins:xsi="http:/Amwv.w3.0rg/2000/10/XMLSchema-instance”
xsi:schemal ocation=
"http:/Avww.publishing.org/namespaces/Catalogue
catxsd">
<Magazine>
<Title>Natural Health</Title>
<Date>1999</Date>
<Magazine>
<Book>
<Tite>lllusions The Adventures of a Reluctant Messiah</Tite>
<Author>Richard Bach</Author>
<Date>1977</Date>
<ISBN>0-440-34319-4</ISBN>
<Publisher>Dell Publishing Co.</Publisher>
</Book>
<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>
</Book>
</Catalogue>

XML Schema for Java Example 3: catalogue_e.xml

6-14

When XML Schema Processor processes this sample XML file using
XSDSample.java , it generates XML Schema errors.

<?xml version="1.0"?>
<Catalogue xmins="http:/Amwv.publishing.org/namespaces/Catalogue”
xmins:xsi="http:/Amwv.w3.0rg/2000/10/XMLSchema-instance”
xsi:schemal ocation=
"http:/Amww.publishing.org/namespaces/Catalogue
catxsd"™>
<Magazine>
<Title>Natural Health</Title>
<Date>1999</Date>
<Magazine>

Oracle9/ XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

<Book>
<Title>lllusions The Adventures of a Reluctant Messiah</Title>
<Author>Richard Bach</Author>
<Date>July 7, 1977</Date>
<ISBN>0-440-34319-4</ISBN>
<Publisher>Dell Publishing Co.</Publisher>

</Book>

<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>

</Book>

</Catalogue>

XML Schema for Java Example 4: report.xml

This is the sample XML file that is validated by XML Schema processor against the
XML Schema Definition file, report.xsd , using the program,
XSDSetSchema.java

<purchaseReport
xmins="http:/Ammw.example.com/Report’
xmins:xsi = "http/Amwvw3.0rg/2001/XMLSchema-instance”
xsi:schemal ocation="http:/Amww.example.com/Report reportxsd”
period="P3M" periodEnding="1999-12-31">

<regions>
<Zip code="95819">
<part number="872-AA" quantity="1"/>
<part number="926-AA" quantity="1"/>
<part number="833-AA" quantity="1"/>
<part number="455-BX" quantity="1"/>
<Jzip>
<Zip code="63143">
<part number="455-BX" quantity="4"/>
</zip>
</regions>

<parts>

<part number="872-AA">Lawnmower</part>
<part number="926-AA">Baby Monitor</part>
<part number="833-AA">Lapis Necklace</part>

XML Schema Processor for Java 6-15

How to Run the XML Schema for Java Sample Program

<part number="455-BX">Sturdy Shelves</part>
<fparts>

</purchaseReport>

XML Schema for Java Example 5: report.xsd

This is the sample XML Schema Definition file that inputs XSDSetSchema.java
program. XML Schema Processor uses the XML Schema specification from
report.xsd to validate the contents of report.xml.

<schema targetNamespace="http:/Aww.example.com/Report’
xmins="http:/Amww.w3.0rg/200/XMLSchema’”
xmins:r="http:/Amww.example.com/Report"
elementFormDefault="qualified">

<annotation>
<documentation xmllang="en">
Report schema for Example.com
Copyright 2000 Example.com. All rights reserved.
</documentation>
</annotation>

<element name="purchaseReport">
<complexType>
<sequence>
<element name="regions" type="r.RegionsType">
<keyref name="dummy?2" refer="rpNumKey">
<selector xpath="r:zip/rpart’/>
<field xpath="@number"/>
<keyref>
<element>

<element name="parts" type="r:.Parts Type">
</sequence>

<attribute name="period" type="duration'/>
<attribute name="periodEnding'" type="date'/>
</complexType>
<unique name="dummy1'>

<selector xpath="r:regions/r.zip"/>

<field xpath="@code"/>
<unique>

<key name="pNumKey">

6-16 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

<selector xpath="r.parts/-part’/>
<field xpath="@number"/>
<key>
</element>

<complexType name="RegionsType">

<sequence>
<element name="zip" maxOccurs="unbounded">

<complexType>

<sequence>
<element name="part" maxOccurs="unbounded">

<complexType>
<complexContent>
<restriction base="anyType">
<attribute name="number" type="r.SKU'"/>
<attribute name="quantity" type="positivelnteger'/>
<lrestriction>
</complexContent>
</complexType>
<element>
</sequence>
<attribute name="code" type="positivelnteger'/>
</complexType>
</element>
</sequence>
</complexType>
<simpleType name="SKU">
<restriction base="string">
<pattemn value="t{SHA-Z{2}'/>
<lrestriction>
</simpleType>
<complexType name="PartsType">

<sequence>
<element name="part" maxOccurs="unbounded">

<complexType>
<simpleContent>
<extension base="string">
<attribute name="number" type="r.SKU'"/>
</extension>
</simpleContent>
</complexType>
</element>
</sequence>
</complexType>
</schema>

XML Schema Processor for Java 6-17

How to Run the XML Schema for Java Sample Program

XML Schema for Java Example 6: report_e.xml

When XML Schema Processor processes this sample XML file using
XSDSample.java, it generates XML Schema errors.

<purchaseReport
xmins="http:/Ammw.example.com/Report’
xmins:xsi = "http/Amwv.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http/Amwv.example.com/Report reportxsd”
period="P3M" periodEnding="1999-11-31">

<regions>

<Zip code="95819">
<part number="872-AA" quantity="1"/>
<part number="926-AA" quantity="1"/>
<part number="833-AA" quantity="1"/>
<part number="455-BX" quantity="1"/>
</zip>

<Zip code="63143">

<part number="455-BX" quantity="4"/>
<part number="235-JD" quantity="3"/>
</zip>

<lregions>

<parts>

<part number="872-AA">Lawnmower</part>
<part number="926-AA">Baby Monitor</part>
<part number="833-AA">Lapis Necklace</part>
<part number="455-BX">Sturdy Shelves</part>
</parts>

</purchaseReport>

XML Schema for Java Example 7: XSDSample.java

[import oracle xml.parser.schema.®;
import oracle xml.parserv2.*,

import java.net*;
import java.io®;
import orgw3c.dom.*;
import java.util.*;

public class XSDSample

6-18 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

{
public static void main(String[] args) throws Exception

if (args.length I=1)
{
System.out.printin(‘Usage: java XSDSample <flename>");
retum;
}
process (args{O]);
}

public static void process (String xmIURI) throws Exception
{

DOMParserdp =new DOMParser();
URL ud=createURL (xmIURI);

I/ Set Schema Validation to true
dp.setValidationMode(XMLParser.SCHEMA VALIDATION);
dp.setPreserveWhitespace (true);

dp.setErrorStream (System.out);

try
{
System.out.printin(*Parsing "+xmiURI);
dp.parse (ur);
System.out.printin(The input file <"+mIURI+"> parsed without
emors');
}
catch (XMLParseException pe)
{
System.out printin('Parser Exception: " + pe.getMessage());
}
catch (Exception €)

System.out.printin(‘NonParserException: * + e.getMessage());
}

}

I/l Helper method to create a URL from a file name
static URL createURL(String fleName)

{
URL ud=null;

XML Schema Processor for Java 6-19

How to Run the XML Schema for Java Sample Program

try
{
url = new URL(fleName);
catch (MalformedURLException ex)
{
File f=new File(fleName);
try
{

String path =f.getAbsolutePath();

/I This is a bunch of weird code that is required to

/I make a valid URL on the Windows platform, due
/o inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);

if (fs.length() = 1)

{

char sep =fs.charAt(0);
if(sep!="7)

path = path.replace(sep, 7);
if (path.charAt(0) '="")

path ="+ path;

}
path ="file://" + path;
url = new URL(path);

catch (MalformedURLEXxception €)

{
System.out printin(‘Cannot create ur for: " + fleName);

System.ext(0);
}
}

retum ur;

}

XML Schema for Java Example 8: XSDSetSchema.java

When this example is run with cat.xsd and catalogue.xml , XML Schema
Processor uses the XML Schema specification from cat.xsd to validate the contents
of catalogue.xml

6-20 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

When this example is run with report.xsd and report.xml , XML Schema
Processor uses the XML Schema specification from cat.xsd to validate the contents

of report.xml

import oracle xml.parser.schema.*;
import oracle xml.parser.v2.*,

import java.net;
import javaio*;
import orgw3c.dom.*;
import java.util.*;

public class XSDSetSchema
{

public static void main(String[] args) throws Exception

{
if (args.length I=2)
{

System.out printin(*Usage: java XSDSample <schema_file> <xml_file>");

retum;

}

XSDBuilder builder = new XSDBuilder();
URL ur = createURL(args[0));

/I Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args{1], schemadoc);

}

public static void process(String xmIURI, XMLSchema schemadoc)
throws Exception

{

DOMParserdp =new DOMParser();
URL ud=createURL (xmIURI);

I/ Set Schema Object for Validation
dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA VALIDATION);
dp.setPreserveWhitespace (true);

dp.setEmorStream (System.out);

XML Schema Processor for Java 6-21

How to Run the XML Schema for Java Sample Program

try
{
System.out printin('Parsing "+xmIURI);
dp.parse (ur);
System.outprintin(The input file <"+xmIURK"> parsed without
emors');
}
catch (XMLParseException pe)
{
System.out.printin("Parser Exception: " + pe.getMessage();
}
catch (Exception €)
{
System.out.printin ('NonParserException: " + e.getMessage();
}

}

I Helper method to create a URL from a file name
static URL createURL(String fleName)

{
URL ud =nul;
try
{
url = new URL(fleName);
catch (MalformedURLException ex)
{
File f=new File(fleName);
try
{

String path = f.getAbsolutePath();
/I This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
[0 inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);
if (fs.length() = 1)
{
char sep =fs.charAt(Q);
if(sep'=")
path = path.replace(sep, 7);
if (path.charAt(0) I="")
path ="+ path;

}
path ="fie:" + path;

6-22 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

url = new URL(path);

}
catch (MalformedURLEXxception €)

{
System.out printin(‘Cannot create uri for: " + fleName);

System.exit(0);
}
}

retumur;

}

XML Schema for Java Example 9: XSDLax.java

Here is a listing of XSDLax.java:

import oracle xml.parser.schema.®;
import oracle xml.parser.v2.*;

import java.net;
import javaio*;
import orgw3c.dom*;
import java.util.*;

public class XSDLax
{
public static void main(String[] args) throws Exception
{
if (args.length 1= 2)
{

System.out printin('Usage: java XSDSample <schema_file> <xml_file>");
retum;

}

XSDBuilder builder = new XSDBuilder();
URL ur = createURL(args[0));

I/ Build XML Schema Object
XMLSchema schemadoc = (XMLSchema)builder.build(url);
process(args{1], schemadoc);

}

public static void process(String xmIURI, XMLSchema schemadoc)

XML Schema Processor for Java 6-23

How to Run the XML Schema for Java Sample Program

throws Exception

{

DOMParserdp =new DOMParser();
URL urd=createURL (xmIURI);

Il Set Schema Object for Validation
dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_LAX_VALIDATION);
dp.setPreserveWhitespace (true);

dp.setErrorStream (System.out);

try
{
System.out.printin(*Parsing "+xmiURI);
dp.parse (ur);
System.out.printin(The input file <"+xmIURK"> parsed without
erors');
}
catch (XMLParseException pe)
{
System.out.printin("Parser Exception: " + pe.getMessage();
}
catch (Exception €)

System.out.printin ('NonParserException: " + e.getMessage());
}

}

/I Helper method to create a URL from a file name
static URL createURL(String fileName)

{
URL ud=null;
try
{
url = new URL(fleName);
}
catch (MalformedURLException ex)
{
File f=new File(fleName);
try
{

String path = f.getAbsolutePath();

6-24 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

/I This is a bunch of weird code that is required to

/I make a valid URL on the Windows platform, due
Ilo inconsistencies in what getAbsolutePath refums.
String fs = System.getProperty(file.separator”);

if (fs.length() = 1)

{

char sep =fs.charAt(0);
if(sep!=")
path = path.replace(sep, 7);
if (path.charAt(0) '="7)
path =" + path;
}
path ="fle/" + path;
url = new URL (path);
}
catch (MalformedURLException €)
{
System.out printin(*Cannot create url for: " + fleName);
System.exit(0);
}
}

retum ur;

}

XML Schema for Java Example 10: embeded_xsql.xsd
This is the input file for XSDLax.java:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsd:schema xmins:xxsd="http:/Amwwv.w3.0rg/2001/ XMLSchema”
xmins ="http:/xmins.us.oracle.com/XDK/Example/XSQL/schema”
targetNamespace =

"http/ixmins.us.oracle.com/XDK/Example/XSQL/schema
elementFormDefault="qualified">

<xsd:element name="include-xml*>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="href" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

XML Schema Processor for Java 6-25

How to Run the XML Schema for Java Sample Program

</xsd:element>

<xsd:simpleType name="XSQLBool>
<xsd:restriction base="xsd:string'">
<xsd:enumeration value="yes'/>
<xsd:enumeration value="no"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:smpleType name="XSQLTagCase">
<xsdrrestriction base="xsd:string">
<xsd:enumeration value="lower"/>
<xsd:enumeration value="upper'/>
</xsd:restriction>
</xsd:smpleType>

<xsd:element name="query">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="hind-params" type="xsd:string"/>
<xsd:attribute name="date-format" type="xsd:string"/>
<xsd:attribute name="error-statement" type="XSQLBool />
<xsd:attribute name="fetch-size" type="xsd:positivelnteger'/>
<xsd:attribute name="id-attribute" type="xsd:string"/>
<xsd:attribute name="id-attribute-column" type="xsd:string"/>
<xsd:attribute name="include-schema" type="XSQLBool"/>
<xsd:attribute name="max-rows" type="xsd:positivelnteger'/>
<xsd:attribute name="null-indicator" type="XSQLBool'/>
<xsd:attribute name="rowset-element" type="xsd:string'/>
<xsd:attribute name="row-element" type="xsd:string"/>
<xsd:attribute name="skip-rows" type="xsd:positivelnteger />
<xsd:attribute name="tag-case" type="XSQLTagCase"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>

</xsd:schema>

XML Schema for Java Example 11: embeded_xsql.xml
Here is the output file from XSDLax.java
<?xml version="1.0" 7>

6-26 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program

<page connection="xdkdemo"
xmins:xsgl="http:/xmins.us.oracle.com/XDK/Example/XSQL/
schema'>
<webpage tile=" Search for XDK FAQ">
<search>
<xsglinclude-xml href="xmlfite.xml" />
</search>
<content>
<question>
<xsgl:query fetch-size="50" nulHndicator="no">
select question from xdkfaq
where contains(@nswer, {@search})>0
</xsgl:query>
</question>
<time>
<xsgl:query tag-case="lower" max-rows="20">
selectto_char(sysdate, DD-MM-YYY’) from dual
<Ixsgl:query>
<fime>
</content>
<Mebpage>
</page>

XML Schema Processor for Java 6-27

How to Run the XML Schema for Java Sample Program

6-28 Oracle9i XML Developer’s Kits Guide - XDK

v

XML Class Generator for Java

This chapter contains the following sections:

Accessing XML Class Generator for Java

XML Class Generator for Java: Overview

oracg Command Line Utility

Class Generator for Java: XML Schema

Using XML Class Generator for Java with XML Schema

Using XML Class Generator for Java with DTDs

Examples Using XML Java Class Generator with DTDs and XML Schema

Frequently Asked Questions About the Class Generator for Java

XML Class Generator for Java 7-1

Accessing XML Class Generator for Java

Accessing XML Class Generator for Java

The Oracle XML Class Generator for Java is provided with Oracle9i’s XDK for Java.
It is located at SORACLE_HOME/xdk/java/classgen. It is also available for
download from the OTN site: http://otn.oracle.com/tech/xml.

XML Class Generator for Java: Overview

XML Class Generator for Java creates Java source files from an XML DTD or XML
Schema Definition. This is useful in the following situations:

« When an application wants to send an XML message to another application
based on agreed-upon DTDs or XML Schemas.

« Asthe back end of a web form to construct an XML document.

The generated classes can be used to programmatically construct XML documents.
XML Class Generator for Java also optionally generates javadoc comments on the
generated source files. XML Class Generator for Java requires the XML Parser for
Java and the XML Schema Processor for Java. It works in conjunction with XML
Parser for Java, which parses the DTD (or XML Schema) and sends the parsed XML
document to the Class Generator.

XML Class Generator for Java consists of the following two class generators:
« DTD Class Generator

« XML Schema Class Generator

These can both be invoked from command line utility, oracg .

Figure 7-1 provides an overview of how XML Class Generator for Java is used.

7-2 Oracle9i XML Developer’s Kits Guide - XDK

oracg Command Line Utility

Figure 7-1 XML Class Generator for Java: Overview

—>

XML Parser for Java

DTD or
XML Schema

Parsed
DTD or
XML
Schema

s T

XML Class Generator
for Java

Jo —» L f—
Java Application —
— 0 pp >
Jc
Valid XML
document
based on
Java classes based
DTD or XML
on DTD or XML Schema Schema

(one class per element)

Note:

The clause, “one class per element” does not apply to the
XML Schema Class Generator for Java.

oracg Command Line Utility

The oracg command line utility is used to invoke the DTD or Schema Class
Generator for Java, depending on the input arguments. Table 7-1 lists the oracg

arguments.

Table 7-1 Class Generator for Java: oracg Command Line Arguments

oracg Arguments

Description

- help

Print the help message text

- version

Print the release version.

- dtd [-root]

The input file is a DTD file or DTD based XML file.

- schema

The input file is a Schema file or Schema based XML file.

- outputDir

The directory name where Java source is generated.

- package

The package name(s) of the generated java classes.

- comment

Generate comments for the generated java source code.

XML Class Generator for Java 7-3

Class Generator for Java: XML Schema

Class Generator for Java: XML Schema

XML Class Generator for Java’s XML Schema Class Generator has the following
features:

« It generates a Java class for each top level element, that is, global elements
simpleType element and complexType element.

« Classes corresponding to the top level elements, that is, global elements, extend
the CGXSDElement.

« The type hierarchy among the elements is maintained in the generated Java
classes. If the complexType or simpleType element extends any other
complexType or simpleType element, then the class corresponding to them
extends the base type simpleType or complexType element. Otherwise, they
extend the CGSXDElement class.

Namespace Features
XML Schema Class Generator also supports the following namespace features:

« Package Name Creation. For each hamespace, a package is created and
corresponds to the elements in the namespace — the Java classes are generated
in that package.

« If there is no namespace defined, then the classes are generated in the
default package.

« IftargetNamespace is specified in the schema, then a package name is
required to generate the classes.

« If there is a namespace defined then the user needs to specify the package name
through the command line utility. The number of packages specified should
match the command line arguments corresponding to the package names.

« Symbol Spaces. A single distinct symbol space is used within a given target
namespace for each kind of definition and declaration component identified in
XML Schema. The exceptions for this is when symbol space is shared between
simple type and complex type.

In a given symbol space, names are unique, but the same name may appear in
more than one symbol space without conflict. For example, the same name can
appear in both a type definition and an element declaration, without conflict or
necessary relation between the two. To resolve this conflict, the classes
corresponding to simpleType and complexType elements are generated in a
subdirectory called types in the directory corresponding to the package name.

7-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Class Generator for Java with XML Schema

To avoid conflict, any methods which take the 'type’ of an element
(corresponding to which there is a generated Java class) as parameter, take the
fully resolved name with the package name.

Using XML Class Generator for Java with XML Schema

Figure 7-2 shows the calling sequence used when generating classes with XML
Class Generator for Java with XML Schema.

XML Java Class Generator with XML Schema operates as follows:

1.

A new SchemaClassGenerator() class is initiated and inputs the
generate() method. The available properties for class,

SchemacClassGenerator() include:

« setGeneraterComments() , with default = TRUE

« setJavaPackage(string) , with default = no package

« setOutputDirectory(string) , with default = current directory

If an XML Schema is used, the Schema object returned using getDocType()
from the parseSchema() method, is also input. See also Figure 4-4, "XML
Parser for Java: DOMParser()".

The generate() method generates Java classes which can then be used to
build your XML document.

To generate classes using XML Class Generator for Java with XML Schema, follow
the guidelines described in the following sections:

Generating Top Level Element Classes on page 7-6
Generating Top Level ComplexType Element Classes on page 7-7

Generating SimpleType Element Classes on page 7-7

XML Class Generator for Java 7-5

Using XML Class Generator for Java with XML Schema

Figure 7-2 Generating Classes Using Class Generator for Java with XML Schema

New Schema
ClassGenerator()

XML Class Generator for Java

dAvaiIabIe properties include:

-| - setGenerateComments() [Schema object]
[default = TRUE]

- setJavaPackage(vector)
[default = no package]

- setOutputDirectory(String)
[default = current directory]

- setSerializationMode(boolean)

- setValidationMode(boolean)

generate()
Java Use these to
classes = build your
XML
document

Generating Top Level Element Classes

The following lists guidelines for using XML Schema Class Generator for Java when
generating top level element classes:

A class corresponding to the element name is generated in the package
associated with the namespace.

The element has a method called setType to set the type of the element in the
element class. The setType takes fully resolved package name to avoid
conflict.

If the element has an inline simpleType or complexType , a public static class
inside the element class is created which follows all the rules specified in the
simpleType /complexType . The name of the public static class, is the element
name suffixed by Type. For example, if the element name is PurchaseOrder
and PurchaseOrder has an inline complexType definition, then the public
static inner class will have the name PurchaseOrder_Type

7-6 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Class Generator for Java with XML Schema

The name clash in class names between elements and complexType using
“Type” as suffix.

The element name and namespace is stored inside the element class (which
could be used for serialization and validation)

A validate method is provided inside the elements to accept an XML Schema
object to validate.

A print method is provided inside the element to print the node.

Generating Top Level ComplexType Element Classes

The following lists guidelines for using XML Schema Class Generator for Java when
generating top level complexType element classes:

If the complexType element is a top level element, then a class is generated in
the package associated with the namespace. If the complexType element
extends a base type element, then the class corresponding to the complexType
element also extends the base Type element. Otherwise, it extends the
CGXSDElement class.

The class contains fields corresponding to the attributes. The fields are made
protected, so that they can be accessed from subtypes. The fields are added only
for the attributes that not present in the base type.

The class contains methods to set and get attributes.

For each local element, a public static class is created exactly similar to top level
elements, except that it will be completely inside the complexType class.

Generating SimpleType Element Classes

The following lists guidelines for using XML Schema Class Generator for Java when
generating top level simpleType element classes:

A class is generated for each top level simpleType element

The hierarchy of the simpleType element is maintained in the generated class.
If the simpleType element extends a base class then the class corresponding to
the simpleType element also extends the base class corresponding to the base
element. Otherwise the simpleType element extends the CGXSDElement
class.

If the simpleType element extends the schema data type, then the class
extends the class corresponding to the schema data type. For example, if the

XML Class Generator for Java 7-7

Using XML Class Generator for Java with DTDs

base type is a string, then the schema equivalent class is taken as
XSDStringType , and so on.

The class contains a field to store the simpleType value.
The constructor of the simpleType element class sets the schema facets.

The constructor sets the simpleType data value (XSDDataValue) in the
constructor after validating against the facets.

Using XML Class Generator for Java with DTDs

Figure 7-3 shows the calling sequence of XML Java Class Generator with DTDs:

1.

A new DTDClassGenerator() class is initiated and inputs the generate()
method. Available properties for class, DTDClassGenerator() are:

« setGeneraterComments() , with default = TRUE
« setJavaPackage(string) , with default = no package
« setOutputDirectory(string) , with default = current directory

If a DTD is used, the DTD object returned using getDocType() from the
parseDTD() method, is also input. See also Figure 4-4, "XML Parser for Java:
DOMParser()".

The generate() method generates Java classes which can then be used to
build your XML document.

7-8 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

Figure 7-3 Generating Classes Using XML Class Generator for Java and DTDs

XML Class Generator for Java

New DTD dAvaiIable properties include:)
ClassGenerator() | —| - setGenerateComments() [DTD object]
[default = TRUE]
- setJavaPackage(vector)
[default = no package]
- setOutputDirectory(String)
[default = current directory]
- setSerializationMode(boolean)
- setValidationMode(boolean)

generate()
Java Use these to
classes = build your
XML
document

See Also:

« Appendix A, "XDK for Java: Specifications and Quick
References"

« Oracle9i XML API Reference - XDK and Oracle XML DB

Examples Using XML Java Class Generator with DTDs and XML

Schema
Table 7-2 lists the example files and directories supplied in $ORACLE_HOME:

Table 7-2 XML Class Generator for Java Example Files

Example File Description
Makefile Makefile used to compile and run the demo in Unix.
Make.bat Makefile used to compile and run the demo in Windows

XML Class Generator for Java 7-9

Examples Using XML Java Class Generator with DTDs and XML Schema

Table 7-2 XML Class Generator for Java Example Files (Cont.)

Example File Description

SampleMain.java Sample application to generate Java source files based on a
DTD.

Widl.dtd Sample DTD.

Widl.xml Sample XML file based on Widl.dtd.

TestWidl.java Sample application to construct an XML document using the
Java source files generated by SampleMain.

car.xsd Sample XML Schema

CarDealer.java Sample application to construct an XML document using the
java source generated from car.xsd.

book.xsd Sample XML Schema

BookCatalogue.java Sample application to construct an XML document using the
Java sources generated from book.xsd

po.xsd Sample XML Schema

TestPo.java Sample application to construct an XML document using the

Java sources generated from po.xsd.

Running XML Class Generator for Java: DTD Examples
To run the XML Class Generator for Java DTD sample programs, use;

make target 'dtd

then follow these steps:

1. Compile and run SampleMain to generate the Java source files, using the
commands:

javac SampleMain java
java SampleMain -root WIDL Widl.dtd

or
java SampleMain Widl.xml

2. Set the CLASSPATH to contain 'classgen.jar', 'xmlparser.jar', and the current
directory.

7-10 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

3.

Compile the Java source files generated by SampleMain, that is., BINDING .java,
CONDITION.java, REGION.java, SERVICE.java, VARIABLE.java, and
WIDL java, using the command:

javac *java

Run the test application to print the XML Document using the commands:

javac TestWidljava
java Testwidl

The output is stored in Widl_out.txt

Running XML Class Generator for Java: XML Schema Examples
To run the XML Class Generator for Java Schema sample programs, use:

make target 'schema’

There are three Schema samples: car.xsd, book.xsd, po.xsd

The classes are generated using oracg utility. For example, the classes
corresponding to car.xsd can be generated from the command line;

oracg - -s car.xsd p packagel

The classes are generated in the directory, packagel.

When Makefile is used to run the schema class generator demo:

Classes corresponding to car.xsd are generated in directory packagel. Demo
program, CarDealer.java, tests the generated classes. The output of
CarDealer.java is stored in file, car_out.txt.

Classes corresponding to book.xsd are generated in directory package2. Demo
program BookCatalogue.java tests the generated classes. The output is stored in
the file, book_out.txt.

Classes corresponding to po.xsd are generated in directory package3. Demo
program TestPo.java tests the generated classes. The output is stored in the file
po_out.txt

The following Class Generator using DTD examples are included here:

XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java
XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd

XML Class Generator for Java 7-11

Examples Using XML Java Class Generator with DTDs and XML Schema

« XML Class Generator for Java, DTD Example 1c: Input — widl.xml
« XML Class Generator for Java, DTD Example 1d: TestWidl.java
« XML Class Generator for Java, DTD Example 1le: XML Output — widl.out

XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java

e

*This program generates the classes for a given DTD using

* XML DTD Class Generator. A DTD file or an XML document which is
*DTD compliantis given as input parameters to this application.

kl

import javaLio.File;

import java.net URL,;

import oracle xml.parserv2.DOMParser,

import oracle xml.parserv2.DTD;

import oracle xml.parser.v2 XMLDocument;
import oracle xml.classgen.DTDClassGenerator;

public class SampleMain
{

public SampleMain()
{
}

public static void main (String args[))

I/ Validate the input arguments
if (args.length<1)
{
System.out printin('Usage: java SampleMain "+
"[root <rootName>] <fileName>");
System.out printin(fleNamet Input file, XML document or " +
"extemal DTD file");
System.outprintin(*-root <rootName> Name of the root Element " +
"(required if the input file is an extemal DTD)');
retum;

}

Ity to open the XML Document or the Extemal DTD File

try
{

7-12 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

I Instantiate the parser

DOMParser parser = new DOMParser();
XMLDocumentdoc =null;

DTD dd =nul;

if (args.length = 3)
{

parser.parseDTD(fleToURL(args[2]), args[1]);
dtd = (DTD)parser.getDoctype();

else

{
parser.setValidationMode(true);

parser.parse(fleToURL(args[0)));
doc = parser.getDocument();

dtd = (DTD)doc.getDoctype();
}

String doctype_name = null;
if (args.length=23)
{

doctype_name =args[1];

else

{
Il get the Root Element name from the XMLDocument

doctype_name = doc.getDocumentElement().getTagName();
}

Il generate the Java files...
DTDClassGenerator generator = new DTDClassGenerator();

I set generate comments to true
generator.setGenerateComments(true);

I/ set output directory
generator.setOutputDirectory(");

I/ set validating mode to true
generator.setValidationMode(true);

Il generate java src
generator.generate(dtd, doctype_name);

XML Class Generator for Java 7-13

Examples Using XML Java Class Generator with DTDs and XML Schema

}
catch (Exception €)
{
System.out.printin ("XML Class Generator: Error " + e.toString());
e.printStackTrace();
}
}

static public URL fleTOURL(String sfile)
{
File file = new File(sfile);
String path = file.getAbsolutePath();
String fSep = System.getProperty(file.separator”);
if fSep = null && fSep.length() == 1)
path = path.replace(fSep.charAt0), /);
if (path.length() > 0 && path.charAt(0) =)
path ="+ path;
try
{
retum new URL(file", null, path);
}
catch (java.net MalformedURLException €)
{
Il According to the spec this could only happen if the file
I/ protocol were not recognized.
throw new Emor(“unexpected MalformedURLException”);
}
}
}

XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
The following example, widl.dtd , is the DTD file used by SampleMain.java.

<IELEMENT WIDL (SERVICE | BINDING)*>
<IATTLIST WIDL
NAME CDATA #IMPLIED
VERSION (1.0]|20]..)"20"
BASEURL CDATA #MPLIED
OBJMODEL (wmdom | ...) "wmdom"
>

<IELEMENT SERVICE EMPTY>

<IATTLIST SERVICE
NAME CDATA #REQUIRED

7-14 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

URL CDATA #REQUIRED
METHOD (Get | Post) "Get"
INPUT CDATA #MPLIED
OUTPUT CDATA #MPLIED

>

<IELEMENT BINDING (VARIABLE | CONDITION | REGION) >
<IATTLIST BINDING

NAME CDATA #REQUIRED

TYPE (Input | Output) "Output"
>

<IELEMENT VARIABLE EMPTY>

<IATTLIST VARIABLE
NAME CDATA #REQUIRED
TYPE (String | Stringl | String2) "String”
USAGE (Function | Header | Intemal) "Function"
VALUE CDATA #MPLIED
MASK CDATA #MPLIED
NULLOK (True | False) #HREQUIRED

>

<IELEMENT CONDITION EMPTY>
<IATTLIST CONDITION
TYPE (Success | Failure | Retry) "Success”
REF CDATA #REQUIRED
MATCH CDATA #REQUIRED
SERVICE CDATA #MPLIED
>

<IELEMENT REGION EMPTY>
<IATTLIST REGION
NAME CDATA #REQUIRED
START CDATA #REQUIRED
END CDATA #REQUIRED
>

XML Class Generator for Java, DTD Example 1c: Input — widl.xml
This XML file inputs SampleMain.java and is based on widl.dtd:

<?xmlversion="1.0"?>
<IDOCTYPE WIDL SYSTEM "Widl.dtd">
<WIDL>

<SERVICE NAME="sname" URL="surl'/>

XML Class Generator for Java 7-15

Examples Using XML Java Class Generator with DTDs and XML Schema

<BINDING NAME="bname"/>
<WIDL>

XML Class Generator for Java, DTD Example 1d: TestWidl.java

TestWidl.java constructs an XML document using the Java source files generated by
SampleMain.java.

Pex

*This is a sample application program which is buitt using the

* classes generated by the XML DTD Class Generator. The Extemal DTD
* File "Widl.dtd" or the XML document which "Widl.xml" which is compliant
*to Widl.dtd is used to generate the classes. The application

* SampleMain.java is used to generate the classes which takes the DTD

* or XML document as input parameters to generate classes.

*

import oracle xml.classgen.CGNode;

import oracle xml.classgen.CGDocument;

import oracle xml.classgen.DTDClassGenerator;
import oracle xml.classgen.InvalidContentException;
import oracle xml.parserv2.DTD;

public class Testwid|
{
public static void main (String args(])
{
ty

{
WIDL wi = new WIDL();

DTD dtd = wl.getDTDNode();

W1LSetNAME(WIDLL;
WLSetVERSION(WIDL.VERSION 1. 0);

SERVICE s1 = new SERVICE("Servicel", "Service_URL");
s1.setNPUT('File");
s1.setOUTPUT("File");

BINDING b1 = new BINDING('Binding1");
b1.setTYPE(BINDING.TYPE_INPUT);

BINDING b2 = new BINDING('Binding2");
b2.setTYPEBINDING.TYPE_OUTPUT),

7-16 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

VARIABLE v1 = new VARIABLE(Variable1", VARIABLE.NULLOK_FALSE);
V1.setTYPE(VARIABLE.TYPE_STRING);
V1.5etUSAGE(VARIABLE.USAGE_INTERNAL);

v1.setVALUE('value'";

VARIABLE v2 = new VARIABLE("Variable2", VARIABLENULLOK_TRUE);
V2.sefTYPE(VARIABLE. TYPE_STRINGL);
V2.5etUSAGE(VARIABLE.USAGE _HEADER);

VARIABLE v3 = new VARIABLE("Variable3", VARIABLE.NULLOK_FALSE);
V3.setTYPE(VARIABLE. TYPE_STRING2);
V3.setUSAGE(VARIABLE.USAGE_FUNCTION);

V3.setMASK("mask’);

CONDITION c1 = new CONDITION('CRef1", "CMatch1';
c1.SetSERVICE("Servicel");
c1.sefTYPE(CONDITION.TYPE_SUCCESS);

CONDITION c2 = new CONDITION('CRef2", "CMatch2";
c2.setTYPE(CONDITION.TYPE_RETRY);

CONDITION ¢3 = new CONDITION('CRef3", "CMaich3);
C3SetSERVICE('Senvice3");
c3efTYPE(CONDITION.TYPE_FAILURE);

REGION r1 = new REGION("Region1", "Start", "End');

b1.addNode(r1);
bl.addNode(v1);
bl.addNode(cl);
bl.addNode(\2);

b2.addNode(c2);
b2.addNode(v3);

wl.addNode(s1);
wl.addNode(bl);
wl.addNode(b2);
wl.validateContent();
wl.print(System.out);
}
catch (Exception €)

System.out printin(e.toString());
eprintStackTrace();

XML Class Generator for Java 7-17

Examples Using XML Java Class Generator with DTDs and XML Schema

XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
This XML file, widl.out, is constructed and printed by TestWidl.java.

<?xml version ="1.0' encoding = ‘ASCII"?>
<IDOCTYPE WIDL SYSTEM
“file/oracorefjavalxmlORACORE_MAIN_SOLARIS_990115 XMLCLASSGEN/sample/out\WIDL.
dtd™>
<WIDL NAME="WIDL1" VERSION="10">
<SERVICE NAME="Servicel" URL="Service_URL" INPUT="File" OUTPUT="File'/>
<BINDING NAME="Binding1" TYPE="Input>
<REGION NAME="Region1" START="Start' END="End'/>
<VARIABLE NAME="Variable1" NULLOK="False" TYPE="String" USAGE="Intemal"
VALUE="value">
<CONDITION REF="CRef1" MATCH="CMatch1" SERVICE="Servicel" TYPE="Success'/>
<VARIABLE NAME="Variable2" NULLOK="True" TYPE="Stringl" USAGE="Header"/>
</BINDING>
<BINDING NAME="Binding2" TYPE="Output>
<CONDITION REF="CRef2" MATCH="CMatch2" TYPE="Retry"/>
<VARIABLE NAME="Variable3" NULLOK="False" TYPE="String2" USAGE="Function”
MASK="masK/>
</BINDING>
<WIDL>

The following Class Generator using XML Schema examples are included here

« XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd

« XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
« XML Class Generator for Java, Schema Example 2a: Schema: book.xsd

« XML Class Generator for Java, Schema Example 2b: BookCatalogue.java

« XML Class Generator for Java, Schema Example 3a: Schema: po.xsd

« XML Class Generator for Java, Schema Example 3b: Application: TestPo.java

XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd

This sample, car.xsd, is used in an oracg command to generate classes. These
classes inputs the program, CarDealer.java, which then creates an XML document.
The command used is:

7-18 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

oracg - -s car.xsd p packagel
See the comments about how this is used, in:

« "XML Class Generator for Java, Schema Example 1b: Application,
CarDealer.java" on page 7-20

« "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0" encoding="1SO-8859-1"?>
<schema xmins = "http/Amwv.w3.0rg/1999/XMLSchema
targetNamespace = "http:/Amwv.CarDealers.com/' elementFormDefault="qualified">
<element name="Car">
<complexType>
<element name="Model">
<simpleType base="string">
<enumeration value ="Ford"/>
<enumeration value ="Saab'/>
<enumeration value = "Audi’/>
</smpleType>
</element>
<element name="Make">
<simpleType base="string">
<minLength value ="1"/>
<maxLength value ="30"/>
</smpleType>
</element>
<element name="Year">
<complexType content="mixed">
<attribute name="PreviouslyOwned" type="string" use="required"/>
<attribute name="YearsOwned" type="integer" use="optional"/>
</complexType>
</element>
<element name="OwnerName" type="string" minOccurs="0"
maxOccurs="unbounded'/>
<element name="Condition">
<complexType base="string" derivedBy="extension">
<attribute name="Automatic">
<simpleType base="string">
<enumeration value ="Yes'/>
<enumeration value ="No'/>
</simpleType>
</attribute>
</complexType>
</element>
<element name="Mileage">

XML Class Generator for Java 7-19

Examples Using XML Java Class Generator with DTDs and XML Schema

<simpleType base="integer">
<mininclusive value="0"/>
<maxinclusive value="20000"/>
</simpleType>
</element>
<attribute name="RequestDate" type="date"/>
</complexType>
</element>
</schema>

XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java

/\k*

*This is a sample application program that creates an XMl document. Itis

* puilt using the classes generated by XML Schema Class Generator. XML
* Schema "carxsd", is used to generate the classes using the oracg

* command line utility. The classes are generated in a package called

* packagel which is specified as command line option. The following

* oracg command line options are used to generate the classes:

*oracg -C -s carxsd -p packagel

*

import oracle xml.classgen.CGXSDElement;

import oracle xml.classgen.SchemaClassGenerator;
import oracle xml.classgen.InvalidContentException;
import oracle xml.parser.v2 XMLOutputStream;
import java.io.OutputStream,;

import packagel.*;

public class CarDealer
{
static OutputStream output = System.our;
static XMLOutputStream out = new XMLOutputStream(output);

public static void main(String args[])
{
CarDealer cardealer = new CarDealer();
try
{
Car.Car_Type ctype =new Car.Car_Type();
ctype.setRequestDate('02-09-00");
Car.Car_Type.Model model = new Car.Car_Type.Model();
Car.Car_Type.Model.Model_Type modelType =
new Car.Car_Type.Model.Model_Type('Ford');

7-20 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

model.setType(modelType);
ctype.addModel(model);

Car.Car_Type.Make make = new Car.Car_Type.Make();
Car.Car_Type.Make.Make_Type makeType =

new Car.Car_Type.Make.Make_Type('F150";
make.setType(makeType);
ctype.addMake(make);

Car.Car_Type.Year year = new Car.Car_Type.Year();
Car.Car_Type.Year.Year_Type yearType =

new Car.Car_Type.Year.Year_Type();
yearType.addText('1999');

year.setType(yearType);
ctype.addYear(year);

Car.Car_Type.OwnerName ownerl = new Car.Car_Type.OwnerName();
ownerl.setType('Joe Smith");
ctype.addOwnerName(ownerl);

Car.Car_Type.OwnerName owner2 = new Car.Car_Type.OwnerName();
owner2.setType('Bob Smith');
ctype.addOwnerName(owner2);

String str ="Small dent on the car’s right bumper.”;
Car.Car_Type.Condition condition = new Car.Car_Type.Condition();
Car.Car_Type.Condition.Condition_Type conditionType =

new Car.Car_Type.Condition.Condition_Type(str);

Car.Car_Type.Condition.Condition_Type.Automatic automatic =
new Car.Car_Type.Condition.Condition_Type.Automatic(Yes'");
conditionType.setAutomatic(automatic);

condition.setType(conditionType);
ctype.addCondition(condition);

Car.Car_Type.Mieage mieage = new Car.Car_Type.Mileage();
Car.Car_Type.Mileage.Mieage_Type mileageType =

new Car.Car_Type.Mileage.Mileage_Type('10000");
mileage.setType(mileageType);
ctype.addMileage(mieage);

Car car = new Car();
car.setType(ctype);

XML Class Generator for Java 7-21

Examples Using XML Java Class Generator with DTDs and XML Schema

car.print(out);

outwriteNewLine();
outflush();
}
catch(InvalidContentException €)
{
System.out printin(e.getMessage());
e printStackTrace();
}
catch(Exception €)

System.out.printn(e.getMessage();
e printStackTrace();
}
}
}

XML Class Generator for Java, Schema Example 2a: Schema: book.xsd

This sample schema, book.xsd, is used in an oracg command to generate classes.
The classes then input the program, CarDealer.java, which creates an XML
document. The oracg command is:

oracg -C -s bookxsd p package2

See the comments about how this is used, in:

« "XML Class Generator for Java, Schema Example 2b: BookCatalogue.java" on
page 7-23

« "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0"?>

<schema xmins = "http/Amvwv.w3.0rg/1999/XMLSchema
targetNamespace = "http/Amwv.somewhere.org/BookCatalogue™
xmins:cat = "http:/Amwwv.somewhere.org/BookCatalogue™
elementFormDefault="qualified">

<complexType name="Pub">
<sequence>
<element name="Title" type="cattile Type" maxOccurs="*/>
<element name="Author" type="string" maxOccurs="*"/>
<element name="Date" type="date"/>
</sequence>

7-22 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

<attribute name="language" type="string" use="default' value="English"/>
</complexType>

<complexType name="tile Type" base="string" derivedBy="extension>
<attribute name="old" type="string" use="default' value="false"/>
</complexType>

<element name="Catalogue" type="catPub"/>
</schema>

XML Class Generator for Java, Schema Example 2b: BookCatalogue.java

e

*This is a sample application program buitt using the

* classes generated by XML Schema Class Generator. XML

* Schema "book xsd" is used to generate the classes using the oracg
* command line utility. The classes are generated in a package called
* package2 which is specified as command line option. The following
* oracg command line options are used to generate the classes:

* oracg -C -s book xsd -p package2

¥

import oracle xml.classgen.SchemaClassGenerator;
import oracle xml.classgen.CGXSDElement;

import oracle xml.classgen.InvalidContentException;
import oracle xml.parser.v2. XMLOutputStream;
import java.io.OutputStream,;

import package2.*;

public class BookCatalogue
{
static OutputStream output = System.our;
static XMLOutputStream out = new XMLOutputStream(outpu);

public static void main(String args]])

{
BookCatalogue bookCatalogue = new BookCatalogue();
try

{
Pub pubType = new Pub();

TileType titeType = new TitleType("Natural Health");
titeType.setOld('true');

XML Class Generator for Java 7-23

Examples Using XML Java Class Generator with DTDs and XML Schema

Pub.Title titte = new Pub.Tite();
tile.setType(tileType);
pubType.addTitle(tite);

Pub.Author author = new Pub.Author();
author.setType('Richard> Bach");
pubType.addAuthor(author);

Pub.Date date = new Pub.Date();
date.setType('1977");
pubType.addDate(date);
pubType.setlanguage("English");

Catalogue catalogue = new Catalogue();
catalogue.setType(pubType);

catalogue.print(out);
outwriteNewLine();
outflush();

}
catch(InvalidContentException €)

{
System.out.printin(e.getMessage();
e.printStackTrace();

}

catch(Exception €)

{
System.out.printin(e.getMessage();
e.printStackTrace();

}

}
}

XML Class Generator for Java, Schema Example 3a: Schema: po.xsd

This sample schema, po.xsd, is used in an oracg command to generate classes. The
classes then input the program, TestPo.java, which creates an XML document. The
oracg command used is:

oracg - -s po.xsd -p package3

See the comments about how this is used, in:

7-24 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

« "XML Class Generator for Java, Schema Example 3b: Application: TestPo.java"

on page 7-26

« "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0" encoding="ISO-8859-1"?>

<schema xmins = "http/Amwv.w3.0rg/1999/XMLSchema
targetNamespace = "http/Amwv.somewhere.org/PurchaseOrder”
xmins:po = "http:/Amww.somewhere.org/PurchaseOrder >

<element name="comment" type="string"/>

<element name="PurchaseOrder">
<complexType>
<element name="shipTo" type="po:Address'/>
<element name="hillTo" type="po:Address/>
<element ref="po:comment" minOccurs="0"/>
<element name="ttems" type="po:ltems'/>
<attribute name="orderDate" type="date"/>
<attribute name="shipDate" type="date"/>
<attribute name="receiveDate" type="date"/>
</complexType>
</element>

<complexType name="Address">
<element name="name" type="string"/>
<element name="street" type="string"/>
<element name="city" type="string'/>
<element name="zip" type="decimal'/>
<atiribute name="country" type="NMTOKEN"

use="fixed" value="US"/>
</complexType>

<complexType hame="ltems">
<element name="item" minOccurs="0" maxOccurs="unbounded">
<complexType>
<element name="productName" type="string'/>
<element name="quantity" type="int'/>
<element name="price" type="decimal'/>
<element name="shipDate" type="date" minOccurs=0/>
<attribute name="partNum'"* type="string"/>
</complexType>
</element>
</complexType>

XML Class Generator for Java 7-25

Examples Using XML Java Class Generator with DTDs and XML Schema

</schema>

XML Class Generator for Java, Schema Example 3b: Application: TestPo.java

Pex

*This is a sample application program which is buitt using the

* classes generated by XML Schema Class Generator. XML

* Schema "poxsd” is used to generate the classes using the oracg

* command line utility. The classes are generated in a package called
* package3 which is specified as command line option. The following
* oracg command line options are used to generate the classes:

* oracg -C -s po.xsd -p package3

*

import oracle xml.classgen.CGXSDElement;

import oracle xml.classgen.SchemaClassGenerator;
import oracle xml.classgen.InvalidContentException;
import oracle xml.parser.v2 XMLOutputStream;
import java.io.OutputStream,;

import package3.*;

public class TestPo
{
static OutputStream output = System.out;
static XMLOutputStream out = new XMLOutputStream(outpur);

public static void main (String args[])
{
TestPo testpo = new TestPo();
ty

{
Il Create Purchase Order

PurchaseOrder po = new PurchaseOrder();

Il Create Purchase Order Type
PurchaseOrder.PurchaseOrder_Type poType =
new PurchaseOrder.PurchaseOrder_Type();

I/ Set purchase order date
poType.setOrderDate('December 17, 2000");
poType.setShipDate("December 19, 2000");
poType.setReceiveDate('December 21, 2000");

I/ Create a PurchaseOrder shipToitem

7-26 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema

PurchaseOrder.PurchaseOrder_Type.ShipTo shipTo=
new PurchaseOrder.PurchaseOrder_Type.ShipTo();

Il Create Address
Address address = new Address();

I/ Create the Name for the address and add
I/itto addresss

Address.Name name = new Address.Name();
name.setType('Mary Smith');
address.addName(name);

I/ Create the Stree name for the address and add
/itto the address

Address.Street street = new Address.Street();
street setType('Laurie Meadows');
address.addStreet(street);

I Create the city name for the address and add
It to the address

Address.City city = new Address.City();
city.setType('San Mateo");
address.addCity(city);

I/ Create the zip name for the address and add
It to the address

Address.Zip zip = new Address.Zip();
Zip.setType(new Double('11208");
address.addZip(zip);

I/ Set the address of the shipTo object
shipTo.setType(address);

/I Add the shipTo to the Purchase Type object
poType.addShipTo(shipTo);

I Create a Purchase Order BillTo itemn
PurchaseOrder.PurchaseOrder_Type.BillTo bilTo =
new PurchaseOrder.PurchaseOrder_Type BillTo();

I Create a biling Address
Address bilingAddress = new Address();

I Create the name for biling address, set the

/Iname and add it to the hilling address
Address.Name namel = new Address.Name();

XML Class Generator for Java 7-27

Examples Using XML Java Class Generator with DTDs and XML Schema

namel.setType("John Smith");
bilingAddress.addName(hamel);

Il Create the street name for the biling address,
I setthe street name value and add it to the

I/ biling address

Address.Street streetl = new Address.Street();
streetl.setType("No 1. North Broadway');
bilingAddress.addStreet(streetl);

Il Create the City name for the address, set the

I/ city name value and add it to the biling address
Address.City cityl = new Address.City();
cityl.setType('New York’);
bilingAddress.addCity(city1);

I Create the Zip for the address, set the zip
Il value and add it to the biling address.
Address.Zip zipl = new Address.Zip();
Zipl.setType(new Double(*10006"));
bilingAddress.addZip(zipl);

I Setthe type of the billTo object to bilingAddress
billTo.setType(bilingAddress);

I/ Add the hilling address to the PurchaseQrder type
poType.addBilTo(billTo);

PurchaseOrder.PurchaseOrder_Type.ltems pltem =
new PurchaseOrder.PurchaseOrder_Type.ltems();

ltems items = new ltlems();
Itemns.tem item = new llems.item();
ltems.ltem.ltem_Type itemType = new ltems.tem.ltem_Type();

ltems.ltem.ltem_Type.ProductName pname =
new ltems.ltem.ltem_Type.ProductName();

pname.setType('Perfume”);

itemType.addProductName(pname);

ltems.ltem.ltem_Type.Quantity gty =
new ftems.ltem.ltem_Type.Quantity();

qty.setType(new Integer('1");

itemType.addQuantity(qty);

7-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the Class Generator for Java

ltems.ltem.ltem_Type.Price price =

new ftems.llem.ltem_Type.Price();
price.setType(new Double('69.99");
item Type.addPrice(price);

ltems.ltem.ltem_Type.ShipDate sdate =
new ltems.ltem.ltem_Type.ShipDate();

sdate.setType("Feb 14. 2000");

itemType.addShipDate(sdate);

itemType.setPartNum("lTMZz411");

item.setType(itemType);
items.additem(itemn);

pltem.setType(items);
poType.additems(pltem);

I/ Setthe type of the Purchase Order object to
I/ Purchase Order Type

po.setType(poType);

po.print(out);

outwriteNewLine();
outflush();

}

catch (InvalidContentException €)

{
System.out.printn(e.getMessage();
e.printStackTrace();

}

catch (Exception €)

{
System.out. printin(e.toString());
e.printStackTrace();

}

}
}

Frequently Asked Questions About the Class Generator for Java

This section lists XML Java Class Generator questions and answers.

XML Class Generator for Java 7-29

Frequently Asked Questions About the Class Generator for Java

How Do | Install the XML Class Generator for Java?

Answer: The Class Generator is packaged as part of the XDK and so you do not
have to download it separately. The CLASSPATHhould be set to include
classgen.jar , xmlparserv2.jar , and xschema.jar which are located in the
lib/ directory and not in the bin/ directory.

What Does the XML Class Generator for Java Do?
What does the XML Class Generator for Java do? How do | use it to get XML data?

Answer: The XML Class Generator for Java creates Java source files from an XML
DTD. This is useful when you need an application to send an XML message to
another application based on an agreed-upon DTD or as the back end of a Web form
to construct an XML document. Using these classes, Java applications can construct,
validate, and print XML documents that comply with the input DTD. The Class
Generator works in conjunction with the Oracle XML Parser for Java version 2,
which parses the DTD and passes the parsed document to the class generator.

To get XML data, first, get the data from the database using JDBC ResultSets. Then,
instantiate objects using the classes generated by the XML Class Generator.

Which DTDs Are Supported?
Does XML Java Class Generator support any kind of DTD?

Answer: Yes, it supports any kind of DTD that is XML 1.0 compliant.

Why Do | Get a "Classes Not Found" Error?

Why do | get a "Class Not Found" error when running XML Class Generator
samples?

Answer: Correct your CLASSPATHo include classgen.jar , Xmlparserv2.jar ,
and xschema.jar

In XML Class Generator, How Do | Create the Root Object More Than Once?

I generated, from a DTD, a set of Java classes with the Class Generator. Since then,
I've tried to create a Java application that uses these classes to create an XML file
from data passed as arguments. | cannot create the root object, the object derived
from CGDocument, more than one time because | obtain the following error
message:

7-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the Class Generator for Java

oraclexml.parser.XMLDOMException: Node doesn't belong to the current document

How do | handle the star operator (*)? When the application starts | do not know
how many times the element will appear. Thus | do not build a static loop where |
make a sequence of element.addNode() . The problem is that some of these will
be empty and | will obtain an XML document with a set of empty elements with
empty attributes.

Answer: You can create subsequent XML docs by calling the constructor each time.
A well-formed XML document is not permitted to have more than one root node,
therefore you cannot use the star operator (*) on the element you are designating as
the document root.

How Can | Create XML Files from Scratch Using the DOM API?

I want to create an XML file using the DOM API. | do not want to create the XML
file by typing in the text editor:

<xmk>
<future>is great<ffuture>
<mb>

Instead, | want to create it using the DOM API. There are several examples of
manipulating an XML file using the DOM once there is an input file, but not the
other way round. That is, of creating the XML file from scratch (when there is no
input file) using the DOM, once you know the tagnames and their values.

Answer: The simplest way is download XML Class Generator for Java and give it a
DTD of the XML document you want. It will create the DOM classes to
programmatically create XML documents. There are samples included with the
software.

Can | Create an XML Document in a Java Class?
I need to create an XML document in a Java class as follows

<?xml version ="1.0' encoding = WINDOWS-1252"?>
<root>
<listing>
<one>test <fone>
<two> test <fwo>
<flisting>
</root>

XML Class Generator for Java 7-31

Frequently Asked Questions About the Class Generator for Java

Can | use the XMLDocument class to create an XML document? | know about the
XML SQL Utility, but that only creates XML based on SQL queries, which is not
what | am after on this occasion. Do you have an example of how to do this?

Answer: The XML Class Generator, available as part of the Oracle XDK for Java,
does the job nicely. The XDKs are also available with Oracle9i and Oracle9i
Application Server products. The Class Generator generates Java classes for each
element in your DTD. These classes can then be used to dynamically construct an
XML document at runtime. The Class Generator download contains sample code.

7-32 Oracle9i XML Developer’s Kits Guide - XDK

8

XML SQL Utility (XSU)

This chapter contains the following sections:

What Is XML SQL Utility (XSU)?

XSU Dependencies and Installation

XML SQL Utility and the Bigger Picture

SQL-to-XML and XML-to-SQL Mapping Primer

How XML SQL Utility Works

Using the XSU Command Line Front End, OracleXML

XSU Java API

Generating XML with XSU’s OracleXMLQuery

Paginating Results: skipRows and maxRows

Generating XML from ResultSet Objects

Raising No Rows Exception

Storing XML Back in the Database Using XSU OracleXMLSave
Insert Processing Using XSU (Java API)

Update Processing Using XSU (Java API)

Delete Processing Using XSU (Java API)

Advanced XSU Usage Techniques

Frequently Asked Questions About XML SQL Utility (XSU)

XML SQL Utility (XSU) 8-1

What Is XML SQL Utility (XSU)?

What Is XML SQL Utility (XSU)?

XML has become the format for data interchange. At the same time, a substantial
amount of business data resides in object-relational databases. It is therefore
necessary to have the ability to transform this relational data to XML.

XML SQL Utility (XSU) enables you to do this as follows:

« XSU can transform data retrieved from object-relational database tables or
views into XML.

» XSU can extract data from an XML document, and using a canonical mapping,
insert the data into appropriate columns or attributes of a table or a view.

» XSU can extract data from an XML document and apply this data to updating
or deleting values of the appropriate columns or attributes.

Generating XML from the Database

For example, on the XML generation side, when given the query SELECT * FROM
emp, XSU queries the database and returns the results as the following XML
document:

<?xml version=1.0'?>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0:0.0<HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<[ROW>
<l- additional rows ... —>
</ROWSET>

Storing XML in the Database

Going the other way, given the XML document preceding, XSU can extract the data
from it and insert it into the scott.emp table in the database.

Accessing XSU Functionality
XML SQL Utility functionality can be accessed in the following ways:

8-2 Oracle9i XML Developer’s Kits Guide - XDK

What Is XML SQL Utility (XSU)?

XSU Features

Through a Java API
Through a PL/SQL API

Through a Java command line front end

See Also:
=« Oracle9i XML API Reference - XDK and Oracle XML DB

XSU can perform the following tasks:

Generate XML documents from any SQL query. XSU virtually supports all the
datatypes supported in the Oracle9i database server.

Dynamically generate DTDs (Document Type Definitions).

During generation, perform simple transformations, such as modifying default
tag names for the ROV¢lement. You can also register an XSL transformation
which is then applied to the generated XML documents as needed.

Generate XML documents in their string or DOM representations.

Insert XML into database tables or views. XSU can also update or delete records
records from a database object, given an XML document.

Easily generate complex nested XML documents. XSU can also store them in
relational tables by creating object views over the flat tables and querying over
these views. Object views can create structured data from existing relational
data using Oracle8i and Oracle9i’s object-relational infrastructure.

XSU Oracle9/ New Features
Starting in Oracle9i, XSU can also perform the following tasks:

Generates XML Schema given an SQL Query.
Generates XML as a stream of SAX2 callbacks.

Supports XML attributes during generation. This provides an easy way to
specify that a particular column or group of columns should be mapped to an
XML attribute instead of an XML element.

SQL identifier to XML identifier escaping. Sometimes column names are not
valid XML tag names. To avoid this you can either alias all the column names or
turn on tag escaping.

XML SQL Utility (XSU) 8-3

XSU Dependencies and Installation

Note: Oracle9i introduced the DBMS_XMLGeRL/SQL supplied
package. This package provides the functionality previously
available with DBMS_XMLQueryDBMS_XMLGeris built into the
database code, hence, it provides better performance.

XSU Supports XMLType

From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is
useful if, for example, you have XMLType columns in objects or tables.

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB, in particular, the chapter on Generating XML, for examples on using
XSU with XMLType.

XSU Dependencies and Installation

Dependencies

Installation

XML SQL Utility (XSU) needs the following components:

Database connectivity -- JDBC drivers. XSU can work with any JDBC driver
but is optimized for Oracle JDBC drivers. Oracle does hot make any guarantee
or provide support for the XSU running against non-Oracle databases.

XML Parser -- Oracle XML Parser, Version2. Oracle XML Parser, version 2 is
included in Oracle8i and Oracle9i, and is also available as part of the XSU install
(XDK for Java) downloadable from the Oracle Technology Network (OTN) Web
site.

XML SQL Utility (XSU) is packaged with Oracle8i (8.1.7 and later) and Oracle9i.
XSU is made up of three files:

$ORACLE_HOME/rdbms/jlib/xsul2.jar -- Contains all the Java classes
which make up XSU. xsul2 requires JDK1.2.x and JDBC2.x . Thisis the
XSU version loaded into Oracle9i.

$ORACLE_HOME/rdbms/jlib/xsulll.jar -- Contains the same classes as
xsul2.jar, except that xsu11l requires JDK1.1.x and JDBC1.x .

8-4 Oracle9i XML Developer’s Kits Guide - XDK

XML SQL Utility and the Bigger Picture

« SORACLE_HOME/rdbms/admin/dbmsxsu.sql -- This is the SQL script that
builds the XSU PL/SQL API. xsul2.jar needs to be loaded into the database
before dbmsxsu.sql is executed.

By default the Oracle9i installer installs XSU on the hard drive in the locations
specified earlier. It also loads it into the database.

If during initial installation you choose to not install XSU, you can install it later, but
the installation becomes less simple. To install XSU later, first install XSU and its
dependent components on your system. You can accomplish this using Oracle
Installer. Next perform the following steps:

1. If you have not yet loaded XML Parser for Java in the database, go to
$ORACLE_HOME/xdk/lib . Here you will find xmlparserv2.jar that you
need to load into the database. To do this, see “Loading JAVA Classes” in the
Oracle9i Java Stored Procedures Developer’s Guide

2. Goto $ORACLE_HOME/admirand run catxsu.sql

Note: XML SQL Utility (XSU) is part of the XDK for Java and is
also available on OTN at: http://otn.oracle.com/tech/xml

XML SQL Utility and the Bigger Picture

XML SQL Utility (XSU) is written in Java, and can live in any tier that supports
Java.

XML SQL Utility in the Database

The Java classes which make up XSU can be loaded into Java-enabled Oracle8i or
later. Also, XSU contains a PL/SQL wrapper that publishes the XSU Java API to
PL/SQL, creating a PL/SQL API. This way you can:

« Write new Java applications that run inside the database and that can directly
access the XSU Java API

« Write PL/SQL applications that access XSU through its PL/SQL API
« Access XSU functionality directly through SQL

Note: To load and run Java code inside the database you need a
Java-enabled Oracle8i or later server.

XML SQL Utility (XSU) 8-5

XML SQL Utility and the Bigger Picture

Figure 8-1 shows the typical architecture for such a system. XML generated from
XSU running in the database, can be placed in advanced queues in the database to
be queued to other systems or clients. The XML can be used from within stored
procedures in the database or shipped outside through web servers or application

Servers.

Note: In Figure 8-1, all lines are bi-directional. Since XSU can
generate as well as save data, data can come from various sources to
XSU running inside the database, and can be put back in the
appropriate database tables.

Figure 8-1 Running XML SQL Ultility in the Database

Middle Tier
Application
Server

Oracle9

Advanced
Queuing ||
(AQ) TP Application . ([] .
Logic | XMLI — o
SQL \|-
Tables XML SQL Utility o
and < P (Java / PL/SQL) User
Views
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, VML, . ..

XML SQL Utility in the Middle Tier

Your application architecture may need to use an application server in the middle
tier, separate from the database. The application tier can be an Oracle database,
Oracle9i Application Server, or a third party application server that supports Java
programs.

8-6 Oracle9i XML Developer’s Kits Guide - XDK

XML SQL Utility and the Bigger Picture

You may want to generate XML in the middle tier, from SQL queries or ResultSets,
for various reasons. For example, to integrate different JDBC data sources in the
middle tier. In this case you could install the XSU in your middle tier and your Java
programs could make use of XSU through its Java API.

Figure 8-2, shows how a typical architecture for running XSU in a middle tier. In
the middle tier, data from JDBC sources is converted by XSU into XML and then
sent to Web servers or other systems. Again, the whole process is bi-directional and
the data can be put back into the JDBC sources (database tables or views) using
XSU. If an Oracle database itself is used as the application server, then you can also
use the PL/SQL front-end instead of Java.

Figure 8-2 Running XML SQL Ultility in the MIddle Tier

Middle Tier
Application Server
or
Oracle9/ (Java or Web
PL/SQL front end) Server
Any +—
Database SOQL data — Y
. ={ Application * .
(via JDBC) Logic XML > o
| > g —> —U—
XML SQL Utility — -
(Java) e — User
—
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, VML, ...

XML SQL Utility in a Web Server

XSU can live in the Web server, as long as the Web server supports Java servlets.
This way you can write Java servlets that use XSU to accomplish their task.

XSQL servlet does just this. XSQL servlet is a standard servlet provided by Oracle.
It is built on top of XSU and provides a template-like interface to XSU functionality.

XML SQL Utility (XSU) 8-7

SQL-to-XML and XML-to-SQL Mapping Primer

If XML processing in the Web server is your goal, you should probably use the
XSQL servlet, as it will spare you from the intricate servlet programming.

See: Chapter 9, "XSQL Pages Publishing Framework" for
information about using XSQL Servlet.

Figure 8-3 Running XML SQL Utility in a Web Server

Web Server
(running Servlets)
Any e —
Database soLd
(8 I0B0) (| gSorets XML* . B
XSQL servlets "
((l?) > «—> q_D—_
4 XML SQL Utility —_
E (Java) User
1:IJ
* XML, HTML,
XHTML, VML, . ..

XML SQL Utility in the Client Tier

XML SQL Utility can be also installed on a client system, where you can write Java

programs that use XSU. You can also use XSU directly through its command line
front end.

SQL-to-XML and XML-to-SQL Mapping Primer

As described earlier, XML SQL Utility transforms data retrieved from
object-relational database tables or views into XML. XSU can also extract data from
an XML document, and using a specified mapping, insert the data into appropriate
columns or attributes of a table or a view in the database. This section describes the
canonical mapping or transformation used to go from SQL to XML or vice versa.

Default SQL-to-XML Mapping
Consider table emp

CREATE TABLE emp

(
EMPNO NUMBER,

8-8 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer

ENAME VARCHAR2(20),
JOB VARCHAR2(20),
MGR NUMBER,
HIREDATE DATE,

SAL NUMBER,
DEPTNO NUMBER

)

XSU can generate the following XML document by specifying the query, select *
from emp :

<?xml version=1.07>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0.0.0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<ROW>
<l additional rows ... —>
</ROWSET>

In the generated XML, the rows returned by the SQL query are enclosed in a
ROWSETag to constitute the <ROWSETelement. This element is also the root
element of the generated XML document.

« The <ROWSET=element contains one or more <ROW:=lements.

« Each of the <ROW=lements contain the data from one of the returned database
table rows. Specifically, each <ROW:=zlement contains one or more elements
whose names and content are those of the database columns specified in the
SELECTIist of the SQL query.

« These elements, corresponding to database columns, contain the data from the
columns.

SQL-to-XML Mapping Against Object-Relational Schema

Next we describe this mapping but against an object-relational schema. Consider
the following type, AddressType . Its an object type whose attributes are all scalar
types and is created as follows:

CREATE TYPE AddressType AS OBJECT (

XML SQL Utility (XSU) 8-9

SQL-to-XML and XML-to-SQL Mapping Primer

STREET VARCHAR2(20),
CITY VARCHAR2(20),
STATE CHAR(2),

ZIP VARCHAR2(10)

)

/

The following type, EmployeeType , is also an object type but it has an EMPADDR
attribute that is of an object type itself, specifically, AddressType .Employee
Type is created as follows;

CREATE TYPE EmployeeType AS OBJECT
(

EMPNO NUMBER,

ENAME VARCHAR2(20),

SALARY NUMBER,

EMPADDR AddressType

)
/

The following type, EmployeeListType , is a collection type whose elements are
of the object type, EmployeeType . EmployeeListType is created as follows:

CREATE TYPE EmployeeListType AS TABLE OF EmployeeType;
/

Finally, dept is a table with, among other things, an object type column and a
collection type column -- AddressType and EmployeeListType respectively.

CREATE TABLE dept

(
DEPTNO NUMBER,
DEPTNAME VARCHAR2(20),
DEPTADDR AddressType,
EMPLIST EmployeeListType

)
NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;

Assume that valid values are stored in table, dept . For the query select * from
dept , XSU generates the following XML document:

<2xml version="1..0'?>

<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>Sports</DEPTNAME>

8-10 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer

<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
</DEPTADDR>
<EMPLIST>
<EMPLIST_ITEM num="1">
<EMPNO>7369</EMPNO>
<ENAME>John</ENAME>
<SALARY>10000</SALARY>
<EMPADDR>
<STREET>300 Embarcadero</STREET>
<CITY>Palo Alto</CITY>
<STATE>CA</STATE>
<ZIP>94056</ZIP>
</EMPADDR>
</EMPLIST_ITEM>
<l- additional employee types within the employee list —>
</EMPLIST>
<[ROW>
<l- additional rows ... =
</ROWSET>

As in the last example, the mapping is canonical, that is, <ROWSETzontains
<ROWSsthat contain elements corresponding to the columns. As before, the
elements corresponding to scalar type columns simply contain the data from the
column.

Mapping Complex Type Columns to XML

Things get more complex with elements corresponding to a complex type column.
For example, <DEPTADDR=zorresponds to the DEPTADDRolumn which is of object
type ADDRESSConsequently, <DEPTADDR=ontains subelements corresponding to
the attributes specified in the type ADDRESSThese subelements can contain data or
sub-elements of their own, again depending if the attribute they correspond to is of
a simple or complex type.

Mapping Collections to XML

When dealing with elements corresponding to database collections, things are yet
different. Specifically, the <EMPLIST> element corresponds to the EMPLIST column
which is of a EmployeeListType collection type. Consequently, the <EMPLIST>

XML SQL Utility (XSU) 8-11

SQL-to-XML and XML-to-SQL Mapping Primer

element contains a list of <KEMPLIST_ITEM> elements each corresponding to one of
the elements of the collection.

Other observations to make about the preceding mapping are:
« The <ROW=lements contain a cardinality attribute num

« Ifaparticular column or attribute value is null, then for that row, the
corresponding XML element is left out altogether.

« Ifatop level scalar column name starts with the at sign (@) character, then the
particular column is mapped to an XML attribute instead of an XML element.

Customizing the Generated XML: Mapping SQL to XML

Often, one needs to generate XML with a specific structure. Since the desired
structure may differ from the default structure of the generated XML document, it is
desirable to have some flexibility in this process. You can customize the structure of
a generated XML document using one of the following methods:

« "Source Customizations"
« "Mapping Customizations"

« "Post-Generation Customizations"

Source Customizations

Source customizations are done by altering the query or database schema. The
simplest and most powerful source customizations include the following:

« Inthe database schema, create an object-relational view that maps to the
desired XML document structure.

« Inyour query:
« Use cursor subqueries, or cast-multiset constructs to get nesting in the XML
document which comes from a flat schema.
« Alias column/attribute names to get the desired XML element names.

« Alias top level scalar type columns with identifiers which begin with the at
sign (@) to have them map to an XML attribute instead of an XML element.
For example, select empno as “@empno”,... from emp , results in
an XML document where the <ROW=lement has an attribute EMPNO

8-12 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer

Mapping Customizations

XML SQL Utility enables you to modify the mapping it uses to transform SQL data
into XML. You can make any of the following SQL to XML mapping changes:

Change or omit the <ROWSETtag.
Change or omit the <ROW=ag.

Change or omit the attribute num This is the cardinality attribute of the <ROW>
element.

Specify the case for the generated XML element hames.

Specify that XML elements corresponding to elements of a collection, should
have a cardinality attribute.

Specify the format for dates in the XML document.

Specify that null values in the XML document should be indicated using a
nullness attribute, rather then by omission of the element.

Post-Generation Customizations

Finally, if the desired customizations cannot be achieved with the foregoing
methods, you can write an XSL transformation and register it with XSU. While there
is an XSLT registered with the XSU, XSU can apply the XSLT to any XML it
generates.

Default XML-to-SQL Mapping
XML to SQL mapping is just the reverse of the SQL to XML mapping.

See Also: "Default SQL-to-XML Mapping” on page 8-8.

Consider the following differences when mapping from XML to SQL, compared to
mapping from SQL to XML:

When going from XML to SQL, the XML attributes are ignored. Thus, there is
really no mapping of XML attributes to SQL.

When going from SQL to XML, mapping is performed from the resultset
created by the SQL query to XML. This way the query can span multiple
database tables or views. What gets formed is a single resultset which is then
converted into XML. This is not the case when going from XML to SQL, where:

XML SQL Utility (XSU) 8-13

How XML SQL Utility Works

« Toinsert one XML document into multiple tables or views, you must create

an object-relational view over the target schema.

« If the view is not updatable, one work around is to use
INSTEAD-OF-INSERT triggers.

If the XML document does not perfectly map into the target database schema, there
are three things you can do:

Modify the Target. Create an object-relational view over the target schema, and
make the view the new target.

Modify the XML Document. Use XSLT to transform the XML document. The
XSLT can be registered with XSU so that the incoming XML is automatically
transformed, before any mapping attempts are made.

Modify XSU’s XML-to-SQL Mapping. You can instruct XSU to perform case
insensitive matching of the XML elements to database columns or attributes.

« If not the default (ROW), you can tell XSU to use the name of the element
corresponding to a database row.

« You can instruct XSU on which date format to use when parsing dates in
the XML document.

How XML SQL Utility Works

This section describes how XSU works when performing the following tasks:

Selecting with XSU

Selecting with XSU on page 8-14
Inserting with XSU on page 8-15
Updating with XSU on page 8-15
Deleting with XSU on page 8-16

XSU generation is simple. SQL queries are executed and the resultset is retrieved
from the database. Metadata about the resultset is acquired and analyzed. Using the
mapping described in "Default SQL-to-XML Mapping" on page 8-8, the SQL result
set is processed and converted into an XML document.

8-14 Oracle9i XML Developer’s Kits Guide - XDK

How XML SQL Utility Works

Inserting with XSU

To insert the contents of an XML document into a particular table or view, XSU first
retrieves the metadata about the target table or view. Based on the metadata, XSU
generates a SQL INSERT statement. XSU extracts the data out of the XML
document and binds it to the appropriate columns or attributes. Finally the
statement is executed.

For example, assume that the target table is dept and the XML document is the one
generated from dept .

See Also: "Default SQL-to-XML Mapping" on page 8-8.

XSU generates the following INSERT statement.
INSERT INTO Dept (DEPTNO, DEPTNAME, DEPTADDR, EMPLIST) VALUES (?,2,?,?

Next, the XSU parses the XML document, and for each record, it binds the
appropriate values to the appropriate columns or attributes, and executes the
statement:

DEPTNO <- 100

DEPTNAME <- SPORTS

DEPTADDR <- AddressType('100 Redwood Shores Pkwy',Redwood Shores),
'CA,'94065))

EMPLIST <- EmployeeListType(EmployeeType(7369, John’, 100000,
AddressType('300 Embarcadero’,Palo Alto’) CA','94056),...)

Insert processing can be optimized to insert in batches, and commit in batches.
More detail on batching can be found in the section on "Insert Processing Using
XSU (Java API)" on page 8-38.

Updating with XSU

Updates and deletes differ from inserts in that they can affect more than one row in
the database table. For inserts, each ROV¢lement of the XML document can affect at
most, one row in the table, if there are no triggers or constraints on the table.

However, with both updates and deletes, the XML element could match more than
one row if the matching columns are not key columns in the table. For updates, you
must provide a list of key columns which XSU needs to identify the row to update.
For example, to update the DEPTNAMED SportsDept instead of Sports , you can
have an XML document such as:

XML SQL Utility (XSU) 8-15

How XML SQL Utility Works

<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>SportsDept</DEPTNAME>
</ROW>
</ROWSET>

and supply the DEPTNGas the key column. This would result in the following
UPDATEstatement:

UPDATE DEPT SET DEPTNAME =? WHERE DEPTNO =?

and bind the values,

DEPTNO <- 100
DEPTNAME <- SportsDept

For updates, you can also choose to update only a set of columns and not all the
elements present in the XML document. See also, "Update Processing Using XSU
(Java API)" on page 8-40.

Deleting with XSU

For deletes, you can choose to give a set of key columns for the delete to identify the
rows. If the set of key columns are not given, then the DELETEstatement tries to
match all the columns given in the document. For an XML document;

<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>Sports</DEPTNAME>
<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
</DEPTADDR>
<[ROW>
<l additional rows ... —>
</ROWSET>

To delete, XSU fires off a DELETEstatement (one for each ROV¢lement) which looks
like the following:

DELETE FROM Dept WHERE DEPTNO ="? AND DEPTNAME =? AND DEPTADDR =?
binding,

8-16 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML

DEPTNO <- 100

DEPTNAME <- Sports

DEPTADDR <- AddressType("100 Redwood Shores Pkwy',Redwood
City',/CA’/94065)

See also, "Delete Processing Using XSU (Java API)" on page 8-43.

Using the XSU Command Line Front End, OracleXML

XSU comes with a simple command line front end which gives you quick access to
XML generation and insertion.

Note: In Oracle9i, the XSU front end does not publish the update
and delete functionality.

The XSU command line options are provided through the Java class, OracleXML .
Invoke it by calling:

java OracleXML

This prints the front end usage information. To run the XSU command line front
end, first specify where the executable is located. Add the following to your
CLASSPATH

« XSU lJava library (xsul2.jar orxsullljar)

Also, since XSU depends on Oracle XML Parser and JDBC drivers, make the
location of these components known. To do this, the CLASSPATHNust include the
locations of:

« Oracle XML Parser Java library (xmlparserv2.jar)

« JDBC library (classesl12.jar if using xsul2.jar or classesl11.jar
if using xsulll.jar)

« AJAR file for XMLType.

Generating XML Using the XSU Command Line

For XSU generation capabilities, use the XSU getXML parameter. For example, to
generate an XML document by querying the emptable in the scott schema, use:

java OracleXML getXML -user "scottftiger” “select * from emp"

XML SQL Utility (XSU) 8-17

Using the XSU Command Line Front End, OracleXML

This performs the following tasks:

« Connects to the current default database
« Executes the query select * from emp

« Converts the result to XML

« Displays the result

The getXML parameter supports a wide range of options which are explained in
the following section.

8-18 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML

XSU's OracleXML getXML Options

Table 8-1 lists the OracleXML getXML options:

Table 8-1 XSU'’s OracleXML getXML Options

getXML Option

Description

-user "username /password "

Specifies the user name and password to connect to the
database. If this is not specified, the user defaults to
scott/tiger . Note that he connect string is also being
specified, the user name and password can be specified as
part of the connect string.

-conn "JDBC_connect_string

Specifies the JDBC database connect string. By default the

connect string is: "jdbc:oracle:oci8: @ "):

-withDTD Instructs the XSU to generate the DTD along with the XML
document.

-withSchema Instructs the XSU to generate the schema along with the

XML document.

-rowsetTag "tag _name "

Specifies rowset tag (the tag that encloses all the XML
elements corresponding to the records returned by the
query). The default rowset tag is ROWSEBpecifying an
empty string for the rowset tells the XSU to completely
omit the rowset element.

-rowTag "tag_name "

Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is
ROWSpecifying an empty string for the row tag tells the
XSU to completely omit the row tag.

-rowldAttr "row_id-attribute-name

Names the attribute of the ROVWélement keeping track of the
cardinality of the rows . By default this attribute is called
num Specifying an empty string (that is, ") as the rowID
attribute will tell the XSU to omit the attribute.

-rowldColumn "row Id column name

Specifies that the value of one of the scalar columns from
the query should be used as the value of the rowID
attribute.

-collectionldAttr "collection id
attribute name "

Names the attribute of an XML list element keeping track of
the cardinality of the elements of the list (Note: the
generated XML lists correspond to either a cursor query, or
collection). Specifying an empty string (that is, ") as the
rowID attribute will tell the XSU to omit the attribute.

-useNullAttrid

Tells the XSU to use the attribute NULL (TRUE/FALSE) to
indicate the nullness of an element.

XML SQL Utility (XSU) 8-19

Using the XSU Command Line Front End, OracleXML

Table 8-1 XSU'’s OracleXML getXML Options (Cont.)

getXML Option

Description

-styleSheet "stylesheet URI "

Specifies the stylesheet in the XML PI (Processing
Instruction).

-stylesheetType "stylesheet type

Specifies the stylesheet type in the XML PI (Processing
Instruction).

-errorTag "error tag name

Secifies the error tag -- the tag to enclose error messages
which are formatted into XML.

-raiseNoRowsEXxception

Tells the XSU to raise an exception if no rows are returned.

-maxRows "maximum number of rows

Specifies the maximum number of rows to be retrieved and
converted to XML.

-skipRows "number of rows to skip "

Specifies the number of rows to be skipped.

-encoding "encoding name

Specifies the character set encoding of the generated XML.

-dateFormat "date format

Specifies the date format for the date values in the XML
document.

-fileName "SQL query fileName " | sql query

Specifies the file name which contains the query or specify
the query itself.

-useTypeForCollElemTag

Use type name for coll-elem tag (by default XSU uses the
column-name_item

-setXSLTRef "URI"

Set the XSLT external entity reference.

-useLowerCase | useUpperCase

Generate lowercase or uppercase tag names, respectively.
The default is to match the case of the SQL object names
from which generating the tags.

-withEscaping

There are character which are legal in SQL object names but
illegal in XML tags. This option means that if such a
character is encountered, it is escaped rather then an
exception being thrown.

-raiseException

By default the XSU catches any error and produces the error
XML doc. This changes this behavior so the XSU actually
throws the raised Java exception.

Inserting XML Using XSU's Command Line (putXML)

To insert an XML document into the emptable in the scott

following syntax:

schema, use the

java OracleXML putXML -user "scottftiger” -fileName "Amptempxml* "emp"

8-20 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML

This performs the following tasks:

« Connects to the current database

« Reads the XML document from the given file

« Parses it, matches the tags with column names

« Inserts the values appropriately in to the emptable

Note: The XSU command line front enplutXML , currently only
publishes XSUnsert functionality. It may be expanded in future to
also publish XSWpdate and delete functionality.

XML SQL Utility (XSU) 8-21

XSU Java API

XSU OracleXML putXML Options

Table 8-2 lists the putXML options:

Table 8-2 XSU'’s OracleXML putXML Options

putXML Options

Description

-user "username /password *

Specifies the user name and password to connect to the database. If
this is not specified, the user defaults to scott/tiger . Note that
he connect string is also being specified, the user name and
password can be specified as part of the connect string.

-conn "JDBC_connect string "

Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci8:@ "):

-batchSize "batching_size

Specifies the batch size, which control the number of rows which
are batched together and inserted in a single trip to the database.
Batching improves performance.

-commitBatch "commit_size

Specifies the number of inserted records after which a commit is to
be executed. Note that if the autocommit is true (default), then
setting the commitBatch has no consequence.

-rowTag "tag _name"

Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is ROW
Specifying an empty string for the row tag tells the XSU that no
row enclosing tag is used in the XML document.

-dateFormat "date_format "

Specifies the date format for the date values in the XML document.

-ignoreCase

Makes the matching of the column names with tag names case
insensitive (for example, "EmpNo" will match with "EMPNO" if
ignoreCase is on).

-fileName "file_name " | -URL"URL' |
-xmlDoc "xml_document "

Specifies the XML document to insert. The fileName option
specifies a local file, the URL specifies a URL to fetch the document
from and the xmIDoc option specifies the XML document as a
string on the command line.

-tableName "table"

The name of the table to put the values into.

-withEscaping

If SQL to XML name escaping was used when generating the doc,
then this will turn on the reverse mapping.

-setXSLT "URI"

XSLT to apply to XML doc before inserting.

-setXSLTRef "URI"

Set the XSLT external entity reference.

XSU Java API

The following two classes make up the XML SQL Utility Java API:

8-22 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU's OracleXMLQuery

« XSU API for XML generation: oracle.xml.sqgl.query.OracleXMLQuery

« XSU API for XML save , insert , update , and delete
oracle.xml.sgl.dml.OracleXMLSave

Generating XML with XSU’s OracleXMLQuery

The OracleXMLQuery class makes up the XML generation part of the XSU Java
API. Figure 84 illustrates the basic steps you need to take when using
OracleXMLQuery to generate XML:

1. Create a connection.

2. Create an OracleXMLQuery instance by supplying an SQL string or a
ResultSet object.

3. Obtain the result as a DOM tree or XML string.

Figure 8—4 Generating XML With XML SQL Utility for Java: Basic Steps

SQL DOM
Query getXMLDOM object ;
p | Create JDBC > OracleXMLQuery —> Further
Connection instance processing
JDBC Result - _>
SQL Set getXMLString XML
Query String

Generating XML from SQL Queries Using XSU

The following examples illustrate how XSU can generate an XML document in its
DOM or string representation given a SQL query. See Figure 8-5.

XML SQL Utility (XSU) 8-23

Generating XML with XSU’s OracleXMLQuery

Figure 8-5 Generating XML With XML SQL Utility

Generating XML from the Database using the XML SQL Utility

set . bind
the options

REGISTER
Query

[4
B
l I | values
User / Browser /
Client/
Application

-t

e B
Generated ———
XML fesesssssasssanss > l l
as DOM —_

User / Browser /

Client/
Application
AN
Generated .
XML |jesssscssssssssasfesnannanns .

as String

XSU Generating XML Example 1: Generating a String from Table emp (Java)

1. Create a connection

Before generating the XML you must create a connection to the database. The
connection can be obtained by supplying the JDBC connect string. First register
the Oracle JDBC class and then create the connection, as follows

/limport the Oracle driver..
import oracle jdbc.driver;

I/ Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

I/ Create the connection.
Connection conn =
DriverManager.getConnection('jdbc:oracle:oci8:@","scott", tiger”);

Here, the connection is done using OCI8’s JDBC driver. You can connect to the
scott schema supplying the password tiger . It connects to the current

8-24 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU's OracleXMLQuery

database (identified by the ORA_SIDenvironment variable). You can also use
the JDBC thin driver to connect to the database. The thin driver is written in
pure Java and can be called from within applets or any other Java program.

See Also: Oracle9i Java Developer’s Guide for more details.

« Connecting With the Thin Driver. Here is an example of connecting using
the JDBC thin driver:

// Create the connection.

Connection conn=

DriverManager.getConnection(jdbc:oracle:thin:@disun489:1521:ORCL",
"scott","tiger");

The thin driver requires you to specify the host name (dlsun489), port
number (1521), and the Oracle SID (ORCL), which identifies a specific
Oracle instance on the machine.

« No Connection Needed When Run In the Server. When writing server side
Java code, that is, when writing code that will run on the server, you need
not establish a connection using a username and password, since the
server-side internal driver runs within a default session. You are already

connected. In this case call the defaultConnection() on the
oracle.jdbc.driver.OracleDriver() class to get the current
connection, as follows:

import oracle jdbc.driver*;

/I Load the Oracle JDBC driver

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn = new oracle jdbc.driver.OracleDriver
().defaultConnection ();

The remaining discussion either assumes you are using an OCI8 connection
from the client or that you already have a connection object created. Use the
appropriate connection creation based on your needs.

Creating an OracleXMLQuery Class Instance

Once you have registered your connection, create an OracleXMLQuery class
instance by supplying a SQL query to execute as follows:

/limport the query class in to your class
import oracle xml.sgl.query.OracleXMLQuery;,

XML SQL Utility (XSU) 8-25

Generating XML with XSU’s OracleXMLQuery

OracleXMLQuery qgry = new OracleXMLQuery (conn, "select * from emp');

You are now ready to use the query class.
3. Obtain the result as a DOM tree or XML string

« DOM Object Output. If, instead of a string, you wanted a DOM object, you
can simply request a DOM output as follows:

orgw3c.DOM.Document domDoc = qry.getXMLDOM();

and use the DOM traversals.
« XML String Output. You can get an XML string for the result by:
String xmlString = qry.getXMLString();

Here is a complete listing of the program to extract (generate) the XML string. This
program gets the string and prints it out to standard output:

import oracle jdbc.driver*,

import oracle xml.sgl.query.OracleXMLQuery;,
import javalang.*;

import java.sgl.;

I class to test the String generation!
dlass testXMLSQL {

public static void main(String]] argv)
{

ty{
// create the connection

Connection conn = getConnection("scott", tiger");

Il Create the query class.
OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp');

I/ Getthe XML string
String str = gry.getXMLString();

I/ Print the XML output

System.outprintin(* The XML output is\n"+str);

I Aways close the query to get rid of any resources..
qry.close);

Jeatch(SQLException e){
System.out.printin(e.toString());

8-26 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU's OracleXMLQuery

}
}

Il Get the connection given the user name and password..!
private static Connection getConnection(String usemame, String password)
throws SQLException

{
I register the JDBC driver..

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

I/ Create the connection using the OCI8 driver
Connection conn =
DriverManager.getConnection('jdbc:oracle:oci8:@",usemame,password);

retum conn;

}
}

How to Run This Program
To run this program, carry out the following:

1. Store this in afile called testXMLSQL.java
2. Compile it using javac , the Java compiler
3. Execute it by specifying: java testXMLSQL

You must have the CLASSPATHpointing to this directory for the Java executable to
find the class. Alternatively use various visual Java tools including Oracle
JDeveloper to compile and run this program. When run, this program prints out the
XML file to the screen.

XSU Generating XML Example 2: Generating DOM From Table emp (Java)

DOM (Document Object Model) is a standard defined by the W3C committee. DOM
represents an XML document in a parsed tree-like form. Each XML entity becomes
a DOM node. Thus XML elements and attributes become DOM nodes while their
children become child nodes. To generate a DOM tree from the XML generated by
XSU, you can directly request a DOM document from XSU, as it saves the overhead
of having to create a string representation of the XML document and then parse it to
generate the DOM tree.

XML SQL Utility (XSU) 8-27

Generating XML with XSU’s OracleXMLQuery

XSU calls the parser to directly construct the DOM tree from the data values. The
following example illustrates how to generate a DOM tree. The example steps
through the DOM tree and prints all the nodes one by one.

import orgw3c.dom*;

import oracle xml.parser.v2.%;

import java.sgl.*;

import oracle xml.sgl.query.OracleXMLQuery;,
import java.io*;

class domTest{

public static void main(String]] argv)
{

]
/I create the connection

Connection conn = getConnection('scott", tiger");

Il Create the query class.
OracleXMLQuery gry = new OracleXMLQuery(conn, "select * from emp');

1/ Get the XML DOM object. The actual type is the Oracle Parser's DOM
I representation. (XMLDocument)
XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

I/ Print the XML output directly from the DOM
domDoc print(System.out);

I/'f you instead want to print it to a string buffer you can do
this..!

StringWiiter s = new StringWiiter(10000);

domDoc print(hew PrintWhiter(s));

System.out.printin(* The string version —> "+s.toString());

qgry.close(); // You should always close the query!!
Jeatch(Exception e}
System.out printin(e.toString();
}
}

/] Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

8-28 Oracle9i XML Developer’s Kits Guide - XDK

Paginating Results: skipRows and maxRows

Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

Paginating Results: skipRows and maxRows

In the examples shown so far, XML SQL Utility (XSU) takes the ResultSet or the
guery and generates the whole document from all the rows of the query. To obtain
100 rows at a time, you would then have to fire off different queries to get the first
100 rows, the next 100, and so on. Also it is not possible to skip the first five rows of
the query and then generate the result.

To obtain the desired results, use the XSU skipRows and maxRowsparameter

settings:

« skipRows parameter, when set, forces the generation to skip the desired
number of rows before starting to generate the result.

« maxRowslimits the number of rows converted to XML.

For example, if you set skipRows to a value of 5 and maxRowsto a value of 10,
then XSU skips the first 5 rows, then generates XML for the next 10 rows.

Keeping the Object Open for the Duration of the User's Session

In Web scenarios, you may want to keep the query object open for the duration of
the user’s session. For example, consider the case of a Web search engine which
gives the results of a user’s search in a paginated fashion. The first page lists 10
results, the next page lists 10 more results, and so on.

To achieve this, request XSU to convert 10 rows at a time and keep the ResultSet
state active, so that the next time you ask XSU for more results, it starts generating
from the place the last generation finished. See "XSU Generating XML Example 3:
Paginating Results: Generating an XML Page (Java)" on page 8-30.

When the Number of Rows or Columns in a Row Is Too Large

There is also the case when the number of rows, or number of columns in a row are
very large. In this case, you can generate multiple documents each of a smaller size.

XML SQL Utility (XSU) 8-29

Paginating Results: skipRows and maxRows

These cases can be handled by using the maxRowsparameter and the
keepObjectOpen function.

keepObjectOpen Function

Typically, as soon as all results are generated, OracleXMLQuery internally closes
the ResultSet |, if it created one using the SQL query string given, since it assumes
you no longer want any more results. However, in the case described earlier, to
maintain that state, you need to call the keepObjectOpen function to keep the
cursor active. See the following example.

XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java)

This example, writes a simple class that maintains the state and generates the next
page each time it is called.

import orgw3c.dom.*;

import oracle.xml.parser.v2.*;

import java.sgl.;

import oracle xml.sgl.query.OracleXMLQuery;,

import javaio*;

public class pageTest

{
Connection conn;
OracleXMLQuery qry;
ResultSet rset;
Statement stmt;
intlastRow=0;

public pageTest(String sqlQuery)
{
try{
conn = getConnection('scott", tiger");
I/stmt = conn.createStatement(ResultSet TYPE_SCROLL SENSITIVE,

I ResultSet CONCUR_READ_ONLY)/ create a scrollable Rset
JIstmt = conn.createStatement(ResultSet TYPE_SCROLL_INSENSITIVE,
I ResultSet CONCUR_READ_ONLY)// create a scrollable Rset

stmt = conn.createStatement();

ResultSet rset = simt.executeQuery(sglQuery); // get the result set..

rsetfirst();

gry = new OracleXMLQuery(conn,rset); // create a OracleXMLQuery instance
qgry.keepCursorState(true); // Don't lose state after the first fetch
gry.setRaiseNoRowsEXxception(true);

gry.setRaiseException(true);

8-30 Oracle9i XML Developer’s Kits Guide - XDK

Paginating Results: skipRows and maxRows

Jeatch(SQLException e){
System.out.printin(e.toString();
}

}

/I Retums the next XML page..!

public String getResult(int startRow, int endRow) throws SQLEXxception

{
lIrsetrelative(lastRow-startRow); / scroll inside the result set
IIrset.absolute(startRow); // scroll inside the result set
gry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
ISystem.out.printin(‘before getan!');
retum gry.getXMLString();

}

I Function to still perform the next page.
public String nextPage() throws SQLException
{
String result = getResult(lastRow,lastRow+10);
lastRow+=10;
retum result;

}

public void close() throws SQLException

{
stmt.close(); // close the statement..

conn.close(); // close the connection
gry.close(); / close the query..
}

public static void main(String(] argv)

{
String str;

try{
pageTest test = new pageTest('select e.* fromemp €');

inti=0;

while ((str = test.getResult(i,i+10))!= null)
{
System.out.printn(str);
H+=10;
}
test.close();

XML SQL Utility (XSU) 8-31

Generating XML from ResultSet Objects

Jeatch(Exception e}
e.printStackTrace(System.out);
}

}
Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}

Generating XML from ResultSet Objects

You saw how you can supply a SQL query and get the results as XML. In the last
example, you retrieved paginated results. However in Web cases, you may want to
retrieve the previous page and not just the next page of results. To provide this
scrollable functionality, you can use the Scrollable ResultSet . Use the ResultSet
object to move back and forth within the result set and use XSU to generate the
XML each time. The following example illustrates how to do this.

XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)

This example shows you how to use the JDBC ResultSet to generate XML. Note
that using the ResultSet might be necessary in cases that are not handled directly
by XSU, for example, when setting the batch size, binding values, and so on. This
example extends the previously defined pageTest class to handle any page.

public class pageTest()
{
Connection conn;
OracleXMLQuery qry;
ResultSet rset;
intlastRow=0;

public pageTest(String sqlQuery)

{
conn = getConnection('scott", tiger");
Statement stmt = conn.createStatement(sglQuery);/ create a scrollable Rset
ResultSet rset = stmt.executeQuery(); // get the result set..

8-32 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML from ResultSet Objects

}

gry = new OracleXMLQuery(conn,rset); // create a OracleXMLQuery instance

gry.keepObjectOpen(true); / Don't lose state after the first fetch

I/ Retums the next XML page..!
public String getResult(int startRow, int endRow)

{

rset.scroll(lastRow-startRow); // scrollinside the result set

gry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!

retum gry.getXMLString();
}

I Function to still perform the next page.

public String nextPage()

{
String result = getResult(lastRow,lastRow+10);
lastRow+=10;
retum result;

}

public void close()

{
stmt.close(); // close the statement..
conn.close(); // close the connection
gry.close(); //close the query..

}

public void main(String[] argv)

{
pageTest test = new pageTest('select * from emp');

inti=0;

while ((str = testgetResult(i,+10))!= null)
{
System.out.printn(str);
H+=10;
}
test.close();

}

XML SQL Utility (XSU) 8-33

Generating XML from ResultSet Objects

XSU Generating XML Example 5: Generating XML from Procedure Return Values

The OracleXMLQuery class provides XML conversion only for query strings or
ResultSets . But in your application if you have PL/SQL procedures that return
REF cursors, how would you do the conversion?

In this case, you can use the earlier-mentioned ResultSet conversion mechanism to
perform the task. REF cursors are references to cursor objects in PL/SQL. These
cursor objects are valid SQL statements that can be iterated upon to get a set of
values. These REF cursors are converted into OracleResultSet objects in the Java
world.

You can execute these procedures, get the OracleResultSet object, and then send
that to the OracleXMLQuery object to get the desired XML.

Consider the following PL/SQL function that defines a REF cursor and returns it:
CREATE OR REPLACE package body testRefis

function testRefCur RETURN empREF is
aempREF,
begin
OPEN a FOR select * from scott.emp;
retuma;
end;
end;
/

Every time this function is called, it opens a cursor object for the query, select *
from emp and returns that cursor instance. To convert this to XML, you can do the
following:

import orgw3c.dom.*;
import oracle xml.parser.v2.%;
import java.sgl.*;
import oracle jdbc.driver;
import oracle xml.sql.query.OracleXMLQuery;
import java.io*;
public class REFCURtest
{
public static void main(String[] argv)
throws SQLException
{
String str;
Connection conn = getConnection('scott’, tiger"); // create connection

8-34 Oracle9i XML Developer’s Kits Guide - XDK

Raising No Rows Exception

I/ Create a ResultSet object by calling the PL/SQL function
CallableStatement stmt =
conn.prepareCall("begin ? = testRef.testRefCur(); end;");

stmtregisterOutParameter(1,0racle Types.CURSORY); // set the define type

stmtexecute(); // Execute the statement.
ResultSet rset = (ResultSet)stmt.getObject(1); // Get the ResultSet

OracleXMLQuery gry = new OracleXMLQuery(conn,rset); // prepare Query class
qry.setRaiseNoRowsEXxception(true);
qry.setRaiseException(true);
qry.keepCursorState(true); // set options (keep the cursor active.
while ((str = qry.getXMLString())!= null)
System.out printin(str);

qry.close(); // close the query..!

I/ Note since we supplied the statement and resultset, closing the

I/ OracleXMLguery instance will not close these. We would need to
Il explicitly close this ourselves..!

stmt.close();

conn.close();

}
/I Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLEXxception
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

To apply the stylesheet, on the other hand, use the applyStylesheet()
command. This forces the stylesheet to be applied before generating the output.

Raising No Rows Exception

When there are no rows to process, XSU simply returns a null string. However, it
might be desirable to get an exception every time there are no more rows present, so
that the application can process this through exception handlers. When the

XML SQL Utility (XSU) 8-35

Raising No Rows Exception

setRaiseNoRowsException () is set, then whenever there are no rows to generate

for the output XSU raises an
oracle.xml.sqgl.OracleXMLSQLNoRowsException
exception and need not be caught unless needed.

XSU Generating XML Example 6: No Rows Exception (Java)

. Thisis a run time

The following code extends the previous examples to use the exception instead of

checking for null strings:

public class pageTest{
... I rest of the class definitions....

public void main(String[] argv)

{
pageTest test = new pageTest('select * from emp');

test.query.setRaiseNoRowsException(true); // ask it to generate
exceptions
try
{
while(true)
System.out printin(test.nextPage());
}
catch(oracle.xml.sql.OracleXMLNoRowsException)
{
System.outprintin(* END OF OUTPUT "),
test.close();
}
}
}

Note: Notice how the condition to check the termination changed
from checking for the result to be NULLto an exception handler.

8-36 Oracle9i XML Developer’s Kits Guide - XDK

Storing XML Back in the Database Using XSU OracleXMLSave

Storing XML Back in the Database Using XSU OracleXMLSave

Now that you have seen how queries can be converted to XML, observe how you
can put the XML back into the tables or views using XSU. The class
oracle.xml.sgl.dml.OracleXMLSave provides this functionality. It has
methods to insert XML into tables, update existing tables with the XML document,
and delete rows from the table based on XML element values.

In all these cases the given XML document is parsed, and the elements are
examined to match tag names to column names in the target table or view. The
elements are converted to the SQL types and then bound to the appropriate
statement. The process for storing XML using XSU is shown in Figure 8-6.

Figure 8—6 Storing XML in the Database Using XML SQL Utility

Storing XML in the Database Using the XML SQL Utility

[3
B
REGISTER
] the table
User / Browser /

Client/
Application

set

the options

insert
XML into
table

Consider an XML document that contains a list of ROW elements, each of which
constitutes a separate DML operation, namely, insert , update, ordelete on the
table or view.

XML SQL Utility (XSU) 8-37

Insert Processing Using XSU (Java API)

Insert Processing Using XSU (Java API)

To insert a document into a table or view, simply supply the table or the view name
and then the document. XSU parses the document (if a string is given) and then
creates an INSERT statement into which it binds all the values. By default, XSU
inserts values into all the columns of the table or view and an absent element is
treated as a NULL value. The following example shows you how the XML document
generated from the emptable, can be stored in the table with relative ease.

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)

This example inserts XML values into all columns:

/I This program takes as an argument the file name, oraur to
Il a properly formated XML document and inserts it into the SCOTT.EMP table.
import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testinsert
{
public static void main(String argv{])
throws SQLException
{
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@","scott", tiger");

OracleXMLSave sav = new OracleXMLSave(conn, "emp");
sav.insertXML(sav.getUr(argv{0));
sav.close();
}
}

An INSERT statement of the form:
insertinto scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,2,2,2,?);

is generated, and the element tags in the input XML document matching the
column names are matched and their values bound.

If you store the following XML document;

<?xmlversion="1..0"?>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>

8-38 Oracle9i XML Developer’s Kits Guide - XDK

Insert Processing Using XSU (Java API)

<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0.0.0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>

<ROW>

<l additional rows ... —>

</ROWSET>

to a file and specify the file to the program described earlier, you would end up
with a new row in the emptable containing the values (7369, Smith, CLERK,
7902, 12/17/1980,800,20). Any element absent inside the row element is
taken as a null value.

XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

In certain cases, you may not want to insert values into all columns. This may be
true when the group of values that you are getting is not the complete set and you
need triggers or default values to be used for the rest of the columns. The code
following shows how this can be done.

Assume that you are getting the values only for the employee number, name, and
job and that the salary, manager, department number, and hire date fields are filled
in automatically. First create a list of column names that you want the insert to
work on and then pass it to the OracleXMLSave instance.

import java.sgl.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testinsert
{
public static void main(String argvi])
throws SQLEXxception
{
Connection conn = getConnection("scott’, tiger");
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp');

String [] colNames = new String[5);

colNames[0] ="EMPNO";

colNames[1] ="ENAME",;

colNames[2]="JOB";

sav.setUpdateColumnList(colNames); // set the columns to update..!

Il Assume that the user passes in this document as the first argument!

XML SQL Utility (XSU) 8-39

Update Processing Using XSU (Java API)

sav.insertXML(argv{0]);
sav.close();
}
Il Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;
}
}

Aninsert statement of the form:
insertinto scot.emp (EMPNO, ENAME, JOB) VALUES (2, 2, ?);

is generated. Note that, in the preceding example, if the inserted document contains
values for the other columns (JOB, HIREDATE , and so on), those are ignored. Also
aninsert is performed for each ROV¢lement that is present in the input. These
inserts are batched by default.

Update Processing Using XSU (Java API)

Now that you know how to insert values into the table from XML documents, see
how you can update only certain values. In an XML document, to update the salary
of an employee and the department that they work in:

<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<SAL>1800</SAL>
<DEPTNO>30</DEPTNO>
<[ROW>
<ROW>
<EMPNO>2290</EMPNO>
<SA[>2000</SAL>
<HIREDATE>12/31/1992</HIREDATE>
<l- additional rows ... =
</ROWSET>

You can use the XSU to update the values. For updates, you must supply XSU with
the list of key column names. These form part of the WHEREIlause in the UPDATE

8-40 Oracle9i XML Developer’s Kits Guide - XDK

Update Processing Using XSU (Java API)

statement. In the emptable shown earlier, employee number (EMPNpcolumn forms
the key. Use this for updates.

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
This example updates table , emp, using keyColumns :

import java.sgl.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testUpdate
{
public static void main(String argv{])
throws SQLException
{
Connection conn = getConnection('scott”, tiger");
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp");

String [] keyColNames = new String[1];
keyColNames[0] ="EMPNO";
sav.setkeyColumnList(keyColNames);

I Assume that the user passes in this document as the first argument!
sav.updateXML(argviOl);

sav.close();

}
/] Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

In this example, two UPDATEstatements are generated. For the first ROV¢lement,
you generate an UPDATEstatement to update the SAL and JOB fields as follows:

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

For the second ROV¢lement:
update scott.emp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XML SQL Utility (XSU) 8-41

Update Processing Using XSU (Java API)

XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

You may want to specify a list of columns to update. This would speed up the
processing since the same UPDATEstatement can be used for all the ROV¢lements.
Also you can ignore other tags in the XML document.

Note: When you specify a list of columns to update, an element
corresponding to one of the update columns, if absent, will be
treated as NULL

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, you can use the setUpdateColumnNames ()
function to set the list of columns to update.

import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testUpdate
{
public static void main(String argv{])
throws SQLException
{
Connection conn = getConnection('scott”, tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp”);

String [] keyColNames = new String[1];
keyColNames[0] = "EMPNO";
sav.setKeyColumnList(keyColNames);

I/'you create the list of columns to update...!

I Note that if you do not supply this, then for each ROW element in the

/I’ XML document, you would generate a new update statement to update all
I/the tag values (other than the key columns)present in that element.

String[] updateColNames = new String[2];

updateColNames[0] ="SAL";

updateColNames[1] ="JOB";
sav.setUpdateColumnList(updateColNames); // set the columns to update..!

Il Assume that the user passes in this document as the first argument!
sav.updateXML(argvio]);

sav.close();

}
I/ Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)

8-42 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (Java API)

throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

Delete Processing Using XSU (Java API)

When deleting from XML documents, you can set the list of key columns. These
columns are used in the WHEREIlause of the DELETEstatement. If the key column
names are not supplied, then a new DELETEstatement is created for each ROW
element of the XML document, where the list of columns in the WHEREIlause of the
DELETEstatement will match those in the ROW element.

XSU Deleting XML Example 11: Deleting Operations Per Row (Java)

Consider this delete example:

import java.sgl.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testDelete
{
public static void main(String argv{])
throws SQLException
{
Connection conn = getConnection("scott”, tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp’);

I Assume that the user passes in this document as the first argument!
sav.deleteXML (argV{0]);
sav.close();
}
/] Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(hew oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}

XML SQL Utility (XSU) 8-43

Delete Processing Using XSU (Java API)

}

Using the same XML document shown previously for the update example, you
would end up with two DELETEstatements:

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;
DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETEstatements were formed based on the tag names present in each ROW
element in the XML document.

XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

If instead, you want the DELETEstatement to only use the key values as predicates,
you can use the setKeyColumn function to set this.

import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testDelete
{
public static void main(String argvi])
throws SQLException
{
Connection conn = getConnection("scott", tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp’);

String [] keyColNames = new String[1];
keyColNames[0] ="EMPNQO";
sav.setkeyColumnList(keyColNames);

Il Assume that the user passes in this document as the first argument!
sav.deleteXML(argV{0]);
sav.close();
}
I/ Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}

8-44 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSU Usage Techniques

Here is a single DELETEstatement of the form:
DELETE FROM scott.emp WHERE EMPNO=?

Advanced XSU Usage Techniques

XSU Exception Handling in Java

OracleXMLSQLException class

XSU catches all exceptions that occur during processing and throws an
oracle.xml.sql.OracleXMLSQLException which is a run time exception. The
calling program thus does not have to catch this exception all the time, if the
program can still catch this exception and do the appropriate action. The exception
class provides functions to get the error message and also get the parent exception,
if any. For example, the program shown later, catches the run time exception and
then gets the parent exception.

OracleXMLNoRowsException class

This exception is generated when the setRaiseNoRowsException is setin the
OracleXMLQuery class during generation. This is a subclass of the
OracleXMLSQLException class and can be used as an indicator of the end of row
processing during generation.

import java.sgl.;
import oracle xml.sgl.query.OracleXMLQuery;,

public class testException

{
public static void main(String argv{])
throws SQLException
{

Connection conn = getConnection("scott", tiger”);

I/Iwrong query this will generate an exception

OracleXMLQuery gry = new OracleXMLQuery(conn, "select * from emp where sd
=322323"%;

qry.setRaiseException(true); // ask it to raise exceptions..!

y{
String str = qry.getXMLString();

XML SQL Utility (XSU) 8-45

Frequently Asked Questions About XML SQL Utility (XSU)

Jeatch(oracle xml.sql.OracleXMLSQLException €)
{

Il Getthe original exception
Exception parent = e.getParentException();
if (parent instanceof java.sgl. SQLException)
{
I perform some other stuff. Here you simply print it out..
System.out printin(* Caught SQL Exception:"+parent.getMessage());
}
else
System.out.printin(* Exception caught..!"+e.getMessage();
}
}

/I Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{

DriverManager.registerDriver(hew oracle jdbc.driver.OracleDriver());
Connection conn =

DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

Frequently Asked Questions About XML SQL Utility (XSU)

This section lists XML SQL Utility (XSU) questions and answers.

What Schema Structure Should | Use with XSU to Store XML?

I have the following XML in my customer.xml

<ROWSET>

<ROW num="1">

<CUSTOMER>
<CUSTOMERID>1044</CUSTOMERID>
<FIRSTNAME>Paul</FIRSTNAME>
<LASTNAME>Astoria< ASTNAME>
<HOMEADDRESS>
<STREET>123 Cheny Lane</STREET>
<CITY>SF</CITY>
<STATE>CA</STATE>
<ZIP>94132</ZIP>

</HOMEADDRESS>

file:

8-46 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)

</CUSTOMER>
</ROW>
</ROWSET>

What database schema structure should | use to store this XML with XSU?

Answer: Since your example is more than one level deep (that is, it has a nested
structure), you should use an object-relational schema. The XML preceding will
canonically map to such a schema. An appropriate database schema would be the

following:

create type address_type as object

(

street varchar2(40),

city varchar2(20),

state varchar2(10),

zip varchar2(10)

)

/

create type customer_type as object
(

customerid number(10),

firstname varchar2(20),

lastname varchar2(20),
homeaddress address_type

)

/

create table customer_tab (customer customer_type);

In the case you wanted to load customer.xml by means of XSU into a relational
schema, you can still do it by creating objects in views on top of your relational
schema.

For example, you would have a relational table which would contain all the
following information:

create table cust_tab

((customerid number(10),
firstname varchar2(20),
lastname varchar2(20),
state varchar2(40),
city varchar2(20),
state varchar2(20),

Zip varchar2(20)

)

XML SQL Utility (XSU) 8-47

Frequently Asked Questions About XML SQL Utility (XSU)

Then, you would create a customer view which contains a customer object on top of
it, as in the following example:

Create view customer_view as

select customer._type(customerid, firsname, lastname,
address_type(state street,city,zip))

from cust _tab;

Finally, you can flatten your XML using XSLT and then insert it directly into your
relational schema. However, this is the least recommended option.

Can XSU Store XML Data Across Tables?

Answer: Currently the XML SQL Utility (XSU) can only store data in a single table.
It maps a canonical representation of an XML document into any table or view. But
there is a way to store XML with XSU across tables. One can do this using XSLT to
transform any document into multiple documents and insert them separately.
Another way is to define views over multiple tables (using object views if needed)
and then do the inserts into the view. If the view is inherently non-updatable
(because of complex joins), then you can use INSTEAD OF triggers over the views
to do the inserts.

Can | Use XSU to Load XML Stored in Attributes?

I would like to use XSU to load XML where some of the data is stored in attributes.
However, XSU seems to ignore the XML attributes. What can | do?

Answer: Unfortunately, for now you will have to use XSLT to transform your XML
document; that is, you must change the attributes into elements. XSU does assume
canonical mapping from XML to a database schema. This takes away a bit from the
flexibility, forcing you to sometimes resort to XSLT, but at the same time, in the
common case, it does not burden you with having to specify a mapping.

Is XSU Case-Sensitive? Can | Use ignoreCase?

8-48

I am trying to insert the following XML document (dual.xml):

<ROWSET>
<row>
<DUMMY>X</DUMMY>
<frow>
</ROWSET>

Oracle9/ XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)

Into the table dual using the command line front end of the XSU, like in this
example:

java OracleXML putxml -filename dualxml dual

I get the following error:
oraclexml.sgl.OracleXMLSQLException: No rows to modify — the row enclosing tag
missing. Specify the correct row enclosing tag.

Answer: By default, XSU is case sensitive, so it looks for the record separator tag
which by default is ROWyet all it can find is row. Another common, related mistake
is to mismatch the case of one of the element tags. For example, if in dual.xml the
tag DUMMWas actually dummythen XSU raises an error stating that it could not
find a matching column in table, dual . So you have two options: use the correct
case or use the ignoreCase feature.

Will XSU Generate the Database Schema from a DTD?

Answer: No. Due to a number of shortcomings of the DTD, this functionality is not
available. The W3C XML Schema recommendation is finalized, but this
functionality is not available yet in XSU.

Can You Provide a Thin Driver Connect String Example for XSU?

I am using the XML SQL Utility command line front end, and | am passing a
connect string but | get a TNS error. Can you provide examples of a thin driver
connect string and an OCI8 driver connect string?

Answer: An example of an JDBC thin driver connect string is:
jdbc:oracle:thin:<user>/<password>@<hostname>:<port number>.<DB SID>;

Furthermore, the database must have an active TCP/IP listener. A valid OCI8
connect string would be:

jdbc:oracle:oci8.<user>/<password>@<hostname>

Does XSU Commit After INSERT, DELETE, or UPDATE?

Does XML SQL Utility commit after it is done inserting, deleting, or updating?
What happens if an error occurs?

XML SQL Utility (XSU) 8-49

Frequently Asked Questions About XML SQL Utility (XSU)

Answer: By default the XSU executes a number of insert , delete , or update
statements at a time. The number of statements batch together and executed at the
same time can be overridden using the setBatchSize feature.

Also, by default XSU does no explicit commits. If autocommit is on (default for the
JDBC connection), then after each batch of statement executions a commit occurs.
You can override this by turning autocommit off and then specifying after how
many statement executions a commit should occur, which can be done using the
setCommitBatch feature.

If an error occurs, XSU rolls back to either the state the target table was in before the
particular call to XSU, or the state right after the last commit made during the
current call to XSU.

Can You Explain How to Map Table Columns to XML Attributes Using XSU?

8-50

Can you explain how to map table columns to XML attributes using XSU?

Answer: From XSU release 2.1.0 you can map a particular column or a group of
columns to an XML attribute instead of an XML element. To achieve this, you have
to create an alias for the column name, and prepend the at sign (@) to the name of
this alias. For example:

* Create afile called select.sgl with the following content :
SELECT empno "@EMPNO", ename, job, hiredate
FROMemp
ORDER BY empno

*Call the XML SQL Utility :
java OracleXML getXML -user "scottfiger\
-conn “jdbc:oraclethin:@myhost1521:0RCL"\
-fleName "select.sgl"

* As a result, the XML document will look like :
<?xmlversion="1.07>
<ROWSET>
<ROW num="1" EMPNO="7369">
<ENAME>SMITH</ENAME>
<JOB>CLERK</JOB>
<HIREDATE>12/17/1980 0:0:.0</HIREDATE>
</ROW>
<ROW num="2" EMPNO="7499">
<ENAME>ALLEN</ENAME>
<JOB>SALESMAN</JOB>
<HIREDATE>2/20/1981 0:0:0</HIREDATE>

Oracle9/ XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)

<ROW>
</ROWSET>

Note: All attributes must appear before any non-attribute.

Since the XML document is created in a streamed manner, the following query:
SELECT ename, empno "@EMPNO", ...

would not generate the expected result. It is currently not possible to load XML data
stored in attributes. You will still need to use an XSLT transformation to change the

attributes into elements. XSU assumes canonical mapping from XML to a database
schema.

XML SQL Utility (XSU) 8-51

Frequently Asked Questions About XML SQL Utility (XSU)

8-52 Oracle9i XML Developer’s Kits Guide - XDK

9

XSQL Pages Publishing Framework

This chapter contains the following sections:

« XSQL Pages Publishing Framework Overview

« Overview of Basic XSQL Pages Features

« Setting Up and Using XSQL Pages in Your Environment
« Overview of All XSQL Pages Capabilities

« Description of XSQL Servlet Examples

« Advanced XSQL Pages Topics

« XSQL Servlet Limitations

« Frequently Asked Questions About the XSQL Servlet

XSQL Pages Publishing Framework 9-1

XSQL Pages Publishing Framework Overview

XSQL Pages Publishing Framework Overview

The Oracle XSQL Pages publishing framework is an extensible platform for easily
publishing XML information in any format you desire. It greatly simplifies
combining the power of SQL, XML, and XSLT to publish dynamic web content
based on database information.

Using the XSQL publishing framework, anyone familiar with SQL can create and
use declarative templates called "XSQL pages" to:

« Assemble dynamic XML "datagrams" based on parameterized SQL queries, and

« Transform these "data pages"” to produce a final result in any desired XML,
HTML, or text-based format using an associated XSLT transformation.

Assembling and transforming information for publishing requires no
programming. In fact, most of the common things you will want to do can be easily
achieved in a declarative way. However, since the XSQL publishing framework is
extensible, if one of the built-in features does not fit your needs, you can easily
extend the framework using Java to integrate custom information sources or to
perform custom server-side processing.

Using the XSQL Pages framework, the assembly of information to be published is
cleanly separated from presentation. This simple architectural detail has profound
productivity benefits. It allows you to:

« Present the same information in multiple ways, including tailoring the
presentation appropriately to the kind of client device making the request
(browser, cellular phone, PDA, and so on).

« Reuse information easily by aggregating existing pages into new ones

« Revise and enhance the presentation independently of the information content
being presented.

What Can | Do with Oracle XSQL Pages?

Using server-side templates — known as "XSQL pages" due to their .xsql

extension — you can publish any information in any format to any device. The
XSQL page processor "engine" interprets, caches, and processes the contents of your
XSQL page templates. Figure 9-1 illustrates that the core XSQL page processor
engine can be "exercised" in four different ways:

« From the command line or in batch using the XSQL Command-Line Utility

« Over the Web, using the XSQL Servlet installed into your favorite web server

9-2 Oracle9i XML Developer’s Kits Guide - XDK

XSQL Pages Publishing Framework Overview

« As part of JSP applications, using <jsp:include> to include a template

« Programmatically, with the XSQLRequest object, the engine’s Java API

Figure 9—1 Understanding the Architecture of the XSQL Pages Framework

Web Server

Servliet Engine

X5QLServlet Eee
X5QL Page Processor e b
HhL Parserf| XML 50L §XSLT Processor) [JDBC
. Javavm
— XSQLCommandLine | <jsprinclude>
xsgl .jsp
— X5QLRequest | <jspiforward:

The same XSQL page templates can be used in any or all of these scenarios.
Regardless of the means by which a template is processed, the same basic steps
occur to produce a result. The XSQL page processor "engine":

1. Receives a request to process an XSQL template

2. Assembles an XML "datagram" using the result of one or more SQL queries
3. Returns this XML "datagram" to the requestor

4. Optionally transforms the "datagram" into any XML, HTML, or text format

During the transformation step in this process, you can use stylesheets that conform
to the W3C XSLT 1.0 standard to transform the assembled "datagram” into
document formats like:

« HTML for browser display

« Wireless Markup Language (WML) for wireless devices

« Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams
« XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF

XSQL Pages Publishing Framework 9-3

XSQL Pages Publishing Framework Overview

« Text documents, like emails, SQL scripts, Java programs, and so on.
« Arbitrary XML-based document formats

XSQL Pages bring this functionality to you by automating the use of underlying
Oracle XML components to solve many common cases without resorting to custom
programming. However, when only custom programming will do — as we’ll see in
the Advanced Topics section of this chapter — you can augment the framework’s
built-in actions and serializers to assemble the XSQL "datagrams” from any custom
source and serialize the datagrams into any desired format, without having to write
an entire publishing framework from scratch.

See Also:

« Chapter A, "XDK for Java: Specifications and Quick References"
for the XSQL Servlet specifications and cheat sheets.

« XSQL Servlet Release Notes on OTN at:
http://otn.oracle.com/tech/xml

Where Can | Obtain Oracle XSQL Pages?

XSQL Servlet is provided with Oracle9i and is also available for download from the
OTN site: http://otn.oracle.com/tech/xml.

Where indicated, the examples and demos described in this chapter are also
available from OTN.

What's Needed to Run XSQL Pages?

To run the Oracle XSQL Pages publishing framework from the command-line, all
you need is aJava VM (1.1.8, 1.2.2, or 1.3). The XSQL Pages framework depends on
two underlying components in the Oracle XML Developer’s Kit:

« Oracle XML Parser and XSLT Processor (xmlparserv2.jar)
« Oracle XML SQL Utility (xsul2.jar)

Both of their Java archive files must be present in the CLASSPATH where the XSQL
pages framework is running. Since most XSQL pages will connect to a database to
guery information for publishing, the framework also depends on a JDBC driver.
Any JDBC driver is supported, but when connecting to Oracle, it’s best to use the
Oracle JDBC driver (classes12.jar) for maximum functionality and
performance.

9-4 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features

Lastly, the XSQL publishing engine expects to read its configuration file named
XSQLConfig.xml as alJava resource, so you must include the directory where the
XSQLConfig.xml file resides in the CLASSPATH as well.

To use the XSQL Pages framework for Web publishing, in addition to the preceding
you need a web server that supports Java Servlets. The following is the list of web
servers with Servlet capability on which the XSQL Servlet has been tested:

Oracle9i Internet Application Server v1.x and v2.x

Oraclei Oracle Servlet Engine

Allaire JRun 2.3.3 and 3.0.0

Apache 1.3.9 or higher with JServ 1.0/1.1 or Tomcat 3.1/3.2 Servlet Engine
Apache Tomcat 3.1 or 3.2 Web Server + Servlet Engine

Caucho Resin 1.1

Java Web Server 2.0

Weblogic 5.1 Web Server

NewAtlanta ServletExec 2.2 and 3.0 for 11S/PWS 4.0

Oracle8i Lite Web-to-Go Server

Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

Note: For security reasons, when installing XSQL Servlet on your
production web server, make sure XSQLConfig.xml file does not
reside in a directory that is part of the web server’s virtual directory
hierarchy. Failure to take this precaution risks exposing your
configuration information over the web.

For details on installing, configuring your environment, and running XSQL Servlet
and for additional examples and guidelines, see the XSQL Servlet “Release Notes”
on OTN at http://otn.oracle.com/tech/xml

Overview of Basic XSQL Pages Features

In this section, we’ll get take a brief look at the most basic features you can exploit
in your server-side XSQL page templates:

« Producing XML Datagrams from SQL Queries

XSQL Pages Publishing Framework 9-5

Overview of Basic XSQL Pages Features

« Transforming the XML Datagram into an Alternative XML Format

« Transforming the XML Datagram into HTML for Display

Producing XML Datagrams from SQL Queries

It is extremely easy to serve database information in XML format over the Web
using XSQL pages. For example, let’s see how simple it is to serve a real-time XML
“datagram” from Oracle9i, of all available flights landing today at JFK airport.
Using Oracle JDeveloper, or your favorite text editor, just build an XSQL page
template like the one following, and save it in a file named,
AvailableFlightsToday.xsql :

<?xml version="1.0"?>
<xsgl:query connection="dema" bind-params="City" xmIns:xsgl="um:oracle-xsql">
SELECT Carrier, FightNumber, Origin, TO_CHAR(ExpectedTime,HH24:MI’) AS Due
FROM FlightSchedule
WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arived ='N'
AND Destination =7 /*The ?is a bind variable being bound */
ORDER BY ExpectedTime /o the value of the City parameter */
</xsgl:query>

With XSQL Servlet properly installed on your web server, you just need to copy the
AvailableFlightsToday.xsql file preceding to a directory under your web
server’s virtual directory hierarchy. Then you can access the template through a
web browser by requesting the URL:

http:/yourcompany.com/AvailableFlightsToday xsal?City=JFK

The results of the query in your XSQL page are materialized automatically as XML
and returned to the requestor. This XML-based “datagram” would typically be
requested by another server program for processing, but if you are using a browser
such as Internet Explorer 5.0, you can directly view the XML result as shown in
Figure 9-2.

9-6 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features

Figure 9-2 XML Result From XSQL Page (AvailableFlightsToday.xsq) Query

a hitp:# localhost/examples/AvailableFlightsT oday_xsql ?City=JFK - Microsoft Internet ... [lj[=] E3

J-‘:"-EldeSS I@ http: / /localhost/eramples/dyvailableFlights T odan, xeql ?Citn=JF K, "l IZ‘J'}GU |J Eie >

<?xml version="1.0" 7=
- =ROWSET =
- =ROW num="1"=
<CARRIER>VS</CARRIER >
<FLIGHTMNUMBER. = 344 = /FLIGHTMNUMBER =
<ORIGIN=London</ORIGIMN=
<DUE=>16:10</DUE=
< /RO =
- =ROW num="2"=
<CARRIER=LH=/CARRIER >
<FLIGHTNUMBER. = 466 < /FLIGHTNUMBER =
<ORIGIN=Frankfurt=/CRIGIMN=>
<DUE=21:33=/DUE=
</ROW =
- =ROW num="3"=
<CARRIER=UA</CARRIER >
<FLIGHTMNUMBER =32 < /FLIGHTNUMBER. =
<JRIGIMN=%an Francisco=/0ORIGIMN:=
<DIUE=23:54</DUE=
< /RO =
< JROWSET =

|@ Done I_I_ 25 Local intranst

|»

(12 |

Let’s take a closer look at the "anatomy" of the XSQL page template we used. Notice
the XSQL page begins with:

<?xmlversion="1.0"?>

This is because the XSQL template is itself an XML file (with an *.xsql extension)
that contains any mix of static XML content and XSQL "action elements”. The
AvailableFlightsToday.xsql example preceding contains no static XML

XSQL Pages Publishing Framework 9-7

Overview of Basic XSQL Pages Features

elements, and just a single XSQL action element <xsql:query> . It represents the
simplest useful XSQL page we can build, one that just contains a single query.

Notice that the first (and in this case, only!) element in the page <xsql:query>
includes a special attribute that declares the xsql namespace prefix as a "synonym"
for the Oracle XSQL namespace identifier urn:oracle-xsql

<xsgl:query connection="demo" bind-params="City" xmins:xsgl="um:oracle-xsql” >

This first, outermost element — known at the "document element" — also contains
aconnection attribute whose value "demo" is the name of one of the pre-defined
connections in the XSQLConfig.xml configuration file;

<xsqlquery connection="demo" bind-params="City" xmins:xsg="um:oracle-xsqgl>

The details concerning the username, password, database, and JDBC driver that
will be used for the "demo" connection are centralized into the configuration file.
Setting up these connection definitions is discussed in a later section of this chapter.

Lastly, the <xsql:query> element contains a bind-params attribute that
associates the values of parameters in the request by name to bind parameters
represented by question marks in the SQL statement contained inside the
<xsql:query> tag.

Note that if we wanted to include more than one query on the page, we’ll need to
invent an XML element of our own creation to "wrap" the other elements like this:

<?xml version="1.0"?>
<page connection="demo" xmins:xsgl="um:oracle-xsql">
<xsgl:query bind-params="City">
SELECT Carrier, FightNumber, Origin, TO_CHAR(ExpectedTime,HH24:MI’) AS Due
FROM HlightSchedule
WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arived ='N'
AND Destination=? /*The ?is a bind variable being bound */
ORDER BY ExpectedTime /*to the value of the City parameter */
</xsql:query>
<I- Other xsgl:query actions can go here inside <page> and </page> —>
<lpage>

Notice in this example that the connection attribute and the xsql namespace
declaration always go on the document element, while the bind-params is specific
to the <xsqgl:query> action.

9-8 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features

Transforming XML Datagrams into an Alternative XML Format

If the canonical <ROWSETand <ROW>ML output from Figure 9-2 is not the XML
format you need, then you can associate an XSLT stylesheet to your XSQL page
template to transform this XML "datagram” in the server before returning the
information in any alternative format desired.

When exchanging data with another program, typically you will agree in advance
with the other party on a specific Document Type Descriptor (DTD) that describes
the XML format you will be exchanging. A DTD is in effect, a "schema" definition. It
formally defines what XML elements and attributes that a document of that type
can have.

Let’s assume you are given the flight-list.dtd definition and are told to
produce your list of arriving flights in a format compliant with that DTD. You can
use a visual tool such as Extensibility's “XML Authority” to browse the structure of
the flight-list DTD as shown in Figure 9-3.

Figure 9-3 Exploring the "industry standard" flight-list.dtd using Extensibility’s XML
Authority

E.,""_-. fhight-hst.dtd - XML Authonty

File Edit iew Toolz Wincow Help

- == | ' Crerviewy 68 Element Types =] Attributes Advanced [4 Motes |
Add Module. .
O otd o o . .
o) TN flight-list ——— flight+ arrives
- = Lo b
£l flight
=1 aitline 4]
i =1 number -
L@ artives 0 Element Type L Elem.|CnntentMndel |Attr|butes
s [lightlist [[ight+)
s flight C ¥ tarrives) aitling, number
& atrives = |
- C_ O

This shows that the standard XML formats for Flight Lists are:

« <flight-list> element, containing one or more...

XSQL Pages Publishing Framework 9-9

Overview of Basic XSQL Pages Features

« <flight> elements, having attributes airline and number, each of which
contains an...

« <arrives> element.

By associating the following XSLT stylesheet, flight-list.xsl , With the XSQL
page, you can change the default <ROWSETand <ROW=>ormat of your arriving
flights into the "industry standard” DTD format.

<l- XSLT Stylesheet to transform ROWSET/ROW results into fiightist format —

<flight-list xmins:xsk="http:/Amwv.w3.0rg/1999/XSL/ Transform
xshversion="1.0" >
<xslfor-each select="ROWSET/ROW>
<fight airiine=" {CARRIER} "number=" {FLIGHTNUMBER}>
<arrives> <xslvalue-of select="DUE"/> </amives>

<fight>

</xslfor-each>
<flight-list>
The stylesheet is a template that includes the literal elements that you want
produced in the resulting document, such as, <flight-list> , <flight> ,and
<arrives> , interspersed with special XSLT "actions" that allow you to do the
following:

« Loop over matching elements in the source document using <xsl:for-each>

« Plug in the values of source document elements where necessary using
<xsl:value-of>

« Plug in the values of source document elements into attribute values using
{something}

Note two things have been added to the top-level <flight-list> element in the
stylesheet:

« xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"

This defines the XML Namespace (xmlIns) named "xsl" and identifies the
uniform resource locator string that uniquely identifies the XSLT specification.
Although it looks just like a URL, think of the string
http://www.w3.0rg/1999/XSL/Transform as the "global primary key"
for the set of elements that are defined in the XSLT 1.0 specification. Once the
namespace is defined, we can then make use of the <xsl:XXX> action elements
in our stylesheet to loop and plug values in where necessary.

« Xxsl:version="1.0"

9-10 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features

This attribute identifies the document as an XSLT 1.0 stylesheet. A version
attribute is required on all XSLT Stylesheets for them to be valid and recognized
by an XSLT Processor.

Associate the stylesheet to your XSQL Page by adding an <?xml-stylesheet?>
processing instruction to the top of the page as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xs|" href="flight-list.xsl"?>
<xsgl:query connection="dema" bind-params="City" xmIns:xsgl="um:oracle-xsql">
SELECT Carrier, FightNumber, Origin, TO_CHAR(ExpectedTime,HH24:MI’) AS Due
FROM HlightSchedule
WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived ='N'
AND Destination="? /*The ?is a bind variable being bound */
ORDER BY ExpectedTime /o the value of the City parameter */
</xsql:query>

This is the W3C Standard mechanism of associating stylesheets with XML
documents (http://www.w3.org/ TR/xml-stylesheet). Specifying an associated
XSLT stylesheet to the XSQL page causes the requesting program or browser to see
the XML in the “industry-standard” format as specified by flight-list.dtd you
were given as shown in Figure 9-4.

XSQL Pages Publishing Framework 9-11

Overview of Basic XSQL Pages Features

Figure 9—4 XSQL Page Results in "industry standard” XML Format

; http: / /localhost/examples/AvailableFlights T oday_xsql ?City=JF___ =] B3

J.ﬂ-.gldress I@ kittp: AlocalhostAexarnplesty ailableFlight vI o Go |J File

=7?xml version="1.0" encoding="UTF-38" 7=
- =<flight-list=
- =flight airline="¥8" number="344"=
<arrives=16:10=/arrives=
</flight=>
- =flight airline="LH" number="466"=
<arrives=21:33</arrives:=
</flight>
- =flight airline="UA" number="32"=
<arrives=23:54</arrives>
</flight=>
< /flight-list=

-

=== =

Transforming XML Datagrams into HTML for Display

To return the same XML information in HTML instead of an alternative XML
format, simply use a different XSLT stylesheet. Rather than producing elements like
<flight-list> and <flight> | your stylesheet produces HTML elements like
<table> , <tr> ,and <td> instead. The result of the dynamically queried
information would then look like the HTML page shown in Figure 9-5. Instead of
returning “raw” XML information, the XSQL Page leverages server-side XSLT
transformation to format the information as HTML for delivery to the browser.

9-12 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features

Figure 9-5 Using an Associated XSLT Stylesheet to Render HTML

“F http:localhostfezamples/Axailoble Mights Teday. x5l ?Cily—ITKbxml-strleshe. .. = E3

Aodrezz £ Fighez | odoy. 4207/ kp=dHb | sk cshoo=Ihcht diclag xclﬂ sl Sl m

=

& VS 344 16:10
LH 466 21:33
UA 32 23:54

-]
&] Zon= &3 Lozal inlr=-et
Similar to the syntax of the flight-list.xsl stylesheet, the
flight-display.xsl stylesheet looks like a template HTML page, with
<xsl:for-each>, <xsl:value-of> and attribute value templates like {DUE}

to plug in the dynamic values from the underlying <ROWSETand <ROW>
structured XML query results.

XSQL Pages Publishing Framework 9-13

Overview of Basic XSQL Pages Features

<l- XSLT Stylesheet to transform ROWSET/ROW resullts into HTML —>
<html xmins:xsk="http/Amwv.w3.0rg/1999/XSL/ Transform” xslversion="1.0" >
<head><link rel="stylesheet" type="text/css" href="fights.css" /><head>
<body>
<center><table border="0">
<tr><th>Hlight</th><th>Amives<fh></r>
<xslfor-each select="ROWSET/ROW">
<tr>
<td>
<table border="0" cellspacing="0" cellpadding="4">
<tr>
<td></td>
<td width="180">
<xslvalue-of select="CARRIER'/>
<xsltext> </xsltext>
<xslvalue-of select="FLIGHTNUMBER'/>
<ftd>
<fr>
<ftable>
<fto>
<td align="center"> <xslvalue-of select="DUE"/> <ftd>
<fr>
</xslfor-each>
<ftable></center>

</body>
<htmb>

Note: The stylesheet looks exactly like HTML, with one tiny
difference. It is well-formed HTML. This means that each opening
tag is properly closed (for example, <td>...</td>) and that empty
tags use the XML empty element syntax
 instead of just
.

You can see that by combining the power of:

« Parameterized SQL statements to select any information you need from our
Oracle database,

« Industry-standard XML as a portable, interim data exchange format

« XSLT to transform XML-based "data pages"” into any XML- or HTML-based
format you need

9-14 Oracle9i XML Developer’s Kits Guide - XDK

Setting Up and Using XSQL Pages in Your Environment

you can achieve very interesting and useful results quickly. You will see in later
sections that what you have seen earlier is just scratching the surface of what you
can do using XSQL pages.

Note: For a detailed introduction to XSLT and a thorough tutorial
on how to apply XSLT to many different Oracle database scenarios,
see "Building Oracle XML Applications", by Steve Muench, from
O’Reilly and Associates.

Setting Up and Using XSQL Pages in Your Environment

You can develop and use XSQL pages in a variety of ways. We start by describing
the easiest way to get started, using Oracle JDeveloper, then cover the details you’ll
need to understand to use XSQL pages in your production environment.

Using XSQL Pages with Oracle JDeveloper

The easiest way to work with XSQL pages during development is to use Oracle
JDeveloper. Versions 3.1 and higher of the JDeveloper IDE support color-coded
syntax highlighting, XML syntax checking, and easy testing of your XSQL pages. In
addition, the JDeveloper 3.2 release supports debugging XSQL pages and adds new
wizards to help create XSQL actions.

To create an XSQL page in a JDeveloper project, you can:

« Click the plus icon at the top of the navigator to add a new or existing XSQL
page to your project

« Select File | New... and select "XSQL" from the "Web Objects" tab of the gallery

To get assistance adding XSQL action elements like <xsql:query> to your XSQL
page, place the cursor where you want the new element to go and either:

« Select XSQL Element... from the right mouse menu, or
« Select Wizards | XSQL Element... from the IDE menu.

The XSQL Element wizard takes you through the steps of selecting which XSQL
action you want to use, and which attributes you need to provide.

To syntax-check an XSQL page template, you can select Check XML Syntax... at any
time from the right-mouse menu in the navigator after selecting the name of the
XSQL page you’d like to check. If there are any XML syntax errors, they will appear
in the message view and your cursor will be brought to the first one.

XSQL Pages Publishing Framework 9-15

Setting Up and Using XSQL Pages in Your Environment

To test an XSQL page, simply select the page in the navigator and choose Run from
the right-mouse menu. JDeveloper automatically starts up a local Web-to-go web
server, properly configured to run XSQL pages, and tests your page by launching
your default browser with the appropriate URL to request the page. Once you’ve
run the XSQL page, you can continue to make modifications to it in the IDE — as
well as to any XSLT stylesheets with which it might be associated — and after
saving the files in the IDE you can immediately refresh the browser to observe the
effect of the changes.

Using JDeveloper, the "XSQL Runtime” library should be added to your project’s
library list so that the CLASSPATH is properly setup. The IDE adds this entry
automatically when you go through the New Object gallery to create a new XSQL
page, but you can also add it manually to the project by selecting Project | Project
Properties... and clicking on the "Libraries" tab.

Setting the CLASSPATH Correctly in Your Production Environment

Outside of the JDeveloper environment, you need to make sure that the XSQL page
processor engine is properly configured to run. Oracle9i comes with the XSQL
Servlet pre-installed to the Oracle HTTP Server that accompanies the database, but
using XSQL in any other environment, you’ll need to ensure that the Java
CLASSPATH is setup correctly.

There are three "entry points" to the XSQL page processor:

« oracle.xml.xsql.XSQLServlet , the servlet interface
« oracle.xml.xsql.XSQLCommandLine , the command-line interface
« oracle.xml.xsql.XSQLRequest , the programmatic interface

Since all three of these interfaces, as well as the core XSQL engine itself, are written
in Java, they are very portable and very simple to setup. The only setup
requirements are to make sure the appropriate JAR files are in the CLASSPATH of
the JavaVM that will be running processing the XSQL Pages. The JAR files include:

« oraclexsgl.jar , the XSQL page processor

« xmlparserv2.jar , the Oracle XML Parser for Java v2
« xsul2.jar ,the Oracle XML SQL utility

« classesl2.jar , the Oracle JDBC driver

In addition, the directory where XSQL Page Processor's configuration file
XSQLConfig.xml resides must also be listed as a directory in the CLASSPATH.

9-16 Oracle9i XML Developer’s Kits Guide - XDK

Setting Up and Using XSQL Pages in Your Environment

Putting all this together, if you have installed the XSQL distribution in C:\xsgl
then your CLASSPATH would appear as follows:

Cxsqlib\classes12.classes12 jar,C:sgNibmiparsen2 jar;
C:\xsgibixsu12 jar;C:\xsNib\oraclexsgl.jar;
directory where XSQLConfig.xml_resides

On Unix, if you extracted the XSQL distribution into your /web directory, the
CLASSPATH would appear as follows:

Mvebixsgllibiclasses12 jarclasses12 jarivebixsqllibixmiparsen2 jar:
Avebixsgllibixsul2 jar-Avebixsallib/oraclexsal jar:
directory where_XSQLConfig.xml_resides

To use the XSQL Servlet, one additional setup step is required. You must associate
the .xsql file extension with the XSQL Servlet's java class
oracle.xml.xsgl.XSQLServlet . How you set the CLASSPATH of the web
server's servlet environment and how you associate a Servlet with a file extension
are done differently for each web server. The XSQL Servlet's Release Notes contain
detailed setup information for specific web servers you might want to use with
XSQL Pages.

Setting Up the Connection Definitions

XSQL pages refer to database connections by using a “nickname” for the connection
defined in the XSQL configuration file. Connection names are defined in the
<connectiondefs> section of XSQLConfig.xml file like this:

<connectiondefs>

<connection name=" demo™>

<usemame> scott </usemame>

<password> tiger </password>

<dburl> jdbc:oracle:thin:@localhost:1521:testDB </dbur>
<driver> oracle.jdbc.driver.OracleDriver </driver>
<autocommit>true</autocommit>

</connection>

<connection name=" ite ">

<usemame> system <fusemame>

<password> manager </password>

<dburt> jdbe:Polite:POlite </dbur>
<driver> oracle.lite.poljdbc.POLIDBCDriver </driver>
</connection>

</connectiondefs>

For each connection, you can specify five pieces of information:

XSQL Pages Publishing Framework 9-17

Setting Up and Using XSQL Pages in Your Environment

<username>
<password>

<dburl> , the JDBC connection string

A o

<driver> | the fully-qualified class name of the JDBC driver to use
5. <autocommit> , optionally forces the autocommit to true or false

If the <autocommit> element is omitted, then the XSQL page processor will use
the JDBC driver’s default setting of the AutoCommit flag.

Any number of <connection> elements can be placed in this file to define the
connections you need. An individual XSQL page refers to the connection it wants to
use by putting a connection=" xxx” attribute on the top-level element in the page
(also called the “document element”).

Note: For security reasons, when installing XSQL Servlet on your
production web server, make sure the XSQLConfig.xml file does
not reside in a directory that is part of the web server’s virtual
directory hierarchy. Failure to take this precaution risks exposing
your configuration information over the web.

Using the XSQL Command-Line Utility

Often the content of a dynamic page will be based on data that is not frequently
changing in your environment. To optimize performance of your web publishing,
you can use operating system facilities to schedule offline processing of your XSQL
pages, leaving the processed results to be served statically by your web server.

You can process any XSQL page from the command line using the XSQL
command-line utility. The syntax is:

$ java oracle xmlxsgl.XSQLCommandLine xsqpage [outfie [paraml=valuel ..
If an outfile s specified, the result of processing xsqglpage is written to it,
otherwise the result goes to standard out. Any number of parameters can be passed
to the XSQL page processor and are available for reference by the XSQL page being

processed as part of the request. However, the following parameter names are
recognized by the command-line utility and have a pre-defined behavior:

« xml-stylesheet= stylesheetURL

9-18 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

Provides the relative or absolute URL for a stylesheet to use for the request.
Also can be set to the string none to suppress XSLT stylesheet processing
for debugging purposes.

« posted-xml= XMLDocumentURL

Provides the relative or absolute URL of an XML resource to treat as if it
were posted as part of the request.

« useragent= UserAgentString

Used to simulate a particular HTTP User-Agent string from the command
line so that an appropriate stylesheet for that User-Agent type will be
selected as part of command-line processing of the page.

The ?/xdk/java/xsql/bin directory contains a platform-specific command script to
automate invoking the XSQL command-line utility. This script sets up the Java
runtime to run oracle.xml.xsql. XSQLCommandLine class.

Overview of All XSQL Pages Capabilities

So far we’ve only seen a single XSQL action element, the <xsql:query> action.
This is by far the most popular action, but it is not the only one that comes built-in
to the XSQL Pages framework. We explore the full set of functionality that you can
exploit in your XSQL pages in the following sections.

Using All of the Core Built-in Actions

This section provides a list of the core built-in actions, including a brief description
of what each action does, and a listing of all required and optional attributes that
each supports.

The <xsql:query> Action

The <xsqgl:query> action element executes a SQL select statement and includes a
canonical XML representation of the query’s result set in the data page. This action
requires a database connection to be provided by supplying a connection=" connname"
attribute on the document element of the XSQL page in which it appears.

The syntax for the action is:

<xsgl:query>
SELECT Statement

</xsql:query>

XSQL Pages Publishing Framework 9-19

Overview of All XSQL Pages Capabilities

Any legal SQL select statement is allowed. If the select statement produces no rows,
a "fallback” query can be provided by including a nested <xsql:no-rows-query>
element like this:

<xsgl:query>
SELECT Statement
<xsgl:no-rows-query>
SELECT Statement to use if outer query retums no rows
</xsgl:no-rows-query>
</xsgl:query>

An <xsglno-rows-query> element can itself contain nested <xsgino-rows-query>
elements to any level of nesting. The options available on the

<xsgl:no-rows-query> are identical to those available on the <xsgl:query> action
element.

By default, the XML produced by a query will reflect the column structure of its
resultset, with element names matching the names of the columns. Columns in the
result with nested structure like:

« Object Types
« Collection Types
« CURSOR Expressions

produce nested elements that reflect this structure. The result of a typical query
containing different types of columns and returning one row might look like this:

<ROWSET>
<ROWid="1">
< VARCHARCOWalue</ VARCHARCOL
< NUMBERCOL2345</ NUMBERCGOL
< DATECOBI2/10200110:1322</ ~ DATECO
< OBJECTCO:
< ATTRBVaue</ ATTRE
< ATTR2Vaue</ ATTR2
</ OBJECTCO:
< COLLECTIONCOL
< COLLECTIONCOUTEM>
< ATTRBValue</ ATTRD
< ATTR2Value</ ATTR2
</ COLLECTIONCOUTEM>
< COLLECTIONCOIUTEM>
ATTRBVaue</ ATTRB
ATTR2Vaue</ ATTR2
< COLLECTIONCOUTEM>

AAY

9-20 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

</ COLLECTIONCOCL
< CURSORCOL
< CURSORCOROW>
< COLPVauel<s COLP
< COL2Vaue2</ COoL2
< CURSORCOROW>
</ CURSORCOL
</ROW>
</ROWSET>

A <ROWelement will repeat for each row in the result set. Your query can use
standard SQL column aliasing to rename the columns in the result, and in doing so
effectively rename the XML elements that are produced as well. Note that such
column aliasing is required for columns whose names would otherwise be an illegal
name for an XML element.

For example, an <xsql:query> action like this:
<xsgl:query>SELECT TO_CHAR(hiredate, DD-MON') FROM EMP</xsgl:query>
would produce an error because the default column name for the calculated

expression will be an illegal XML element name. You can fix the problem with
column aliasing like this:

<xsgl:query>SELECT TO_CHAR(hiredate, DD-MON) as hiredate FROM EMP</xsgl:query>

The optional attributes listed in Table 9-1 can be supplied to control various aspects
of the data retrieved and the XML produced by the <xsql:query> action.

Table 9-1 Attributes for <xsql:query>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL

statement.
date-format = "string" Date format mask to use for formatted date column/attribute
values in XML being queried. Valid values are those
documented for the java.text.SimpleDateFormat class.
error-statement = "boolean" If set to no, suppresses the inclusion of the offending SQL

statement in any <xsql-error> element generated. Valid
values are yes and no. The default value is yes .

XSQL Pages Publishing Framework 9-21

Overview of All XSQL Pages Capabilities

Table 9-1 Attributes for <xsql:query>

Attribute Name

Description

fetch-size = "integer"

Number of records to fetch in each round-trip to the database.
If not set, the default value is used as specified by the
/XSQLConfig/processor/default-fetch-size

configuration setting in XSQLConfig.xml

id-attribute = "string"

XML attribute name to use instead of the default numattribute
for uniquely identifying each row in the result set. If the value
of this attribute is the empty string, the row id attribute is
suppressed.

id-attribute-column = "string"

Case-sensitive name of the column in the result set whose
value should be used in each row as the value of the row id
attribute. The default is to use the row count as the value of the
row id attribute.

include-schema = "boolean"

If set to yes, includes an inline XML schema that describes the
structure of the result set. Valid values are yes and no. The
default value is no.

max-rows = "integer"

Maximum number of rows to fetch, after optionally skipping
the number of rows indicated by the skip-rows attribute. If
not specified, default is to fetch all rows.

null-indicator = "boolean"

Indicates whether to signal that a column's value is NULL by
including the NULL="Y" attribute on the element for the
column. By default, columns with NULL values are omitted
from the output. Valid values are yes and no. The default
value is no.

row-element = "string"

XML element name to use instead of the default <ROW>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROW>
element for each row in the result set.

rowset-element = "string"

XML element name to use instead of the default <ROWSET>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROWSET>
element.

skip-rows = "integer"

Number of rows to skip before fetching rows from the result
set. Can be combined with max-rows for stateless paging
through query results.

tag-case = "string"

Valid values are lower and upper . If not specified, the default
is to use the case of column names as specified in the query as
corresponding XML element names.

9-22 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

The <xsqgl:dml> Action

You can use the <xsgidmi> action to perform any DML or DDL operation, as well as
any PL/SQL block. This action requires a database connection to be provided by
supplying a connection=" connname" attribute on the document element of the XSQL
page in which it appears.

The syntax for the action is:

<xsgl:dmb>
DML Statement or DDL Statement or PL/SQL Block
</xsgl:dmk>

Table 9-2 lists the optional attributes that you can use on the <xsgldmt> action.

Table 9-2 Attributes for <xsql:dml>

Attribute Name Description

commit = "boolean" If set to yes , calls commit on the current connection after a
successful execution of the DML statement. Valid values are
yes and no. The default value is no.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no, suppresses the inclusion of the offending SQL
statement in any <xsgl-error> element generated. Valid
values are yes and no. The default value is yes .

The <xsql:ref-cursor-function> Action

The <xsql:ref-cursor-function> action allows you to include the XML results
produced by a query whose result set is determined by executing a PL/SQL stored
function. This action requires a database connection to be provided by supplying a
connection=" connname” attribute on the document element of the XSQL page in
which it appears.

By exploiting PL/SQL’s dynamic SQL capabilities, the query can be dynamically
and/or conditionally constructed by the function before a cursor handle to its result

set is returned to the XSQL page processor. As its name implies, the return value of
the function being invoked must be of type REF CURSOR

XSQL Pages Publishing Framework 9-23

Overview of All XSQL Pages Capabilities

The syntax of the action is:
<xsgl:ref-cursor-function>

[SCHEMA.JJPACKAGE JFUNCTION_NAME(&rgs):
</xsgl:ref-cursor-function>

With the exception of the fetch-size attribute, the optional attributes available for
the <xsql:ref-cursor-function> action are exactly the same as for the
<xsqgl:query> action that are listed Table 9-1.

For example, consider the PL/SQL package:

CREATE OR REPLACE PACKAGE DynCursor IS
TYPE ref_cursor IS REF CURSOR,;
FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor IS
the_cursor ref_cursor;
BEGIN
- Conditionally retum a dynamic query as a REF CURSOR
IFid=1THEN
OPENthe_cursor
FOR 'SELECT empno, ename FROM EMP’; — An EMP Query
ELSE
OPEN the_cursor
FOR 'SELECT dname, deptno FROM DEPT', — A DEPT Query
ENDIF;
RETURN the_cursor,
END;
END;

An <xsql:ref-cursor-function> can include the dynamic results of the REF
CURSOR returned by this function by doing:

<xsgl:ref-cursor-function>

DynCursor.DynamicQuery(1);
</xsgl:ref-cursor-function>

The <xsgl:include-owa> Action

The <xsqgl:include-owa> action allows you to include XML content that has been
generated by a database stored procedure. This action requires a database
connection to be provided by supplying a connection=" connname" attribute on the
document element of the XSQL page in which it appears.

9-24 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

The stored procedure uses the standard Oracle Web Agent (OWA) packages (HTP
and HTF) to "print" the XML tags into the server-side page buffer, then the XSQL
page processor fetches, parses, and includes the dynamically-produced XML
content in the data page. The stored procedure must generate a well-formed XML
page or an appropriate error is displayed.

The syntax for the action is:

<xsglinclude-owa>
PL/SQL Block invoking a procedure that uses the HTP and/or HTF packages
</xsglinclude-owa>

Table 9-3 lists the optional attributes supported by this action.

Table 9-3 Attributes for <xsql:include-owa>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no, suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no. The default value is yes .

Using Bind Variables

To parameterize the results of any of the preceding actions, you can use SQL bind
variables. This allows your XSQL page template to produce different results based
on the value of parameters passed in the request. To use a bind variable, simply
include a question mark anywhere in the statement where bind variables are
allowed by SQL. For example, your <xsql:query> action might contain the select
statement:

SELECT sticker as "Symboal", slast_traded price as "Price”
FROM latest_stocks s, customer_portfolio p

WHERE p.customer_id = ?
AND s.ticker = p.ticker

Using a question mark to create a bind-variable for the customer id. Whenever the
SQL statement is executed in the page, parameter values are bound to the bind
variable by specifying the bind-params attribute on the action element. Using the
example preceding, we could create an XSQL page that binds the indicated bind
variables to the value of the custid parameter in the page request like this:

XSQL Pages Publishing Framework 9-25

Overview of All XSQL Pages Capabilities

<I- CustomerPortfolio.xsgl —
<portfolio connnection="prod" xmins:xsgl="um:oracle-xsql">
<xsqlquery bind-params="custid" >
SELECT sticker as "Symbol", slast_traded _price as "Price"
FROM latest_stocks s, customer_portfolio p
WHERE p.customer_id = ?
AND sticker = p.ticker
</xsql:query>
</portfolio>

The XML data for a particular customer’s portfolio can then be requested by
passing the customer id parameter in the request like this:

http:/Ayourserver.com/fin/CustomerPortfolio.xsql? custid=1001

The value of the bind-params attribute is a space-delimited list of parameter
names whose left-to-right order indicates the positional bind variable to which its
value will be bound in the statement. So, if your SQL statement has five question
marks, then your bind-params attribute needs a space-delimited list of five
parameter names. If the same parameter value needs to be bound to several
different occurrences of a question-mark-indicated bind variable, you simply repeat
the name of the parameters in the value of the bind-params attribute at the
appropriate position. Failure to include exactly as many parameter names in the
bind-params attribute as there are question marks in the query, will results in an
error when the page is executed.

Bind variables can be used in any action that expects a SQL statement. The
following page gives additional examples:

<I- CustomerPortfolio.xsgl —
<portfolio connnection="prod" xmIns:xsgl="um:oracle-xsql">

<xsgl:dml commit="yes" bind-params="useridCookie" >
BEGIN log_user_hit(?); END;

</xsgl:dmi>

<current-prices>
<xsgl:query bind-params="custid" >

SELECT sticker as "Symbol", slast_traded price as "Price”
FROM latest_stocks s, customer _portfollo p

WHERE p.customer_id =
AND sticker = p.ticker

</xsgl:query>
<Jcurrent-prices>
<analysis>
<xsglinclude-owa bind-params="custid userCookie" >
BEGIN portfolio_analysis.historical_data(?5Fyears¥, ?), END;

9-26 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

</xsglinclude-owa>
</analysis>
</portfolio>

Using Lexical Substitution Parameters

For any XSQL action element, you can substitute the value of any attribute, or the
text of any contained SQL statement, by using a lexical substitution parameter. This
allows you to parameterize how the actions behave as well as substitute parts of the
SQL statements they perform. Lexical substitution parameters are referenced using
the syntax {@ParameterName } .

The following example illustrates using two lexical substitution parameters, one
which allows the maximum number of rows to be passed in as a parameter, and the
other which controls the list of columns to ORDER BY.

<!- DevOpenBugs.xsgl —
<open-bugs connection="demo" xmins:xsgl="um:oracle-xsq">

<xsgl-query max-rows=" {@max}" bind-params="dev prod">
SELECT bugno, abstract, status
FROM bug_table

WHERE programmer_assigned = UPPER(?)
AND product _id =2

AND status <80
ORDERBY {@orderby}
</xsgl:query>
</open-bugs>

This example could then show the XML for a given developer’s open bug list by
requesting the URL:

http:/iyourserver.com/bug/DevOpenBugs.xsql? dev=smuench&prod=817

or using the XSQL Command-Line Utility to request:
$xsgl DevOpenBugs.xsal dev=smuench prod=817

We close by noting that lexical parameters can also be used to parameterize the
XSQL page connection, as well as parameterize the stylesheet that is used to process
the page like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href=" {@sheet} xsI'?>

<I- DevOpenBugs.xsgl —

<open-bugs connection=" {@conn} " xmins:xsgl="um:oracle-xsql*>
<xsgl-query max-rows=" {@max}" bind-params="dev prod">

XSQL Pages Publishing Framework 9-27

Overview of All XSQL Pages Capabilities

SELECT bugno, abstract, status
FROM bug_table

WHERE programmer_assigned = UPPER(?)
AND product _id =?

AND status <80
ORDERBY {@orderby}
</xsql:query>
</open-bugs>

Providing Default Values for Bind Variables and Parameters

It is often convenient to provide a default value for a bind variable or a substitution
parameter directly in the page. This allows the page to be parameterized without
requiring the requester to explicitly pass in all the values in each request.

To include a default value for a parameter, simply add an XML attribute of the
same name as the parameter to the action element, or to any ancestor element. If a
value for a given parameter is not included in the request, the XSQL page processor
looks for an attribute by the same name on the current action element. If it doesn’t
find one, it keeps looking for such an attribute on each ancestor element of the
current action element until it gets to the document element of the page.

As a simple example, the following page defaults the value of the max parameter to
10 for both <xsql:query> actions in the page:

<example max="10" connection="demo" xmins:xsgl="um:oracle-xsql">

<xsgl.query max-rows=" {@max}">SELECT * FROM TABLE1</xsql.query>
<xsgl.query max-rows=" {@max}">SELECT * FROM TABLE2</xsql:.query>
</example>

This example defaults the first query to have a max of 5, the second query to have a
max of 7 and the third query to have a max of 10.

<example max="10" connection="demo" xmins:xsgl="um:oracle-xsql">
<xsglquery max="5" maxtows=" {@max}>SELECT * FROM TABLE1</xsql:query>
<xsgl.query max="7" maxtows=" {@max}">SELECT * FROM TABLE2</xsql:query>
<xsgl.query max-rows=" {@max}">SELECT * FROM TABLE3</xsql:query>
</example>

Of course, all of these defaults would be overridden if a value of max is supplied in
the request like:

http/iyourserver.com/example xsql? max=3

9-28 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

Bind variables respect the same defaulting rules so a — not-very-useful, yet
educational — page like this:

<example val="10" connection="demo" xmins:xsgl="um:oracle-xsql">
<xsgl:query tag-case="lower" bind-params="val val val">
SELECT ? as somevalue
FROM DUAL
WHERE ?=?
</xsql:query>

<lexample>

Would return the XML datagram:

<example>
<rowset>
<row>
<somevalue>10</somevalue>
<frow>
<fron>
</example>

if the page were requested without any parameters, while a request like:

http:/iyourserver.com/example xsql? val=3

Would return:

<example>
<rowset>
<row>
<somevalue>3</somevalue>
<frow>
<frow>
<lexample>

To illustrate an important point for bind variables, imagine removing the default
value for the val parameter from the page by removing the val attribute like this:

<example connection="demo" xmins:xxsgl="um:oracle-xsql">
<xsgl:query tag-case="lower" bind-params="val val val">
SELECT ? as somevalue
FROM DUAL
WHERE ?="?
</xsgl:query>

</example>

XSQL Pages Publishing Framework 9-29

Overview of All XSQL Pages Capabilities

Now a request for the page without supplying any parameters would return:

<example>
<rowset/>
</example>

because a bind variable that is bound to a parameter with neither a default value nor
a value supplied in the request will be bound to NULL, causing the WHERE clause
in our example page preceding to return no rows.

Understanding the Different Kinds of Parameters

XSQL pages can make use of parameters supplied in the request, as well as
page-private parameters whose names and values are determined by actions in the
page. If an action encounters a reference to a parameter named param in either a
bind-params attribute or in a lexical parameter reference, the value of the param
parameter is resolved by using:

1. The value of the page-private parameter named param, if set, otherwise
2. The value of the request parameter named param, if supplied, otherwise

3. The default value provided by an attribute named param on the current action
element or one of its ancestor elements, otherwise

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL Servlet over HTTP, two additional
HTTP-specific type of parameters are available to be set and referenced. These are
HTTP-Session-level variables and HTTP Cookies. For XSQL pages processed
through the XSQL Servlet, the parameter value resolution scheme is augmented as
follows. The value of a parameter param is resolved by using:

1. The value of the page-private parameter param, if set, otherwise

2. The value of the cookie named param, if set, otherwise

3. The value of the session variable named param, if set, otherwise

4. The value of the request parameter named param, if supplied, otherwise
5

The default value provided by an attribute named param on the current action
element or one of its ancestor elements, otherwise

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order is arranged this way so that users cannot supply parameter
values in a request to override parameters of the same name that have been set in

9-30 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

the HTTP session — whose lifetime is the duration of the HTTP session and

controlled by your web server — or set as cookies, which can bet set to "live" across

browser sessions.

The <xsgl:include-request-params> Action

The <xsql:include-request-params> action allows you to include an XML
representation of all parameters in the request in your datagram. This is useful if

your associated XSLT stylesheet wants to refer to any of the request parameter
values by using XPath expressions.

The syntax of the action is:
<xsglinclude-request-params/>

The XML included will have the form:

<request>

<parameters>

< paramname>valuel< paramname>
< ParamName2value2</ ParamName2

</parameters>
<lrequest>

or the form:

<request>
<parameters>

< paramname>valuel</ paramname>
< ParamName2vaue2</ ParamName2

</parameters>

<session>

< sessVarName >valuel</ sessVarName >
</session>

<cookies>

< cookieName >valuel</ cookieName >

</cookies>
<lrequest>

when processing pages through the XSQL Servlet.

This action has no required or optional attributes.

XSQL Pages Publishing Framework

9-31

Overview of All XSQL Pages Capabilities

The <xsgl:include-param> Action

The <xsql:include-param> action allows you to include an XML representation
of a single parameter in your datagram. This is useful if your associated XSLT
stylesheet wants to refer to the parameter’s value by using an XPath expression.

The syntax of the action is:

<xsglinclude-param name=" paramname” [>

This name attribute is required, and supplies the name of the parameter whose
value you would like to include. This action has no optional attributes.

The XML included will have the form:

<paramname>valuel</ paramname>

The <xsgl:include-xml> Action

The <xsql:include-xmI|> action includes the XML contents of a local, remote, or
database-driven XML resource into your datagram. The resource is specified either
by URL or a SQL statement.

The syntax for this action is:

<xsglinclude-xml href=" URL/>

or

<xsglinclude-xmi>
SQL select staterment selecting a single row containing a single
CLOB or VARCHAR?Z column value

</xsglinclude-xmk>

The URL can be an absolute, http-based URL to retrieve XML from another web
site, or arelative URL. The href attribute and the SQL statement are mutually
exclusive. If one is provided the other is not allowed.

Table 9-5 lists the attributes supported by this action. Attributes in bold are
required.

Table 9-4 Attributes for <xsql:include-xmi>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

9-32 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

The <xsql:include-posted-xml> Action

The <xsqgl:include-posted-xml> action includes the XML document that has
been posted in the request into the XSQL page. If an HTML form is posted instead
of an XML document, the XML included will be similar to that included by the
<xsgl:include-request-params> action.

The <xsql:set-page-param> Action

The <xsql:set-page-param> action sets a page-private parameter to a value.
The value can be supplied by a combination of static text and other parameter
values, or alternatively from the result of a SQL select statement.

The syntax for this action is:

<xsgl:setpage-param name="paramname" value=" value ">

or

<xsgl:setpage-param name="paramname">
SQL select statemert
</xsgl:set-page-param>

or
<xsgl:setpage-param name="paramname" xpath=" XPathExpression "I>

If you use the SQL statement option, a single row is fetched from the result set and
the parameter is assigned the value of the first column. This usage requires a
database connection to be provided by supplying a connecion=" connname" attribute
on the document element of the XSQL page in which it appears.

As an alternative to providing the value attribute, or a SQL statement, you can
supply the xpath attribute to set the page-level parameter to the value of an XPath
expression. The XPath expression is evaluated against an XML document or HTML
form that has been posted to the XSQL Page Processor. The value of the xpath
attribute can be any valid XPath expression, optionally built using XSQL
parameters as part of the attribute value like any other XSQL action element.

Once a page-private parameter is set, subsequent action handlers can use this value
as a lexical parameter, for example {@po_id} , or as a SQL bind parameter value by
referencing its name in the bind-params attribute of any action handler that
supports SQL operations.

If you need to set several session parameter values based on the results of a single
SQL statement, instead of using the name attribute, you can use the names attribute

XSQL Pages Publishing Framework 9-33

Overview of All XSQL Pages Capabilities

and supply a space-or-comma-delimited list of one or more session parameter
names. For example:

<xsgl:set-page-param names=" paramnamel paramname2 paramname3 ">
SELECT expression_or_columnl, expression_or_column2, expression_or_column3
FROM table

WHERE clause identifying a _single_row

</xsql:setpage-param>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must
not be.

Table 9-5 lists the attributes supported by this action. Attributes in bold are
required.

Table 9-5 Attributes for <xsql.set-page-param>

Attribute Name Description
name =" string " Name of the page-private parameter whose value you want to
set.

names =" string string ... Space-or-comma-delimited list of the page parameter names
whose values you want to set. Either use the name or the

names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an
empty string. Valid values are yes and no. The default value

is no.

xpath = "XPathExpression" Sets the value of the parameter to an XPath expression
evaluated against an XML document or HTML form that has
been posted to the XSQL Page Processor.

The <xsql:set-session-param> Action

The <xsql:set-session-param> action sets an HTTP session-level parameter to
a value. The value of the session-level parameter remains for the lifetime of the
current browser user’s HTTP session, which is controlled by the web server. The
value can be supplied by a combination of static text and other parameter values, or
alternatively from the result of a SQL select statement.

9-34 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

Since this feature is specific to Java Servlets, this action is only effective if the XSQL
page in which it appears is being processed by the XSQL Servlet. If this action is
encountered in an XSQL page being processed by the XSQL command-line utility or
the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsgl:set-session-param hame=" paramname" value=" value ">
or
<xsgl:set-session-param name=" paramname">

SQL select staterment

</xsgl:set-session-param>

If you use the SQL statement option, a single row is fetched from the result set and
the parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connecion=" connname” attribute on the
document element of the XSQL page in which it appears.

If you need to set several session parameter values based on the results of a single
SQL statement, instead of using the name attribute, you can use the names attribute
and supply a space-or-comma-delimited list of one or more session parameter
names. For example:

<xsgl:set-session-param names=" paramnamel paramname2 paramname3 ">
SELECT expression_or_columnl, expression_or_columnZ, expression_or_column3
FROM table

WHERE clause _identifying a_single_row

</xsgl:set-session-param>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must
not be.

Table 9-6 lists the optional attributes supported by this action.

Table 9-6 Attributes for <xsql.set-session-param>

Attribute Name Description

name =" string " Name of the session-level variable whose value you want to
set.

names =" string string ..." Space-or-comma-delimited list of the session parameter names

whose values you want to set. Either use the name or the
names attribute, but not both.

XSQL Pages Publishing Framework 9-35

Overview of All XSQL Pages Capabilities

Table 9-6 Attributes for <xsql.set-session-param>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean” Indicates whether the session-level parameter assignment
should be ignored if the value to which it is being assigned is
an empty string. Valid values are yes and no. The default
value is no.

only-if-unset = "boolean" Indicates whether the session variable assignment should only
occur when the session variable currently does not exists.
Valid values are yes and no. The default value is no.

The <xsql:set-cookie> Action

The <xsql:set-cookie> action sets an HTTP cookie to a value. By default, the
value of the cookie remains for the lifetime of the current browser, but its lifetime
can be changed by supplying the optional max-age attribute. The value to be
assigned to the cookie can be supplied by a combination of static text and other
parameter values, or alternatively from the result of a SQL select statement.

Since this feature is specific to the HTTP protocol, this action is only effective if the
XSQL page in which it appears is being processed by the XSQL Servlet. If this action
is encountered in an XSQL page being processed by the XSQL command-line utility
or the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsgl:set-cookie name=" paramname"value=" value ">
or
<xsgl:set-cookie name=" paramname'>
SQL select statement
</xsql:set-cookie>

If you use the SQL statement option, a single row is fetched from the result set and
the parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connecion=" connname" attribute on the
document element of the XSQL page in which it appears.

9-36 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

If you need to set several cookie values based on the results of a single SQL
statement, instead of using the name attribute, you can use the names attribute and
supply a space-or-comma-delimited list of one or more cookie names. For example:

<xsgl:set-cookie names=" paramnamel paramname2 paramname3 ">
SELECT expression_or_columnl, expression_or_column2, expression_or_column3
FROM table
WHERE clause _identifying a_single_row
</xsql:set-cookie>

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must
not be. The number of columns in the select list must match the number of cookies
being set or an error message will result.

Table 9-7 lists the optional attributes supported by this action.

Table 9-7 Attributes for <xsql:set-cookie>

Attribute Name Description
name =" string " Name of the cookie whose value you want to set.
names =" string string ..." Space-or-comma-delimited list of the cookie names whose

values you want to set. Either use the name or the names
attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

domain = "string" Domain in which cookie value is valid and readable. If domain
is not set explicitly, then it defaults to the fully-qualified
hostname (for example, bigserver.yourcompany.com) of
the document creating the cookie.

ignore-empty-value = "boolean" Indicates whether the cookie assignment should be ignored if
the value to which it is being assigned is an empty string.
Valid values are yes and no. The default value is no.

max-age = "integer" Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

only-if-unset = "boolean" Indicates whether the cookie assignment should only occur

when the cookie currently does not exists. Valid values are
yes and no. The default value is no.

XSQL Pages Publishing Framework 9-37

Overview of All XSQL Pages Capabilities

Table 9-7 Attributes for <xsql:set-cookie>

Attribute Name Description

path = "string’" Relative URL path within domain in which cookie value is
valid and readable. If path is not set explicitly, then it defaults
to the URL path of the document creating the cookie.

immediate = "boolean" Indicates whether the cookie assignment should be
immediately visible to the current page. Typically cookies set
in the current request are not visible until the browser sends
them back to the server in a subsequent request.Valid values
are yes and no. The default value is no.

The <xsql:set-stylesheet-param> Action

The <xsql:set-stylesheet-param> action sets a top-level XSLT stylesheet
parameter to a value. The value can be supplied by a combination of static text and
other parameter values, or alternatively from the result of a SQL select statement.
The stylesheet parameter will be set on any stylesheet used during the processing of
the current page.

The syntax for this action is:

<xsgl:set-stylesheet-param name=" paramname”value=" value ">
or
<xsgl:set-stylesheet-param name=" paramname”>
SQL select staterment
</xsql:set-stylesheet-param>

If you use the SQL statement option, a single row is fetched from the result set and
the parameter is assigned the value of the first column. This use requires a database
connection to be provided by supplying a connecion=" connname" attribute on the
document element of the XSQL page in which it appears.

If you need to set several stylesheet parameter values based on the results of a
single SQL statement, instead of using the name attribute, you can use the names
attribute and supply a space-or-comma-delimited list of one or more cookie names.
For example:

<xsgl:set-stylesheet-param names=" paramnamel paramname2 paramname3 ">
SELECT expression_or_columnl, expression_or_column2Z, expression_or_column3
FROM table
WHERE clause identifying a _single_row
</xsql:set-stylesheet-param>

9-38 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

Either the name or the names attribute is required. The value attribute and the
contained SQL statement are mutually exclusive. If one is supplied, the other must
not be.

Table 9-8 lists the optional attributes supported by this action.

Table 9-8 Attributes for <xsql:set-stylesheet-param>

Attribute Name Description

name =" string " Name of the top-level stylesheet parameter whose value you
want to set.

names =" string string ..." Space-or-comma-delimited list of the top-level stylesheet

parameter names whose values you want to set. Either use the
name or the names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the stylesheet parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no. The default value
is no.

Aggregating Information Using <xsgl:include-xsgl>

The <xsql:include-xsql> action makes it very easy to include the results of one
XSQL page into another page. This allows you to easily aggregate content from a
page that you’ve already built and repurpose it. The examples that follow illustrate
two of the most common uses of <xsql:include-xsql>

Assume you have an XSQL page that lists discussion forum categories:

<l- Categories.xsql —>
<xsgl:query connection="forum" xmins:xsgl="um:oracle-xsql">
SELECT name
FROM categories
ORDER BY name

</xsgl:query>

You can include the results of this page into a page that lists the ten most recent
topics in the current forum like this:

<l- TopTenTopics.xsql —

XSQL Pages Publishing Framework 9-39

Overview of All XSQL Pages Capabilities

<top-ten-topics connection="forum" xmins:xsgl="um:oracle-xsql">
<topics>
<xsqlquery max-rows="10">
SELECT subject FROM topics ORDER BY last_modified DESC

</xsgl:query>
<fopics>
<categories>
<xsglinclude-xsgl href="Categories.xsql'>

</categories>
<ftop-ten-topics>
You can use <xsgl:include-xsql> to include an existing page to apply an XSLT
stylesheet to it as well. So, if we have two different XSLT stylesheets:
« cats-as-html.xsl , which renders the topics in HTML, and
« cats-as-wml.xsl , which renders the topics in WML

Then one approach for catering to two different types of devices is to create
different XSQL pages for each device. We can create:

<?xml version="1.0"?>

<l- HTMLCategories.xsgl —

<?xml-stylesheet type="text/xsI" href="cats-as-html.xs"?>
<xsglinclude-xsql href="Categories.xsql' xmins:xxsgl="um:oracle-xsql">

which aggregates Categories.xsq| and applies the cats-as-html.xsl
stylesheet, and another page:

<?xml version="1.0"?>

<l- WMLCategories.xsgl —

<?xml-stylesheet type="text/xsl" href="cats-as-html.xsI"?>

<xsglinclude-xsgl href="Categories.xsql" xmins:xsgl="um:oracle-xsq" I

which aggregates Categories.xsql and applies the cats-as-wml.xsl
stylesheet for delivering to wireless devices. In this way, we’ve repurposed the
reusable Categories.xsql page content in two different ways.

If the page being aggregated contains an <?xml-stylesheet?> processing
instruction, then that stylesheet is applied before the result is aggregated, so using
<xsql:include-xsql> you can also easily chain the application of XSLT
stylesheets together.

When one XSQL page aggregates another page’s content using
<xsql:include-xsql> all of the request-level parameters are visible to the
"nested" page. For pages processed by the XSQL Servlet, this also includes

9-40 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

session-level parameters and cookies, too. As you would expect, none of the
aggregating page’s page-private parameters are visible to the nested page.

Table 9-9 lists the attributes supported by this action. Required attributes are in
bold.

Table 9-9 Attributes for <xsql:include-xsql>

Attribute Name Description
href =" string " Relative or absolute URL of XSQL page to be included.
reparse = “boolean” Indicates whether output of included XSQL page should be

reparsed before it is included. Useful if included XSQL page is
selecting the text of an XML document fragment that the
including page wants to treat as elements. Valid values are
yes and no. The default value is no.

Including XMLType Query Results

Oracle9i introduces the XMLType for use with storing and querying XML-based
database content. You can exploit database XML features to produce XML for
inclusion in your XSQL pages using one of two techniques:

« <xsqgl:query> handles any query including columns of type XMLType,
however it handles XML markup in CLOB/VARCHAR?2 columns as literal text.

« <xsgl:include-xml> parses and includes a single CLOB or String-based
XML document retrieved from a query

The difference between the two approaches lies in the fact that the
<xsql:include-xml> action parses the literal XML appearing in a CLOB or
String-value to turn it on the fly into a tree of elements and attributes. On the other
hand, using the <xsql:query> action, XML markup appearing in CLOB or String
valued-columns is left as literal text.

Another difference is that while <xsql:query> can handle query results of any
number of columns and rows, the <xsql:include-xmI> is designed to work on a
single column of a single row. Accordingly, when using <xsql:include-xml> ,
the SELECT statement that appears inside it should return a single row containing a
single column. The column can either be a CLOB or a VARCHAR?2 value containing
a well-formed XML document. The XML document will be parsed and included
into your XSQL page.

The following example uses nested xmlagg() functions to aggregate the results of
a dynamically-constructed XML document containing departments and nested

XSQL Pages Publishing Framework 9-41

Overview of All XSQL Pages Capabilities

employees into a single XML "result" document, wrapped in a <DepartmentList>
element:

<xsgl:query connection="orcl92" xmins:xsgl="um:oracle-xsq">
select XmiElement("DepartmentList”,
XmiAgy(

XmiElement('Department”,
XmlAttributes(deptno as "Id"),
XmlForest(dname as "Name"),
(select XmIElement("Employees”,

XmlAgg(
XmlElement('Employee”,
XmlAttributes(empno as "Id"),
XmiForest(ename as "Name",
sal as"Saary’,
job as"Job")
)
)
)

fromempe
where e.deptno =d.deptno
)
)
)
) as result

from deptd
order by dname

</xsgl:query>

Considering another example, suppose you have a number of <Movie> XML
documents stored in a table of XmIType called MOVIES. Each document might
look something like this:

<Movie Tile="The Talented Mr.Ripley" RunningTime="139" Rating="R">
<Director>
<First>Anthony</First>
<Last>Minghella</Last>
</Director>
<Cast>
<Actor Role="Tom Ripley">
<First>Matt</First>
<Last>Damon</Last>
</Actor>
<Actress Role="Marge Sherwood">
<First>-Gwenyth</First>

9-42 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

<l ast>Paltrow</Last>
</Actress>
<Actor Role="Dickie Greenleaf >
<First>Jude</First>
<Last>Law</Last>
<Award From="BAFTA" Category="Best Supporting Actor"/>
</Actor>
</Cast>
</Movie>
You can use the built-in Oracle9i XPath query features to extract an aggregate list of
all cast members who have received Oscar awards from any movie in the database
using a query like this:

select xmlelement("AwardedActors”,
xmlagg(extract(value(m),
‘Movie/Cast{Award[@From="0scar'T)))
from moviesm

To include this query result of XMLType into your XSQL page, simply paste the
guery inside an <xsql:query> element, and make sure you include an alias for
the query expression (for example "as result" following):

<xsgl:query connection="orcl92" xmins:xsgl="um:oracle-xsq">
select xmlelement("AwardedActors”,
xmlagg(extract(value(m),
Movie/CastH{Awardj@From="Oscar'T}))) as result
from moviesm

</xsgl:query>

Note that again we use the combination of xmlelement() = and xmlagg() to have
the database aggregate all of the XML fragments identified by the query into a
single, well-formed XML document. The combination of xmlelement()

and xmlagg() work together to produce a well-formed result

like this:

<AwardedActors>

<Actor>...</Actor>

<Actress>..</Actress>

</AwardedActors>

Notice that you can use the standard XSQL Pages bind variable capabilities in the
middle of an XPath expression, too, if you concatenate the bind variable into the
expression. For example, to parameterize the value "Oscar" into a parameter named
award-from, you could use an XSQL Page like this:

<xsgl:query connection="orcl92" xmins:xsgl="um:oracle-xsq"

XSQL Pages Publishing Framework 9-43

Overview of All XSQL Pages Capabilities

award-from="Oscar" bind-params="award-from">
F*Using a bind variable in an XPath expression */
select xmlelement("AwardedActors”,

xmlagg(extract(value(m),
Movie/Castr{Award[@From=" 121 ") asresutt
frommovies m

</xsgl:query>

Handling Posted Information

In addition to simplifying the assembly and transformation of XML content, the
XSQL Pages framework makes it easy to handle posted XML content as well.
Built-in actions simplify the handling of posted information from both XML
document and HTML forms, and allow that information to be posted directly into a
database table using the underlying facilities of the Oracle XML SQL Utility.

The XML SQL Utility provides the ability to data database inserts, updates, and
deletes based on the content of an XML document in "canonical” form with respect
to a target table or view. For a given database table, the "canonical” XML form of its
data is given by one row of XML output from a SELECT * FROM tablename
guery against it. Given an XML document in this canonical form, the XML SQL
Utility can automate the insert, update, and/or delete for you. By combining the
XML SQL Utility with an XSLT transformation, you can transform XML in any
format into the canonical format expected by a given table, and then ask the XML
SQL Utility to insert, update, delete the resulting "canonical” XML for you.

The following built-in XSQL actions make exploiting this capability easy from
within your XSQL pages:

» <xsqgliinsert-request>

Insert the optionally transformed XML document that was posted in the
request into a table.Table 9-10 lists the required and optional attributes
supported by this action.

« <xsgl:update-request>

Update the optionally transformed XML document that was posted in the
request into a table or view. Table 9-11 lists the required and optional
attributes supported by this action.

» <xsql:delete-request>

Delete the optionally transformed XML document that was posted in the
request from a table or view. Table 9-12 lists the required and optional
attributes supported by this action.

9-44 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

« <xsgliinsert-param>

Insert the optionally transformed XML document that was posted as the
value of a request parameter into a table or view. Table 9-13 lists the
required and optional attributes supported by this action.

If you target a database view with your insert, then you can create INSTEAD OF
INSERT triggers on the view to further automate the handling of the posted
information. For example, an INSTEAD OF INSERT trigger on a view could use
PL/SQL to check for the existence of a record and intelligently choose whether to
do an INSERT or an UPDATEdepending on the result of this check.

Table 9-10 Attributes for <xsql:insert-request>

Attribute Name Description

table =" string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more

column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

Table 9-11 Attributes for <xsql:update-request>

Attribute Name Description

table =" string " Name of the table, view, or synonym to use for inserting the
XML information.

XSQL Pages Publishing Framework 9-45

Overview of All XSQL Pages Capabilities

Table 9-11 Attributes for <xsql:update-request>

Attribute Name

Description

key-columns =" string "

Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL"

Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string"

Space-delimited or comma-delimited list of one or more
column names whose values will be updated. If supplied, then
only these columns will be updated. If not supplied, all
columns will be updated, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer"

If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string"

Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

Table 9-12 Attributes for <xsql:delete-request>

Attribute Name Description

table =" string " Name of the table, view, or synonym to use for inserting the
XML information.

key-columns =" string " Space-delimited or comma-delimited list of one or more

column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL"

Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

commit-batch-size = "integer"

If a positive, nonzero number N is specified, then after each

batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

9-46 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

Table 9-13 Attributes for <xsql:insert-param>

Attribute Name Description

name =" string " Name of the parameter whose value contains XML to be
inserted.

table =" string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more

column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each

batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in

XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

Understanding Different XML Posting Options

There are three different ways that the XSQL pages framework can handle posted
information.

1.

A client program can send an HTTP POST message that targets an XSQL
page, whose request body contains an XML document and whose HTTP
header reports a ContentType of "text/xml "

In this case, you can use the <xsql:insert-request> :
<xsgl:update-request> , or the <xsql:delete-request> action and
the content of the posted XML will be insert, updated, or deleted in the
target table as indicated. If you transform the posted XML document using
an XSLT transformation, the posted XML document is the source document
for this transformation.

A client program can send an HTTP GET request for an XSQL page, one of
whose parameters contains an XML document.

XSQL Pages Publishing Framework 9-47

Overview of All XSQL Pages Capabilities

In this case, you can use the <xsql:insert-param> action and the
content of the posted XML parameter value will be inserted in the target
table as indicated. If you transform the posted XML document using an
XSLT transformation, the XML document in the parameter value is the
source document for this transformation.

3. A browser can submit an HTML form with method ="POST" whose action
targets an XSQL page. In this case, by convention the browser sends an
HTTP POST message whose request body contains an encoded version of
all of the HTML form’s fields and their values with a ContentType of
"application/x-www-form-urlencoded "

In this case, there request does not contain an XML document, but instead
an encoded version of the form parameters. However, to make all three of
these cases uniform, the XSQL page processor will (on demand) materialize
an XML document from the set of form parameters, session variables, and
cookies contained in the request. Your XSLT transformation then
transforms this dynamically-materialized XML document into canonical
form for insert, update, or delete using <xsql:insert> ,
<xsgl:update-request> , or <xsql:delete-request> respectively.

When working with posted HTML forms, the dynamically materialized XML
document will have the following form:

<request>
<parameters>
< firsparamname >firstparamvalue</ firsparamname >

< lasiparamname >lastparamvalue</ lastparamname >
</parameters>

<session>

< fistparamname >firstsessionparamvalue</ firstparamname >

< lasiparamname >lastsessionparamvalue</ lastparamname >
</session>

<cookies>

< firstcookie >firstcookievalue</ firstcookiename >

< lastcookie >firstcookievalue</ lastcookiename >
</cookies>
<request>

If multiple parameters are posted with the same name, then they will automatically
be "row-ified" to make subsequent processing easier. This means, for example, that
a request which posts or includes the following parameters:

9-48 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities

« id =101
= name= Steve
« id =102
=« hame=Sita
« oOperation =update
Will create a "row-ified" set of parameters like:

<request>
<parameters>
<row>
<id>101</id>
<name>Steve</name>
<frow>
<row>
<id>102</id>
<name>Sita</name>
<row>
<operation>update</operation>
</parameters>

<lrequest>

Since you will need to provide an XSLT stylesheet that transforms this materialized
XML document containing the request parameters into canonical format for your
target table, it might be useful to build yourself an XSQL page like this:

<-

| ShowRequestDocument.xsal

| Show Materialized XML Document for an HTML Form
+—>

<xsglinclude-request-params xmins:xsql="um:oracle-xsql'’/>

With this page in place, you can temporarily modify your HTML form to post to the
ShowRequestDocument.xsql page, and in the browser you will see the "raw"
XML for the materialized XML request document which you can save out and use
to develop the XSLT transformation.

Using Custom XSQL Action Handlers

When you need to perform tasks that are not handled by the built-in action
handlers, the XSQL Pages framework allows custom actions to be invoked to do

XSQL Pages Publishing Framework 9-49

Overview of All XSQL Pages Capabilities

virtually any kind of job you need done as part of page processing. Custom actions
can supply arbitrary XML content to the data page and perform arbitrary
processing. See Writing Custom XSQL Action Handlers later in this chapter for
more details on writing custom action handlers in Java. Here we explore how to
make use of a custom action handler, once it’s already created.

To invoke a custom action handler, use the built-in <xsgl:action> action
element. It has a single, required attribute named handler whose value is the
fully-qualified Java class name of the action you want to invoke. The class must
implement the oracle.xml.xsgl. XSQLActionHandler interface. For example:

<xsgl:action handler="yourpackage.YourCustomHandler'/>

Any number of additional attribute can be supplied to the handler in the normal
way. For example, if the yourpackage.YourCustomHandler is expecting a
attributes named paraml and param2, you use the syntax:

<xsgl:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy'"/>

Some action handlers, perhaps in addition to attributes, may expect text content or
element content to appear inside the <xsqgl:action> element. If this is the case,
simply use the expected syntax like:

<xsgl:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
Some Text Goes Here

</xsgl:action>

or this:

<xsgl:action handler="yourpackage.YourCustomHandler" param1="xx" param2="yyy">
<some>
<otherf>
<elements/>
<here/>
</some>

</xsgl:action>

9-50 Oracle9i XML Developer’s Kits Guide - XDK

Description of XSQL Servlet Examples

Description of XSQL Servlet Examples

Figure 9-14 lists the XSQL Servlet example applications supplied with the software
in the ./demo directory.

Table 9-14 XSQL Serviet Examples

Demonstration Name

Description

Hello World
./demo/helloworld

Simplest possible XSQL page.

Do You XML Site
/demo/doyouxml

XSQL page shows how a to build a data-driven web site with an XSQL page. Uses
SQL, XSQL-substitution variables in queries, and XSLT to format.

Uses substitution parameters in SQL statements in <xsql:query> tags, and in
attributes to <xsql:query>t ags, to control for example how many records to
display, or to skip, for paging through query results.

Employee Page
./demo/emp

XSQL page displays XML data from EMP table, using XSQL page parameters to
control employees and data sorting.

Uses an associated XSLT Stylesheet to format results as HTML version of emp.xsql
page. This is the form action hence you can fine tune your search criteria.

Insurance Claim Page
/demolinsclaim

Shows sample queries over a structured, Insurance Claim object view.
insclaim.sql sets up the INSURANCE_CLAIM_VIEW object view and
populates it with sample data.

Invalid Classes Page
/demol/classerr

XSQL Page uses invalidclasses.xsl to format a “live” list of current Java
class compilation errors in your schema. The .sqgl script sets up
XSQLJavaClassesView object view for the demo. Master/detail information from
object view is formatted into HTML by the invalidclasses.xsl stylesheet in
the server.

Airport Code Validation
./demol/airport

XSQL page returns a “datagram” of information about airports based on their
three-letter codes. Uses <xsql:no-rows-query> as alternative queries when
initial queries return no rows. After attempting to match the airport code passed
in, the XSQL page tries a fuzzy match based on the airport description.

airport.htm page demonstrates how to use the XML results of airport.xsql
page from a web page using JavaScript to exploit built-in XML Document Object
Model (DOM) functionality in Internet Explorer 5.0.

When you enter the three-letter airport code on the web page, a JavaScript fetches
the XML datagram from XSQL Servlet over the web corresponding to the code you
entered. If the return indicates no match, the program collects a “picklist” of
possible matches based on information returned in the XML “datagram” from
XSQL Servlet

XSQL Pages Publishing Framework 9-51

Description of XSQL Servlet Examples

Table 9-14 XSQL Serviet Examples (Cont.)

Demonstration Name

Description

Airport Code Display
/demol/airport

Demonstrates using the same XSQL page as the Airport Code Validation example
but supplying an XSLT Stylesheet name in the request. This causes the airport
information to be formatted as an HTML form instead of being returned as raw
XML.

Emp/Dept Object Demo
/demo/empdept

How to use an object view to group master/detail information from two existing
"flat" tables like EMP and DEPT. empdeptobjs.sql script creates the object view
and INSTEAD OF INSERT triggers, allowing the use of master/detail view as an
insert target of xsql:insert-request.

empdept.xsl stylesheet illustrates an example of the “simple form” of an XSLT
stylesheet that can look just like an HTML page without the extra xsl:stylesheet or
xsl:transform at the top. Part of XSLT 1.0 specification called using a Literal Result
Element as Stylesheet.

Shows how to generate an HTML page that includes the <link rel="stylesheet”> to
allow the generated HTML to fully leverage CSS for centralized HTML style
information, found in the coolcolors.css file.

Adhoc Query
Visualization

./demo/adhocsq|

Shows how to pass an SQL query and XSLT Stylesheet to use as parameters to the
server.

NOTE: Deploying this demo page to your production environment should be given
particular consideration because it allows the results of any SQL query in XML format
over the Web that your SCOTT user account has access to.

XML Document Demo
./demo/document

How to insert XML documents into relational tables.

docdemo.sqgl script creates a user-defined type called XMLDOCFRAGnNtaining
an attribute of type CLOB.

« Insert the text of the document in ./xsql/demo/xmI99.xml and provide the
name xml99.xsl as the stylesheet

« Insert the text of the document in./xsgl/demo/JDevRelNotes.xml with
the stylesheet relnotes.xsl

docstyle.xsql page illustrates an example of the <xsql:include-xsql>
action element to include the output of the doc.xsql page into its own page
before transforming the final output using a client-supplied stylesheet name.

XML Document demo uses client-side XML features of Internet Explorer 5.0 to
check the document for well-formedness before it is posted to the server.

9-52 Oracle9i XML Developer’s Kits Guide - XDK

Description of XSQL Servlet Examples

Table 9-14 XSQL Serviet Examples (Cont.)

Demonstration Name Description

XML Insert Request Demo Posts XML from a client to an XSQL Page that inserts the posted XML information
JJdemol/insertxml into a database table using the <xsqgl:insert-request> action element.

The demo accepts XML documents in the moreover.com XML-based news format.
The program posting the XML is a client-side web page using Internet Explorer 5.0
and the XMLHttpRequest object from JavaScript.

The source for insertnewsstory.xsql page, specifies a table name and XSLT
Transform name.

moreover-to-newsstory.xsl stylesheet transforms the incoming XML into
canonical format that OracleXMLSave utility can insert. Copy and paste the
example <article> element several times within the <moreovernews> element to
insert several new articles in one shot.

newsstory.sql shows how INSTEAD OF triggers can be used on the database
views into which you ask XSQL Pages to insert to the data to customize how
incoming data is handled, default primary key values,....

SVG Demo deptlist.xsql page displays a simple list of departments with hyperlinks to
Jdemolsvg SalChart.xsql page.
SalChart.xsql page queries employees for a given department passed in as a
parameter and uses the SalChart.xsql stylesheet to format the result into a Scalable
Vector Graphics drawing, a bar chart comparing salaries of the employees in that
department.
PDF Demo emptable.xsql page displays a simple list of employees. The emptable.xsl
/demolfop stylesheet transforms the datapage into the XSL-FO Formatting Objects which,

combined with the built-in FOP serializer, render the results in Adobe PDF format.

Setting Up the Demo Data
To set up the demo data do the following:
1. Change directory to the ./demo directory on your machine.

2. In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS
— the schema owner for Oracle9i Text (Intermedia Text) packages — and issue
the command

GRANT EXECUTE ON CTX_DDL TO SCOTT;

3. Connect to your database as SYSTEM/MANAGER and issue the command:
GRANT QUERY REWRITE TO SCOTT;

XSQL Pages Publishing Framework 9-53

Advanced XSQL Pages Topics

This allows SCOTT to create a functional index that one of the demos uses to
perform case-insensitive queries on descriptions of airports.

4. Connect to your database as SCOTT/TIGER.

5. Run the script install.sql in the ./demo directory. This script runs all SQL
scripts for all the demos.
install s
@@insclaim/insclaim.sgl
@@document/docdemo.sgl
@@classenfinvalidclasses.sq

@@airport/aimport.sql
@@inserxmlinewsstory.sof
@@empdeptiempdeptobjs.sql
6. Change directory to ./doyouxml subdirectory, and run the following:

imp scottftiger fle=doyouxml.dmp

to import sample data for the "Do You XML? Site" demo.

7. To experience the Scalable Vector Graphics (SVG) demonstration, install an
SVG plug-in into your browser, such as Adobe SVG Plug-in.

Advanced XSQL Pages Topics

Understanding Client Stylesheet-Override Options

If the current XSQL page being requested allows it, you can supply an XSLT
stylesheet URL in the request to override the default stylesheet that would have
been used — or to apply a stylesheet where none would have been applied by
default. The client-initiated stylesheet URL is provided by supplying the
xml-stylesheet parameter as part of the request. The valid values for this
parameter are:

« Any relative URL, interpreted relative to the XSQL page being processed

« Any absolute URL using the http protocol scheme, provided it references a
trusted host (as defined in the XSQLConfig.xml file)

« The literal value none

This last value, xml-stylesheet=none , is particularly useful during
development to temporarily "short-circuit" the XSLT stylesheet processing to see

9-54 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

what XML datagram your stylesheet is actually seeing. This can help understand
why a stylesheet might not be producing the expected results.

Client-override of stylesheets for an XSQL page can be disallowed either by:

« Setting the allow-client-style configuration parameter to no in the
XSQLConfig.xml file, or

« Explicitly including an allow-client-style="no” attribute on the
document element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the
XSQLConfig.xml configuration file, any page can still enable client-override
explicitly by including an allow-client-style="yes” attribute on the
document element of that page.

Controlling How Stylesheets Are Processed

Controlling the Content Type of the Returned Document

Setting the content type of the information you serve is very important. It allows the
requesting client to correctly interpret the information that you send back.If your
stylesheet uses an <xsl:output> element, the XSQL Page Processor infers the
media type and encoding of the returned document from the media-type and
encoding attributes of <xsl:output>

For example, the following stylesheet uses the
media-type="application/vnd.ms-excel" attribute on <xsl:output> to
transform the results of an XSQL page containing a standard query over the emp
table into Microsoft Excel spreadsheet format.

<?xml version="1.0"?>
<l- empToExcelxs| —
<xslstylesheet version="1.0" xmins:xsi="http:/Ammwv.w3.0rg/1999/XSL/ Transform">
<xsl:output method="html" media-type="applicationimd.ms-excel'>
<xsltemplate match="/">
<htmi>
<table>
<tr><th>EMPNO</th><th>ENAME</th><th>SAL </th></r>
<xsl-for-each select="ROWSET/ROW">
<tr>
<td><xslvalue-of select="EMPNO"/></td>
<td><xslvalue-of select="ENAME/></td>
<td><xsl:value-of select="SAL"/><fid>
<>

XSQL Pages Publishing Framework 9-55

Advanced XSQL Pages Topics

</xslfor-each>
<ftable>
<htmb>
</xsltemplate>
<Ixslstylesheet>

An XSQL page that makes use of this stylesheet looks like this:

<?xml version="1.0"?>

<?xml-stylesheet href="empToExcel x3I" type="text/xsl"?>

<xsgl:query connection="demo" xmins:xsgl="um:oracle-xsq">
select * from emp order by sal desc

</xsql:query>

Assigning the Stylesheet Dynamically

As we've seen, if you include an <?xml-stylesheet?> processing instruction at
the top of your .xsql file, it will be considered by the XSQL page processor for use
in transforming the resulting XML datagram. For example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl‘?>
<page connection="demo" xmins:xsgl="um:oracle-xsql*>
<xsgl-query>
SELECT * FROM emp ORDER BY sal DESC
</xsql:query>
</page>

would use the emp.xsl stylesheet to transform the results of the EMP query in the
server tier, before returning the response to the requestor. The stylesheet is accessed
by the relative or absolute URL provided in the href pseudo-attribute on the
<?xml-stylesheet?> processing instruction.

By including one or more parameter references in the value of the href
pseudo-attribute, you can dynamically determine the name of the stylesheet. For
example, this page selects the name of the stylesheet to use from a table by
assigning the value of a page-private parameter using a query.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xs!" href=" {@sheet} xsI'?>
<page connection="demo" xmins:xsgl="um:oracle-xsql*>
<xsgll:setpage-param bind-params="UserCookie" name="sheet">
SELECT stylesheet name
FROM user_prefs
WHERE usemame =?

</xsgll:setpage-param>

9-56 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

<xsgl-query>
SELECT * FROM emp ORDER BY sal DESC
</xsql.query>
</page>

Processing Stylesheets in the Client

Some browsers like Microsoft’s Internet Explorer 5.0 and higher support processing
XSLT stylesheets in the client. These browsers recognize the stylesheet to be
processed for an XML document in the same way that a server-side XSQL page
does, using an <?xml-stylesheet?> processing instruction. This is not a
coincidence. The use of <?xml-stylesheet?> for this purpose is part of the W3C
Recommendation from June 29, 1999 entitled "Associating Stylesheets with XML
Documents, Version 1.0"

By default, the XSQL page processor performs XSLT transformations in the server,
however by adding on additional pseudo-attribute to your <?xml-stylesheet?>
processing instruction in your XSQL page — client="yes" — the page processor
will defer the XSLT processing to the client by serving the XML datagram "raw",
with the current <?xml-stylesheet?> at the top of the document.

One important point to note is that Internet Explorer 5.0 shipped in late 1998,
containing an implementation of the XSL stylesheet language that conformed to a
December 1998 Working Draft of the standard. The XSLT 1.0 Recommendation that
finally emerged in November of 1999 had significant changes from the earlier
working draft version on which IE5 is based. This means that IE5 browsers
understand a different "dialect" of XSLT than all other XSLT processors — like the
Oracle XSLT processor — which implement the XSLT 1.0 Recommendation syntax.

Toward the end of 2000, Microsoft released version 3.0 of their MSXML components
as a Web-downloadable release. This latest version does implement the XSLT 1.0
standard, however in order for it to be used as the XSLT processor inside the IE5
browser, the user must go through additional installation steps. Unfortunately there
is no way for a server to detect that the IE5 browser has installed the latest XSLT
components, so until the Internet Explorer 6.0 release emerges — which will contain
the latest components by default and which will send a detectably different
User-Agent string containing the 6.0 version number — stylesheets delivered for
client processing to IE5 browsers should use the earlier IE5-"flavor" of XSL.

What we need is a way to request that an XSQL page use different stylesheets
depending on the User-Agent making the request. Luckily, the XSQL Pages
framework makes this easy and we learn how in the next section.

XSQL Pages Publishing Framework 9-57

Advanced XSQL Pages Topics

Providing Multiple, UserAgent-Specific Stylesheets

You can include multiple <?xml-stylesheet?> processing instructions at the top
of an XSQL page and any of them can contain an optional media pseudo-attribute.
If specified, the media pseudo-attribute’s value is compared case-insensitively with
the value of the HTTP header’s User-Agent string. If the value of the media
pseudo-attribute matches a part of the User-Agent string, then the processor selects
the current <?xml-stylesheet?> processing instruction for use, otherwise it
ignores it and continues looking. The first matching processing instruction in
document order will be used. A processing instruction without a media
pseudo-attribute matches all user agents so it can be used as the fallback/default.

For example, the following processing instructions at the top of an .xsql file...

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" media=ynx' href=" doyouxmHynx.xsl ">
<?xml-stylesheet type="text/xs!" media="msie5" href=" doyouxmliexsl ">
<?xml-stylesheet type="text/xsI" href="doyouxml.xsl" 7>

<page xmins:xsgl="um:oracle-xsq" connection="demo">

will use doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet
Explorer 5.0 or 5.5 browsers, and doyouxml.xsl for all others.

Table 9-15 summarizes all of the supported pseudo-attributes allowed on the
<?xml-stylesheet?> processing instruction.

Table 9-15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description

type = "string" Indicates the MIME type of the associated stylesheet. For XSLT
stylesheets, this attribute must be set to the string text/xsl

This attribute may be present or absent when using the
serializer attribute, depending on whether an XSLT
stylesheet should execute before invoking the serializer or not.

href ="URL" Indicates the relative or absolute URL to the XSLT stylesheet to
be used. If an absolute URL is supplied that uses the http
protocol scheme, the IP address of the resource must be a
trusted host listed in the XSQLConfig.xml file.

media = "string" This attribute is optional. If provided, its value is used to
perform a case-insensitive match on the User-Agent string
from the HTTP header sent by the requesting device. The
current <?xml-stylesheet?> processing instruction will
only be used if the User-Agent string contains the value of
the media attribute, otherwise it is ignored.

9-58 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Table 9-15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description

client = "boolean" If set to yes , caused the XSQL page processor to defer the
processing of the associated XSLT stylesheet to the client. The
"raw" XML datagram will be sent to the client with the current
<?xml-stylesheet?> processing instruction at the top of
the document. The default if not specified is to perform the

transform in the server.

serializer = "string" By default, the XSQL page processor uses the:
« XML DOM serializer if no XSLT stylesheet is used
« XSLT processor’s serializer, if XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom
serializer implementation should be used instead.

Valid values are either the name of a custom serializer defined
in the <serializerdefs> section of the XSQLConfig.xml
file, or the string java: fully.qualified.Classname Af
both an XSLT stylesheet and the serializer attribute are present,
then the XSLT transform is performed first, then the custom
serializer is invoked to render the final result to the
OutputStream or PrintWriter.

Using XSQLConfig.xml to Tune Your Environment

Use the XSQLConfig.xml File to tune your XSQL pages environment. Table 9-16
defines all of the parameters that can be set.

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/servlet/output-buffer-size

Sets the size (in bytes) of the buffered output stream. If your servlet engine already buffers
170 to the Servlet Output Stream, then you can set to 0 to avoid additional buffering.

Default value is 0. Valid value is any non-negative integer.

XSQL Pages Publishing Framework 9-59

Advanced XSQL Pages Topics

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/servlet/suppress-mime-charset/media-type

The XSQL Servlet sets the HTTP ContentType header to indicate the MIME type of the
resource being returned to the request. By default, the XSQL Servlet includes the optional
character set information in the MIME type. For a particular MIME type, you can suppress
the inclusion of the character set information by including a <media-type> element, with
the desired MIME type as its contents.

You may list any number of <media-type> elements.
Valid value is any string.

XSQLConfig/processor/character-set-conversion/default-charset

By default, the XSQL page processor does charater set conversion on the value of HTTP
parameters to compensate for the default character set used by most servlet engines. The
default base character set used for conversion is the Java character set 8859 1
corresponding to IANA's ISO-8859-1 character set. If your servlet engine uses a different
character set as its base character set you can now specify that value here.

To suppress character set conversion, specify the empty element <none/> as the content of
the <default-charset> element, instead of a character set name. This is useful if you are
working with parameter values that are correctly representable using your servlet's default
character set, and eliminates a small amount of overhead associated with performing the
character set conversion.

Valid values are any Java character set name, or the element <none/> .

XSQLConfig/processor/reload-connections-on-error

Connection definitions are cached when the XSQL Page Processor is initialized. Set this
setting to yes to cause the processor to reread the XSQLConfig.xml file to reload
connection definitions if an attempt is made to request a connection name that's not in the
cached connection list. The yes setting is useful during development when you might be
adding new <connection> definitions to the file while the servlet is running. Set to no to
avoid reloading the connection definition file when a connection name is not found in the
in-memory cache.

Default is yes . Valid values are yes and no.

XSQLConfig/processor/default-fetch-size

Sets the default value of the row fetch size for retrieving information from SQL queries from
the database. Only takes effect if you are using the Oracle JDBC Driver, otherwise the setting
is ignored. Useful for reducing network round-trips to the database from the servlet engine
running in a different tier.

Default is 50. Valid value is any nonzero positive integer.

9-60 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/processor/page-cache-size

Sets the size of the XSQL cache for XSQL page templates. This determines the maximum
number of XSQL pages that will be cached. Least recently used pages get "bumped" out of
the cache if you go beyond this number.

Default is 25. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-cache-size

Sets the size of the XSQL cache for XSLT stylesheets. This determines the maximum number
of stylesheets that will be cached. Least recently used stylesheets get "bumped" out of the
cache if you go beyond this number.

Default is 25. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/initial

Each cached stylesheet is actually a pool of cached stylesheet instances to improve
throughput. Sets the initial number of stylesheets to be allocated in each stylesheet pool.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/increment

Sets the number of stylesheets to be allocated when the stylesheet pool must grow due to
increased load on the server.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a stylesheet instance in
the pool will be removed to free resources as the pool tries to "shrink" back to its initial size.

Default is 60. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/initial

The XSQL page processor’s default connection manager implements connection pooling to
improve throughput. This setting controls the initial number of JDBC connections to be
allocated in each connection pool.

Default is 2. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/increment

Sets the number of connections to be allocated when the connection pool must grow due to
increased load on the server.

Default is 1. Valid value is any nonzero positive integer.

XSQL Pages Publishing Framework 9-61

Advanced XSQL Pages Topics

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/processor/connection-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a JDBC connection in the
pool will be removed to free resources as the pool tries to "shrink™ back to its initial size.

Default is 60. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/dump-allowed

Determines whether a diagnostic report of connection pool activity can be requested by
passing the dump-pool=y parameter in the page request.

Default is no. Valid value is yes or no.

XSQLConfig/processor/connection-manager/factory

Specifies the fully-qualified Java class name of the XSQL connection manager factory
implementation. If not specified, this setting defaults to
oracle.xml.xsgl.XSQLConnectionManagerFactorylmpl

Default is oracle.xml.xsgl.XSQLConnectionManagerFactorylmpl . Valid value is
any class name that implements the
oracle.xml.xsgl.XSQLConnectionManagerFactory interface.

XSQLConfig/processor/owalfetch-style

Sets the default OWA Page Buffer fetch style used by the <xsql:include-owa> action.Valid
values are CLOBor TABLE and the default if not specified is CLOB

If set to CLOB the processor uses temporary CLOB to retrieve the OWA page buffer.

If set to TABLEthe processor uses a more efficient approach that requires the existence of the
Oracle user-defined type named XSQL_OWA_ARRA¥hich must be created by hand using
the DDL statement:

CREATE TYPE xsql_owa_array AS TABLE OF VARCHAR2(32767)

XSQLConfig/processor/timing/page

Determines whether a the XSQL page processor adds an xsql-timing attribute to the
document element of the page whose value reports the elapsed number of milliseconds
required to process the page.

Default is no. Valid value is yes or no.

XSQLConfig/processor/timing/action

Determines whether a the XSQL page processor adds comment to the page just before the
action element whose contents reports the elapsed number of milliseconds required to
process the action.

Default is no. Valid value is yes or no.

9-62 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/processor/security/stylesheet/defaults/allow-client-style

While developing an application, it is frequently useful to take advantage of the XSQL page
processor's per-request stylesheet override capability by providing a value for the special
xml-stylesheet parameter in the request. One of the most common uses is to provide the
xml-stylesheet=none combination to temporarily disable the application of the
stylesheet to "peek” underneath at the raw XSQL data page for debugging purposes.

When development is completed, you could explicitly add the

allow-client-style="no" attribute to the document element of each XSQL page to
prohibit client overriding of the stylesheet in the production application. However, using
this configuration setting, you can globally change the default behavior for
allow-client-style in a single place.

Note that this only provides the default setting for this behavior. If the
allow-client-style="yes|no" attribute is explicitly specified on the document
element for a given XSQL page, its value takes precedence over this global default.

Valid values are yes and no.

XSQLConfig/processor/security/stylesheet/trusted-hosts/host

XSLT stylesheets can invoke extension functions. In particular, the Oracle XSLT processor —
which the XSQL page processor uses to process all XSLT stylesheets — supports Java
extension functions. Typically your XSQL pages will refer to XSLT stylesheets using relative
URL’s The XSQL page processor enforces that any absolute URL to an XSLT stylesheet that
is processed must be from a trusted host whose name is listed here in the configuration file.

You may list any number of <host> elements inside the <trusted-hosts> element. The
name of the local machine, localhost ,and 127.0.0.1 are considered trusted hosts by
default.

Valid values are any hostname or IP address.

XSQLConfig/http/proxyhost

Sets the name of the HTTP proxy server to use when processing URL’s with the http protcol
scheme.

Valid value is any hostname or IP address.

XSQLConfig/http/proxyport

Sets the port number of the HTTP proxy server to use when processing URL’s with the http
protcol scheme.

Valid value is any nonzero integer.

XSQL Pages Publishing Framework 9-63

Advanced XSQL Pages Topics

Table 9-16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/connectiondefs/connection

Defines a "nickname" and the JDBC connection details for a named connection for use by the
XSQL page processor.

You may supply any number of <connection> element children of <connectiondefs>
Each connection definition must supply a name attribute, and may supply appropriate
children elements <username> , <password> , <driver> , <dburl> , and <autocommit>

XSQLConfig/connectiondefs/connection/username
Defines the username for the current connection.

XSQLConfig/connectiondefs/connection/password
Defines the password for the current connection.

XSQLConfig/connectiondefs/connection/dburl
Defines the JDBC connection URL for the current connection.

XSQLConfig/connectiondefs/connection/driver

Specifies the fully-qualified Java class name of the JDBC driver to be used for the current
connection. If not specified, defaults to oracle.jdbc.driver.OracleDriver

XSQLConfig/connectiondefs/connection/autocommit

Explicity sets the Auto Commit flag for the current connection. If not specified, connection
uses JDBC driver’s default setting for Auto Commit.

XSQLConfig/serializerdefs/serializer
Defines a named custom serializer implementation.

You may supply any number of <serializer> element children of <serializerdefs>
Each must specify both a <name>and a <class> child element.

XSQLConfig/serializerdefs/serializer/name
Defines the name of the current custom serializer definition.

XSQLConfig/connectiondefs/connection/class

Specifies the fully-qualified Java class name of the current custom serializer. The class must
implement the oracle.xml.xsql. XSQLDocumentSerializer interface.

Using the FOP Serializer to Produce PDF Output

Using the XSQL Pages framework’s support for custom serializers, the
oracle.xml.xsql.serializers. XSQLFOPSerializer is provided for
integrating with the Apache FOP processor (http://xml.apache.org/fop). The FOP

9-64 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

processor renders a PDF document from an XML document containing XSL
Formatting Objects (http://www.w3.0rg/TR/xsl).

For example, given the following XSLT stylesheet, EmpTableFO.xsl

<?xml version="1.0"?>
<forroot xmins:fo="http:/Amwv.w3.0rg/1999/XSL/Format xsl:version="1.0"
xmins:xs="http/Amwv.w3.0rg/1999/XSL/ Transform™>

<l defines the layout master —>
<folayout-master-set>
<fo:simple-page-master master-name="first"
page-height="29.7cm"
page-width="21cm"
margintop="1cm"
margin-bottom="2cm"*
margin-eft="2.5cm"
margin-right="2.5cm">
<forregion-body margin-top="3cm"/>
<ffo:simple-page-master>
<ffolayout-master-set>

<l starts actual layout —
<fo:page-sequence master-reference="first">

<fo:flow flow-name="xslregion-body">

<forblock font-size="24pt" line-height="24pt" font-weight="bold"
start-indent="15pt">
Total of All Salaries is $<xsl:value-of select="sum(ROWSET/ROW/SAL)'/>
<ffo:block>

<l- Here starts the table —>
<forblock border-width="2pt">
<fotable>
<fotable-column column-width="4cm"/>
<fortable-column column-width="4cm"/>
<fortable-body font-size="10pt" font-family="sans-serif">
<xslfor-each select="ROWSET/ROW">
<fotable-row line-height="12pt">
<fotable-cel>
<fo:block><xsl:value-of select="ENAME"/><ffo:block>
<ffotable-cel>
<fotable-cel>

XSQL Pages Publishing Framework

9-65

Advanced XSQL Pages Topics

<fo:block><xsl:value-of select="SAL"/><ffo:block>
<ffo:table-cell>
<ffotable-ron>
</xslfor-each>
<ffortable-body>
<ffotable>
<fforblock>
<ffoflow>
<ffo:page-sequence>
<fforroot>

Note: To use the XSQL FOP Serializer, you need to add these
additional Java archives to your server’s CLASSPATH:

« Xxsglserializers.jar — supplied with Oracle XSQL
« fopjar — From Apache, version 0.16 or higher
« w3cjar — from the FOP distribution’s ./lib directory

Using XSQL Page Processor Programmatically

The XSQLRequest class, allows you to utilize the XSQL page processor "engine"
from within your own custom Java programs. Using the APl is simple. You
construct an instance of XSQLRequest, passing the XSQL page to be processed into
the constructor as one of the following:

« String containing a URL to the page
« URLobject for the page
« In-memory XMLDocument
Then you invoke one of the following methods to process the page:
« process()— to write the result to a PrintWriter or OutputStream, or
« processToXML() — to return the result as an XML Document

If you want to use the built-in XSQL Connection Manager — which implements
JDBC connection pooling based on XSQLConfig.xml -based connection definitions
— then the XSQL page is all you need to pass to the constructor. Optionally, you
can pass in a custom implementation for the XSQLConnectionManagerFactory
interface as well, if you want to use your own connection manager implementation.

9-66 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Note that the ability to pass the XSQL page to be processed as an in-memory XML
Document object means that you can dynamically generate any valid XSQL page
for processing using any means necessary, then pass the page to the XSQL engine
for evaluation.

When processing a page, there are two additional things you may want to do as
part of the request:

. Pass a set of parameters to the request

You accomplish this by passing any object that implements the
Dictionary interface, to the process() or processToXML() methods.
Passing a HashTable containing the parameters is one popular approach.

« Setan XML document to be processed by the page as if it were the "posted
XML" message body

You can do this using the setPostedDocument() method on the
XSQLRequest object.

Here is a simple example of processing a page using XSQLRequest :

import oracle xml.xsgl.XSQLRequest;

import java.util. Hashtable;

import java.io.PrintWiriter;

import javanet URL,;

public class XSQLRequestSample {
public static void main(String]] args) throws Exception {

Il Construct the URL of the XSQL Page

URL pageUr = new URL(file///C:ffoofbar xsql);
/I Construct a new XSQL Page request
XSQLRequest req = new XSQLRequest(pageUr);
Il Setup a Hashtable of named parameters to pass to the request
Hashtable params = new Hashtable(3);
params.put(‘param1",'valuel");
params.put(‘param?2",'value2");
F If needed, treat an existing, in-memory XMLDocument as if
*jtwere posted to the XSQL Page as part of the request
req.setPostedDocument(myXMLDocument);

*
I/ Process the page, passing the parameters and writing the output
//'to standard out.
req.process(params,new PrintWiriter(System.out)
;new PrintWriter(System.er));
}

}

XSQL Pages Publishing Framework 9-67

Advanced XSQL Pages Topics

Writing Custom XSQL Action Handlers

When the task at hand requires custom processing, and none of the built-in actions
does exactly what you need, you can augment your repertoire by writing your own
actions that any of your XSQL pages can use.

The XSQL page processor at its very core is an engine that processes XML
documents containing "action elements". The page processor engine is written to
support any action that implements the XSQLActionHandler interface. All of the
built-in actions implement this interface.

The XSQL Page Processor processes the actions in a page in the following way. For
each action in the page, the engine:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page
processor context by invoking the method:

init(Element actionElt, XSQLPageRequest context)
3. Invokes the method that allows the handler to handle the action:
handleAction (Node result)

For built-in actions, the engine knows the mapping of XSQL action element name to
the Java class that implements the action’s handler. Table 9-17 lists that mapping
explicitly for your reference. For user-defined actions, you use the built-in:

<xsgl:action handler=" fully.qualified.Classname "B

action whose handler attribute provides the fully-qualified name of the Java class
that implements the custom action handler.

Table 9-17 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions
<xsql:query> XSQLQueryHandler

<xsql:dml> XSQLDMLHandler
<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler
<xsql:insert-request> XSQLInsertRequestHandler
<xsgl:include-xml> XSQLIncludeXMLHandler

<xsgl:include-request-params> XSQLIncludeRequestHandler

<xsql:include-posted-xml> XSQLIncludePostedXMLHandler

9-68 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Table 9-17 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions
<xsql:include-xsql> XSQLIncludeXSQLHandler
<xsql:include-owa> XSQLIncludeOWAHandler
<xsgl:action> XSQLExtensionActionHandler
<xsgl:ref-cursor-function> XSQLRefCursorFunctionHandler
<xsgl:include-param> XSQLGetParameterHandler
<xsgl:set-session-param> XSQLSetSessionParamHandler
<xsql:set-page-param> XSQLSetPageParamHandler
<xsql:set-cookie> XSQLSetCookieHandler
<xsgl:insert-param> XSQLInsertParameterHandler
<xsgl:update-request> XSQLUpdateRequestHandler
<xsql:delete-request> XSQLDeleteRequestHandler

Writing your Own Action Handler

To create a custom Action Handler, you need to provide a class that implements the
oracle.xml.xsql.XSQLActionHandler interface. Most custom action handlers
should extend oracle.xml.xsql.XSQLActionHandlerImpl that provides a
default implementation of the init() method and offers a set of useful helper
methods that will prove very useful.

When an action handler’s handleAction method is invoked by the XSQL page
processor, the action implementation gets passed the root node of a DOM
Document Fragment to which the action handler should append any dynamically
created XML content that should be returned to the page.

The XSQL Page Processor conceptually replaces the action element in the XSQL
page template with the content of this Document Fragment. It is completely legal for
an Action Handler to append nothing to this document fragment, if it has no XML
content to add to the page.

While writing you custom action handlers, several methods on the
XSQLActionHandlerImpl class are worth noting because they make your life a lot
easier. Table 9-18 lists the methods that will likely come in handy for you.

XSQL Pages Publishing Framework 9-69

Advanced XSQL Pages Topics

Table 9-18 Helpful Methods on oracle.xml.xsql. SQLActionHandlerimpl

Method Name

Description

getActionElement Returns the current action element being handled

getActionElementContent Returns the text content of the current action element,
with all lexical parameters substituted appropriately.

getPageRequest Returns the current XSQL page processor context. Using

this object you can then do things like:
« setPageParam()
Set a page parameter value
« getPostedDocument()/setPostedDocument()
Get or set the posted XML document
« translateURL()
Translate a relative URL to an absolute URL
« getRequestObject()/setRequestObject()

Get or set objects in the page request context that
can be shared across actions in a single page.

« getJDBCConnection()

Gets the JDBC connection in use by this page
(possible null if no connection in use).

« getRequestType()

Detect whether you are running in the "Servlet",
"Command Line" or "Programmatic” context. For
example, if the request type is "Servlet" then you can
cast the XSQLPageRequest object to the more
specific XSQLServletPageRequest to access
addition Servlet-specific methods like
getHttpServletRequest ,
getHttpServletResponse
getServietContext

,and

getAttributeAllowingParam

Retrieve the attribute value from an element, resolving
any XSQL lexical parameter references that might appear
in the attribute’s value. Typically this method is applied
to the action element itself, but it is also useful for
accessing attributes of any of its sub-elements. To access
an attribute value without allowing lexical parameters,
use the standard getAttribute() method on the
DOM Element interface.

9-70 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

Table 9-18 Helpful Methods on oracle.xml.xsql. SQLActionHandlerImpl

Method Name

Description

appendSecondaryDocument

Append the entire contents of an external XML
document to the root of the action handler result content.

addResultElement

Simplify appending a single element with text content to
the root of the action handler result content.

firstColumnOfFirstRow

Return the first column value of the first row of a SQL
statement passed in. Requires the current page to have a
connection attribute on its document element, or an error
is returned.

bindVariableCount

Returns the number of tokens in the space-delimited list
of bind-params , indicating how many bind variables
are expected to be bound to parameters.

handleBindVariables

Manage the binding of JDBC bind variables that appear
in a prepared statement with the parameter values
specified in the bind-params attribute on the current
action element. If the statement already is using a
number of bind variables prior to call this method, you
can pass the number of existing bind variable "slots" in
use as well.

reportErrorincludingStatement

Report an error, including the offending (SQL) statement
that caused the problem, optionally including a numeric
error code.

reportFatalError Report a fatal error.

reportMissingAttribute Report an error that a required action handler attribute is
missing using the standard <xsql-error> element.

reportStatus Report action handler status using the standard

<xsql-status> element.

requiredConnectionProvided

Checks whether a connection is available for this request,
and outputs an "errorgram" into the page if no
connection is available.

variableValue

Returns the value of a lexical parameter, taking into
account all scoping rules which might determine its
default value.

The following example shows a custom action handler MylncludeXSQLHandler
that leverages one of the built-in action handlers and then uses arbitrary Java code
to modify the resulting XML fragment returned by that handler before appending

its result to the XSQL page:

XSQL Pages Publishing Framework 9-71

Advanced XSQL Pages Topics

import oracle xmilxsgl.*;
import oracle xmlxsgl.actions.XSQLIncludeXSQLHandler;
import orgw3c.dom.;
import java.sql.SQLException;
public class MylncludeXSQLHandler extends XSQLActionHandlerlmpl {
XSQLActionHandler nestedHandler = null;
public void initCXSQLPageRequest req, Element action) {
super.init(reg, action);
/I Create an instance of an XSQLIncludeXSQLHandler
/land init() the handler by passing the current request/action
/I This assumes the XSQLIncludeXSQLHandler will pick up its
I'href="Yoxxsql" attribute from the current action element.
nestedHandler = new XSQLIncludeXSQLHandler();
nestedHandler.init(req,action);

}
public void handleAction(Node resutt) throws SQLEXxception {
DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
nestedHandler.handleAction(d);
/I Custom Java code here can work on the retumed document fragment
Il before appending the final, modified document to the result node.
/I For example, add an attribute to the first child
Element e = (Element)df.getFirstChild();
if (€ 1= null) {
e.setAttribute('ExtraAttribute”,"SomeValue");

}
resultappendChid(df);

}

If you create custom action handlers that need to work differently based on whether
the page is being requested through the XSQL Servlet, the XSQL Command-line
Utility, or programmatically through the XSQLRequest class, then in your Action
Handler implementation you can call getPageRequest() to get a reference to the
XSQLPageRequest interface for the current page request. By calling
getRequestType() on the XSQLPageRequest object, you can see if the request is
coming from the “Servlet”, “Command Line”, or “Programmatic” routes
respectively. If the return value is “Servlet”, then you can get access to the HTTP
Servlet's request, response, and servlet context objects by doing:

XSQLSendetPageRequest xspr = (XSQLSenetPageRequest)getPageRequest();
if (xspr.getRequestType().equals('Serviet)) {

HitpSenvietRequest req = xspr.getHttpSenietRequest();

HitpSenvietResponse resp = xspr.getHttpSenietResponse();

SenvietContext cont = xspr.getSenvietContext();

I/ do something fun here with reg, resp, or cont however

9-72 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

I/ writing to the response directly from a handler wil

I/ produce unexpected results. Allow the XSQL Serviet

I/ or your custom Serializer to write to the serviet's

I/ response output stream at the wiite moment later when all
I/ action elements have been processed.

Writing Custom XSQL Serializers

You can provide a user-defined serializer class to programmatically control how the
final XSQL datapage's XML document should be serialized to a text or binary
stream. A user-defined serializer must implement the
oracle.xml.xsgl.XSQLDocumentSerializer interface which comprises the
single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws Throwable;

In this release, DOM-based serializers are supported. A future release may support
SAX2-based serializers as well. A custom serializer class is expected to perform the
following tasks in the correct order:

1. Set the content type of the serialized stream before writing any content to the
output PrintWriter (or OutputStream).

You set the type by calling setContentType() on the XSQLPageRequest
that is passed to your serializer. When setting the content type, you can either
set just a MIME type like this:

env.setContentType(‘texthtml");

or a MIME type with an explicit output encoding character set like this:
env.setContentType(texthtml;charset=Shift_JIS");

2. Call getWriter() or getOutputStream() — but not both! — on the
XSQLPageRequest to get the appropriate PrintWriter or OutputStream
respectively to use for serializing the content.

For example, the following custom serializer illustrates a simple implementation
which simply serializes an HTML document containing the name of the document
element of the current XSQL data page:

package oracle xml.xsq|l.serializers;
import orgw3c.dom.Document,
import java.io.PrintWiriter;

import oracle xml.xsgl*;

XSQL Pages Publishing Framework 9-73

Advanced XSQL Pages Topics

public class XSQLSampleSerializer implements XSQLDocumentSerializer {
public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
String encoding = env.getPageEncoding(); / Use same encoding as XSQL page
Iltemplate. Set to specific
Il encoding if necessary
String mimeType ="texthtml"; / Set this to the appropriate content type
/1 (2) Set content type using the setContentType on the XSQLPageRequest
if (encoding = null && 'encoding.equals(™)) {
env.setContentType(mimeType+";charset="+encoding);

}
else {
env.setContentType(mimeType);

}

11 (2) Get the output writer from the XSQLPageRequest

PrintWiiter e = env.getWiriter();

1 (3) Serialize the document to the writer

e.prinin('<htmi>Document element is "+
doc.getDocumentElement().getNodeName(y+
"<hm>");

}
}

There are two ways to use a custom serializer, depending on whether you need to
first perform an XSLT transformation before serializing or not. To perform an XSLT
transformation before using a custom serializer, simply add the

serializer="java: fully.qualified.ClassName " in the
<?xml-stylesheet?> processing instruction at the top of your page like this:

<?xml version="1.07>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
serializer="java:my.pkg.MySerializer*?>

If you only need the custom serializer, simply leave out the type and href
attributes like this:

<?xml version="1.07>
<xml-stylesheet serializer="fava:my.pkg.MySerializer*?>

You can also assign a short nickname to your custom serializers in the
<serializerdefs> section of the XSQLConfig.xml file and then use the
nickname (case-sensitive) in the serializer attribute instead to save typing. For
example, if you have the following in XSQLConfig.xml

9-74 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

<XSQLConfig>
<-efc.—>
<serializerdefs>
<serializer>
<name>Sample</name>
<class>oracle xml.xsgl.serializers.XSQLSampleSerializer</class>
</serializer>
<serializer>
<name>FOP</name>
<class>oracle xml.xsgl.serializers XSQLFOPSerializer</class>
</serializer>
<[serializerdefs>
</XSQLConfig>

then you can use the nicknames "Sample" and/or "FOP" as shown in the following
examples:

<?xml-stylesheet type="text/xsl" href="emp-to-xsifo.xsl" serializer="FOP"?>

or

<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest interface supports both a getWriter() and a
getOutputStream() method. Custom serializers can call getOutputStream()
to return an OutputStream instance into which binary data (like a dynamically
produced GIF image, for example) can be serialized. Using the XSQL Servlet,
writing to this output stream results in writing the binary information to the
servlet's output stream.

For example, the following serializer illustrates an example of writing out a
dynamic GIF image. In this example the GIF image is a static little "ok" icon, but it
shows the basic technique that a more sophisticated image serializer would need to
use:

package oracle xmlxsql.serializers;
import org:w3c.dom.Document,
import java.io®;

import oracle xml.xsql*;

public class XSQLSamplelmageSerializer implements XSQLDocumentSerializer {
I/ Byte array representing a small “ok” GIF image
private static byte[] okGif =
{(byte)ox47 (byte)Ox49,(byte)0x46,(byte)0x38,
(byte)Ox39,(byte)Ox61,(byte)OXB,(byte)0xO,

XSQL Pages Publishing Framework 9-75

Advanced XSQL Pages Topics

(byte)Ox9,(byte)Ox0,(byte)OXFFFFFFS0, (byte)Ox0,
(byte)0x0,(byte)Ox0, (byte)0x0, (byte)0x0,

(byte)OXFFFFFFFF, (byte)OxFFFFFFFF, (byte) OxFFFFFFFF, (byte)Ox2C,
(byte)0x0,(byte)Ox0, (byte)0x0, (byte)0x0,
(byte)OxB, (byte)Ox0, (byte)0x9, (byte)0x0,
(byte)0x0,(byte)0x2, (byte)Ox14, (byte)OXFFFFFF8C,

(byte)OXF(byte) OXFFFFFFAY,(byte)OXFFFFFFBS, (byte)OXFFFFFF9B,
(byte)OXA (byte)OXFFFFFFA, (byte)OX79, (byte)OXFFFFFFES,
(byte)OXFFFFFFS5, (byte)OX7A, (byte)0x27,(oyte)OXFFFFFF93,
(byte)Ox5A, (byte)OxFFFFFFES, (byte) OXFFFFFFEC, (byte)OX75,
(byte)OX11,(byte)OXFFFFFFS5, (byte)0x14, (byte)Ox0,

(byte)Ox3B};

public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
env.setContentType('image/gif’);
OutputStream os = env.getOutputStream();
os.write(okGif,0,0kGif length);
osflush();

}
}

Using the XSQL Command-line utility, the binary information is written to the
target output file. Using the XSQLRequest programmatic API, two constructors
exist that allow the caller to supply the target OutputStream to use for the results of
page processing.

Note that your serializer must either call getWriter() (for textual output) or
getOutputStream() (for binary output) but not both. Calling both in the same
request will raise an error.

Writing Custom XSQL Connection Managers

You can provide a custom connection manager to replace the built-in connection
management mechanism. To provide a custom connection manager
implementation, you must provide:

1. A connection manager factory object that implements the
oracle.xml.xsgl.XSQLConnectionManagerFactory interface.

2. A connection manager object that implements the
oracle.xml.xsgl.XSQLConnectionManager interface.

Your custom connection manager factory can be set to be used as the default
connection manager factory by providing the classname in the XSQLConfig.xml
file in the section:

9-76 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics

<
| Setthe name of the XSQL Connection Manager Factory
| implementation. The class mustimplement the
| oracle xml.xsgl. XSQLConnectionManagerFactory interface.
| If unset, the default is to use the buitt-in connection
| manager implementation in
| oracle.xmlxsgl. XSQLConnectionManagerFactorylmpl
+—>
<connection-manager>
<factory>oracle xml.xsgl.XSQLConnectionManagerFactorylmpl<ffactory>
</connection-manager>

In addition to specifying the default connection manager factory, a custom
connection factory can be associated with any individual XSQLRequest object
using API's provided.

The responsibility of the XSQLConnectionManagerFactory is to return an
instance of an XSQLConnectionManager for use by the current request. In a
multithreaded environment like a servlet engine, it is the responsibility of the
XSQLConnectionManager object to insure that a single XSQLConnection

instance is not used by two different threads. This can be assured by marking the
connection as "in use" for the span of time between the invocation of the
getConnection() method and the releaseConnection() method. The default
XSQL connection manager implementation automatically pools named connections,
and adheres to this thread-safe policy.

If your custom implementation of XSQLConnectionManager implements the
optional oracle.xml.xsgl. XSQLConnectionManagerCleanup interface as
well, then your connection manager will be given a chance to cleanup any resources
it has allocated. For example, if your servlet container invokes the destroy()

method on the XSQLServlet servlet, which can occur during online
administration of the servlet for example, this will give the connection manager a
chance to clean up resources as part of the servlet destruction process.

Formatting XSQL Action Handler Errors

Errors raised by the processing of any XSQL Action Elements are reported as XML
elements in a uniform way so that XSL Stylesheets can detect their presence and
optionally format them for presentation.

The action element in error will be replaced in the page by:

<xsgl-error action="<">

XSQL Pages Publishing Framework 9-77

XSQL Servlet Limitations

Depending on the error the <xsql-error> element contains:
« A nested <message> element

« A <statement> element with the offending SQL statement

Displaying Error Information on Screen

Here is an example of an XSLT stylesheet that uses this information to display error
information on the screen:

<xslif test="/xsql-eror>
<table style="background:yellow">
<xslfor-each select="/xsqgl-error">
<>
<td><p>Action<fid>
<td><xsl:value-of select="@action"/></fd>
<fr>
<fr valign="top">
<td>Message</td>
<td><xsl:value-of select="message"/></td>
<fr>
</xsl-for-each>
<table>
</xslif>

XSQL Servlet Limitations

XSQL Servlet has the following limitations:

HTTP Parameters with Multibyte Names

HTTP parameters with multibyte names, for example, a parameter whose name is
in Kanji, are properly handled when they are inserted into your XSQL page using
<xsgl:include-request-params>. An attempt to refer to a parameter with a multibyte
name inside the query statement of an <xsql:query> tag will return an empty string
for the parameter's value.

Workaround

As a workaround use a non-multibyte parameter name. The parameter can still
have a multibyte value which can be handled correctly.

9-78 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

CURSOR() Function in SQL Statements

If you use the CURSOR() function in SQL statements you may get an “Exhausted
ResultSet” error if the CURSOR() statements are nested and if the first row of the
guery returns an empty result set for its CURSOR() function.

Frequently Asked Questions About the XSQL Servlet

This section lists XSQL Servlet questions and answers.

Can | Specify a DTD While Transforming XSQL Output to a WML Document?

I am trying to write my own stylesheet for transforming XSQL output to WML and
VML format. These programs, which are mobile phone simulators need a WML
document with a specific DTD assigned.

Is there any way to specify a particular DTD while transforming XSQL's output to a
WML document?

Answer: Sure. The way you do it is using a built-in facility of the XSLT stylesheet
called <xsl:output> . Here is an example:

<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/ Transform'>
<xsl:output type="xml" doctype-system="your.dtd"/>
<xsltemplate match="/">
</xsltemplate>

<ixslstylesheet>
This will produce an XML result with the following code in the result:

<IDOCTYPE xxxx SYSTEM *“your.dtd">

where "your.dtd" can be any valid absolute or relative URL.

Can | Write XSQL Servlet Conditional Statements?

Is it possible to write conditional statements in an XSQL file? If yes, then what is the
syntax to do that?

For example:

<xsql:choose>
<xsglwhen test="@security="admin">
<xsgl-query>

XSQL Pages Publishing Framework 9-79

Frequently Asked Questions About the XSQL Servlet

SELECT ...
</xsql:query>
</xsqwhen>
<xsglwhen test="@security=user">
<xsglquery>
SELECT ...
</xsqlquery>
</xsglwhen>
</xsqliif>

Answer: Use <xsql:ref-cursor-function> to call a PL/SQL procedure that
would conditionally return a REF CURSORGo the appropriate query.

Can | Use a Value Retrieved in One Query in Another Query’s Where Clause?
I have two queries in an XSQL file.

<xsgl:query>
select coll,col2
from tablel
</xsgl:query>
<xsgl:query>
select col3,col4 from table2
where col3={@coll} =>the value of coll inthe previous query

</xsqlquery>
How can | use, in the second query, the value of a select list item of the first query?

Answer: You do this with page parameters. Refer to the following example:

<page xmins:xsgl="um:oracle-xsql"* connection="demo">
<I-Value of page param "xxx" will be first column of first row —>
<xsgl:setpage-param name="xxx">
select one from tablel where ...
</xsl:set-param-param>
<xsgl:query bind-params="xx">
select col3,col4 from table2
where col3="?
</xsql:query>
</page>

Can | Use the XSQL Servlet with Non-Oracle Databases?
Can the XSQL Servlet connect to any database that has JDBC support?

9-80 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

Answer: Yes. Just indicate the appropriate JDBC driver class and connection URL in
the XSQLConfig.xml file’s connection definition. Of course, object/relational
functionality only works when using Oracle with the Oracle JDBC driver.

How Do | Use the XSQL Servlet to Access the JServ Process?

I am running the demo helloworld.xsq|l . Initially | was getting the following
error:

XSQL-007 cannot aquire a database connection to process page

Now my request times out and | see the following message in the
jserv/log/jserv.log file:

Connections from Localhost/127.0.0.1 are not allowed

Is this a security issue? Do we have to give explicit permission to process an XSQL
page? If so, how do we do that? | am using Apache Web server and Apache jserver,
with Oracle9i as the database. | have Oracle client installed and the Tnsnames.ora
file configured to get database connection. My XSQconnections.xml file is
configured correctly.

Answer: This looks like a generic JServ problem. You have to make sure that your
security.allowedAddresses=property in jserv.properties allows your
current host access to the JServ process where Java runs. It may be helpful to test
whether you can successfully run any JServ servlet.

How Do | Run XSQL on Oracle8 i Lite?

I am trying to use XSQL with Oracle8i Lite on Windows 98, and the Apache JServ
Web server. | am getting the error message no oljdbc40 in

java.library.path , even though | have set the olite40.jar in my

classpath (which contains the POLJDBCdriver). Is there anything extra | need to
do to run XSQL for Oracle8i Lite.

Answer: You must include the following instruction in your jserv.properties
file:

wrapper.path=C:\orant\bin
where C:\orant\bin is the directory where (by default) the OLIDBC40.DLL lives.

Note that this is not wrapper.classpath , it's wrapper.path

XSQL Pages Publishing Framework 9-81

Frequently Asked Questions About the XSQL Servlet

How Do | Handle Multi-Valued HTML Form Parameters?

Is there any way to handle multi-valued HTML <form> parameters which are
needed for <input type="checkbox"> ?

Answer: There is no built-in way, but you could use a custom Action Handler like
this:

/I MuttiValuedParam: XSQL Action Handler that takes the value of
/| ————— amuli-valued HTTP request parameter and
I sets the value of a user-defined page-parameter
I equal to the concatenation of the multiple values
I with optional control over the separator used
I between values and delimiter used around values.
I Subsequent actions in the page can then reference
/A the value of the user-defined page-parameter.
import oracle xmlxsql*;
import javax.serviet http.*;
import orgw3c.dom.*;
public class MultiValuedParam extends XSQLActionHandlerimpl {
public void handleAction(Node root) {
XSQLPageRequest req = getPageRequest();
1 Only bother to do this if we're in a Serviet environment
if (req.getRequestType().equals("Senviet’)) {
Element actElt = getActionElement();
I/ Get name of multi-valued parameter to read from attribute
String paramName = getAttributeAllowingParam(‘'name”,actel);
I/ Get name of page-param to set with resulting value
String pageParam = getAttributeAllowingParam('page-param’”,actelt);
Il Get separator string
String separator = getAttributeAllowingParam("'separator actel);
I/ Get delimiter string
String delimiter = getAttributeAllowingParam('delimiter”,actel);
I'f the separator is not specified or is blank, use comma
if (separator = null || separator.equals(")) {
separator="";
}
II\We're in a Serviet environment, so we can cast
XSQLSenetPageRequest spReq = (XSQLSenvietPageRequest)req;
I/ Get hold of the HTTP Request
HitpSenvietRequest httpReq = spReg.getHitpSenvietRequest();
Il Get the String array of parameter values
String[] values = httpReg.getParameterValues(paramName);
StringBuffer str = new StringBuffer();
I 'if some values have been retumed
if (values !=null) {

9-82 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

int items = values.length;

/I Append each value to the string buffer

for (intz=0; z<items; z++) {
I Add a separator before all but the first
if (z '=0) str.append(separator);
I/ Add a delimiter around the value if non-null
if (delimiter '= null) str.append(delimiter);
str.append(values[z]);
if (delimiter '= null) str.append(delimiter);

}

II'if page-param attribute not provided, default page param name

if (pageParam == null) {
pageParam = paramName+"-values";

}

I Set the page-param to the concatenated value

reg.setPageParam(pageParam,str.toString());

}
}
}
}

Then you can use this custom action in a page like this:

<page xmins:xsgi="um:oracle-xsq">
<xsgl-action handler="MultValuedParam' name="guy" page-param="p1" />
<xsg:action handler="MuliValuedParam" name="guy" page-param="p2"
delimiter="/>
<xsg:action handler="MuliValuedParam" name="guy" page-param="p3"
delimiter=""" separator=""/>
<xsglinclude-param name="p1'"/>
<xsglinclude-param name="p2'/>
<xsglinclude-param name="p3"/>
</page>

If this page is requested with the URL following, containing multiple parameters of
the same name to produce a multi-valued attribute:

http:/iyourserver.com/page xsgl?guy=Cury&guy=Larmy&guy=Moe
then the page returned will be:

<page>
<p1>Curly,Larry,Moe</p1>
<p2>'Curly',Lany, Moe'</p2>
<p3>"Curly" "Larry" "Moe"</p3>
</page>

XSQL Pages Publishing Framework 9-83

Frequently Asked Questions About the XSQL Servlet

You can also use the value of the multi-valued page parameter precedingnonzero in
a SQL statement by using the following code:

<page connection="demo" xmins:xsgl="um:oracle-xsql*>
<xsgl-action handler="MultiValuedParam" name="guy" page-param=" list
delimiter=""/>
<I- Above custom action sets the value of page param named 'list —>
<xsglquery>
SELECT * FROM sometable WHERE name IN ({@ist)
</xsql:query>
<lpage>

Can | Run the XSQL Servlet with Oracle 7.3?

Is there anything that prevents me from running the XSQL Servlet with Oracle 7.3? |
know the XML SQL Utility (XSU) can be used with Oracle 7.3 as long as | use itas a
client-side utility.

Answer: No. Just make sure you're using the Oracle9i JDBC driver, which can
connect to an Oracle 7.3 database with no problems.

Why Isn’t the Out Variable Supported in <xsql:dml>?

I using <xsqgl:dml> to call a stored procedure which has one OUTparameter, but |
was not able to see any results. The executed code results in the following
statement:

<xsglstatus action="xsgl:.dml" rows="0"/>

Answer: You cannot set parameter values by binding them in the position of OUT
variables in this release using <xsqgl:dml> . Only IN parameters are supported for
binding. You can create a wrapper procedure that constructs XML elements using
the HTP package and then your XSQL page can invoke the wrapper procedure
using <xsql:include-owa> instead.

For an example, suppose you had the following procedure:

CREATE OR REPLACE PROCEDURE addmultargl ~ NUMBER,
ag2 NUMBER,
sumval OUT NUMBER,
prodval OUT NUMBER) IS
BEGIN
sumval :=argl +arg2;
prodval :=argl * arg2;

9-84 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

END;

You could write the following procedure to wrap it, taking all of the IN arguments
that the procedure preceding expects, and then encoding the OUTvalues as a little
XML datagram that you print to the OWA page buffer:

CREATE OR REPLACE PROCEDURE addmuliwrapper(argl NUMBER, arg2 NUMBER) IS
sumval NUMBER;
prodval NUMBER,;
xml VARCHAR2(2000y);
BEGIN
— Call the procedure with OUT values
addmult(argl,arg2,sumval,prodval);
— Then produce XML that encodes the OUT values
xml = '<addmult>|
‘<sum>jsumval|'</sum>|
‘<product>{|prodval|| <fporoduct>|
‘<faddmuit>';
- Print the XML result to the OWA page buffer for retum
HTP.P(xml);
END;

This way, you can build an XSQL page like this that calls the wrapper procedure:

<page connection="demo" xmins:xsgl="um:oracle-xsql*>
<xsglinclude-owa bind-params="arg1 arg2">
BEGIN addmuftwrapper(?,?); END;
<xsgliinclude-owa>
<lpage>

This allows a request like the following:
http/iyourserver.com/addmult.xsql?arg1=30&arg2=45

to return an XML datagram that reflects the OUTvalues like this:
<page>

<addmult><sum>75</sum><product>1350</product></addmult>
</page>

Why Am | Receiving "Unable to Connect" Errors?

Experimenting with XSQL I’'m unable to connect to a database; | get errors like this
running the helloworld.xsql example:

Oracle XSQL Serviet Page Processor 9.0.0.0.0 (Beta)

XSQL Pages Publishing Framework 9-85

Frequently Asked Questions About the XSQL Servlet

XSQL-007: Cannot acquire a database connection to process page.
Connection refused(DESCRIPTION=(TMP=)(VSNNUM=135286784)(ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505)(EMFI=4))))

Does this mean that it has actually found the config file? | have a user with
scott/tiger setup.

Answer: Yes. If you get this far, it's actually attempting the JDBC connection based
on the <connectiondef> info for the connection named demo, assuming you
didn't modify the helloworld.xsql demo page.

By default the XSQLConfig.xml file comes with the entry for the demo connection
that looks like this:

<connection name="demo>
<usemame>scott</usemame>
<password>tiger</password>
<dbur>jdbc:oracle:thin:@localhost:1521:0RCL</dbur>
<driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>

So the error you're getting is likely because of the following reasons:
1. Your database is not on the localhost ~ machine.

2. Your database SID is not ORCL.

3. Your TNS Listener Port is not 1521.

Make sure those values are appropriate for your database and you should have no
problems.

Can | Use Other File Extensions Besides *.xsql?

I want users to think they are accessing HTML files or XML files with extensions
.html and .xml respectively, however I'd like to use XSQL to serve the HTML and
XML to them. Is it possible to have the XSQL Servlet recognize files with an
extension of .html or .xml in addition to the default .xsgl extension?

Answer: Sure. There is nothing sacred about the *.xsgl extension, it is just the
default extension used to recognize XSQL pages. You can modify your servlet
engine’s configuration settings to associate any extension you like with the
oracle.xml.xsgl.XSQLServlet servlet class using the same technique that was
used to associate the *.xsql extension with it.

9-86 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

How Do | Avoid Errors for Queries Containing XML Reserved Characters?
I have a page like the following:

<xsgl:query connection="demo" xmins:xsgl="um:oracle-xsgl">
SELECT id, REPLACE(company,’ &, ’and’) company, balance
FROM vendors
WHERE outstanding_balance <3000

</xsql:query>

However, when | try to request the page | get the following error:

XSQL-005: XSQL page is not wel-ormed.
XML parse error at line 4, char 16
Expected name instead of’

What’s wrong?

Answer: The problem is that the ampersand character (&) and the less than sign (<)
are reserved characters in XML because:

« The ampersand character (&) starts the sequence of characters that
designates an entity reference like or <

« The less than sign (<) starts the sequence of characters that designates an
element like <SomeElement>

To include a literal ampersand character or less than character you need to either
encode each one as a entity reference like this:

<xsgl:query connection="demo" xmins:xsgl="um:oracle-xsq">
SELECT id, REPLACE(company,’ &’,'and)) company, balance
FROM vendors
WHERE outstanding_balance &l 3000

</xsqlquery>

Altematively, you can surround an entire block of text with a so-called CDATA
section that begins with the sequence <[CDATA[and ends with a comresponding
> sequence. All text contained in the CDATA section is treated as literal.
<xsgl:query connection="demo" xmins:xsgl="um:oracle-xsgl">
<|[CDATAl

SELECT id, REPLACE(company, &,'and’) company, balance

FROM vendors

WHERE outstanding_balance <3000
>
</xsgl:query>

XSQL Pages Publishing Framework 9-87

Frequently Asked Questions About the XSQL Servlet

Why Do | Get "No Posted Document to Process” When | Try to Post XML?

When I try to click a link to an XSQL page that contains an <xsql:insert-request>
tag, | see a message in my page "No Posted Document to Process" and no data gets
inserted into the database. What’s going on?

Answer: When trying to post XML information to an XSQL page for processing, it
must be sent by the HTTP POST method. This can be an HTTP POST-ed HTML
Form or an XML document sent by HTTP POST. If you try to use HTTP GET
instead, there is no posted document, and hence you get this error. Use HTTP POST
instead to have the correct behavior.

Can XSQL Support SOAP?

Can an XSQL page be used to implement a SOAP service so that clients over HTTP
use it?

Answer: Sure. Your page can access contents of the inbound SOAP message using
the <xsql:set-page-param> action’s xpath="XpathExpression" attribute.
Alternatively, your customer action handlers can gain direct access to the posted
SOAP message body by calling getPageRequest().getPostedDocument()

To create the SOAP response body to return to the client, you can either use an
XSLT stylesheet or a custom serializer implementation to write out the XML
response in an appropriate SOAP-encoded format.

So, while not automatic, it is possible. See the supplied AirportSOAP demo that
comes with the XSQL Pages framework for an example of using an XSQL page to
implement a SOAP-based Web Service.

How Do | Pass the Connection for XSQL?

I need to be able to pass the connection for XSQL to use in the request. Is this
possible?

Answer: Yes. Just reference an XSQL parameter in your page’s connection attribute,
making sure to define an attribute of the same name to serve as the default value for
the connection name. For example:

<xsgl:query conn="testdb" connection=" {@conn} " xmins:xsgl="um:oracle-xsgl”>
</xsql:query>

If you retrieve this page without any parameters, the value of the conn parameter
will be testdb , so the page will use the connection named testdb defined in the

9-88 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

XSQLConfig.xml file. If instead you request the page with conn=proddb , then
the page will use the connection named proddb instead.

How Do | Control How Database Connections and Passwords Are Stored?

If we need a more sophisticated set of username and password management than
the one that is provided by default in XSQL (using the XSQLConfig.xml file) is it
possible to override this?

Answer: Yes. You can completely redefine the way the XSQL Page Processor
handles database connections by creating your own implementation of the
XSQLConnectionManager interface. To achieve this, you need to write a class that
implements the oracle.xml.xsgl.XSQLConnectionManagerFactory

interface and a class that implements the
oracle.xml.xsgl.XSQLConnectionManager interface, then change the name
of the XSQLConnectionManagerFactory class to use in your XSQLConfig.xml
configuration file. Once you’ve done this, your connection management scheme
will be used instead of the XSQL Pages default scheme.

How Do | Access Authentication Information in a Custom Connection Manager?

We want to use the HTTP authentication mechanism to get the username and
password to connect to the database. Is it possible to get this kind of information in
a custom connection manager’s getConnection() method?

Answer: Yes. The getConnection() method is passed an instance of the
XSQLPageRequest interface. From it, you can get the HTTP Request object by:

1. Testing the request type to make sure it's "Servlet "
2. Casting XSQLPageRequest to XSQLServletPageRequest
3. Calling getHttpServietRequest() on the result of (2)

You can then get the authentication information from that HTTP Request object.

How Do | Retrieve the Name of the Current XSQL Page?

Is there a smart way for an XSQL page to access its own name in a generic way at
runtime for the purpose of constructing links to the current page?

Answer: You can use a helper method like this to retrieve the name of the page
inside a custom action handler:

Il Get the name of the current page from the current page's URI

XSQL Pages Publishing Framework 9-89

Frequently Asked Questions About the XSQL Servlet

private String curPageName(XSQLPageRequest req) {
String thisPage = req.getSourceDocumentURI();;
int pos = thisPage lastindexOf{(/);
if (pos >=0) thisPage = thisPage.substring(pos+1);
pos = thisPage.indexOf('?);
if (pos >=0) thisPage = thisPage.substring(0,pos-1);
retum thisPage;

How Do | Resolve Errors When | Try to Use the FOP Serializer?

| get an error trying to use the FOP Serializer to produce PDF output from my
XSQL Page. What could be wrong?

Answer: Typically the problem is that you do not have all of the required JAR files
in the CLASSPATH. The XSQLFOPSerializer class lives in the separate
xsqlserializers.jar file, and this must be in the CLASSPATH to use the FOP
integration. Then, the XSQLFOPSerializer class itself has dependencies on several
libraries from Apache. For example, here is the source code for a FOP Serializer that
works with the Apache FOP 0.20.3RC release candidate of the FOP software:

package sample;

import orgw3c.dom.Document,

import org.apache.log.Logger;

import org.apache.log.Hierarchy;

import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;

import oracle xml.xsgl. XSQLPageRequest;

import oracle xml.xsgl. XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;

import org.apache.log.output NullOutputl og Target,

P
*Tested with the FOP 0.20.3RC release from 19-Jan-2002
¥
public class SampleFOPSerializer implements XSQLDocumentSerializer {
private static final String PDFMIME = "application/pdf*;
public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
y{
I/ First make sure we can load the driver
Driver FOPDriver = new Driver();
I/ Tell FOP not to spit out any messages by default.
I1'You can madify this code to create your own FOP Serializer
I/that logs the output to one of many different logger targets
I/ using the Apache LogKit API

9-90 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

Logger logger = Hierarchy.getDefaultHierarchy()

.getl oggerFor("XSQLSenvet);
logger.setlogTargets(new LogTarget{new NullOutputLogTarget()});
FOPDriver.setlogger(logger);

Il Some of FOP's messages appear to still use MessageHandler.
MessageHandler.setOutputMethod(MessageHandler.NONE);
I/ Then set the content type before getting the reader/
env.setContentType(PDFMIME);
FOPDriver.setOutputStream(env.getOutputStream());
FOPDriver.setRenderer(FOPDriver. RENDER_PDF);
FOPDriver.render(doc);

}

catch (Exception €) {
I/ Cannot write PDF output for the error anyway.
I So maybe this stack trace will be useful info
e.printStackTrace(System.en);

}

}
}

This FOP serializer depends on having the following additional Apache JAR files in
the CLASSPATH at runtime:

1. fop.jar - Apache FOP Rendering Engine

2. batik.jar - Apache Batik SVG Rendering Engine

3. avalon-framework-4.0.jar - API’s for Apache Avalon Framework
4. logkit-1.0.jar - API’s for the Apache Logkit

How Do | Tune XSQL Pages for Fastest Performance?
What recommendations can you provide to make my XSQL pages run the fastest?

Answer: The biggest thing that affects the performance is the size of the data you're
qguerying (and of course the pure speed of the queries). Assuming you have tuned
your queries and used true ? bind variables instead of lexical bind variables
wherever allowed by SQL, then the key remaining tip is to make sure you are only
guerying the minimum amount of data needed to render the needed result.

If you are querying thousands of rows of data, only to use your XSLT stylesheet to
filter the rows to present only 10 of those rows in the browser, then this is a bad
choice. Use the database's capabilities to the maximum to filter the rows and return
only the 10 rows you care about if at all possible. Think of XSQL as a thin

XSQL Pages Publishing Framework 9-91

Frequently Asked Questions About the XSQL Servlet

coordination layer between Oracle database and the power of XSLT as a
transformation language.

How Do | Use XSQL with Other Connection Pool Implementations?

Can you set up XSQL pages to use connections taken from a connection pool? For
example, if you are running XSQL servlet in a Weblogic web server, how would the
connection definition have to be set up to take a connection from the existing pool?

Answer: XSQL implements it's own connection pooling so in general you don't
have to use another connection pool, but if providing the JDBC connection string of
appropriate format is not enough to use the WebLogic pool, then you can create
your own custom connection manager for XSQL by implementing the interfaces
XSQLConnectionManagerFactory and XSQLConnectionManager

How Do | Include XML Documents Stored in CLOBs?
How do | include XML documents stored in a CLOB in the database into my XSQL
page?
Answer: Use <xsql:include-xml> with a query to retrieve the CLOB value.

How Do | Combine JSP and XSQL in the Same Page?

Is it possible to combine XSQL and JSP tags in the same page or should one use
include tags for that?

Answer: JSP and XSQL are two different models. JSP is a model that is based on
writing streams of characters to an output stream. XSQL is a model that is pure

XML/ XSLT-based. At the end of the day, some result like HTML or XML comes
back to the user, and there really isn't anything that you can implement with XSQL
that you could not implement in JSP by writing code and working with XML
documents as streams of characters, doing lots of internal reparsing. XSQL fits the
architecture when customers want to cleanly separate the data content (represented
in XML) from the data presentation (represented by XSLT stylesheets). Since it
specializes in this XML/XSLT architecture, it is optimized for doing that.

You can, for example, use <jsp:include> or <jsp:forward> to have a JSP page
include/forward to an XSQL page. This is the best approach.

Can | Choose a Stylesheet Based on Input Arguments?
Is it possible to change stylesheets dynamically based on input arguments?

9-92 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet

Answer: Sure. Yes, you can achieve this by using a lexical parameter in the href
attribute of your xml-stylesheet processing instruction.

<?xml-stylesheet type="text/xs!" href=" {@flename} xsI'?>
The value of the parameter can be passed in as part of the request, or by using the

<xsql:set-page-param> you can set the value of the parameter based on a SQL
query.

XSQL Pages Publishing Framework 9-93

Frequently Asked Questions About the XSQL Servlet

9-94 Oracle9i XML Developer’s Kits Guide - XDK

10

XDK JavaBeans

This chapter describes the JavaBeans available for use with Oracle XML. The topics
in this chapter are:

Accessing Oracle XML Transviewer Beans

XDK for Java: XML Transviewer Bean Features

Using the XML Transviewer Beans

Using XMLSourceView Bean

Using XMLTransformPanel Bean

Using XSLTransformer Bean

Using DOMBuilder Bean

Using Treeviewer Bean

Using DBViewer Bean

Using DBAccess Bean

Using the XMLDiff Bean

Installing the Transviewer Bean Samples

Transviewer Bean Example 1: AsyncTransformSample.java
Transviewer Bean Example 2: ViewSample.java

Transviewer Bean Example 3: XMLTransformPanelSample.java
Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java

Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java

XDK JavaBeans

10-1

Accessing Oracle XML Transviewer Beans

Accessing Oracle XML Transviewer Beans

The Oracle XML Transviewer beans are provided as part of XDK for JavaBeans with
the Oracle9i Enterprise and Standard Editions from Release 2 (8.1.6) and higher. If
you do not have these editions, then you can download the beans from the site:
http://otn.oracle.com/tech/xml

XDK for Java: XML Transviewer Bean Features

XML Transviewer Beans facilitate the addition of graphical interfaces to your XML
applications.

Direct Access from JDeveloper

Bean encapsulation includes documentation and descriptors that can be accessed
directly from Java Integrated Development Environments like JDeveloper.

Sample Transviewer Bean Application

A sample application that demonstrates all of the beans to create a simple XML
editor and XSL transformer is included with your software.

The included sample application with the XML SQL Utility (XSU) cause the
following:

« Database queries to materialize XML
« Transform the XML through an XSL stylesheet

« Store the resulting XML document in the database for fast retrieval

Database Connectivity

Database Connectivity is included with the XML Transviewer Beans. The beans can
now connect directly to a JDBC-enabled database to retrieve and store XML and
XSL files.

XML Transviewer Beans
XML Transviewer Beans comprises the following beans:

10-2 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XML Transviewer Bean Features

DOMBuilder Bean

The DOMBUuilder bean is a non-visual bean. It builds a DOMTree from an XML
document.

The DOMBuilder bean encapsulates the XML Parser for Java’s DOMParser class
with a bean interface and extends its functionality to permit asynchronous parsing.
By registering a listener, Java applications can parse large or successive documents
and then allow control to return immediately to the caller.

See Also: "Using DOMBuilder Bean" on page 10-5

XSLTransformer Bean

The XSLTransformer bean is a non-visual bean. It accepts an XML file, applies the
transformation specified by an input XSL stylesheet and creates the resulting output
file.

XSLTransformer bean enables you to transform an XML document to almost any
text-based format including XML, HTML, and DDL, by applying the appropriate
XSL stylesheet.

« When integrated with other beans, XSLTransformer bean enables an application
or user to view the results of transformations immediately.

« This bean can also be used as the basis of a server-side application or servlet to
render an XML document, such as an XML representation of a query result, into
HTML for display in a browser.

See Also: "Using XSLTransformer Bean" on page 10-9

Treeviewer Bean

The Treeviewer bean displays XML formatted files graphically as a tree. The
branches and leaves of this tree can be manipulated with a mouse.

See Also: "Using Treeviewer Bean" on page 10-13

XMLSourceView Bean

The XMLSourceView bean is a visual Java bean. It allows visualization of XML
documents and editing. It enables the display of XML and XSL formatted files with
color syntax highlighting when modifying an XML document with a text editor.
This helps view and edit the files. It can be integrated with DOMBuilder bean, and
allows pre- or post-parsing visualization and validation against a specified DTD.

XDK JavaBeans 10-3

Using the XML Transviewer Beans

See Also: "Using XMLSourceView Bean" on page 10-15

XMLTransformPanel Bean

This is a visual Java bean that applies XSL transformations on XML documents and
shows the results. It allows editing of XML and XSL input files.

See Also: "Using XMLTransformPanel Bean" on page 10-20

DBViewer Bean

DBViewer bean is Java bean that displays database queries or any XML by applying
XSL stylesheets and visualizing the resulting HTML in a scrollable swing panel.
DBViewer bean has XML and XSL tree buffers as well as a result buffer. DBViewer
bean allows the calling program to:

« Load or save buffers from various sources such as from CLOB tables in an
Oracle database or from the file system. Control can be also used to move files
between the file system and the user schema in the database.

« Apply stylesheet transformations to the XML buffer using the stylesheet in the
XSL buffer.

The result can be stored in the result buffer. The XML and XSL buffer content can be
shown as a source or tree structure. The result buffer content can be rendered as
HTML and also shown as source or tree structure. The XML buffer can be loaded
from a database query.

DBAccess Bean

DBAccess bean maintains CLOB tables that contain multiple XML and text
documents.

Using the XML Transviewer Beans

The guidelines for using the XML Transviewer Beans are described in the following
sections:

« Using DOMBuilder Bean
« Using XSLTransformer Bean
« Using Treeviewer Bean

« Using XMLSourceView Bean

10-4 Oracle9i XML Developer’s Kits Guide - XDK

Using DOMBuilder Bean

« Using XMLTransformPanel Bean
« Using DBViewer Bean

« Using DBAccess Bean

« Using the XMLDiff Bean

See Also:
« Oracle9i XML API Reference - XDK and Oracle XML DB

Using DOMBUuilder Bean

DOMBuilder() class implements an XML 1.0 parser according to the World Wide
Web Consortium (W3C) recommendation. It parses an XML document and builds a
DOM tree. The parsing is done in a separate thread and the DOMBuilderListener
interface must be used for notification when the tree is built.

Used for Asynchronous Parsing in the Background

The DOMBuilder bean encapsulates the XML Parser for Java with a bean interface.
It extends its functionality to permit asynchronous parsing. By registering a listener,
a Java application can parse documents and return control return to the caller.

Asynchronous parsing in a background thread can be used interactively in visual
applications. For example, when parsing a large file with the normal parser, the user
interface freezes until the parsing has completed. This can be avoided with the
DOMBuilder bean. After calling the DOMBuilder bean parse method, the
application can immediately regain control and display “Parsing, please wait”. If a
“Cancel” button is included you can also cancel the operation. The application can
continue when domBuilderOver() method is called by DOMBuilder bean when
background parsing task has completed.

DOMBuilder Bean Parses Many Files Fast

When parsing a large number of files, DOMBuilder bean can save time. Response
times that are up to 40% faster have been recorded when compared to parsing the
files one by one.

XDK JavaBeans 10-5

Using DOMBuilder Bean

DOMBuilder Bean Usage
Figure 10-1 illustrates DOMBuilder Bean usage.

1.
2.

The XML document to be parsed is input as a file, string buffer, or URL.

This inputs the method
DOMBUuilder.addDOMBuilderListener(DOMBuilderListener) and
adds DOMBuilderListener.

The DOMBuilder.parser() method parses the XML document.

Optionally, the parsed result undergoes further processing.

See Also: Table 10-1 for a list of available methods to apply

DOMBuilderListener API is called using DOMBuilderOver() method. This is
called when it receives an asynchronous call from an application. This interface
must be implemented to receive notifications about events during
asynchronous parsing. The class implementing this interface must be added to
the DOMBuilder using addDOMBuilderListener method.

Available DOMBuilderListener methods are:

« domBuilderError(DOMBuilderEvent) . This method is called when
parse errors occur.

« domBuilderOver(DOMBuilderEvent) . This method is called when the
parse completes.

« domBuilderStarted(DOMBuilderEvent) . This method is called when

parsing begins.

DOMBUuilder.getDocument() fetches the resulting DOM document and
outputs the DOM document.

10-6 Oracle9i XML Developer’s Kits Guide - XDK

Using DOMBuilder Bean

Figure 10-1 DOMBuilder Bean Usage

Transviewer Beans: DOM Builder Bean

file,
string buffer,
or URL

xml input

DOMBuilder.
addDOMBuilder
Listener()

DOMBUuilder.

perform other
parse()

tasks

see the list of
available
methods

.DOMBuilder
Listener()

.DOMBUuilder
Started()

_ 6 async call

DOM
Document

.DOMBuilder
Error()

DOMBuilderOver(),

DOMBUuilder.
getDocument()

XDK JavaBeans 10-7

Using DOMBuilder Bean

Table 10-1 DOMBuilder Bean: Methods

Method

Description

addDOMBuilderErrorListener(DOMBuilderErrorListener)

Adds DOMBuilderErrorListener.

addDOMBuilderListener(DOMBuilderListener)

Adds DOMBuilderListener.

Get the DTD.
getDocument() Gets the document.
getld() Returns the parser object id.

getReleaseVersion()

Returns the release version of the Oracle XML
Parser.

Gets the document.

getValidationMode()

Returns the validation mode.

parse(InputSource)

Parses the XML from given input source.

Parses the XML from given input stream.

parse(Reader)

Parses the XML from given input stream.

parse(String)

Parses the XML from the URL indicated.

parse(URL)

Parses the XML document pointed to by the
given URL and creates the corresponding XML
document hierarchy.

parseDTD(InputSource, String)

Parses the XML External DTD from given input
source.

parseDTD(InputStream, String)

Parses the XML External DTD from given input
stream.

parseDTD(Reader, String)

Parses the XML External DTD from given input
stream.

Parses the XML External DTD from the URL
indicated.

parseDTD(URL, String)

Parses the XML External DTD document
pointed to by the given URL and creates the
corresponding XML document hierarchy.

removeDOMBuilderErrorListener(DOMBuilderErrorListener

)

Removes DOMBuilderErrorListener.

removeDOMBuilderListener(DOMBuilderListener)

Removes DOMBuilderListener.

run()

This method runs in a thread.

10-8 Oracle9i XML Developer’s Kits Guide - XDK

Using XSLTransformer Bean

Table 10-1 DOMBuilder Bean: Methods (Cont.)

Method Description
Set the base URL for loading external enitites
and DTDs.

setDebugMode(boolean) Sets a flag to turn on debug information in the
document.

setDoctype(DTD) Sets the DTD.

setErrorStream(OutputStream) Creates an output stream for the output of

errors and warnings.

setErrorStream(OutputStream, String) Creates an output stream for the output of
errors and warnings.

setErrorStream(PrintWriter) Creates an output stream for the output of
errors and warnings.

Sets the node factory.

setPreserveWhitespace(boolean) Sets the white space preserving mode.

setValidationMode(boolean) Sets the validation mode.

showWarnings(boolean) Switches to determine whether to print
warnings.

Using XSLTransformer Bean

The XSLTransformer bean accepts an XML file and applies the transformation
specified by an input XSL stylesheet to create and output file. It enables you to
transform an XML document to almost any text-based format including XML,
HTML, and DDL, by applying an XSL stylesheet.

When integrated with other beans, XSLTransformer bean enables an application or
user to immediately view the results of transformations.

This bean can also be used as the basis of a server-side application or servlet to
render an XML document, such as an XML representation of a query result, into
HTML for display in a browser.

The XSLTransformer bean encapsulates the Java XML Parser XSLT processing
engine with a bean interface and extends its functionality to permit asynchronous
transformation.

By registering a listener, your Java application can transform large and successive
documents by having the control returned immediately to the caller.

XDK JavaBeans 10-9

Using XSLTransformer Bean

Do You Have Many Files to Transform? Use XSLTransformer Bean

XSL transformations can be time consuming. Use XSL Transformer bean in
applications that transform large numbers of files and it can concurrently transform
multiple files.

Do You Need a Responsive User Interface? Use XSLTransformer Bean

XSLTransformer bean can be used for visual applications for a responsive user
interface. There are similar issues here as with DOMBuilder bean.

By implementing XSLTransformerListener() method, the caller application
can be notified when the transformation is complete. The application is free to
perform other tasks in between requesting and receiving the transformation.

XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes

This scenario illustrates one way of applying XSLTransformer bean.

1.
2.

Create a SQL query. Store the selected XML data in a CLOB table.

Using the XSLTransfomer bean, create an XSL stylesheet and interactively apply
this to the XML data until you are satisfied with the data presentation. This can
be HTML produced by the XSL transformation.

Now that you have the desired SQL (data selection) and XSL (data
presentation), create a trigger on the table or view used by your SQL query. The
trigger can execute a stored procedure. The stored procedure, can for example,
do the following:

« Runthe query

« Apply the stylesheet

« Store the resulting HTML in a CLOB table

This process can repeat whenever the source data table is updated.

The HTML stored in the CLOB table always mirrors the last data stored in the
tables being queried. A JSP (Java Server Page) can display the HTML.

In this scenario, multiple end users do not produce multiple data queries that
contribute to larger loads to the database. The HTML is regenerated only when
the underlying data changes.

10-10 Oracle9/ XML Developer’s Kits Guide - XDK

Using XSLTransformer Bean

XSLTransformer Bean Usage

Figure 10-2 illustrates XSLTransformer bean usage. For examples of implementing
this bean, see "Transviewer Bean Example 1: AsyncTransformSample.java".

Figure 10-2 XSLTransformer Bean Usage

Transviewer Beans: XSL Transformer Bean

XSL
stylesheet,
XML document

perform other

XSLTransformer.

processXSL() tasks

Listener()

see the list of
available
methods

XListener.
xsITransformer
Over()

ﬁ async call

N4

XML Document
fragment

XSLTransformer.
getResult()

1. An XSL stylesheet and XML document input the XSLTransformer using the
XSLTransfomer.addXSLTransformerListener(XSLTransformerList
ener) method. This adds a listener.

2. The XSLTransfomer.processXSL() method initiates the XSL transformation in
the background.

XDK JavaBeans 10-11

Using XSLTransformer Bean

Optionally, other work can be assigned to the XSLTransformer bean. Table 10-2
lists the XSLTransformer bean methods.

When the transformation is complete, an asynchronous call is made and the
XSLTransformerListener.xsITransformerOver() method is called.
This interface must be implemented to receive notifications about events during
the asynchronous transformation. The class implementing this interface must
be added to the XSLTransformer event queue using the method
addXSLTransformerListener

The XSLTransformer.getResult() method returns the XML document fragment
for the resulting document.

It ouputs the XML document fragment.

Table 10-2 XSLTransformer Bean: Methods

Method Description
addXSLTransformerErrorListener(XSLTransformerErrorListener) Adds an error event listener.
addXSLTransformerListener(XSLTransformerListener) Adds a listener.
getld() Returns the unique XSLTransformer id.
getResult() Returns the document fragment for the resulting
document.
processXSL(XSLstylesheet, InputStream, URL) Initiates XSL Transformation in the background.
processXSL(XSLstylesheet, Reader, URL) Initiates XSL Transformation in the background.
processXSL(XSLstylesheet, URL, URL) Initiates XSL Transformation in the background.
processXSL(XSLstylesheet, XMLDocument) Initiates XSL Transformation in the background.
processXSL(XSLstylesheet, XMLDocument, OutputStream) Initiates XSL Transformation in the background.

removeDOMTransformerErrorListener(XSLTransformerErrorListener) Removes an error event listener.

removeXSLTransformerListener(XSLTransformerListener) Removes a listener.

run()

setErrorStream(OutputStream) Sets the error stream used by the XSL processor.

showWarnings(boolean)

Sets the showWarnings flag used by the XSL
processor.

10-12 Oracle9/ XML Developer’s Kits Guide - XDK

Using Treeviewer Bean

Using Treeviewer Bean

The Treeviewer bean displays an XML document as a tree. It recognizes the
following XML DOM nodes:

It takes as input an org.w3c.dom.Document object.

Tag

Attribute Name
Attribute Value
Comment

CDATA

PCDATA

PI Data

PI Name
NOTATION Symbol

Figure 10-3, "Treeviewer Bean in Action: Displaying an XML Document as a Tree"
shows how the Treeviewer bean displays the XML document and the editing
options.

XDK JavaBeans 10-13

Using Treeviewer Bean

Figure 10-3 Treeviewer Bean in Action: Displaying an XML Document as a Tree

XS

1 [DOCUMERNT]
E‘] version=".0"
@ [Juslstvlesheet
|j| ¥minsxsl="httpibwanan w3 orgf1 99955 LTranstormi®
? [xslternplate
D rmatch="r"
@ [HTML
|j‘| document xsltemplate
@ [Jxsltemplate
[ratch="booklist'
@ [BoDY
Q@ [Jxsltemnplate
[ratch="booklistbook"
[BR
E‘] xelapph-templates
@ Jusltemnplate
D rmatch="booklisttbook:title"
E‘] ¥slapply-templates
@ [Jxsltemplate
E‘] match="booklisthookrauthar
D ¥shapph-templates
@ [xsltemnplate
& [xslternplate

File | Tree view |3 |

EAlsE

10-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean

Figure 104 illustrates XML Treeviewer bean usage. A DOM XML document is
input to the XMLTreeView.setXMLDocument(doc) method. This associates the
XML Treeviewer with the XML document. The Treeviewer bean methods are:

« getPreferredSize()—Returns the XMLTreeView preferred size

« setXMLDocument(Document)—Associates the XMLTreeViewer with an XML
document

« updateUl()—Forces the XMLTreeView to update/refresh the user interface

Figure 10-4 XML Treeviewer Bean Usage

TransViewer Beans: XML Tree Viewer Bean

DOM
document
XML input

XMLTreeView.
setXMLDocument
(doc)

Using XMLSourceView Bean

XMLSourceView bean is a visual Java bean that displays an XML document. It
improves the viewing of XML and XSL files by color-highlighting the XML/XSL
syntax. It also offers an Edit mode. XMLSourceView bean easily integrates with
DOMBuilder bean. It allows for pre- or post-parsing visualization and validation
against a specified DTD.

XMLSourceView bean recognizes the following XML token types:
« Tag

= Attribute Name

= Attribute Value

« Comment

XDK JavaBeans 10-15

Using XMLSourceView Bean

« CDATA
« PCDATA
« Pl Data
« Pl Name

« NOTATION Symbol

Each token type has a foreground color and font. The default color/font settings can
be changed by the user. This takes an org.w3c.dom.Document object as input.

XMLSourceView Bean Usage

Figure 10-5 displays an XML document with tags shown in blue, tag content in
black, and attributes in red.

Figure 10-6 shows the XMLSourceView bean usage. This is part of the
oracle.xml.srcviewer API. A DOM document inputs
XMLSourceView.SetXMLDocument(Doc). The resulting DOM document is
displayed. See "Transviewer Bean Example 2: ViewSample.java".

10-16 Oracle9/ XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean

Figure 10-5 XMLSourceView Bean in Action: Displaying an XML Document with
Color Highlighting

< F3ml > o
<hooklist>

<hook isbmn="1234-123456-1234">
<title>C Programming Language
£/titles
<author>Kernighan and Ritchie
< jauthor >
<publizsher>EEE
< /publisher’:
<price>7.99
< /price>

< /hook:

<hook ishmn="31456-34567890-3456">
<title>C++ Primer
</title>
<author>Lippaann
< /author>
<publisher>NcGravw Hill
< /publisher>
<price-4,99
< /price>

= ook

<hook ishms"2137-598354-65978"
<title>Twelve Red Herrings
</title>
<author>Jeffcey Accher

Source View

XDK JavaBeans 10-17

Using XMLSourceView Bean

Figure 10-6 XMLSourceView Bean Usage

DOM
document
input

See the list of
available
methods

xmlSourceView.

- Enables display and
editing XML and XSL
files in editor

- Integrated with DOM
Builder Bean

- Pre_ or post parsing
validation against DTD

document
displayed

The following table, Table 10-3, lists the XMLSourceView Bean methods.

Table 10-3 XMLSourceView Bean Methods

Method

Description

fontGet(AttributeSet)

Extracts and returns the font from a given attributeset.

fontSet(MutableAttributeSet, Font)

Sets the mutableattributeset font.

getAttributeNameFont()

Returns the Attribute Value font.

getAttributeNameForeground()

Returns the Attribute Name foreground color.

getAttributeValueFont()

Returns the Attribute Value font.

getAttributeValueForeground()

Returns the Attribute Value foreground color.

getBackground() Returns the background color.
getCDATAFont() Returns the CDATA font.
getCDATAForeground() Returns the CDATA foreground color.
getCommentDataFont() Returns the Comment Data font.

getCommentDataForeground()

Returns the Comment Data foreground color.

getEditedText()

Returns the edited text.

10-18 Oracle9/ XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean

Table 10-3 XMLSourceView Bean Methods (Cont.)

Method

Description

getJTextPane()

Returns the viewer JTextPane component.

getMinimumSize()

Returns the XMLSourceView minimal size.

getNodeAtOffset(int)

Returns the XML node at a given offset.

getPCDATAFonNt()

Returns the PCDATA font.

getPCDATAForeground()

Returns the PCDATA foreground color.

getPIDataFont()

Returns the PI Data font.

getPIDataForeground()

Returns the PI Data foreground color.

getPINameFont()

Returns the Pl Name font.

getPINameForeground()

Returns the Pl Data foreground color.

getSymbolFont()

Returns the NOTATION Symbol font.

getSymbolForeground()

Returns the NOTATION Symbol foreground color.

getTagFont() Returns the Tag font.

getTagForeground() Returns the Tag foreground color.

getText() Returns the XML document as a String.

isEditable() Returns boolean to indicate whether this object is editable.

selectNodeAt(int)

Moves the cursor to XML Node at offset i.

setAttributeNameFont(Font)

Sets the Attribute Name font.

setAttributeNameForeground(Color)

Sets the Attribute Name foreground color.

setAttributeValueFont(Font)

Sets the Attribute Value font.

setAttributeValueForeground(Color)

Sets the Attribute Value foreground color.

setBackground(Color)

Sets the background color.

setCDATAFont(Font)

Sets the CDATA font.

setCDATAForeground(Color)

Sets the CDATA foreground color.

setCommentDataFont(Font)

Sets the Comment font.

setCommentDataForeground(Color)

Sets the Comment foreground color.

setEditable(boolean)

Sets the specified boolean to indicate whether this object should be
editable.

XDK JavaBeans 10-19

Using XMLTransformPanel Bean

Table 10-3 XMLSourceView Bean Methods (Cont.)

Method Description

setPCDATAFont(Font) Sets the PCDATA font.
setPCDATAForeground(Color) Sets the PCDATA foreground color.
setPIDataFont(Font) Sets the PI Data font.
setPIDataForeground(Color) Sets the PI Data foreground color.
setPINameFont(Font) Sets the Pl Name font.
setPINameForeground(Color) Sets the PI Name foreground color.
setSelectedNode(Node) Sets the cursor position at the selected XML node.
setSymbolFont(Font) Sets the NOTATION Symbol font.
setSymbolForeground(Color) Sets the NOTATION Symbol foreground color.
setTagFont(Font) Sets the Tag font.

setTagForeground(Color) Sets the Tag foreground color.
setXMLDocument(Document) Associates the XMLviewer with a XML document.

Using XMLTransformPanel Bean

XMLTransformPanel visual bean applies XSL transformations to XML documents. It
visualizes the result and allows editing of input XML and XSL documents and files.
XMLTransformPanel bean requires no programmatic input. It is a component that
interacts directly with you and is not customizable.

XMLTransformPanel Bean Features
XMLTransformPanel bean has the following features:

« Imports and exports XML and XSL files from the file system, and XML, XSL,
and HTML files from Oracle9i. With Oracle9i, XMLTransformPanel bean uses
two-column CLOB tables. The first column stores the data name (file name) and
the second stores the data text (file’s data) in a CLOB. The bean lists all CLOB
tables in your schema. When you click on a table, the bean lists its file names.
You can also create or delete tables and retrieve or add files to the tables. This
can be useful for organizing your information. See Figure 10-7.

10-20 Oracle9/ XML Developer’s Kits Guide - XDK

Using XMLTransformPanel Bean

Note: CLOB tables created by the XSL Transformer bean can be
used by trigger-based stored procedures to mirror tables or views
in the database into HTML data held in these CLOB tables. See "XSL
Transviewer Bean Scenario 1: Regenerating HTML Only When
Data Changes".

« Supports multiple database connections.

« Creates XML from database result sets. This feature enables you to submit any
SQL query to the database that you are currently connected. The bean converts
the result set into XML and automatically loads this XML data into the bean’s
XML buffer for further processing.

« Edits XML and XSL data loaded into the bean.

« Applies XSL transformations to XML buffers and show the results. See With the
bean, you can also export results to the file system or a CLOB in the database.

Transviewer Bean Application

The Transviewer bean is one application that illustrates the use of XMLTransform
Panel bean. It can be used from a command line to perform the following actions:

« Edit and parse XML files

« Edit and apply XSL transformations

« Retrieve and save XML, XSL and result files in the file system or in Oracle9i
See Also: "Transviewer Bean Example 3:

XMLTransformPanelSample.java" for an example of how to use
XMLTransformPanel.

XDK JavaBeans 10-21

Using XMLTransformPanel Bean

Figure 10-7 XSLTransformPanel Bean in Action: Showing CLOB Table and Data

Names
k= M[=] E3
XML
Hostname |Localhost | a0 |oRCL Port |1521
Liser Id |5|:|:|tt | Pagsward ™
Retriewe result set
CLOB Tahle Name ML | | DataMame [EMP
| Add Table Rewite || Add || Retrieve
L EmP
Doac
! | Delete Table || ListCLOB Tables | Delete || ListData Names
#ML Buffer:

|I EER BT |.___£;uurr:5- FIE |.___EI_J]':ur |.___Errur

10-22 Oracle9i XML Developer’s Kits Guide - XDK

Using DBViewer Bean

Using DBViewer Bean

DBViewer bean can be used to display database queries on any XML document by
applying XSL stylesheets and visualizing the resulting HTML in a scrollable swing
panel. See:

« Figure 10-8, "DBViewer Bean in Action: Entering a Database Query to Generate
XML"

« Figure 10-9, "DBViewer Bean in Action: Viewing the XML Document After
Transforming to HTML With XSL Style Sheet"

DBViewer bean has the following three buffers:
« XML

« XSL

« Result buffer

DBViewer bean API allows the calling program to load or save buffers from various
sources and apply stylesheet transformation to the XML buffer using the stylesheet
in the XSL buffer. Results can be stored in the result buffer.

Showing Content

Content in the XML and XSL buffers can be shown as a source or tree structure.
Content in the result buffer can be rendered as HTML and also shown as a source or
tree structure.

Loading and Saving the Buffers

The XML buffer can be loaded using a database query. All the buffers can be loaded
from and files saved from the following:

« CLOB tables in Oracle9i
« File system

Therefore, control can also be used to move files between the file system and the
user schema in the database.

XDK JavaBeans 10-23

Using DBViewer Bean

Figure 10-8 DBViewer Bean in Action: Entering a Database Query to Generate XML

Type a query o lmport database result setinto =ML

select™ from emp

Import data from ©LOB takble:
OH Tahb

Emipty

10-24 Oracle9/ XML Developer’s Kits Guide - XDK

Using DBViewer Bean

Figure 10-9 DBViewer Bean in Action: Viewing the XML Document After
Transforming to HTML With XSL Style Sheet

PURCHASE ORDER Order No. 3001
‘10 ACME Products

|.thlﬂtl-'_\‘.~‘ 100 Main St., Anytown |u.l|:n-'_ Jan1,2002

!:illll' 1o Jog's Gym |ur.r'rm:, A-100
!Mmm'i 300 Wall 5t., Anytown ||-'1m Jane Smith

PLEASE HOTIFY US IMMEDIATELY IF YOU ARE UNABLE TO SHIP COMPLETE ORDER BY DATE SPECIFIED

ALCME Exerciser Pro $1.00

|? 4 Thigh Master §49.95

paTE kEOUIRED Jan. 30, 2002 | wow smier FedEx
ey Met_20 | U AsTNG AGENT John Doe

XDK JavaBeans 10-25

Using DBViewer Bean

DBViewer Bean Usage

Figure 10-10 illustrates DBViewer bean’s usage.

Figure 10-10 DBViewer Bean Usage Diagram

Load
XML buffer

(XML using XSL)

from:

* SQL resultset file, or
* CLOB, or

* FILE

XDK for JavaBeans : DBViewer Bean

See list of
- - available methods

as:
- - ¢« HTML view, or

« Source (Edit) View, or
» TreeView, or

* CLOB, or

» Text Buffer

View the transformed XML
result as required

See list of available methods

DBViewer Bean Methods

Table 104 lists the DBViewer bean methods.

Table 10-4 DBViewer Bean Methods

Method Description
DBViewer() Constructs a new instance.
getHostname() Gets database host name

10-26 Oracle9/ XML Developer’s Kits Guide - XDK

Using DBViewer Bean

Table 10-4 DBViewer Bean Methods (Cont.)

Method Description

getinstancename() Gets database instance name.
getPassword() Gets user password.

getPort() Gets database port number.
getResBuffer() Gets the content of the result buffer.
getResCLOBFileName() Gets result CLOB file name.
getResCLOBTableName() Gets result CLOB table name.

getResFileName()

Gets Result file name.

getUsername() Gets user name.

getXmiBuffer() Gets the content of the XML buffer.
getXmICLOBFileName() Gets XML CLOB file name.
getXmICLOBTableName() Gets XML CLOB table name.

getXmlFileName()

Gets XML file name.

getXMLStringFromSQL(String)

Gets XML presentation of result set from SQL query.

getXslIBuffer() Gets the content of the XSL buffer.
getXsICLOBFileName() Gets the XSL CLOB file name.
getXsICLOBTableName() Gets XSL CLOB table name.

getXslIFileName()

Gets XSL file name.

loadResBuffer(String)

Loads the result buffer from file.

loadResBuffer(String, String)

Loads the result buffer from CLOB file.

loadResBufferFromClob()

Loads the result buffer from CLOB file.

loadResBufferFromFile()

Loads the result buffer from file.

loadXmIBuffer(String)

Loads the XML buffer from file.

loadXmIBuffer(String, String)

Loads the XML buffer from CLOB file.

loadXmlIBufferFromClob()

Loads the XML buffer from CLOB file.

loadXmIBufferFromFile()

Loads the XML buffer from file.

loadXMLBufferFromSQL(String)

Loads the XML buffer from SQL result set.

loadXs|Buffer(String)

Loads the XSL buffer from file.

XDK JavaBeans 10-27

Using DBViewer Bean

Table 10-4 DBViewer Bean Methods (Cont.)

Method

Description

loadXslIBuffer(String, String)

Loads the XSL buffer from CLOB file.

loadXsIBufferFromClob()

Loads the XSL buffer from CLOB file.

loadXsIBufferFromFile()

Loads the XSL buffer from file.

parseResBuffer() Parses the result buffer and refresh the tree view and source
view.

parseXmiBuffer() Parses the XML buffer and refresh the tree view and source
view.

parseXs|Buffer() Parses the XSL buffer and refresh the tree view and source
view.

saveResBuffer(String) Saves the result buffer to file.

saveResBuffer(String, String)

Saves the result buffer to CLOB file.

saveResBufferToClob()

Saves the result buffer to CLOB file.

saveResBufferToFile()

Saves the result buffer to file.

saveXmlBuffer(String)

Saves the XML buffer to file.

saveXmlBuffer(String, String)

Saves the XML buffer to CLOB file.

saveXmiBufferToClob()

Saves the XML buffer to CLOB file.

saveXmlBufferToFile()

Saves the XML buffer to file.

saveXslBuffer(String)

Saves the XSL buffer to file.

saveXslBuffer(String, String)

Saves the XSL buffer to CLOB file.

saveXslIBufferToClob()

Saves the XSL buffer to CLOB file.

saveXsl|BufferToFile()

Saves the XSL buffer to file.

setHostname(String)

Sets database host name.

setinstancename(String)

Sets database instance name.

setPassword(String) Sets user password.
setPort(String) Sets database port number.
setResBuffer(String) Sets new text in the result buffer.

setResCLOBFileName(String)

Sets Result CLOB file name.

setResCLOBTableName(String)

Sets Result CLOB table name.

10-28 Oracle9/ XML Developer’s Kits Guide - XDK

Using DBViewer Bean

Table 10-4 DBViewer Bean Methods (Cont.)

Method

Description

setResFileName(String)

Sets Result file name.

setResHtmlView(boolean)

Shows the result buffer as rendered HTML.

setResSourceEditView(boolean)

Shows the result buffer as XML source and enter edit mode.

setResSourceView(boolean)

Shows the result buffer as XML source.

setResTreeView(boolean)

Shows the result buffer as XML tree view.

setUsername(String)

Sets user name.

setXmiBuffer(String)

Sets new text in the XML buffer.

setXmICLOBFileName(String)

Sets XML CLOB table name.

setXmICLOBTableName(String)

Sets XML CLOB table name.

setXmlFileName(String)

Sets XML file name.

setXmlSourceEditView(boolean)

Shows the XML buffer as XML source and enter edit mode.

setXmlSourceView(boolean)

Shows the XML buffer as XML source.

setXmiTreeView(boolean)

Shows the XML buffer as tree.

setXslIBuffer(String)

Sets new text in the XSL buffer.

setXsICLOBFileName(String)

Sets XSL CLOB file name.

setXsICLOBTableName(String)

Sets XSL CLOB table name.

setXslFileName(String)

Sets XSL file name.

setXslSourceEditView(boolean)

Shows the XSL buffer as XML source and enter edit mode.

setXslSourceView(boolean)

Shows the XSL buffer as XML source.

setXs|TreeView(boolean) Shows the XSL buffer as tree.

transformToDoc() Transfroms the content of the XML buffer by applying the
stylesheet from the XSL buffer.

transformToRes() Applies the stylesheet transformation from the XSL buffer
to the XML in the XML buffer and stores the result into the
result buffer.

transformToString() Transfroms the content of the XML buffer by applying the

stylesheet from the XSL buffer.

XDK JavaBeans 10-29

Using DBAccess Bean

Using DBAccess Bean

DBAccess bean maintains CLOB tables that can hold multiple XML and text
documents. Each table is created using the following statement:

CREATE TABLE tablename FILENAME CHAR(16) UNIQUE, FILEDATA CLOB) LOB(FILEDATA)
STORE AS (DISABLE STORAGE IN ROW)

Each XML (or text) document is stored as a row in the table. The FILENAME field
holds a unique string used as a key to retrieve, update, or delete the row. Document
text is stored in the FILEDATA field. This is a CLOB object. CLOB tables are
automatically maintained by the Transviewer bean. The CLOB tables maintained by
DBAccess bean can be later used by the Transviewer bean. DBAccess bean does the
following tasks:

« Creates and deletes CLOB tables
« Listsa CLOB table’s contents
« Adds, replaces, or deletes text documents in the CLOB tables

DBAcess Bean Usage

Figure 10-11 illustrates the DBAccess bean usage. It shows how DBAccess bean
maintains, and manipulates XML documents stored in CLOBs.

10-30 Oracle9/ XML Developer’s Kits Guide - XDK

Using DBAccess Bean

Figure 10-11

DB
Access

Database Bean

DBAccess Bean Methods

él From:
Loads o
CLOB tables SQL result_set
files
CLOBs
e Files

Manipulates o Adds
CLOB tables Replaces
Deletes

DBAccess Bean Usage Diagram

Lists

CLOB tables

él Text documents:

Table 10-5 lists the DBAccess bean methods.

Table 10-5 DBAccess Bean Methods

Method

Description

createXMLTable(Connection, String)

Creates XML table.

deleteXMLName(Connection, String, String)

Deletes text file from XML table.

dropXMLTable(Connection, String)

Deletes XML table.

getNameSize()

Returns the size of the field where the filename is kept.

getXMLData(Connection, String, String)

Retrieve text file from XML table.

getXMLNames(Connection, String)

Returns all file names in XML table.

getXMLTableNames(Connection, String)

Gets all XML tables with names starting with a given
string.

insertXMLData(Connection, String, String, String)

Inserts text file as a row in XML table.

isXMLTable(Connection, String)

Checks if the table is XML table.

replaceXMLData(Connection, String, String, String)

Replaces text file as a row in XML table.

xmlTableExists(Connection, String)

Checks if XML table exists.

XDK JavaBeans 10-31

Using the XMLDiff Bean

Using the XMLDiff Bean

The XML Diff Bean performs a tree comparison on two XML DOM trees. It displays
the two XML trees and shows the differences between the XML trees. A node can be
inserted, deleted, moved, or modified. Each of these operations is shown in a
different color or style as in the following list:

. Red—Used to show a modified Node or Attribute

. Blue—Used to show a new Node or Attribute

. Black—Used to show a deleted Node or Attribute

Moves will be displayed visually as a delete or insert operation.

You can generate the differences between the two XML trees in the form of XSL
code. The first XML file can be transformed into the second XML file by using the
XSL code generated.

Note: Currently you cannot customize the GUI display.

XMLDiff Methods
The XMLD:iff Bean has the methods described in this section.

boolean diff()
Finds the differences between the two XML files or the two XMLDocument objects.

void domBuilderError(DOMBuilderEvent p0)
Implements the DOMBuilderErrorListener interface called only by the DOM parser.

void domBuilderErrorCalled(DOMBuilderErrorEvent p0)

Implements the DOMBuilderErrorListener interface called only by the DOM parser
when there is an error while parsing.

void domBuilderOver(DOMBuilderEvent p0)

Implements the DOMBuilderListener interface called only by a DOM parser thread
when the parsing is done.

10-32 Oracle9/ XML Developer’s Kits Guide - XDK

Using the XMLDiff Bean

void domBuilderStarted(DOMBuilderEvent p0)

Implements the DOMBuilderListener interface called only by the DOM parser
when the parsing begins.

boolean equals(Node nodel, Node node2)

Performs the comparison of two nodes. It is called by the differ algorithm. You can
overwrite this function for customized comparisons.

XMLDocument generateXSLDoc()

Generates an XSL stylesheet as an XMLDocument that initially represents the
differences between the two XML document sets.

void generateXSLFile(java.lang.String filename)

Generates an XSL file of input filename that represents the differences between the
two XML files which were initially set.

javax.swing.JTextPane getDiffPanel()

Gets the text panel as JTextPane object that visually shows the diffs in the first XML
file.

javax.swing.JTextPane getDiffPane2()

Gets the text panel as a JTextPane object that visually shows the diffs in the second
XML file or document.

XMLDocument getDocumentl()
Gets the document root as an XMLDocument object of the first XML tree

XMLDocument getDocument2()
Gets the document root as an XMLDocument object of the second XML tree

void printDiffTree(int tree, BufferedWriter out)
Prints the diff tree that contains the node names and values that have been

identified as diffs by the algorithm. This method is useful for debugging.

void setDocuments(XMLDocument doc1, XMLDocument doc?)
Sets the XML documents which need to be compared.

XDK JavaBeans 10-33

Running the Transviewer Bean Samples

void setFiles(java.io.File filel, java.io.File file2)
Sets the XML files which need to be compared.

void setindentincr(int spaces)

Sets the indentation for the XSL generation. This should be called before the
generateXSLFile() or generateXSLDoc() methods. The indentation will be applied to
all attributes only. For indenting newly inserted nodes besides attributes see void
setNewNodelndentIncr(int spaces).

void setinputl(java.io.File filel)
Sets the first XML file that needs to be compared.

void setinputl(XMLDocument docl)
Sets the first XML document that needs to be compared.

void setinput2(java.io.File file2)
Sets the second XML file that needs to be compared.

void setinput2(XMLDocument doc2)
Sets the second XML document that needs to be compared.

void setNewNodelndentincr(int spaces)

Sets the indentation for the XSL generation. This should be called before the
generateXSLFile() or generateXSLDoc() methods. The indentation will be applied to
all newly inserted nodes only (except attributes). For attributes indentation support
see void setIndentlncr(int spaces).

void setNoMoves()

Assumes that there are no moves to be detected by the diff algorithm. This function
should be called before the diff() function. Using this method should improve
performance.

Running the Transviewer Bean Samples

The XDK for Java Transviewer bean sample/ directory contains sample
Transviewer bean applications that illustrate how to use Oracle Transviewer beans.
Oracle Transviewer beans toolset contains DOMBuilder, XMLSourceView,

10-34 Oracle9/ XML Developer’s Kits Guide - XDK

Running the Transviewer Bean Samples

XMLTreeView, XSLTransformer, XMLTransformPanel, DBViewer, DBAccess, and

XMLDIff beans.

Table 10-6 lists the sample files in sample/.

Table 10-6 Transviewer Bean Sample Files

File Name

booklist.xml Sample XML file used by Example 1, 2, or 3.

doc.xml Sample XML file used by Example 1, 2, or 3.

doc.html Sample HTML file used by Examples 1, 2, or 3.

doc.xsl Sample input XSL file used by Examples 1, 2, or 3.
doc.xsl is used by XSLTransformer.

emptable.xsl Sample input XSL file used by Examples 1, 2, or 3.

tohtml.xsl Sample input XSL file used by Examples 1, 2, or 3.

Transforms booklist.xml.

AsyncTransformSample.java

See "Transviewer Bean Example 1:
AsyncTransformSample.java”.

Sample nonvisual application using XSLTransformer bean
and DOMBuilder bean. It applies the XSLT stylesheet
specified in doc.xsl on all *.xml files from the current
directory. The results are in the files with extension.log.

ViewSample.java

See "Transviewer Bean Example 2: ViewSample.java".

Sample visual application that uses XMLSourceView and
XMLTreeView beans.It visualizes XML document files.

XDK JavaBeans 10-35

Installing the Transviewer Bean Samples

Table 10-6 Transviewer Bean Sample Files (Cont.)

File Name

Description

XMLTransformPanelSample.java A visual application that uses XMLTransformPanel bean.

See "Transviewer Bean Example 3:
XMLTransformPanelSample.java".

This bean uses all four beans from above. It applies XSL
transformations on XML documents and shows the result
Visualizes and allows editing of XML and XSL input files.

DBViewSample
See:

A sample visual application that uses DBViewer bean to
implement simple insurance claim handling application.

« "Transviewer Bean Example 4a: DBViewer
Bean — DBViewClaims.java"

« "Transviewer Bean Example 4b: DBViewer
Bean — DBViewFrame.java"

« "Transviewer Bean Example 4c: DBViewer
Bean — DBViewSample.java"

XMLDiffSample

See:
"XMLDiffSample.java"
"XMLDiffFrame.java"

A sample visual application by which users can graphically
compare any two XML files. The differences between the
two files can be viewed as XSLT code. The first XML file can
be transformed into the second XML file using the
generated XSLT.

Installing the Transviewer Bean Samples

The Transviewer beans require as a minimum JDK 1.1.6, and can be used with any
version of JDK 1.2.

1.

Download and install the following components used by the Transviewer
beans:

« Oracle JDBC Driver for thin client (jar file classes111.zip)
« Oracle XML SQL Utility (jar file oraclexmlsql.jar)

After installing this components, include classes111.zip and oraclexmlsqgl.jar in
your classpath.

The beans and the samples use swing 1.1. If you use jdk1.2, go to step 3. If you
use jdk1.1, you will need to download Swing 1.1 from Sun. After downloading
Swing, add swingall.jar to your CLASSPATH.

Change JDKPATH in Makefile to point to your JDK path. In addition, on
Windows NT, change the file separator as stated in the Makefile . If you do not
have an ORACLE_HOME set, then set it to the root directory of your XDK
JavaBeans installation.

10-36 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

If you are not using the default database with a scott/tiger account, change
USERID and PASSWORD in the Makefile to run Sample4

Run “make” to generate .class files.

Run the sample programs using commands:

« gmake samplel

« gmake sample2

« gmake sample3

« gmake sample4

« gmake sample6

Visualize the results in .log files using the ViewSample.

Use the XSLT document from "./tohtml.xsl' to transform the XML document
from './booklist.xml".

Use the sample files XMLDiffDatal.txt and XMLDiffData2.txt to test the demo
sample6 for the XMLDiff Bean. A few .xml files are provided as test cases. An XSL
stylesheet 'doc.xsl' is used by XSLTransformer.

Note: samplel runs the XMLTransViewer program so that you can
import and export XML files from Oracle9i, keep your XSL
transformation files in Oracle9i, and apply stylesheets to XML
interactively.

Using Database Connectivity

To use the database connectivity feature in this program, you must know the
following:

Network name of the computer where Oracle9i or Oracle9i Application Server
runs

Port (usually 1521)

Name of the oracle instance (usually orcl)

You also need an account with CREATE TABLEprivilege.

You can try the default account scott with password tiger if it still enabled on your
Oracle9i system.

XDK JavaBeans 10-37

Installing the Transviewer Bean Samples

Running Makefile
The following is the makefile script:

Makefile for sample java files
SUFFIXES: java .class

CLASSES = ViewSample.class AsyncTransformSample.class
XMLTransformPanelSample.class

Change it to the appropriate separator based on the OS
PATHSEP=:

Change this path to your JDK location. If you use JDK 1.1, you will need
#1o download also Swing 1.1 and add swingall jar to your classpath.

You do not need to do this for JDK 1.2 since Swing is part of JDK 1.2
JDKPATH = Jusr/local/packages/jdk1.2

Make sure that the following product jar/zip files are in the classpath:
#- Oracle JDBC driver for thin client (file classes111.zip)

#- Oracle XML SQL Utility (file oraclexmisgljar)

You can download this products from technet.us.oracle.com

#

CLASSPATH
=$H(CLASSPATH)$(PATHSEP)./ib/xmiparsenv2 jars(PATHSEP). Jibixmicomp jars(PATH
SEP)./fibjjdev-it zipS(PATHSEP).$(PATHSEP)

%.class: %java

$IDKPATH)binjavac -classpath "$(CLASSPATH)" $<

#make all class files
al: $(CLASSES)

samplel: XMLTransformPanelSample.class

HIDKPATH)binjava -classpath "$(CLASSPATH)" XML TransformPanelSample
sample2: ViewSample.class

HJIDKPATH)binjava -classpath "$(CLASSPATH)" ViewSample

sample3: AsyncTransformSample.class

HIDKPATH)binjava -classpath "$(CLASSPATH)" AsyncTransformSample

10-38 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

Transviewer Bean Example 1: AsyncTransformSample.java

This example shows you how to use DOMBuilder and the XSLTransformer beans to
asynchronously transform multiple XML files.

import java.net URL,;

import java.net MalformedURLException;
import java.io.IOException;

import java.io.InputStream;

import java.io.ObjectinputStream;

import javaio.OutputStream;

import javaio.File;

import javaLio.FileOutputStream;

import javaio.PrintWhiter,

import java.util.Vector;

import orgw3c.dom.DocumentFragment;
import org:w3c.dom.DOMException;

import oraclexml.async. DOMBuilder;

import oracle xml.async. DOMBuilderEvent;

import oracle xml.async.DOMBuilderListener;

import oracle xml.async. DOMBuUilderErrorEvent;
import oracle xml.async.DOMBUilderEnorListener;
import oracle xml.async. XSLTransformer;

import oracle xml.async.XSLTransformerEvent;
import oracle xml.async. XSLTransformerListener;
import oracle xml.async.XSLTransformerEnorEvent;
import oracle xml.async. XSLTransformerEnorListener;
import oracle xml.async.ResourceManager,

import oracle xml.parserv2.DOMParser,

import oracle xml.parser.v2 XMLDocument;

import oracle xml.parser.v2.XSLStylesheet;

import oracle xml.parser.v2.*;

public class AsyncTransformSample
{

i

* uses DOMBuilder bean

¥

void unDOMBUIllders ()

{
rm = new ResourceManager (numXMLDocs);

for (inti=0; i < numXMLDocs; i++)

XDK JavaBeans 10-39

Installing the Transviewer Bean Samples

{
m.getResource();

try

{
DOMBuilder builder = new DOMBuilder();

URL xmlURL = createURL(basedir +"/" +
(String)xmifiles.elementAt());
if (xmIURL == null)
exitWithError('File " + (Sting)xmifiles.elementAt()) +
" not found");

builder.setPreserveWhitespace(true);
builder.setBaseURL (createURL (basedir +"1));
builder.addDOMBuilderListener (new DOMBuilderListener() {
public void domBuilderStarted(DOMBUuilderEvent p0) {
public void domBuilderError(DOMBuUilderEvent p0) {
public synchronized void domBuilderOver(DOMBUilderEvent p0)
{
DOMBuilder bld = (DOMBuilder)p0.getSource();
runXSLTransformer (bld.getDocumenty(), bld.getld());
}
»
builder.addDOMBUuilderErrorListener (new DOMBuUilderErrorListener() {
public void domBuilderErrorCalled(DOMBUilderErrorEvent p0)
{
intid = (DOMBuilder)p0.getSource().getid();
exitwithError("Error occurred while parsing " +
xmifiles.elementAt(id) +": " +
pO.getException().getMessage();
}
»
builder.parse (xmIURL);

System.err.printin("Parsing file " + xmlfiles.elementAt());

}
catch (Exception €)
{
exitWithEror("Error occurred while parsing " +
(Stringxmilfiles.elementAt() +": "' +
e.getMessage());

10-40 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

i
* uses XSLTransformer bean
¥
void runXSLTransformer (XMLDocument xm, int icl)
{
try
{
XSLTransformer processor = new XSLTransformer (id);
XSLStylesheet xsl = new XSLStylesheet (xsldoc, xslURL);

processor.showWamings (true);
processor.setEmorStream (errors);
processor.addXSL TransformerListener (new XSLTransformerListener() {
public void xslTransformerStarted (XSLTransformerEvent p0) {}
public void xsITransformerEmor(XSLTransformerEvent p0) {}
public void xsITransformerOver (XSLTransformerEvent p0)
{
XSLTransformer trans = (XSLTransformer)p0.getSource();
saveResult (rans.getResult(), rans.getld();
}
»
processor.addXSL TransformerErnorListener (new XSLTransformerEnorListener() {
public void xsITransformerErrorCalled(XSLTransformerErrorEvent p0)
{
inti= (XSLTransformer)p0.getSource()).getld();
exitWithError("Emor occurred while processing " +
xmifiles.elementAt() +": " +
pO.getException().getMessage();
}
n;
processor.processXSL (xsl, xml);
J/ransform xml document
}
catch (Exception €)

exitWithError("Error occurred while processing " + xslFile +": "' +
e.getMessage());
}

}

void saveResult (DocumentFragment resullt, int i)
{
System.err.printin(Transforming ™ + xmlfiles.elementAt(id) +
"t0 " + xmifiles.elementAt(id) + " log™ +

XDK JavaBeans 10-41

Installing the Transviewer Bean Samples

"applying " + xslFile);
ty
File resultFile = new File((String)xmifiles.elementAt(id) + ".log");
(XMLNode)resutt).print(new FileOutputStream(resultile));

}
catch (Exception €)
{
exitwithError("Error occurred while generating output : " +
e.getMessage();
}

m.releaseResource();

}

void makeXSLDocument ()

{
System.err.printn ("Parsing file * + xslFile);
ry

{
DOMParser parser = new DOMParsex();

parser.setPreserveWhitespace (true);
xsIURL = createURL (xslFile);
parser.parse (xsIURL);

xsldoc = parser.getDocument();

}
catch (Exception €)

exitWithError("Error occurred while parsing " + xslFile +": " +
e.getMessage());
}
}

private URL createURL(String fleName) throws Exception

{
URL ur =null;

try

{
url = new URL(fleName);

}
catch (MalformedURLException ex)
{

10-42 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

File f = new File(fleName);

try
{
String path =f.getAbsolutePath();
/ Thisis a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due

/o inconsistencies in what getAbsolutePath retums.

String fs = System.getProperty(file.separator”);
if (fs.length) = 1)
{

char sep =fs.charAt(0);
if (sep =)

path = path.replace(sep, /);
if (path.charAt(0) =)

path =/ + path;

}
path ="file://" + path,;
url = new URL(path);

}
catch (MalformedURLEXxception €)

{
exitWithEror("Cannot create ur for: " + fleName);

}
}

retumur;

}

boolean init () throws Exception

{
File directory = new File (basedir);
String[] dirfiles = directory.list();
for (intj = 0; j < dirfiles.length; j++)

String diirfle = dirfies]];

if (\dlirfile.endsWith("xml"))
continue;

xmifiles.addElement(dirfile);
}

if (xmifiles.isEmpty()) {

System.out.printin("No files in directory were selected for processing”);

XDK JavaBeans 10-43

Installing the Transviewer Bean Samples

retum false;

}
numXMLDocs = xmilfiles.size();

retum true;
}

private void exitWithError(String msg)
{
PrintWhiter errs = new PrintWiiter(errors);
ens.printin(msg);
emsflush();
System.exit(1);
}

void asyncTransform () throws Exception
{
System.err.printin (humXMLDocs +
" XML documents will be transformed” +
" using XSLT stylesheet specified in " + xslFile +
"with " + numXMLDocs +" threads”);

makeXSLDocument ();
runDOMBuilders ();

I/ wait for the last request to complete
while (rm.activeFound())
Thread.sleep(100);

}
Sting basedir =new String (");
OutputStream errors = System.er,

Vector xmifiles = new Vector();
int numXMLDocs =1,

Sting xslFile = new String (‘doc.xsl");
URL xslURL;

XMLDocument xsldoc;

private ResourceManager m;

P

* main
*

10-44 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

public static void main (String argsl])
{
AsyncTransformSample inst = new AsyncTransformSample();

y
i (instinit()
System.ext(0);

instasyncTransform ();
}
catch (Exception €)
{
e printStackTrace();
}

System.exit(0);
}
}

Transviewer Bean Example 2: ViewSample.java

This example shows you how to use XMLSourceView and XMLTreeView beans to
visually represent XML files.

import java.awt*,

import oracle xml.srcviewer.*;
import oracle xml.treeviewer.*;
import oracle xml.parser.v2 XMLDocument;
import oraclexml.parserv2.%;
import orgw3c.dom*;

import java.net*;

import java.io®;

import java.util.;

import java.awtevent;

import javax.swing.*;

import javax.swing.event.;

public class ViewSample
{

public static void main(String] args)
{
String fleName = new String ("bookiistxml");

if (args.length > 0) {

XDK JavaBeans 10-45

Installing the Transviewer Bean Samples

fleName = args[0];
}

JFrame frame =setFrame ("XMLViewer");

XMLDocument xmiDocument = getXMLDocumentFromFile (fleName);
XMLSourceView xmiSourceView = setXMLSourceView (xmiDocument);
XMLTreeView xmiTreeView =setXMLTreeView (xmiDocument);
JTabbedPane jbPane =new JTabbedPane ();

jfPane.addTab ("Source", null, xmiSourceView, "XML document sorce view');
jfPane.addTab (Tree", null, xmITreeView, "XML document tree view');
jfPane.setPreferredSize (new Dimension(400,300));
frame.getContentPane().add (jtbPane);

frame.setTitle (fleName);
frame.setIMenuBar (setMenuBar();
frame.setVisible (true);

}

static JFrame setFrame (String titie)
{
JFrame frame = new JFrame (title);
JICenter the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (rameSize.height > screenSize height) {
frameSize height = screenSize.height;
}
if (rameSize width > screenSize.width) {
frameSize.width = screenSize.width;
}
frame.setl_ocation ((screenSize.width - frameSize.width)/2,
(screenSize.height - frameSize.height)/2);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent €) {
System.exit(0);
}

D

frame.getContentPane().setLayout (new BorderLayout();
frame.setSize(new Dimension(400, 300));
frame.setVisible (false);

frame.setTitle (title);

retum frame;

10-46 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

static JMenuBar setMenuBar ()
{
JMenuBar menuBar = new JMenuBar();
JMenu menu =new JMenu ("Exit’);
menu.addMenuListener (new MenulListener () {
public void menuSelected (MenuEvent ev) { System.exit(0); }
public void menuDeselected (MenuEvent ev) {
public void menuCanceled (MenuEvent ev) {
;
menuBar.add (menu);
retum menuBar;

}

P

*creates XMLSourceView object

*

static XMLSourceView setXMLSourceView(XMLDocument xmiDocument)

{
XMLSourceView xmiView = new XMLSourceView();

xmView.setXMLDocument(xmiDocument);
xmiView.setBackground(Color.yellow);
xmView.setEditable(true);
retum xmiView,
}
P
*creates XML TreeView object
*
static XML TreeView setXML TreeView(XMLDocument xmiDocument)

{
XMLTreeView xmiView = new XMLTreeView();

xmView.setXMLDocument(xmiDocument);
xmiView.setBackground(Color.yellow);
retum xmiView;

}

static XMLDocument getXMLDocumentFromFile (String fleName)

{
XMLDocument doc = null;

fy {
DOMParser parser = new DOMParser();

ty{

XDK JavaBeans 10-47

Installing the Transviewer Bean Samples

String dir="";
FilelnputStream in = new FilelnputStream(fleName);
parser.setPreserveWhitespace(false);
parser.setBaseURL (createURL(dir));
parser.parse(in);
in.close();

}catch (Exception ex) {
ex.printStackTrace();
System.exit(0);

}

doc = (XMLDocument)parser.getDocumenty();

ty{
doc.print(System.out);

}catch (Exceptionie) {
ie.printStackTrace();
System.exit(0);

}

}

catch (Exception €) {
e.printStackTrace();

}

retum doc;

}

static URL createURL(String fleName)

URL ud =null;
try
{
url = new URL(fleName);
}
catch (MalformedURLException ex)
File f = new File(fleName);
try
{

String path =f.getAbsolutePath();

String fs = System.getProperty(file.separator”);
if (fs.length() = 1)

{

char sep =fs.charAt(0);
if(sep!=7)

10-48 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

path = path.repiace(sep, 7);
if (path.charAt(Q) 1= 7)
path =/ + path;
}

path ="file://" + path;
url =new URL(path);

}
catch (MalformedURLException €)

{
System.out printin(‘Cannot create ur for: " + fleName);

System.ext(0);
}
}

retum ur;
}
}

Transviewer Bean Example 3: XMLTransformPanelSample.java

This example is an interactive application that uses XMLTransformPanel bean to do
the following:

« Generate XML from database queries

« Transform the XML using XSL stylesheets

« View the results

« Store the results in CLOB tables in the database
import java.awt™;

import java.awtevent,

import javax.swing.*;
import oracle xml.transviewer XML TransformPanel;

public class XMLTransformPanelSample

{
XMLTransformPanel transformPanel = new XMLTransformPanel();

/kk

* Adjust frame size and add transformPanel to it.
*

public XMLTransformPanelSample ()

{

Frame frame =newJFrame();

XDK JavaBeans 10-49

Installing the Transviewer Bean Samples

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
frame.setSize(510,550);

transformPanel.setPreferredSize(new Dimension(510,550));
Dimension frameSize = frame.getSize();

if (rameSize.height > screenSize.height) {
frameSize height = screenSize.height;
}
if (frameSize.width > screenSize width) {
frameSize width = screenSize width;
}
frame.setlocation ((screenSize width - frameSize.width)/2,
(screenSize.height - frameSize.height)/2);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) { System.exit(0); }
M
frame.setVisible(true);

((JFrame)frame).getContentPane().add (ransformPanel);
frame.pack();
}

/kk
* main(). Only creates XMLTransformPanelSample object.
*
public static void main (String[] args)
{
new XMLTransformPanelSample ();

}
}

Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java

This is an interactive example which lets you input the name or policy of an
insurance claim. The appropriate claim is loaded as an XML buffer from the result
set of an XML query. An XSL stylesheet is loaded from the file system. The
DBViewer bean transforms the XML buffer using the XSL stylesheet to HTML. This
HTML output can then be viewed.

import javax.swing.*;

import java.awt*;

import java.awtevent,

import oracle jdeveloper.layout*;
import oracle xml.dbviewer ¥,

10-50 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

public class DBViewClaims extends JPanel {
DBViewer dbPanel= new DBViewer();
JButton searchButton = new JButton();
XYLayout XYLayoutl = new XYLayout();
JLabel tileLabel = new JLabel();
JLabel nameLabel = new JLabel();
JLabel policyLabel = new JLabel();
JTextFeld nameTF = new JTextFeld();
JTextFeld policy TF = new JTextField();
JButton viewXMLButton = new JButton();
JButton viewXSLButton = new JButton();
JButton viewHTMLButton = new JButton();
public DBViewClaims() {
super();
try {
jblnit();
}
catch (Exception) {
e.printStackTrace();
}
}
private void jbinit() throws Exception {
setBackground(SystemColor.controlLtHighlight);
this.setlayout(xYLayoutl);
searchButton.setText("searchButton');
searchButton.setl_abel(*Search’);
xXYLayoutl.setHeight(464);
xYLayoutl.setWidth(586);
titeLabel.sefText('List of Claims");
titeLabel.setHorizontalAlignment(SwingConstants.CENTER);
titeLabel.setBackground(new Color(192, 192, 255));
titeLabel.setFont(new Font('Dialog”, 1, 16));
nameLabel.setText('Last Name");
policylabel.setText('Policy:");
viewXMLButton.setText(viewXMLButton');
viewXMLButton.setlabel("view XML");
viewXMLButton.addActionListener(new java.awt.event ActionListener() {
public void actionPerformed(ActionEvent €) {
viewXMLButton_actionPerformed(e);
}
b
viewXSLButton.setText(viewXSLButton");
viewXSLButton.setl abel(view XSL");
viewXSLButton.addActionListener(new java.awt.eventActionListener() {
public void actionPerformed(ActionEvent €) {

XDK JavaBeans

10-51

Installing the Transviewer Bean Samples

viewXSLButton_actionPerformed(e);
}
D)
viewHTMLBuUtton.setText(" viewHTMLButton');
viewHTMLBuUtton.setlabel(view HTML");
viewHTMLButton.addActionListener(new java.awt.event ActionListener() {

public void actionPerformed(ActionEvent €) {
viewHTMLBuUtton_actionPerformed(e);
}
D

searchButton.addActionListener(new java.ant.event ActionListener() {
public void actionPerformed(ActionEvent €) {
searchButton_actionPerformed(e);
}
b3

this.add(dbPanel, new XYConstraints(16, 55, 552, 302));
this.add(searchButton, new XYConstraints(413, 415, 154, 29));
this.add(titleLabel, new XYConstraints(79, 10, 413, 31));
this.add(nameLabel, new XYConstraints(333, 373, 72, -1));
this.add(policyLabel, new XYConstraints(334, 395, 59, -1));
this.add(nameTF, new XYConstraints(413, 368, 155, -1));
this.add(policy TF, new XYConstraints(413, 391, 156, -1));
this.add(viewXMLButton, new XYConstraints(19, 359, 94, 29));
this.add(viewXSLButton, new XYConstraints(19, 390, 94, 29));
this.add(viewHTMLBUtton, new XYConstraints(19, 421, 94, 29));
updateUI();
}
void searchButton_actionPerformed(ActionEvent €) {

String sqiText="select *froms_clamc";
try{

if (nameTF.getText().equals(™)) {

sqiText=sqText+" where c.claimpolicy.primaryinsured.lastname="+
"+nameTF.gefText()+"™,
}else if (policy TF.getText().equals(™)) {
sqiText=sqText+" where c.claimpolicy.policyid="+
policy TF.getText();

}

dbPanel.setUsemame('scott’);

dbPanel.setPassword(tiger");

dbPanel.setinstancename("orc!);

dbPanel.setHostname(localhost’);

dbPanel.setPort('1521");

10-52 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

dbPanelloadXMLBufferFromSQL(sqText);
dbPanelloadXsIBuffer("xsffiles”,"CLAIM.XSL");
dbPanel.ransformToRes();
dbPanel.setResHmiView(true);

} catch (Exception e1) {
System.outprintin(el);

}

}
void viewXMLButton_actionPerformed(ActionEvent €) {

dbPanel.setXmiSourceEditView(true);

}

void viewXSLButton_actionPerformed(ActionEvent €) {
dbPanel.setXsISourceEditView(true);

}

void viewHTMLBuUtton_actionPerformed(ActionEvent €) {
dbPanel.setResHmIView(true);

}

}

Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java

This example provides a frame with a menu bar to access the DBView Claims
functionality. Claims can then be loaded and displayed in HTML.

import javax.swing.*;

import java.awt*,

import java.awtevent,

import oracle jdeveloper.layout*;

public class DBViewFrame extends JFrame {
JMenuBar menuBarl = new JMenuBar();
JMenu menuFile = new JMenu();
JMenultem menuFileExit = new JMenultem();
JMenultem menuListCustomerClaims = new JMenultem();

public DBViewFrame() {

super();

ry {
joinitd;

}

catch (Exception €) {
e.printStackTrace();

}

private void jbinit() throws Exception {

XDK JavaBeans 10-53

Installing the Transviewer Bean Samples

this.getContentPane().setLayout(new GridLayout(1,1));
this.setSize(new Dimension(600, 550));
menuFile.setText("Fie");
menuFileExitsetText("Exit");
menuListCustomerClaims.setText('List Claims');
menuFileExitaddActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
fleExit_ActionPerformed(e);
}
b
menuListCustomerClaims.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
ListCustomerClaims_ActionPerformed(e);

}
b
menuFile.add(menuFileExi);
menuFile.add(menuListCustomerClaims);
menuBarl.add(menuFile);
this.setIMenuBar(menuBarl);
this.setBackground(SystemColor.controlLtHighlight);

void fileExit_ActionPerformed(ActionEvent e) {
System.exit(0);

}

void ListCustomerClaims_ActionPerformed(ActionEvent) {
this.getContentPane().removeAll();
this.getContentPane().add(new DBViewClaims());
this.getContentPane().paintAll(this.getGraphics());

}

}

Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java

This example simply provides a main function which instantiates DBViewFrame,
giving it a specific look and feel.

import java.awt*;
import java.awtevent,
import javax.swing.*;
public class DBViewSample {
public DBViewSample() {
DBViewFrame frame = new DBViewFrame);
frame.setVisible(true);

}

10-54 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

public static void main(String[] args) {
trﬁIﬁ/lanager.setj_ookAndFeeI(UIManager.getS\/stemLookAndFeelCIassName());
}n;atch (Exception e){

e.printStackTrace();

iew DBViewSample();

XMLDiffSample.java

import oracle xml.parser.v2.*;
import oraclexml.async*;
import oracle xml.differ.*;

import java.io®;

import java.awt*;

import javax.swing.;

import javax.swing.tree.*;

import java.net URL,;

import java.net MalformedURL Exception;

public class XMLDiffSample
{

P

* Constructor

¥

public XMLDiffSample() {

}

P

*main

* @param args

*

public static void main(Sting] args)

{
dixApp = new XMLDiffSample();
diffFrame = new XMLDiffFrame(dfxApp);

diffFrame.addTransformMenu();
xmIDiff = new XMLDIff();

if (args.length =23)

XDK JavaBeans 10-55

Installing the Transviewer Bean Samples

outFile = args[2];
¥ Use the default outFile name = XMLDiffSample.xsl */
iflargs.length >=2)

dfxApp.showDiffs(new File(args[0]), new File(args[1]));

diffFrame.setVisible(true);
}

public void showDiffs(File file, File file2)

{
try

{
xmiDiff.setFles(filel, file2);

F Checkiffiles are equal */

iftxmIDiff.diff())

{

JOptionPane.showMessageDialog(diffFrame,

"Files are equivalent in XML representation”,
"XMLDiffSample Message",
JOptionPane.PLAIN_MESSAGE);

}

F generate xsl file */
xmiDiff.generateXSLFile(outFile);
* parse the xsl file created, altemately you can use

generateXSLDoc to get the xsl as a document tree instead of a file */

parsexSL();

* Display the document trees created by the xmIDiff object *

diffFrame.makeSrcPane(xmiDiff. getDocument (), xmiDiff. getDocument2());

diffFrame.makeDiffSrcPane(new XMLDIffSrcView(xmiDiff. getDiffPane (),
new XMLDiffSrcView(xmiDiff.getDiffPane2()));

diffFrame.makeXslPane(xslDoc, "Diff XSL Script');
diffFrame.makeXsITabbedPane();

Jeatch (FileNotFoundException €)

{

JOptionPane.showMessageDialog(diffFrame,
"File Not Found: "+e.getMessage(),
"XMLDiffSample Error Message”,
JOptionPane. ERROR_MESSAGE),

}
catch (Exception €)

e.printStackTrace();

10-56 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

JOptionPane.showMessageDialog(diffFrame,
"Error: "+e.getMessage(),
"XMLDiffSample Error Message”,
JOptionPane ERROR_MESSAGE);
}
}

public void doXSL Transform()
{
try

{
docl = xmiDiff.getDocumentl();
doc2 =xmiDiff.getDocument2();

XSLProcessor xslProc = new XSLProcessor();

F Using the xsl stylesheet generated (xsIDoc), transform the first file
(docl) into the second file (resuttDocFrag) */
XMLDocumentFragment resultDocFrag = xslProc.processXSL(new XSLStylesheet
(xsIDoc, createURL (outFile)), docl);
XMLDocument resuftDoc = new XMLDocument();
FThe XML declaration has to be copied over to the transformed XML doc,
the xsl will not generate it automatically */
if (doc.getFirstChild() instanceof XMLDeclPl)
if (doc.getFirstChild() instanceof XMLDeclPl)
{
XMLNode xmidecl = (XMLNode) resultDoc.importNode(doc1.getFirstChild(),
false);
resultDoc.appendChild(xmidecl);
}
* Create the DTD node in the transformed XML document */
ifidoc.getDoctype() '= null)
{
DTD dtd = (DTD)doc1.getDoctype();
resuttDoc.setDoctype(dtd.getName(), did.getSystemid(),
dtd.getPublicld());
}
F* Create the resuft document tree from the document fragment */
resultDoc.appendChild(resuttDocFrag);
diffFrame.makeResultFlePane(resultDoc);
}catch (XSLException €)
{
e.printStackTrace();
JOptionPane.showMessageDialog(diffFrame,
"Emor: "+e.getMessage(),

XDK JavaBeans 10-57

Installing the Transviewer Bean Samples

"XMLDiffSample Error Message”,
JOptionPane. ERROR_MESSAGE);

catch (Exception €)

e.printStackTrace();
JOptionPane.showMessageDialog(diffFrame,
"Ermor:"+e.getMessage(),
"XMLDiffSample Error Message",
JOptionPane. ERROR_MESSAGE);
}
}

 Parse the XSL file generated into a DOM tree */
protected void parseXSL()
{

try

{
BufferedReader xslFile = new BufferedReader(new FileReader(outFile));

DOMParser domParser = new DOMParser();
domParser.parse(xslFie);
xsIDoc = domParser.getDocumenty();

Jeatch (FileNotFoundException €)
{
JOptionPane.showMessageDialog(diffFrame,
"File Not Found: "+e.getMessage(),
"XMLDiffSample Message",
JOptionPane.PLAIN_MESSAGE);
}
catch (Exception €)
{
JOptionPane.showMessageDialog(diffFrame,
"Enmor"+e.getMessage(),
"XMLDiffSample Error Message",
JOptionPane.ERROR_MESSAGE);
}
}

I/ create a URL from a file name
protected URL createURL(String fleName)
{

URL ur =null;

try

{

10-58 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

url = new URL(fleName);

}
catch (MalformedURLException ex)
{
File f = new File(fleName);
try
{
String path = f.getAbsolutePath();
o handle Windows platform
String fs = System.getProperty(file.separator”);
if (fslength) = 1)
{
char sep =fs.charAt(0);
if(sep!="7)
path = path.replace(sep, 7);
if (path.charAt(0) =)
path =7+ path;
}
path ="fleJ/" + path;
url = new URL (path);

}

catch (MalformedURLException €)

{
JOptionPane.showMessageDialog(diffFrame,
"Cannot create ur for. " + fleName,
"XMLDiffSample Error Message”,
JOptionPane ERROR_MESSAGE),

}
}

retum ur;

}

protected XMLDocumentdocl; /#*DOM tree for first file */

protected XMLDocumentdoc2; * DOME tree for second file */

protected static XMLDiffFrame diffFrame; /* GUI frame */

protected static XMLDiffSample dfxApp; # XMLDIff sample application */

protected static XMLDiff xmiDiff, /XML diff object */

protected static XMLDocument xsiDoc; /* parsed xsl file */

protected static String outFile = new String("XMLDiffSamplexsl"); * output
xslfile name */

XDK JavaBeans 10-59

Installing the Transviewer Bean Samples

XMLDiffFrame.java

import java.awt®;
import java.awtevent,
import javalio*;

import javax.swing.*;

import oracle xml.parser.v2.*;
import oracle xml.srcviewer.*;
import oracle xml.differ ¥,
import orgw3c.dom*;

public class XMLDiffFrame extends JFrame implements ActionListener {

public XMLDiffFrame(XMLDiffSample dfApp)
{

super();

mydfApp = dfApp;

init();
}

public void makeSrcPane(XMLDocument doc1, XMLDocument doc2)
{
/fundo sreviewer highlighting here
XMLSourceView XmiSrcViewl = new XMLSourceView();
XmiSrcViewl.setXMLDocument(docl);
XmiSrcViewl.setTagForeground(Color.black);
XmiSrcViewL.setAttributeValueForeground(Color black);
XmiSrcViewl.setPIDataForeground(Color.black);
XmiSrcViewl.setCommentDataForeground(Color.black);
XmiSrcViewl.setCDATAForeground(Color.black);

XmiSrcViewl.setBackground(Color.lightGray);

XmiSrcViewl.getITextPane().setBackground(Color.white);

XmiSrcViewl.add(new JLabel(flenamel,SwingConstants. CENTER),
BorderLayout NORTH);

XMLSourceView XmiSrcView?2 = new XMLSourceView();
XmiSrcView2.setXMLDocument(doc?);
XmiSrcView2.setTagForeground(Color.black);
XmiSrcView2.setAttributeValueForeground(Color.black);
XmiSrcView2.setPIDataForeground(Color.black);
XmiSrcView2.setCommentDataForeground(Color.black);
XmiSrcView2.setCDATAForeground(Color black);

10-60 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

XmiSrcView2.setBackground(Color.lightGray);

XmiSrcView2.getITextPane().setBackground(Color.white);

XmiSrcView2.add(new JLabel(flename2,SwingConstants. CENTER),
BorderLayout NORTH);

XmiSrcView2.updateUI();
XmiSrcView1.updateUI();

srcPane = new JSplitPane(JSplitPane. HORIZONTAL_SPLIT,
XmiSrcViewl, XmISrcView?);

srcPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

srcPane.setDividerl ocation(0.5);

srcPane.validate();

}

public void makeDiffSrcPane(XMLDIffSrcView srcViewl, XMLDIffSrcView srcView?2)
{
srcViewl.setBackground(Color lightGray);
srcView2.setBackground(Color.lightGray);

srcViewl.add(new
JLabel(flenamel,SwingConstants.CENTER),BorderLayout NORTH);
srcView2.add(new
JLabel(flename2,SwingConstants. CENTER),BorderLayout NORTH);

JScrolBar vscrolBar = srcView2.getScrollPane().getVerticalScrollBar();

/I make the diffSrcView divider fixed.
srcViewl.getScrollPane().setVerticalScrolBar(vscrolBar);
srcViewl.getScrollPane().setMinimumSize(
new
Dimension(FRAMEWIDTH/2,srcViewl.getScrollPane().getPreferredSize().height));
srcView?2.getScrollPane().setMinimumSize(
new
Dimension(FRAMEWIDTH/2 srcView?2.getScrollPane().getPreferredSize().height));

srcView2.getScrollPane().updateUl();
srcViewl.getScrollPane().updateUl();

srcView?2.getTextPane().updateUl();
srcViewl.getTextPane().updateUl();

XDK JavaBeans 10-61

Installing the Transviewer Bean Samples

srcView2.updateUI();
srcViewl.updateUI();

diffSrcPane = new JSplitPane(JSplitPane. HORIZONTAL _SPLIT,
srcViewl, srcView?2),

diffSrcPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

diffSrcPane.setDividerLocation(0.5);

diffSrcPane.validate();

}
public void makeTabbedPane()

{
tabbedPane = new JTabbedPane();

tabbedPane.addTab("SourceView", null, srcPane, "Source View of Files being

Diffed");
tabbedPane.addTab("'SourceDiffView", null , diffSrcPane, "Source View of File

Diffs");

tabbedPane.addTab(TreeDiffView'', null, diff TreePane, "DOM Tree View of
File Diffs");

tabbedPane.setSelectedindex(1);

tabbedPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

this.getContentPane().add(tabbedPane);
this.setVisible(true);

}

public void makeXslPane(XMLDocument doc, String titie)

{
xsISrcView = new XMLSourceView();
xslSrcView.setXMLDocument(doc);
xsiSrcView.setTagForeground(Color.black);
xsiSrcView.setAttributeValueForeground(Color.black);
xsiSrcView.setPIDataForeground(Color.black);
xsiSrcView.setCommentDataForeground(Color.black);
xsiSrcView.setCDATAForeground(Color.black);

xsiSrcView.setBackground(Color.lightGray);
xsiSrcView.getJ TextPane().setBackground(Colorwhite);
xsISrcView.add(new JLabel(tite, SwingConstants. CENTER),
BorderLayout NORTH);
this.enableTransformitem(true);

10-62 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

public void makeResultFlePane(XMLDocument doc)

{
resultDoc = doc;
XMLSourceView resultSrcView = new XMLSourceView();
resutSrcView.setXMLDocument(doc);
resuttSrcView.setTagForeground(Color.black);
resultSrcView.setAttributeValueForeground(Color.black);
resultSrcView.setPIDataForeground(Color.black);
resultSrcView.setCommentDataForeground(Color.black);
resuttSrcView.setCDATAForeground(Color.black);

resuttSrcView.setBackground(Color.ightGray);

resultSrcView.getJTextPane().setBackground(Color.white);

resultSrcView.add(new JLabel("XSLT Result File",SwingConstants. CENTER),
BorderLayout NORTH);

tabbedPane.addTab("ResultSourceView', null, resuttSrcView,

"Source View of XSLT on File1");
tabbedPane.setSelectedindex(3);
this.enableSaveAsitem(true);

}

public void makeXsITabbedPane()

{
tabbedPane = new JTabbedPane();

tabbedPane.addTab("SourceView", null, srcPane, "Source View of XML Files

being Diffed");
tabbedPane.addTab('SourceDiffView", null , diffSrcPane, "Source View of File

Diffs’);

tabbedPane.addTab("XSL Script",null,xsISrcView, "Source View of Diff XSL
script);

tabbedPane.setSelectedindex(2);

tabbedPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

this.getContentPane().add(tabbedPane);
this.setVisible(true);

}

public void actionPerformed(ActionEvent evt)
{

XDK JavaBeans 10-63

Installing the Transviewer Bean Samples

File selectedFilel, selectedFile2;
BufferedReader filel, file2;
String arg, temp;

iflevt.getSource() instanceof IMenultem)
{

arg = evtgetActionCommandy();

ifiarg.equals("Compare XML Files'"))
{
JFileChooser JFC = new JFileChooser();
JFC.setCurrentDirectory(new File(".");
int retval = jFC.showOpenDialog(this);

switch (retval)
{

case JFileChooser APPROVE_OPTION:
selectedFilel = JFC.getSelectedFile();
temp = selectedFilel.getName();
JFC.cancelSelection();
JFC.updateUl();
switch(JFC.showOpenDialog(this))
{
case JFileChooser. APPROVE_OPTION:
selectedFile2 = jFC.getSelectedFile();
flename2 = selectedFile2.getName();
flenamel =temp;

this.getContentPane().removeAll();
this.enableSaveAsitem(false);

mydfApp.showDiffs(selectedFilel, selectedFile2);
break;

case JFileChooser. CANCEL_OPTION:
break; /filenamel = nul; // flenamel also null
W switch (JFC.showOpenDialog(this))
break;

case JFileChooser.CANCEL_OPTION:
break;

}
W if(arg.equals('Compare XML Files"))

10-64 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

else if(arg.equals("Apply XSL to 1st Input File"))
mydfApp.doXSLTransform();

}
else iffarg.equals("Save As")
{

JFileChooser jFC = new JFleChooser();
JFC.setCurrentDirectory(new File("."));
int retval = jFC.showOpenDialog(this);

if (retval = JFleChooser APPROVE_OPTION)
{

File file = jFC.getSelectedFile();

try

{
resutDoc.print(new FileOutputStream(file));

Jeatch (IOException €)

{
JOptionPane.showMessageDialog(this,
"Error:"+e.getMessage(),
"XMLDiffer Message",
JOptionPane.PLAIN_MESSAGE);

}

}

}
else if@arg.equals('Exit")
{
System.exit(0);
}

}
}

public void addTransformMenu()
{

JMenultem item;

JMenu jmenu = new JMenu(Transform'’);

itemn = new JMenultem("Apply XSL to 1st Input File");
item.addActionListener(this);

XDK JavaBeans 10-65

Installing the Transviewer Bean Samples

item.setEnabled(false);
jmenu.add(item);

this.getIMenuBar().add(menu);

}

protected void enableTransformitem(boolean flag)

{
this.getIMenuBar().getMenu(1).getitem(0).setEnabled(flag);

}

protected void enableSaveAsitem(boolean flag)

{
this.getIMenuBar().getMenu(0).getitem(1).setEnabled(flag);

}

private void init()
{
try

{

this.setTite("XMLDiffer");

this.getContentPane().setLayout(new
BoxLayout(this.getContentPane(),BoxLayoutY _AXIS));

I/l make the Differ window non-resizable

this.setResizable(false);

this.getContentPane().setBackground(SystemColor.control);

addMenu();

Dimension screenSize = Toolkit getDefauttToolkit().getScreenSize();
Dimension frameSize = this.getSize();

I/ set Frame size based on screen size such that there is room around it
FRAMEWIDTH = screenSize.width - 100;

FRAMEHEIGHT = screenSize.height - 200;

this.setSize(new Dimension(FRAMEWIDTH, FRAMEHEIGHT));

I/ put Differ window in the center of the screen

this.setl_ocation((screenSize.width - FRAMEWIDTH)/2, (screenSize.height -
FRAMEHEIGHT)/2);

this.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent €) { System.exit(0); }});

catch (Exception €)

10-66 Oracle9/ XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples

{
e.printStackTrace();
}
}

private void addMenu()
{

JMenultem item;

JMenuBar jmenubar = new JMenuBar();

JMenu jmenu = new JMenu('File";

item = new JMenultem('Compare XML Files”);

item.addActionListener(this);
jmenu.add(tem);

item = new JMenultem('Save As');
item.addActionListener(this);
item.setEnabled(false);
jmenu.add(item);

jmenu.addSeparator();

item = new JMenultem("Exit’);
item.addActionListener(this);
jmenu.add(item);

jmenubar.add{menu);
this.setIMenuBar(jmenubar);

protected static int LEFT_TOP =0;
protected static int RIGHT_TOP =1;
protected static int CENTER =2;

private int FRAMEWIDTH =0;
private int FRAMEHEIGHT =0;

private XMLDocument resuftDoc;
private XMLSourceView xsISrcView,
private XMLDiffSample mydfApp;
private String flenamel, flename2;
private JTabbedPane tabbedPane;

XDK JavaBeans 10-67

Installing the Transviewer Bean Samples

private JSplitPane diffTreePane, srcPane diffSrcPane;
}

10-68 Oracle9/ XML Developer’s Kits Guide - XDK

11

Using XDK and SOAP

This chapter contains the following sections:
« What Is SOAP?

« What Are UDDI and WSDL?

« What Is Oracle SOAP?

« Seethe Developer’s Guides

Using XDK and SOAP 11-1

What Is SOAP?

What Is SOAP?

The term Web services is used for the functionality made available by an entity over
the Web. It is an application that uses XML standards and is published, located and
executed through the Web.

The Simple Object Access Protocol (SOAP) is a protocol for sending and receiving
requests and responses across the Internet. Because it is based on XML and simple
transport protocols such as HTTP, it is not blocked by firewalls and is very easy to
use. SOAP is independent of operating system, independent of implementation
language, and independent of any single object model.

SOAP supports remote procedure calls. Its messages are only of the three types:

A request for a service, including input parameters

A response to the requested service, including return value and output
parameters

A fault containing error codes and information

SOAP messages consist of:

an envelope that contains the message, defines how to process the message, who
should process the message, and whether processing is optional or mandatory.

encoding rules that describe the data types for the application. These rules define
a serialization mechanism that converts the application data types to XML and
XML to data types.

remote procedure call definitions

SOAP 1.1 specification is a W3C note. (The W3C XML Protocol Working Group has
been formed to create a standard that will supersede SOAP.)

SOAP is transport protocol-independent and operating system-independent. It
provides the standard XML message format for all applications. SOAP uses the
W3C XML Schema standard of the World Wide Web Consortium (W3C).

See Also:
« http://mww.w3.0rg/TR/ISOAP/
« http://xml.apache.org/soap

A SOAP service remote procedure call (RPC) request and response sequence
includes the steps:

11-2 Oracle9i XML Developer’s Kits Guide - XDK

What Are UDDI and WSDL?

1. A SOAP client writes a request for service in a conforming XML document,
using either an editor or the Oracle SOAP client API.

2. The client sends the document to a SOAP Request Handler running as a servlet
on a Web server.

3. The Web Server dispatches the message as a service request to an appropriate
server-side application providing the requested service.

4. The application must verify that the message contains supported parts. The
response from the service is returned to the SOAP Request Handler servlet and
then to the caller using the SOAP payload format.

What Are UDDI and WSDL?

The Universal Description, Discovery and Integration (UDDI) specification
provides a platform-independent framework using XML to describe services,
discover businesses, and integrate business services on the Internet. The UDDI
business registry is the public database where companies are registered. The UDDI
business registration is an XML file with three sections:

« white pages that include address, contact, and known identifiers
« yellow pages include industrial categorization
= green pages containing the technical information about exposed services

The Web Services Description Language (WSDL) is a general purpose XML
language for describing the interface, protocol bindings, and deployment details of
Web services. WSDL provides a method of describing the abstract interface and
arbitrary network services. A WSDL service is registered or embedded in the UDDI
registry.

The stack of protocols used in Web services is summarized in the following table:

Protocol Stack

Universal Service Interoperability Protocols (WSDL, and so on.)
Universal Description, Discovery Integration (UDDI)

Simple Object Access Protocol (SOAP)

XML, XML Schema

Internet Protocols (HTTP, HTTPS, TCP/IP)

Using XDK and SOAP 11-3

What Is Oracle SOAP?

What Is Oracle SOAP?

Oracle SOAP is an implementation of the Simple Object Access Protocol. Oracle
SOAP is based on the SOAP open source implementation developed by the Apache
Software Foundation.

How Does SOAP Work?

Consider this example: a GetLastTradePrice SOAP request is sent to a StockQuote
service. The request takes a string parameter, the company stock symbol, and
returns a float in the SOAP response. The XML document represents the SOAP
message. The SOAP envelope element is the top element of the XML document.
XML namespaces are used to clarify SOAP identifiers from application-specific
identifiers. The following example uses HTTP as the transport protocol. The rules
governing XML payload format in SOAP are independent of the fact that the
payload is carried in HTTP. The SOAP request message embedded in the HTTP
request is:

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xm; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope xmins:SOAP- ENV="http://schemas.xmisoap.org/soap/
envelope/" SOAP-
ENV:encodingStyle="http://schemas.xnlsoap.org/soap/encoding/™>
<SOAP-ENV:Body>

<m:GetlastTradePrice xmihsm="Some-URI">
<symbol>ORCL</symbol>

<m:GetlastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Here is the response HTTP message:

HTTP/1.1 200 OK
Content-Type: text/xm; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope xmins:SOAP-

ENV=http//schemas xmisoap.org/soap//envelope/ SOAP-
ENV:encodingStyle="http:/schemas xnisoap.org/soap/encoding/ >
<SOAP-ENV:Body>

<m:GetlLastTradePriceResponse xmins:m="Some-URI">
<Price>34.5</Price>

11-4 Oracle9i XML Developer’s Kits Guide - XDK

What Is Oracle SOAP?

</m:GetlLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

What Is a SOAP Client?

A SOARP client application represents a user-written application that makes SOAP
requests. The SOAP client has these capabilities:

« Gathers all parameters that are needed to invoke a service.

« Creates a SOAP service request message. This is an XML message that is built
according to the SOAP protocol and that contains all the values of all input
parameters encoded in XML. This process is called serialization.

« Submits the request to a SOAP server using some transport protocol that is
supported by the SOAP server.

« Receives a SOAP response message.

« Determines the success or failure of the request by handling the SOAP Fault
element.

« Converts the returned parameter from XML to native data type. This process is
called deserialization.

« Uses the result as needed.

SOAP Client API

SOAP clients generate the XML documents that compose a request for a SOAP
service and handle the SOAP response. Oracle SOAP processes requests from any
client that sends a valid SOAP request. To facilitate client development, Oracle
SOAP includes a SOAP client API that provides a generic way to invoke a SOAP
service.

The SOAP client API supports a synchronous invocation model for requests and
responses. The SOAP client APl makes it easier for you to write a Java client
application to make a SOAP request. The SOAP client API encapsulates the creation
of the SOAP request and the details of sending the request over the underlying
transport protocol. The SOAP client API also supports a pluggable transport,
allowing the client to easily change the transport (available transports include
HTTP and HTTPS).

Using XDK and SOAP 11-5

What Is Oracle SOAP?

What Is a SOAP Server?
A SOAP server has the following capabilities:

« The server receives the service request.

« The server parses the XML request and then decides to execute the message or
reject it.

« If the message is executed, the server determines if the requested service exists.

« The server converts all input parameters from XML into data types that the
service understands.

« The server invokes the service.

« The return parameter is converted to XML and a SOAP response message is
generated.

« The response message is sent back to the caller.

Oracle SOAP Security Features

Oracle SOAP uses the security capabilities in the transport to support secure access
and to support other security features. For example, using HTTPS, Oracle SOAP
provides confidentiality, authentication, and integrity over the Secure Sockets Layer
(SSL). Other security features such as logging and authorization, are provided by
the service provider.

SOAP Transports

SOAP transports are the protocols that carry SOAP messages. Oracle SOAP
supports the following transports:

« HTTP: This protocol is the basic SOAP transport. The Oracle SOAP Request
Handler Servlet manages HTTP requests and supplies responses directly over
HTTP.This protocol is becoming a standard because of its popularity.

« HTTPS: The Oracle SOAP Request Handler Servlet manages HTTPS requests
and supplies responses, with different security levels supported.

Administrative Clients

SOAP administrative clients include the Service Manager and the Provider
Manager. These administrative clients are services that support dynamic
deployment of new services and new providers.

11-6 Oracle9i XML Developer’s Kits Guide - XDK

What Is Oracle SOAP?

SOAP Request Handler

The SOAP Request Handler is a Java servlet that receives SOAP requests, looks up
the appropriate service provider, handles the service provider that invokes the
requested method (service), and returns the SOAP response, if any.

SOAP Provider Interface and Providers

Oracle SOAP includes a provider implementation for Java classes. Other providers
can be added.

Provider Interface

The provider interface allows the SOAP server to uniformly invoke service methods
regardless of the type of provider (Java class, stored procedure, or some other
provider type). There is one provider interface implementation for each type of
service provider, and it encapsulates all provider-specific information. The provider
interface makes SOAP implementation easily extensible to support new types of
service providers.

Provider Deployment Administration

Oracle SOAP provides the provider deployment administration client to manage
provider deployment information.

SOAP Services

SOAP application developers provide SOAP services. These services are made
available using the supplied default Java class provider or custom providers. Oracle
SOAP includes a service deployment administration client that runs as a service to
manage services. SOAP services, including Java services, represent user-written
applications that are provided to remote SOAP clients.

JDeveloper Support for SOAP
Oracle9i JDeveloper has WSDL, SOAP, and UDDI support.

See Also: Chapter 24, "Developing XML Applications with
JDeveloper"

Using XDK and SOAP 11-7

See the Developer's Guides

See the Developer’s Guides

Here’s how to find the Oracle9iAS SOAP Developer’s Guide, Release 1 (v1.0.2.2),
May 2001, PN A90297-01 online:

1. Open http://otn.oracle.com/docs/products/ias/content.html

2. Open the Generic Documentation Library for 1.0.2.2.x.

3. Click on the Integrate Users, Applications, and Businesses link.
See Also: For more information about Oracle SOAP and Web
Services, including documentation and downloads, see:
« http://otn.oracle.com/products/ias/daily/sept07.html

« Oracle9i Application Developer’s Guide - Advanced Queuing for a
discussion of Internet access to AQ (Advanced Queuing.

« Oracle9i XML API Reference - XDK and Oracle XML DB

« The SOAP API is on the Product CD, Disk 1, in file
doc/readmes/ADDEN_rdbms.htm

11-8 Oracle9i XML Developer’s Kits Guide - XDK

12

Oracle TransX Utility

This chapter contains the following sections:
« Overview of the TransX Utility

« Installing TransX Utility

« TransX Utility Command-Line Syntax

« Sample Code for TransX Utility

Oracle TransX Utility 12-1

Overview of the TransX Utility

Overview of the TransX Utility

The TransX Utility simplifies the loading of translated seed data and messages into
a database. It also reduces internationalization costs by:

« Preparing strings to be translated.
« Translating the strings.
« Loading the strings to the database.

The TransX Utility minimizes translation data format errors and it accurately loads
the translation contents into pre-determined locations in the database. Other
advantages of the TransX Utility are:

« Translation vendors no longer have to work with unfamiliar SQL and PL/SQL
scripts.

« Syntax errors due to varying Globalization Support settings are eliminated.
« The UNISTR construct is no longer required for every piece of NCHAR data.

Development groups that need to load translated messages and seed data can use
the TransX Utility to simplify what it takes for meeting internationalization
requirements. Once the data is in a predefined format, the TransX Utility validates
its format.

Choosing the correct encoding when loading translated data is automated because
loading with TransX takes advantage of XML which describes the encoding. This
means that loading errors due to incorrect encoding is impossible as long as the
data file conforms to the XML standard.

Primary TransX Utility Features
This section describes the following features of the TransX Utility:
« Simplified Multilingual Data Loading
« Simplified Data Format Support and Interface
« Loading Dataset in The Standard XML Format
« Handling Existing Data
« Other TransX Utility Features

12-2 Oracle9i XML Developer’s Kits Guide - XDK

Overview of the TransX Utility

Simplified Multilingual Data Loading

Traditionally, the typical translation data loading method was to switch the
NLS_LANG setting when you switch files to be loaded. Each of the load files is
encoded in a particular character set suitable for the particular language. This was
required because translations must be done in the same file format (typically in .sql
script) as the original.

The NLS_LANGsetting changes as files are loaded to adapt to the character set that
corresponds to the language. The TransX Utility loading tool frees the development
and translation groups maintaining the correct character set throughout the process
until they successfully load the data into the database using XML.

Simplified Data Format Support and Interface

The TransX Utility data loading tool complies with a data format defined to be the
canonical method for the representation of any seed data to be loaded to the
database. The format is intuitive and easy to understand. The format is also
simplified for translation groups to use. The format specification defines how
translators can describe the data to load it in the expected way.

The data loading tool has a command-line interface and programmable API. Both of
them are straightforward and require little time to learn.

Loading Dataset in The Standard XML Format

Given the dataset in the canonical format, the TransX Utility loads the data into the
designated locations in the database. It does not, however, create objects, including
the table that the data is going to be loaded to. In addition to literal values
represented in XML, the following expressions can be used to describe the data to
be loaded:

Constant Expression A constant expression allows you to specify a constant value. A
column with a fixed value for each row does not have to repeat the same value.

Sequence A column can be loaded with a value obtained from a sequence in the
database.

Query A SQL query can be used to load a column. A query can use parameter(s).
Handling Existing Data

The data loading tool determines whether there are duplicate rows in the database.
It also lets you choose how it processes duplicate rows from one of the options in

Oracle TransX Utility 12-3

Installing TransX Utility

the following list. A row is considered duplicate if the values of all columns
specified as lookup-key are the same. The processing options are:

« Skip the duplicate rows or leave them as they are (default)
« Update or overwrite the duplicate rows with the data in provided dataset

« Display an error

Other TransX Utility Features
The lists describes other TransX Utility features:

« Command-line Interface—The data loading tool provides easy-to-use
commands.

« User API—The data loading tool exposes a Java API.
« Validation—The data loading tool validates the data format and reports errors.

« White Space Handling—White space characters in the dataset are not
significant, unless otherwise specified in various granularity.

« Unloading—Based on a query, the data loading tool exports the result into the
standard data format.

« Intimacy with Translation Exchange Format—Designed for transformation to
and from translation exchange format

« Localized User Interface—Messages are provided in N languages.

Installing TransX Utility

Here is how to install TransX, and the dependencies of TransX.

Dependencies of TransX
The Oracle TransX utility needs the following components in order to function:
« Database connectivity -- JDBC drivers. The utility can work with any JDBC

drivers but is optimized for Oracle’s JDBC drivers. Oracle does not guarantee or
provide support for TransX running against non-Oracle databases.

« XML Parser -- Oracle XML Parser, Version 2. The Oracle XML Parser, \ersion 2,
is part of the Oracle8i and Oracle9i installations, and is also available from the
Oracle Technology Network (OTN) Web site.

12-4 Oracle9i XML Developer’s Kits Guide - XDK

Installing TransX Utility

« XML Schema Processor -- Oracle XML Schema Processor. The Oracle XML
Schema Processor is part of the Oracle8i and Oracle9i installations,
downloadable from the Oracle Technology Network (OTN) Web site.

« XML SQL Utility-- Oracle XML SQL Utility (XSU). The Oracle XSU is part of the
Oracle8i and Oracle9i installation, and is also available from Oracle Technology
Network (OTN) Web site.

Installing TransX Using the Oracle Installer

TransX is packaged with Oracle9i. The TransX utility is made up of three executable
files:

« $ORACLE_HOME/rdbms/jlib/transx.zip -- contains all the java classes which
make up TransX $ORACLE_HOME/rdbms/bin/transx -- a shell script to
invoke TransX from UNIX command line.

« $ORACLE_HOME/rdbms/bin/transx.bat -- a batch file to invoke TransX from
Windows command line.

By default, the Oracle9i installer installs TransX on your hard drive in the locations
specified above.

Installing TransX Downloaded from OTN

Download the correct XDK for java distribution archive from the Oracle Technology
Network (http://otn.oracle.com). Expand the downloaded archive. Depending on
the usage scenario, perform the following install tasks:

To use the TransX’s front-end or its Java API, you need to:

Set up the environment (that is, set CLASSPATH) using the env.xxx script
(located in the bin directory inside the directory created by extracting the XDK
download archive):

Unix users: make sure that the path names in env.csh are correct; source the env.csh.
If you are using a shell other than csh or tcsh , you will have to edit the file to use
your shell’s syntax.

Windows users: make sure that the path names in env.bat are correct; execute the
file.

Oracle TransX Utility 12-5

TransX Utility Command-Line Syntax

TransX Utility Command-Line Syntax

The following describes the command-line syntax for the TransX Utility.

java oracle xml.transx.loader [options | connect _sting usemame password

datasource | datasource |

java oracle xml.transx.loader -v datasource | datasource |

java oraclexmltransx.loader -x connect_stiing usemame password table [column]
java oraclexmltransx.loader -s connect _string usemame password fiename table

[column]

TransX Utility Command-Line Examples
The following are command-line examples for the TransX Utility:

java oracle xml.ransx.loader "dlsun9999:1521:mydb" scott tiger foo.xml

java oracle xml.ransx.loader "jdbc:oracle:oci:@mydb" scott tiger foo.xml

java oracle xml.transx loader -v fooxml

java oracle xml.transx.loader -x "disun9999:1521:mydb" scott tiger emp

java oracle xml.transx.loader -s "disun9999:1521:mydb" scott tiger emp.xml emp
ename job

TransX Utility Command-line Parameters
Table 12-1 shows the command-line parameters.

Table 12-1 TransX Utility Command-line Parameters

Parameter Meaning

connect_string JDBC connect string You can omit the connect string information through
the '@’ symbol. ’jdbc:oracle:thin:@’ will be supplied.

username Database user name.

password Password for the database user.

datasource An XML data source.

option Options in Table 12-2, "TransX Utility Command-line Options".

12-6 Oracle9i XML Developer’s Kits Guide - XDK

TransX Utility Command-Line Syntax

TransX Utility Command-line Options

Table 12-2 TransX Utility Command-line Options

Option Meaning Description

-u Update existing rows. When this option is specified, existing rows
are not skipped but updated. To exclude a
column from the update operation, specify
the useforupdate attribute to be "no".

-e Raise exception ifarow isalready ~ When this option is specified, an exception
existing in the database. will be thrown if a duplicate row is found.
By default, duplicate rows are simply
skipped. Rows are considered duplicate if
the values for lookup-key column(s) in the
database and the dataset are the same.

-X Print data in the database in the Similar to the -s option, it causes TransX to
predefined format*. perform the opposite operation of loading.
Unlike the -s option, it prints the output to
stdout . Note: Redirecting this output to a
file is discouraged, because intervention of
the operating system may result in data loss
due to unexpected transcoding.

-S Save data in the database into a file This is an option to perform unloading. It
in the predefined format*. queries the database, formats the result into
the predefined XML format and store it
under the specified file name.

-p Print the XML to load. Prints out the dataset for insert in the
canonical format of XSU.

-t Print the XML for update. Prints out the dataset for update in the
canonical format of XSU.

-0 Omit validation (as the dataset is Causes TransX to skip the format validation,
parsed it is validated by default). which is performed by default.

-V Validate the data format and exit Causes TransX to perform validation and
without loading. exit.

-w Preserve white space. Causes TransX to treat whitespace characters
(such as \t, \r, \n, and ’’) as significant.
Consecutive whitespace characters in string
data elements are condensed into one space
character by default.

Command-line Option Exceptions ~ The following are the command-line option
exceptions:

Oracle TransX Utility 12-7

Sample Code for TransX Utility

« -uand -e are mutually exclusive
« -V must be the only option followed by data, as in the examples

« -x must be the only option followed by connect info and SQL query as in the
examples

Omitting all arguments will result in the display of the front-end usage
information shown in the table.

For complete details of the Java API for TransX Utility:

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Sample Code for TransX Utility
The following is sample code for the TransX Utility:
String datasrc]] = {'datal.xml", "data2xml", "data3xml'};

linstantiate a loader
TransX transx = loader.getloader();

I start a data loading session
transx.open(jdbc_con_str, usr, pwd);

I specify operation modes
transx.setl.oadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

IMNoad the dataset(s)
for (inti=0; i< datasrclength ; i++)

transx.load(datasrc]i]);
}

/I cleanup
transx.close();

12-8 Oracle9i XML Developer’s Kits Guide - XDK

Part |l

XDK for C/C++

These chapters describes how to access and use XML Developer’s Kit (XDK) for
C/C++:

« Chapter 13, "XML Parser for C"

« Chapter 14, "XSLT Processor for C"

« Chapter 15, "XML Schema Processor for C"

« Chapter 16, "XML Parser for C++"

« Chapter 17, "XSLT Processor for C++"

« Chapter 18, "XML Schema Processor for C++"
« Chapter 19, "XML Class Generator for C++"

13

XML Parser for C

This chapter contains the following sections:

Accessing XML Parser for C

XML Parser for C Features

XML Parser for C Usage

XML Parser for C Default Behavior

DOM and SAX APlIs

Invoking XML Parser for C

Using the Sample Files Included with Your Software

Running the XML Parser for C Sample Programs

XML Parser for C 13-1

Accessing XML Parser for C

Accessing XML Parser for C

The XML Parser for C is provided with Oracle9i and Oracle9i Application Server. It
is also available for download from the OTN site:
http://otn.oracle.com/tech/xml

It is located in SORACLE_HOME/xdk/c/parser on Solaris™ Operating
Environment systems.

XML Parser for C Features

Specifications

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

XML Parser for C will check if an XML document is well-formed, and optionally
validate it against a DTD. The parser constructs an object tree which can be accessed
through a DOM interface or operate serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://otn.oracle.com/tech/xml.

See Also:
« Thedoc directory in your install area
. Oracle9i XML API Reference - XDK and Oracle XML DB

« http://otn.oracle.com/tech/xml/

Memory Allocation

The memory callback functions memcbmay be used if you wish to use your own
memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and
data stored with the DOM parse tree will not be freed until one of the following is
done:

« xmiclean() s called.

« xmiterm() iscalled.

13-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C Usage

Thread Safety

If threads are forked off somewhere in the midst of the init-parse-term sequence of
calls, you will get unpredictable behavior and results.

Data Types Index
Table 13-1 lists the datatypes used in XML Parser for C.

Table 13-1 Datatypes Used in XML Parser for C

DataType Description

oratext String pointer

xmictx Master XML context

xmlmemch Memory callback structure (optional)
xmlsaxch SAX callback structure (SAX only)
ub4 32-bit (or larger) unsigned integer
uword Native unsigned integer

Error Message Files

Error message files are provided in the mesg/ subdirectory. The messages files also
exist in the $ORACLE_HOME/xdk/mesgdirectory. You may set the environment
variable ORA_XML_MESt® point to the absolute path of the mesg/ subdirectory
although this not required.

Validation Modes

See Also: Available validation modes are described in "Oracle
XML Parsers Validation Modes" on page 4-5.

XML Parser for C Usage

Figure 13-1 describes XML Parser for C calling sequence as follows:
1. xmlinit() function initializes the parsing process.

2. The parsed item can be an XML document (file) or string buffer. If the input is
an XML document or file, it is parsed using the xmlparser() function. If the
input is a string buffer, it is parsed using the xmlparserbuf() function.

XML Parser for C 13-3

XML Parser for C Usage

5.

DOM or SAX API:

DOM: If you are using the DOM interface, include the following steps:

The xmlparse() or xmlparseBuffer() function calls
.getDocumentElement() . If no other DOM functions are being applied,
you can invoke xmlterm()

This optionally calls other DOM functions if required. These are typically
Node or print functions. It outputs the DOM document.

If complete, the process invokes xmlterm()

You can first invoke xmiclean() to clean up any data structures created
during the parse process. You would then call xmlterm()

SAX: If you are using the SAX interface, include the following steps:

Process the results of the parser from xmlparse() or xmlparseBuf()
using callback functions.

Register the callback functions.

Use xmiclean() to clean up the memory and structures used during a parse,
and go to Step 5. or return to Step 2.

Terminate the parsing process with xmlterm()

XML Parser for C usage is further explained in Figure 13-1.

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

xmlinit() - xmlparse() or

xmlparsebuf() - xmlterm()

xmlinit() - xmlparse() or

xmlparsebuf() - xmliclean() - xmlparse() or
xmlparsebuf() - xmlclean() -... - xmlterm()

xmlinit() - xmlparse() or

xmlparsebuf() - xmlparse() or

xmlparsebuf() -... - xmlterm()

13-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C Default Behavior

Figure 13-1 XML Parser for C Calling Sequence

error handler set e xmlinit() D SAX callback set
save form of xml input file, buffer,
error callbacks > xmiparse() — thJ), URL,
/ t
another
SAX: \
callbacks invoked /another DOM constructed
SAX completes e xmiclean() i DOM:
query, edit, . . .
> xmlterm() DOM document

XML Parser for C Default Behavior

The following is the XML Parser for C default behavior:

« Character set encoding is UTF-8. If all your documents are ASCII, you are
encouraged to set the encoding to US-ASCII for better performance.

« Messages are printed to stderr unless msghdlr is given.

XML Parser for C

13-5

DOM and SAX APIs

A parse tree which can be accessed by DOM APIs is built unless saxch is set to
use the SAX callback APIs. Note that any of the SAX callback functions can be
set to NULL if not needed.

The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to
validate the input. The default behavior for whitespace processing is to be fully
conformant to the XML 1.0 spec, that is, all whitespace is reported back to the
application but it is indicated which whitespace is ignorable. However, some
applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE
which will discard all whitespace between an end-element tag and the
following start-element tag.

Note: Itis recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCI|I
or any of the 1ISO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

DOM and SAX APIs

Oracle XML parser for C checks if an XML document is well-formed, and optionally
validates it against a DTD. The parser constructs an object tree which can be
accessed through one of the following interfaces:

DOM interface
Serially through a SAX interface

These two XML APIs:

DOM: Tree-based APIs. A tree-based APl compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based API for XML and
HTML documents.

SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application
through callbacks, and does not usually build an internal tree. The application
implements handlers to deal with the different events, much like handling
events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a
great strain on system resources, especially if the document is large (under very

13-6 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Parser for C

controlled circumstances, it is possible to construct the tree in a lazy fashion to
avoid some of this problem). Furthermore, some applications need to build their
own, different data trees, and it is very inefficient to build a tree of parse nodes,
only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to
an XML document: you can parse documents much larger than your available
system memory, and you can construct your own data structures using your
callback event handlers.

Using the SAX API

To use SAX, an xmlsaxch structure is initialized with function pointers and passed
to the xmilinit() call. A pointer to a user-defined context structure can also be
included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct
{
sword (*startDocument)(void *ctx);
sword (*endDocument)(void *ctx);
sword (*startElement)(void *ctx, const oratext *name,
const struct xmlarray *attrs);
sword (*endElement)(void *ctx, const oratext *name);
sword (*characters)(void *ctx, const oratext *ch, size_tlen);
sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_tlen);
sword (*processinginstruction)(void *ctx, const oratext *target,
const oratext *data);
sword (*notationDecl)(void *ctx, const oratext *name,
const oratext *publicld, const oratext *systemid);
sword (*unparsedEntityDecl)(void *ctx, const oratext *name,
const oratext *publicld,
const oratext *systemid, const oratext *notationName);
sword (*nsStartElement)(void *ctx, const oratext *gname,
const oratext *local, const oratext *nsp,
const struct xminodes *attrs);
}xmisaxch;

Invoking XML Parser for C

XML Parser for C can be invoked in two ways:

XML Parser for C 13-7

Using the Sample Files Included with Your Software

« By invoking the executable on the command line

« By writing C code and using the supplied APIs

Command Line Usage
The XML Parser for C can be called as an executable by invoking bin/xml

Table 13-2 lists the command line options.

Table 13-2 XML Parser for C: Command Line Options

Option Description

-C Conformance check only, no validation

-e encoding Specify input file encoding

-h Help - show this usage help

-n Number - DOM traverse and report number of elements
-p Print document and DTD structures after parse

X Exercise SAX interface and print document

-V Version - display parser version then exit

-w Whitespace - preserve all whitespace

Writing C Code to Use Supplied APIs

XML Parser for C can also be invoked by writing code to use the supplied APIs. The
code must be compiled using the headers in the include/ subdirectory and linked
against the libraries in the lib/ subdirectory. Please see the Makefile in the
sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software

$ORACLE_HOME/xdk/c/parser/sample/ directory contains several XML
applications to illustrate how to use the XML Parser for C with the DOM and SAX

interfaces.

Table 13-3 lists the sample files in sample/ directory.

13-8 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for C Sample Programs

Table 13-3 XML Parser for C sample/ Files

sample/ File Name Description

DOMNamespace.c

Source for DOMNamespace program

DOMNamespace.std Expected output from DOMNamespace
DOMSample.c Source for DOMSample program
DOMSample.std Expected output from DOMSample
FullDOM.c Sample usage of DOM interface
FullDOM.std Expected output from FullDOM
Make.bat Batch file for building sample programs
NSExample.xml Sample XML file using namespaces

SAXNamespace.c

Source for SAXNamespace program

SAXNamespace.std Expected output from SAXNamespace
SAXSample.c Source for SAXSample program
SAXSample.std Expected output from SAXSample
XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample
iden.xsl Stylesheet that may be used with XSLSample
cleo.xml The Tragedy of Antony and Cleopatra

XML version of Shakespeare's play

Running the XML Parser for C Sample Programs

Building the Sample Programs

Change directories to the sample directory

($ORACLE_HOME/xdk/demol/c/parser on Solaris™ Operating Environment) and
read the README file. This will explain how to build the sample programs
according to your platform.

XML Parser for C 13-9

Running the XML Parser for C Sample Programs

Sample Programs
Table 13-4 lists the programs built by the sample files in the sample directory.

Table 13-4 XML Parser for C: Sample Built Programs in sample/

Built Program Description

DOMSample A sample application using DOM APIs (shows an outline of
Cleopatra, that is, the XML elements ACT and SCENE).

SAXSample [word] A sample application using SAX APls. Given a word, shows all
lines in the play Cleopatra containing that word. If no word is
specified, 'death’ is used.

DOMNamespace Same as SAXNamespace except using DOM interface.

SAXNamespace A sample application using Namespace extensions to SAX API;
prints out all elements and attributes of NSExample.xml along
with full namespace information.

FullboOM Sample usage of full DOM interface. Exercises all the calls, but
does nothing too exciting.

XSLSample <xmifile> <xsl ss> Sample usage of XSL processor. It takes two filenames as input,
the XML file and XSL stylesheet

13-10 Oracle9/ XML Developer’s Kits Guide - XDK

14

XSLT Processor for C

This chapter contains the following sections:

Accessing XSLT for C

XSLT for C Features

XML XSLT for C (DOM Interface) Usage

Invoking XSLT for C

Using the Sample Files Included with the Software
Running the XSLT for C Sample Programs

XSLT Processor for C 14-1

Accessing XSLT for C

Accessing XSLT for C

XSLT for C is provided with Oracle9i and Oracle9i Application Server. It is also
available for download from the OTN site:
http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/c/parser

XSLT for C Features

Specifications

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://otn.oracle.com/tech/xml.

See the following:

See Also:
« The doc directory in your install area
. Oracle9i XML API Reference - XDK and Oracle XML DB

« http://otn.oracle.com/tech/xml/

XML XSLT for C (DOM Interface) Usage

Figure 14-1 shows the XSLT for C functionality.

1. There are two inputs to xmlparse()
« The stylesheet to be applied to the XML document
« XML document

2. xmlinit() initializes the XSLT processing. xmlinit() initializes the

xslprocess() result.

3. xslprocess()o ptionally calls other functions, such as print functions. You

can see the list of available functions either on OTN or in the Oracle9i XML API
Reference - XDK and Oracle XML DB.

4. The resultant document (XML, HTML, VML, and so on) is typically sent to an

application for further processing.

14-2 Oracle9i XML Developer’s Kits Guide - XDK

XML XSLT for C (DOM Interface) Usage

5. The application terminates the XSLT process by declaring xmlterm() for the
XML document, stylesheet, and final result.

XML Parser for C’s XSLT functionality is illustrated with the following examples:
« XSLT for C Example 2: C — XSLSample.c on page 14-6
« XSLT for C Example 3: C — XSLSample.std on page 14-9

XSLT Processor for C 14-3

Invoking XSLT for C

Figure 14-1 XSLT for C (DOM Interface) Usage

XML Parser for C, XSL-T

xmlparse()
input

xml document

xmlparse()
input

stylesheet

xmlinit() @

result

BODONE

call other
functions
e.g. print

v v

| xml document | stylesheet | result

Invoking XSLT for C

14-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with the Software

XSLT for C can be invoked in two ways:
« By invoking the executable on the command line

« By writing C code and using the supplied APls

Command Line Usage
The XSLT for C can be called as an executable by invoking bin/xml

Table 14-1 lists the command line options.

Table 14-1 XML Parser for C: Command Line Options

Option Description

-e encoding Specify input file encoding

-h Help - show this usage help

-V Version - display parser version then exit
-w Whitespace - preserve all whitespace

-S Stylesheet

Using the Sample Files Included with the Software

$ORACLE_HOME/xdk/c/parser/sample directory contains several XML
applications to illustrate how to use the XSLT for C.

Table 14-2 lists the sample files in sample/ directory.

Table 14-2 XSLT for C sample/ Files

sample/ File Name Description

XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample
iden.xsl Stylesheet that may be used with XSLSample
cleo.xml XML version of Shakespeare's play

XSLT Processor for C 14-5

Running the XSLT for C Sample Programs

Running the XSLT for C Sample Programs

Building the Sample Programs

Change directories to the sample directory and read the README file. This will
explain how to build the sample programs according to your platform.

Sample Programs
Table 14-3 lists the programs built by the sample files in the sample directory.

Table 14-3 XSLT for C: Sample Built Programs in sample/

Built Program Description

XSLSample <xmifile> <xsl ss> Sample usage of XSL processor. It takes two filenames as input,
the XML file and XSL stylesheet

XSLT for C Examplel: XSL — iden.xsl
This example stylesheet can be used to input XSLSample.c .

<?xml version="1.0"?>
<!- Identity transformation —>
<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/Transform'™>

<xsltemplate match="*|@*/comment()|processing-instruction()|text()">
<xslcopy>
<xslapply-templates
select="|@*/comment()|processing-instruction()text() />
</xsl.copy>
<Ixsltemplate>

<Ixslstylesheet>

XSLT for C Example 2: C — XSLSample.c

This example contains C source code for XSLSample.c.
F Copyright (c) Oracle Corporation 1999. All Rights Reserved. */
P

NAME

XSLSample.c - Sample function for XSL
DESCRIPTION

14-6 Oracle9i XML Developer’s Kits Guide - XDK

Running the XSLT for C Sample Programs

Sample usage of C XSL Processor
*

#include <stdio.h>
#ifndef ORATYPES
#include <oratypes.h>
#endif

#indef ORAXML_ORACLE
#include <oraxml.h>
#endif

int main(int argc, char *argv])
{
xmictx *XctX, *xslctx, *resctx;
xminode *resullt;
uword ecode;
¥ Check for comect usage */
if(argc <3)
{
puts("Usage is XSLSample <xmlfile> <xsffle>\n";
retum1;

}

F* Parse the XML document */
if ({(xctx = xmiinit(&ecode, (const oratext *) O,
(void (*)(void *, const oratext *, uword)) O,
(void *) 0, (const xmisaxch *) 0, (void *) O,
(const xmimemch *) 0, (void *) O,
(const oratext *) Q)
{
printf("Failed to iniialze XML parser, error %ouln’, (unsigned) ecode);
retum 1;

}

printf("Parsing ‘%s' ..\n", argV{1]);
if (ecode = xmlparse(xctx, (oratext *Jargv{1], (oratext *) O,
XML_FLAG_VALIDATE | XML_FLAG_DISCARD WHITESPACE))

{
printf('Parse failed, error %uln', (Unsigned) ecode);
retum 1;

}

¥ Parse the XSL document */
if ({(xslctx = xmiinit(&ecode, (const oratext *) 0,

XSLT Processor for C 14-7

Running the XSLT for C Sample Programs

(void (*)(void *, const oratext *, uword)) O,
(void *) 0, (const xmisaxch *) O, (void *) O,
(const xmimemchb *) 0, (void *) O,
(const oratext *) 0)))
{
printf("Failed to initialze XML parser, error %ouln', (unsigned) ecode);
retum 1;

}

printf("Parsing ‘%s'..\n", argv2]);
if (ecode = xmliparse(xsictx, (oratext *)argv{2], (oratext *) O,
XML _FLAG_VALIDATE | XML_FLAG_DISCARD WHITESPACE))
{
printf("Parse failed, error %ouln’, (Unsigned) ecode);
retum 1;

}

F* Initialize the result context */
if ({(resctx = xmlinit{&ecode, (const oratext *) O,
(void (*)(void *, const oratext *, uword)) O,
(void *) 0, (const xmisaxch *) 0, (void *) O,
(const xmimemch *) 0, (void *) O,
(const oratext *) 0)))
{
printf("Failed to iniialze XML parser, error %ouln’, (unsigned) ecode);
retum 1;

}

¥ XSL processing */

printf("XSL Processing\n);

if (ecode = xslprocess(xctx, xslctx, resctx, &resullt))

{
printf("Parse failed, error %ouln’, (Unsigned) ecode);
retum 1;

}

F* Print the result tree */
printres(resctx, result);

 Call the terminate functions */
(void)xmiterm(xctx);
(void)xmiterm(xsictx);
(void)xmiterm(resctx);

retumQ;

14-8 Oracle9i XML Developer’s Kits Guide - XDK

Running the XSLT for C Sample Programs

XSLT for C Example 3: C — XSLSample.std
XSLSample.std shows the expected output from XSLSample.c .

Parsing ‘classxm'...
Parsing 'idenxst ...
XSL Processing
<root>
<course>
<Name>Calculus</Name>
<Dept>Math</Dept>
<Instructor>
<Name>Jim Green</Name>
</Instructor>
<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>
</course>
<froot>

XSLT Processor for C 14-9

Running the XSLT for C Sample Programs

14-10 Oracle9/ XML Developer’s Kits Guide - XDK

15

XML Schema Processor for C

This chapter contains the following sections:

Oracle XML Schema Processor for C
Invoking XML Schema Processor for C
XML Schema Processor for C Usage Diagram

How to Run XML Schema for C Sample Programs

XML Schema Processor for C 15-1

Oracle XML Schema Processor for C

Oracle XML Schema Processor for C

The XML Schema Processor for C is a companion component to the XML Parser for
C. It allows support for simple and complex datatypes in Oracle9i XML
applications.

The XML Schema Processor for C supports the W3C XML Schema
Recommendation, with the goal being that it be 100% fully conformant when XML
Schema becomes a W3C Recommendation. This makes writing custom applications
that process XML documents straightforward in the Oracle9i environment, and
means that a standards-compliant XML Schema Processor is part of the Oracle9i
platform on every operating system where Oracle9i is ported.

See Also: Chapter 4, "XML Parser for Java", for more information
about XML Schema and why you would want to use XML Schema.

Oracle XML Schema for C Features
XML Schema Processor for C has the following features:

« Supports simple and complex types
» Builton XML Parser for C
« Supports the W3C XML Schema Recommendation

See Also:
« Oracle9i XML API Reference - XDK and Oracle XML DB

Online Documentation

Documentation for Oracle XML Schema Processor for C is located in the doc
directory in your install area.

Standards Conformance
The Schema Processor conforms to the following standards:

« W3C recommendation for Extensible Markup Language (XML) 1.0
« W3C recommendation for Document Object Model Level 1.0
» WS3C recommendation for Namespaces in XML

= W3C recommendation for XML Schema

15-2 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Schema Processor for C

XML Schema Processor for C: Supplied Software
Table 15-1 lists the supplied files and directories with this release:

Table 15-1 XML Schema Processor for C: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin Schema processor executable, “schema”
doc API documentation

include header files

lib XML/ XSL/Schema & support libraries
mesg Error message files

sample Example usage of the Schema processor

Table 15-2 lists the included libraries:

Table 15-2 XML Schema Processor for C: Supplied Libraries

Included Library Description

libxml9.a XML Parser/XSL Processor
libxsd9.a XML Schema Processor
libcore9.a CORE functions

libnls9.a National Language Support

Invoking XML Schema Processor for C

XML Schema Processor for C can be called as an executable by invoking
bin/schema in the install area. This takes two arguments:

« XML instance document
« Optionally, a default schema

The Schema Processor can also be invoked by writing code using the supplied APIs.
The code must be compiled using the headers in the include/ subdirectory and
linked against the libraries in the lib/ subdirectory. See Makefile in the sample/
subdirectory for details on how to build your program.

XML Schema Processor for C 15-3

XML Schema Processor for C Usage Diagram

An error message file is provided in the mesg/ subdirectory. Currently, the only
message file is in English although message files for other languages may be
supplied in future releases.

XML Schema Processor for C Usage Diagram

Figure 15-1 describes the calling sequence for the XML Schema Processor for C, as
follows:

The sequence of calls to the processor is: initialize, validate, validate,..., validate,

terminate.

1. Theinitialize call is invoked once at the beginning of a session; it returns a
Schema context which is used throughout the session.

2. The instance document to be validated is first parsed with the XML parser.

3. The XML context for the instance is then passed to the Schema validate
function, along with an optional schema URL.

4. If no explicit schema is defined in the instance document, the default schema
will be used.

5. More documents may then be validated using the same schema context.

6. When the session is over, the Schema tear down function is called, which

releases all memory allocated by the loaded schemas.

15-4 Oracle9i XML Developer’s Kits Guide - XDK

How to Run XML Schema for C Sample Programs

Figure 15-1 XML Schema Processor for C Usage Diagram

schemailnitialize() Parsed XML doc input
—) schemaValidate() > Success code

!

schemaTerminate()

How to Run XML Schema for C Sample Programs

This directory contains a sample XML Schema application that illustrates how to
use Oracle XML Schema Processor with its API. Table 15-3 lists the provided
sample files.

Table 15-3 XML Schema for C Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.c Trivial program which invokes the XML Schema for C API

car.{xsd,xml,std} Sample schema, instance document, and expected

output respectively, after running xsdtest on them.

ag.{xsd,xml,std} Second sample schema, instance document, and expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema, instance document, and expected
output respectively, after running xsdtest on them.

To build the sample programs, run make.

XML Schema Processor for C 15-5

How to Run XML Schema for C Sample Programs

To build the programs and run them, comparing the actual output to expected
output, run make sure

15-6 Oracle9i XML Developer’s Kits Guide - XDK

16

XML Parser for C++

This chapter contains the following sections:

Accessing XML Parser for C++

XML Parser for C++ Features

XML Parser for C++ Usage

XML Parser for C++ Default Behavior

DOM and SAX APlIs

Invoking XML Parser for C++

Using the Sample Files Included with Your Software

Running the XML Parser for C++ Sample Programs

XML Parser for C++ 16-1

Accessing XML Parser for C++

Accessing XML Parser for C++

The XML Parser for C++ is provided with Oracle9i and Oracle9i Application
Serverand is also available for download from the OTN site:
http://otn.oracle.com/tech/xml.

It is located at SORACLE_HOME/xdk/cpp/parser

XML Parser for C++ Features

Specifications

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

XML Parser for C++ will check if an XML document is well-formed, and optionally
validate it against a DTD. The parser will construct an object tree which can be
accessed through a DOM interface or operate serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://otn.oracle.com/tech/xml/ .

See the following:

See Also:
« Thedoc directory in your install area
. Oracle9i XML API Reference - XDK and Oracle XML DB

= http://otn.oracle.com/tech/xml/

Memory Allocation

The memory callback functions memcbmay be used if you wish to use your own
memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and
data stored with the DOM parse tree will not be freed until one of the following is
done:

« xmiclean() is called.

« xmiterm() is called.

16-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C++ Usage

Thread Safety

If threads are forked off somewhere in the midst of the init-parse-term sequence of
calls, you will get unpredictable behavior and results.

Data Types Index
Table 16-1 lists the datatypes used in XML Parser for C++.

Table 16—1 Datatypes Used in XML Parser for C++

DataType Description

oratext String pointer

xmictx Master XML context

xmlmemch Memory callback structure (optional)
xmlsaxch SAX callback structure (SAX only)
ub4 32-bit (or larger) unsigned integer
uword Native unsigned integer

Error Message Files

Error message files are provided in the mesg/ subdirectory. The messages files also
exist in the $ORACLE_HOME/xdk/mesgdirectory. You may set the environment
variable ORA_XML_MESt® point to the absolute path of the mesg/ subdirectory
although this not required.

Validation Modes

See Also: Available validation modes are described in "Oracle
XML Parsers Validation Modes" on page 4-5.

XML Parser for C++ Usage
Figure 16-1 illustrates the XML Parser for C++ functionality.
1. xmlinit() function initializes the parsing process.

2. The XML input can be either an XML file or string buffer. This inputs the
following methods:

« XMLParser.xmlparse() if the input is an XML file

XML Parser for C++ 16-3

XML Parser for C++ Usage

« XMLParser.xmlparseBuffer() if the input is a string buffer
3. DOM or SAX API
DOM: If you are using the DOM interface, include the following steps:

« The XMLParser.xmlparse() or .xmlparserBuffer() method calls
.getDocument Element() . If no other DOM methods are being applied,
you can invoke .xmlterm()

« This optionally calls other DOM methods if required. These are typically
Node class methods or print methods. It outputs the DOM document.

« If complete, the process invokes .xmlterm()

« You can first invoke .xmliclean() to clean up any data structure created
during the parse process. You would then call .xmlterm()

SAX: If you are using the SAX interface, include the following steps:

« Process the results of the parser from .xmlparse() or
xmlparseBuffer() through callback methods.

« Register the callback methods

4. Use .xmiclean() to clean up the memory and structures used during a
parse, and go to Step 5. or return to Step 2.

5. Terminate the parsing process with .xmlterm()

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

« XMLParser.xmlinit() - XMLParser.xmlparse() or
XMLParser.xmlparsebuf() - XMLParser.xmlterm()
« XMLParser.xmlinit() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -
XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -... -
XMLParser.xmlterm()

« XMLParser.xmlinit() - XMLParser.xmlparse() or
XMLParser.xmlparsebuf() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() -... - XMLParser.xmlterm()

16-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C++ Usage

Figure 16-1 XML Parser for C++ (DOM and SAX Interfaces) Usage

XDK for C++: XML Parser for C++ — XMLParser class

XMLParser::
initialize

method
class

Process
results via

callback
_methods

register
callback
methods

parse,
parsebuffer,
parseurl, . . .

file, URL,
db, buffer
xml input

Mostly Node ‘getDocument

class methods Element and DOM
(part of other DOM document
application) methods

clean

XML Parser for C++ 16-5

XML Parser for C++ Default Behavior

XML Parser for C++ Default Behavior

The following is the XML Parser for C++ default behavior:

Character set encoding is UTF-8. If all your documents are ASCII, you are
encouraged to set the encoding to US-ASCII for better performance.

Messages are printed to stderr unless msghdlr is given.

A parse tree which can be accessed by DOM APIs is built unless saxchb is set to
use the SAX callback APIs. Note that any of the SAX callback functions can be
set to NULL if not needed.

The default behavior for the parser is to check that the input is well-formed but
not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to
validate the input. The default behavior for whitespace processing is to be fully
conformant to the XML 1.0 spec, that is, all whitespace is reported back to the
application but it is indicated which whitespace is ignorable. However, some
applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE
which will discard all whitespace between an end-element tag and the
following start-element tag.

Note: Itis recommended that you set the default encoding
explicitly if using only single byte character sets (such as US-ASCI|I
or any of the 1ISO-8859 character sets) for performance up to 25%
faster than with multibyte character sets, such as UTF-8.

16-6 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APIs

DOM and SAX APIs

Oracle XML parser for C++ checks if an XML document is well-formed, and
optionally validates it against a DTD. The parser constructs an object tree which can
be accessed through one of the following interfaces:

« DOM interface
« Serially through a SAX interface
These two XML APIs:

« DOM: Tree-based APIs. A tree-based APl compiles an XML document into an
internal tree structure, then allows an application to navigate that tree using the
Document Object Model (DOM), a standard tree-based API for XML and
HTML documents.

« SAX: Event-based APIs. An event-based API, on the other hand, reports parsing
events (such as the start and end of elements) directly to the application
through callbacks, and does not usually build an internal tree. The application
implements handlers to deal with the different events, much like handling
events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a
great strain on system resources, especially if the document is large (under very
controlled circumstances, it is possible to construct the tree in a lazy fashion to
avoid some of this problem). Furthermore, some applications need to build their
own, different data trees, and it is very inefficient to build a tree of parse nodes,
only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to
an XML document: you can parse documents much larger than your available
system memory, and you can construct your own data structures using your
callback event handlers.

Using the SAX API

To use SAX, an xmlsaxcb structure is initialized with function pointers and passed
to the xmlinit() call. A pointer to a user-defined context structure can also be
included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct

XML Parser for C++ 16-7

Invoking XML Parser for C++

{

sword (*startDocument)(void *ctx);
sword (*endDocument)(void *ctx);
sword (*startElement)(void *ctx, const oratext *name,
const struct xmlarray *attrs);
sword (*endElement)(void *ctx, const oratext *name);
sword (*characters)(void *ctx, const oratext *ch, size_tlen);
sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_tlen);
sword (*processinginstruction)(void *ctx, const oratext *target,

const oratext *data);

sword (*notationDecl)(void *ctx, const oratext *name,
const oratext *publicld, const oratext *systemid);
sword (*unparsedEntityDecl)(void *ctx, const oratext *name,

const oratext *publicld,

const oratext *systemid, const oratext *notationName);
sword (*nsStartElement)(void *ctx, const oratext *gname,

const oratext *local, const oratext *nsp,

const struct xminodes *attrs);

}xmisaxch;

Invoking XML Parser for C++

XML Parser for C++ can be invoked in two ways:

« By invoking the executable on the command line

« By writing C++ code and using the supplied APIs

Command Line Usage

The XML Parser for C++ can be called as an executable by invoking bin/xml

Table 16-2 lists the command line options.

Table 16-2 XML Parser for C++: Command Line Options

Option

Description

-C

Conformance check only, no validation

-e encoding

Specify input file encoding

-h

Help - show this usage help

-n

Number - DOM traverse and report number of elements

P

Print document and DTD structures after parse

16-8 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with Your Software

Table 16-2 XML Parser for C++: Command Line Options

Option

Description

-X

Exercise SAX interface and print document

-V

Version - display parser version then exit

-W

Whitespace - preserve all whitespace

Writing C++ Code to Use Supplied APIs

XML Parser for C++ can also be invoked by writing code to use the supplied APIs.
The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. Please see the Makefile in the
sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software

$ORACLE_HOME/xdk/cpp/parser/sample/

applications to illustrate how to use the XML Parser for C++ with the DOM and

SAX interfaces.

Table 16-3 lists the sample files in sample/ directory.

Table 16-3 XML Parser for C++ sample/ Files

sample/ File Name

Description

DOMNamespace.cpp

Source for DOMNamespace program

DOMNamespace.std

Expected output from DOMNamespace

DOMSample.cpp

Source for DOMSample program

DOMSample.std

Expected output from DOMSample

FullDOM.c

Sample usage of DOM interface

FullDOM.std

Expected output from FullDOM

Make.bat

Batch file to build sample executables

Makefile

Makefile for sample programs

NSExample.xml

Sample XML file using namespaces

SAXNamespace.cpp

Source for SAXNamespace program

SAXNamespace.std

Expected output from SAXNamespace

XML Parser for C++ 16-9

directory contains several XML

Running the XML Parser for C++ Sample Programs

Table 16-3 XML Parser for C++ sample/ Files (Cont.)

sample/ File Name Description

SAXSample.cpp Source for SAXSample program
SAXSample.std Expected output from SAXSample
XSLSample.cpp Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample
iden.xsl Stylesheet that may be used with XSLSample
cleo.xml XML version of Shakespeare's play

Running the XML Parser for C++ Sample Programs

Building the Sample Programs

Change directories to the sample directory
($ORACLE_HOME/xdk/demo/cpp/parser on Solaris™ Operating Environment)
and read the README file. This will explain how to build the sample programs

according to your platform.

Sample Programs

Table 16-4 lists the programs built by the sample files in sample/.

Table 16-4 XML Parser for C++, Sample Programs Built in sample/

Built Program

Description

SAXSample

A sample application using SAX APIs. Prints out all
speakers in each scene, that is, all the unique SPEAKER
elements within each SCENE element.

DOMSample [speaker]

A sample application using DOM APIs. Prints all speeches
made by the given speaker. If no speaker is specified,
"Soothsayer" is used. Note that major characters have
uppercase hames (for example, "CLEOPATRA"), whereas
minor characters have capitalized names (for example,
"Attendant"). See the output of SAXSample.

SAXNamespace

A sample application using Namespace extensions to SAX
API; prints out all elements and attributes of
NSExample.xml along with full namespace information.

16-10 Oracle9/ XML Developer’s Kits Guide - XDK

Running the XML Parser for C++ Sample Programs

Table 16-4 XML Parser for C++, Sample Programs Built in sample/ (Cont.)

Built Program Description
DOMNamespace Same as SAXNamespace except using DOM interface.
FullDOM Sample usage of full DOM interface. Exercises all the

calls, but does nothing too exciting.

XSLSample <xmlfile> <xs| ss> Sample usage of XSL processor. It takes two
filenames as input, the XML file and the XSL stylesheet.
Note: If you redirect stdout of this program to a file, you
may encounter some missing output, depending on your
environment.

XML Parser for C++ 16-11

Running the XML Parser for C++ Sample Programs

16-12 Oracle9/ XML Developer’s Kits Guide - XDK

17

XSLT Processor for C++

This chapter contains the following sections:

Accessing XSLT for C++

XSLT for C++ Features

XSLT for C++ (DOM Interface) Usage

Invoking XSLT for C++

Using the Sample Files Included with Your Software

Running the XSLT for C++ Sample Programs

XSLT Processor for C++ 17-1

Accessing XSLT for C++

Accessing XSLT for C++

XSLT for C++ is provided with Oracle9i and Oracle9i Application Server. It is also
available for download from the OTN site:
http://otn.oracle.com/tech/xm .

It is located at SORACLE_HOME/xdk/cpp/parser

XSLT for C++ Features

Specifications

readme.html in the root directory of the software archive contains release specific
information including bug fixes and API additions.

You can post questions, comments, or bug reports to the XML Discussion Forum at
http://otn.oracle.com/tech/xml

See the following:

See Also:
« The doc directory in your install area

. Oracle9i XML API Reference - XDK and Oracle XML DB

XSLT for C++ (DOM Interface) Usage

Figure 17-1 shows the XSLT for C++ functionality for the DOM interface.
1. There are two inputs to XMLParser.xmlparse()

« The stylesheet to be applied to the XML document

= XML document

The output of XMLParser.xmlparse() , the parsed stylesheet and parsed XML
document are sent to the XSLProcess.xslprocess() method for processing.

2. XMLParser.xmlinit() initializes the XSLT processing. XMLParser.
xmlinit() also initializes the xslprocess() result.
3. XSLProcess.xslProcess() optionally calls other methods, such as print

methods. You can see the list of available methods either on OTN or in Oracle9i
XML API Reference - XDK and Oracle XML DB.

17-2 Oracle9i XML Developer’s Kits Guide - XDK

XSLT for C++ (DOM Interface) Usage

The resultant document (XML, HTML, VML, and so on) is typically sent to an
application for further processing.

The application terminates the XSLT process by declaring
XMLParser.xmlterm() for the XML document, stylesheet, and final result.

XSLT Processor for C++ 17-3

XSLT for C++ (DOM Interface) Usage

Figure 17-1 XSLT for C++ Functionality (DOM Interface) Usage

XML Parser for C++, XSL-T

XMLParser.
xmlinit()

xmlparse()
input

xml document

XMLParser.
xmlinit()

xmlparse()
input

stylesheet

XSLprocess.
xslProcess()

call other
methods
e.g. print

XMLParser.
xmlinit()

XMLParser.
xmiterm()

xml document

XMLParser.
xmlterm()

stylesheet

XMLParser.
xmlterm()

result

_ | result

17-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with Your Software

Invoking XSLT for C++
XSLT for C++ can be invoked in two ways:
« By invoking the executable on the command line

« By writing C++ code and using the supplied APIs

Command Line Usage
The XSLT for C++ can be called as an executable by invoking bin/xml

Table 17-1 lists the command line options.

Table 17-1 XXSLT for C++: Command Line Options

Option Description

-e encoding Specify input file encoding

-h Help - show this usage help

-V Version - display parser version then exit
-w Whitespace - preserve all whitespace

-S Stylesheet

Writing C++ Code to Use Supplied APIs

XXSLT for C++ can also be invoked by writing code to use the supplied APIs. The
code must be compiled using the headers in the include/ subdirectory and linked
against the libraries in the lib/ subdirectory. Please see the Makefile in the
sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software

$ORACLE_HOME/xdk/cpp/parser/sample/ directory contains several XML
applications to illustrate how to use the XXSLT for C++.

Table 17-2 lists the sample files in sample/ directory.

Table 17-2 XML Parser for C++ sample/ Files

sample/ File Name Description

XSLSample.cpp Source for XSLSample program

XSLT Processor for C++ 17-5

Running the XSLT for C++ Sample Programs

Table 17-2 XML Parser for C++ sample/ Files(Cont.)

sample/ File Name Description

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample
iden.xsl Stylesheet that may be used with XSLSample
cleo.xml XML version of Shakespeare's play

Running the XSLT for C++ Sample Programs

Building the Sample programs

Change directories to the sample directory and read the README file. This will
explain how to build the sample programs according to your platform.

Sample Programs
Table 17-3 lists the programs built by the sample files.

Table 17-3 XML Parser for C++, Sample Programs Built in sample/

Built Program Description

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two
filenames as input, the XML file and the XSL stylesheet.
Note: If you redirect stdout of this program to a file, you
may encounter some missing output, depending on your
environment.

17-6 Oracle9i XML Developer’s Kits Guide - XDK

13

XML Schema Processor for C++

This chapter contains the following sections:

« Oracle XML Schema Processor for C++ Features
« Invoking XML Schema Processor for C++

« XML Schema Processor for C++ Usage Diagram

« Running the Provided XML Schema Sample Programs

XML Schema Processor for C++ 18-1

Oracle XML Schema Processor for C++ Features

Oracle XML Schema Processor for C++ Features

The XML Schema Processor for C++ is a companion component to the XML Parser
for C++ that allows support to simple and complex datatypes into XML
applications with Oracle9i.

The XML Schema Processor for C++ supports the W3C XML Schema
Recommendation, with the goal being that it be 100% fully conformant when XML
Schema becomes a W3C Recommendation. This makes writing custom applications
that process XML documents straightforward in the Oracle9i environment, and
means that a standards-compliant XML Schema Processor is part of the Oracle9i
platform on every operating system where Oracle9i is ported.

See Also: Chapter 4, "XML Parser for Java", for more information
about XML Schema and why you would want to use XML Schema.

Oracle XML Schema for C++ Features
XML Schema Processor for C++ has the following features:

« Supports simple and complex types
« Built upon the XML Parser for C++
« Supports the W3C XML Schema Recommendation

The XML Schema Processor for C++ class is XMLSchema

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB

Online Documentation

Documentation for Oracle XML Schema Processor for C++ is located in the doc
directory in your install area.

Standards Conformance
The Schema Processor conforms to the following standards:

« W3C recommendation for Extensible Markup Language (XML) 1.0
« WS3C recommendation for Document Object Model Level 1.0
« WS3C recommendation for Namespaces in XML

« W3C recommendation for XML Schema

18-2 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Schema Processor for C++

XML Schema Processor for C++: Provided Software
Table 18-1 lists the supplied files and directories with this release:

Table 18-1 XML Schema Processor for C++: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin Schema processor executable, "schema”
doc API documentation

include header files

lib XML/ XSL/Schema & support libraries
mesg Error message files

sample Example usage of the Schema processor

Table 18-2 lists the included libraries:

Table 18-2 XML Schema Processor for C++: Supplied Libraries

Included Library Description

libxml9.a XML Parser/XSL Processor
libxsd9.a XML Schema Processor
libcore9.a CORE functions

libnls9.a Globalization Support

Invoking XML Schema Processor for C++

The XML Schema Processor can be called as an executable by invoking
bin/schema in the install area. This takes two arguments:

« XML instance document
« Optionally, a default schema

The Schema processor can also be invoked by writing code using the supplied APIs.
The code must be compiled using the headers in the include/ subdirectory and
linked against the libraries in the lib/ subdirectory. See Makefile in the sample/
subdirectory for details on how to build your program.

XML Schema Processor for C++ 18-3

XML Schema Processor for C++ Usage Diagram

An error message file is provided in the mesg/ subdirectory. Currently, the only
message file is in English although message files for other languages may be
supplied in future releases.

XML Schema Processor for C++ Usage Diagram

Figure 18-1 illustrates the calling sequence of XMI Schema Processor for C++, as
follows:

The sequence of calls to the processor is: initialize, validate, validate,..., validate,
terminate.

1. Theinitialize call is invoked once at the beginning of a session; it returns a
Schema context which is used throughout the session.

2. The instance document to be validated is first parsed with the XML parser.

3. The XML context for the instance is then passed to the Schema validate
function, along with an optional schema URL.

4. If no explicit schema is defined in the instance document, the default schema
will be used.

5. More documents may then be validated using the same schema context.

6. When the session is over, the Schema tear down function is called, which
releases all memory allocated by the loaded schemas.

18-4 Oracle9i XML Developer’s Kits Guide - XDK

Running the Provided XML Schema Sample Programs

Figure 18-1 XML Schema Processor for C++ Usage Diagram

XMLSchema::initialize() Parsed XML doc input

iy

——— XMLSchema::validate() —je—lpy Success code

:

XMLSchema::terminate()

Running the Provided XML Schema Sample Programs

This directory contains a sample XML Schema application that illustrates how to
use Oracle XML Schema Processor with its API. Table 18-3 lists the provided
sample files.

Table 18-3 XML Schema for C++ Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd,xml,std} Sample Schema, instance document, expected

output respectively, after running xsdtest on them.

ag.{xsd,xml,std} Second sample Schema’s, instance document, expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample Schema’s, instance document, expected
output respectively, after running xsdtest on them.

XML Schema Processor for C++ 18-5

Running the Provided XML Schema Sample Programs

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected
output, run make sure

18-6 Oracle9i XML Developer’s Kits Guide - XDK

19

XML Class Generator for C++

This chapter contains the following sections:

Accessing XML C++ Class Generator
Using XML C++ Class Generator
XML C++ Class Generator Usage
xmlcg Usage

Using the XML C++ Class Generator Examples in sample

XML Class Generator for C++ 19-1

Accessing XML C++ Class Generator

Accessing XML C++ Class Generator

The XML C++ Class Generator is provided with Oracle9i and is also available for
download from the OTN site:

http://otn.oracle.comtech/xml

It is located in SORACLE_HOME/xdk/cpp/classgen . Information about using the
Class Generator is available with the software.

Using XML C++ Class Generator

The XML C++ Class Generator creates source files from an XML DTD or XML
Schema. The Class Generator takes the Document Type Definition (DTD) or the
XML Schema, and generates classes for each defined element. Those classes are then
used in a C++ program to construct XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another
application based on an agreed-upon DTD or XML Schema, or as the back end of a
web form to construct an XML document. Using these classes, C++ applications can
construct, validate, and print XML documents that comply with the input.

The Class Generator works in conjunction with the Oracle XML Parser for C++,
which parses the input and passes the parsed document to the class generator.

External DTD Parsing

The XML C++ Class Generator can also parse an external DTD directly without
requiring a complete (dummy) document by using the Oracle XML Parser for C++
routine xmlparsedtd()

The provided command-line program xmicg has a '-d' option that is used to parse
external DTDs. See "xmlcg Usage" on page 19-5.

Error Message Files

Error message files are provided in the mesg/ subdirectory. The messages files also
exist in the SORACLE_HOME/xdk/mesgdirectory. You may set the environment
variable ORA_XML_MESt® point to the absolute path of the mesg/ subdirectory
although this not required.

19-2 Oracle9i XML Developer’s Kits Guide - XDK

XML C++ Class Generator Usage

XML C++ Class Generator Usage
Figure 19-1 summarizes the XML C++ Class Generator usage.
1. From the bin directory, at the command line, enter the following:
xml XML document file name, such as x|
where XML document file name is the name of the parsed XML document or

parsed DTD being processed. The XML document must have an associated
DTD.

The Input to the XML C++ Class Generator is an XML document containing a
DTD, or an external DTD. The document body itself is ignored; only the DTD is
relevant, though the document must conform to the DTD.

Accepted character set encoding for input files are listed in "Input to the XML
C++ Class Generator" on page 19-3.

2. Two source files are output, a xxxxx.h header file and a xxxxx.cpp C++ file.
These are named after the DTD file.

3. The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created
in the following two ways:

« Initially empty, then adding the children or data after the initial creation
« Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and,
when appropriate, set an element's attributes.

Input to the XML C++ Class Generator

Input is an XML document containing a DTD. The document body itself is ignored;
only the DTD is relevant, though the dummy document must conform to the DTD.
The underlying XML parser only accepts file names for the document and
associated external entities. In future releases, no dummy document will be
required, and URIs for additional protocols will be accepted.

Character Set Support

The following lists supported Character Set Encoding for files input to XML C++
Class Generator. These are in addition to the character sets specified in Appendix
A, "Character Sets", of Oracle9i Database Globalization Support Guide.

XML Class Generator for C++ 19-3

XML C++ Class Generator Usage

« BIG5

« EBCDIC-CP-*
« EUC-IP

« EUC-KR

« GB2312

« 1SO-2022-)P

« 1SO-2022-KR

« 1SO-8859-1, ISO-8859-2, 1ISO-8859-3, ..., ISO-8859-9
« 1SO-10646-UCS-2

« 1SO-10646-UCS-4

. KOI8R
. Shift JIS
. US-ASCII
. UTF8

. UTF-16

Default: The default encoding is UTF-8. It is recommended that you set the default
encoding explicitly if using only single byte character sets (such as US-ASCII or any
of the 1ISO-8859 character sets) for performance up to 25% faster than with multibyte
character sets, such as UTF-8.

19-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample

Figure 19-1 XML C++ Class Generator Functionality

Input file

—

XXXXX. XM

xmlcg Usage

Command line Output files

bin / xml xxxxx

—>

XXXXX.h

XXXXX.CPP

Output files are
used typically to
generate XML
documents.

The standalone parser may be called as an executable by invoking bin/xmlcg. For

example:

xmicg [flags] <XML document or External DTD>

Table 19-1 lists the xmlcg optional flags.

Table 19—-1 xmlicg Optional Flags

xmlcg Optional Flags

Description

-d name

DTD - Input is an external DTD with the given name

-0 directory

Output directory for generated files (default is current
directory)

-e encoding

Encoding - Default input file encoding

-h

Help - Show this usage help

-V

\ersion - Show the Class Generator version

Using the XML C++ Class Generator Examples in sample
Table 19-2 lists the files supplied the sample XML C++ Class Generator sample

directory.

XML Class Generator for C++ 19-5

Using the XML C++ Class Generator Examples in sample

Table 19-2 XML C++ Class Generator Examples in sample/

Sample File Name Description

CG.cpp Sample program

CG.xml XML file contains DTD and dummy document
CG.dtd DTD file referenced by CG.xml

Make.bat on Windows NT Batch file (on Windows NT) or script file (on UNIX) to generate
Makefile on UNIX classes and build the sample programs.

README A readme file with these instructions

The make.bat batch file (on Windows NT) or Makefile (on UNIX) do the
following:

« Generate classes based on CG.xml into Sample.h and Sample.cpp

« Compile the program CG.cpp (using Sample.h), and link this with the Sample
object into an executable named CG.exe in the..\bin (or .../bin) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml

This XML file, CG.xml, inputs XML C++ Class Generator. It references the DTD file,
CG.dtd.

<?xmlversion="1.0"?>
<IDOCTYPE Sample SYSTEM "CG.dtd">
<Sample>
Bel
<D attr="value"></D>
<E>
<F>Fomulal</~>
<F>Fomula2</F>
<E>
</Sample>

XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd

This DTD file, CG.dtd is referenced by the XML file CG.xml. CG.xml inputs XML
C++ Class Generator.

<IELEMENT Sample (A| (B, (C | D, E))) | F)>
<IELEMENT A (#PCDATA)>
<IELEMENT B (#PCDATA | Fy>

19-6 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample

<IELEMENT C (#PCDATA)>
<IELEMENT D (#PCDATA)>
SIATTLIST D atir CDATA#REQUIRED>
<ELEMENTE (F, P>

<IELEMENT F (#PCDATA)>

XML C++ Class Generator Example 3: CG Sample Program
The CG sample program, CG.cpp , does the following:

1. Initializes the XML parser

2. Loads the DTD (by parsing the DTD-containing file-- the dummy document
part is ignored)

3. Creates some objects using the generated classes

4. Invokes the validation function which verifies that the constructed classes
match the DTD

5. Writes the constructed document to Sample.xml

e

/INAME CG.cpp

// DESCRIPTION Demonstration program for C++ Class Generator usage
HH i inm

#ifndef ORAXMLDOM_ORACLE
#include <oraxmldom.h>
#endif

#include <fstream.h>
#include "Sample.h"

#define DTD_DOCUMENT'CGxml"
#define OUT_DOCUMENT'Samplexml"

intmain()

{

XMLParser parser,
Document *doc;
Sample *samp;
B *b

D *d

XML Class Generator for C++ 19-7

Using the XML C++ Class Generator Examples in sample

E “*e

F *1,*2

fstream *out;

ub4 flags=XML _FLAG VALIDATE;
uword ecode;

I nitialize XML parser
cout << "Initializing XML parser...\n";
if (ecode = parserxmiinit())
{
cout << "Failed to initialize parser, code " << ecode <<"\n";
retum 1,

}

Il Parse the document containing a DTD; parsing justa DTD is not
Il possible yet, so the file must contain a valid document (which
Is parsed but we're ignoring).
cout << "Loading DTD from " << DTD_DOCUMENT <<".\n"
if (ecode = parserxmiparse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))
{
cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
", code " << ecode <<'\n";
retum2;

}

/I Fetch dummy document
cout << "Fetching dummy document..\n",
doc = parser.getDocument();

I/ Create the constituent parts of a Sample

cout << "Creating components...\n";

b =new B(doc, (String) "Be there or be square”);
d =new D(doc, (String) "Dit dah");
d->setatir((String) “attribute value');

1 =new F(doc, (String) "Formulal");

2 =new F(doc, (String) "Formula2");

e=new E(doc, f1, f2);

Il Create the Sample
cout << "Creating topevel element..\n";
samp =new Sample(doc, b, d, €);

/I Validate the construct

cout << "Validating...\n";
if (ecode = parser.validate(sampy))

19-8 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample

{
cout << "Validation failed, code " << ecode <<'\n";
retum 3;

}

I/\Write out doc
cout << "Whiting documentto " << OUT_DOCUMENT <<"\n";
if (((out = new fstream(OUT_DOCUMENT, ios::out)))
{
cout << "Failed to open output stream\n’;
retum4;

}
samp->print(out, O);
out->close();

I/l Everything's OK
cout <<"Success\n’;

I/ Shut down
parserxmiterm();
retumO;

}

/lend of CG.cpp

XML Class Generator for C++ 19-9

Using the XML C++ Class Generator Examples in sample

19-10 Oracle9/ XML Developer’s Kits Guide - XDK

Part |V

XDK for PL/SQL

These chapters describe how to access and use Oracle XML Developer’s Kit (XDK)
for PL/SQL.:

Chapter 20, "XML Parser for PL/SQL"

Chapter 21, "XSLT Processor for PL/SQL"
Chapter 22, "XML Schema Processor for PL/SQL"
Chapter 23, "XSU for PL/SQL"

Note: In Oracle9i, XML-SQL Utility (XSU) for PL/SQL is
considered part of the XDK for PL/SQL. In this manual, XSU is
described in Chapter 8, "XML SQL Utility (XSU)".

20

XML Parser for PL/SQL

This chapter contains the following sections:

Accessing XML Parser for PL/SQL

What’s Needed to Run XML Parser for PL/SQL

Using XML Parser for PL/SQL (DOM Interface)

Using XML Parser for PL/SQL Examples in the Sample Directory
Frequently Asked Questions About the XML Parser for PL/SQL
Frequently Asked Questions About Using the DOM API

XML Parser for PL/ISQL 20-1

Accessing XML Parser for PL/SQL

Accessing XML Parser for PL/SQL

XML Parser for PL/SQL is provided with Oracle9i and is also available for
download from the OTN site: http://otn.oracle.com/tech/xml.

It is located at SORACLE_HOME/xdk/plsqgl/parser

What's Needed to Run XML Parser for PL/SQL

Appendix B, "XDK for PL/SQL: Specifications" lists the specifications and
requirements for running the XML Parser for PL/SQL. It also includes syntax cheat
sheets.

Using XML Parser for PL/SQL (DOM Interface)

The XML Parser for PL/SQL makes developing XML applications with Oracle9i a
simplified and standardized process. With the PL/SQL interface, Oracle shops
familiar with PL/SQL can extend existing applications to take advantage of XML as
needed.

Since the XML Parser for PL/SQL is implemented in PL/SQL and Java, it can run
"out of the box" on the Oracle9i Java Virtual Machine.

XML Parser for PL/SQL supports the W3C XML 1.0 specification. The goal is to be
100% conformant. It can be used both as a validating or non-validating parser.

In addition, XML Parser for PL/SQL provides the two most common APIs you
need for processing XML documents:

« W3C-recommended Document Object Model (DOM)
« XSLT and XPath recommendations

This makes writing custom applications that process XML documents
straightforward in the Oracle9i environment, and means that a standards-compliant
XML parser is part of the Oracle9i platform on every operating system where
Oracle9i is ported.

Figure 20-1 shows the XML Parser for PL/SQL usage and parsing process diagram.

20-2 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL (DOM Interface)

Figure 20-1 XML Parser for PL/SQL Functionality (DOM Interface)

XML Parser for PL/SQL

4

d Available properties:

- setValidationMode
[default = not]

- setPreserveWhiteSpace
[default = not]

- setDocType
[if input type is a DTD]

- setBaseURL
[refers other locations to
base location if reading
from outside source]

- showWarnings

new Parser -

parse() parseDTD()
parseBuffer() parseDTDBuffer() DTD
parseClob() parsedDTDClob()
getDocument() getDocType() setDocType()

file name,

other
DOM
functions

DOM
document

freeDocument()

freeParser()

1. Make a newParser declaration to begin the parsing process for the XML
document and DTD, if applicable.

Table 20-1 lists available properties for the newParser procedure:

XML Parser for PL/SQL 20-3

Using XML Parser for PL/SQL (DOM Interface)

Table 20-1 XML Parser for PL/SQL: newParser() Properties

Property Description

setValidationMode Default = Not

setPreserveWhiteSpace Default = Not

setDocType Use if input type isa DTD

setBaseURL Refers to other locations to the base locations, if reading from

an outside source

showWarnings Turns warnings on or off.

2. The XML and DTD can be input as a file, varchar buffer, or CLOB. The XML
input is called by the following procedures:

« parse() ifthe XML inputis afile

« parseBuffer() if the XML input is an varchar buffer

« parserClob() if the XML input isa CLOB

If a DTD is also input, it is called by the following procedures:
« parseDTD() iftheinputisan DTD file

« parseDTDBuffer() if the DTD input is an varchar buffer
« parserDTDClob() if the DTD input isa CLOB

For the XML Input: For an XML input, the parsed result from Parse(),
ParserBuffer() , or ParserClob() procedures is sent to GetDocument().

3. getDocument() procedure performs the following:

« Outputs the parsed XML document as a DOM document typically to be
used in a PL/SQL application, or

« Applies other DOM functions, if applicable.

4. Use freeDocument() function to free up the parser and parse the next XML
input

5. Use freeParser() to free up any temporary document structures created
during the parsing process

For the DTD input: The parsed result from parseDTD() , parseDTDBuffer() ,or
parseDTDClob() is used by getDocType() function.

6. getDocType() then usessetDocType() to generate a DTD object.

20-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

7. The DTD object can be fed into the parser using setDocType() to override the
associated DTD.

See Also: «

. Oracle9i XML API Reference - XDK and Oracle XML DB for a list
of available optional DOM functions.

« Oracle9i XML Database Developer’s Guide - Oracle XML DB, the
chapter on the PL/SQL API for XMLType.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for XML Parser for PLSQL XML:

« A parse tree which can be accessed by DOM APIs is built
« The parser is validating if a DTD is found, otherwise it is non-validating

« Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

The types and methods described in this manual are supplied with the PLSQL
package xmlparser().

Using XML Parser for PL/SQL Examples in the Sample Directory

Setting Up the Environment to Run the Sample Programs

The $ORACLE_HOME/xdk/plsql/parser/sample/ directory contains two sample
XML applications:

« domsample

« xslsample

These show you how to use XML Parser for PL/SQL.

To run these sample programs carry out the following steps:

1. Load the PL/SQL parser into the database. To do this, follow the instructions
given in the README file under the lib directory.

2. You must have the appropriate Java security privileges to read and write from a
file on the file system. To this, first startup SQL*Plus (located typically under

XML Parser for PL/SQL 20-5

Using XML Parser for PL/SQL Examples in the Sample Directory

$ORACLE_HOME/bin) and connect as a user with administration privileges,
such as, 'internal”:

For example:
% sqlplus
SQL> connect/ as sysdba

A password might be required or the appropriate user with administration
privileges. Contact your System Administrator, DBA, or Oracle support, if you
cannot login with administration privileges.

Give special privileges to the user running this sample. It must be the same one
under which you loaded the jar files and plsql files in Step 1.

For example, for user 'scott":

SQL> grant javauserpriv to Scott;

SQL> grant javasyspriv to scott;

You should see two messages that say "Grant succeeded.” Contact your System
Administrator, DBA, or Oracle support, if this does not occur.

Now, connect again as the user under which the PL/SQL parser was loaded in
step 1. For example, for user 'scott’ with password ‘tiger":

SQL> connect scottftiger

Running domsample
To run domsample carry out the following steps:

1.

Load domsample.sql script under SQL*Plus (if SQL*Plus is not up, first start it
up, connecting as the user running this sample) as follows:

SQL> @domsample

The domsample.sql script defines a procedure domsample with the following
syntax:

domsample(dir varchar2, inpfile varchar2, enfile varchar2)

where:

20-6 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

Argument Description

dir’ Must point to a valid directory on the external file system and
should be specified as a complete path name

'inpfile’ Must point to the file located under 'dir’, containing the XML
document to be parsed

‘errfile’ Must point to a file you wish to use to record errors; this file
will be created under 'dir'

2. Execute the domsample procedure inside SQL*Plus by supplying appropriate
arguments for 'dir’, 'inpfile’, and ‘errfile’. For example:

On Unix, you can could do the following:
SQL>execute domsample(/private/scott, familyxml, 'emors.bt);

On Windows NT, you can do the following:
SQL>execute domsample(c:xmhsample!, family.xm, ‘errors.ixt);

where family.xml is provided as a test case
3. You should see the following output:
« The elements are: family member member member member
« The attributes of each element are:
family:
lastname = Smith
member:
memberid =m1
member:
memberid =m2
member:
memberid = m3 mom =m1 dad =m?2

member:
memberid = m4 mom =m1 dad =m?2

Running xslsample
To run xslsample, carry out these steps:

XML Parser for PL/SQL 20-7

Using XML Parser for PL/SQL Examples in the Sample Directory

1. Load the xslsample.sql script under SQL*Plus (if SQL*Plus is not up, first
start it up, connecting as the user running this sample):

SQL>@xslsample
xslsample.sq|l script defines a procedure xslsample with the following
syntax:

xslsample (dir varchar2, xmlfile varchar2, xsffile varchar, resfile
varchar2, enfile varchar2)

where:

Argument Description

'dir’ Must point to a valid directory on the external file
system and should be specified as a complete path
name.

'xmifile' Must point to the file located under 'dir’, containing the XML
document to be parsed.

"xskfile' Must point to the file located under 'dir’, containing the XSL
stylesheet to be applied.

'resfile’ Must point to the file located under 'dir' where the
transformed document is to be placed.

‘errfile’ Must point to a file you wish to use to record errors; this file
will be created under 'dir’

2. Execute the xslsample procedure inside SQL*Plus by supplying appropriate
arguments for 'dir’, 'xmlfile', 'xslfile', and 'errfile".

For example:

= On Unix, you can do the following:
SQL>execute xslsample(/private/scott, family.xml, iden.xsl,
family.out, 'emors.ixt);

« On NT, you can do the following:
SQL>execute xslsample(c:xmhsample!, familyxml, idenxsl,
family.out, 'emors.bet);

3. The provided test cases are: family.xml and iden.xsl

20-8 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

4. You should see the following output:

Parsing XML document c:Vfamily.xm

Parsing XSL document c:Viden.xsl

XSL Root element information

Qualified Name: xsl:stylesheet

Local Name: stylesheet

Namespace: http:/Amwv.w3.org/XSL/Transform/1.0

Expanded Name: http:/Ammww3.org/XSL/ Transform/1.0:stylesheet
Atotal of 1 XSL instructions were found in the stylesheet
Processing XSL stylesheet

Whiting transformed document

5. family.out should contain the following:

<family lastname="Smith">

<member memberid="m1">Sarah</member>

<member memberid="m2">Bob</member>

<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
<ffamily>

You might see a delay in getting the output when executing the procedure for
the first time. This is because Oracle JVM performs various initialization tasks
before it can execute a Java Stored Procedure (JSP). Subsequent invocations
should run quickly.

If you get errors, ensure the directory name is specified as a complete path on
the file system

Note: SQL directory aliases and shared directory syntax "\\'' are
not supported at this time.

Otherwise, report the problem on the XML discussion forum at
http://otn.oracle.com

XML Parser for PL/SQL Example: XML — family.xml
This XML file inputs domsample.sql

<?xml version="1.0" standalone="no"?>
<IDOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">

<member memberid="m1">Sarah</member>

XML Parser for PL/SQL 20-9

Using XML Parser for PL/SQL Examples in the Sample Directory

<member memberid="m2">Bob</member>

<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
<family>

XML Parser for PL/SQL Example: DTD — family.dtd
This DTD file is referenced by XML file, family.xml

<IELEMENT family (member¥)>

<IATTLIST family lastname CDATA #REQUIRED>
<IELEMENT member (#PCDATA)>

<IATTLIST member memberid ID #REQUIRED>
<IATTLIST member dad IDREF #iIMPLIED>
<IATTLIST member mom IDREF #IMPLIED>

XML Parser for PL/SQL Example: PL/SQL — domsample.sq

— This file demonstrates a simple use of the parser and DOM API.
— The XML file that is given to the application is parsed and the

— elements and attributes in the document are printed.

— It shows you how to set the parser options.

set serveroutput on;

create or replace procedure domsample(dir varchar2, inpfile varchar2,
enfile varchar2) is

p Xmiparser.parser;

doc xmidom.DOMDocument;

— prints elements in a document

procedure printElements(doc xmidom.DOMDocument) is
nl xmidom.DOMNodeList;

len number;

nxmidom.DOMNode;

begin
—getall elements
nl :=xmidom.getElementsByTagName(doc, *);
len :=xmidom.getlLength(nl);

- loop through elements

foriin 0.len-1loop
n :=xmidom.item(nl, i);

20-10 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

dbms_output.putxmidom.getNodeName(n) ||);
end loop;

dbms_outputput_line(’);
end printElements;

— prints the attributes of each element in a document

procedure printElementAttributes(doc xmidom.DOMDocument) is
nl xmidom.DOMNodeList;

len1 number,

len2 number,

nxmidom.DOMNode;

e xmidom.DOMElement;

nnm xmidom.DOMNamedNodeMap;

attmame varchar2(100);

attrval varchar2(100);

begin

—getall elements
nl :=xmidom.getElementsByTagName(doc, *);
len1 :=xmidom.getLength(nl);

- loop through elements

forjin 0.len1-1loop
n :=xmidom.item(nl, j);
e :=xmidom.makeElement(n);
doms_outputput_line(xmidom.getTagName(e) || -);

- getall attributes of element
nnm := xmidom.getAttributes(n);

if (xmidom.isNull(nnm) = FALSE) then
len2 := xmidom.getLength(nnmy;

— loop through attributes

foriin 0.len2-1 loop
n :=xmldom.item(hnm, i);
attmame :=xmidom.getNodeName(n);
attrval := xmidom.getNodeValue(n);
doms_outputput(" || attmame || =" | attrval);

end loop;

dbms_outputput_line(’);

endff;
end loop;

XML Parser for PL/SQL 20-11

Using XML Parser for PL/SQL Examples in the Sample Directory

end printElementAttributes;
begin

— new parser
p = xmlparser.newParser,

— set some characteristics
xmiparser.setValidationMode(p, FALSE);
xmiparser.setErrorLog(p, dir || 7 || erile);
xmiparser.setBaseDir(p, dir);

— parse input file
xmiparser.parse(p, dir || 7 || inpfile);

—getdocument
doc = xmiparser.getDocument(p);

— Print document elements
dbms_output.put(The elements are:);
printElements(doc);

— Print document element atfributes
dbms_outputput_line(The attributes of each element are: ;
printElementAttributes(doc);

— deal with exceptions
exception

whenxmidom.INDEX_SIZE ERRthen
raise_application_error(-20120, Index Size eror);

when xmidom.DOMSTRING_SIZE ERR then
raise_application_error(-20120, 'String Size emor);

when xmidom.HIERARCHY_REQUEST_ERR then
raise_application_error(-20120, Hierarchy request error);

when xmidom.WRONG_DOCUMENT_ERR then
raise_application_error(-20120, \Wrong doc error);

when xmidom.INVALID_CHARACTER_ERR then
raise_application_error(-20120, Invalid Char error);

20-12 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

whenxmidom.NO_DATA ALLOWED ERRthen
raise_application_error(-20120, 'Nod data allowed error);

when xmidom.NO_MODIFICATION_ALLOWED ERR then
raise_application_error(-20120, 'No mod allowed error);

when xmidom.NOT_FOUND_ERR then
raise_application_error(-20120, 'Not found error);

when xmidom.NOT_SUPPORTED_ERR then
raise_application_error(-20120, 'Not supported eror);

when xmidom.INUSE_ATTRIBUTE_ERR then
raise_application_error(-20120, 'In use attr error);

end domsample;
/
show errors;

XML Parser for PL/SQL Example: PL/SQL — xslsample.sq|

— This file demonstates a simple use of XSLT transformation capabilities.
- The XML and XSL files that are given to the application are parsed,
—the transformation specified is applied and the transformed document is
—written to a specified result file.

— It shows you how to set the parser options.

set serveroutput on;

create or replace procedure xslsample(dir varchar2, xmifile varchar2,
xsifile varchar2, resfile varchar2,
enfile varchar2) is

p xmiparser.Parser;

xmidoc xmidom.DOMDocument;

xmidocnode xmidom.DOMNode;

proc xslprocessor.Processor;

ss xslprocessor.Stylesheet;

xsldoc xmidom.DOMDocument;

docfrag xmidom.DOMDocumentFragment;

docfragnode xmidom.DOMNode;

xslelem xmidom.DOMElement;

nspace varchar2(50);

xslemds xmidom.DOMNodelList;

begin

XML Parser for PL/SQL 20-13

Using XML Parser for PL/SQL Examples in the Sample Directory

— new parser
p =xmlparser.newParser,

— set some characteristics
xmiparser.setValidationMode(p, FALSE);
xmiparser.setErrorLog(p, dir || 7 || erile);
xmiparser.setPreserveWhiteSpace(p, TRUE);
xmliparser.setBaseDir(p, dir);

— parse xm file
dbms_outputput_line(Parsing XML document' || dir || 7 || xmlfile);

xmiparser.parse(p, dir || 7 || xmifile);

—getdocument
xmidoc := xmiparser.getDocument(p);

- parse xslfile
dbms_output.put_line(Parsing XSL document' || dir || 7 || xslfile);

xmiparser.parse(p, dir || 7 || xsffile);

—getdocument
xsldoc := xmiparser.getDocument(p);

xslelem := xmidom.getDocumentElement(xsidoc);
nspace :=xmidom.getNamespace(xslelem);

— print out some information about the stylesheet
dbms_output.put_line(XSL Root element information’);
dbms_output.put_line(Qualified Name: ' ||

xmidom.getQualificdName(xslelem));
dbms_outputput_line(Local Name:* ||

xmidom.getl ocalName(xslelem));
dbms_outputput_line(Namespace: ' || nspace);
dbms_output.put_line(Expanded Name:'||

xmidom.getExpandedName(xslelem));

xslemds :=xmidom.getChildrenByTagName(xslelem, *, nspace);
dbms_output.put_line(A total of ' || xmidom.getLength(xsicmds) ||
' XSL instructions were found in the stylesheet);
—make stylesheet
ss = xslprocessor.newStylesheet(xsldoc, dir || / || xsffile);

— process xsl

proc := xslprocessor.newProcessor;
xslprocessor.showWWamings(proc, true);

20-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory

xslprocessor.setErorLog(proc, dir || 7 || enfile);

dbms_outputput_line(Processing XSL stylesheet);
docfrag := xslprocessor.processXSL(proc, ss, xmidoc);
docfragnode := xmidom.makeNode(docfrag);

dbms_output.put_line(Writing transformed document);
xmidom.write ToFile(docfragnode, dir || 7 || resfile);

— deal with exceptions
exception

whenxmidom.INDEX_SIZE ERR then
raise_application_error(-20120, Index Size error);

when xmidom.DOMSTRING_SIZE ERR then
raise_application_error(-20120, 'String Size emor);

when xmidom.HIERARCHY_REQUEST_ERR then
raise_application_error(-20120, Hierarchy request error);

when xmidom.WRONG_DOCUMENT_ERR then
raise_application_error(-20120, \Wrong doc error);

when xmidom.INVALID_CHARACTER_ERR then
raise_application_error(-20120, Invalid Char error);

when xmidom.NO_DATA ALLOWED_ERR then
raise_application_error(-20120, 'Nod data allowed error);

when xmidom.NO_MODIFICATION_ALLOWED_ERR then
raise_application_error(-20120, 'No mod allowed error);

when xmidom.NOT_FOUND_ERR then
raise_application_error(-20120, 'Not found error’);

when xmidom.NOT_SUPPORTED_ERR then
raise_application_error(-20120, 'Not supported error);

when xmidom.INUSE_ATTRIBUTE_ERR then
raise_application_ermor(-20120, 'In use attr error);

end xslsample;
/
show errors;

XML Parser for PL/SQL

20-15

Frequently Asked Questions About the XML Parser for PL/SQL

Frequently Asked Questions About the XML Parser for PL/SQL

Why Do | Get an "Exception in Thread" Parser Error?
When I try to use the oraxsl | get the following: Exception in thread main :
javalang.NoClassDefFoundError” oracle/xmliparseriv2/oraxsl.

How do | fix this?

Answer: If you are running outside the database you need to make sure the
xmlparserv2.jar is explicitly in your CLASS_PATHnNot simply its directory. If
from the database you need to make sure it has been properly loaded and that
JServer initialized.

How Do | Use the xmldom.GetNodeValue in PL/SQL?

I cannot get the element value using the PL/SQL XMLDOM. Here is the code
fragment:

..nl:=xmldom.getElementsByTagName(doc, *;
len :=xmidom.getlength(nl)
;- loop through elements
foriin0.len-lloop n:=xmldom.item(nl, i);
elename = xmidom.getNodeName(n);
eleval .= xmldom.getNodeValue(n);
..elename is Ok, but eleval is NULL.

Associating with a text node does not seem to work, or | am not doing it correctly? |
receive a compile error, as in this example:

..txmidom.DOMText;
..1:=xmldom.makeText(n);
eleval .= xmidom.getNodeValue(t);

What am | doing wrong?

Answer: To get the text node value associated with the element node, you must
perform additional node navigation through xmldom.getFirstChild(n)

To illustrate, change printElements() in DOMSample.sql as follows:
begin
—getall elements

nl:=xmidom.getElementsByTagName(doc, *);
len :=xmidom.getLength(nl);

20-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL

—loop through elements

foriinO.len-1loop n:=xmidom.item(nl, i);
dbms_output.put(xmidom.getNodeName(n));
— get the text node associated with the element node
n :=xmidom.getHirstChild(n);
if xmidom.getNodeType(n) = xmidom. TEXT_NODE then

doms_outputput(='| | xmidom.getNodeValue(n));
endif;

doms_output.put();
end loop;

dbms_output.put_line(’);
end printElements;

This produces the following output, listing the elements:
family member=Sarah member=Bob member=Joanne member=Jim

The attributes of each element are:

familyfamilylastname val=Smithmember.membermemberid val=m1lmembermembermemberid
val=m2member-membememberid va=m3 mom val=m1 dad val=m2member.membermemberid
val=m4 mom val-m1 dad val=m?2

Can | Run the XDK for PL/SQL in an IIS Environment?

I downloaded XDK for PL/SQL but it requires OAS. Do you have any idea how to
run this in an IS environment?

Answer: If you're going to use IIS, it would be better to use the XML Parser for Java
version 2. You'll also need Oracle9i.

How Do | Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?

I am having problems parsing a DTD file contained in a CLOB. | used the
xmlparser.parseDTDClob API, provided by the XML Parser for PL/SQL.

I received the following error:
"ORA-29531: no method parseDTD in class oracle/xmlfparser/plsg/XMLParserCover".
The procedure xmlparser.parseDTDClob calls a Java Stored Procedure

xmlparsercover.parseDTDClob , which in turn calls another Java Stored
Procedure xmlparsercover.parseDTD

I have confirmed that the class file,
oracle.xml.parser.plsgl.XMLParserCove r, has been loaded into the

XML Parser for PL/SQL 20-17

Frequently Asked Questions About the XML Parser for PL/SQL

database, and that it has been published. So the error message does not make sense.
The procedure used to call xmlparser.parseDTDClob is:

create or replace procedure parse_my_dtd as p xmiparser.parser; |_clob clob;
begin p :=xmlparser.newParser; selectcontentinto!| clob from
dca_documents where doc id=1;
xmiparser.parseDTDClob(p,|_clob,'site_template’); end; API Documentation for
xmiparser.parseDTDClob:

parseDTDClob PURPOSE Parses the DTD stored in the given clob SYNTAX

PROCEDURE parseDTDClob(p Parser, did CLOB, root VARCHAR?2);, PARAMETERS p
(IN)- parserinstance dtd (IN)- did clobto parse root (IN)}- name

of the root element RETURNS Nothing COMMENTS

Any changes to the default parser behavior should be made before calling this
procedure. An application error is raised if parsing failed, for some reason.
Description of the table dca_documents

DOC ID NOTNULL NUMBER DOC_NAME NOTNULL VARCHAR2(350)
DOC_TYPE VARCHAR2(30)

DESCRIPTION VARCHAR2(4000) MIME_TYPE

VARCHAR2(48) CONTENT ~ NOTNULL CLOB CREATED BY NOTNULL
VARCHAR2(30) CREATED ON NOTNULL DATE UPDATED BY NOTNULL
VARCHAR2(30) UPDATED ON NOTNULL DATE

The contents of the DTD:

<IELEMENT site_template (component®)> <IATTLIST site_template template_id CDATA
#REQUIRED> <IATTLIST site_template template_name CDATA#REQUIRED> <IELEMENT
component (#PCDATA)> <!ATTLIST component component_id ID#REQUIRED> <IATTLIST
component parent_id ID #REQUIRED> <!ATTLIST component component_name ID
#REQUIRED>

Answer: This is a known issue in release 1.0.1 of the XML Parser for PL/SQL. Here
is the workaround.

First, make a backup of
Jplsglxmlparser_1.0.1/lib/sql/xmlparsercover.sql

Then, in line 18 of xmlparsercover.sql , change the string
oracle.xml.parser.plsgl.XMLParserCover.parseDTD to
oracle.xml.parser.plsgl.XMLParserCover.parseDTDClob

Verify that Line 18 now reads:
procedure parseDTDClob(id varchar2, DTD CLOB, root varchar2, err in out

20-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL

varchar?) islanguage java name
‘oraclexml.parser.plsgl.XMLParserCover.parseDTDClob(java.lang.String,
oracle.sgl.CLOB, javalang.String, java.lang.String[]);

Save the file, then rerun xmlparsercover.sql in SQL*Plus. Assuming you've
loaded XMLParser version 2 release 2.0.2.6 into the database, this should solve your
problem.

How Do | Use Local Variables with the XML Parser for PL/SQL?

I have just started using XML Parser for PL/SQL. | am have trouble getting the text
between the begin tag and the end tag into a local variable. Do you have examples?

Answer: You just have to use the following:

selectSingleNode("pattem’”);

getNodeValue()

Remember, if you are trying to get value from a Element node, you have to move
down to the #text child node, for example, getFirstChild.getNodeValue()

Suppose you need to get the text contained between the starting and ending tags of
a xmldom.DOMNode n . The following two lines will suffice.

n_child:=xmidom.getfirstChild(n);
text_value:=xmidom.getNodeValue(n_chid));
n_child is of type xmldom.DOMNode.

text_value s of type varchar2

Why Do | Get a Security Error When | Grant JavaSysPriv to a User?

We are using the XML Parser for PLSQL and are trying to parse an XML document.
We are getting a Java security error:

ORA-29532: Java call terminated by uncaught Java exception:

javalang.SecurityException ORA-06512: at "NSEC XMLPARSERCOVER", line 0
ORA-06512; at "NSEC XMLPARSER'", line 79 ORA-06512: at"NSEC.TEST1 XML line 36
ORA-06512: atline 5

Do we need to grant to user? The syntax appears correct. We also get the error when
we run the demo.

XML Parser for PL/SQL 20-19

Frequently Asked Questions About the XML Parser for PL/SQL

Answer: If the document you are parsing contains a doctype which has a System
URI with a protocol like file:/// or http://l then you need to grant an
appropriate privilege to your current database user to be able to "reach out of the
database”, so to speak, and open a stream on the file or URL.CONNECT
SYSTEM/MANAGERNhe following code should do it:

GRANT JAVAUSERPRIV, JAVASYSPRIV TO youruser,

How Do | Install the XML Parser for PL/SQL with the JServer (JVM) Option?

I have downloaded and installed the plxmlparser_V1_0_1.tar.gz . The
readme said to use loadjava to upload xmlparserv2.jar and plsql.jar in
order. | tried to load xmlparserv2.jar using the following command:

loadjava -user testftest -r -v xmlparsenv2.jar

to upload the jar file into Oracle8i. After much of the uploading, I got the following
error messages:

identical: oraclexmlparserh2/XMLConstants is unchanged from previously loaded
fileidentical: org/xml/sax/Locator is unchanged from previously loaded

fleloading : META-INFMANIFEST.MFcreating : METAINFMANIFEST.MFEmor while
creating resource META-INFMANIFEST.MF ORA-29547: Java System class not
available: oracle/auroralrdbms/Compilerioading :
oraclefxml/parseri2/mesg/XMLEmrorMesg_en_US .propertiescreating :
oracleixml/parseri2imesg/XMLErmrorMesg_en_US.propertiesError while creating

Then | removed -r from the previous command:

loadjava -user testftest -v xmliparsenv2.jar

I still got errors but it's down to four:

Jidentical: orgfixml/sax/Locator is unchanged from previously loaded fileloading

: META-INF/MANIFEST MFcreating : META-INFMANIFEST.MFError while creating
I think | have installed the JServer on the database correctly.

Answer: The JServer option is not properly installed if you're getting errors like this
during loadjava . You need to run INITJVM.SQL and INITDBJ.SQL to get the
JavaVM properly installed. Usually these are in the ./javavm subdirectory of your
Oracle Home.

20-20 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL

How Do | Use the domsample Included with XML Parser for PL/SQL?

I am trying to execute domsample on dom1151. This is an example that is provided
with the XML Parser for PL/SQL. The XML file family.xml is present in the
directory /hrwork/log/pqpd115CM/out

I am getting the following error:

Usage of domsample is domsample(dir, inpfile, errfile)

SQL>
begin
domsample(/hrworkflog/papd115CM/out, family xml,‘errors.txt);
end;
/
Error generated :

begin

ERROR atline 1:

ORA-20100: Error occurred while parsing: No such file or directory
ORA-06512: at "APPS XMLPARSER", line 22

ORA-06512: at "APPS XMLPARSER", line 69

ORA-06512: at"APPS.DOMSAMPLE", line 80

ORA-06512: at line 2

Answer: From your description it sounds like you have not completed all of the
steps in the sample and Readme without errors. After confirming that the
xmlparserv2.jar is loaded, carefully complete the steps again.

How Do | Extract Part of a CLOB?

In an Oracle8i database, we have CLOBs which contain well-formed XML
documents up to 1 MB in size.

We want the ability to extract only part of the CLOB (XML document), modify it,
and replace it back in the database rather than processing the entire document.

Second, we want this process to run entirely on the database tier.

Which products or tools are needed for this? This may be possible with the J)VM
which comes with Oracle9i. There also may be some PL/SQL tools available to
achieve this by means of stored procedures.

Answer: You can do this by using either of the following:

« Oracle XML Parser for PLSQL

XML Parser for PL/SQL 20-21

Frequently Asked Questions About the XML Parser for PL/SQL

« Create your own custom Java stored procedure wrappers over some code you
write yourselves with the Oracle XML Parser for Java.

XML Parser for PLSQL has methods such as the following:
« xmlparser.parseCLOB()

« XslProcessor.selectNodes() , to find what part of the doc you are looking
for

« xmldom.* methods to manipulate the content of the XML document
« Xxmldom.writeTOCLOB() to write it back

If you wanted to do fine-detail updates on the text of the CLOB, you would have to
use DBMS_LOB.*routines, but this would be tricky unless the changes being made
to the content don't involve any increase or decrease in the number of characters.

Why Do | Get "Out of Memory" Errors in the XML Parser?

We are parsing a 50Mb XML file. We have upped the java_pool_size to 150Mb with
a shared_pool_size of 200Mb. We get the following "out of memory" errors in the
Oracle XML parser:

last entry at 2000-04-26 10:59:27.042:
VisiBroker for Java runtime caught exception:
javalang.OutOfViemoryError
at oraclexml.parser.v2. XMLAtrList put(XMLAttrList java:251)
at oracle.xml.parser.v2.XMLElement setAttribute(XMLElement java:260)
at oraclexml.parserv2. XMLElement setAttribute(XMLElement java:228)
at cars.XMLServer.processEXL(XMLServer java:122)

It's trying to create a new XML attribute and crashes with OutOfMemoryError

Answer: You should not be using the DOM parser for parsing a 50Mb XML file. You
need to use the SAX parser, which parses files of arbitrary size because it does not
create an in-memory tree of nodes as it goes.

If you are using DOM, you should seriously consider moving to SAX which
processes the XML file sequentially instead of trying to build an in-memory tree
that represents the file.

Using SAX we process XML files in excess of 180Mb without any problems and
with very low memory requirements.

Rule of thumb for choosing between DOM and SAX:
DOM:

20-22 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

« DOM is very good when you need some sort of random access.
« DOM consumes more memory.
« DOM is also good when you are trying to transformations of some sort.

« DOM is also good when you want to have tree iteration and want to walk
through the entire document tree.

« Seeif you can use more attributes over elements in your XML (to reduce the
pipe size).

SAX:

« SAX s good when data comes in a streaming manner (using some input
stream).

What Are the Memory Requirements for Using the PL/SQL Parser?

Answer: While the memory use is directly dependent on the document size, it
should also be realized that the PL/SQL parser uses the Java parser and thus the
Oracle JServer is being run. JServer typically requires 40-60 MB depending on its
configuration.

Is JServer (JVM) Needed to Run XML Parser for PL/ISQL?

Answer: Yes, if you are running the parser in the database, you do need JServer
because the PL/SQL parser currently uses the XML Parser for Java under the
covers. JServer exists in both the Standard and Enterprise versions. A forthcoming
version of XML Parser for PL/SQL using C underneath is being developed for
applications that do not have access to a Java Virtual Machine (JVM).

Frequently Asked Questions About Using the DOM API

What Does the XML Parser for PL/SQL Do?

Answer: The XML parser accepts any XML document and gives you a tree-based
APl (DOM) to access or modify the document’s elements and attributes. It also
supports XSLT which allows transformation from one XML document to another.

XML Parser for PL/SQL 20-23

Frequently Asked Questions About Using the DOM API

Can | Dynamically Set the Encoding in the XML Document?

Answer: No, you need to include the proper encoding declaration in your
document according to the specification. You cannot use
setCharset(DOMDocument) to set the encoding for the input of your document.
SetCharset(DOMDocument) is used with

oracle.xml.parser.v2. XMLDocument to set the correct encoding for the
printing.

How Do | Get the Number of Elements in a Particular Tag?
How do | get the number of elements in a tag using the Parser?

Answer: You can use the getElementByTagName (elem DOMElement, name

IN VARCHAR2)method that returns a DOMNodelList of all descent elements with a
given tag name. You can then find out the number of elements in that
DOMNodeList to determine the number of the elements in the particular tag.

How Do | Parse a String?

Answer: We do not currently have any method that can directly parse an XML
document contained within a string. You can use one of the following as a
workaround:

« function parse (Parser, VARCHAR?2) to parse XML data stored in the given
URL or the given file,

« function parseBuffer (Parser, VARCHAR2) to parser XML data stored in
the given buffer, or

« function parseCLOB (Parser, VARCHAR2) to parse XML data stored in the
give CLOB.

How Do | Display My XML Document?

Answer: If you are using Internet Explorer 5 as your browser, you can display the
XML document directly. Otherwise, you can use our XSLT processor in version 2 of
the parser to create the HTML document using an XSL Stylesheet. Our Java
Transviewer bean also enables you to view your XML document.

20-24 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

How Do | Write the XML Data Back Using Special Character Sets?

Answer: You can specify the character sets for writing to a file or a buffer. Writing to
a CLOB will be use the default character set for the database that you are writing to.
Here are the methods to use:

« procedure writeToFile(doc DOMDocument, fileName VARCHARZ2,
charset VARCHAR2);

« procedure writeToBuffer(doc DOMDocument, buffer IN OUT
VARCHAR?2, charset VARCHAR?2);

« procedure writeToClob(doc DOMDocument, cl IN OUT CLOB,
charset VARCHAR2);

How Do | Obtain an Ampersand from Character Data?

Answer: You cannot have "raw" ampersands in XML data. You need to use the
entity, & instead. This is defined in the XML standard.

How Do | Generate a Document Object from a File?
Answer: Refer to the following example:

inpPath VARCHAR2;

inpFile VARCHAR?,

p xmiparser.parser;

doc xmidom.DOMDocument;

—initialize anew parser object;

p =xmlparser.newParser;

- parse thefile

xmiparser.parse(p, inpPath || inpFile);
— generate a document object

doc :=xmlparser.getDocument(p);

Can the Parser Run on Linux?

Answer: As long as a version 1.1.x or 1.2.x JavaVM for Linux exists in your
installation, you can run the Oracle XML Parser for Java there. Otherwise, you can
use the C or C++ XML Parser for Linux.

XML Parser for PL/SQL 20-25

Frequently Asked Questions About Using the DOM API

Is Support for Namespaces and Schema Included?

Answer: The current XML Parsers support Namespaces. Schema support will be
included in a future release.

Why Doesn't My Parser Find the DTD File?

Answer: The DTD file defined in the <IDOCTYPE>declaration must be relative to
the location of the input XML document. Otherwise, you'll need to use the
setBaseDir(Parser, VARCHAR?2) functions to set the base URL to resolve the
relative address of the DTD.

Can | Validate an XML File Using an External DTD?

Answer: You need to include a reference to the applicable DTD in your XML
document. Without it there is no way that the parser knows what to validate
against. Including the reference is the XML standard way of specifying an external
DTD. Otherwise you need to embed the DTD in your XML Document.

Does the Parser Have DTD Caching?

Answer: Yes, DTD caching is optional and it is not enabled automatically.

How Do | Get the DOCTYPE Tag into the XML Document After It Is Parsed?

Answer: You need to do some preprocessing to the file, and then put it through the
DOM parser again, which will produce a valid, well-formed XML document with
the DOCTYPHEag contained within.

How Does the XML DOM Parser Work?

Answer: The parser accepts an XML formatted document and constructs in
memory a DOM tree based on its structure. It will then check whether the
document is well-formed and optionally whether it complies with a DTD. It also
provides methods to traverse the tree and return data from it.

How Do | Create a Node Whose Value | Can Set Later?

Answer: If you check the DOM spec referring to the table discussing the node type,
you will find that if you are creating an element node, its nodeValue is to be null
and hence cannot be set. However, you can create a text node and append it to the
element node. You can store the value in the text node.

20-26 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

How Do | Extract Elements from the XML File?

Answer: If you're using DOM, the you can use the NamedNodeMapmethods to get
the elements.

How Do | Append a Text Node to a DOMElement Using PL/SQL Parser?

Answer: Use the createTextNode() method to create a new text node. Then
convert the DOMElement to a DOMNodausing makeNode() . Now, you can use
appendChild() to append the text node to the DOMElement.

| Am Using XML Parser with DOM; Why Can | Not Get the Actual Data?
Answer: You need to check at which level your data resides. For example,
« <?xml version=1.0 ?>
« <greeting>Hello World!</greeting>

The text is the first child node of the first DOM element in the document. According
to the DOM Level 1 spec, the value of an ELEMENThode is null and the
getNodeValue() method will always return null for an ELEMENType node. You
have to get the TEXT children of an element and then use the getNodeValue()
method to retrieve the actual text from the nodes.

Can the XML Parser for PL/SQL Produce Non-XML Documents?

Answer: Yes it can.

| Cannot Run the Sample File. Did | Do Something Wrong In the Installation?
Answer: Here are two frequently missing steps in installing the PL/SQL parser:

« initialize the JServer -- run
$ORACLE_HOME/javavm/install/initivm.sql

« load the included jar files from the parser archive.

How Do | Parse a DTD in a CLOB?

I am having problems parsing a DTD file contained in a CLOB. | used the
xmlparser.parseDTDClob API, provided by the XML Parser for PL/SQL.

The following error was thrown:

XML Parser for PL/SQL 20-27

Frequently Asked Questions About Using the DOM API

"ORA-29531: no method parseDTD in class oraclexmlfparser/plsqVXMLParserCover"

I managed to work out the following:

The procedure xmlparser.parseDTDClob calls a Java Stored Procedure
xmlparsercover.parseDTDClob , which in turn calls another Java Stored
Procedure xmlparsercover.parseDTD

I have confirmed that the class file
oracle.xml.parser.plsgl.XMLParserCover has been loaded into the
database, and that it has been published. So the error message does not make sense.

I am not able to figure out whether | am doing it right or whether this is a bug in the
parser API.

The procedure use to call"xmiparser.parseDTDClob" :

create or replace procedure parse_my_dtd as

p xmiparser.parser;

|_clob clob;

begin
p :=xmlparser.newParser;
select contentinto|_clob from dca_documents where doc_id=1;
xmiparser.parseDTDClob(p,l_clob,'site_template’);

end;

API Documentation for xmlparser.parseDTDClob

parseDTDClob
PURPOSE

Parses the DTD stored in the given clob
SYNTAX

PROCEDURE parseDTDClob(p Parser, dtd CLOB, root VARCHARY);
PARAMETERS

p (IN)- parserinstance

did (IN)- dtd clobto parse

root (IN)}- name of the root element
RETURNS

Nothing
COMMENTS

Any changes to the default parser behavior should be effected before calling this
procedure. An application error is raised if parsing failed, for some reason.

Description of the table dca_documents

20-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

DOC_ID NOTNULL NUMBER
DOC_NAME NOTNULL VARCHAR2(350)

DOC_TYPE VARCHAR2(30)
DESCRIPTION VARCHAR2(4000)
MIME_TYPE VARCHAR2(48)

CONTENT NOTNULL CLOB
CREATED BY NOTNULL VARCHAR2(30)
CREATED ON NOTNULL DATE
UPDATED BY NOTNULL VARCHAR2(30)
UPDATED ON NOTNULL DATE

The contents of the DTD:

<IELEMENT site_template (component*)>

<IATTLIST site_template template_id CDATA#REQUIRED>
<IATTLIST site_template template_name CDATA #REQUIRED>
<IELEMENT component (#PCDATA)>

<IATTLIST component component _id ID #REQUIRED>
<IATTLIST component parent_id ID #REQUIRED>

<IATTLIST component component_name ID #REQUIRED>

Answer 1: It appears to be a typo in the xmlparsercover.sql script which is
defining the Java Stored Procedures that wrap the XMLParser. It mentions the Java
method name parseDTD in the 'is language java name' part when parseDTD
should be parseDTDClob (case-sensitive).

If you:
1. Make a backup copy of this script
2. Edit the line that reads:

procedure parseDTDClob(id varchar2,

dtd CLOB, root varchar2, err in out varchar2) is language java name
‘oracle xml.parser.plsgl. XMLParserCover.parseDTD (java.lang.String,
oracle.sql.CLOB, java.lang.String, java.lang.String[])’

to say:

procedure parseDTDClob(id varchar2,

dtd CLOB, root varchar2, err in out varchar?) is language java name
‘oracle.xml.parser.plsgl. XMLParserCover.parseDTDClob
(javalang.String, oracle.sgl.CLOB, java.lang.String,
javalang.String]]);

That is, change the string:

XML Parser for PL/SQL 20-29

Frequently Asked Questions About Using the DOM API

‘oraclexml.parser.plsgl.XMLParserCover.parseDTD
to

‘oraclexml.parser.plsgl. XMLParserCover.parseDTDClob

and rerun the xmlparsercover.sql script you should be in business.
| filed a bug 1147031 to get this typo corrected in a future release.

Note: Your DTD had syntactic errors in it, but | was able to run the following
without problem after making the change:

declare
cclob;
v varchar2(400) :=
'<IELEMENT site_template (component*)>
<IATTLIST site_template template_name CDATA #IMPLIED
tempmlate_id CDATA #MPLIED >
<IELEMENT component (#PCDATA)>
<IATTLIST component component_id ID #REQUIRED
parent id IDREF #IMPLIED
component_name CDATA #MPLIED >
begin
delete from dca_documents;
insertinto dca_documents values(1,empty_clob())
retuming contentinto c;
dbms_lob.writeappend(c,length(v),v);
COMMIt;
parse_my_dtd;
end;

Answer 2: What do you want to do with the LOB? The LOB can either be a
temporary LOB or a persistent LOB. In case of persistent LOBs, you need to insert
the value into a table. In case of temp LOB you can instantiate it in your program.

For example:

persistant lob
declare
clob_var CLOB;
begin
insertinto tab_xxx values(EMPTY_CLOB()) RETURNING clob_col INTO
clob_var;
dbms_lob.write,,,.);
/Isendto AQ
end;
templob —

20-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

declare
aclob;
begin
dbms_lob.createtemporary(@a DBMS_LOB.SESSION);
dbms_lob.write(...);
//sendto AQ

end;

/
Also refer to Oracle9i Application Developer’s Guide - Large Objects (LOBs). There are
six books (in PDF), one for each language access (C(OCI), Java, PL/SQL, Visual
Basic, Pro*C/C++, Pro*Cobol)) and it is quite comprehensive. If this is PL/SQL, |
believe you can just do the following:

myClob CLOB = clob();

| have tried the DBMS_LOB.createtemporary() which works.
Answer 3: Here's what you need to do if you are using LOBs with AQ:
1. Create an ADT with one of the fields of type CLOB.

create type myAdt (id NUMBER, cdata CLOB);

The queue table must be declared to be of type myAdt
2. Instantiate the object - use empty clob() to fill the LOB field

myMessage := myAdi(10, EMPTY_CLOB();
3. Enqueue the message

clob_loc clob;
enq_msgid RAW(16);
DBMS_AQ.enqueue(queuel’, enq_opt, msg_prop, myMessage, enq_msgid)

4. Get the LOB locator

selecttuser_data.cdatainto clob_loc
from gtable t where tmsgid

=enq_msgid;
5. Populate the CLOB using dbms_lob.write

6. Commit

There is an example of this is in the Oracle9i Application Developer’s Guide - Advanced
Queuing. If you are using the Java API for AQ, the procedure is slightly more
complicated.

XML Parser for PL/SQL 20-31

Frequently Asked Questions About Using the DOM API

Why Do | Get Errors When Parsing a Document?

I downloaded the javaparser, version 2 and the XML parser utility, and I’m using
the PL/SQL parser interface. | have an XML file that is a composite of three tags
and when parsing it generates the following error:

ORA-20100: Error occurred while parsing: Unterminated string
When | separate the document into individual tags, two are OK, but the third
generates this error:

ORA-20100: Error occurred while parsing: Invalid UTF8 encoding

1. Why is the error different when separating the data?
2. | have not been able to find an "unterminated string" in the document.

3. I'm fairly anxious since this is the only way the data is coming and | don’t have
time to figure out another parser.

Answer: If you document is the "composite of three tags"” then it is not a
well-formed document as it has more than one root element. Try putting a start and
end tag around the three.

How Do | Use PLXML to Parse a Given URL?

I am working with the XML parser for PL/SQL on NT. According to your Parser
API documentation it is possible to parse a given URL, too:> Parses XML stored in
the given URL/file and returns> the built DOM DocumentNow, parsing from file
works fine, but any form of URL raises ORA-29532:...
java.io.FileNotFoundException

Can you give an example of a call?

Answer: To access external URLS, you need set up your proxy host and port. For
example using this type of syntax:

java -Dhitp.proxyHost=myproxy.mydomain.com -Dhttp.proxyPort=3182DOMSample myxml.xml

How Do | Use the XML Parser to Parse HTML?

We need to parse HTML files as follows:
1. Find each a href

2. Foreachahref found, extract the file/pathname being linked to

20-32 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

3. Substitute a database procedure call for the a href , passing the file/pathname
as a parameter.

Does it make sense to use the PL/SQL XML parser to do this? If so, how easy/hard
would it be, and how can we find out how to do this?

Answer: Since HTML files aren't necessary well formed XML documents, are you
sure you want to use XML parser? Won't Perl be a better choice? I'm not sure
whether PL/SQL parser supports the following methods but just for your
information:

1. getElementsByTagName() retrieves all matching nodes.
2. getNodeValue() will return a string.
3. setNodeValue() sets node values.

Answer 3: It supports those methods, but not over an ill-formed HTML file.

How Do | Move Data to a Web Browser Using PL/SQL and Oracle 7.3.4?

I'm trying to get the data to a Web browser in the client side while all the processing
has to take place on the server (Oracle 7 release 7.3.4), using:

« XML Parser for PL/SQL

= XSQL servlet

Are these two components sufficient to get the job done?
Answer: Dependencies for XSQL Page Processor states:
« Oracle XML Parser V2 R2.0.2.5

« Oracle XML-SQL Utility for Java

« Web server supporting Java Servlets

« JDBCdriver

You'll also need XSQL Page Processor itself.

Does the XML Parser for Java Work with Oracle 7.3.4?

Does the XML Parser for Java version 2, work with Oracle 7 release 7.3.4.?

Is XML- SQL Utility part of XML Parser for Java version 2, or does it need to be
downloaded separately?

Answer:

XML Parser for PL/SQL 20-33

Frequently Asked Questions About Using the DOM API

1. The XML Parser for Java version 2 works with Oracle 7 release 7.3.4 as long as
you have the proper JDBC driver and run it in a VM on a middle tier or client.

2. The XML-SQL Utility includes a copy of the version 2 parser in its download, as
it requires it.

getNodeValue(): Getting the Value of DomNode

I am having problems obtaining the value between XML tags after using
xmlparser() . Below is code from the DOMSAMPLE.SQé&xample:

—loop through elementsforiin 0.len-1loop n :=xmlparser.item(nl, i);
dbms_output.put(xmlparser.getNodeName(n)

Answer: | encountered the same problem. | found out that getNodeValue() on
Element Node returns null. However, getNodeValue() on the text node returns
the value.

How Do | Retrieve All Children or Grandchildren of a Node?

Is there a way to retrieve all children or grandchildren, and so on, of a particular
node in a DOM tree using the DOM API? Or is there a work-around? We are using
the XML Parser for PL/SQL.

Answer: Try the following:

DECLARE nodelist xmidom.DOMNodeList,

theElement xmidom.DOMElement;

BEGIN :nodeList := xmidom.getElementsByTagName(theElement,*);
‘END;

This gets all children nodes rooted as the element in "theElement".

What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"

We want to parse XML, apply XSL, and get the transformed result in the form of an
XML document. We are using XML Parser for PL/SQL. Our script does not add Pl
instruction <?xml version="1.0"?> to the transformed result.

XSLProcessor.processXSL method returns documentfragment object.

Create DOMdocumentobject from that documentfragment object using:
finaldoc := xmldom.MakeDocument(docfragnode);

20-34 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API

Write to result file using where finaldoc is created of type
xmldom.DOMDocument:

xmidom.writeToFile(finaldoc, dir || 7 || resfile);

This method is available for DOMDocument but we are getting:
ora-29532 "Uncaught java exception:java.lang.ClassCastException”
I am not sure if converting documentfragment to domdocument object adds

instruction "<?xml version="1.0"?>" , or must we add this instruction
through XSL?

Answer: If you have created a new DOMDocumentand then appended the
document fragment to it, then you can use xmldom.WriteToBuffer() or similar
routine to serialize with the XML declaration in place.

XML Parser for PL/SQL 20-35

Frequently Asked Questions About Using the DOM API

20-36 Oracle9i XML Developer’s Kits Guide - XDK

21

XSLT Processor for PL/SQL

This chapter contains the following sections:

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

XSLT Processor for PL/SQL 21-1

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

Extensible Stylesheet Language Transformation, abbreviated XSLT (or XSL-T),
describes rules for transforming a source tree into a result tree. A transformation
expressed in XSLT is called a stylesheet.

The transformation specified is achieved by associating patterns with templates
defined in the stylesheet. A template is instantiated to create part of the result tree.

This PLSQL implementation of the XSL processor follows the W3C XSLT working
draft (rev WD-xslt-19990813) and includes the required behavior of an XSL
processor in terms of how it must read XSLT stylesheets and the transformations it
must effect.

The types and methods described in this document are made available by the
PLSQL package, xslprocessor()

Figure 21-1 shows the XML Parser for PL/SQL XSLT Processor main functionality.

1. The Process Stylesheet process receives input from the XML document and the
selected Stylesheet, which may or may not be indicated in the XML document.
Both the stylesheet and XML document can be the following types:

« File name

« Varchar buffer

« CLOB

The XML document can be input 1 through n times.

2. The parsed XML document inputs
XSLProcessor.processXSL(xslstylesheet,xml instance)
procedure, where:

« XML document is indicated in the "xml instance" argument
» Stylesheet input is indicated in the "xslstylesheet" argument

3. Build the stylesheet using the Stylesheet input to the XSLStylesheet()
procedure. The following methods are available for this procedure:

« removeParam()
« resetParam()

« setParam()

21-2 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

This produces a stylesheet object which then inputs the "Process Stylesheet"
step using procedure, XSLProcessor.processXSL(xslstylesheet,xml
instance)

The "Process stylesheet” process can be repeated 1 through n times. In other
words, the same stylesheet can be applied to multiple parsed XML documents
to transform them wither into an XML document, HTML document, or other
text based format.

The resulting parsed and transformed document is output either as a stream or
a DOM document.

When the XSLT process if complete, call the freeProcessor() procedure to free up
any temporary structures and the XSLProcessor procedures used in the XSL
transformation process.

XSLT Processor for PL/ISQL 21-3

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

Figure 21-1 "XML Parser for PL/SQL: XSLT processor (DOM Interface)

XML Parser for PL/SQL: XSL-T (DOM only)

Build Methods
Stylesheet stylesheet: new - - removeParam()
input XSLStylesheet() - resetParam()
- setParam()
- File name
- Varchar buffer
-CLOB
/7
. 4
XMII |nnput stylesheet object
1..n
€
Process
stylesheet
d XSLProcessor.processXSL , ’
(xslstylesheet, xml instance)

output stream
(writes to a
stream)

DOM
document

freeProcessor()

XML Parser for PL/SQL: XSLT Processor — Default Behavior

The following is the default behavior for the XML Parser for PL/SQL XSLT
Processor:

« Avresult tree which can be accessed by DOM APIs is built

21-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

XML Parser for PL/SQL Example: XSL — iden.xsl

This XSL file inputs the xslsample.sql.
<?xml version="1.0"?>

<! Identity transformation —>

<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/Transform"* version="1.0">
<xsltemplate match="*|@*comment()|processing-instruction()|text()">
<xsl:copy>
<xsl:apply-templates select="|@*/comment()|processing-instruction()|text() />
</xsl:copy>

</xsltemplate>

</xsl:stylesheet>

XSLT Processor for PL/ISQL 21-5

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)

21-6 Oracle9i XML Developer’s Kits Guide - XDK

22

XML Schema Processor for PL/SQL

This chapter contains the following sections:
Oracle XML Schema Processor for PL/SQL
Building Server-Side XML Schema Validation

XML Schema Processor for PL/SQL 22-1

Oracle XML Schema Processor for PL/SQL

Oracle XML Schema Processor for PL/SQL

The XML Schema Processor for Java is a component of the XDK that supports
simple and complex datatypes in XML applications.

Building Server-Side XML Schema Validation

This chapter gives an introduction to the XML schema validation process using the
XDK for Java and discusses how to build an Oracle Java Stored Procedure to
perform the schema validation on the server-side of the Oracle Database. The
included sample code also demonstrates the deployment procedure for Java Stored
Procedures.

XML Schema Validation can provide a flexible and portable form of data validation
for use in your applications. You can implement the XML validation process in your
client-side or mid-tier applications, but if you want to have either:

« control of data validation whenever the data is updated or inserted, or
« use of the data management capability of the Oracle database,

then putting your data validation process inside a trigger or your PL/SQL
procedures on the server-side is a good solution. Since there is not a builtin PL/SQL
API to do XML Schema validation, we can create one using Java Stored Procedures.

The first step in building a Java Stored Procedure for XML Schema validation is to
select the components and decide the environment requirements. The components
you need are:

« XML Schema Processor for Java (xschema.jar])
« XML Parser for Java (xmlparserv2.jar)

Both of these are part of the Oracle XML Developer’s Kit for Java. The Oracle
database (8.1.6 version and above) is also needed because these versions fully
support Java Stored Procedures.

If you download the XDK for Java and have an Oracle 8.1.6 database or above, you
can follow the following steps to build the Java Stored Procedure and take
advantage of XML Schema for data validation.

See Also: Download XML Developers Kit for Java from the
Oracle Technology Network:

http://technet.oracle.com/tech/xml/xdkhome.htmi

Source code for the demo is xdksample_093001.zip

22-2 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation

Creating the Java Classes for XML Schema Validation

To build the Java Class for XML Schema Validation, two XDK packages, XML
Schema Processor and XML Parser are needed:

import oracle xml.parser.schema.*;
import oraclexml.parser.v2.%;

To be able to accept the inputs from PL/SQL, we need another package:
import oracle.sql.CHAR,;

You need to set xmlparserv2.jar , Xschema.jar and classes12.zip in the
CLASSPATHThe JDBC library classes12.zip is for JDK 1.2.x. If you are using
JDK 1.1.x, classes111.zip is required.

The SchemauUtil Class is:

public class SchemaUtil
{

public static String validation(CHAR xml, CHAR xsd)
throws Exception
{
I/Build Schema Object
XSDBuilder builder = new XSDBuilder();
byte [] dochytes = xsd.getBytes();
ByteArrayinputStream in =new ByteArmayinputStream(docbytes);
XMLSchema schemadoc = (XMLSchema)builder.build(in,null);
IParse the input XML document with Schema Validation
dochytes = xml.getBytes();
in = new ByteArraylnputStream(docbytes);
DOMParser dp =new DOMParser();
Il Set Schema Object for Validation
dp.setXMLSchema(schemadoc);
dp.setValidationMode(XMLParser.SCHEMA_VALIDATIONY);
dp.setPreserveWhitespace (true);
StringWriter sw = new String\Writer();
dp.setErrorStream (new PrintWriter(sw));
try
{
dp.parse (in);
sw.write("The input XML parsed without errors.\n");
}
catch (XMLParseException pe)
{

XML Schema Processor for PL/SQL 22-3

Building Server-Side XML Schema Validation

sw.write("Parser Exception: " + pe.getMessage();
}
catch (Exception €)

{
sw.write("NonParserException: " + e.getMessage());

}
retum sw.toString();

}
}

This class defines a single method, validation , which does the XML Schema
validation for the input XML document and returns the error messages.
To compile the class, use following command line:

javac SchemaUtiljava

This produces the compiled Java class, SchemauUltil.class

Loading and Resolving the Java Class

With the utility loadjava , you can upload the Java source, class, and resource files
into an Oracle database, where they are stored as Java schema objects. You can run
loadjava from the command line or from an application, and you can specify
several options, including a resolver. Make sure you have $ORACLE_HOME\binin
your System Path to be able to run loadjava

Before loading the SchemuUltil.class into the database, you need to check if the
correct version of the two dependent XDK packages are loaded into the logon
database schema (in this case xdkdemo/xdkdemo).

connect xdkdemo/xdkdemo
To check the status of the oracle.xml.parser.v2.DOMParser class, you can
use the following SQL statement:

ELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status
FROM all objects
WHERE object_type ='JAVACLASS'

AND object_name =dbms_java.shortname(oraclexml/parseri’2/DOMParser);

If you see the result:
CLASS STATUS

oraclelxml/parseri’2/[DOMParser VALID

22-4 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation

then the Oracle XML Parser for Java is already installed and ready to be used.
If you see the preceding result, but the status is INVALID, try the command:
ALTER JAVA CLASS _oraclefxmlfparseriv2/DOMParser Resolve

If the verification procedure produces the SQL*Plus message 'no rows selected’, you
need to load the XML Parser into the database by:

loadjava -resolve -verbose -user xdktempixdktemp xmiparsenv2.jar

| If the parser is installed, then you do not need to complete any further installation
steps. The SQL command for status checking will be:

SELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status
FROM all objects
WHERE object _type ="JAVA CLASS

AND object name =
dbms_java.shortname(oraclexml/jparser/schema/XMLSchema);

Before loading the SchemauUltil.class, make sure that the loaded XML Parser has the
same version with which you compiled the SchemauUtil.class. The following code
can be used to check the current version of the loaded Oracle XML Parser:

CREATE OR REPLACE FUNCTION XMLVersion RETURN VARCHAR2
IS LANGUAGE JAVA NAME
‘oraclexml.parser.v2 XMLParser.getReleaseVersion() retums java.lang.String;
/
CREATE OR REPLACE Procedure getXMLVersion AS
begin
dbms_output.put_line(XMLVersion());
end;
/

Then by issuing the command:

SQL> set serveroutput on
SQL> exec getXMLVersion;

You should receive the following result:
Oracle XDKJava 9.0.200A Beta

If the version does not match, you need to drop the package and reload it. To drop
the package, you can issue the following command line:

XML Schema Processor for PL/SQL 22-5

Building Server-Side XML Schema Validation

dropjava -verbose -user xdktemp/xdktemp xmliparsenv2 jar xschema.jar

Once all of the versions are synchronizeded, you can finally load the
SchemauUtil.class by:

loadjava -resolve -verbose -user xdktemp/xdktemp SchemaUtil.class

Publishing the Java Class by Defining the Specification

For each Java method callable from SQL, you must write a call specification in Java,
which exposes the method’s top-level entry point to the Oracle server.

CREATE OR REPLACE FUNCTION SchemaValidation(xml IN VARCHAR2 xsd IN VARCHAR?)
retum varchar2
IS LANGUAGE JAVA NAME
"SchemaUtil.validation(oracle.sgl. CHAR oracle.sgl.CHAR) retums
java.lang.String’;

Now the Java stored procedure specification is created, both SQL and PL/SQL can
call it as if it were a PL/SQL function.

Example Using the Stored Procedures

You can call Java stored procedures from SQL DML statements, PL/SQL blocks,
and PL/SQL subprograms. Using the SQL CALL statement, you can also call them
from the top level (from SQL*Plus, for example) and from database triggers. The
following example shows how to do XML Schema Validation using the created Java
stored procedure.

Creating a Database Schema to store XML and XML Schema Documents

create table schema_tab(id number, xsd VARCHAR2(4000));
create table xml_tab(id number, xml VARCHAR2(4000));

Loading the XML Schema Document into the Database
You can use the SQL commands to insert the data in DBData.sql:

INSERT INTO schema_tab(1, XML schema));

Calling the Java Stored Procedure from the Trigger of the xml_tab Table

~Wite XML Buffer to Output
CREATE OR REPLACE PROCEDURE printBufferOut(xmistr IN OUT NOCOPY VARCHAR2) AS
BEGIN

22-6 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation

ine VARCHAR2(20000);
nipos INTEGER,;
LOOP
EXIT WHEN xmstr is null;
nlpos := instr(xmistr,chr(10));
line := substr(xmistr,1,nipos-1);
- printline
IF(ength(line) <250) THEN
dbms_outputput_line(] fline);
ELSE
dbms_outputput(]);
LOOP
EXIT WHEN line is null;
dbms_outputput_line(substr(ine,1,250));
line := substr(ine,250+1);
END loop;
END f;
xmistr := substr(xmistr,nipos+1);
IF (nlpos =0) THEN
dbms_output.put_line(| ’|xmistr);
EXIT;
END ff;
END LOOP;
END printBufferOut;
/

show errors;

CREATE OR REPLACE PROCEDURE dbvalid(xmiid IN NUMBER, xsdid INNUMBER) IS

p_xml varchar2(4000);
p_xsd varchar2(4000);
p_out varchar2(4000);

begin
select xmlinto p_xml from xml_tab where id=xmiid;
select xsd into p_xsd from schema_tab where id=xsdid;

p_out := SchemaValidation(p_xmi,p_xsd);

printBufferOut(p_out);

end;

/

For the date with the xdksample_093001.zip
get the following result:

SQL> exec dbvalid(1,1);
| The input XML parsed without errors.
PL/SQL procedure successfully completed.

you can execute the command and

XML Schema Processor for PL/SQL 22-7

Building Server-Side XML Schema Validation

SQL>exec dbvalid(2,1);

| | <Line 5, Column 42>: XSD-2023: (Error) Invalid value of attribute:
'1999-11-31

| <Line 21, Column 27>: XSD-2105: (Error) Identity constraint validation error:
'Key sequence not found in key reference’.

| | Parser Exception: Invalid value of attribute: '1999-11-31"

PL/SQL procedure successfully completed.

You can now use this Java Stored Procedure to validate the XML document using
PL/SQL.

22-8 Oracle9i XML Developer’s Kits Guide - XDK

23

XSU for PL/SQL

This chapter contains the following sections:

XSU PL/SQL API

Setting Stylesheets in XSU (PL/SQL)

Binding Values in XSU (PL/SQL)

Storing XML in the Database Using DBMS_XMLSave

Insert Processing Using XSU (PL/SQL API)

Update Processing Using XSU (PL/SQL API)

Delete Processing Using XSU (PL/SQL API)

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

See Also: Chapter 8, "XML SQL Utility (XSU)" for information
about XSU in general.

XSU for PL/SQL 23-1

XSU PL/SQL API

XSU PL/SQL API

XML SQL Utility (XSU) PL/ZSQL API reflects the Java API in the generation and
storage of XML documents from and to a database. DBMS_XMLQueryand
DBMS_XMLSavare the two packages that reflect the functions in the Java classes -
OracleXMLQuery and OracleXMLSave . Both of these packages have a context
handle associated with them. Create a context by calling one of the constructor-like
functions to get the handle and then use the handle in all subsequent calls.

XSU Supports XMLType

From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is
useful if, for example, you have XMLType columns in objects or tables.

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML DB, in
particular, the chapter on Generating XML, for examples on using XSU
with XMLType.

Generating XML with DBMS_XMLQuery()

Generating XML results in a CLOB that contains the XML document. To use
DBMS_XMLQueryand the XSU generation engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLQuery.getCtx function and
supplying it the query, either as a CLOBor a VARCHARZ2

2. Bind possible values to the query using the DBMS_XMLQuery.bind function.
The binds work by binding a name to the position. For example, the query can
be select * from emp where empno = :EMPNO_VAR . Here you are
binding the value for the EMPNO_VARSsing the setBindValue function.

3. Set optional arguments like the ROWag name, the ROWSETag name, or the
number of rows to fetch, and so on.

4. Fetch the XML as a CLOB using the getXML() functions. getXML() can be
called to generate the XML with or without a DTD or schema.

5. Close the context.

Here are some examples that use the DBMS_XMLQueryPL/SQL package.

XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)

In this example, you select rows from table emp, and obtain an XML document as a
CLOB. First get the context handle by passing in a query and then call the

23-2 Oracle9i XML Developer’s Kits Guide - XDK

XSU PL/SQL API

getXMLClob routine to get the CLOB value. The document is in the same encoding
as the database character set.

declare
queryCtx DBMS_XMLquery.ctXType;
result CLOB;

begin

- set up the query context...!
queryCtx :=DBMS_XMLQuery.newContext(select * from emp));

- getthe result.!
result:= DBMS_XMLQuery.getXML(queryCix);
- Now you can use the resullt to put it in tables/send as messages..
printClobOut(result);
DBMS_XMLQuery.closeContext(queryCtx); —you must close the query handle..
end;
/

XSU Generating XML Example 2: Printing CLOB to Output Buffer

printClobOut () is a simple procedure that prints the CLOB to the output buffer. If
you run this PL/SQL code in SQL*Plus, the result of the CLOB is printed to screen.
Set the serveroutput to on in order to see the results.

CREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmistr varchar2(32767);
line varchar2(2000);
begin
xmistr :=dbms_lob.SUBSTR(result,32767);
loop
exit when xmistr is null;
line := substr(xmistr,1,instr(xmistr,chr(10))-1);
dbms_outputput_line(| |line);
xmistr := substr(xmistr,instr(xmistr,chr(10))+1);
end loop;
end,;
/

XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names

With the XSU PL/SQL API you can also change the ROVénd the ROWSETag
names. These are the default names placed around each row of the result, and

XSU for PL/SQL 23-3

XSU PL/SQL API

round the whole document, respectively. The procedures, setRowTagName and
setRowSetTagName accomplish this as shown in the following example:

—Setting the ROW tag names

declare
queryCtx DBMS_XMLQuery.ctXType;
result CLOB;
begin
- set the query context.
queryCtx := DBMS_XMLQuery.newContext(select * from emp);

DBMS_XMLQuery.setRowTag(queryCtx, EMP); — sets the row tag name
DBMS_XMLQuery.setRowSetTag(queryCtx, EMPSETY; — sets rowset tag name

result := DBMS_XMLQuery.getXML(queryCtx); — get the result

printClobOut(result); — print the resuit..!
DBMS_XMLQuery.closeContext(queryCtx); — close the query handle;
end;
/

The resulting XML document has an EMPSETdocument element. Each row is
separated using the EMPtag.

XSU Generating XML Example 4: Using setMaxRows() and setSkipRows)

The results from the query generation can be paginated by using:

« setMaxRows function. This sets the maximum number of rows to be
converted to XML. This is relative to the current row position from which the
last result was generated.

« setSkipRows function. This specifies the number of rows to skip before
converting the row values to XML.

For example, to skip the first 3 rows of the emp table and then print out the rest of
the rows 10 at a time, you can set the skipRows to 3 for the first batch of 10 rows
and then set skipRows to 0 for the rest of the batches.

As in the case of XML SQL Utility’s Java API, call the keepObjectOpen()

function to ensure that the state is maintained between fetches. The default
behavior is to close the state after a fetch. For multiple fetches, you must determine
when there are no more rows to fetch. This can be done by setting the

23-4 Oracle9i XML Developer’s Kits Guide - XDK

Setting Stylesheets in XSU (PL/SQL)

setRaiseNoRowsException (). This causes an exception to be raised if no rows
are written to the CLOB. This can be caught and used as the termination condition.

— Pagination of results

declare
queryCix DBMS_XMLquery.ctXType;
result CLOB;

begin

- set up the query context...!
queryCtx :=DBMS_XMLQuery.newContext(select * from emp));

DBMS_XMLQuery.setSkipRows(queryCtx,3); — set the number of rows to skip
DBMS_XMLQuery.setMaxRows(queryCtx,10); — set the max number of rows per fetch

result := DBMS_XMLQuery.getXML(queryCtx); — get the first resut..!

printClobOut(result); — print the result out.. This is you own routine..!
DBMS_XMLQuery.setSkipRows(queryCtx,0); - from now don't skip any more rows..!

DBMS_XMLQuery.setRaiseNoRowsException(queryCx true);
—raise no rows exception..!
begin
loop —loop forever..!
result := DBMS_XMLQuery.getXML(queryCtx); — get the next batch
printClobOut(result); - print the next batch of 10 rows..!
end loop;
exception
when others then
—dbms_output.put_line(sglenm);
null; — termination condition, nothing to do;
end,
DBMS_XMLQuery.closeContext(queryCtx); - close the handle..!
end;
/

Setting Stylesheets in XSU (PL/SQL)

The XSU PL/SQL API provides the ability to set stylesheets on the generated XML
documents as follows:

XSU for PL/SQL 23-5

Binding Values in XSU (PL/SQL)

« Set the stylesheet header in the result XML. To do this, use
setStylesheetHeader () procedure, to set the stylesheet header in the result.
This simply adds the XML processing instruction to include the stylesheet.

« Apply astylesheet to the result XML document, before generation. This method
is a huge performance win since otherwise the XML document has to be
generated as a CLOB, sent to the parser again, and then have the stylesheet
applied. XSU generates a DOM document, calls the parser, applies the
stylesheet and then generates the result. To apply the stylesheet to the resulting
XML document, use the useStyleSheet () procedure. This uses the stylesheet
to generate the result.

Binding Values in XSU (PL/SQL)

The XSU PL/SQL API provides the ability to bind values to the SQL statement. The
SQL statement can contain named bind variables. The variables must be prefixed
with a colon (;) to declare that they are bind variables. To use the bind variable
follow these steps:

1. Initialize the query context with the query containing the bind variables. For
example, the following statement registers a query to select the rows from the
emptable with the where clause containing the bind variables :EMPN@nd
:ENAME.You will bind the values for employee number and employee name
later.

queryCtx = DBMS_XMLQuery.getCix(select * from emp where empno = :EMPNO and
ename = :ENAME);

2. Set the list of bind values. The clearBindValues () clears all the bind
variables set. The setBindValue () sets a single bind variable with a string
value. For example, you will set the empno and ename values as shown later:

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx, EMPNO',20);
DBMS_XMLQuery.setBindValue(queryCtx, ENAME’, John’);

3. Fetch the results. This will apply the bind values to the statement and then get
the result corresponding to the predicate empno =20 and ename = 'John’
DBMS_XMLQuery.getXMLClob(queryCtx);

4. Re-bind values if necessary. For example to change the ENAMElone to scott
and reexecute the query,

DBMS_XMLQuery.setBindValue(queryCtx, ENAME’, Scott);

23-6 Oracle9i XML Developer’s Kits Guide - XDK

Storing XML in the Database Using DBMS_XMLSave

The rebinding of ENAMBwill now use Scott instead of John .

XSU Generating XML Example 5: Binding Values to the SQL Statement
The following example illustrates the use of bind variables in the SQL statement:

declare
queryCtx DBMS_XMLquery.ctXType;
result CLOB;

begin

queryCtx := DBMS_XMLQuery.newContext(
'select * from emp where empno = :EMPNO and ename = :ENAME));

-No longer needed:
-DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,EMPNO), 7566);
DBMS_XMLQuery.setBindValue(queryCtx, ENAME'\JONES);

result:= DBMS_XMLQuery.getXML(queryCtx);
—printClobOut(resuit);
DBMS_XMLQuery.setBindValue(queryCtx, ENAME,'Scott);
result:= DBMS_XMLQuery.getXML(queryCtx);

—printClobOut(resut);
end;
/

Storing XML in the Database Using DBMS_XMLSave
To use DBMS_XMLSave() and XML SQL Utility storage engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLSave.getCtx function and
supplying it the table name to use for the DML operations.

2. For inserts. You can set the list of columns to insert into using the
setUpdateColNames function. The default is to insert values into all the
columns.

For updates. The list of key columns must be supplied. Optionally the list of
columns to update may also be supplied. In this case, the tags in the XML

XSU for PL/SQL 23-7

Insert Processing Using XSU (PL/SQL API)

document matching the key column names will be used in the WHERE clause
of the update statement and the tags matching the update column list will be
used in the SET clause of the update statement.

For deletes. The default is to create a WHERE clause to match all the tag values
present in each ROW element of the document supplied. To override this
behavior you can set the list of key columns. In this case only those tag values
whose tag names match these columns will be used to identify the rows to
delete (in effect used in the WHERE clause of the delete statement).

3. Supply an XML document to the insertXML , updateXML, or deleteXML
functions to insert, update and delete respectively.

4. You can repeat the last operation any number of times.
5. Close the context.

Use the same examples as for the Java case, OracleXMLSave class examples.

Insert Processing Using XSU (PL/SQL API)

To insert a document into a table or view, simply supply the table or the view name
and then the XML document. XSU parses the XML document (if a string is given)
and then creates an INSERT statement, into which it binds all the values. By default,
XSU inserts values into all the columns of the table or view and an absent element is
treated as a NULL value.

The following code shows how the document generated from the emp table can be
put back into it with relative ease.

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
This example creates a procedure, insProc , which takes in:
= An XML document as a CLOB
« Atable name to put the document into
and then inserts the XML document into the table:

create or replace procedure insProc(xmiDoc IN CLOB, tableName IN VARCHAR?) is
insCtx DBMS_XMLSave.cixType;
rows number;

begin
insCtx := DBMS_XMLSave.newContext(tableName); — get the context handle
rows := DBMS_XMLSave.insertXML(insCix,xmlDoc); — this inserts the document

23-8 Oracle9i XML Developer’s Kits Guide - XDK

Insert Processing Using XSU (PL/SQL API)

DBMS_XMLSave.closeContext(insCtx); — this closes the handle
end;
/

This procedure can now be called with any XML document and a table name. For
example, a call of the form:

insProc(xmiDocument, 'scott.emp’);

generates an INSERT statement of the form:
insertinto scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,2,2,2,2,?);

and the element tags in the input XML document matching the column names will
be matched and their values bound. For the code snippet shown earlier, if you send
it the following XML document:

<?xml version=1.07>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0.0.0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<ROW>
<l additional rows ... —>
</ROWSET>

you would have a new row in the emp table containing the values (7369, Smith,
CLERK, 7902, 12/17/1980,800,20). Any element absent inside the row element
would is considered a null value.

XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

In certain cases, you may not want to insert values into all columns. This might be
true when the values that you are getting is not the complete set and you need
triggers or default values to be used for the rest of the columns. The code that
appears later shows how this can be done.

Assume that you are getting the values only for the employee number, name, and
job, and that the salary, manager, department number and hiredate fields are filled
in automatically. You create a list of column names that you want the insert to work

XSU for PL/SQL 23-9

Update Processing Using XSU (PL/SQL API)

on and then pass it to the DBMS_XMLSaverocedure. The setting of these values
can be done by calling setUpdateColumnName() procedure repeatedly, passing
in a column name to update every time. The column name settings can be cleared
using clearUpdateColumnNames()

create or replace procedure testinsert(xmiDoc IN clob) is
insCtx DBMS_XMLSave.ctXType;
doc clob;
rows number;

begin
insCtx := DBMS_XMLSave.newContext(scott.emp); — get the save context..!
DBMS_XMLSave.clearUpdateColumnList(insCtx); — clear the update settings

- set the columns to be updated as a list of values..
DBMS_XMLSave.setUpdateColumn(insCtx, EMPNOY);
DBMS_XMLSave.setUpdateColumn(insCtx, ENAMEY);
DBMS_XMLSave.setUpdatecolumn(insCtx, JOBY);

— Now insert the doc. This will only insert into EMPNO,ENAME and JOB columns
rows := DBMS_XMLSave.insertXML(insCtx, xmiDoc);
DBMS_XMLSave.closeContext(insCtx);

end,;

/

If you call the procedure passing in a CLOB as a document, an INSERT statement of
the form:

insertinto scott.emp (EMPNO, ENAME, JOB) VALUES (?, ?, ?);
is generated. Note that in the earlier example, if the inserted document contains
values for the other columns (JOB, HIREDATE, and so on), those are ignored.

Also aninsert is performed for each ROV¢lement that is present in the input.
These inserts are batched by default.

Update Processing Using XSU (PL/SQL API)

23-10

Now that you know how to insert values into the table from XML documents, let us
see how to update only certain values. If you get an XML document to update the
salary of an employee and also the department that she works in:

<ROWSET>

Oracle9i XML Developer’s Kits Guide - XDK

Update Processing Using XSU (PL/SQL API)

<ROW num="1">
<EMPNO>7369</EMPNO>
<SA[>1800</SAL>
<DEPTNO>30</DEPTNO>

</ROW>

<ROW>
<EMPNO>2290</EMPNO>
<SAL>2000</SAL>
<HIREDATE>12/31/1992<HIREDATE>

<l- additional rows ... =

</ROWSET>

you can call the update processing to update the values. In the case of update, you
need to supply XSU with the list of key column names. These form part of the
where clause in the update statement. In the emptable shown earlier, the employee
number (EMPNQcolumn forms the key and you use that for updates.

XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
Consider the PL/SQL procedure:

create or replace procedure testUpdate (xmiDoc IN clob) is
updCix DBMS_XMLSave.ciXType;
rows number;

begin

updCtx := DBMS_XMLSave.newContext(scottemp); — get the context
DBMS_XMLSave.clearUpdateColumnList(updCtx); — clear the update settings..

DBMS_XMLSave.setkeyColumn(updCtx, EMPNOY); — set EMPNO as key column
rows := DBMS_XMLSave.updateXML(updCtxxmiDoc); — update the table.
DBMS_XMLSave.closeContext(updCtx); — close the context..!

end;
/

In this example, when the procedure is executed with a CLOBvalue that contains
the document described earlier, two update statements would be generated. For the
first ROV¢lement, you would generate an UPDATEstatement to update the SAL and
JOBfields as shown:

UPDATE scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROW element,

XSU for PL/SQL 23-11

Delete Processing Using XSU (PL/SQL API)

UPDATE scottemp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

You may want to specify the list of columns to update. This would speed up the
processing since the same update statement can be used for all the ROV¢lements.
Also you can ignore other tags which occur in the document. Note that when you
specify a list of columns to update, an element corresponding to one of the update
columns, if absent, will be treated as NULL

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, then you can use the setUpdateColumnName ()
procedure to set the column name to update.

create or replace procedure testUpdate(xmiDoc IN CLOB) is
updCix DBMS_XMLSave.ctXType;
rows number;

begin
updCtx := DBMS_XMLSave.newContext(scottempy;
DBMS_XMLSave.setkeyColumn(updCtx, EMPNOY); — set EMPNO as key column

— setlist of columnst to update.
DBMS_XMLSave.setUpdateColumn(updCtx, SAL);
DBMS_XMLSave.setUpdateColumn(updCtx, JOB);

rows ;= DBMS_XMLSave.update XML (updCtxxmiDoc); — update the XML document..!
DBMS_XMLSave.closeContext(updCtx); — close the handle

end;
/

Delete Processing Using XSU (PL/SQL API)

For deletes, you can set the list of key columns. These columns will be put as part of
the WHEREIlause of the DELETEstatement. If the key column names are not
supplied, then a new DELETEstatement will be created for each ROV¢lement of the
XML document where the list of columns in the WHERElause of the DELETEwill
match those in the ROV¢lement.

XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)

Consider the delete example shown here:

23-12 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (PL/SQL API)

create or replace procedure testDelete(xmiDoc IN clob) is
delCtx DBMS_XMLSave.ciXType;
rows number;

begin

delCix := DBMS_XMLSave.newContext(scott.emp);
DBMS_XMLSave.setkeyColumn(delCtx, EMPNO);

rows := DBMS_XMLSave.deleteXML(delCtx,xmiDoc);
DBMS_XMLSave.closeContext(delCtx);

end,

/

If you use the same XML document shown for the update example, you would end
up with two DELETEstatements,

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;

DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETEstatements were formed based on the tag names present in each ROW
element in the XML document.

XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)

If instead you want the delete to only use the key values as predicates, you can use
the setKeyColumn function to set this.

create or replace package testDML AS
saveCtx DBMS_XMLSave.ctXType :=null; —asingle static variable

procedure insertXML(xmiDoc in clob);
procedure updateXML(xmIDoc in clob);
procedure deleteXML(xmIDoc in clob);

end;
/

create or replace package body testDML AS
rows number;
procedure insertXML(xmIDoc in clob) is
begin
rows .= DBMS_XMLSave.insertXML(saveCtx,xmliDoc);
end,

XSU for PL/SQL 23-13

Delete Processing Using XSU (PL/SQL API)

procedure updateXML(xmIDoc in clob) is
begin

rows := DBMS_XMLSave.updateXML(saveCtx,xmIDoc);
end;

procedure deleteXML(xmIDoc in clob) is
begin

rows ;= DBMS_XMLSave.deleteXML(saveCtx,xmIDoc);
end;

begin
saveCix := DBMS_XMLSave.newContext('scott.emp’); — create the context once..!
DBMS_XMLSave.setkeyColumn(saveCtx, EMPNO);, - setthe key column name.
end;
/

Here a single delete statement of the form,
DELETE FROM scott.emp WHERE EMPNO=?

will be generated and used for all ROV¢lements in the document.

XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)

In all the three cases described earlier, insert, update, and delete , the same
context handle can be used to do more than one operation. That is, you can perform
more than one insert using the same context provided all of those inserts are
going to the same table that was specified when creating the save context. The
context can also be used to mix updates, deletes, and inserts

For example, the following code shows how one can use the same context and
settings to insert, delete, or update values depending on the user’s input.

The example uses a PL/SQL supplied package static variable to store the context so
that the same context can be used for all the function calls.

create or replace package testDML AS
saveCtx DBMS_XMLSave.ctXType :=null; —asingle static variable

procedure insert(xmiDoc in clob);
procedure update(xmiDoc in clob);
procedure delete(xmiDoc in clob);

end;
/

23-14 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (PL/SQL API)

create or replace package body testDML AS

procedure insert(xmiDoc in clob) is
begin

DBMS_XMLSave.insertXML(saveCtx, xmiDoc);
end;

procedure update(xmiDoc in clob) is
begin

DBMS_XMLSave.updateXML(saveCtx, xmiDoc);
end;

procedure delete(xmiDoc in clob) is
begin

DBMS_XMLSave.deleteXML(saveCtx, xmiDoc);
end;

begin
saveCix := DBMS_XMLSave.newContext(scott.emp’); - create the context
once..!
DBMS_XMLSave.setkeyColumn(saveCtx, ' EMPNO); - setthe key column name.
end;
end;
/
In the earlier package, you create a context once for the whole package (thus the
session) and then reuse the same context for performing inserts, updates and
deletes.

Note: The key column EMPNQvould be used both for updates
and deletes as a way of identifying the row.

Users of this package can now call any of the three routines to update the emptable:

testDML.insert(xmiclob);
testDML.delete(xmiclob);
testDML.update(xmiclob);

All of these calls would use the same context. This would improve the performance
of these operations, particularly if these operations are performed frequently.

XSU for PL/SQL 23-15

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

XSU Exception Handling in PL/SQL
Here is an XSU PL/SQL exception handling example:

declare
queryCtx DBMS_XMLQuery.ctXType;
result clob;
erorNum NUMBER;
ermorMsg VARCHAR2(200);
begin

queryCtx :=DBMS_XMLQuery.newContext(select * from emp where df = dfdf);

- set the raise exception to true...
DBMS_XMLQuery.setRaiseException(queryCtx, true);
DBMS_XMLQuery.setRaiseNoRowsException(queryCtx, true);

— set propagate original exception to true to get the original exception..!
DBMS_XMLQuery.propagateOriginalException(queryCtx true);
result:= DBMS_XMLQuery.getXML(queryCix);

exception
when others then
- get the original exception
DBMS_XMLQuery.getExceptionContent(queryCtx,errorNum, errorMsg);
dbms_outputput_line(Exception caught' || TO_CHAR(errorNum)
[| erorMisg);
end;
/

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

Here are FAQs about XSU for PL/SQL.:

How Can | Use XMLGEN.insertXML with LOBs?

I am trying to use the insertXML procedure from XSU. I have little experience
with using LOBS. What is the problem in my script?

I have a table lob_temp :

SQL>desclob_temp
Name Null? Type

CHUNK CLOB

23-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

SQL> setlong 100000
SQL> select *fromlob_temp;

CHUNK

<DOCID>91739.1 </DOCID>

<SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using
Intermedia

</SUBJECT>

<TYPE>PROBLEM </TYPE>

<CONTENT_TYPE>TEXT/PLAIN </CONTENT_TYPE>

<STATUS> PUBLISHED </STATUS>

<CREATION_DATE> 14-DEC-1999 </CREATION_DATE>

<LAST REVISION_DATE> 05-JUN-2000 </LAST_REVISION_DATE>
<LANGUAGE> USAENG <LANGUAGE>

I have another table where | need to insert data from lob_temp :

SQL> desc metalink_doc

Name Null? Type

DOCID VARCHAR2(10)

SUBJECT VARCHAR2(100)

TYPE VARCHAR2(20)
CONTENT_TYPE VARCHAR2(20)
STATUS VARCHAR2(20)
CREATION_DATE DATE
LAST_REVISION_DATE DATE
LANGUAGE VARCHAR2(10)

This is the script. It is supposed to read data from lob_temp and then insert the
data, extracted from the XML document, to table metalink_doc

declare

xmistr clob :=null;

amount integer := 255;

position integer = 1;

charstring varchar2(255);

finalstr varchar2(4000) := null;

ignore_case constant number :=0;

default_date_format constant varchar2(21) :=' DD-MON-YYYY’,
default_rowtag constant varchar2(10) :='MDOC_DATA;

len integer;

XSU for PL/SQL 23-17

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

insrow integer;

begin

select chunk into xmistr from lob_temp;
dbms_lob.open(xmistr,dbms_lob.lob_readonly);
len :=dbms_lob.getlength(xmistr);

while position < len loop
dbms_lob.read(xmistr,amount,position,charstring);
if finalstr is not null then

finalstr := finalstr]|charstring;

else

finalstr := charstring;

endif;

pasition := position + amount;

end loop;

insrow := xmigen.insertXML(metalink_doc'finalstr);
dbms_outputput_line(insrow);
dbms_lob.close(xmistr);

exception

when others then

dbms_lob.close(xmistr);
dbms_lob.freetemporary(xmistr);

end;

/

This is the error received:

ERROR atline 1:

ORA-22275: invalid LOB locator specified

ORA-06512: at"SYS.DBMS_LOB", line 485

ORA-06512: atline 31

ORA-29532: Java call terminated by uncaught Java exception:
oracle.xml.sgl.OracleXMLSQLException: Expected 'EOF.

The user | am logged in as owns both tables, and all objects created when | ran
oraclexmlsglload.csh

Answer: You need to have <ROWSETand <ROW=ags to insert XML document into
a table. | modified your procedure. There is a problem when parsing the DATE
format, hence | used VARCHAR2

drop table lob_temp;

create table lob_temp (chunk clob);
insertinto lob_temp values ('
<ROWSET>

<ROW>

<DOCID>91739.1 </DOCID>

23-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

<SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using
Intermedia </SUBJECT>

<TYPE>PROBLEM </TYPE>

<CONTENT_TYPE> TEXT/PLAIN </CONTENT_TYPE>

<STATUS> PUBLISHED </STATUS>

<CREATION_DATE> 14-DEC-1999 </CREATION_DATE>

<LAST REVISION DATE>05-JUN-2000 </LAST _REVISION DATE>

<L ANGUAGE> USAENG </LANGUAGE>

<ROW>

</ROWSET>

P

drop table metalink_doc;

create table metalink_doc (

DOCID VARCHAR2(10),

SUBJECT VARCHAR2(100),

TYPE VARCHAR2(20),
CONTENT_TYPE VARCHAR2(20),
STATUS VARCHAR2(20),
CREATION_DATE VARCHAR2(50),
LAST_REVISION_DATE varchar2(50),
LANGUAGE VARCHAR2(10)

)

create or replace procedure prtest as

xmistr clob = null;

amount integer := 255;

position integer = 1;

charstring varchar2(255);

finalstr varchar2(4000) := null;

ignore_case constant number :=0;

default_date format constant varchar2(21) :=' DD-MON-YYYY’,
default_rowtag constant varchar2(10) :='MDOC_DATA;;
len integer;

insrow integer;

begin

select chunk into xmistr from lob_temp;
dbms_lob.open(xmistr,dbms_lob.lob_readonly);
len :=dbms_loh.getlength(xmistr);

while position < len loop
dbms_lob.read(xmistr,amount,position,charstring);
if finalstr is not null then

finalstr := finalstrj|charstring;

XSU for PL/SQL 23-19

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

else

finalstr := charstring;

endif;

position := position + amount;
end loop;

insrow := xmigen.insertXML(metalink_doc'finalstr);
dbms_outputput_line(insrow);

IF DBMS_LOB.ISOPEN(xmist) =1 THEN
dbms_lob.close(xmistr);
ENDIF;

exception

when others then

IF DBMS_LOB.ISOPEN(xmistr)=1 THEN
dbms_lob.close(xmistr);

ENDIF;

end;

/

showerr

23-20 Oracle9i XML Developer’s Kits Guide - XDK

Part V

Tools and Frameworks That Support XDK

This part contains the following chapters, appendixes, and the XML glossary:
« Chapter 24, "Developing XML Applications with JDeveloper"

« Chapter 25, "Introduction to BC4J"

« Chapter 26, "Introduction to UIX"

« Appendix A, "XDK for Java: Specifications and Quick References"

« Appendix B, "XDK for PL/SQL: Specifications"

« Glossary

24

Developing XML Applications with
JDeveloper

This chapter contains the following sections:

Introducing JDeveloper

What’s Needed to Run JDeveloper

XDK Features in JDeveloper

Building XML Applications with JDeveloper

Using XSQL Servlet from JDeveloper

Frequently Asked Questions About JDeveloper and XML Applications

Developing XML Applications with JDeveloper 24-1

Introducing JDeveloper

Introducing JDeveloper

Oracle JDeveloper is a J2E development environment with end-to-end support
for developing, debugging, and deploying e-business applications. JDeveloper
empowers users with highly productive tools, such as the industry's fastest Java
debugger, a new profiler, and the innovative CodeCoach tool for code performance
analysis and improvement.

ETM

To maximize productivity, JDeveloper provides a comprehensive set of integrated
tools that support the complete development life cycle, from source code control,
modeling, and coding through debugging, testing, profiling, and deploying.
JDeveloper simplifies J2EE development by providing wizards, editors, visual
design tools, and deployment tools to create high-quality standard J2EE
components, including applets, JavaBeans, JavaServer Pages (JSP), servlets, and
Enterprise JavaBeans (EJB). JDeveloper also provides a public Addin API to extend
and customize the development environment and seamlessly integrate it with
external products.

JDeveloper Covers the Complete Development Life Cycle

Java is a relatively new language, and Java development environments are catching
up with traditional client/server tools. Developers now require a well-integrated
development environment that supports the complete development life cycle:

Checkout
— I&%Sigﬂ —
Tlune ! Edit
Dlebug ! Compile
- Te

Clhed<in

Dleploy

In a typical scenario, a developer launches JDeveloper, checks out an application
from the source control system and starts the development process. UML modelers
help the developer with the design of the application, and possibly with the
generation of source code. JDeveloper provides wizards and editor, both visual and
code-based, to add functionality, and it includes various tools to compile, test,
debug, and tune the application. When satisfied, the developer can check the

24-2 Oracle9i XML Developer’s Kits Guide - XDK

Introducing JDeveloper

application back into the source control system and deploy it to the final
destination.

JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment

The 9i release of JDeveloper was completely rewritten in Java and now JDeveloper
runs on any operating system that has a Java Virtual Machine (JDK 1.3 and later)
and will be supported on Windows (NT, 2000, and XP), Linux and Solaris™
Operating Environment.

Another advantage is that the development environment is now fully extensible
through the Addin API, which allows customers and third-party vendors to extend
the product and integrate it with other products.

Java Alone Is Not Enough

Over the last few years, Java has become the programming language for the
Internet. Some of the reasons for this popularity are its operating system
independence, its simplicity, and its powerful component model.

To build complete e-business applications, however, developers will need more
than Java alone. Oracle believes in, and has invested heavily, in the combination of
Java, SQL, and XML. Java is used for programming the business and presentation
logic, SQL for interacting with the database, and XML for passing information
between loosely coupled applications.

JDeveloper helps developers build e-business applications using Java, XML, HTML,
SQL, and PL/SQL. It provides various code editors and visual tools for each of
these languages.

XML Tools in JDeveloper

The Oracle XDK is integrated into JDeveloper, offering many ways to create,
handle, and transform XML. For example, with the XSQL Servlet, developers can
guery and manipulate database information, generate XML documents, transform
the documents using XSLT stylesheets, and make them available on the Web.

JDeveloper has a new schema-driven XML editor. See Figure 24-1.

Developing XML Applications with JDeveloper 24-3

Introducing JDeveloper

Figure 24-1 JDeveloper’'s Schema-Driven XML Editor in Action

.

SHdE Py XBE

Systarm - Nawigator =]

£y ALY A .

W k8
Eg," ey Qi397 iy ork ivorkspace public_Rtmiisite wizddemo (I [=]
5 e i || Zbodtugxst S vixdema.uix
_‘I I LI— 11 <content>
uizdermno.uix - Structure —= x| | 13 <dataScope xulns="http://bali.us.oracle.c
El----<_> XL Structure 13 xulnz:data="http: //bali.uz.0ra

g

E|....<.> wmil 14 “provider>
------ m vyerzion=1.0 15 < fprovider’-
------ ® encoding=UTF-5" 16 <contents:
El----<:> page 17 <pageLayout

s B EMINE=htt; Aoali us org 1%
m zmins:baja=http el 19 < foontents> |onciick
E mxmins:html=httg it =0 </dataScope> | pousleclick
""< > head 21 <fcontent>
[#--< ¥ cortent onkeyDown
bty handlers a5 onkeyPress .
1 onkeyUp
ll | Y Line 17 Column 19 antlouseDoven woovE: CRILF

ontlouzehove ;I

An XML Schema Definition defines the structure of an XML document and is used
in the editor to validate the XML and help developers when typing. This feature is
called Code Insight and provides a list of valid alternatives for XML elements or
attributes in the document. Just by specifying the schema for a certain language, the
editor can assist you in creating a document in that markup language.

Oracle JDeveloper simplifies the task of working with Java application code and
XML data and documents at the same time. It features drag-and-drop XML
development modules. These include the following:

« Color-coded syntax highlighting for XML
« Built-in syntax checking for XML and Extensible Style Sheet Language (XSL)

« XSQL Pages and Servlet support, where developers can edit and debug Oracle
XSQL Pages, Java programs that can query the database and return formatted
XML, or insert XML into the database without writing code. The integrated
servlet engine enables you to view XML output generated by Java code in the

24-4 Oracle9i XML Developer's Kits Guide - XDK

Introducing JDeveloper

same environment as your program source, making it easy to do rapid, iterative
development and testing.

« Includes Oracle's XML Parser for Java

« Includes XSLT Processor

« Related XDK for JavaBeans components

« XSQL Page Wizard. See "Page Selector Wizard" on page 24-8.
« XSQL Action Handlers

« Schema-driven XML editor.

Oracle XML Developer’s Kit (XDK) is integrated into JDeveloper, so that it offers
many utilities to help Java developers handle, create, and transform XML. For
example, when designing with XSQL Servlet, you can query and manipulate
database information, generate XML documents, transform them using XSLT
stylesheets, and make them available on the web.

See Also:

« Chapter 9, "XSQL Pages Publishing Framework"
« http://jdeveloper.us.oracle.com

« http://otn.oracle.com/products/jdev/

« The online discussion forum for JDeveloper is located at
http://www.oracle.com/forums

Business Components for Java (BC4J)

To take J2EE application development to a higher level of productivity, JDeveloper
now offers Business Components for Java (BC4J), a standards-based, server-side
framework for creating scalable, high-performance Internet applications. The
framework provides design-time facilities and runtime services to drastically
simplify the task of building and reusing business logic.

Oracle Business Components for Java (BC4J) is a 100%-Java, XML-powered
framework that enables productive development, portable deployment, and flexible
customization of multitier, database-savvy applications from reusable business
components.

Application developers use the Oracle Business Components framework and Oracle
JDeveloper 's integrated design-time wizards, component editors, and productive

Developing XML Applications with JDeveloper 24-5

Introducing JDeveloper

Java coding environment to assemble and test application services from reusable
business components.

These application services can then be deployed as either CORBA Server Objects or
EJB Session Beans on enterprise-scale server platforms supporting Java technology.

The same server-side business component can be deployed without modification as
either a JavaServer Pages/Servlet application or Enterprise JavaBeans component.
This deployment flexibility, enables developers to reuse the same business logic and
data models to deliver applications to a variety of clients, browsers, and wireless
Internet devices without having to rewrite code.

In JDeveloper, you can customize the functionality of existing Business
Components by using the new visual wizards to modify your XML metadata
descriptions.

See Also: Chapter 25, "Introduction to BC4J"

Integrated Web Services Development

JDeveloper integrates standard J2EE development techniques seamlessly with both
the latest XML and emerging Web Services Standards (including SOAP, UDDI, and
WSDL) and their Java-based equivalents. To preserve existing investments in
PL/SQL and J2EE applications, JDeveloper makes it very easy for developers to
create, deploy and consume Web Services from J2EE and PL/SQL applications
using:

« Web Services creation from Java classes, Enterprise JavaBeans, and PL/SQL
procedures.

« Automated WSDL file and SOAP deployment descriptor generation during
Web Services creation.

« One-click SOAP service registration and de-registration.

« Support for Oracle9i SOAP and Apache SOAP 2.x SOAP servers.

« Web Service proxy creation from WSDL files.

« One-click synchronization of Web Service proxies from WSDL files.

« Server skeleton creation from WSDL files.

24-6 Oracle9i XML Developer’s Kits Guide - XDK

What's Needed to Run JDeveloper

What's Needed to Run JDeveloper

JDeveloper is an IDE that has been written in Java and therefore, runs on Windows
NT, Windows 2000, Linux and Solaris™ Operating Environment systems. It needs a
minimum of 128 Mb RAM.

Minimum system requirements for JDeveloper

Refer to JDeveloper Release Notes. As more products are run on the same machine,
system requirements are increased. A typical development environment for
running JDeveloper includes:

« Running JDeveloper

« Running Oracle9i locally

« Running Oracle9i Application Server locally

« Additional third party tools (profilers, version control, modelers,...)

These add to system requirements, in terms of actual CPU usage and in disk space
needs.

Business rules can be changed on site without needing access to the underlying
component source code.

XSQL Component Palette

XSQL Component Palette provides you with a mechanism to add tags which allows
accessing database tables or BC4J View Objects. You can either perform queries
against them or update the underlying database tables through them. Figure 24-2,
"JDeveloper’s XSQL Component Palette" illustrates the JDeveloper XSQL
Component Palette.

Developing XML Applications with JDeveloper 24-7

What's Needed to Run JDeveloper

Figure 24-2 JDeveloper's XSQL Component Palette

ﬁ: Oracledi JDeveloper - Workspace?.jws - Project] jpr
File Edit ZSearch “iew Project Run Debuy Model Toolz Window Help

EHE YN XBRBR BHE: o O #pc%JEENED

” 1 urtitled xsgl*

Systern - Havigator ” = ” .) Componert Palette |
I:T -;rﬁ :? = = == .';deuﬂlﬂllz_?mI;dewm].rwurkmurkspac!ﬁm |}{SQL Tags j
= 1 <zmml wersion="1.0" encoding='window 2 -
Elrﬁ] Warkspaces Ay -
- B workspaced jws 3 | Uncomment the following processin % Updste Reduest
El@ lfgrkspc’:'ceé'.ﬂ_vs 4| | the stylesheet name to transform ‘gDelete Request
=L Projectt.jpr 5 «rrml-stylesheet type="text xsl" hre i
% mypackage1 B —— < Ref Cursor Function
Foeee Praj
T <page xmlns:xsgl="urn:oracle-xagl”= @ .
: untiticd] =% Set Cookie
b, <?é web sl 8
- [3 Connections 3 </page £2 Set Page Param

=
L)

&8 Set Session Param
Set Stylesheet Param
BB viewObject Show |
o & m|x-*' Object Sh
o i Chie oy
lI J , Al Wi I
1| | rl ILine & Column 1 |Insert Windowves: CRILF -

|D:'I,idev9i902_?'l31 Yjdesmevork i orkspace 2 Project 1 ypublic_htmiuntiled] <=l

Page Selector Wizard

When you need to create XSQL pages while building a web application, you can
invoke Page Wizard which enables you to create XSQL Pages on top of either
database tables directly or on top of BC4J View Objects. When you choose to build
an XSQL Page on top of a BC4J View Object, you are prompted to select an
application module from a list or create a new application module and then build
the XSQL Pages based application.

See Also: Oracle9i Java Developer’s Guide

24-8 Oracle9i XML Developer’s Kits Guide - XDK

XDK Features in JDeveloper

XDK Features in JDeveloper
The following lists JDeveloper’s supported XDK for Java components:
» Oracle XML Parser for Java
« Oracle XSQL Servlet

You can use the XML Parser for Java including the XSLT Processor and the XML
SQL Utility in JDeveloper as all these tools are written in Java. JDeveloper provides
these components.

Sample programs which demonstrate how to use these tools can be found in the
[JDeveloper]/Samples/xmlsamples directory.

Oracle XDK Integration in JDeveloper
Oracle XDK for Java consists of the following XML tools:

« XML Parser for Java

« XML SQL Utility for Java
= XML Java Class Generator
« XSQL Servlet

« XML Transviewer Beans

All these utilities are written in Java and hence can easily be dropped into
JDeveloper and used with no further effort. You can also update the XDK for Java
components with the latest versions downloaded from Oracle Technology Network
(OTN) at http://technet.oracle.com/tech/xml.

Oracle XDK for Java also includes the XML Transviewer Beans. These are a set of
JavaBeans that permit the easy addition of graphical or visual interfaces to XML
applications. Bean encapsulation includes documentation and descriptors that make
them accessible directly from JDeveloper.

See Also: Chapter 10, "XDK JavaBeans" for more information on
how to use the Transviewer Beans.

Developing Web Applications in JDeveloper Using XSQL Pages

The XSQL Servlet is a tool that processes SQL queries and outputs the result set as
XML. This processor is implemented as a Java servlet and takes as its input an XML

Developing XML Applications with JDeveloper 24-9

XDK Features in JDeveloper

file containing embedded SQL queries. It uses the XML Parser for Java and the XML
SQL Utility to perform many of its operations.

The XSQL Servlet offers a productive and easy way to get XML in and out of the
database. Using simple scripts you can:

« Generate simple and complex XML documents
« Apply XSL Stylesheets to generate into any text format
« Parse XML documents and store the data in the database

« Create complete dynamic web applications without programming a single line
of code

JDeveloper XSQL Example 1: emp.xsql
For example, consider the following XML example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xs!" href="emp.xsl‘?>
<FAQ xmins:xsgl="um:oracle-xsq" connection = "scott">
<xsgl:query doc-element="EMPLOYEES" row-element="EMP">
select e.ename, e.sal, d.dname as department
fromdeptd,empe
where d.deptno =e.deptno
</xsql:query>
<IFAQ>

Generates the following:

<EMPLOYEES>
<EMP>
<ENAME>Scott</ENAME>
<SAL>1000</SAL>
<DEPARTMENT>Boston</DEPARTMENT>
<EMP>
<EMP>

<EMPLOYEES>

With JDeveloper you can easily develop and execute XSQL files. The built in Web
Server and the user's default Web Browser will be used to display the resulting

pages.

24-10 Oracle9i XML Developer’s Kits Guide - XDK

Building XML Applications with JDeveloper

Using Action Handlers in XSQL Pages

XSQL Action Handlers are Java classes which can be invoked from XSQL Page
applications very easily. Since these are Java classes they can be debugged from
JDeveloper just like any other Java application.

If you are building an XSQL Pages application, you can make use of the XSQL
Action Handler to extend the set of actions that can be performed to handle more
complex jobs. You will need to debug this Action Handler.

Your XSQL Pages should be in the directory specified in the Project Property
“HTML Paths” settings for “HTML Source Directory”.

To debug your Action Handler carry out these steps:

1. Assume you have created an .xsqgl file which has reference to a custom Action
Handler called MyActionHandler.

2. Debug this Action Handler because it is not exactly behaving as you expect.
3. Set breakpoints in your Java source file.

4. Right mouse click on the .xsqgl file and then choose Debug... from the menu.

See Also: The JDeveloper Guide under the online HELP menu.

Building XML Applications with JDeveloper

Consider the following example that demonstrates how XML is used to represent
data, not present it. It shows the many to one relationship between employees and
departments.

JDeveloper XDK Example 1: BC4J Metadata

<Departments>
<Dept>
<Deptno>10</Deptno>
<Dname>Sales></Dname>
<Loc>
<Employees>
<Employee>
<Empno>1001></Empno>
<Ename>Scott</Ename>
<Salary>80000</Salary>
</Employee>
</Employees>

Developing XML Applications with JDeveloper 24-11

Using XSQL Servlet from JDeveloper

</Employee>

</Employees>
</Dept>
<Dept>

Procedure for Building Applications in JDeveloper
To build an XSQL project in JDeveloper carry out the following steps:

1. Start a New JDeveloper Project by selecting File >New Project
2. Create a Business Components for Java application.

3. Choose File >Newfrom the menu. Click OK.

4. Choose WebObjects >XSQLfrom the menus.

5. Position the cursor between the <PAGE>and <?PAGE>tags.

6. From Component Palette, choose ViewObjects Show tag.

7. Select the application module from the list that pops up.

When you finish these steps in the Page Wizard, you should have an XSQL Page
based on the Business Components for Java (BC4J) framework View objects. When
you run this page, it sends the XML data to your browser. You could optionally
create a stylesheet to format the data so that it appears in a way that you prefer or
you can tune it so that it can be displayed on a PDA or cellphone.

Using XSQL Servlet from JDeveloper

XSQL Servlet offers a productive and easy way to get XML in and out of the
database.

See Also: Chapter 9, "XSQL Pages Publishing Framework" for
information about how to use XSQL Servlet.

When using XSQL Servlet in JDeveloper, you do not need to include the XSQL
Runtime in your project as this is already done for any new XSQL Page or XSQL
wizard-based application.

Using simple scripts you can do the following from JDeveloper:

« Generate simple and complex XML documents

24-12 Oracle9i XML Developer’s Kits Guide - XDK

Using XSQL Servlet from JDeveloper

« Apply XSL stylesheets to generate into any text format
« Parse XML documents and store the data in the database

« Create complete dynamic web applications without programming a single line
of code

Consider a simple query in an XSQL file, which returns details about all the
employees in the emp table. The XSQL code to get this information would be as
shown in Example 2.

JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql

<?xml version="1.0"?>

<xsql:query xmins:xsgl="um:oracle-xsgl" connection="demo">
select*
fromemp
order by empno

</xsgl:query>

Figure 24-3 shows what the raw employee XML data displayed on the browser.

Developing XML Applications with JDeveloper 24-13

Using XSQL Servlet from JDeveloper

Figure 24-3 Employee Data in Raw XML Format

3 http:7/130.35.101.143:7070/emp. xsql - Microsoft Internet Explores

! Fle Edl Wew Favoites Tool: Help

L - Ao R T
| Eack F-;.-.-_a-::-:i S_tep H’BFFB-_!I_‘! Hm Saamh Fmit_a; Histg__v Mai_l_ Priry
| Addrass |@ hittp: /41 30.35.101.143-7070/emp. xsql

<?aml version="1.0" 7>
- “ROWSET>
- <ROW num="1"=»
<EMPNO=>7369</EMPNO>
<ENAME>SMITH</ENAME>
<10B>CLERK</10RE>
<MGR>7902</MGR>
<HIREDATE=1980-12-17 00:00:00.0</HIREDATE=
<5SaL>800</SAL>
<DEPTHO=20</0EPTND>
</ROW>
- <ROW num="2">
<EMPNO>7499</EMPNO>
<EMNAME=ALLEN</ENAME=
<JOB=SALESMAN</I0B>
=MGR=7698<,/MGR>
<HIREDATE>1981-02-20 00:00:00.0</HIREDATES>
«CAlL=1600</SAL>

] Done || Inten

If you want to output your data in a tabular form, make a small modification to
your XSQL code to specify a stylesheet. The changes you would make in this
example are shown later highlighted.

JDeveloper XSQL Example 3: Employee Data with Stylesheet Added

<?xml version="1.0"?>
<?xml-stylesheet type="text/xs|" href="emp.xsl"?>
<xsgl:query xmins:xsgl="um:oracle-xsql" connection="demo">
select*
fromemp

24-14 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About JDeveloper and XML Applications

order by empno

</xsgl:query>
The result would be a table. You can do a lot more with XSQL Servlet of course.

See Also: Chapter 9, "XSQL Pages Publishing Framework" and
also the XDK for Java, XSQL Servlet Release Notes on OTN at
http://technet.oracle.com/tech/xml

Frequently Asked Questions About JDeveloper and XML Applications

This section lists JDeveloper questions and answers.

How Do | Construct an XML Document in JSP?

I am dynamically constructing an XML document in a JSP page (from the results of
data returned by a PL/SQL API) using the classes generated by the Class generator
(based on a DTD) and then applying a XSL stylesheet to render the transformation
in HTML. | see that this works fine only for the first time, that is, when the JSP is
first accessed (and internally compiled), and fails every time the same page is
accessed thereafter.

The error | get is:

"oracle xml.parser.v2.XMLDOMException: Node doesn' belong to the current

document"

The only way to make it work again is to compile the JSP, by just 'touching' the JSP
page. Of course, this again works only once. | am using Apache JServ.

How can this be overcome? Does the static code in the Java class generated for the
top level node have to do anything with it?

Answer: It seems to me that you may have stored some invalid state in your JSP.
The XML Parser picks this invalid state, then, throws the exception you mentioned.

As far as | know, CRM does not use an HTTP session in their application. | guess
this is true in your case also. You may have used a member variable to store some
invalid state unintentionally. Member variables are the variables declared by the
following syntax:

<%! %>

For example:

Developing XML Applications with JDeveloper 24-15

http://technet.oracle.com/tech/xml
http://technet.oracle.com/tech/xml

Frequently Asked Questions About JDeveloper and XML Applications

<%! Document doc=null; %>

Many JSP users misunderstand that they need to use this syntax to declare
variables. In fact, you do not need to do that. In most of cases, you do not need a
member variable. Member variables are shared by all requests and are initialized
only once in the lifetime of the JSP.

Most users need stack variables or method variables. These are created and
initialized for each request. They are declared as a form of scriptlet as shown in the
following example:

<% Document doc=null; %>
In this case, every request has its own doc object, and the doc object is initialized to
null for each request.

If you do not store an “invalid” state in session or method variables in your JSP,
then there may be other reasons that cause this.

Is There a Way to Use the @code Directly in the document() Line?
Nowy, if | wish to use the @code as a key, | use
<xsltemplate match="aTextNode">

<)6Iparam name="labelCode" select="@code"/>
<xslvalue-of

select="document(messages.xml)messages/msg[@id=$labelCode and
@lang=$lang]'>

</xsltemplate>
that works too, but | was wondering if there is a way to use the @codedirectly in
the document() line?
Answer: This is what the current() function is useful for. Rather than:

<xslparam name="labelCode" select="@code"/>

<xslvalue-of
select="document(messages.xml)messagesimsg[@id=$labelCode and
@lang=$lang]’>

you can do:

<xslvalue-of
select="document(messages.xml)messagesimsg[@id=current()/@code

24-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About JDeveloper and XML Applications

and @lang = $lang]'>

How Do | Retrieve Data from messages.xml?

Is it, or will it be, possible to retrieve the data stored in messages.xml from the
database? How is the document() instruction going to work where listener and
servlet will run inside the database?

Answer: Yes. By the spec, the XSLT engine should read and cache the document
referred to in the document() function. It caches the parsed document based on
the string-form of the URI you pass in, so here's how you can achieve a
database-based message lookup:

1. CREATE TABLE MESSAGES (lang VARCHAR2(2), code NUMBER,
message VARCHAR2(200));

2. Create an XSQL page like msg.xsq|l

<xsql:query lang="en" xmins:xsgl="um:oracle-xsg" connection="demo"
row-element="'rowset-element=">
select message
from messages
where lang = {@lang}
and code ={@code}
</xsqlquery>

3. Create a stylesheet that uses msg.xsql in the document() function as in this
example:

<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/ Transform"!
version="1.0">
<xsltemplate match="/">
<htmi><body>
In English my name is
<xsl.calHemplate name="msg">
<xslwith-param name="code">101</xslwith-param>
<Ixsl.calHemplate>

En espanol minombre es
<xsl:calHemplate name="msg">
<xslwith-param name="code">101</xslwith-param>
<xslwith-param name="lang">es</xslwith-param>
<Ixsl.calHemplate>

En français, je m'appelle
<xsl:calHemplate name="msg">
<xslwith-param name="code">101</xslwith-param>
<xslwith-param name="lang'>fr</xslwith-param>

Developing XML Applications with JDeveloper 24-17

Frequently Asked Questions About JDeveloper and XML Applications

<xsl.calHemplate>

In italiano, mi chiamo
<xslcalHemplate name="msg">
<xslwith-param name="code">101</xslwith-param>
<xslwith-param name="lang">it</xslwith-param>
<Ixsl.calHemplate>
<hbody></html>
</xsltemplate>
<xsltemplate name="msg">
<xslparam name="lang">en</xsl:param>
<xslparam name="code"/>
<xslvariable name="msgun"
select="concat(http:/xml/msg.xsgl?lang="$lang, &code="$code) />
<xslvalue-of select="documentmsgur)yMESSAGE"/>
</xsltemplate>
</xslstylesheet>

4. Try it out at http://xml/testmessage.xsql

This is great if you want to fetch the message from over the web. Alternatively, you
could use the msg.xsqgl preceding but include it in your XSQL Page if that makes
sense using:

<xsglinclude-xsgl href="msg.xsql?lang={@lang}&code={@code} />

Or you could write your own custom action handler to use JDBC to fetch the
message and include it in the XSQL page yourself.

How Do | Move Complex XML Documents to a Database?

I am moving XML documents to an Oracle database. The documents are fairly
complex. Can an XML document and the Oracle Developer’s Kit (XDK) generate a
possible DDL format for how the XML Document should be stored in the database,
ideally generating an Object-Relational Structure. Does anyone know of a tool that
can do this?

Answer: The best way may be to use the Class Generator. Use the XML SQL Utility
(XSU) if DTD files are not already created. You'll still have to write a mapping
program.

Another method is to create views and write stored procedures to update multiple
tables. Unfortunately, you'll have to create your tables and views beforehand in
either case.

24-18 Oracle9i XML Developer’s Kits Guide - XDK

25

Introduction to BC4J

This chapter contains the following sections:

Introducing Business Components for Java (BC4J)
Implementing XML Messaging

Creating a Mobile Application in JDeveloper
Building XSQL Clients with BC4J

Frequently Asked Questions for BC4J

Introduction to BC4J 25-1

Introducing Business Components for Java (BC4J)

Introducing Business Components for Java (BC4J)

Business Components for Java is JDeveloper's programming framework for
building multitier database applications from reusable business components. Such
applications typically consist of:

« Aclient-side user interface written in Java and/or HTML.

= One or more business logic tier components that provide business logic and
views of business objects.

« Tables on the database server that store the underlying data.

A multitier application built with the Business Components for Java framework
deploys views, business rules, and custom code in components that clients can
share. With the Business Components for Java framework, such components are
easy to build and maintain, easy to use and reuse, and easy to customize.
Components do not need modification to be deployed to any supported platform.

See Also: Figure 25-1, "Using Business Components for Java
(BC4J)" for one example of a multitier application.

This approach provides many features and benefits, including:

Table 25-1 Features and Benefits of BC4J

Feature Description

Encapsulated business logic Business logic, including validation, resides and executes in
the business logic tier, enabling truly thin clients, easy
customizing, and reuse.

Flexible views of data Views of data are SQL-based and completely separate from
the underlying entities, enabling flexible presentation
schemes.

Thin clients BC4J supports thin clients--simple windows to business logic

and views of data processed by the business logic tier.

flexible deployment Deploy locally or on standard server platforms as CORBA
server objects and EJB Session Beans.

Database interaction BC4J's component-based framework handles many repetitive
coding tasks, such as master-detail coordination and locking.

Transaction management Business Components for Java manages changes in its cache
and handles posting of changes to the database.

25-2 Oracle9i XML Developer’s Kits Guide - XDK

Introducing Business Components for Java (BC4J)

BC4J comprises a framework for building and customizing domain-specific
components. As a developer, you derive objects from the classes and interfaces
provided by the framework and add custom code to implement features specific to
your application. The following business components are used to support this
process:

Table 25-2 Business Components in BC4J

Object Description

Entity object An entity object encapsulates business logic for a database
table, view or synonym. Clients access an entity object's data
through one or more view objects. A given entity object can be
used by any number of view objects. Relationships between
entity objects are expressed using associations.

View object View objects use SQL queries to specify filtered subsets of
attributes from entity objects. Clients manipulate data by
navigating through the result set, getting and setting attribute
values. Relationships between view objects are expressed using
view links.

Application module An application module is a logical container for instances of
view objects, view links, and transactions specified by other
application modules.

Each business component you create is represented by an XML file and one or more
Java files. The XML file stores metadata (the descriptive information about features
and settings of an application you declare using wizards at design time), while the
Java file stores the object's code (which implements application-specific behavior).
Each object is organized into a package using the directory-based semantics of
packages in Java.

The Java and XML files that represent business components use a similar syntax to
identify the package they are part of:

Introduction to BC4J 25-3

Introducing Business Components for Java (BC4J)

Table 25-3 Java and XML Syntax Used by BC4J
Java XML

package d2ePackage; <ViewObject
. Name="DeptView"
public class DeptViewlmpl extends
oracle.jbo.server.ViewObjectimpl { ComponentClass="d2ePackage.DeptViewlmpl">

What Is the Business Components Framework?

The business components framework is a class library, in oracle.jbo.* , with
built-in application functionality. Using the framework involves specializing base
classes to introduce application-specific behavior, allowing the framework to
coordinate many of the basic interactions between objects.

By using the Business Components for Java design-time wizards and editors, you
can build business logic tiers by defining the characteristics of components: their
attributes, relationships, and business rules. Business Components for Java
generates Java source code and XML metadata to implement the behavior you have
specified. Because the code inherits from a framework, the Java source files are
concise and do not contain large amounts of generated code, so it's easy to see
where to add the code that models your business. You can use JDeveloper to add
the Java code to enhance or change the behavior, and easily test the application
services, independently of the deployment platform.

Using Business Components

JDeveloper provides integrated support for the Business Components for Java
framework. Using design tools such as wizards and property editors you define the
characteristics of objects: their attributes, relationships, and business rules. Then
JDeveloper generates executable Java code and XML to implement the behavior you
define for the components.

In theory, you could write this code yourself. In practice, though, it's better to use
the wizards to be sure that all necessary code is generated and all dependencies are
addressed. Then you can edit the generated code to meet the specific needs of your
applications. JDeveloper enforces no particular methodology, but the development
process typically involves answering questions like these:

25-4 Oracle9i XML Developer’s Kits Guide - XDK

Introducing Business Components for Java (BC4J)

=« What are the entities and business objects? You can use entity objects on their
own (for example, a customer), or you can combine several entity objects (for
example, a purchase order consisting of a header, line items, shipments, and
distributions).

« How are the entities related? For example, you could define a one-to-many
association between departments and employees.

« What are the validation rules? For example, a business rule might specify a
minimum salary for employees with more than five years of service. You can
apply rules to attributes, entities, and business objects.

« What data will be presented and manipulated? By creating views, you define
SQL queries to select and filter data from the entities to minimize network
traffic and client-side processing requirements.

Advantages at BC4J Design Time

1. Real-world entities (for example, employees) are used to represent data stored in
tables in a database.

2. JDeveloper uses data and metadata from the table to create a Java class that
represents the entity. You can edit this Java code to change the default attributes and
behavior.

3. JDeveloper also represents metadata in a customizable XML file.

4. JDeveloper can create default view objects to specify criteria for selecting data.
You can define your own view objects in addition to (or instead of) the defaults.

5. JDeveloper generates customizable Java classes for each view object: a class for
the view object definition and a class for the row. It also generates an XML file for
each view object.

6. You use a wizard to define an application module. An application module is a
logical container for related objects. It provides a context for defining and executing
transactions.

After the application service comprising the business components is designed, built,
tested, and debugged, you can deploy it.

Advantages at BC4J Runtime

1. Client code initializes an application module, loading the entities and views it
contains.

Introduction to BC4J 25-5

Implementing XML Messaging

2. When a view object executes a query at run time, it manipulates data from the
corresponding entity or entities.

3. Each view object provides a default iterator that you can use to navigate through
its result set.

4. When a query fetches one or more result rows, individual rows are represented
by Row objects. Each column value in the result row is accessed through an
attribute of a Row object.

5. Controls in the client form enable users to view and edit the data. The controls
display rows provided by view objects, which are themselves bound to underlying
entity objects. So, when a user changes a value in a control, the Business
Components for Java framework sends the action to the view object, which sends it
to the entity object. Business rules (if any) attached to the entity object validate the
new value before the framework sends it to the database.

Implementing XML Messaging

The Business Components for Java (BC4J) framework provides a general,
metadata-driven solution for mapping E-commerce XML Messages into and out of
the database.

Sun Microsystems, Inc. provides a Java Message Service (JMS) API, and Oracle9i
provides an Advanced Queueing API, that you can use with Business Components
for Java to implement XML messaging.

To do so, you use business component framework methods in the
ViewObjectimpl and ViewRowImpl classes which enable the reading and writing
of a canonical format of XML data:

« writeXML() - Writes the current object into an XML Element, which can be
added to any XML Document, including as a payload for an XML Message.

« createXMLDefinition() - Creates an XML DTD for a ViewObiject or
ViewRow.

« readXML() - Reads the attribute values or rows in this object from the XML
Element, which could be derived from an XML Document or an XML Message.

The XML messaging sample shows you how to implement a working messaging
system. In addition, it provides the general steps you need to follow to implement
XML messaging. See $ORACLE_HOME\BC4J\samples.

25-6 Oracle9i XML Developer’s Kits Guide - XDK

Implementing XML Messaging

For more information on business component methods, see the Javadoc. For more
information on JMS, see the Javasoft web site. For more information on Advanced
Queueing, see your Oracle9i documentation.

Test BC4J Applications using JDeveloper

You can use Oracle BC4J framework and Oracle JDeveloper 's wizards and
component editors to assemble and test application services from your reusable
business components.

In JDeveloper, you can also customize the functionality of existing Business
Components by using the visual wizards to modify your XML metadata
descriptions.

See Also:
« Chapter 21, "XSLT Processor for PL/SQL"
« Oracle9i Java Developer’s Guide

« http://otn.oracle.com/products/bc4j

BC4J Uses XML to Store Metadata

The business components for Java framework that ships with JDeveloper uses XML
to store metadata about its application components. Important information is now
stored in a structured document rather than in Java source code. This makes the
application easier to understand and customize.

The application is now customizable without having access to the source code.

Figure 25-1, "Using Business Components for Java (BC4J)" shows how you use BC4J
to generate XML documents.

BC4J framework provides a general, metadata-driven solution for mapping
e-commerce XML messages into and out of the database. BC4J has a technical white
paper on its features available at the following Web site:

http://otn.oracle.com/products/jdev/content.html.

BC4J is a pure-Java, XML-based business components framework for making
building e-commerce applications easier. It is a Java framework usable on its own,
but also has tight development support built-into JDeveloper, available for
download from the same Web site:

Introduction to BC4J 25-7

Implementing XML Messaging

BC4J lets you flexibly map hierarchies of SQL-based view components to
underlying business components that manage all application behavior (rules and
processes) in a uniform way. It also supports dynamic functionality, so most of its
features can be driven completely off XML metadata. You can build a layer which
flexibly maps any XML document into and out of the database using this
framework. One key benefit is that when XML Documents are put into the system,
they automatically can have all the same business rules validated.

Figure 25-1 Using Business Components for Java (BC4J)

XM

Personal
Digital —

Assistant

,_
e

XSQL Servlet

Graphical or i ;

non-graphical —
browser XSL

|—>

Oracle Business
components for
Java

Business rules can be changed on site without needing access to the underlying
component source code.

25-8 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper

Creating a Mobile Application in JDeveloper

This mobile application is a Departments database application that demonstrates
how Business Components for Java (BC4J) and XML can be used to develop
applications that can be accessed over wireless devices. The application consists of
two main parts:

« Server-side business logic which is developed using the Business Components
for Java (BC4J) Framework and the second is the client part. The business logic
consists of a view object based on the DEPT table in SCOTT's schema.

« A mechanism to query the DEPT table and update it from any client device
including a browser, a cellular phone and a Palm Pilot. For the latter device, the
application uses emulators running on Windows NT.

Figure 25-2, "Creating a Mobile Application in JDeveloper Using BC4J and XSQL
Servlet" shows schematically how the mobile application works with BC4J, XSQL
Servlet, XSL Stylesheets, and Oracle9i.

You can see a more comprehensive demo of a similar application on
http://otn.oracle.com/tech/xml.

Introduction to BC4J 25-9

Creating a Mobile Application in JDeveloper

Figure 25-2 Creating a Mobile Application in JDeveloper Using BC4J and XSQL
Serviet

XML Presentation Generation

:

i
|
:
v

ORACE (Customer Listing

201 Steve Gald hitpfsteve. com
202 Mike Sdver hitpdimike.com
203 Susam Platmum hitpfsusan com

Create the BC4J Application

First create the BC4J application. It connects to the SCOTT schema on an Oracle9i
database. Figure 25-3, "BC4J Application: DEPT View Object XML File" shows the
XML file containing the metadata about the DEPT object. See "JDeveloper XDK
Example 1: BC4) Metadata" on page 24-11.

25-10 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper

Figure 25-3 BC4J Application: DEPT View Object XML File

E;'?: Oracle JDeveloper - mobile - [D:\jdey31\myprojectsideptpackageiDeptYiew. xml]

5&} File Edit Search “iew Progct Bun “Wizard: Tool: ‘wWindow Help _|ﬁ
| k?xrnl rersion="1.0" encoding='WINDOWI-1252"' 7=
SR R < !DOCTYPE ViewObject SYSTEM "jbo 03 01.ded"s
E = st e
(2! Conrmections <Wiewlhject
[HRclient.jpr Hame="DeptView"
El[EHFIsewer.ipr SelectList="Dept .DEFTND, Dept.DNALME, Dept.l
= E@deptpackage FrowmList="DEFT Dept™
= % Dept Binding3tyle="oracle™
DEDLHITﬂ Customjuery="rfalsern
) i Deptlmpl java ComponentClass="deptpackage.DeptViewImpl™ :
%g3 deptpackage. xml <DesignTime:
@ DeptpackageModule <ittr Wame=" codeGenFlag” Value="20" />
= %D?pw = </DesignTime:
£ i, wml .
F " . <EntityUsage
= Deptviewlmpl java
. Hame="Dept"
%5 HRzerver jpx _
Entity="deptpackage.Dept™ >
<DesignTime:
<ittr Hame=" Readinly" Walue="fzalse"
"I I _’I <ittr Wame=" EntirechjectTable™ Walw
<Atrtr Hame=" cqueryClause” Walue="Ifsl:
£ = Deptyiewm =l </ DesignTime:
EH 71 Attribntes ;I 4 I I |
-\WnrkspaceADpenedr{Dlrectarny oML Source | TR Fead o

Create JSP Pages Based on a BC4J Application

You can then create JSP pages based upon this BC4J application. In the JSP pages
you are introduced to the XML Data Generator Web Beans. Figure 25-4, "BC4]
Application: XSQL File Calling JSP Page" shows the XSQL file which calls the JSP
page to create the new department.

Introduction to BC4J 25-11

Creating a Mobile Application in JDeveloper

Figure 25-4 BC4J Application: XSQL File Calling JSP Page

E: Oracle JDeveloper - mobile - [D:\jdev31\myhtmliD eptClient_htmlicreateN ew_xzql]

@ Eile Edit Search “iew Project Bun ‘wizard: Toolz Window Help ;lj
—'ﬂ <index Hxmlns:xsgl="urn:oracle-xsgl™
{r} 4 s i Deptno = %207
=L miobile. jw - Dname = "%zZ0"
mgﬂnrj Loc SR i)
= (A HRe <topTitles
@c Oracle Dept HManagement
kel B </topTitlex
keb [<littleLogos
@ C <localsroes>family</ localsrox
@[<alt>Departments</alt>
E </ littlelogos
':_ <hanner Image:
@ _ﬁ <oolorImageroracle. gif</color Inages
@ !r <hwltage>-oracle, bmp</hwlnaoges-
%:I <alt>Oracle RH</alt>
B c </hanner Imadges>
Bl <pageTitlexDept Creation</pageTitles
@ g <xsgl:include—xml href=",-’DEptClient_html,-’createNew. isp?In
LI_I i </ index:

Create XSLT Stylesheets According to the Devices Needed to Read the Data

We create XSLT stylesheets to go with the various client devices that we are going to
access our data from. In your XSQL files, you specify the list of stylesheets and the
protocols they go with which basically ties the stylesheets to the client device.

Example 25-5, "BC4J Application: XSL Stylesheet (indexPP.xsl)" shows an example
code snippet of a stylesheet (indexPP.xsl) which transforms the XML data to
HTML for displaying on a browser on the Palm Pilot emulator.

25-12 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper

Figure 25-5 BC4J Application: XSL Stylesheet (indexPP.xsl)

E;'?: Oracle JDeveloper - mobile - [D:A\jdey31\myhtml\DeptClient_htmltindexPP_xsl]

@ File Edit Search “iew Progct Bun “Wizard: Tool: ‘wWindow Help ;lé
Boda|sFaalera&@
ka <7Eml v;rsiun="l.D"?}
TN . By Xy
=] EEI mobile jws oy <xal:styleshest xmlns:xsl="http://www. w3 .org/ 1999/ 31
E;{I:Dnnectiuns j <xsl:output wedia-type="text/htmwl"™/ =
=) EEI M chont for <xzl:param name="lang” select="'english'"/ >
[, createMew
E createt e <xzl:template match="+%|/"s<xsl:apply-templates/></ >
ke Deptindexl
E Deptinde: <xal:template match="text () |A*"><xzl:value-of selec
@ Creptlist. js)
% Depilist.us <x=zl:template mactch="/":
deptpacka <html>
ke find.:-:sql <body>
@ dH'Sql <h?><xsl:value-of select="index/pageTitcle™/ >«
ke ru:In:::-:FF.:-::- <hr/>
ke inzentDept,
Gl oracle b <p name="EntryForm":
G oracle.git <center:
@ resetusgl - <xsl:apply-templates select="index/pagebc
ﬂ_l LIJ </oenter:>
4| I
-\‘EE—A@@/ -"-,Snurn:ef | Pz 1 | |Insert

| File: Cr:Ajdewd smyhtmlsDeptClient_htmlsindesPF. szl

Figure 25-6, "Cell Phone Emulator Running the Department Application Client"
shows the Cell Phone Emulator running the Departments Application Client. It also
shows the setup screen for the Cell Phone Emulator.

Introduction to BC4J 25-13

Creating a Mobile Application in JDeveloper

Figure 25-6 Cell Phone Emulator Running the Department Application Client

I genenc - UP Smalatos

Fie juio Edt Setings Heb

Go | davace home

UP.Link Settings

IF wou chaose the HT TP Diect oplion, the phone will commuricate directl vath
the HT TP server. bypassing any UIPLink.

&+ HTTP Direct
Horme Lk |H|tp:Mnu:alhcst:FD?D#DeprnlhhtmI#indEanl

& NoHTTF Prosy
. F"rou_-.l:l P.;-rl:l

Request Timeout: |30 | seconds

An UPLink can be referenced by a numeric IF address or by a domain name.
Connect through UPLink

" UPLink 1- Iduvgata?.q:danet.cum

 UPLink2 |devgateZ uplanet.com

™ UPLink 3 Idev\gatezup!anet.cnm

Ok Cancel
| |

Figure 25-7, "Palm Pilot Emulator Accessing the BC4J Departments Application

Through HandWeb Browser" shows the Palm Pilot Emulator accessing the
Departments Application by means of HandWeb Browser.

25-14 Oracle9i XML Developer’s Kits Guide - XDK

Building XSQL Clients with BC4J

Figure 25-7 Palm Pilot Emulator Accessing the BC4J Departments Application
Through HandWeb Browser

Palm OS5 Emulator

Building XSQL Clients with BC4J

In JDeveloper9i, you can build XSQL Pages which can integrate with BC4J
application modules and thereby serve application logic from the middle tier to
multiple clients. You can retrieve XML data and present it to any kind of a client
device just by applying the corresponding stylesheet.

See Also:

» Chapter 21, "XSLT Processor for PL/SQL"

« Oracle9i Java Developer’s Guide

» Oracle9i XML Case Studies and Applications

Building XSQL Clients with BC4J

In JDeveloper 9i, you can build XSQL Pages which can integrate with BC4J
application modules and thereby serve application logic from the middle tier to

Introduction to BC4J 25-15

Building XSQL Clients with BC4J

multiple clients. You can retrieve XML data and present it to any kind of a client
device just by applying the corresponding stylesheet.

Web Objects Gallery

The Web Objecst Gallery has icons to assist in creating XSQL, XML, and XSL
documents easily. When you click them, the basic tags for these pages are generated
and you can then enhance them.

The XSQL Pages icon is of special interest because the XSQL Component Palette can
be used, after generating your basic XSQL pages, to insert data bound tags in the
XSQL pages. Figure 25-8 illustrates JDeveloper’s Web Objects Gallery.

25-16 Oracle9i XML Developer’s Kits Guide - XDK

Building XSQL Clients with BC4J

Figure 25-8 JDeveloper’s Object Gallery Showing the new XSQL, XML, and XSL Icons

Hew
Categories: ftems:
| Projects “t-g, Apnplet
| Ohjects | Applet HTML File
& wieh Ohjects @] HTRL
___| Enterprize JavaBeans 3.] HTTP Serviet
| Beans =] J3P

| veb Services

| Datahase Ohjects

| Connections

___| Deployment Profiles
| Business Componerts
= e AT

L JsP

| JCliert Ohjects
L EhAL

| UML Disgrams

3.] Tag Library

3.] Java Weh Start
& HML

S HEL

&l ¥ML Schema
pcte i

@a Wieh Bean
NPy

Help |

(034 Cancel

Generating and Managing Code When Building XML and Java Applications

The following lists some typical JDeveloper code requirements when using the BC4J

framework to build an XML application:

« A.java fileanda.xml file for each entity object and each view object

« A .java file for each association object and each link object

« A .java file and a .xml file for the application module

« Double-click any of these files in the JDeveloper navigator to view the file

contents.

The BC4J framework represents each Business Component that uses a combination
of XML and Java code.

Introduction to BC4J 25-17

Frequently Asked Questions for BC4J

« XML. The XML code defines the metadata representing declarative settings and
features of the object.

« Java. The Java code implements the object’s behavior.
Other typical generated files are:

« Javaimplementation of the entity

« View XML file

« Javaimplementation of the view

« Application module XML file

« Javaimplementation of the application module

Frequently Asked Questions for BC4J

Some FAQs for BC4l are:

Can Applications Built Using BC4J Work With Any J2EE-Compliant Container?

Answer: Yes. The BC4J framework works with any J2EE-compliant application
server. The Oracle9i JDeveloper IDE supports automatically packaging a
BC4J-powered J2EE application for deployment to any J2EE 1.2 container. In
addition, if you are using Oracle9iAS or WebLogic containers, in addition to this
packaging assistance, the tool can automatically carry out the deployment for you,
too.

Can J2EE Applications Built Using BC4J Work with Any Database?
Answer: Yes. Any SQL92-compatible database.
By default, the BC4J framework takes specific advantage of the Oracle database and

features of the Oracle JDBC Driver to maximize application performance. However,
by using the runtime-configurable "SQL Flavor" parameter, applications built with

BC4J can target non-Oracle databases as well. In particular, the Oracle9i JDeveloper
release of the BC4J framework has been tested against IBM’s DB2 database and
Microsoft’s SQL Server database (using Merant DataDirect drivers).

25-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions for BC4J

Is There Runtime Overhead from the Framework for Features That | Do Not Use?

Answer: No. The BC4J framework has been carefully designed and optimized to
avoid runtime overhead for features of the framework that are not being used. For
example, BC4J entity objects are designed to encapsulate business logic and handle
persistence. If you use them only to handle persistence, perhaps leaving business
logic enforcement to existing database triggers in your database, then you do not
pay runtime overhead for business logic enforcement that you are not using.
Similarly, the BC4J] framework supports various kinds of lightweight listeners that
developers can use to be notified when interesting framework life cycle events
occur. Again, if there are no event subscriptions, there is no overhead associated.

Where Can | Find More Information About BC4J?
Answer: For additional information on BC4J and JDeveloper, please visit:
http:/jjdeveloper.us.oracle.com

For a good technical overview white paper of how BC4J can help J2EE and EJB
developers be more productive, please see:

http://otn.oracle.com/products/jdevihtdocs/2ee_with_bcdjj2ee with_bcdjhtml

Introduction to BC4J 25-19

Frequently Asked Questions for BC4J

25-20 Oracle9i XML Developer’s Kits Guide - XDK

26

This chapter contains the following sections:

What Is UIX?

When to Use UIX

When Not to Use UIX

What Are the UIX Technologies?
Which UIX Technologies to Use?

For More Information About UIX

Introduction to UIX

Introduction to UIX 26-1

What Is UIX?

What Is UIX?

When to Use

UIX (User Interface XML) is a set of technologies that constitute a framework for
building web applications. The main focus of UIX is the user presentation layer of
an application, with additional functionality for managing events and for managing
the state of the application flow. UIX is designed to create applications with
page-based navigation, such as an online human resources application, rather than
full-featured applications requiring advanced interaction, such as an integrated
development environment (IDE).

An application can interact with UIX in predefined places called decision points,
where a decision is made by the operator or a certain action routine is automatically
triggered. Execution of an action terminates in a new decision point. The
application’s structure is provided to UIX in configuration files, which can be ASCII
files, databases, or resource files.

The main focus of UIX is the user presentation layer of an application, with
additional functionality for managing events and for managing the state of the
application flow. UIX is designed to create applications with page-based navigation,
such as an online human resources application, rather than full-featured
applications requiring advanced interaction, such as an integrated development
environment (IDE).

UlIX includes Java class libraries, APls, XML languages, and other technologies for
developing different aspects of web-based applications. You can use some or all of
these technologies, depending on what aspects of a web application you are
developing. It is worthwhile to familiarize yourself with all the UIX technologies to
make sure you take full advantage of what they provide.

UIX

Here are the features of using UIX that make for more rapid development:

« UIX provides an open, flexible framework for development. You can choose
among the different UIX technologies for different development needs. For
instance, you can use UIX components for rendering pages, or you can use your
own HTML or Java Server Pages (JSP) for rendering while still taking
advantage of the remaining features of UIX. Additionally, you can use whatever
back-end data technologies that best suit your needs.

« The UlX technologies are platform independent because they are implemented
in the Java programming language and other portable web technologies.

26-2 Oracle9i XML Developer’s Kits Guide - XDK

What Are the UIX Technologies?

UIX supports a wide range of client agents. UIX will adjust its presentation for
various browsers and locales. It also supports rendering for mobile devices.

Applications written to the UIX technology stack maintain a consistent
appearance. The UIX rendering projects implement high level user interface
controls, which are consistently rendered across your application (and the
applications of others using UIX).

UIX applications are customizable at multiple levels. You can change many
aspects of the application independently, including page layout, styles, and
imaging. The environment makes simple customizations easy, and more
complicated customizations possible.

If you choose, much of your UIX development can be declarative. This is
because the framework can derive its page layouts, styles, and many other
features from XML documents, with no programming or compiling involved.

The UIX architecture has been designed with localization and
internationalization support in mind. Its rendering technologies automatically
adjust for the target client’s locale, and the framework is built to help separate
localizable content from the user interface.

High performance has been designed into the framework, such as the caching
and reuse of shared resources.

When Not to Use UIX

These are some cases where it is inappropriate to use UIX:

If your target user environments have no Java requirements and they can be
standard web browsers or mobile devices, using UIX may not be justified. The
reason is that the deployment environment for your application must support a
Java Virtual Machine (JVM), because UIX is built in Java.

If your user interface requires advanced interactions such as drag-and-drop,
code editing, or visual design, you should use a more complicated user
interface technology than UIX provides, such as client-side Java.

What Are the UIX Technologies?

The UIX technologies can be used to implement the entire presentation layer of a
web application. However, you can use only a subset of UIX if you only need some
of its features. UIX is modularized into "subproducts” that target different aspects of
a web application development project. Each is described briefly next.

Introduction to UIX 26-3

What Are the UIX Technologies?

UIX Components

UIX Controller

UIX Components comprise a class library for generating the content of pages, in
particular, pages used as the front end (user interface) to a web application. This
technology does not manage the navigation between pages or the data supplied to
those pages; that functionality is deferred to other sources (such as other UIX
technologies). Instead, the UIX Components technology focuses on the rendering of
a page itself. This rendering can be HTML for a browser page, or another
technology such as WML for a mobile device.

The UIX Components technology does this by including a collection of web beans
(or "nodes") for creating page layouts and standard user interface objects, such as
tables, tabs, and buttons. It also includes a set of rendering classes (Renderers) that
generate output using these Beans for a particular device, such as a browser.

UIX Components have a pluggable rendering architecture that enables rendering
the same page with alternative visual styles (that is, the "look and feel"). The default
renderers output HTML that conforms to the Oracle Browser Look and Feel (BLAF),
but other renderers are available for mobile devices, and additional renderers can
be created and added to the framework as needed.

The Java code and classes supporting UIX Components are all located in the
oracle.cabo.ui package and its subpackages.

UIX Controller is a framework for developing web application flow. UIX Controller
is based on the Java Servlet technology, a standard part of the Java 2 Enterprise
Edition. Where UIX Components focus on rendering a given page, UIX Controller is
designed to manage the navigation among all pages in an application. UIX
Controller defers the rendering of those pages to other technologies (such as UIX
Components).

UIX Controller standardizes the way applications deal with HTML events and
provides built-in services such as error page loops, login support, and file
uploading. While it operates independently of the technology used to render
individual pages -- such as UIX Components, JSPs, or Extensible Stylesheet
Transformations (XSLT) -- it has built-in support to ease development when
technologies like UIX Components are used.

The Java code and classes supporting UIX Controller are all located in the
oracle.cabo.servlet package and its subpackages.

26-4 Oracle9i XML Developer’s Kits Guide - XDK

What Are the UIX Technologies?

UIX Language

The UIX language is a declarative alternative to creating web applications
programmatically with Java-based UIX Components Beans and/or UIX Controller
Java code. The UIX language builds on top of UIX Components and UIX Controller,
providing an XML language for specifying UIX Components page layouts and UIX
Controller server-side events. Essentially, the UIX language lets you create UIX
Components pages and UIX Controller events with an XML document, rather than
through Java programming.

While the UIX language provides an alternative way for you to create pages and
page flows, it is transformed into UIX Components and UIX Controller objects
behind the scenes and is thus treated equally by UIX.

The Java code and classes supporting the UIX language are all located in the
oracle.cabo.ui.xml and oracle.cabo.servlet.xml packages and their
subpackages.

UIX Dynamic Images

UIX Styles

UIX Dynamic Images describes a utility for generating images that contain text,
including built-in support for buttons and tabs. UIX Dynamic Images can colorize
the images of an application to support color schemes, as well as provide
localization and accessibility support and provide caching support for improved
performance. UIX Dynamic Images generate images and, for those who need them,
image maps.

Because text is processed separately from images, localization with UIX Dynamic
Images is easier and more efficient. Translators work only with text and do not have
to edit images. The translated text can be stored separately (for example, in resource
files) and extracted when needed, to be combined with the image. Separating text
and image processing in this way also makes it possible to use different text styles
and sizes for special purposes, such as increasing the size of the text for complex
characters such as Kaniji, or to adjust visual attributes for people with some visual
impairment, for example color blindness.

The Java code and classes supporting UIX Dynamic Images are all located in the
oracle.cabo.image package and its subpackages. UIX Components depend on
UIX Dynamic Images for their own rendered images.

UIX Styles provide an architecture for defining and customizing stylesheets for
different end user environments (for example, locales, browsers, or platforms).

Introduction to UIX 26-5

Which UIX Technologies to Use?

UIX Share

Stylesheets provide a centralized mechanism for defining and altering the
appearance of pages separate from the content they contain.

UIX Styles include a new XML Style Sheet Language (XSS) for defining
environment-specific stylesheets. XSS is based on Cascading Style Sheets (CSS). UIX
Styles also feature server-side APls for managing style information, including a
facility to generate CSS stylesheets dynamically at runtime.

The Java code and classes supporting UIX Styles are all located in the
oracle.cabo.style package and its subpackages. UIX Components and UIX
Dynamic Images depend on UIX Styles for their own style information.

All UIX projects depend on common utility classes provided by UIX Share.

The UIX Share classes include functionality that is useful to all UIX web
applications, such as configuration support and localization. The Java code and
classes supporting UIX Share are all located in the oracle.cabo.share package
and its subpackages.

Which UIX Technologies to Use?

The UIX technology stack is open and flexible; you have the choice of using as
many of its subproducts as you need. Keep in mind, however, that using some UIX
subproducts requires the use of others. For instance, UIX Components use UIX
Dynamic Images and UIX Styles to render the images and stylesheets for its pages,
respectively, and thus it requires their presence. However, there is no requirement
that you use those subproducts in any way beyond UIX Components’ own internal
usage of them.

It is important to note that the various UIX technologies have been designed to
work together. This means that sometimes one UIX project can make it easier to use
another. As an example, the UIX Controller will automatically create and cache the
pages specified in the UIX language because it has built-in support for this. If you
use UIX without UIX Components, you will need to write some code to load in
your UIX language document and display it. Conversely, if you use UIX
Components without the UIX language, you may have to write some code telling
the UIX Framework how to display your own pages. In other words, the whole UIX
technology stack is definitely worth more than the sum of its parts!

Here are some recommendations for which technologies to use:

« Ifyou are starting a new web application from scratch.

26-6 Oracle9i XML Developer’s Kits Guide - XDK

Which UIX Technologies to Use?

We recommend you use UIX Controller to manage your application flow and
that you use UIX Components and the UIX Language to specify your page
layouts and events. This enables you to get the most functionality from UIX
with the least work on your part.

If you cannot replace your existing application flow management technology,
but you have flexibility on your page rendering.

We recommend you use UIX Components and the UIX language to create and
render your pages. This enables you to get the advantages of UIX Components
(agent-based rendering architecture, high level page beans, localization, and so
on) even if you can’t use the entire UIX stack. Keep in mind, however, that some
of the UIX Controller code might still be useful to your server-side flow
management, even if you do not adopt UIX Controller entirely. For example,
UIX Controller includes utility code for handling file uploads that is generally
useful for Java servlet-based applications.

If you have existing pages (JSPs or dynamic HTML) that you need to manage
through a servlet.

Consider using the UIX Controller servlet to manage logons, handle errors, and
provide other utilities that are missing from the basic servlet architecture. This
will also make it easier to include additional pages based on UIX Components
later on.

If you have some existing pages designed with HTML or JSPs, but need to
implement new pages for your application.

We ask that you consider using UIX Components and the UIX language for all
your pages. This is possible because UIX Components and the UIX language
provide easy ways to intersperse other content such as existing JSPs and HTML
on the same page using its passthrough capability. Doing so gives you the
opportunity to consolidate your pages on one technology later on and
transition as you go.

If you would like to use UIX Components beans, but are already using
Java-based page rendering for other parts of your page(s).

You can still use UIX Components beans on a page through the Java web bean
classes. The generated output can be merged into your existing Java-generated
page output. The decision to also use UIX Controller for page management is
independent of this choice.

If you cannot change your current page rendering technology, but you need
localizable images in your web application.

Introduction to UIX 26-7

For More Information About UIX

Consider using UIX Dynamic Images to generate images including text that are
localized.

« If you cannot change your current page rendering technology, but you need
stylesheets for your product that are tailored to each viewer’s browser, locale,
or preferences.

Consider using UIX Styles to generate and cache individual stylesheets based
on variants.

For More Information About UIX

Here are sources of more information about UIX:

See Also: For sample JDeveloper Demonstration code for UIX:

« http://otn.oracle.com/sample_code/products/jdev/c
ontent.html

« The complete UIX Developer’s Guide is included in the
JDeveloper online help.

26-8 Oracle9i XML Developer's Kits Guide - XDK

A

XDK for Java: Specifications and Quick

References

This appendix describes the XDK for Java specifications and quick references for
each XML component for Java. The quick references list the main APIs, classes, and
associated methods for each XDK for Java component.

This appendix contains the following sections:

XML Parser for Java Quick Reference

XML Parser for Java Specifications

XDK for Java: XML Schema Processor

XDK for Java: XML Class Generator for Java
XDK for Java: XSQL Servlet

XSQL Servlet Specifications

XDK for Java: Specifications and Quick References A-1

XML Parser for Java Quick Reference

XML Parser for Java Quick Reference

Note: The XML Parser for Java methods are listed in these places:
« Oracle9i XML API Reference - XDK and Oracle XML DB
« http://otn.oracle.com/tech/xml

« Your installed software under doc/

XML Parser for Java Specifications
The Oracle XML Parser for Java, Version 2 specifications follow:
« New high performance architecture
« Integrated support for W3C XSLT 1.0 Recommendation
« Supports validation and non-validation modes
« Built-in Error Recovery until fatal error
« Integrated Document Object Model (DOM) Level 1.0 and 2.0 API
« Integrated SAX 1.0 and 2.0 API

« Supports W3C Recommendation for XML Namespaces

Requirements
Operating Systems: Any with Java 1.1.x support

JAVA: DK 1.1.x. or later.

The contents of both the Windows and UNIX versions are identical. They are
simply archived differently for operating system compatibility and your
convenience.

Online Documentation

Documentation for Oracle XML Parser for Java is located in the doc/ directory in
your install area.

A-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java Specifications

Release Specific Notes

The readme.html file in the root directory of the archive contains release specific
information including bug fixes, API additions, and so on.

Oracle XML Parser is an early adopter release and is written in Java. It will check if
an XML document is well-formed and, optionally, if it is valid. The parser will
construct a Java object tree which can be accessed. It also contains an integrated
XSLT processor for transforming XML documents.

Standards Conformance
The parser conforms to the following W3C Recommendations:

« Extensible Markup Language (XML) 1.0
http://www.w3.0rg/TR/1998/REC-xmI-19980210

« Namespaces in XML at http://www.w3.org/ TR/REC-xml-names/

« Document Object Model Level 1 1.0
http://www.w3.0org/ TR/REC-DOM-Level-1/

« Document Object Model Level 2
http://www.w3.0org/ TR/DOM-Level-2-Core/

« XML Path Language (XPath) 1.0
http://www.w3.0rg/TR/1999/REC-xpath-19991116

« XML Transformations (XSLT) 1.0
http://www.w3.0rg/TR/1999/REC-xslt-19991116

The parser also conforms to the following W3C Proposed Recommendations:
« XML Schema Part 1: Structures http://www.w3.0rg/TR/xmlschema-1
« XML Schema Part 2: Datatypes http://www.w3.0rg/ TR/xmlschema-2

In addition, the parser implements the following interfaces defined by the XML
development community:

« Simple API for XML (SAX) 1.0 and 2.0 at
http://www.megginson.com/SAX/index.html

Supported Character Set Encodings

The XML Parser for Java currently supports the following encodings:
« BIG5S

XDK for Java: Specifications and Quick References A-3

XML Parser for Java Specifications

« EBCDIC-CP-*

« EUC-IP
« EUC-KR
« GB2312

« 1SO-2022-)P

« 1SO-2022-KR

« 1SO-8859-1to -9

« 1SO-10646-UCS-2
« 1SO-10646-UCS-4

. KOI8R
. Shift JIS
. US-ASCII
. UTF8

. UTF-16

Default: UTF-8 is the default encoding if none is specified. Any other ASCII or
EBCDIC based encodings that are supported by the JDK may be used.However,
they must be specified in the format required by the JDK instead of as official
character set names defined by IANA.

Error Recovery

The parser also provides error recovery. It will recover from most errors and
continue processing until a fatal error is encountered.

A-4 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XSQL Servlet

XDK for Java; XML Schema Processor

See Also:
« Chapter 6, "XML Schema Processor for Java"

« The readme.txt file in your installed software’s doc/ directory.
This software can also be downloaded from
http://otn.oracle.com/tech/xml

XDK for Java: XML Class Generator for Java

Oracle XML Class Generator for Java requires Oracle XML Parser for Java. The XML
Document, printed by the generated classes, confirms to the W3C recommendation
for Extensible Markup Language (XML) 1.0. Oracle XML Class Generator can
optionally generate validating Java source files. It also optionally generates Javadoc
comments in the source files.

Oracle XML Class Generator supports the following encodings for printing the
XMLDocument:

UTF-8, UTF-16, ISO-10646-UCS-2, ISO-10646-UCS-4, US-ASCII, EBCDIC-CP-US,
1SO-8859-1, and Shift_SJIS.

ASCII is the default encoding if none is specified. Any other ASCII or EBCDIC
based encodings that are supported by the JDK can be used.

XDK for Java: XSQL Servlet

Downloading and Installing XSQL Servlet

Downloading XSQL Servlet from OTN
You can download XSQL Servlet distribution from:

http://otn.oracle.com/tech/xml/xsql_servlet
1. Click the 'Software' icon at the top of the page:

2. Log in with your OTN username and password (registration is free if you do
not already have an account).

XDK for Java: Specifications and Quick References A-5

XDK for Java: XSQL Servlet

3. Selecting whether you want the NT or Unix download (both contain the same
files)

4. Acknowledge the licensing agreement and download survey

5. Clicking on xsqlservlet_v1.0.2.0.tar.gz or xsqlservlet_v1.0.2.0.zip

Extracting the Files in the Distribution
To extract the contents of XSQL Servlet distribution, do the following:

1. Choose a directory under which you would like the \xsql directory and
subdirectories to go, for example, C:\

2. Change directory to C:\, then extract the XSQL downloaded archive file there.
For example:

UNIX:
tar xviz xsglsendet v1.0.2.0tar.gz

Windows NT:
pkzip25 -extract -directories xsglserviet v1.0.2.0.zip

using the pkzip25 command-line tool or the WinZip visual archive extraction
tool.

Windows NT: Starting the Web-to-Go Server

XSQL Servlet comes bundled with the Oracle Web-to-go server that is
pre-configured to use XSQL Pages. The Web-to-go web server is a single-user
server, supporting the Servlet 2.1 API, used for mobile application deployment and
for development. This is a great way to try XSQL Pages out on your Windows
machine before delving into the details of configuring another Servlet Engine to run
XSQL Pages.

Note: The Web-to-go Web server is part of Oracle's development
and deployment platform for mobile applications. For more
information on Web-to-go, see http://www.oracle.com/mobile.

Windows NT users can get started quickly with XSQL Pages by following these
steps:

1. Running the xsqgl-wtg.bat script in the .\xsql directory.

A-6 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XSQL Servlet

2. Browsing the URL http://localhost:7070/xsqgl/index.html

If you get an error starting this script, edit the xsqgl-wtg.bat file to properly set the
two environment variables JAVA and XSQL_HOME to appropriate values for your
machine.

REM
REM Set the JAVA variable equal to the full path
REM of your Java executable.

REM
set JAVA=INaval 2\re\binjava.exe
set XSQL_HOME=C:\xsq|

REM
REM Set the XSQL_HOME variable equal to the full
REM path of where you install the XSQL Senvet
REM distribution.

REM

Then, repeat the two preceding steps.

If you get an error connecting to the database when you try the demos, you'll need
to go on to the next section, then try the preceding steps again after setting up your
database connection information correctly in the XSQLConfig.xml file.

Setting Up the Database Connection Definitions for Your Environment

The demos are set up to use the SCOTT schema on a database on your local
machine (that is, the machine where the web server is running). If you are running a
local database and have a SCOTT account whose password is TIGER, then you are
all set. Otherwise, you need to edit the .\xsqI\lib\XSQLConfig.xml file to
correspond to your appropriate values for username, password, dburl, and driver
values for the connection named "demo".

<?xmlversion="1.0"?>
<XSQLConfig>

<connectiondefs>

<connection name="demo'>
<usemame>scott</usemame>
<password>tiger</password>
<dburi>jdbc:oracle:thin:@localhost:1521:0RCL</dbur>
<driver>oracle.jdbc.driver.OracleDriver</driver>

</connection>

<connection name="lite">
<usemame>system</usemame>

XDK for Java: Specifications and Quick References A-7

XSQL Servlet Specifications

<password>manager</password>
<dburi>jdbc:Palite:POlite</dburt>
<driver>oracle.lite.polidbc.POLIDBCDriver</driver>
</connection>
</connectiondefs>

<IXSQLConfig>

UNIX: Setting Up Your Servlet Engine to Run XSQL Pages

UNIX users and any user wanting to install the XSQL Servlet on other web servers
should continue with the instructions below depending on the web server you're
trying to use. In every case, there are 3 basic steps:

1. Include the list of XSQL Java archives as well as the directory where
XSQLConfig.xml resides (by default ./xsql/lib) in the server CLASSPATH.

Note: For convenience, the xsglservlet_v1.0.2.0.tar.gz and
xsqlservlet_v1.0.2.0.zip distributions include the .jar files for the
Oracle XML Parser for Java (V2), the Oracle XML SQL Utilities for
Java, and the 8.1.6 JDBC driver in the .\lib subdirectory, along with
Oracle XSQL Pages' own .jar archive.

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet servlet class

3. Map a virtual directory /xsqgl to the directory where you extracted the XSQL
files (to access the on-line help and demos)

XSQL Servlet Specifications
The following lists the XSQL servlet specifications:
« Produce dynamic XML documents based on one or more SQL queries

« Optionally transforms the resulting XML document in the server or client using
XSLT

« Supports W3C XML 1.0 Recommendation
« Supports Document Object Model (DOM) Level 1.0 and 2.0 API
« Support the W3C XSLT 1.0 Recommendation

« Supports W3C Recommendation for XML Namespaces

A-8 Oracle9i XML Developer’s Kits Guide - XDK

XSQL Servlet Specifications

Character Set Support

XSQL Servlet supports the following character set encodings:

BIG
EBCDIC-CP-*
EUC-IP

EUC-KR

GB2312
1SO-2022-JP
1SO-2022-KR
1SO-8859-1t0 -9
1SO-10646-UCS-2
1SO-10646-UCS-4
KOI8-R

Shift_JIS
US-ASCII

UTF-8

UTF-16

XDK for Java: Specifications and Quick References A-9

XSQL Servlet Specifications

A-10 Oracle9i XML Developer’s Kits Guide - XDK

B

XDK for PL/SQL.: Specifications

This Appendix describes Oracle XDK for PL/SQL specifications. It contains the
following sections:

« XML Parser for PL/SQL
« XML Parser for PL/SQL Specifications

XDK for PL/SQL: Specifications B-1

XML Parser for PL/SQL

XML Parser for PL/SQL

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document's storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and
provide access to their content and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the application.

Oracle XML Parser Features

The XML Parser for PL/SQL parses an XML document (or a standalone DTD) so
that it can be processed by an application. Library and command-line versions are
provided supporting the following standards and features:

« DOM (Document Object Model) support is provided compliant with the W3C
DOM 1.0 Recommendation. These APIs permit applications to access and
manipulate an XML document as a tree structure in memory. This interface is
used by such applications as editors.

« SAX (Simple API for XML) support is also provided compliant with the SAX 1.0
specification. These APIs permit an application to process XML documents
using an event-driven model.

« Supportis also included for XML Namespaces 1.0 thereby avoiding name
collisions, increasing reusability and easing application integration.

« Able to run on Oracle9i and Oracle9i Application Server.

« Cand C++ versions initially available for Windows, Solaris, and Linux.
Additional features include:

« Validating and non-validating operation modes

« Built-in error recovery until fatal error

« DOM extension APIs for document creation Oracle XSL-Transform Processors

Version 2 of the Oracle XML Parsers include an integrated XSL-Transformation
(XSL-T) Processor for transforming XML data using XSL stylesheets. Using the
XSL-T processor, you can transform XML documents from XML to XML, HTML, or
virtually any other text-based format. These processors support the following
standards and features:

B-2 Oracle9/ XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL

« Compliant with the W3C XSL Transform Proposed Recommendation 1.0
« Compliant with the W3C XPath Proposed Recommendation 1.0
« Integrated into the XML Parser for improved performance and scalability

« Available with library and command-line interfaces for Java, C, C++, and
PL/SQL

Namespace Support

The Java, C, and C++ parsers also support XML Namespaces. Namespaces are a
mechanism to resolve or avoid name collisions between element types (tags) or
attributes in XML documents. This mechanism provides "universal" namespace
element types and attribute names whose scope extends beyond the containing
document. Such tags are qualified by uniform resource identifiers (URIs), such as
<oracle;EMP xmlns;oracle="http://www.oracle.com/xml"/>. For example,
namespaces can be used to identify an Oracle <EMP> data element as distinct from
another company's definition of an <EMP> data element. This enables an
application to more easily identify elements and attributes it is designed to process.
The Java, C, and C++ parsers support namespaces by being able to recognize and
parse universal element types and attribute names, as well as unqualified "local"
element types and attribute names.

Validating and Non-Validating Mode Support

Example Code

The Java, C, and C++ parsers can parse XML in validating or non-validating modes.
In non-validating mode, the parser verifies that the XML is well-formed and parses
the data into a tree of objects that can be manipulated by the DOM API. In
validating mode, the parser verifies that the XML is well-formed and validates the
XML data against the DTD (if any). Validation involves checking whether or not the
attribute names and element tags are legal, whether nested elements belong where
they are, and so on.

See Chapter 20, "XML Parser for PL/SQL" for example code and suggestions on
how to use the XML Parsers.

IXML Parser for PL/SQL Directory Structure

The following lists the XML Parser for PL/SQL directory structure in
$ORACLE_HOME/xdk/plsql/parser:

XDK for PL/SQL: Specifications B-3

XML Parser for PL/SQL

« Windows NT

license.html - copy of license agreement
readme.html - release and installation notes
doc\ - directory for parser apis.

lib\ - directory for parser sql and class files

sample\ - sample code

« UNIX

DOM and SAX APIs

license.html — copy of license agreement
readme.html — release and installation notes
doc/ — directory for parser apis

lib/ — directory for parser sql and class files

sample/ — sample code files

XML APIs generally fall into two categories: event-based and tree-based. An
event-based API (such as SAX) uses callbacks to report parsing events to the
application. The application deals with these events through customized event
handlers. Events include the start and end of elements and characters. Unlike
tree-based APIs, event-based APIs usually do not build in-memory tree
representations of the XML documents. Therefore, in general, SAX is useful for
applications that do not need to manipulate the XML tree, such as search
operations, among others. For example, the following XML document:

<?xmlversion="1.0"?>
<EMPLIST>

<EMP>

<ENAME>MARTIN</ENAME>
<EMP>

<EMP>

<ENAME>SCOTT</ENAME>
<EMP>
</EMPLIST>

Becomes a series of linear events:

start document
start element: EMPLIST

B-4 Oracle9/ XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL Specifications

start element: EMP
start element: ENAME
characters: MARTIN
end element. EMP
start element. EMP
start element: ENAME
characters: SCOTT
end element. EMP

end element. EMPLIST
end document

A tree-based API (such as DOM) builds an in-memory tree representation of the
XML document. It provides classes and methods for an application to navigate and
process the tree. In general, the DOM interface is most useful for structural
manipulations of the XML tree, such as reordering elements, adding or deleting
elements and attributes, renaming elements, and so on.

XML Parser for PL/SQL Specifications
These are the Oracle XML Parser for PL/SQL specifications:
« Supports validation and non-validation modes
« Includes built-in error recovery until fatal error
« Supports the W3C XML 1.0 Recommendation
« Supports the W3C XSL-T Final Working Draft

This PL/SQL implementation of the XML processor (or parser) follows the W3C
XML specification (rev REC-xmI-19980210) and included the required behavior of
an XML processor in terms of how it must read XML data and the information it
must provide to the application.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for this PLSQL XML parser:

« A parse tree which can be accessed by DOM APIs is built
« The parser is validating if a DTD is found, otherwise it is non-validating

« Errors are not recorded unless an error log is specified; however, an application
error will be raised if parsing fails

The types and methods described in this document are made available by the
PLSQL package xmlparser.

XDK for PL/SQL: Specifications B-5

XML Parser for PL/SQL Specifications

« Integrated Document Object Model (DOM) Level 1.0 API

Supported Character Set Encodings
Supports documents in the following Oracle database encodings:

Default:

BIG 5
EBCDIC-CP-*
EUC-IP
EUC-KR
GB2312
1SO-2022-JP
1SO-2022-KR
1SO-8859-1t0 -9
KOI8-R
Shift_JIS
US-ASCII
UTF-8

UTF-8 is the default encoding if none is specified. Any other ASCII or

EBCDIC based encodings that are supported by the Oracle 9i database may be used.

Requirements
Oracle9i database with the Java option enabled.

Online Documentation

Documentation for Oracle XML Parser for PL/SQL is located in the doc directory in
your install area and also in Oracle9i XML API Reference - XDK and Oracle XML DB.

Release Specific Notes

The Oracle XML parser for PL/SQL is an early adopter release and is written in
PL/SQL and Java. It will check if an XML document is well-formed and, optionally,
if it is valid. The parser will construct an object tree which can be accessed through
PL/SQL interfaces.

B-6 Oracle9/ XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL Specifications

Standards Conformance
The parser conforms to the following standards:

« W3C recommendation for Extensible Markup Language (XML) 1.0 at
http://www.w3.0rg/TR/1998/REC-xmI-19980210

« W3C recommendation for Document Object Model Level 1 1.0 at
http://www.w3.0org/ TR/REC-DOM-Level-1/

The parser currently does not currently have SAX or Namespace support. These
will be made available in a future version.

Error Recovery

The parser also provides error recovery. It will recover from most errors and
continue processing until a fatal error is encountered.

Important note: The contents of both the Windows and UNIX versions are identical.
They are simply archived differently for operating system compatibility and your
convenience.

See Also:
=« Oracle9i XML API Reference - XDK and Oracle XML DB
« Chapter 8, "XML SQL Utility (XSU)"

« http://otn.oracle.com/tech/xm |

XDK for PL/SQL: Specifications B-7

XML Parser for PL/SQL Specifications

B-8 Oracle9/ XML Developer’s Kits Guide - XDK

Glossary

access control entry (ACE)
An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a
given resource Or resources.

ACE

Access Control Entry. See access control entry.

ACL
Access Control List. See access control list.

API
Application Program Interface. See application program interface.

application program interface (API)

A set of public programmatic interfaces that consist of a language and message
format to communicate with an operating system or other programmatic
environment, such as databases, Web servers, JVMs, and so forth. These messages
typically call functions and methods available for application development.

application server

A server designed to host applications and their environments, permitting server
applications to run. A typical example is OAS, which is able to host Java, C, C++,
and PL/SQL applications in cases where a remote client controls the interface. See
also Oracle Application Server.

Glossary-1

Glossary-2

attribute

A property of an element that consists of a name and a value separated by an equals
sign and contained within the start-tags after the element name. In this example,
<Price units="USD’>5</Price> , units is the attribute and USD s its value,
which must be in single or double quotes. Attributes may reside in the document or
DTD. Elements may have many attributes but their retrieval order is not defined.

BC4J

Business Components for Java, a J2EE application development framework that
comes with JDeveloper. BC4lJ is an object-relational mapping tool that implements
J2EE Design Patterns.

BFILES

External binary files that exist outside the database tablespaces residing in the
operating system. BFILES are referenced from the database semantics, and are also
known as External LOBs.

Binary Large Object (BLOB)

A Large Object datatype whose content consists of binary data. Additionally, this
data is considered raw as its structure is not recognized by the database.

BLOB
See Binary Large Obiject.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods
and services to each other. The software infrastructure to enable this is referred to as
an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the
selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues.
The second process then calls the first as a result of an action, value, or other event.
This technique is used in most programs that have a user interface to allow
continuous interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the
database to understand and manipulate a new datatype. Cartridges interface
through the Extensibility Framework within Oracle 8 or later. Oracle Text is such a
cartridge, adding support for reading, writing, and searching text documents stored
within the database.

Cascading Style Sheets
A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web
documents.

CDATA
See character data.

CDF

Channel Definition Format. Provides a way to exchange information about channels
on the internet.

CGl
See Common Gateway Interface.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This
allows for the inclusion of characters that would otherwise have special functions,
such as &, <, >, and so on. CDATA sections can be used in the content of an element
or in attributes.

child element

An element that is wholly contained within another, which is referred to as its
parent element. For example <Parent><Child></Child></Parent> illustrates a
child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have
corresponding functionality. In the case of the XML Class Generator, the input file is
a DTD and the output is a series of classes that can be used to create XML
documents conforming with the DTD.

Glossary-3

Glossary-4

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it
needs to run applications.

client/server

The term used to describe the application architecture where the actual application
runs on the client but accesses data or other external processes on a server across a
network.

Character Large Object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the
database character set. A CLOB may be indexed and searched by the Oracle Text
search engine.

CLOB
See Character Large Object.

command line

The interface method in which the user enters in commands at the command
interpreter’s prompt.

Common Gateway Interface (CGI)

The programming interfaces enabling Web servers to execute other programs and
pass their output to HTML pages, graphics, audio, and video sent to browsers.

Common Object Request Broker APl (CORBA)

An Object Management Group standard for communicating between distributed
objects across a network. These self-contained software modules can be used by
applications running on different platforms or operating systems. CORBA objects
and their data formats and functions are defined in the Interface Definition
Language (IDL), which can be compiled in a variety of languages including Java, C,
C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create
code that can be easily ported to virtually any platform and operating system.

Content

The body of a resource is what you get when you treat the resource like a file and
ask for its contents. Content is always an XMLType.

CORBA
See Common Object Request Broker API.

CSS
See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD
specifies information such as the database name or the Oracle Net service name, the
ORACLE_HOMdirectory, and Globalization Support configuration information
such as language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester
embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBURITYPE

The Oracle9i datatype used for storing instances of the datatype that permits
XPath-based navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML
document. For example, <IDOCTYPE person SYSTEM "person.dtd"> declares
the root element name as person and an external DTD as person.dtd in the file
system. Internal DTDs are declared within the DOCTYPE declaration.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables
programmatic access to its elements and attributes. The DOM object and its
interface is a W3C recommendation. It specifies the Document Object Model of an
XML Document including the APIs for programmatic access. DOM views the
parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are
text files that derive their format from SGML and can either be included in an XML
document by using the DOCTYPE element or by using an external file through a
DOCTYPE reference.

Glossary-5

Glossary-6

DOM
See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating
XML documents stored in Oracle XML DB, Oracle XML DB uses a data integrity
mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML
documents are identical to the original XML document, particularly for purposes of
DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute,
SYS_XDBPD$

DTD
See Document Type Definition.

EDI
Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other
elements such as children, data, and attributes and their values. Elements are
identified by start-tags, such as <name>, and end-tags, such as </name>, or in the
case of empty elements, <name/> .

empty element

An element without text content or child elements. It can only contain attributes
and their values. Empty elements are of the form <name/> or <name></name>,
where there is no space between the tags.

Enterprise Java Bean (EJB)

An independent program module that runs within a JVM on the server. CORBA
provides the infrastructure for EJBs, and a container layer provides security,
transaction support, and other common functions on any supported server.

empty element

An element without text content or child elements. It may only contain attributes
and their values. Empty elements are of the form <name/> or <name></name>
where there is no space between the tags.

entity

A string of characters that may represent either another string of characters or
special characters that are not part of the document’s character set. Entities and the
text that is substituted for them by the parser are declared in the DTD.

existnode

The SQL operator that returns a TRUE or FALSE based upon the existence of an
XPath within an XMLType.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web
Consortium (W3C) using a subset of the SGML syntax and designed for Internet
use.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents.
There are two W3C recommendations covering XSL stylesheets—XSL
Transformations (XSLT) and XSL Formatting Objects (XSLFO).

(W3C) eXtensible Stylesheet Language. XSL consists of two W3C recommendations:
XSL Transformations for transforming one XML document into another and XSL
Formatting Objects for specifying the presentation of an XML document. XSL is a
language for expressing stylesheets. It consists of two parts:

« A language for transforming XML documents (XSLT), and
« An XML vocabulary for specifying formatting semantics (XSLFO).

An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying
formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a
transformation language to convert one XML document into another.

extract
The SQL operator that retrieves fragments of XML documents stored as XMLType.

Glossary-7

Folder

A directory or node in the Oracle XML DB repository that contains or can contain a
resource. A folder is also a resource.

Foldering

A feature in Oracle XML DB that allows content to be stored in a hierarchical
structure of resources.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a
formatting object tree and then renders the resulting pages to a specified output.
Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree
representation), Print, AWT, MIF and TXT. The primary output target is PDF.
functional index

A database index that, when created, permits the results of known queries to be
returned much more quickly.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType
datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB
hierarchical index, which provides a fast mechanism for evaluating path names
similar to the directory mechanisms used by operating system filesystems. Any
pathname-based access will normally use the Oracle XML DB hierarchical index.

HTML
See Hypertext Markup Language.

HTTP
See Hypertext Transport Protocol.

HTTPURITYPE

The datatype used for storing instances of the datatype that permits XPath-based
navigation of database schemas in remote databases.

Glossary-8

hypertext

The method of creating and publishing text documents in which users can navigate
between other documents or graphics by selecting words or phrases designated as
hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves
as the basis of the World Wide Web. The next version of HTML will be called
XHTML and will be an XML application.

Hypertext Transport Protocol (HTTP)

The protocol used for transporting HTML files across the Internet between Web
servers and browsers.

IAS

See Oracle9iAS.

IDE

See Integrated Development Environment.

IFS

See Internet File System.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType
datatypes for searching for specific text within a specific XPath.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation
of an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aide in the development of software run from a
single user interface. JDeveloper is an IDE for Java development as it includes an
editor, compiler, debugger, syntax checker, help system, and so on, to permit Java
software development through a single user interface.

Glossary-9

Glossary-10

interMedia

The collection of complex datatypes and their access in Oracle. These include text,
video, time-series, and spatial data.

Internet File System (/FS)

The Oracle file system and Java-based development environment that either runs
inside the database or on a middle tier and provides a means of creating, storing,
and managing multiple types of documents in a single database repository.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as
the Internet.

J2EE
See Java 2 Platform, Enterprise Edition.

Java

A high-level programming language developed and maintained by Sun
Microsystems where applications run in a virtual machine known as a JVM. The
JVM is responsible for all interfaces to the operating system. This architecture
permits developers to create Java applications and applets that can run on any
operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)
The Java platform (Sun Microsystems) that defines multi-tier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is
independent of a particular XML processor implementation.

JavaBean

An independent program module that runs within a JVM, typically for creating
user interfaces on the client. Also known as Java Bean. The server equivalent is
called an Enterprise JavaBean (EJB). See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through
the SQL language. JDBC drivers are written in Java for platform independence but
are specific to each database.

Java Developer’s Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code
for a version of Java that makes up a Java development environment. JDKs are
designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface

A programming interface from Sun for connecting Java programs to naming and
directory services such as DNS, LDAP and NDS. Oracle XML DB Resource API for
Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a
platform. JREs are designated by versions, and Java 2 is used to designate versions
from 1.2 onward.

Java Server Page (JSP)

An extension to the servlet functionality that enables a simple programmatic
interface to Web pages. JSPs are HTML pages with special tags and embedded Java
code that is executed on the Web server or application server providing dynamic
functionality to HTML pages. JSPs are actually compiled into servlets when first
requested and run in the server’s JVM.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine
language of the platform and runs it. JVMs can run on a client, in a browser, in a
middle tier, on an intranet, on an application server such as Oracle9iAS, or in a
database server such as Oracle.

JAXP
See Java API for XML Processing.

JDBC
See Java Database Connectivity.

JDeveloper

Oracle’s Java IDE that enables application, applet, and servlet development and
includes an editor, compiler, debugger, syntax checker, help system, an integrated
UML class modeler, and so on. JDeveloper has been enhanced to support
XML-based development by including the Oracle XDK for Java, integrated for easy
use along with XML support, in its editor.

Glossary-11

Glossary-12

JDK
See Java Developer’s Kit.

JNDI

JServer

The Java Virtual Machine that runs within the memory space of the Oracle
database. In Oracle 8i Release 1 the JVM was Java 1.1 compatible while Release 2 is
Java 1.2 compatible.

JVM

See Java virtual machine.

LAN
See local area network.

Large Object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External
LOBs. Internal LOBs include BLOBs, CLOBS, and NCLOBs while External LOBs
include BFILES. See also BFILES, Binary Large Object, Character Large Object.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when
the Java application first asks for it. This saves typical type conversion bottlenecks
with JDBC.

listener

A separate application process that monitors the input process.

LOB
See Large Object.

local area network (LAN)

A computer communication network that serves users within a restricted
geographical area. LANS consist of servers, workstations, communications
hardware (routers, bridges, network cards, and so on) and a network operating
system.

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking.
When a name is added to a collection, an exclusive write lock is not placed on the
collection, only that name within the collection is locked. The name modification is
put on a queue, and the collection is locked and modified only at commit time.

namespace

The term to describe a set of related element names or attributes within an XML
document. The namespace syntax and its usage is defined by a W3C
Recommendation. For example, the <xsl:apply-templates/ > element is identified as
part of the XSL namespace. Namespaces are declared in the XML document or DTD
before they are used be using the following attribute syntax:
xmins:xsl="http://www.w3.org/TR/WD-xsl".

national Character Large Object (NCLOB)
The LOB datatype whose value is composed of character data corresponding to the
database national character set.

NCLOB
See National Character Large Object.

node
In XML, the term used to denote each addressable entity in the DOM tree.

Notation Attribute Declaration

In XML, the declaration of a content type that is not part of those understood by the
parser. These types include audio, video, and other multimedia.

N-tier

The designation for a computer communication network architecture that consists
of one or more tiers made up of clients and servers. Typically two-tier systems are
made up of one client level and one server level. A three-tier system utilizes two
server tiers, typically a database server as one and a Web or application server along
with a client tier.

OAG
Open Applications Group.

Glossary-13

Glossary-14

OAl

Oracle Applications Integrator. Runtime with Oracle iStudio development tool that
provides a way for CRM applications to integrate with other ERP systems besides
Oracle ERP. Specific APIs must be "message-enabled.” It uses standard extensibility
hooks to generate or parse XML streams exchanged with other application systems.
In development.

OASIS

See Organization for the Advancement of Structured Information.

Object View

A tailored presentation of the data contained in one or more object tables or other
views. The output of an Object View query is treated as a table. Object Views can be
used in most places where a table is used.

object-relational

The term to describe a relational database system that can also store and manipulate
higher-order data types, such as text documents, audio, video files, and
user-defined objects.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on
clients and between objects on servers. ORBs pass the action request and its
parameters to the object and return the results back. Common implementations are
JCORB and EJBs. See also CORBA.

OCT
See Ordered Collection in Tables.

0C4J

Oracle9iAS Containers for J2EE, a J2EE deployment tool that comes with
JDeveloper.

OE
Oracle Exchange.

olIs
See Oracle Integration Server.

Oracle9iAS (IAS)

The Oracle application server that integrates all the core services and features
required for building, deploying, and managing high-performance, n-tier,
transaction-oriented Web applications within an open standards framework.
Oracle Integration Server (OIS)

The Oracle product that serves as the messaging hub for application integration.
OIS contains an Oracle 8i database with AQ and Oracle Workflow and interfaces to
applications using Oracle Message Broker to transport XML-formatted messages
between them.

ORACLE_HOME

The operating system environmental variable that identifies the location of the
Oracle database installation for use by applications.

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as
an Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to
do SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle
database server. It is based on the W3C XML data model.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information
standards through conferences, seminars, exhibits, and other educational events.
XML is a standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child
element. For example, <Parent><Child></Child></Parent> illustrates a parent
element wrapping its child element.

Glossary-15

Glossary-16

parser

In XML, a software program that accepts as input an XML document and
determines whether it is well-formed and, optionally, valid. The Oracle XML Parser
supports both SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag
or nonparsed data.

pathname

The name of a resource that reflects its location in the repository hierarchy. A
pathname is composed of a root element (the first /), element separators (/) and
various sub-elements (or path elements). A path element may be composed of any
character in the database character set except ("\", "/"). These characters have a
special meaning for Oracle XML DB. Forward slash is the default name separator in
a path name and backward slash may be used to escape characters.

PCDATA
See Parsed Character Data.

PDA
Personal Digital Assistant, such as a Palm Pilot.

PL/SQL

The Oracle procedural database language that extends SQL. It is used to create
programs that can be run within the database.

principal

An entity that may be granted access control privileges to an Oracle XML DB
resource. Oracle XML DB supports as principals:

« Database users.

« Database roles. A database role can be understood as a group, for example, the
DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the
database's general authentication model.

prolog

The opening part of an XML document containing the XML declaration and any
DTD or other declarations needed to process the document.

PUBLIC
The term used to specify the location on the Internet of the reference that follows.

RDF
Resource Definition Framework.

renderer
A software processor that outputs a document in a specified format.

repository

The set of database objects, in any schema, that are mapped to path names. There is
one root to the repository (/") which contains a set of resources, each with a
pathname.

resource
An object in the repository hierarchy.

resource name

The name of a resource within its parent folder. Resource names must be unique
(potentially subject to case-insensitivity) within a folder. Resource names are always
in the UTF8 character set (NVARCHAR).

result set
The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is
between the optional prolog and epilog. An XML document is only permitted to
have one root element.

SAX
See Simple API for XML.

Glossary-17

Glossary-18

schema
The definition of the structure and data types within a database. It can also be used
to refer to an XML document that support the XML Schema W3C recommendation.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key
form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before
sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and
performs processing on that server. Servlets are the Java equivalent to CGI scripts.

session
The active connection between two tiers.

SGML
See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based
applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed
environment.

SOAP

See Simple Object Access Protocol.
SQL

See Structured Query Language.

SSI
See Server-side Include.

SSL
See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An 1SO standard for defining the format of a text document implemented using
markup and DTDs.

Structured Query Language (SQL)
The standard language used to access and process data in a relational database.

Stylesheet

In XML, the term used to describe an XML document that consists of XSL
processing instructions used by an XSL processor to transform or format an input
XML document into an output one.

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The term used to specify the location on the host operating system of the reference
that follows.

SYS_XMLGEN

The native SQL function that returns as an XML document the results of a passed-in
SQKL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags
start with < and end with >. In XML, there are start-tags (<name>), end-tags
(</name>), and empty tags (<name/>).

TCP/IP

See Transmission Control Protocol/Internet Protocol.

thread

In programming, a single message or process execution path within an operating
system that supports concurrent execution (multithreading).

Glossary-19

Glossary-20

Transmission Control Protocol/Internet Protocol (TCP/IP)

The communications network protocol that consists of the TCP which controls the
transport functions and IP which provides the routing mechanism. It is the standard
for Internet communications.

Transviewer

The Oracle term used to describe the Oracle XML JavaBeans included in the XDK
for Java.

TransXUtility

TransXUltility is a Java API that simplifies the loading of translated seed data and
messages into a database.

uDDI

See Universal Description, Discovery and Integration.

UIX
See User Interface XML.

Uniform Resource Identifier (URI)
The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLSs are
used by browsers to navigate the World Wide Web and consist of a protocol prefix,
port number, domain name, directory and subdirectory names, and the file name.
For example http://technet.oracle.com:80/tech/xml/index.htm specifies the
location and path a browser will travel to find OTN’s XML site on the World Wide
Web.

Universal Description, Discovery and Integration (UDDI)

This specification provides a platform-independent framework using XML to
describe services, discover businesses, and integrate business services on the
Internet.

URI

See Uniform Resource Identifier.

URL
See Uniform Resource Locator.

user interface (Ul)
The combination of menus, screens, keyboard commands, mouse clicks, and

command language that defines how a user interacts with a software application.

User Interface XML (UIX)
A set of technologies that constitute a framework for building web applications.

valid

The term used to refer to an XML document when its structure and element content
is consistent with that declared in its referenced or included DTD.

W3C

See World Wide Web Consortium (W3C).

WAN
See wide area network.

WebDAV
See World Wide Web distributed authoring and versioning.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate
cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings,
and deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML
version declared in its XML declaration. This includes having a single root element,
properly nested tags, and so forth.

wide area network (WAN)

A computer communication network that serves users within a wide geographic
area, such as a state or country. WANSs consist of servers, workstations,

Glossary-21

Glossary-22

communications hardware (routers, bridges, network cards, and so on), and a
network operating system.

Working Group (WG)

The committee within the W3C that is made up of industry members that
implement the recommendation process in specific Internet technology areas.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the
World Wide Web. It is located at www.w3c.org.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on
the Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.

Wrapper

The term describing a data structure or software that wraps around other data or
software, typically to provide a generic or object interface.

WSDL

See Web Services Description Language.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data.
XDBbinary elements are stored in the repository when completely unstructured
binary data is uploaded into Oracle XML DB.

XDK
See XML Developer’s Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks
in XML documents. These rules are being developed by the XML Linking Group
under the W3C recommendation process. This is one of the three languages XML
supports to manage document presentation and hyperlinks (XLink, XPointer, and
XPath).

XML
See eXtensible Markup Language.

XML Developer’s Kit (XDK)

The set of libraries, components, and utilities that provide software developers with
the standards-based functionality to XML-enable their applications. In the case of
the Oracle XDK for Java, the kit contains an XML parser, an XSLT processor, the
XML Class Generator, the Transviewer JavaBeans, and the XSQL Servlet.

XML Gateway

A set of services that allows for easy integration with the Oracle e-Business Suite to
create and consume XML messages triggered by business events.

XML Query

The W3C'’s effort to create a standard for the language and syntax to query XML
documents.

XML Schema

The W3C'’s effort to create a standard to express simple data types and complex
structures within an XML document. It addresses areas currently lacking in DTDs,
including the definition and validation of data types. Oracle XML Schema Processor
automatically ensures validity of XML documents and data used in e-business
applications, including online exchanges. It adds simple and complex datatypes to
XML documents and replaces DTD functionality with an XML Schema definition
XML document.

XMLType

An XMLType column stores XML data using an underlying CLOB column in the
database.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational
data in XML format. This is especially useful if, for example, your legacy data is not
in XML but you need to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL
and XPointer. XPath is currently a W3C recommendation. It specifies the data
model and grammar for navigating an XML document utilized by XSLT, XLink and
XML Query.

Glossary-23

XPointer

The term and W3C recommendation to describe a reference to an XML document
fragment. An XPointer can be used at the end of an XPath-formatted URI. It
specifies the identification of individual entities or fragments within an XML
document using XPath navigation.

XSL
See eXtensible Stylesheet Language.

XSLFO
See eXtensible Stylesheet Language Formatting Object.

XSLT
See eXtensible Stylesheet Language Transformation.

XSQL

The designation used by the Oracle Servlet providing the ability to produce
dynamic XML documents from one or more SQL queries and optionally transform
the document in the server using an XSL stylesheet.

Glossary-24

A

access control entry, definition, Glossary-1
access control list, definition, Glossary-1
ACE, definition, Glossary-1
ACL, definition, Glossary-1
adding XML document as a child, 4-67
API, definition, Glossary-1
application program interface (API),
definition, Glossary-1
Application Program Interface,
definition, Glossary-1
application server, definition, Glossary-1
asynchronous parsing, 10-5
attribute, definition, Glossary-2
automatic population, 7-30

B
B2B

definition, Glossary-2
B2C

definition, Glossary-2
BC4J

building XSQL clients, 25-15
framework, 25-7
JDeveloper, 25-7
XSQL clients, 25-15
BC4J, definition, Glossary-2
binary data, 4-70
Binary Large Object, definition, Glossary-2
binding
clearBindValues(), 23-6
setBindValue, 23-2

Index

values to queries in XSU PL/SQL API, 23-2
BLOB, definition, Glossary-2
Built-in Action Handler, 9-73
Built-in Action Handler, XSQL, 9-73
Business Components for Java

definition, Glossary-2

XSQL clients, 25-15
Business-to-Business, Glossary-2
Business-to-Consumer, definition, Glossary-2

C

C Parser, 13-1
C++ Parser, 16-1
callback, definition, Glossary-2
cartridge, definition, Glossary-3
Cascading Style Sheets, definition, Glossary-3,
Glossary-5
case-sensitivity, parser, 4-50
CDATA Section, 4-51
CDATA, definition, Glossary-3
Channel Definition Format, definition, Glossary-3
character sets
XML Parser for Java, supported by, A-3
XML Schema Processor for Java, supported
by, 6-6
characters, special
inserting in XML documents, 4-73
Class Generator
definition, Glossary-3
forJava, 7-2
complexType, 7-4
generate() method, 7-5
oracg, 7-3

Index-1

SchemaClassGenerator class, 7-5
simpleType, 7-4
using with DTDs, 7-8
XML Schema, 7-4
Java FAQs, 7-29
XML C++, 19-1
Class Generators
for Java, explained, 7-30
classes
CGXSDElement, 7-7
DOMBuilder(), 10-5
DTDClassGenerator(), 7-8
SchemaClassGenerator(), 7-5
setSchemaValidationMode(), 6-9
XMLTreeView(), 10-15
CLASSPATH, 9-16
configuring to run XSU, 8-17
definition, Glossary-4
settings for class generator for Java, 7-30
clearBindValues(), 23-6
clearUpdateColumnNames(), 23-10
client-server, definition, Glossary-4
CLOB, definition, Glossary-4
CLOBs, XML in, 20-21
command line interface
oracg, 7-3
oraxml, 5-6
command line utilities
oracg, 7-3
Common Gateway Interface (CGl),
definition, Glossary-4
Common Object Request Broker API,
definition, Glossary-4
Common Oracle Runtime Environment,
definition, Glossary-4
compression of XML, 4-10
connecting
to a database with a thin driver, 8-25
to the database, 8-24
Connection Definitions, 9-17
Content, definition, Glossary-4
context, creating one in XSU PL/SQL API, 23-15
CORBA, definition, Glossary-4
CORE, definition, Glossary-4
creating anode, 4-55

Index-2

creating context handles
getCtx, 23-2

D

DAD, definition, Glossary-5
data compression, XML Parser for Java, 4-10

Database Access Descriptor, definition, Glossary-5

datagram, definition, Glossary-5
DB Access Bean, 10-4
DBMS_XMLQuery

bind, 23-2

clearBindValues(), 23-6

getXMLClob, 23-6
DBMS_XMLQuery(), 23-2
DBMS_XMLSave, 23-7

deleteXML, 23-8

getCtx, 23-7

insertXML, 23-8

updateXML, 23-8
DBMS_XMLSave(), 23-7
DBURITYPE, definition, Glossary-5
DBViewer Bean, 10-4
Default SQL to XML Mapping, 8-8
delete

using XSU, 8-16, 8-43
delete processing, 8-43, 23-12
development tools, 1-3
differ (XMLDiff) bean, 10-32
DocType Node, Creating, 4-56
DOCTYPE, definition, Glossary-5
document clones in multiple threads, 4-63
Document Object Model, definition, Glossary-5

Document Type Definition, definition, Glossary-5

documents
C, 1-22
C++, 1-24
Java, 1-20
PL/SQL, 1-26
DOM
API, 4-55
definition, Glossary-5
interface, 21-2
tree-based API, 4-8
using API, 20-23

DOM and SAX APIs, 4-7,13-6, 16-7
guidelines for usage, 4-9
DOM fidelity, definition, Glossary-6
DOMBuilder Bean, 10-3, 10-5
asynchronous parsing, 10-5
DOMException when Setting Node Value, 4-61
DOMNamespace() class, 4-22
domsample, 20-6
DTD
caching, 4-48
definition, Glossary-5
limitations, 6-3
using with Class Generator for Java, 7-8

E

EJB, definition, Glossary-6
Electronic Data Interchange, definition, Glossary-6
element, definition, Glossary-6
elements
complexType, 7-4
simpleType, 7-4
empty element, definition, Glossary-6
Enterprise Java Bean, definition, Glossary-6
entity references, 4-73
entity, definition, Glossary-7
errors when parsing a document, 20-32
errors, HTML, 5-13
existnode, definition, Glossary-7
eXtensible Stylesheet Language Formatting Object,
definition, Glossary-7
eXtensible Stylesheet Language Transformation,
definition, Glossary-7
eXtensible Stylesheet Language,
definition, Glossary-7
extract, definition, Glossary-7

F

FAQ, 1-28
JDeveloper, 25-9
XML applications, 24-15
XSU, 8-46, 23-16
first child node’s value, 4-59
Folder, definition, Glossary-8

Foldering, definition, Glossary-8
FOP
FAQ, 9-90
serializer, 9-53
serializer to produce PDF, 9-64
FOP, Apache, xxxviii
FOP, definition, Glossary-8
Frequently Asked Questions
Class Generator for Java, 7-29
XML Parser for PL/SQL, 20-16
XSQL Servlet, 9-79
functional index, Glossary-8
further references, 1-41

G

generated XML, 1-28
customizing, 8-12
generating
simpleType element classes, 7-7
top level complexType element classes, 7-7
generating XML, 8-17, 8-32
using DBMS_XMLQuery, 23-2
using XSU command line, getXML, 8-17
getCtx, 23-2,23-7
getDocType(), 7-8
getNodeValue(), 20-34
getXML, 8-17
getXMLClob, 23-6

H

HASPATH, definition, Glossary-8
hierarchical indexing, definition, Glossary-8
hierarchical mapping, 4-80

HP/UX, 4-82

HTML
definition, Glossary-9
errors, 5-13
parsing, 20-32

HTTP

definition, Glossary-9
HTTPURITYPE, definition, Glossary-8
Hypertext Markup Language,

definition, Glossary-9

Index-3

Hypertext Transport Protocol,
definition, Glossary-9
hypertext, definition, Glossary-9

iAS, definition, Glossary-15
IDE, definition, Glossary-9
IIOP, definition, Glossary-10
INPATH, definition, Glossary-9
insert, XSU, 8-15
inserting special characters into XML, 4-73
inserting XML
using XSU, 8-38
insertXML, 23-8
installing
class generator for Java, 7-30
instantiate, definition, Glossary-9
Integrated Development Environment,
definition, Glossary-9
interMedia, definition, Glossary-10
Internet File System, definition, Glossary-10

J

Java 2 Platform, Enterprise Edition,
definition, Glossary-10
Java API for XML Processing (JAXP),
definition, Glossary-10
Java Class Generator, 7-1
Java Database Connectivity,
definition, Glossary-10
Java Naming and Directory Interface,
definition, Glossary-11
Java Runtime Environment,
definition, Glossary-11
Java, definition, Glossary-10
JavaBean, definition, Glossary-10
JavaBeans, 1-11
JAVASYSPRIV, granting, 4-77
JAXP, Glossary-11
examples, 4-37
JAXP (Java API for XML Processing), 4-37
JDBC driver, 8-24
JDBC, definition, Glossary-10, Glossary-11

Index-4

JDeveloper, 22-1,23-1, 25-1, 26-1
3.2, 24-2

BC4J, 25-7
definition, Glossary-11
FAQ, 24-15

introduction, 24-2
mobile application, 25-9
support for XDK for JavaBeans, 10-2
using XSQL servlet from, 24-12
what’s needed, 24-7
XML features, 24-9
DK, 4-71
definition, Glossary-11
JRE, definition, Glossary-11
JServer(JVM) Option, 20-20
JServer, definition, Glossary-12
JSP, definition, Glossary-11
JVM, 20-20
definition, Glossary-11
JVM, definition, Glossary-12

K

keepObjectOpen(), 8-30, 23-4

L

LAN, definition, Glossary-12

lazy type conversions, definition, Glossary-12

Linux, 20-25

listener, definition, Glossary-12

LOB, definition, Glossary-12

local area network, definition, Glossary-12

M

mapping
hierarchical, 4-80
primer, XSU, 8-8
maxRows, 8-29
memory errors, 20-22
Merging XML Documents, 4-75
method
getDocument(), DOMBuilder Bean, 10-6
methods

addXSLTransformerListener(), 10-11
DOMBuilder Bean, 10-6
domBuilderError(), 10-6
DOMBuilderOver(), 10-6
domBuilderStarted(), 10-6
generate(), 7-5,7-8
getDocType(), 7-8
getPreferredSize(), TreeViewer Bean

(XML), 10-15
setType, 7-6
setXMLDocument(doc), 10-15
updateUl(), TreeViewer Bean (XML),
mobile application
JDeveloper, 25-9
multiple outputs, 5-20
multiple XML documents, delimiting, 4-74

10-15

N

name-level locking, definition,
namespace
feature in XML Class Generator for Java, 7-4
namespace, definition, Glossary-13
namespaces
XML, 4-5
national character Large Object,
definition, Glossary-13
NCLOB, definition, Glossary-13
no rows exception, 8-35
node, definition, Glossary-13
NOTATION, definition, Glossary-13
N-tier, definition, Glossary-13

Glossary-13

O

OAG, definition,

OAl, definition, Glossary-14

OASIS, definition, Glossary-15

Object View, definition, Glossary-14

object-relational, definition, Glossary-14

0OC4)
definition,

Glossary-13

Glossary-14
OE, definition, Glossary-14
OIS, definition, Glossary-15

Open Applications Group, definition, Glossary-13

ora
node-set, 5-10
output, 5-10

oracg, 7-3

oracg command line utility, 7-3

Oracle Application Server, definition, Glossary-15
Oracle Exchange

definition, Glossary-14
Oracle Integration Server, definition, Glossary-15
Oracle Text, 1-19
Oracle Text, definition, Glossary-15
Oracle XML DB, definition, Glossary-15
ORACLE_HOME, definition, Glossary-15

oracle.cabo.ui package, 26-4
OracleXML

putXML, 8-22

XSU command line, 8-17
OracleXMLNoRowsException, 8-45
OracleXMLQuery, 8-23
OracleXMLSave, 8-23,8-37, 8-38, 8-40, 8-43
OracleXMLSQLException, 8-45
oraxml, 5-6
oraxsl, 5-6

command line interfaces

oraxsl, 5-6
OraXSL Parser, 4-80
ORB, definition, Glossary-14
Ordered Collection in Tables,

definition, Glossary-15
out of memory errors, 20-22
Out Variable, 9-84
Output Escaping, 4-74

P

package oracle.cabo.ui, 26-4
paginating results, 8-29
parent element, definition, Glossary-15
parser case-sensitivity, 4-50
Parser for C, 13-1
Parser for C++, 16-1
Parser for Java, 4-1
constructor extension functions, 5-8
oraxsl command line interfaces
oraxsl, 5-6

Index-5

return value extension function, 5-9
validation modes, 4-5
Parser for PL/SQL, 20-1
parser, definition, Glossary-16
Parsers, XML, 4-2

parsing
errors, 20-32
HTML, 20-32
string, 4-72
URLs, 20-32

pathname, definition, Glossary-16
PCDATA, definition, Glossary-16
PDA, definition, Glossary-16
PDF results using FOP, 9-53
Personal Digital Assistant, definition, Glossary-16
PL/SQL
binding values in XSU, 23-6
definition, Glossary-16
generating XML with DBMS_XMLQuery, 23-2
parser, 20-1
XSU, 23-2
PL/SQL parser specifications, B-1
principal, definition, Glossary-16

processing
delete, 23-12
insert, 8-38

insert in PL/SQL, 23-8
update, 8-40, 23-10
prolog, definition, Glossary-17
properties
setGeneraterComments(), 7-8
setlavaPackage(string), 7-8
setOutputDirectory(string), 7-8
PUBLIC, definition, Glossary-17
putXML, 8-20

Q

quick references
XDK for Java, A-1
XDK for PL/SQL, B-1

R

renderer, definition, Glossary-17

Index-6

repository, definition, Glossary-17

Resource Definition Framework,
definition, Glossary-17

resource name, definition, Glossary-17

resource, definition, Glossary-17

result set objects, 8-32

result set, definition, Glossary-17

root element, definition, Glossary-17

root objects, creating multiple with class
generator, 7-30

S

SAX, 4-2

event -based API, 4-8
SAX API, 4-7,4-57,13-6, 16-7
SAX, definition, Glossary-18
SAXParser() class, 4-26
SAXSample.java, 4-58
schema, definition, Glossary-18
Schema, XML, definition, 4-71
SchemaClassGenerator, 7-5
Secure Sockets Layer, definition, Glossary-18
select

with XSU, 8-14
Server-Side Include (SSI), Glossary-18
Servlet Conditional Statements, 9-79
servlet, definition, Glossary-18
servlet, XSQL, 9-1
session, definition, Glossary-18
setBindValue, 23-2
setkeyColumn, 8-44
setkKeyColumn(), 23-13
setMaxRows, 23-4
setRaiseNoRowsException(), 23-5
setSkipRows, 23-4
setStylesheetHeader(), 23-6
setUpdateColumnName(), 23-10, 23-12
setUpdateColumnNames()

XML SQL Utility (XSU)

setUpdateColumnNames(), 8-42
SGML, definition, Glossary-19
Simple API for XML, definition, Glossary-18
Simple Object Access Protocol (SOAP),

definition, Glossary-18

simpleType, 7-4

generating element class, 7-7
skipRows, 8-29
SOAP

JDeveloper support for, 11-7

server, 11-6

what is, 11-2
SOAP, definition, Glossary-18
special characters, 4-72
SQL, definition, Glossary-19
storing XML, 8-37

using XSU command line, putXML, 8-20
storing XML in the database, 23-7
Stylesheet, definition, Glossary-19
stylesheets

XSU, 23-5
SYS_XMLAGG, definition, Glossary-19
SYS_XMLGEN, definition, Glossary-19
SYSTEM, definition, Glossary-19
System.out.primtin(), 4-72

T

tag, definition, Glossary-19
TCP/IP, definition, Glossary-20
thin driver
connecting XSU, 8-25
thread safety, 16-3
thread, definition, Glossary-19
Transviewer Beans, 10-1
Transviewer, definition, Glossary-20
TransX Utility, 1-18, 12-1
command-line syntax, 12-6
sample code, 12-8
TransXUTtility, definition, Glossary-20
Treeviewer Bean, 10-3,10-13
Tuning with XSQL, 9-59

U

uDDI, 11-3

Ul, definition, Glossary-21
UIX, 26-2

components, 26-4
features, 26-2

more information about, 26-8
technologies, 26-3
when not to use, 26-3
which technologies to use, 26-6
UlIX, definition, Glossary-21
Uniform Resource Identifier,
definition, Glossary-20
Uniform Resource Locator, definition, Glossary-20
update processing, 23-10
update, XSU, 8-15
updating
table using keyColumns, XSU, 8-41
using XSU, 8-40
upgrading
XDK for Java to Oracle9i, 5-2
URI, definition, Glossary-20
URL, definition, Glossary-20
usage techniques, 8-45
User Interface XML, 26-2
User Interface XML (UIX), definition, Glossary-21
user interface, definition, Glossary-21
useStyleSheet(), 23-6
UTF-16 Encoding, 4-65

\Y

valid, definition, Glossary-21
validating against XML schema, 4-70
validation
non-validating mode, 4-5
partial validation mode, 4-5
schema validation mode, 4-5
validating Mode, 4-5
value of a tag, obtaining, 4-77

w

W3C, definition, Glossary-22

WAN, definition, Glossary-21

Web Objects Gallery, 25-16

Web Request Broker, definition, Glossary-21
web services, 11-2

WebDAV, definition, Glossary-21, Glossary-22
web-to-go server, A-6

well-formed, definition, Glossary-21

Index-7

WG, definition, Glossary-22
wide area network, definition, Glossary-21
World Wide Web Consortium,
definition, Glossary-22
World Wide Web Distributed Authoring and
Versioning, definition, Glossary-22
Wrapper, definition, Glossary-22
WRB, definition, Glossary-21
WRONG_DOCUMENT_ERR, 4-60
wrong_document_err, 4-60
WSDL, 11-3

X

XDBbinary, definition, Glossary-22
XDK for C
installation, 3-2
XDK for C++
installation, 3-13
XDK for Java
globalization support, 2-16
installation, 2-2
XDK for Java Beans
installation, 2-17
XDK for PL/SQL
installation, 3-25
XDK for PL/SQL Toolkit, 20-17
XDK Version Numbers, 4-71
XLink, definition, Glossary-22
XML
good references, 4-81
serialization/compression, 4-10
XML applications, 22-1, 23-1, 25-1, 26-1
JDeveloper, 24-15
with JDeveloper, 24-11
XML C++ Class Generator, 19-1
XML Class Generator, 1-10
oracg utility, 7-3
XML Class Generator for Java, 7-2
XML components, 1-2
generating XML documents, 1-19
XML Compressor, 4-10
XML Developer’s Kit (XDK),
definition, Glossary-23
XML discussion forum, 13-2, 14-2

Index-8

XML document, added as a child, 4-67
XML documents, 1-20
XML Documents, Merging, 4-75
XML features
in JDeveloper 3.2, 24-9
XML Gateway, 1-19
XML in CLOBs, 20-21
XML Namespaces, 4-5
XML Parser
oraxml command line interface, 5-6
XML Parser for C, 13-1
sample programs, 13-9, 14-6
XML Parser for C++, 16-1, 16-2
XML Parser for Java
compression

XML data, using XML Parser for Java, 4-10

XML parser for Java
character sets, A-3
XML Parser for PL/SQL, 20-1
FAQs, 20-16
XML parsers, 1-8
XML Query, definition, Glossary-23
XML Schema
compared to DTD, 6-2
DTD limitations, 6-3
explained, 6-2
features, 6-3
processor for Java
how to run the sample program,
supported character sets, 6-6
usage, 6-8
processor for Java features , Oracle’s,
XML Schema, definition, Glossary-23
XML schema, definition, 4-71
XML SQL Utility (XSU), 1-16, 23-2

6-10

6-6

advanced techniques, exception handling

(PL/SQL), 23-16

binding values

PL/SQL API, 23-6
clearBindValues() with PL/SQL API,
command line usage, 8-17
connecting to the database, 8-24
connecting with a thin driver, 8-25
connecting with OCI* JDBC driver,
customizing generated XML, 8-12

23-6

8-24

DBMS_XMLQuery, 23-2
DBMS_XMLSave(), 23-7

deletes, 8-16

deleting from XML documents, 8-43
dependencies and installation, 8-4
explained, 8-2

for Java, 8-22

getXML command line, 8-17
getXMLClob, 23-6

how it works, 8-14

inserting with command line and putXML, 8-20

inserting XML into database, 8-38
inserts, 8-15
keepObjectOpen function, 8-30
mapping primer, 8-8
OracleXLIQuery API, 8-23
OracleXMLSave API, 8-23
putting XML back in database with
OracleXMLSave, 8-37
selects, 8-14
setKeycolumn function, 8-44
setRaiseNoRowsException(), 23-5
setting stylesheets, PL/SQL, 23-5
updates, 8-15
updating, 8-41
updating XML documents in tables, 8-40
XML SQL Utility XSU)
useStyleSheet(), 23-6
XML SQL Utility(XSU)
creating context handles with getCtx, 23-2
XML to Java Object Mapping, 7-30
XML Transviewer JavaBeans, 1-11,10-2
XML Tree, Traversing, 4-55
XML, definition, Glossary-7
xmlcg usage, 19-5
XMLDiff Bean, 10-32
XMLGEN, is deprecated. See DBMS_XMLQUERY
and DBMS_XMLSAVE, 8-4
XMLNode.selectNodes() Method, 4-56
XMLSourceView Bean, 10-3, 10-15
XMLTransformPanel() Bean, 10-4, 10-20
XMLType views, definition, Glossary-23
XPath
definition, Glossary-23
XPointer, definition, Glossary-24

XSL
good references, 4-81
XSL stylesheets

setStylesheetHeader() in XSU PL/SQL, 23-6

useStyleSheet() with XSU PL/SQL, 23-6
XSL Transformation (XSLT) Processor, 1-9,
XSL, definition, Glossary-7
XSLFO, definition, Glossary-7
xslsample, 20-7
XSLT, 4-4

ora

node-set built in extension, 5-10
output built in extension, 5-10

XSLTransformer bean, 10-9
XSLT Processor, 21-2
XSLT, definition, Glossary-7
XSLTransformer Bean, 10-3, 10-9
XSQL

action handler errors, 9-77

built-in action handler elements, 9-73

clients, building with BC4J, 25-15
XSQL Clients with BC4J, 25-15
XSQL Component Palette, 24-7
XSQL Page Processor, 1-12
XSQL servlet, 1-12,9-1,24-12

FAQs, 9-79
XSQL servlet specifications, A-6
XSQL, definition, Glossary-24
XSQLCommandLine Utility, 9-18
XSQLConfig.xml, 9-59
XSU, 1-16

client-side, 8-17

FAQ, 8-46,23-16

generating XML, 8-17

generating XML strings from a table,

example, 8-24

insert processing in PL/SQL, 23-8

mapping primer, 8-8

PL/SQL, 23-2

stylesheets, 23-5

usage guidelines, 8-8

using, 8-2

where you can run, 8-5

4-4,5-2

Index-9

Index-10

	Contents
	Send Us Your Comments
	Preface
	About this Guide
	How to Order this Manual
	Downloading Release Notes, Installation Guides, White Papers
	How to Access this Manual On-Line
	Conventions
	Documentation Accessibility

	What’s New in XDK?
	XDK Features Introduced with Oracle9i, Release 2 (9.2)
	XDK Features Introduced with Oracle9i, Release 1 (9.0.1)
	XDK Features Introduced with Oracle8i Release 3 (8.1.7)

	Part I� XML Developer’s Kits (XDK)
	1 Overview of XML Developer’s Kits and Components
	Oracle XML Components: Overview
	Development Tools and Other XML-Enabled Oracle9i Features
	XDK for Java
	XDK for JavaBeans
	XDK for C
	XDK for C++
	XDK for PL/SQL

	XML Parsers
	XSL Transformation (XSLT) Processor
	XML Class Generator
	XML Transviewer JavaBeans
	Oracle XSQL Page Processor and Servlet
	Servlet Engines That Support XSQL Servlet
	JavaServer Pages Platforms That Support XSQL Servlet

	Oracle XML SQL Utility (XSU)
	Generating XML from Query Results
	XML Document Structure: Columns Are Mapped to Elements

	TransX Utility
	Oracle Text
	XML Gateway
	Oracle XML Components: Generating XML Documents
	Using Oracle XML Components to Generate XML Documents: Java
	Using Oracle XML Components to Generate XML Documents: C
	Using Oracle XML Components to Generate XML Documents: C++
	Using Oracle XML Components to Generate XML Documents: PL/SQL
	Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
	Frequently Asked Questions About the XDK
	What XML Components Do I Need to Install?
	What Software Is Needed to Build an XML Application?
	XML Questions
	Are There XDK Utilities That Translate Data from Other Formats to XML?
	Can Oracle Generate a Database Schema from a Rational Rose Generated XML File?
	Does Oracle Offer Any Tools to Create and Edit XML Documents?
	How Can I Format XML Documents as PDF?
	How Do I Load a Large XML Document into the Database?
	Can SQL*Loader Support Nesting?

	Frequently Asked Questions About Previous Oracle Releases
	Can I Use Parsers from Different Vendors?
	Is There XML Support in Oracle Release 8.0.6?
	Can I Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4?
	If I Use Versions Prior to Oracle8i Can I Use Oracle XML Tools?
	Can I Create Magnetic Tape Files with Oracle XML?

	Frequently Asked Questions About Browsers that Support XML
	Which Browsers Support XML?

	Frequently Asked Questions About XML Standards
	Are There Advantages of XML Over EDI?
	What B2B Standards and Development Tools Does Oracle Support?
	What Is Oracle Corporation’s Direction Regarding XML?
	What Is Oracle Corporation’s Plans for XML Query?
	Are There Standard DTDs That We Can Use for Orders, Shipments, and So On?

	Frequently Asked Questions About XML, CLOBs, and BLOBs
	Is There Support for XML Messages in BLOBs?

	Frequently Asked Questions About Maximum File Sizes
	What Is the Maximum XML File Size When Stored in CLOBs?
	Are There Any Limitations on the Size of an XML File?
	What Is the Maximum Size for an XML Document?

	Frequently Asked Questions About Inserting XML Data into Tables
	What Do I Need to Insert Data Into Tables Using XML?

	Frequently Asked Questions About XML Performance in the Database
	Where Can I Find Information About the Performance of XML and Oracle?
	How Can I Speed Up the Record Retrieval in XML Documents?

	Frequently Asked Questions About Multiple National Languages
	How Do I Put Information in Chinese into XML?

	Frequently Asked Questions About Reference Material
	What Are Some Recommended XML and XSL Books?

	2 Getting Started with XDK for Java and JavaBeans
	Installation of the XDK for Java
	Installation Steps for XDK for Java
	What Are the XDK for Java Components?
	Environment Settings for XDK for Java
	XSU Setup
	XSQL Servlet Setup
	XDK for Java with Globalization Support
	XDK Dependencies

	Installation of the XDK for JavaBeans
	XDK for JavaBeans Components
	Setting Up the XDK for JavaBeans Environment
	XDK for JavaBeans with Globalization Support

	3 Getting Started with XDKs for C/C++ and PL/SQL
	Installation of XDK for C
	Getting the XDK for C
	UNIX Environment Setup
	Windows NT Environment Setup

	Installation of the XDK for C++
	Getting the XDK for C++
	Setting the UNIX Environment for C++
	Windows NT Environment Setup

	Installation of XDK for PL/SQL
	Setting the Environment for XDK for PL/SQL
	Installing XDK for PL/SQL into the Database
	Loading XDK for PL/SQL

	Part II� XDK for Java
	4 XML Parser for Java
	XML Parser for Java: Features
	XSL Transformation (XSLT) Processor
	Namespace Support
	Oracle XML Parsers Validation Modes

	Parsers Access XML Document’s Content and Structure
	DOM and SAX APIs
	DOM: Tree-Based API
	SAX: Event-Based API
	Guidelines for Using DOM and SAX APIs

	XML Compressor
	XML Serialization/Compression

	Running the XML Parser for Java Samples
	XML Parser for Java - XML Example 1: class.xml
	XML Parser for Java - XML Example 2: Using DTD employee — employee.xml
	XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml
	XML Parser for Java - XSL Example 1: XSL (iden.xsl)
	XML Parser for Java - DTD Example 1: (NSExample)

	Using XML Parser for Java: DOMParser() Class
	XML Parser for Java Example 1: Using the Parser and DOM API
	Comments on DOMParser() Example 1

	Using XML Parser for Java: DOMNamespace() Class
	XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java

	Using XML Parser for Java: SAXParser() Class
	XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
	XML Parser for Java Example 4: (SAXNamespace.java)
	oraxml - Oracle XML parser

	Using JAXP
	JAXP Example: (JAVAExamples.java)
	JAXP Example: (oraContentHandler.java

	Frequently Asked Questions About DTDs
	Why Can’t My Parser Find the DTD File?
	Can I Validate an XML File Using an External DTD?
	Does Oracle Perform DTD Caching?
	How Does the XML Parser for Java Recognize External DTDs?
	How Do I Load External DTDs from a JAR File?
	Can I Check the Correctness of an XML Document Using Their DTD?
	How Do I Parse a DTD Object Separately from My XML Document?
	Is the XML Parser Case-Sensitive?
	How Do I Extract Embedded XML from a CDATA Section?
	Why Am I Getting an Error When I Call DOMParser.parseDTD()?
	Is There a Standard Extension for External Entity References in an XML Document?

	Frequently Asked Questions About DOM and SAX APIs
	How Do I Use the DOM API to Count Tagged Elements?
	How Does the DOM Parser Work?
	How Do I Create a Node with a Value to Be Set Later?
	How Do I Traverse the XML Tree?
	How Do I Extract Elements from an XML File?
	Does a DTD Validate the DOM Tree?
	How Do I Find the First Child Node Element Value?
	How Do I Create DocType Node?
	How Do I Use the XMLNode.selectNodes() Method?
	How Does the SAX API Determine the Data Value?
	How Does SAXSample.java Call Methods?
	Does the DOMParser Use the org.xml.sax.Parser Interface?
	How Do I Create a New Document Type Node with DOM API?
	How Do I Query for First Child Node’s Value of a Certain Tag?
	Can I Generate an XML Document from Data in Variables?
	How Do I Use the DOM API to Print Data in the Element Tags?
	How Do I Build XML Files from Hash Table Value Pairs?
	XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild()
	Will WRONG_DOCUMENT_ERR Result from This Code Fragment?
	Why Are Only the Child Nodes Inserted?
	Why Do I Get DOMException when Setting Node Value?
	How Can I Force the SAX Parser to Not Discard Characters Following Whitespace?

	Frequently Asked Questions About Validation
	What Are the Rules for Locating DTDs?
	Can Multiple Threads Use a Single XSLProcessor/Stylesheet?
	Can I Use Document Clones in Multiple Threads?

	Frequently Asked Questions About Character Sets
	How Do I Parse iso-8859-1-encoded Documents with Special Characters?
	How Do I Parse XML Stored in NCLOB with UTF-8 Encoding?
	Is There Globalization Support Within XML?
	How Do I Parse a Document Containing Accented Characters?
	How Do I Store Accented Characters in an XML Document?

	Frequently Asked Questions: Adding an XML Document as a Child
	How Do I Add an XML Document as a Child to Another Element?
	How Do I Add an XML Document Fragment as a Child to an XML Document?

	Frequently Asked General Questions About XML Parser
	Why Do I Get an Error on Installing the XML Parser?
	How Do I Remove the XML Parser from the Database?
	What Does an XML Parser Do?
	How Do I Convert XML Files into HTML Files?
	Does the XML Parser Validate Against XML Schema?
	How Do I Include Binary Data in an XML Document?
	What Is XML Schema?
	Does Oracle Participate in Defining the XML/XSL Standard?
	How Do I Find XDK Version Numbers?
	Are Namespace and Schema Supported?
	Can I Use JDK 1.1.x with XML Parser for Java v2?
	How Do I Sort the Result Within the Page?
	Do I Need Oracle9i to Run XML Parser for Java?
	Can I Dynamically Set the Encoding in an XML File?
	How Do I Parse a String?
	How Do I Display an XML Document?
	How Do I Use System.out.println() and Special Characters?
	How Do I Insert Characters <, >, =, ’, ", and & in XML Documents?
	How Do I Use Special Characters in the Tags?
	How Do I Parse XML from Data of Type String?
	How Do I Extract Data from an XML Document into a String?
	Is Disabling Output Escaping Supported?
	Can I Delimit Multiple XML Documents with a Special Character?
	How Do I Use Entity References with the XML Parser for Java?
	Can I Divide and Store an XML Document Without a DDL Insert?
	In Querying, Can I Perform Hierarchical Searches Across XML Documents?
	How Do I Merge XML Documents?
	How Do I Find the Value of a Tag?
	How Do I Grant the JAVASYSPRIV Role to a User?
	How Do I Include an External XML File in Another XML File?
	Does the Parser Come with a Utility to View the Parsed Output?
	From Where Can I Download OraXSL, the Parser’s Command Line Interface?
	Does Oracle Support Hierarchical Mapping?
	What Good Books for XML/XSL Can You Recommend?
	Are There XML Developer Kits for the HP/UX Platform?
	How Do I Compress Large Volumes of XML Documents?
	How Do I Generate an XML Document Based on Two Tables?

	5 XSLT Processor for Java
	Using XML Parser for Java: XSLT Processor
	XSLT Processor for Java Example

	XSLT Processor for Java: Command-Line Interface, oraxsl
	oraxsl - Oracle XSL processor

	XML Extension Functions for XSLT Processing
	XSLT Processor Extension Functions: Introduction
	Static Versus Non-Static Methods
	Constructor Extension Function
	Return Value Extension Function
	Datatypes Extension Function
	Oracle XSLT Built-In Extensions: ora:node-set and ora:output

	Frequently Asked Questions About the XSLT Processor and XSL
	Why Am I Getting an HTML Error in XSL?
	Is the Output Method “html” Supported in the XSL Parser?
	Can I Prevent XSL from Returning a Meta-Tag in Netscape 4.0?
	How Do I Work Around a Display Bug in the Browser?
	Where Can I Get More Information on XSL Error Messages?
	How Do I Generate the HTML "Less Than" (<) Character?
	Why Does HTML “<“ Conversion Work in oraxsl But Not in XSLSample.java?
	Where Can I Find XSLT Examples?
	Where Can I Find a List of XSLT Features?
	How Do I Use XSL to Convert an XML Document to Another Form?
	Where Can I Find More Information on XSL?
	Can the XSL Processor Produce Multiple Outputs?

	6 XML Schema Processor for Java
	Introducing XML Schema
	How DTDs and XML Schema Differ
	XML Schema Features
	Oracle XML Schema Processor for Java Features
	Supported Character Sets
	What’s Needed to Run XML Schema Processor for Java
	XML Schema Processor for Java Directory Structure

	XML Schema Processor for Java Usage
	Modes for Schema Validation
	Using the XML Schema API

	How to Run the XML Schema for Java Sample Program
	Makefile for XML Schema Processor for Java
	XML Schema for Java Example 1: cat.xsd
	XML Schema for Java Example 2: catalogue.xml
	XML Schema for Java Example 3: catalogue_e.xml
	XML Schema for Java Example 4: report.xml
	XML Schema for Java Example 5: report.xsd
	XML Schema for Java Example 6: report_e.xml
	XML Schema for Java Example 7: XSDSample.java
	XML Schema for Java Example 8: XSDSetSchema.java
	XML Schema for Java Example 9: XSDLax.java
	XML Schema for Java Example 10: embeded_xsql.xsd
	XML Schema for Java Example 11: embeded_xsql.xml

	7 XML Class Generator for Java
	Accessing XML Class Generator for Java
	XML Class Generator for Java: Overview
	oracg Command Line Utility
	Class Generator for Java: XML Schema
	Namespace Features

	Using XML Class Generator for Java with XML Schema
	Generating Top Level Element Classes
	Generating Top Level ComplexType Element Classes
	Generating SimpleType Element Classes

	Using XML Class Generator for Java with DTDs
	Examples Using XML Java Class Generator with DTDs and XML Schema
	Running XML Class Generator for Java: DTD Examples
	Running XML Class Generator for Java: XML Schema Examples
	XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java
	XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
	XML Class Generator for Java, DTD Example 1c: Input — widl.xml
	XML Class Generator for Java, DTD Example 1d: TestWidl.java
	XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
	XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd
	XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
	XML Class Generator for Java, Schema Example 2a: Schema: book.xsd
	XML Class Generator for Java, Schema Example 2b: BookCatalogue.java
	XML Class Generator for Java, Schema Example 3a: Schema: po.xsd
	XML Class Generator for Java, Schema Example 3b: Application: TestPo.java

	Frequently Asked Questions About the Class Generator for Java
	How Do I Install the XML Class Generator for Java?
	What Does the XML Class Generator for Java Do?
	Which DTDs Are Supported?
	Why Do I Get a "Classes Not Found" Error?
	In XML Class Generator, How Do I Create the Root Object More Than Once?
	How Can I Create XML Files from Scratch Using the DOM API?
	Can I Create an XML Document in a Java Class?

	8 XML SQL Utility (XSU)
	What Is XML SQL Utility (XSU)?
	XSU Features
	XSU Oracle9i New Features

	XSU Dependencies and Installation
	Dependencies
	Installation

	XML SQL Utility and the Bigger Picture
	XML SQL Utility in the Database
	XML SQL Utility in the Middle Tier
	XML SQL Utility in a Web Server
	XML SQL Utility in the Client Tier

	SQL-to-XML and XML-to-SQL Mapping Primer
	Default SQL-to-XML Mapping
	Customizing the Generated XML: Mapping SQL to XML
	Default XML-to-SQL Mapping

	How XML SQL Utility Works
	Selecting with XSU
	Inserting with XSU
	Updating with XSU
	Deleting with XSU

	Using the XSU Command Line Front End, OracleXML
	Generating XML Using the XSU Command Line
	XSU’s OracleXML getXML Options
	Inserting XML Using XSU’s Command Line (putXML)
	XSU OracleXML putXML Options

	XSU Java API
	Generating XML with XSU’s OracleXMLQuery
	Generating XML from SQL Queries Using XSU
	XSU Generating XML Example 1: Generating a String from Table emp (Java)
	XSU Generating XML Example 2: Generating DOM From Table emp (Java)

	Paginating Results: skipRows and maxRows
	Keeping the Object Open for the Duration of the User’s Session
	When the Number of Rows or Columns in a Row Is Too Large
	keepObjectOpen Function
	XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java)

	Generating XML from ResultSet Objects
	XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
	XSU Generating XML Example 5: Generating XML from Procedure Return Values

	Raising No Rows Exception
	XSU Generating XML Example 6: No Rows Exception (Java)

	Storing XML Back in the Database Using XSU OracleXMLSave
	Insert Processing Using XSU (Java API)
	XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
	XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

	Update Processing Using XSU (Java API)
	XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
	XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

	Delete Processing Using XSU (Java API)
	XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
	XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

	Advanced XSU Usage Techniques
	XSU Exception Handling in Java

	Frequently Asked Questions About XML SQL Utility (XSU)
	What Schema Structure Should I Use with XSU to Store XML?
	Can XSU Store XML Data Across Tables?
	Can I Use XSU to Load XML Stored in Attributes?
	Is XSU Case-Sensitive? Can I Use ignoreCase?
	Will XSU Generate the Database Schema from a DTD?
	Can You Provide a Thin Driver Connect String Example for XSU?
	Does XSU Commit After INSERT, DELETE, or UPDATE?
	Can You Explain How to Map Table Columns to XML Attributes Using XSU?

	9 XSQL Pages Publishing Framework
	XSQL Pages Publishing Framework Overview
	What Can I Do with Oracle XSQL Pages?
	Where Can I Obtain Oracle XSQL Pages?
	What’s Needed to Run XSQL Pages?

	Overview of Basic XSQL Pages Features
	Producing XML Datagrams from SQL Queries
	Transforming XML Datagrams into an Alternative XML Format
	Transforming XML Datagrams into HTML for Display

	Setting Up and Using XSQL Pages in Your Environment
	Using XSQL Pages with Oracle JDeveloper
	Setting the CLASSPATH Correctly in Your Production Environment
	Setting Up the Connection Definitions
	Using the XSQL Command-Line Utility

	Overview of All XSQL Pages Capabilities
	Using All of the Core Built-in Actions
	Aggregating Information Using <xsql:include-xsql>
	Including XMLType Query Results
	Handling Posted Information
	Using Custom XSQL Action Handlers

	Description of XSQL Servlet Examples
	Setting Up the Demo Data

	Advanced XSQL Pages Topics
	Understanding Client Stylesheet-Override Options
	Controlling How Stylesheets Are Processed
	Using XSQLConfig.xml to Tune Your Environment
	Using the FOP Serializer to Produce PDF Output
	Using XSQL Page Processor Programmatically
	Writing Custom XSQL Action Handlers
	Writing Custom XSQL Serializers
	Writing Custom XSQL Connection Managers
	Formatting XSQL Action Handler Errors

	XSQL Servlet Limitations
	HTTP Parameters with Multibyte Names
	CURSOR() Function in SQL Statements

	Frequently Asked Questions About the XSQL Servlet
	Can I Specify a DTD While Transforming XSQL Output to a WML Document?
	Can I Write XSQL Servlet Conditional Statements?
	Can I Use a Value Retrieved in One Query in Another Query’s Where Clause?
	Can I Use the XSQL Servlet with Non-Oracle Databases?
	How Do I Use the XSQL Servlet to Access the JServ Process?
	How Do I Run XSQL on Oracle8i Lite?
	How Do I Handle Multi-Valued HTML Form Parameters?
	Can I Run the XSQL Servlet with Oracle 7.3?
	Why Isn’t the Out Variable Supported in <xsql:dml>?
	Why Am I Receiving "Unable to Connect" Errors?
	Can I Use Other File Extensions Besides *.xsql?
	How Do I Avoid Errors for Queries Containing XML Reserved Characters?
	Why Do I Get "No Posted Document to Process" When I Try to Post XML?
	Can XSQL Support SOAP?
	How Do I Pass the Connection for XSQL?
	How Do I Control How Database Connections and Passwords Are Stored?
	How Do I Access Authentication Information in a Custom Connection Manager?
	How Do I Retrieve the Name of the Current XSQL Page?
	How Do I Resolve Errors When I Try to Use the FOP Serializer?
	How Do I Tune XSQL Pages for Fastest Performance?
	How Do I Use XSQL with Other Connection Pool Implementations?
	How Do I Include XML Documents Stored in CLOBs?
	How Do I Combine JSP and XSQL in the Same Page?
	Can I Choose a Stylesheet Based on Input Arguments?

	10 XDK JavaBeans
	Accessing Oracle XML Transviewer Beans
	XDK for Java: XML Transviewer Bean Features
	Direct Access from JDeveloper
	Sample Transviewer Bean Application
	Database Connectivity
	XML Transviewer Beans

	Using the XML Transviewer Beans
	Using DOMBuilder Bean
	Used for Asynchronous Parsing in the Background
	DOMBuilder Bean Parses Many Files Fast
	DOMBuilder Bean Usage

	Using XSLTransformer Bean
	Do You Have Many Files to Transform? Use XSLTransformer Bean
	Do You Need a Responsive User Interface? Use XSLTransformer Bean
	XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes
	XSLTransformer Bean Usage

	Using Treeviewer Bean
	Using XMLSourceView Bean
	XMLSourceView Bean Usage

	Using XMLTransformPanel Bean
	XMLTransformPanel Bean Features

	Using DBViewer Bean
	DBViewer Bean Usage

	Using DBAccess Bean
	DBAcess Bean Usage

	Using the XMLDiff Bean
	XMLDiff Methods

	Running the Transviewer Bean Samples
	Installing the Transviewer Bean Samples
	Using Database Connectivity
	Running Makefile
	Transviewer Bean Example 1: AsyncTransformSample.java
	Transviewer Bean Example 2: ViewSample.java
	Transviewer Bean Example 3: XMLTransformPanelSample.java
	Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
	Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java
	Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
	XMLDiffSample.java
	XMLDiffFrame.java

	11 Using XDK and SOAP
	What Is SOAP?
	What Are UDDI and WSDL?
	What Is Oracle SOAP?
	How Does SOAP Work?
	What Is a SOAP Client?
	SOAP Client API
	What Is a SOAP Server?
	Oracle SOAP Security Features
	SOAP Transports
	Administrative Clients
	SOAP Request Handler
	SOAP Provider Interface and Providers
	SOAP Services
	JDeveloper Support for SOAP

	See the Developer’s Guides

	12 Oracle TransX Utility
	Overview of the TransX Utility
	Primary TransX Utility Features

	Installing TransX Utility
	Dependencies of TransX
	Installing TransX Using the Oracle Installer
	Installing TransX Downloaded from OTN

	TransX Utility Command-Line Syntax
	TransX Utility Command-Line Examples

	Sample Code for TransX Utility

	Part III� XDK for C/C++
	13 XML Parser for C
	Accessing XML Parser for C
	XML Parser for C Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C Usage
	XML Parser for C Default Behavior
	DOM and SAX APIs
	Using the SAX API

	Invoking XML Parser for C
	Command Line Usage
	Writing C Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C Sample Programs
	Building the Sample Programs
	Sample Programs

	14 XSLT Processor for C
	Accessing XSLT for C
	XSLT for C Features
	Specifications

	XML XSLT for C (DOM Interface) Usage
	Invoking XSLT for C
	Command Line Usage

	Using the Sample Files Included with the Software
	Running the XSLT for C Sample Programs
	Building the Sample Programs
	Sample Programs
	XSLT for C Example1: XSL — iden.xsl
	XSLT for C Example 2: C — XSLSample.c
	XSLT for C Example 3: C — XSLSample.std

	15 XML Schema Processor for C
	Oracle XML Schema Processor for C
	Oracle XML Schema for C Features
	Standards Conformance
	XML Schema Processor for C: Supplied Software

	Invoking XML Schema Processor for C
	XML Schema Processor for C Usage Diagram
	How to Run XML Schema for C Sample Programs

	16 XML Parser for C++
	Accessing XML Parser for C++
	XML Parser for C++ Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C++ Usage
	XML Parser for C++ Default Behavior
	DOM and SAX APIs
	Using the SAX API

	Invoking XML Parser for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C++ Sample Programs
	Building the Sample Programs
	Sample Programs

	17 XSLT Processor for C++
	Accessing XSLT for C++
	XSLT for C++ Features
	Specifications

	XSLT for C++ (DOM Interface) Usage
	Invoking XSLT for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XSLT for C++ Sample Programs
	Building the Sample programs
	Sample Programs

	18 XML Schema Processor for C++
	Oracle XML Schema Processor for C++ Features
	Oracle XML Schema for C++ Features
	Standards Conformance
	XML Schema Processor for C++: Provided Software

	Invoking XML Schema Processor for C++
	XML Schema Processor for C++ Usage Diagram
	Running the Provided XML Schema Sample Programs

	19 XML Class Generator for C++
	Accessing XML C++ Class Generator
	Using XML C++ Class Generator
	External DTD Parsing
	Error Message Files

	XML C++ Class Generator Usage
	Input to the XML C++ Class Generator

	xmlcg Usage
	Using the XML C++ Class Generator Examples in sample
	XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
	XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
	XML C++ Class Generator Example 3: CG Sample Program

	Part IV� XDK for PL/SQL
	20 XML Parser for PL/SQL
	Accessing XML Parser for PL/SQL
	What’s Needed to Run XML Parser for PL/SQL
	Using XML Parser for PL/SQL (DOM Interface)
	XML Parser for PL/SQL: Default Behavior

	Using XML Parser for PL/SQL Examples in the Sample Directory
	Setting Up the Environment to Run the Sample Programs
	Running domsample
	Running xslsample
	XML Parser for PL/SQL Example: XML — family.xml
	XML Parser for PL/SQL Example: DTD — family.dtd
	XML Parser for PL/SQL Example: PL/SQL — domsample.sql
	XML Parser for PL/SQL Example: PL/SQL — xslsample.sql

	Frequently Asked Questions About the XML Parser for PL/SQL
	Why Do I Get an "Exception in Thread" Parser Error?
	How Do I Use the xmldom.GetNodeValue in PL/SQL?
	Can I Run the XDK for PL/SQL in an IIS Environment?
	How Do I Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?
	How Do I Use Local Variables with the XML Parser for PL/SQL?
	Why Do I Get a Security Error When I Grant JavaSysPriv to a User?
	How Do I Install the XML Parser for PL/SQL with the JServer (JVM) Option?
	How Do I Use the domsample Included with XML Parser for PL/SQL?
	How Do I Extract Part of a CLOB?
	Why Do I Get "Out of Memory" Errors in the XML Parser?
	What Are the Memory Requirements for Using the PL/SQL Parser?
	Is JServer (JVM) Needed to Run XML Parser for PL/SQL?

	Frequently Asked Questions About Using the DOM API
	What Does the XML Parser for PL/SQL Do?
	Can I Dynamically Set the Encoding in the XML Document?
	How Do I Get the Number of Elements in a Particular Tag?
	How Do I Parse a String?
	How Do I Display My XML Document?
	How Do I Write the XML Data Back Using Special Character Sets?
	How Do I Obtain an Ampersand from Character Data?
	How Do I Generate a Document Object from a File?
	Can the Parser Run on Linux?
	Is Support for Namespaces and Schema Included?
	Why Doesn’t My Parser Find the DTD File?
	Can I Validate an XML File Using an External DTD?
	Does the Parser Have DTD Caching?
	How Do I Get the DOCTYPE Tag into the XML Document After It Is Parsed?
	How Does the XML DOM Parser Work?
	How Do I Create a Node Whose Value I Can Set Later?
	How Do I Extract Elements from the XML File?
	How Do I Append a Text Node to a DOMElement Using PL/SQL Parser?
	I Am Using XML Parser with DOM; Why Can I Not Get the Actual Data?
	Can the XML Parser for PL/SQL Produce Non-XML Documents?
	I Cannot Run the Sample File. Did I Do Something Wrong In the Installation?
	How Do I Parse a DTD in a CLOB?
	Why Do I Get Errors When Parsing a Document?
	How Do I Use PLXML to Parse a Given URL?
	How Do I Use the XML Parser to Parse HTML?
	How Do I Move Data to a Web Browser Using PL/SQL and Oracle 7.3.4?
	Does the XML Parser for Java Work with Oracle 7.3.4?
	getNodeValue(): Getting the Value of DomNode
	How Do I Retrieve All Children or Grandchildren of a Node?
	What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"

	21 XSLT Processor for PL/SQL
	Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
	XML Parser for PL/SQL: XSLT Processor — Default Behavior
	XML Parser for PL/SQL Example: XSL — iden.xsl

	22 XML Schema Processor for PL/SQL
	Oracle XML Schema Processor for PL/SQL
	Building Server-Side XML Schema Validation
	Creating the Java Classes for XML Schema Validation
	Loading and Resolving the Java Class
	Publishing the Java Class by Defining the Specification
	Example Using the Stored Procedures

	23 XSU for PL/SQL
	XSU PL/SQL API
	Generating XML with DBMS_XMLQuery()
	XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
	XSU Generating XML Example 2: Printing CLOB to Output Buffer
	XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
	XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()

	Setting Stylesheets in XSU (PL/SQL)
	Binding Values in XSU (PL/SQL)
	XSU Generating XML Example 5: Binding Values to the SQL Statement

	Storing XML in the Database Using DBMS_XMLSave
	Insert Processing Using XSU (PL/SQL API)
	XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
	XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

	Update Processing Using XSU (PL/SQL API)
	XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
	XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

	Delete Processing Using XSU (PL/SQL API)
	XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
	XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
	XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
	XSU Exception Handling in PL/SQL

	Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
	How Can I Use XMLGEN.insertXML with LOBs?

	Part V� Tools and Frameworks That Support XDK
	24 Developing XML Applications with JDeveloper
	Introducing JDeveloper
	JDeveloper Covers the Complete Development Life Cycle
	JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment
	Java Alone Is Not Enough
	XML Tools in JDeveloper
	Business Components for Java (BC4J)
	Integrated Web Services Development

	What’s Needed to Run JDeveloper
	XSQL Component Palette
	Page Selector Wizard

	XDK Features in JDeveloper
	Oracle XDK Integration in JDeveloper
	Developing Web Applications in JDeveloper Using XSQL Pages

	Building XML Applications with JDeveloper
	JDeveloper XDK Example 1: BC4J Metadata
	Procedure for Building Applications in JDeveloper

	Using XSQL Servlet from JDeveloper
	JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql
	JDeveloper XSQL Example 3: Employee Data with Stylesheet Added

	Frequently Asked Questions About JDeveloper and XML Applications
	How Do I Construct an XML Document in JSP?
	Is There a Way to Use the @code Directly in the document() Line?
	How Do I Retrieve Data from messages.xml?
	How Do I Move Complex XML Documents to a Database?

	25 Introduction to BC4J
	Introducing Business Components for Java (BC4J)
	What Is the Business Components Framework?
	Using Business Components
	Advantages at BC4J Design Time
	Advantages at BC4J Runtime

	Implementing XML Messaging
	Test BC4J Applications using JDeveloper
	BC4J Uses XML to Store Metadata

	Creating a Mobile Application in JDeveloper
	Create the BC4J Application
	Create JSP Pages Based on a BC4J Application
	Create XSLT Stylesheets According to the Devices Needed to Read the Data
	Building XSQL Clients with BC4J

	Building XSQL Clients with BC4J
	Web Objects Gallery
	Generating and Managing Code When Building XML and Java Applications

	Frequently Asked Questions for BC4J
	Can Applications Built Using BC4J Work With Any J2EE-Compliant Container?
	Can J2EE Applications Built Using BC4J Work with Any Database?
	Is There Runtime Overhead from the Framework for Features That I Do Not Use?
	Where Can I Find More Information About BC4J?

	26 Introduction to UIX
	What Is UIX?
	When to Use UIX
	When Not to Use UIX
	What Are the UIX Technologies?
	UIX Components
	UIX Controller
	UIX Language
	UIX Dynamic Images
	UIX Styles
	UIX Share

	Which UIX Technologies to Use?
	For More Information About UIX

	A XDK for Java: Specifications and Quick References
	XML Parser for Java Quick Reference
	XML Parser for Java Specifications
	Requirements
	Online Documentation
	Release Specific Notes
	Standards Conformance
	Supported Character Set Encodings

	XDK for Java: XML Schema Processor
	XDK for Java: XML Class Generator for Java
	XDK for Java: XSQL Servlet
	Downloading and Installing XSQL Servlet
	Windows NT: Starting the Web-to-Go Server
	Setting Up the Database Connection Definitions for Your Environment
	UNIX: Setting Up Your Servlet Engine to Run XSQL Pages

	XSQL Servlet Specifications
	Character Set Support

	B XDK for PL/SQL: Specifications
	XML Parser for PL/SQL
	Oracle XML Parser Features
	Namespace Support
	Validating and Non-Validating Mode Support
	Example Code
	IXML Parser for PL/SQL Directory Structure
	DOM and SAX APIs

	XML Parser for PL/SQL Specifications

	Glossary
	Index

