
Oracle9 i

XML Developer’s Kits Guide - XDK

Release 2 (9.2)

March 2002

Part No. A96621-01

Oracle9i XML Developer’s Kits Guide - XDK, Release 2 (9.2)

Part No. A96621-01

Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

Primary Author: Jack Melnick

Contributing Authors: Mark Bauer, Shelley Higgins, Steve Muench, Mark Scardina, Jinyu Wang

Contributors: Sandeepan Banerjee, Kishore Bhamidipati, Bill Han, K. Karun, Murali Krishnaprasad,
Bruce Lowenthal, Anjana Manian, Meghna Mehta, Nick Montoya, Ravi Murthy, Den Raphaely, Blaise
Ribet, Tarvinder Singh, Tomas Saulys, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Press, Oracle8i, Oracle9i, PL/SQL, Pro*C/C++, Pro*COBOL,
SQL*Plus, OracleMobile, Oracle Discoverer, Oracle Store, Express, Oracle7, and Pro*C are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments .. xxvii

Preface .. xxix

What’s New in XDK? ... xxxvii

Part I XML Developer’s Kits (XDK)

1 Overview of XML Developer’s Kits and Components

Oracle XML Components: Overview .. 1-2
Development Tools and Other XML-Enabled Oracle9i Features .. 1-3

XDK for Java.. 1-6
XDK for JavaBeans ... 1-6
XDK for C... 1-7
XDK for C++.. 1-7
XDK for PL/SQL .. 1-7

XML Parsers ... 1-8
XSL Transformation (XSLT) Processor.. 1-9
XML Class Generator ... 1-10
XML Transviewer JavaBeans .. 1-11
Oracle XSQL Page Processor and Servlet... 1-12

Servlet Engines That Support XSQL Servlet... 1-13
JavaServer Pages Platforms That Support XSQL Servlet.. 1-13

Oracle XML SQL Utility (XSU) .. 1-16
iii

Generating XML from Query Results.. 1-17
XML Document Structure: Columns Are Mapped to Elements .. 1-17

TransX Utility ... 1-18
Oracle Text .. 1-19
XML Gateway .. 1-19
Oracle XML Components: Generating XML Documents ... 1-19
Using Oracle XML Components to Generate XML Documents: Java 1-20
Using Oracle XML Components to Generate XML Documents: C ... 1-22
Using Oracle XML Components to Generate XML Documents: C++ 1-24
Using Oracle XML Components to Generate XML Documents: PL/SQL 1-26
Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology.............................. 1-28

Frequently Asked Questions About the XDK .. 1-28
What XML Components Do I Need to Install?... 1-28
What Software Is Needed to Build an XML Application?.. 1-29
XML Questions.. 1-29
Are There XDK Utilities That Translate Data from Other Formats to XML? 1-30
Can Oracle Generate a Database Schema from a Rational Rose Generated XML File? ... 1-30
Does Oracle Offer Any Tools to Create and Edit XML Documents? 1-31
How Can I Format XML Documents as PDF?.. 1-31
How Do I Load a Large XML Document into the Database?... 1-31
Can SQL*Loader Support Nesting? ... 1-32

Frequently Asked Questions About Previous Oracle Releases... 1-33
Can I Use Parsers from Different Vendors?.. 1-33
Is There XML Support in Oracle Release 8.0.6?.. 1-34
Can I Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4? 1-34
If I Use Versions Prior to Oracle8i Can I Use Oracle XML Tools?....................................... 1-34
Can I Create Magnetic Tape Files with Oracle XML? ... 1-35

Frequently Asked Questions About Browsers that Support XML.. 1-35
Which Browsers Support XML? ... 1-35

Frequently Asked Questions About XML Standards .. 1-35
Are There Advantages of XML Over EDI? ... 1-35
What B2B Standards and Development Tools Does Oracle Support?................................ 1-36
What Is Oracle Corporation’s Direction Regarding XML?... 1-37
What Is Oracle Corporation’s Plans for XML Query?... 1-37
Are There Standard DTDs That We Can Use for Orders, Shipments, and So On?........... 1-37
iv

Frequently Asked Questions About XML, CLOBs, and BLOBs ... 1-38
Is There Support for XML Messages in BLOBs? .. 1-38

Frequently Asked Questions About Maximum File Sizes ... 1-38
What Is the Maximum XML File Size When Stored in CLOBs?.. 1-38
Are There Any Limitations on the Size of an XML File? .. 1-38
What Is the Maximum Size for an XML Document?... 1-38

Frequently Asked Questions About Inserting XML Data into Tables................................... 1-39
What Do I Need to Insert Data Into Tables Using XML? ... 1-39

Frequently Asked Questions About XML Performance in the Database.............................. 1-39
Where Can I Find Information About the Performance of XML and Oracle?................... 1-39
How Can I Speed Up the Record Retrieval in XML Documents? 1-40

Frequently Asked Questions About Multiple National Languages....................................... 1-40
How Do I Put Information in Chinese into XML?... 1-40

Frequently Asked Questions About Reference Material.. 1-41
What Are Some Recommended XML and XSL Books? .. 1-41

2 Getting Started with XDK for Java and JavaBeans

Installation of the XDK for Java .. 2-2
Installation Steps for XDK for Java .. 2-2
What Are the XDK for Java Components? ... 2-3
Environment Settings for XDK for Java .. 2-5
XSU Setup .. 2-6
XSQL Servlet Setup .. 2-7
XDK for Java with Globalization Support .. 2-16
XDK Dependencies... 2-16

Installation of the XDK for JavaBeans.. 2-17
XDK for JavaBeans Components.. 2-19
Setting Up the XDK for JavaBeans Environment... 2-21
XDK for JavaBeans with Globalization Support .. 2-22

3 Getting Started with XDKs for C/C++ and PL/SQL

Installation of XDK for C .. 3-2
Getting the XDK for C.. 3-2
UNIX Environment Setup ... 3-3
Windows NT Environment Setup.. 3-4
v

Installation of the XDK for C++... 3-13
Getting the XDK for C++ ... 3-14
Setting the UNIX Environment for C++.. 3-15
Windows NT Environment Setup.. 3-16

Installation of XDK for PL/SQL ... 3-25
Setting the Environment for XDK for PL/SQL .. 3-26
Installing XDK for PL/SQL into the Database ... 3-27
Loading XDK for PL/SQL... 3-29

Part II XDK for Java

4 XML Parser for Java

XML Parser for Java: Features... 4-2
XSL Transformation (XSLT) Processor .. 4-4
Namespace Support ... 4-5
Oracle XML Parsers Validation Modes ... 4-5

Parsers Access XML Document’s Content and Structure .. 4-6
DOM and SAX APIs ... 4-7

DOM: Tree-Based API.. 4-8
SAX: Event-Based API ... 4-8
Guidelines for Using DOM and SAX APIs ... 4-9

XML Compressor .. 4-10
XML Serialization/Compression ... 4-10

Running the XML Parser for Java Samples ... 4-11
XML Parser for Java - XML Example 1: class.xml.. 4-13
XML Parser for Java - XML Example 2: Using DTD employee — employee.xml 4-14
XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml................. 4-14
XML Parser for Java - XSL Example 1: XSL (iden.xsl)... 4-14
XML Parser for Java - DTD Example 1: (NSExample) .. 4-15

Using XML Parser for Java: DOMParser() Class... 4-15
XML Parser for Java Example 1: Using the Parser and DOM API 4-17
Comments on DOMParser() Example 1 .. 4-21

Using XML Parser for Java: DOMNamespace() Class ... 4-22
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java........................ 4-22

Using XML Parser for Java: SAXParser() Class ... 4-26
vi

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java) 4-28
XML Parser for Java Example 4: (SAXNamespace.java)... 4-32
oraxml - Oracle XML parser.. 4-36

Using JAXP... 4-37
JAXP Example: (JAVAExamples.java)... 4-37
JAXP Example: (oraContentHandler.java... 4-45

Frequently Asked Questions About DTDs ... 4-48
Why Can’t My Parser Find the DTD File? .. 4-48
Can I Validate an XML File Using an External DTD?... 4-48
Does Oracle Perform DTD Caching? ... 4-48
How Does the XML Parser for Java Recognize External DTDs? ... 4-49
How Do I Load External DTDs from a JAR File? .. 4-49
Can I Check the Correctness of an XML Document Using Their DTD? 4-50
How Do I Parse a DTD Object Separately from My XML Document?............................... 4-50
Is the XML Parser Case-Sensitive? ... 4-50
How Do I Extract Embedded XML from a CDATA Section? .. 4-51
Why Am I Getting an Error When I Call DOMParser.parseDTD()?................................... 4-52
Is There a Standard Extension for External Entity References in an XML Document? ... 4-54

Frequently Asked Questions About DOM and SAX APIs... 4-55
How Do I Use the DOM API to Count Tagged Elements?... 4-55
How Does the DOM Parser Work?.. 4-55
How Do I Create a Node with a Value to Be Set Later?.. 4-55
How Do I Traverse the XML Tree? .. 4-55
How Do I Extract Elements from an XML File?... 4-55
Does a DTD Validate the DOM Tree? ... 4-56
How Do I Find the First Child Node Element Value? .. 4-56
How Do I Create DocType Node? ... 4-56
How Do I Use the XMLNode.selectNodes() Method?.. 4-56
How Does the SAX API Determine the Data Value? .. 4-57
How Does SAXSample.java Call Methods?.. 4-58
Does the DOMParser Use the org.xml.sax.Parser Interface? ... 4-58
How Do I Create a New Document Type Node with DOM API? 4-58
How Do I Query for First Child Node’s Value of a Certain Tag? 4-59
Can I Generate an XML Document from Data in Variables?... 4-59
How Do I Use the DOM API to Print Data in the Element Tags? 4-60
vii

How Do I Build XML Files from Hash Table Value Pairs? .. 4-60
XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild() 4-60
Will WRONG_DOCUMENT_ERR Result from This Code Fragment? 4-61
Why Are Only the Child Nodes Inserted?.. 4-61
Why Do I Get DOMException when Setting Node Value? .. 4-61
How Can I Force the SAX Parser to Not Discard Characters Following Whitespace? 4-62

Frequently Asked Questions About Validation ... 4-62
What Are the Rules for Locating DTDs? ... 4-62
Can Multiple Threads Use a Single XSLProcessor/Stylesheet? .. 4-62
Can I Use Document Clones in Multiple Threads? ... 4-63

Frequently Asked Questions About Character Sets .. 4-63
How Do I Parse iso-8859-1-encoded Documents with Special Characters? 4-63
How Do I Parse XML Stored in NCLOB with UTF-8 Encoding? .. 4-63
Is There Globalization Support Within XML?.. 4-65
How Do I Parse a Document Containing Accented Characters? .. 4-65
How Do I Store Accented Characters in an XML Document? ... 4-66

Frequently Asked Questions: Adding an XML Document as a Child 4-67
How Do I Add an XML Document as a Child to Another Element?.................................. 4-67
How Do I Add an XML Document Fragment as a Child to an XML Document? 4-68

Frequently Asked General Questions About XML Parser ... 4-69
Why Do I Get an Error on Installing the XML Parser?.. 4-69
How Do I Remove the XML Parser from the Database?... 4-69
What Does an XML Parser Do? .. 4-70
How Do I Convert XML Files into HTML Files? ... 4-70
Does the XML Parser Validate Against XML Schema?... 4-70
How Do I Include Binary Data in an XML Document? .. 4-70
What Is XML Schema? ... 4-71
Does Oracle Participate in Defining the XML/XSL Standard?.. 4-71
How Do I Find XDK Version Numbers?... 4-71
Are Namespace and Schema Supported? ... 4-71
Can I Use JDK 1.1.x with XML Parser for Java v2?.. 4-71
How Do I Sort the Result Within the Page?.. 4-71
Do I Need Oracle9i to Run XML Parser for Java? .. 4-72
Can I Dynamically Set the Encoding in an XML File? .. 4-72
How Do I Parse a String?... 4-72
viii

How Do I Display an XML Document? .. 4-72
How Do I Use System.out.println() and Special Characters? .. 4-72
How Do I Insert Characters <, >, =, ’, ", and & in XML Documents? 4-73
How Do I Use Special Characters in the Tags? .. 4-73
How Do I Parse XML from Data of Type String? .. 4-74
How Do I Extract Data from an XML Document into a String?.. 4-74
Is Disabling Output Escaping Supported? ... 4-74
Can I Delimit Multiple XML Documents with a Special Character? 4-74
How Do I Use Entity References with the XML Parser for Java?.. 4-75
Can I Divide and Store an XML Document Without a DDL Insert?................................... 4-75
In Querying, Can I Perform Hierarchical Searches Across XML Documents? 4-75
How Do I Merge XML Documents? .. 4-75
How Do I Find the Value of a Tag?.. 4-77
How Do I Grant the JAVASYSPRIV Role to a User?... 4-77
How Do I Include an External XML File in Another XML File? ... 4-78
Does the Parser Come with a Utility to View the Parsed Output? 4-78
From Where Can I Download OraXSL, the Parser’s Command Line Interface? 4-80
Does Oracle Support Hierarchical Mapping? .. 4-80
What Good Books for XML/XSL Can You Recommend?.. 4-81
Are There XML Developer Kits for the HP/UX Platform? .. 4-82
How Do I Compress Large Volumes of XML Documents? ... 4-82
How Do I Generate an XML Document Based on Two Tables?.. 4-83

5 XSLT Processor for Java

Using XML Parser for Java: XSLT Processor.. 5-2
XSLT Processor for Java Example .. 5-3

XSLT Processor for Java: Command-Line Interface, oraxsl .. 5-6
oraxsl - Oracle XSL processor ... 5-6

XML Extension Functions for XSLT Processing ... 5-7
XSLT Processor Extension Functions: Introduction .. 5-7
Static Versus Non-Static Methods.. 5-8
Constructor Extension Function... 5-8
Return Value Extension Function .. 5-9
Datatypes Extension Function .. 5-10
Oracle XSLT Built-In Extensions: ora:node-set and ora:output... 5-10
ix

Frequently Asked Questions About the XSLT Processor and XSL ... 5-13
 Why Am I Getting an HTML Error in XSL? .. 5-13
Is the Output Method “html” Supported in the XSL Parser? .. 5-14
Can I Prevent XSL from Returning a Meta-Tag in Netscape 4.0?.. 5-15
How Do I Work Around a Display Bug in the Browser? ... 5-16
Where Can I Get More Information on XSL Error Messages? ... 5-16
How Do I Generate the HTML "Less Than" (<) Character? ... 5-16
Why Does HTML “<“ Conversion Work in oraxsl But Not in XSLSample.java? 5-17
Where Can I Find XSLT Examples? ... 5-18
Where Can I Find a List of XSLT Features? .. 5-18
How Do I Use XSL to Convert an XML Document to Another Form?............................... 5-18
Where Can I Find More Information on XSL?.. 5-20
Can the XSL Processor Produce Multiple Outputs?.. 5-20

6 XML Schema Processor for Java

Introducing XML Schema ... 6-2
How DTDs and XML Schema Differ .. 6-2
XML Schema Features .. 6-3
Oracle XML Schema Processor for Java Features ... 6-6

Supported Character Sets .. 6-6
What’s Needed to Run XML Schema Processor for Java.. 6-7
XML Schema Processor for Java Directory Structure.. 6-7

XML Schema Processor for Java Usage... 6-8
Modes for Schema Validation... 6-8
Using the XML Schema API.. 6-9

How to Run the XML Schema for Java Sample Program.. 6-10
Makefile for XML Schema Processor for Java .. 6-11
XML Schema for Java Example 1: cat.xsd ... 6-12
XML Schema for Java Example 2: catalogue.xml... 6-14
XML Schema for Java Example 3: catalogue_e.xml... 6-14
XML Schema for Java Example 4: report.xml... 6-15
XML Schema for Java Example 5: report.xsd ... 6-16
XML Schema for Java Example 6: report_e.xml... 6-18
XML Schema for Java Example 7: XSDSample.java .. 6-18
XML Schema for Java Example 8: XSDSetSchema.java... 6-20
x

XML Schema for Java Example 9: XSDLax.java... 6-23
XML Schema for Java Example 10: embeded_xsql.xsd... 6-25
XML Schema for Java Example 11: embeded_xsql.xml .. 6-26

7 XML Class Generator for Java

Accessing XML Class Generator for Java... 7-2
XML Class Generator for Java: Overview .. 7-2
oracg Command Line Utility .. 7-3
Class Generator for Java: XML Schema.. 7-4

Namespace Features .. 7-4
Using XML Class Generator for Java with XML Schema ... 7-5

Generating Top Level Element Classes ... 7-6
Generating Top Level ComplexType Element Classes... 7-7
Generating SimpleType Element Classes ... 7-7

Using XML Class Generator for Java with DTDs .. 7-8
Examples Using XML Java Class Generator with DTDs and XML Schema 7-9

Running XML Class Generator for Java: DTD Examples ... 7-10
Running XML Class Generator for Java: XML Schema Examples 7-11
XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java........... 7-12
XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd 7-14
XML Class Generator for Java, DTD Example 1c: Input — widl.xml................................. 7-15
XML Class Generator for Java, DTD Example 1d: TestWidl.java 7-16
XML Class Generator for Java, DTD Example 1e: XML Output — widl.out 7-18
XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd 7-18
XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java.......... 7-20
XML Class Generator for Java, Schema Example 2a: Schema: book.xsd 7-22
XML Class Generator for Java, Schema Example 2b: BookCatalogue.java........................ 7-23
XML Class Generator for Java, Schema Example 3a: Schema: po.xsd................................ 7-24
XML Class Generator for Java, Schema Example 3b: Application: TestPo.java................ 7-26

Frequently Asked Questions About the Class Generator for Java ... 7-29
How Do I Install the XML Class Generator for Java? ... 7-30
What Does the XML Class Generator for Java Do? ... 7-30
Which DTDs Are Supported? ... 7-30
Why Do I Get a "Classes Not Found" Error? .. 7-30
In XML Class Generator, How Do I Create the Root Object More Than Once?................ 7-30
xi

How Can I Create XML Files from Scratch Using the DOM API? 7-31
Can I Create an XML Document in a Java Class? .. 7-31

8 XML SQL Utility (XSU)

What Is XML SQL Utility (XSU)? .. 8-2
XSU Features ... 8-3
XSU Oracle9i New Features .. 8-3

XSU Dependencies and Installation ... 8-4
Dependencies .. 8-4
Installation ... 8-4

XML SQL Utility and the Bigger Picture.. 8-5
XML SQL Utility in the Database ... 8-5
XML SQL Utility in the Middle Tier .. 8-6
XML SQL Utility in a Web Server .. 8-7
XML SQL Utility in the Client Tier .. 8-8

SQL-to-XML and XML-to-SQL Mapping Primer ... 8-8
Default SQL-to-XML Mapping ... 8-8
Customizing the Generated XML: Mapping SQL to XML ... 8-12
Default XML-to-SQL Mapping ... 8-13

How XML SQL Utility Works... 8-14
Selecting with XSU ... 8-14
Inserting with XSU ... 8-15
Updating with XSU .. 8-15
Deleting with XSU .. 8-16

Using the XSU Command Line Front End, OracleXML .. 8-17
Generating XML Using the XSU Command Line ... 8-17
XSU’s OracleXML getXML Options... 8-19
Inserting XML Using XSU’s Command Line (putXML)... 8-20
XSU OracleXML putXML Options... 8-22

XSU Java API ... 8-22
Generating XML with XSU’s OracleXMLQuery... 8-23

Generating XML from SQL Queries Using XSU .. 8-23
XSU Generating XML Example 1: Generating a String from Table emp (Java) 8-24
XSU Generating XML Example 2: Generating DOM From Table emp (Java) 8-27

Paginating Results: skipRows and maxRows ... 8-29
xii

Keeping the Object Open for the Duration of the User’s Session.. 8-29
When the Number of Rows or Columns in a Row Is Too Large ... 8-29
keepObjectOpen Function... 8-30
XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java) 8-30

Generating XML from ResultSet Objects .. 8-32
XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)........... 8-32
XSU Generating XML Example 5: Generating XML from Procedure Return Values 8-34

Raising No Rows Exception.. 8-35
XSU Generating XML Example 6: No Rows Exception (Java)... 8-36

Storing XML Back in the Database Using XSU OracleXMLSave ... 8-37
Insert Processing Using XSU (Java API) .. 8-38

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java) 8-38
XSU Inserting XML Example 8: Inserting XML Values into Columns (Java).................... 8-39

Update Processing Using XSU (Java API).. 8-40
XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java) 8-41
XSU Updating XML Example 10: Updating a Specified List of Columns (Java) 8-42

Delete Processing Using XSU (Java API) ... 8-43
XSU Deleting XML Example 11: Deleting Operations Per Row (Java) 8-43
XSU Deleting XML Example 12: Deleting Specified Key Values (Java) 8-44

Advanced XSU Usage Techniques... 8-45
XSU Exception Handling in Java.. 8-45

Frequently Asked Questions About XML SQL Utility (XSU) ... 8-46
What Schema Structure Should I Use with XSU to Store XML? ... 8-46
Can XSU Store XML Data Across Tables? .. 8-48
Can I Use XSU to Load XML Stored in Attributes?... 8-48
Is XSU Case-Sensitive? Can I Use ignoreCase?.. 8-48
Will XSU Generate the Database Schema from a DTD? ... 8-49
Can You Provide a Thin Driver Connect String Example for XSU? 8-49
Does XSU Commit After INSERT, DELETE, or UPDATE?.. 8-49
Can You Explain How to Map Table Columns to XML Attributes Using XSU? 8-50

9 XSQL Pages Publishing Framework

XSQL Pages Publishing Framework Overview .. 9-2
What Can I Do with Oracle XSQL Pages?... 9-2
Where Can I Obtain Oracle XSQL Pages?... 9-4
xiii

What’s Needed to Run XSQL Pages?... 9-4
Overview of Basic XSQL Pages Features.. 9-5

Producing XML Datagrams from SQL Queries ... 9-6
Transforming XML Datagrams into an Alternative XML Format .. 9-9
Transforming XML Datagrams into HTML for Display... 9-12

Setting Up and Using XSQL Pages in Your Environment .. 9-15
Using XSQL Pages with Oracle JDeveloper.. 9-15
Setting the CLASSPATH Correctly in Your Production Environment 9-16
Setting Up the Connection Definitions.. 9-17
Using the XSQL Command-Line Utility ... 9-18

Overview of All XSQL Pages Capabilities .. 9-19
Using All of the Core Built-in Actions... 9-19
Aggregating Information Using <xsql:include-xsql> ... 9-39
Including XMLType Query Results ... 9-41
Handling Posted Information ... 9-44
Using Custom XSQL Action Handlers .. 9-49

Description of XSQL Servlet Examples .. 9-51
Setting Up the Demo Data... 9-53

Advanced XSQL Pages Topics .. 9-54
Understanding Client Stylesheet-Override Options ... 9-54
Controlling How Stylesheets Are Processed .. 9-55
Using XSQLConfig.xml to Tune Your Environment... 9-59
Using the FOP Serializer to Produce PDF Output ... 9-64
Using XSQL Page Processor Programmatically ... 9-66
Writing Custom XSQL Action Handlers... 9-68
Writing Custom XSQL Serializers .. 9-73
Writing Custom XSQL Connection Managers ... 9-76
Formatting XSQL Action Handler Errors ... 9-77

XSQL Servlet Limitations.. 9-78
HTTP Parameters with Multibyte Names... 9-78
CURSOR() Function in SQL Statements.. 9-79

Frequently Asked Questions About the XSQL Servlet ... 9-79
Can I Specify a DTD While Transforming XSQL Output to a WML Document?............. 9-79
Can I Write XSQL Servlet Conditional Statements? .. 9-79
Can I Use a Value Retrieved in One Query in Another Query’s Where Clause? 9-80
xiv

Can I Use the XSQL Servlet with Non-Oracle Databases? ... 9-80
How Do I Use the XSQL Servlet to Access the JServ Process?... 9-81
How Do I Run XSQL on Oracle8i Lite? ... 9-81
How Do I Handle Multi-Valued HTML Form Parameters? .. 9-82
Can I Run the XSQL Servlet with Oracle 7.3?... 9-84
Why Isn’t the Out Variable Supported in <xsql:dml>? .. 9-84
Why Am I Receiving "Unable to Connect" Errors? ... 9-85
Can I Use Other File Extensions Besides *.xsql? .. 9-86
How Do I Avoid Errors for Queries Containing XML Reserved Characters?................... 9-87
Why Do I Get "No Posted Document to Process" When I Try to Post XML? 9-88
Can XSQL Support SOAP?.. 9-88
How Do I Pass the Connection for XSQL?.. 9-88
How Do I Control How Database Connections and Passwords Are Stored? 9-89
How Do I Access Authentication Information in a Custom Connection Manager? 9-89
How Do I Retrieve the Name of the Current XSQL Page?... 9-89
How Do I Resolve Errors When I Try to Use the FOP Serializer?....................................... 9-90
How Do I Tune XSQL Pages for Fastest Performance? .. 9-91
How Do I Use XSQL with Other Connection Pool Implementations? 9-92
How Do I Include XML Documents Stored in CLOBs?.. 9-92
How Do I Combine JSP and XSQL in the Same Page?.. 9-92
Can I Choose a Stylesheet Based on Input Arguments?... 9-92

10 XDK JavaBeans

Accessing Oracle XML Transviewer Beans.. 10-2
XDK for Java: XML Transviewer Bean Features ... 10-2

Direct Access from JDeveloper... 10-2
Sample Transviewer Bean Application ... 10-2
Database Connectivity ... 10-2
XML Transviewer Beans.. 10-2

Using the XML Transviewer Beans ... 10-4
Using DOMBuilder Bean .. 10-5

Used for Asynchronous Parsing in the Background... 10-5
DOMBuilder Bean Parses Many Files Fast ... 10-5
DOMBuilder Bean Usage .. 10-6

Using XSLTransformer Bean... 10-9
xv

Do You Have Many Files to Transform? Use XSLTransformer Bean 10-10
Do You Need a Responsive User Interface? Use XSLTransformer Bean.......................... 10-10
XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes 10-10
XSLTransformer Bean Usage .. 10-11

Using Treeviewer Bean .. 10-13
Using XMLSourceView Bean ... 10-15

XMLSourceView Bean Usage ... 10-16
Using XMLTransformPanel Bean... 10-20

XMLTransformPanel Bean Features .. 10-20
Using DBViewer Bean ... 10-23

DBViewer Bean Usage ... 10-26
Using DBAccess Bean .. 10-30

DBAcess Bean Usage.. 10-30
Using the XMLDiff Bean ... 10-32

XMLDiff Methods... 10-32
Running the Transviewer Bean Samples ... 10-34
Installing the Transviewer Bean Samples .. 10-36

Using Database Connectivity.. 10-37
Running Makefile ... 10-38
Transviewer Bean Example 1: AsyncTransformSample.java... 10-39
Transviewer Bean Example 2: ViewSample.java ... 10-45
Transviewer Bean Example 3: XMLTransformPanelSample.java 10-49
Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java 10-50
Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java 10-53
Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java........................ 10-54
XMLDiffSample.java .. 10-55
XMLDiffFrame.java .. 10-60

11 Using XDK and SOAP

What Is SOAP? .. 11-2
What Are UDDI and WSDL? .. 11-3
What Is Oracle SOAP? ... 11-4

How Does SOAP Work? .. 11-4
What Is a SOAP Client? ... 11-5
SOAP Client API ... 11-5
xvi

What Is a SOAP Server?... 11-6
Oracle SOAP Security Features .. 11-6
SOAP Transports .. 11-6
Administrative Clients... 11-6
SOAP Request Handler ... 11-7
SOAP Provider Interface and Providers ... 11-7
SOAP Services ... 11-7
JDeveloper Support for SOAP .. 11-7

See the Developer’s Guides.. 11-8

12 Oracle TransX Utility

Overview of the TransX Utility .. 12-2
Primary TransX Utility Features .. 12-2

Installing TransX Utility .. 12-4
Dependencies of TransX.. 12-4
Installing TransX Using the Oracle Installer... 12-5
Installing TransX Downloaded from OTN ... 12-5

TransX Utility Command-Line Syntax.. 12-6
TransX Utility Command-Line Examples... 12-6

Sample Code for TransX Utility ... 12-8

Part III XDK for C/C++

13 XML Parser for C

Accessing XML Parser for C ... 13-2
XML Parser for C Features .. 13-2

Specifications... 13-2
Memory Allocation... 13-2
Thread Safety... 13-3
Data Types Index.. 13-3
Error Message Files .. 13-3
Validation Modes ... 13-3

XML Parser for C Usage... 13-3
XML Parser for C Default Behavior .. 13-5
xvii

DOM and SAX APIs ... 13-6
Using the SAX API ... 13-7

Invoking XML Parser for C ... 13-7
Command Line Usage.. 13-8
Writing C Code to Use Supplied APIs... 13-8

Using the Sample Files Included with Your Software .. 13-8
Running the XML Parser for C Sample Programs.. 13-9

Building the Sample Programs ... 13-9
Sample Programs.. 13-10

14 XSLT Processor for C

Accessing XSLT for C ... 14-2
XSLT for C Features .. 14-2

Specifications ... 14-2
XML XSLT for C (DOM Interface) Usage... 14-2
Invoking XSLT for C .. 14-4

Command Line Usage.. 14-5
Using the Sample Files Included with the Software ... 14-5
Running the XSLT for C Sample Programs ... 14-6

Building the Sample Programs ... 14-6
Sample Programs.. 14-6
XSLT for C Example1: XSL — iden.xsl .. 14-6
XSLT for C Example 2: C — XSLSample.c .. 14-6
XSLT for C Example 3: C — XSLSample.std... 14-9

15 XML Schema Processor for C

Oracle XML Schema Processor for C... 15-2
Oracle XML Schema for C Features ... 15-2
Standards Conformance .. 15-2
XML Schema Processor for C: Supplied Software ... 15-3

Invoking XML Schema Processor for C.. 15-3
XML Schema Processor for C Usage Diagram... 15-4
How to Run XML Schema for C Sample Programs.. 15-5
xviii

16 XML Parser for C++

Accessing XML Parser for C++... 16-2
XML Parser for C++ Features ... 16-2

Specifications... 16-2
Memory Allocation... 16-2
Thread Safety... 16-3
Data Types Index.. 16-3
Error Message Files .. 16-3
Validation Modes ... 16-3

XML Parser for C++ Usage.. 16-3
XML Parser for C++ Default Behavior ... 16-6
DOM and SAX APIs... 16-7

Using the SAX API ... 16-7
Invoking XML Parser for C++ .. 16-8

Command Line Usage ... 16-8
Writing C++ Code to Use Supplied APIs ... 16-9

Using the Sample Files Included with Your Software .. 16-9
Running the XML Parser for C++ Sample Programs... 16-10

Building the Sample Programs... 16-10
Sample Programs.. 16-10

17 XSLT Processor for C++

Accessing XSLT for C++ .. 17-2
XSLT for C++ Features ... 17-2

Specifications... 17-2
XSLT for C++ (DOM Interface) Usage.. 17-2
Invoking XSLT for C++ ... 17-5

Command Line Usage ... 17-5
Writing C++ Code to Use Supplied APIs ... 17-5

Using the Sample Files Included with Your Software .. 17-5
Running the XSLT for C++ Sample Programs .. 17-6

Building the Sample programs... 17-6
Sample Programs.. 17-6
xix

18 XML Schema Processor for C++

Oracle XML Schema Processor for C++ Features ... 18-2
Oracle XML Schema for C++ Features .. 18-2
Standards Conformance .. 18-2
XML Schema Processor for C++: Provided Software.. 18-3

Invoking XML Schema Processor for C++ ... 18-3
XML Schema Processor for C++ Usage Diagram.. 18-4
Running the Provided XML Schema Sample Programs ... 18-5

19 XML Class Generator for C++

Accessing XML C++ Class Generator ... 19-2
Using XML C++ Class Generator... 19-2

External DTD Parsing .. 19-2
Error Message Files... 19-2

XML C++ Class Generator Usage .. 19-3
Input to the XML C++ Class Generator... 19-3

xmlcg Usage.. 19-5
Using the XML C++ Class Generator Examples in sample .. 19-5

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml . 19-6
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd .. 19-6
XML C++ Class Generator Example 3: CG Sample Program .. 19-7

Part IV XDK for PL/SQL

20 XML Parser for PL/SQL

Accessing XML Parser for PL/SQL .. 20-2
What’s Needed to Run XML Parser for PL/SQL ... 20-2
Using XML Parser for PL/SQL (DOM Interface) .. 20-2

XML Parser for PL/SQL: Default Behavior .. 20-5
Using XML Parser for PL/SQL Examples in the Sample Directory .. 20-5

Setting Up the Environment to Run the Sample Programs.. 20-5
Running domsample .. 20-6
Running xslsample ... 20-7
XML Parser for PL/SQL Example: XML — family.xml.. 20-9
xx

XML Parser for PL/SQL Example: DTD — family.dtd .. 20-10
XML Parser for PL/SQL Example: PL/SQL — domsample.sql 20-10
XML Parser for PL/SQL Example: PL/SQL — xslsample.sql... 20-13

Frequently Asked Questions About the XML Parser for PL/SQL .. 20-16
Why Do I Get an "Exception in Thread" Parser Error? ... 20-16
How Do I Use the xmldom.GetNodeValue in PL/SQL?.. 20-16
Can I Run the XDK for PL/SQL in an IIS Environment? ... 20-17
How Do I Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?........ 20-17
How Do I Use Local Variables with the XML Parser for PL/SQL? 20-19
Why Do I Get a Security Error When I Grant JavaSysPriv to a User? 20-19
How Do I Install the XML Parser for PL/SQL with the JServer (JVM) Option?............. 20-20
How Do I Use the domsample Included with XML Parser for PL/SQL?........................ 20-21
How Do I Extract Part of a CLOB?... 20-21
Why Do I Get "Out of Memory" Errors in the XML Parser? .. 20-22
What Are the Memory Requirements for Using the PL/SQL Parser? 20-23
Is JServer (JVM) Needed to Run XML Parser for PL/SQL?... 20-23

Frequently Asked Questions About Using the DOM API ... 20-23
What Does the XML Parser for PL/SQL Do?... 20-23
Can I Dynamically Set the Encoding in the XML Document?... 20-24
How Do I Get the Number of Elements in a Particular Tag?... 20-24
How Do I Parse a String?... 20-24
How Do I Display My XML Document?... 20-24
How Do I Write the XML Data Back Using Special Character Sets? 20-25
How Do I Obtain an Ampersand from Character Data? .. 20-25
How Do I Generate a Document Object from a File? .. 20-25
Can the Parser Run on Linux? .. 20-25
Is Support for Namespaces and Schema Included? .. 20-26
Why Doesn’t My Parser Find the DTD File? .. 20-26
Can I Validate an XML File Using an External DTD?... 20-26
Does the Parser Have DTD Caching?.. 20-26
How Do I Get the DOCTYPE Tag into the XML Document After It Is Parsed? 20-26
How Does the XML DOM Parser Work? .. 20-26
How Do I Create a Node Whose Value I Can Set Later?.. 20-26
How Do I Extract Elements from the XML File?.. 20-27
How Do I Append a Text Node to a DOMElement Using PL/SQL Parser?................... 20-27
xxi

I Am Using XML Parser with DOM; Why Can I Not Get the Actual Data?.................... 20-27
Can the XML Parser for PL/SQL Produce Non-XML Documents?.................................. 20-27
I Cannot Run the Sample File. Did I Do Something Wrong In the Installation?............. 20-27
How Do I Parse a DTD in a CLOB? ... 20-27
Why Do I Get Errors When Parsing a Document? .. 20-32
How Do I Use PLXML to Parse a Given URL?... 20-32
How Do I Use the XML Parser to Parse HTML?.. 20-32
How Do I Move Data to a Web Browser Using PL/SQL and Oracle 7.3.4? 20-33
Does the XML Parser for Java Work with Oracle 7.3.4?.. 20-33
getNodeValue(): Getting the Value of DomNode.. 20-34
How Do I Retrieve All Children or Grandchildren of a Node?... 20-34
What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"...... 20-34

21 XSLT Processor for PL/SQL

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface) 21-2
XML Parser for PL/SQL: XSLT Processor — Default Behavior .. 21-4
XML Parser for PL/SQL Example: XSL — iden.xsl... 21-5

22 XML Schema Processor for PL/SQL

Oracle XML Schema Processor for PL/SQL ... 22-2
Building Server-Side XML Schema Validation... 22-2

Creating the Java Classes for XML Schema Validation... 22-3
Loading and Resolving the Java Class... 22-4
Publishing the Java Class by Defining the Specification... 22-6
Example Using the Stored Procedures .. 22-6

23 XSU for PL/SQL

XSU PL/SQL API ... 23-2
Generating XML with DBMS_XMLQuery() ... 23-2
XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL) 23-2
XSU Generating XML Example 2: Printing CLOB to Output Buffer 23-3
XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names 23-3
XSU Generating XML Example 4: Using setMaxRows() and setSkipRows() 23-4

Setting Stylesheets in XSU (PL/SQL).. 23-5
xxii

Binding Values in XSU (PL/SQL) .. 23-6
XSU Generating XML Example 5: Binding Values to the SQL Statement 23-7

Storing XML in the Database Using DBMS_XMLSave .. 23-7
Insert Processing Using XSU (PL/SQL API) .. 23-8

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)................ 23-8
XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL) 23-9

Update Processing Using XSU (PL/SQL API) ... 23-10
XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL).. 23-11
XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL).... 23-12

Delete Processing Using XSU (PL/SQL API)... 23-12
XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL) 23-12
XSU Example 11: Deleting by Specifying the Key Values (PL/SQL) 23-13
XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL) 23-14
XSU Exception Handling in PL/SQL .. 23-16

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL 23-16
How Can I Use XMLGEN.insertXML with LOBs?.. 23-16

Part V Tools and Frameworks That Support XDK

24 Developing XML Applications with JDeveloper

Introducing JDeveloper ... 24-2
JDeveloper Covers the Complete Development Life Cycle ... 24-2
JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment 24-3
Java Alone Is Not Enough ... 24-3
XML Tools in JDeveloper .. 24-3
Business Components for Java (BC4J) ... 24-5
Integrated Web Services Development ... 24-6

What’s Needed to Run JDeveloper.. 24-7
XSQL Component Palette.. 24-7
Page Selector Wizard ... 24-8

XDK Features in JDeveloper .. 24-9
Oracle XDK Integration in JDeveloper.. 24-9
Developing Web Applications in JDeveloper Using XSQL Pages 24-9

Building XML Applications with JDeveloper .. 24-11
JDeveloper XDK Example 1: BC4J Metadata.. 24-11
xxiii

Procedure for Building Applications in JDeveloper.. 24-12
Using XSQL Servlet from JDeveloper .. 24-12

JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql 24-13
JDeveloper XSQL Example 3: Employee Data with Stylesheet Added 24-14

Frequently Asked Questions About JDeveloper and XML Applications 24-15
How Do I Construct an XML Document in JSP?.. 24-15
Is There a Way to Use the @code Directly in the document() Line? 24-16
How Do I Retrieve Data from messages.xml?.. 24-17
How Do I Move Complex XML Documents to a Database? .. 24-18

25 Introduction to BC4J

Introducing Business Components for Java (BC4J) ... 25-2
What Is the Business Components Framework?.. 25-4
Using Business Components... 25-4
Advantages at BC4J Design Time... 25-5
Advantages at BC4J Runtime.. 25-5

Implementing XML Messaging ... 25-6
Test BC4J Applications using JDeveloper ... 25-7
BC4J Uses XML to Store Metadata ... 25-7

Creating a Mobile Application in JDeveloper .. 25-9
Create the BC4J Application.. 25-10
Create JSP Pages Based on a BC4J Application .. 25-11
Create XSLT Stylesheets According to the Devices Needed to Read the Data................ 25-12
Building XSQL Clients with BC4J .. 25-15

Building XSQL Clients with BC4J... 25-15
Web Objects Gallery ... 25-16
Generating and Managing Code When Building XML and Java Applications 25-17

Frequently Asked Questions for BC4J.. 25-18
Can Applications Built Using BC4J Work With Any J2EE-Compliant Container? 25-18
Can J2EE Applications Built Using BC4J Work with Any Database?............................... 25-18
Is There Runtime Overhead from the Framework for Features That I Do Not Use? 25-19
Where Can I Find More Information About BC4J?.. 25-19

26 Introduction to UIX

What Is UIX? .. 26-2
xxiv

When to Use UIX... 26-2
When Not to Use UIX... 26-3
What Are the UIX Technologies? ... 26-3

UIX Components .. 26-4
UIX Controller... 26-4
UIX Language ... 26-5
UIX Dynamic Images ... 26-5
UIX Styles... 26-5
UIX Share ... 26-6

Which UIX Technologies to Use?... 26-6
For More Information About UIX ... 26-8

A XDK for Java: Specifications and Quick References

XML Parser for Java Quick Reference .. A-2
XML Parser for Java Specifications ... A-2

Requirements .. A-2
Online Documentation... A-2
Release Specific Notes.. A-3
Standards Conformance .. A-3
Supported Character Set Encodings .. A-3

XDK for Java: XML Schema Processor ... A-5
XDK for Java: XML Class Generator for Java.. A-5
XDK for Java: XSQL Servlet ... A-5

Downloading and Installing XSQL Servlet... A-5
Windows NT: Starting the Web-to-Go Server.. A-6
Setting Up the Database Connection Definitions for Your Environment A-7
UNIX: Setting Up Your Servlet Engine to Run XSQL Pages.. A-8

XSQL Servlet Specifications ... A-8
Character Set Support .. A-9

B XDK for PL/SQL: Specifications

XML Parser for PL/SQL ... B-2
Oracle XML Parser Features ... B-2
Namespace Support ... B-3
Validating and Non-Validating Mode Support ... B-3
xxv

Example Code ... B-3
IXML Parser for PL/SQL Directory Structure.. B-3
DOM and SAX APIs ... B-4

XML Parser for PL/SQL Specifications ... B-5

Glossary

Index
xxvi

Send Us Your Comments

Oracle9 i XML Developer’s Kits Guide - XDK, Release 2 (9.2)

Part No. A96621-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xxvii

xxviii

Preface

The Preface has the following sections:

■ About this Guide

■ How to Order this Manual

■ Downloading Release Notes, Installation Guides, White Papers

■ How to Access this Manual On-Line

■ Conventions

■ Documentation Accessibility
xxix

About this Guide
This manual describes Oracle9i’s XML-enabled database technology. It describes

how XML data can be stored, managed, and queried in the database using Oracle

XML-enabled technology and the appropriate Oracle development tools.

After introducing you to the main criteria to consider when designing your Oracle

XML application, this manual describes an overview of several scenarios that are

based on real-life existing business applications. You are then introduced to the

XML Developer’s Kits (XDKs) and how the XDK componoents can work together

to generate and store XML data in a database. Examples and sample applications

are introduced where possible.

Other Documentation on XML
For more about building XML applications:

Examples and Sample Code
Many of the XDK examples in the manual are provided with your software in the

following directories:

■ $ORACLE_HOME/xdk/java/demo/

■ $ORACLE_HOME/xdk/C/demo/ and so on

■ $ORACLE_HOME/xdk/java/sample/

■ $ORACLE_HOME/rdbms/demo

How to Order this Manual
In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

See Also:

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Oracle9i Application Developer’s Guide - Advanced Queuing
xxx

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Downloading Release Notes, Installation Guides, White Papers
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

How to Access this Manual On-Line
You can find copies of or download this manual from any of the following locations:

■ On the Document CD that accompanies your Oracle9i software CD

■ From Oracle Technology Network (OTN) at

http://otn.oracle.com/docs/index.html , under Data Server (or

whatever other product you have). For example, select Oracle9i > General

Documentation Release 1 (9.0.1) (or whatever other section you need to
xxxi

specify). Select HTML then select HTML or PDF for your particular of interest,

such as, “Oracle Documentation Library”. Note that you may only be able to

locate the prior release manuals at this site.

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Syntax and Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
xxxii

Conventions in Syntax and Code Examples
Syntax examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospaced (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in syntax examples and

in code examples, and provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] In syntax examples, brackets enclose one
or more optional items. Do not enter the
brackets.

DECIMAL (digits [, precision])

{ } In syntax examples, braces enclose two or
more items, one of which is required. Do
not enter the braces.

{ENABLE | DISABLE}

Convention Meaning Example
xxxiii

| In syntax examples, a vertical bar
represents a choice of two or more
options within brackets or braces. Enter
one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ Or, in syntax examples, that you can
enter more arguments

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

Convention Meaning Example
xxxiv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xxxv

xxxvi

What’s New in XDK?

These sections describe the new features in the following releases:

■ XDK Features Introduced with Oracle9i, Release 2 (9.2)

■ XDK Features Introduced with Oracle9i, Release 1 (9.0.1)

■ XDK Features Introduced with Oracle8i Release 3 (8.1.7)
xxxvii

XDK Features Introduced with Oracle9 i, Release 2 (9.2)

XML Schema Processor for Java
Supports the W3C Schema recommendation.

Schema Identity-constraint validation no longer needs external DocumentBuilder.

XSL Stylesheets
Support for threadsafe XSLStylesheet objects.

XSQL Servlet
New Performance Improvement Option for <xsql:include-owa>.

<xsql:set-page-param> now supports xpath="Expr" Attribute.

Simplified inclusion of XML from CLOB and VARCHAR2 Columns.

New <xsql:include-posted-xml> action handler to include posted XML.

Support for the Apache FOP 0.19 release.

Supports Immediately Read Values Set as Cookies.

Supports Setting Multiple Parameter Values with a Single SQL Statement.

Class Generator for Java
Data Binding Feature is added in this release to the DTD Class Generator.

An XML instance document could be given as input to load the instance data to the

generated classes.

XDK for Java
XSU support for SAX 2.0 and generating the XML Schema of a SQL Query.

DOM level compression support.

Oracle SOAP APIs added.

SAX2 Extension support in the Java XML Parser.

JAXP 1.1 support is now provided by the XDK for Java.

Oracle TransX Utility aids loading data and text.

XML Schema Processor for Java supports both LAX Mode and STRICT Mode.

XML Compression now supported in the Java XML Parser.
xxxviii

XDK for C
Released on Linux.

XDK for C++
Released on Linux.

XDK for JavaBeans
New XMLDiff Bean.

Internal DTD support is added to the SourceViewer Bean.

OTN
New XDK Live demo is online at:

http://otn.oracle.com/tech/xml/xdk_sample/xdkdemo_faq.html

http://otn.oracle.com/tech/xml/xdk_sample/xdkdemo_xsql.html

New XDK technical Paper for "Building Server-Side XML Schema Validation" is

online at:

http://otn.oracle.com/tech/xml/xdk_sample/xdksample_093001i.h
tml

XDK Features Introduced with Oracle9 i, Release 1 (9.0.1)
Here are the new XDK features in Oracle9i Release 1 (9.0.1):

XDK for Java
■ XML Schema Processor for Java

■ XML Parser for Java — DOM 2.0 and SAX 2.0 support

■ Improved XSLT performance

■ Class Generator for Java now includes XML Schema based Class Generator

as well as a DTD based Class Generator

See:

■ Chapter 4, "XML Parser for Java"

■ Chapter 6, "XML Schema Processor for Java"
xxxix

■ XSQL Servlet and Pages

■ Support for Database Bind Variables. Now both lexical subsitution and true

database bind variables are supported for improved performance.

■ Support for PDF Output Using Apache FOP. You can now combine XSQL

Pages with the Apache FOP processor to produce Adobe PDF output from

any XML content.

■ Trusted Host Support for XSLT Stylesheets. New security features insure

that stylesheets cannot be executed from non-trusted hosts.

■ Full Support for Non-Oracle JDBC Drivers. Now all query, insert, update,

and delete features with with both Oracle and Non-Oracle JDBC drivers.

■ Process Dynamically Constructed XSQL Pages. The XSQLRequest API can

now process programmatically constructed XSQL pages.

■ Use a Custom Connection Manager. You can now implement your own

Connection Manager to handle database connections in any way you like.

■ Produce Inline XML Schema. You can now optionally produce an inline

XML Schema that describes the structure of your XML query results.

■ Set Default Date Format for Queries. You can now supply a date format

mask to change the default way date data is formatted.

■ Write Custom Serializers. You can create and use custom serializers that

control what and how the XSQL page processor will return to the client.

■ Dynamic Stylesheet Assignment. Assign stylesheets dynamically based on

parameters or the result of a SQL query.

■ Update or Delete Posted XML. In addition to inserting XML, now updating

and deleting is also supported.

■ Insert or Update Only Targeted Columns. You can now explicitly list what

columns should be included in any insert or update request.

■ Page-Request Scoped Objects. Your action handlers can now get/set objects

in the page request context to share state between actions within a page.

■ Access to ServletContext. In addition to accessing the HttpRequest and

HttpResponse objects, you can also access the ServletContext.

See: Chapter 7, "XML Class Generator for Java"

See: Chapter 9, "XSQL Pages Publishing Framework"
xl

■ XDK for JavaBeans

■ DBViewer Bean (new). Displays database queries or any XML by applying

XSL stylesheets and visualizing the resulting HTML in a scrollable swing

panel.

■ DBAccess Bean (new). DB Access bean maintains CLOB tables that hold

multiple XML and text documents.

■ XDK for C

■ XML Parser for C — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)

■ XML Schema Processor for C

■ Improved XSLT performance

■ XDK for C++

■ XML Parser for C++ — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)

■ XML Schema Processor for C++

■ Improved XSLT performance

■ XDK for PL/SQL

■ Improved XSLT performance

XML SQL Utility (XSU) Features
■ Ability to generate XML Schema given an SQL Query

■ Support for XMLType and Uri-ref

■ Ability to generate XML as a stream of SAX2 callbacks

■ XML attribute support when generation XML from the database. This

provides an easy way of specifying that a particular column or group of

See: Chapter 10, "XDK JavaBeans"

See: Chapter 15, "XML Schema Processor for C"

See: Chapter 18, "XML Schema Processor for C++"

See: Chapter 20, "XML Parser for PL/SQL"
xli

columns should be mapped to an XML attribute instead of an XML

element.

XSU is also considered part of the XDK for Java and XDK for PL/SQL.

XDK Features Introduced with Oracle8 i Release 3 (8.1.7)
New XDK features introduced in Oracle8i, Release 3 (8.1.7) were enhanced and

improved versions of the following components:

■ XDK for Java

■ XDK for C

■ XDK for C++

■ XDK for PL/SQL

■ XML SQL Utility

See: Chapter 8, "XML SQL Utility (XSU)"
xlii

Part I

 XML Developer’s Kits (XDK)

Part I of the book introduces you to Oracle XML-enabled technology and features,

Oracle XML Developer’s Kits (XDKs) and XML components, and how to install the

XDKs. Part I contains the following chapters:

■ Chapter 1, "Overview of XML Developer’s Kits and Components"

■ Chapter 2, "Getting Started with XDK for Java and JavaBeans"

■ Chapter 3, "Getting Started with XDKs for C/C++ and PL/SQL"

Overview of XML Developer’s Kits and Compo
1

Overview of XML Developer’s Kits and

Components

This chapter contains the following sections:

■ Oracle XML Components: Overview

■ Development Tools and Other XML-Enabled Oracle9i Features

■ XML Parsers

■ XSL Transformation (XSLT) Processor

■ XML Class Generator

■ XML Transviewer JavaBeans

■ Oracle XSQL Page Processor and Servlet

■ Oracle XML SQL Utility (XSU)

■ Oracle Text

■ Oracle XML Components: Generating XML Documents

■ Using Oracle XML Components to Generate XML Documents: Java

■ Using Oracle XML Components to Generate XML Documents: C

■ Using Oracle XML Components to Generate XML Documents: C++

■ Using Oracle XML Components to Generate XML Documents: PL/SQL

■ Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
nents 1-1

Oracle XML Components: Overview
Oracle XML Components: Overview
Oracle9i provides several components, utilities, and interfaces you can use to take

advantage of XML technology in building your Web-based database applications.

Which components you use depends on your application requirements,

programming preferences, development, and deployment environments.

Starting with XDK 9.0.2 (shipped with iAS v2) and XDK 9.2 (shipped with Oracle9i
Release 2), XSLStylesheet is thread-safe and can be used across threads in multiple

XSLProcessor.processXSL calls. But XSLProcessor, a light-weight object, will

not be made thread safe.

The following XML components are provided with Oracle9i and Oracle9i
Application Server:

■ XML Developer’s Kits (XDKs). There are Oracle XDKs for Java, C, C++, and

PL/SQL. These development kits contain building blocks for reading,

manipulating, transforming, and viewing XML documents. Oracle XDKs are

fully supported and come with a commercial redistribution license. Table 1–1

lists the XDK components.

■ XML SQL Utility (XSU). This utility, for Java and PL/SQL: Generates and

stores XML data to and from the database from SQL queries or result sets or

tables. It achieves data transformation, by mapping canonically any SQL query

result to XML and vice versa.

The following figures schematically illustrate how the XDK components can be

used to generate XML:

■ Figure 1–8, "Generating XML Documents Using XDK for Java"

■ Figure 1–9, "Generating XML Documents Using XDK for C"

■ Figure 1–10, "Generating XML Documents Using XDK for C++"

■ Figure 1–11, "Generating XML Documents Using XDK for PL/SQL"

Table 1–1 XDK Component Descriptions

XDK Component Languages Description

XML Parser Java, C, C++, PL/SQL Creates and parses XML using Internet standard DOM and
SAX interfaces.

XSLT Processor Java, C, C++, PL/SQL Transforms or renders XML into other text-based formats
such as HTML and WML

XML Schema Processor Java, C, C++, PL/SQL Enables the use of XML simple and complex datatypes by
means of your XML Schema definitions.
1-2 Oracle9i XML Developer’s Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features
Development Tools and Other XML-Enabled Oracle9 i Features
The following list includes Oracle’s XML-enabled development tools:

Oracle Text: A querying, search and retrieval tool.

Oracle JDeveloper9i and BC4J: JDeveloper9i is an integrated development tool for

building Java web-based applications. Oracle Business Components for Java (BC4J)

is a Java, XML-powered framework that enables productive development, portable

deployment, and flexible customizing of multitier, database-savvy applications

from reusable business components. These applications can be deployed as CORBA

Server Objects or EJB Session Beans on enterprise-scale server platforms supporting

Java technology.

■ Oracle9i Internet File System (9iFS): An application interface in which data can

be viewed as documents and the documents can be treated as data. 9iFS is a

simple way for developers to work with XML, where 9iFS serves as the

repository for XML. 9iFS can perform the following tasks on XML documents:

XML Class Generator Java, C++ Automatically generates Java and C++ classes from DTDs
and XML Schemas to send XML data from Web forms or
applications.

XML Transviewer
JavaBeans

Java View and transform XML documents and data through Java
components.

XML SQL Utility (XSU) Java, PL/SQL Generates XML documents, DTDs, and XML Schemas from
SQL queries.

XSQL Servlet Java Combines XML, SQL, and XSLT in the server to deliver
dynamic Web content.

TransX Utility Java Loads data encapsulated in XML into the database with
additional SQL functionality useful for installations.

Oracle SOAP Server Java See also Chapter 11, "Using XDK and SOAP"

XML Compressor Java See also "XML Compressor" on page 4-10.

See Also:

■ Chapter 21, "XSLT Processor for PL/SQL"

■ Chapter 22, "XML Schema Processor for PL/SQL"

Table 1–1 XDK Component Descriptions (Cont.)

XDK Component Languages Description
Overview of XML Developer’s Kits and Components 1-3

Development Tools and Other XML-Enabled Oracle9i Features
■ Automatically parse XML and store content in tables and columns

■ Render the XML file’s content

■ Oracle Reports. Oracle Reports Developer and Reports Server enable you to

build and publish high-quality, dynamically generated Web reports. Each major

task is expedited by the use of a wizard, while the use of report templates and a

live data preview enables easy customizing of the report structure. Reports can

be published throughout the enterprise through a standard Web browser, in any

chosen format, including HTML, HTML Cascading Style Sheets (HTML CSS),

Adobe's Portable Document Format (PDF), delimited text, Rich Text Format

(RTF), PostScript, PCL, or XML. Reports can be integrated with Oracle Portal

(WebDB).

■ You can schedule reports to run periodically and update the information in

an Oracle Portal site. Reports can also be personalized for a user.

■ Oracle Reports Developer is part of Oracle's e-business intelligence

solution, and integrates with Oracle Discoverer and Oracle Express.

See Also: Oracle9i XML Case Studies and Applications, the chapter,

"Using Internet File System (9iFS) to Build XML Applications".
1-4 Oracle9i XML Developer’s Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features
Figure 1–1 Oracle XML Components and E-Business Solutions: What Is Involved

Oracle or other database

XML Data stored:
· In relational tables in LOBs
· As XML documents in CLOBs (XMLType)
· DBUri-type

Object
Relational
data Oracle

Text

XML Doc in CLOB or XMLType

To search and retrieve
XML documents stored
in CLOBS

Middle Tier:
· Oracle9i Application Server
· Apache Server
· Java-enabled web server

XDK for Java

XDK for C

XDK for C++

XDK for PL/SQL

XDK for Java Beans

XML SQL Utility
(Java or PL/SQL)

XML
Documents

Web
Interface

User / Browser /
Client / Application
(Business or Consumer)

SQL Query

Business Data Exchange with
XML (data stored in or out of
database in relational tables
or LOBs):
· Buyer-Supplier Transparent
 Trading Automation
· Seamless integration of partners
· HTTP-Based commercial and other
 data exchanged
· Integration of commercial
 transactions and work flow

Content and Document
management with XML
(XML documents stored in or out
of database):
· Personalized publishing and
 portals
· Customized presentation according
 to customer
· Dynamically creating composite
 documents from fragments
· Data displayed on different
 devices [see Wireless edition]

Services provided with XML:
· Data mining and report-generation
 [See Discoverer 4iViewer]
· Phone number portability

XML Application in
the database or
middle tier

Dynamic Services and Oracle
Syndication Server (OSS)

Typical XML-Based
Business Solutions
See manual case studies

XML Applications

JDBC,
OCI,

OCCI,
or

Pro*C/C++

Oracle Development Tools:
· XSQL Pages Publishing Framework
· 9iFS (Internet file System)
· JDeveloper and BC4J
· Oracle portal (WebDb)
· Oracle Reports
· Metadata API

XML Application

B2B or B2C
XML Messaging

Using AQ
IDAP

XML Gateway
Overview of XML Developer’s Kits and Components 1-5

Development Tools and Other XML-Enabled Oracle9i Features
XDK for Java
XDK for Java is composed of the following components:

■ XML Parser for Java. Creates and parses XML using Internet standard DOM

and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

■ XML Schema Processor for Java. Supports simple and complex types and is

built on the Oracle XML Parser for Java v2.

■ XML Class Generator for Java. Creates source files from an XML DTD or XML

Schema definition.

■ XSQL Servlet. Processes SQL queries embedded in an XSQL file, xxxx.xsql.

Returns results in XML format. Uses XML SQL Utility and XML Parser for Java.

■ XML SQL Utility (XSU) for Java. Enables you to transform data retrieved from

object-relational database tables or views into XML, extract data from an XML

document and:

– Use canonical mapping to insert data into appropriate columns or attributes

of a table or a view

– Apply this data to update or delete values of the appropriate columns or

attributes

■ SOAP Server. A protocol for sending and receiving responses across the

Internet.

■ TransX Utility. Simplifies the loading of translated seed data and messages into

a database.

■ XML Compressor. An XML document is compressed into a binary stream by

the XML Parser.

XDK for JavaBeans
XDK for JavaBeans is composed of the following component:

■ XML Transviewer JavaBeans. View and transform XML documents and data

through Java

■ XMLDiff Bean. The XML Diff Bean performs a tree comparison on two XML

DOM trees. It displays the two XML trees and shows the differences between

the XML trees.
1-6 Oracle9i XML Developer’s Kits Guide - XDK

Development Tools and Other XML-Enabled Oracle9i Features
XDK for C
XDK for C is composed of the following component:

■ XML Parser for C: Creates and parses XML using Internet standard DOM and

SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

■ XSLT Processor. Transforms or renders XML into other text-based formats such as

HTML and WML.

XDK for C++
XDK for C++ is composed of the following:

■ XML Parser for C++. Creates and parses XML using Internet standard DOM

and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

■ XML Schema Processor for C++. A companion component to XML Parser for

C++. It enables support for simple and complex datatypes in XML applications

with Oracle9i. The Schema Processor supports the XML Schema Working Draft.

■ XML C++ Class Generator: Creates source files from an XML DTD or XML

Schema definition.

■ XSLT Processor.Transforms or renders XML into other text-based formats such as

HTML and WML.

XDK for PL/SQL
XDK for PL/SQL is composed of the following:

■ XML Parser for PL/SQL: Creates and parses XML using Internet standard

DOM and SAX interfaces. Includes an XSL Transformation (XSLT) Processor
that transforms XML to XML or other text-based formats, such as HTML.

■ XML Schema Processor for PL/SQl. Supports simple and complex types.

■ XML SQL Utility (XSU) for PL/SQL. Enables you to transform data retrieved

from object-relational database tables or views into XML, extract data from an

XML document and:

– Use canonical mapping to insert data into appropriate columns or attributes

of a table or a view
Overview of XML Developer’s Kits and Components 1-7

XML Parsers
– Apply this data to update or delete values of the appropriate columns or

attributes

■ XSLT Processor.

■ XML Schema Processor. Transforms or renders XML into other text-based formats

such as HTML and WML.

XML Parsers
The Oracle XML parser includes implementations in C, C++, PL/SQL, and Java for

the full range of platforms on which Oracle9i runs.

Based on conformance tests, xml.com ranked the Oracle parser in the top two

validating parsers for its conformance to the XML 1.0 specification, including

support for both SAX and DOM interfaces. The SAX and DOM interfaces conform

to the W3C recommendations 2.0.

Version 2 (v2) of the Oracle XML parser provides integrated support for the

following features:

■ XPath. XPath is the W3C recommendation that specifies the data model and

grammar for navigating an XML document utilized by XSLT, XLink and XML

Query

■ Incremental XSL transformation of document nodes. XSL transformations are

compliant with version 1.0 of the W3C recommendations. This support enables

the following:

■ Transformations of XML documents to another XML structure

■ Transformations of XML documents to other text-based formats

The parsers are available on all Oracle platforms.

Figure 1–2 illustrates the Oracle XML Parser for Java. Figure 1–3 illustrates the

Oracle XML parsers’ overall functionality.

See Also: Chapter 4, "XML Parser for Java" and Chapter A, "XDK

for Java: Specifications and Quick References".
1-8 Oracle9i XML Developer’s Kits Guide - XDK

XSL Transformation (XSLT) Processor
Figure 1–2 Oracle XML Parser for Java

Figure 1–3 The XML Parsers: Java, C, C++, PL/SQL

XSL Transformation (XSLT) Processor
The Oracle XSLT engine fully supports the W3C 1.0 XSL Transformations

recommendation. It has the following features:

DOM / SAX Parser

XML Parser for Java

Original
XML

Document

Transfered
XML

Document

Parsed XML

Parsed XSL
Commands

XSL
Stylesheet

XSL-T Processor

XML Parser for C++

XML Parser for C

XML Parser for PL/SQL

XML Parser for Java

XML
document

or DTD

DOM / SAX for C++

DOM / SAX for C

DOM for PL/SQL

DOM / SAX for Java

C++ Application

C Application

PL/SQL Application

Java Application

Parsers
Overview of XML Developer’s Kits and Components 1-9

XML Class Generator
■ Enables standards-based transformation of XML information inside and outside

the database on any platform.

■ Supports Java extensibility and for additional performance comes natively

compiled from Oracle8i Release 3 (8.1.7) and higher.

The Oracle XML Parsers, Version 2 include an integrated XSL Transformation

(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT

processor, you can transform XML documents from XML to XML, HTML, or

virtually any other text-based format.

How to use the XSLT Processor is described in Chapter 4, "XML Parser for Java".

XML Class Generator
XML Class Generator creates a set of Java or C++ classes for creation of XML

documents corresponding to an input DTD or XML Schema. Figure 1–4 shows

Oracle XML Class Generator functionality.

How to use the XML Class Generators is described in the following chapters:

■ Chapter 7, "XML Class Generator for Java"

■ Chapter 19, "XML Class Generator for C++"

See Also: Chapter A, "XDK for Java: Specifications and Quick

References".
1-10 Oracle9i XML Developer’s Kits Guide - XDK

XML Transviewer JavaBeans
Figure 1–4 Oracle XML Java Class Generator

XML Transviewer JavaBeans
Oracle XML Transviewer JavaBeans are a set of XML components that constitute

XML for JavaBeans. These are used for Java applications or applets to view and

transform XML documents.

They are visual and non-visual Java components that are integrated into Oracle

JDeveloper to enable the fast creation and deployment of XML-based database

applications. In this release, the following beans are available:

■ DOM Builder Bean. This wraps the Java XML (DOM) parser with a bean

interface, allowing multiple files to be parsed at once (asynchronous parsing).

By registering a listener, Java applications can parse large or successive

documents having control return immediately to the caller.

■ XML Source Viewer Bean. This bean extends JPanel by enabling the viewing of

XML documents. It improves the viewing of XML and XSL files by

color-highlighting XML and XSL syntax. This is useful when modifying an

XML document with an editing application. Easily integrated with the DOM

Builder Bean, it enables pre-parsing and post-parsing and validation against a

specified DTD.

■ XML Tree Viewer Bean. This bean extends JPanel by enabling viewing XML

documents in tree form with the ability to expand and collapse XML parsers. It

Valid XML
document
based on

DTD or XML
Schema

XML Class Generator
for Java

Java Application

Parsed
DTD or
XML
Schema

XML Parser for Java

Jc
Jc

Jc
Jc

Java classes based
on DTD or XML Schema
(one class per element)

DTD or
XML Schema
Overview of XML Developer’s Kits and Components 1-11

Oracle XSQL Page Processor and Servlet
displays a visual DOM view of an XML document, enabling users to easily

manipulate the tree with a mouse to hide or view selected branches.

■ XSL Transformer Bean. This wraps the XSLT Processor with a bean interface

and performs XSL transformations on an XML document based on an XSL

stylesheet. It enables users to transform an XML document to almost any

text-based format including XML, HTML and DDL, by applying an XSL

stylesheet. When integrated with other beans, this bean enables an application

or user to view the results of transformations immediately. This bean can also

be used as the basis of a server-side application or servlet to render an XML

document, such as an XML representation of a query result, into HTML for

display in a browser.

■ XML TransPanel Bean. This bean uses the other beans to create a sample

application which can process XML files. This bean includes a file interface to

load XML documents and XSL stylesheets. It uses the beans as follows:

– Visual beans to view and edit files

– Transformer bean to apply the stylesheet to the XML document and view

the output

■ DBAccess Bean.

■ DBViewer Bean.

■ Compression Bean.

■ Differ Bean.

As standard JavaBeans, they can be used in any graphical Java development

environment, such as Oracle JDeveloper. The Oracle XML Transviewer Beans

functionality is described in Chapter 10, "XDK JavaBeans".

Oracle XSQL Page Processor and Servlet
XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.

This processor is implemented as a Java servlet and takes as its input an XML file

containing embedded SQL queries. It uses XML Parser for Java, XML- SQL Utility,

and Oracle XSL Transformation (XSLT) Engine to perform many of its operations.

You can use XSQL Servlet to perform the following tasks:

■ Build dynamic XML data pages from the results of one or more SQL queries

and serve the results over the Web as XML datagrams or HTML pages using

server-side XSLT transformations.
1-12 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XSQL Page Processor and Servlet
■ Receive XML posted to your web server and insert it into your database.

Servlet Engines That Support XSQL Servlet
XSQL Servlet has been tested with the following servlet engines:

■ Allaire JRun 2.3.3

■ Apache 1.3.9 with JServ 1.0 and 1.1

■ Apache 1.3.9 with Tomcat 3.1 Beta1 Servlet Engine

■ Apache Tomcat 3.1 Beta1 Web Server + Servlet Engine

■ Caucho Resin 1.1

■ NewAtlanta ServletExec 2.2 for IIS/PWS 4.0

■ Oracle9i Lite Web-to-Go Server

■ Oracle Application Server 4.0.8.1 (with JSP Patch)

■ Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine and higher

■ Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

JavaServer Pages Platforms That Support XSQL Servlet
JavaServer Pages can use <jsp:forward> or <jsp:include> to collaborate with

XSQL Pages as part of an application. The following JSP platforms have been tested

to support XSQL Servlet:

■ Apache 1.3.9 with Tomcat 3.1 Beta1 Servlet Engine

■ Apache Tomcat 3.1 Beta1 Web Server + Tomcat 3.1 Beta1 Servlet Engine

■ Caucho Resin 1.1 (Built-in JSP 1.0 Support)

■ NewAtlanta ServletExec 2.2 for IIS/PWS 4.0 (Built-in JSP 1.0 Support)

■ Oracle9i Lite Web-to-Go Server with Oracle JSP 1.0

■ Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine with Oracle JSP 1.0 and

higher

■ Any Servlet Engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, it should work with the following:

■ Any servlet engine supporting the Servlet 2.1 specification or higher
Overview of XML Developer’s Kits and Components 1-13

Oracle XSQL Page Processor and Servlet
■ Oracle JSP 1.0 reference implementation or functional equivalent from another

vendor

XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.

This processor is implemented as a Java servlet and takes as its input an XML file

containing embedded SQL queries. It uses XML Parser for Java and XML SQL

Utility to perform many of its operations.

Figure 1–5 shows how data flows from a client, to the servlet, and back to the client.

The sequence of events is as follows:

1. The user enters a URL through a browser, which is interpreted and passed to

the XSQL Servlet through a Java Web Server. The URL contains the name of the

target XSQL file (.xsql) and optionally, parameters, such as values and an XSL

stylesheet name. Alternatively, the user can invoke the XSQL Servlet from the

command line, bypassing the browser and Java web server.

2. The servlet passes the XSQL file to the XML Parser for Java, which parses the

XML and creates an API for accessing the XML contents.

3. The page processor component of the servlet uses the API to pass XML

parameters and SQL statements (found between <query></query> tags) to

XML SQL Utility. The page processor also passes any XSL processing

statements to the XSLT Processor.

4. XML SQL Utility sends the SQL queries to the underlying Oracle9i database,

which returns the query results to the utility.

5. XML SQL Utility returns the query results to the XSLT Processor as XML

formatted text. Results are embedded in the XML file in the same location as the

original <query> tags.

6. If desired, the query results and any other XML data are transformed by the

XSLT processor using a specified XSL stylesheet. The data can be transformed

to HTML or any other format defined by the stylesheet. The XSLT processor can

selectively apply different stylesheets based on the type of client that made the

original URL request. This HTTP_USER_AGENT information is obtained from

the client through an HTTP request.

7. The XSLT Processor passes the completed document back to the client browser

for presentation to the user.

See Also: Chapter 9, "XSQL Pages Publishing Framework"
1-14 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XSQL Page Processor and Servlet
Figure 1–5 Oracle XSQL Page Processor and Servlet Functional Diagram

Oracle9 i

Servlet-Compatible Web Server

Web Form

Browser

User

URL

1

XML Formatted
SQL Queries

2

XML Parser
for Java

XSQL Page
Processor

XML SQL
Parser

XSL
Stylesheet

XSLT
Porcessor

6 4

3

7

Query
Results
in XML,
HTML,
or Other
Format

XSQL Servlet

SQL QueriesXSL Tags

6 Query
Results
Overview of XML Developer’s Kits and Components 1-15

Oracle XML SQL Utility (XSU)
Oracle XML SQL Utility (XSU)
Oracle XML SQL Utility (XSU) supports Java and PL/SQL.

■ XML SQL Utility is comprised of core Java class libraries for automatically and

dynamically rendering the results of arbitrary SQL queries into canonical XML.

It includes the following features:

– Supports queries over richly-structured user-defined object types and object

views.

– Supports automatic XML Insert of canonically-structured XML into any

existing table, view, object table, or object view. By combining with XSLT

transformations, virtually any XML document can be automatically

inserted into the database.

XML SQL Utility Java classes can be used for the following tasks:

– Generate from an SQL query or Result set object a text or XML document, a

Document Object Model (DOM), Document Type Definition (DTD), or XML

Schema.

– Load data from an XML document into an existing database schema or

view.

■ XML SQL Utility for PL/SQL is comprised of a PL/SQL package that wraps

the XML SQL Utility for Java.

Figure 1–6 shows the Oracle XML SQL Utility overall functionality.

Figure 1–6 Oracle XML SQL Utility Functional Diagram

XML SQL Utility for Java consists of a set of Java classes that perform the following

tasks:

■ Pass a query to the database and generate an XML document (text or DOM)

from the results or the DTD which can be used for validation.

XML-SQL Utility
for Java

Oracle9 i

XML
Document
1-16 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML SQL Utility (XSU)
– Write XML data to a database table

Generating XML from Query Results
Figure 1–7 shows how XML SQL Utility processes SQL queries and returns the

results as an XML document.

Figure 1–7 XMl-SQL Utility Processes SQL Queries and Returns the Result as an XML
Document

XML Document Structure: Columns Are Mapped to Elements
The structure of the resulting XML document is based on the internal structure of

the database schema that returns the query results:

■ Columns are mapped to top level elements

■ Scalar values are mapped to elements with text-only content

■ Object types are mapped to elements with attributes appearing as sub-elements

■ Collections are mapped to lists of elements

See Also: Chapter 8, "XML SQL Utility (XSU)"

SQL or Object
Queries

XML Document of
Query Results as a
string or DOM tree

XML-SQL Utility
for Java

Oracle9 i

Store and retrieve
XML documents
in the database
Overview of XML Developer’s Kits and Components 1-17

TransX Utility
XSU Generates the XML Document as a String or DOM Element Tree
The XML SQL Utility (XSU) generates either of the following:

■ A string representation of the XML document. Use this representation if you are

returning the XML document to a requester.

■ An in-memory XML DOM tree of elements. Use this representation if you are

operating on the XML programmatically, for example, transforming it using the

XSLT Processor using DOM methods to search or modify the XML in some way.

XSU Generates a DTD Based on Queried Table’s Schema
You can also use the XML SQL Utility (XSU) to generate a DTD based on the

schema of the underlying table or view being queried. You can use the generated

DTD as input to the XML Class Generator for Java or C++. This generates a set of

classes based on the DTD elements. You can then write code that uses these classes

to generate the infrastructure behind a Web-based form. See also "XML Class

Generator".

Based on this infrastructure, the Web form can capture user data and create an XML

document compatible with the database schema. This data can then be written

directly to the corresponding database table or object view without further

processing.

TransX Utility
TransX Utility is a data transfer utility that enables you to populate your database

with multilingual data. It uses XML to specify the data, so that you can take

advantage of easy data transfer from XML to the database, a simple data format

that is intuitive for both developers and translators, and validation capability that is

less error prone than previous techniques.

See Also: Chapter 8, "XML SQL Utility (XSU)" and Oracle9i XML
Case Studies and Applications, the chapter, "B2B XML Application:

Step by Step", for more information about this approach.

Note: To write an XML document to a database table, where the

XML data does not match the underlying table structure, transform

the XML document before writing it to the database. For techniques

on doing this, see Chapter 8, "XML SQL Utility (XSU)".
1-18 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML Components: Generating XML Documents
Oracle Text
Oracle Text extends Oracle9i by indexing any text or documents stored in Oracle9i.
Use Oracle Text to perform searches on XML documents stored in Oracle9i by

indexing the XML as plain text, or as document sections for more precise searches,

such as find Oracle WITHIN title where title is a section of the document.

XML Gateway
 XML Gateway is a set of services that enables easy integration with the Oracle

e-Business Suite to create and consume XML messages triggered by business

events. It integrates with Oracle Advanced Queuing to enqueue/dequeue a

message which is then transmitted to/from the business partner through any

message transport agent.

Oracle XML Components: Generating XML Documents
Figure 1–8 through Figure 1–11 illustrate the relationship of the Oracle XML

components and how they work together to generate XML documents from

Oracle9i through a SQL query. The options are depicted according to language

used:

■ Java

■ C

See Also: Chapter 12, "Oracle TransX Utility"

See Also: For more information on using Oracle Text and XML,

see:

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ http://otn.oracle.com/products/text

See Also:

■ Oracle9i Application Developer’s Guide - Advanced Queuing

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB
Overview of XML Developer’s Kits and Components 1-19

Using Oracle XML Components to Generate XML Documents: Java
■ C++

■ PL/SQL

Using Oracle XML Components to Generate XML Documents: Java
Figure 1–8 shows the Oracle XML Java components and how they can be used to

generate an XML document. Available XML Java components are:

■ XDK for Java:

– XML Parser for Java, Version 2 including the XSLT

– XMl Schema Processor for Java

– XML Class Generator for Java

– XSQL Servlet

– XML Transviewer Beans

■ XML SQL Utility (XSU) for Java

In the Java environment, when a user or client or application sends a query (SQL),

there are three possible ways of processing the query using the Oracle XML

components:

■ By the XSL Servlet (this includes using XSU and XML Parser)

■ Directly by the XSU (this includes XML Parser)

■ Directly by JDBC which then accesses XML Parser

Regardless of which way the stored XML data is generated from the database, the

resulting XML document output from the XML Parser is further processed,

depending on what you or your application needs it for.

The XML document is formatted and customized by applying stylesheets and

processed by the XSLT.
1-20 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: Java
Figure 1–8 Generating XML Documents Using XDK for Java

XSQL Servlet

Oracle9 i or other database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

XML SQL
Utility

Data OutQuery In

User / Browser /
Client Application

DTD or
XML
Schema

· Parsed DTD
 objects
· Parsed HTML

XML
Parser

Class
Generator

Transviewer
Beans

Formatted
and customized
XML Document

XML Document
with or without
a DTD or
XML Schema

Checks for
errors

XSL-T
Processor

Integrated in
Jdeveloper

XSL
Stylesheet

SQL Query

XML
Parser

XSL-T API
is in the
XML
Parser

Creates Java
source files

B

C

A

Object
Relational
data

Oracle text

LOBs

JDBC

Dom or String

Stream Dom or Sax

XML Document from
LOB / XML Type

XML Parser
iswithin user
application

Browser /
Application

HTML

Text
XML

XML SQL Utility

XML
Parser
Overview of XML Developer’s Kits and Components 1-21

Using Oracle XML Components to Generate XML Documents: C
Using Oracle XML Components to Generate XML Documents: C
Figure 1–9 shows the Oracle XML C language components used to generate an

XML document. The XML components are:

■ XML Parser/XSLT Processor for C

■ XML Schema Processor for C

SQL queries can be sent to the database by OCI or as embedded statements in the

Pro*C/C++ precompiler.

The resulting XML data can be processed in the following ways:

■ With the XML Parser

■ From the CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by

an XML-enabled browser, or sent for further processing to an application or AQ

Broker.
1-22 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: C
Figure 1–9 Generating XML Documents Using XDK for C

Oracle9 i or other database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

User / Browser /
Client Application

DTD or
XML
Schema

· Parsed DTD
 objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without
a DTD or XML
Schema

XSL-T
Processor

XSL
Stylesheet

SQL
Query

XML
Parser

XSL-T API
is in the
XML
Parser

Object
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Parser is
within the user
application

Browser /
Application

XML

OCI or
Pro*C/C++

Stream

XML Document from LOB / XML Type
Overview of XML Developer’s Kits and Components 1-23

Using Oracle XML Components to Generate XML Documents: C++
Using Oracle XML Components to Generate XML Documents: C++
Figure 1–10 shows the Oracle XML components used to generate an XML

document. The XDK for C++ components used here are:

■ XML Parser for C++, Version 2 including the XSLT

■ XML Schema Processor for C++

■ XML Class Generator for C++

In the C++ environment, when a user or client or application sends a SQL query,

there are two possible ways of processing the query using the XDK for C++:

■ Directly by JDBC which then accesses the XML Parser

■ Through OCCI or Pro*C/C++ Precompiler
1-24 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: C++
Figure 1–10 Generating XML Documents Using XDK for C++

Oracle9 i or other database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

User / Browser /
Client Application

DTD or
XML Schema

· Parsed DTD
 objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without
a DTD or XML
Schema

XSL-T
Processor

XSL
Stylesheet

SQL
Query

XML
Type

XSL-T API
is in the
XML
Parser

Object
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Document from LOB

XML Parser is
within the user
application

Browser or
Application

XML

OCCI or
Pro*C/C++

Class
Generator

Checks for
errors

Creates C++
source files
Overview of XML Developer’s Kits and Components 1-25

Using Oracle XML Components to Generate XML Documents: PL/SQL
Using Oracle XML Components to Generate XML Documents: PL/SQL
Figure 1–11 shows the XDK for PL/SQL components used to generate an XML

document:

■ XML Parser for PL/SQL, Version 2 including XSLT

■ XML SQL Utility (XSU) for PL/SQL

In the PL/SQL environment, when a user or client or application sends a SQL

query, there are two possible ways of processing the query using the Oracle XML

components:

■ Directly by JDBC which then accesses the XML Parser

■ Through XML SQL Utility (XSU)
1-26 Oracle9i XML Developer’s Kits Guide - XDK

Using Oracle XML Components to Generate XML Documents: PL/SQL
Figure 1–11 Generating XML Documents Using XDK for PL/SQL

Oracle9 i or other database

XML documents stored:
· As single object with tags
 in CLOB or BLOB
· As data distributed
 untagged across tables
· Via views that combine
 the documents and data

User / Browser /
Client Application

DTD or
XML
Schema

· Parsed DTD
 objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without
a DTD or XML
Schema

XSL-T
Processor

XSL
Stylesheet

SQL
Query

XML
Parser

XSL-T API
is in the
XML
Parser

Object
Relational
data Oracle

Text

LOBs

DOM or String

Stream DOM or Sax

XML Document from
LOB / XML Type

XML Parser is
within the user
application

Browser /
Application

XML-SQL Utility

XML
Parser

XML

JDBC / SQL
Access
Overview of XML Developer’s Kits and Components 1-27

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
This section includes general questions about Oracle XML-enabled technology in

the following categories:

■ Frequently Asked Questions About the XDK

■ Frequently Asked Questions About Previous Oracle Releases

■ Frequently Asked Questions About Browsers that Support XML

■ Frequently Asked Questions About XML Standards

■ Frequently Asked Questions About XML, CLOBs, and BLOBs

■ Frequently Asked Questions About Maximum File Sizes

■ Frequently Asked Questions About Inserting XML Data into Tables

■ Frequently Asked Questions About XML Performance in the Database

■ Frequently Asked Questions About Multiple National Languages

■ Frequently Asked Questions About Reference Material

There are Frequently Asked Questions at the end of several other chapters in this

manual.

Frequently Asked Questions About the XDK

What XML Components Do I Need to Install?
I am going to develop a small application using XML and Oracle. Here is the

scenario: Company A has is a central purchasing system with Departments B, C,

and D. Company A gets purchase orders in XML format from B, C, and D.

Company A needs to collect all purchase orders and store them in an Oracle

database. Then, it has to create another request for proposal for its preferred

vendors in XML. I am writing queries to insert or update into the database. What

XML components do I need to install in Oracle?

Answer: Assuming you are using Java, you need the XML Parser and XML SQL

Utility. If you are using a Java-based front end to generate the purchase orders, then

the XML Class Generator can provide you with the classes you need to populate

your purchase orders. Finally, the XSQL Servlet can help you build a Web interface.
1-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
What Software Is Needed to Build an XML Application?
I have a CGI, Perl, and Oracle7 application on Solaris™ Operating Environment 2.6

and I want to convert it to an XML/XSL, Java, and Oracle application. I know most

parts of the technologies, for example, SGML, XML, and Java, but I don't know how

to start it in Oracle. What software do I need from Oracle? Specifically,

1. Can I use Apache instead of the Oracle Web server? If so, how?

2. How far can I go with Oracle 7.3?

3. Do I still need an XML parser if all XML was created by my programs?

4. What should be between the Web server and Oracle DB server? XSQL Servlet?

A parser? Java VM? EJB? CORBA? SQLJ? JDBC? Oracle packages such as

UTL_HTTP?

Answer:

1. Yes you can. The Apache Web server must now interact with Oracle through

JDBC or other means. You can use the XSQL servlet. This is a servlet that can

run on any servlet-enabled Web server. This runs on Apache and connects to

the Oracle database through a JDBC driver.

2. You can go a long way with Oracle 7.3. The only problem would be that you

cannot run any of the Java programs inside the server; that is, you cannot load

all the XML tools into the server. But you can connect to the database by

downloading the Oracle JDBC utility for Oracle7 and run all the programs as

client-side utilities.

3. Whether you still need an XML parser if all XML was created by your programs

depends on what you intend to do with the generated XML. If your task is just

to generate XML and send it out then you might not need it. But if you wanted

to generate an XML DOM tree then you would need the parser. You would also

need it if you have incoming XML documents and you want to parse and store

them. See the XML SQL utility for some help on this issue.

4. As in the first part of this answer, you would need to have a servlet (or CGI)

that interacts with Oracle through OCI or JDBC.

XML Questions
My project requires converting master-details data to XML for clients.

1. What is the best way to design tables and generate XML flat tables, objects, or

collections?
Overview of XML Developer’s Kits and Components 1-29

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
2. Can I use XML SQL Utilities in Pro*C/C++?

3. Is there a limiting size for generating XML documents from database?

Answer:

1. It really depends on what your application calls for. The generalized approach

is to use object views and have the schema define the tag structure with

database data as the element content.

2. Yes.

3. We are not aware of any limits beyond those imposed by the object view and

the underlying table structure.

Are There XDK Utilities That Translate Data from Other Formats to XML?
I know that the XSLT will translate from XML to XML, HTML, or another

text-based format. What about the other way around?

Answer: For HTML, you can use utilities like Tidy or JTidy to turn HTML into

well-formed HTML that can be transformed using XSLT. For unstructured text

formats, you can try utilities like XFlat at the following Web site:

http://www.unidex.com/xflat.htm .

Can Oracle Generate a Database Schema from a Rational Rose Generated XML File?
Is it possible to generate a database schema in Oracle using a script with CREATE
TABLE, from an XML file generated by a Rational Rose design tool?

Answer: All the parser and generator files (such as petal files, XML, and so on) are

developed in our project. All the components are designed for reuse, but developed

in the context of a larger framework. You have to follow some guidelines, such as

modeling in UML, and you must use the base class to get any benefit from our

work.

Oracle only generates object types and delivers full object-oriented features such as

inheritance in the persistence layer. If you do not need this, the Rational Rose petal

file parser and Oracle packages, as the base of the various generators, may interest

you.
1-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
Does Oracle Offer Any Tools to Create and Edit XML Documents?
Does Oracle have any tools for creating XML documents based on DTDs or the

XML schema definition DOM, or for editing XML documents with DTD or schema

validation?

Answer: JDeveloper9i has an integrated XML schema-driven code editor for

working on XML schema-based documents such as XML schemas and XSLT

stylesheets, with tag insight to help you easily enter the correct elements and

attributes as defined by the schema.

How Can I Format XML Documents as PDF?
I have been asked to take stored XML docs in release 8.1.6 and format them as PDF.

We are using JDeveloper release 3.1.1.2 as our development environment and the

client wants to stick to OAS 4082 on Windows NT if possible. Any suggestions or

recommended resources?

Answer: Oracle XSQL Pages release 1.0.2 supports integration with Apache FOP

0.14.0 for rendering PDF output from XML or SQL input.

It is possible to format XML into PDF using Formatting Object (FOP). See

information on this at the following Web sites:

http://xml.apache.org/fop/

http://www.xml.com/pub/rg/75)

How Do I Load a Large XML Document into the Database?
I have a large (27 MB) data-centric XML document. I could not load it into the

database when it was split into relational tables with the XML SQL utility, because

the DOM parser failed due to a memory leak during the XSLT processor execution.

Do you have a work-around for this problem? Should I use the SAX parser? How

do I use the XSLT processor and the Sax parser?

Answer: If this is a one time load, or if the XML document always has the same

tags, then you might consider using the SQL*Loader (direct path). All you have to

do is compose a loader control file. See the Oracle9i Database Utilities manual,

Chapter 3, for examples. You can use the enclosed by option to describe the

fields. For example, in the files list, enter something like the following:

(empno number(10) enclosed by “<empno>” and “</empno>”,...)

See Also: Chapter 21, "XSLT Processor for PL/SQL"
Overview of XML Developer’s Kits and Components 1-31

Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
Except for the data parsing, which has to be done the same regardless of what you

are using, the actual loading into the database will be fastest with SQL*Loader, as

the direct path writes data straight to data blocks, bypassing the layers in between.

If the document is 27 MB because it is a very large number of repeating

sub-documents, then you can use the sample code that comes in Chapter 14, of the

book Building Oracle XML Applications by Steve Muench (O’Reilly) to load XML of

any size into any number of tables. In this chapter, called “Advanced XML Loading

Techniques,” the example builds an XML Loader utility that does what you are

looking for.

Can SQL*Loader Support Nesting?
If you have the following scenario:

...
 <something>
 <price>10.00</price>
 </something>
...
 ...
 ...
 <somethingelse>
 <price>55.00</price>
 </somethingelse>

Is there a way to uniquely identify the two <price> elements?

Answer: Not really. The field description in the control file can be nested, which is

part of the support for object relational columns. The data record to which this

maps is, of course, flat but using all the data field description features of the

SQL*Loader one can get a lot done. For example:

sample.xml

<resultset>
 <emp>
 <first>...</first>
 <last>...</last>
 <middle>....</middle>
 <emp>
 <friend>
 <first>...</first>
 <last>...</last>
 <middle>....</middle>
 </friend>
1-32 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Previous Oracle Releases
</resultset>

sample.ctl -- field definition part of the SQL Loader control file

field list
(
 emp COLUMN OBJECT
 (
 first char(30) enclosed by "<first>" and "</first>",
 last char(30) enclosed by "<last>" and "</last>",
 middle char(30) enclosed by "<middle>" and </middle>"
)
 friend COLUMN OBJECT
 (
 first char(30) enclosed by "<first>" and "</first>",
 last char(30) enclosed by "<last>" and "</last>",
 middle char(30) enclosed by "<middle>" and </middle>"
)

Keep in mind that the COLUMN OBJECT field names have to match the object

column in the database. You will have to use a custom record terminator, otherwise

it defaults to newline (that is, the newline separates data for a complete database

record).

If your XML is more complex and you are trying to extract only select fields, you

can use FILLER fields to reposition the scanning cursor, which scans from where it

has left off toward the end of the record (or for the first field, from the beginning of

the record).

The SQL*Loader has a very powerful text parser. You can use it for loading XML

when the document is very big.

Frequently Asked Questions About Previous Oracle Releases

Can I Use Parsers from Different Vendors?
I am currently investigating SAX. I understand that both the Oracle and IBM

parsers use DOM and SAX from W3C.

■ What is the difference between the parsers from different vendors like Oracle

and IBM?

■ If I use the Oracle XML Parser now, and for some reason I decide to switch to

parser by other vendor, will I have to change my code?
Overview of XML Developer’s Kits and Components 1-33

Frequently Asked Questions About Previous Oracle Releases
Answer: You will not have to change your code if you stick to SAX interfaces or

DOM interfaces for your implementation. That is what the standard interfaces are

in place to assist you with.

Is There XML Support in Oracle Release 8.0.6?
We are currently architecting some of our future systems to run on XML-based

interfaces. Our current systems are all running Oracle release 8.0.6, and we would

like to have some of our XML concepts implemented on the existing systems due to

high demand. Are there current or future plans to support XML-based code within

the database, or are there any adapters or cartridges that we can use to get by?

Answer: All of our XML Developer's Kit components, including the XML Parser,

XSLT Processor, XSQL Servlet, and utilities like the XML SQL Utility all work

outside the database against Oracle 8.0.6. However, you will not be able to run XML

components inside the database or use Oracle Text XML searching, which are both

features in Oracle8i and higher.

Can I Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4?
My company has Oracle release 7.3.4 and my group is thinking of using XML for

some data transfers between us and our vendors. From what I could see from this

Web site, it looks like we would need to move to Oracle8i or higher in order to do

so. Is there any way of leveraging Oracle release 7 to do XML?

Answer: As long as you have the appropriate JDBC 1.1 drivers for Oracle release

7.3.4 you should be able to use the XML SQL Utility to extract data in XML.

For JDBC drivers, refer to the following Web site for information about Oracle7

JDBC OCI and JDBC Thin Drivers:

http://otn.oracle.com/tech/java/sqlj_jdbc/

If I Use Versions Prior to Oracle8 i Can I Use Oracle XML Tools?
If I am using an Oracle version earlier than Oracle8i, can I supply XML based

applications using Oracle XML tools? If yes, then what are the licensing terms?

Answer: The Oracle XDKs for Java, C, and C++ can work outside the database,

including the XML SQL Utility and XSQL Pages framework. Licensing is the same,

including free runtime. See OTN for the latest licenses.
1-34 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Standards
Can I Create Magnetic Tape Files with Oracle XML?
Is Oracle XML technology suitable for creating magnetic tape files where the file is

just a string of characters like 'abcdefg........ ' in a particular format? Is it is

possible to create a stylesheet that will create these kind of files?

Answer:

Yes. Just use <xsl:output method=”text”/> to output plain text.

Frequently Asked Questions About Browsers that Support XML

Which Browsers Support XML?
Answer: The following browsers support the display of XML:

■ Opera. XML, in version 4.0 and higher

■ Citec Doczilla. XML and SGML browser

■ Indelv. Will display XML documents only using XSL

■ Mozilla Gecko. Supports XML, CSS1, and DOM1

■ HP ChaiFarer. Embedded environment that supports XML and CSS1

■ ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML

■ Microsoft IE5. Has a full XML parser, IE5.x or higher

■ Netscape 5.x or higher

Frequently Asked Questions About XML Standards

Are There Advantages of XML Over EDI?
We are considering implementing EDI to communicate requirements with our

vendors and customers. I understand that XML is a cheaper alternative for smaller

companies. Do you have any information on the advantages of XML over EDI?

Answer: Here are some thoughts on the subject:

■ EDI is a difficult technology: EDI enables machine-to-machine communication

in a format that developers cannot easily read and understand.
Overview of XML Developer’s Kits and Components 1-35

Frequently Asked Questions About XML Standards
■ EDI messages are very difficult to debug. XML documents are readable and

easier to edit.

■ EDI is not flexible: it is very hard to add a new trading partner as part of an

existing system; each new trading partner requires its own mapping. XML is

extremely flexible with the ability to add new tags on demand and to transform

an XML document into another XML document, for example, to map two

different formats of purchase order numbers.

■ EDI is expensive: developer training costs are high, and deployment of EDI

requires very powerful servers that need a specialized network. EDI runs on

VANs, which are expensive. XML works with inexpensive Web servers over

existing internet connections.

The next question then becomes: is XML going to replace EDI? Probably not. The

technologies will likely coexist, at least for a while. Large companies with an

existing investment in EDI will probably use XML as a way to extend their EDI

implementation, which raises a new question of XML and EDI integration.

XML is a compelling approach for smaller organizations, and for applications

where EDI is inflexible.

What B2B Standards and Development Tools Does Oracle Support?
What B2B XML standards (such as ebXML, cxml, and BizTalk) does Oracle support?

What tools does Oracle offer to create B2B exchanges?

Answer: Oracle participates in several B2B standards organizations:

■ OBI (Open Buying on the Internet)

■ ebXML (Electronic Business XML)

■ RosettaNet (E-Commerce for Supply Chain in IT Industry)

■ OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer

needs, such as the following:

■ Oracle Exchange delivers an out-of-the-box solution for implementing

electronic marketplaces

■ Oracle Integration Server (and primarily Message Broker) for in-house

implementations

■ Oracle Gateways for exchanges at data level
1-36 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Standards
■ Oracle XML Gateway to transfer XML-based messages from our e-business

suite.

Oracle Internet Platform provides an integrated and solid platform for B2B

exchanges.

What Is Oracle Corporation’s Direction Regarding XML?
Answer: Oracle Corporation’s XML strategy is to use XML in ways that exploit all

of the benefits of the current Oracle technology stack. Today you can combine

Oracle XML components with the Oracle8i (or higher) database and Advanced

Queueing (AQ) to achieve conflict resolution, transaction verification, and so on.

Oracle is working to make future releases more seamless for these functions, as well

as for functions such as distributed two phase commit transactions.

XML data is stored either object-relational tables or views, or as CLOBs. XML

transactions are transactions with one of these datatypes and are handled using the

standard Oracle mechanisms, including rollback segments, locking, and logging.

From Oracle9i, Oracle supports sending XML payloads using AQ. This involves

making XML queriable from SQL.

Oracle is active in all XML standards initiatives, including W3C XML Working

Groups, Java Extensions for XML, Open Applications Group, and XML.org for

developing and registering specific XML schemas.

What Is Oracle Corporation’s Plans for XML Query?
Answer: Oracle is participating in the W3C Working Group for XML Query. Oracle

is considering plans to implement a language that enables querying XML data, such

as in the XQL proposal. While XSLT provides static XML transformation features, a

query language will add data query flexibility similar to what SQL does for

relational data.

Oracle has representatives participating actively in the following 3C Working

Groups related to XML and XSL: XML Schema, XML Query, XSL, XLink/XPointer,

XML Infoset, DOM, and XML Core.

Are There Standard DTDs That We Can Use for Orders, Shipments, and So On?
We have implemented Oracle8i and the XDK. Where can we find basic, standard

DTDs to build on for orders, shipments, and acknowledgements?
Overview of XML Developer’s Kits and Components 1-37

Frequently Asked Questions About XML, CLOBs, and BLOBs
Answer: A good place to start would be this Web site, which has been set up for

that purpose:

http://www.xml.org

Frequently Asked Questions About XML, CLOBs, and BLOBs

Is There Support for XML Messages in BLOBs?
Is there any support for XML messages enclosing BLOBs, or I should do it on an

application level by encoding my binary objects in a suitable text format such as

UUENCODE with a MIME wrapper?

Answer: XML requires all characters to be interpreted, therefore there is no

provision for including raw binary data in an XML document. That being said, you

can UUENCODE the data and include it in a CDATA section. The limitation on the

encoding technique is to be sure it only produces legal characters for a CDATA

section.

Frequently Asked Questions About Maximum File Sizes

What Is the Maximum XML File Size When Stored in CLOBs?
If we store XML files as CLOBs in the Oracle database, what is the maximum file

size?

Answer: The maximum file size is 2 GB. See the Oracle9i Application Developer’s
Guide - Large Objects (LOBs) for more information on LOBs and CLOBs. For sample

code, see:

http://otn.oracle.com/tech/java/sqlj_jdbc/index2.htm?Code&fil
es/advanced/advanced.htm

Are There Any Limitations on the Size of an XML File?
Answer: There are no XML limitations to an XML file size.

What Is the Maximum Size for an XML Document?
Is there a maximum size for an XML document to provide data for PL/SQL (or

SQL) across tables, given that no CLOBs are used?
1-38 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML Performance in the Database
Also, what is the maximum size of XML document generated from Oracle to an

XML document?

Answer:

The size limit for an XML document providing data for PL/SQL across tables

should be what can be inserted into an object view.

The size limit for an XML document generated from Oracle to an XML document

should be what can be retrieved from an object view.

Frequently Asked Questions About Inserting XML Data into Tables

What Do I Need to Insert Data Into Tables Using XML?
To select data for display and insert data to tables by XML what software do I need?

We are using Oracle8i on Solaris™ Operating Environment.

Answer: You need the following software:

■ XML SQL Utility

■ XML Parser for Java,V2

■ JDBC driver

■ JDK

The first three can be obtained from Oracle. The fourth can be obtained from Sun

Microsystems. If you want to perform the tasks from a browser, you will also need

the following:

■ A Java compliant Web server

■ XSQL Servlet

Frequently Asked Questions About XML Performance in the Database

Where Can I Find Information About the Performance of XML and Oracle?
Is there a whitepaper that discusses the performance of XML and Oracle?

Answer: Currently, we do not have any official performance analyses due to the

lack of a performance standard or benchmark for XML products.
Overview of XML Developer’s Kits and Components 1-39

Frequently Asked Questions About Multiple National Languages
How Can I Speed Up the Record Retrieval in XML Documents?
I have a database with millions of records. I give a query based on some 4/5

parameters, and retrieve the records corresponding to that. I have added indexes in

the database for faster retrieval of the same, but since the number of records

returned is quite high and I planned to put a Previous and Next link to show only

10 records at a time, I had to get the count(*) of the number of records that match.

Since there are so many records, and count(*) does not consider the indexes, it

takes nearly 30 seconds for the retrieved list to be seen on the browser window. If I

remove that count(*) , the retrieval is quite fast, but then there is no Previous and

Next as I had linked them to count(*) .

Answer: I presume you are referring to finding a faster way to retrieve XML

documents. The solution is to use the SAX interface instead of DOM.

Make sure to select the COUNT(*) of an indexed column (the more selective the

index the better). This way the optimizer can satisfy the count query with a few

I/Os of the index blocks instead of a full-table scan.

Frequently Asked Questions About Multiple National Languages

How Do I Put Information in Chinese into XML?
My application requires communication with outside entities that may have a

totally different language system. If I need to put information in other languages

(for instance, Chinese) into XML, do I need to treat and process them differently?

For example, do I need to know which encoding they use, or would the parser be

able to recognize it? Would there be any problems when dealing with the database?

Answer: XML inherently supports multiple languages in a single document. Each

entity can use a different encoding from the others; that is, you can add a Chinese

entity encoded in a Chinese encoding to the rest of the document. You can also treat

all portions uniformly, regardless of the language used, by encoding in Unicode.

Using the former, you must have an encoding declaration in the XML text

declaration.

Oracle XML parsers are designed to be able to handle most external entities and

recognize a wide range of encoding, including most widely used ones from all over

the world.

The database should support all the languages you are going to use on XML.

Chinese character sets such as ZHS16GBK and ZHT16BIG5 are a superset of ASCII
1-40 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Reference Material
so you may be able to use one of them to serve for English and Chinese, but you

may want to use Unicode to use more languages.

Frequently Asked Questions About Reference Material
Here are some other XML Frequently Asked Question sites of interest:

■ http://www.ucc.ie/xml/

■ http://www.oasis-open.org/cover/

What Are Some Recommended XML and XSL Books?
Answer:

■ The publisher WROX has a number of helpful books. One of these, XML Design
and Implementation by Paul Spencer, covers XML, XSL and development well.

■ Building Oracle XML Applications by Steve Muench (published by O'Reilly) See

http://www.oreilly.com/catalog/orxmlapp/

■ The XML Bible. Read the updated chapter 14 from:

http://metalab.unc.edu/xml/books/bible/

far a good understanding of XSLT. Downloading this chapter is free.

■ Oracle9i XML Handbook by the Oracle XML Product Development Team at

http://www.osborne.com/oracle/
Overview of XML Developer’s Kits and Components 1-41

Frequently Asked Questions About Reference Material
1-42 Oracle9i XML Developer’s Kits Guide - XDK

Getting Started with XDK for Java and JavaB
2

Getting Started with XDK for Java and

JavaBeans

This chapter contains the following sections:

■ Installation of the XDK for Java

■ Installation of the XDK for JavaBeans

See Also: Chapter 3, "Getting Started with XDKs for C/C++ and

PL/SQL"
eans 2-1

Installation of the XDK for Java
Installation of the XDK for Java
XDK for Java contains the basic building blocks for reading, manipulating,

transforming and viewing XML documents.

Oracle XDK for Java consists of the following components:

■ XML Parser: supports parsing XML documents with both the DOM or SAX

interfaces.

■ XSL Processor: is included as part of the XML Parser and supports transforming

XML documents.

■ XML Schema Processor: supports parsing and validating XML files against an

XML Schema definition file (default extension .xsd).

■ Class Generator: generates a set of Java source files based on an input DTD or

XML Schema.

■ XML SQL Utility: generates an XML Document from SQL queries and inserts

the document into the database.

■ TransX Utility: makes it easier to load translated seed data and messages into

the database.

■ XSQL Servlet: produces dynamic XML documents based on one or more SQL

queries.

Installation Steps for XDK for Java
XDK for Java comes with the Oracle database and with the application server. Or,

you can download the latest beta or production version of XDK for Java from OTN.

If you installed XDK with Oracle database or iAS, you can skip the following steps

and change into the XDK home directory ($XDK_HOME).

If you need to download the XDK from OTN, follow these steps:

Go to the URL:

http://otn.oracle.com/tech/xml/xdk_java/content.html

Click on the ‘Software’ icon at the left side of the page.

Note: The XDKs for Java and JavaBeans are now bundled

together.
2-2 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
■ Logon with your OTN username and password (registration is free if you do

not already have an account).

■ Select the version you want to download.

■ Accept all terms of the licensing agreement and download the software. Here

are the instructions found on the download site for Solaris™ Operating

Environment:

Oracle XML Developer’s Kit for Java on Sun Solaris™ Operating Environment- 9i
 Download the Complete File

 xdk_java_9_0_1_1_0A.tar.gz
 Directions

 Install GNU gzip.

 Download the Oracle XDK for Java in .tar format

 Extract the distribution package into a directory.
 (Ex: #gzip -dc xdk_java.tar | tar xvf -)

 The result should be the following files and directories:
 /bin - xdk executables and utilities
 /lib - directory for libraries
 /xdk - top xdk directory
 /xdk/demo - directory for demo files
 /xdk/doc - directory for documentation
 /xdk/admin - direcory for dband config files
 /xdk/*html. - doc navigation files
 /xdk/license.html - copy of license agreement

■ For Windows NT, choose a directory under which you would like the .\xdk

directory and subdirectories to go (for example, C:\ on NT), change the

directory to C:\ then extract the files using the WinZip visual tool.

What Are the XDK for Java Components?
After installing the XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files and setup script/batch files.
 | - lib: library files.
 | - xdk:
 | - admin: (Administration): XSU PL/SQL API setup SQL script
Getting Started with XDK for Java and JavaBeans 2-3

Installation of the XDK for Java
 and XSL Servlet Configuration file(XSQLConfig.xml).
 | - demo: demonstration code
 | - doc: documents including release notes and javadocs.

All the packages in XDK for Java are certified and supported with JDK 1.2 or JDK

1.1.8, so make sure that your CLASSPATH includes all the necessary libraries:

In addition, XML SQL Utility, XSQL Servlet and TransX Utility all depend on JDBC,

which is listed in the following table:

Table 2–1 XDK for Java Libraries

Component Library Notes

XML Parser

XSL Processor

xmlparserv2.jar

xmlmesg.jar

XML Parser V2 for Java, which includes JAXP 1.1,
DOM, SAX and XSLT APIs.

Message files for XML Parser. If you want to use
XML Parser with a language other than English, you
need to set this JAR file in your CLASSPATH.

XML Schema
Processor

xschema.jar XML Schema Processor for Java

XML SQL
Utility

xsu12.jar

xsu111.jar

XML SQL Utility for JDK 1.2 and above

XML SQL Utility for JDK 1.1.1

XSQL Servlet oraclesql.jar

xsqlserializers.jar

classgen.jar

transx.zip

Oracle XSQL Servlet

Oracle XSQL Serializers for FOP/PDF Integration

XML Class Generator for Java

Oracle TransX Utility

Table 2–2 XDK Libraries for Java

Component Library Notes

JDBC classes12.zip

classes111.zip

JDBC for JDK 1.2 and above

JDBC for JDK 1.1.8

Globalization nls_charset12.jar

nls_charset111.jar

Globalization support for JDK 1.2 and above

Globalization support for JDK 1.1.8
2-4 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
Environment Settings for XDK for Java
These files will set up the environment:

UNIX: $XDK_HOME/bin/env.csh

NT: $XDK_HOME/bin/env.bat

The following tables list the environment variables, with the ones that must be

customized marked with "Y":

The following table shows the UNIX environment variables (the ones that must be

customized are marked with "Y"):

Table 2–3 NT Environment Settings

Variable Notes Y/N

%JDBCVER% Directory where the JavaTM 2 SDK, Standard Edition, version 1.3.1 is installed Y

%JDKVER% Include the following:

.;%XDK_HOME%\lib\xmmlparserv2.jar;%XDK_HOME%\lib\xsu12.jar;

Y

%INSTALL_ROOT% Installation root of XDK which is the directory we refer to as %XDK_HOME%. N

%JAVA_HOME% JAVA_HOME=C:\JDK%JDKVER% Y

%CLASSPATHJ% CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\classes%JDBCVER%.zip;

%ORACLE_HOME%\jdbc\lib\nls_charset%JDBCVER%.jar

Y

%PATH% PATH=%JAVA_HOME%\bin;%ORACLE_HOME%\bin;%PATH%;%INSTALL_
ROOT%\bin

N

%CLASSPATH% .;%CLASSPATHJ%;%INSTALL_ROOT%\lib\xmlparserv2.jar;

%INSTALL_ROOT%\lib\xschema.jar;

%INSTALL_ROOT%\lib\xsu%JDBCVER%.jar;

%INSTALL_ROOT%\lib\oraclexsql.jar;%INSTALL_ROOT%\lib\classgen.jar

N

Getting Started with XDK for Java and JavaBeans 2-5

Installation of the XDK for Java
XSU Setup
XSU installation is discussed in "Installation of XDK for PL/SQL" on page 3-25.

Table 2–4 UNIX Environment Settings

Variable Notes Y/N

$JDBCVER JDBC Version. If using JDK 1.2 and above, it should be set to 12.

If using JDK 1.1.8, it should be set to 111

Y

$JDKVER JDK Version which you can get from:

Java -version

For example, the default value is: 1.2.2_07

Y

$INSTALL_ROOT Installation root of XDK, which is the directory referred to as $XDK_HOME. N

$JAVA_HOME Directory where the Java SDK, Standard Edition is installed. Y

$CLASSPATHJ Path linked to the Java SDK needs to be modified.

${ORACLE_HOME}/jdbc/lib/classes${JDBCVER}.zip:

${ORACLE_HOME}/jdbc/lib/nls_charset${JDBCVER}.jar

If you are running the XSU on a system different then where the Oracle RDBMS
is installed, you will have to update CLASSPATHJ path with the correct
locations of the JDBC library (classes12.jar). The nls_charset12.jar is needed to
support certain character sets. Refer to Globalization setup with XDK for Java

Note that if you don't have these libraries on your system, these are both
available on OTN (http://otn.oracle.com) -- part of JDBC driver download

Y

$CLASSPATH Include the following:

.:${CLASSPATHJ}:${INSTALL_ROOT}/lib/xmlparserv2.jar:

${INSTALL_ROOT}/lib/xschema.jar:

${INSTALL_ROOT}/lib/xsu${JDBCVER}.jar:

${INSTALL_ROOT}/lib/oraclexsql.jar:

${INSTALL_ROOT}/lib/classgen.jar

N

$PATH ${JAVA_HOME}/bin:${PATH}:${INSTALL_ROOT}/bin N

$LD_LIBRARY_PATH For OCI JDBC connections. ${ORACLE_HOME}/lib:${LD_LIBRARY_PATH} N
2-6 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
XSQL Servlet Setup
The XSQL Servlet is designed to run on any Java VM, using any JDBC driver,

against any database. In practice, we are able to test it against only the most popular

configurations; we document the supported configurations that have been tested in

the Oracle labs.

XSQL Pages and XSQL Servlet have been successfully tested only with:

■ JDK 1.1.8

■ JDK 1.2.2

■ JDK 1.3

These are the only three JDK versions that weknow work correctly.

Supported Servlet Engines
This XSQL Servlet has been tested with the following servlet engines:

■ Oracle9iAS Apache/JServ Servlet Engine

■ Oracle9iAS OC4J Servlet Engine

■ Allaire JRun 2.3.3 and 3.0.0

■ Apache 1.3.9 with JServ 1.0 and 1.1

■ Apache 1.3.9 with Tomcat 3.1 or 3.2 Servlet Engine

■ Apache Tomcat 3.1 or 3.2 Web Server + Servlet Engine

■ Caucho Resin 1.1

■ Java Web Server 2.0

■ Weblogic 5.1 Web Server

■ NewAtlanta ServletExec 2.2 and 3.0 for IIS/PWS 4.0

■ Oracle8i Lite Web-to-Go Server

■ Oracle8i 8.1.7 Oracle Servlet Engine

Note: Numerous users have reported problems using XSQL Pages

and XSQL Servlet with JDK 1.1.7. These problems are in the

character set conversion routines for UTF-8 and make JDK 1.1.7

unusable for processing XSQL Pages.
Getting Started with XDK for Java and JavaBeans 2-7

Installation of the XDK for Java
■ Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

Supported JSP Implementations
JavaServer Pages can use <jsp:forward> and/or <jsp:include> to collaborate

with XSQL Pages as part of an application. The following JSP platforms have been

tested:

■ Oracle9iAS Apache/JServ Servlet Engine

■ Oracle9iAS OC4J Servlet Engine

■ Apache 1.3.9 with Tomcat 3.1 or 3.2 Servlet Engine

■ Apache Tomcat 3.1 or 3.2 Web Server + Tomcat 3.1 or 3.2 Servlet Engine

■ Caucho Resin 1.1 (Built-in JSP 1.0 Support)

■ NewAtlanta ServletExec 2.2 and 3.0 for IIS/PWS 4.0 (Built-in JSP 1.0 Support)

■ Oracle8i Lite Web-to-Go Server with Oracle JSP 1.0

■ Oracle8i 8.1.7 Oracle Servlet Engine

■ Any Servlet Engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, it should work with any servlet engine supporting the Servlet 2.1

Specification or higher, and the Oracle JSP 1.0 reference implementation or

functional equivalent from another vendor.

JDBC Drivers and Databases
The Oracle XSQL Page processor has been designed to exploit the maximum set of

features against the Oracle JDBC drivers, but gracefully works against any database

with a reasonable JDBC driver. While numerous users have reported successfully

using XSQL Pages with many other JDBC drivers, the ones that we have tested

in-house are:

■ Oracle8i 8.1.5 Driver for JDBC 1.x

■ Oracle8i 8.1.6 Driver for JDBC 1.x

■ Oracle8i 8.1.7 Driver for JDBC 1.x

■ Oracle8i Lite 4.0 Driver for JDBC 1.x

■ Oracle8i 8.1.6 Driver for JDBC 2.0

■ Oracle8i 8.1.7 Driver for JDBC 2.0

■ Oracle9i 9.0.1 Driver for JDBC 2.0
2-8 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
Setting Up the Database Connection Definitions for Your Environment
The demos are set up to use the SCOTT schema on a database on your local

machine (the machine where the web server is running). If you are running a local

database and have a SCOTT account whose password is TIGER, then you are all set.

Otherwise, you need to edit the .\xdk\admin\XSQLConfig.xml file to

correspond to your appropriate values for username, password, dburl, and driver

values for the connection named demo:

<?xml version="1.0" ?>
<XSQLConfig>
 :
 <connectiondefs>
 <connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 </connection>
 <connection name="lite">
 <username>system</username>
 <password>manager</password>
 <dburl>jdbc:Polite:POlite</dburl>
 <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>
 </connection>
 </connectiondefs>
 :
</XSQLConfig>

Setting Up Your Servlet Engine to Run XSQL Pages
UNIX users and any user wanting to install the XSQL Servlet on other Web servers

should continue with the instructions below depending on the Web server you're

trying to use. In every case, there are these basic steps:

1. Include the list of XSQL Java archives:

■ xsu12.jar - Oracle XML SQL Utility

■ xmlparserv2.jar - Oracle XML Parser for Java V2

■ oraclexsql.jar - Oracle XSQL Pages

■ xsqlserializers.jar - Oracle XSQL Serializers for FOP/PDF

Integration
Getting Started with XDK for Java and JavaBeans 2-9

Installation of the XDK for Java
■ classes12.jar - Oracle JDBC Driver or the JAR file for the JDBC driver you
will be using instead

■ Include as well as the directory where XSQLConfig.xml resides (by default

./xdk/admin) in the server CLASSPATH.

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet
servlet class.

3. Map a virtual directory /xsql to the directory where you extracted the XSQL

files (to access the online help and demos).

Oracle Internet Application Server Oracle IAS release 1.0 and higher comes

preconfigured to run XSQL Servlet. By default its Apache JServ servlet engine

contains all of the wrapper.classpath entries in jserv.conf to include the

necessary Java archives to run XSQL. The XSQLConfig.xml file is found in the

./xdk/admin subdirectory of the IAS installation home.

Oracle 9iAS Oracle Containers for Java (OC4J) Servlet Container The easiest way to install

XSQL Servlet in the Oracle9iAS OC4J servlet container is to install it as a global

application. Assuming your OC4J installation home is C:\j2ee\home , and that

you've extracted the XDK distribution into the C:\xdk902 directory, here are the

setup steps:

1. Verify that the following JAR files are already in your C:\j2ee\home\lib
directory (they should come pre-installed):

■ xmlparserv2.jar - Oracle XML Parser for Java V2

■ classes12.jar - Oracle JDBC Driver

2. Copy the following additional JAR files from C:\xdk902\lib to

C:\j2ee\home\lib .

■ xsu12.jar - Oracle XML SQL Utility

■ oraclexsql.jar - Oracle XSQL Pages

■ xsqlserializers.jar - Oracle XSQL Serializers for FOP/PDF

Integration

3. Copy the C:\xdk\admin\XSQLConfig.xml configuration file to the

C:\j2ee\home\default-web-app\WEB-INF\classes directory.

4. Edit the C:\j2ee\home\config\global-web-application.xml
server configuration file to add a <servlet> and <servlet-mapping>
entry as child elements of the <web-app> element as follows:
2-10 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
<orion-web-app ...and so on... >
 :
 etc
 :
 <web-app>
 <servlet>
 <servlet-name>xsql</servlet-name>
 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>xsql</servlet-name>
 <url-pattern>/*.xsql</url-pattern>
 </servlet-mapping>
 :
 etc
 :
 </web-app>
</web-app>

At this point, you can refer to any XSQL page in any virtual path and it will be

processed by the XSQL Servlet. If you want to try the XSQL built-in samples,

demos, and online help, then you need to perform the following additional step to

map a virtual path of /xsql/ to the C:\xdk\demo\java\xsql directory.

Edit the file:

c:\j2ee\home\application-deployments\default\defaultWebApp\orion-web.xml

to add the following <virtual-directory> entry:

<orion-web-app ...and so on...>
 :
 etc
 :
 <virtual-directory
 virtual-path="/xsql"
 real-path="/c:/xdk/xdk/demo/java/xsql/" />
 :
 etc
 :
</orion-web-app>

Then, you can browse the demos using the URL:

 http://yoursever:yourport/xsql/index.html
Getting Started with XDK for Java and JavaBeans 2-11

Installation of the XDK for Java
Apache JServ 1.0 or 1.1 Setup the server CLASSPATH correctly for the XSQL Servlet.

This is done by editing the JServ configuration file named jserv.properties .

Assuming you installed the XSQL Servlet files into C:\, you need to add the

following entries to use the Oracle JDBC 1.x Driver:

Oracle XML SQL Utility (XSU)
wrapper.classpath=C:\xdk902\lib\xsu111.jar
Oracle XSQL Servlet
wrapper.classpath=C:\xdk902\lib\oraclexsql.jar
Oracle JDBC (8.1.6) -- JDBC 1.x driver
wrapper.classpath= directory_where_JDBC_Driver_resides \classes111.zip
Oracle XML Parser V2 (with XSLT Engine)
wrapper.classpath=C:\xdk902\lib\xmlparserv2.jar
XSQLConfig.xml File location
wrapper.classpath= directory_where_XSQLConfig.xml_resides
FOR Apache FOP Generation, Add
wrapper.classpath=C:\xdk902\lib\xsqlserializers.jar
wrapper.classpath= FOPHOME/fop.jar
wrapper.classpath= FOPHOME/lib/batik.jar

To use the Oracle JDBC 2.0 Driver, the list looks like:

Oracle XML SQL Utility (XSU)
wrapper.classpath=C:\xdk902\lib\xsu12.jar
Oracle XSQL Servlet
wrapper.classpath=C:\xdk902\lib\oraclexsql.jar
Oracle JDBC (8.1.6) -- JDBC 2.0 driver
wrapper.classpath= directory_where_JDBC_Driver_resides \classes12.zip
Oracle XML Parser V2 (with XSLT Engine)
wrapper.classpath=C:\xdk902\lib\xmlparserv2.jar
XSQLConfig.xml File location
wrapper.classpath= directory_where_XSQLConfig.xml_resides
FOR Apache FOP Generation, Add
wrapper.classpath=C:\xdk902\lib\xsqlserializers.jar
wrapper.classpath= FOPHOME/fop.jar
wrapper.classpath= FOPHOME/lib/w3c.jar

Map the .xsql file extension to the XSQL Servlet To do this, you need to edit the JServ

configuration file named jserv.conf (in JServ 1.0 this was named

mod_jserv.conf on some platforms). Add the following lines:

Executes a servlet passing filename with proper extension in PATH_TRANSLATED
property of servlet request.
Syntax: ApJServAction [extension] [servlet-uri]
Defaults: NONE
2-12 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
ApJServAction .xsql /servlets/oracle.xml.xsql.XSQLServlet

Map an /xsql/ virtual directory In this step, we want to map the virtual path \xsql\ to

C:\xdk902\xdk\demo\java\xsql\ (or wherever you installed the XSQL Servlet

files). To do this, you need to edit the Apache configuration file named

httpd.conf and add the following line:

Alias /xsql/ "C:\xdk902\xdk\demo\java\xsql\"

Restart the Apache server and browse the URL:

http://localhost/xsql/index.html

Jakarta Tomcat 3.1 or 3.2

Set up the Server CLASSPATH for the XSQL Servlet This is done by editing the Tomcat

startup script named tomcat.bat in ./jakarta-tomcat/bin and adding five

lines to append the appropriate entries onto the system CLASSPATH before the

Tomcat server is started as shown below:

For Oracle JDBC 1.x Driver:

rem Set up the CLASSPATH that we need

set cp=%CLASSPATH%

set CLASSPATH=.
set CLASSPATH=%TOMCAT_HOME%\classes
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\webserver.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\jasper.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\servlet.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

REM Added for Oracle XSQL Servlet
REM -----------------------------
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xsu111.jar
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\oraclexsql.jar
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xmlparserv2.jar
set CLASSPATH=%CLASSPATH%;directory_where_JDBC_Driver_resides \classes111.zip
set CLASSPATH=%CLASSPATH%;directory_where_XSQLConfig.xml_resides
REM FOR Apache FOP Generation, Add
REM set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xsqlserializers.jar
REM set CLASSPATH=%CLASSPATH%;FOPHOME/fop.jar
REM set CLASSPATH=%CLASSPATH%;FOPHOME/lib/batik.jar
Getting Started with XDK for Java and JavaBeans 2-13

Installation of the XDK for Java
For Oracle JDBC 2.0 Driver:

rem Set up the CLASSPATH that we need

set cp=%CLASSPATH%

set CLASSPATH=.
set CLASSPATH=%TOMCAT_HOME%\classes
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\webserver.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\jasper.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\xml.jar
set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\servlet.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

REM Added for Oracle XSQL Servlet
REM -----------------------------
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xsu12.jar
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\oraclexsql.jar
set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xmlparserv2.jar
set CLASSPATH=%CLASSPATH%;directory_where_JDBC_Driver_resides \classes12.zip
set CLASSPATH=%CLASSPATH%;directory_where_XSQLConfig.xml_resides
REM FOR Apache FOP Generation, Add
REM set CLASSPATH=%CLASSPATH%;C:\xdk902\lib\xsqlserializers.jar
REM set CLASSPATH=%CLASSPATH%;FOPHOME/fop.jar
REM set CLASSPATH=%CLASSPATH%;FOPHOME/lib/batik.jar

Map the .xsql File Extension to the XSQL Servlet Tomcat supports creating any number

of configuration contexts to better organize the web applications your site needs to

support. Each context is mapped to a virtual directory path, and has its own

separate servlet configuration information. XSQL Servlet comes with a

preconfigured context file to make XSQL Servlet setup easier.

By default, Tomcat 3.1 and 3.2 come preconfigured with the following contexts

(defined by <Context> entries in the ./jakarta-tomcat/conf/server.xml
file).

■ The root context

■ /examples

■ /test

■ /admin
2-14 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for Java
We could install XSQL Servlet into one of these, but for simplicity we'll create a new

context just for the XSQL Servlet that maps to the directory where you installed the

XSQL Servlet distribution.

Edit the ./jakarta-tomcat/conf/server.xml file to add the following

<Context> entry with path= "/xsql" .

<Context path="/test" docBase="webapps/test" debug="0" reloadable="true" />

<!--
 | Define a Servlet context for the XSQL Servlet
 |
 | The XSQL Servlet ships with a .\WEB-INF directory
 | with its web.xml file preconfigured for C:\xdk902\xdk\demo\java\xsql
 | installation.
 +-->
<Context path="/xsql" docBase="C:\xdk902\xdk\demo\java\xsql"/>

Note that the docBase= "C:\xsql" points to the physical directory where you

installed the XSQL Servlet distribution. You then need to create a WEB-INF

subdirectory in the C:\xdk902\xdk\demo\java\xsql directory and save the

following ./WEB-INF/web.xml file in it:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <servlet>
 <servlet-name>oracle-xsql-servlet</servlet-name>
 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>oracle-xsql-servlet</servlet-name>
 <url-pattern> *.xsql </url-pattern>
 </servlet-mapping>
</web-app>

Note: To add the XSQL Servlet to an existing context, add the

servlet and servlet-mapping entries that you find in the web.xml
file preceding, into the web.xml file for the context in question.
Getting Started with XDK for Java and JavaBeans 2-15

Installation of the XDK for Java
Map an /xsql/ Virtual Directory This is already achieved by creating the /xsql context

preceding.

Restart the Tomcat server and browse the URL:

http://localhost:8080/xsql/index.html

If you use Tomcat with an XML Parser (such as the Sun Crimson Parser) that only

supports DOM Level 1 interfaces, then you must edit tomcat.bat to insure that

the Oracle XML Parser's archive xmlparser.jar comes before the DOM Level 1

parser's archive in the CLASSPATH. For example, you could edit tomcat.bat to

add the following lines:

REM NEED TO PUT xmlparserv2.jar FIRST before parser.jar
set CP=C:\xdk902\lib\xmlparserv2.jar;%CP%

just before the lines:

echo Using CLASSPATH: %CP%
echo.
set CLASSPATH=%CP%

XDK for Java with Globalization Support
Here is a summary on the setting that related to Globalization Support.

■ Using xmlmesg.jar : If you are using the language other than English you

would need to set the xmlmesg.jar into your CLASSPATH to let the parser get

correct messages in your language.

■ Using nls_charset12.jar : If you are using a multibyte character set other

than one of the following,

■ UTF-8

■ ISO8859-1

■ JA16SJIS

then you must set this JAR file into your Java CLASSPATH so that JDBC can

convert the character set of the input file to the database character set during

the loading of XML files using either XSU, TransX or XSQL Servlet.

XDK Dependencies
The following figure shows the dependencies of XDK when using JDK 1.2 and

higher:
2-16 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans
Figure 2–1 XDK Dependencies Using JDK 1.2.x and Higher

After you correctly setup the environment, include all the necessary JAR files in

your CLASSPATH. You can then start writing your Java programs and compiling

them with the javac command:

javac your_program.java

If the compilation finishes without errors, then you can just test your program using

the command line or the Web Server.

Installation of the XDK for JavaBeans
The XDK for JavaBeans permit easily adding visual or non-visual interfaces to XML

applications. The bean encapsulation includes documentation and descriptors that

can be accessed directly from Java Integrated Development Environments like

JDeveloper.

Oracle XDK for JavaBeans consists of the following components:

■ DOMBuilder Bean encapsulates the DOMParser and provides asynchronous

XML document parsing.

See Also: Chapter 4, "XML Parser for Java" for further discussion

of the XDK for Java components

Note: The XDKs for Java and JavaBeans are now bundled

together.

Class Generator
(classgen.jar)

XML Schema Processor
(xschema.jar)

JDBC Driver
(classes12.jar)

NLS
(nls_charset12.jar)

WebServer
 that
Supports
Java
Servlets

XML Parser / XSL Processor
(xmlparserv2.jar, xmlmesg.jar)

JDK 1.2

XML SQL Utility
(xsu12.jar)

TransX Utility
(transx.zip)

XSQL Servlet
(oraclexsql.jar, xsqlserializers.jar)
Getting Started with XDK for Java and JavaBeans 2-17

Installation of the XDK for JavaBeans
■ TreeViewer Bean displays XML formatted files graphically as a tree. These

branches and leaves of this tree can be manipulated with a mouse.

■ SourceViewer Bean displays XML and XSL formatted files with color syntax

highlighting for easy viewing and editing.

■ Transformer Bean accepts an input XML document and applies the

transformation specified by an input XSL stylesheet to create an output file.

■ TransPanel Bean encapsulates the preceding beans in an application component

for retrieving, transforming, and viewing XML files.

■ DBAccess Bean can be used for programmatic access to all features that

XMLTransformPanel offers in interactive mode with support of XMLType.

■ DBView Bean can be used in any application that requires visualization of

database information using XML and stylesheet transformations.

■ XMLDiff Utility can be used to compare two XML files and represent the

difference visually, or by the generated XSL code.

■ XMLCompression Utility: can used to serialize XML document in Compressed

format.

XDK for JavaBeans comes with Oracle Database or iAS application server. You can

also download the latest versions of XDK for JavaBeans from OTN.

If you installed XDK with Oracle Database or iAS application server, you can skip

the following steps and direct to refer to the XDK home directory (we will refer to

this directory as $XDK_HOME).

If you need to download the XDK from OTN, follow these steps:

Use this URL in your browser:

 http://otn.oracle.com/tech/xml/xdk_jbeans/index.html

Click on the Software icon at the left-hand side of the page.

■ Log in with your OTN username and password (registration is free if you don

not already have an account).

■ Select the version you want to download.

■ Accept all the terms of the licensing agreement and download the software.

Here are the instructions found on the download site for Solaris™ Operating

Environment:

Oracle XML Developer’s Kit for Java on Sun Solaris™ Operating Environment-
9i
2-18 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans
Download the Complete File
xdk_java_9_0_2_0_0C.tar.gz

Directions

 Install GNU gzip.
 Download the Oracle XDK for JavaBeans in .tar format
 Extract the distribution package into a directory.

(Ex: #gzip -dc xdk_java.tar | tar xvf -)

The result should be the following files and directories:
/bin - xdk executables and utilities
/lib - directory for libraries
/xdk - top xdk directory
/xdk/demo - directory for demo files
/xdk/doc - directory for documentation
/xdk/admin - direcory for dband config files
/xdk/*html - doc navigation files
/xdk/license.html - copy of license agreement

■ For Windows NT, choose a directory under which you would like the .\xdk

directory and subdirectories to go (for example, \C: on NT), change the

directory to \C: then extract the files using the WinZip visual tool.

XDK for JavaBeans Components
After installing the XDK, the directory structure is:

-$XDK_HOME
| - bin: executable files and setup script/batch files.
| - lib: library files.
| - xdk
 | - admin (Administration): XSU PL/SQL API setup SQL script and XSL Servlet
 Configuration file (XSQLConfig.xml).
 | - demo: demonstration code
 | - doc: documents including release notes and javadocs.

All the packages in XDK for JavaBeans are certified and supported with JDK 1.2 or

1.1.8, so make sure that your CLASSPATH includes all the necessary libraries.

For JDK versions lower that JDK 1.2, you will need to include the JDK library in

your CLASSPATH, as well as the Swing library, swingall.jar at "Java

Foundation Classes (JFC)/Swing 1.0.3" in page
Getting Started with XDK for Java and JavaBeans 2-19

Installation of the XDK for JavaBeans
http://java.sun.com/products/archive/index.html

The following table lists the libraries of XDK for JavaBeans:

In addition, XML SQL Utility, XSQL Servlet and TransX Utility all depend on other

components, whose libraries are listed in the following table:

Table 2–5 XDK for JavaBeans Libraries

Component Library Notes

XML Parser

XSL Processor

xmlparserv2.jar XML Parser V2 for Java, which includes
JAXP 1.1, DOM, SAX, and XSLT APIs.

xmlmesg.jar Messages for XML Parser. If you want to use
XML Parser with a language other than
English, you need to set this jar file in your
CLASSPATH.

XML Schema Processor xschema.jar XML Schema Processor for Java

XML SQL Utility xsu12.jar XML SQL Utility for JDK 1.2 and above

xsu111.jar XML SQL Utility for JDK 1.1.8

oraclexsql.jar Oracle XSQL Servlet

xsqlserializers.jar Oracle XSQL Serializers for FOP/PDF
Integration

Class Generator classgen.jar Class Generator for Java

TransX Utility transx.zip Oracle TransX Utility

JavaBeans xmlcomp.jar

xmlcomp2.jar

Oracle JavaBeans Utilities

Table 2–6 XDK for JavaBeans: Dependent Libraries

Component Library Notes

JDBC classes12.zip JDBC for JDK 1.2 and above

classes111.zip JDBC for JDK 1.1.8

Globalization nls_charset12.jar Globalization support for JDK 1.2 and above

nls_charset111.jar Globalization support for JDK 1.1.8

XMLType xdb_g.jar XMLType Java APIs.
$ORACLE_HOME/rdbms/jlib
2-20 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans
Setting Up the XDK for JavaBeans Environment
Use this script file provided on UNIX:

$XDK_HOME/bin/env.csh

For Windows, use this provided batch file:

%XDK_HOME/bin/env.bat

The following tables list the environment variables needed during XDK setup.

Variables that must be customized before running the script or batch file are marked

as "Y" in the column "Customize".

Jdev Runtime jdev-rt.zip Java GUI libraries

Table 2–7 JavaBeans Environment Settings for UNIX

Variable Name Values Customize

$JDBCVER JDBC version. If using JDK 1.2 and above, set to 12. Y

$JDKVER JDK version (default is 1.2.2_07), obtained by:

Java -version

Y

$INSTALL_ROOT Installation root of XDK, the directory referred to as $XDK_HOME N

$JAVA_HOME Directory where the Java SDK, Standard Edition is installed. The path
linked to the Java SDK must be modified.

Y

$CLASSPATHJ ${ORACLE_HOME}/jdbc/lib/classes${JDBCVER}.zip:
${ORACLE_HOME}/jdbc/lib/nls_charset${JDBCVER}.jar

f you are running the XSU on a system other than where the Oracle
RDBMS is installed, you will have to update CLASSPATHJ path with
the correct locations of the JDBC library (classes12.jar).

The nls_charset12.jar is needed to support certain character sets. Refer
to Globalization Support setup with XDK for JavaBeans

Note that if you do not have these libraries on your system, these are
both available on OTN: (http://otn.oracle.com) which is part of the
JDBC driver download.

Y

Table 2–6 XDK for JavaBeans: Dependent Libraries (Cont.)

Component Library Notes
Getting Started with XDK for Java and JavaBeans 2-21

Installation of the XDK for JavaBeans
For Windows NT see the following table for the settings:

XDK for JavaBeans with Globalization Support
Here is a summary of the settings that are related to Globalization Support.

■ If you use languages other than English, set the xmlmesg.jar into your Java

CLASSPATH to let the parser obtain the correct messages in your language.

$CLASSPATH Include the following:
.:${CLASSPATHJ}:${INSTALL_ROOT}/lib/xmlparserv2.jar:${INSTALL_
ROOT}/lib/xschema.jar: ${INSTALL_ROOT}/lib/xsu${JDBCVER}.jar:
${INSTALL_ROOT}/lib/oraclexsql.jar:
${INSTALL_ROOT}/lib/classgen.jar

N

$PATH ${JAVA_HOME}/bin:${PATH}:${INSTALL_ROOT}/bin N

$LD_LIBRARY_PATH For OCI JDBC connections.

${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

N

Table 2–8 JavaBeans Environment Settings for Windows NT

Variable Name Values Customize

%JDBCVER% DBC Version. If using JDK 1.2 and above, it is 12. If using JDK 1.1.8, it
is 111.

Y

%JDKVER% JDK version (default is 1.2.2_07), obtained by:

Java -version

Y

%INSTALL_ROOT% Installation root of XDK, which is the directory referred to as
%XDK_HOME%

N

%JAVA_HOME% Directory where the Java SDK, Standard Edition, is installed. The
path linked to the Java SDK must be modified.

Y

%CLASSPATHJ% CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\classes%JDBCVER%.
zip; %ORACLE_HOME%\jdbc\lib\nls_charset%JDBCVER%.jar

Y

%PATH% PATH=%JAVA_HOME%\bin;%ORACLE_HOME%\bin;%PATH%;%
INSTALL_ROOT%\bin

N

%CLASSPATH% .;%CLASSPATH%;%INSTALL_ROOT%\lib\xmlparserv2.jar;
%INSTALL_ROOT%\lib\xschema.jar;
%INSTALL_ROOT%\lib\xsu%JDBCVER%.jar;%INSTALL_ROOT%
\lib\oraclexsql.jar;%INSTALL_ROOT%\lib\classgen.jar

N

Table 2–7 JavaBeans Environment Settings for UNIX (Cont.)

Variable Name Values Customize
2-22 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for JavaBeans
■ If you use a multibyte character set other than one of the following,

■ UTF-8

■ ISO8859-1

■ JA16SJIS

then set nls_charset12.jar into your Java CLASSPATH so that JDBC can

convert the character set of the input file to the database character set during

loading of XML files.

See Also: Chapter 10, "XDK JavaBeans" for further discussion of

the XDK for JavaBeans components
Getting Started with XDK for Java and JavaBeans 2-23

Installation of the XDK for JavaBeans
2-24 Oracle9i XML Developer’s Kits Guide - XDK

Getting Started with XDKs for C/C++ and PL
3

Getting Started with XDKs for C/C++ and

PL/SQL

This chapter contains the following sections:

■ Installation of XDK for C

■ Installation of the XDK for C++

■ Installation of XDK for PL/SQL

See Also: Chapter 2, "Getting Started with XDK for Java and

JavaBeans"
/SQL 3-1

Installation of XDK for C
Installation of XDK for C
XDK for C contains the basic building blocks for reading, manipulating,

transforming XML documents.

Oracle XDK for C consists of the following components:

■ XML Parser: supports parsing XML documents with the DOM or SAX

interfaces.

■ XSL Processor: supports transforming XML documents.

■ XML Schema Processor: supports parsing and validating XML files against an

XML Schema definition file (default extension.xsd).

Getting the XDK for C
If you have installed the Oracle database or iAS (Application Server), you will

already have the XDK for C installed.

You can also download the latest versions of XDK for C from OTN.

In order to download the XDK from OTN, follow these steps:

■ Use this URL in your browser:

http://otn.oracle.com/tech/xml/xdk_c/content.html

■ Click the ‘Software’ icon at the left-hand side of the page.

■ Logon with your OTN username and password (registration is free if you don’t

already have an account).

■ Select the version that you want to download.

■ Accept all conditions in the licensing agreement.

■ Click the appropriate file

■ Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the

details of downloading an XDK (use the XDK for C).

After installing the XDK, the directory structure is:

-$XDK_HOME

Note: The XDKs for C and C++ are now bundled together.
3-2 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C
 | - bin: executable files
 | - lib: library files.
 |- nlsdata: Globalization Support data files(*.nlb)
 | - xdk
 | - demo: demonstration code
 | - doc: documents including release notes.
 | - include: header files.
 | - mesg: message files. (*.msb)

Here are all the libraries that come with the UNIX version of XDK for C:

The XDK for C (UNIX) depends on the Oracle CORE and Globalization Support

libraries in the following table:

UNIX Environment Setup
Check if the environment variable ORA_NLS33 is set to point to the location of the

Globalization Support data files.

If you install the Oracle database, you can set it to be:

setenv ORA_NLS33 ${ORACLE_HOME}/ocommon/nls/admin/data

If no Oracle database is installed, you can set use the Globalization Support data

files that come with the XDK release by setting:

setenv ORA_NLS33 ${XDK_HOME}/nlsdata

Table 3–1 C for XDK Libraries

Component Library Notes

XML Parser

XSL Processor

libxml9.a XML Parser V2 for C, which includes DOM, SAX,
and XSLT APIs

XML Schema Processor libxsd9.a XML Schema Processor for C

Table 3–2 Dependent Libraries of XDK for C on UNIX

Component Library Notes

CORE Library xmlparser Oracle CORE library

Globalization
Support Library

libnls9.a

libunls9.a

Oracle Globalization Support common library

Oracle Globalization Support library for Unicode
support
Getting Started with XDKs for C/C++ and PL/SQL 3-3

Installation of XDK for C
Check if the environment variable ORA_XML_MESG is set to point to the absolute

path of the mesg directory:

If you install the Oracle database, you can set it to be:

setenv ORA_NLS33 ${ORACLE_HOME}/xdk/mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files that come with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}/xdk/mesg

Currently, all of the message files are in English. The message files for other

languages will be provided in a future release.

Now you can use the Makefile to compile and link the demo code.

Windows NT Environment Setup
After installation, the directory structure is:

-$XDK_HOME
 | - bin: executable files and dynamic libraries
 | - lib: static library files.
 |- nlsdata: Globalization Support data files (*.nlb)
 | - xdk
 | - demo: demonstration code
 | - doc: documents including release notes.
 | - include: header files.
 | - mesg: message files. (*.msb)

These are the Widows NT libraries that come with the XDK for C:

The XDK for C (NT) depends on the Oracle CORE and Globalization Support

libraries in the following table:

Table 3–3 XDK for C Libraries on NT

Component Library Notes

XML Parser

XSL Processor

oraxml9.lib

oraxml9.dll

XML Parser V2 for C, which includes DOM, SAX, and
XSLT APIs

XML Schema
Processor

oraxsd9.a

oraxsd9.dll

XML Schema Processor for C
3-4 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C
Environment for Command Line Usage
Check that the environment variable ORA_NLS33 is set to point to the location of

the Globalization Support data files.

If you install the Oracle database, you can set it this way:

set ORA_NLS33 =%ORACLE_HOME%\nlsrtl\admin\nlsdata

If no Oracle database is installed, you can set use the Globalization Support data

files that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\nlsdata

You must check if the environment variable ORA_XML_MESG is set to point to the

absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:

set ORA_NLS33 =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\xdk\mesg

Currently, all of the message files are in English. The message files for other

language will be provide in a future release.

Set the path for the cl compiler (if you need to compile the code using a Make.bat)

in command line environment.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of

Control Panel, select System icon and double click. A window named System

Properties will be popped up. Select Environment Tab and input the path of

Table 3–4 Dependent Libraries of XDK for C on NT

Component Library Notes

CORE Library oracore9.a Oracle CORE library

Globalization
Support Library

oranls9.a

oranls9.dll

Oracle Globalization Support common library

oraunls9.a

oraunls9.dll

Oracle Globalization Support library for Unicode
support
Getting Started with XDKs for C/C++ and PL/SQL 3-5

Installation of XDK for C
cl.exe to the PATH variable shown in Figure 3–1, "Setting the Path for the cl

Compiler in NT".

Figure 3–1 Setting the Path for the cl Compiler in NT

You need to update the Make.bat by adding the path of the libraries and the

header files to the compile and link commands as shown in the following example

of a Make.bat file:

...
:COMPILE
set filename=%1
3-6 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1
/Doratext=OraText -I. -I..\..\..\include -
ID:\Progra~1\Micros~1\VC98\Include %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\..\..\..\bin\%filename%.exe /libpath:%ORACLE_HOME%\lib
/libpath:D:\Progra~1\Micros~1\VC98\lib /libpath:..\..\..\..\lib %filename%.obj
oraxml9.lib oracore9.lib oranls9.lib oraunls9.lib user32.lib kernel32.lib
msvcrt.lib ADVAPI32.lib oldnames.lib winmm.lib
:EOF

where:

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and

D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Using the XDK for C with Visual C++
If you are using Microsoft Visual C++ for your compiler:

Check that the environment variable ORA_NLS33 is set to point to the location of

the Globalization Support data files.

If you install the Oracle database, you can set it to be:

set ORA_NLS33 =%ORACLE_HOME%\nlsrtl\admin\nlsdata

If no Oracle database is installed, you can use the Globalization Support data files

that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\nlsdata

In order to use Visual C++, you need to employ the system setup for Windows NT

to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop up window of

Control Panel, select System icon and double click. A window named System

Properties will pop up. Select Environment Tab and input ORA_NLS33.
Getting Started with XDKs for C/C++ and PL/SQL 3-7

Installation of XDK for C
Figure 3–2 Setting Up the ORA_NLS33 Environment Variable

Check that the environment variable ORA_XML_MESG is set to point to the

absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:

set ORA_NLS33 =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\xdk\mesg
3-8 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C
In order for Visual C++ to use the environment variable, you need to employ the

system setup for windows NT to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of

Control Panel, select System icon and double click. A window named System

Properties will be popped up. Select Environment Tab and input

ORA_XML_MESG.

Figure 3–3 Setting Up the ORA_XML_MESG Environment Variable

Currently, all the message files are in English. The message files for other languages

will be provided in future releases.
Getting Started with XDKs for C/C++ and PL/SQL 3-9

Installation of XDK for C
The following figure shows the setup of the PATH for DLLs:

Figure 3–4 Setup of the PATH for DLLs

After you open a workspace in Visual C++ and include the *.c files for your

project, you must set the path for the project. Go to the Tools menu and select

Options. A window will pop up. Select the Directory tab and set your include path

as shown in the following figure:
3-10 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for C
Figure 3–5 Setting Your Include Path in Visual C++

Then set your library path as shown in the following figure:
Getting Started with XDKs for C/C++ and PL/SQL 3-11

Installation of XDK for C
Figure 3–6 Setting Your Static Library Path

After setting the paths for the static libraries in %XDK_HOME\lib, you also need to

set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window will pop up.

Please select the Link tab in the Object/Library Modules field enter the name of

XDK for C libraries:
3-12 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
Figure 3–7 Setting Up the Static Libraries in Visual C++ Project

Compile and run the demo programs, and then start using XDK for C.

Installation of the XDK for C++
XDK for C++ contains the basic building blocks for reading, manipulating,

transforming XML documents.

Oracle XDK for C consists of the following components:

See Also: Chapter 13, "XML Parser for C" for further discussion

of the XDK for C components.

Note: The XDKs for C and C++ are now bundled together.
Getting Started with XDKs for C/C++ and PL/SQL 3-13

Installation of the XDK for C++
■ XML Parser: supports parsing XML documents with the DOM or SAX

interfaces.

■ XSL Processor: supports transforming XML documents.

■ XML Schema Processor: supports parsing and validating XML files against an

XML Schema definition file (default extension.xsd).

■ Class Generator for C++: generates a set of C++ source files based on an input

DTD or XML Schema.

Getting the XDK for C++
If you have installed the Oracle database or iAS (Application Server), you will

already have the XDK for C++ installed.

You can also download the latest versions of XDK for C++ from OTN.

In order to download the XDK from OTN, follow these steps:

■ Use this URL in your browser:

http://otn.oracle.com/tech/xml/xdk_cpp/content.html

■ Click the ‘Software’ icon at the left-hand side of the page.

■ Logon with your OTN username and password (registration is free if you don’t

already have an account).

■ Select the version that you want to download.

■ Accept all conditions in the licensing agreement.

■ Click the appropriate file

■ Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the

details of downloading an XDK (use XDK for C++).

After installing the XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files
 | - lib: library files.
 |- nlsdata: Globalization Support data files(*.nlb)
 | - xdk
 | - demo: demonstration code
 | - doc: documents including release notes.
 | - include: header files.
3-14 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
 | - mesg: message files. (*.msb)

The libraries that come with the UNIX version of XDK for C++ are listed in the

following table:

The XDK for C++ package depends on the Oracle CORE and Globalization Support

libraries, which are listed in the following table:

Setting the UNIX Environment for C++
Check that the environment variable ORA_NLS33 is set to point to the location of

the Globalization Support data files.

If you install the Oracle database, you can set it to be:

setenv ORA_NLS33 ${ORACLE_HOME}/ocommon/nls/admin/data

If no Oracle database is installed, you can use the Globalization Support data files

that come with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}/nlsdata

Check that the environment variable ORA_XML_MESG is set to point to the

absolute path of the mesg directory.

Table 3–5 XDK Libraries for C++ (UNIX)

Component Library Notes

XML Parser

 XSL Processor

libxml9.a XML Parser V2 for C++, which includes DOM,
SAX, and XSLT APIs

XML Schema Processor libxsd9.a XML Schema Processor for C++

Class Generator libxmlg.a Class Generator for C++

Table 3–6 Dependent Libraries of XDK for C++ on UNIX

Component Library Notes

CORE Library xmlparser Oracle CORE library

Globalization
Support Library

libnls9.a Oracle Globalization Support common library

libunls9.a Oracle Globalization Support library for Unicode
support
Getting Started with XDKs for C/C++ and PL/SQL 3-15

Installation of the XDK for C++
If you install the Oracle database, you can set it to be:

setenv ORA_NLS33 ${ORACLE_HOME}/xdk/mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files that comes with the XDK release:

setenv ORA_NLS33 ${XDK_HOME}/xdk/mesg

Currently, all of the message files are in English. The message files for other

languages will be provided in a future release.

You can now use the Makefiles to compile and link the demo code and start

developing your program using XDK for C++ on a UNIX platform.

Windows NT Environment Setup
After installation, the directory structure is:

-$XDK_HOME
 | - bin: executable files and dynamic libraries
 | - lib: static library files.
 |- nlsdata: Globalization Support data files (*.nlb)
 | - xdk
 | - demo: demonstration code
 | - doc: documents including release notes.
 | - include: header files.
 | - mesg: message files. (*.msb)

These are the Widows NT libraries that come with the XDK for C++:

The XDK for C++ (NT) depends on the Oracle CORE and Globalization Support

libraries in the following table:

Table 3–7 XDK for C++ Libraries on NT

Component Library Notes

XML Parser

XSL Processor

oraxml9.lib

oraxml9.dll

XML Parser V2 for C++, which includes DOM, SAX,
and XSLT APIs.

XML Schema
Processor

oraxsd9.a

oraxsd9.dll

XML Schema Processor for C++

Class Generator oraxmlg.a

oraxmlg.dll

Class Generator for C++
3-16 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
Command Line Usage
Check that the environment variable ORA_NLS33 is set to point to the location of

the Globalization Support data files.

If you install the Oracle database:

set ORA_NLS33 =%ORACLE_HOME%\nlsrtl\admin\nlsdata

If no Oracle database is installed, you can use the Globalization Support data files

that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\nlsdata

Check that the environment variable ORA_XML_MESG is set to point to the

absolute path of the mesg directory.

If you install the Oracle database, you can set it to be:

set ORA_NLS33 =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files, which comes with the XDK release:

set ORA_NLS33 =%XDK_HOME%\xdk\mesg

Currently, all of the message files are in English. The message files for other

languages will be provided in a future release.

Set the path for cl compiler, if you need to compile the code using make.bat in a

command line.

Go to the Start Menu and select Settings > Control Panel. In the pop up window of

Control Panel, select System icon and double click. A window named System

Table 3–8 Dependent Libraries of XDK for C++ on NT

Component Library Notes

CORE Library oracore9.a

oracore9.dll

Oracle CORE library

Globalization
Support Library

oranls9.a

oranls9.dll

Oracle Globalization Support common library

oraunls9.a

oraunls9.dll

Oracle Globalization Support library for Unicode
support
Getting Started with XDKs for C/C++ and PL/SQL 3-17

Installation of the XDK for C++
Properties will pop up. Select Environment Tab and input the path of cl.exe to the

PATH variable shown in Figure 3–8, "Setting the PATH for the cl Compiler".

Figure 3–8 Setting the PATH for the cl Compiler

You must update the file Make.bat by adding the path of the libraries and header

files to the compile and link commands:

...
:COMPILE
set filename=%1
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
3-18 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1
/Doratext=OraText -I. -I..\..\..\include -
ID:\Progra~1\Micros~1\VC98\Include %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\..\..\..\bin\%filename%.exe /libpath:%ORACLE_HOME%\lib
/libpath:D:\Progra~1\Micros~1\VC98\lib /libpath:..\..\..\..\lib %filename%.obj
oraxml9.lib oracore9.lib oranls9.lib oraunls9.lib user32.lib kernel32.lib
msvcrt.lib ADVAPI32.lib oldnames.lib winmm.lib

:EOF
...

where

D:\Progra~1\Micros~1\VC98\Include: is the path for header files and

D:\Progra~1\Micros~1\VC98\lib: is the path for library files.

Now you can start developing with XDK for C++.

Using XDK for C++ with Visual C ++
Check that the environment variable ORA_NLS33 is set to point to the location of

the Globalization Support data files.

If you install the Oracle database, you can set it to be

set ORA_NLS33 =%ORACLE_HOME%\nlsrtl\admin\nlsdata

If no Oracle database is installed, you can use the Globalization Support data files

that come with the XDK release:

set ORA_NLS33 =%XDK_HOME%\nlsdata

In order for Visual C++ to know the environment variable, you need to use the

system setup for windows NT to define the environment variable.

Go to Start Menu and select Settings > Control Panel. In the pop-up window of

Control Panel, select System icon and double click. A window named System

Properties will be popped up. Select Environment Tab and input ORA_NLS33.
Getting Started with XDKs for C/C++ and PL/SQL 3-19

Installation of the XDK for C++
Figure 3–9 Setting Up the ORA_NLS33 Environment Variable

Check that the environment variable ORA_XML_MESG is set to point to the

absolute path of the mesg directory.

If you install the Oracle database, you can set it:

set ORA_NLS33 =%ORACLE_HOME%\xdk\mesg

If no Oracle database is installed, you can set it to be the directory of the error

message files that comes with the XDK release:

set ORA_NLS33 =%XDK_HOME%\xdk\mesg
3-20 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
In order for Visual C++ to employ the environment variable, you need to use the

system setup for Windows NT to define the environment variable.

Go to the Start Menu and select Settings > Control Panel. In the pop-up window of

Control Panel, select System icon and double click. A window named System

Properties will pop up. Select Environment Tab and input the ORA_XML_MESG.

Figure 3–10 Setting Up ORA_XML_MESG Environment Variable

Currently, all of the message files are in English. The message files for other

languages will be provided in a future release.
Getting Started with XDKs for C/C++ and PL/SQL 3-21

Installation of the XDK for C++
Figure 3–11 Setup of the PATH for DLLs

After you open a workspace in Visual C++ and include the *.c files for your

project, you must set the path for the project. Go to the Tools menu and select

Options. A window will pop up. Select the Directory tab and set your include path

as shown in the following figure:
3-22 Oracle9i XML Developer’s Kits Guide - XDK

Installation of the XDK for C++
Figure 3–12 Setting Your Include Path in Visual C++

Then set your library path as shown in the following figure:
Getting Started with XDKs for C/C++ and PL/SQL 3-23

Installation of the XDK for C++
Figure 3–13 Setting Your Static Library Path

After setting the paths for the static libraries in %XDK_HOME\lib, you also need to

set the library name in the compiling environment of Visual C++.

Go to the Project menu in the menu bar and select Settings. A window will pop up.

Please select the Link tab in the Object/Library Modules field enter the name of

XDK for C++ libraries:
3-24 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL
Figure 3–14 Setting Up the Static Libraries in Visual C++ Project

You can now compile and run the demo programs, and start using XDK for C++.

Installation of XDK for PL/SQL
XDK for PL/SQL contains the basic building blocks for reading, manipulating, and

transforming XML documents. Oracle XDK for PL/SQL consists of the following

components:

■ XML Parser: supports parsing XML documents with the DOM interfaces.

■ XSL Processor: supports transforming XML documents.

■ XML SQL Utility: generates an XML Document from SQL queries and inserts

an XML document into the database.

See Also: Chapter 16, "XML Parser for C++" for further

discussion of the XDK for C++ components
Getting Started with XDKs for C/C++ and PL/SQL 3-25

Installation of XDK for PL/SQL
Setting the Environment for XDK for PL/SQL
If you have installed the Oracle database or iAS (Application Server), you will

already have the XDK for PL/SQL installed.

You can also download the latest versions of XDK for PL/SQL from OTN.

In order to download the XDK from OTN, follow these steps:

■ Use this URL in your browser:

http://otn.oracle.com/tech/xml/xdk_plsql/content.html

■ Click the ‘Software’ icon at the left-hand side of the page.

■ Logon with your OTN username and password (registration is free if you don’t

already have an account).

■ Select the version that you want to download.

■ Accept all conditions in the licensing agreement.

■ Click the appropriate file

■ Extract the files in the distribution:

Refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for the

details of downloading an XDK (using the XDK for PL/SQL).

After installing the XDK, the directory structure is:

-$XDK_HOME
 | - bin: executable files and setup script/batch files.
 | - lib: library files.
 | - xdk:
 | - admin: (Administration): XSU PL/SQL API setup SQL script
 and XSL Servlet Configuration file(XSQLConfig.xml).
 | - demo: demonstration code
 | - doc: documents including release notes and javadocs.

The following table lists all the Java libraries that come with XDK for PL/SQL:
3-26 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL
The PL/SQL packages provided are listed in the following table:

Installing XDK for PL/SQL into the Database
Before installing the XDK for PL/SQL packages into the database, you need to

check the status of the packages and the related Java libraries.

Table 3–9 XDK Libraries for PL/SQL

Component Library Notes

XML Parser

XSL Processor

xmlparserv2.jar

xmlmesg.jar

XML Parser V2 for Java, which includes JAXP
1.1, DOM, SAX and XSLT APIs.

Message files for XML Parser. If you want to
use XML Parser with a language other than
English, you need to set this JAR file in your
CLASSPATH.

XML Schema
Processor

xschema.jar XML Schema Processor for Java.

XML SQL Utility xsu12.jar

xsu111.jar

XML SQL Utility for JDK 1.2 and above.

XML SQL Utility for JDK 1.1.8.

XML PL/SQL
Package

xmlplsql.jar XML PL/SQL package.

Table 3–10 XDK Packages for PL/SQL

PL/SQL Library Package Name Notes

XML Parser xmlparser

xmldom

XML Parser.

DOM API for XML.

XSL Processor xslprocessor XML Schema Processor for PL/SQL.

XML SQL Utility DBMS_XMLQuery XML SQL Utility PL/SQL package reflects the
functions in the Java classes –
OracleXMLQuery. It is used to generate XML
from SQL queries.

DBMS_XMLSave XML SQL Utility PL/SQL package reflects the
functions in the Java classes –
OracleXMLSave. It is used to store XML into
the database.
Getting Started with XDKs for C/C++ and PL/SQL 3-27

Installation of XDK for PL/SQL
Checking PL/SQL Package Status
You can use the following command to check if any of the PL/SQL packages is in

your current database schema:

SQL*PLUS> desc package_name

For example:

SQL*PLUS> desc xmldom

If you see the content of the package, then the package is available to be used in

your schema and you can skip all of the rest of the installation steps.

If you see the following error messages:

SQL> desc xmldom
ERROR:
OrA-04043: object “SYS”.”XMLDOM” does not exists.

it means that the XDK for PL/SQL packages have not been defined in your

database schema. You need to do the status checking for the related Java libraries.

Checking Java Libraries Status
The libraries, including xmlparserv2.jar , xmlplsql.jar and xsu12.jar (or

xsu111.jar), are required to be loaded to the database. You can use SQL

commands to check the status of a specific library by the classes that the library

contains.

For example, to check the status of xmlparserv2.jar, you can check the classes within

oracle.xml.parser.v2.DOMParser class by using the following SQL statement:

SELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status
 FROM all_objects
 WHERE object_type = 'JAVA CLASS'
 AND object_name = dbms_java.shortname('oracle/xml/parser/v2/DOMParser');

If you see the result:

CLASS STATUS

oracle/xml/parser/v2/DOMParser INVALID

then try the command:

ALTER JAVA CLASS _oracle/xml/parser/v2/DOMParser Resolve
3-28 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL
If the verification procedure produces the SQL*Plus message “no rows selected”,

you need to use the XDKLOAD utility in "Loading XDK for PL/SQL" on page 3-29.

If you see the preceding result, but the status is VALID, that means the Oracle XML

Parser for Java is already installed and ready to be used. If all of the Java libraries

have already been loaded into the database, then you can run the SQL scripts to

define the PL/SQL packages.

For SYS users who would like to create public synonyms in addition to the

packages:

For XML Parser and PL/SQL:

$XDK_HOME/xdk/admin/xmlpkg.sql
$XDK_HOME/xdk/admin/xmlsyn.sql

For XSU:

$XDK_HOME/xdk/admin/xsupkg.sql
$XDK_HOME/xdk/admin/xsusyn.sql

For all other users:

For XML Parser and PL/SQL:

$XDK_HOME/xdk/admin/xmlpkg.sql

For XSU:

$XDK_HOME/xdk/admin/xsupkg.sql

If any single library is not valid you can load the package by directly using the load

Java utility:

loadjava -resolve -verbose -user xdktemp/xdktemp xmlparserv2.jar

Loading XDK for PL/SQL
Before using LOADJAVA utility to load the Java libraries into the database schema,

you need to get the Java VM properly installed. You have to run the INITJVM.SQL
and INITDBJ.SQL scripts to initialize the Java environment before running the

LOADJAVA utility. Usually these are in the $ORACLE_HOME/javavm/install
subdirectory of your Oracle Home directory.
Getting Started with XDKs for C/C++ and PL/SQL 3-29

Installation of XDK for PL/SQL
Using xdkload
To load the XDK for PL/SQL packages into the database schema, you can use the

script or batch files provided by XDK.

UNIX:

$XDK_HOME/bin/xdkload

Windows:

$XDK_HOME/bin/xdkload.bat

The xdkload command syntax is:

xdkload -u username/password [-s] [-noverify] [-dbver]

-s Creates public synonyms for the loaded java APIs; this can be invoked
 only if the target user has dba privileges.
-noverify Use this if you are loading into an older version of the db and ar
 running into an error about missing method (for example, if
 you are loading xsu version 9.0.1.0.0 into Oracle 8.1.7).
-dbver Used to specify the version of the database into which you are
 loading XDK. This is a must if Oracle older than the version of
 the XDK). This option also sets the -noverify option.

For example:

xdkload -u "system/manager" -s -dbver "816"

This example uses xdkload to load the XDK for PL/SQL packages to system user.

Before using xdkload, you need to check if any of the libraries including

xmlparserv2.jar , xmlxsql.jar and xsu12.jar (xsu111.jar) is already

loaded to the database. If so, you need to drop them before using xdkload :

dropjava -verbose -user xdktemp/xdktemp xmlparserv2.jar xschema.jar

Moreover, you need to set up the environment variables by using the script or batch

file XDK provides:

UNIX:

$XDK_HOME/bin/env.csh

Windows:

$XDK_HOME/bin/env.bat
3-30 Oracle9i XML Developer’s Kits Guide - XDK

Installation of XDK for PL/SQL
You can refer to "Getting Started with XDK for Java and JavaBeans" on page 2-1 for

the detailed information of this environment setup.

 After running the xdkload script or batch file, if the target user name used to run

xdkload has DBA privileges, then the XDK for PL/SQL package will be available

to all the users and the public synonyms for the PL/SQL packages are also created.

Otherwise, the XDK for PL/SQL packages will be available only to the target user.

See Also: Chapter 20, "XML Parser for PL/SQL" or further

discussion of the XDK for PL/SQL components
Getting Started with XDKs for C/C++ and PL/SQL 3-31

Installation of XDK for PL/SQL
3-32 Oracle9i XML Developer’s Kits Guide - XDK

Part II

XDK for Java

These chapters describe how to access and use the XDK for Java:

■ Chapter 4, "XML Parser for Java"

■ Chapter 5, "XSLT Processor for Java"

■ Chapter 6, "XML Schema Processor for Java"

■ Chapter 7, "XML Class Generator for Java"

■ Chapter 8, "XML SQL Utility (XSU)"

■ Chapter 9, "XSQL Pages Publishing Framework"

■ Chapter 10, "XDK JavaBeans"

■ Chapter 11, "Using XDK and SOAP"

■ Chapter 12, "Oracle TransX Utility"

Note:

■ XML-SQL Utility (XSU) is also considered part of the XDK for

Java (and the XDK for PL/SQL). In this manual, XSU is

described in Chapter 8, "XML SQL Utility (XSU)".

■ XSQL Servlet is considered part of XDK for Java. In this manual

XSQL Servlet is described in Chapter 9, "XSQL Pages

Publishing Framework"

XML Parse
4

XML Parser for Java

This chapter contains the following sections:

■ XML Parser for Java: Features

■ Parsers Access XML Document’s Content and Structure

■ DOM and SAX APIs

■ XML Compressor

■ XML Parser for Java: Features

■ Running the XML Parser for Java Samples

■ Using XML Parser for Java: DOMParser() Class

■ Using XML Parser for Java: DOMNamespace() Class

■ Using XML Parser for Java: SAXParser() Class

■ Using JAXP

■ Frequently Asked Questions About DTDs

■ Frequently Asked Questions About DOM and SAX APIs

■ Frequently Asked Questions About Validation

■ Frequently Asked Questions About Character Sets

■ Frequently Asked Questions: Adding an XML Document as a Child

■ Frequently Asked General Questions About XML Parser
r for Java 4-1

XML Parser for Java: Features
XML Parser for Java: Features
Oracle provides a set of XML parsers for Java, C, C++, and PL/SQL. Each of these

parsers is a standalone XML component that parses an XML document (or a

standalone DTD or XML Schema) so that it can be processed by an application. This

chapter discusses the parser for Java only. The other language versions are

discussed in later chapters.

Library and command-line versions are provided supporting the following

standards and features:

■ XML. W3C XML 1.0 Recommendation

■ DOM. Integrated DOM (Document Object Model) API, compliant with:

■ W3C DOM 1.0 Recommendation

■ W3C DOM 2.0 CORE Recommendation and Mutation Event.

■ W3C DOM 2.0 Traversal Recommendation, including Treewalker, Node

Iterator, and Node Filter.

■ DOM level XML compression.

These APIs permit applications to access and manipulate an XML document as

a tree structure in memory. This interface is used by such applications as

editors.

■ SAX. Integrated SAX (Simple API for XML) API, compliant with the SAX 2.0

recommendation and with SAX2-ext. These APIs permit an application to

process XML documents using an event-driven model.

■ W3C Proposed Recommendation for XML Namespaces 1.0 thereby avoiding

name collision, increasing reusability and easing application integration.

Supports Oracle XML Schema Processor.

■ XSLT. XSLT Processor for Java includes the following features:

■ Integrated support for W3C XSLT 1.1 Working Draft

■ Provides new APIs to get XSL Transformation as SAX Output

■ XML Schema Processor. Supports XML Schema Processor that parses and

validates XML files against an XML Schema Definition file (.xsd). It includes the

following features:

See Also: .

http://www.w3.org/TR/1999/REC-xml-names-19990114/
4-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java: Features
■ Built on the XML Parser for Java v2

■ Supports the three parts of the XML Schema Working Draft

* Part 0: Primer XML Schema

* Part 1: Structures XML Schema

* Part 2: Datatypes

■ Runs on Oracle9i and Oracle9i Application Server

Additional features include:

■ Built-in error recovery until fatal error

■ Support for JAXP 1.1.

The parsers are available on all Oracle platforms.

Figure 4–1 shows an XML document inputting XML Parser for Java. The DOM or

SAX parser interface parses the XML document. The parsed XML is then

transferred to the application for further processing.

If a stylesheet is used, the DOM or SAX interface also parses and outputs the XSL

commands. These are sent together with the parsed XML to the XSLT Processor

where the selected stylesheet is applied and the transformed (new) XML document

is then output.

See Also:

■ Appendix A, "XDK for Java: Specifications and Quick

References"

■ Chapter 5, "XSLT Processor for Java"

■ Chapter 6, "XML Schema Processor for Java"
XML Parser for Java 4-3

XML Parser for Java: Features
Figure 4–1 Oracle XML Parser

DOM and SAX APIs are explained in "DOM and SAX APIs".

The classes and methods used to parse an XML document are illustrated in the

following diagrams:

■ Figure 4–4, "XML Parser for Java: DOMParser()"

■ Figure 4–5, "Using SAXParser() Class"

The classes and methods used by the XSLT Processor to apply stylesheets are

illustrated in the following diagram:

■ Figure 5–1, "Using XSL Processor for Java"

XSL Transformation (XSLT) Processor
The V2 versions of the XML Parsers include an integrated XSL Transformation

(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT

processor, you can transform XML documents from XML to XML, XML to HTML,

or to virtually any other text-based format. See Figure 4–1.

See Also: Chapter 5, "XSLT Processor for Java" for complete

details.

DOM / SAX Parser

XML Parser for Java

Original
XML

Document

Transfered
XML

Document

Parsed XML

Parsed XSL
Commands

XSL
Stylesheet

XSL-T Processor
4-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java: Features
Namespace Support
The Java XML parser also supports XML Namespaces. Namespaces are a

mechanism to resolve or avoid name collisions between element types (tags) or

attributes in XML documents.

This mechanism provides "universal" namespace element types and attribute names

whose scope extends beyond this manual.

Such tags are qualified by uniform resource identifiers (URIs), such as:

<oracle:EMP xmlns:oracle="http://www.oracle.com/xml"/>

For example, namespaces can be used to identify an Oracle <EMP> data element as

distinct from another company's definition of an <EMP> data element.

This enables an application to more easily identify elements and attributes it is

designed to process. The Java parser supports namespaces by being able to

recognize and parse universal element types and attribute names, as well as

unqualified "local" element types and attribute names.

Oracle XML Parsers Validation Modes
The Java parser can parse XML in validating or non-validating modes.

■ Non-Validating Mode. The parser verifies that the XML is well-formed and

parses the data into a tree of objects that can be manipulated by the DOM API.

■ DTD Validating Mode. The parser verifies that the XML is well-formed and

validates the XML data against the DTD (if any).

■ Partial Validation Mode. Partial validation validates an input XML document

according to the DTD if a DTD or XMLS Schema is present else it will be in

Non-Validating mode.

■ Schema Validation Mode. The XML Document is validated according to the

XML Schema specified for the document.

■ Auto Validation Mode. In this mode the parser does its best to validate with

whatever is available. If DTD is available, it is set to DTD_VALIDATION, if

Schema is present then it is set to SCHEMA_VALIDATION. If none is available,

it is set to NON_VALIDATING mode.

See Also:

■ Chapter 6, "XML Schema Processor for Java"

■ Oracle9i XML API Reference - XDK and Oracle XML DB
XML Parser for Java 4-5

Parsers Access XML Document’s Content and Structure
Validation involves checking whether or not the attribute names and element tags

are legal, whether nested elements belong where they are, and so on.

Parsers Access XML Document’s Content and Structure
XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup.

Markup encodes a description of the document's storage layout and logical

structure. XML provides a mechanism to impose constraints on the storage layout

and logical structure.

A software module called an XML processor is used to read XML documents and

provide access to their content and structure. It is assumed that an XML processor is

doing its work on behalf of another module, called the application.

This parsing process is illustrated in Figure 4–2.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
4-6 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APIs
Figure 4–2 XML Parsing Process

DOM and SAX APIs
XML APIs generally fall into the following two categories:

■ Event-based

■ Tree-based

See Figure 4–3. Consider the following simple XML document:

<?xml version="1.0"?>
 <EMPLIST>
 <EMP>
 <ENAME>MARY</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

Parsed
Data

Storage Units
(entities)

Unparsed
Data

Characters

Character
Data

Markup

XML
document

XML Parser
(Processor)

Content and StructureReads
XML Parser for Java 4-7

DOM and SAX APIs
DOM: Tree-Based API
A tree-based API (such as DOM) builds an in-memory tree representation of the

XML document. It provides classes and methods for an application to navigate and

process the tree.

In general, the DOM interface is most useful for structural manipulations of the

XML tree, such as reordering elements, adding or deleting elements and attributes,

renaming elements, and so on. For example, for the XML document preceding, the

DOM creates an in-memory tree structure as shown inFigure 4–3.

SAX: Event-Based API
An event-based API (such as SAX) uses calls to report parsing events to the

application. The application deals with these events through customized event

handlers. Events include the start and end of elements and characters.

Unlike tree-based APIs, event-based APIs usually do not build in-memory tree

representations of the XML documents. Therefore, in general, SAX is useful for

applications that do not need to manipulate the XML tree, such as search

operations, among others.

The preceding XML document becomes a series of linear events as shown in

Figure 4–3.
4-8 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APIs
Figure 4–3 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

[

Guidelines for Using DOM and SAX APIs
Here are some guidelines for using the DOM and SAX APIs:

DOM:
■ Use the DOM API when you need to use random access.

■ DOM consumes more memory.

■ Use DOM when you are performing transformations.

■ Use DOM when you want to have tree iterations and need to walk through the

entire document tree.

■ When using the DOM interface, try to use more attributes over elements in your

XML, to reduce the pipe size.

SAX:
Use the SAX API when your data is mostly streaming data.

<EMP> <EMP>

<EMPLIST>

<ENAME> <ENAME>

MARY SCOTT

The DOM interface creates a
TREE structure based on the
XML DocumentXML Document

<?XML Version = "1.0"?>
 <EMPLIST>
 <EMP>
 <ENAME>MARY</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

The SAX interface creates
a series of linear events
based on the XML
document

Useful for applications such
as search and retrieval that do
not change the "XML tree".

Useful for applications that include
changes eg. reordering, adding, or
deleting elements.

start document

start element: EMPLIST
start element: EMP
start element: ENAME
characters: MARY
end element: EMP

start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP

end element: EMPLIST
end document
XML Parser for Java 4-9

XML Compressor
XML Compressor
This release supports binary compression of XML documents. The compression is

based on tokenizing the XML tags. The assumption is that any XML document has

a repeated number of tags and so tokenizing these tags will give considerable

amount of compression. Therefore the compression achieved depends on the type

of input document; the larger the tags and the lesser the text content, then the better

the compression.

The goal of compression is to reduce the size of the XML document without loosing

the structural and hierarchical information of the DOM tree. The compressed stream

contains all the "useful" information to create the DOM tree back from the binary

format. The compressed stream can also be generated from the SAX events. The

binary stream generated from DOM and SAX are compatible. The compressed

stream generated from SAX could be used to generate the DOM tree and vice versa.

Sample programs to illustrate the compression feature is included in demos.

Oracle XML Parser can also compress XML documents. Using the compression

feature, an in-memory DOM tree or the SAX events generated from an XML

document can be compressed to generate a binary compressed output.

The compressed stream generated from DOM and SAX are compatible, that is, the

compressed stream generated from SAX could be used to generate the DOM tree

and vice versa. The compression is based on tokenizing the XML tags. This is based

on the assumption that XML files typically have repeated tags and tokenizing the

tags compresses the data. The compression depends on the type of input XML

document: the larger the number of tags, the less the text content, and the better the

compression.

As with XML documents in general, you can store the compressed XML data output

as a BLOB (Binary Large Object) in the database.

XML Serialization/Compression
An XML document is compressed into a binary stream by means of the serialization

of an in-memory DOM tree. When a large XML document is parsed and a DOM

tree is created in memory corresponding to it, it may be difficult to satisfy memory

requirements and this could affect performance. The XML document is compressed

into a byte stream and stored in an in-memory DOM tree. This can be expanded at a

later time into a DOM tree without performing validation on the XML data stored

in the compressed stream.
4-10 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for Java Samples
The compressed stream can be treated as a serialized stream, but note that the

information in the stream is more controlled and managed, compared to the

compression implemented by Java's default serialization.

In this release, there are two kinds of XML compressed streams:

■ SAX based Compression: The compressed stream is generated when an XML

file is parsed using a SAX Parser. SAX events generated by the SAX Parser are

handled by the SAX Compression utility. It handles the SAX events to generate

a compressed binary stream. When the binary stream is read back, the SAX

events are generated.

■ DOM based compression: The in-memory DOM tree, corresponding to a parsed

XML document, is serialized, and a compressed XML output stream is

generated. This serialized stream when read back regenerates the DOM tree.

The compressed stream is generated using SAX events and that generated using

DOM serialization are compatible. You can use the compressed stream generated

by SAX events to create a DOM tree and vice versa. The compression algorithm

used is based on tokenizing the XML tag's. The assumption is that any XML file has

repeated number of tags and therefore tokenizing the tags will give considerable

compression.

Running the XML Parser for Java Samples
The directory demo/java/parser contains some sample XML applications to

show how to use the Oracle XML parser.

The following are the sample Java files in the sub-directories:

■ XSLSample - A sample application using XSL APIs.

■ DOMSample - A sample application using DOM APIs.

■ DOMNamespace - A sample application using Namespace extensions to DOM

APIs.

■ DOM2Namespace - A sample application using DOM Level 2.0 APIs

■ DOMRangeSample - A sample application using DOM Range APIs

■ EventSample - A sample application using DOM Event APIs

■ NodeIteratorSample - A sample application using DOM Iterator APIs

■ TreeWalkerSample - A sample application using DOM TreeWalker APIs

■ SAXSample - A sample application using SAX APIs.
XML Parser for Java 4-11

Running the XML Parser for Java Samples
■ SAXNamespace - A sample application using Namespace extensions to SAX

APIs.

■ SAX2Namespace - A sample application using SAX 2.0

■ Tokenizer - A sample application using XMLToken interface APIs.

The Tokenizer application implements XMLToken interface, which must be

registered using the setTokenHandler() method. A request for the XML tokens

is registered using the setToken() method. During tokenizing, the parser doesn’t

validate the document and does not include or read internal/external utilities.

■ DOMCompression - A sample application to compress a DOM tree

■ DOMDeCompression - A sample to read back a DOM from a compressed

stream

■ SAXCompression - A sample application to compress the SAX output from a

SAX Parser.

■ SAXDeCompression - A sample application to regenerate the SAX events from

the compressed stream.

■ JAXPExamples - a few samples of using JAXP 1.1 API to run Oracle engine.

To run these sample programs:

■ Use make to generate .class files.

■ Add xmlparserv2.jar and the current directory to the CLASSPATH.

■ Run the sample program for DOM/SAX APIs:

java classname sample_xml_file

■ Run the sample program for XSL APIs:

java XSLSample sample_xsl_file sample_xml_file

■ Run the sample program for Tokenizer APIs:

java Tokenizer sample_xml_file token_string

■ Run the sample program for compressing a DOM tree

java DOMCompression sample.dat

 The compressed output is generated in a file called "xml.ser"

■ Run the sample program to build the DOM tree from the compressed stream.
4-12 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for Java Samples
 java DeCompression xml.ser

■ Run the sample program for compressing the SAX events

java SAXCompression sample.dat

■ Run the sample program for regenerating the SAX events from the compressed

stream.

java SAXDeCompression xml.ser

■ Run the sample program for JAXP 1.1 API

java JAXPExamples

the .xml and .xsl are given inside JAXPExamples.java

A few .xml and files are provided as test cases in directory common.

The XSL stylesheet iden.xsl can be used to achieve an identity transformation of

the XML files in a common directory.

XML Parser for Java - XML Example 1: class.xml
<?xml version = "1.0"?>
<!DOCTYPE course [
<!ELEMENT course (Name, Dept, Instructor, Student)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Instructor (Name)>
<!ELEMENT Student (Name*)>
]>
<course>
<Name>Calculus</Name>
<Dept>Math</Dept>
<Instructor>
<Name>Jim Green</Name>
</Instructor>
<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>
</course>
XML Parser for Java 4-13

Running the XML Parser for Java Samples
XML Parser for Java - XML Example 2: Using DTD employee — employee.xml
<?xml version="1.0"?>
<!DOCTYPE employee [
<!ELEMENT employee (Name, Dept, Title)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
]>
<employee>
<Name>John Goodman</Name>
<Dept>Manufacturing</Dept>
<Title>Supervisor</Title>
</employee>

XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml
<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

DTD: family.dtd
<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

XML Parser for Java - XSL Example 1: XSL (iden.xsl)
<?xml version="1.0"?>
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="*|@*|comment()|processing-instruction()|text()">
 <xsl:copy>
 <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
 </xsl:copy>
4-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class
 </xsl:template>

</xsl:stylesheet>

XML Parser for Java - DTD Example 1: (NSExample)
<!DOCTYPE doc [
<!ELEMENT doc (child*)>
<!ATTLIST doc xmlns:nsprefix CDATA #IMPLIED>
<!ATTLIST doc xmlns CDATA #IMPLIED>
<!ATTLIST doc nsprefix:a1 CDATA #IMPLIED>
<!ELEMENT child (#PCDATA)>
]>
<doc nsprefix:a1 = "v1" xmlns="http://www.w3c.org"
xmlns:nsprefix="http://www.oracle.com">
<child>
This element inherits the default Namespace of doc.
</child>
</doc>

Using XML Parser for Java: DOMParser() Class
To write DOM based parser applications you can use the following classes:

■ DOMNamespace() class

■ DOMParser() class

■ XMLParser() class

Since DOMParser extends XMLParser, all methods of XMLParser are also available

to DOMParser. Figure 4–4 shows the main steps you need when coding with the

DOMParser() class:

■ Without DTD Input

1. A new DOMParser() class is called. Available properties to use with this

class are:

* setValidateMode

* setPreserveWhiteSpace

* setDocType

* setBaseURL

* showWarnings
XML Parser for Java 4-15

Using XML Parser for Java: DOMParser() Class
2. The results of 1) are passed to XMLParser.parse() along with the XML

input. The XML input can be a file, a string buffer, or URL.

3. Use the XMLParser.getDocument() method.

4. Optionally, you can apply other DOM methods such as:

* print()

* DOMNamespace() methods

5. The Parser outputs the DOM tree XML (parsed) document.

6. Optionally, use DOMParser.reset() to clean up any internal data

structures, once the Parser has finished building the DOM tree.

■ With a DTD Input

1. A new DOMParser() class is called. The available properties to apply to

this class are:

* setValidateMode

* setPreserveWhiteSpace

* setDocType

* setBaseURL

* showWarnings

2. The results of 1) are passed to XMLParser.parseDTD() method along

with the DTD input.

3. XMLParser.getDocumentType() method then sends the resulting DTD

object back to the new DOMParser() and the process continues until the

DTD has been applied.

The example, "XML Parser for Java Example 1: Using the Parser and DOM API",

shows hoe to use DOMParser() class.
4-16 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class
Figure 4–4 XML Parser for Java: DOMParser()

XML Parser for Java Example 1: Using the Parser and DOM API
The examples represent the way we write code so it is required to present the

examples with Java coding standards (like all imports expanded), with

documentation headers before the methods, and so on.

// This file demonstates a simple use of the parser and DOM API.
// The XML file given to the application is parsed.
// The elements and attributes in the document are printed.
// This demonstrates setting the parser options.

file, string
buffer, or URL

xml input

new
DOMParser()

XMLParser.
parse()

XMLParser.
getDocument

DTD input

XMLParser.
parseDTD()

Available properties:
· setValidationMode
 [default = not]
· setPreserveWhiteSpace
 [default = not]
· setDocType
 [if input type is a DTD]
· setBaseURL
 [refers other locations to
 base location if reading
 from outside source]
· showWarnings

Apply other
DOM methods

DOM
document

Typically Node
class methods

To print, use the
print method.
This is a
nonstandard
DOM method

XMLParser.
getDocument-

Type()

DTD
object

DOMParser.
reset()

XDK for Java: XML Parser for Java — DOM Parser()
XML Parser for Java 4-17

Using XML Parser for Java: DOMParser() Class
//

import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import org.w3c.dom.Node;

import oracle.xml.parser.v2.*;

public class DOMSample
{
 static public void main(String[] argv)
 {
 try
 {
 if (argv.length != 1)
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: java DOMSample filename");
 System.exit(1);
 }

 // Get an instance of the parser
 DOMParser parser = new DOMParser();

// Generate a URL from the filename.
URL url = createURL(argv[0]);

 // Set various parser options: validation on,
 // warnings shown, error stream set to stderr.
 parser.setErrorStream(System.err);
 parser.setValidationMode(DTD_validation);
 parser.showWarnings(true);

// Parse the document.
 parser.parse(url);

 // Obtain the document.
 XMLDocument doc = parser.getDocument();

 // Print document elements
 System.out.print("The elements are: ");
 printElements(doc);

 // Print document element attributes
4-18 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class
 System.out.println("The attributes of each element are: ");
 printElementAttributes(doc);
 parser.reset();
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }

 static void printElements(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 Node n;

 for (int i=0; i<nl.getLength(); i++)
 {
 n = nl.item(i);
 System.out.print(n.getNodeName() + " ");
 }

 System.out.println();
 }

 static void printElementAttributes(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 Element e;
 Node n;
 NamedNodeMap nnm;

 String attrname;
 String attrval;
 int i, len;

 len = nl.getLength();
 for (int j=0; j < len; j++)
 {
 e = (Element)nl.item(j);
 System.out.println(e.getTagName() + ":");
 nnm = e.getAttributes();
 if (nnm != null)
 {
 for (i=0; i<nnm.getLength(); i++)
 {
XML Parser for Java 4-19

Using XML Parser for Java: DOMParser() Class
 n = nnm.item(i);
 attrname = n.getNodeName();
 attrval = n.getNodeValue();
 System.out.print(" " + attrname + " = " + attrval);
 }
 }
 System.out.println();
 }
 }

 static URL createURL(String fileName)
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != '/')
 path = path.replace(sep, '/');
 if (path.charAt(0) != '/')
 path = '/' + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }
}

4-20 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMParser() Class
Comments on DOMParser() Example 1
See also Figure 4–4. The following provides comments for Example 1:

1. Declare a new DOMParser() . In Example 1, see the line:

DOMParser parser = new DOMParser();

This class has several properties you can use. Here the example uses:

parser.setErrorStream(System.err);
parser.setValidationMode(DTD_validation);
parser.showWarnings(true);

2. The XML input is a URL as declared by:

URL url = createURL(argv[0])

3. The XML document is input as a URL. This is parsed using parser.parse():

 parser.parse(url);

4. Gets the document:

XMLDocument doc = parser.getDocument();

5. Applies other DOM methods. In this case:

■ Node class methods:

* getElementsByTagName()

* getAttributes()

* getNodeName()

* getNodeValue()

■ Method, createURL() to convert the string name into a URL.

6. parser.reset() is called to clean up any data structure created during the parse

process, after the DOM tree has been created. Note that this is a new method

with this release.

7. Generates the DOM tree (parsed XML) document for further processing by

your application.

Note: No DTD input is shown in Example 1.
XML Parser for Java 4-21

Using XML Parser for Java: DOMNamespace() Class
Using XML Parser for Java: DOMNamespace() Class
Figure 4–3 illustrates the main processes involved when parsing an XML document

using the DOM interface. The DOMNamespace() method is applied in the parser

process at the “bubble” that states “Apply other DOM methods”. The following

example illustrates how to use DOMNamespace():

■ "XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java"

XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java
// This file demonstates a simple use of the parser and Namespace
// extensions to the DOM APIs.
// The XML file given to the application is parsed and the
// elements and attributes in the document are printed.
//

import java.io.*;
import java.net.*;

import oracle.xml.parser.v2.DOMParser;

import org.w3c.dom.*;
import org.w3c.dom.Node;

// Extensions to DOM Interfaces for Namespace support.
import oracle.xml.parser.v2.XMLElement;
import oracle.xml.parser.v2.XMLAttr;

public class DOMNamespace
{
 static public void main(String[] argv)
 {
 try
 {
 if (argv.length != 1)
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: DOMNamespace filename");
 System.exit(1);
 }

 // Get an instance of the parser
 Class cls = Class.forName("oracle.xml.parser.v2.DOMParser");
4-22 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMNamespace() Class
 DOMParser parser = (DOMParser)cls.newInstance();

// Generate a URL from the filename.
URL url = createURL(argv[0]);

// Parse the document.
 parser.parse(url);

 // Obtain the document.
 Document doc = parser.getDocument();

 // Print document elements
 printElements(doc);

 // Print document element attributes
 System.out.println("The attributes of each element are: ");
 printElementAttributes(doc);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }

 static void printElements(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 XMLElement nsElement;

 String qName;
 String localName;
 String nsName;
 String expName;

 System.out.println("The elements are: ");
 for (int i=0; i < nl.getLength(); i++)
 {
 nsElement = (XMLElement)nl.item(i);

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.

 qName = nsElement.getQualifiedName();
 System.out.println(" ELEMENT Qualified Name:" + qName);
XML Parser for Java 4-23

Using XML Parser for Java: DOMNamespace() Class
 localName = nsElement.getLocalName();
 System.out.println(" ELEMENT Local Name :" + localName);

 nsName = nsElement.getNamespace();
 System.out.println(" ELEMENT Namespace :" + nsName);

 expName = nsElement.getExpandedName();
 System.out.println(" ELEMENT Expanded Name :" + expName);
 }

 System.out.println();
 }

 static void printElementAttributes(Document doc)
 {
 NodeList nl = doc.getElementsByTagName("*");
 Element e;
 XMLAttr nsAttr;
 String attrname;
 String attrval;
 String attrqname;

 NamedNodeMap nnm;
 int i, len;
 len = nl.getLength();
 for (int j=0; j < len; j++)
 {
 e = (Element) nl.item(j);
 System.out.println(e.getTagName() + ":");
 nnm = e.getAttributes();

 if (nnm != null)
 {
 for (i=0; i < nnm.getLength(); i++)
 {
 nsAttr = (XMLAttr) nnm.item(i);

 // Use the methods getQualifiedName(), getLocalName(),
 // getNamespace() and getExpandedName() in NSName
 // interface to get Namespace information.

 attrname = nsAttr.getExpandedName();
 attrqname = nsAttr.getQualifiedName();
 attrval = nsAttr.getNodeValue();
4-24 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: DOMNamespace() Class
System.out.println(" " + attrqname + "(" + attrname + ")" + " = "
+ attrval);
 }
 }
 System.out.println();
 }
 }

 static URL createURL(String fileName)
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != '/')
 path = path.replace(sep, '/');
 if (path.charAt(0) != '/')
 path = '/' + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }
}

XML Parser for Java 4-25

Using XML Parser for Java: SAXParser() Class
Using XML Parser for Java: SAXParser() Class
Applications can register a SAX handler to receive notification of various parser

events. XMLReader is the interface that an XML parser's SAX2 driver must

implement. This interface enables an application to set and query features and

properties in the parser, to register event handlers for document processing, and to

initiate a document parse.

All SAX interfaces are assumed synchronous: the parse methods must not return

until parsing is complete, and readers must wait for an event-handler callback to

return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The

XMLReader interface contains two important enhancements over the old Parser

interface:

■ It adds a standard way to query and set features and properties.

■ It adds Namespace support, which is required for many higher-level XML

standards.

Table 4–1 lists the class SAXParser() methods.

Note: No DTD is input is shown in Example 2.

Table 4–1 Class SAXParser() Methods

Method Description

getContentHandler() Returns the current content handler.

getDTDHandler() Returns the current DTD handler.

getEntityResolver() Returns the current entity resolver.

getErrorHandler() Returns the current error handler.

getFeature(java.lang.String name) Looks up the value of a feature.

getProperty(java.lang.String name) Looks up the value of a property.

setContentHandler(ContentHandler handler) enables an application to register a content event
handler.

setDocumentHandler(DocumentHandler handler) Deprecated. as of SAX2.0 - Replaced by
setContentHandler
4-26 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class
Figure 4–5 shows the main steps for coding with the SAXParser() class.

1. Declare a new SAXParser() class. Table 4–1 lists the available methods.

2. The results of 1) are passed to .parse() along with the XML input in the form of

a file, string, or URL.

3. Parse methods return when parsing completes. Meanwhile the process waits for

an event-handler callback to return before reporting the next event.

4. The parsed XML document is available for further processing by your

application.

The example, "XML Parser for Java Example 3: Using the Parser and SAX API

(SAXSample.java)", illustrates how you can use SAXParser() class and several

handler interfaces.

setDTDHandler(DTDHandler handler) enables an application to register a DTD event
handler.

setEntityResolver(EntityResolver resolver) enables an application to register an entity
resolver.

setErrorHandler(ErrorHandler handler) enables an application to register an error event
handler.

setFeature(java.lang.String name, boolean value) Sets the state of a feature.

setProperty(java.lang.String name, java.lang.Object value) Sets the value of a property.

Table 4–1 Class SAXParser() Methods(Cont.)

Method Description
XML Parser for Java 4-27

Using XML Parser for Java: SAXParser() Class
Figure 4–5 Using SAXParser() Class

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
// This file demonstates a simple use of the parser and SAX API.
// The XML file given to the application is parsed and
// prints out some information about the contents of this file.
//

import org.xml.sax.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;

public class SAXSample extends HandlerBase
{
 // Store the locator
 Locator locator;

 static public void main(String[] argv)
 {
 try
 {
 if (argv.length != 1)

file,
string buffer,

or URL
xml input

new
SAXParser()

.parse()

Callback
methods

Methods
· setValidationMode
· setPreserveWhiteSpace
· setDocType
· setBaseURL
· setDocumentHandler
· setDTDHandler
· setEntity Resolver
· setErrorHandler

XML Parser for Java: SAXParser()
4-28 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class
 {
 // Must pass in the name of the XML file.
 System.err.println("Usage: SAXSample filename");
 System.exit(1);
 }
 // (1) Create a new handler for the parser
 SAXSample sample = new SAXSample();

 // (2) Get an instance of the parser
 Parser parser = new SAXParser();

 // (3) Set Handlers in the parser
 parser.setDocumentHandler(sample);
 parser.setEntityResolver(sample);
 parser.setDTDHandler(sample);
 parser.setErrorHandler(sample);

 // (4) Convert file to URL and parse
 try
 {
 parser.parse(fileToURL(new File(argv[0])).toString());
 }
 catch (SAXParseException e)
 {
 System.out.println(e.getMessage());
 }
 catch (SAXException e)
 {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 }

 static URL fileToURL(File file)
 {
 String path = file.getAbsolutePath();
 String fSep = System.getProperty("file.separator");
 if (fSep != null && fSep.length() == 1)
 path = path.replace(fSep.charAt(0), '/');
 if (path.length() > 0 && path.charAt(0) != '/')
 path = '/' + path;
XML Parser for Java 4-29

Using XML Parser for Java: SAXParser() Class
 try
 {
 return new URL("file", null, path);
 }
 catch (java.net.MalformedURLException e)
 {
 throw new Error("unexpected MalformedURLException");
 }
 }

 //
 // (5) Sample implementation of DocumentHandler interface.
 //

 public void setDocumentLocator (Locator locator)
 {
 System.out.println("SetDocumentLocator:");
 this.locator = locator;
 }

 public void startDocument()
 {
 System.out.println("StartDocument");
 }
 public void endDocument() throws SAXException
 {
 System.out.println("EndDocument");
 }

 public void startElement(String name, AttributeList atts)
 throws SAXException
 {
 System.out.println("StartElement:"+name);
 for (int i=0;i<atts.getLength();i++)
 {
 String aname = atts.getName(i);
 String type = atts.getType(i);
 String value = atts.getValue(i);

 System.out.println(" "+aname+"("+type+")"+"="+value);
 }

 }
 public void endElement(String name) throws SAXException
 {
4-30 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class
 System.out.println("EndElement:"+name);
 }

 public void characters(char[] cbuf, int start, int len)
 {
 System.out.print("Characters:");
 System.out.println(new String(cbuf,start,len));
 }

 public void ignorableWhitespace(char[] cbuf, int start, int len)
 {
 System.out.println("IgnorableWhiteSpace");
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 System.out.println("ProcessingInstruction:"+target+" "+data);
 }

 //
 // (6) Sample implementation of the EntityResolver interface.
 //

 public InputSource resolveEntity (String publicId, String systemId)
 throws SAXException
 {
 System.out.println("ResolveEntity:"+publicId+" "+systemId);
 System.out.println("Locator:"+locator.getPublicId()+" "+
 locator.getSystemId()+
 " "+locator.getLineNumber()+" "+locator.getColumnNumber());
 return null;
 }

 //
 // (7) Sample implementation of the DTDHandler interface.
 //

 public void notationDecl (String name, String publicId, String systemId)
 {
 System.out.println("NotationDecl:"+name+" "+publicId+" "+systemId);
 }

 public void unparsedEntityDecl (String name, String publicId,
XML Parser for Java 4-31

Using XML Parser for Java: SAXParser() Class
 String systemId, String notationName)
 {
 System.out.println("UnparsedEntityDecl:"+name + " "+publicId+" "+
 systemId+" "+notationName);
 }

 //
 // (8) Sample implementation of the ErrorHandler interface.
 //

 public void warning (SAXParseException e)
 throws SAXException
 {
 System.out.println("Warning:"+e.getMessage());
 }

 public void error (SAXParseException e)
 throws SAXException
 {
 throw new SAXException(e.getMessage());
 }

 public void fatalError (SAXParseException e)
 throws SAXException
 {
 System.out.println("Fatal error");
 throw new SAXException(e.getMessage());
 }
}

XML Parser for Java Example 4: (SAXNamespace.java)
// This file demonstrates a simple use of the Namespace extensions to
// the SAX APIs.

import org.xml.sax.*;
import java.io.*;
import java.net.URL;
import java.net.MalformedURLException;

// Extensions to the SAX Interfaces for Namespace support.
import oracle.xml.parser.v2.XMLDocumentHandler;
import oracle.xml.parser.v2.DefaultXMLDocumentHandler;
import oracle.xml.parser.v2.NSName;
4-32 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class
import oracle.xml.parser.v2.SAXAttrList;

import oracle.xml.parser.v2.SAXParser;

public class SAXNamespace {
 static public void main(String[] args) {
 String fileName;

 //Get the file name
 if (args.length == 0)
 {
 System.err.println("No file Specified!!!");
 System.err.println("USAGE: java SAXNamespace <filename>");
 return;
 }
 else
 {
 fileName = args[0];
 }

 try {
 // Create handlers for the parser
 // Use the XMLDocumentHandler interface for namespace support
 // instead of org.xml.sax.DocumentHandler
 XMLDocumentHandler xmlDocHandler = new XMLDocumentHandlerImpl();

 // For all the other interface use the default provided by
 // Handler base
 HandlerBase defHandler = new HandlerBase();

 // Get an instance of the parser
 SAXParser parser = new SAXParser();

 // Set Handlers in the parser
 // Set the DocumentHandler to XMLDocumentHandler
 parser.setDocumentHandler(xmlDocHandler);

 // Set the other Handler to the defHandler
 parser.setErrorHandler(defHandler);
 parser.setEntityResolver(defHandler);
 parser.setDTDHandler(defHandler);

 try
 {
 parser.parse(fileToURL(new File(fileName)).toString());
XML Parser for Java 4-33

Using XML Parser for Java: SAXParser() Class
 }
 catch (SAXParseException e)
 {
 System.err.println(args[0] + ": " + e.getMessage());
 }
 catch (SAXException e)
 {
 System.err.println(args[0] + ": " + e.getMessage());
 }
 }
 catch (Exception e)
 {
 System.err.println(e.toString());
 }
 }

static public URL fileToURL(File file)
 {
 String path = file.getAbsolutePath();
 String fSep = System.getProperty("file.separator");
 if (fSep != null && fSep.length() == 1)
 path = path.replace(fSep.charAt(0), '/');
 if (path.length() > 0 && path.charAt(0) != '/')
 path = '/' + path;
 try {
 return new URL("file", null, path);
 }
 catch (java.net.MalformedURLException e) {
 /* According to the spec this could only happen if the file
/* protocol were not recognized. */
 throw new Error("unexpected MalformedURLException");
 }
 }

 private SAXNamespace() throws IOException
 {
 }

}
 /***
 Implementation of XMLDocumentHandler interface. Only the new
 startElement and endElement interfaces are implemented here. All other
 interfaces are implemented in the class HandlerBase.
 **/
4-34 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: SAXParser() Class
class XMLDocumentHandlerImpl extends DefaultXMLDocumentHandler
{

 public void XMLDocumentHandlerImpl()
 {
 }

 public void startElement(NSName name, SAXAttrList atts) throws SAXException
 {

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.
 String qName;
 String localName;
 String nsName;
 String expName;
 qName = name.getQualifiedName();
 System.out.println("ELEMENT Qualified Name:" + qName);
 localName = name.getLocalName();
 System.out.println("ELEMENT Local Name :" + localName);

 nsName = name.getNamespace();
 System.out.println("ELEMENT Namespace :" + nsName);

 expName = name.getExpandedName();
 System.out.println("ELEMENT Expanded Name :" + expName);

 for (int i=0; i<atts.getLength(); i++)
 {

 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in SAXAttrList interface to get Namespace
 // information.
 qName = atts.getQualifiedName(i);
 localName = atts.getLocalName(i);
 nsName = atts.getNamespace(i);
 expName = atts.getExpandedName(i);

 System.out.println(" ATTRIBUTE Qualified Name :" + qName);
 System.out.println(" ATTRIBUTE Local Name :" + localName);
 System.out.println(" ATTRIBUTE Namespace :" + nsName);
 System.out.println(" ATTRIBUTE Expanded Name :" + expName);
XML Parser for Java 4-35

Using XML Parser for Java: SAXParser() Class
 // You can get the type and value of the attributes either
 // by index or by the Qualified Name.
 String type = atts.getType(qName);
 String value = atts.getValue(qName);

 System.out.println(" ATTRIBUTE Type :" + type);
 System.out.println(" ATTRIBUTE Value :" + value);
 System.out.println();
 }
 }

 public void endElement(NSName name) throws SAXException
 {
 // Use the methods getQualifiedName(), getLocalName(), getNamespace()
 // and getExpandedName() in NSName interface to get Namespace
 // information.
 String expName = name.getExpandedName();
 System.out.println("ELEMENT Expanded Name :" + expName);
 }
}

oraxml - Oracle XML parser
oraxml is a command-line interface to parse an XML document. It checks for

well-formedness and validity.

To use oraxml ensure the following:

■ Your CLASSPATH environment variable is set to point to the

xmlparserv2.jar file that comes with Oracle XML V2 parser for Java.

Because oraxml supports schema validation, include xschema.jar also in

your CLASSPATH

■ Your PATH environment variable can find the java interpreter that comes with

JDK 1.1.x or JDK 1.2.

 Use the following syntax to invoke oraxml :

oraxml options source

oraxml expects to be given an XML file to parse. Table 4–2 lists oraxml’s command

line options.
4-36 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
Using JAXP
The Java API for XML Processing (JAXP) gives you the ability to use the SAX,

DOM, and XSLT processors from your Java application. JAXP enables applications

to parse and transform XML documents using an API that is independent of a

particular XML processor implementation.

JAXP has a pluggability layer that enables you to plug in an implementation of a

processor. The JAXP APIs have an API structure consisting of abstract classes

providing a thin layer for parser pluggability. Oracle has implemented JAXP based

on the Sun Microsystems reference implementation.

JAXP Example: (JAVAExamples.java)
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.sax.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

Table 4–2 oraxml: Command Line Options

Option Purpose

 -comp fileName Compresses the input XML file.

 -decomp fileName Decompresses the input compressed file.

 -dtd fileName Validates the input file with DTD Validation.

 -enc fileName Prints the encoding of the input file

 -help Prints the help message.

 -log logfile Writes the errors/logs to the output file.

 -novalidate fileName Checks whether the input file is well-formed.

 -schema fileName Validates the input file with Schema Validation.

 -version Prints the release version

 -warning Show warnings.

See Also: More examples can be found at the URL

http://technet.oracle.com/tech/xml

and in the directory xdk/demo/java/parser/jaxp
XML Parser for Java 4-37

Using JAXP
import java.io.*;
import java.util.*;
import java.net.URL;
import java.net.MalformedURLException;

import org.xml.sax.*;
import org.xml.sax.ext.*;
import org.xml.sax.helpers.*;
import org.w3c.dom.*;

public class JAXPExamples
{
 public static void main(String argv[])
 throws TransformerException, TransformerConfigurationException,
 IOException, SAXException,
 ParserConfigurationException, FileNotFoundException
 {
 try {
 URL xmlURL = createURL("jaxpone.xml");
 String xmlID = xmlURL.toString();
 URL xslURL = createURL("jaxpone.xsl");
 String xslID = xslURL.toString();
 //
 System.out.println("--- basic ---");
 basic(xmlID, xslID);
 System.out.println();
 System.out.println("--- identity ---");
 identity(xmlID);
 //
 URL generalURL = createURL("general.xml");
 String generalID = generalURL.toString();
 URL ageURL = createURL("age.xsl");
 String ageID = ageURL.toString();
 System.out.println();
 System.out.println("--- namespaceURI ---");
 namespaceURI(generalID, ageID);
 //
 System.out.println();
 System.out.println("--- templatesHandler ---");
 templatesHandler(xmlID, xslID);
 System.out.println();
 System.out.println("--- contentHandler2contentHandler ---");
 contentHandler2contentHandler(xmlID, xslID);
 System.out.println();
4-38 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
 System.out.println("--- contentHandler2DOM ---");
 contentHandler2DOM(xmlID, xslID);
 System.out.println();
 System.out.println("--- reader ---");
 reader(xmlID, xslID);
 System.out.println();
 System.out.println("--- xmlFilter ---");
 xmlFilter(xmlID, xslID);
 //
 URL xslURLtwo = createURL("jaxptwo.xsl");
 String xslIDtwo = xslURLtwo.toString();
 URL xslURLthree = createURL("jaxpthree.xsl");
 String xslIDthree = xslURLthree.toString();
 System.out.println();
 System.out.println("--- xmlFilterChain ---");
 xmlFilterChain(xmlID, xslID, xslIDtwo, xslIDthree);
 } catch(Exception err) {
 err.printStackTrace();
 }
 }
 //
 public static void basic(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 Transformer transformer = tfactory.newTransformer(new
StreamSource(xslID));
 StreamSource source = new StreamSource(xmlID);
 transformer.transform(source, new StreamResult(System.out));
 }
 //
 public static void identity(String xmlID)
 throws TransformerException, TransformerConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 Transformer transformer = tfactory.newTransformer();
 transformer.setOutputProperty(OutputKeys.METHOD, "html");
 transformer.setOutputProperty(OutputKeys.INDENT, "no");
 StreamSource source = new StreamSource(xmlID);
 transformer.transform(source, new StreamResult(System.out));
 }
 //
 public static void namespaceURI(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException
 {
XML Parser for Java 4-39

Using JAXP
 TransformerFactory tfactory = TransformerFactory.newInstance();
 Transformer transformer
 = tfactory.newTransformer(new StreamSource(xslID));
 System.out.println("default: 99");
 transformer.transform(new StreamSource(xmlID),
 new StreamResult(System.out));
 transformer.setParameter("{http://www.oracle.com/ages}age", "20");
 System.out.println();
 System.out.println("should say: 20");
 transformer.transform(new StreamSource(xmlID),
 new StreamResult(System.out));
 transformer.setParameter("{http://www.oracle.com/ages}age", "40");
 transformer.setOutputProperty(OutputKeys.METHOD, "html");
 System.out.println();
 System.out.println("should say: 40");
 transformer.transform(new StreamSource(xmlID),
 new StreamResult(System.out));
 }
 //
 public static void templatesHandler(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException,
 IOException, SAXException,
 ParserConfigurationException, FileNotFoundException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 if (tfactory.getFeature(SAXTransformerFactory.FEATURE))
 {
 SAXTransformerFactory stfactory = (SAXTransformerFactory) tfactory;
 TemplatesHandler handler = stfactory.newTemplatesHandler();
 handler.setSystemId(xslID);
 // JDK 1.1.8
 Properties driver = System.getProperties();
 driver.put("org.xml.sax.driver", "oracle.xml.parser.v2.SAXParser");
 System.setProperties(driver);
 /** JDK 1.2.2
 System.setProperty("org.xml.sax.driver",
"oracle.xml.parser.v2.SAXParser");
 */
 XMLReader reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(handler);
 reader.parse(xslID);
 Templates templates = handler.getTemplates();
 Transformer transformer = templates.newTransformer();
 transformer.transform(new StreamSource(xmlID), new
StreamResult(System.out));
4-40 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
 }
 }
 //
 public static void reader(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException,
 SAXException, IOException, ParserConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 SAXTransformerFactory stfactory = (SAXTransformerFactory)tfactory;
 StreamSource streamSource = new StreamSource(xslID);
 XMLReader reader = stfactory.newXMLFilter(streamSource);
 ContentHandler contentHandler = new oraContentHandler();
 reader.setContentHandler(contentHandler);
 InputSource is = new InputSource(xmlID);
 reader.parse(is);
 }
 //
 public static void xmlFilter(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException,
 SAXException, IOException, ParserConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 XMLReader reader = null;
 try {
 javax.xml.parsers.SAXParserFactory factory=
 javax.xml.parsers.SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 javax.xml.parsers.SAXParser jaxpParser=
 factory.newSAXParser();
 reader = jaxpParser.getXMLReader();
 } catch(javax.xml.parsers.ParserConfigurationException ex) {
 throw new org.xml.sax.SAXException(ex);
 } catch(javax.xml.parsers.FactoryConfigurationError ex1) {
 throw new org.xml.sax.SAXException(ex1.toString());
 } catch(NoSuchMethodError ex2) {
 }
 if (reader == null)
 reader = XMLReaderFactory.createXMLReader();
 XMLFilter filter
 = ((SAXTransformerFactory) tfactory).newXMLFilter(new
StreamSource(xslID));
 filter.setParent(reader);
 filter.setContentHandler(new oraContentHandler());
 filter.parse(new InputSource(xmlID));
 }
XML Parser for Java 4-41

Using JAXP
 //
 public static void xmlFilterChain(
 String xmlID, String xslID_1,
 String xslID_2, String xslID_3)
 throws TransformerException, TransformerConfigurationException,
 SAXException, IOException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 if (tfactory.getFeature(SAXSource.FEATURE))
 {
 SAXTransformerFactory stf = (SAXTransformerFactory)tfactory;
 XMLReader reader = null;
 try {
 javax.xml.parsers.SAXParserFactory factory =
 javax.xml.parsers.SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 javax.xml.parsers.SAXParser jaxpParser =
 factory.newSAXParser();
 reader = jaxpParser.getXMLReader();
 } catch(javax.xml.parsers.ParserConfigurationException ex) {
 throw new org.xml.sax.SAXException(ex);
 } catch(javax.xml.parsers.FactoryConfigurationError ex1) {
 throw new org.xml.sax.SAXException(ex1.toString());
 } catch(NoSuchMethodError ex2) {
 }
 if (reader == null) reader = XMLReaderFactory.createXMLReader();
 XMLFilter filter1 = stf.newXMLFilter(new StreamSource(xslID_1));
 XMLFilter filter2 = stf.newXMLFilter(new StreamSource(xslID_2));
 XMLFilter filter3 = stf.newXMLFilter(new StreamSource(xslID_3));
 if (filter1 != null && filter2 != null && filter3 != null)
 {
 filter1.setParent(reader);
 filter2.setParent(filter1);
 filter3.setParent(filter2);
 filter3.setContentHandler(new oraContentHandler());
 filter3.parse(new InputSource(xmlID));
 }
 }
 }
 //
 public static void contentHandler2contentHandler(String xmlID, String xslID)
 throws TransformerException,
 TransformerConfigurationException,
 SAXException, IOException
 {
4-42 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
 TransformerFactory tfactory = TransformerFactory.newInstance();

 if (tfactory.getFeature(SAXSource.FEATURE))
 {
 SAXTransformerFactory stfactory = ((SAXTransformerFactory) tfactory);
 TransformerHandler handler
 = stfactory.newTransformerHandler(new StreamSource(xslID));
 Result result = new SAXResult(new oraContentHandler());
 handler.setResult(result);
 XMLReader reader = null;
 try {
 javax.xml.parsers.SAXParserFactory factory=
 javax.xml.parsers.SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 javax.xml.parsers.SAXParser jaxpParser=
 factory.newSAXParser();
 reader=jaxpParser.getXMLReader();
 } catch(javax.xml.parsers.ParserConfigurationException ex) {
 throw new org.xml.sax.SAXException(ex);
 } catch(javax.xml.parsers.FactoryConfigurationError ex1) {
 throw new org.xml.sax.SAXException(ex1.toString());
 } catch(NoSuchMethodError ex2) {
 }
 if(reader == null) reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(handler);
 reader.setProperty("http://xml.org/sax/properties/lexical-handler",
handler);
 InputSource inputSource = new InputSource(xmlID);
 reader.parse(inputSource);
 }
 }
 //
 public static void contentHandler2DOM(String xmlID, String xslID)
 throws TransformerException, TransformerConfigurationException,
 SAXException, IOException, ParserConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();

 if (tfactory.getFeature(SAXSource.FEATURE)
 && tfactory.getFeature(DOMSource.FEATURE))
 {
 SAXTransformerFactory sfactory = (SAXTransformerFactory) tfactory;

 DocumentBuilderFactory dfactory
 = DocumentBuilderFactory.newInstance();
XML Parser for Java 4-43

Using JAXP
 DocumentBuilder docBuilder = dfactory.newDocumentBuilder();
 org.w3c.dom.Document outNode = docBuilder.newDocument();

 TransformerHandler handler
 = sfactory.newTransformerHandler(new StreamSource(xslID));
 handler.setResult(new DOMResult(outNode));

 XMLReader reader = null;

 try {
 javax.xml.parsers.SAXParserFactory factory =
 javax.xml.parsers.SAXParserFactory.newInstance();
 factory.setNamespaceAware(true);
 javax.xml.parsers.SAXParser jaxpParser=
 factory.newSAXParser();
 reader = jaxpParser.getXMLReader();
 } catch(javax.xml.parsers.ParserConfigurationException ex) {
 throw new org.xml.sax.SAXException(ex);
 } catch(javax.xml.parsers.FactoryConfigurationError ex1) {
 throw new org.xml.sax.SAXException(ex1.toString());
 } catch(NoSuchMethodError ex2) {
 }
 if(reader == null) reader = XMLReaderFactory.createXMLReader();
 reader.setContentHandler(handler);
 reader.setProperty("http://xml.org/sax/properties/lexical-handler",
handler);
 reader.parse(xmlID);
 printDOMNode(outNode);
 }
 }
 //
 private static void printDOMNode(Node node)
 throws TransformerException, TransformerConfigurationException,
SAXException, IOException,
 ParserConfigurationException
 {
 TransformerFactory tfactory = TransformerFactory.newInstance();
 Transformer serializer = tfactory.newTransformer();
 serializer.setOutputProperty(OutputKeys.METHOD, "xml");
 serializer.setOutputProperty(OutputKeys.INDENT, "no");
 serializer.transform(new DOMSource(node),
 new StreamResult(System.out));
 }
 //
 private static URL createURL(String fileName)
4-44 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 // This is a bunch of weird code that is required to
 // make a valid URL on the Windows platform, due
 // to inconsistencies in what getAbsolutePath returns.
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != ’/’)
 path = path.replace(sep, ’/’);
 if (path.charAt(0) != ’/’)
 path = ’/’ + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }
}

JAXP Example: (oraContentHandler.java
import org.xml.sax.ContentHandler;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.Locator;

public class oraContentHandler implements ContentHandler
XML Parser for Java 4-45

Using JAXP
{
 private static final String TRADE_MARK = "Oracle 9i ";

 public void setDocumentLocator(Locator locator)
 {
 System.out.println(TRADE_MARK + "- setDocumentLocator");
 }

 public void startDocument()
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- startDocument");
 }

 public void endDocument()
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- endDocument");
 }

 public void startPrefixMapping(String prefix, String uri)
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- startPrefixMapping: "
 + prefix + ", " + uri);
 }

 public void endPrefixMapping(String prefix)
 throws SAXException
 {
 System.out.println(TRADE_MARK + " - endPrefixMapping: "
 + prefix);
 }

 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts)
 throws SAXException
 {
 System.out.print(TRADE_MARK + "- startElement: "
 + namespaceURI + ", " + namespaceURI +
 ", " + qName);
 int n = atts.getLength();
 for(int i = 0; i < n; i++)
 System.out.print(", " + atts.getQName(i));
 System.out.println("");
4-46 Oracle9i XML Developer’s Kits Guide - XDK

Using JAXP
 }

 public void endElement(String namespaceURI, String localName,
 String qName)
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- endElement: "
 + namespaceURI + ", " + namespaceURI
 + ", " + qName);
 }

 public void characters(char ch[], int start, int length)
 throws SAXException
 {
 String s = new String(ch, start, (length > 30) ? 30 : length);
 if(length > 30)
 System.out.println(TRADE_MARK + "- characters: \""
 + s + "\"...");
 else
 System.out.println(TRADE_MARK + "- characters: \""
 + s + "\"");
 }

 public void ignorableWhitespace(char ch[], int start, int length)
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- ignorableWhitespace");
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- processingInstruction: "
 + target + ", " + target);
 }

 public void skippedEntity(String name)
 throws SAXException
 {
 System.out.println(TRADE_MARK + "- skippedEntity: " + name);
 }
}

XML Parser for Java 4-47

Frequently Asked Questions About DTDs
Frequently Asked Questions About DTDs
This section lists DTD questions and answers.

Why Can’t My Parser Find the DTD File?
Answer: The DTD file defined in the <!DOCTYPE> declaration must be relative to

the location of the input XML document. Otherwise, you'll need to use the

setBaseURL(url) functions to set the base URL to resolve the relative address of

the DTD if the input is coming from InputStream.

Can I Validate an XML File Using an External DTD?
Answer: You need to include a reference to the applicable DTD in your XML

document. Without it there is no way for the parser to know what to validate

against. Including the reference is the XML standard way of specifying an external

DTD. Otherwise you need to embed the DTD in your XML Document.

Does Oracle Perform DTD Caching?
Do you have DTD caching? How do I set the DTD using version 2 of the parser for

DTD Cache purpose?

Answer: Yes, DTD caching is optional and is not enabled automatically.

The method to set the DTD is setDoctype() . Here is an example:

// Test using InputSource
parser = new DOMParser();
parser.setErrorStream(System.out);
parser.showWarnings(true);

FileReader r = new FileReader(args[0]);
InputSource inSource = new InputSource(r);
inSource.setSystemId(createURL(args[0]).toString());
parser.parseDTD(inSource, args[1]);
dtd = (DTD)parser.getDoctype();

r = new FileReader(args[2]);
inSource = new InputSource(r);
inSource.setSystemId(createURL(args[2]).toString());
// ********************
parser.setDoctype(dtd);
// ********************
parser.setValidationMode(DTD_validation);
4-48 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs
parser.parse(inSource);

doc = (XMLDocument)parser.getDocument();
doc.print(new PrintWriter(System.out));

How Does the XML Parser for Java Recognize External DTDs?
How does the XML Parser for Java version 2 recognize external DTDs when

running from the server? The Java code has been loaded with loadjava and runs in

the Oracle9i server process. My XML file has an external DTD reference.

1. Is there a generic way, as there is with the SAX parser, to redirect it to a stream

or string or something if my DTD is in the database?

2. Is there a generic way to redirect the DTD, as there is with the SAX parser, with

resolveEntity() ?

Answer:

1. We only have the setBaseURL() method at this time.

2. You can achieve your desired result using the following:

a. Parse your External DTD using a DOM parser's parseDTD() method.

b. Call getDoctype() to get an instance of oracle.xml.parser.v2.DTD .

c. On the document where you want to set your DTD programmatically, use

the setDoctype(yourDTD) . We use this technique to read a DTD out of

our product's JAR file.

How Do I Load External DTDs from a JAR File?
I would like to put all my DTDs in a JAR file, so that when the XML parser needs a

DTD it can get it from the JAR. The current XML parser supports a base URL

(setBaseURL()), but that just points to a place where all the DTDs are exposed.

Answer: The solution involves the following steps:

1. Load the DTD as an InputStream using:

InputStream is =
YourClass.class.getResourceAsStream("/foo/bar/your.dtd");

This will open ./foo/bar/your.dtd in the first relative location on the

CLASSPATH that it can be found, including out of your JAR if it’s in the

CLASSPATH.
XML Parser for Java 4-49

Frequently Asked Questions About DTDs
2. Parse the DTD with the code:

DOMParser d = new DOMParser();
d.parseDTD(is, "rootelementname");
d.setDoctype(d.getDoctype());

3. Now parse your document with the following code:

d.parse("yourdoc");

Can I Check the Correctness of an XML Document Using Their DTD?
I am exporting Java objects to XML. I can construct a DOM with an XML document

and use its print method to export it. However, I am unable to set the DTD of these

documents. I construct a parser, parse the DTD, and then get the DTD through

document doc = parser.getDocument() and DocType dtd =
doc.getDocumentType() .

How do I set the DTD of the freshly constructed XML documents to use this one in

order to be able to check the correctness of the documents at a later time?

Answer: Your method of getting the DTD object is correct. However, we do not do

any validation while creating the DOM tree using DOM APIs. So setting the DTD in

the document will not help validate the DOM tree that is constructed. The only way

to validate an XML file is to parse the XML document using the DOM parser or the

SAX parser.

How Do I Parse a DTD Object Separately from My XML Document?
How do I parse and get a DTD object separately from parsing my XML document?

Answer: The parseDTD() method enables you to parse a DTD file separately and

get a DTD object. Here is a sample code to do that:

DOMParser domparser = new DOMParser();
domparser.setValidationMode(DTD_validation);
/* parse the DTD file */
domparser.parseDTD(new FileReader(dtdfile));
DTD dtd = domparser.getDocType();

Is the XML Parser Case-Sensitive?
The XML file has a tag like: <xn:subjectcode> . In the DTD, it is defined as

<xn:subjectCode> . When the file is parsed and validated against the DTD, it
4-50 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs
returns the error: XML-0148: (Error) Invalid element
'xn:subjectcode' in content of 'xn:Resource',...

When I changed the element name to <xn:subjectCode> instead of

<xn:subjectcode> it works. Is the parser case-sensitive as far as validation

against DTDs go - or is it because, there is a namespace also in the tag definition of

the element and when a element is defined along with its namespace, the

case-sensitivity comes into effect?

Answer: XML is inherently case-sensitive, therefore our parsers enforce case

sensitivity in order to be compliant. When you run in non-validation mode only

well-formedness counts. However <test></Test> would signal an error even in

non-validation mode.

How Do I Extract Embedded XML from a CDATA Section?
Given:

<PAYLOAD>
<![CDATA[<?xml version = '1.0' encoding = 'ASCII' standalone = 'no'?>
<ADD_PO_003>
 <CNTROLAREA>
 <BSR>
 <VERB value="ADD">ADD</VERB>
 <NOUN value="PO">PO</NOUN>
 <REVISION value="003">003</REVISION>
 </BSR>
 </CNTROLAREA>
</ADD_PO_003>]]>
</PAYLOAD>

1. How do I extract PAYLOAD to do extra processing on it?

2. When I select the value of PAYLOAD it does not parse the data because it is in a

CDATA section. Why?

3. How do I extract embedded XML using just XSLT? I have done this using SAX

before but in the current setup all I can use is XSLT.

Answer:

1. Here are the answers:

The CDATA strategy is kind of odd. You won't be able to use a different

encoding on the nested XML document included as text inside the CDATA, so

having the XML declaration of the embedded document seems of little value to
XML Parser for Java 4-51

Frequently Asked Questions About DTDs
me. If you don't need the XML declaration, then why not just embed the

message as real elements into the <PAYLOAD> instead of as a text chunk which

is what CDATA does for you.

Just use the following code:

String s = YourDocumentObject.selectSingleNode("/OES_MESSAGE/PAYLOAD");

2. It shouldn't parse the data, you've asked for it to be a big text chunk, which is

what it will give you. You'll have to parse the text chunk yourself (another

benefit of not using the CDATA approach) by doing something like:

 YourParser.parse(new StringReader(s));

where s is the string you got in the previous step.

3. There is nothing special about the content of your CDATA, it's just text. If you

want the text content to be output without escaping the angle-brackets, then

you'll do:

 <xsl:value-of select="/OES_MESSAGE/PAYLOAD" disable-output-escaping="yes"/>

Why Am I Getting an Error When I Call DOMParser.parseDTD()?
I am having trouble creating a DTD and parsing it using Oracle XML Parser for Java

version 2. I got the following error when I call DOMParser.parseDTD() function:

Attribute value should start with quote.

Please check my DTD and tell me what's wrong.

<?xml version = "1.0" encoding="UTF-8" ?>
<!-- RCS_ID = "$Header: XMLRenderer.dtd 115.0 2000/09/18 03:00:10 fli noship $"
-->
<!-- RCS_ID_RECORDED = VersionInfo.recordClassVersion(RCS_ID,
"oracle.apps.mwa.admin") -->
<!-- Copyright: This DTD file is owned by Oracle Mobile Application Server
Group. -->
 <!ELEMENT page (header?,form,footer?) >
 <!ATTLIST page
 name CDATA #REQUIRED
 lov (Y|N) 'N' >
 <!ELEMENT header EMPTY >
 <!ATTLIST header
 name CDATA #REQUIRED
 title CDATA
 home (Y|N) 'N'
4-52 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DTDs
 portal (Y|N) 'N'
 logout (Y|N) 'N' >
 <!ELEMENT footer EMPTY >
 <!ATTLIST footer
 name CDATA #REQUIRED
 home (Y|N) 'N'
 portal (Y|N) 'N'
 logout (Y|N) 'N'
 copyright (Y|N) 'N' >

 <!ELEMENT form
 (styledText|textInput|list|link|menu|submitButton|table|separator)+ >
 <!ATTLIST form
 name CDATA #REQUIRED
 title CDATA
 type CDATA >

 <!ELEMENT styledText (#PCDATA) >

 <!ELEMENT textInput EMPTY >
 <!ATTLIST textInput
 name CDATA #REQUIRED
 prompt CDATA #IMPLIED
 password (Y|N) 'N'
 required (Y|N) 'N'
 maxlength #IMPLIED
 size #IMPLIED
 format #IMPLIED
 default #IMPLIED >

 <!ELEMENT link (postfield*) >
 <!ATTLIST link
 name CDATA #REQUIRED
 title CDATA #REQUIRED
 baseurl CDATA #REQUIRED >

Answer: Your DTD syntax is not valid. When you declare ATTLIST with CDATA,

you must put #REQUIRED, #IMPLIED , #FIXED , “any value” ,

or%paramatic_entity . For example, your DTD contains:

<!ELEMENT header EMPTY >
<!ATTLIST header
 name CDATA #REQUIRED
 title CDATA
 home (Y|N) 'N'
XML Parser for Java 4-53

Frequently Asked Questions About DTDs
 portal (Y|N) 'N'
 logout (Y|N) 'N' >

should change as follows:

<!ELEMENT header EMPTY >
<!ATTLIST header
 name CDATA #REQUIRED
 title CDATA #REQUIRED<!--can be replaced by #FIXED, #IMPLIED, or
"title1" -->
 home (Y|N) 'N'
 portal (Y|N) 'N'
 logout (Y|N) 'N' >

Is There a Standard Extension for External Entity References in an XML Document?
Is there a standard extension (other than .xml or .txt) that should be used for

external entities referenced in an XML document? These external entities are not

complete XML files, but rather only part of an XML file, starting with the

<![CDATA[designation. Mostly they contain HTML, or Javascript code, but may

also contain just some plain text. As an example, the external entity is A.txt
which is being referenced in the XML document B.xml .

A.txt looks like this:

<![CDATA[<!-- This is just an html comment -->]]>

B.xml looks like this:

 <?xml version="1.0"?>
 <!DOCTYPE B[
 <!ENTITY htmlComment SYSTEM "A.txt">
]>

 &htmlComment;

Currently we are using .txt as an extension for all such entities, but need to

change that, otherwise the translation team assumes that these files need to get

translated, whereas they don't. Is there a standard extension that we should be

using?

Answer: The file extension for external entities is unimportant so you can change it

to any convenient extension, including no extension.
4-54 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs
Frequently Asked Questions About DOM and SAX APIs

How Do I Use the DOM API to Count Tagged Elements?
How do I get the number of elements in a particular tag using the parser?

Answer: You can use the getElementsByTagName() method that returns a node

list of all descent elements with a given tag name. You can then find out the number

of elements in that node list to determine the number of the elements in the

particular tag.

How Does the DOM Parser Work?
Answer: The parser accepts an XML-formatted document and constructs in

memory a DOM tree based on its structure. It will then check whether the

document is well-formed and optionally whether it complies with a DTD. It also

provides methods to support DOM Level 1 and 2.

How Do I Create a Node with a Value to Be Set Later?
Answer: If you check the DOM spec referring to the table discussing the node type,

you will find that if you are creating an element node, its node value is null and

hence cannot be set. However, you can create a text node and append it to the

element node. You can then put the value in the text node.

How Do I Traverse the XML Tree?
How to traverse the XML tree

Answer: You can traverse the tree by using the DOM API. Alternately, you can use

the selectNodes() method which takes XPath syntax to navigate through the

XML document. selectNodes() is part of

oracle.xml.parser.v2.XMLNode .

How Do I Extract Elements from an XML File?
How do I extract elements from the XML file?

Answer: If you're using DOM, the getElementsByTagName() method can be

used to get all of the elements in the document.
XML Parser for Java 4-55

Frequently Asked Questions About DOM and SAX APIs
Does a DTD Validate the DOM Tree?
If I add a DTD to an XML document, does it validate the DOM tree?

Answer: No, we do not do any validation while creating the DOM tree using the

DOM APIs. So setting the DTD in the document will not help in validating the

DOM tree that is constructed. The only way to validate an XML file is to parse the

XML document using the DOM parser or SAX parser. Set the validation mode of

the parser using setValidationMode() .

How Do I Find the First Child Node Element Value?
How do I efficiently obtain the value of first child node of the element without

going through the DOM tree?

Answer: If you do not need the entire tree, use the SAX interface to return the

desired data. Since it is event-driven, it does not have to parse the whole document.

How Do I Create DocType Node?
How do I create a DocType node?

Answer: The only current way of creating a doctype node is by using the parseDTD

functions. For example, emp.dtd has the following DTD:

<!ELEMENT employee (Name, Dept, Title)>
 <!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
 <!ELEMENT Title (#PCDATA)>

You can use the following code to create a doctype node:

parser.parseDTD(new FileInputStream(emp.dtd), "employee");
dtd = parser.getDocType();

How Do I Use the XMLNode.selectNodes() Method?
How do I use the selectNodes() method in XMLNode class?

Answer: The selectNodes() method is used in XMLElement and XMLDocument
nodes. This method is used to extract contents from the tree or subtree based on the

select patterns allowed by XSL. The optional second parameter of selectNodes , is

used to resolve namespace prefixes (that is, it returns the expanded namespace URL

given a prefix). XMLElement implements NSResolver , so it can be sent as the

second parameter. XMLElement resolves the prefixes based on the input document.
4-56 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs
You can use the NSResolver interface, if you need to override the namespace

definitions. The following sample code uses selectNodes

public class SelectNodesTest {
public static void main(String[] args) throws Exception {
String pattern = "/family/member/text()";
String file = args[0];

if (args.length == 2)
 pattern = args[1];

DOMParser dp = new DOMParser();

dp.parse(createURL(file)); // Include createURL from DOMSample
XMLDocument xd = dp.getDocument();
XMLElement e = (XMLElement) xd.getDocumentElement();
NodeList nl = e.selectNodes(pattern, e);
for (int i = 0; i < nl.getLength(); i++) {
 System.out.println(nl.item(i).getNodeValue());
 }
 }
}

> java SelectNodesTest family.xml
Sarah
Bob
Joanne
Jim

> java SelectNodesTest family.xml //member/@memberid
m1
m2
m3
m4

How Does the SAX API Determine the Data Value?
I am using the SAX parser to parse an XML document. How does it get the value of

the data?

Answer: During a SAX parse the value of an element will be the concatenation of

the characters reported from after the startElement event to before the

corresponding endElement event is called.
XML Parser for Java 4-57

Frequently Asked Questions About DOM and SAX APIs
How Does SAXSample.java Call Methods?
Inside the SAXSample program, I did not see any line that explicitly calls

setDocumentLocator and some other methods. However, these methods are run.

Can you explain when they are called and from where?

Answer: SAX is a standard interface for event-based XML parsing. The parser

reports parsing events directly through callback functions such as

setDocumentLocator() and startDocument() . The application, in this case,

the SAXSample, uses handlers to deal with the different events. The following Web

site is a good place to help you start learning about the event-driven API, SAX:

http://www.megginson.com/SAX/index.html

Does the DOMParser Use the org.xml.sax.Parser Interface?
Does the XML Parser DOMParser implement org.xml.sax.Parser interface?

The documentation says it uses XML constants and the API does not include that

class at all.

Answer: You'll want oracle.xml.parser.v2.SAXParser to work with SAX

and to have something that implements the org.xml.sax.Parser interface.

How Do I Create a New Document Type Node with DOM API?
I am trying to create a XML file on the fly. I use the NodeFactory to construct a

document using createDocument() . I have then setStandalone(“no”) and

setVersion(“1.0”) . When I try to add a DOCTYPE node with

appendChild(new XMLNode(“test”, Node.DOCUMENT_TYPE_NODE)) , I get

a ClassCastException . How do I add a node of this type? I noticed that the

NodeFactory did not have a method for creating a DOCTYPE node.

Answer: There is no way to create a new DOCUMENT_TYPE_NODE object using the

DOM APIs. The only way to get a DTD object is to parse the DTD file or the XML

file using the DOM parser, and then use the getDocType() method.

Note that new XMLNode(“test”,Node.DOCUMENT_TYPE_NODE) does not create

a DTD object. It creates an XMLNode object with the type set to

DOCUMENT_TYPE_NODE, which in fact should not be allowed. The

ClassCastException is raised because appendChild expects a DTD object

(based on the type).

Also, we do not do any validation while creating the DOM tree using the DOM

APIs. So setting the DTD in the document will not help in validating the DOM tree
4-58 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs
that is constructed. The only way to validate an XML file is to parse the XML

document using the DOM parser or the SAX Parser.

How Do I Query for First Child Node’s Value of a Certain Tag?
I am using the XML Parser for Java version 2. I want to obtain the value of first

child node value of a tag. I could not find any method that can do that efficiently.

The nearest match is method getElementsByTag(“Name”), which traverses the

entire tree under.

Answer: Your best bet, if you do not need the entire tree, is to use the SAX interface

to return the desired data. Since it is event driven it does not have to parse the

whole document.

Can I Generate an XML Document from Data in Variables?
Is there an example of XML document generation starting from information

contained in simple variables? For example, a client fills a Java form and wants to

obtain an XML document containing the given data.

Answer: Here are two possible interpretations of your question and answers to

both. Let's say you have two variables in Java:

String firstname = "Gianfranco";
String lastname = "Pietraforte";

The two ways to get this information into an XML document are as follows:

1. Make an XML document in a string and parse it.

String xml = "<person><first>"+firstname+"</first>"+
 "<last>"+lastname+"</last></person";
DOMParser d = new DOMParser();
d.parse(new StringReader(xml));
Document xmldoc = d.getDocument();

2. Use DOM APIs to construct the document and append it together:

Document xmldoc = new XMLDocument();
Element e1 = xmldoc.createElement("person");
xmldoc.appendChild(e1);
Element e2 = xmldoc.createElement("first");
e1.appendChild(e2);
Text t = xmldoc.createText(firstname);
e2.appendChild(t);
// and so on
XML Parser for Java 4-59

Frequently Asked Questions About DOM and SAX APIs
How Do I Use the DOM API to Print Data in the Element Tags?
Can you suggest how to get a print out using the DOM API in Java:

<name>macy</name>

I want to print out "macy". Don’t know which class and what function to use. I was

successful in printing "name" on to the console.

Answer: For DOM, you need to first realize that <name>macy</name> is actually

an element named "name" with a child node (Text Node) of value "macy".

So, you can do the following:

String value = myElement.getFirstChild().getNodeValue();

How Do I Build XML Files from Hash Table Value Pairs?
We have a hash table of key value pairs, how do we build an XML file out of it

using the DOM API? We have a hashtable key = value name = george zip = 20000.

How do we build this?

<key>value</key><name>george</name><zip>20000</zip>’

Answer:

1. Get the enumeration of keys from your hash table.

2. Loop while enum.hasMoreElements() .

3. For each key in the enumeration, use the createElement() on DOM

document to create an element by the name of the key with a child text node

with the value of the *value* of the hash table entry for that key.

XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild()
I have a question regarding our XML parser (version 2) implementation. I have the

following scenario:

 Document doc1 = new XMLDocument();
 Element element1 = doc1.creatElement("foo");
 Document doc2 = new XMLDocument();
 Element element2 = doc2.createElement("bar");
 element1.appendChild(element2);

My question is whether or not we should get a DOM exception of

WRONG_DOCUMENT_ERR on calling the appendChild() routine.
4-60 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About DOM and SAX APIs
Answer: Yes, you should get this error, since the owner document of element1 is

doc1 while that of element2 is doc2 . AppendChild() only works within a

single tree and you are dealing with two different ones.

Will WRONG_DOCUMENT_ERR Result from This Code Fragment?
In XSLSample.java that's shipped with the XML parser version 2:

DocumentFragment result = processor.processXSL(xsl, xml);
// create an output document to hold the result
 out = new XMLDocument();
// create a dummy document element for the output document
 Element root = out.createElement("root");
 out.appendChild(root);
// append the transformed tree to the dummy document element
 root.appendChild(result);

Nodes root and result are created from different XML documents. Wouldn't this

result in the WRONG_DOCUMENT_ERR when we try to append result to root?

Answer: This sample uses a document fragment that does not have a root node,

therefore there are not two XML documents.

Why Are Only the Child Nodes Inserted?
When appending a document fragment to a node, only the child nodes of the

document fragment (but not the document fragment itself) are inserted. Wouldn't

the parser check the owner document of these child nodes?

Answer: A document fragment should not be bound to a root node, since, by

definition, a fragment could very well be just a list of nodes. The root node, if any,

should be considered a single child. That is, you could for example take all the lines

of an Invoice document, and add them into a ProviderOrder document, without

taking the invoice itself. How do we create a document fragment without root? As

the XSLT processor does, so that we can append it to other documents.

Why Do I Get DOMException when Setting Node Value?
I get the following error:

oracle.xml.parser.XMLDOMException: Node cannot be modified while trying to set
the value of a newly created node as below:
 String eName="Mynode";
 XMLNode aNode = new XMLNode(eName, Node.ELEMENT_NODE);
XML Parser for Java 4-61

Frequently Asked Questions About Validation
 aNode.setNodeValue(eValue);

How do I create a node whose value I can set later on?

Answer: You will see that if you are creating an element node, its nodeValue is null

and hence cannot be set.

How Can I Force the SAX Parser to Not Discard Characters Following Whitespace?
I receive the following error when reading the attached file using the SAX parser: if

character data starts with a whitespace, characters() method discards characters

that follow whitespace.

Is this a bug or can I force the parser to not discard those characters?

Answer: Use XMLParser.setPreserveWhitespace(true) to force the parser to not

discard whitespace.

Frequently Asked Questions About Validation

What Are the Rules for Locating DTDs?
I have an XML string containing the following reference to a DTD, that is physically

located in the directory where I start my program. The validating XML parser

returns a message that this file cannot be found.

<!DOCTYPE xyz SYSTEM "xyz.dtd" >

What are the rules for locating DTDs on the disk?

Answer: Are you parsing an InputStream or a URL? If you are parsing an

InputStream, the parser doesn't know where that InputStream came from so it

cannot find the DTD in the “same directory as the current file”. The solution is to

setBaseURL()on DOMParser() to give the parser the URL hint information to be

able to derive the rest when it goes to get the DTD.

Can Multiple Threads Use a Single XSLProcessor/Stylesheet?
Can multiple threads use a single XSLProcessor/XSLStylesheet instance to perform

concurrent transformations?

Answer: As long as you are processing multiple files with no more than one

XSLProcessor/XSLStylesheet instance for each XML file you can do this

simultaneously using threads. If you take a look at the readme.html file in the bin
4-62 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Character Sets
directory, it describes ORAXSL which has a threads parameter for multithreaded

processing.

Can I Use Document Clones in Multiple Threads?
Is it safe to use clones of a document in multiple threads? Is the public void

setParam(String,String) throws XSLExceptionmethod of Class

oracle.xml.parser.v2.XSLStylesheet supported? If no, is there another

way to pass parameters at runtime to the XSLT processor?

Answer: If you are copying the global area set up by the constructor to another

thread then it should work.

That method is supported since XML parser release 2.0.2.5.

Frequently Asked Questions About Character Sets

How Do I Parse iso-8859-1-encoded Documents with Special Characters?
I have some XML documents with ISO-8859-1 encoding. I am trying to parse these

with the XML parser SAX API. In characters (char[], int, int), I would like to

output the content in ISO-8859-1 (Latin1) too.

With System.out.println() it doesn't work correctly. German umlauts result

in '?' in the output stream. What do I have to do to get the output in Latin1? The

host system here is a Solaris™ Operating Environment 2.6.

Answer: You cannot use System.out.println() . You need to use an output

stream which is encoding aware, for example, OutputStreamWriter .

You can construct an outputstreamwriter and use the write(char[], int,
int) method to:

print.Ex:OutputStreamWriter out = new OutputStreamWriter(System.out, "8859_1");
/* Java enc string for ISO8859-1*/

How Do I Parse XML Stored in NCLOB with UTF-8 Encoding?
I'm having trouble with parsing XML stored in NCLOB column using UTF-8

encoding. Here is what I'm running:

■ Windows NT 4.0 Server

■ Oracle 8i (8.1.5)
XML Parser for Java 4-63

Frequently Asked Questions About Character Sets
■ EEJDeveloper 3.0

■ JDK 1.1.8

■ Oracle XML Parser v2 (2.0.2.5?)

The following XML sample that I loaded into the database contains two UTF-8

multibyte characters:

<?xml version="1.0" encoding="UTF-8"?>
<G>
<A>GÂ‚otingen, BrÃ ck_W
</G>

The text is supposed to be:

G(0xc2, 0x82)otingen, Br(0xc3, 0xbc)ck_W

If I am not mistaken, both multibyte characters are valid UTF-8 encodings and they

are defined in ISO-8859-1 as:

0xC2 LATIN CAPITAL LETTER A WITH CIRCUMFLEX
0xFC LATIN SMALL LETTER U WITH DIAERESIS

I wrote a Java stored function that uses the default connection object to connect to

the database, runs a Select query, gets the OracleResultSet , calls the

getCLOB() method and calls the getAsciiStream() method on the CLOB

object. Then it executes the following piece of code to get the XML into a DOM

object:

DOMParser parser = new DOMParser();
parser.setPreserveWhitespace(true);
parser.parse(istr);
// istr getAsciiStreamXMLDocument xmldoc = parser.getDocument();

Before the stored function can do other tasks, this code throws an exception stating

that the preceding XML contains invalid UTF-8 encoding.

■ When I remove the first multibyte character (0xc2, 0x82) from the XML, it

parses fine.

■ When I do not remove this character, but connect through the JDBC Oracle thin

driver (note that now I'm not running inside the RDBMS as stored function

anymore) the XML is parsed with no problem and I can do what ever I want

with the XML document.
4-64 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Character Sets
I loaded the sample XML into the database using the thin JDBC driver. I tried two

database configurations with WE8ISO8859P1/WE8ISO8859P1 and

WE8ISO8859P1/UTF8 and both showed the same problem.

Answer: Yes, the character (0xc2, 0x82) is valid UTF-8. We suspect that the

character is distorted when getAsciiStream() is called. Try to use

getUnicodeStream() and getBinaryStream() instead of

getAsciiStream() .

If this does not work, try to print out the characters to make sure that they are not

distorted before they are sent to the parser in step: parser.parse(istr)

Is There Globalization Support Within XML?
I've got Japanese data stored in an nvarchar2 field in the database. I have a

dynamic SQL procedure that uses the PL/SQL web toolkit that enables me to access

data using OAS and a browser. This procedure uses the XML parser to correctly

format the result set in XML before returning it to the browser.

My problem is that the Japanese data is returned and displayed on the browser as

upside down question marks. Is there anything I can do so that this data is correctly

returned and displayed as Kanji?

Answer: Unfortunately, the Java and XML default character set is UTF-8 while I

haven't heard of any UTF-8 operating systems nor people using it as in their

database and people writing their web pages in UTF-8. All this means is that you

have a character code conversion problem. The answer to your last question is yes.

We do have both PL/SQL and Java XML parsers working in Japanese.

Unfortunately, we cannot provide a simple solution that will fit in this space.

How Do I Parse a Document Containing Accented Characters?
This is my XML document:

Documento de Prueba de gestin de contenidos. Roberto P‰rez Lita

This is the way in which I parse the document:

DOMParser parser=new DOMParser();
parser.setPreserveWhitespace(true);
parser.setErrorStream(System.err);
parser.setValidationMode(false);
parser.showWarnings(true);
parser.parse (new FileInputStream(new File("PruebaA3Ingles.xml")));
XML Parser for Java 4-65

Frequently Asked Questions About Character Sets
I get the following error:

XML-0231 : (Error) Encoding 'UTF-16' is not currently supported

I am using the XML Parser for Java version 2 and I am confused because the

documentation says that the UTF-16 encoding is supported in this version of the

Parser. Does anybody know how can I parse documents containing Spanish

accents?

Answer: Oracle just uploaded a new release of the version 2 parser. It should

support UTF-16. However, other utilities still have some problems with UTF-16

encoding.

How Do I Store Accented Characters in an XML Document?
I need to store accented characters in my XML documents. If I manually add an

accented character, for example, an é, to my XML file and then attempt to parse the

XML doc with the XML Parser for Java, the parser throws the following exception:

'Invalid UTF-8 encoding'

Here's the encoding declaration in my XML header:

<?xml version="1.0" encoding="UTF-8"?>

Also, if I specify UTF-16 as the default encoding the parser states that UTF-16 is not

currently supported. From within my Java program if I define a Java string object as

follows:

String name = "éééé";

and programmatically generate an XML document and save it to file then the é
character is correctly written out to file. Can you tell me how I can successfully read

in character data consisting of accented characters? I know that I can read in

accented characters once I represent them in their hex or decimal format within the

XML document, for example:

é

but I'd prefer not to do this.

Answer: You need to set the encoding based on the character set you were using

when you created the XML file - I ran into this problem and solved it by setting the

encoding to ISO-8859-1 (Western European ASCII) - you may need to use something

different depending on the tool or operating system you are using.
4-66 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions: Adding an XML Document as a Child
If you explicitly set the encoding to UTF-8 (or do not specify it at all), the parser

interprets your accented character (which has an ASCII value > 127) as the first byte

of a UTF-8 multibyte sequence. If the subsequent bytes do not form a valid UTF-8

sequence, you get this error.

This error just means that your editor is not saving the file with UTF-8 encoding.

For example, it might be saving it with ISO-8859-1 encoding. Remember that the

encoding is a particular scheme used to write the Unicode character number

representation to disk. Just adding the string to the top of the document like:

<?xml version="1.0" encoding="UTF-8"?>

does not cause your editor to write out the bytes representing the file to disk using

UTF-8 encoding. I believe Notepad uses UTF-8, so you might try that.

Frequently Asked Questions: Adding an XML Document as a Child

How Do I Add an XML Document as a Child to Another Element?
I am trying to add an XML document as a child to an existing element. Here’s an

example:

import org.w3c.dom.*;
import java.util.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;
public class ggg {public static void main (String [] args) throws Exception
 {
new ggg().doWork();;
public void doWork() throws Exception {XMLDocument doc1 = new XMLDocument();
Element root1=doc1.createElement("root1");
XMLDocument doc2= new XMLDocument();Element root2=doc2.createElement("root2");
root1.appendChild(root2);
doc1.print(System.out);};};

This reports:

D:\Temp\Oracle\sample>c:\jdk1.2.2\bin\javac -classpath
D:\Temp\Oracle\lib\xmlparserv2.jar;.
ggg.javaD:\Temp\Oracle\sample>c:\jdk1.2.2\bin\java -classpath
D:\Temp\Oracle\lib\xmlparserv2.jar;. gggException in thread "main"
java.lang.NullPointerException at
oracle.xml.parser.v2.XMLDOMException.(XMLDOMException.java:67) at
XML Parser for Java 4-67

Frequently Asked Questions: Adding an XML Document as a Child
oracle.xml.parser.v2.XMLNode.checkDocument(XMLNode.java:919) at
oracle.xml.parser.v2.XMLNode.appendChild(XMLNode.java, Compiled Code) at
oracle.xml.parser.v2.XMLNode.appendChild(XMLNode.java:494) at
ggg.doWork(ggg.java:20) at ggg.main(ggg.java:12)

Answer 1: The following works for me:

DocumentFragment rootNode = new XMLDocumentFragment(); DOMParser d = new
DOMParser(); d.parse("http://.../pfgrfff.xml");
Document doc = d.getDocument();
Element e = doc.getDocumentElement();
// Important to remove it from the first doc
// before adding it to the other doc. doc.removeChild(e);
rootNode.appendChild(e);

You need to use the DocumentFragment class to do this as a document cannot

have more than one root.

Answer 2: Actually, isn’t this specifically a problem with appending a node created

in another document, since all nodes contain a reference to the document they are

created in. While DocumentFragment solves this, it isn’t a more than one root

problem, is it? Is there a quick or easy way to convert a com.w3c.dom.Document
to org.w3c.dom.DocumentFragment ?

How Do I Add an XML Document Fragment as a Child to an XML Document?
I have this piece of code:

XSLStylesheet XSLProcessorStylesheet = new XSLStylesheet(XSLProcessorDoc,
XSLProcessorURL);
XSLStylesheet XSLRendererStylesheet = new XSLStylesheet(XSLRendererDoc,
XSLRendererURL);
XSLProcessor processor = new XSLProcessor();
// configure the processorprocessor.showWarnings(true);
processor.setErrorStream(System.err);
XMLDocumentFragment processedXML = processor.processXSL(XSLProcessorStylesheet,
XMLInputDoc);
XMLDocumentFragment renderedXML = processor.processXSL(XSLRendererStylesheet,
processedXML);
Document resultXML = new XMLDocument();
resultXML.appendChild(renderedXML);

The last line causes an exception in thread “main” oracle.xml.parser.v2 .

XMLDOMException: Node of this type cannot be added.
4-68 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
Do I have to create a root element every time, even if I know that the resulting

document fragment is a well formed XML document having only one root element?

Answer: It happens, as you have guessed, because a fragment can have more than

one root element (for lack of a better term). In order to work around this, use the

node functions to extract the one root element from your fragment and cast it into

an

Frequently Asked General Questions About XML Parser

Why Do I Get an Error on Installing the XML Parser?
I get an error message when I try installing the XML parser:

loadjava -user username/manager -r -v xmlparserv2.jar
Error:
Exception in thread "main" java.lang.NoClassDefFounderr:
oracle/jdbc/driver/OracleDriver at oracle.aurora.server.tools.

Answer: This is a failure to find the JDBC classes111.zip in your CLASSPATH.

The loadjava utility connects to the database to load your classes using the JDBC

driver.

I checked 'loadjava' and the path to classes111.zip is

<ORACLE_HOME>/jdbc/lib/classes111.zip

In version 8.1.6, classes111.zip resides in:

<ORACLE_HOME/jdbc/admin

How Do I Remove the XML Parser from the Database?
How do I uninstall a version of the XML Parser and install a newer version? I know

that there is something like dropjava , but still there are other packages which are

loaded into the schema. I want to clean out the earlier version and install the new

version in a clean manner.

Answer: You'll need to write SQL based on the USER_OBJECTS table where:

SELECT 'drop java class '''| |
dbms_java.longname(object_name)| |''';
from user_objects where

OBJECT_TYPE = 'JAVA CLASS'and DBMS_JAVA.LONGNAME(OBJECT_NAME) LIKE
XML Parser for Java 4-69

Frequently Asked General Questions About XML Parser
'oracle/xml/parser/%'

This will return a set of DROP JAVA CLASS commands which you can capture in a

file using the SQL*Plus command SPOOL somefilenamecommand .

Then, run that spool file as a SQL script and all the right classes will be dropped.

What Does an XML Parser Do?
Answer: The parser accepts any XML document giving you a tree-based API

(DOM) to access or modify the document’s elements and attributes. It also includes

an event API (SAX) that provides a listener to be registered, and report specific

elements or attributes and other document events.

How Do I Convert XML Files into HTML Files?
Answer: You need to create an XSL stylesheet to render your XML into HTML. You

can start with an HTML document in your desired format and populated with

dummy data. Then you can replace this data with the XSLT commands that will

populate the HTML with data from the XML document completing your stylesheet.

Does the XML Parser Validate Against XML Schema?
Does the XML Parser version 2 validate against an XML Schema?

Answer: Yes.

How Do I Include Binary Data in an XML Document?
How do I include binary data in an XML document?

Answer: There is no way to directly include binary data within the document;

however, there are two ways to work around this:

■ Binary data can be referenced as an external unparsed entity that resides in a

different file.

■ Binary data can be uuencoded (meaning converted into ASCII data) and be

included in a CDATA section. The limitation on the encoding technique is to

ensure that it only produces legal characters for the CDATA section.
4-70 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
What Is XML Schema?
Answer: XML Schema is a W3C XML standards effort to bring the concept of data

types to XML documents and in the process replace the syntax of DTDs to one

based on XML. For more details, visit the following Web sites:

http://www.w3.org/TR/xmlschema-1/

http://www.w3.org/TR/xmlschema-2/

XML Schema is supported in Oracle9i and higher.

Does Oracle Participate in Defining the XML/XSL Standard?
Answer: Oracle has representatives participating actively in the following 3C

Working Groups related to XML/XSL: XML Schema, XML Query, XSL,

XLink/XPointer, XML Infoset, DOM, and XML Core.

How Do I Find XDK Version Numbers?
How do I determine the version number of the XDK toolkit that I downloaded?

Answer: You can find out the full version number by looking at the readme.html
file included in the archive and linked to the Release Notes page.

Are Namespace and Schema Supported?
Answer: The current XML parsers support Namespaces. Schema support is

provided in Oracle9i and higher.

Can I Use JDK 1.1.x with XML Parser for Java v2?
Can I use JDK 1.1.x with XML Parser v2 for Java?

Answer: Version 2 of the XML Parser for Java has nothing to do with Java2. It is

simply a designation that indicates that it is not backward compatible with the

version 1 parser and that it includes XSLT support. Version 2 of the parser will work

fine with JDK 1.1.x.

How Do I Sort the Result Within the Page?
I have a set of 100 records, and I am showing 10 at a time. On each column name I

have made a link. When that link is clicked, I want to sort the data in the page

alone, based on that column. How do I go about this?
XML Parser for Java 4-71

Frequently Asked General Questions About XML Parser
Answer: If you are writing for IE5 alone and receiving XML data, you could just use

Microsoft's XSL to sort data in a page. If you are writing for another browser and

the browser is getting the data as HTML, then you have to have a sort parameter in

XSQL script and use it in ORDER BY clause. Just pass it along with the skip-rows

parameter.

Do I Need Oracle9 i to Run XML Parser for Java?
Answer: XML Parser for Java can be used with any of the supported version

JavaVMs. The only difference with Oracle9i is that you can load it into the database

and use JServer, which is an internal JVM. For other database versions or servers,

you simply run it in an external JVM and as necessary connect to a database

through JDBC.

Can I Dynamically Set the Encoding in an XML File?
Answer: No, you need to include the proper encoding declaration in your

document according to the specification. You cannot use setEncoding() to set the

encoding for you input document. SetEncoding() is used with

oracle.xml.parser.v2.XMLDocument to set the correct encoding for the

printing.

How Do I Parse a String?
Answer: We do not currently have any method that can directly parse an XML

document contained within a string. You would need to convert the string into an

InputStream or InputSource before parsing. An easy way is to create a

ByteArrayInputStream using the bytes in the string.

How Do I Display an XML Document?
Answer: If you are using IE5 as your browser you can display the XML document

directly. Otherwise, you can use the Oracle XSLT Processor version 2 to create the

HTML document using an XSL Stylesheet. The Oracle XML Transviewer bean also

enables you to view your XML document.

How Do I Use System.out.println() and Special Characters?
Answer: You can't use System.out.println() . You need to use an output

stream which is encoding aware (for example, OutputStreamWriter). You can
4-72 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
construct an OutputStreamWriter and use the write(char[], int, int)
method to print.

/* Example */
OutputStreamWriter out = new OutputStreamWriter
(System.out, "8859_1");
/* Java enc string for ISO8859-1*/

How Do I Insert Characters <, >, =, ’, ", and & in XML Documents?
How do I insert these characters in the XML documents: greater than (>), less than

(<), apostrophe, double quotes, or equals (=)?

Answer: You need to use the entity references &eq; for equals (=), > for greater

than (>), and < for less than (<). Use ' for an apostrophe or single quote.

Use " for straight double quotes. Use & for ampersand.

How Do I Use Special Characters in the Tags?
I have a tag in XML <COMPANYNAME>

When we try to use A&B, the parser gives an error with invalid character. How do

we use special characters when parsing companyname tag? We are using the Oracle

XML Parser for C.

Answer: You can use special characters as part of XML name. For example:

<A&B>abc</A&B>

If this is the case, using name entity doesn't solve the problem. According to XML

1.0 spec, NameChar and Name are defined as follows:

NameChar ::= Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar |Extender
Name ::= (Letter | '_' | ':') (NameChar)*

To answer your question, special characters such as &, $, and #, and so on are not

allowed to be used as NameChar. Hence, if you are creating an XML document from

scratch, you can use a workaround by using only valid NameChars. For example,

<A_B>, <AB>, <A_AND_B> and so on.

They are still readable.

If you are generating XML from external data sources such as database tables, then

this is a problem which XML 1.0 does not address.

In Oracle, the new type, XMLType, will help address this problem by offering a

function which maps SQL names to XML names. This will address this problem at
XML Parser for Java 4-73

Frequently Asked General Questions About XML Parser
the application level. The SQL to XML name mapping function will escape invalid

XML NameChar in the format of _XHHHH_ where HHHH is a Unicode value of the

invalid character. For example, table name V$SESSION will be mapped to XML

name V_X0024_SESSION.

Finally, escaping invalid characters is a workaround to give people a way to

serialize names so that they can reload them somewhere else.

How Do I Parse XML from Data of Type String?
Answer: Check out the following example:

/* xmlDoc is a String of xml */
byte aByteArr [] = xmlDoc.getBytes();
ByteArrayInputStream bais = new ByteArrayInputStream (aByteArr, 0,
aByteArr.length);
domParser.parse(bais);

How Do I Extract Data from an XML Document into a String?
Answer: Here is an example to do that:

XMLDocument Your Document;
/* Parse and Make Mods */
:
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
YourDocument.print(pw);
String YourDocInString = sw.toString();

Is Disabling Output Escaping Supported?
Answer: Yes, since release 2.022, the XML Parser for Java provides an option to

xsl:text to disable output escaping.

Can I Delimit Multiple XML Documents with a Special Character?
We need to be able to read and separate several XML documents as a single string.

One solution would be to delimit these documents using some program-generated

special character that we know for sure can never occur inside an XML document.

The individual documents can then be easily tokenized and extracted or parsed as

required.
4-74 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
Has any one else done this before? Any suggestions for what character can be used

as the delimiter? For instance can characters in the range #x0-#x8 ever occur inside

an XML document?

Answer: As far as legality is concerned, and if you limit it to 8-bit, then #x0-#x8 ;

#xB , #xC, #xE , and #xF are not legal. However, this assumes that you preprocess

the doc and do not depend upon exceptions as not all parsers reject all illegal

characters.

How Do I Use Entity References with the XML Parser for Java?
The XML parser for Java does not expand entity references, such as

&[whatever] . Instead, all values are null. How can I fix this?

Answer: You probably have a simple error defining or using your entities, since

we have a number of regression tests that handle entity references fine. A

simple example is:]> Alpha , then &status .

Can I Divide and Store an XML Document Without a DDL Insert?
We would like to break apart an arbitrary XML document and store it in the

database without creating a DDL to insert. Is this possible?

Answer: In Oracle8i release 8.1.6 and higher, Oracle Text can do this.

In Querying, Can I Perform Hierarchical Searches Across XML Documents?
Answer: No this is not possible. Either the schema must already exist or and XSL

stylesheet to create the DDL from the XML must exist.

How Do I Merge XML Documents?
Answer: This is not possible with the current DOM1 specification. The DOM2

specification may address this.

As a workaround, you can use a DOM approach or an XSLT-based approach to

accomplish this. If you use DOM, then you'll have to remove the node from one

document before you append it into the other document to avoid ownership errors.

Here is an example of the XSL-based approach. Assume your two XML source files

are:

demo1.xml

<messages>
XML Parser for Java 4-75

Frequently Asked General Questions About XML Parser
 <msg>
 <key>AAA</key>
 <num>01001</num>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 </msg>
</messages>

demo2.xml

<messages>
 <msg>
 <key>AAA</key>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <text>This is another Message</text>
 </msg>
</messages>

Here is a stylesheet that joins demo1.xml to demo2.xml based on matching the

<key> values.

demomerge.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:variable name="doc2" select="document('demo2.xml')"/>
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>
<xsl:template match="msg">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <text><xsl:value-of select="$doc2/messages/msg[key=current()/key]/text"/>
</text>
 </xsl:copy>
</xsl:template>
</xsl:stylesheet>

If you use the command line oraxsl to test this, you would enter:
4-76 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
$ oraxsl demo1.xml demomerge.xsl

Then, you will get the following merged result:

<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 <text>This is another Message</text>
 </msg></messages>

This is obviously not as efficient for larger files as an equivalent database join

between two tables, but this illustrates the technique if you have only XML files to

work with.

How Do I Find the Value of a Tag?
I am using SAX to parse an XML document. How I can get the value of a particular

tag? For example, in Java, how do I get the value for title ? I know there are

startElement , endElement , and characters methods.

Answer: During a SAX parse the value of an element will be the concatenation of

the characters reported from after startElement to before the corresponding

endElement is called.

How Do I Grant the JAVASYSPRIV Role to a User?
We are using Oracle XML Parser for Java on Windows NT 4.0. When we are parsing

an XML document with an external DTD we get the following error:

<!DOCTYPE listsamplereceipt SYSTEM
"file:/E:/ORACLE/utl_file_dir/dadm/ae.dtd">
java.lang.SecurityExceptionat
oracle.aurora.rdbms.SecurityManagerImpl.checkFile(SecurityManagerImpl.java)at
oracle.aurora.rdbms.SecurityManagerImpl.checkRead(SecurityManagerImpl.java)at
java.io.FileInputStream.<init>(FileInputStream.java)at
java.io.FileInputStream.<init>(FileInputStream.java)at
sun.net.www.MimeTable.load(MimeTable.java)at
sun.net.www.MimeTable.<init>(MimeTable.java)at
sun.net.www.MimeTable.getDefaultTable(MimeTable.java)at
XML Parser for Java 4-77

Frequently Asked General Questions About XML Parser
sun.net.www.protocol.file.FileURLConnection.connect(FileURLConnection.java)at
sun.net.www.protocol.file.FileURLConnection.getInputStream(FileURLConnection.
java)at
java.net.URL.openStream(URL.java)at
oracle.xml.parser.v2.XMLReader.openURL(XMLReader.java:2313)at
oracle.xml.parser.v2.XMLReader.pushXMLReader(XMLReader.java:176)at
...

What is causing this?

Answer: Grant the JAVASYSPRIV role to your user running this code to allow it to

open the external file or URL.

How Do I Include an External XML File in Another XML File?
I am trying to include an external XML file in another XML file. Do the XML Parser

for Java version 1 and version 2 support external parsed entities?

Answer: IE 5.0 will parse an XML file and show the parsed output. Just load the file

as you would an HTML page.

The following works, both browsing it in IE5 as well as parsing it with the XML

Parser for Java version 2. Even though I'm sure it works fine in the XML Parser for

Java version 1, you should be using the latest parser version as it is faster than

version 1.

File: a.xml
<?xml version="1.0" ?>
<!DOCTYPE a [<!ENTITY b SYSTEM "b.xml">]>
 <a>&b;

 File: b.xml
 <ok/>

 When I browse and parse a.xml I get the following:

<a>
 <ok/>

Does the Parser Come with a Utility to View the Parsed Output?
We are using the XML Parser for Java version 1.0, because that is what is shipped to

the customers with release 10.7 and 11.0 of our application. Can you refer me to this,

or some other sample code to do this.
4-78 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
Shouldn't file b.xml be in the format:

<?xml version="1.0" ?>

 <ok/>

Does the Oracle XML Parser come with a utility to parse an XML file and see the

parsed output?

Answer: Not strictly. The parsed external entity only needs to be a well-formed

fragment. The following program (with xmlparser.jar from version 1) in your

CLASSPATH shows parsing and printing the parsed document. It's parsing here

from a string but the mechanism would be no different for parsing from a file, given

its URL.

import oracle.xml.parser.*;
import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import org.xml.sax.*;
/*
** Simple Example of Parsing an XML File from a String
** and, if successful, printing the results.
**
** Usage: java ParseXMLFromString <hello><world/></hello>
*/
public class ParseXMLFromString {
 public static void main(String[] arg) throws IOException, SAXException {
 String theStringToParse =
 "<?xml version='1.0'?>"+
 "<hello>"+
 " <world/>"+
 "</hello>";
 XMLDocument theXMLDoc = parseString(theStringToParse);
 // Print the document out to standard out
 theXMLDoc.print(System.out);
 }
 public static XMLDocument parseString(String xmlString) throws
 IOException, SAXException {
 XMLDocument theXMLDoc = null;
 // Create an oracle.xml.parser.v2.DOMParser to parse the document.
 XMLParser theParser = new XMLParser();
 // Open an input stream on the string
 ByteArrayInputStream theStream =
XML Parser for Java 4-79

Frequently Asked General Questions About XML Parser
 new ByteArrayInputStream(xmlString.getBytes());
 // Set the parser to work in non-Validating mode
 theParser.setValidationMode(DTD_validation);
 try {
 // Parse the document from the InputStream
 theParser.parse(theStream);
 // Get the parsed XML Document from the parser
 theXMLDoc = theParser.getDocument();
 }
 catch (SAXParseException s) {
 System.out.println(xmlError(s));
 throw s;
 }
 return theXMLDoc;
 }
 private static String xmlError(SAXParseException s) {
 int lineNum = s.getLineNumber();
 int colNum = s.getColumnNumber();
 String file = s.getSystemId();
 String err = s.getMessage();
 return "XML parse error in file " + file +
 "\n" + "at line " + lineNum + ", character " + colNum +
 "\n" + err;
 }
}

From Where Can I Download OraXSL, the Parser’s Command Line Interface?
From where I can download oracle.xml.parser.v2.OraXSL ?

Answer: It's part of our integrated XML Parser for Java version 2 release. Our XML

Parser, DOM, XPath implementation, and XSLT engine are nicely integrated into a

single cooperating package. To download it, please refer to the following Web site:

http://otn.oracle.com/tech/xml/xdk_java/

Does Oracle Support Hierarchical Mapping?
We are interested in using the Oracle database primarily to store XML. We would

like to parse incoming XML documents and store data and tags in the database. We

are concerned about the following two aspects of XML in Oracle:

First, the relational mapping of parsed XML data. We prefer hierarchical storage of

parsed XML data. Is this a valid concern? Will XMLType in Oracle9i address this

concern?
4-80 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
Second, a lack of an ambiguous content mode in the Oracle Parser for Java is

limiting to our business. Are there plans to add an ambiguous content mode to the

Oracle Parser for Java?

Answer: Many customers initially have this concern. It depends on what kind of

XML data you are storing. If you are storing XML datagrams that are really just

encoding of relational information (for example, a purchase order), then you will

get much better performance and much better query flexibility (in SQL) to store the

data contained in the XML documents in relational tables, then reproduce

on-demand an XML format when any particular data needs to be extracted.

If you are storing documents that are mixed-content, like legal proceedings,

chapters of a book, reference manuals, and so on, then storing the documents in

chunks and searching them using Oracle Text’s XML search capabilities is the best

bet.

The book, Building Oracle XML Applications, by Steve Muench, covers both of these

storage and searching techniques with lots of examples.

For the second point, the Oracle XML Parser implements all the XML 1.0 standard,

and the XML 1.0 standard requires XML documents to have unambiguous content

models. Therefore, there is no way a compliant XML 1.0 parser can implement

ambiguous content models.

What Good Books for XML/XSL Can You Recommend?
Can any one suggest good books for learning about XML and XSL?

Answer: There are many excellent articles, white papers, and books that describe all

facets of XML technology. Many of these are available on the World Wide Web. The

following are some of the most useful resources we have found:

See Also: ?For more information on using Oracle Text and XML,

see:

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ http://otn.oracle.com/products/text

See Also:
http://www.xml.com/axml/target.html#determinism
XML Parser for Java 4-81

Frequently Asked General Questions About XML Parser
■ XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems

http://metalab.unc.edu/pub/sun-info/standards/xml/why/xml
apps.htm

■ XML for the Absolute Beginner by Mark Johnson, JavaWorld

http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

■ XML And Databases by Ronald Bourret, Technical University of Darmstadt

http://www.informatik.tu-darmstadt.de/DVS1/staff/bourret/
XML/

■ XMLAndDatabases.htm and the XML Specifications by the World Wide Web

Consortium (W3C) http://www.w3.org/XML/

■ XML.com, a broad collection of XML resources and commentary

http://www.xml.com/

■ Annotated XML Specification by Tim Bray, XML.com

http://www.xml.com/axml/testaxml.htm

■ The XML FAQ by the W3C XML Special Interest Group (the industry clearing

house for XML DTDs that allow companies to exchange XML data)

http://www.ucc.ie/xml/ XML.org

■ http://xml.org/

■ xDev (the DataChannel XML Developer pages)

http://xdev.datachannel.com/

Are There XML Developer Kits for the HP/UX Platform?
Answer: HP-UX ports for our C/C++ Parser as well as our C++ Class Generator are

available. Look for an announcement on http://technet.oracle.com

How Do I Compress Large Volumes of XML Documents?
Can we compress XML documents when saving them to the database as a CLOB? If

they are compressed, what is the implication of using Oracle Text against the

documents? We have large XML documents that range up to 1 MB and they need to

be minimized.

The main requirement is to save cost in terms of disk storage as the XML

documents stored are history information (more of a datawarehouse environment).

We could save a lot of disk space if we could compress the documents before

storage. The searching capability is only secondary, but a big plus.
4-82 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
Answer: The XDK for Java supports a compression mechanism in Oracle9i. It
supports streaming compression and uncompression. The compression is achieved

by removing the markup in the XML Document. The initial version does not

support searching the compressed data. This is planned for a future release.

If you want to store and search your XML docs, Oracle Text can handle this. I am

sure that the size of individual document is not a problem for Oracle Text.

If you want to compress the 1 MB docs for saving disk space and costs, Oracle Text

will not be able to automatically handle a compressed XML document.

Try looking at XMLZip:

http://www.xmls.com/resources/xmlzip.xml?id=resources_xmlzip

My only concern would be the performance hit to do the uncompression. If you are

just worried about transmitting the XML from client to server or vice versa, then

HTTP compression could be easier.

How Do I Generate an XML Document Based on Two Tables?
I would like to generate an XML document based on two tables with a master detail

relationship. Suppose I have two tables:

■ PARENT with columns: ID and PARENT_NAME (Key = ID)

■ CHILD with columns: PARENT_ID, CHILD_ID, CHILD_NAME (Key =

PARENT_ID + CHILD_ID)

There is a master detail relationship between PARENT and CHILD. How can I

generate a document that looks like this?

<?xml version = '1.0'?>
 <ROWSET>
 <ROW num="1">
 <parent_name>Bill</parent_name>
 <child_name>Child 1 of 2</child_name>
 <child_name>Child 2 of 2</child_name>
 </ROW>
 <ROW num="2">
 <parent_name>Larry</parent_name>
 <child_name>Only one child</child_name>
 </ROW>
 </ROWSET>
XML Parser for Java 4-83

Frequently Asked General Questions About XML Parser
Answer: You should use an object view to generate an XML document from a

master-detail structure. In your case, use the following code:

create type child_type is object
(child_name <data type child_name>) ;
/
create type child_type_nst
is table of child_type ;
/

create view parent_child
as
select p.parent_name
, cast
 (multiset
 (select c.child_name
 from child c
 where c.parent_id = p.id
) as child_type_nst
) child_type
from parent p
/

A SELECT * FROM parent_child , processed by an SQL to XML utility would

generate a valid XML document for your parent child relationship. The structure

would not look like the one you have presented, though. It would look like this:

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <PARENT_NAME>Bill</PARENT_NAME>
 <CHILD_TYPE>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Child 1 of 2</CHILD_NAME>
 </CHILD_TYPE_ITEM>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Child 2 of 2</CHILD_NAME>
 </CHILD_TYPE_ITEM>
 </CHILD_TYPE>
 </ROW>
 <ROW num="2">
 <PARENT_NAME>Larry</PARENT_NAME>
 <CHILD_TYPE>
 <CHILD_TYPE_ITEM>
 <CHILD_NAME>Only one child</CHILD_NAME>
4-84 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked General Questions About XML Parser
 </CHILD_TYPE_ITEM>
 </CHILD_TYPE>
 </ROW>
</ROWSET>
XML Parser for Java 4-85

Frequently Asked General Questions About XML Parser
4-86 Oracle9i XML Developer’s Kits Guide - XDK

XSLT Processo
5

XSLT Processor for Java

This chapter contains the following sections:

■ Using XML Parser for Java: XSLT Processor

■ XSLT Processor for Java: Command-Line Interface, oraxsl

■ XML Extension Functions for XSLT Processing

■ Frequently Asked Questions About the XSLT Processor and XSL
r for Java 5-1

Using XML Parser for Java: XSLT Processor
Using XML Parser for Java: XSLT Processor
The XSLT processor operates on two inputs: the XML document to transform, and

the XSLT stylesheet that is used to apply transformations on the XML. Each of these

two can actually be multiple inputs. One stylesheet can be used to transform

multiple XML inputs. Multiple stylesheets can be mapped to a single XML input.

To implement the XSLT Processor in the XML Parser for Java use XSLProcessor

class.

Figure 5–1 shows the overall process used by class XSLProcessor . Here are the

steps:

■ Create an XSLProcessor object and then use methods from the following list in

your Java code. Some of the available methods are:

■ removeParam() - remove parameter

■ resetParam() - remove all parameters

■ setParam() - set parameters for the transformation

■ setBaseURL() - set a base URL for any relative references in the

stylesheet

■ setEntityResolver() - set an entity resolver for any relative references

in the stylesheet

■ setLocale - set locale for error reporting

■ Use one of the following input parameters to the function

XSLProcessor.newXSLStylesheet() to create a stylesheet object:

■ java.io.Reader

■ java.io.InputStream

■ XMLDocument

■ java.net.URL

This creates a stylesheet object which is thread-safe and can be used in multiple

XSL Processors.

■ Use one of the input parameters on the XML input.

■ Your XML inputs and the stylesheet object are input (each using one of the

input parameters listed above) to the XSL Processor:

XSLProcessor.processXSL(xslstylesheet, xml instance)
5-2 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: XSLT Processor
The results can be one of the following:

■ create an XML document object

■ write to an output stream

■ report as SAX events

Figure 5–1 Using XSL Processor for Java

XSLT Processor for Java Example
This example uses one XML document and one XSTT stylesheet as inputs.

public class XSLSample

Create an XML
document object

Write to an
output stream

Repart as
SAX events

XSLT
Transformation

XSLProcessor

XSLProcessor
object methods:
• removeParam()
• resetParam()
• setParam()
• setBaseURL()
• setEntityResolver()
• setLocale()

XSL input

java.io.Reader
java.io.InputStream
XMLDocument
java.net.URL

XML input

XSL Stylesheet
object
XSLT Processor for Java 5-3

Using XML Parser for Java: XSLT Processor
{
 public static void main(String args[]) throws Exception
 {
 if (args.length < 2)
 {
 System.err.println("Usage: java XSLSample xslFile xmlFile.");
 System.exit(1);
 }

 // Create a new XSLProcessor.
 XSLProcessor processor = new XSLProcessor();

 // Register a base URL to resolve relative references
 // processor.setBaseURL(baseURL);

 // Or register an org.xml.sax.EntityResolver to resolve
 // relative references
 // processor.setEntityResolver(myEntityResolver);

 // Register an error log
 // processor.setErrorStream(new FileOutputStream("error.log"));

 // Set any global paramters to the processor
 // processor.setParam(namespace, param1, value1);
 // processor.setParam(namespace, param2, value2);

 // resetParam is for multiple XML documents with different parameters

 String xslFile = args[0];
 String xmlFile = args[1];

 // Create a XSLStylesheet
 // The stylesheet can be created using one of following inputs:
 //
 // XMLDocument xslInput = /* using DOMParser; see below in this code */
 // URL xslInput = new URL(xslFile);
 // Reader xslInput = new FileReader(xslFile);

 InputStream xslInput = new FileInputStream(xslFile);

 XSLStylesheet stylesheet = processor.newXSLStylesheet(xslInput);

 // Prepare the XML instance document
 // The XML instance can be given to the processor in one of
 // following ways:
5-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for Java: XSLT Processor
 //
 // URL xmlInput = new URL(xmlFile);
 // Reader xmlInput = new FileReader(xmlFile);
 // InputStream xmlInput = new FileInputStream(xmlFile);
 // Or using DOMParser

 DOMParser parser = new DOMParser();
 parser.retainCDATASection(false);
 parser.setPreserveWhitespace(true);
 parser.parse(xmlFile);
 XMLDocument xmlInput = parser.getDocument();

 // Transform the XML instance
 // The result of the transformation can be one of the following:
 //
 // 1. Return a XMLDocumentFragment
 // 2. Print the results to a OutputStream
 // 3. Report SAX Events to a ContentHandler

 // 1. Return a XMLDocumentFragment
 XMLDocumentFragment result;
 result = processor.processXSL(stylesheet, xmlInput);

 // Print the result to System.out
 result.print(System.out);

 // 2. Print the results to a OutputStream
 // processor.processXSL(stylesheet, xmlInput, System.out);

 // 3. Report SAX Events to a ContentHandler
 // ContentHandler cntHandler = new MyContentHandler();
 // processor.processXSL(stylesheet, xmlInput, cntHandler);

 }
}

See Also: .See "SAX: Event-Based API" on page 4-8
XSLT Processor for Java 5-5

XSLT Processor for Java: Command-Line Interface, oraxsl
XSLT Processor for Java: Command-Line Interface, oraxsl

oraxsl - Oracle XSL processor
oraxsl is a command-line interface used to apply a stylesheet on multiple XML

documents. It accepts a number of command-line options that dictate how it should

behave.

To use oraxsl ensure the following:

■ Your CLASSPATH environment variable is set to point to the xmlparserv2.jar

file that comes with Oracle XML V2 parser for Java.

■ Your PATH environment variable can find the java interpreter that comes with

JDK 1.1.x or JDK 1.2.

Use the following syntax to invoke oraxsl :

oraxsl options source stylesheet result

oraxsl expects to be given a stylesheet, an XML file to transform, and optionally, a

result file. If no result file is specified, it outputs the transformed document to

standard out. If multiple XML documents need to be transformed by a stylesheet,

the -l or -d options in conjunction with the -s and -r options should be used instead.

These and other options are described in Table 5–1.

Table 5–1 oraxsl: Command Line Options

Option Purpose

 -d directory Directory with files to transform (the default behavior is to
process all files in the directory). If only a certain subset of the
files in that directory, for example, one file, need to be
processed, this behavior must be changed by using -l and
specifying just the files that need to be processed. You could
also change the behavior by using the '-x' or '-i' option to select
files based on their extension).

 -debug New - Debug mode (by default, debug mode is turned off)

-e error_log A file to write errors to (specify a log file to write errors and
warnings).

 -h Help mode (prints oraxsl invocation syntax)

 -i source_extension Extensions to include (used in conjunction with -d. Only files
with the specified extension will be selected).
5-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing
XML Extension Functions for XSLT Processing
XML extension functions for XSLT processing allow users of XSLT processor to call

any Java method from XSL expressions.

XSLT Processor Extension Functions: Introduction
Java extension functions should belong to the namespace that starts with the

following:

http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace:

 -l xml_file_list List of files to transform (enables you to explicitly list the files
to be processed).

 -o result_directory Directory to place results (this must be used in conjunction
with the -r option).

 -p param_list List of Parameters.

 -r result_extension Extension to use for results (if -d or -l is specified, this option
must be specified to specify the extension to be used for the
results of the transformation. So, if one specifies the extension
"out", an input document "foo" would get transformed to
"foo.out". By default, the results are placed in the current
directory. This is can be changed by using the -o option which
enables you to specify a directory to hold the results).

 -s stylesheet Stylesheet to use (if -d or -l is specified, this option needs to be
specified to specify the stylesheet to be used. The complete
path must be specified).

 -t num_of_threads Number of threads to use for processing (using multiple
threads could provide performance improvements when
processing multiple documents).

 -v Verbose mode (some debugging information is printed and
could help in tracing any problems that are encountered
during processing)

 -w Show warnings (by default, warnings are turned off)

 -x source_extension Extensions to exclude (used in conjunction with -d. All files
with the specified extension will not be selected).

Table 5–1 oraxsl: Command Line Options (Cont.)

Option Purpose
XSLT Processor for Java 5-7

XML Extension Functions for XSLT Processing
http://www.oracle.com/XSL/Transform/java/classname

refers to methods in class classname . For example, the following namespace:

http://www.oracle.com/XSL/Transform/java/java.lang.String

can be used to call java.lang.String methods from XSL expressions.

Static Versus Non-Static Methods
If the method is a non-static method of the class, then the first parameter will be

used as the instance on which the method is invoked, and the rest of the parameters

are passed on to the method.

If the extension function is a static method, then all the parameters of the extension

function are passed on as parameters to the static function.

XML Parser for Java - XSL Example 1: Static function
The following XSL, static function example:

<xsl:stylesheet
xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
 <xsl:template match="/">
 <xsl:value-of select="math:ceil('12.34')"/>
</xsl:template>
</xsl:stylesheet>

prints out '13'.

Constructor Extension Function
The extension function 'new' creates a new instance of the class and acts as the

constructor.

XML Parser for Java - XSL Example 2: Constructor Extension Function
The following constructor function example:

Note: The XSL class loader only knows about statically added

JARs and paths in the CLASSPATH - those specified by

wrapper.classpath . Files added dynamically using the

repositories’ keyword in Jserv are not visible to XSL processor.
5-8 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing
<xsl:stylesheet
xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
 <xsl:template match="/">
 <!-- creates a new java.lang.String and stores it in the variable str1 -->
 <xsl:variable name="str1" select="jstring:new('Hello World')"/>
 <xsl:value-of select="jstring:toUpperCase($str1)"/>
</xsl:template>
</xsl:stylesheet>

prints out 'HELLO WORLD'.

Return Value Extension Function
The result of an extension function can be of any type, including the five types

defined in XSL:

■ NodeList

■ boolean

■ String

■ Number

■ resulttree

They can be stored in variables or passed onto other extension functions.

If the result is of one of the five types defined in XSL, then the result can be returned

as the result of an XSL expression.

XML Parser for Java XSL- XSL Example 3: Return Value Extension Function
Here is an XSL example illustrating the Return value extension function:

<!-- Declare extension function namespace -->
<xsl:stylesheet xmlns:parser =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
xmlns:document =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument" >

<xsl:template match ="/"> <!-- Create a new instance of the parser, store it in
myparser variable -->
<xsl:variable name="myparser" select="parser:new()"/>
<!-- Call a non-static method of DOMParser. Since the method is anon-static
method, the first parameter is the instance on which themethod is called. This
is equivalent to $myparser.parse('test.xml') -->
XSLT Processor for Java 5-9

XML Extension Functions for XSLT Processing
<xsl:value-of select="parser:parse($myparser, 'test.xml')"/>
<!-- Get the document node of the XML Dom tree -->
<xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>
<!-- Invoke getelementsbytagname on mydocument -->
<xsl:for-each select="document:getElementsByTagName($mydocument,'elementname')">
......
</xsl:for-each> </xsl:template>
</xsl:stylesheet>

Datatypes Extension Function
Overloading based on number of parameters and type is supported. Implicit type

conversion is done between the five XSL types as defined in XSL.

Type conversion is done implicitly between (String, Number, Boolean, ResultTree)

and from NodeSet to (String, Number, Boolean, ResultTree).

Overloading based on two types which can be implicitly converted to each other is

not permitted.

XML Parser for Java - XSL Example 4: Datatype Extension Function
The following overloading will result in an error in XSL, since String and Number

can be implicitly converted to each other:

■ abc(int i){}

■ abc(String s){}

Mapping between XSL type and Java type is done as following:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> XMLNodeList
ResultTree -> XMLDocumentFragment

Oracle XSLT Built-In Extensions: ora:node-set and ora:output
The following example illustrates both ora:node-set and ora:output in action.

If you enter:

$ oraxsl foo.xml slides.xsl toc.html

where "foo.xml" is any XML file, you get:
5-10 Oracle9i XML Developer’s Kits Guide - XDK

XML Extension Functions for XSLT Processing
■ A "toc.html" slide with a table of contents

■ A "slide01.html" file with slide 1

■ A "slide02.html" file with slide 2

<!--
 | Illustrate using ora:node-set and ora:output
 |
 | Both extensions depend on defining a namespace
 | with the uri of "http://www.oracle.com/XSL/Transform/java"
+-->
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ora="http://www.oracle.com/XSL/Transform/java">

<!-- <xsl:output> affects the primary result document -->
<xsl:output mode="html" indent="no"/>

<!--
 | <ora:output> at the top-level enables all attributes
 | that <xsl:output> enables, but you must provide the
 | additional "name" attribute to assign a name to
 | these output settings to be used later.
+-->
<ora:output name="myOutput" mode="html" indent="no"/>
<!--
 | This top-level variable is a result-tree fragment
+-->
<xsl:variable name="fragment">
 <slides>
 <slide>
 <title>First Slide</title>
 <bullet>Point One</bullet>
 <bullet>Point Two</bullet>
 <bullet>Point Three</bullet>
 </slide>
 <slide>
 <title>Second Slide</title>
 <bullet>Point One</bullet>
 <bullet>Point Two</bullet>
 <bullet>Point Three</bullet>
 </slide>
 </slides>
XSLT Processor for Java 5-11

XML Extension Functions for XSLT Processing
</xsl:variable>
<xsl:template match="/">
<!-- | We cannot "de-reference" a result-tree-fragment to
 | navigate into it with an XPath expression. However, using
 | the ora:node-set() built-in extension function, you can
 | "cast" a result-tree fragment to a node-set which *can*
 | then be navigated using XPath. Since we'll use the node-set
 | of <slides> twice below, we save the node-set in a variable.
+-->
<xsl:variable name="slides" select="ora:node-set($fragment)"/>
<!--
 | This <html> page will go to the primary result document.
 | It is a "table of contents" for the slide show, with
 | links to each slide. The "slides" will each be generated
 | into *secondary* result documents, each slide having
 | a file name of "slideNN.html" where NN is the two-digit
 | slide number
+-->
<html>
 <body>
 <h1>List of All Slides</h1>
<xsl:apply-templates select="$slides" mode="toc"/>
 </body>
</html>
<!--
 | Now go apply-templates to format each slide
+-->
<xsl:apply-templates select="$slides"/>
</xsl:template>
<!-- In 'toc' mode, generate a link to each slide we match -->
<xsl:template match="slide" mode="toc">

<xsl:value-of select="title"/>

</xsl:template>
<!--
 | For each slide matched, send the output for the current
 | <slide> to a file named "slideNN.html". Use the named
 | output style defined above called "myOutput".
<xsl:template match="slide">
<ora:output use="myOutput href="slide{format-number(position(),'00')}.html">
<html>
 <body>
<xsl:apply-templates select="title"/>

5-12 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL
<xsl:apply-templates select="*[not(self::title)]"/>

 </body>
</html>
</ora:output>
</xsl:template>
<xsl:template match="bullet">
 <xsl:value-of select="."/>
</xsl:template>
<xsl:template match="title">
 <h1><xsl:value-of select="."/></h1>
</xsl:template>
</xsl:stylesheet>

Frequently Asked Questions About the XSLT Processor and XSL
This section lists XSL and XSLT Processor questions and answers.

 Why Am I Getting an HTML Error in XSL?
I don't know what is wrong here. This is my news_xsl.xsl file:

<?xml version ="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
 <HTML>
 <HEAD>
 <TITLE> Sample Form </TITLE>
 </HEAD>
 <BODY>
 <FORM>

<input type="text" name="country" size="15"> </FORM>
 </BODY>
 </HTML>
</xsl:template>
</xsl:stylesheet>

ERROR:End tag 'FORM' does not match the start tag 'input'. Line 14, Position 12
</FORM>-
----------̂ news.xml
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="news_xsl.xsl"?>
<GREETING/>
XSLT Processor for Java 5-13

Frequently Asked Questions About the XSLT Processor and XSL
Answer: Unlike in HTML, in XML every opening or starting tag must have an

ending tag. Even the input that you are giving should have a matching ending tag,

so you should modify your script like this:

<FORM>
<input type="text" name="country" size="15"> </input>
</FORM>

Or:

<FORM>
<input type="text" name="country" size="15"/>
</FORM>

Also, remember that in XML the tags are case sensitive, unlike in HTML.

Is the Output Method “html” Supported in the XSL Parser?
Is the output method html supported in the recent version of the XSL parser? I was

trying to use the
 tag with the <xsl output method="xml”/> declaration

but I got an XSL error message indicating a not well-formed XML document. Then I

tried the following output method declaration: <xsl output method="html"/>
but I got the same result.

Here's a simple XSL stylesheet I was using:

<?xml version="1.0"?> <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl output method="html"/>
<xsl:template match="/"> <HTML> <HEAD></HEAD> <BODY>
<P> Blah blah
 More blah blah
 </P>
</BODY> </HTML> </xsl:template>

How do I use a not well-formed tag like or
 in an XSL stylesheet?

Answer: We fully support all options of <xsl output> . The problem here is that

your XSL stylesheet must be a well-formed XML document, so everywhere you are

using the
 element, you need to use
 instead. The <xsl output
method="html”/> requests that when the XSLT engine writes out the result of

your transformation, it is a proper HTML document. What the XSLT engine reads in

must be well-formed XML.

Question: I have a question regarding your reply. I have an XSL stylesheet that

preforms XML to HTML conversion. Everything works correctly with the exception

of those HTML tags that are not well formed. Using your example if I have

something like:
5-14 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
......
<input type="text" name="{NAME}" size="{DISPLAY_LENGTH}" maxlength="{LENGTH}">
</input>
......
</xsl:stylesheet>

It would render HTML in the format of

<HTML>......<input type="text" name="in1" size="10" maxlength="20"/>
......
</HTML>

While Internet Explorer can handle this, Netscape cannot. Is there any way to

generate completely cross-browser-compliant HTML with XSL?

Answer 2: If you are seeing:

<input ... />

instead of:

<input>

then you are likely using the incorrect way of calling

XSLProcessor.processXSL() , since it appears that it's not doing the HTML

output for you. Use:

void processXSL(style,sourceDoc,PrintWriter)

instead of:

DocumentFragment processXSL(style,sourceDoc)

and it will work correctly.

Can I Prevent XSL from Returning a Meta-Tag in Netscape 4.0?
I'm using <xsl output method="html” encoding="iso-8859-1"
indent = “no” /> . Is it possible to prevent XSLT from outputting <META
http-equiv="Content-Type” content="text/html;
charset=iso-8859-1"> in the HEAD element because Netscape 4.0 has

difficulties with this statement. It renders the page twice.
XSLT Processor for Java 5-15

Frequently Asked Questions About the XSLT Processor and XSL
Answer: The XSLT 1.0 recommendation says in Section 16.2 (“HTML Output

Method”) that if there is a HEAD element, then the HTML output method should

add a META element immediately after the start-tag of the HEAD element specifying

the character encoding actually used.

For example:

<HEAD><META http-equiv="Content-Type" content="text/html; charset=EUC-JP">.
So any XSLT 1.0-compliant engine needs to add this.

How Do I Work Around a Display Bug in the Browser?
Netscape 4.0 has following bug:

When Mozilla hits the meta-encoding tag it stops rendering the page and does a

refresh, thereby producing an annoying flickering. I probably have to do a

replacement in the servlets Outputstream, but I don't like doing so. Are there any

alternatives?

Answer: The only alternatives I can think of are:

■ Don't include a <HEAD> section in your HTML page. According to the XSLT

specification, this will suppress the inclusion of the <META> tag.

■ Don't use method="HTML” for the output. Since it defaults to “HTML” ,

according to the specification for result trees that start with <HTML> (in any

mixture of case), you'd have to explicitly set it to method=”xml” or

method=”text” .

Neither is pretty, but either one might provide a workaround.

Where Can I Get More Information on XSL Error Messages?
I get the error XSL-1900, exception occurred. What does this mean? How can I find

out what caused the exception?

Answer: If you are using Java, you could write exception routines to trap errors.

Using tools such as JDeveloper also helps.

The error messages of our components are usually clearer. XSL-1900 indicates

possible internal error or incorrect usage.

How Do I Generate the HTML "Less Than" (<) Character?
I am trying to generate an HTML form for inputting data using column names from

the user_tab_columns table and the following XSL code:
5-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL
<xsl:template match="ROW">
<xsl:value-of select="COLUMN_NAME"/>
<: lt;INPUT NAME="<xsl:value-of select="COLUMN_NAME"/>>
</xsl:template>

although gt; is generated as the greater than (>) character, lt; is generated as

#60; . How do I generate the less than (<) character?

Answer: Use the following code:

<xsl:text disable-output-escaping="yes">entity-reference</xsl:text>

Why Does HTML “<“ Conversion Work in oraxsl But Not in XSLSample.java?
I cannot display HTML from XML. In my XML file, I store the HTML snippet in an

XML tag:

<PRE>
<body.htmlcontent>
<<table width="540" border="0" cellpadding="0"
cellspacing="0"><tr><td><font face="Helvetica, Arial"
size="2"><!-- STILL IMAGE GOES HERE --><img
src="graphics/imagegoeshere.jpg" width="200" height="175" align="right"
vspace="0" hspace="7"><!-- END STILL IMAGE TAG --><!-- CITY OR TOWN NAME
GOES FIRST FOLLOWED BY TWO LETTER STATE ABBREVIATION -->City, state
abbreviation - <!-- CITY OR TOWN NAME ENDS HERE --><!-- STORY
TEXT STARTS HERE -->Story text goes here.. <!-- STORY TEXT ENDS HERE
--></td></tr></table>
</body.htmlcontent>
</PRE>

I use the following in my XSL:

<xsl:value-of select="body.HTMLcontent" disable-output-escaping="yes"/>

However, the HTML output

<PRE><</PRE>

still appears and all of the HTML tags are displayed in the browser. How do I

display the HTML properly?

That doesn't look right. All of the less than (<) characters are #60; in the code with

an ampersand in front of them. They are still that way when they are displayed in

the browser.
XSLT Processor for Java 5-17

Frequently Asked Questions About the XSLT Processor and XSL
Even more confusing is that it works with oraxsl , but not with

XSLSample.java .

Answer: Here's why:

■ oraxsl internally uses void XSLProcessor.processXSL
(style,source,printwriter);

■ XSLSample.java uses DocumentFragment XSLProcessor.processXSL
(style,source);

The former supports <xsl:output> and all options related to writing output that

might not be valid XML (including the disable output escaping). The latter is pure

XML-to-XML tree returned, so no <xsl:output> or disabled escaping can be used

since nothing's being output, just a DOM tree fragment of the result is being

returned.

Where Can I Find XSLT Examples?
Is there any site which has good examples or short tutorials on XSLT?

Answer: This site is an evolving tutorial on lots of different XML, XSLT, and

XPath-related subjects:

http://zvon.vscht.cz/ZvonHTML/Zvon/zvonTutorials_en.html

Where Can I Find a List of XSLT Features?
Is there a list of features of the XSLT that the Oracle XDK uses?

Answer: Our version 2 parsers support the W3C Recommendation of w3c XSLT

version 1.0, which you can see at http://www.w3.org/TR/XSLT .

How Do I Use XSL to Convert an XML Document to Another Form?
I am in the process of trying to convert an XML document from one format to

another by means of an XSL (or XSLT) stylesheet. Before incorporating it into my

Java code, I tried testing the transformation from the command line:

 > java oracle.xml.parser.v2.oraxsl jwnemp.xml jwnemp.xsl newjwnemp.xml

The problem is that instead of returning the transformed XML file

(newjwnemp.xml), the above command just returns a file with the XSL code from

jwnemp.xsl in it. I cannot figure out why this is occurring. I have attached the two

input files.
5-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSLT Processor and XSL
 <?xml version="1.0"?>
 <employee_data>
 <employee_row>
 <employee_number>7950</employee_number>
 <employee_name>CLINTON</employee_name>
 <employee_title>PRESIDENT</employee_title>
 <manager>1111</manager>
 <date_of_hire>20-JAN-93</date_of_hire>
 <salary>125000</salary>
 <commission>1000</commission>
 <department_number>10</department_number>
 </employee_row>
 </employee_data>

 <?xml version='1.0'?>
 <ROWSET xmlns:xsl="HTTP://www.w3.org/1999/XSL/Transform">
 <xsl:for-each select="employee_data/employee_row">
 <ROW>
 <EMPNO><xsl:value-of select="employee_number"/></EMPNO>
 <ENAME><xsl:value-of select="employee_name"/></ENAME>
 <JOB><xsl:value-of select="employee_title"/></JOB>
 <MGR><xsl:value-of select="manager"/></MGR>
 <HIREDATE><xsl:value-of select="date_of_hire"/></HIREDATE>
 <SAL><xsl:value-of select="salary"/></SAL>
 <COMM><xsl:value-of select="commission"/></COMM>
 <DEPTNO><xsl:value-of select="department_number"/></DEPTNO>
 </ROW>
 </xsl:for-each>
 </ROWSET>

Answer: This is occurring most likely because you have the wrong XSL namespace

URI for your xmlns:xsl="..." namespace declaration.

If you use the following URI:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
then everything will work.

If you use xmlns:xsl="-- any other string here --” it will do what

you're seeing.
XSLT Processor for Java 5-19

Frequently Asked Questions About the XSLT Processor and XSL
Where Can I Find More Information on XSL?
I cannot find anything about using XSL. Can you help? I would like to get an XML

and XSL file to show my company what they can expect from this technology. XML

alone is not very impressive for users.

Answer: A pretty good starting place for XSL is the following page:

http://metalab.unc.edu/xml/books/bible/updates/14.html

It provides a simple discussion of the gist of XSL. XSL isn't really anything more

than an XML file, so I don't think that it will be anymore impressive to show to a

customer. There's also the main Web site for XSL which is:

 http://www.w3.org/style/XSL/

Can the XSL Processor Produce Multiple Outputs?
I recall seeing discussions about the XSL processor producing more than one result

from one XML and XSL. How can this can be achieved?

Answer: The XML Parser version 2 release 2.0.2.8 and above supports

<ora:output> to handle this.
5-20 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Proces
6

XML Schema Processor for Java

This chapter contains the following sections:

■ Introducing XML Schema

■ Oracle XML Schema Processor for Java Features

■ XML Schema Processor for Java Usage

■ How to Run the XML Schema for Java Sample Program
sor for Java 6-1

Introducing XML Schema
Introducing XML Schema
XML Schema was created by the W3C to describe the content and structure of XML

documents in XML. It includes the full capabilities of DTDs (Document Type

Descriptions) so that existing DTDs can be converted to XML Schema. XML

Schemas have additional capabilities compared to DTDs.

How DTDs and XML Schema Differ
Document Type Definition (DTD) is a mechanism provided by XML 1.0 for

declaring constraints on XML markup. DTDs allow the specification of the

following:

■ Which elements can appear in your XML documents

■ What elements can be in the elements

■ The order the elements can appear

XML Schema language serves a similar purpose to DTDs, but it is more flexible in

specifying XML document constraints and potentially more useful for certain

applications. See the following section "DTD Limitations".

Consider the XML document:

<?XML version="1.0">
<publisher pubid="ab1234">
 <publish-year>2000</publish-year>
 <title>The Cat in the Hat</title>
 <author>Dr. Seuss</author>
 <artist>Ms. Seuss</artist>
 <isbn>123456781111</isbn>
</publisher>

Consider a typical DTD for the foregoing XML document:

<!ELEMENT publisher (year,title, author+, artist?, isbn)>
<!ELEMENT publish-year (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
...
6-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Features
DTD Limitations
DTDs, also known as XML Markup Declarations, are considered to be deficient in

handling certain applications including the following:

■ Document authoring and publishing

■ Exchange of metadata

■ E-commerce

■ Inter-database operations

DTD limitations include:

■ DTD is not integrated with Namespace technology so users cannot import and

reuse code

■ DTD does not support data types other than character data, a limitation for

describing metadata standards and database schemas

■ Applications need to specify document structure constraints more flexibly than

the DTD allows for

XML Schema Features
Table 6–1, "XML Schema Features" lists XML Schema features. Note that XML

Schema features include DTD features.

Table 6–1 XML Schema Features

XML Schema Feature DTD

Built-In Data Types

XML schema specifies a set of builtin datatypes. Some of
them are defined and called primitive datatypes, and they
form the basis of the type system:

string, boolean, float, decimal, double, duration, dateTime,
time, date, gYearMonth, gYear, gMonthDat, gMonth, gDay,
Base64Binary, HexBinary, anyURI, NOTATION, QName.

Others are derived datatypes that are defined in terms of
primitive types.

DTDs do not support data
types other than character
strings.
XML Schema Processor for Java 6-3

XML Schema Features
User-Defined Data Types

Users can derive their own datatypes from the builtin data
types. There are three ways of datatype derivation:
restriction, list and union. Restriction defines a more
restricted data type by applying constraining facets to the
base type, list simply allows a list of values of its item type,
and union defines a new type whose value can be of any of
its member types.

For example, to specify that the value of publish-year type to
be within a specific range:

<SimpleType name = "publish-year">

 <restriction base="gYear">

 <minInclusive value="1970"/>

 <maxInclusive value="2000"/>

 </restriction>

</SimpleType>

The constraining facets are:

length, minLength, maxLength, pattern, enumeration,
whiteSpace, maxInclusive, maxExclusive, minInclusive,
minExclusive, totalDigits, fractionDigits.

Some facets only apply to certain base types.

Note that several facets have been changed since the first release of
Oracle XML Schema Processor for Java.

The publish-year element in
the DTD example cannot be
constrained further.

Table 6–1 XML Schema Features (Cont.)

XML Schema Feature DTD
6-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Features
XML Schema can be used to define a class of XML documents. “Instance document”

describes an XML document that conforms to a particular schema.

Occurrence Indicators (Content Model or Structure)

In XML Schema, the structure (called complexType) of the
instance document or an element is defined in terms of model
group and attribute group. A model group may further
contain model groups or element particles, while attribute
group contains attributes. Wildcards can be used in both
model group and attribute group to indicate any element or
attribute. There are three varies of model group: sequence,
all, and choice, representing the sequence, conjunction and
disjunction relationships among particles respectively. The
range of the number of occurrence of each particle can also be
specified.

Like the data type, complexType can be derived from other
types. The derivation method can be either restriction or
extension. The derived type inherits the content of the base
type plus corresponding modifications. In addition to
inheritance, a type definition can make references to other
components. This feature allows a component being defined
once and used in many other structures.

The type declaration and definition mechanism in XML
Schema is much more flexible and powerful than the DTD.

Control by DTDs over the
number of child elements in
an element are assigned
with the following symbols:

■ ? = zero or one. In the
foregoing DTD
example, artist? implied
artist is optional - there
may or may not be an
artist.

■ * = zero or more

■ + = one or more (in the
foregoing DTD
example, author+
implies more than one
author is possible)

■ (none) = exactly one

Identity Constraints

XML Schema extends the concept of XML ID/IDREF
mechanism with the declarations of unique, key and keyref.
They are part of the type definition and allow not only
attributes, but also element contents as keys. Each constraint
has a scope within which it holds and the comparison is in
terms of their value rather than lexical strings.

Import/Export Mechanisms (Schema Import, Inclusion
and Modification)

All components of a schema need not be defined in a single
schema file. XML Schema provides a mechanism of
assembling multiple schemas. Import is used to integrate
schemas of different namespace while inclusion is used to
add components of the same namespace. Components can
also be modified using redefinition when included.

You cannot use constructs
defined in external schemas.

Table 6–1 XML Schema Features (Cont.)

XML Schema Feature DTD
XML Schema Processor for Java 6-5

Oracle XML Schema Processor for Java Features
Although these instances and schemas need not exist specifically as “documents”,

they are commonly referred to as files. They may exist as any of the following:

■ Streams of bytes

■ Fields in a database record

■ Collections of XML Infoset “Information Items”

Oracle XML Schema Processor for Java Features
Oracle XML Schema Processor for Java has the following features:

■ Supports streaming (SAX) precessing, constant memory usage, and linear

processing time.

■ Built on the Oracle XML Parser for Java v2

■ Fully supports the W3C XML Schema specifications of the Candidate

Recommendation (October 24, 2000) and the Recommendation (May 2, 2001).

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes

Supported Character Sets
XML Schema Processor for Java supports documents in the following encodings:

■ BIG

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

See Also:

■ http://www.w3.org/TR/xmlschema-0/

■ Appendix A, "XDK for Java: Specifications and Quick

References"

■ Oracle9i XML API Reference - XDK and Oracle XML DB
6-6 Oracle9i XML Developer’s Kits Guide - XDK

Oracle XML Schema Processor for Java Features
■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

What’s Needed to Run XML Schema Processor for Java
To run XML Schema Processor for Java, you need the following:

■ Operating Systems: Any OS with Java 1.1.x support

■ Java: JDK 1.1.x. or above.

Online Documentation
Documentation for Oracle XML Schema Processor for Java is located in the doc/

directory in your install area.

Release Specific Notes
The readme.html file in the root directory of the archive, contains release specific

information including bug fixes, and API additions.

Oracle XML Schema Processor is an early adopter release and is written in Java. It

includes the production release of the XML Parser for Java v2.

XML Schema Processor for Java Directory Structure
Table 6–2 lists the directory structure after installing XML Schema Processor for

Java.
XML Schema Processor for Java 6-7

XML Schema Processor for Java Usage
XML Schema Processor for Java Usage
As shown in Figure 6–1, Oracle’s XML Schema processor performs two major tasks:

■ A builder assembles schema from schema XML documents

■ A validator use the schema to validate instance document.

When building the schema, the builder first calls the DOM Parser to parse the

schema XML documents into corresponding DOM trees. It then compiles them into

an internal schema object. The validator works as a filter between the SAX parser

and your applications for the instance document. The validator takes SAX events of

the instance document as input and validates them against the schema. If the

validator detects any invalid XML component it sends an error message. The output

of the validator is:

■ Input SAX events

■ Default values it supplies

■ Post-Schema Validation (PSV) information

Modes for Schema Validation
The XML Parser supports various modes for schema or DTD validation. The

setValidationMode method allows different validation parameters to be set. For

schema validations, there are these modes available:

■ SCHEMA_VALIDATION. With this mode, the schema validator locates and

builds schemas and validates the whole or a part of the instance document

based on the schemaLocation and noNamespaceSchemaLocation
attributes. See code example XSDSample.java .

Table 6–2 Directory Structure for an Installation of XML Schema Processor

Directory and File Description

license.html copy of license agreement

readme.html release and installation notes

doc directory for documents

lib directory for class files

sample directory for sample code files
6-8 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Processor for Java Usage
■ SCHEMA_LAX_VALIDATION. The validator tries to validate part or all of the

instance document as long as it can find the schema definition. It will not raise

an error if it cannot find the definition. See code example XSDLax.java .

■ SCHEMA_STRICT_VALIDATION. The validator tries to validate the whole

instance document, raising errors if it cannot find the schema definition or if the

instance does not conform to the definition.

In addition to the validator to build the schema itself, you can use XSDBuilde r to

build schemas and set it to the validator using setXMLSchema method . See code

example XSDSetSchema.java . By using the setXMLSchema method, the

validation mode is automatically set to SCHEMA_STRICT_VALIDATION, and both

schemaLocation and noNamespaceSchemaLocation attributes are ignored.

You can also change the validation mode to SCHEMA_LAX_VALIDATION.

Using the XML Schema API
The API of the XML Schema Processor for Java is simple. You can either use either

of the following:

■ setSchemaValidationMode () in the DOMParser as shown in "XML Schema

for Java Example 7: XSDSample.java"

■ Explicitly build the schema using XSDBuilder and set the schema for

XMLParser as shown in"XML Schema for Java Example 8:

XSDSetSchema.java".

There is no clean-up call similar to xmlclean . If you need to release all memory

and reset the state before validating a new XML document, terminate the context

and start over.
XML Schema Processor for Java 6-9

How to Run the XML Schema for Java Sample Program
Figure 6–1 XML Schema Processor for Java Usage

How to Run the XML Schema for Java Sample Program
XML Schema Processor for Java directory sample contains sample XML

applications that illustrate how to use Oracle XML parser with XML Schema

Processor for Java. Here are excerpts from the README file:

The sample Java files provided in this directory are:

XSDSample, a sample driver that processes XML instance documents.

XSDSetSchema, a sample driver to process XML instance documents by overriding

the schemaLocation .

XSDLax, based on XSDSetSchema, but uses lax validation mode.

To run the sample program:

1. Execute the program make to generate .class files.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB, under
XDK for Java, XML Schema Processor

Schema
XML Document

DOM
Parser

Schema
DOM tree

Schema

DOM
Parser

Instance
Document

SAX
Parser

SAX

SAX + PSV
+ Default

valueSchema
Validator

DOM Builder
or Application

Error
Messages
6-10 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
2. Add xmlparserv2.jar , xschema.jar , and the current directory to the

CLASSPATH.

3. Run the sample program with the *.xml files:

java XSDSample report.xml
java XSDSetSchema report.xsd report.xml
java XSDLax embeded_xsql.xsd embeded_xsql.xml

XML Schema Processor uses the XML Schema specification from report.xsd
to validate the contents of report.xml .

4. Run the sample program with the catalogue.xml file, as follows:

java XSDSample catalogue.xml
java XSDSetSchema cat.xsd catalogue.xml

XML Schema Processor uses the XML Schema specification from cat.xsd to

validate the contents of catalogue.xml.

5. The following are examples with XML Schema errors:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

Makefile for XML Schema Processor for Java
This is the file Makefile :

Makefile for sample java files
#
If not installed in ORACLE_HOME, set ORACLE_HOME to installation root
#
==

.SUFFIXES : .java .class

CLASSES = XSDSample.class XSDSetSchema.class XSDLax.class

Change it to the appropriate separator based on the OS.
PATHSEP = :

Assumes that the CLASSPATH contains JDK classes.
MAKE_CLASSPATH =
.$(PATHSEP)$(ORACLE_HOME)/lib/xmlparserv2.jar$(PATHSEP)$(ORACLE_HOME)/lib/xschem
a.jar$(PATHSEP)$(CLASSPATH)
XML Schema Processor for Java 6-11

How to Run the XML Schema for Java Sample Program
.java.class:
@javac -classpath "$(MAKE_CLASSPATH)" $<

make all class files
all: $(CLASSES)

demo: $(CLASSES)
@java -classpath "$(MAKE_CLASSPATH)" XSDSample report.xml > report.out
@java -classpath "$(MAKE_CLASSPATH)" XSDSetSchema report.xsd report.xml >
report.out
@java -classpath "$(MAKE_CLASSPATH)" XSDSample catalogue.xml > catalogue.out
@java -classpath "$(MAKE_CLASSPATH)" XSDSetSchema cat.xsd catalogue.xml >
catalogue.out

@java -classpath "$(MAKE_CLASSPATH)" XSDSample catalogue_e.xml > catalogue_e.out
@java -classpath "$(MAKE_CLASSPATH)" XSDSample report_e.xml > report_e.out

@java -classpath "$(MAKE_CLASSPATH)" XSDLax embeded_xsql.xsd embeded_xsql.xml>
embeded_xsql.out

clean:
@rm -f *.class
@rm -f *.out

XML Schema for Java Example 1: cat.xsd
This is the sample XML Schema Definition file that supplies input to the

XSDSetSchema.java program. XML Schema Processor uses the XML Schema

specification from cat.xsd to validate the contents of catalogue.xml .

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
 targetNamespace="http://www.publishing.org/namespaces/Catalogue"
 elementFormDefault="qualified"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:cat="http://www.publishing.org/namespaces/Catalogue">

 <complexType name="PublicationType">
 <sequence>
 <element name="Title" type="string" minOccurs="1"
maxOccurs="unbounded"/>
 <element name="Author" type="string" minOccurs="1"
maxOccurs="unbounded"/>
 <element name="Date" type="year" minOccurs="1" maxOccurs="1"/>
 </sequence>
6-12 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
 </complexType>
 <element name="Publication" type="cat:PublicationType" abstract="true"/>
 <element name="Book" substitutionGroup="cat:Publication">
 <complexType>
 <complexContent>
 <extension base="cat:PublicationType">
 <sequence>
 <element name="ISBN" type="string" minOccurs="1"
maxOccurs="1"/>
 <element name="Publisher" type="string" minOccurs="1"
maxOccurs="1"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>
 <element name="Magazine" substitutionGroup="cat:Publication">
 <complexType>
 <complexContent>
 <restriction base="cat:PublicationType">
 <sequence>
 <element name="Title" type="string" minOccurs="1"
maxOccurs="unbounded"/>
 <element name="Author" type="string" minOccurs="0"
maxOccurs="0"/>
 <element name="Date" type="year" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 <element name="Catalogue">
 <complexType>
 <sequence>
 <element ref="cat:Publication" minOccurs="0"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>
XML Schema Processor for Java 6-13

How to Run the XML Schema for Java Sample Program
XML Schema for Java Example 2: catalogue.xml
This is the sample XML file that is validated by XML Schema processor against the

XML Schema Definition file, cat.xsd, using the program, XSDSetSchema.java .

<?xml version="1.0"?>
<Catalogue xmlns="http://www.publishing.org/namespaces/Catalogue"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.publishing.org/namespaces/Catalogue
 cat.xsd">
 <Magazine>
 <Title>Natural Health</Title>
 <Date>1999</Date>
 </Magazine>
 <Book>
 <Title>Illusions The Adventures of a Reluctant Messiah</Title>
 <Author>Richard Bach</Author>
 <Date>1977</Date>
 <ISBN>0-440-34319-4</ISBN>
 <Publisher>Dell Publishing Co.</Publisher>
 </Book>
 <Book>
 <Title>The First and Last Freedom</Title>
 <Author>J. Krishnamurti</Author>
 <Date>1954</Date>
 <ISBN>0-06-064831-7</ISBN>
 <Publisher>Harper & Row</Publisher>
 </Book>
</Catalogue>

XML Schema for Java Example 3: catalogue_e.xml
When XML Schema Processor processes this sample XML file using

XSDSample.java , it generates XML Schema errors.

<?xml version="1.0"?>
<Catalogue xmlns="http://www.publishing.org/namespaces/Catalogue"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.publishing.org/namespaces/Catalogue
 cat.xsd">
 <Magazine>
 <Title>Natural Health</Title>
 <Date>1999</Date>
 </Magazine>
6-14 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
 <Book>
 <Title>Illusions The Adventures of a Reluctant Messiah</Title>
 <Author>Richard Bach</Author>
 <Date>July 7, 1977</Date>
 <ISBN>0-440-34319-4</ISBN>
 <Publisher>Dell Publishing Co.</Publisher>
 </Book>
 <Book>
 <Title>The First and Last Freedom</Title>
 <Author>J. Krishnamurti</Author>
 <Date>1954</Date>
 <ISBN>0-06-064831-7</ISBN>
 <ISBN>0-06-064831-7</ISBN>
 <Publisher>Harper & Row</Publisher>
 </Book>
</Catalogue>

XML Schema for Java Example 4: report.xml
This is the sample XML file that is validated by XML Schema processor against the

XML Schema Definition file, report.xsd , using the program,

XSDSetSchema.java .

<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report report.xsd"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 </zip>
 </regions>

 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
XML Schema Processor for Java 6-15

How to Run the XML Schema for Java Sample Program
 <part number="455-BX">Sturdy Shelves</part>
 </parts>

</purchaseReport>

XML Schema for Java Example 5: report.xsd
This is the sample XML Schema Definition file that inputs XSDSetSchema.java

program. XML Schema Processor uses the XML Schema specification from

report.xsd to validate the contents of report.xml.

<schema targetNamespace="http://www.example.com/Report"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://www.example.com/Report"
 elementFormDefault="qualified">

 <annotation>
 <documentation xml:lang="en">
 Report schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType">
 <keyref name="dummy2" refer="r:pNumKey">
 <selector xpath="r:zip/r:part"/>
 <field xpath="@number"/>
 </keyref>
 </element>

 <element name="parts" type="r:PartsType"/>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>

 <unique name="dummy1">
 <selector xpath="r:regions/r:zip"/>
 <field xpath="@code"/>
 </unique>

 <key name="pNumKey">
6-16 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
 <selector xpath="r:parts/r:part"/>
 <field xpath="@number"/>
 </key>
 </element>

 <complexType name="RegionsType">
 <sequence>
 <element name="zip" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <restriction base="anyType">
 <attribute name="number" type="r:SKU"/>
 <attribute name="quantity" type="positiveInteger"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="code" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="†{3}-[A-Z]{2}"/>
 </restriction>
 </simpleType>
 <complexType name="PartsType">
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="number" type="r:SKU"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>
XML Schema Processor for Java 6-17

How to Run the XML Schema for Java Sample Program
XML Schema for Java Example 6: report_e.xml
When XML Schema Processor processes this sample XML file using

XSDSample.java, it generates XML Schema errors.

<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report report.xsd"
 period="P3M" periodEnding="1999-11-31">

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 <part number="235-JD" quantity="3"/>
 </zip>
 </regions>

 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
 <part number="455-BX">Sturdy Shelves</part>
 </parts>

</purchaseReport>

XML Schema for Java Example 7: XSDSample.java

//import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;

import java.net.*;
import java.io.*;
import org.w3c.dom.*;
import java.util.*;

public class XSDSample
6-18 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.out.println("Usage: java XSDSample <filename>");
 return;
 }
 process (args[0]);
 }

 public static void process (String xmlURI) throws Exception
 {

 DOMParser dp = new DOMParser();
 URL url = createURL (xmlURI);

 // Set Schema Validation to true
 dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 dp.setPreserveWhitespace (true);

 dp.setErrorStream (System.out);

 try
 {
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without
errors");
 }
 catch (XMLParseException pe)
 {
 System.out.println("Parser Exception: " + pe.getMessage());
 }
 catch (Exception e)
 {
 System.out.println("NonParserException: " + e.getMessage());
 }

 }

 // Helper method to create a URL from a file name
 static URL createURL(String fileName)
 {
 URL url = null;
XML Schema Processor for Java 6-19

How to Run the XML Schema for Java Sample Program
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 // This is a bunch of weird code that is required to
 // make a valid URL on the Windows platform, due
 // to inconsistencies in what getAbsolutePath returns.
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != ’/’)
 path = path.replace(sep, ’/’);
 if (path.charAt(0) != ’/’)
 path = ’/’ + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }

}

XML Schema for Java Example 8: XSDSetSchema.java
When this example is run with cat.xsd and catalogue.xml , XML Schema

Processor uses the XML Schema specification from cat.xsd to validate the contents

of catalogue.xml .
6-20 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
When this example is run with report.xsd and report.xml , XML Schema

Processor uses the XML Schema specification from cat.xsd to validate the contents

of report.xml .

import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;

import java.net.*;
import java.io.*;
import org.w3c.dom.*;
import java.util.*;

public class XSDSetSchema
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java XSDSample <schema_file> <xml_file>");
 return;
 }

 XSDBuilder builder = new XSDBuilder();
 URL url = createURL(args[0]);

 // Build XML Schema Object
 XMLSchema schemadoc = (XMLSchema)builder.build(url);
 process(args[1], schemadoc);
 }

 public static void process(String xmlURI, XMLSchema schemadoc)
 throws Exception
 {

 DOMParser dp = new DOMParser();
 URL url = createURL (xmlURI);

 // Set Schema Object for Validation
 dp.setXMLSchema(schemadoc);
 dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 dp.setPreserveWhitespace (true);

 dp.setErrorStream (System.out);
XML Schema Processor for Java 6-21

How to Run the XML Schema for Java Sample Program
 try
 {
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without
errors");
 }
 catch (XMLParseException pe)
 {
 System.out.println("Parser Exception: " + pe.getMessage());
 }
 catch (Exception e)
 {
 System.out.println ("NonParserException: " + e.getMessage());
 }

 }

 // Helper method to create a URL from a file name
 static URL createURL(String fileName)
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 // This is a bunch of weird code that is required to
 // make a valid URL on the Windows platform, due
 // to inconsistencies in what getAbsolutePath returns.
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != ’/’)
 path = path.replace(sep, ’/’);
 if (path.charAt(0) != ’/’)
 path = ’/’ + path;
 }
 path = "file://" + path;
6-22 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }

}

XML Schema for Java Example 9: XSDLax.java
Here is a listing of XSDLax.java:

import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;

import java.net.*;
import java.io.*;
import org.w3c.dom.*;
import java.util.*;

public class XSDLax
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 2)
 {
 System.out.println("Usage: java XSDSample <schema_file> <xml_file>");
 return;
 }

 XSDBuilder builder = new XSDBuilder();
 URL url = createURL(args[0]);

 // Build XML Schema Object
 XMLSchema schemadoc = (XMLSchema)builder.build(url);
 process(args[1], schemadoc);
 }

 public static void process(String xmlURI, XMLSchema schemadoc)
XML Schema Processor for Java 6-23

How to Run the XML Schema for Java Sample Program
 throws Exception
 {

 DOMParser dp = new DOMParser();
 URL url = createURL (xmlURI);

 // Set Schema Object for Validation
 dp.setXMLSchema(schemadoc);
 dp.setValidationMode(XMLParser.SCHEMA_LAX_VALIDATION);
 dp.setPreserveWhitespace (true);

 dp.setErrorStream (System.out);

 try
 {
 System.out.println("Parsing "+xmlURI);
 dp.parse (url);
 System.out.println("The input file <"+xmlURI+"> parsed without
errors");
 }
 catch (XMLParseException pe)
 {
 System.out.println("Parser Exception: " + pe.getMessage());
 }
 catch (Exception e)
 {
 System.out.println ("NonParserException: " + e.getMessage());
 }

 }

 // Helper method to create a URL from a file name
 static URL createURL(String fileName)
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
6-24 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
 // This is a bunch of weird code that is required to
 // make a valid URL on the Windows platform, due
 // to inconsistencies in what getAbsolutePath returns.
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != ’/’)
 path = path.replace(sep, ’/’);
 if (path.charAt(0) != ’/’)
 path = ’/’ + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }

}

XML Schema for Java Example 10: embeded_xsql.xsd
This is the input file for XSDLax.java:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns = "http://xmlns.us.oracle.com/XDK/Example/XSQL/schema"
 targetNamespace =
"http://xmlns.us.oracle.com/XDK/Example/XSQL/schema"
 elementFormDefault="qualified">

<xsd:element name="include-xml">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
XML Schema Processor for Java 6-25

How to Run the XML Schema for Java Sample Program
</xsd:element>

<xsd:simpleType name="XSQLBool">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="XSQLTagCase">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="lower"/>
 <xsd:enumeration value="upper"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:element name="query">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="bind-params" type="xsd:string"/>
 <xsd:attribute name="date-format" type="xsd:string"/>
 <xsd:attribute name="error-statement" type="XSQLBool"/>
 <xsd:attribute name="fetch-size" type="xsd:positiveInteger"/>
 <xsd:attribute name="id-attribute" type="xsd:string"/>
 <xsd:attribute name="id-attribute-column" type="xsd:string"/>
 <xsd:attribute name="include-schema" type="XSQLBool"/>
 <xsd:attribute name="max-rows" type="xsd:positiveInteger"/>
 <xsd:attribute name="null-indicator" type="XSQLBool"/>
 <xsd:attribute name="rowset-element" type="xsd:string"/>
 <xsd:attribute name="row-element" type="xsd:string"/>
 <xsd:attribute name="skip-rows" type="xsd:positiveInteger"/>
 <xsd:attribute name="tag-case" type="XSQLTagCase"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

XML Schema for Java Example 11: embeded_xsql.xml
Here is the output file from XSDLax.java :

<?xml version="1.0" ?>
6-26 Oracle9i XML Developer’s Kits Guide - XDK

How to Run the XML Schema for Java Sample Program
<page connection="xdkdemo"
xmlns:xsql="http://xmlns.us.oracle.com/XDK/Example/XSQL/
schema">
 <webpage title=" Search for XDK FAQ">
 <search>
 <xsql:include-xml href="xml/title.xml" />
 </search>
 <content>
 <question>
 <xsql:query fetch-size="50" null-indicator="no">
 select question from xdkfaq
 where contains(answer,’{@search}’)>0
 </xsql:query>
 </question>
 <time>
 <xsql:query tag-case="lower" max-rows="20">
 select to_char(sysdate,’DD-MM-YYY’) from dual
 </xsql:query>
 </time>
 </content>
 </webpage>
</page>
XML Schema Processor for Java 6-27

How to Run the XML Schema for Java Sample Program
6-28 Oracle9i XML Developer’s Kits Guide - XDK

XML Class Genera
7

XML Class Generator for Java

This chapter contains the following sections:

■ Accessing XML Class Generator for Java

■ XML Class Generator for Java: Overview

■ oracg Command Line Utility

■ Class Generator for Java: XML Schema

■ Using XML Class Generator for Java with XML Schema

■ Using XML Class Generator for Java with DTDs

■ Examples Using XML Java Class Generator with DTDs and XML Schema

■ Frequently Asked Questions About the Class Generator for Java
tor for Java 7-1

Accessing XML Class Generator for Java
Accessing XML Class Generator for Java
The Oracle XML Class Generator for Java is provided with Oracle9i’s XDK for Java.

It is located at $ORACLE_HOME/xdk/java/classgen. It is also available for

download from the OTN site: http://otn.oracle.com/tech/xml.

XML Class Generator for Java: Overview
XML Class Generator for Java creates Java source files from an XML DTD or XML

Schema Definition. This is useful in the following situations:

■ When an application wants to send an XML message to another application

based on agreed-upon DTDs or XML Schemas.

■ As the back end of a web form to construct an XML document.

The generated classes can be used to programmatically construct XML documents.

XML Class Generator for Java also optionally generates javadoc comments on the

generated source files. XML Class Generator for Java requires the XML Parser for

Java and the XML Schema Processor for Java. It works in conjunction with XML

Parser for Java, which parses the DTD (or XML Schema) and sends the parsed XML

document to the Class Generator.

XML Class Generator for Java consists of the following two class generators:

■ DTD Class Generator

■ XML Schema Class Generator

These can both be invoked from command line utility, oracg .

Figure 7–1 provides an overview of how XML Class Generator for Java is used.
7-2 Oracle9i XML Developer’s Kits Guide - XDK

oracg Command Line Utility
Figure 7–1 XML Class Generator for Java: Overview

oracg Command Line Utility
The oracg command line utility is used to invoke the DTD or Schema Class

Generator for Java, depending on the input arguments. Table 7–1 lists the oracg
arguments.

Note: The clause, “one class per element” does not apply to the

XML Schema Class Generator for Java.

Table 7–1 Class Generator for Java: oracg Command Line Arguments

oracg Arguments Description

- help Print the help message text

- version Print the release version.

- dtd [-root] The input file is a DTD file or DTD based XML file.

- schema The input file is a Schema file or Schema based XML file.

- outputDir The directory name where Java source is generated.

- package The package name(s) of the generated java classes.

- comment Generate comments for the generated java source code.

Valid XML
document
based on

DTD or XML
Schema

XML Class Generator
for Java

Java Application

Parsed
DTD or
XML
Schema

XML Parser for Java

Jc
Jc

Jc
Jc

Java classes based
on DTD or XML Schema
(one class per element)

DTD or
XML Schema
XML Class Generator for Java 7-3

Class Generator for Java: XML Schema
Class Generator for Java: XML Schema
XML Class Generator for Java’s XML Schema Class Generator has the following

features:

■ It generates a Java class for each top level element, that is, global elements

simpleType element and complexType element.

■ Classes corresponding to the top level elements, that is, global elements, extend

the CGXSDElement.

■ The type hierarchy among the elements is maintained in the generated Java

classes. If the complexType or simpleType element extends any other

complexType or simpleType element, then the class corresponding to them

extends the base type simpleType or complexType element. Otherwise, they

extend the CGSXDElement class.

Namespace Features
XML Schema Class Generator also supports the following namespace features:

■ Package Name Creation. For each namespace, a package is created and

corresponds to the elements in the namespace — the Java classes are generated

in that package.

■ If there is no namespace defined, then the classes are generated in the

default package.

■ If targetNamespace is specified in the schema, then a package name is

required to generate the classes.

■ If there is a namespace defined then the user needs to specify the package name

through the command line utility. The number of packages specified should

match the command line arguments corresponding to the package names.

■ Symbol Spaces. A single distinct symbol space is used within a given target

namespace for each kind of definition and declaration component identified in

XML Schema. The exceptions for this is when symbol space is shared between

simple type and complex type.

In a given symbol space, names are unique, but the same name may appear in

more than one symbol space without conflict. For example, the same name can

appear in both a type definition and an element declaration, without conflict or

necessary relation between the two. To resolve this conflict, the classes

corresponding to simpleType and complexType elements are generated in a

subdirectory called types in the directory corresponding to the package name.
7-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Class Generator for Java with XML Schema
■ To avoid conflict, any methods which take the 'type' of an element

(corresponding to which there is a generated Java class) as parameter, take the

fully resolved name with the package name.

Using XML Class Generator for Java with XML Schema
Figure 7–2 shows the calling sequence used when generating classes with XML

Class Generator for Java with XML Schema.

XML Java Class Generator with XML Schema operates as follows:

1. A new SchemaClassGenerator() class is initiated and inputs the

generate() method. The available properties for class,

SchemaClassGenerator() include:

■ setGeneraterComments() , with default = TRUE

■ setJavaPackage(string) , with default = no package

■ setOutputDirectory(string) , with default = current directory

2. If an XML Schema is used, the Schema object returned using getDocType()
from the parseSchema() method, is also input. See also Figure 4–4, "XML

Parser for Java: DOMParser()".

3. The generate() method generates Java classes which can then be used to

build your XML document.

To generate classes using XML Class Generator for Java with XML Schema, follow

the guidelines described in the following sections:

■ Generating Top Level Element Classes on page 7-6

■ Generating Top Level ComplexType Element Classes on page 7-7

■ Generating SimpleType Element Classes on page 7-7
XML Class Generator for Java 7-5

Using XML Class Generator for Java with XML Schema
Figure 7–2 Generating Classes Using Class Generator for Java with XML Schema

Generating Top Level Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level element classes:

■ A class corresponding to the element name is generated in the package

associated with the namespace.

■ The element has a method called setType to set the type of the element in the

element class. The setType takes fully resolved package name to avoid

conflict.

■ If the element has an inline simpleType or complexType , a public static class

inside the element class is created which follows all the rules specified in the

simpleType /complexType . The name of the public static class, is the element

name suffixed by Type. For example, if the element name is PurchaseOrder
and PurchaseOrder has an inline complexType definition, then the public

static inner class will have the name PurchaseOrder_Type

[Schema object]
New Schema

ClassGenerator()

generate()

Java
classes

Available properties include:
· setGenerateComments()
 [default = TRUE]
· setJavaPackage(vector)
 [default = no package]
· setOutputDirectory(String)
 [default = current directory]
· setSerializationMode(boolean)
· setValidationMode(boolean)

Use these to
build your
XML
document

XML Class Generator for Java
7-6 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Class Generator for Java with XML Schema
■ The name clash in class names between elements and complexType using

“Type” as suffix.

■ The element name and namespace is stored inside the element class (which

could be used for serialization and validation)

■ A validate method is provided inside the elements to accept an XML Schema

object to validate.

■ A print method is provided inside the element to print the node.

Generating Top Level ComplexType Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level complexType element classes:

■ If the complexType element is a top level element, then a class is generated in

the package associated with the namespace. If the complexType element

extends a base type element, then the class corresponding to the complexType
element also extends the base Type element. Otherwise, it extends the

CGXSDElement class.

■ The class contains fields corresponding to the attributes. The fields are made

protected, so that they can be accessed from subtypes. The fields are added only

for the attributes that not present in the base type.

■ The class contains methods to set and get attributes.

■ For each local element, a public static class is created exactly similar to top level

elements, except that it will be completely inside the complexType class.

Generating SimpleType Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level simpleType element classes:

■ A class is generated for each top level simpleType element

■ The hierarchy of the simpleType element is maintained in the generated class.

If the simpleType element extends a base class then the class corresponding to

the simpleType element also extends the base class corresponding to the base

element. Otherwise the simpleType element extends the CGXSDElement
class.

■ If the simpleType element extends the schema data type, then the class

extends the class corresponding to the schema data type. For example, if the
XML Class Generator for Java 7-7

Using XML Class Generator for Java with DTDs
base type is a string, then the schema equivalent class is taken as

XSDStringType , and so on.

■ The class contains a field to store the simpleType value.

■ The constructor of the simpleType element class sets the schema facets.

■ The constructor sets the simpleType data value (XSDDataValue) in the

constructor after validating against the facets.

Using XML Class Generator for Java with DTDs
Figure 7–3 shows the calling sequence of XML Java Class Generator with DTDs:

1. A new DTDClassGenerator() class is initiated and inputs the generate()
method. Available properties for class, DTDClassGenerator() are:

■ setGeneraterComments() , with default = TRUE

■ setJavaPackage(string) , with default = no package

■ setOutputDirectory(string) , with default = current directory

2. If a DTD is used, the DTD object returned using getDocType() from the

parseDTD() method, is also input. See also Figure 4–4, "XML Parser for Java:

DOMParser()".

3. The generate() method generates Java classes which can then be used to

build your XML document.
7-8 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
Figure 7–3 Generating Classes Using XML Class Generator for Java and DTDs

Examples Using XML Java Class Generator with DTDs and XML
Schema

Table 7–2 lists the example files and directories supplied in $ORACLE_HOME:

See Also:

■ Appendix A, "XDK for Java: Specifications and Quick

References"

■ Oracle9i XML API Reference - XDK and Oracle XML DB

Table 7–2 XML Class Generator for Java Example Files

Example File Description

Makefile Makefile used to compile and run the demo in Unix.

Make.bat Makefile used to compile and run the demo in Windows

[DTD object]
New DTD

ClassGenerator()

generate()

Java
classes

Available properties include:
· setGenerateComments()
 [default = TRUE]
· setJavaPackage(vector)
 [default = no package]
· setOutputDirectory(String)
 [default = current directory]
· setSerializationMode(boolean)
· setValidationMode(boolean)

Use these to
build your
XML
document

XML Class Generator for Java
XML Class Generator for Java 7-9

Examples Using XML Java Class Generator with DTDs and XML Schema
Running XML Class Generator for Java: DTD Examples
To run the XML Class Generator for Java DTD sample programs, use;

make target 'dtd '

then follow these steps:

1. Compile and run SampleMain to generate the Java source files, using the

commands:

javac SampleMain.java
java SampleMain -root WIDL Widl.dtd

or

java SampleMain Widl.xml

2. Set the CLASSPATH to contain 'classgen.jar', 'xmlparser.jar', and the current

directory.

SampleMain.java Sample application to generate Java source files based on a
DTD.

Widl.dtd Sample DTD.

Widl.xml Sample XML file based on Widl.dtd.

TestWidl.java Sample application to construct an XML document using the
Java source files generated by SampleMain.

car.xsd Sample XML Schema

CarDealer.java Sample application to construct an XML document using the
java source generated from car.xsd.

book.xsd Sample XML Schema

BookCatalogue.java Sample application to construct an XML document using the
Java sources generated from book.xsd

po.xsd Sample XML Schema

TestPo.java Sample application to construct an XML document using the
Java sources generated from po.xsd.

Table 7–2 XML Class Generator for Java Example Files (Cont.)

Example File Description
7-10 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
3. Compile the Java source files generated by SampleMain, that is., BINDING.java,

CONDITION.java, REGION.java, SERVICE.java, VARIABLE.java, and

WIDL.java, using the command:

javac *.java

4. Run the test application to print the XML Document using the commands:

javac TestWidl.java
java TestWidl

The output is stored in Widl_out.txt

Running XML Class Generator for Java: XML Schema Examples
To run the XML Class Generator for Java Schema sample programs, use:

make target 'schema'

There are three Schema samples: car.xsd, book.xsd, po.xsd

The classes are generated using oracg utility. For example, the classes

corresponding to car.xsd can be generated from the command line:

oracg -c -s car.xsd -p package1

The classes are generated in the directory, package1.

When Makefile is used to run the schema class generator demo:

■ Classes corresponding to car.xsd are generated in directory package1. Demo

program, CarDealer.java, tests the generated classes. The output of

CarDealer.java is stored in file, car_out.txt.

■ Classes corresponding to book.xsd are generated in directory package2. Demo

program BookCatalogue.java tests the generated classes. The output is stored in

the file, book_out.txt.

■ Classes corresponding to po.xsd are generated in directory package3. Demo

program TestPo.java tests the generated classes. The output is stored in the file

po_out.txt

The following Class Generator using DTD examples are included here:

■ XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java

■ XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
XML Class Generator for Java 7-11

Examples Using XML Java Class Generator with DTDs and XML Schema
■ XML Class Generator for Java, DTD Example 1c: Input — widl.xml

■ XML Class Generator for Java, DTD Example 1d: TestWidl.java

■ XML Class Generator for Java, DTD Example 1e: XML Output — widl.out

XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java
/**
 * This program generates the classes for a given DTD using
 * XML DTD Class Generator. A DTD file or an XML document which is
 * DTD compliant is given as input parameters to this application.
 */

import java.io.File;
import java.net.URL;
import oracle.xml.parser.v2.DOMParser;
import oracle.xml.parser.v2.DTD;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.classgen.DTDClassGenerator;

public class SampleMain
{

 public SampleMain()
 {
 }

 public static void main (String args[])
 {
 // Validate the input arguments
 if (args.length < 1)
 {
 System.out.println("Usage: java SampleMain "+
 "[-root <rootName>] <fileName>");
 System.out.println("fileName\t Input file, XML document or " +
 "external DTD file");
 System.out.println("-root <rootName> Name of the root Element " +
 "(required if the input file is an external DTD)");
 return ;
 }

 // ty to open the XML Document or the External DTD File
 try
 {
7-12 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 // Instantiate the parser
 DOMParser parser = new DOMParser();
 XMLDocument doc = null;
 DTD dtd = null;

 if (args.length == 3)
 {
 parser.parseDTD(fileToURL(args[2]), args[1]);
 dtd = (DTD)parser.getDoctype();
 }
 else
 {
 parser.setValidationMode(true);
 parser.parse(fileToURL(args[0]));
 doc = parser.getDocument();
 dtd = (DTD)doc.getDoctype();
 }

 String doctype_name = null;

 if (args.length == 3)
 {
 doctype_name = args[1];
 }
 else
 {
 // get the Root Element name from the XMLDocument
 doctype_name = doc.getDocumentElement().getTagName();
 }

 // generate the Java files...
 DTDClassGenerator generator = new DTDClassGenerator();

 // set generate comments to true
 generator.setGenerateComments(true);

 // set output directory
 generator.setOutputDirectory(".");

 // set validating mode to true
 generator.setValidationMode(true);

 // generate java src
 generator.generate(dtd, doctype_name);
XML Class Generator for Java 7-13

Examples Using XML Java Class Generator with DTDs and XML Schema
 }
 catch (Exception e)
 {
 System.out.println ("XML Class Generator: Error " + e.toString());
 e.printStackTrace();
 }
 }

 static public URL fileToURL(String sfile)
 {
 File file = new File(sfile);
 String path = file.getAbsolutePath();
 String fSep = System.getProperty("file.separator");
 if (fSep != null && fSep.length() == 1)
 path = path.replace(fSep.charAt(0), '/');
 if (path.length() > 0 && path.charAt(0) != '/')
 path = '/' + path;
 try
 {
 return new URL("file", null, path);
 }
 catch (java.net.MalformedURLException e)
 {
 // According to the spec this could only happen if the file
 // protocol were not recognized.
 throw new Error("unexpected MalformedURLException");
 }
 }
}

XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
The following example, widl.dtd , is the DTD file used by SampleMain.java.

<!ELEMENT WIDL (SERVICE | BINDING)* >
<!ATTLIST WIDL
 NAME CDATA #IMPLIED
 VERSION (1.0 | 2.0 | ...) "2.0"
 BASEURL CDATA #IMPLIED
 OBJMODEL (wmdom | ...) "wmdom"
>

<!ELEMENT SERVICE EMPTY>
<!ATTLIST SERVICE
 NAME CDATA #REQUIRED
7-14 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 URL CDATA #REQUIRED
 METHOD (Get | Post) "Get"
 INPUT CDATA #IMPLIED
 OUTPUT CDATA #IMPLIED
>

<!ELEMENT BINDING (VARIABLE | CONDITION | REGION)* >
<!ATTLIST BINDING
 NAME CDATA #REQUIRED
 TYPE (Input | Output) "Output"
>

<!ELEMENT VARIABLE EMPTY>
<!ATTLIST VARIABLE
 NAME CDATA #REQUIRED
 TYPE (String | String1 | String2) "String"
 USAGE (Function | Header | Internal) "Function"
 VALUE CDATA #IMPLIED
 MASK CDATA #IMPLIED
 NULLOK (True | False) #REQUIRED
>

<!ELEMENT CONDITION EMPTY>
<!ATTLIST CONDITION
 TYPE (Success | Failure | Retry) "Success"
 REF CDATA #REQUIRED
 MATCH CDATA #REQUIRED
 SERVICE CDATA #IMPLIED
>

<!ELEMENT REGION EMPTY>
<!ATTLIST REGION
 NAME CDATA #REQUIRED
 START CDATA #REQUIRED
 END CDATA #REQUIRED
>

XML Class Generator for Java, DTD Example 1c: Input — widl.xml
This XML file inputs SampleMain.java and is based on widl.dtd:

<?xml version="1.0"?>
<!DOCTYPE WIDL SYSTEM "Widl.dtd">
<WIDL>
 <SERVICE NAME="sname" URL="surl"/>
XML Class Generator for Java 7-15

Examples Using XML Java Class Generator with DTDs and XML Schema
 <BINDING NAME="bname"/>
</WIDL>

XML Class Generator for Java, DTD Example 1d: TestWidl.java
TestWidl.java constructs an XML document using the Java source files generated by

SampleMain.java.

/**
 * This is a sample application program which is built using the
 * classes generated by the XML DTD Class Generator. The External DTD
 * File "Widl.dtd" or the XML document which "Widl.xml" which is compliant
 * to Widl.dtd is used to generate the classes. The application
 * SampleMain.java is used to generate the classes which takes the DTD
 * or XML document as input parameters to generate classes.
 */

import oracle.xml.classgen.CGNode;
import oracle.xml.classgen.CGDocument;
import oracle.xml.classgen.DTDClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.DTD;

public class TestWidl
{
 public static void main (String args[])
 {
 try
 {
 WIDL w1 = new WIDL();
 DTD dtd = w1.getDTDNode();

 w1.setNAME("WIDL1");
 w1.setVERSION(WIDL.VERSION_1_0);

 SERVICE s1 = new SERVICE("Service1", "Service_URL");
 s1.setINPUT("File");
 s1.setOUTPUT("File");

 BINDING b1 = new BINDING("Binding1");
 b1.setTYPE(BINDING.TYPE_INPUT);

 BINDING b2 = new BINDING("Binding2");
 b2.setTYPE(BINDING.TYPE_OUTPUT);
7-16 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 VARIABLE v1 = new VARIABLE("Variable1", VARIABLE.NULLOK_FALSE);
 v1.setTYPE(VARIABLE.TYPE_STRING);
 v1.setUSAGE(VARIABLE.USAGE_INTERNAL);
 v1.setVALUE("value");

 VARIABLE v2 = new VARIABLE("Variable2", VARIABLE.NULLOK_TRUE);
 v2.setTYPE(VARIABLE.TYPE_STRING1);
 v2.setUSAGE(VARIABLE.USAGE_HEADER);

 VARIABLE v3 = new VARIABLE("Variable3", VARIABLE.NULLOK_FALSE);
 v3.setTYPE(VARIABLE.TYPE_STRING2);
 v3.setUSAGE(VARIABLE.USAGE_FUNCTION);
 v3.setMASK("mask");

 CONDITION c1 = new CONDITION("CRef1", "CMatch1");
 c1.setSERVICE("Service1");
 c1.setTYPE(CONDITION.TYPE_SUCCESS);

 CONDITION c2 = new CONDITION("CRef2", "CMatch2");
 c2.setTYPE(CONDITION.TYPE_RETRY);

 CONDITION c3 = new CONDITION("CRef3", "CMatch3");
 c3.setSERVICE("Service3");
 c3.setTYPE(CONDITION.TYPE_FAILURE);

 REGION r1 = new REGION("Region1", "Start", "End");

 b1.addNode(r1);
 b1.addNode(v1);
 b1.addNode(c1);
 b1.addNode(v2);

 b2.addNode(c2);
 b2.addNode(v3);

 w1.addNode(s1);
 w1.addNode(b1);
 w1.addNode(b2);
 w1.validateContent();
 w1.print(System.out);
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 e.printStackTrace();
XML Class Generator for Java 7-17

Examples Using XML Java Class Generator with DTDs and XML Schema
 }
 }
}

XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
This XML file, widl.out, is constructed and printed by TestWidl.java.

<?xml version = '1.0' encoding = 'ASCII'?>
<!DOCTYPE WIDL SYSTEM
"file:/oracore/java/xml/ORACORE_MAIN_SOLARIS_990115_XMLCLASSGEN/sample/out/WIDL.
dtd">
<WIDL NAME="WIDL1" VERSION="1.0">
 <SERVICE NAME="Service1" URL="Service_URL" INPUT="File" OUTPUT="File"/>
 <BINDING NAME="Binding1" TYPE="Input">
 <REGION NAME="Region1" START="Start" END="End"/>
 <VARIABLE NAME="Variable1" NULLOK="False" TYPE="String" USAGE="Internal"
VALUE="value"/>
 <CONDITION REF="CRef1" MATCH="CMatch1" SERVICE="Service1" TYPE="Success"/>
 <VARIABLE NAME="Variable2" NULLOK="True" TYPE="String1" USAGE="Header"/>
 </BINDING>
 <BINDING NAME="Binding2" TYPE="Output">
 <CONDITION REF="CRef2" MATCH="CMatch2" TYPE="Retry"/>
 <VARIABLE NAME="Variable3" NULLOK="False" TYPE="String2" USAGE="Function"
MASK="mask"/>
 </BINDING>
</WIDL>

The following Class Generator using XML Schema examples are included here

■ XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd

■ XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java

■ XML Class Generator for Java, Schema Example 2a: Schema: book.xsd

■ XML Class Generator for Java, Schema Example 2b: BookCatalogue.java

■ XML Class Generator for Java, Schema Example 3a: Schema: po.xsd

■ XML Class Generator for Java, Schema Example 3b: Application: TestPo.java

XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd
This sample, car.xsd, is used in an oracg command to generate classes. These

classes inputs the program, CarDealer.java, which then creates an XML document.

The command used is:
7-18 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
oracg -c -s car.xsd -p package1

See the comments about how this is used, in:

■ "XML Class Generator for Java, Schema Example 1b: Application,

CarDealer.java" on page 7-20

■ "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0" encoding="ISO-8859-1"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
targetNamespace = "http://www.CarDealers.com/" elementFormDefault="qualified">
<element name="Car">
 <complexType>
 <element name="Model">
 <simpleType base="string">
 <enumeration value = "Ford"/>
 <enumeration value = "Saab"/>
 <enumeration value = "Audi"/>
 </simpleType>
 </element>
 <element name="Make">
 <simpleType base="string">
 <minLength value = "1"/>
 <maxLength value = "30"/>
 </simpleType>
 </element>
 <element name="Year">
 <complexType content="mixed">
 <attribute name="PreviouslyOwned" type="string" use="required"/>
 <attribute name="YearsOwned" type="integer" use="optional"/>
 </complexType>
 </element>
 <element name="OwnerName" type="string" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="Condition">
 <complexType base="string" derivedBy="extension">
 <attribute name="Automatic">
 <simpleType base="string">
 <enumeration value = "Yes"/>
 <enumeration value = "No"/>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 <element name="Mileage">
XML Class Generator for Java 7-19

Examples Using XML Java Class Generator with DTDs and XML Schema
 <simpleType base="integer">
 <minInclusive value="0"/>
 <maxInclusive value="20000"/>
 </simpleType>
 </element>
 <attribute name="RequestDate" type="date"/>
 </complexType>
 </element>
</schema>

XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
/**
 * This is a sample application program that creates an XMl document. It is
 * built using the classes generated by XML Schema Class Generator. XML
 * Schema "car.xsd", is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package1 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s car.xsd -p package1
 */

import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;

import package1.*;

public class CarDealer
{
 static OutputStream output = System.out;
 static XMLOutputStream out = new XMLOutputStream(output);

 public static void main(String args[])
 {
 CarDealer cardealer = new CarDealer();
 try
 {
 Car.Car_Type ctype = new Car.Car_Type();
 ctype.setRequestDate("02-09-00");
 Car.Car_Type.Model model = new Car.Car_Type.Model();
 Car.Car_Type.Model.Model_Type modelType =
 new Car.Car_Type.Model.Model_Type("Ford");
7-20 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 model.setType(modelType);
 ctype.addModel(model);

 Car.Car_Type.Make make = new Car.Car_Type.Make();
 Car.Car_Type.Make.Make_Type makeType =
 new Car.Car_Type.Make.Make_Type("F150");
 make.setType(makeType);
 ctype.addMake(make);

 Car.Car_Type.Year year = new Car.Car_Type.Year();
 Car.Car_Type.Year.Year_Type yearType =
 new Car.Car_Type.Year.Year_Type();
 yearType.addText("1999");

 year.setType(yearType);
 ctype.addYear(year);

 Car.Car_Type.OwnerName owner1 = new Car.Car_Type.OwnerName();
 owner1.setType("Joe Smith");
 ctype.addOwnerName(owner1);

 Car.Car_Type.OwnerName owner2 = new Car.Car_Type.OwnerName();
 owner2.setType("Bob Smith");
 ctype.addOwnerName(owner2);

 String str = "Small dent on the car's right bumper.";
 Car.Car_Type.Condition condition = new Car.Car_Type.Condition();
 Car.Car_Type.Condition.Condition_Type conditionType =
 new Car.Car_Type.Condition.Condition_Type(str);

 Car.Car_Type.Condition.Condition_Type.Automatic automatic =
 new Car.Car_Type.Condition.Condition_Type.Automatic("Yes");
 conditionType.setAutomatic(automatic);

 condition.setType(conditionType);
 ctype.addCondition(condition);

 Car.Car_Type.Mileage mileage = new Car.Car_Type.Mileage();
 Car.Car_Type.Mileage.Mileage_Type mileageType =
 new Car.Car_Type.Mileage.Mileage_Type("10000");
 mileage.setType(mileageType);
 ctype.addMileage(mileage);

 Car car = new Car();
 car.setType(ctype);
XML Class Generator for Java 7-21

Examples Using XML Java Class Generator with DTDs and XML Schema
 car.print(out);

 out.writeNewLine();
 out.flush();
 }
 catch(InvalidContentException e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

XML Class Generator for Java, Schema Example 2a: Schema: book.xsd
This sample schema, book.xsd, is used in an oracg command to generate classes.

The classes then input the program, CarDealer.java, which creates an XML

document. The oracg command is:

oracg -c -s book.xsd -p package2

See the comments about how this is used, in:

■ "XML Class Generator for Java, Schema Example 2b: BookCatalogue.java" on

page 7-23

■ "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
 targetNamespace = "http://www.somewhere.org/BookCatalogue"
 xmlns:cat = "http://www.somewhere.org/BookCatalogue"
 elementFormDefault="qualified">

 <complexType name="Pub">
 <sequence>
 <element name="Title" type="cat:titleType" maxOccurs="*"/>
 <element name="Author" type="string" maxOccurs="*"/>
 <element name="Date" type="date"/>
 </sequence>
7-22 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 <attribute name="language" type="string" use="default" value="English"/>
 </complexType>

 <complexType name="titleType" base="string" derivedBy="extension">
 <attribute name="old" type="string" use="default" value="false"/>
 </complexType>

 <element name="Catalogue" type="cat:Pub"/>
</schema>

XML Class Generator for Java, Schema Example 2b: BookCatalogue.java
/**
 * This is a sample application program built using the
 * classes generated by XML Schema Class Generator. XML
 * Schema "book.xsd" is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package2 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s book.xsd -p package2
 */

import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;

import package2.*;

public class BookCatalogue
{
 static OutputStream output = System.out;
 static XMLOutputStream out = new XMLOutputStream(output);

 public static void main(String args[])
 {
 BookCatalogue bookCatalogue = new BookCatalogue();
 try
 {
 Pub pubType = new Pub();

 TitleType titleType = new TitleType("Natural Health");
 titleType.setOld("true");
XML Class Generator for Java 7-23

Examples Using XML Java Class Generator with DTDs and XML Schema
 Pub.Title title = new Pub.Title();
 title.setType(titleType);
 pubType.addTitle(title);

 Pub.Author author = new Pub.Author();
 author.setType("Richard> Bach");
 pubType.addAuthor(author);

 Pub.Date date = new Pub.Date();
 date.setType("1977");
 pubType.addDate(date);
 pubType.setLanguage("English");

 Catalogue catalogue = new Catalogue();
 catalogue.setType(pubType);

 catalogue.print(out);
 out.writeNewLine();
 out.flush();
 }
 catch(InvalidContentException e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

XML Class Generator for Java, Schema Example 3a: Schema: po.xsd
This sample schema, po.xsd, is used in an oracg command to generate classes. The

classes then input the program, TestPo.java, which creates an XML document. The

oracg command used is:

oracg -c -s po.xsd -p package3

See the comments about how this is used, in:
7-24 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
■ "XML Class Generator for Java, Schema Example 3b: Application: TestPo.java"

on page 7-26

■ "Running XML Class Generator for Java: XML Schema Examples" on page 7-11

<?xml version="1.0" encoding="ISO-8859-1"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
 targetNamespace = "http://www.somewhere.org/PurchaseOrder"
 xmlns:po = "http://www.somewhere.org/PurchaseOrder">

<element name="comment" type="string"/>

<element name="PurchaseOrder">
 <complexType>
 <element name="shipTo" type="po:Address"/>
 <element name="billTo" type="po:Address"/>
 <element ref="po:comment" minOccurs="0"/>
 <element name="items" type="po:Items"/>
 <attribute name="orderDate" type="date"/>
 <attribute name="shipDate" type="date"/>
 <attribute name="receiveDate" type="date"/>
 </complexType>
</element>

<complexType name="Address">
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="zip" type="decimal"/>
 <attribute name="country" type="NMTOKEN"
 use="fixed" value="US"/>
</complexType>

<complexType name="Items">
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <element name="productName" type="string"/>
 <element name="quantity" type="int"/>
 <element name="price" type="decimal"/>
 <element name="shipDate" type="date" minOccurs='0'/>
 <attribute name="partNum" type="string"/>
 </complexType>
 </element>
</complexType>
XML Class Generator for Java 7-25

Examples Using XML Java Class Generator with DTDs and XML Schema
</schema>

XML Class Generator for Java, Schema Example 3b: Application: TestPo.java
/**
 * This is a sample application program which is built using the
 * classes generated by XML Schema Class Generator. XML
 * Schema "po.xsd" is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package3 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s po.xsd -p package3
 */

import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;
import package3.*;

public class TestPo
{
 static OutputStream output = System.out;
 static XMLOutputStream out = new XMLOutputStream(output);

 public static void main (String args[])
 {
 TestPo testpo = new TestPo();
 try
 {
 // Create Purchase Order
 PurchaseOrder po = new PurchaseOrder();

 // Create Purchase Order Type
 PurchaseOrder.PurchaseOrder_Type poType =
 new PurchaseOrder.PurchaseOrder_Type();

 // Set purchase order date
 poType.setOrderDate("December 17, 2000");
 poType.setShipDate("December 19, 2000");
 poType.setReceiveDate("December 21, 2000");

 // Create a PurchaseOrder shipTo item
7-26 Oracle9i XML Developer’s Kits Guide - XDK

Examples Using XML Java Class Generator with DTDs and XML Schema
 PurchaseOrder.PurchaseOrder_Type.ShipTo shipTo =
 new PurchaseOrder.PurchaseOrder_Type.ShipTo();

 // Create Address
 Address address = new Address();

 // Create the Name for the address and add
 // it to addresss
 Address.Name name = new Address.Name();
 name.setType("Mary Smith");
 address.addName(name);

 // Create the Stree name for the address and add
 // it to the address
 Address.Street street = new Address.Street();
 street.setType("Laurie Meadows");
 address.addStreet(street);

 // Create the city name for the address and add
 // it to the address
 Address.City city = new Address.City();
 city.setType("San Mateo");
 address.addCity(city);

 // Create the zip name for the address and add
 // it to the address
 Address.Zip zip = new Address.Zip();
 zip.setType(new Double("11208"));
 address.addZip(zip);

 // Set the address of the shipTo object
 shipTo.setType(address);
 // Add the shipTo to the Purchase Type object
 poType.addShipTo(shipTo);

 // Create a Purchase Order BillTo item
 PurchaseOrder.PurchaseOrder_Type.BillTo billTo =
 new PurchaseOrder.PurchaseOrder_Type.BillTo();

 // Create a billing Address
 Address billingAddress = new Address();

 // Create the name for billing address, set the
 // name and add it to the billing address
 Address.Name name1 = new Address.Name();
XML Class Generator for Java 7-27

Examples Using XML Java Class Generator with DTDs and XML Schema
 name1.setType("John Smith");
 billingAddress.addName(name1);

 // Create the street name for the billing address,
 // set the street name value and add it to the
 // billing address
 Address.Street street1 = new Address.Street();
 street1.setType("No 1. North Broadway");
 billingAddress.addStreet(street1);

 // Create the City name for the address, set the
 // city name value and add it to the billing address
 Address.City city1 = new Address.City();
 city1.setType("New York");
 billingAddress.addCity(city1);

 // Create the Zip for the address, set the zip
 // value and add it to the billing address.
 Address.Zip zip1 = new Address.Zip();
 zip1.setType(new Double("10006"));
 billingAddress.addZip(zip1);

 // Set the type of the billTo object to billingAddress
 billTo.setType(billingAddress);

 // Add the billing address to the PurchaseOrder type
 poType.addBillTo(billTo);

 PurchaseOrder.PurchaseOrder_Type.Items pItem =
 new PurchaseOrder.PurchaseOrder_Type.Items();

 Items items = new Items();
 Items.Item item = new Items.Item();
 Items.Item.Item_Type itemType = new Items.Item.Item_Type();

 Items.Item.Item_Type.ProductName pname =
 new Items.Item.Item_Type.ProductName();
 pname.setType("Perfume");
 itemType.addProductName(pname);

 Items.Item.Item_Type.Quantity qty =
 new Items.Item.Item_Type.Quantity();
 qty.setType(new Integer("1"));
 itemType.addQuantity(qty);
7-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the Class Generator for Java
 Items.Item.Item_Type.Price price =
 new Items.Item.Item_Type.Price();
 price.setType(new Double("69.99"));
 itemType.addPrice(price);

 Items.Item.Item_Type.ShipDate sdate =
 new Items.Item.Item_Type.ShipDate();
 sdate.setType("Feb 14. 2000");
 itemType.addShipDate(sdate);

 itemType.setPartNum("ITMZ411");

 item.setType(itemType);
 items.addItem(item);

 pItem.setType(items);

 poType.addItems(pItem);

 // Set the type of the Purchase Order object to
 // Purchase Order Type
 po.setType(poType);
 po.print(out);

 out.writeNewLine();
 out.flush();
 }
 catch (InvalidContentException e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 e.printStackTrace();
 }
 }
}

Frequently Asked Questions About the Class Generator for Java
This section lists XML Java Class Generator questions and answers.
XML Class Generator for Java 7-29

Frequently Asked Questions About the Class Generator for Java
How Do I Install the XML Class Generator for Java?
Answer: The Class Generator is packaged as part of the XDK and so you do not

have to download it separately. The CLASSPATH should be set to include

classgen.jar , xmlparserv2.jar , and xschema.jar which are located in the

lib/ directory and not in the bin/ directory.

What Does the XML Class Generator for Java Do?
What does the XML Class Generator for Java do? How do I use it to get XML data?

Answer: The XML Class Generator for Java creates Java source files from an XML

DTD. This is useful when you need an application to send an XML message to

another application based on an agreed-upon DTD or as the back end of a Web form

to construct an XML document. Using these classes, Java applications can construct,

validate, and print XML documents that comply with the input DTD. The Class

Generator works in conjunction with the Oracle XML Parser for Java version 2,

which parses the DTD and passes the parsed document to the class generator.

To get XML data, first, get the data from the database using JDBC ResultSets. Then,

instantiate objects using the classes generated by the XML Class Generator.

Which DTDs Are Supported?
Does XML Java Class Generator support any kind of DTD?

Answer: Yes, it supports any kind of DTD that is XML 1.0 compliant.

Why Do I Get a "Classes Not Found" Error?
Why do I get a "Class Not Found" error when running XML Class Generator

samples?

Answer: Correct your CLASSPATHto include classgen.jar , xmlparserv2.jar ,

and xschema.jar .

In XML Class Generator, How Do I Create the Root Object More Than Once?
I generated, from a DTD, a set of Java classes with the Class Generator. Since then,

I’ve tried to create a Java application that uses these classes to create an XML file

from data passed as arguments. I cannot create the root object, the object derived

from CGDocument, more than one time because I obtain the following error

message:
7-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the Class Generator for Java
oracle.xml.parser.XMLDOMException: Node doesn’t belong to the current document

How do I handle the star operator (*)? When the application starts I do not know

how many times the element will appear. Thus I do not build a static loop where I

make a sequence of element.addNode() . The problem is that some of these will

be empty and I will obtain an XML document with a set of empty elements with

empty attributes.

Answer: You can create subsequent XML docs by calling the constructor each time.

A well-formed XML document is not permitted to have more than one root node,

therefore you cannot use the star operator (*) on the element you are designating as

the document root.

How Can I Create XML Files from Scratch Using the DOM API?
I want to create an XML file using the DOM API. I do not want to create the XML

file by typing in the text editor:

<xml>
 <future>is great</future>
</xml>

Instead, I want to create it using the DOM API. There are several examples of

manipulating an XML file using the DOM once there is an input file, but not the

other way round. That is, of creating the XML file from scratch (when there is no

input file) using the DOM, once you know the tagnames and their values.

Answer: The simplest way is download XML Class Generator for Java and give it a

DTD of the XML document you want. It will create the DOM classes to

programmatically create XML documents. There are samples included with the

software.

Can I Create an XML Document in a Java Class?
I need to create an XML document in a Java class as follows

<?xml version = '1.0' encoding = 'WINDOWS-1252'?>
 <root>
 <listing>
 <one> test </one>
 <two> test </two>
 </listing>
 </root>
XML Class Generator for Java 7-31

Frequently Asked Questions About the Class Generator for Java
Can I use the XMLDocument class to create an XML document? I know about the

XML SQL Utility, but that only creates XML based on SQL queries, which is not

what I am after on this occasion. Do you have an example of how to do this?

Answer: The XML Class Generator, available as part of the Oracle XDK for Java,

does the job nicely. The XDKs are also available with Oracle9i and Oracle9i
Application Server products. The Class Generator generates Java classes for each

element in your DTD. These classes can then be used to dynamically construct an

XML document at runtime. The Class Generator download contains sample code.
7-32 Oracle9i XML Developer’s Kits Guide - XDK

XML SQL Ut
8

XML SQL Utility (XSU)

This chapter contains the following sections:

■ What Is XML SQL Utility (XSU)?

■ XSU Dependencies and Installation

■ XML SQL Utility and the Bigger Picture

■ SQL-to-XML and XML-to-SQL Mapping Primer

■ How XML SQL Utility Works

■ Using the XSU Command Line Front End, OracleXML

■ XSU Java API

■ Generating XML with XSU’s OracleXMLQuery

■ Paginating Results: skipRows and maxRows

■ Generating XML from ResultSet Objects

■ Raising No Rows Exception

■ Storing XML Back in the Database Using XSU OracleXMLSave

■ Insert Processing Using XSU (Java API)

■ Update Processing Using XSU (Java API)

■ Delete Processing Using XSU (Java API)

■ Advanced XSU Usage Techniques

■ Frequently Asked Questions About XML SQL Utility (XSU)
ility (XSU) 8-1

What Is XML SQL Utility (XSU)?
What Is XML SQL Utility (XSU)?
XML has become the format for data interchange. At the same time, a substantial

amount of business data resides in object-relational databases. It is therefore

necessary to have the ability to transform this relational data to XML.

XML SQL Utility (XSU) enables you to do this as follows:

■ XSU can transform data retrieved from object-relational database tables or

views into XML.

■ XSU can extract data from an XML document, and using a canonical mapping,

insert the data into appropriate columns or attributes of a table or a view.

■ XSU can extract data from an XML document and apply this data to updating

or deleting values of the appropriate columns or attributes.

Generating XML from the Database
For example, on the XML generation side, when given the query SELECT * FROM
emp, XSU queries the database and returns the results as the following XML

document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>Smith</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

Storing XML in the Database
Going the other way, given the XML document preceding, XSU can extract the data

from it and insert it into the scott.emp table in the database.

Accessing XSU Functionality
XML SQL Utility functionality can be accessed in the following ways:
8-2 Oracle9i XML Developer’s Kits Guide - XDK

What Is XML SQL Utility (XSU)?
■ Through a Java API

■ Through a PL/SQL API

■ Through a Java command line front end

XSU Features
XSU can perform the following tasks:

■ Generate XML documents from any SQL query. XSU virtually supports all the

datatypes supported in the Oracle9i database server.

■ Dynamically generate DTDs (Document Type Definitions).

■ During generation, perform simple transformations, such as modifying default

tag names for the ROW element. You can also register an XSL transformation

which is then applied to the generated XML documents as needed.

■ Generate XML documents in their string or DOM representations.

■ Insert XML into database tables or views. XSU can also update or delete records

records from a database object, given an XML document.

■ Easily generate complex nested XML documents. XSU can also store them in

relational tables by creating object views over the flat tables and querying over

these views. Object views can create structured data from existing relational

data using Oracle8i and Oracle9i’s object-relational infrastructure.

XSU Oracle9 i New Features
 Starting in Oracle9i, XSU can also perform the following tasks:

■ Generates XML Schema given an SQL Query.

■ Generates XML as a stream of SAX2 callbacks.

■ Supports XML attributes during generation. This provides an easy way to

specify that a particular column or group of columns should be mapped to an

XML attribute instead of an XML element.

■ SQL identifier to XML identifier escaping. Sometimes column names are not

valid XML tag names. To avoid this you can either alias all the column names or

turn on tag escaping.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB
XML SQL Utility (XSU) 8-3

XSU Dependencies and Installation
XSU Supports XMLType
From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is

useful if, for example, you have XMLType columns in objects or tables.

XSU Dependencies and Installation

Dependencies
XML SQL Utility (XSU) needs the following components:

■ Database connectivity -- JDBC drivers. XSU can work with any JDBC driver

but is optimized for Oracle JDBC drivers. Oracle does not make any guarantee

or provide support for the XSU running against non-Oracle databases.

■ XML Parser -- Oracle XML Parser, Version2. Oracle XML Parser, version 2 is

included in Oracle8i and Oracle9i, and is also available as part of the XSU install

(XDK for Java) downloadable from the Oracle Technology Network (OTN) Web

site.

Installation
XML SQL Utility (XSU) is packaged with Oracle8i (8.1.7 and later) and Oracle9i.
XSU is made up of three files:

■ $ORACLE_HOME/rdbms/jlib/xsu12.jar -- Contains all the Java classes

which make up XSU. xsu12 requires JDK1.2.x and JDBC2.x . This is the

XSU version loaded into Oracle9i.

■ $ORACLE_HOME/rdbms/jlib/xsu111.jar -- Contains the same classes as

xsu12.jar, except that xsu111 requires JDK1.1.x and JDBC1.x .

Note: Oracle9i introduced the DBMS_XMLGen PL/SQL supplied

package. This package provides the functionality previously

available with DBMS_XMLQuery. DBMS_XMLGenis built into the

database code, hence, it provides better performance.

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB, in particular, the chapter on Generating XML, for examples on using
XSU with XMLType.
8-4 Oracle9i XML Developer’s Kits Guide - XDK

XML SQL Utility and the Bigger Picture
■ $ORACLE_HOME/rdbms/admin/dbmsxsu.sql -- This is the SQL script that

builds the XSU PL/SQL API. xsu12.jar needs to be loaded into the database

before dbmsxsu.sql is executed.

By default the Oracle9i installer installs XSU on the hard drive in the locations

specified earlier. It also loads it into the database.

If during initial installation you choose to not install XSU, you can install it later, but

the installation becomes less simple. To install XSU later, first install XSU and its

dependent components on your system. You can accomplish this using Oracle

Installer. Next perform the following steps:

1. If you have not yet loaded XML Parser for Java in the database, go to

$ORACLE_HOME/xdk/lib . Here you will find xmlparserv2.jar that you

need to load into the database. To do this, see “Loading JAVA Classes” in the

Oracle9i Java Stored Procedures Developer’s Guide

2. Go to $ORACLE_HOME/admin and run catxsu.sql

XML SQL Utility and the Bigger Picture
XML SQL Utility (XSU) is written in Java, and can live in any tier that supports

Java.

XML SQL Utility in the Database
The Java classes which make up XSU can be loaded into Java-enabled Oracle8i or

later. Also, XSU contains a PL/SQL wrapper that publishes the XSU Java API to

PL/SQL, creating a PL/SQL API. This way you can:

■ Write new Java applications that run inside the database and that can directly

access the XSU Java API

■ Write PL/SQL applications that access XSU through its PL/SQL API

■ Access XSU functionality directly through SQL

Note: XML SQL Utility (XSU) is part of the XDK for Java and is

also available on OTN at: http://otn.oracle.com/tech/xml

Note: To load and run Java code inside the database you need a

Java-enabled Oracle8i or later server.
XML SQL Utility (XSU) 8-5

XML SQL Utility and the Bigger Picture
Figure 8–1 shows the typical architecture for such a system. XML generated from

XSU running in the database, can be placed in advanced queues in the database to

be queued to other systems or clients. The XML can be used from within stored

procedures in the database or shipped outside through web servers or application

servers.

Figure 8–1 Running XML SQL Utility in the Database

XML SQL Utility in the Middle Tier
Your application architecture may need to use an application server in the middle

tier, separate from the database. The application tier can be an Oracle database,

Oracle9i Application Server, or a third party application server that supports Java

programs.

Note: In Figure 8–1, all lines are bi-directional. Since XSU can

generate as well as save data, data can come from various sources to

XSU running inside the database, and can be put back in the

appropriate database tables.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application
Server

Internet
SQL
Tables
and
Views

Advanced
Queuing
(AQ) Application

Logic

XML SQL Utility
(Java / PL/SQL)

XML*

XML*

Oracle9 i

User

XML*XML*XML*

* XML, HTML,
 XHTML, VML, . . .
8-6 Oracle9i XML Developer’s Kits Guide - XDK

XML SQL Utility and the Bigger Picture
You may want to generate XML in the middle tier, from SQL queries or ResultSets,

for various reasons. For example, to integrate different JDBC data sources in the

middle tier. In this case you could install the XSU in your middle tier and your Java

programs could make use of XSU through its Java API.

Figure 8–2, shows how a typical architecture for running XSU in a middle tier. In

the middle tier, data from JDBC sources is converted by XSU into XML and then

sent to Web servers or other systems. Again, the whole process is bi-directional and

the data can be put back into the JDBC sources (database tables or views) using

XSU. If an Oracle database itself is used as the application server, then you can also

use the PL/SQL front-end instead of Java.

Figure 8–2 Running XML SQL Utility in the MIddle Tier

XML SQL Utility in a Web Server
XSU can live in the Web server, as long as the Web server supports Java servlets.

This way you can write Java servlets that use XSU to accomplish their task.

XSQL servlet does just this. XSQL servlet is a standard servlet provided by Oracle.

It is built on top of XSU and provides a template-like interface to XSU functionality.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application Server
or
Oracle9 i (Java or
PL/SQL front end)

InternetSQL
Tables
and
Views

Application
Logic

XML SQL Utility
(Java)

XML*

Any
Database

User

SQL data
(via JDBC) XML*XML*

* XML, HTML,
 XHTML, VML, . . .
XML SQL Utility (XSU) 8-7

SQL-to-XML and XML-to-SQL Mapping Primer
If XML processing in the Web server is your goal, you should probably use the

XSQL servlet, as it will spare you from the intricate servlet programming.

Figure 8–3 Running XML SQL Utility in a Web Server

XML SQL Utility in the Client Tier
XML SQL Utility can be also installed on a client system, where you can write Java

programs that use XSU. You can also use XSU directly through its command line

front end.

SQL-to-XML and XML-to-SQL Mapping Primer
As described earlier, XML SQL Utility transforms data retrieved from

object-relational database tables or views into XML. XSU can also extract data from

an XML document, and using a specified mapping, insert the data into appropriate

columns or attributes of a table or a view in the database. This section describes the

canonical mapping or transformation used to go from SQL to XML or vice versa.

Default SQL-to-XML Mapping
Consider table emp:

CREATE TABLE emp
(
 EMPNO NUMBER,

See: Chapter 9, "XSQL Pages Publishing Framework" for

information about using XSQL Servlet.

Web Server
(running Servlets)

InternetSQL
Tables
and
Views

Servlets
(XSQL servlets)

XML SQL Utility
(Java)

Any
Database

User

SQL data
(via JDBC) XML*

* XML, HTML,
 XHTML, VML, . . .
8-8 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer
 ENAME VARCHAR2(20),
 JOB VARCHAR2(20),
 MGR NUMBER,
 HIREDATE DATE,
 SAL NUMBER,
 DEPTNO NUMBER
);

XSU can generate the following XML document by specifying the query, select *
from emp :

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>Smith</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

In the generated XML, the rows returned by the SQL query are enclosed in a

ROWSET tag to constitute the <ROWSET> element. This element is also the root

element of the generated XML document.

■ The <ROWSET> element contains one or more <ROW>elements.

■ Each of the <ROW> elements contain the data from one of the returned database

table rows. Specifically, each <ROW> element contains one or more elements

whose names and content are those of the database columns specified in the

SELECT list of the SQL query.

■ These elements, corresponding to database columns, contain the data from the

columns.

SQL-to-XML Mapping Against Object-Relational Schema
Next we describe this mapping but against an object-relational schema. Consider

the following type, AddressType . Its an object type whose attributes are all scalar

types and is created as follows:

CREATE TYPE AddressType AS OBJECT (
XML SQL Utility (XSU) 8-9

SQL-to-XML and XML-to-SQL Mapping Primer
 STREET VARCHAR2(20),
 CITY VARCHAR2(20),
 STATE CHAR(2),
 ZIP VARCHAR2(10)
);
/

The following type, EmployeeType , is also an object type but it has an EMPADDR
attribute that is of an object type itself, specifically, AddressType . Employee
Type is created as follows:

CREATE TYPE EmployeeType AS OBJECT
(
 EMPNO NUMBER,
 ENAME VARCHAR2(20),
 SALARY NUMBER,
 EMPADDR AddressType
);
/

The following type, EmployeeListType , is a collection type whose elements are

of the object type, EmployeeType . EmployeeListType is created as follows:

CREATE TYPE EmployeeListType AS TABLE OF EmployeeType;
/

Finally, dept is a table with, among other things, an object type column and a

collection type column -- AddressType and EmployeeListType respectively.

CREATE TABLE dept
(
 DEPTNO NUMBER,
 DEPTNAME VARCHAR2(20),
 DEPTADDR AddressType,
 EMPLIST EmployeeListType
)
NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;

Assume that valid values are stored in table, dept . For the query select * from
dept , XSU generates the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>Sports</DEPTNAME>
8-10 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </DEPTADDR>

<EMPLIST>
 <EMPLIST_ITEM num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>John</ENAME>
 <SALARY>10000</SALARY>
 <EMPADDR>
 <STREET>300 Embarcadero</STREET>
 <CITY>Palo Alto</CITY>
 <STATE>CA</STATE>
 <ZIP>94056</ZIP>
 </EMPADDR>
 </EMPLIST_ITEM>
 <!-- additional employee types within the employee list -->
 </EMPLIST>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

As in the last example, the mapping is canonical, that is, <ROWSET> contains

<ROW>s that contain elements corresponding to the columns. As before, the

elements corresponding to scalar type columns simply contain the data from the

column.

Mapping Complex Type Columns to XML

Things get more complex with elements corresponding to a complex type column.

For example, <DEPTADDR>corresponds to the DEPTADDRcolumn which is of object

type ADDRESS. Consequently, <DEPTADDR>contains subelements corresponding to

the attributes specified in the type ADDRESS. These subelements can contain data or

sub-elements of their own, again depending if the attribute they correspond to is of

a simple or complex type.

Mapping Collections to XML

When dealing with elements corresponding to database collections, things are yet

different. Specifically, the <EMPLIST> element corresponds to the EMPLIST column

which is of a EmployeeListType collection type. Consequently, the <EMPLIST>
XML SQL Utility (XSU) 8-11

SQL-to-XML and XML-to-SQL Mapping Primer
element contains a list of <EMPLIST_ITEM> elements each corresponding to one of

the elements of the collection.

Other observations to make about the preceding mapping are:

■ The <ROW> elements contain a cardinality attribute num.

■ If a particular column or attribute value is null, then for that row, the

corresponding XML element is left out altogether.

■ If a top level scalar column name starts with the at sign (@) character, then the

particular column is mapped to an XML attribute instead of an XML element.

Customizing the Generated XML: Mapping SQL to XML
Often, one needs to generate XML with a specific structure. Since the desired

structure may differ from the default structure of the generated XML document, it is

desirable to have some flexibility in this process. You can customize the structure of

a generated XML document using one of the following methods:

■ "Source Customizations"

■ "Mapping Customizations"

■ "Post-Generation Customizations"

Source Customizations
Source customizations are done by altering the query or database schema. The

simplest and most powerful source customizations include the following:

■ In the database schema, create an object-relational view that maps to the

desired XML document structure.

■ In your query:

■ Use cursor subqueries, or cast-multiset constructs to get nesting in the XML

document which comes from a flat schema.

■ Alias column/attribute names to get the desired XML element names.

■ Alias top level scalar type columns with identifiers which begin with the at

sign (@) to have them map to an XML attribute instead of an XML element.

For example, select empno as “@empno”,... from emp , results in

an XML document where the <ROW> element has an attribute EMPNO.
8-12 Oracle9i XML Developer’s Kits Guide - XDK

SQL-to-XML and XML-to-SQL Mapping Primer
Mapping Customizations
XML SQL Utility enables you to modify the mapping it uses to transform SQL data

into XML. You can make any of the following SQL to XML mapping changes:

■ Change or omit the <ROWSET> tag.

■ Change or omit the <ROW> tag.

■ Change or omit the attribute num. This is the cardinality attribute of the <ROW>
element.

■ Specify the case for the generated XML element names.

■ Specify that XML elements corresponding to elements of a collection, should

have a cardinality attribute.

■ Specify the format for dates in the XML document.

■ Specify that null values in the XML document should be indicated using a

nullness attribute, rather then by omission of the element.

Post-Generation Customizations
Finally, if the desired customizations cannot be achieved with the foregoing

methods, you can write an XSL transformation and register it with XSU. While there

is an XSLT registered with the XSU, XSU can apply the XSLT to any XML it

generates.

Default XML-to-SQL Mapping
XML to SQL mapping is just the reverse of the SQL to XML mapping.

Consider the following differences when mapping from XML to SQL, compared to

mapping from SQL to XML:

■ When going from XML to SQL, the XML attributes are ignored. Thus, there is

really no mapping of XML attributes to SQL.

■ When going from SQL to XML, mapping is performed from the resultset

created by the SQL query to XML. This way the query can span multiple

database tables or views. What gets formed is a single resultset which is then

converted into XML. This is not the case when going from XML to SQL, where:

See Also: "Default SQL-to-XML Mapping" on page 8-8.
XML SQL Utility (XSU) 8-13

How XML SQL Utility Works
■ To insert one XML document into multiple tables or views, you must create

an object-relational view over the target schema.

■ If the view is not updatable, one work around is to use

INSTEAD-OF-INSERT triggers.

If the XML document does not perfectly map into the target database schema, there

are three things you can do:

■ Modify the Target. Create an object-relational view over the target schema, and

make the view the new target.

■ Modify the XML Document. Use XSLT to transform the XML document. The

XSLT can be registered with XSU so that the incoming XML is automatically

transformed, before any mapping attempts are made.

■ Modify XSU’s XML-to-SQL Mapping. You can instruct XSU to perform case

insensitive matching of the XML elements to database columns or attributes.

■ If not the default (ROW), you can tell XSU to use the name of the element

corresponding to a database row.

■ You can instruct XSU on which date format to use when parsing dates in

the XML document.

How XML SQL Utility Works
This section describes how XSU works when performing the following tasks:

■ Selecting with XSU on page 8-14

■ Inserting with XSU on page 8-15

■ Updating with XSU on page 8-15

■ Deleting with XSU on page 8-16

Selecting with XSU
XSU generation is simple. SQL queries are executed and the resultset is retrieved

from the database. Metadata about the resultset is acquired and analyzed. Using the

mapping described in "Default SQL-to-XML Mapping" on page 8-8, the SQL result

set is processed and converted into an XML document.
8-14 Oracle9i XML Developer’s Kits Guide - XDK

How XML SQL Utility Works
Inserting with XSU
To insert the contents of an XML document into a particular table or view, XSU first

retrieves the metadata about the target table or view. Based on the metadata, XSU

generates a SQL INSERT statement. XSU extracts the data out of the XML

document and binds it to the appropriate columns or attributes. Finally the

statement is executed.

For example, assume that the target table is dept and the XML document is the one

generated from dept .

XSU generates the following INSERT statement.

INSERT INTO Dept (DEPTNO, DEPTNAME, DEPTADDR, EMPLIST) VALUES (?,?,?,?)

Next, the XSU parses the XML document, and for each record, it binds the

appropriate values to the appropriate columns or attributes, and executes the

statement:

DEPTNO <- 100
DEPTNAME <- SPORTS
DEPTADDR <- AddressType(’100 Redwood Shores Pkwy’,’Redwood Shores’,
 ’CA’,’94065’)

EMPLIST <- EmployeeListType(EmployeeType(7369,’John’,100000,
 AddressType(’300 Embarcadero’,’Palo Alto’,’CA’,’94056’),...)

Insert processing can be optimized to insert in batches, and commit in batches.

More detail on batching can be found in the section on "Insert Processing Using

XSU (Java API)" on page 8-38.

Updating with XSU
Updates and deletes differ from inserts in that they can affect more than one row in

the database table. For inserts, each ROW element of the XML document can affect at

most, one row in the table, if there are no triggers or constraints on the table.

However, with both updates and deletes, the XML element could match more than

one row if the matching columns are not key columns in the table. For updates, you

must provide a list of key columns which XSU needs to identify the row to update.

For example, to update the DEPTNAME to SportsDept instead of Sports , you can

have an XML document such as:

See Also: "Default SQL-to-XML Mapping" on page 8-8.
XML SQL Utility (XSU) 8-15

How XML SQL Utility Works
<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>
 <DEPTNAME>SportsDept</DEPTNAME>
 </ROW>
</ROWSET>

and supply the DEPTNO as the key column. This would result in the following

UPDATE statement:

UPDATE DEPT SET DEPTNAME = ? WHERE DEPTNO = ?

and bind the values,

DEPTNO <- 100
DEPTNAME <- SportsDept

For updates, you can also choose to update only a set of columns and not all the

elements present in the XML document. See also, "Update Processing Using XSU

(Java API)" on page 8-40.

Deleting with XSU
For deletes, you can choose to give a set of key columns for the delete to identify the

rows. If the set of key columns are not given, then the DELETE statement tries to

match all the columns given in the document. For an XML document:

<ROWSET>
 <ROW num="1">
 <DEPTNO>100</DEPTNO>

 <DEPTNAME>Sports</DEPTNAME>
 <DEPTADDR>
 <STREET>100 Redwood Shores Pkwy</STREET>
 <CITY>Redwood Shores</CITY>
 <STATE>CA</STATE>
 <ZIP>94065</ZIP>
 </DEPTADDR>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

To delete, XSU fires off a DELETE statement (one for each ROW element) which looks

like the following:

DELETE FROM Dept WHERE DEPTNO = ? AND DEPTNAME = ? AND DEPTADDR = ?
binding,
8-16 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML
DEPTNO <- 100
DEPTNAME <- Sports
DEPTADDR <- AddressType(’100 Redwood Shores Pkwy’,’Redwood
City’,’CA’,’94065’)

See also, "Delete Processing Using XSU (Java API)" on page 8-43.

Using the XSU Command Line Front End, OracleXML
XSU comes with a simple command line front end which gives you quick access to

XML generation and insertion.

The XSU command line options are provided through the Java class, OracleXML .

Invoke it by calling:

java OracleXML

This prints the front end usage information. To run the XSU command line front

end, first specify where the executable is located. Add the following to your

CLASSPATH:

■ XSU Java library (xsu12.jar or xsu111.jar)

Also, since XSU depends on Oracle XML Parser and JDBC drivers, make the

location of these components known. To do this, the CLASSPATH must include the

locations of:

■ Oracle XML Parser Java library (xmlparserv2.jar)

■ JDBC library (classes12.jar if using xsu12.jar or classes111.jar
if using xsu111.jar)

■ A JAR file for XMLType.

Generating XML Using the XSU Command Line
For XSU generation capabilities, use the XSU getXML parameter. For example, to

generate an XML document by querying the emp table in the scott schema, use:

java OracleXML getXML -user "scott/tiger" "select * from emp"

Note: In Oracle9i, the XSU front end does not publish the update

and delete functionality.
XML SQL Utility (XSU) 8-17

Using the XSU Command Line Front End, OracleXML
This performs the following tasks:

■ Connects to the current default database

■ Executes the query select * from emp

■ Converts the result to XML

■ Displays the result

The getXML parameter supports a wide range of options which are explained in

the following section.
8-18 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML
XSU’s OracleXML getXML Options
Table 8–1 lists the OracleXML getXML options:

Table 8–1 XSU’s OracleXML getXML Options

getXML Option Description

-user "username /password " Specifies the user name and password to connect to the
database. If this is not specified, the user defaults to
scott/tiger . Note that he connect string is also being
specified, the user name and password can be specified as
part of the connect string.

-conn "JDBC_connect_string " Specifies the JDBC database connect string. By default the
connect string is: "jdbc:oracle:oci8:@ "):

-withDTD Instructs the XSU to generate the DTD along with the XML
document.

-withSchema Instructs the XSU to generate the schema along with the
XML document.

-rowsetTag "tag_name " Specifies rowset tag (the tag that encloses all the XML
elements corresponding to the records returned by the
query). The default rowset tag is ROWSET. Specifying an
empty string for the rowset tells the XSU to completely
omit the rowset element.

-rowTag "tag_name " Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is
ROW. Specifying an empty string for the row tag tells the
XSU to completely omit the row tag.

-rowIdAttr "row_id-attribute-name " Names the attribute of the ROWelement keeping track of the
cardinality of the rows . By default this attribute is called
num. Specifying an empty string (that is, "") as the rowID
attribute will tell the XSU to omit the attribute.

 -rowIdColumn "row Id column name " Specifies that the value of one of the scalar columns from
the query should be used as the value of the rowID
attribute.

-collectionIdAttr "collection id
attribute name "

Names the attribute of an XML list element keeping track of
the cardinality of the elements of the list (Note: the
generated XML lists correspond to either a cursor query, or
collection). Specifying an empty string (that is, "") as the
rowID attribute will tell the XSU to omit the attribute.

-useNullAttrId Tells the XSU to use the attribute NULL (TRUE/FALSE) to
indicate the nullness of an element.
XML SQL Utility (XSU) 8-19

Using the XSU Command Line Front End, OracleXML
Inserting XML Using XSU’s Command Line (putXML)
To insert an XML document into the emp table in the scott schema, use the

following syntax:

java OracleXML putXML -user "scott/tiger" -fileName "/tmp/temp.xml" "emp"

-styleSheet "stylesheet URI " Specifies the stylesheet in the XML PI (Processing
Instruction).

-stylesheetType "stylesheet type " Specifies the stylesheet type in the XML PI (Processing
Instruction).

-errorTag "error tag name " Secifies the error tag -- the tag to enclose error messages
which are formatted into XML.

-raiseNoRowsException Tells the XSU to raise an exception if no rows are returned.

-maxRows "maximum number of rows " Specifies the maximum number of rows to be retrieved and
converted to XML.

-skipRows "number of rows to skip " Specifies the number of rows to be skipped.

-encoding "encoding name " Specifies the character set encoding of the generated XML.

-dateFormat "date format " Specifies the date format for the date values in the XML
document.

-fileName "SQL query fileName " | sql query Specifies the file name which contains the query or specify
the query itself.

-useTypeForCollElemTag Use type name for coll-elem tag (by default XSU uses the
column-name_item .

-setXSLTRef "URI" Set the XSLT external entity reference.

-useLowerCase | useUpperCase Generate lowercase or uppercase tag names, respectively.
The default is to match the case of the SQL object names
from which generating the tags.

-withEscaping There are character which are legal in SQL object names but
illegal in XML tags. This option means that if such a
character is encountered, it is escaped rather then an
exception being thrown.

-raiseException By default the XSU catches any error and produces the error
XML doc. This changes this behavior so the XSU actually
throws the raised Java exception.

Table 8–1 XSU’s OracleXML getXML Options (Cont.)

getXML Option Description
8-20 Oracle9i XML Developer’s Kits Guide - XDK

Using the XSU Command Line Front End, OracleXML
This performs the following tasks:

■ Connects to the current database

■ Reads the XML document from the given file

■ Parses it, matches the tags with column names

■ Inserts the values appropriately in to the emp table

Note: The XSU command line front end,putXML , currently only
publishes XSUinsert functionality. It may be expanded in future to
also publish XSUupdate and delete functionality.
XML SQL Utility (XSU) 8-21

XSU Java API
XSU OracleXML putXML Options
Table 8–2 lists the putXML options:

:

XSU Java API
The following two classes make up the XML SQL Utility Java API:

Table 8–2 XSU’s OracleXML putXML Options

putXML Options Description

-user "username /password " Specifies the user name and password to connect to the database. If
this is not specified, the user defaults to scott/tiger . Note that
he connect string is also being specified, the user name and
password can be specified as part of the connect string.

-conn "JDBC_connect_string " Specifies the JDBC database connect string. By default the connect
string is: "jdbc:oracle:oci8:@ "):

-batchSize "batching_size " Specifies the batch size, which control the number of rows which
are batched together and inserted in a single trip to the database.
Batching improves performance.

-commitBatch "commit_size " Specifies the number of inserted records after which a commit is to
be executed. Note that if the autocommit is true (default), then
setting the commitBatch has no consequence.

-rowTag "tag_name " Specifies the row tag (the tag used to enclose the data
corresponding to a database row). The default row tag is ROW.
Specifying an empty string for the row tag tells the XSU that no

row enclosing tag is used in the XML document.

-dateFormat "date_format " Specifies the date format for the date values in the XML document.

-ignoreCase Makes the matching of the column names with tag names case
insensitive (for example, "EmpNo" will match with "EMPNO" if
ignoreCase is on).

-fileName "file_name " | -URL "URL" |
-xmlDoc "xml_document "

Specifies the XML document to insert. The fileName option
specifies a local file, the URL specifies a URL to fetch the document
from and the xmlDoc option specifies the XML document as a
string on the command line.

-tableName "table" The name of the table to put the values into.

-withEscaping If SQL to XML name escaping was used when generating the doc,
then this will turn on the reverse mapping.

-setXSLT "URI" XSLT to apply to XML doc before inserting.

-setXSLTRef "URI" Set the XSLT external entity reference.
8-22 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU’s OracleXMLQuery
■ XSU API for XML generation: oracle.xml.sql.query.OracleXMLQuery

■ XSU API for XML save , insert , update , and delete :

oracle.xml.sql.dml.OracleXMLSave

Generating XML with XSU’s OracleXMLQuery
The OracleXMLQuery class makes up the XML generation part of the XSU Java

API. Figure 8–4 illustrates the basic steps you need to take when using

OracleXMLQuery to generate XML:

1. Create a connection.

2. Create an OracleXMLQuery instance by supplying an SQL string or a

ResultSet object.

3. Obtain the result as a DOM tree or XML string.

Figure 8–4 Generating XML With XML SQL Utility for Java: Basic Steps

Generating XML from SQL Queries Using XSU
The following examples illustrate how XSU can generate an XML document in its

DOM or string representation given a SQL query. See Figure 8–5.

JDBC Result
Set XML

String

DOM
object

Create JDBC
Connection

OracleXMLQuery
instance

Further
processing

SQL
Query

SQL
Query getXMLDOM

getXMLString
XML SQL Utility (XSU) 8-23

Generating XML with XSU’s OracleXMLQuery
Figure 8–5 Generating XML With XML SQL Utility

XSU Generating XML Example 1: Generating a String from Table emp (Java)
1. Create a connection

Before generating the XML you must create a connection to the database. The

connection can be obtained by supplying the JDBC connect string. First register

the Oracle JDBC class and then create the connection, as follows

// import the Oracle driver..
import oracle.jdbc.driver.*;

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Create the connection.
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@","scott","tiger");

Here, the connection is done using OCI8’s JDBC driver. You can connect to the

scott schema supplying the password tiger . It connects to the current

set
the options

REGISTER
Query

close

User / Browser /
Client /

Application

bind
values

Generated
XML

as DOM
User / Browser /

Client /
Application

Generated
XML

as String

fetch
XML

Generating XML from the Database using the XML SQL Utility
8-24 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU’s OracleXMLQuery
database (identified by the ORA_SID environment variable). You can also use

the JDBC thin driver to connect to the database. The thin driver is written in

pure Java and can be called from within applets or any other Java program.

■ Connecting With the Thin Driver. Here is an example of connecting using

the JDBC thin driver:

// Create the connection.
Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@dlsun489:1521:ORCL",

 "scott","tiger");

The thin driver requires you to specify the host name (dlsun489), port

number (1521), and the Oracle SID (ORCL), which identifies a specific

Oracle instance on the machine.

■ No Connection Needed When Run In the Server. When writing server side

Java code, that is, when writing code that will run on the server, you need

not establish a connection using a username and password, since the

server-side internal driver runs within a default session. You are already

connected. In this case call the defaultConnection() on the

oracle.jdbc.driver.OracleDriver() class to get the current

connection, as follows:

import oracle.jdbc.driver.*;

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection conn = new oracle.jdbc.driver.OracleDriver
().defaultConnection ();

The remaining discussion either assumes you are using an OCI8 connection

from the client or that you already have a connection object created. Use the

appropriate connection creation based on your needs.

2. Creating an OracleXMLQuery Class Instance

Once you have registered your connection, create an OracleXMLQuery class

instance by supplying a SQL query to execute as follows:

// import the query class in to your class
import oracle.xml.sql.query.OracleXMLQuery;

See Also: Oracle9i Java Developer’s Guide for more details.
XML SQL Utility (XSU) 8-25

Generating XML with XSU’s OracleXMLQuery
OracleXMLQuery qry = new OracleXMLQuery (conn, "select * from emp");

You are now ready to use the query class.

3. Obtain the result as a DOM tree or XML string

■ DOM Object Output. If, instead of a string, you wanted a DOM object, you

can simply request a DOM output as follows:

org.w3c.DOM.Document domDoc = qry.getXMLDOM();

and use the DOM traversals.

■ XML String Output. You can get an XML string for the result by:

String xmlString = qry.getXMLString();

Here is a complete listing of the program to extract (generate) the XML string. This

program gets the string and prints it out to standard output:

import oracle.jdbc.driver.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

 public static void main(String[] argv)
 {

 try{
 // create the connection
 Connection conn = getConnection("scott","tiger");

 // Create the query class.
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp");

 // Get the XML string
 String str = qry.getXMLString();

 // Print the XML output
 System.out.println(" The XML output is:\n"+str);
 // Always close the query to get rid of any resources..
 qry.close();
 }catch(SQLException e){
 System.out.println(e.toString());
8-26 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML with XSU’s OracleXMLQuery
 }
 }

 // Get the connection given the user name and password..!
 private static Connection getConnection(String username, String password)
 throws SQLException
 {
 // register the JDBC driver..
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Create the connection using the OCI8 driver
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",username,password);

 return conn;
 }
}

How to Run This Program
To run this program, carry out the following:

1. Store this in a file called testXMLSQL.java

2. Compile it using javac , the Java compiler

3. Execute it by specifying: java testXMLSQL

You must have the CLASSPATH pointing to this directory for the Java executable to

find the class. Alternatively use various visual Java tools including Oracle

JDeveloper to compile and run this program. When run, this program prints out the

XML file to the screen.

XSU Generating XML Example 2: Generating DOM From Table emp (Java)
DOM (Document Object Model) is a standard defined by the W3C committee. DOM

represents an XML document in a parsed tree-like form. Each XML entity becomes

a DOM node. Thus XML elements and attributes become DOM nodes while their

children become child nodes. To generate a DOM tree from the XML generated by

XSU, you can directly request a DOM document from XSU, as it saves the overhead

of having to create a string representation of the XML document and then parse it to

generate the DOM tree.
XML SQL Utility (XSU) 8-27

Generating XML with XSU’s OracleXMLQuery
XSU calls the parser to directly construct the DOM tree from the data values. The

following example illustrates how to generate a DOM tree. The example steps

through the DOM tree and prints all the nodes one by one.

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;

 class domTest{

 public static void main(String[] argv)
 {
 try{
 // create the connection
 Connection conn = getConnection("scott","tiger");

 // Create the query class.
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp");

 // Get the XML DOM object. The actual type is the Oracle Parser's DOM
 // representation. (XMLDocument)
 XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

 // Print the XML output directly from the DOM
 domDoc.print(System.out);

 // If you instead want to print it to a string buffer you can do
this..!
 StringWriter s = new StringWriter(10000);
 domDoc.print(new PrintWriter(s));
 System.out.println(" The string version ---> "+s.toString());

 qry.close(); // You should always close the query!!
 }catch(Exception e){
 System.out.println(e.toString());
 }
 }

 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
8-28 Oracle9i XML Developer’s Kits Guide - XDK

Paginating Results: skipRows and maxRows
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

Paginating Results: skipRows and maxRows
In the examples shown so far, XML SQL Utility (XSU) takes the ResultSet or the

query and generates the whole document from all the rows of the query. To obtain

100 rows at a time, you would then have to fire off different queries to get the first

100 rows, the next 100, and so on. Also it is not possible to skip the first five rows of

the query and then generate the result.

To obtain the desired results, use the XSU skipRows and maxRows parameter

settings:

■ skipRows parameter, when set, forces the generation to skip the desired

number of rows before starting to generate the result.

■ maxRows limits the number of rows converted to XML.

For example, if you set skipRows to a value of 5 and maxRows to a value of 10,

then XSU skips the first 5 rows, then generates XML for the next 10 rows.

Keeping the Object Open for the Duration of the User’s Session
In Web scenarios, you may want to keep the query object open for the duration of

the user’s session. For example, consider the case of a Web search engine which

gives the results of a user’s search in a paginated fashion. The first page lists 10

results, the next page lists 10 more results, and so on.

To achieve this, request XSU to convert 10 rows at a time and keep the ResultSet

state active, so that the next time you ask XSU for more results, it starts generating

from the place the last generation finished. See "XSU Generating XML Example 3:

Paginating Results: Generating an XML Page (Java)" on page 8-30.

When the Number of Rows or Columns in a Row Is Too Large
There is also the case when the number of rows, or number of columns in a row are

very large. In this case, you can generate multiple documents each of a smaller size.
XML SQL Utility (XSU) 8-29

Paginating Results: skipRows and maxRows
These cases can be handled by using the maxRows parameter and the

keepObjectOpen function.

keepObjectOpen Function
Typically, as soon as all results are generated, OracleXMLQuery internally closes

the ResultSet , if it created one using the SQL query string given, since it assumes

you no longer want any more results. However, in the case described earlier, to

maintain that state, you need to call the keepObjectOpen function to keep the

cursor active. See the following example.

XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java)
This example, writes a simple class that maintains the state and generates the next

page each time it is called.

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;
public class pageTest
{
 Connection conn;
 OracleXMLQuery qry;
 ResultSet rset;
 Statement stmt;
 int lastRow = 0;

 public pageTest(String sqlQuery)
 {
 try{
 conn = getConnection("scott","tiger");
 //stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

// ResultSet.CONCUR_READ_ONLY);// create a scrollable Rset
 //stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

// ResultSet.CONCUR_READ_ONLY);// create a scrollable Rset
 stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery(sqlQuery); // get the result set..
 rset.first();
 qry = new OracleXMLQuery(conn,rset); // create a OracleXMLQuery instance
 qry.keepCursorState(true); // Don't lose state after the first fetch
 qry.setRaiseNoRowsException(true);
 qry.setRaiseException(true);
8-30 Oracle9i XML Developer’s Kits Guide - XDK

Paginating Results: skipRows and maxRows
 }catch(SQLException e){
 System.out.println(e.toString());
 }
 }

 // Returns the next XML page..!
 public String getResult(int startRow, int endRow) throws SQLException
 {
 //rset.relative(lastRow-startRow); // scroll inside the result set
 //rset.absolute(startRow); // scroll inside the result set
 qry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
 //System.out.println("before getxml");
 return qry.getXMLString();
 }

 // Function to still perform the next page.
 public String nextPage() throws SQLException
 {
 String result = getResult(lastRow,lastRow+10);
 lastRow+= 10;
 return result;
 }

 public void close() throws SQLException
 {
 stmt.close(); // close the statement..
 conn.close(); // close the connection
 qry.close(); // close the query..
 }

 public static void main(String[] argv)
 {
 String str;

 try{
 pageTest test = new pageTest("select e.* from emp e");

 int i = 0;
 // Get the data one page at a time..!!!!!
 while ((str = test.getResult(i,i+10))!= null)
 {
 System.out.println(str);
 i+= 10;
 }
 test.close();
XML SQL Utility (XSU) 8-31

Generating XML from ResultSet Objects
 }catch(Exception e){
 e.printStackTrace(System.out);
 }
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }

}

Generating XML from ResultSet Objects
You saw how you can supply a SQL query and get the results as XML. In the last

example, you retrieved paginated results. However in Web cases, you may want to

retrieve the previous page and not just the next page of results. To provide this

scrollable functionality, you can use the Scrollable ResultSet . Use the ResultSet
object to move back and forth within the result set and use XSU to generate the

XML each time. The following example illustrates how to do this.

XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
This example shows you how to use the JDBC ResultSet to generate XML. Note

that using the ResultSet might be necessary in cases that are not handled directly

by XSU, for example, when setting the batch size, binding values, and so on. This

example extends the previously defined pageTest class to handle any page.

public class pageTest()
{
 Connection conn;
 OracleXMLQuery qry;
 ResultSet rset;
 int lastRow = 0;

 public pageTest(String sqlQuery)
 {
 conn = getConnection("scott","tiger");
 Statement stmt = conn.createStatement(sqlQuery);// create a scrollable Rset
 ResultSet rset = stmt.executeQuery(); // get the result set..
8-32 Oracle9i XML Developer’s Kits Guide - XDK

Generating XML from ResultSet Objects
 qry = new OracleXMLQuery(conn,rset); // create a OracleXMLQuery instance
 qry.keepObjectOpen(true); // Don’t lose state after the first fetch
 }

 // Returns the next XML page..!
 public String getResult(int startRow, int endRow)
 {
 rset.scroll(lastRow-startRow); // scroll inside the result set
 qry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
 return qry.getXMLString();
 }

 // Function to still perform the next page.
 public String nextPage()
 {
 String result = getResult(lastRow,lastRow+10);
 lastRow+= 10;
 return result;
 }

 public void close()
 {
 stmt.close(); // close the statement..
 conn.close(); // close the connection
 qry.close(); // close the query..
 }

 public void main(String[] argv)
 {
 pageTest test = new pageTest("select * from emp");

 int i = 0;
 // Get the data one page at a time..!!!!!
 while ((str = test.getResult(i,i+10))!= null)
 {
 System.out.println(str);
 i+= 10;
 }
 test.close();
 }
}

XML SQL Utility (XSU) 8-33

Generating XML from ResultSet Objects
XSU Generating XML Example 5: Generating XML from Procedure Return Values
The OracleXMLQuery class provides XML conversion only for query strings or

ResultSets . But in your application if you have PL/SQL procedures that return

REF cursors, how would you do the conversion?

In this case, you can use the earlier-mentioned ResultSet conversion mechanism to

perform the task. REF cursors are references to cursor objects in PL/SQL. These

cursor objects are valid SQL statements that can be iterated upon to get a set of

values. These REF cursors are converted into OracleResultSet objects in the Java

world.

You can execute these procedures, get the OracleResultSet object, and then send

that to the OracleXMLQuery object to get the desired XML.

Consider the following PL/SQL function that defines a REF cursor and returns it:

CREATE OR REPLACE package body testRef is

 function testRefCur RETURN empREF is
 a empREF;
 begin
 OPEN a FOR select * from scott.emp;
 return a;
 end;
end;
/

Every time this function is called, it opens a cursor object for the query, select *
from emp and returns that cursor instance. To convert this to XML, you can do the

following:

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;
public class REFCURtest
{
 public static void main(String[] argv)
 throws SQLException
 {
 String str;
 Connection conn = getConnection("scott","tiger"); // create connection
8-34 Oracle9i XML Developer’s Kits Guide - XDK

Raising No Rows Exception
 // Create a ResultSet object by calling the PL/SQL function
 CallableStatement stmt =
 conn.prepareCall("begin ? := testRef.testRefCur(); end;");

 stmt.registerOutParameter(1,OracleTypes.CURSOR); // set the define type

 stmt.execute(); // Execute the statement.
 ResultSet rset = (ResultSet)stmt.getObject(1); // Get the ResultSet

 OracleXMLQuery qry = new OracleXMLQuery(conn,rset); // prepare Query class
 qry.setRaiseNoRowsException(true);
 qry.setRaiseException(true);
 qry.keepCursorState(true); // set options (keep the cursor active.
 while ((str = qry.getXMLString())!= null)
 System.out.println(str);

 qry.close(); // close the query..!

 // Note since we supplied the statement and resultset, closing the
 // OracleXMLquery instance will not close these. We would need to
 // explicitly close this ourselves..!
 stmt.close();
 conn.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }

}

To apply the stylesheet, on the other hand, use the applyStylesheet()
command. This forces the stylesheet to be applied before generating the output.

Raising No Rows Exception
When there are no rows to process, XSU simply returns a null string. However, it

might be desirable to get an exception every time there are no more rows present, so

that the application can process this through exception handlers. When the
XML SQL Utility (XSU) 8-35

Raising No Rows Exception
setRaiseNoRowsException () is set, then whenever there are no rows to generate

for the output XSU raises an

oracle.xml.sql.OracleXMLSQLNoRowsException . This is a run time

exception and need not be caught unless needed.

XSU Generating XML Example 6: No Rows Exception (Java)
The following code extends the previous examples to use the exception instead of

checking for null strings:

public class pageTest {
 // rest of the class definitions....

 public void main(String[] argv)
 {
 pageTest test = new pageTest("select * from emp");

 test.query.setRaiseNoRowsException(true); // ask it to generate
exceptions
 try
 {
 while(true)
 System.out.println(test.nextPage());
 }
 catch(oracle.xml.sql.OracleXMLNoRowsException)
 {
 System.out.println(" END OF OUTPUT ");
 test.close();
 }
 }
}

Note: Notice how the condition to check the termination changed

from checking for the result to be NULL to an exception handler.
8-36 Oracle9i XML Developer’s Kits Guide - XDK

Storing XML Back in the Database Using XSU OracleXMLSave
Storing XML Back in the Database Using XSU OracleXMLSave
Now that you have seen how queries can be converted to XML, observe how you

can put the XML back into the tables or views using XSU. The class

oracle.xml.sql.dml.OracleXMLSave provides this functionality. It has

methods to insert XML into tables, update existing tables with the XML document,

and delete rows from the table based on XML element values.

In all these cases the given XML document is parsed, and the elements are

examined to match tag names to column names in the target table or view. The

elements are converted to the SQL types and then bound to the appropriate

statement. The process for storing XML using XSU is shown in Figure 8–6.

Figure 8–6 Storing XML in the Database Using XML SQL Utility

Consider an XML document that contains a list of ROW elements, each of which

constitutes a separate DML operation, namely, insert , update, or delete on the

table or view.

close

REGISTER
the table

set
the options

insert
XML into

table

User / Browser /
Client /

Application

Storing XML in the Database Using the XML SQL Utility
XML SQL Utility (XSU) 8-37

Insert Processing Using XSU (Java API)
Insert Processing Using XSU (Java API)
To insert a document into a table or view, simply supply the table or the view name

and then the document. XSU parses the document (if a string is given) and then

creates an INSERT statement into which it binds all the values. By default, XSU

inserts values into all the columns of the table or view and an absent element is

treated as a NULLvalue. The following example shows you how the XML document

generated from the emp table, can be stored in the table with relative ease.

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
This example inserts XML values into all columns:

// This program takes as an argument the file name, or a url to
// a properly formated XML document and inserts it into the SCOTT.EMP table.
import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
 public static void main(String argv[])
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@","scott","tiger");

 OracleXMLSave sav = new OracleXMLSave(conn, "emp");
 sav.insertXML(sav.getUrl(argv[0]));
 sav.close();
 }
}

An INSERT statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,?,?,?,?);

is generated, and the element tags in the input XML document matching the

column names are matched and their values bound.

If you store the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>

 <ENAME>Smith</ENAME>
8-38 Oracle9i XML Developer’s Kits Guide - XDK

Insert Processing Using XSU (Java API)
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

to a file and specify the file to the program described earlier, you would end up

with a new row in the emp table containing the values (7369, Smith, CLERK,
7902, 12/17/1980,800,20). Any element absent inside the row element is

taken as a null value.

XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)
In certain cases, you may not want to insert values into all columns. This may be

true when the group of values that you are getting is not the complete set and you

need triggers or default values to be used for the rest of the columns. The code

following shows how this can be done.

Assume that you are getting the values only for the employee number, name, and

job and that the salary, manager, department number, and hire date fields are filled

in automatically. First create a list of column names that you want the insert to

work on and then pass it to the OracleXMLSave instance.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");
 OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

 String [] colNames = new String[5];
 colNames[0] = "EMPNO";
 colNames[1] = "ENAME";
 colNames[2] = "JOB";

 sav.setUpdateColumnList(colNames); // set the columns to update..!

 // Assume that the user passes in this document as the first argument!
XML SQL Utility (XSU) 8-39

Update Processing Using XSU (Java API)
 sav.insertXML(argv[0]);
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

An insert statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB) VALUES (?, ?, ?);

is generated. Note that, in the preceding example, if the inserted document contains

values for the other columns (JOB, HIREDATE , and so on), those are ignored. Also

an insert is performed for each ROW element that is present in the input. These

inserts are batched by default.

Update Processing Using XSU (Java API)
Now that you know how to insert values into the table from XML documents, see

how you can update only certain values. In an XML document, to update the salary

of an employee and the department that they work in:

<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>

 <SAL>1800</SAL>
 <DEPTNO>30</DEPTNO>
 </ROW>
 <ROW>
 <EMPNO>2290</EMPNO>
 <SAL>2000</SAL>
 <HIREDATE>12/31/1992</HIREDATE>
 <!-- additional rows ... -->
</ROWSET>

You can use the XSU to update the values. For updates, you must supply XSU with

the list of key column names. These form part of the WHERE clause in the UPDATE
8-40 Oracle9i XML Developer’s Kits Guide - XDK

Update Processing Using XSU (Java API)
statement. In the emp table shown earlier, employee number (EMPNO) column forms

the key. Use this for updates.

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
This example updates table , emp, using keyColumns :

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");
 OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPNO";
 sav.setKeyColumnList(keyColNames);

 // Assume that the user passes in this document as the first argument!
 sav.updateXML(argv[0]);
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

In this example, two UPDATE statements are generated. For the first ROW element,

you generate an UPDATE statement to update the SAL and JOB fields as follows:

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

For the second ROW element:

update scott.emp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;
XML SQL Utility (XSU) 8-41

Update Processing Using XSU (Java API)
XSU Updating XML Example 10: Updating a Specified List of Columns (Java)
You may want to specify a list of columns to update. This would speed up the

processing since the same UPDATE statement can be used for all the ROW elements.

Also you can ignore other tags in the XML document.

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, you can use the setUpdateColumnNames ()
function to set the list of columns to update.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");
 OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPNO";
 sav.setKeyColumnList(keyColNames);

 // you create the list of columns to update..!
 // Note that if you do not supply this, then for each ROW element in the
 // XML document, you would generate a new update statement to update all
 // the tag values (other than the key columns)present in that element.
 String[] updateColNames = new String[2];
 updateColNames[0] = "SAL";
 updateColNames[1] = "JOB";
 sav.setUpdateColumnList(updateColNames); // set the columns to update..!

 // Assume that the user passes in this document as the first argument!
 sav.updateXML(argv[0]);
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)

Note: When you specify a list of columns to update, an element

corresponding to one of the update columns, if absent, will be

treated as NULL.
8-42 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (Java API)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

Delete Processing Using XSU (Java API)
When deleting from XML documents, you can set the list of key columns. These

columns are used in the WHERE clause of the DELETE statement. If the key column

names are not supplied, then a new DELETE statement is created for each ROW
element of the XML document, where the list of columns in the WHERE clause of the

DELETE statement will match those in the ROW element.

XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
Consider this delete example:

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");
 OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

 // Assume that the user passes in this document as the first argument!
 sav.deleteXML(argv[0]);
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
XML SQL Utility (XSU) 8-43

Delete Processing Using XSU (Java API)
}

Using the same XML document shown previously for the update example, you

would end up with two DELETE statements:

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;
DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

XSU Deleting XML Example 12: Deleting Specified Key Values (Java)
If instead, you want the DELETE statement to only use the key values as predicates,

you can use the setKeyColumn function to set this.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");
 OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

 String [] keyColNames = new String[1];
 keyColNames[0] = "EMPNO";
 sav.setKeyColumnList(keyColNames);

 // Assume that the user passes in this document as the first argument!
 sav.deleteXML(argv[0]);
 sav.close();
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

8-44 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSU Usage Techniques
Here is a single DELETE statement of the form:

DELETE FROM scott.emp WHERE EMPNO=?

Advanced XSU Usage Techniques

XSU Exception Handling in Java

OracleXMLSQLException class
XSU catches all exceptions that occur during processing and throws an

oracle.xml.sql.OracleXMLSQLException which is a run time exception. The

calling program thus does not have to catch this exception all the time, if the

program can still catch this exception and do the appropriate action. The exception

class provides functions to get the error message and also get the parent exception,

if any. For example, the program shown later, catches the run time exception and

then gets the parent exception.

OracleXMLNoRowsException class
This exception is generated when the setRaiseNoRowsException is set in the

OracleXMLQuery class during generation. This is a subclass of the

OracleXMLSQLException class and can be used as an indicator of the end of row

processing during generation.

import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;

public class testException
{
 public static void main(String argv[])
 throws SQLException
 {
 Connection conn = getConnection("scott","tiger");

 // wrong query this will generate an exception
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp where sd
 = 322323");

 qry.setRaiseException(true); // ask it to raise exceptions..!

 try{
 String str = qry.getXMLString();
XML SQL Utility (XSU) 8-45

Frequently Asked Questions About XML SQL Utility (XSU)
 }catch(oracle.xml.sql.OracleXMLSQLException e)
 {
 // Get the original exception
 Exception parent = e.getParentException();
 if (parent instanceof java.sql.SQLException)
 {
 // perform some other stuff. Here you simply print it out..
 System.out.println(" Caught SQL Exception:"+parent.getMessage());
 }
 else
 System.out.println(" Exception caught..!"+e.getMessage());
 }
 }
 // Get the connection given the user name and password..!
 private static Connection getConnection(String user, String passwd)
 throws SQLException
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
 return conn;
 }
}

Frequently Asked Questions About XML SQL Utility (XSU)
This section lists XML SQL Utility (XSU) questions and answers.

What Schema Structure Should I Use with XSU to Store XML?
I have the following XML in my customer.xml file:

<ROWSET>
 <ROW num="1">
 <CUSTOMER>
 <CUSTOMERID>1044</CUSTOMERID>
 <FIRSTNAME>Paul</FIRSTNAME>
 <LASTNAME>Astoria</LASTNAME>
 <HOMEADDRESS>
 <STREET>123 Cherry Lane</STREET>
 <CITY>SF</CITY>
 <STATE>CA</STATE>
 <ZIP>94132</ZIP>
 </HOMEADDRESS>
8-46 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)
 </CUSTOMER>
 </ROW>
</ROWSET>

What database schema structure should I use to store this XML with XSU?

Answer: Since your example is more than one level deep (that is, it has a nested

structure), you should use an object-relational schema. The XML preceding will

canonically map to such a schema. An appropriate database schema would be the

following:

create type address_type as object
 (
 street varchar2(40),
 city varchar2(20),
 state varchar2(10),
 zip varchar2(10)
);
 /
 create type customer_type as object
 (
customerid number(10),
firstname varchar2(20),
lastname varchar2(20),
homeaddress address_type
);
/
create table customer_tab (customer customer_type);

In the case you wanted to load customer.xml by means of XSU into a relational

schema, you can still do it by creating objects in views on top of your relational

schema.

For example, you would have a relational table which would contain all the

following information:

create table cust_tab
 (customerid number(10),
 firstname varchar2(20),
 lastname varchar2(20),
 state varchar2(40),
 city varchar2(20),
 state varchar2(20),
 zip varchar2(20)
);
XML SQL Utility (XSU) 8-47

Frequently Asked Questions About XML SQL Utility (XSU)
Then, you would create a customer view which contains a customer object on top of

it, as in the following example:

create view customer_view as
select customer_type(customerid, firstname, lastname,
address_type(state,street,city,zip))
from cust_tab;

Finally, you can flatten your XML using XSLT and then insert it directly into your

relational schema. However, this is the least recommended option.

Can XSU Store XML Data Across Tables?
Answer: Currently the XML SQL Utility (XSU) can only store data in a single table.

It maps a canonical representation of an XML document into any table or view. But

there is a way to store XML with XSU across tables. One can do this using XSLT to

transform any document into multiple documents and insert them separately.

Another way is to define views over multiple tables (using object views if needed)

and then do the inserts into the view. If the view is inherently non-updatable

(because of complex joins), then you can use INSTEAD OF triggers over the views

to do the inserts.

Can I Use XSU to Load XML Stored in Attributes?
I would like to use XSU to load XML where some of the data is stored in attributes.

However, XSU seems to ignore the XML attributes. What can I do?

Answer: Unfortunately, for now you will have to use XSLT to transform your XML

document; that is, you must change the attributes into elements. XSU does assume

canonical mapping from XML to a database schema. This takes away a bit from the

flexibility, forcing you to sometimes resort to XSLT, but at the same time, in the

common case, it does not burden you with having to specify a mapping.

Is XSU Case-Sensitive? Can I Use ignoreCase?
I am trying to insert the following XML document (dual.xml):

<ROWSET>
 <row>
 <DUMMY>X</DUMMY>
 </row>
</ROWSET>
8-48 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)
Into the table dual using the command line front end of the XSU, like in this

example:

java OracleXML putxml -filename dual.xml dual

I get the following error:

oracle.xml.sql.OracleXMLSQLException: No rows to modify -- the row enclosing tag
missing. Specify the correct row enclosing tag.

Answer: By default, XSU is case sensitive, so it looks for the record separator tag

which by default is ROW, yet all it can find is row . Another common, related mistake

is to mismatch the case of one of the element tags. For example, if in dual.xml the

tag DUMMY was actually dummy, then XSU raises an error stating that it could not

find a matching column in table, dual . So you have two options: use the correct

case or use the ignoreCase feature.

Will XSU Generate the Database Schema from a DTD?
Answer: No. Due to a number of shortcomings of the DTD, this functionality is not

available. The W3C XML Schema recommendation is finalized, but this

functionality is not available yet in XSU.

Can You Provide a Thin Driver Connect String Example for XSU?
I am using the XML SQL Utility command line front end, and I am passing a

connect string but I get a TNS error. Can you provide examples of a thin driver

connect string and an OCI8 driver connect string?

Answer: An example of an JDBC thin driver connect string is:

jdbc:oracle:thin:<user>/<password>@<hostname>:<port number>:<DB SID>;

Furthermore, the database must have an active TCP/IP listener. A valid OCI8

connect string would be:

jdbc:oracle:oci8:<user>/<password>@<hostname>

Does XSU Commit After INSERT, DELETE, or UPDATE?
Does XML SQL Utility commit after it is done inserting, deleting, or updating?

What happens if an error occurs?
XML SQL Utility (XSU) 8-49

Frequently Asked Questions About XML SQL Utility (XSU)
Answer: By default the XSU executes a number of insert , delete , or update
statements at a time. The number of statements batch together and executed at the

same time can be overridden using the setBatchSize feature.

Also, by default XSU does no explicit commits. If autocommit is on (default for the

JDBC connection), then after each batch of statement executions a commit occurs.

You can override this by turning autocommit off and then specifying after how

many statement executions a commit should occur, which can be done using the

setCommitBatch feature.

If an error occurs, XSU rolls back to either the state the target table was in before the

particular call to XSU, or the state right after the last commit made during the

current call to XSU.

Can You Explain How to Map Table Columns to XML Attributes Using XSU?
Can you explain how to map table columns to XML attributes using XSU?

Answer: From XSU release 2.1.0 you can map a particular column or a group of

columns to an XML attribute instead of an XML element. To achieve this, you have

to create an alias for the column name, and prepend the at sign (@) to the name of

this alias. For example:

* Create a file called select.sql with the following content :
 SELECT empno "@EMPNO", ename, job, hiredate
 FROM emp
 ORDER BY empno

 * Call the XML SQL Utility :
 java OracleXML getXML -user "scott/tiger" \
 -conn "jdbc:oracle:thin:@myhost:1521:ORCL" \
 -fileName "select.sql"

 * As a result, the XML document will look like :
 <?xml version = '1.0'?>
 <ROWSET>
 <ROW num="1" EMPNO="7369">
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 </ROW>
 <ROW num="2" EMPNO="7499">
 <ENAME>ALLEN</ENAME>
 <JOB>SALESMAN</JOB>
 <HIREDATE>2/20/1981 0:0:0</HIREDATE>
8-50 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU)
 </ROW>
 </ROWSET>

Since the XML document is created in a streamed manner, the following query:

SELECT ename, empno "@EMPNO", ...

would not generate the expected result. It is currently not possible to load XML data

stored in attributes. You will still need to use an XSLT transformation to change the

attributes into elements. XSU assumes canonical mapping from XML to a database

schema.

Note: All attributes must appear before any non-attribute.
XML SQL Utility (XSU) 8-51

Frequently Asked Questions About XML SQL Utility (XSU)
8-52 Oracle9i XML Developer’s Kits Guide - XDK

XSQL Pages Publishing F
9

XSQL Pages Publishing Framework

This chapter contains the following sections:

■ XSQL Pages Publishing Framework Overview

■ Overview of Basic XSQL Pages Features

■ Setting Up and Using XSQL Pages in Your Environment

■ Overview of All XSQL Pages Capabilities

■ Description of XSQL Servlet Examples

■ Advanced XSQL Pages Topics

■ XSQL Servlet Limitations

■ Frequently Asked Questions About the XSQL Servlet
ramework 9-1

XSQL Pages Publishing Framework Overview
XSQL Pages Publishing Framework Overview
The Oracle XSQL Pages publishing framework is an extensible platform for easily

publishing XML information in any format you desire. It greatly simplifies

combining the power of SQL, XML, and XSLT to publish dynamic web content

based on database information.

Using the XSQL publishing framework, anyone familiar with SQL can create and

use declarative templates called "XSQL pages" to:

■ Assemble dynamic XML "datagrams" based on parameterized SQL queries, and

■ Transform these "data pages" to produce a final result in any desired XML,

HTML, or text-based format using an associated XSLT transformation.

Assembling and transforming information for publishing requires no

programming. In fact, most of the common things you will want to do can be easily

achieved in a declarative way. However, since the XSQL publishing framework is

extensible, if one of the built-in features does not fit your needs, you can easily

extend the framework using Java to integrate custom information sources or to

perform custom server-side processing.

Using the XSQL Pages framework, the assembly of information to be published is

cleanly separated from presentation. This simple architectural detail has profound

productivity benefits. It allows you to:

■ Present the same information in multiple ways, including tailoring the

presentation appropriately to the kind of client device making the request

(browser, cellular phone, PDA, and so on).

■ Reuse information easily by aggregating existing pages into new ones

■ Revise and enhance the presentation independently of the information content

being presented.

What Can I Do with Oracle XSQL Pages?
Using server-side templates — known as "XSQL pages" due to their .xsql
extension — you can publish any information in any format to any device. The

XSQL page processor "engine" interprets, caches, and processes the contents of your

XSQL page templates. Figure 9–1 illustrates that the core XSQL page processor

engine can be "exercised" in four different ways:

■ From the command line or in batch using the XSQL Command-Line Utility

■ Over the Web, using the XSQL Servlet installed into your favorite web server
9-2 Oracle9i XML Developer’s Kits Guide - XDK

XSQL Pages Publishing Framework Overview
■ As part of JSP applications, using <jsp:include> to include a template

■ Programmatically, with the XSQLRequest object, the engine’s Java API

Figure 9–1 Understanding the Architecture of the XSQL Pages Framework

The same XSQL page templates can be used in any or all of these scenarios.

Regardless of the means by which a template is processed, the same basic steps

occur to produce a result. The XSQL page processor "engine":

1. Receives a request to process an XSQL template

2. Assembles an XML "datagram" using the result of one or more SQL queries

3. Returns this XML "datagram" to the requestor

4. Optionally transforms the "datagram" into any XML, HTML, or text format

During the transformation step in this process, you can use stylesheets that conform

to the W3C XSLT 1.0 standard to transform the assembled "datagram" into

document formats like:

■ HTML for browser display

■ Wireless Markup Language (WML) for wireless devices

■ Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams

■ XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF
XSQL Pages Publishing Framework 9-3

XSQL Pages Publishing Framework Overview
■ Text documents, like emails, SQL scripts, Java programs, and so on.

■ Arbitrary XML-based document formats

XSQL Pages bring this functionality to you by automating the use of underlying

Oracle XML components to solve many common cases without resorting to custom

programming. However, when only custom programming will do — as we’ll see in

the Advanced Topics section of this chapter — you can augment the framework’s

built-in actions and serializers to assemble the XSQL "datagrams" from any custom

source and serialize the datagrams into any desired format, without having to write

an entire publishing framework from scratch.

Where Can I Obtain Oracle XSQL Pages?
XSQL Servlet is provided with Oracle9i and is also available for download from the

OTN site: http://otn.oracle.com/tech/xml.

Where indicated, the examples and demos described in this chapter are also

available from OTN.

What’s Needed to Run XSQL Pages?
To run the Oracle XSQL Pages publishing framework from the command-line, all

you need is a Java VM (1.1.8, 1.2.2, or 1.3). The XSQL Pages framework depends on

two underlying components in the Oracle XML Developer’s Kit:

■ Oracle XML Parser and XSLT Processor (xmlparserv2.jar)

■ Oracle XML SQL Utility (xsu12.jar)

Both of their Java archive files must be present in the CLASSPATH where the XSQL

pages framework is running. Since most XSQL pages will connect to a database to

query information for publishing, the framework also depends on a JDBC driver.

Any JDBC driver is supported, but when connecting to Oracle, it’s best to use the

Oracle JDBC driver (classes12.jar) for maximum functionality and

performance.

See Also:

■ Chapter A, "XDK for Java: Specifications and Quick References"

for the XSQL Servlet specifications and cheat sheets.

■ XSQL Servlet Release Notes on OTN at:

http://otn.oracle.com/tech/xml
9-4 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features
Lastly, the XSQL publishing engine expects to read its configuration file named

XSQLConfig.xml as a Java resource, so you must include the directory where the

XSQLConfig.xml file resides in the CLASSPATH as well.

To use the XSQL Pages framework for Web publishing, in addition to the preceding

you need a web server that supports Java Servlets. The following is the list of web

servers with Servlet capability on which the XSQL Servlet has been tested:

■ Oracle9i Internet Application Server v1.x and v2.x

■ Oracle9i Oracle Servlet Engine

■ Allaire JRun 2.3.3 and 3.0.0

■ Apache 1.3.9 or higher with JServ 1.0/1.1 or Tomcat 3.1/3.2 Servlet Engine

■ Apache Tomcat 3.1 or 3.2 Web Server + Servlet Engine

■ Caucho Resin 1.1

■ Java Web Server 2.0

■ Weblogic 5.1 Web Server

■ NewAtlanta ServletExec 2.2 and 3.0 for IIS/PWS 4.0

■ Oracle8i Lite Web-to-Go Server

■ Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

For details on installing, configuring your environment, and running XSQL Servlet

and for additional examples and guidelines, see the XSQL Servlet “Release Notes”

on OTN at http://otn.oracle.com/tech/xml

Overview of Basic XSQL Pages Features
In this section, we’ll get take a brief look at the most basic features you can exploit

in your server-side XSQL page templates:

■ Producing XML Datagrams from SQL Queries

Note: For security reasons, when installing XSQL Servlet on your

production web server, make sure XSQLConfig.xml file does not
reside in a directory that is part of the web server’s virtual directory

hierarchy. Failure to take this precaution risks exposing your

configuration information over the web.
XSQL Pages Publishing Framework 9-5

Overview of Basic XSQL Pages Features
■ Transforming the XML Datagram into an Alternative XML Format

■ Transforming the XML Datagram into HTML for Display

Producing XML Datagrams from SQL Queries
It is extremely easy to serve database information in XML format over the Web

using XSQL pages. For example, let’s see how simple it is to serve a real-time XML

“datagram” from Oracle9i, of all available flights landing today at JFK airport.

Using Oracle JDeveloper, or your favorite text editor, just build an XSQL page

template like the one following, and save it in a file named,

AvailableFlightsToday.xsql :

<?xml version="1.0"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
</xsql:query>

With XSQL Servlet properly installed on your web server, you just need to copy the

AvailableFlightsToday.xsql file preceding to a directory under your web

server’s virtual directory hierarchy. Then you can access the template through a

web browser by requesting the URL:

http://yourcompany.com/AvailableFlightsToday.xsql?City=JFK

The results of the query in your XSQL page are materialized automatically as XML

and returned to the requestor. This XML-based “datagram” would typically be

requested by another server program for processing, but if you are using a browser

such as Internet Explorer 5.0, you can directly view the XML result as shown in

Figure 9–2.
9-6 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features
Figure 9–2 XML Result From XSQL Page (AvailableFlightsToday.xsq) Query

Let’s take a closer look at the "anatomy" of the XSQL page template we used. Notice

the XSQL page begins with:

<?xml version="1.0"?>

This is because the XSQL template is itself an XML file (with an *.xsql extension)

that contains any mix of static XML content and XSQL "action elements". The

AvailableFlightsToday.xsql example preceding contains no static XML
XSQL Pages Publishing Framework 9-7

Overview of Basic XSQL Pages Features
elements, and just a single XSQL action element <xsql:query> . It represents the

simplest useful XSQL page we can build, one that just contains a single query.

Notice that the first (and in this case, only!) element in the page <xsql:query>
includes a special attribute that declares the xsql namespace prefix as a "synonym"

for the Oracle XSQL namespace identifier urn:oracle-xsql .

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql" >

This first, outermost element — known at the "document element" — also contains

a connection attribute whose value "demo" is the name of one of the pre-defined

connections in the XSQLConfig.xml configuration file:

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">

The details concerning the username, password, database, and JDBC driver that

will be used for the "demo" connection are centralized into the configuration file.

Setting up these connection definitions is discussed in a later section of this chapter.

Lastly, the <xsql:query> element contains a bind-params attribute that

associates the values of parameters in the request by name to bind parameters

represented by question marks in the SQL statement contained inside the

<xsql:query> tag.

Note that if we wanted to include more than one query on the page, we’ll need to

invent an XML element of our own creation to "wrap" the other elements like this:

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="City">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
 </xsql:query>
 <!-- Other xsql:query actions can go here inside <page> and </page> -->
</page>

Notice in this example that the connection attribute and the xsql namespace

declaration always go on the document element, while the bind-params is specific

to the <xsql:query> action.
9-8 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features
Transforming XML Datagrams into an Alternative XML Format
If the canonical <ROWSET> and <ROW> XML output from Figure 9–2 is not the XML

format you need, then you can associate an XSLT stylesheet to your XSQL page

template to transform this XML "datagram" in the server before returning the

information in any alternative format desired.

When exchanging data with another program, typically you will agree in advance

with the other party on a specific Document Type Descriptor (DTD) that describes

the XML format you will be exchanging. A DTD is in effect, a "schema" definition. It

formally defines what XML elements and attributes that a document of that type

can have.

Let’s assume you are given the flight-list.dtd definition and are told to

produce your list of arriving flights in a format compliant with that DTD. You can

use a visual tool such as Extensibility's “XML Authority” to browse the structure of

the flight-list DTD as shown in Figure 9–3.

Figure 9–3 Exploring the "industry standard" flight-list.dtd using Extensibility’s XML
Authority

This shows that the standard XML formats for Flight Lists are:

■ <flight-list> element, containing one or more…
XSQL Pages Publishing Framework 9-9

Overview of Basic XSQL Pages Features
■ <flight> elements, having attributes airline and number, each of which

contains an…

■ <arrives> element.

By associating the following XSLT stylesheet, flight-list.xsl , with the XSQL

page, you can change the default <ROWSET> and <ROW> format of your arriving

flights into the "industry standard" DTD format.

<!-- XSLT Stylesheet to transform ROWSET/ROW results into flight-list format -->
<flight-list xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xsl:version="1.0" >
<xsl:for-each select="ROWSET/ROW">

 <flight airline=" {CARRIER} " number=" {FLIGHTNUMBER}">
 <arrives> <xsl:value-of select="DUE"/> </arrives>
 </flight>

</xsl:for-each>
</flight-list>

The stylesheet is a template that includes the literal elements that you want

produced in the resulting document, such as, <flight-list> , <flight> , and

<arrives> , interspersed with special XSLT "actions" that allow you to do the

following:

■ Loop over matching elements in the source document using <xsl:for-each>

■ Plug in the values of source document elements where necessary using

<xsl:value-of>

■ Plug in the values of source document elements into attribute values using

{something}

Note two things have been added to the top-level <flight-list> element in the

stylesheet:

■ xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

This defines the XML Namespace (xmlns) named "xsl" and identifies the

uniform resource locator string that uniquely identifies the XSLT specification.

Although it looks just like a URL, think of the string

http://www.w3.org/1999/XSL/Transform as the "global primary key"

for the set of elements that are defined in the XSLT 1.0 specification. Once the

namespace is defined, we can then make use of the <xsl:XXX> action elements

in our stylesheet to loop and plug values in where necessary.

■ xsl:version="1.0"
9-10 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features
This attribute identifies the document as an XSLT 1.0 stylesheet. A version

attribute is required on all XSLT Stylesheets for them to be valid and recognized

by an XSLT Processor.

Associate the stylesheet to your XSQL Page by adding an <?xml-stylesheet?>
processing instruction to the top of the page as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="flight-list.xsl"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
 SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
 FROM FlightSchedule
 WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
 AND Destination = ? /* The ? is a bind variable being bound */
 ORDER BY ExpectedTime /* to the value of the City parameter */
</xsql:query>

This is the W3C Standard mechanism of associating stylesheets with XML

documents (http://www.w3.org/TR/xml-stylesheet). Specifying an associated

XSLT stylesheet to the XSQL page causes the requesting program or browser to see

the XML in the “industry-standard” format as specified by flight-list.dtd you

were given as shown in Figure 9–4.
XSQL Pages Publishing Framework 9-11

Overview of Basic XSQL Pages Features
Figure 9–4 XSQL Page Results in "industry standard" XML Format

Transforming XML Datagrams into HTML for Display
To return the same XML information in HTML instead of an alternative XML

format, simply use a different XSLT stylesheet. Rather than producing elements like

<flight-list> and <flight> , your stylesheet produces HTML elements like

<table> , <tr> , and <td> instead. The result of the dynamically queried

information would then look like the HTML page shown in Figure 9–5. Instead of

returning “raw” XML information, the XSQL Page leverages server-side XSLT

transformation to format the information as HTML for delivery to the browser.
9-12 Oracle9i XML Developer’s Kits Guide - XDK

Overview of Basic XSQL Pages Features
Figure 9–5 Using an Associated XSLT Stylesheet to Render HTML

Similar to the syntax of the flight-list.xsl stylesheet, the

flight-display.xsl stylesheet looks like a template HTML page, with

<xsl:for-each>, <xsl:value-of> and attribute value templates like {DUE}
to plug in the dynamic values from the underlying <ROWSET> and <ROW>
structured XML query results.
XSQL Pages Publishing Framework 9-13

Overview of Basic XSQL Pages Features
<!-- XSLT Stylesheet to transform ROWSET/ROW results into HTML -->
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0" >
 <head><link rel="stylesheet" type="text/css" href="flights.css" /></head>
 <body>
 <center><table border="0">
 <tr><th>Flight</th><th>Arrives</th></tr>

<xsl:for-each select="ROWSET/ROW">
 <tr>
 <td>
 <table border="0" cellspacing="0" cellpadding="4">
 <tr>
 <td></td>
 <td width="180">

<xsl:value-of select="CARRIER"/>
<xsl:text> </xsl:text>
<xsl:value-of select="FLIGHTNUMBER"/>

 </td>
 </tr>
 </table>
 </td>
 <td align="center"> <xsl:value-of select="DUE"/> </td>
 </tr>

</xsl:for-each>
 </table></center>
 </body>
</html>

You can see that by combining the power of:

■ Parameterized SQL statements to select any information you need from our

Oracle database,

■ Industry-standard XML as a portable, interim data exchange format

■ XSLT to transform XML-based "data pages" into any XML- or HTML-based

format you need

Note: The stylesheet looks exactly like HTML, with one tiny

difference. It is well-formed HTML. This means that each opening

tag is properly closed (for example, <td>…</td>) and that empty

tags use the XML empty element syntax
 instead of just
.
9-14 Oracle9i XML Developer’s Kits Guide - XDK

Setting Up and Using XSQL Pages in Your Environment
you can achieve very interesting and useful results quickly. You will see in later

sections that what you have seen earlier is just scratching the surface of what you

can do using XSQL pages.

Setting Up and Using XSQL Pages in Your Environment
You can develop and use XSQL pages in a variety of ways. We start by describing

the easiest way to get started, using Oracle JDeveloper, then cover the details you’ll

need to understand to use XSQL pages in your production environment.

Using XSQL Pages with Oracle JDeveloper
The easiest way to work with XSQL pages during development is to use Oracle

JDeveloper. Versions 3.1 and higher of the JDeveloper IDE support color-coded

syntax highlighting, XML syntax checking, and easy testing of your XSQL pages. In

addition, the JDeveloper 3.2 release supports debugging XSQL pages and adds new

wizards to help create XSQL actions.

To create an XSQL page in a JDeveloper project, you can:

■ Click the plus icon at the top of the navigator to add a new or existing XSQL

page to your project

■ Select File | New... and select "XSQL" from the "Web Objects" tab of the gallery

To get assistance adding XSQL action elements like <xsql:query> to your XSQL

page, place the cursor where you want the new element to go and either:

■ Select XSQL Element... from the right mouse menu, or

■ Select Wizards | XSQL Element... from the IDE menu.

The XSQL Element wizard takes you through the steps of selecting which XSQL

action you want to use, and which attributes you need to provide.

To syntax-check an XSQL page template, you can select Check XML Syntax... at any

time from the right-mouse menu in the navigator after selecting the name of the

XSQL page you’d like to check. If there are any XML syntax errors, they will appear

in the message view and your cursor will be brought to the first one.

Note: For a detailed introduction to XSLT and a thorough tutorial

on how to apply XSLT to many different Oracle database scenarios,

see "Building Oracle XML Applications", by Steve Muench, from

O’Reilly and Associates.
XSQL Pages Publishing Framework 9-15

Setting Up and Using XSQL Pages in Your Environment
To test an XSQL page, simply select the page in the navigator and choose Run from

the right-mouse menu. JDeveloper automatically starts up a local Web-to-go web

server, properly configured to run XSQL pages, and tests your page by launching

your default browser with the appropriate URL to request the page. Once you’ve

run the XSQL page, you can continue to make modifications to it in the IDE — as

well as to any XSLT stylesheets with which it might be associated — and after

saving the files in the IDE you can immediately refresh the browser to observe the

effect of the changes.

Using JDeveloper, the "XSQL Runtime" library should be added to your project’s

library list so that the CLASSPATH is properly setup. The IDE adds this entry

automatically when you go through the New Object gallery to create a new XSQL

page, but you can also add it manually to the project by selecting Project | Project
Properties... and clicking on the "Libraries" tab.

Setting the CLASSPATH Correctly in Your Production Environment
Outside of the JDeveloper environment, you need to make sure that the XSQL page

processor engine is properly configured to run. Oracle9i comes with the XSQL

Servlet pre-installed to the Oracle HTTP Server that accompanies the database, but

using XSQL in any other environment, you’ll need to ensure that the Java

CLASSPATH is setup correctly.

There are three "entry points" to the XSQL page processor:

■ oracle.xml.xsql.XSQLServlet , the servlet interface

■ oracle.xml.xsql.XSQLCommandLine , the command-line interface

■ oracle.xml.xsql.XSQLRequest , the programmatic interface

Since all three of these interfaces, as well as the core XSQL engine itself, are written

in Java, they are very portable and very simple to setup. The only setup

requirements are to make sure the appropriate JAR files are in the CLASSPATH of

the JavaVM that will be running processing the XSQL Pages. The JAR files include:

■ oraclexsql.jar , the XSQL page processor

■ xmlparserv2.jar , the Oracle XML Parser for Java v2

■ xsu12.jar , the Oracle XML SQL utility

■ classes12.jar , the Oracle JDBC driver

In addition, the directory where XSQL Page Processor's configuration file

XSQLConfig.xml resides must also be listed as a directory in the CLASSPATH.
9-16 Oracle9i XML Developer’s Kits Guide - XDK

Setting Up and Using XSQL Pages in Your Environment
Putting all this together, if you have installed the XSQL distribution in C:\xsql ,

then your CLASSPATH would appear as follows:

C:\xsql\lib\classes12.classes12.jar;C:\xsql\lib\xmlparserv2.jar;
C:\xsql\lib\xsu12.jar;C:\xsql\lib\oraclexsql.jar;
directory_where_XSQLConfig.xml_resides

On Unix, if you extracted the XSQL distribution into your /web directory, the

CLASSPATH would appear as follows:

/web/xsql/lib/classes12.jarclasses12.jar:/web/xsql/lib/xmlparserv2.jar:
/web/xsql/lib/xsu12.jar:/web/xsql/lib/oraclexsql.jar:
directory_where_XSQLConfig.xml_resides

To use the XSQL Servlet, one additional setup step is required. You must associate

the .xsql file extension with the XSQL Servlet's java class

oracle.xml.xsql.XSQLServlet . How you set the CLASSPATH of the web

server's servlet environment and how you associate a Servlet with a file extension

are done differently for each web server. The XSQL Servlet's Release Notes contain

detailed setup information for specific web servers you might want to use with

XSQL Pages.

Setting Up the Connection Definitions
XSQL pages refer to database connections by using a “nickname” for the connection

defined in the XSQL configuration file. Connection names are defined in the

<connectiondefs> section of XSQLConfig.xml file like this:

 <connectiondefs>
 <connection name=" demo">
 <username> scott </username>
 <password> tiger </password>
 <dburl> jdbc:oracle:thin:@localhost:1521:testDB </dburl>
 <driver> oracle.jdbc.driver.OracleDriver </driver>
 <autocommit>true</autocommit>
 </connection>
 <connection name=" lite ">
 <username> system </username>
 <password> manager </password>
 <dburl> jdbc:Polite:POlite </dburl>
 <driver> oracle.lite.poljdbc.POLJDBCDriver </driver>
 </connection>
</connectiondefs>

For each connection, you can specify five pieces of information:
XSQL Pages Publishing Framework 9-17

Setting Up and Using XSQL Pages in Your Environment
1. <username>

2. <password>

3. <dburl> , the JDBC connection string

4. <driver> , the fully-qualified class name of the JDBC driver to use

5. <autocommit> , optionally forces the autocommit to true or false

If the <autocommit> element is omitted, then the XSQL page processor will use

the JDBC driver’s default setting of the AutoCommit flag.

Any number of <connection> elements can be placed in this file to define the

connections you need. An individual XSQL page refers to the connection it wants to

use by putting a connection=” xxx ” attribute on the top-level element in the page

(also called the “document element”).

Using the XSQL Command-Line Utility
Often the content of a dynamic page will be based on data that is not frequently

changing in your environment. To optimize performance of your web publishing,

you can use operating system facilities to schedule offline processing of your XSQL

pages, leaving the processed results to be served statically by your web server.

You can process any XSQL page from the command line using the XSQL

command-line utility. The syntax is:

$ java oracle.xml.xsql.XSQLCommandLine xsqlpage [outfile] [param1=value1 ...]

If an outfile is specified, the result of processing xsqlpage is written to it,

otherwise the result goes to standard out. Any number of parameters can be passed

to the XSQL page processor and are available for reference by the XSQL page being

processed as part of the request. However, the following parameter names are

recognized by the command-line utility and have a pre-defined behavior:

■ xml-stylesheet= stylesheetURL

Note: For security reasons, when installing XSQL Servlet on your

production web server, make sure the XSQLConfig.xml file does

not reside in a directory that is part of the web server’s virtual

directory hierarchy. Failure to take this precaution risks exposing

your configuration information over the web.
9-18 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
Provides the relative or absolute URL for a stylesheet to use for the request.

Also can be set to the string none to suppress XSLT stylesheet processing

for debugging purposes.

■ posted-xml= XMLDocumentURL

Provides the relative or absolute URL of an XML resource to treat as if it

were posted as part of the request.

■ useragent= UserAgentString

Used to simulate a particular HTTP User-Agent string from the command

line so that an appropriate stylesheet for that User-Agent type will be

selected as part of command-line processing of the page.

The ?/xdk/java/xsql/bin directory contains a platform-specific command script to

automate invoking the XSQL command-line utility. This script sets up the Java

runtime to run oracle.xml.xsql.XSQLCommandLine class.

Overview of All XSQL Pages Capabilities
So far we’ve only seen a single XSQL action element, the <xsql:query> action.

This is by far the most popular action, but it is not the only one that comes built-in

to the XSQL Pages framework. We explore the full set of functionality that you can

exploit in your XSQL pages in the following sections.

Using All of the Core Built-in Actions
This section provides a list of the core built-in actions, including a brief description

of what each action does, and a listing of all required and optional attributes that

each supports.

The <xsql:query> Action
The <xsql:query> action element executes a SQL select statement and includes a

canonical XML representation of the query’s result set in the data page. This action

requires a database connection to be provided by supplying a connection=" connname"

attribute on the document element of the XSQL page in which it appears.

The syntax for the action is:

<xsql:query>
SELECT Statement

</xsql:query>
XSQL Pages Publishing Framework 9-19

Overview of All XSQL Pages Capabilities
Any legal SQL select statement is allowed. If the select statement produces no rows,

a "fallback" query can be provided by including a nested <xsql:no-rows-query>

element like this:

<xsql:query>
SELECT Statement

 <xsql:no-rows-query>
SELECT Statement to use if outer query returns no rows

 </xsql:no-rows-query>
</xsql:query>

An <xsql:no-rows-query> element can itself contain nested <xsql:no-rows-query>

elements to any level of nesting. The options available on the

<xsql:no-rows-query> are identical to those available on the <xsql:query> action

element.

By default, the XML produced by a query will reflect the column structure of its

resultset, with element names matching the names of the columns. Columns in the

result with nested structure like:

■ Object Types

■ Collection Types

■ CURSOR Expressions

produce nested elements that reflect this structure. The result of a typical query

containing different types of columns and returning one row might look like this:

<ROWSET>
 <ROW id="1">
 < VARCHARCOL>Value</ VARCHARCOL>
 < NUMBERCOL>12345</ NUMBERCOL>
 < DATECOL>12/10/2001 10:13:22</ DATECOL>
 < OBJECTCOL>
 < ATTR1>Value</ ATTR1>
 < ATTR2>Value</ ATTR2>
 </ OBJECTCOL>
 < COLLECTIONCOL>
 < COLLECTIONCOL_ITEM>
 < ATTR1>Value</ ATTR1>
 < ATTR2>Value</ ATTR2>
 </ COLLECTIONCOL_ITEM>
 < COLLECTIONCOL_ITEM>
 < ATTR1>Value</ ATTR1>
 < ATTR2>Value</ ATTR2>
 </ COLLECTIONCOL_ITEM>
9-20 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
 </ COLLECTIONCOL>
 < CURSORCOL>
 < CURSORCOL_ROW>
 < COL1>Value1</ COL1>
 < COL2>Value2</ COL2>
 </ CURSORCOR_ROW>
 </ CURSORCOL>
 </ROW>
</ROWSET>

A <ROW> element will repeat for each row in the result set. Your query can use

standard SQL column aliasing to rename the columns in the result, and in doing so

effectively rename the XML elements that are produced as well. Note that such

column aliasing is required for columns whose names would otherwise be an illegal

name for an XML element.

For example, an <xsql:query> action like this:

<xsql:query>SELECT TO_CHAR(hiredate,’DD-MON’) FROM EMP</xsql:query>

would produce an error because the default column name for the calculated

expression will be an illegal XML element name. You can fix the problem with

column aliasing like this:

<xsql:query>SELECT TO_CHAR(hiredate,’DD-MON’) as hiredate FROM EMP</xsql:query>

The optional attributes listed in Table 9–1 can be supplied to control various aspects

of the data retrieved and the XML produced by the <xsql:query> action.

Table 9–1 Attributes for <xsql:query>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

date-format = "string" Date format mask to use for formatted date column/attribute
values in XML being queried. Valid values are those
documented for the java.text.SimpleDateFormat class.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no . The default value is yes .
XSQL Pages Publishing Framework 9-21

Overview of All XSQL Pages Capabilities
fetch-size = "integer" Number of records to fetch in each round-trip to the database.
If not set, the default value is used as specified by the
/XSQLConfig/processor/default-fetch-size
configuration setting in XSQLConfig.xml

id-attribute = "string" XML attribute name to use instead of the default num attribute
for uniquely identifying each row in the result set. If the value
of this attribute is the empty string, the row id attribute is
suppressed.

id-attribute-column = "string" Case-sensitive name of the column in the result set whose
value should be used in each row as the value of the row id
attribute. The default is to use the row count as the value of the
row id attribute.

include-schema = "boolean" If set to yes , includes an inline XML schema that describes the
structure of the result set. Valid values are yes and no . The
default value is no .

max-rows = "integer" Maximum number of rows to fetch, after optionally skipping
the number of rows indicated by the skip-rows attribute. If
not specified, default is to fetch all rows.

null-indicator = "boolean" Indicates whether to signal that a column's value is NULL by
including the NULL="Y" attribute on the element for the
column. By default, columns with NULL values are omitted
from the output. Valid values are yes and no . The default
value is no .

row-element = "string" XML element name to use instead of the default <ROW>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROW>
element for each row in the result set.

rowset-element = "string" XML element name to use instead of the default <ROWSET>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROWSET>
element.

skip-rows = "integer" Number of rows to skip before fetching rows from the result
set. Can be combined with max-rows for stateless paging
through query results.

tag-case = "string" Valid values are lower and upper . If not specified, the default
is to use the case of column names as specified in the query as
corresponding XML element names.

Table 9–1 Attributes for <xsql:query>

Attribute Name Description
9-22 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
The <xsql:dml> Action

You can use the <xsql:dml> action to perform any DML or DDL operation, as well as

any PL/SQL block. This action requires a database connection to be provided by

supplying a connection=" connname" attribute on the document element of the XSQL

page in which it appears.

The syntax for the action is:

<xsql:dml>
DML Statement or DDL Statement or PL/SQL Block

</xsql:dml>

Table 9–2 lists the optional attributes that you can use on the <xsql:dml> action.

The <xsql:ref-cursor-function> Action
The <xsql:ref-cursor-function> action allows you to include the XML results

produced by a query whose result set is determined by executing a PL/SQL stored

function. This action requires a database connection to be provided by supplying a

connection=" connname" attribute on the document element of the XSQL page in

which it appears.

By exploiting PL/SQL’s dynamic SQL capabilities, the query can be dynamically

and/or conditionally constructed by the function before a cursor handle to its result

set is returned to the XSQL page processor. As its name implies, the return value of

the function being invoked must be of type REF CURSOR.

Table 9–2 Attributes for <xsql:dml>

Attribute Name Description

commit = "boolean" If set to yes , calls commit on the current connection after a
successful execution of the DML statement. Valid values are
yes and no . The default value is no .

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no . The default value is yes .
XSQL Pages Publishing Framework 9-23

Overview of All XSQL Pages Capabilities
The syntax of the action is:

<xsql:ref-cursor-function>
[SCHEMA.][PACKAGE.]FUNCTION_NAME(args);

</xsql:ref-cursor-function>

With the exception of the fetch-size attribute, the optional attributes available for

the <xsql:ref-cursor-function> action are exactly the same as for the

<xsql:query> action that are listed Table 9–1.

For example, consider the PL/SQL package:

CREATE OR REPLACE PACKAGE DynCursor IS
 TYPE ref_cursor IS REF CURSOR;
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
 FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor IS
 the_cursor ref_cursor;
 BEGIN
 -- Conditionally return a dynamic query as a REF CURSOR
 IF id = 1 THEN
 OPEN the_cursor
 FOR 'SELECT empno, ename FROM EMP'; -- An EMP Query
 ELSE
 OPEN the_cursor
 FOR 'SELECT dname, deptno FROM DEPT'; -- A DEPT Query
 END IF;
 RETURN the_cursor;
 END;
END;

An <xsql:ref-cursor-function> can include the dynamic results of the REF

CURSOR returned by this function by doing:

<xsql:ref-cursor-function>
 DynCursor.DynamicQuery(1);
</xsql:ref-cursor-function>

The <xsql:include-owa> Action
The <xsql:include-owa> action allows you to include XML content that has been

generated by a database stored procedure. This action requires a database

connection to be provided by supplying a connection=" connname" attribute on the

document element of the XSQL page in which it appears.
9-24 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
The stored procedure uses the standard Oracle Web Agent (OWA) packages (HTP

and HTF) to "print" the XML tags into the server-side page buffer, then the XSQL

page processor fetches, parses, and includes the dynamically-produced XML

content in the data page. The stored procedure must generate a well-formed XML

page or an appropriate error is displayed.

The syntax for the action is:

<xsql:include-owa>
PL/SQL Block invoking a procedure that uses the HTP and/or HTF packages

</xsql:include-owa>

Table 9–3 lists the optional attributes supported by this action.

Using Bind Variables
To parameterize the results of any of the preceding actions, you can use SQL bind

variables. This allows your XSQL page template to produce different results based

on the value of parameters passed in the request. To use a bind variable, simply

include a question mark anywhere in the statement where bind variables are

allowed by SQL. For example, your <xsql:query> action might contain the select

statement:

SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker

Using a question mark to create a bind-variable for the customer id. Whenever the

SQL statement is executed in the page, parameter values are bound to the bind

variable by specifying the bind-params attribute on the action element. Using the

example preceding, we could create an XSQL page that binds the indicated bind

variables to the value of the custid parameter in the page request like this:

Table 9–3 Attributes for <xsql:include-owa>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error> element generated. Valid
values are yes and no . The default value is yes .
XSQL Pages Publishing Framework 9-25

Overview of All XSQL Pages Capabilities
<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:query bind-params="custid" >
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>
</portfolio>

The XML data for a particular customer’s portfolio can then be requested by

passing the customer id parameter in the request like this:

http://yourserver.com/fin/CustomerPortfolio.xsql? custid=1001

The value of the bind-params attribute is a space-delimited list of parameter

names whose left-to-right order indicates the positional bind variable to which its

value will be bound in the statement. So, if your SQL statement has five question

marks, then your bind-params attribute needs a space-delimited list of five

parameter names. If the same parameter value needs to be bound to several

different occurrences of a question-mark-indicated bind variable, you simply repeat

the name of the parameters in the value of the bind-params attribute at the

appropriate position. Failure to include exactly as many parameter names in the

bind-params attribute as there are question marks in the query, will results in an

error when the page is executed.

Bind variables can be used in any action that expects a SQL statement. The

following page gives additional examples:

<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
 <xsql:dml commit="yes" bind-params="useridCookie" >
 BEGIN log_user_hit(?); END;
 </xsql:dml>
 <current-prices>
 <xsql:query bind-params="custid" >
 SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
 FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
 AND s.ticker = p.ticker
 </xsql:query>
 </current-prices>
 <analysis>
 <xsql:include-owa bind-params="custid userCookie" >
 BEGIN portfolio_analysis.historical_data(?,5 /* years */, ?); END;
9-26 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
 </xsql:include-owa>
 </analysis>
</portfolio>

Using Lexical Substitution Parameters
For any XSQL action element, you can substitute the value of any attribute, or the

text of any contained SQL statement, by using a lexical substitution parameter. This

allows you to parameterize how the actions behave as well as substitute parts of the

SQL statements they perform. Lexical substitution parameters are referenced using

the syntax {@ParameterName } .

The following example illustrates using two lexical substitution parameters, one

which allows the maximum number of rows to be passed in as a parameter, and the

other which controls the list of columns to ORDER BY.

<!-- DevOpenBugs.xsql -->
<open-bugs connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows=" {@max}" bind-params="dev prod">
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

This example could then show the XML for a given developer’s open bug list by

requesting the URL:

http://yourserver.com/bug/DevOpenBugs.xsql? dev=smuench&prod=817

or using the XSQL Command-Line Utility to request:

$ xsql DevOpenBugs.xsql dev=smuench prod=817

We close by noting that lexical parameters can also be used to parameterize the

XSQL page connection, as well as parameterize the stylesheet that is used to process

the page like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href=" {@sheet} .xsl"?>
<!-- DevOpenBugs.xsql -->
<open-bugs connection=" {@conn} " xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows=" {@max}" bind-params="dev prod">
XSQL Pages Publishing Framework 9-27

Overview of All XSQL Pages Capabilities
 SELECT bugno, abstract, status
 FROM bug_table
 WHERE programmer_assigned = UPPER(?)
 AND product_id = ?
 AND status < 80
 ORDER BY {@orderby}
 </xsql:query>
</open-bugs>

Providing Default Values for Bind Variables and Parameters
It is often convenient to provide a default value for a bind variable or a substitution

parameter directly in the page. This allows the page to be parameterized without

requiring the requester to explicitly pass in all the values in each request.

To include a default value for a parameter, simply add an XML attribute of the

same name as the parameter to the action element, or to any ancestor element. If a

value for a given parameter is not included in the request, the XSQL page processor

looks for an attribute by the same name on the current action element. If it doesn’t

find one, it keeps looking for such an attribute on each ancestor element of the

current action element until it gets to the document element of the page.

As a simple example, the following page defaults the value of the max parameter to

10 for both <xsql:query> actions in the page:

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows=" {@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max-rows=" {@max}">SELECT * FROM TABLE2</xsql:query>
</example>

This example defaults the first query to have a max of 5, the second query to have a

max of 7 and the third query to have a max of 10.

<example max="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max="5" max-rows=" {@max}">SELECT * FROM TABLE1</xsql:query>
 <xsql:query max="7" max-rows=" {@max}">SELECT * FROM TABLE2</xsql:query>
 <xsql:query max-rows=" {@max}">SELECT * FROM TABLE3</xsql:query>
</example>

Of course, all of these defaults would be overridden if a value of max is supplied in

the request like:

http://yourserver.com/example.xsql? max=3
9-28 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
Bind variables respect the same defaulting rules so a — not-very-useful, yet

educational — page like this:

<example val="10" connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? as somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>

Would return the XML datagram:

<example>
 <rowset>
 <row>
 <somevalue>10</somevalue>
 </row>
 </row>
</example>

if the page were requested without any parameters, while a request like:

http://yourserver.com/example.xsql? val=3

Would return:

<example>
 <rowset>
 <row>
 <somevalue>3</somevalue>
 </row>
 </row>
</example>

To illustrate an important point for bind variables, imagine removing the default

value for the val parameter from the page by removing the val attribute like this:

<example connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query tag-case="lower" bind-params="val val val">
 SELECT ? as somevalue
 FROM DUAL
 WHERE ? = ?
 </xsql:query>
</example>
XSQL Pages Publishing Framework 9-29

Overview of All XSQL Pages Capabilities
Now a request for the page without supplying any parameters would return:

<example>
 <rowset/>
</example>

because a bind variable that is bound to a parameter with neither a default value nor
a value supplied in the request will be bound to NULL, causing the WHERE clause

in our example page preceding to return no rows.

Understanding the Different Kinds of Parameters
XSQL pages can make use of parameters supplied in the request, as well as

page-private parameters whose names and values are determined by actions in the

page. If an action encounters a reference to a parameter named param in either a

bind-params attribute or in a lexical parameter reference, the value of the param
parameter is resolved by using:

1. The value of the page-private parameter named param , if set, otherwise

2. The value of the request parameter named param , if supplied, otherwise

3. The default value provided by an attribute named param on the current action

element or one of its ancestor elements, otherwise

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL Servlet over HTTP, two additional

HTTP-specific type of parameters are available to be set and referenced. These are

HTTP-Session-level variables and HTTP Cookies. For XSQL pages processed

through the XSQL Servlet, the parameter value resolution scheme is augmented as

follows. The value of a parameter param is resolved by using:

1. The value of the page-private parameter param , if set, otherwise

2. The value of the cookie named param , if set, otherwise

3. The value of the session variable named param , if set, otherwise

4. The value of the request parameter named param , if supplied, otherwise

5. The default value provided by an attribute named param on the current action

element or one of its ancestor elements, otherwise

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order is arranged this way so that users cannot supply parameter

values in a request to override parameters of the same name that have been set in
9-30 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
the HTTP session — whose lifetime is the duration of the HTTP session and

controlled by your web server — or set as cookies, which can bet set to "live" across

browser sessions.

The <xsql:include-request-params> Action
The <xsql:include-request-params> action allows you to include an XML

representation of all parameters in the request in your datagram. This is useful if

your associated XSLT stylesheet wants to refer to any of the request parameter

values by using XPath expressions.

The syntax of the action is:

<xsql:include-request-params/>

The XML included will have the form:

<request>
 <parameters>
 < paramname>value1</ paramname>
 < ParamName2>value2</ ParamName2>
 :
 </parameters>
</request>

or the form:

<request>
 <parameters>
 < paramname>value1</ paramname>
 < ParamName2>value2</ ParamName2>
 :
 </parameters>
 <session>
 < sessVarName >value1</ sessVarName >
 :
 </session>
 <cookies>
 < cookieName >value1</ cookieName >
 :
 </cookies>
</request>

when processing pages through the XSQL Servlet.

This action has no required or optional attributes.
XSQL Pages Publishing Framework 9-31

Overview of All XSQL Pages Capabilities
The <xsql:include-param> Action
The <xsql:include-param> action allows you to include an XML representation

of a single parameter in your datagram. This is useful if your associated XSLT

stylesheet wants to refer to the parameter’s value by using an XPath expression.

The syntax of the action is:

<xsql:include-param name=" paramname" />

This name attribute is required, and supplies the name of the parameter whose

value you would like to include. This action has no optional attributes.

The XML included will have the form:

<paramname>value1</ paramname>

The <xsql:include-xml> Action
The <xsql:include-xml> action includes the XML contents of a local, remote, or

database-driven XML resource into your datagram. The resource is specified either

by URL or a SQL statement.

The syntax for this action is:

<xsql:include-xml href=" URL"/>

or

<xsql:include-xml>
 SQL select statement selecting a single row containing a single
 CLOB or VARCHAR2 column value
</xsql:include-xml>

The URL can be an absolute, http-based URL to retrieve XML from another web

site, or a relative URL. The href attribute and the SQL statement are mutually

exclusive. If one is provided the other is not allowed.

Table 9–5 lists the attributes supported by this action. Attributes in bold are

required.

Table 9–4 Attributes for <xsql:include-xml>

Attribute Name Description

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.
9-32 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
The <xsql:include-posted-xml> Action
The <xsql:include-posted-xml> action includes the XML document that has

been posted in the request into the XSQL page. If an HTML form is posted instead

of an XML document, the XML included will be similar to that included by the

<xsql:include-request-params> action.

The <xsql:set-page-param> Action
The <xsql:set-page-param> action sets a page-private parameter to a value.

The value can be supplied by a combination of static text and other parameter

values, or alternatively from the result of a SQL select statement.

The syntax for this action is:

<xsql:set-page-param name="paramname" value=" value "/>

or

<xsql:set-page-param name="paramname">
 SQL select statement
</xsql:set-page-param>

or

<xsql:set-page-param name="paramname" xpath=" XPathExpression "/>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This usage requires a

database connection to be provided by supplying a connection=" connname" attribute

on the document element of the XSQL page in which it appears.

As an alternative to providing the value attribute, or a SQL statement, you can

supply the xpath attribute to set the page-level parameter to the value of an XPath

expression. The XPath expression is evaluated against an XML document or HTML

form that has been posted to the XSQL Page Processor. The value of the xpath
attribute can be any valid XPath expression, optionally built using XSQL

parameters as part of the attribute value like any other XSQL action element.

Once a page-private parameter is set, subsequent action handlers can use this value

as a lexical parameter, for example {@po_id} , or as a SQL bind parameter value by

referencing its name in the bind-params attribute of any action handler that

supports SQL operations.

If you need to set several session parameter values based on the results of a single

SQL statement, instead of using the name attribute, you can use the names attribute
XSQL Pages Publishing Framework 9-33

Overview of All XSQL Pages Capabilities
and supply a space-or-comma-delimited list of one or more session parameter

names. For example:

<xsql:set-page-param names=" paramname1 paramname2 paramname3 ">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-page-param>

Either the name or the names attribute is required. The value attribute and the

contained SQL statement are mutually exclusive. If one is supplied, the other must

not be.

Table 9–5 lists the attributes supported by this action. Attributes in bold are

required.

The <xsql:set-session-param> Action
The <xsql:set-session-param> action sets an HTTP session-level parameter to

a value. The value of the session-level parameter remains for the lifetime of the

current browser user’s HTTP session, which is controlled by the web server. The

value can be supplied by a combination of static text and other parameter values, or

alternatively from the result of a SQL select statement.

Table 9–5 Attributes for <xsql:set-page-param>

Attribute Name Description

name = " string " Name of the page-private parameter whose value you want to
set.

names = " string string ..." Space-or-comma-delimited list of the page parameter names
whose values you want to set. Either use the name or the
names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value

is no .

xpath = "XPathExpression" Sets the value of the parameter to an XPath expression
evaluated against an XML document or HTML form that has
been posted to the XSQL Page Processor.
9-34 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
Since this feature is specific to Java Servlets, this action is only effective if the XSQL

page in which it appears is being processed by the XSQL Servlet. If this action is

encountered in an XSQL page being processed by the XSQL command-line utility or

the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-session-param name=" paramname" value=" value "/>

or

<xsql:set-session-param name=" paramname">
 SQL select statement
</xsql:set-session-param>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname" attribute on the

document element of the XSQL page in which it appears.

If you need to set several session parameter values based on the results of a single

SQL statement, instead of using the name attribute, you can use the names attribute

and supply a space-or-comma-delimited list of one or more session parameter

names. For example:

<xsql:set-session-param names=" paramname1 paramname2 paramname3 ">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-session-param>

Either the name or the names attribute is required. The value attribute and the

contained SQL statement are mutually exclusive. If one is supplied, the other must

not be.

Table 9–6 lists the optional attributes supported by this action.

Table 9–6 Attributes for <xsql:set-session-param>

Attribute Name Description

name = " string " Name of the session-level variable whose value you want to
set.

names = " string string ..." Space-or-comma-delimited list of the session parameter names
whose values you want to set. Either use the name or the
names attribute, but not both.
XSQL Pages Publishing Framework 9-35

Overview of All XSQL Pages Capabilities
The <xsql:set-cookie> Action
The <xsql:set-cookie> action sets an HTTP cookie to a value. By default, the

value of the cookie remains for the lifetime of the current browser, but its lifetime

can be changed by supplying the optional max-age attribute. The value to be

assigned to the cookie can be supplied by a combination of static text and other

parameter values, or alternatively from the result of a SQL select statement.

Since this feature is specific to the HTTP protocol, this action is only effective if the

XSQL page in which it appears is being processed by the XSQL Servlet. If this action

is encountered in an XSQL page being processed by the XSQL command-line utility

or the XSQLRequest programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-cookie name=" paramname" value=" value "/>

or

<xsql:set-cookie name=" paramname">
 SQL select statement
</xsql:set-cookie>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname" attribute on the

document element of the XSQL page in which it appears.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the session-level parameter assignment
should be ignored if the value to which it is being assigned is

an empty string. Valid values are yes and no . The default

value is no .

only-if-unset = "boolean" Indicates whether the session variable assignment should only

occur when the session variable currently does not exists.

Valid values are yes and no . The default value is no .

Table 9–6 Attributes for <xsql:set-session-param>

Attribute Name Description
9-36 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
If you need to set several cookie values based on the results of a single SQL

statement, instead of using the name attribute, you can use the names attribute and

supply a space-or-comma-delimited list of one or more cookie names. For example:

<xsql:set-cookie names=" paramname1 paramname2 paramname3 ">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-cookie>

Either the name or the names attribute is required. The value attribute and the

contained SQL statement are mutually exclusive. If one is supplied, the other must

not be. The number of columns in the select list must match the number of cookies

being set or an error message will result.

Table 9–7 lists the optional attributes supported by this action.

Table 9–7 Attributes for <xsql:set-cookie>

Attribute Name Description

name = " string " Name of the cookie whose value you want to set.

names = " string string ..." Space-or-comma-delimited list of the cookie names whose
values you want to set. Either use the name or the names
attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

domain = "string" Domain in which cookie value is valid and readable. If domain
is not set explicitly, then it defaults to the fully-qualified
hostname (for example, bigserver.yourcompany.com) of
the document creating the cookie.

ignore-empty-value = "boolean" Indicates whether the cookie assignment should be ignored if

the value to which it is being assigned is an empty string.

Valid values are yes and no . The default value is no .

max-age = "integer" Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

only-if-unset = "boolean" Indicates whether the cookie assignment should only occur

when the cookie currently does not exists. Valid values are

yes and no . The default value is no .
XSQL Pages Publishing Framework 9-37

Overview of All XSQL Pages Capabilities
The <xsql:set-stylesheet-param> Action
The <xsql:set-stylesheet-param> action sets a top-level XSLT stylesheet

parameter to a value. The value can be supplied by a combination of static text and

other parameter values, or alternatively from the result of a SQL select statement.

The stylesheet parameter will be set on any stylesheet used during the processing of

the current page.

The syntax for this action is:

<xsql:set-stylesheet-param name=" paramname" value=" value "/>

or

<xsql:set-stylesheet-param name=" paramname">
 SQL select statement
</xsql:set-stylesheet-param>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname" attribute on the

document element of the XSQL page in which it appears.

If you need to set several stylesheet parameter values based on the results of a

single SQL statement, instead of using the name attribute, you can use the names
attribute and supply a space-or-comma-delimited list of one or more cookie names.

For example:

<xsql:set-stylesheet-param names=" paramname1 paramname2 paramname3 ">
 SELECT expression_or_column1, expression_or_column2, expression_or_column3
 FROM table
 WHERE clause_identifying_a_single_row
</xsql:set-stylesheet-param>

path = "string" Relative URL path within domain in which cookie value is
valid and readable. If path is not set explicitly, then it defaults
to the URL path of the document creating the cookie.

immediate = "boolean" Indicates whether the cookie assignment should be
immediately visible to the current page. Typically cookies set
in the current request are not visible until the browser sends
them back to the server in a subsequent request.Valid values
are yes and no . The default value is no .

Table 9–7 Attributes for <xsql:set-cookie>

Attribute Name Description
9-38 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
Either the name or the names attribute is required. The value attribute and the

contained SQL statement are mutually exclusive. If one is supplied, the other must

not be.

Table 9–8 lists the optional attributes supported by this action.

Aggregating Information Using <xsql:include-xsql>
The <xsql:include-xsql> action makes it very easy to include the results of one

XSQL page into another page. This allows you to easily aggregate content from a

page that you’ve already built and repurpose it. The examples that follow illustrate

two of the most common uses of <xsql:include-xsql> .

Assume you have an XSQL page that lists discussion forum categories:

<!-- Categories.xsql -->
<xsql:query connection="forum" xmlns:xsql="urn:oracle-xsql">
 SELECT name
 FROM categories
 ORDER BY name
</xsql:query>

You can include the results of this page into a page that lists the ten most recent

topics in the current forum like this:

<!-- TopTenTopics.xsql -->

Table 9–8 Attributes for <xsql:set-stylesheet-param>

Attribute Name Description

name = " string " Name of the top-level stylesheet parameter whose value you
want to set.

names = " string string ..." Space-or-comma-delimited list of the top-level stylesheet
parameter names whose values you want to set. Either use the
name or the names attribute, but not both.

bind-params = "string" Ordered, space-delimited list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the stylesheet parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value

is no .
XSQL Pages Publishing Framework 9-39

Overview of All XSQL Pages Capabilities
<top-ten-topics connection="forum" xmlns:xsql="urn:oracle-xsql">
 <topics>
 <xsql:query max-rows="10">
 SELECT subject FROM topics ORDER BY last_modified DESC
 </xsql:query>
 </topics>
 <categories>

<xsql:include-xsql href="Categories.xsql"/>
 </categories>
</top-ten-topics>

You can use <xsql:include-xsql> to include an existing page to apply an XSLT

stylesheet to it as well. So, if we have two different XSLT stylesheets:

■ cats-as-html.xsl , which renders the topics in HTML, and

■ cats-as-wml.xsl , which renders the topics in WML

Then one approach for catering to two different types of devices is to create

different XSQL pages for each device. We can create:

<?xml version="1.0"?>
<!-- HTMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

which aggregates Categories.xsql and applies the cats-as-html.xsl
stylesheet, and another page:

<?xml version="1.0"?>
<!-- WMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql" />

which aggregates Categories.xsql and applies the cats-as-wml.xsl
stylesheet for delivering to wireless devices. In this way, we’ve repurposed the

reusable Categories.xsql page content in two different ways.

If the page being aggregated contains an <?xml-stylesheet?> processing

instruction, then that stylesheet is applied before the result is aggregated, so using

<xsql:include-xsql> you can also easily chain the application of XSLT

stylesheets together.

When one XSQL page aggregates another page’s content using

<xsql:include-xsql> all of the request-level parameters are visible to the

"nested" page. For pages processed by the XSQL Servlet, this also includes
9-40 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
session-level parameters and cookies, too. As you would expect, none of the

aggregating page’s page-private parameters are visible to the nested page.

Table 9–9 lists the attributes supported by this action. Required attributes are in

bold.

Including XMLType Query Results
Oracle9i introduces the XMLType for use with storing and querying XML-based

database content. You can exploit database XML features to produce XML for

inclusion in your XSQL pages using one of two techniques:

■ <xsql:query> handles any query including columns of type XMLType,

however it handles XML markup in CLOB/VARCHAR2 columns as literal text.

■ <xsql:include-xml> parses and includes a single CLOB or String-based

XML document retrieved from a query

The difference between the two approaches lies in the fact that the

<xsql:include-xml> action parses the literal XML appearing in a CLOB or

String-value to turn it on the fly into a tree of elements and attributes. On the other

hand, using the <xsql:query> action, XML markup appearing in CLOB or String

valued-columns is left as literal text.

Another difference is that while <xsql:query> can handle query results of any

number of columns and rows, the <xsql:include-xml> is designed to work on a

single column of a single row. Accordingly, when using <xsql:include-xml> ,

the SELECT statement that appears inside it should return a single row containing a

single column. The column can either be a CLOB or a VARCHAR2 value containing

a well-formed XML document. The XML document will be parsed and included

into your XSQL page.

The following example uses nested xmlagg() functions to aggregate the results of

a dynamically-constructed XML document containing departments and nested

Table 9–9 Attributes for <xsql:include-xsql>

Attribute Name Description

href = " string " Relative or absolute URL of XSQL page to be included.

reparse = “boolean” Indicates whether output of included XSQL page should be
reparsed before it is included. Useful if included XSQL page is
selecting the text of an XML document fragment that the

including page wants to treat as elements. Valid values are

yes and no . The default value is no .
XSQL Pages Publishing Framework 9-41

Overview of All XSQL Pages Capabilities
employees into a single XML "result" document, wrapped in a <DepartmentList>
element:

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql">
 select XmlElement("DepartmentList",
 XmlAgg(
 XmlElement("Department",
 XmlAttributes(deptno as "Id"),
 XmlForest(dname as "Name"),
 (select XmlElement("Employees",
 XmlAgg(
 XmlElement("Employee",
 XmlAttributes(empno as "Id"),
 XmlForest(ename as "Name",
 sal as "Salary",
 job as "Job")
)
)
)
 from emp e
 where e.deptno = d.deptno
)
)
)
) as result
 from dept d
 order by dname
</xsql:query>

Considering another example, suppose you have a number of <Movie> XML

documents stored in a table of XmlType called MOVIES. Each document might

look something like this:

 <Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">
 <Director>
 <First>Anthony</First>
 <Last>Minghella</Last>
 </Director>
 <Cast>
 <Actor Role="Tom Ripley">
 <First>Matt</First>
 <Last>Damon</Last>
 </Actor>
 <Actress Role="Marge Sherwood">
 <First>Gwenyth</First>
9-42 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
 <Last>Paltrow</Last>
 </Actress>
 <Actor Role="Dickie Greenleaf">
 <First>Jude</First>
 <Last>Law</Last>
 <Award From="BAFTA" Category="Best Supporting Actor"/>
 </Actor>
 </Cast>
 </Movie>
You can use the built-in Oracle9i XPath query features to extract an aggregate list of

all cast members who have received Oscar awards from any movie in the database

using a query like this:

 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]')))
 from movies m

To include this query result of XMLType into your XSQL page, simply paste the

query inside an <xsql:query> element, and make sure you include an alias for

the query expression (for example "as result" following):

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql">
 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="Oscar"]]'))) as result
 from movies m
</xsql:query>

Note that again we use the combination of xmlelement() and xmlagg() to have

the database aggregate all of the XML fragments identified by the query into a

single, well-formed XML document. The combination of xmlelement()
and xmlagg() work together to produce a well-formed result
like this:
<AwardedActors>
 <Actor>...</Actor>
 <Actress>...</Actress>
</AwardedActors>

Notice that you can use the standard XSQL Pages bind variable capabilities in the

middle of an XPath expression, too, if you concatenate the bind variable into the

expression. For example, to parameterize the value "Oscar" into a parameter named

award-from, you could use an XSQL Page like this:

<xsql:query connection="orcl92" xmlns:xsql="urn:oracle-xsql"
XSQL Pages Publishing Framework 9-43

Overview of All XSQL Pages Capabilities
 award-from="Oscar" bind-params="award-from">
 /* Using a bind variable in an XPath expression */
 select xmlelement("AwardedActors",
 xmlagg(extract(value(m),
 '/Movie/Cast/*[Award[@From="’ || ? || ’"]]'))) as result
 from movies m
</xsql:query>

Handling Posted Information
In addition to simplifying the assembly and transformation of XML content, the

XSQL Pages framework makes it easy to handle posted XML content as well.

Built-in actions simplify the handling of posted information from both XML

document and HTML forms, and allow that information to be posted directly into a

database table using the underlying facilities of the Oracle XML SQL Utility.

The XML SQL Utility provides the ability to data database inserts, updates, and

deletes based on the content of an XML document in "canonical" form with respect

to a target table or view. For a given database table, the "canonical" XML form of its

data is given by one row of XML output from a SELECT * FROM tablename
query against it. Given an XML document in this canonical form, the XML SQL

Utility can automate the insert, update, and/or delete for you. By combining the

XML SQL Utility with an XSLT transformation, you can transform XML in any

format into the canonical format expected by a given table, and then ask the XML

SQL Utility to insert, update, delete the resulting "canonical" XML for you.

The following built-in XSQL actions make exploiting this capability easy from

within your XSQL pages:

■ <xsql:insert-request>

Insert the optionally transformed XML document that was posted in the

request into a table.Table 9–10 lists the required and optional attributes

supported by this action.

■ <xsql:update-request>

Update the optionally transformed XML document that was posted in the

request into a table or view. Table 9–11 lists the required and optional

attributes supported by this action.

■ <xsql:delete-request>

Delete the optionally transformed XML document that was posted in the

request from a table or view. Table 9–12 lists the required and optional

attributes supported by this action.
9-44 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
■ <xsql:insert-param>

Insert the optionally transformed XML document that was posted as the

value of a request parameter into a table or view. Table 9–13 lists the

required and optional attributes supported by this action.

If you target a database view with your insert, then you can create INSTEAD OF
INSERT triggers on the view to further automate the handling of the posted

information. For example, an INSTEAD OF INSERT trigger on a view could use

PL/SQL to check for the existence of a record and intelligently choose whether to

do an INSERT or an UPDATE depending on the result of this check.

Table 9–10 Attributes for <xsql:insert-request>

Attribute Name Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

Table 9–11 Attributes for <xsql:update-request>

Attribute Name Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.
XSQL Pages Publishing Framework 9-45

Overview of All XSQL Pages Capabilities
key-columns = " string " Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be updated. If supplied, then
only these columns will be updated. If not supplied, all
columns will be updated, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.

Table 9–12 Attributes for <xsql:delete-request>

Attribute Name Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

key-columns = " string " Space-delimited or comma-delimited list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

Table 9–11 Attributes for <xsql:update-request>

Attribute Name Description
9-46 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
Understanding Different XML Posting Options
There are three different ways that the XSQL pages framework can handle posted

information.

1. A client program can send an HTTP POST message that targets an XSQL

page, whose request body contains an XML document and whose HTTP

header reports a ContentType of "text/xml ".

In this case, you can use the <xsql:insert-request> ,

<xsql:update-request> , or the <xsql:delete-request> action and

the content of the posted XML will be insert, updated, or deleted in the

target table as indicated. If you transform the posted XML document using

an XSLT transformation, the posted XML document is the source document

for this transformation.

2. A client program can send an HTTP GET request for an XSQL page, one of

whose parameters contains an XML document.

Table 9–13 Attributes for <xsql:insert-param>

Attribute Name Description

name = " string " Name of the parameter whose value contains XML to be
inserted.

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-delimited or comma-delimited list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, nonzero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat class.
XSQL Pages Publishing Framework 9-47

Overview of All XSQL Pages Capabilities
In this case, you can use the <xsql:insert-param> action and the

content of the posted XML parameter value will be inserted in the target

table as indicated. If you transform the posted XML document using an

XSLT transformation, the XML document in the parameter value is the

source document for this transformation.

3. A browser can submit an HTML form with method ="POST" whose action

targets an XSQL page. In this case, by convention the browser sends an

HTTP POST message whose request body contains an encoded version of

all of the HTML form’s fields and their values with a ContentType of

"application/x-www-form-urlencoded "

In this case, there request does not contain an XML document, but instead

an encoded version of the form parameters. However, to make all three of

these cases uniform, the XSQL page processor will (on demand) materialize

an XML document from the set of form parameters, session variables, and

cookies contained in the request. Your XSLT transformation then

transforms this dynamically-materialized XML document into canonical

form for insert, update, or delete using <xsql:insert> ,

<xsql:update-request> , or <xsql:delete-request> respectively.

When working with posted HTML forms, the dynamically materialized XML

document will have the following form:

<request>
 <parameters>
 < firstparamname >firstparamvalue</ firstparamname >
 :
 < lastparamname >lastparamvalue</ lastparamname >
 </parameters>
 <session>
 < firstparamname >firstsessionparamvalue</ firstparamname >
 :
 < lastparamname >lastsessionparamvalue</ lastparamname >
 </session>
 <cookies>
 < firstcookie >firstcookievalue</ firstcookiename >
 :
 < lastcookie >firstcookievalue</ lastcookiename >
 </cookies>
</request>

If multiple parameters are posted with the same name, then they will automatically

be "row-ified" to make subsequent processing easier. This means, for example, that

a request which posts or includes the following parameters:
9-48 Oracle9i XML Developer’s Kits Guide - XDK

Overview of All XSQL Pages Capabilities
■ id = 101

■ name = Steve

■ id = 102

■ name = Sita

■ operation = update

Will create a "row-ified" set of parameters like:

<request>
 <parameters>

<row>
 <id>101</id>
 <name>Steve</name>

</row>
<row>

 <id>102</id>
 <name>Sita</name>

</row>
 <operation>update</operation>
 </parameters>
 :
</request>

Since you will need to provide an XSLT stylesheet that transforms this materialized

XML document containing the request parameters into canonical format for your

target table, it might be useful to build yourself an XSQL page like this:

<!--
 | ShowRequestDocument.xsql
 | Show Materialized XML Document for an HTML Form
 +-->
<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

With this page in place, you can temporarily modify your HTML form to post to the

ShowRequestDocument.xsql page, and in the browser you will see the "raw"

XML for the materialized XML request document which you can save out and use

to develop the XSLT transformation.

Using Custom XSQL Action Handlers
When you need to perform tasks that are not handled by the built-in action

handlers, the XSQL Pages framework allows custom actions to be invoked to do
XSQL Pages Publishing Framework 9-49

Overview of All XSQL Pages Capabilities
virtually any kind of job you need done as part of page processing. Custom actions

can supply arbitrary XML content to the data page and perform arbitrary

processing. See Writing Custom XSQL Action Handlers later in this chapter for

more details on writing custom action handlers in Java. Here we explore how to

make use of a custom action handler, once it’s already created.

To invoke a custom action handler, use the built-in <xsql:action> action

element. It has a single, required attribute named handler whose value is the

fully-qualified Java class name of the action you want to invoke. The class must

implement the oracle.xml.xsql.XSQLActionHandler interface. For example:

<xsql:action handler="yourpackage.YourCustomHandler"/>
Any number of additional attribute can be supplied to the handler in the normal

way. For example, if the yourpackage.YourCustomHandler is expecting a

attributes named param1 and param2 , you use the syntax:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy"/>

Some action handlers, perhaps in addition to attributes, may expect text content or

element content to appear inside the <xsql:action> element. If this is the case,

simply use the expected syntax like:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
 Some Text Goes Here
</xsql:action>

or this:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
 <some>
 <other/>
 <elements/>
 <here/>
 </some>
</xsql:action>
9-50 Oracle9i XML Developer’s Kits Guide - XDK

Description of XSQL Servlet Examples
Description of XSQL Servlet Examples
Figure 9–14 lists the XSQL Servlet example applications supplied with the software

in the ./demo directory.

Table 9–14 XSQL Servlet Examples

Demonstration Name Description

Hello World

./demo/helloworld

Simplest possible XSQL page.

Do You XML Site
./demo/doyouxml

XSQL page shows how a to build a data-driven web site with an XSQL page. Uses
SQL, XSQL-substitution variables in queries, and XSLT to format.

Uses substitution parameters in SQL statements in <xsql:query> tags, and in
attributes to <xsql:query> t ags, to control for example how many records to
display, or to skip, for paging through query results.

Employee Page

./demo/emp

XSQL page displays XML data from EMP table, using XSQL page parameters to
control employees and data sorting.

Uses an associated XSLT Stylesheet to format results as HTML version of emp.xsql
page. This is the form action hence you can fine tune your search criteria.

Insurance Claim Page
./demo/insclaim

Shows sample queries over a structured, Insurance Claim object view.
insclaim.sql sets up the INSURANCE_CLAIM_VIEW object view and
populates it with sample data.

Invalid Classes Page
./demo/classerr

XSQL Page uses invalidclasses.xsl to format a “live” list of current Java
class compilation errors in your schema. The .sql script sets up
XSQLJavaClassesView object view for the demo. Master/detail information from
object view is formatted into HTML by the invalidclasses.xsl stylesheet in
the server.

Airport Code Validation
./demo/airport

XSQL page returns a “datagram” of information about airports based on their
three-letter codes. Uses <xsql:no-rows-query> as alternative queries when
initial queries return no rows. After attempting to match the airport code passed
in, the XSQL page tries a fuzzy match based on the airport description.

airport.htm page demonstrates how to use the XML results of airport.xsql
page from a web page using JavaScript to exploit built-in XML Document Object
Model (DOM) functionality in Internet Explorer 5.0.

When you enter the three-letter airport code on the web page, a JavaScript fetches
the XML datagram from XSQL Servlet over the web corresponding to the code you
entered. If the return indicates no match, the program collects a “picklist” of
possible matches based on information returned in the XML “datagram” from
XSQL Servlet
XSQL Pages Publishing Framework 9-51

Description of XSQL Servlet Examples
Airport Code Display
./demo/airport

Demonstrates using the same XSQL page as the Airport Code Validation example
but supplying an XSLT Stylesheet name in the request. This causes the airport
information to be formatted as an HTML form instead of being returned as raw
XML.

Emp/Dept Object Demo

./demo/empdept

How to use an object view to group master/detail information from two existing
"flat" tables like EMP and DEPT. empdeptobjs.sql script creates the object view
and INSTEAD OF INSERT triggers, allowing the use of master/detail view as an
insert target of xsql:insert-request.

empdept.xsl stylesheet illustrates an example of the “simple form” of an XSLT
stylesheet that can look just like an HTML page without the extra xsl:stylesheet or
xsl:transform at the top. Part of XSLT 1.0 specification called using a Literal Result
Element as Stylesheet.

Shows how to generate an HTML page that includes the <link rel=”stylesheet”> to
allow the generated HTML to fully leverage CSS for centralized HTML style
information, found in the coolcolors.css file.

Adhoc Query
Visualization

./demo/adhocsql

Shows how to pass an SQL query and XSLT Stylesheet to use as parameters to the
server.

NOTE: Deploying this demo page to your production environment should be given
particular consideration because it allows the results of any SQL query in XML format
over the Web that your SCOTT user account has access to.

XML Document Demo
./demo/document

How to insert XML documents into relational tables.

docdemo.sql script creates a user-defined type called XMLDOCFRAG containing
an attribute of type CLOB.

■ Insert the text of the document in ./xsql/demo/xml99.xml and provide the
name xml99.xsl as the stylesheet

■ Insert the text of the document in./xsql/demo/JDevRelNotes.xml with
the stylesheet relnotes.xsl .

docstyle.xsql page illustrates an example of the <xsql:include-xsql>
action element to include the output of the doc.xsql page into its own page
before transforming the final output using a client-supplied stylesheet name.

XML Document demo uses client-side XML features of Internet Explorer 5.0 to
check the document for well-formedness before it is posted to the server.

Table 9–14 XSQL Servlet Examples (Cont.)

Demonstration Name Description
9-52 Oracle9i XML Developer’s Kits Guide - XDK

Description of XSQL Servlet Examples
Setting Up the Demo Data
To set up the demo data do the following:

1. Change directory to the ./demo directory on your machine.

2. In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS

— the schema owner for Oracle9i Text (Intermedia Text) packages — and issue

the command

GRANT EXECUTE ON CTX_DDL TO SCOTT;

3. Connect to your database as SYSTEM/MANAGER and issue the command:

GRANT QUERY REWRITE TO SCOTT;

XML Insert Request Demo
./demo/insertxml

Posts XML from a client to an XSQL Page that inserts the posted XML information
into a database table using the <xsql:insert-request> action element.

The demo accepts XML documents in the moreover.com XML-based news format.
The program posting the XML is a client-side web page using Internet Explorer 5.0
and the XMLHttpRequest object from JavaScript.

The source for insertnewsstory.xsql page, specifies a table name and XSLT
Transform name.

moreover-to-newsstory.xsl stylesheet transforms the incoming XML into
canonical format that OracleXMLSave utility can insert. Copy and paste the
example <article> element several times within the <moreovernews> element to
insert several new articles in one shot.

newsstory.sql shows how INSTEAD OF triggers can be used on the database
views into which you ask XSQL Pages to insert to the data to customize how
incoming data is handled, default primary key values,....

SVG Demo

./demo/svg

deptlist.xsql page displays a simple list of departments with hyperlinks to
SalChart.xsql page.

SalChart.xsql page queries employees for a given department passed in as a
parameter and uses the SalChart.xsql stylesheet to format the result into a Scalable
Vector Graphics drawing, a bar chart comparing salaries of the employees in that
department.

PDF Demo

./demo/fop

emptable.xsql page displays a simple list of employees. The emptable.xsl
stylesheet transforms the datapage into the XSL-FO Formatting Objects which,
combined with the built-in FOP serializer, render the results in Adobe PDF format.

Table 9–14 XSQL Servlet Examples (Cont.)

Demonstration Name Description
XSQL Pages Publishing Framework 9-53

Advanced XSQL Pages Topics
This allows SCOTT to create a functional index that one of the demos uses to

perform case-insensitive queries on descriptions of airports.

4. Connect to your database as SCOTT/TIGER.

5. Run the script install.sql in the ./demo directory. This script runs all SQL

scripts for all the demos.

install.sql
@@insclaim/insclaim.sql
@@document/docdemo.sql
@@classerr/invalidclasses.sql
@@airport/airport.sql
@@insertxml/newsstory.sql
@@empdept/empdeptobjs.sql

6. Change directory to ./doyouxml subdirectory, and run the following:

imp scott/tiger file=doyouxml.dmp

to import sample data for the "Do You XML? Site" demo.

7. To experience the Scalable Vector Graphics (SVG) demonstration, install an

SVG plug-in into your browser, such as Adobe SVG Plug-in.

Advanced XSQL Pages Topics

Understanding Client Stylesheet-Override Options
If the current XSQL page being requested allows it, you can supply an XSLT

stylesheet URL in the request to override the default stylesheet that would have

been used — or to apply a stylesheet where none would have been applied by

default. The client-initiated stylesheet URL is provided by supplying the

xml-stylesheet parameter as part of the request. The valid values for this

parameter are:

■ Any relative URL, interpreted relative to the XSQL page being processed

■ Any absolute URL using the http protocol scheme, provided it references a

trusted host (as defined in the XSQLConfig.xml file)

■ The literal value none

This last value, xml-stylesheet=none , is particularly useful during

development to temporarily "short-circuit" the XSLT stylesheet processing to see
9-54 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
what XML datagram your stylesheet is actually seeing. This can help understand

why a stylesheet might not be producing the expected results.

Client-override of stylesheets for an XSQL page can be disallowed either by:

■ Setting the allow-client-style configuration parameter to no in the

XSQLConfig.xml file, or

■ Explicitly including an allow-client-style=”no” attribute on the

document element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the

XSQLConfig.xml configuration file, any page can still enable client-override

explicitly by including an allow-client-style=”yes” attribute on the

document element of that page.

Controlling How Stylesheets Are Processed

Controlling the Content Type of the Returned Document
Setting the content type of the information you serve is very important. It allows the

requesting client to correctly interpret the information that you send back.If your

stylesheet uses an <xsl:output> element, the XSQL Page Processor infers the

media type and encoding of the returned document from the media-type and

encoding attributes of <xsl:output> .

For example, the following stylesheet uses the

media-type="application/vnd.ms-excel" attribute on <xsl:output> to

transform the results of an XSQL page containing a standard query over the emp

table into Microsoft Excel spreadsheet format.

<?xml version="1.0"?>
<!-- empToExcel.xsl -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" media-type="application/vnd.ms-excel"/>
 <xsl:template match="/">
 <html>
 <table>
 <tr><th>EMPNO</th><th>ENAME</th><th>SAL</th></tr>
 <xsl:for-each select="ROWSET/ROW">
 <tr>
 <td><xsl:value-of select="EMPNO"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="SAL"/></td>
 </tr>
XSQL Pages Publishing Framework 9-55

Advanced XSQL Pages Topics
 </xsl:for-each>
 </table>
 </html>
 </xsl:template>
</xsl:stylesheet>

An XSQL page that makes use of this stylesheet looks like this:

<?xml version="1.0"?>
<?xml-stylesheet href="empToExcel.xsl" type="text/xsl"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 select * from emp order by sal desc
</xsql:query>

Assigning the Stylesheet Dynamically
As we've seen, if you include an <?xml-stylesheet?> processing instruction at

the top of your .xsql file, it will be considered by the XSQL page processor for use

in transforming the resulting XML datagram. For example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 SELECT * FROM emp ORDER BY sal DESC
 </xsql:query>
</page>

would use the emp.xsl stylesheet to transform the results of the EMP query in the

server tier, before returning the response to the requestor. The stylesheet is accessed

by the relative or absolute URL provided in the href pseudo-attribute on the

<?xml-stylesheet?> processing instruction.

By including one or more parameter references in the value of the href
pseudo-attribute, you can dynamically determine the name of the stylesheet. For

example, this page selects the name of the stylesheet to use from a table by

assigning the value of a page-private parameter using a query.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href=" {@sheet} .xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:set-page-param bind-params="UserCookie" name="sheet">
 SELECT stylesheet_name
 FROM user_prefs
 WHERE username = ?
 </xsql:set-page-param>
9-56 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
 <xsql:query>
 SELECT * FROM emp ORDER BY sal DESC
 </xsql:query>
</page>

Processing Stylesheets in the Client
Some browsers like Microsoft’s Internet Explorer 5.0 and higher support processing

XSLT stylesheets in the client. These browsers recognize the stylesheet to be

processed for an XML document in the same way that a server-side XSQL page

does, using an <?xml-stylesheet?> processing instruction. This is not a

coincidence. The use of <?xml-stylesheet?> for this purpose is part of the W3C

Recommendation from June 29, 1999 entitled "Associating Stylesheets with XML

Documents, Version 1.0"

By default, the XSQL page processor performs XSLT transformations in the server,

however by adding on additional pseudo-attribute to your <?xml-stylesheet?>
processing instruction in your XSQL page — client="yes" — the page processor

will defer the XSLT processing to the client by serving the XML datagram "raw",

with the current <?xml-stylesheet?> at the top of the document.

One important point to note is that Internet Explorer 5.0 shipped in late 1998,

containing an implementation of the XSL stylesheet language that conformed to a

December 1998 Working Draft of the standard. The XSLT 1.0 Recommendation that

finally emerged in November of 1999 had significant changes from the earlier

working draft version on which IE5 is based. This means that IE5 browsers

understand a different "dialect" of XSLT than all other XSLT processors — like the

Oracle XSLT processor — which implement the XSLT 1.0 Recommendation syntax.

Toward the end of 2000, Microsoft released version 3.0 of their MSXML components

as a Web-downloadable release. This latest version does implement the XSLT 1.0

standard, however in order for it to be used as the XSLT processor inside the IE5

browser, the user must go through additional installation steps. Unfortunately there

is no way for a server to detect that the IE5 browser has installed the latest XSLT

components, so until the Internet Explorer 6.0 release emerges — which will contain

the latest components by default and which will send a detectably different

User-Agent string containing the 6.0 version number — stylesheets delivered for

client processing to IE5 browsers should use the earlier IE5-"flavor" of XSL.

What we need is a way to request that an XSQL page use different stylesheets

depending on the User-Agent making the request. Luckily, the XSQL Pages

framework makes this easy and we learn how in the next section.
XSQL Pages Publishing Framework 9-57

Advanced XSQL Pages Topics
Providing Multiple, UserAgent-Specific Stylesheets
You can include multiple <?xml-stylesheet?> processing instructions at the top

of an XSQL page and any of them can contain an optional media pseudo-attribute.

If specified, the media pseudo-attribute’s value is compared case-insensitively with

the value of the HTTP header’s User-Agent string. If the value of the media
pseudo-attribute matches a part of the User-Agent string, then the processor selects

the current <?xml-stylesheet?> processing instruction for use, otherwise it

ignores it and continues looking. The first matching processing instruction in

document order will be used. A processing instruction without a media
pseudo-attribute matches all user agents so it can be used as the fallback/default.

For example, the following processing instructions at the top of an .xsql file...

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="lynx" href=" doyouxml-lynx.xsl " ?>
<?xml-stylesheet type="text/xsl" media="msie 5" href=" doyouxml-ie.xsl " ?>
<?xml-stylesheet type="text/xsl" href="doyouxml.xsl" ?>
<page xmlns:xsql="urn:oracle-xsql" connection="demo">
 :

will use doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet

Explorer 5.0 or 5.5 browsers, and doyouxml.xsl for all others.

Table 9–15 summarizes all of the supported pseudo-attributes allowed on the

<?xml-stylesheet?> processing instruction.

Table 9–15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description

type = "string" Indicates the MIME type of the associated stylesheet. For XSLT
stylesheets, this attribute must be set to the string text/xsl .

This attribute may be present or absent when using the
serializer attribute, depending on whether an XSLT
stylesheet should execute before invoking the serializer or not.

href = "URL" Indicates the relative or absolute URL to the XSLT stylesheet to
be used. If an absolute URL is supplied that uses the http
protocol scheme, the IP address of the resource must be a
trusted host listed in the XSQLConfig.xml file.

media = "string" This attribute is optional. If provided, its value is used to
perform a case-insensitive match on the User-Agent string
from the HTTP header sent by the requesting device. The
current <?xml-stylesheet?> processing instruction will
only be used if the User-Agent string contains the value of
the media attribute, otherwise it is ignored.
9-58 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
Using XSQLConfig.xml to Tune Your Environment
Use the XSQLConfig.xml File to tune your XSQL pages environment. Table 9–16

defines all of the parameters that can be set.

client = "boolean" If set to yes , caused the XSQL page processor to defer the
processing of the associated XSLT stylesheet to the client. The
"raw" XML datagram will be sent to the client with the current
<?xml-stylesheet?> processing instruction at the top of
the document. The default if not specified is to perform the

transform in the server.

serializer = "string" By default, the XSQL page processor uses the:

■ XML DOM serializer if no XSLT stylesheet is used

■ XSLT processor’s serializer, if XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom
serializer implementation should be used instead.

Valid values are either the name of a custom serializer defined
in the <serializerdefs> section of the XSQLConfig.xml
file, or the string java: fully.qualified.Classname . If
both an XSLT stylesheet and the serializer attribute are present,
then the XSLT transform is performed first, then the custom
serializer is invoked to render the final result to the
OutputStream or PrintWriter.

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/servlet/output-buffer-size

Sets the size (in bytes) of the buffered output stream. If your servlet engine already buffers
I/O to the Servlet Output Stream, then you can set to 0 to avoid additional buffering.

Default value is 0. Valid value is any non-negative integer.

Table 9–15 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name Description
XSQL Pages Publishing Framework 9-59

Advanced XSQL Pages Topics
XSQLConfig/servlet/suppress-mime-charset/media-type

The XSQL Servlet sets the HTTP ContentType header to indicate the MIME type of the
resource being returned to the request. By default, the XSQL Servlet includes the optional
character set information in the MIME type. For a particular MIME type, you can suppress
the inclusion of the character set information by including a <media-type> element, with
the desired MIME type as its contents.

You may list any number of <media-type> elements.

Valid value is any string.

XSQLConfig/processor/character-set-conversion/default-charset

By default, the XSQL page processor does charater set conversion on the value of HTTP
parameters to compensate for the default character set used by most servlet engines. The
default base character set used for conversion is the Java character set 8859_1
corresponding to IANA's ISO-8859-1 character set. If your servlet engine uses a different
character set as its base character set you can now specify that value here.

To suppress character set conversion, specify the empty element <none/> as the content of
the <default-charset> element, instead of a character set name. This is useful if you are
working with parameter values that are correctly representable using your servlet's default
character set, and eliminates a small amount of overhead associated with performing the
character set conversion.

Valid values are any Java character set name, or the element <none/> .

XSQLConfig/processor/reload-connections-on-error

Connection definitions are cached when the XSQL Page Processor is initialized. Set this
setting to yes to cause the processor to reread the XSQLConfig.xml file to reload
connection definitions if an attempt is made to request a connection name that's not in the
cached connection list. The yes setting is useful during development when you might be
adding new <connection> definitions to the file while the servlet is running. Set to no to
avoid reloading the connection definition file when a connection name is not found in the
in-memory cache.

Default is yes . Valid values are yes and no .

XSQLConfig/processor/default-fetch-size

Sets the default value of the row fetch size for retrieving information from SQL queries from
the database. Only takes effect if you are using the Oracle JDBC Driver, otherwise the setting
is ignored. Useful for reducing network round-trips to the database from the servlet engine
running in a different tier.

Default is 50 . Valid value is any nonzero positive integer.

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name
9-60 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
XSQLConfig/processor/page-cache-size

Sets the size of the XSQL cache for XSQL page templates. This determines the maximum
number of XSQL pages that will be cached. Least recently used pages get "bumped" out of
the cache if you go beyond this number.

Default is 25 . Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-cache-size

Sets the size of the XSQL cache for XSLT stylesheets. This determines the maximum number
of stylesheets that will be cached. Least recently used stylesheets get "bumped" out of the
cache if you go beyond this number.

Default is 25 . Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/initial

Each cached stylesheet is actually a pool of cached stylesheet instances to improve
throughput. Sets the initial number of stylesheets to be allocated in each stylesheet pool.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/increment

Sets the number of stylesheets to be allocated when the stylesheet pool must grow due to
increased load on the server.

Default is 1. Valid value is any nonzero positive integer.

XSQLConfig/processor/stylesheet-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a stylesheet instance in
the pool will be removed to free resources as the pool tries to "shrink" back to its initial size.

Default is 60 . Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/initial

The XSQL page processor’s default connection manager implements connection pooling to
improve throughput. This setting controls the initial number of JDBC connections to be
allocated in each connection pool.

Default is 2. Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/increment

Sets the number of connections to be allocated when the connection pool must grow due to
increased load on the server.

Default is 1. Valid value is any nonzero positive integer.

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name
XSQL Pages Publishing Framework 9-61

Advanced XSQL Pages Topics
XSQLConfig/processor/connection-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a JDBC connection in the
pool will be removed to free resources as the pool tries to "shrink" back to its initial size.

Default is 60 . Valid value is any nonzero positive integer.

XSQLConfig/processor/connection-pool/dump-allowed

Determines whether a diagnostic report of connection pool activity can be requested by
passing the dump-pool=y parameter in the page request.

Default is no . Valid value is yes or no .

XSQLConfig/processor/connection-manager/factory

Specifies the fully-qualified Java class name of the XSQL connection manager factory
implementation. If not specified, this setting defaults to
oracle.xml.xsql.XSQLConnectionManagerFactoryImpl .

Default is oracle.xml.xsql.XSQLConnectionManagerFactoryImpl . Valid value is
any class name that implements the
oracle.xml.xsql.XSQLConnectionManagerFactory interface.

XSQLConfig/processor/owa/fetch-style

Sets the default OWA Page Buffer fetch style used by the <xsql:include-owa> action.Valid
values are CLOB or TABLE, and the default if not specified is CLOB.

If set to CLOB, the processor uses temporary CLOB to retrieve the OWA page buffer.

If set to TABLEthe processor uses a more efficient approach that requires the existence of the
Oracle user-defined type named XSQL_OWA_ARRAY which must be created by hand using
the DDL statement:

CREATE TYPE xsql_owa_array AS TABLE OF VARCHAR2(32767)

XSQLConfig/processor/timing/page

Determines whether a the XSQL page processor adds an xsql-timing attribute to the
document element of the page whose value reports the elapsed number of milliseconds
required to process the page.

Default is no . Valid value is yes or no .

XSQLConfig/processor/timing/action

Determines whether a the XSQL page processor adds comment to the page just before the
action element whose contents reports the elapsed number of milliseconds required to
process the action.

Default is no . Valid value is yes or no .

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name
9-62 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
XSQLConfig/processor/security/stylesheet/defaults/allow-client-style

While developing an application, it is frequently useful to take advantage of the XSQL page
processor's per-request stylesheet override capability by providing a value for the special
xml-stylesheet parameter in the request. One of the most common uses is to provide the
xml-stylesheet=none combination to temporarily disable the application of the
stylesheet to "peek" underneath at the raw XSQL data page for debugging purposes.

When development is completed, you could explicitly add the
allow-client-style="no" attribute to the document element of each XSQL page to
prohibit client overriding of the stylesheet in the production application. However, using
this configuration setting, you can globally change the default behavior for
allow-client-style in a single place.

Note that this only provides the default setting for this behavior. If the
allow-client-style="yes|no" attribute is explicitly specified on the document
element for a given XSQL page, its value takes precedence over this global default.

Valid values are yes and no .

XSQLConfig/processor/security/stylesheet/trusted-hosts/host

XSLT stylesheets can invoke extension functions. In particular, the Oracle XSLT processor —
which the XSQL page processor uses to process all XSLT stylesheets — supports Java
extension functions. Typically your XSQL pages will refer to XSLT stylesheets using relative
URL’s The XSQL page processor enforces that any absolute URL to an XSLT stylesheet that
is processed must be from a trusted host whose name is listed here in the configuration file.

You may list any number of <host> elements inside the <trusted-hosts> element. The
name of the local machine, localhost , and 127.0.0.1 are considered trusted hosts by
default.

Valid values are any hostname or IP address.

XSQLConfig/http/proxyhost

Sets the name of the HTTP proxy server to use when processing URL’s with the http protcol
scheme.

Valid value is any hostname or IP address.

XSQLConfig/http/proxyport

Sets the port number of the HTTP proxy server to use when processing URL’s with the http
protcol scheme.

Valid value is any nonzero integer.

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name
XSQL Pages Publishing Framework 9-63

Advanced XSQL Pages Topics
Using the FOP Serializer to Produce PDF Output
Using the XSQL Pages framework’s support for custom serializers, the

oracle.xml.xsql.serializers.XSQLFOPSerializer is provided for

integrating with the Apache FOP processor (http://xml.apache.org/fop). The FOP

XSQLConfig/connectiondefs/connection

Defines a "nickname" and the JDBC connection details for a named connection for use by the
XSQL page processor.

You may supply any number of <connection> element children of <connectiondefs> .
Each connection definition must supply a name attribute, and may supply appropriate
children elements <username> , <password> , <driver> , <dburl> , and <autocommit> .

XSQLConfig/connectiondefs/connection/username

Defines the username for the current connection.

XSQLConfig/connectiondefs/connection/password

Defines the password for the current connection.

XSQLConfig/connectiondefs/connection/dburl

Defines the JDBC connection URL for the current connection.

XSQLConfig/connectiondefs/connection/driver

Specifies the fully-qualified Java class name of the JDBC driver to be used for the current
connection. If not specified, defaults to oracle.jdbc.driver.OracleDriver .

XSQLConfig/connectiondefs/connection/autocommit

Explicity sets the Auto Commit flag for the current connection. If not specified, connection
uses JDBC driver’s default setting for Auto Commit.

XSQLConfig/serializerdefs/serializer

Defines a named custom serializer implementation.

You may supply any number of <serializer> element children of <serializerdefs> .
Each must specify both a <name> and a <class> child element.

XSQLConfig/serializerdefs/serializer/name

Defines the name of the current custom serializer definition.

XSQLConfig/connectiondefs/connection/class

Specifies the fully-qualified Java class name of the current custom serializer. The class must
implement the oracle.xml.xsql.XSQLDocumentSerializer interface.

Table 9–16 XSQLConfig.xml Configuation Settings

Configuration Setting Name
9-64 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
processor renders a PDF document from an XML document containing XSL

Formatting Objects (http://www.w3.org/TR/xsl).

For example, given the following XSLT stylesheet, EmpTableFO.xsl :

<?xml version="1.0"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format" xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- defines the layout master -->
 <fo:layout-master-set>
 <fo:simple-page-master master-name="first"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-body margin-top="3cm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <!-- starts actual layout -->
 <fo:page-sequence master-reference="first">

 <fo:flow flow-name="xsl-region-body">

 <fo:block font-size="24pt" line-height="24pt" font-weight="bold"
start-indent="15pt">
 Total of All Salaries is $<xsl:value-of select="sum(/ROWSET/ROW/SAL)"/>
 </fo:block>

 <!-- Here starts the table -->
 <fo:block border-width="2pt">
 <fo:table>
 <fo:table-column column-width="4cm"/>
 <fo:table-column column-width="4cm"/>
 <fo:table-body font-size="10pt" font-family="sans-serif">
 <xsl:for-each select="ROWSET/ROW">
 <fo:table-row line-height="12pt">
 <fo:table-cell>
 <fo:block><xsl:value-of select="ENAME"/></fo:block>
 </fo:table-cell>
 <fo:table-cell>
XSQL Pages Publishing Framework 9-65

Advanced XSQL Pages Topics
 <fo:block><xsl:value-of select="SAL"/></fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xsl:for-each>
 </fo:table-body>
 </fo:table>
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

Using XSQL Page Processor Programmatically
The XSQLRequest class, allows you to utilize the XSQL page processor "engine"

from within your own custom Java programs. Using the API is simple. You

construct an instance of XSQLRequest , passing the XSQL page to be processed into

the constructor as one of the following:

■ String containing a URL to the page

■ URL object for the page

■ In-memory XMLDocument

Then you invoke one of the following methods to process the page:

■ process()— to write the result to a PrintWriter or OutputStream, or

■ processToXML() — to return the result as an XML Document

If you want to use the built-in XSQL Connection Manager — which implements

JDBC connection pooling based on XSQLConfig.xml -based connection definitions

— then the XSQL page is all you need to pass to the constructor. Optionally, you

can pass in a custom implementation for the XSQLConnectionManagerFactory
interface as well, if you want to use your own connection manager implementation.

Note: To use the XSQL FOP Serializer, you need to add these

additional Java archives to your server’s CLASSPATH:

■ xsqlserializers.jar — supplied with Oracle XSQL

■ fop.jar — From Apache, version 0.16 or higher

■ w3c.jar — from the FOP distribution’s ./lib directory
9-66 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
Note that the ability to pass the XSQL page to be processed as an in-memory XML

Document object means that you can dynamically generate any valid XSQL page

for processing using any means necessary, then pass the page to the XSQL engine

for evaluation.

When processing a page, there are two additional things you may want to do as

part of the request:

■ Pass a set of parameters to the request

You accomplish this by passing any object that implements the

Dictionary interface, to the process() or processToXML() methods.

Passing a HashTable containing the parameters is one popular approach.

■ Set an XML document to be processed by the page as if it were the "posted

XML" message body

You can do this using the setPostedDocument() method on the

XSQLRequest object.

Here is a simple example of processing a page using XSQLRequest :

import oracle.xml.xsql.XSQLRequest;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.net.URL;
public class XSQLRequestSample {
 public static void main(String[] args) throws Exception {
 // Construct the URL of the XSQL Page
 URL pageUrl = new URL("file:///C:/foo/bar.xsql");
 // Construct a new XSQL Page request
 XSQLRequest req = new XSQLRequest(pageUrl);
 // Setup a Hashtable of named parameters to pass to the request
 Hashtable params = new Hashtable(3);
 params.put("param1","value1");
 params.put("param2","value2");
 /* If needed, treat an existing, in-memory XMLDocument as if
 ** it were posted to the XSQL Page as part of the request
 req.setPostedDocument(myXMLDocument);
 **
 */
 // Process the page, passing the parameters and writing the output
 // to standard out.
 req.process(params,new PrintWriter(System.out)
 ,new PrintWriter(System.err));
 }
}

XSQL Pages Publishing Framework 9-67

Advanced XSQL Pages Topics
Writing Custom XSQL Action Handlers
When the task at hand requires custom processing, and none of the built-in actions

does exactly what you need, you can augment your repertoire by writing your own

actions that any of your XSQL pages can use.

The XSQL page processor at its very core is an engine that processes XML

documents containing "action elements". The page processor engine is written to

support any action that implements the XSQLActionHandler interface. All of the

built-in actions implement this interface.

The XSQL Page Processor processes the actions in a page in the following way. For

each action in the page, the engine:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page

processor context by invoking the method:

init(Element actionElt,XSQLPageRequest context)

3. Invokes the method that allows the handler to handle the action:

handleAction (Node result)

For built-in actions, the engine knows the mapping of XSQL action element name to

the Java class that implements the action’s handler. Table 9–17 lists that mapping

explicitly for your reference. For user-defined actions, you use the built-in:

<xsql:action handler=" fully.qualified.Classname " ... />

action whose handler attribute provides the fully-qualified name of the Java class

that implements the custom action handler.

Table 9–17 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions

<xsql:query> XSQLQueryHandler

<xsql:dml> XSQLDMLHandler

<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler

<xsql:insert-request> XSQLInsertRequestHandler

<xsql:include-xml> XSQLIncludeXMLHandler

<xsql:include-request-params> XSQLIncludeRequestHandler

<xsql:include-posted-xml> XSQLIncludePostedXMLHandler
9-68 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
Writing your Own Action Handler
To create a custom Action Handler, you need to provide a class that implements the

oracle.xml.xsql.XSQLActionHandler interface. Most custom action handlers

should extend oracle.xml.xsql.XSQLActionHandlerImpl that provides a

default implementation of the init() method and offers a set of useful helper

methods that will prove very useful.

When an action handler’s handleAction method is invoked by the XSQL page

processor, the action implementation gets passed the root node of a DOM

Document Fragment to which the action handler should append any dynamically

created XML content that should be returned to the page.

The XSQL Page Processor conceptually replaces the action element in the XSQL

page template with the content of this Document Fragment. It is completely legal for

an Action Handler to append nothing to this document fragment, if it has no XML

content to add to the page.

While writing you custom action handlers, several methods on the

XSQLActionHandlerImpl class are worth noting because they make your life a lot

easier. Table 9–18 lists the methods that will likely come in handy for you.

<xsql:include-xsql> XSQLIncludeXSQLHandler

<xsql:include-owa> XSQLIncludeOWAHandler

<xsql:action> XSQLExtensionActionHandler

<xsql:ref-cursor-function> XSQLRefCursorFunctionHandler

<xsql:include-param> XSQLGetParameterHandler

<xsql:set-session-param> XSQLSetSessionParamHandler

<xsql:set-page-param> XSQLSetPageParamHandler

<xsql:set-cookie> XSQLSetCookieHandler

<xsql:insert-param> XSQLInsertParameterHandler

<xsql:update-request> XSQLUpdateRequestHandler

<xsql:delete-request> XSQLDeleteRequestHandler

Table 9–17 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions
XSQL Pages Publishing Framework 9-69

Advanced XSQL Pages Topics
orac

Table 9–18 Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description

getActionElement Returns the current action element being handled

getActionElementContent Returns the text content of the current action element,
with all lexical parameters substituted appropriately.

getPageRequest Returns the current XSQL page processor context. Using
this object you can then do things like:

■ setPageParam()

Set a page parameter value

■ getPostedDocument()/setPostedDocument()

Get or set the posted XML document

■ translateURL()

Translate a relative URL to an absolute URL

■ getRequestObject()/setRequestObject()

Get or set objects in the page request context that
can be shared across actions in a single page.

■ getJDBCConnection()

Gets the JDBC connection in use by this page
(possible null if no connection in use).

■ getRequestType()

Detect whether you are running in the "Servlet",
"Command Line" or "Programmatic" context. For
example, if the request type is "Servlet" then you can
cast the XSQLPageRequest object to the more
specific XSQLServletPageRequest to access
addition Servlet-specific methods like
getHttpServletRequest ,
getHttpServletResponse , and
getServletContext

getAttributeAllowingParam Retrieve the attribute value from an element, resolving
any XSQL lexical parameter references that might appear
in the attribute’s value. Typically this method is applied
to the action element itself, but it is also useful for
accessing attributes of any of its sub-elements. To access
an attribute value without allowing lexical parameters,
use the standard getAttribute() method on the
DOM Element interface.
9-70 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
The following example shows a custom action handler MyIncludeXSQLHandler
that leverages one of the built-in action handlers and then uses arbitrary Java code

to modify the resulting XML fragment returned by that handler before appending

its result to the XSQL page:

appendSecondaryDocument Append the entire contents of an external XML
document to the root of the action handler result content.

addResultElement Simplify appending a single element with text content to
the root of the action handler result content.

firstColumnOfFirstRow Return the first column value of the first row of a SQL
statement passed in. Requires the current page to have a
connection attribute on its document element, or an error
is returned.

bindVariableCount Returns the number of tokens in the space-delimited list
of bind-params , indicating how many bind variables
are expected to be bound to parameters.

handleBindVariables Manage the binding of JDBC bind variables that appear
in a prepared statement with the parameter values
specified in the bind-params attribute on the current
action element. If the statement already is using a
number of bind variables prior to call this method, you
can pass the number of existing bind variable "slots" in
use as well.

reportErrorIncludingStatement Report an error, including the offending (SQL) statement
that caused the problem, optionally including a numeric
error code.

reportFatalError Report a fatal error.

reportMissingAttribute Report an error that a required action handler attribute is
missing using the standard <xsql-error> element.

reportStatus Report action handler status using the standard
<xsql-status> element.

requiredConnectionProvided Checks whether a connection is available for this request,
and outputs an "errorgram" into the page if no
connection is available.

variableValue Returns the value of a lexical parameter, taking into
account all scoping rules which might determine its
default value.

Table 9–18 Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description
XSQL Pages Publishing Framework 9-71

Advanced XSQL Pages Topics
 import oracle.xml.xsql.*;
 import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
 import org.w3c.dom.*;
 import java.sql.SQLException;
 public class MyIncludeXSQLHandler extends XSQLActionHandlerImpl {
 XSQLActionHandler nestedHandler = null;
 public void init(XSQLPageRequest req, Element action) {
 super.init(req, action);
 // Create an instance of an XSQLIncludeXSQLHandler
 // and init() the handler by passing the current request/action
 // This assumes the XSQLIncludeXSQLHandler will pick up its
 // href="xxx.xsql" attribute from the current action element.
 nestedHandler = new XSQLIncludeXSQLHandler();
 nestedHandler.init(req,action);
 }
 public void handleAction(Node result) throws SQLException {
 DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
 nestedHandler.handleAction(df);
 // Custom Java code here can work on the returned document fragment
 // before appending the final, modified document to the result node.
 // For example, add an attribute to the first child
 Element e = (Element)df.getFirstChild();
 if (e != null) {
 e.setAttribute("ExtraAttribute","SomeValue");
 }
 result.appendChild(df);
 }
 }

If you create custom action handlers that need to work differently based on whether

the page is being requested through the XSQL Servlet, the XSQL Command-line

Utility, or programmatically through the XSQLRequest class, then in your Action

Handler implementation you can call getPageRequest() to get a reference to the

XSQLPageRequest interface for the current page request. By calling

getRequestType() on the XSQLPageRequest object, you can see if the request is

coming from the “Servlet”, “Command Line”, or “Programmatic” routes

respectively. If the return value is “Servlet”, then you can get access to the HTTP

Servlet's request, response, and servlet context objects by doing:

XSQLServletPageRequest xspr = (XSQLServletPageRequest)getPageRequest();
if (xspr.getRequestType().equals("Servlet")) {
 HttpServletRequest req = xspr.getHttpServletRequest();
 HttpServletResponse resp = xspr.getHttpServletResponse();
 ServletContext cont = xspr.getServletContext();
 // do something fun here with req, resp, or cont however
9-72 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
 // writing to the response directly from a handler will
 // produce unexpected results. Allow the XSQL Servlet
 // or your custom Serializer to write to the servlet's
 // response output stream at the write moment later when all
 // action elements have been processed.
}

Writing Custom XSQL Serializers
You can provide a user-defined serializer class to programmatically control how the

final XSQL datapage's XML document should be serialized to a text or binary

stream. A user-defined serializer must implement the

oracle.xml.xsql.XSQLDocumentSerializer interface which comprises the

single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws Throwable;

In this release, DOM-based serializers are supported. A future release may support

SAX2-based serializers as well. A custom serializer class is expected to perform the

following tasks in the correct order:

1. Set the content type of the serialized stream before writing any content to the

output PrintWriter (or OutputStream).

You set the type by calling setContentType() on the XSQLPageRequest
that is passed to your serializer. When setting the content type, you can either

set just a MIME type like this:

env.setContentType("text/html");

or a MIME type with an explicit output encoding character set like this:

env.setContentType("text/html;charset=Shift_JIS");

2. Call getWriter() or getOutputStream() — but not both! — on the

XSQLPageRequest to get the appropriate PrintWriter or OutputStream
respectively to use for serializing the content.

For example, the following custom serializer illustrates a simple implementation

which simply serializes an HTML document containing the name of the document

element of the current XSQL data page:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.PrintWriter;
import oracle.xml.xsql.*;
XSQL Pages Publishing Framework 9-73

Advanced XSQL Pages Topics
public class XSQLSampleSerializer implements XSQLDocumentSerializer {
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 String encoding = env.getPageEncoding(); // Use same encoding as XSQL page
 // template. Set to specific
 // encoding if necessary
 String mimeType = "text/html"; // Set this to the appropriate content type
 // (1) Set content type using the setContentType on the XSQLPageRequest
 if (encoding != null && !encoding.equals("")) {
 env.setContentType(mimeType+";charset="+encoding);
 }
 else {
 env.setContentType(mimeType);
 }
 // (2) Get the output writer from the XSQLPageRequest
 PrintWriter e = env.getWriter();
 // (3) Serialize the document to the writer
 e.println("<html>Document element is "+
 doc.getDocumentElement().getNodeName()+
 "</html>");
 }
}

There are two ways to use a custom serializer, depending on whether you need to

first perform an XSLT transformation before serializing or not. To perform an XSLT

transformation before using a custom serializer, simply add the

serializer="java: fully.qualified.ClassName " in the

<?xml-stylesheet?> processing instruction at the top of your page like this:

<?xml version="1.0?>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
 serializer="java:my.pkg.MySerializer"?>

If you only need the custom serializer, simply leave out the type and href
attributes like this:

<?xml version="1.0?>
<?xml-stylesheet serializer="java:my.pkg.MySerializer"?>

You can also assign a short nickname to your custom serializers in the

<serializerdefs> section of the XSQLConfig.xml file and then use the

nickname (case-sensitive) in the serializer attribute instead to save typing. For

example, if you have the following in XSQLConfig.xml :
9-74 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
<XSQLConfig>
 <!-- etc. -->
 <serializerdefs>
 <serializer>
 <name>Sample</name>
 <class>oracle.xml.xsql.serializers.XSQLSampleSerializer</class>
 </serializer>
 <serializer>
 <name>FOP</name>
 <class>oracle.xml.xsql.serializers.XSQLFOPSerializer</class>
 </serializer>
 </serializerdefs>
</XSQLConfig>

then you can use the nicknames "Sample" and/or "FOP" as shown in the following

examples:

<?xml-stylesheet type="text/xsl" href="emp-to-xslfo.xsl" serializer="FOP"?>

or

<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest interface supports both a getWriter() and a

getOutputStream() method. Custom serializers can call getOutputStream()
to return an OutputStream instance into which binary data (like a dynamically

produced GIF image, for example) can be serialized. Using the XSQL Servlet,

writing to this output stream results in writing the binary information to the

servlet's output stream.

For example, the following serializer illustrates an example of writing out a

dynamic GIF image. In this example the GIF image is a static little "ok" icon, but it

shows the basic technique that a more sophisticated image serializer would need to

use:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.*;
import oracle.xml.xsql.*;

public class XSQLSampleImageSerializer implements XSQLDocumentSerializer {
 // Byte array representing a small "ok" GIF image
 private static byte[] okGif =
 {(byte)0x47,(byte)0x49,(byte)0x46,(byte)0x38,
 (byte)0x39,(byte)0x61,(byte)0xB,(byte)0x0,
XSQL Pages Publishing Framework 9-75

Advanced XSQL Pages Topics
 (byte)0x9,(byte)0x0,(byte)0xFFFFFF80,(byte)0x0,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0x2C,
 (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
 (byte)0xB,(byte)0x0,(byte)0x9,(byte)0x0,
 (byte)0x0,(byte)0x2,(byte)0x14,(byte)0xFFFFFF8C,
 (byte)0xF,(byte)0xFFFFFFA7,(byte)0xFFFFFFB8,(byte)0xFFFFFF9B,
 (byte)0xA,(byte)0xFFFFFFA2,(byte)0x79,(byte)0xFFFFFFE9,
 (byte)0xFFFFFF85,(byte)0x7A,(byte)0x27,(byte)0xFFFFFF93,
 (byte)0x5A,(byte)0xFFFFFFE3,(byte)0xFFFFFFEC,(byte)0x75,
 (byte)0x11,(byte)0xFFFFFF85,(byte)0x14,(byte)0x0,
 (byte)0x3B};

 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 env.setContentType("image/gif");
 OutputStream os = env.getOutputStream();
 os.write(okGif,0,okGif.length);
 os.flush();
 }
}

Using the XSQL Command-line utility, the binary information is written to the

target output file. Using the XSQLRequest programmatic API, two constructors

exist that allow the caller to supply the target OutputStream to use for the results of

page processing.

Note that your serializer must either call getWriter() (for textual output) or

getOutputStream() (for binary output) but not both. Calling both in the same

request will raise an error.

Writing Custom XSQL Connection Managers
You can provide a custom connection manager to replace the built-in connection

management mechanism. To provide a custom connection manager

implementation, you must provide:

1. A connection manager factory object that implements the

oracle.xml.xsql.XSQLConnectionManagerFactory interface.

2. A connection manager object that implements the
oracle.xml.xsql.XSQLConnectionManager interface.

Your custom connection manager factory can be set to be used as the default

connection manager factory by providing the classname in the XSQLConfig.xml
file in the section:
9-76 Oracle9i XML Developer’s Kits Guide - XDK

Advanced XSQL Pages Topics
 <!--
 | Set the name of the XSQL Connection Manager Factory
 | implementation. The class must implement the
 | oracle.xml.xsql.XSQLConnectionManagerFactory interface.
 | If unset, the default is to use the built-in connection
 | manager implementation in
 | oracle.xml.xsql.XSQLConnectionManagerFactoryImpl
 +-->
 <connection-manager>
 <factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>
 </connection-manager>

In addition to specifying the default connection manager factory, a custom

connection factory can be associated with any individual XSQLRequest object

using API's provided.

The responsibility of the XSQLConnectionManagerFactory is to return an

instance of an XSQLConnectionManager for use by the current request. In a

multithreaded environment like a servlet engine, it is the responsibility of the

XSQLConnectionManager object to insure that a single XSQLConnection
instance is not used by two different threads. This can be assured by marking the

connection as "in use" for the span of time between the invocation of the

getConnection() method and the releaseConnection() method. The default

XSQL connection manager implementation automatically pools named connections,

and adheres to this thread-safe policy.

If your custom implementation of XSQLConnectionManager implements the

optional oracle.xml.xsql.XSQLConnectionManagerCleanup interface as

well, then your connection manager will be given a chance to cleanup any resources

it has allocated. For example, if your servlet container invokes the destroy()
method on the XSQLServlet servlet, which can occur during online

administration of the servlet for example, this will give the connection manager a

chance to clean up resources as part of the servlet destruction process.

Formatting XSQL Action Handler Errors
Errors raised by the processing of any XSQL Action Elements are reported as XML

elements in a uniform way so that XSL Stylesheets can detect their presence and

optionally format them for presentation.

The action element in error will be replaced in the page by:

<xsql-error action="xxx">
XSQL Pages Publishing Framework 9-77

XSQL Servlet Limitations
Depending on the error the <xsql-error> element contains:

■ A nested <message> element

■ A <statement> element with the offending SQL statement

Displaying Error Information on Screen
Here is an example of an XSLT stylesheet that uses this information to display error

information on the screen:

<xsl:if test="//xsql-error">
 <table style="background:yellow">
 <xsl:for-each select="//xsql-error">
 <tr>
 <td>Action</td>
 <td><xsl:value-of select="@action"/></td>
 </tr>
 <tr valign="top">
 <td>Message</td>
 <td><xsl:value-of select="message"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:if>

XSQL Servlet Limitations
XSQL Servlet has the following limitations:

HTTP Parameters with Multibyte Names
HTTP parameters with multibyte names, for example, a parameter whose name is

in Kanji, are properly handled when they are inserted into your XSQL page using

<xsql:include-request-params>. An attempt to refer to a parameter with a multibyte

name inside the query statement of an <xsql:query> tag will return an empty string

for the parameter's value.

Workaround
As a workaround use a non-multibyte parameter name. The parameter can still

have a multibyte value which can be handled correctly.
9-78 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
CURSOR() Function in SQL Statements
If you use the CURSOR() function in SQL statements you may get an “Exhausted

ResultSet” error if the CURSOR() statements are nested and if the first row of the

query returns an empty result set for its CURSOR() function.

Frequently Asked Questions About the XSQL Servlet
This section lists XSQL Servlet questions and answers.

Can I Specify a DTD While Transforming XSQL Output to a WML Document?
I am trying to write my own stylesheet for transforming XSQL output to WML and

VML format. These programs, which are mobile phone simulators need a WML

document with a specific DTD assigned.

Is there any way to specify a particular DTD while transforming XSQL's output to a

WML document?

Answer: Sure. The way you do it is using a built-in facility of the XSLT stylesheet

called <xsl:output> . Here is an example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output type="xml" doctype-system="your.dtd"/>
 <xsl:template match="/">
 </xsl:template>
 :
 :
</xsl:stylesheet>

This will produce an XML result with the following code in the result:

<!DOCTYPE xxxx SYSTEM “your.dtd”>

where "your.dtd" can be any valid absolute or relative URL.

Can I Write XSQL Servlet Conditional Statements?
Is it possible to write conditional statements in an XSQL file? If yes, then what is the

syntax to do that?

For example:

<xsql:choose>
 <xsql:when test="@security='admin'">
 <xsql:query>
XSQL Pages Publishing Framework 9-79

Frequently Asked Questions About the XSQL Servlet
 SELECT
 </xsql:query>
 </xsq:when>
 <xsql:when test="@security='user'">
 <xsql:query>
 SELECT
 </xsql:query>
 </xsql:when>
</xsql:if>

Answer: Use <xsql:ref-cursor-function> to call a PL/SQL procedure that

would conditionally return a REF CURSOR to the appropriate query.

Can I Use a Value Retrieved in One Query in Another Query’s Where Clause?
 I have two queries in an XSQL file.

<xsql:query>
 select col1,col2
 from table1
</xsql:query>
<xsql:query>
 select col3,col4 from table2
 where col3 = {@col1} => the value of col1 in the previous query
</xsql:query>

How can I use, in the second query, the value of a select list item of the first query?

Answer: You do this with page parameters. Refer to the following example:

<page xmlns:xsql="urn:oracle-xsql" connection="demo">
 <!-- Value of page param "xxx" will be first column of first row -->
 <xsql:set-page-param name="xxx">
 select one from table1 where ...
 </xsl:set-param-param>
 <xsql:query bind-params="xxx">
 select col3,col4 from table2
 where col3 = ?
 </xsql:query>
</page>

Can I Use the XSQL Servlet with Non-Oracle Databases?
Can the XSQL Servlet connect to any database that has JDBC support?
9-80 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
Answer: Yes. Just indicate the appropriate JDBC driver class and connection URL in

the XSQLConfig.xml file’s connection definition. Of course, object/relational

functionality only works when using Oracle with the Oracle JDBC driver.

How Do I Use the XSQL Servlet to Access the JServ Process?
I am running the demo helloworld.xsql . Initially I was getting the following

error:

XSQL-007 cannot aquire a database connection to process page

Now my request times out and I see the following message in the

jserv/log/jserv.log file:

Connections from Localhost/127.0.0.1 are not allowed

Is this a security issue? Do we have to give explicit permission to process an XSQL

page? If so, how do we do that? I am using Apache Web server and Apache jserver,

with Oracle9i as the database. I have Oracle client installed and the Tnsnames.ora
file configured to get database connection. My XSQconnections.xml file is

configured correctly.

Answer: This looks like a generic JServ problem. You have to make sure that your

security.allowedAddresses=property in jserv.properties allows your

current host access to the JServ process where Java runs. It may be helpful to test

whether you can successfully run any JServ servlet.

How Do I Run XSQL on Oracle8 i Lite?
I am trying to use XSQL with Oracle8i Lite on Windows 98, and the Apache JServ

Web server. I am getting the error message no oljdbc40 in
java.library.path , even though I have set the olite40.jar in my

classpath (which contains the POLJDBC driver). Is there anything extra I need to

do to run XSQL for Oracle8i Lite.

Answer: You must include the following instruction in your jserv.properties
file:

wrapper.path=C:\orant\bin

where C:\orant\bin is the directory where (by default) the OLJDBC40.DLL lives.

Note that this is not wrapper.classpath , it’s wrapper.path .
XSQL Pages Publishing Framework 9-81

Frequently Asked Questions About the XSQL Servlet
How Do I Handle Multi-Valued HTML Form Parameters?
Is there any way to handle multi-valued HTML <form> parameters which are

needed for <input type="checkbox"> ?

Answer: There is no built-in way, but you could use a custom Action Handler like

this:

// MultiValuedParam: XSQL Action Handler that takes the value of
// ---------------- a multi-valued HTTP request parameter and
// sets the value of a user-defined page-parameter
// equal to the concatenation of the multiple values
// with optional control over the separator used
// between values and delimiter used around values.
// Subsequent actions in the page can then reference
// the value of the user-defined page-parameter.
import oracle.xml.xsql.*;
import javax.servlet.http.*;
import org.w3c.dom.*;
public class MultiValuedParam extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 XSQLPageRequest req = getPageRequest();
 // Only bother to do this if we're in a Servlet environment
 if (req.getRequestType().equals("Servlet")) {
 Element actElt = getActionElement();
 // Get name of multi-valued parameter to read from attribute
 String paramName = getAttributeAllowingParam("name",actElt);
 // Get name of page-param to set with resulting value
 String pageParam = getAttributeAllowingParam("page-param",actElt);
 // Get separator string
 String separator = getAttributeAllowingParam("separator",actElt);
 // Get delimiter string
 String delimiter = getAttributeAllowingParam("delimiter",actElt);
 // If the separator is not specified or is blank, use comma
 if (separator == null || separator.equals("")) {
 separator = ",";
 }
 // We're in a Servlet environment, so we can cast
 XSQLServletPageRequest spReq = (XSQLServletPageRequest)req;
 // Get hold of the HTTP Request
 HttpServletRequest httpReq = spReq.getHttpServletRequest();
 // Get the String array of parameter values
 String[] values = httpReq.getParameterValues(paramName);
 StringBuffer str = new StringBuffer();
 // If some values have been returned
 if (values != null) {
9-82 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
 int items = values.length;
 // Append each value to the string buffer
 for (int z = 0; z < items; z++) {
 // Add a separator before all but the first
 if (z != 0) str.append(separator);
 // Add a delimiter around the value if non-null
 if (delimiter != null) str.append(delimiter);
 str.append(values[z]);
 if (delimiter != null) str.append(delimiter);
 }
 // If page-param attribute not provided, default page param name
 if (pageParam == null) {
 pageParam = paramName+"-values";
 }
 // Set the page-param to the concatenated value
 req.setPageParam(pageParam,str.toString());
 }
 }
 }
}

Then you can use this custom action in a page like this:

<page xmlns:xsql="urn:oracle-xsql">
 <xsql:action handler="MultiValuedParam" name="guy" page-param="p1" />
 <xsql:action handler="MultiValuedParam" name="guy" page-param="p2"
 delimiter="'" />
 <xsql:action handler="MultiValuedParam" name="guy" page-param="p3"
 delimiter=""" separator=" " />
 <xsql:include-param name="p1"/>
 <xsql:include-param name="p2"/>
 <xsql:include-param name="p3"/>
</page>

If this page is requested with the URL following, containing multiple parameters of

the same name to produce a multi-valued attribute:

http://yourserver.com/page.xsql?guy=Curly&guy=Larry&guy=Moe

then the page returned will be:

<page>
 <p1>Curly,Larry,Moe</p1>
 <p2>'Curly','Larry','Moe'</p2>
 <p3>"Curly" "Larry" "Moe"</p3>
</page>
XSQL Pages Publishing Framework 9-83

Frequently Asked Questions About the XSQL Servlet
You can also use the value of the multi-valued page parameter precedingnonzero in

a SQL statement by using the following code:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:action handler="MultiValuedParam" name="guy" page-param=" list "
 delimiter="'" />
 <!-- Above custom action sets the value of page param named ’list’ -->
 <xsql:query>
 SELECT * FROM sometable WHERE name IN ({@list})
 </xsql:query>
</page>

Can I Run the XSQL Servlet with Oracle 7.3?
Is there anything that prevents me from running the XSQL Servlet with Oracle 7.3? I

know the XML SQL Utility (XSU) can be used with Oracle 7.3 as long as I use it as a

client-side utility.

Answer: No. Just make sure you’re using the Oracle9i JDBC driver, which can

connect to an Oracle 7.3 database with no problems.

Why Isn’t the Out Variable Supported in <xsql:dml>?
I using <xsql:dml> to call a stored procedure which has one OUT parameter, but I

was not able to see any results. The executed code results in the following

statement:

<xsql-status action="xsql:dml" rows="0"/>

Answer: You cannot set parameter values by binding them in the position of OUT
variables in this release using <xsql:dml> . Only IN parameters are supported for

binding. You can create a wrapper procedure that constructs XML elements using

the HTP package and then your XSQL page can invoke the wrapper procedure

using <xsql:include-owa> instead.

For an example, suppose you had the following procedure:

CREATE OR REPLACE PROCEDURE addmult(arg1 NUMBER,
 arg2 NUMBER,
 sumval OUT NUMBER,
 prodval OUT NUMBER) IS
BEGIN
 sumval := arg1 + arg2;
 prodval := arg1 * arg2;
9-84 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
END;

You could write the following procedure to wrap it, taking all of the IN arguments

that the procedure preceding expects, and then encoding the OUT values as a little

XML datagram that you print to the OWA page buffer:

CREATE OR REPLACE PROCEDURE addmultwrapper(arg1 NUMBER, arg2 NUMBER) IS
 sumval NUMBER;
 prodval NUMBER;
 xml VARCHAR2(2000);
BEGIN
 -- Call the procedure with OUT values
 addmult(arg1,arg2,sumval,prodval);
 -- Then produce XML that encodes the OUT values
 xml := '<addmult>'||
 '<sum>'||sumval||'</sum>'||
 '<product>'||prodval||'</product>'||
 '</addmult>';
 -- Print the XML result to the OWA page buffer for return
 HTP.P(xml);
END;

This way, you can build an XSQL page like this that calls the wrapper procedure:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-owa bind-params="arg1 arg2">
 BEGIN addmultwrapper(?,?); END;
 </xsql:include-owa>
</page>

This allows a request like the following:

http://yourserver.com/addmult.xsql?arg1=30&arg2=45

to return an XML datagram that reflects the OUT values like this:

<page>
 <addmult><sum>75</sum><product>1350</product></addmult>
</page>

Why Am I Receiving "Unable to Connect" Errors?
Experimenting with XSQL I’m unable to connect to a database; I get errors like this

running the helloworld.xsql example:

Oracle XSQL Servlet Page Processor 9.0.0.0.0 (Beta)
XSQL Pages Publishing Framework 9-85

Frequently Asked Questions About the XSQL Servlet
XSQL-007: Cannot acquire a database connection to process page.
Connection refused(DESCRIPTION=(TMP=)(VSNNUM=135286784)(ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505)(EMFI=4))))

Does this mean that it has actually found the config file? I have a user with

scott/tiger setup.

Answer: Yes. If you get this far, it's actually attempting the JDBC connection based

on the <connectiondef> info for the connection named demo, assuming you

didn't modify the helloworld.xsql demo page.

By default the XSQLConfig.xml file comes with the entry for the demo connection

that looks like this:

<connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>

So the error you're getting is likely because of the following reasons:

1. Your database is not on the localhost machine.

2. Your database SID is not ORCL.

3. Your TNS Listener Port is not 1521.

Make sure those values are appropriate for your database and you should have no

problems.

Can I Use Other File Extensions Besides *.xsql?
I want users to think they are accessing HTML files or XML files with extensions

.html and .xml respectively, however I’d like to use XSQL to serve the HTML and

XML to them. Is it possible to have the XSQL Servlet recognize files with an

extension of .html or .xml in addition to the default .xsql extension?

Answer: Sure. There is nothing sacred about the *.xsql extension, it is just the

default extension used to recognize XSQL pages. You can modify your servlet

engine’s configuration settings to associate any extension you like with the

oracle.xml.xsql.XSQLServlet servlet class using the same technique that was

used to associate the *.xsql extension with it.
9-86 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
How Do I Avoid Errors for Queries Containing XML Reserved Characters?
I have a page like the following:

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT id, REPLACE(company,’ &’,’and’) company, balance
 FROM vendors
 WHERE outstanding_balance < 3000
</xsql:query>

However, when I try to request the page I get the following error:

XSQL-005: XSQL page is not well-formed.
XML parse error at line 4, char 16
Expected name instead of ’

What’s wrong?

Answer: The problem is that the ampersand character (&) and the less than sign (<)

are reserved characters in XML because:

■ The ampersand character (&) starts the sequence of characters that

designates an entity reference like or <

■ The less than sign (<) starts the sequence of characters that designates an

element like <SomeElement>

To include a literal ampersand character or less than character you need to either

encode each one as a entity reference like this:

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 SELECT id, REPLACE(company,’ &’,’and’) company, balance
 FROM vendors
 WHERE outstanding_balance < 3000
</xsql:query>

Alternatively, you can surround an entire block of text with a so-called CDATA
section that begins with the sequence <![CDATA[and ends with a corresponding
]]> sequence. All text contained in the CDATA section is treated as literal.
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
<![CDATA[
 SELECT id, REPLACE(company,’&’,’and’) company, balance
 FROM vendors
 WHERE outstanding_balance < 3000
]]>
</xsql:query>
XSQL Pages Publishing Framework 9-87

Frequently Asked Questions About the XSQL Servlet
Why Do I Get "No Posted Document to Process" When I Try to Post XML?
When I try to click a link to an XSQL page that contains an <xsql:insert-request>

tag, I see a message in my page "No Posted Document to Process" and no data gets

inserted into the database. What’s going on?

Answer: When trying to post XML information to an XSQL page for processing, it

must be sent by the HTTP POST method. This can be an HTTP POST-ed HTML

Form or an XML document sent by HTTP POST. If you try to use HTTP GET

instead, there is no posted document, and hence you get this error. Use HTTP POST

instead to have the correct behavior.

Can XSQL Support SOAP?
Can an XSQL page be used to implement a SOAP service so that clients over HTTP

use it?

Answer: Sure. Your page can access contents of the inbound SOAP message using

the <xsql:set-page-param> action’s xpath="XpathExpression" attribute.

Alternatively, your customer action handlers can gain direct access to the posted

SOAP message body by calling getPageRequest().getPostedDocument() .

To create the SOAP response body to return to the client, you can either use an

XSLT stylesheet or a custom serializer implementation to write out the XML

response in an appropriate SOAP-encoded format.

So, while not automatic, it is possible. See the supplied AirportSOAP demo that

comes with the XSQL Pages framework for an example of using an XSQL page to

implement a SOAP-based Web Service.

How Do I Pass the Connection for XSQL?
I need to be able to pass the connection for XSQL to use in the request. Is this

possible?

Answer: Yes. Just reference an XSQL parameter in your page’s connection attribute,

making sure to define an attribute of the same name to serve as the default value for

the connection name. For example:

<xsql:query conn="testdb" connection=" {@conn} " xmlns:xsql="urn:oracle-xsql">
 :
</xsql:query>

If you retrieve this page without any parameters, the value of the conn parameter

will be testdb , so the page will use the connection named testdb defined in the
9-88 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
XSQLConfig.xml file. If instead you request the page with conn=proddb , then

the page will use the connection named proddb instead.

How Do I Control How Database Connections and Passwords Are Stored?
If we need a more sophisticated set of username and password management than

the one that is provided by default in XSQL (using the XSQLConfig.xml file) is it

possible to override this?

Answer: Yes. You can completely redefine the way the XSQL Page Processor

handles database connections by creating your own implementation of the

XSQLConnectionManager interface. To achieve this, you need to write a class that

implements the oracle.xml.xsql.XSQLConnectionManagerFactory
interface and a class that implements the

oracle.xml.xsql.XSQLConnectionManager interface, then change the name

of the XSQLConnectionManagerFactory class to use in your XSQLConfig.xml

configuration file. Once you’ve done this, your connection management scheme

will be used instead of the XSQL Pages default scheme.

How Do I Access Authentication Information in a Custom Connection Manager?
We want to use the HTTP authentication mechanism to get the username and

password to connect to the database. Is it possible to get this kind of information in

a custom connection manager’s getConnection() method?

Answer: Yes. The getConnection() method is passed an instance of the

XSQLPageRequest interface. From it, you can get the HTTP Request object by:

1. Testing the request type to make sure it's "Servlet "

2. Casting XSQLPageRequest to XSQLServletPageRequest

3. Calling getHttpServletRequest() on the result of (2)

You can then get the authentication information from that HTTP Request object.

How Do I Retrieve the Name of the Current XSQL Page?
Is there a smart way for an XSQL page to access its own name in a generic way at

runtime for the purpose of constructing links to the current page?

Answer: You can use a helper method like this to retrieve the name of the page

inside a custom action handler:

 // Get the name of the current page from the current page's URI
XSQL Pages Publishing Framework 9-89

Frequently Asked Questions About the XSQL Servlet
 private String curPageName(XSQLPageRequest req) {
 String thisPage = req.getSourceDocumentURI();;
 int pos = thisPage.lastIndexOf('/');
 if (pos >=0) thisPage = thisPage.substring(pos+1);
 pos = thisPage.indexOf('?');
 if (pos >=0) thisPage = thisPage.substring(0,pos-1);
 return thisPage;
 }

How Do I Resolve Errors When I Try to Use the FOP Serializer?
I get an error trying to use the FOP Serializer to produce PDF output from my

XSQL Page. What could be wrong?

Answer: Typically the problem is that you do not have all of the required JAR files

in the CLASSPATH. The XSQLFOPSerializer class lives in the separate

xsqlserializers.jar file, and this must be in the CLASSPATH to use the FOP

integration. Then, the XSQLFOPSerializer class itself has dependencies on several

libraries from Apache. For example, here is the source code for a FOP Serializer that

works with the Apache FOP 0.20.3RC release candidate of the FOP software:

package sample;
import org.w3c.dom.Document;
import org.apache.log.Logger;
import org.apache.log.Hierarchy;
import org.apache.fop.messaging.MessageHandler;
import org.apache.log.LogTarget;
import oracle.xml.xsql.XSQLPageRequest;
import oracle.xml.xsql.XSQLDocumentSerializer;
import org.apache.fop.apps.Driver;
import org.apache.log.output.NullOutputLogTarget;

/**
 * Tested with the FOP 0.20.3RC release from 19-Jan-2002
 */
public class SampleFOPSerializer implements XSQLDocumentSerializer {
 private static final String PDFMIME = "application/pdf";
 public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
 try {
 // First make sure we can load the driver
 Driver FOPDriver = new Driver();
 // Tell FOP not to spit out any messages by default.
 // You can modify this code to create your own FOP Serializer
 // that logs the output to one of many different logger targets
 // using the Apache LogKit API
9-90 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
 Logger logger = Hierarchy.getDefaultHierarchy()
 .getLoggerFor("XSQLServlet");
 logger.setLogTargets(new LogTarget[]{new NullOutputLogTarget()});
 FOPDriver.setLogger(logger);
 // Some of FOP's messages appear to still use MessageHandler.
 MessageHandler.setOutputMethod(MessageHandler.NONE);
 // Then set the content type before getting the reader/
 env.setContentType(PDFMIME);
 FOPDriver.setOutputStream(env.getOutputStream());
 FOPDriver.setRenderer(FOPDriver.RENDER_PDF);
 FOPDriver.render(doc);
 }
 catch (Exception e) {
 // Cannot write PDF output for the error anyway.
 // So maybe this stack trace will be useful info
 e.printStackTrace(System.err);
 }
 }
}

This FOP serializer depends on having the following additional Apache JAR files in

the CLASSPATH at runtime:

1. fop.jar - Apache FOP Rendering Engine

2. batik.jar - Apache Batik SVG Rendering Engine

3. avalon-framework-4.0.jar - API’s for Apache Avalon Framework

4. logkit-1.0.jar - API’s for the Apache Logkit

How Do I Tune XSQL Pages for Fastest Performance?
What recommendations can you provide to make my XSQL pages run the fastest?

Answer: The biggest thing that affects the performance is the size of the data you're

querying (and of course the pure speed of the queries). Assuming you have tuned

your queries and used true ? bind variables instead of lexical bind variables

wherever allowed by SQL, then the key remaining tip is to make sure you are only

querying the minimum amount of data needed to render the needed result.

If you are querying thousands of rows of data, only to use your XSLT stylesheet to

filter the rows to present only 10 of those rows in the browser, then this is a bad

choice. Use the database's capabilities to the maximum to filter the rows and return

only the 10 rows you care about if at all possible. Think of XSQL as a thin
XSQL Pages Publishing Framework 9-91

Frequently Asked Questions About the XSQL Servlet
coordination layer between Oracle database and the power of XSLT as a

transformation language.

How Do I Use XSQL with Other Connection Pool Implementations?
Can you set up XSQL pages to use connections taken from a connection pool? For

example, if you are running XSQL servlet in a Weblogic web server, how would the

connection definition have to be set up to take a connection from the existing pool?

Answer: XSQL implements it's own connection pooling so in general you don't

have to use another connection pool, but if providing the JDBC connection string of

appropriate format is not enough to use the WebLogic pool, then you can create

your own custom connection manager for XSQL by implementing the interfaces

XSQLConnectionManagerFactory and XSQLConnectionManager .

How Do I Include XML Documents Stored in CLOBs?
How do I include XML documents stored in a CLOB in the database into my XSQL

page?

Answer: Use <xsql:include-xml> with a query to retrieve the CLOB value.

How Do I Combine JSP and XSQL in the Same Page?
Is it possible to combine XSQL and JSP tags in the same page or should one use

include tags for that?

Answer: JSP and XSQL are two different models. JSP is a model that is based on

writing streams of characters to an output stream. XSQL is a model that is pure

XML/XSLT-based. At the end of the day, some result like HTML or XML comes

back to the user, and there really isn't anything that you can implement with XSQL

that you could not implement in JSP by writing code and working with XML

documents as streams of characters, doing lots of internal reparsing. XSQL fits the

architecture when customers want to cleanly separate the data content (represented

in XML) from the data presentation (represented by XSLT stylesheets). Since it

specializes in this XML/XSLT architecture, it is optimized for doing that.

You can, for example, use <jsp:include> or <jsp:forward> to have a JSP page

include/forward to an XSQL page. This is the best approach.

Can I Choose a Stylesheet Based on Input Arguments?
Is it possible to change stylesheets dynamically based on input arguments?
9-92 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XSQL Servlet
Answer: Sure. Yes, you can achieve this by using a lexical parameter in the href

attribute of your xml-stylesheet processing instruction.

<?xml-stylesheet type="text/xsl" href=" {@filename} .xsl"?>

The value of the parameter can be passed in as part of the request, or by using the

<xsql:set-page-param> you can set the value of the parameter based on a SQL

query.
XSQL Pages Publishing Framework 9-93

Frequently Asked Questions About the XSQL Servlet
9-94 Oracle9i XML Developer’s Kits Guide - XDK

XDK J
10

XDK JavaBeans

This chapter describes the JavaBeans available for use with Oracle XML. The topics

in this chapter are:

■ Accessing Oracle XML Transviewer Beans

■ XDK for Java: XML Transviewer Bean Features

■ Using the XML Transviewer Beans

■ Using XMLSourceView Bean

■ Using XMLTransformPanel Bean

■ Using XSLTransformer Bean

■ Using DOMBuilder Bean

■ Using Treeviewer Bean

■ Using DBViewer Bean

■ Using DBAccess Bean

■ Using the XMLDiff Bean

■ Installing the Transviewer Bean Samples

■ Transviewer Bean Example 1: AsyncTransformSample.java

■ Transviewer Bean Example 2: ViewSample.java

■ Transviewer Bean Example 3: XMLTransformPanelSample.java

■ Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java

■ Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java

■ Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
avaBeans 10-1

Accessing Oracle XML Transviewer Beans
Accessing Oracle XML Transviewer Beans
The Oracle XML Transviewer beans are provided as part of XDK for JavaBeans with

the Oracle9i Enterprise and Standard Editions from Release 2 (8.1.6) and higher. If

you do not have these editions, then you can download the beans from the site:

http://otn.oracle.com/tech/xml

XDK for Java: XML Transviewer Bean Features
XML Transviewer Beans facilitate the addition of graphical interfaces to your XML

applications.

Direct Access from JDeveloper
Bean encapsulation includes documentation and descriptors that can be accessed

directly from Java Integrated Development Environments like JDeveloper.

Sample Transviewer Bean Application
A sample application that demonstrates all of the beans to create a simple XML

editor and XSL transformer is included with your software.

The included sample application with the XML SQL Utility (XSU) cause the

following:

■ Database queries to materialize XML

■ Transform the XML through an XSL stylesheet

■ Store the resulting XML document in the database for fast retrieval

Database Connectivity
Database Connectivity is included with the XML Transviewer Beans. The beans can

now connect directly to a JDBC-enabled database to retrieve and store XML and

XSL files.

XML Transviewer Beans
XML Transviewer Beans comprises the following beans:
10-2 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XML Transviewer Bean Features
DOMBuilder Bean
The DOMBuilder bean is a non-visual bean. It builds a DOMTree from an XML

document.

The DOMBuilder bean encapsulates the XML Parser for Java’s DOMParser class

with a bean interface and extends its functionality to permit asynchronous parsing.

By registering a listener, Java applications can parse large or successive documents

and then allow control to return immediately to the caller.

XSLTransformer Bean
The XSLTransformer bean is a non-visual bean. It accepts an XML file, applies the

transformation specified by an input XSL stylesheet and creates the resulting output

file.

XSLTransformer bean enables you to transform an XML document to almost any

text-based format including XML, HTML, and DDL, by applying the appropriate

XSL stylesheet.

■ When integrated with other beans, XSLTransformer bean enables an application

or user to view the results of transformations immediately.

■ This bean can also be used as the basis of a server-side application or servlet to

render an XML document, such as an XML representation of a query result, into

HTML for display in a browser.

Treeviewer Bean
The Treeviewer bean displays XML formatted files graphically as a tree. The

branches and leaves of this tree can be manipulated with a mouse.

XMLSourceView Bean
The XMLSourceView bean is a visual Java bean. It allows visualization of XML

documents and editing. It enables the display of XML and XSL formatted files with

color syntax highlighting when modifying an XML document with a text editor.

This helps view and edit the files. It can be integrated with DOMBuilder bean, and

allows pre- or post-parsing visualization and validation against a specified DTD.

See Also: "Using DOMBuilder Bean" on page 10-5

See Also: "Using XSLTransformer Bean" on page 10-9

See Also: "Using Treeviewer Bean" on page 10-13
XDK JavaBeans 10-3

Using the XML Transviewer Beans
XMLTransformPanel Bean
This is a visual Java bean that applies XSL transformations on XML documents and

shows the results. It allows editing of XML and XSL input files.

DBViewer Bean
DBViewer bean is Java bean that displays database queries or any XML by applying

XSL stylesheets and visualizing the resulting HTML in a scrollable swing panel.

DBViewer bean has XML and XSL tree buffers as well as a result buffer. DBViewer

bean allows the calling program to:

■ Load or save buffers from various sources such as from CLOB tables in an

Oracle database or from the file system. Control can be also used to move files

between the file system and the user schema in the database.

■ Apply stylesheet transformations to the XML buffer using the stylesheet in the

XSL buffer.

The result can be stored in the result buffer. The XML and XSL buffer content can be

shown as a source or tree structure. The result buffer content can be rendered as

HTML and also shown as source or tree structure. The XML buffer can be loaded

from a database query.

DBAccess Bean
DBAccess bean maintains CLOB tables that contain multiple XML and text

documents.

Using the XML Transviewer Beans
The guidelines for using the XML Transviewer Beans are described in the following

sections:

■ Using DOMBuilder Bean

■ Using XSLTransformer Bean

■ Using Treeviewer Bean

■ Using XMLSourceView Bean

See Also: "Using XMLSourceView Bean" on page 10-15

See Also: "Using XMLTransformPanel Bean" on page 10-20
10-4 Oracle9i XML Developer’s Kits Guide - XDK

Using DOMBuilder Bean
■ Using XMLTransformPanel Bean

■ Using DBViewer Bean

■ Using DBAccess Bean

■ Using the XMLDiff Bean

Using DOMBuilder Bean
DOMBuilder() class implements an XML 1.0 parser according to the World Wide

Web Consortium (W3C) recommendation. It parses an XML document and builds a

DOM tree. The parsing is done in a separate thread and the DOMBuilderListener

interface must be used for notification when the tree is built.

Used for Asynchronous Parsing in the Background
The DOMBuilder bean encapsulates the XML Parser for Java with a bean interface.

It extends its functionality to permit asynchronous parsing. By registering a listener,

a Java application can parse documents and return control return to the caller.

Asynchronous parsing in a background thread can be used interactively in visual

applications. For example, when parsing a large file with the normal parser, the user

interface freezes until the parsing has completed. This can be avoided with the

DOMBuilder bean. After calling the DOMBuilder bean parse method, the

application can immediately regain control and display “Parsing, please wait”. If a

“Cancel” button is included you can also cancel the operation. The application can

continue when domBuilderOver() method is called by DOMBuilder bean when

background parsing task has completed.

DOMBuilder Bean Parses Many Files Fast
When parsing a large number of files, DOMBuilder bean can save time. Response

times that are up to 40% faster have been recorded when compared to parsing the

files one by one.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB
XDK JavaBeans 10-5

Using DOMBuilder Bean
DOMBuilder Bean Usage
Figure 10–1 illustrates DOMBuilder Bean usage.

1. The XML document to be parsed is input as a file, string buffer, or URL.

2. This inputs the method

DOMBuilder.addDOMBuilderListener(DOMBuilderListener) and

adds DOMBuilderListener.

3. The DOMBuilder.parser() method parses the XML document.

4. Optionally, the parsed result undergoes further processing.

5. DOMBuilderListener API is called using DOMBuilderOver() method. This is

called when it receives an asynchronous call from an application. This interface

must be implemented to receive notifications about events during

asynchronous parsing. The class implementing this interface must be added to

the DOMBuilder using addDOMBuilderListener method.

Available DOMBuilderListener methods are:

■ domBuilderError(DOMBuilderEvent) . This method is called when

parse errors occur.

■ domBuilderOver(DOMBuilderEvent) . This method is called when the

parse completes.

■ domBuilderStarted(DOMBuilderEvent) . This method is called when

parsing begins.

6. DOMBuilder.getDocument() fetches the resulting DOM document and

outputs the DOM document.

See Also : Table 10–1 for a list of available methods to apply
10-6 Oracle9i XML Developer’s Kits Guide - XDK

Using DOMBuilder Bean
Figure 10–1 DOMBuilder Bean Usage

file,
string buffer,

or URL
xml input

see the list of
available
methods

DOMBuilder.
parse()

DOMBuilder.
addDOMBuilder

Listener()

.DOMBuilder
Listener()

DOM
Document

DOMBuilderListener.
DOMBuilderOver()

DOMBuilder.
getDocument()

perform other
tasks

.DOMBuilder
Error()

.DOMBuilder
Started()

async call

Transviewer Beans: DOM Builder Bean
XDK JavaBeans 10-7

Using DOMBuilder Bean
.

Table 10–1 DOMBuilder Bean: Methods

Method Description

addDOMBuilderErrorListener(DOMBuilderErrorListener) Adds DOMBuilderErrorListener.

addDOMBuilderListener(DOMBuilderListener) Adds DOMBuilderListener.

Get the DTD.

getDocument() Gets the document.

getId() Returns the parser object id.

getReleaseVersion() Returns the release version of the Oracle XML
Parser.

Gets the document.

getValidationMode() Returns the validation mode.

parse(InputSource) Parses the XML from given input source.

Parses the XML from given input stream.

parse(Reader) Parses the XML from given input stream.

parse(String) Parses the XML from the URL indicated.

parse(URL) Parses the XML document pointed to by the
given URL and creates the corresponding XML
document hierarchy.

parseDTD(InputSource, String) Parses the XML External DTD from given input
source.

parseDTD(InputStream, String) Parses the XML External DTD from given input
stream.

parseDTD(Reader, String) Parses the XML External DTD from given input
stream.

Parses the XML External DTD from the URL
indicated.

parseDTD(URL, String) Parses the XML External DTD document
pointed to by the given URL and creates the
corresponding XML document hierarchy.

removeDOMBuilderErrorListener(DOMBuilderErrorListener
)

Removes DOMBuilderErrorListener.

removeDOMBuilderListener(DOMBuilderListener) Removes DOMBuilderListener.

run() This method runs in a thread.
10-8 Oracle9i XML Developer’s Kits Guide - XDK

Using XSLTransformer Bean
Using XSLTransformer Bean
The XSLTransformer bean accepts an XML file and applies the transformation

specified by an input XSL stylesheet to create and output file. It enables you to

transform an XML document to almost any text-based format including XML,

HTML, and DDL, by applying an XSL stylesheet.

When integrated with other beans, XSLTransformer bean enables an application or

user to immediately view the results of transformations.

This bean can also be used as the basis of a server-side application or servlet to

render an XML document, such as an XML representation of a query result, into

HTML for display in a browser.

The XSLTransformer bean encapsulates the Java XML Parser XSLT processing

engine with a bean interface and extends its functionality to permit asynchronous

transformation.

By registering a listener, your Java application can transform large and successive

documents by having the control returned immediately to the caller.

Set the base URL for loading external enitites
and DTDs.

setDebugMode(boolean) Sets a flag to turn on debug information in the
document.

setDoctype(DTD) Sets the DTD.

setErrorStream(OutputStream) Creates an output stream for the output of
errors and warnings.

setErrorStream(OutputStream, String) Creates an output stream for the output of
errors and warnings.

setErrorStream(PrintWriter) Creates an output stream for the output of
errors and warnings.

Sets the node factory.

setPreserveWhitespace(boolean) Sets the white space preserving mode.

setValidationMode(boolean) Sets the validation mode.

showWarnings(boolean) Switches to determine whether to print
warnings.

Table 10–1 DOMBuilder Bean: Methods (Cont.)

Method Description
XDK JavaBeans 10-9

Using XSLTransformer Bean
Do You Have Many Files to Transform? Use XSLTransformer Bean
XSL transformations can be time consuming. Use XSL Transformer bean in

applications that transform large numbers of files and it can concurrently transform

multiple files.

Do You Need a Responsive User Interface? Use XSLTransformer Bean
XSLTransformer bean can be used for visual applications for a responsive user

interface. There are similar issues here as with DOMBuilder bean.

By implementing XSLTransformerListener() method, the caller application

can be notified when the transformation is complete. The application is free to

perform other tasks in between requesting and receiving the transformation.

XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes
This scenario illustrates one way of applying XSLTransformer bean.

1. Create a SQL query. Store the selected XML data in a CLOB table.

2. Using the XSLTransfomer bean, create an XSL stylesheet and interactively apply

this to the XML data until you are satisfied with the data presentation. This can

be HTML produced by the XSL transformation.

3. Now that you have the desired SQL (data selection) and XSL (data

presentation), create a trigger on the table or view used by your SQL query. The

trigger can execute a stored procedure. The stored procedure, can for example,

do the following:

■ Run the query

■ Apply the stylesheet

■ Store the resulting HTML in a CLOB table

4. This process can repeat whenever the source data table is updated.

The HTML stored in the CLOB table always mirrors the last data stored in the

tables being queried. A JSP (Java Server Page) can display the HTML.

In this scenario, multiple end users do not produce multiple data queries that

contribute to larger loads to the database. The HTML is regenerated only when

the underlying data changes.
10-10 Oracle9i XML Developer’s Kits Guide - XDK

Using XSLTransformer Bean
XSLTransformer Bean Usage
Figure 10–2 illustrates XSLTransformer bean usage. For examples of implementing

this bean, see "Transviewer Bean Example 1: AsyncTransformSample.java".

Figure 10–2 XSLTransformer Bean Usage

1. An XSL stylesheet and XML document input the XSLTransformer using the

XSLTransfomer.addXSLTransformerListener(XSLTransformerList
ener) method. This adds a listener.

2. The XSLTransfomer.processXSL() method initiates the XSL transformation in

the background.

XSL
stylesheet,

XML document
input

see the list of
available
methods

XSLTransformer.
processXSL()

XSLTransformer.
addXSLTransformer

Listener()

XListener.
xslTransformer

Over()
async call

XML Document
fragment

XSLTransformer.
getResult()

perform other
tasks

Transviewer Beans: XSL Transformer Bean
XDK JavaBeans 10-11

Using XSLTransformer Bean
3. Optionally, other work can be assigned to the XSLTransformer bean. Table 10–2

lists the XSLTransformer bean methods.

4. When the transformation is complete, an asynchronous call is made and the

XSLTransformerListener.xslTransformerOver() method is called.

This interface must be implemented to receive notifications about events during

the asynchronous transformation. The class implementing this interface must

be added to the XSLTransformer event queue using the method

addXSLTransformerListener .

5. The XSLTransformer.getResult() method returns the XML document fragment

for the resulting document.

6. It ouputs the XML document fragment.

Table 10–2 XSLTransformer Bean: Methods

Method Description

addXSLTransformerErrorListener(XSLTransformerErrorListener) Adds an error event listener.

addXSLTransformerListener(XSLTransformerListener) Adds a listener.

getId() Returns the unique XSLTransformer id.

getResult() Returns the document fragment for the resulting
document.

processXSL(XSLstylesheet, InputStream, URL) Initiates XSL Transformation in the background.

processXSL(XSLstylesheet, Reader, URL) Initiates XSL Transformation in the background.

processXSL(XSLstylesheet, URL, URL) Initiates XSL Transformation in the background.

processXSL(XSLstylesheet, XMLDocument) Initiates XSL Transformation in the background.

processXSL(XSLstylesheet, XMLDocument, OutputStream) Initiates XSL Transformation in the background.

removeDOMTransformerErrorListener(XSLTransformerErrorListener) Removes an error event listener.

removeXSLTransformerListener(XSLTransformerListener) Removes a listener.

run()

setErrorStream(OutputStream) Sets the error stream used by the XSL processor.

showWarnings(boolean) Sets the showWarnings flag used by the XSL
processor.
10-12 Oracle9i XML Developer’s Kits Guide - XDK

Using Treeviewer Bean
Using Treeviewer Bean
The Treeviewer bean displays an XML document as a tree. It recognizes the

following XML DOM nodes:

■ Tag

■ Attribute Name

■ Attribute Value

■ Comment

■ CDATA

■ PCDATA

■ PI Data

■ PI Name

■ NOTATION Symbol

It takes as input an org.w3c.dom.Document object.

Figure 10–3, "Treeviewer Bean in Action: Displaying an XML Document as a Tree"

shows how the Treeviewer bean displays the XML document and the editing

options.
XDK JavaBeans 10-13

Using Treeviewer Bean
Figure 10–3 Treeviewer Bean in Action: Displaying an XML Document as a Tree
10-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean
Figure 10–4 illustrates XML Treeviewer bean usage. A DOM XML document is

input to the XMLTreeView.setXMLDocument(doc) method. This associates the

XML Treeviewer with the XML document. The Treeviewer bean methods are:

■ getPreferredSize()—Returns the XMLTreeView preferred size

■ setXMLDocument(Document)—Associates the XMLTreeViewer with an XML

document

■ updateUI()—Forces the XMLTreeView to update/refresh the user interface

Figure 10–4 XML Treeviewer Bean Usage

Using XMLSourceView Bean
XMLSourceView bean is a visual Java bean that displays an XML document. It

improves the viewing of XML and XSL files by color-highlighting the XML/XSL

syntax. It also offers an Edit mode. XMLSourceView bean easily integrates with

DOMBuilder bean. It allows for pre- or post-parsing visualization and validation

against a specified DTD.

XMLSourceView bean recognizes the following XML token types:

■ Tag

■ Attribute Name

■ Attribute Value

■ Comment

DOM
document
XML input

XMLTreeView.
setXMLDocument

(doc)

TransViewer Beans: XML Tree Viewer Bean
XDK JavaBeans 10-15

Using XMLSourceView Bean
■ CDATA

■ PCDATA

■ PI Data

■ PI Name

■ NOTATION Symbol

Each token type has a foreground color and font. The default color/font settings can

be changed by the user. This takes an org.w3c.dom.Document object as input.

XMLSourceView Bean Usage
Figure 10–5 displays an XML document with tags shown in blue, tag content in

black, and attributes in red.

Figure 10–6 shows the XMLSourceView bean usage. This is part of the

oracle.xml.srcviewer API. A DOM document inputs

XMLSourceView.SetXMLDocument(Doc). The resulting DOM document is

displayed. See "Transviewer Bean Example 2: ViewSample.java".
10-16 Oracle9i XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean
Figure 10–5 XMLSourceView Bean in Action: Displaying an XML Document with
Color Highlighting
XDK JavaBeans 10-17

Using XMLSourceView Bean
Figure 10–6 XMLSourceView Bean Usage

The following table, Table 10–3, lists the XMLSourceView Bean methods.

Table 10–3 XMLSourceView Bean Methods

Method Description

fontGet(AttributeSet) Extracts and returns the font from a given attributeset.

fontSet(MutableAttributeSet, Font) Sets the mutableattributeset font.

getAttributeNameFont() Returns the Attribute Value font.

getAttributeNameForeground() Returns the Attribute Name foreground color.

getAttributeValueFont() Returns the Attribute Value font.

getAttributeValueForeground() Returns the Attribute Value foreground color.

getBackground() Returns the background color.

getCDATAFont() Returns the CDATA font.

getCDATAForeground() Returns the CDATA foreground color.

getCommentDataFont() Returns the Comment Data font.

getCommentDataForeground() Returns the Comment Data foreground color.

getEditedText() Returns the edited text.

DOM
document

input

xmlSourceView.
SetXMLDocument

(doc)

DOM
document
displayed

· Enables display and
 editing XML and XSL
 files in editor
· Integrated with DOM
 Builder Bean
· Pre_ or post parsing
 validation against DTD

See the list of
available
methods
10-18 Oracle9i XML Developer’s Kits Guide - XDK

Using XMLSourceView Bean
getJTextPane() Returns the viewer JTextPane component.

getMinimumSize() Returns the XMLSourceView minimal size.

getNodeAtOffset(int) Returns the XML node at a given offset.

getPCDATAFont() Returns the PCDATA font.

getPCDATAForeground() Returns the PCDATA foreground color.

getPIDataFont() Returns the PI Data font.

getPIDataForeground() Returns the PI Data foreground color.

getPINameFont() Returns the PI Name font.

getPINameForeground() Returns the PI Data foreground color.

getSymbolFont() Returns the NOTATION Symbol font.

getSymbolForeground() Returns the NOTATION Symbol foreground color.

getTagFont() Returns the Tag font.

getTagForeground() Returns the Tag foreground color.

getText() Returns the XML document as a String.

isEditable() Returns boolean to indicate whether this object is editable.

selectNodeAt(int) Moves the cursor to XML Node at offset i.

setAttributeNameFont(Font) Sets the Attribute Name font.

setAttributeNameForeground(Color) Sets the Attribute Name foreground color.

setAttributeValueFont(Font) Sets the Attribute Value font.

setAttributeValueForeground(Color) Sets the Attribute Value foreground color.

setBackground(Color) Sets the background color.

setCDATAFont(Font) Sets the CDATA font.

setCDATAForeground(Color) Sets the CDATA foreground color.

setCommentDataFont(Font) Sets the Comment font.

setCommentDataForeground(Color) Sets the Comment foreground color.

setEditable(boolean) Sets the specified boolean to indicate whether this object should be
editable.

Table 10–3 XMLSourceView Bean Methods (Cont.)

Method Description
XDK JavaBeans 10-19

Using XMLTransformPanel Bean
Using XMLTransformPanel Bean
XMLTransformPanel visual bean applies XSL transformations to XML documents. It

visualizes the result and allows editing of input XML and XSL documents and files.

XMLTransformPanel bean requires no programmatic input. It is a component that

interacts directly with you and is not customizable.

XMLTransformPanel Bean Features
XMLTransformPanel bean has the following features:

■ Imports and exports XML and XSL files from the file system, and XML, XSL,

and HTML files from Oracle9i. With Oracle9i, XMLTransformPanel bean uses

two-column CLOB tables. The first column stores the data name (file name) and

the second stores the data text (file’s data) in a CLOB. The bean lists all CLOB

tables in your schema. When you click on a table, the bean lists its file names.

You can also create or delete tables and retrieve or add files to the tables. This

can be useful for organizing your information. See Figure 10–7.

setPCDATAFont(Font) Sets the PCDATA font.

setPCDATAForeground(Color) Sets the PCDATA foreground color.

setPIDataFont(Font) Sets the PI Data font.

setPIDataForeground(Color) Sets the PI Data foreground color.

setPINameFont(Font) Sets the PI Name font.

setPINameForeground(Color) Sets the PI Name foreground color.

setSelectedNode(Node) Sets the cursor position at the selected XML node.

setSymbolFont(Font) Sets the NOTATION Symbol font.

setSymbolForeground(Color) Sets the NOTATION Symbol foreground color.

setTagFont(Font) Sets the Tag font.

setTagForeground(Color) Sets the Tag foreground color.

setXMLDocument(Document) Associates the XMLviewer with a XML document.

Table 10–3 XMLSourceView Bean Methods (Cont.)

Method Description
10-20 Oracle9i XML Developer’s Kits Guide - XDK

Using XMLTransformPanel Bean
■ Supports multiple database connections.

■ Creates XML from database result sets. This feature enables you to submit any

SQL query to the database that you are currently connected. The bean converts

the result set into XML and automatically loads this XML data into the bean’s

XML buffer for further processing.

■ Edits XML and XSL data loaded into the bean.

■ Applies XSL transformations to XML buffers and show the results. See With the

bean, you can also export results to the file system or a CLOB in the database.

Transviewer Bean Application
The Transviewer bean is one application that illustrates the use of XMLTransform

Panel bean. It can be used from a command line to perform the following actions:

■ Edit and parse XML files

■ Edit and apply XSL transformations

■ Retrieve and save XML, XSL and result files in the file system or in Oracle9i

Note: CLOB tables created by the XSL Transformer bean can be

used by trigger-based stored procedures to mirror tables or views

in the database into HTML data held in these CLOB tables. See "XSL

Transviewer Bean Scenario 1: Regenerating HTML Only When

Data Changes".

See Also: "Transviewer Bean Example 3:

XMLTransformPanelSample.java" for an example of how to use

XMLTransformPanel.
XDK JavaBeans 10-21

Using XMLTransformPanel Bean
Figure 10–7 XSLTransformPanel Bean in Action: Showing CLOB Table and Data
Names
10-22 Oracle9i XML Developer’s Kits Guide - XDK

Using DBViewer Bean
Using DBViewer Bean
DBViewer bean can be used to display database queries on any XML document by

applying XSL stylesheets and visualizing the resulting HTML in a scrollable swing

panel. See:

■ Figure 10–8, "DBViewer Bean in Action: Entering a Database Query to Generate

XML"

■ Figure 10–9, "DBViewer Bean in Action: Viewing the XML Document After

Transforming to HTML With XSL Style Sheet"

DBViewer bean has the following three buffers:

■ XML

■ XSL

■ Result buffer

DBViewer bean API allows the calling program to load or save buffers from various

sources and apply stylesheet transformation to the XML buffer using the stylesheet

in the XSL buffer. Results can be stored in the result buffer.

Showing Content
Content in the XML and XSL buffers can be shown as a source or tree structure.

Content in the result buffer can be rendered as HTML and also shown as a source or

tree structure.

Loading and Saving the Buffers
The XML buffer can be loaded using a database query. All the buffers can be loaded

from and files saved from the following:

■ CLOB tables in Oracle9i

■ File system

Therefore, control can also be used to move files between the file system and the

user schema in the database.
XDK JavaBeans 10-23

Using DBViewer Bean
Figure 10–8 DBViewer Bean in Action: Entering a Database Query to Generate XML
10-24 Oracle9i XML Developer’s Kits Guide - XDK

Using DBViewer Bean
Figure 10–9 DBViewer Bean in Action: Viewing the XML Document After
Transforming to HTML With XSL Style Sheet
XDK JavaBeans 10-25

Using DBViewer Bean
DBViewer Bean Usage
Figure 10–10 illustrates DBViewer bean’s usage.

Figure 10–10 DBViewer Bean Usage Diagram

DBViewer Bean Methods
Table 10–4 lists the DBViewer bean methods.

Table 10–4 DBViewer Bean Methods

Method Description

DBViewer() Constructs a new instance.

getHostname() Gets database host name

Transform
(XML using XSL)

to get Result

Load XSL
buffer from
file or CLOB

Set result

See list of
available methods

as:
• HTML view, or
• Source (Edit) View, or
• TreeView, or
• CLOB, or
• Text Buffer

View the transformed XML
result as required

See list of available methods

from:
• SQL resultset file, or
• CLOB, or
• FILE

Load
XML buffer

XDK for JavaBeans : DBViewer Bean
10-26 Oracle9i XML Developer’s Kits Guide - XDK

Using DBViewer Bean
getInstancename() Gets database instance name.

getPassword() Gets user password.

getPort() Gets database port number.

getResBuffer() Gets the content of the result buffer.

getResCLOBFileName() Gets result CLOB file name.

getResCLOBTableName() Gets result CLOB table name.

getResFileName() Gets Result file name.

getUsername() Gets user name.

getXmlBuffer() Gets the content of the XML buffer.

getXmlCLOBFileName() Gets XML CLOB file name.

getXmlCLOBTableName() Gets XML CLOB table name.

getXmlFileName() Gets XML file name.

getXMLStringFromSQL(String) Gets XML presentation of result set from SQL query.

getXslBuffer() Gets the content of the XSL buffer.

getXslCLOBFileName() Gets the XSL CLOB file name.

getXslCLOBTableName() Gets XSL CLOB table name.

getXslFileName() Gets XSL file name.

loadResBuffer(String) Loads the result buffer from file.

loadResBuffer(String, String) Loads the result buffer from CLOB file.

loadResBufferFromClob() Loads the result buffer from CLOB file.

loadResBufferFromFile() Loads the result buffer from file.

loadXmlBuffer(String) Loads the XML buffer from file.

loadXmlBuffer(String, String) Loads the XML buffer from CLOB file.

loadXmlBufferFromClob() Loads the XML buffer from CLOB file.

loadXmlBufferFromFile() Loads the XML buffer from file.

loadXMLBufferFromSQL(String) Loads the XML buffer from SQL result set.

loadXslBuffer(String) Loads the XSL buffer from file.

Table 10–4 DBViewer Bean Methods (Cont.)

Method Description
XDK JavaBeans 10-27

Using DBViewer Bean
loadXslBuffer(String, String) Loads the XSL buffer from CLOB file.

loadXslBufferFromClob() Loads the XSL buffer from CLOB file.

loadXslBufferFromFile() Loads the XSL buffer from file.

parseResBuffer() Parses the result buffer and refresh the tree view and source
view.

parseXmlBuffer() Parses the XML buffer and refresh the tree view and source
view.

parseXslBuffer() Parses the XSL buffer and refresh the tree view and source
view.

saveResBuffer(String) Saves the result buffer to file.

saveResBuffer(String, String) Saves the result buffer to CLOB file.

saveResBufferToClob() Saves the result buffer to CLOB file.

saveResBufferToFile() Saves the result buffer to file.

saveXmlBuffer(String) Saves the XML buffer to file.

saveXmlBuffer(String, String) Saves the XML buffer to CLOB file.

saveXmlBufferToClob() Saves the XML buffer to CLOB file.

saveXmlBufferToFile() Saves the XML buffer to file.

saveXslBuffer(String) Saves the XSL buffer to file.

saveXslBuffer(String, String) Saves the XSL buffer to CLOB file.

saveXslBufferToClob() Saves the XSL buffer to CLOB file.

saveXslBufferToFile() Saves the XSL buffer to file.

setHostname(String) Sets database host name.

setInstancename(String) Sets database instance name.

setPassword(String) Sets user password.

setPort(String) Sets database port number.

setResBuffer(String) Sets new text in the result buffer.

setResCLOBFileName(String) Sets Result CLOB file name.

setResCLOBTableName(String) Sets Result CLOB table name.

Table 10–4 DBViewer Bean Methods (Cont.)

Method Description
10-28 Oracle9i XML Developer’s Kits Guide - XDK

Using DBViewer Bean
setResFileName(String) Sets Result file name.

setResHtmlView(boolean) Shows the result buffer as rendered HTML.

setResSourceEditView(boolean) Shows the result buffer as XML source and enter edit mode.

setResSourceView(boolean) Shows the result buffer as XML source.

setResTreeView(boolean) Shows the result buffer as XML tree view.

setUsername(String) Sets user name.

setXmlBuffer(String) Sets new text in the XML buffer.

setXmlCLOBFileName(String) Sets XML CLOB table name.

setXmlCLOBTableName(String) Sets XML CLOB table name.

setXmlFileName(String) Sets XML file name.

setXmlSourceEditView(boolean) Shows the XML buffer as XML source and enter edit mode.

setXmlSourceView(boolean) Shows the XML buffer as XML source.

setXmlTreeView(boolean) Shows the XML buffer as tree.

setXslBuffer(String) Sets new text in the XSL buffer.

setXslCLOBFileName(String) Sets XSL CLOB file name.

setXslCLOBTableName(String) Sets XSL CLOB table name.

setXslFileName(String) Sets XSL file name.

setXslSourceEditView(boolean) Shows the XSL buffer as XML source and enter edit mode.

setXslSourceView(boolean) Shows the XSL buffer as XML source.

setXslTreeView(boolean) Shows the XSL buffer as tree.

transformToDoc() Transfroms the content of the XML buffer by applying the
stylesheet from the XSL buffer.

transformToRes() Applies the stylesheet transformation from the XSL buffer
to the XML in the XML buffer and stores the result into the
result buffer.

transformToString() Transfroms the content of the XML buffer by applying the
stylesheet from the XSL buffer.

Table 10–4 DBViewer Bean Methods (Cont.)

Method Description
XDK JavaBeans 10-29

Using DBAccess Bean
Using DBAccess Bean
DBAccess bean maintains CLOB tables that can hold multiple XML and text

documents. Each table is created using the following statement:

CREATE TABLE tablename FILENAME CHAR(16) UNIQUE, FILEDATA CLOB) LOB(FILEDATA)
STORE AS (DISABLE STORAGE IN ROW)

Each XML (or text) document is stored as a row in the table. The FILENAME field

holds a unique string used as a key to retrieve, update, or delete the row. Document

text is stored in the FILEDATA field. This is a CLOB object. CLOB tables are

automatically maintained by the Transviewer bean. The CLOB tables maintained by

DBAccess bean can be later used by the Transviewer bean. DBAccess bean does the

following tasks:

■ Creates and deletes CLOB tables

■ Lists a CLOB table’s contents

■ Adds, replaces, or deletes text documents in the CLOB tables

DBAcess Bean Usage
Figure 10–11 illustrates the DBAccess bean usage. It shows how DBAccess bean

maintains, and manipulates XML documents stored in CLOBs.
10-30 Oracle9i XML Developer’s Kits Guide - XDK

Using DBAccess Bean
Figure 10–11 DBAccess Bean Usage Diagram

DBAccess Bean Methods
Table 10–5 lists the DBAccess bean methods.

Table 10–5 DBAccess Bean Methods

Method Description

createXMLTable(Connection, String) Creates XML table.

deleteXMLName(Connection, String, String) Deletes text file from XML table.

dropXMLTable(Connection, String) Deletes XML table.

getNameSize() Returns the size of the field where the filename is kept.

getXMLData(Connection, String, String) Retrieve text file from XML table.

getXMLNames(Connection, String) Returns all file names in XML table.

getXMLTableNames(Connection, String) Gets all XML tables with names starting with a given
string.

insertXMLData(Connection, String, String, String) Inserts text file as a row in XML table.

isXMLTable(Connection, String) Checks if the table is XML table.

replaceXMLData(Connection, String, String, String) Replaces text file as a row in XML table.

xmlTableExists(Connection, String) Checks if XML table exists.

Loads
CLOB tables

Lists
CLOB tables

Manipulates
CLOB tables

Database

Stores

DB
Access
Bean

From:

SQL result_set
 files

CLOBs
Files

Text documents:

Adds
Replaces
Deletes
XDK JavaBeans 10-31

Using the XMLDiff Bean
Using the XMLDiff Bean
The XML Diff Bean performs a tree comparison on two XML DOM trees. It displays

the two XML trees and shows the differences between the XML trees. A node can be

inserted, deleted, moved, or modified. Each of these operations is shown in a

different color or style as in the following list:

■ Red—Used to show a modified Node or Attribute

■ Blue—Used to show a new Node or Attribute

■ Black—Used to show a deleted Node or Attribute

Moves will be displayed visually as a delete or insert operation.

You can generate the differences between the two XML trees in the form of XSL

code. The first XML file can be transformed into the second XML file by using the

XSL code generated.

XMLDiff Methods
The XMLDiff Bean has the methods described in this section.

boolean diff()
Finds the differences between the two XML files or the two XMLDocument objects.

void domBuilderError(DOMBuilderEvent p0)
Implements the DOMBuilderErrorListener interface called only by the DOM parser.

void domBuilderErrorCalled(DOMBuilderErrorEvent p0)
Implements the DOMBuilderErrorListener interface called only by the DOM parser

when there is an error while parsing.

void domBuilderOver(DOMBuilderEvent p0)
Implements the DOMBuilderListener interface called only by a DOM parser thread

when the parsing is done.

Note: Currently you cannot customize the GUI display.
10-32 Oracle9i XML Developer’s Kits Guide - XDK

Using the XMLDiff Bean
void domBuilderStarted(DOMBuilderEvent p0)
Implements the DOMBuilderListener interface called only by the DOM parser

when the parsing begins.

boolean equals(Node node1, Node node2)
Performs the comparison of two nodes. It is called by the differ algorithm. You can

overwrite this function for customized comparisons.

XMLDocument generateXSLDoc()
Generates an XSL stylesheet as an XMLDocument that initially represents the

differences between the two XML document sets.

void generateXSLFile(java.lang.String filename)
Generates an XSL file of input filename that represents the differences between the

two XML files which were initially set.

javax.swing.JTextPane getDiffPane1()
Gets the text panel as JTextPane object that visually shows the diffs in the first XML

file.

javax.swing.JTextPane getDiffPane2()
Gets the text panel as a JTextPane object that visually shows the diffs in the second

XML file or document.

XMLDocument getDocument1()
Gets the document root as an XMLDocument object of the first XML tree

XMLDocument getDocument2()
Gets the document root as an XMLDocument object of the second XML tree

void printDiffTree(int tree, BufferedWriter out)
Prints the diff tree that contains the node names and values that have been

identified as diffs by the algorithm. This method is useful for debugging.

void setDocuments(XMLDocument doc1, XMLDocument doc2)
Sets the XML documents which need to be compared.
XDK JavaBeans 10-33

Running the Transviewer Bean Samples
void setFiles(java.io.File file1, java.io.File file2)
Sets the XML files which need to be compared.

void setIndentIncr(int spaces)
Sets the indentation for the XSL generation. This should be called before the

generateXSLFile() or generateXSLDoc() methods. The indentation will be applied to

all attributes only. For indenting newly inserted nodes besides attributes see void

setNewNodeIndentIncr(int spaces).

void setInput1(java.io.File file1)
Sets the first XML file that needs to be compared.

void setInput1(XMLDocument doc1)
Sets the first XML document that needs to be compared.

void setInput2(java.io.File file2)
Sets the second XML file that needs to be compared.

void setInput2(XMLDocument doc2)
Sets the second XML document that needs to be compared.

void setNewNodeIndentIncr(int spaces)
Sets the indentation for the XSL generation. This should be called before the

generateXSLFile() or generateXSLDoc() methods. The indentation will be applied to

all newly inserted nodes only (except attributes). For attributes indentation support

see void setIndentIncr(int spaces).

void setNoMoves()
Assumes that there are no moves to be detected by the diff algorithm. This function

should be called before the diff() function. Using this method should improve

performance.

Running the Transviewer Bean Samples
The XDK for Java Transviewer bean sample/ directory contains sample

Transviewer bean applications that illustrate how to use Oracle Transviewer beans.

Oracle Transviewer beans toolset contains DOMBuilder, XMLSourceView,
10-34 Oracle9i XML Developer’s Kits Guide - XDK

Running the Transviewer Bean Samples
XMLTreeView, XSLTransformer, XMLTransformPanel, DBViewer, DBAccess, and

XMLDiff beans.

Table 10–6 lists the sample files in sample/.

Table 10–6 Transviewer Bean Sample Files

File Name Description

booklist.xml Sample XML file used by Example 1, 2, or 3.

doc.xml Sample XML file used by Example 1, 2, or 3.

doc.html Sample HTML file used by Examples 1, 2, or 3.

doc.xsl Sample input XSL file used by Examples 1, 2, or 3.

doc.xsl is used by XSLTransformer.

emptable.xsl Sample input XSL file used by Examples 1, 2, or 3.

tohtml.xsl Sample input XSL file used by Examples 1, 2, or 3.
Transforms booklist.xml.

AsyncTransformSample.java

See "Transviewer Bean Example 1:
AsyncTransformSample.java".

Sample nonvisual application using XSLTransformer bean
and DOMBuilder bean. It applies the XSLT stylesheet
specified in doc.xsl on all *.xml files from the current
directory. The results are in the files with extension.log.

ViewSample.java

See "Transviewer Bean Example 2: ViewSample.java".

Sample visual application that uses XMLSourceView and
XMLTreeView beans.It visualizes XML document files.
XDK JavaBeans 10-35

Installing the Transviewer Bean Samples
Installing the Transviewer Bean Samples
The Transviewer beans require as a minimum JDK 1.1.6, and can be used with any

version of JDK 1.2.

1. Download and install the following components used by the Transviewer

beans:

■ Oracle JDBC Driver for thin client (jar file classes111.zip)

■ Oracle XML SQL Utility (jar file oraclexmlsql.jar)

After installing this components, include classes111.zip and oraclexmlsql.jar in

your classpath.

2. The beans and the samples use swing 1.1. If you use jdk1.2, go to step 3. If you

use jdk1.1, you will need to download Swing 1.1 from Sun. After downloading

Swing, add swingall.jar to your CLASSPATH.

3. Change JDKPATH in Makefile to point to your JDK path. In addition, on

Windows NT, change the file separator as stated in the Makefile . If you do not

have an ORACLE_HOME set, then set it to the root directory of your XDK

JavaBeans installation.

XMLTransformPanelSample.java

See "Transviewer Bean Example 3:
XMLTransformPanelSample.java".

A visual application that uses XMLTransformPanel bean.
This bean uses all four beans from above. It applies XSL
transformations on XML documents and shows the result
Visualizes and allows editing of XML and XSL input files.

DBViewSample

See:

■ "Transviewer Bean Example 4a: DBViewer
Bean — DBViewClaims.java"

■ "Transviewer Bean Example 4b: DBViewer
Bean — DBViewFrame.java"

■ "Transviewer Bean Example 4c: DBViewer
Bean — DBViewSample.java"

A sample visual application that uses DBViewer bean to
implement simple insurance claim handling application.

XMLDiffSample

See:

"XMLDiffSample.java"

"XMLDiffFrame.java"

A sample visual application by which users can graphically
compare any two XML files. The differences between the
two files can be viewed as XSLT code. The first XML file can
be transformed into the second XML file using the
generated XSLT.

Table 10–6 Transviewer Bean Sample Files (Cont.)

File Name Description
10-36 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
4. If you are not using the default database with a scott/tiger account, change

USERID and PASSWORD in the Makefile to run Sample4

5. Run “make” to generate .class files.

6. Run the sample programs using commands:

■ gmake sample1

■ gmake sample2

■ gmake sample3

■ gmake sample4

■ gmake sample6

7. Visualize the results in .log files using the ViewSample.

8. Use the XSLT document from './tohtml.xsl' to transform the XML document

from './booklist.xml'.

Use the sample files XMLDiffData1.txt and XMLDiffData2.txt to test the demo

sample6 for the XMLDiff Bean. A few .xml files are provided as test cases. An XSL

stylesheet 'doc.xsl' is used by XSLTransformer.

Using Database Connectivity
To use the database connectivity feature in this program, you must know the

following:

■ Network name of the computer where Oracle9i or Oracle9i Application Server

runs

■ Port (usually 1521)

■ Name of the oracle instance (usually orcl)

You also need an account with CREATE TABLE privilege.

You can try the default account scott with password tiger if it still enabled on your

Oracle9i system.

Note: sample1 runs the XMLTransViewer program so that you can

import and export XML files from Oracle9i, keep your XSL

transformation files in Oracle9i, and apply stylesheets to XML

interactively.
XDK JavaBeans 10-37

Installing the Transviewer Bean Samples
Running Makefile
The following is the makefile script:

Makefile for sample java files

.SUFFIXES : .java .class

CLASSES = ViewSample.class AsyncTransformSample.class
XMLTransformPanelSample.class

Change it to the appropriate separator based on the OS
PATHSEP= :

Change this path to your JDK location. If you use JDK 1.1, you will need
to download also Swing 1.1 and add swingall.jar to your classpath.
You do not need to do this for JDK 1.2 since Swing is part of JDK 1.2
JDKPATH = /usr/local/packages/jdk1.2

Make sure that the following product jar/zip files are in the classpath:
- Oracle JDBC driver for thin client (file classes111.zip)
- Oracle XML SQL Utility (file oraclexmlsql.jar)
You can download this products from technet.us.oracle.com

#
CLASSPATH
:=$(CLASSPATH)$(PATHSEP)../lib/xmlparserv2.jar$(PATHSEP)../lib/xmlcomp.jar$(PATH
SEP)../lib/jdev-rt.zip$(PATHSEP).$(PATHSEP)
%.class: %.java
$(JDKPATH)/bin/javac -classpath "$(CLASSPATH)" $<

make all class files
all: $(CLASSES)

sample1: XMLTransformPanelSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" XMLTransformPanelSample
sample2: ViewSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" ViewSample
sample3: AsyncTransformSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" AsyncTransformSample
10-38 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
Transviewer Bean Example 1: AsyncTransformSample.java
This example shows you how to use DOMBuilder and the XSLTransformer beans to

asynchronously transform multiple XML files.

import java.net.URL;
import java.net.MalformedURLException;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.Vector;

import org.w3c.dom.DocumentFragment;
import org.w3c.dom.DOMException;

import oracle.xml.async.DOMBuilder;
import oracle.xml.async.DOMBuilderEvent;
import oracle.xml.async.DOMBuilderListener;
import oracle.xml.async.DOMBuilderErrorEvent;
import oracle.xml.async.DOMBuilderErrorListener;
import oracle.xml.async.XSLTransformer;
import oracle.xml.async.XSLTransformerEvent;
import oracle.xml.async.XSLTransformerListener;
import oracle.xml.async.XSLTransformerErrorEvent;
import oracle.xml.async.XSLTransformerErrorListener;
import oracle.xml.async.ResourceManager;
import oracle.xml.parser.v2.DOMParser;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.XSLStylesheet;
import oracle.xml.parser.v2.*;

public class AsyncTransformSample
{
 /**
 * uses DOMBuilder bean
 */
 void runDOMBuilders ()
 {
 rm = new ResourceManager (numXMLDocs);

 for (int i = 0; i < numXMLDocs; i++)
XDK JavaBeans 10-39

Installing the Transviewer Bean Samples
 {
 rm.getResource();

 try
 {
 DOMBuilder builder = new DOMBuilder(i);

 URL xmlURL = createURL(basedir + "/" +
 (String)xmlfiles.elementAt(i));
 if (xmlURL == null)
 exitWithError("File " + (String)xmlfiles.elementAt(i) +
 " not found");

 builder.setPreserveWhitespace(true);
 builder.setBaseURL (createURL(basedir + "/"));
 builder.addDOMBuilderListener (new DOMBuilderListener() {
 public void domBuilderStarted(DOMBuilderEvent p0) {}
 public void domBuilderError(DOMBuilderEvent p0) {}
 public synchronized void domBuilderOver(DOMBuilderEvent p0)
 {
 DOMBuilder bld = (DOMBuilder)p0.getSource();
 runXSLTransformer (bld.getDocument(), bld.getId());
 }
 });
 builder.addDOMBuilderErrorListener (new DOMBuilderErrorListener() {
 public void domBuilderErrorCalled(DOMBuilderErrorEvent p0)
 {
 int id = ((DOMBuilder)p0.getSource()).getId();
 exitWithError("Error occurred while parsing " +
 xmlfiles.elementAt(id) + ": " +
 p0.getException().getMessage());
 }
 });
 builder.parse (xmlURL);

 System.err.println("Parsing file " + xmlfiles.elementAt(i));
 }
 catch (Exception e)
 {
 exitWithError("Error occurred while parsing " +
 (String)xmlfiles.elementAt(i) + ": " +
 e.getMessage());
 }
 }
 }
10-40 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 /**
 * uses XSLTransformer bean
 */
 void runXSLTransformer (XMLDocument xml, int id)
 {
 try
 {
 XSLTransformer processor = new XSLTransformer (id);
 XSLStylesheet xsl = new XSLStylesheet (xsldoc, xslURL);

 processor.showWarnings (true);
 processor.setErrorStream (errors);
 processor.addXSLTransformerListener (new XSLTransformerListener() {
 public void xslTransformerStarted (XSLTransformerEvent p0) {}
 public void xslTransformerError(XSLTransformerEvent p0) {}
 public void xslTransformerOver (XSLTransformerEvent p0)
 {
 XSLTransformer trans = (XSLTransformer)p0.getSource();
 saveResult (trans.getResult(), trans.getId());
 }
 });
 processor.addXSLTransformerErrorListener (new XSLTransformerErrorListener() {
 public void xslTransformerErrorCalled(XSLTransformerErrorEvent p0)
 {
 int i = ((XSLTransformer)p0.getSource()).getId();

exitWithError("Error occurred while processing " +
 xmlfiles.elementAt(i) + ": " +
 p0.getException().getMessage());
 }
 });
 processor.processXSL (xsl, xml);
 // transform xml document
 }
 catch (Exception e)
 {
 exitWithError("Error occurred while processing " + xslFile + ": " +
 e.getMessage());
 }
 }

 void saveResult (DocumentFragment result, int id)
 {
 System.err.println("Transforming '" + xmlfiles.elementAt(id) +
 "' to '" + xmlfiles.elementAt(id) + ".log'" +
XDK JavaBeans 10-41

Installing the Transviewer Bean Samples
 " applying '" + xslFile);

 try
 {
 File resultFile = new File((String)xmlfiles.elementAt(id) + ".log");

 ((XMLNode)result).print(new FileOutputStream(resultFile));
 }
 catch (Exception e)
 {
 exitWithError("Error occurred while generating output : " +
 e.getMessage());
 }

 rm.releaseResource();
 }

 void makeXSLDocument ()
 {
 System.err.println ("Parsing file " + xslFile);
 try
 {
 DOMParser parser = new DOMParser();
 parser.setPreserveWhitespace (true);
 xslURL = createURL (xslFile);
 parser.parse (xslURL);
 xsldoc = parser.getDocument();
 }
 catch (Exception e)
 {
 exitWithError("Error occurred while parsing " + xslFile + ": " +
 e.getMessage());
 }
 }

 private URL createURL(String fileName) throws Exception
 {
 URL url = null;

 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
10-42 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 File f = new File(fileName);

 try
 {
 String path = f.getAbsolutePath();
 // This is a bunch of weird code that is required to
 // make a valid URL on the Windows platform, due
 // to inconsistencies in what getAbsolutePath returns.
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != '/')
 path = path.replace(sep, '/');
 if (path.charAt(0) != '/')
 path = '/' + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 exitWithError("Cannot create url for: " + fileName);
 }
 }

 return url;
 }

 boolean init () throws Exception
 {
 File directory = new File (basedir);
 String[] dirfiles = directory.list();
 for (int j = 0; j < dirfiles.length; j++)
 {
 String dirfile = dirfiles[j];

 if (!dirfile.endsWith(".xml"))
 continue;

 xmlfiles.addElement(dirfile);
 }

 if (xmlfiles.isEmpty()) {
 System.out.println("No files in directory were selected for processing");
XDK JavaBeans 10-43

Installing the Transviewer Bean Samples
 return false;
 }
 numXMLDocs = xmlfiles.size();

 return true;
 }

 private void exitWithError(String msg)
 {
 PrintWriter errs = new PrintWriter(errors);
 errs.println(msg);
 errs.flush();
 System.exit(1);
 }

 void asyncTransform () throws Exception
 {
 System.err.println (numXMLDocs +
 " XML documents will be transformed" +
 " using XSLT stylesheet specified in " + xslFile +
 " with " + numXMLDocs + " threads");

 makeXSLDocument ();
 runDOMBuilders ();

 // wait for the last request to complete
 while (rm.activeFound())
 Thread.sleep(100);

 }
 String basedir = new String (".");
 OutputStream errors = System.err;

 Vector xmlfiles = new Vector();
 int numXMLDocs = 1;

 String xslFile = new String ("doc.xsl");
 URL xslURL;
 XMLDocument xsldoc;

 private ResourceManager rm;

 /**
 * main
 */
10-44 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 public static void main (String args[])
 {
 AsyncTransformSample inst = new AsyncTransformSample();

 try
 {
 if (!inst.init())
 System.exit(0);

 inst.asyncTransform ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 System.exit(0);
 }
}

Transviewer Bean Example 2: ViewSample.java
This example shows you how to use XMLSourceView and XMLTreeView beans to

visually represent XML files.

import java.awt.*;
import oracle.xml.srcviewer.*;
import oracle.xml.treeviewer.*;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;
import java.net.*;
import java.io.*;
import java.util.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class ViewSample
{

 public static void main(String[] args)
 {
 String fileName = new String ("booklist.xml");
 if (args.length > 0) {
XDK JavaBeans 10-45

Installing the Transviewer Bean Samples
 fileName = args[0];
 }

 JFrame frame = setFrame ("XMLViewer");
 XMLDocument xmlDocument = getXMLDocumentFromFile (fileName);
 XMLSourceView xmlSourceView = setXMLSourceView (xmlDocument);
 XMLTreeView xmlTreeView = setXMLTreeView (xmlDocument);
 JTabbedPane jtbPane = new JTabbedPane ();

 jtbPane.addTab ("Source", null, xmlSourceView, "XML document sorce view");
 jtbPane.addTab ("Tree", null, xmlTreeView, "XML document tree view");
 jtbPane.setPreferredSize (new Dimension(400,300));
 frame.getContentPane().add (jtbPane);

 frame.setTitle (fileName);
 frame.setJMenuBar (setMenuBar());
 frame.setVisible (true);
 }

 static JFrame setFrame (String title)
 {
 JFrame frame = new JFrame (title);
 //Center the window
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = frame.getSize();
 if (frameSize.height > screenSize.height) {
 frameSize.height = screenSize.height;
 }
 if (frameSize.width > screenSize.width) {
 frameSize.width = screenSize.width;
 }
 frame.setLocation ((screenSize.width - frameSize.width)/2,
 (screenSize.height - frameSize.height)/2);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 frame.getContentPane().setLayout (new BorderLayout());
 frame.setSize(new Dimension(400, 300));
 frame.setVisible (false);
 frame.setTitle (title);

 return frame;
 }
10-46 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 static JMenuBar setMenuBar ()
 {
 JMenuBar menuBar = new JMenuBar();
 JMenu menu = new JMenu ("Exit");
 menu.addMenuListener (new MenuListener () {
 public void menuSelected (MenuEvent ev) { System.exit(0); }
 public void menuDeselected (MenuEvent ev) {}
 public void menuCanceled (MenuEvent ev) {}
 });
 menuBar.add (menu);
 return menuBar;
 }

 /**
 * creates XMLSourceView object
 */
 static XMLSourceView setXMLSourceView(XMLDocument xmlDocument)
 {
 XMLSourceView xmlView = new XMLSourceView();

 xmlView.setXMLDocument(xmlDocument);
 xmlView.setBackground(Color.yellow);
 xmlView.setEditable(true);
 return xmlView;
 }
 /**
 * creates XMLTreeView object
 */
 static XMLTreeView setXMLTreeView(XMLDocument xmlDocument)
 {
 XMLTreeView xmlView = new XMLTreeView();

 xmlView.setXMLDocument(xmlDocument);
 xmlView.setBackground(Color.yellow);
 return xmlView;
 }

 static XMLDocument getXMLDocumentFromFile (String fileName)
 {
 XMLDocument doc = null;

 try {
 DOMParser parser = new DOMParser();
 try {
XDK JavaBeans 10-47

Installing the Transviewer Bean Samples
 String dir= "" ;
 FileInputStream in = new FileInputStream(fileName);
 parser.setPreserveWhitespace(false);
 parser.setBaseURL(createURL(dir));
 parser.parse(in);
 in.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);
 }

 doc = (XMLDocument)parser.getDocument();

 try {
 doc.print(System.out);
 } catch (Exception ie) {
 ie.printStackTrace();
 System.exit(0);
 }

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return doc;
 }

 static URL createURL(String fileName)
 {
 URL url = null;
 try
 {
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != '/')
10-48 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 path = path.replace(sep, '/');
 if (path.charAt(0) != '/')
 path = '/' + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 System.out.println("Cannot create url for: " + fileName);
 System.exit(0);
 }
 }
 return url;
 }
}

Transviewer Bean Example 3: XMLTransformPanelSample.java
This example is an interactive application that uses XMLTransformPanel bean to do

the following:

■ Generate XML from database queries

■ Transform the XML using XSL stylesheets

■ View the results

■ Store the results in CLOB tables in the database

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import oracle.xml.transviewer.XMLTransformPanel;

public class XMLTransformPanelSample
{
 XMLTransformPanel transformPanel = new XMLTransformPanel();

 /**
 * Adjust frame size and add transformPanel to it.
 */
 public XMLTransformPanelSample ()
 {
 Frame frame = new JFrame();
XDK JavaBeans 10-49

Installing the Transviewer Bean Samples
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 frame.setSize(510,550);
 transformPanel.setPreferredSize(new Dimension(510,550));
 Dimension frameSize = frame.getSize();

 if (frameSize.height > screenSize.height) {
 frameSize.height = screenSize.height;
 }
 if (frameSize.width > screenSize.width) {
 frameSize.width = screenSize.width;
 }
 frame.setLocation ((screenSize.width - frameSize.width)/2,
 (screenSize.height - frameSize.height)/2);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) { System.exit(0); }
 });
 frame.setVisible(true);

 ((JFrame)frame).getContentPane().add (transformPanel);
 frame.pack();
 }

 /**
 * main(). Only creates XMLTransformPanelSample object.
 */
 public static void main (String[] args)
 {
 new XMLTransformPanelSample ();
 }
}

Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
This is an interactive example which lets you input the name or policy of an

insurance claim. The appropriate claim is loaded as an XML buffer from the result

set of an XML query. An XSL stylesheet is loaded from the file system. The

DBViewer bean transforms the XML buffer using the XSL stylesheet to HTML. This

HTML output can then be viewed.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import oracle.jdeveloper.layout.*;
import oracle.xml.dbviewer.*;
10-50 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
public class DBViewClaims extends JPanel {
 DBViewer dbPanel= new DBViewer();
 JButton searchButton = new JButton();
 XYLayout xYLayout1 = new XYLayout();
 JLabel titleLabel = new JLabel();
 JLabel nameLabel = new JLabel();
 JLabel policyLabel = new JLabel();
 JTextField nameTF = new JTextField();
 JTextField policyTF = new JTextField();
 JButton viewXMLButton = new JButton();
 JButton viewXSLButton = new JButton();
 JButton viewHTMLButton = new JButton();
 public DBViewClaims() {
 super();
 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 private void jbInit() throws Exception {
 setBackground(SystemColor.controlLtHighlight);
 this.setLayout(xYLayout1);
 searchButton.setText("searchButton");
 searchButton.setLabel("Search");
 xYLayout1.setHeight(464);
 xYLayout1.setWidth(586);
 titleLabel.setText("List of Claims");
 titleLabel.setHorizontalAlignment(SwingConstants.CENTER);
 titleLabel.setBackground(new Color(192, 192, 255));
 titleLabel.setFont(new Font("Dialog", 1, 16));
 nameLabel.setText("Last Name");
 policyLabel.setText("Policy:");
 viewXMLButton.setText("viewXMLButton");
 viewXMLButton.setLabel("view XML");
 viewXMLButton.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 viewXMLButton_actionPerformed(e);
 }
 });
 viewXSLButton.setText("viewXSLButton");
 viewXSLButton.setLabel("view XSL");
 viewXSLButton.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
XDK JavaBeans 10-51

Installing the Transviewer Bean Samples
 viewXSLButton_actionPerformed(e);
 }
 });
 viewHTMLButton.setText("viewHTMLButton");
 viewHTMLButton.setLabel("view HTML");
 viewHTMLButton.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {
 viewHTMLButton_actionPerformed(e);
 }
 });

 searchButton.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 searchButton_actionPerformed(e);
 }
 });

 this.add(dbPanel, new XYConstraints(16, 55, 552, 302));
 this.add(searchButton, new XYConstraints(413, 415, 154, 29));
 this.add(titleLabel, new XYConstraints(79, 10, 413, 31));
 this.add(nameLabel, new XYConstraints(333, 373, 72, -1));
 this.add(policyLabel, new XYConstraints(334, 395, 59, -1));
 this.add(nameTF, new XYConstraints(413, 368, 155, -1));
 this.add(policyTF, new XYConstraints(413, 391, 156, -1));
 this.add(viewXMLButton, new XYConstraints(19, 359, 94, 29));
 this.add(viewXSLButton, new XYConstraints(19, 390, 94, 29));
 this.add(viewHTMLButton, new XYConstraints(19, 421, 94, 29));
 updateUI();
 }
 void searchButton_actionPerformed(ActionEvent e) {
 String sqlText="select * from s_claim c ";
 try {
 if (!nameTF.getText().equals("")) {
 sqlText=sqlText+" where c.claimpolicy.primaryinsured.lastname="+
 "'"+nameTF.getText()+"'";
 } else if (!policyTF.getText().equals("")) {
 sqlText=sqlText+" where c.claimpolicy.policyid="+
 policyTF.getText();
 }
 dbPanel.setUsername("scott");
 dbPanel.setPassword("tiger");
 dbPanel.setInstancename("orcl");
 dbPanel.setHostname("localhost");
 dbPanel.setPort("1521");
10-52 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 dbPanel.loadXMLBufferFromSQL(sqlText);
 dbPanel.loadXslBuffer("xslfiles","CLAIM.XSL");
 dbPanel.transformToRes();
 dbPanel.setResHtmlView(true);
 } catch (Exception e1) {
 System.out.println(e1);
 }
 }
 void viewXMLButton_actionPerformed(ActionEvent e) {
 dbPanel.setXmlSourceEditView(true);
 }
 void viewXSLButton_actionPerformed(ActionEvent e) {
 dbPanel.setXslSourceEditView(true);
 }
 void viewHTMLButton_actionPerformed(ActionEvent e) {
 dbPanel.setResHtmlView(true);
 }
}

Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java
This example provides a frame with a menu bar to access the DBView Claims

functionality. Claims can then be loaded and displayed in HTML.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import oracle.jdeveloper.layout.*;

public class DBViewFrame extends JFrame {
 JMenuBar menuBar1 = new JMenuBar();
 JMenu menuFile = new JMenu();
 JMenuItem menuFileExit = new JMenuItem();
 JMenuItem menuListCustomerClaims = new JMenuItem();

 public DBViewFrame() {
 super();
 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 private void jbInit() throws Exception {
XDK JavaBeans 10-53

Installing the Transviewer Bean Samples
 this.getContentPane().setLayout(new GridLayout(1,1));
 this.setSize(new Dimension(600, 550));
 menuFile.setText("File");
 menuFileExit.setText("Exit");
 menuListCustomerClaims.setText("List Claims");
 menuFileExit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fileExit_ActionPerformed(e);
 }
 });
 menuListCustomerClaims.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 ListCustomerClaims_ActionPerformed(e);

 }
 });
 menuFile.add(menuFileExit);
 menuFile.add(menuListCustomerClaims);
 menuBar1.add(menuFile);
 this.setJMenuBar(menuBar1);
 this.setBackground(SystemColor.controlLtHighlight);
 }
 void fileExit_ActionPerformed(ActionEvent e) {
 System.exit(0);
 }
 void ListCustomerClaims_ActionPerformed(ActionEvent e) {
 this.getContentPane().removeAll();
 this.getContentPane().add(new DBViewClaims());
 this.getContentPane().paintAll(this.getGraphics());
 }
}

Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
This example simply provides a main function which instantiates DBViewFrame,

giving it a specific look and feel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class DBViewSample {
 public DBViewSample() {
 DBViewFrame frame = new DBViewFrame();
 frame.setVisible(true);
 }
10-54 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 new DBViewSample();
 }
}

XMLDiffSample.java
import oracle.xml.parser.v2.*;
import oracle.xml.async.*;
import oracle.xml.differ.*;

import java.io.*;
import java.awt.*;
import javax.swing.*;
import javax.swing.tree.*;
import java.net.URL;
import java.net.MalformedURLException;

public class XMLDiffSample
{
 /**
 * Constructor
 */
 public XMLDiffSample() {
 }

 /**
 * main
 * @param args
 */
 public static void main(String[] args)
 {

 dfxApp = new XMLDiffSample();
 diffFrame = new XMLDiffFrame(dfxApp);
 diffFrame.addTransformMenu();
 xmlDiff = new XMLDiff();

 if (args.length == 3)
XDK JavaBeans 10-55

Installing the Transviewer Bean Samples
 outFile = args[2];
 /* Use the default outFile name = XMLDiffSample.xsl */
 if(args.length >= 2)
 dfxApp.showDiffs(new File(args[0]), new File(args[1]));

 diffFrame.setVisible(true);
 }

 public void showDiffs(File file1, File file2)
 {
 try
 {
 xmlDiff.setFiles(file1, file2);

 /* Check if files are equal */
 if(!xmlDiff.diff())
 {
 JOptionPane.showMessageDialog(diffFrame,
 "Files are equivalent in XML representation",
 "XMLDiffSample Message",
 JOptionPane.PLAIN_MESSAGE);
 }

 /* generate xsl file */
 xmlDiff.generateXSLFile(outFile);
 /* parse the xsl file created, alternately you can use
 generateXSLDoc to get the xsl as a document tree instead of a file */
 parseXSL();
 /* Display the document trees created by the xmlDiff object */
 diffFrame.makeSrcPane(xmlDiff.getDocument1(), xmlDiff.getDocument2());
 diffFrame.makeDiffSrcPane(new XMLDiffSrcView(xmlDiff.getDiffPane1()),
 new XMLDiffSrcView(xmlDiff.getDiffPane2()));
 diffFrame.makeXslPane(xslDoc, "Diff XSL Script");
 diffFrame.makeXslTabbedPane();
 }catch (FileNotFoundException e)
 {
 JOptionPane.showMessageDialog(diffFrame,
 "File Not Found: "+e.getMessage(),
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);
 }
 catch (Exception e)
 {
 e.printStackTrace();
10-56 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 JOptionPane.showMessageDialog(diffFrame,
 "Error: "+e.getMessage(),
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);
 }
 }

 public void doXSLTransform()
 {
 try
 {
 doc1 = xmlDiff.getDocument1();
 doc2 = xmlDiff.getDocument2();

 XSLProcessor xslProc = new XSLProcessor();

 /* Using the xsl stylesheet generated (xslDoc), transform the first file
 (doc1) into the second file (resultDocFrag) */
 XMLDocumentFragment resultDocFrag = xslProc.processXSL(new XSLStylesheet
 (xslDoc, createURL(outFile)), doc1);
 XMLDocument resultDoc = new XMLDocument();
 /* The XML declaration has to be copied over to the transformed XML doc,
 the xsl will not generate it automatically */
 if (doc1.getFirstChild() instanceof XMLDeclPI)
 if (doc1.getFirstChild() instanceof XMLDeclPI)
 {
 XMLNode xmldecl = (XMLNode) resultDoc.importNode(doc1.getFirstChild(),
 false);
 resultDoc.appendChild(xmldecl);
 }
 /* Create the DTD node in the transformed XML document */
 if(doc1.getDoctype() != null)
 {
 DTD dtd = (DTD)doc1.getDoctype();
 resultDoc.setDoctype(dtd.getName(), dtd.getSystemId(),
dtd.getPublicId());
 }
 /* Create the result document tree from the document fragment */
 resultDoc.appendChild(resultDocFrag);
 diffFrame.makeResultFilePane(resultDoc);
 } catch (XSLException e)
 {
 e.printStackTrace();
 JOptionPane.showMessageDialog(diffFrame,
 "Error: "+e.getMessage(),
XDK JavaBeans 10-57

Installing the Transviewer Bean Samples
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 JOptionPane.showMessageDialog(diffFrame,
 "Error:"+e.getMessage(),
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);
 }
 }

 /* Parse the XSL file generated into a DOM tree */
 protected void parseXSL()
 {
 try
 {
 BufferedReader xslFile = new BufferedReader(new FileReader(outFile));
 DOMParser domParser = new DOMParser();
 domParser.parse(xslFile);
 xslDoc = domParser.getDocument();

 }catch (FileNotFoundException e)
 {
 JOptionPane.showMessageDialog(diffFrame,
 "File Not Found: "+e.getMessage(),
 "XMLDiffSample Message",
 JOptionPane.PLAIN_MESSAGE);
 }
 catch (Exception e)
 {
 JOptionPane.showMessageDialog(diffFrame,
 "Error:"+e.getMessage(),
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);
 }
 }

 // create a URL from a file name
 protected URL createURL(String fileName)
 {
 URL url = null;
 try
 {
10-58 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 url = new URL(fileName);
 }
 catch (MalformedURLException ex)
 {
 File f = new File(fileName);
 try
 {
 String path = f.getAbsolutePath();
 // to handle Windows platform
 String fs = System.getProperty("file.separator");
 if (fs.length() == 1)
 {
 char sep = fs.charAt(0);
 if (sep != '/')
 path = path.replace(sep, '/');
 if (path.charAt(0) != '/')
 path = '/' + path;
 }
 path = "file://" + path;
 url = new URL(path);
 }
 catch (MalformedURLException e)
 {
 JOptionPane.showMessageDialog(diffFrame,
 "Cannot create url for: " + fileName,
 "XMLDiffSample Error Message",
 JOptionPane.ERROR_MESSAGE);

 }
 }
 return url;
 }

 protected XMLDocument doc1; /* DOM tree for first file */
 protected XMLDocument doc2; /* DOME tree for second file */
 protected static XMLDiffFrame diffFrame; /* GUI frame */
 protected static XMLDiffSample dfxApp; /* XMLDiff sample application */
 protected static XMLDiff xmlDiff; /* XML diff object */
 protected static XMLDocument xslDoc; /* parsed xsl file */
 protected static String outFile = new String("XMLDiffSample.xsl"); /* output
 xsl file name */
}

XDK JavaBeans 10-59

Installing the Transviewer Bean Samples
XMLDiffFrame.java
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;

import oracle.xml.parser.v2.*;
import oracle.xml.srcviewer.*;
import oracle.xml.differ.*;
import org.w3c.dom.*;

public class XMLDiffFrame extends JFrame implements ActionListener {

 public XMLDiffFrame(XMLDiffSample dfApp)
 {
 super();
 mydfApp = dfApp;
 init();
 }

 public void makeSrcPane(XMLDocument doc1, XMLDocument doc2)
 {
 //undo srcviewer highlighting here
 XMLSourceView XmlSrcView1 = new XMLSourceView();
 XmlSrcView1.setXMLDocument(doc1);
 XmlSrcView1.setTagForeground(Color.black);
 XmlSrcView1.setAttributeValueForeground(Color.black);
 XmlSrcView1.setPIDataForeground(Color.black);
 XmlSrcView1.setCommentDataForeground(Color.black);
 XmlSrcView1.setCDATAForeground(Color.black);

 XmlSrcView1.setBackground(Color.lightGray);
 XmlSrcView1.getJTextPane().setBackground(Color.white);
 XmlSrcView1.add(new JLabel(filename1,SwingConstants.CENTER),
 BorderLayout.NORTH);

 XMLSourceView XmlSrcView2 = new XMLSourceView();
 XmlSrcView2.setXMLDocument(doc2);
 XmlSrcView2.setTagForeground(Color.black);
 XmlSrcView2.setAttributeValueForeground(Color.black);
 XmlSrcView2.setPIDataForeground(Color.black);
 XmlSrcView2.setCommentDataForeground(Color.black);
 XmlSrcView2.setCDATAForeground(Color.black);
10-60 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 XmlSrcView2.setBackground(Color.lightGray);
 XmlSrcView2.getJTextPane().setBackground(Color.white);
 XmlSrcView2.add(new JLabel(filename2,SwingConstants.CENTER),
 BorderLayout.NORTH);

 XmlSrcView2.updateUI();
 XmlSrcView1.updateUI();

 srcPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 XmlSrcView1, XmlSrcView2);
 srcPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);
 srcPane.setDividerLocation(0.5);
 srcPane.validate();

 }

 public void makeDiffSrcPane(XMLDiffSrcView srcView1, XMLDiffSrcView srcView2)
 {
 srcView1.setBackground(Color.lightGray);
 srcView2.setBackground(Color.lightGray);

 srcView1.add(new
JLabel(filename1,SwingConstants.CENTER),BorderLayout.NORTH);
 srcView2.add(new
JLabel(filename2,SwingConstants.CENTER),BorderLayout.NORTH);

 JScrollBar vscrollBar = srcView2.getScrollPane().getVerticalScrollBar();

 // make the diffSrcView divider fixed.
 srcView1.getScrollPane().setVerticalScrollBar(vscrollBar);
 srcView1.getScrollPane().setMinimumSize(
 new
Dimension(FRAMEWIDTH/2,srcView1.getScrollPane().getPreferredSize().height));
 srcView2.getScrollPane().setMinimumSize(
 new
Dimension(FRAMEWIDTH/2,srcView2.getScrollPane().getPreferredSize().height));

 srcView2.getScrollPane().updateUI();
 srcView1.getScrollPane().updateUI();

 srcView2.getTextPane().updateUI();
 srcView1.getTextPane().updateUI();
XDK JavaBeans 10-61

Installing the Transviewer Bean Samples
 srcView2.updateUI();
 srcView1.updateUI();

 diffSrcPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 srcView1, srcView2);
 diffSrcPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);
 diffSrcPane.setDividerLocation(0.5);
 diffSrcPane.validate();

 }
 public void makeTabbedPane()
 {
 tabbedPane = new JTabbedPane();

 tabbedPane.addTab("SourceView", null , srcPane, "Source View of Files being
Diffed");

tabbedPane.addTab("SourceDiffView", null , diffSrcPane, "Source View of File
Diffs");
 tabbedPane.addTab("TreeDiffView", null , diffTreePane, "DOM Tree View of
File Diffs");
 tabbedPane.setSelectedIndex(1);
 tabbedPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

 this.getContentPane().add(tabbedPane);
 this.setVisible(true);

 }

 public void makeXslPane(XMLDocument doc, String title)
 {
 xslSrcView = new XMLSourceView();
 xslSrcView.setXMLDocument(doc);
 xslSrcView.setTagForeground(Color.black);
 xslSrcView.setAttributeValueForeground(Color.black);
 xslSrcView.setPIDataForeground(Color.black);
 xslSrcView.setCommentDataForeground(Color.black);
 xslSrcView.setCDATAForeground(Color.black);

 xslSrcView.setBackground(Color.lightGray);
 xslSrcView.getJTextPane().setBackground(Color.white);
 xslSrcView.add(new JLabel(title,SwingConstants.CENTER),
 BorderLayout.NORTH);
 this.enableTransformItem(true);
 }
10-62 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 public void makeResultFilePane(XMLDocument doc)
 {
 resultDoc = doc;
 XMLSourceView resultSrcView = new XMLSourceView();
 resultSrcView.setXMLDocument(doc);
 resultSrcView.setTagForeground(Color.black);
 resultSrcView.setAttributeValueForeground(Color.black);
 resultSrcView.setPIDataForeground(Color.black);
 resultSrcView.setCommentDataForeground(Color.black);
 resultSrcView.setCDATAForeground(Color.black);

 resultSrcView.setBackground(Color.lightGray);
 resultSrcView.getJTextPane().setBackground(Color.white);
 resultSrcView.add(new JLabel("XSLT Result File",SwingConstants.CENTER),
 BorderLayout.NORTH);

 tabbedPane.addTab("ResultSourceView", null , resultSrcView,
 "Source View of XSLT on File1");
 tabbedPane.setSelectedIndex(3);
 this.enableSaveAsItem(true);
 }

 public void makeXslTabbedPane()
 {
 tabbedPane = new JTabbedPane();

 tabbedPane.addTab("SourceView", null , srcPane, "Source View of XML Files
being Diffed");

tabbedPane.addTab("SourceDiffView", null , diffSrcPane, "Source View of File
Diffs");
 tabbedPane.addTab("XSL Script",null,xslSrcView, "Source View of Diff XSL
script");
 tabbedPane.setSelectedIndex(2);
 tabbedPane.setSize(FRAMEWIDTH,FRAMEHEIGHT);

 this.getContentPane().add(tabbedPane);
 this.setVisible(true);

 }

 public void actionPerformed(ActionEvent evt)
 {
XDK JavaBeans 10-63

Installing the Transviewer Bean Samples
 File selectedFile1, selectedFile2;
 BufferedReader file1, file2;
 String arg, temp;

 if(evt.getSource() instanceof JMenuItem)
 {

 arg = evt.getActionCommand();

 if(arg.equals("Compare XML Files"))
 {
 JFileChooser jFC = new JFileChooser();
 jFC.setCurrentDirectory(new File("."));
 int retval = jFC.showOpenDialog(this);

 switch (retval)
 {

 case JFileChooser.APPROVE_OPTION:
 selectedFile1 = jFC.getSelectedFile();
 temp = selectedFile1.getName();
 jFC.cancelSelection();
 jFC.updateUI();
 switch(jFC.showOpenDialog(this))
 {
 case JFileChooser.APPROVE_OPTION:
 selectedFile2 = jFC.getSelectedFile();

 filename2 = selectedFile2.getName();
 filename1 = temp;

 this.getContentPane().removeAll();
 this.enableSaveAsItem(false);

 mydfApp.showDiffs(selectedFile1, selectedFile2);
 break;

 case JFileChooser.CANCEL_OPTION:
 break; //filename1 = null; // filename1 also null

 }// switch (jFC.showOpenDialog(this))
 break;

 case JFileChooser.CANCEL_OPTION:
 break;
 }
 }// if(arg.equals("Compare XML Files"))
10-64 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 else if(arg.equals("Apply XSL to 1st Input File"))
 {
 mydfApp.doXSLTransform();

 }
 else if(arg.equals("Save As"))
 {
 JFileChooser jFC = new JFileChooser();
 jFC.setCurrentDirectory(new File("."));
 int retval = jFC.showOpenDialog(this);

 if (retval == JFileChooser.APPROVE_OPTION)
 {
 File file = jFC.getSelectedFile();
 try
 {
 resultDoc.print(new FileOutputStream(file));
 }catch (IOException e)
 {
 JOptionPane.showMessageDialog(this,
 "Error:"+e.getMessage(),
 "XMLDiffer Message",
 JOptionPane.PLAIN_MESSAGE);
 }

 }
 }
 else if(arg.equals("Exit"))
 {
 System.exit(0);
 }

 }
 }

 public void addTransformMenu()
 {
 JMenuItem item;

 JMenu jmenu = new JMenu("Transform");

 item = new JMenuItem("Apply XSL to 1st Input File");
 item.addActionListener(this);
XDK JavaBeans 10-65

Installing the Transviewer Bean Samples
 item.setEnabled(false);
 jmenu.add(item);

 this.getJMenuBar().add(jmenu);

 }

 protected void enableTransformItem(boolean flag)
 {
 this.getJMenuBar().getMenu(1).getItem(0).setEnabled(flag);
 }

 protected void enableSaveAsItem(boolean flag)
 {
 this.getJMenuBar().getMenu(0).getItem(1).setEnabled(flag);
 }

 private void init()
 {
 try
 {
 this.setTitle("XMLDiffer");
 this.getContentPane().setLayout(new
BoxLayout(this.getContentPane(),BoxLayout.Y_AXIS));
 // make the Differ window non-resizable
 this.setResizable(false);
 this.getContentPane().setBackground(SystemColor.control);
 addMenu();

 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = this.getSize();

 // set Frame size based on screen size such that there is room around it
 FRAMEWIDTH = screenSize.width - 100;
 FRAMEHEIGHT = screenSize.height - 200;
 this.setSize(new Dimension(FRAMEWIDTH, FRAMEHEIGHT));

 // put Differ window in the center of the screen
 this.setLocation((screenSize.width - FRAMEWIDTH)/2, (screenSize.height -
FRAMEHEIGHT)/2);
 this.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) { System.exit(0); }});

 }
 catch (Exception e)
10-66 Oracle9i XML Developer’s Kits Guide - XDK

Installing the Transviewer Bean Samples
 {
 e.printStackTrace();
 }
 }

 private void addMenu()
 {
 JMenuItem item;

 JMenuBar jmenubar = new JMenuBar();
 JMenu jmenu = new JMenu("File");

 item = new JMenuItem("Compare XML Files");
 item.addActionListener(this);
 jmenu.add(item);

 item = new JMenuItem("Save As");
 item.addActionListener(this);
 item.setEnabled(false);
 jmenu.add(item);

 jmenu.addSeparator();

 item = new JMenuItem("Exit");
 item.addActionListener(this);
 jmenu.add(item);

 jmenubar.add(jmenu);
 this.setJMenuBar(jmenubar);

 }

 protected static int LEFT_TOP = 0;
 protected static int RIGHT_TOP = 1;
 protected static int CENTER = 2;

 private int FRAMEWIDTH =0;
 private int FRAMEHEIGHT =0;

 private XMLDocument resultDoc;
 private XMLSourceView xslSrcView;
 private XMLDiffSample mydfApp;
 private String filename1, filename2;
 private JTabbedPane tabbedPane;
XDK JavaBeans 10-67

Installing the Transviewer Bean Samples
 private JSplitPane diffTreePane, srcPane,diffSrcPane;
}

10-68 Oracle9i XML Developer’s Kits Guide - XDK

Using XDK a
11

Using XDK and SOAP

This chapter contains the following sections:

■ What Is SOAP?

■ What Are UDDI and WSDL?

■ What Is Oracle SOAP?

■ See the Developer’s Guides
nd SOAP 11-1

What Is SOAP?
What Is SOAP?
The term Web services is used for the functionality made available by an entity over

the Web. It is an application that uses XML standards and is published, located and

executed through the Web.

The Simple Object Access Protocol (SOAP) is a protocol for sending and receiving

requests and responses across the Internet. Because it is based on XML and simple

transport protocols such as HTTP, it is not blocked by firewalls and is very easy to

use. SOAP is independent of operating system, independent of implementation

language, and independent of any single object model.

SOAP supports remote procedure calls. Its messages are only of the three types:

■ A request for a service, including input parameters

■ A response to the requested service, including return value and output

parameters

■ A fault containing error codes and information

SOAP messages consist of:

■ an envelope that contains the message, defines how to process the message, who

should process the message, and whether processing is optional or mandatory.

■ encoding rules that describe the data types for the application. These rules define

a serialization mechanism that converts the application data types to XML and

XML to data types.

■ remote procedure call definitions

SOAP 1.1 specification is a W3C note. (The W3C XML Protocol Working Group has

been formed to create a standard that will supersede SOAP.)

SOAP is transport protocol-independent and operating system-independent. It

provides the standard XML message format for all applications. SOAP uses the

W3C XML Schema standard of the World Wide Web Consortium (W3C).

A SOAP service remote procedure call (RPC) request and response sequence

includes the steps:

See Also:

■ http://www.w3.org/TR/SOAP/

■ http://xml.apache.org/soap
11-2 Oracle9i XML Developer’s Kits Guide - XDK

What Are UDDI and WSDL?
1. A SOAP client writes a request for service in a conforming XML document,

using either an editor or the Oracle SOAP client API.

2. The client sends the document to a SOAP Request Handler running as a servlet

on a Web server.

3. The Web Server dispatches the message as a service request to an appropriate

server-side application providing the requested service.

4. The application must verify that the message contains supported parts. The

response from the service is returned to the SOAP Request Handler servlet and

then to the caller using the SOAP payload format.

What Are UDDI and WSDL?
The Universal Description, Discovery and Integration (UDDI) specification

provides a platform-independent framework using XML to describe services,

discover businesses, and integrate business services on the Internet. The UDDI

business registry is the public database where companies are registered. The UDDI

business registration is an XML file with three sections:

■ white pages that include address, contact, and known identifiers

■ yellow pages include industrial categorization

■ green pages containing the technical information about exposed services

The Web Services Description Language (WSDL) is a general purpose XML

language for describing the interface, protocol bindings, and deployment details of

Web services. WSDL provides a method of describing the abstract interface and

arbitrary network services. A WSDL service is registered or embedded in the UDDI

registry.

The stack of protocols used in Web services is summarized in the following table:

Protocol Stack

Universal Service Interoperability Protocols (WSDL, and so on.)

Universal Description, Discovery Integration (UDDI)

Simple Object Access Protocol (SOAP)

XML, XML Schema

Internet Protocols (HTTP, HTTPS, TCP/IP)
Using XDK and SOAP 11-3

What Is Oracle SOAP?
What Is Oracle SOAP?
Oracle SOAP is an implementation of the Simple Object Access Protocol. Oracle

SOAP is based on the SOAP open source implementation developed by the Apache

Software Foundation.

How Does SOAP Work?
Consider this example: a GetLastTradePrice SOAP request is sent to a StockQuote

service. The request takes a string parameter, the company stock symbol, and

returns a float in the SOAP response. The XML document represents the SOAP

message. The SOAP envelope element is the top element of the XML document.

XML namespaces are used to clarify SOAP identifiers from application-specific

identifiers. The following example uses HTTP as the transport protocol. The rules

governing XML payload format in SOAP are independent of the fact that the

payload is carried in HTTP. The SOAP request message embedded in the HTTP

request is:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"
<SOAP-ENV:Envelope xmlns:SOAP- ENV="http://schemas.xmlsoap.org/soap/
envelope/" SOAP-
ENV:encodingStyle="http://schemas.xnlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>ORCL</symbol>
<m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the response HTTP message:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope xmlns:SOAP-
ENV=http://schemas.xmlsoap.org/soap//envelope/ SOAP-
ENV:encodingStyle="http://schemas.xnlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">
<Price>34.5</Price>
11-4 Oracle9i XML Developer’s Kits Guide - XDK

What Is Oracle SOAP?
</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

What Is a SOAP Client?
A SOAP client application represents a user-written application that makes SOAP

requests. The SOAP client has these capabilities:

■ Gathers all parameters that are needed to invoke a service.

■ Creates a SOAP service request message. This is an XML message that is built

according to the SOAP protocol and that contains all the values of all input

parameters encoded in XML. This process is called serialization.

■ Submits the request to a SOAP server using some transport protocol that is

supported by the SOAP server.

■ Receives a SOAP response message.

■ Determines the success or failure of the request by handling the SOAP Fault

element.

■ Converts the returned parameter from XML to native data type. This process is

called deserialization.

■ Uses the result as needed.

SOAP Client API
SOAP clients generate the XML documents that compose a request for a SOAP

service and handle the SOAP response. Oracle SOAP processes requests from any

client that sends a valid SOAP request. To facilitate client development, Oracle

SOAP includes a SOAP client API that provides a generic way to invoke a SOAP

service.

The SOAP client API supports a synchronous invocation model for requests and

responses. The SOAP client API makes it easier for you to write a Java client

application to make a SOAP request. The SOAP client API encapsulates the creation

of the SOAP request and the details of sending the request over the underlying

transport protocol. The SOAP client API also supports a pluggable transport,

allowing the client to easily change the transport (available transports include

HTTP and HTTPS).
Using XDK and SOAP 11-5

What Is Oracle SOAP?
What Is a SOAP Server?
A SOAP server has the following capabilities:

■ The server receives the service request.

■ The server parses the XML request and then decides to execute the message or

reject it.

■ If the message is executed, the server determines if the requested service exists.

■ The server converts all input parameters from XML into data types that the

service understands.

■ The server invokes the service.

■ The return parameter is converted to XML and a SOAP response message is

generated.

■ The response message is sent back to the caller.

Oracle SOAP Security Features
Oracle SOAP uses the security capabilities in the transport to support secure access

and to support other security features. For example, using HTTPS, Oracle SOAP

provides confidentiality, authentication, and integrity over the Secure Sockets Layer

(SSL). Other security features such as logging and authorization, are provided by

the service provider.

SOAP Transports
SOAP transports are the protocols that carry SOAP messages. Oracle SOAP

supports the following transports:

■ HTTP: This protocol is the basic SOAP transport. The Oracle SOAP Request

Handler Servlet manages HTTP requests and supplies responses directly over

HTTP.This protocol is becoming a standard because of its popularity.

■ HTTPS: The Oracle SOAP Request Handler Servlet manages HTTPS requests

and supplies responses, with different security levels supported.

Administrative Clients
SOAP administrative clients include the Service Manager and the Provider

Manager. These administrative clients are services that support dynamic

deployment of new services and new providers.
11-6 Oracle9i XML Developer’s Kits Guide - XDK

What Is Oracle SOAP?
SOAP Request Handler
The SOAP Request Handler is a Java servlet that receives SOAP requests, looks up

the appropriate service provider, handles the service provider that invokes the

requested method (service), and returns the SOAP response, if any.

SOAP Provider Interface and Providers
Oracle SOAP includes a provider implementation for Java classes. Other providers

can be added.

Provider Interface
The provider interface allows the SOAP server to uniformly invoke service methods

regardless of the type of provider (Java class, stored procedure, or some other

provider type). There is one provider interface implementation for each type of

service provider, and it encapsulates all provider-specific information. The provider

interface makes SOAP implementation easily extensible to support new types of

service providers.

Provider Deployment Administration
Oracle SOAP provides the provider deployment administration client to manage

provider deployment information.

SOAP Services
SOAP application developers provide SOAP services. These services are made

available using the supplied default Java class provider or custom providers. Oracle

SOAP includes a service deployment administration client that runs as a service to

manage services. SOAP services, including Java services, represent user-written

applications that are provided to remote SOAP clients.

JDeveloper Support for SOAP
Oracle9i JDeveloper has WSDL, SOAP, and UDDI support.

See Also: Chapter 24, "Developing XML Applications with

JDeveloper"
Using XDK and SOAP 11-7

See the Developer’s Guides
See the Developer’s Guides
Here’s how to find the Oracle9iAS SOAP Developer’s Guide, Release 1 (v1.0.2.2),

May 2001, PN A90297-01 online:

1. Open http://otn.oracle.com/docs/products/ias/content.html

2. Open the Generic Documentation Library for 1.0.2.2.x.

3. Click on the Integrate Users, Applications, and Businesses link.

See Also: For more information about Oracle SOAP and Web

Services, including documentation and downloads, see:

■ http://otn.oracle.com/products/ias/daily/sept07.html

■ Oracle9i Application Developer’s Guide - Advanced Queuing for a

discussion of Internet access to AQ (Advanced Queuing.

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ The SOAP API is on the Product CD, Disk 1, in file

doc/readmes/ADDEN_rdbms.htm
11-8 Oracle9i XML Developer’s Kits Guide - XDK

Oracle Tra
12

Oracle TransX Utility

This chapter contains the following sections:

■ Overview of the TransX Utility

■ Installing TransX Utility

■ TransX Utility Command-Line Syntax

■ Sample Code for TransX Utility
nsX Utility 12-1

Overview of the TransX Utility
Overview of the TransX Utility
The TransX Utility simplifies the loading of translated seed data and messages into

a database. It also reduces internationalization costs by:

■ Preparing strings to be translated.

■ Translating the strings.

■ Loading the strings to the database.

The TransX Utility minimizes translation data format errors and it accurately loads

the translation contents into pre-determined locations in the database. Other

advantages of the TransX Utility are:

■ Translation vendors no longer have to work with unfamiliar SQL and PL/SQL

scripts.

■ Syntax errors due to varying Globalization Support settings are eliminated.

■ The UNISTR construct is no longer required for every piece of NCHAR data.

Development groups that need to load translated messages and seed data can use

the TransX Utility to simplify what it takes for meeting internationalization

requirements. Once the data is in a predefined format, the TransX Utility validates

its format.

Choosing the correct encoding when loading translated data is automated because

loading with TransX takes advantage of XML which describes the encoding. This

means that loading errors due to incorrect encoding is impossible as long as the

data file conforms to the XML standard.

Primary TransX Utility Features
This section describes the following features of the TransX Utility:

■ Simplified Multilingual Data Loading

■ Simplified Data Format Support and Interface

■ Loading Dataset in The Standard XML Format

■ Handling Existing Data

■ Other TransX Utility Features
12-2 Oracle9i XML Developer’s Kits Guide - XDK

Overview of the TransX Utility
Simplified Multilingual Data Loading
Traditionally, the typical translation data loading method was to switch the

NLS_LANG setting when you switch files to be loaded. Each of the load files is

encoded in a particular character set suitable for the particular language. This was

required because translations must be done in the same file format (typically in .sql

script) as the original.

The NLS_LANG setting changes as files are loaded to adapt to the character set that

corresponds to the language. The TransX Utility loading tool frees the development

and translation groups maintaining the correct character set throughout the process

until they successfully load the data into the database using XML.

Simplified Data Format Support and Interface
The TransX Utility data loading tool complies with a data format defined to be the

canonical method for the representation of any seed data to be loaded to the

database. The format is intuitive and easy to understand. The format is also

simplified for translation groups to use. The format specification defines how

translators can describe the data to load it in the expected way.

The data loading tool has a command-line interface and programmable API. Both of

them are straightforward and require little time to learn.

Loading Dataset in The Standard XML Format
Given the dataset in the canonical format, the TransX Utility loads the data into the

designated locations in the database. It does not, however, create objects, including

the table that the data is going to be loaded to. In addition to literal values

represented in XML, the following expressions can be used to describe the data to

be loaded:

Constant Expression A constant expression allows you to specify a constant value. A

column with a fixed value for each row does not have to repeat the same value.

Sequence A column can be loaded with a value obtained from a sequence in the

database.

Query A SQL query can be used to load a column. A query can use parameter(s).

Handling Existing Data
The data loading tool determines whether there are duplicate rows in the database.

It also lets you choose how it processes duplicate rows from one of the options in
Oracle TransX Utility 12-3

Installing TransX Utility
the following list. A row is considered duplicate if the values of all columns

specified as lookup-key are the same. The processing options are:

■ Skip the duplicate rows or leave them as they are (default)

■ Update or overwrite the duplicate rows with the data in provided dataset

■ Display an error

Other TransX Utility Features
The lists describes other TransX Utility features:

■ Command-line Interface—The data loading tool provides easy-to-use

commands.

■ User API—The data loading tool exposes a Java API.

■ Validation—The data loading tool validates the data format and reports errors.

■ White Space Handling—White space characters in the dataset are not

significant, unless otherwise specified in various granularity.

■ Unloading—Based on a query, the data loading tool exports the result into the

standard data format.

■ Intimacy with Translation Exchange Format—Designed for transformation to

and from translation exchange format

■ Localized User Interface—Messages are provided in N languages.

Installing TransX Utility
Here is how to install TransX, and the dependencies of TransX.

Dependencies of TransX
The Oracle TransX utility needs the following components in order to function:

■ Database connectivity -- JDBC drivers. The utility can work with any JDBC

drivers but is optimized for Oracle’s JDBC drivers. Oracle does not guarantee or

provide support for TransX running against non-Oracle databases.

■ XML Parser -- Oracle XML Parser, Version 2. The Oracle XML Parser, Version 2,

is part of the Oracle8i and Oracle9i installations, and is also available from the

Oracle Technology Network (OTN) Web site.
12-4 Oracle9i XML Developer’s Kits Guide - XDK

Installing TransX Utility
■ XML Schema Processor -- Oracle XML Schema Processor. The Oracle XML

Schema Processor is part of the Oracle8i and Oracle9i installations,

downloadable from the Oracle Technology Network (OTN) Web site.

■ XML SQL Utility-- Oracle XML SQL Utility (XSU). The Oracle XSU is part of the

Oracle8i and Oracle9i installation, and is also available from Oracle Technology

Network (OTN) Web site.

Installing TransX Using the Oracle Installer
TransX is packaged with Oracle9i. The TransX utility is made up of three executable

files:

■ $ORACLE_HOME/rdbms/jlib/transx.zip -- contains all the java classes which

make up TransX $ORACLE_HOME/rdbms/bin/transx -- a shell script to

invoke TransX from UNIX command line.

■ $ORACLE_HOME/rdbms/bin/transx.bat -- a batch file to invoke TransX from

Windows command line.

By default, the Oracle9i installer installs TransX on your hard drive in the locations

specified above.

Installing TransX Downloaded from OTN
Download the correct XDK for java distribution archive from the Oracle Technology

Network (http://otn.oracle.com). Expand the downloaded archive. Depending on

the usage scenario, perform the following install tasks:

To use the TransX’s front-end or its Java API, you need to:
Set up the environment (that is, set CLASSPATH) using the env.xxx script

(located in the bin directory inside the directory created by extracting the XDK

download archive):

Unix users: make sure that the path names in env.csh are correct; source the env.csh.

If you are using a shell other than csh or tcsh , you will have to edit the file to use

your shell’s syntax.

Windows users: make sure that the path names in env.bat are correct; execute the

file.
Oracle TransX Utility 12-5

TransX Utility Command-Line Syntax
TransX Utility Command-Line Syntax
The following describes the command-line syntax for the TransX Utility.

java oracle.xml.transx.loader [options] connect_string username password
datasource [datasource]
java oracle.xml.transx.loader -v datasource [datasource]
java oracle.xml.transx.loader -x connect_string username password table [column]
java oracle.xml.transx.loader -s connect_string username password filename table
[column]

TransX Utility Command-Line Examples
The following are command-line examples for the TransX Utility:

java oracle.xml.transx.loader "dlsun9999:1521:mydb" scott tiger foo.xml
java oracle.xml.transx.loader "jdbc:oracle:oci:@mydb" scott tiger foo.xml
java oracle.xml.transx.loader -v foo.xml
java oracle.xml.transx.loader -x "dlsun9999:1521:mydb" scott tiger emp
java oracle.xml.transx.loader -s "dlsun9999:1521:mydb" scott tiger emp.xml emp
ename job

TransX Utility Command-line Parameters
Table 12–1 shows the command-line parameters.

Table 12–1 TransX Utility Command-line Parameters

Parameter Meaning

connect_string JDBC connect string You can omit the connect string information through
the ’@’ symbol. ’jdbc:oracle:thin:@’ will be supplied.

username Database user name.

password Password for the database user.

datasource An XML data source.

option Options in Table 12–2, "TransX Utility Command-line Options".
12-6 Oracle9i XML Developer’s Kits Guide - XDK

TransX Utility Command-Line Syntax
TransX Utility Command-line Options

Command-line Option Exceptions The following are the command-line option

exceptions:

Table 12–2 TransX Utility Command-line Options

Option Meaning Description

-u Update existing rows. When this option is specified, existing rows
are not skipped but updated. To exclude a
column from the update operation, specify
the useforupdate attribute to be "no".

-e Raise exception if a row is already
existing in the database.

When this option is specified, an exception
will be thrown if a duplicate row is found.
By default, duplicate rows are simply
skipped. Rows are considered duplicate if
the values for lookup-key column(s) in the
database and the dataset are the same.

-x Print data in the database in the
predefined format*.

Similar to the -s option, it causes TransX to
perform the opposite operation of loading.
Unlike the -s option, it prints the output to
stdout . Note: Redirecting this output to a
file is discouraged, because intervention of
the operating system may result in data loss
due to unexpected transcoding.

-s Save data in the database into a file
in the predefined format*.

This is an option to perform unloading. It
queries the database, formats the result into
the predefined XML format and store it
under the specified file name.

-p Print the XML to load. Prints out the dataset for insert in the
canonical format of XSU.

-t Print the XML for update. Prints out the dataset for update in the
canonical format of XSU.

-o Omit validation (as the dataset is
parsed it is validated by default).

Causes TransX to skip the format validation,
which is performed by default.

-v Validate the data format and exit
without loading.

Causes TransX to perform validation and
exit.

-w Preserve white space. Causes TransX to treat whitespace characters
(such as \t, \r, \n, and ’ ’) as significant.
Consecutive whitespace characters in string
data elements are condensed into one space
character by default.
Oracle TransX Utility 12-7

Sample Code for TransX Utility
■ -u and -e are mutually exclusive

■ -v must be the only option followed by data, as in the examples

■ -x must be the only option followed by connect info and SQL query as in the

examples

Omitting all arguments will result in the display of the front-end usage

information shown in the table.

For complete details of the Java API for TransX Utility:

Sample Code for TransX Utility
The following is sample code for the TransX Utility:

String datasrc[] = {"data1.xml", "data2.xml", "data3.xml"};

// instantiate a loader
TransX transx = loader.getLoader();

// start a data loading session
transx.open(jdbc_con_str, usr, pwd);

// specify operation modes
transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

// load the dataset(s)
for (int i = 0 ; i < datasrc.length ; i++)
{
transx.load(datasrc[i]);
}

// cleanup
transx.close();

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
12-8 Oracle9i XML Developer’s Kits Guide - XDK

Part III

XDK for C/C++

These chapters describes how to access and use XML Developer’s Kit (XDK) for

C/C++:

■ Chapter 13, "XML Parser for C"

■ Chapter 14, "XSLT Processor for C"

■ Chapter 15, "XML Schema Processor for C"

■ Chapter 16, "XML Parser for C++"

■ Chapter 17, "XSLT Processor for C++"

■ Chapter 18, "XML Schema Processor for C++"

■ Chapter 19, "XML Class Generator for C++"

XML Pa
13

XML Parser for C

This chapter contains the following sections:

■ Accessing XML Parser for C

■ XML Parser for C Features

■ XML Parser for C Usage

■ XML Parser for C Default Behavior

■ DOM and SAX APIs

■ Invoking XML Parser for C

■ Using the Sample Files Included with Your Software

■ Running the XML Parser for C Sample Programs
rser for C 13-1

Accessing XML Parser for C
Accessing XML Parser for C
The XML Parser for C is provided with Oracle9i and Oracle9i Application Server. It

is also available for download from the OTN site:

http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/c/parser on Solaris™ Operating

Environment systems.

XML Parser for C Features
readme.html in the root directory of the software archive contains release specific

information including bug fixes and API additions.

XML Parser for C will check if an XML document is well-formed, and optionally

validate it against a DTD. The parser constructs an object tree which can be accessed

through a DOM interface or operate serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com/tech/xml.

Specifications

Memory Allocation
The memory callback functions memcb may be used if you wish to use your own

memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and

data stored with the DOM parse tree will not be freed until one of the following is

done:

■ xmlclean() is called.

■ xmlterm() is called.

See Also:

■ The doc directory in your install area

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ http://otn.oracle.com/tech/xml/
13-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C Usage
Thread Safety
If threads are forked off somewhere in the midst of the init-parse-term sequence of

calls, you will get unpredictable behavior and results.

Data Types Index
Table 13–1 lists the datatypes used in XML Parser for C.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/xdk/mesg directory. You may set the environment

variable ORA_XML_MESG to point to the absolute path of the mesg/ subdirectory

although this not required.

Validation Modes

XML Parser for C Usage
Figure 13–1 describes XML Parser for C calling sequence as follows:

1. xmlinit() function initializes the parsing process.

2. The parsed item can be an XML document (file) or string buffer. If the input is

an XML document or file, it is parsed using the xmlparser() function. If the

input is a string buffer, it is parsed using the xmlparserbuf() function.

Table 13–1 Datatypes Used in XML Parser for C

DataType Description

oratext String pointer

xmlctx Master XML context

xmlmemcb Memory callback structure (optional)

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer

See Also: Available validation modes are described in "Oracle

XML Parsers Validation Modes" on page 4-5.
XML Parser for C 13-3

XML Parser for C Usage
3. DOM or SAX API:

DOM: If you are using the DOM interface, include the following steps:

■ The xmlparse() or xmlparseBuffer() function calls

.getDocumentElement() . If no other DOM functions are being applied,

you can invoke xmlterm() .

■ This optionally calls other DOM functions if required. These are typically

Node or print functions. It outputs the DOM document.

■ If complete, the process invokes xmlterm()

■ You can first invoke xmlclean() to clean up any data structures created

during the parse process. You would then call xmlterm()

SAX: If you are using the SAX interface, include the following steps:

■ Process the results of the parser from xmlparse() or xmlparseBuf()
using callback functions.

■ Register the callback functions.

4. Use xmlclean() to clean up the memory and structures used during a parse,

and go to Step 5. or return to Step 2.

5. Terminate the parsing process with xmlterm()

XML Parser for C usage is further explained in Figure 13–1.

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

■ xmlinit() - xmlparse() or

xmlparsebuf() - xmlterm()

■ xmlinit() - xmlparse() or

xmlparsebuf() - xmlclean() - xmlparse() or

xmlparsebuf() - xmlclean() -... - xmlterm()

■ xmlinit() - xmlparse() or

xmlparsebuf() - xmlparse() or

xmlparsebuf() -... - xmlterm()
13-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C Default Behavior
Figure 13–1 XML Parser for C Calling Sequence

XML Parser for C Default Behavior
The following is the XML Parser for C default behavior:

■ Character set encoding is UTF-8. If all your documents are ASCII, you are

encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless msghdlr is given.

save form of
xmlparse()

xmlinit()error handler set

error callbacks

SAX callback set

xml input file, buffer,
db, URL, . . .

xmlterm()

xmlclean()SAX completes

DOM document

SAX:
callbacks invoked DOM constructedanother

DOM:
query, edit, . . .

another
XML Parser for C 13-5

DOM and SAX APIs
■ A parse tree which can be accessed by DOM APIs is built unless saxcb is set to

use the SAX callback APIs. Note that any of the SAX callback functions can be

set to NULL if not needed.

■ The default behavior for the parser is to check that the input is well-formed but

not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to

validate the input. The default behavior for whitespace processing is to be fully

conformant to the XML 1.0 spec, that is, all whitespace is reported back to the

application but it is indicated which whitespace is ignorable. However, some

applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE

which will discard all whitespace between an end-element tag and the

following start-element tag.

DOM and SAX APIs
Oracle XML parser for C checks if an XML document is well-formed, and optionally

validates it against a DTD. The parser constructs an object tree which can be

accessed through one of the following interfaces:

■ DOM interface

■ Serially through a SAX interface

These two XML APIs:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an

internal tree structure, then allows an application to navigate that tree using the

Document Object Model (DOM), a standard tree-based API for XML and

HTML documents.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing

events (such as the start and end of elements) directly to the application

through callbacks, and does not usually build an internal tree. The application

implements handlers to deal with the different events, much like handling

events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a

great strain on system resources, especially if the document is large (under very

Note: It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII

or any of the ISO-8859 character sets) for performance up to 25%

faster than with multibyte character sets, such as UTF-8.
13-6 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Parser for C
controlled circumstances, it is possible to construct the tree in a lazy fashion to

avoid some of this problem). Furthermore, some applications need to build their

own, different data trees, and it is very inefficient to build a tree of parse nodes,

only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to

an XML document: you can parse documents much larger than your available

system memory, and you can construct your own data structures using your

callback event handlers.

Using the SAX API
To use SAX, an xmlsaxcb structure is initialized with function pointers and passed

to the xmlinit() call. A pointer to a user-defined context structure can also be

included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct
{
 sword (*startDocument)(void *ctx);
 sword (*endDocument)(void *ctx);
 sword (*startElement)(void *ctx, const oratext *name,
 const struct xmlarray *attrs);
 sword (*endElement)(void *ctx, const oratext *name);
 sword (*characters)(void *ctx, const oratext *ch, size_t len);
 sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_t len);
 sword (*processingInstruction)(void *ctx, const oratext *target,
 const oratext *data);
 sword (*notationDecl)(void *ctx, const oratext *name,
 const oratext *publicId, const oratext *systemId);
 sword (*unparsedEntityDecl)(void *ctx, const oratext *name,
 const oratext *publicId,
 const oratext *systemId, const oratext *notationName);
 sword (*nsStartElement)(void *ctx, const oratext *qname,
 const oratext *local, const oratext *nsp,
 const struct xmlnodes *attrs);
} xmlsaxcb;

Invoking XML Parser for C
XML Parser for C can be invoked in two ways:
XML Parser for C 13-7

Using the Sample Files Included with Your Software
■ By invoking the executable on the command line

■ By writing C code and using the supplied APIs

Command Line Usage
The XML Parser for C can be called as an executable by invoking bin/xml

Table 13–2 lists the command line options.

Writing C Code to Use Supplied APIs
XML Parser for C can also be invoked by writing code to use the supplied APIs. The

code must be compiled using the headers in the include/ subdirectory and linked

against the libraries in the lib/ subdirectory. Please see the Makefile in the

sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software
$ORACLE_HOME/xdk/c/parser/sample/ directory contains several XML

applications to illustrate how to use the XML Parser for C with the DOM and SAX

interfaces.

Table 13–3 lists the sample files in sample/ directory.

Table 13–2 XML Parser for C: Command Line Options

Option Description

-c Conformance check only, no validation

-e encoding Specify input file encoding

-h Help - show this usage help

-n Number - DOM traverse and report number of elements

-p Print document and DTD structures after parse

-x Exercise SAX interface and print document

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace
13-8 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for C Sample Programs
—

Running the XML Parser for C Sample Programs

Building the Sample Programs
Change directories to the sample directory

($ORACLE_HOME/xdk/demo/c/parser on Solaris™ Operating Environment) and

read the README file. This will explain how to build the sample programs

according to your platform.

Table 13–3 XML Parser for C sample/ Files

sample/ File Name Description

DOMNamespace.c Source for DOMNamespace program

DOMNamespace.std Expected output from DOMNamespace

DOMSample.c Source for DOMSample program

DOMSample.std Expected output from DOMSample

FullDOM.c Sample usage of DOM interface

FullDOM.std Expected output from FullDOM

Make.bat Batch file for building sample programs

NSExample.xml Sample XML file using namespaces

SAXNamespace.c Source for SAXNamespace program

SAXNamespace.std Expected output from SAXNamespace

SAXSample.c Source for SAXSample program

SAXSample.std Expected output from SAXSample

XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml The Tragedy of Antony and Cleopatra

XML version of Shakespeare's play
XML Parser for C 13-9

Running the XML Parser for C Sample Programs
Sample Programs
Table 13–4 lists the programs built by the sample files in the sample directory.

Table 13–4 XML Parser for C: Sample Built Programs in sample/

Built Program Description

DOMSample A sample application using DOM APIs (shows an outline of
Cleopatra, that is, the XML elements ACT and SCENE).

SAXSample [word] A sample application using SAX APIs. Given a word, shows all
lines in the play Cleopatra containing that word. If no word is
specified, 'death' is used.

DOMNamespace Same as SAXNamespace except using DOM interface.

SAXNamespace A sample application using Namespace extensions to SAX API;
prints out all elements and attributes of NSExample.xml along
with full namespace information.

FullDOM Sample usage of full DOM interface. Exercises all the calls, but
does nothing too exciting.

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two filenames as input,
the XML file and XSL stylesheet
13-10 Oracle9i XML Developer’s Kits Guide - XDK

XSLT Proce
14

XSLT Processor for C

This chapter contains the following sections:

■ Accessing XSLT for C

■ XSLT for C Features

■ XML XSLT for C (DOM Interface) Usage

■ Invoking XSLT for C

■ Using the Sample Files Included with the Software

■ Running the XSLT for C Sample Programs
ssor for C 14-1

Accessing XSLT for C
Accessing XSLT for C
XSLT for C is provided with Oracle9i and Oracle9i Application Server. It is also

available for download from the OTN site:

http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/c/parser .

XSLT for C Features
readme.html in the root directory of the software archive contains release specific

information including bug fixes and API additions.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com/tech/xml.

Specifications
See the following:

XML XSLT for C (DOM Interface) Usage
Figure 14–1 shows the XSLT for C functionality.

1. There are two inputs to xmlparse() :

■ The stylesheet to be applied to the XML document

■ XML document

2. xmlinit() initializes the XSLT processing. xmlinit() initializes the

xslprocess() result.

3. xslprocess()o ptionally calls other functions, such as print functions. You

can see the list of available functions either on OTN or in the Oracle9i XML API
Reference - XDK and Oracle XML DB.

4. The resultant document (XML, HTML, VML, and so on) is typically sent to an

application for further processing.

See Also:

■ The doc directory in your install area

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ http://otn.oracle.com/tech/xml/
14-2 Oracle9i XML Developer’s Kits Guide - XDK

XML XSLT for C (DOM Interface) Usage
5. The application terminates the XSLT process by declaring xmlterm() for the

XML document, stylesheet, and final result.

XML Parser for C’s XSLT functionality is illustrated with the following examples:

■ XSLT for C Example 2: C — XSLSample.c on page 14-6

■ XSLT for C Example 3: C — XSLSample.std on page 14-9
XSLT Processor for C 14-3

Invoking XSLT for C
Figure 14–1 XSLT for C (DOM Interface) Usage

Invoking XSLT for C

xmlinit()

xmlinit() xmlparse()
input

xmlterm() xmlterm()

xslprocess()

call other
functions
e.g. print

xmlparse()
input

xmlinit()

xml document

xml document stylesheet result

stylesheet

result

xmlterm()

XML Parser for C, XSL-T
14-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with the Software
XSLT for C can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C code and using the supplied APIs

Command Line Usage
The XSLT for C can be called as an executable by invoking bin/xml

Table 14–1 lists the command line options.

Using the Sample Files Included with the Software
$ORACLE_HOME/xdk/c/parser/sample directory contains several XML

applications to illustrate how to use the XSLT for C.

Table 14–2 lists the sample files in sample/ directory.

—

Table 14–1 XML Parser for C: Command Line Options

Option Description

-e encoding Specify input file encoding

-h Help - show this usage help

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace

-s Stylesheet

Table 14–2 XSLT for C sample/ Files

sample/ File Name Description

XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml XML version of Shakespeare's play
XSLT Processor for C 14-5

Running the XSLT for C Sample Programs
Running the XSLT for C Sample Programs

Building the Sample Programs
Change directories to the sample directory and read the README file. This will

explain how to build the sample programs according to your platform.

Sample Programs
Table 14–3 lists the programs built by the sample files in the sample directory.

XSLT for C Example1: XSL — iden.xsl
This example stylesheet can be used to input XSLSample.c .

<?xml version="1.0"?>
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="*|@*|comment()|processing-instruction()|text()">
 <xsl:copy>
 <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

XSLT for C Example 2: C — XSLSample.c
This example contains C source code for XSLSample.c.

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */

/*
 NAME
 XSLSample.c - Sample function for XSL
 DESCRIPTION

Table 14–3 XSLT for C: Sample Built Programs in sample/

Built Program Description

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two filenames as input,
the XML file and XSL stylesheet
14-6 Oracle9i XML Developer’s Kits Guide - XDK

Running the XSLT for C Sample Programs
 Sample usage of C XSL Processor
*/

#include <stdio.h>
#ifndef ORATYPES
include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
include <oraxml.h>
#endif

int main(int argc, char *argv[])
{
 xmlctx *xctx, *xslctx, *resctx;
 xmlnode *result;
 uword ecode;
 /* Check for correct usage */
 if (argc < 3)
 {
 puts("Usage is XSLSample <xmlfile> <xslfile>\n");
 return 1;
 }

 /* Parse the XML document */
 if (!(xctx = xmlinit(&ecode, (const oratext *) 0,
 (void (*)(void *, const oratext *, uword)) 0,
 (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
 (const xmlmemcb *) 0, (void *) 0,
 (const oratext *) 0)))
 {
 printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
 return 1;
 }

 printf("Parsing '%s' ...\n", argv[1]);
 if (ecode = xmlparse(xctx, (oratext *)argv[1], (oratext *) 0,
 XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE))
 {
 printf("Parse failed, error %u\n", (unsigned) ecode);
 return 1;
 }

 /* Parse the XSL document */
 if (!(xslctx = xmlinit(&ecode, (const oratext *) 0,
XSLT Processor for C 14-7

Running the XSLT for C Sample Programs
 (void (*)(void *, const oratext *, uword)) 0,
 (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
 (const xmlmemcb *) 0, (void *) 0,
 (const oratext *) 0)))
 {
 printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
 return 1;
 }

 printf("Parsing '%s' ...\n", argv[2]);
 if (ecode = xmlparse(xslctx, (oratext *)argv[2], (oratext *) 0,
 XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE))
 {
 printf("Parse failed, error %u\n", (unsigned) ecode);
 return 1;
 }

 /* Initialize the result context */
 if (!(resctx = xmlinit(&ecode, (const oratext *) 0,
 (void (*)(void *, const oratext *, uword)) 0,
 (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
 (const xmlmemcb *) 0, (void *) 0,
 (const oratext *) 0)))
 {
 printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
 return 1;
 }

 /* XSL processing */
 printf("XSL Processing\n");
 if (ecode = xslprocess(xctx, xslctx, resctx, &result))
 {
 printf("Parse failed, error %u\n", (unsigned) ecode);
 return 1;
 }

 /* Print the result tree */
 printres(resctx, result);

 /* Call the terminate functions */
 (void)xmlterm(xctx);
 (void)xmlterm(xslctx);
 (void)xmlterm(resctx);

 return 0;
14-8 Oracle9i XML Developer’s Kits Guide - XDK

Running the XSLT for C Sample Programs
}

XSLT for C Example 3: C — XSLSample.std
XSLSample.std shows the expected output from XSLSample.c .

Parsing 'class.xml' ...
Parsing 'iden.xsl' ...
XSL Processing
<root>
 <course>
 <Name>Calculus</Name>
 <Dept>Math</Dept>
 <Instructor>
 <Name>Jim Green</Name>
 </Instructor>
 <Student>
 <Name>Jack</Name>
 <Name>Mary</Name>
 <Name>Paul</Name>
 </Student>
 </course>
</root>
XSLT Processor for C 14-9

Running the XSLT for C Sample Programs
14-10 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Proc
15

XML Schema Processor for C

This chapter contains the following sections:

■ Oracle XML Schema Processor for C

■ Invoking XML Schema Processor for C

■ XML Schema Processor for C Usage Diagram

■ How to Run XML Schema for C Sample Programs
essor for C 15-1

Oracle XML Schema Processor for C
Oracle XML Schema Processor for C
The XML Schema Processor for C is a companion component to the XML Parser for

C. It allows support for simple and complex datatypes in Oracle9i XML

applications.

The XML Schema Processor for C supports the W3C XML Schema

Recommendation, with the goal being that it be 100% fully conformant when XML

Schema becomes a W3C Recommendation. This makes writing custom applications

that process XML documents straightforward in the Oracle9i environment, and

means that a standards-compliant XML Schema Processor is part of the Oracle9i

platform on every operating system where Oracle9i is ported.

Oracle XML Schema for C Features
XML Schema Processor for C has the following features:

■ Supports simple and complex types

■ Built on XML Parser for C

■ Supports the W3C XML Schema Recommendation

Online Documentation
Documentation for Oracle XML Schema Processor for C is located in the doc
directory in your install area.

Standards Conformance
The Schema Processor conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C recommendation for Namespaces in XML

■ W3C recommendation for XML Schema

See Also: Chapter 4, "XML Parser for Java", for more information

about XML Schema and why you would want to use XML Schema.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB
15-2 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Schema Processor for C
XML Schema Processor for C: Supplied Software
Table 15–1 lists the supplied files and directories with this release:

Table 15–2 lists the included libraries:

Invoking XML Schema Processor for C
XML Schema Processor for C can be called as an executable by invoking

bin/schema in the install area. This takes two arguments:

■ XML instance document

■ Optionally, a default schema

The Schema Processor can also be invoked by writing code using the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. See Makefile in the sample/

subdirectory for details on how to build your program.

Table 15–1 XML Schema Processor for C: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin Schema processor executable, “schema”

doc API documentation

include header files

lib XML/XSL/Schema & support libraries

mesg Error message files

sample Example usage of the Schema processor

Table 15–2 XML Schema Processor for C: Supplied Libraries

Included Library Description

libxml9.a XML Parser/XSL Processor

libxsd9.a XML Schema Processor

libcore9.a CORE functions

libnls9.a National Language Support
XML Schema Processor for C 15-3

XML Schema Processor for C Usage Diagram
An error message file is provided in the mesg/ subdirectory. Currently, the only

message file is in English although message files for other languages may be

supplied in future releases.

XML Schema Processor for C Usage Diagram
Figure 15–1 describes the calling sequence for the XML Schema Processor for C, as

follows:

The sequence of calls to the processor is: initialize, validate, validate,..., validate,

terminate.

1. The initialize call is invoked once at the beginning of a session; it returns a

Schema context which is used throughout the session.

2. The instance document to be validated is first parsed with the XML parser.

3. The XML context for the instance is then passed to the Schema validate

function, along with an optional schema URL.

4. If no explicit schema is defined in the instance document, the default schema

will be used.

5. More documents may then be validated using the same schema context.

6. When the session is over, the Schema tear down function is called, which

releases all memory allocated by the loaded schemas.
15-4 Oracle9i XML Developer’s Kits Guide - XDK

How to Run XML Schema for C Sample Programs
Figure 15–1 XML Schema Processor for C Usage Diagram

How to Run XML Schema for C Sample Programs
This directory contains a sample XML Schema application that illustrates how to

use Oracle XML Schema Processor with its API. Table 15–3 lists the provided

sample files.

To build the sample programs, run make.

Table 15–3 XML Schema for C Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.c Trivial program which invokes the XML Schema for C API

car.{xsd,xml,std} Sample schema, instance document, and expected
output respectively, after running xsdtest on them.

aq.{xsd,xml,std} Second sample schema, instance document, and expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample schema, instance document, and expected
output respectively, after running xsdtest on them.

schemaInitialize()

schemaTerminate()

Success codeschemaValidate()

Parsed XML doc input
XML Schema Processor for C 15-5

How to Run XML Schema for C Sample Programs
To build the programs and run them, comparing the actual output to expected

output, run make sure .
15-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Parse
16

XML Parser for C++

This chapter contains the following sections:

■ Accessing XML Parser for C++

■ XML Parser for C++ Features

■ XML Parser for C++ Usage

■ XML Parser for C++ Default Behavior

■ DOM and SAX APIs

■ Invoking XML Parser for C++

■ Using the Sample Files Included with Your Software

■ Running the XML Parser for C++ Sample Programs
r for C++ 16-1

Accessing XML Parser for C++
Accessing XML Parser for C++
The XML Parser for C++ is provided with Oracle9i and Oracle9i Application

Serverand is also available for download from the OTN site:

http://otn.oracle.com/tech/xml.

It is located at $ORACLE_HOME/xdk/cpp/parser .

XML Parser for C++ Features
readme.html in the root directory of the software archive contains release specific

information including bug fixes and API additions.

XML Parser for C++ will check if an XML document is well-formed, and optionally

validate it against a DTD. The parser will construct an object tree which can be

accessed through a DOM interface or operate serially through a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com/tech/xml/ .

Specifications
See the following:

Memory Allocation
The memory callback functions memcb may be used if you wish to use your own

memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and

data stored with the DOM parse tree will not be freed until one of the following is

done:

■ xmlclean() is called.

■ xmlterm() is called.

See Also:

■ The doc directory in your install area

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ http://otn.oracle.com/tech/xml/
16-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C++ Usage
Thread Safety
If threads are forked off somewhere in the midst of the init-parse-term sequence of

calls, you will get unpredictable behavior and results.

Data Types Index
Table 16–1 lists the datatypes used in XML Parser for C++.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/xdk/mesg directory. You may set the environment

variable ORA_XML_MESG to point to the absolute path of the mesg/ subdirectory

although this not required.

Validation Modes

XML Parser for C++ Usage
Figure 16–1 illustrates the XML Parser for C++ functionality.

1. xmlinit() function initializes the parsing process.

2. The XML input can be either an XML file or string buffer. This inputs the

following methods:

■ XMLParser.xmlparse() if the input is an XML file

Table 16–1 Datatypes Used in XML Parser for C++

DataType Description

oratext String pointer

xmlctx Master XML context

xmlmemcb Memory callback structure (optional)

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer

See Also: Available validation modes are described in "Oracle

XML Parsers Validation Modes" on page 4-5.
XML Parser for C++ 16-3

XML Parser for C++ Usage
■ XMLParser.xmlparseBuffer() if the input is a string buffer

3. DOM or SAX API

DOM: If you are using the DOM interface, include the following steps:

■ The XMLParser.xmlparse() or .xmlparserBuffer() method calls

.getDocument Element() . If no other DOM methods are being applied,

you can invoke .xmlterm() .

■ This optionally calls other DOM methods if required. These are typically

Node class methods or print methods. It outputs the DOM document.

■ If complete, the process invokes .xmlterm()

■ You can first invoke .xmlclean() to clean up any data structure created

during the parse process. You would then call .xmlterm()

SAX: If you are using the SAX interface, include the following steps:

■ Process the results of the parser from .xmlparse() or

.xmlparseBuffer() through callback methods.

■ Register the callback methods

4. Use .xmlclean() to clean up the memory and structures used during a

parse, and go to Step 5. or return to Step 2.

5. Terminate the parsing process with .xmlterm()

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

■ XMLParser.xmlinit() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlterm()

■ XMLParser.xmlinit() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -
XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -... -
XMLParser.xmlterm()

■ XMLParser.xmlinit() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() -... - XMLParser.xmlterm()
16-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for C++ Usage
Figure 16–1 XML Parser for C++ (DOM and SAX Interfaces) Usage

file, URL,
db, buffer
xml input

XMLParser::
initialize

parse,
parsebuffer,
parseurl, . . .

xmlterm

DOM
document

SAX

Process
results via
callback
methods

.getDocument_
Element and
other DOM
methods

method
class

Mostly Node
class methods
(part of
application)

SAX

clean

register
callback
methods

XDK for C++: XML Parser for C++ — XMLParser class
XML Parser for C++ 16-5

XML Parser for C++ Default Behavior
XML Parser for C++ Default Behavior
The following is the XML Parser for C++ default behavior:

■ Character set encoding is UTF-8. If all your documents are ASCII, you are

encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless msghdlr is given.

■ A parse tree which can be accessed by DOM APIs is built unless saxcb is set to

use the SAX callback APIs. Note that any of the SAX callback functions can be

set to NULL if not needed.

■ The default behavior for the parser is to check that the input is well-formed but

not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to

validate the input. The default behavior for whitespace processing is to be fully

conformant to the XML 1.0 spec, that is, all whitespace is reported back to the

application but it is indicated which whitespace is ignorable. However, some

applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE

which will discard all whitespace between an end-element tag and the

following start-element tag.

Note: It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII

or any of the ISO-8859 character sets) for performance up to 25%

faster than with multibyte character sets, such as UTF-8.
16-6 Oracle9i XML Developer’s Kits Guide - XDK

DOM and SAX APIs
DOM and SAX APIs
Oracle XML parser for C++ checks if an XML document is well-formed, and

optionally validates it against a DTD. The parser constructs an object tree which can

be accessed through one of the following interfaces:

■ DOM interface

■ Serially through a SAX interface

These two XML APIs:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an

internal tree structure, then allows an application to navigate that tree using the

Document Object Model (DOM), a standard tree-based API for XML and

HTML documents.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing

events (such as the start and end of elements) directly to the application

through callbacks, and does not usually build an internal tree. The application

implements handlers to deal with the different events, much like handling

events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a

great strain on system resources, especially if the document is large (under very

controlled circumstances, it is possible to construct the tree in a lazy fashion to

avoid some of this problem). Furthermore, some applications need to build their

own, different data trees, and it is very inefficient to build a tree of parse nodes,

only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to

an XML document: you can parse documents much larger than your available

system memory, and you can construct your own data structures using your

callback event handlers.

Using the SAX API
To use SAX, an xmlsaxcb structure is initialized with function pointers and passed

to the xmlinit() call. A pointer to a user-defined context structure can also be

included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct
XML Parser for C++ 16-7

Invoking XML Parser for C++
{
 sword (*startDocument)(void *ctx);
 sword (*endDocument)(void *ctx);
 sword (*startElement)(void *ctx, const oratext *name,
 const struct xmlarray *attrs);
 sword (*endElement)(void *ctx, const oratext *name);
 sword (*characters)(void *ctx, const oratext *ch, size_t len);
 sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_t len);
 sword (*processingInstruction)(void *ctx, const oratext *target,
 const oratext *data);
 sword (*notationDecl)(void *ctx, const oratext *name,
 const oratext *publicId, const oratext *systemId);
 sword (*unparsedEntityDecl)(void *ctx, const oratext *name,
 const oratext *publicId,
 const oratext *systemId, const oratext *notationName);
 sword (*nsStartElement)(void *ctx, const oratext *qname,
 const oratext *local, const oratext *nsp,
 const struct xmlnodes *attrs);
} xmlsaxcb;

Invoking XML Parser for C++
XML Parser for C++ can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C++ code and using the supplied APIs

Command Line Usage
The XML Parser for C++ can be called as an executable by invoking bin/xml

Table 16–2 lists the command line options.

Table 16–2 XML Parser for C++: Command Line Options

Option Description

-c Conformance check only, no validation

-e encoding Specify input file encoding

-h Help - show this usage help

-n Number - DOM traverse and report number of elements

-p Print document and DTD structures after parse
16-8 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with Your Software
Writing C++ Code to Use Supplied APIs
XML Parser for C++ can also be invoked by writing code to use the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. Please see the Makefile in the

sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software
$ORACLE_HOME/xdk/cpp/parser/sample/ directory contains several XML

applications to illustrate how to use the XML Parser for C++ with the DOM and

SAX interfaces.

Table 16–3 lists the sample files in sample/ directory.

-x Exercise SAX interface and print document

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace

Table 16–3 XML Parser for C++ sample/ Files

sample/ File Name Description

DOMNamespace.cpp Source for DOMNamespace program

DOMNamespace.std Expected output from DOMNamespace

DOMSample.cpp Source for DOMSample program

DOMSample.std Expected output from DOMSample

FullDOM.c Sample usage of DOM interface

FullDOM.std Expected output from FullDOM

Make.bat Batch file to build sample executables

Makefile Makefile for sample programs

NSExample.xml Sample XML file using namespaces

SAXNamespace.cpp Source for SAXNamespace program

SAXNamespace.std Expected output from SAXNamespace

Table 16–2 XML Parser for C++: Command Line Options

Option Description
XML Parser for C++ 16-9

Running the XML Parser for C++ Sample Programs
Running the XML Parser for C++ Sample Programs

Building the Sample Programs
Change directories to the sample directory

($ORACLE_HOME/xdk/demo/cpp/parser on Solaris™ Operating Environment)

and read the README file. This will explain how to build the sample programs

according to your platform.

Sample Programs
Table 16–4 lists the programs built by the sample files in sample/.

SAXSample.cpp Source for SAXSample program

SAXSample.std Expected output from SAXSample

XSLSample.cpp Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml XML version of Shakespeare's play

Table 16–4 XML Parser for C++, Sample Programs Built in sample/

Built Program Description

SAXSample A sample application using SAX APIs. Prints out all
speakers in each scene, that is, all the unique SPEAKER
elements within each SCENE element.

DOMSample [speaker] A sample application using DOM APIs. Prints all speeches
made by the given speaker. If no speaker is specified,
"Soothsayer" is used. Note that major characters have
uppercase names (for example, "CLEOPATRA"), whereas
minor characters have capitalized names (for example,
"Attendant"). See the output of SAXSample.

SAXNamespace A sample application using Namespace extensions to SAX
API; prints out all elements and attributes of
NSExample.xml along with full namespace information.

Table 16–3 XML Parser for C++ sample/ Files (Cont.)

sample/ File Name Description
16-10 Oracle9i XML Developer’s Kits Guide - XDK

Running the XML Parser for C++ Sample Programs
DOMNamespace Same as SAXNamespace except using DOM interface.

FullDOM Sample usage of full DOM interface. Exercises all the
calls, but does nothing too exciting.

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two
filenames as input, the XML file and the XSL stylesheet.
Note: If you redirect stdout of this program to a file, you
may encounter some missing output, depending on your
environment.

Table 16–4 XML Parser for C++, Sample Programs Built in sample/ (Cont.)

Built Program Description
XML Parser for C++ 16-11

Running the XML Parser for C++ Sample Programs
16-12 Oracle9i XML Developer’s Kits Guide - XDK

XSLT Processo
17

XSLT Processor for C++

This chapter contains the following sections:

■ Accessing XSLT for C++

■ XSLT for C++ Features

■ XSLT for C++ (DOM Interface) Usage

■ Invoking XSLT for C++

■ Using the Sample Files Included with Your Software

■ Running the XSLT for C++ Sample Programs
r for C++ 17-1

Accessing XSLT for C++
Accessing XSLT for C++
XSLT for C++ is provided with Oracle9i and Oracle9i Application Server. It is also

available for download from the OTN site:

http://otn.oracle.com/tech/xm l.

It is located at $ORACLE_HOME/xdk/cpp/parser .

XSLT for C++ Features
readme.html in the root directory of the software archive contains release specific

information including bug fixes and API additions.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com/tech/xml .

Specifications
See the following:

XSLT for C++ (DOM Interface) Usage
Figure 17–1 shows the XSLT for C++ functionality for the DOM interface.

1. There are two inputs to XMLParser.xmlparse() :

■ The stylesheet to be applied to the XML document

■ XML document

The output of XMLParser.xmlparse() , the parsed stylesheet and parsed XML

document are sent to the XSLProcess.xslprocess() method for processing.

2. XMLParser.xmlinit() initializes the XSLT processing. XMLParser.

xmlinit() also initializes the xslprocess() result.

3. XSLProcess.xslProcess() optionally calls other methods, such as print

methods. You can see the list of available methods either on OTN or in Oracle9i
XML API Reference - XDK and Oracle XML DB.

See Also:

■ The doc directory in your install area

■ Oracle9i XML API Reference - XDK and Oracle XML DB
17-2 Oracle9i XML Developer’s Kits Guide - XDK

XSLT for C++ (DOM Interface) Usage
4. The resultant document (XML, HTML, VML, and so on) is typically sent to an

application for further processing.

5. The application terminates the XSLT process by declaring

XMLParser.xmlterm() for the XML document, stylesheet, and final result.
XSLT Processor for C++ 17-3

XSLT for C++ (DOM Interface) Usage
Figure 17–1 XSLT for C++ Functionality (DOM Interface) Usage

XMLParser.
xmlinit()

xmlparse()
input

XMLParser.
xmlterm()

XMLParser.
xmlterm()

XSLprocess.
xslProcess()

call other
methods
e.g. print

xmlparse()
input

XMLParser.
xmlinit()

xml document

xml document stylesheet result

stylesheet

result

XMLParser.
xmlterm()

XMLParser.
xmlinit()

XML Parser for C++, XSL-T
17-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the Sample Files Included with Your Software
Invoking XSLT for C++
XSLT for C++ can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C++ code and using the supplied APIs

Command Line Usage
The XSLT for C++ can be called as an executable by invoking bin/xml

Table 17–1 lists the command line options.

Writing C++ Code to Use Supplied APIs
XXSLT for C++ can also be invoked by writing code to use the supplied APIs. The

code must be compiled using the headers in the include/ subdirectory and linked

against the libraries in the lib/ subdirectory. Please see the Makefile in the

sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software
$ORACLE_HOME/xdk/cpp/parser/sample/ directory contains several XML

applications to illustrate how to use the XXSLT for C++.

Table 17–2 lists the sample files in sample/ directory.

Table 17–1 XXSLT for C++: Command Line Options

Option Description

-e encoding Specify input file encoding

-h Help - show this usage help

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace

-s Stylesheet

Table 17–2 XML Parser for C++ sample/ Files

sample/ File Name Description

XSLSample.cpp Source for XSLSample program
XSLT Processor for C++ 17-5

Running the XSLT for C++ Sample Programs
Running the XSLT for C++ Sample Programs

Building the Sample programs
Change directories to the sample directory and read the README file. This will

explain how to build the sample programs according to your platform.

Sample Programs
Table 17–3 lists the programs built by the sample files.

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml XML version of Shakespeare's play

Table 17–3 XML Parser for C++, Sample Programs Built in sample/

Built Program Description

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two
filenames as input, the XML file and the XSL stylesheet.
Note: If you redirect stdout of this program to a file, you
may encounter some missing output, depending on your
environment.

Table 17–2 XML Parser for C++ sample/ Files(Cont.)

sample/ File Name Description
17-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Process
18

XML Schema Processor for C++

This chapter contains the following sections:

■ Oracle XML Schema Processor for C++ Features

■ Invoking XML Schema Processor for C++

■ XML Schema Processor for C++ Usage Diagram

■ Running the Provided XML Schema Sample Programs
or for C++ 18-1

Oracle XML Schema Processor for C++ Features
Oracle XML Schema Processor for C++ Features
The XML Schema Processor for C++ is a companion component to the XML Parser

for C++ that allows support to simple and complex datatypes into XML

applications with Oracle9i.

The XML Schema Processor for C++ supports the W3C XML Schema

Recommendation, with the goal being that it be 100% fully conformant when XML

Schema becomes a W3C Recommendation. This makes writing custom applications

that process XML documents straightforward in the Oracle9i environment, and

means that a standards-compliant XML Schema Processor is part of the Oracle9i

platform on every operating system where Oracle9i is ported.

Oracle XML Schema for C++ Features
XML Schema Processor for C++ has the following features:

■ Supports simple and complex types

■ Built upon the XML Parser for C++

■ Supports the W3C XML Schema Recommendation

The XML Schema Processor for C++ class is XMLSchema.

Online Documentation
Documentation for Oracle XML Schema Processor for C++ is located in the doc
directory in your install area.

Standards Conformance
The Schema Processor conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C recommendation for Namespaces in XML

■ W3C recommendation for XML Schema

See Also: Chapter 4, "XML Parser for Java", for more information

about XML Schema and why you would want to use XML Schema.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
18-2 Oracle9i XML Developer’s Kits Guide - XDK

Invoking XML Schema Processor for C++
XML Schema Processor for C++: Provided Software
Table 18–1 lists the supplied files and directories with this release:

Table 18–2 lists the included libraries:

Invoking XML Schema Processor for C++
The XML Schema Processor can be called as an executable by invoking

bin/schema in the install area. This takes two arguments:

■ XML instance document

■ Optionally, a default schema

The Schema processor can also be invoked by writing code using the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. See Makefile in the sample/

subdirectory for details on how to build your program.

Table 18–1 XML Schema Processor for C++: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin Schema processor executable, "schema"

doc API documentation

include header files

lib XML/XSL/Schema & support libraries

mesg Error message files

sample Example usage of the Schema processor

Table 18–2 XML Schema Processor for C++: Supplied Libraries

Included Library Description

libxml9.a XML Parser/XSL Processor

libxsd9.a XML Schema Processor

libcore9.a CORE functions

libnls9.a Globalization Support
XML Schema Processor for C++ 18-3

XML Schema Processor for C++ Usage Diagram
An error message file is provided in the mesg/ subdirectory. Currently, the only

message file is in English although message files for other languages may be

supplied in future releases.

XML Schema Processor for C++ Usage Diagram
Figure 18–1 illustrates the calling sequence of XMl Schema Processor for C++, as

follows:

The sequence of calls to the processor is: initialize, validate, validate,..., validate,

terminate.

1. The initialize call is invoked once at the beginning of a session; it returns a

Schema context which is used throughout the session.

2. The instance document to be validated is first parsed with the XML parser.

3. The XML context for the instance is then passed to the Schema validate

function, along with an optional schema URL.

4. If no explicit schema is defined in the instance document, the default schema

will be used.

5. More documents may then be validated using the same schema context.

6. When the session is over, the Schema tear down function is called, which

releases all memory allocated by the loaded schemas.
18-4 Oracle9i XML Developer’s Kits Guide - XDK

Running the Provided XML Schema Sample Programs
Figure 18–1 XML Schema Processor for C++ Usage Diagram

Running the Provided XML Schema Sample Programs
This directory contains a sample XML Schema application that illustrates how to

use Oracle XML Schema Processor with its API. Table 18–3 lists the provided

sample files.

Table 18–3 XML Schema for C++ Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd,xml,std} Sample Schema, instance document, expected
output respectively, after running xsdtest on them.

aq.{xsd,xml,std} Second sample Schema’s, instance document, expected
output respectively, after running xsdtest on them.

pub.{xsd,xml,std} Third sample Schema’s, instance document, expected
output respectively, after running xsdtest on them.

XMLSchema::initialize()

XMLSchema::terminate()

Success codeXMLSchema::validate()

Parsed XML doc input
XML Schema Processor for C++ 18-5

Running the Provided XML Schema Sample Programs
To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected

output, run make sure .
18-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Class Generat
19

XML Class Generator for C++

This chapter contains the following sections:

■ Accessing XML C++ Class Generator

■ Using XML C++ Class Generator

■ XML C++ Class Generator Usage

■ xmlcg Usage

■ Using the XML C++ Class Generator Examples in sample
or for C++ 19-1

Accessing XML C++ Class Generator
Accessing XML C++ Class Generator
The XML C++ Class Generator is provided with Oracle9i and is also available for

download from the OTN site:

 http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/cpp/classgen . Information about using the

Class Generator is available with the software.

Using XML C++ Class Generator
The XML C++ Class Generator creates source files from an XML DTD or XML

Schema. The Class Generator takes the Document Type Definition (DTD) or the

XML Schema, and generates classes for each defined element. Those classes are then

used in a C++ program to construct XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another

application based on an agreed-upon DTD or XML Schema, or as the back end of a

web form to construct an XML document. Using these classes, C++ applications can

construct, validate, and print XML documents that comply with the input.

The Class Generator works in conjunction with the Oracle XML Parser for C++,

which parses the input and passes the parsed document to the class generator.

External DTD Parsing
The XML C++ Class Generator can also parse an external DTD directly without

requiring a complete (dummy) document by using the Oracle XML Parser for C++

routine xmlparsedtd() .

The provided command-line program xmlcg has a '-d' option that is used to parse

external DTDs. See "xmlcg Usage" on page 19-5.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/xdk/mesg directory. You may set the environment

variable ORA_XML_MESG to point to the absolute path of the mesg/ subdirectory

although this not required.
19-2 Oracle9i XML Developer’s Kits Guide - XDK

XML C++ Class Generator Usage
XML C++ Class Generator Usage
Figure 19–1 summarizes the XML C++ Class Generator usage.

1. From the bin directory, at the command line, enter the following:

xml [XML document file name, such as xxxxx]

where XML document file name is the name of the parsed XML document or

parsed DTD being processed. The XML document must have an associated

DTD.

The Input to the XML C++ Class Generator is an XML document containing a

DTD, or an external DTD. The document body itself is ignored; only the DTD is

relevant, though the document must conform to the DTD.

Accepted character set encoding for input files are listed in "Input to the XML

C++ Class Generator" on page 19-3.

2. Two source files are output, a xxxxx.h header file and a xxxxx.cpp C++ file.

These are named after the DTD file.

3. The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created

in the following two ways:

■ Initially empty, then adding the children or data after the initial creation

■ Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and,

when appropriate, set an element's attributes.

Input to the XML C++ Class Generator
Input is an XML document containing a DTD. The document body itself is ignored;

only the DTD is relevant, though the dummy document must conform to the DTD.

The underlying XML parser only accepts file names for the document and

associated external entities. In future releases, no dummy document will be

required, and URIs for additional protocols will be accepted.

Character Set Support
The following lists supported Character Set Encoding for files input to XML C++

Class Generator. These are in addition to the character sets specified in Appendix

A, "Character Sets", of Oracle9i Database Globalization Support Guide.
XML Class Generator for C++ 19-3

XML C++ Class Generator Usage
■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1, ISO-8859-2, ISO-8859-3, ..., ISO-8859-9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Default: The default encoding is UTF-8. It is recommended that you set the default

encoding explicitly if using only single byte character sets (such as US-ASCII or any

of the ISO-8859 character sets) for performance up to 25% faster than with multibyte

character sets, such as UTF-8.
19-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample
Figure 19–1 XML C++ Class Generator Functionality

xmlcg Usage
The standalone parser may be called as an executable by invoking bin/xmlcg. For

example:

xmlcg [flags] <XML document or External DTD>

Table 19–1 lists the xmlcg optional flags.

Using the XML C++ Class Generator Examples in sample
Table 19–2 lists the files supplied the sample XML C++ Class Generator sample
directory.

Table 19–1 xmlcg Optional Flags

xmlcg Optional Flags Description

-d name DTD - Input is an external DTD with the given name

-o directory Output directory for generated files (default is current
directory)

-e encoding Encoding - Default input file encoding

-h Help - Show this usage help

-v Version - Show the Class Generator version

Input file

xxxxx.xml

Output files

Output files are
used typically to
generate XML
documents.

xxxxx.h

xxxxx.cpp

bin / xml xxxxx

Command line
XML Class Generator for C++ 19-5

Using the XML C++ Class Generator Examples in sample
The make.bat batch file (on Windows NT) or Makefile (on UNIX) do the

following:

■ Generate classes based on CG.xml into Sample.h and Sample.cpp

■ Compile the program CG.cpp (using Sample.h), and link this with the Sample

object into an executable named CG.exe in the...\bin (or .../bin) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
This XML file, CG.xml, inputs XML C++ Class Generator. It references the DTD file,

CG.dtd.

<?xml version="1.0"?>
<!DOCTYPE Sample SYSTEM "CG.dtd">
 <Sample>
 Be!
 <D attr="value"></D>
 <E>
 <F>Formula1</F>
 <F>Formula2</F>
 </E>
 </Sample>

XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
This DTD file, CG.dtd is referenced by the XML file CG.xml. CG.xml inputs XML

C++ Class Generator.

<!ELEMENT Sample (A | (B, (C | (D, E))) | F)>
<!ELEMENT A (#PCDATA)>
<!ELEMENT B (#PCDATA | F)*>

Table 19–2 XML C++ Class Generator Examples in sample/

Sample File Name Description

CG.cpp Sample program

CG.xml XML file contains DTD and dummy document

CG.dtd DTD file referenced by CG.xml

Make.bat on Windows NT

Makefile on UNIX

Batch file (on Windows NT) or script file (on UNIX) to generate
classes and build the sample programs.

README A readme file with these instructions
19-6 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ATTLIST D attr CDATA #REQUIRED>
<!ELEMENT E (F, F)>
<!ELEMENT F (#PCDATA)>

XML C++ Class Generator Example 3: CG Sample Program
The CG sample program, CG.cpp , does the following:

1. Initializes the XML parser

2. Loads the DTD (by parsing the DTD-containing file-- the dummy document

part is ignored)

3. Creates some objects using the generated classes

4. Invokes the validation function which verifies that the constructed classes

match the DTD

5. Writes the constructed document to Sample.xml

//
// NAME CG.cpp
// DESCRIPTION Demonstration program for C++ Class Generator usage
//

#ifndef ORAXMLDOM_ORACLE
include <oraxmldom.h>
#endif

#include <fstream.h>

#include "Sample.h"

#define DTD_DOCUMENT"CG.xml"
#define OUT_DOCUMENT"Sample.xml"

int main()
{
 XMLParser parser;
 Document *doc;
 Sample *samp;
 B *b;
 D *d;
XML Class Generator for C++ 19-7

Using the XML C++ Class Generator Examples in sample
 E *e;
 F *f1, *f2;
 fstream *out;
 ub4 flags = XML_FLAG_VALIDATE;
 uword ecode;

 // Initialize XML parser
 cout << "Initializing XML parser...\n";
 if (ecode = parser.xmlinit())
 {
cout << "Failed to initialize parser, code " << ecode << "\n";
 return 1;
 }

 // Parse the document containing a DTD; parsing just a DTD is not
 // possible yet, so the file must contain a valid document (which
 // is parsed but we're ignoring).
 cout << "Loading DTD from " << DTD_DOCUMENT << "...\n";
 if (ecode = parser.xmlparse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))
 {
cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
 ", code " << ecode << "\n";
return 2;
 }

 // Fetch dummy document
 cout << "Fetching dummy document...\n";
 doc = parser.getDocument();

 // Create the constituent parts of a Sample
 cout << "Creating components...\n";
 b = new B(doc, (String) "Be there or be square");
 d = new D(doc, (String) "Dit dah");
 d->setattr((String) "attribute value");
 f1 = new F(doc, (String) "Formula1");
 f2 = new F(doc, (String) "Formula2");
 e = new E(doc, f1, f2);

 // Create the Sample
 cout << "Creating top-level element...\n";
 samp = new Sample(doc, b, d, e);

 // Validate the construct
 cout << "Validating...\n";
 if (ecode = parser.validate(samp))
19-8 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML C++ Class Generator Examples in sample
 {
cout << "Validation failed, code " << ecode << "\n";
return 3;
 }

 // Write out doc
 cout << "Writing document to " << OUT_DOCUMENT << "\n";
 if (!(out = new fstream(OUT_DOCUMENT, ios::out)))
 {
cout << "Failed to open output stream\n";
return 4;
 }
 samp->print(out, 0);
 out->close();

 // Everything's OK
 cout << "Success.\n";

 // Shut down
 parser.xmlterm();
 return 0;
}

// end of CG.cpp
XML Class Generator for C++ 19-9

Using the XML C++ Class Generator Examples in sample
19-10 Oracle9i XML Developer’s Kits Guide - XDK

Part IV

 XDK for PL/SQL

These chapters describe how to access and use Oracle XML Developer’s Kit (XDK)

for PL/SQL:

■ Chapter 20, "XML Parser for PL/SQL"

■ Chapter 21, "XSLT Processor for PL/SQL"

■ Chapter 22, "XML Schema Processor for PL/SQL"

■ Chapter 23, "XSU for PL/SQL"

Note: In Oracle9i, XML-SQL Utility (XSU) for PL/SQL is

considered part of the XDK for PL/SQL. In this manual, XSU is

described in Chapter 8, "XML SQL Utility (XSU)".

XML Parser fo
20

XML Parser for PL/SQL

This chapter contains the following sections:

■ Accessing XML Parser for PL/SQL

■ What’s Needed to Run XML Parser for PL/SQL

■ Using XML Parser for PL/SQL (DOM Interface)

■ Using XML Parser for PL/SQL Examples in the Sample Directory

■ Frequently Asked Questions About the XML Parser for PL/SQL

■ Frequently Asked Questions About Using the DOM API
r PL/SQL 20-1

Accessing XML Parser for PL/SQL
Accessing XML Parser for PL/SQL
XML Parser for PL/SQL is provided with Oracle9i and is also available for

download from the OTN site: http://otn.oracle.com/tech/xml.

It is located at $ORACLE_HOME/xdk/plsql/parser

What’s Needed to Run XML Parser for PL/SQL
Appendix B, "XDK for PL/SQL: Specifications" lists the specifications and

requirements for running the XML Parser for PL/SQL. It also includes syntax cheat

sheets.

Using XML Parser for PL/SQL (DOM Interface)
The XML Parser for PL/SQL makes developing XML applications with Oracle9i a
simplified and standardized process. With the PL/SQL interface, Oracle shops

familiar with PL/SQL can extend existing applications to take advantage of XML as

needed.

Since the XML Parser for PL/SQL is implemented in PL/SQL and Java, it can run

"out of the box" on the Oracle9i Java Virtual Machine.

XML Parser for PL/SQL supports the W3C XML 1.0 specification. The goal is to be

100% conformant. It can be used both as a validating or non-validating parser.

In addition, XML Parser for PL/SQL provides the two most common APIs you

need for processing XML documents:

■ W3C-recommended Document Object Model (DOM)

■ XSLT and XPath recommendations

This makes writing custom applications that process XML documents

straightforward in the Oracle9i environment, and means that a standards-compliant

XML parser is part of the Oracle9i platform on every operating system where

Oracle9i is ported.

Figure 20–1 shows the XML Parser for PL/SQL usage and parsing process diagram.
20-2 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL (DOM Interface)
Figure 20–1 XML Parser for PL/SQL Functionality (DOM Interface)

1. Make a newParser declaration to begin the parsing process for the XML

document and DTD, if applicable.

Table 20–1 lists available properties for the newParser procedure:

file name,
varchar buffer,

CLOB
xml input

newParser

getDocument()

DTD input

parseDTD()
parseDTDBuffer()
parsedDTDClob()

parse()
parseBuffer()
parseClob()

Available properties:
· setValidationMode
 [default = not]
· setPreserveWhiteSpace
 [default = not]
· setDocType
 [if input type is a DTD]
· setBaseURL
 [refers other locations to
 base location if reading
 from outside source]
· showWarnings

other
DOM

functions

DOM
document

freeDocument()

freeParser()

getDocType() setDocType()

DTD

XML Parser for PL/SQL
XML Parser for PL/SQL 20-3

Using XML Parser for PL/SQL (DOM Interface)
2. The XML and DTD can be input as a file, varchar buffer, or CLOB. The XML

input is called by the following procedures:

■ parse() if the XML input is a file

■ parseBuffer() if the XML input is an varchar buffer

■ parserClob() if the XML input is a CLOB

If a DTD is also input, it is called by the following procedures:

■ parseDTD() if the input is an DTD file

■ parseDTDBuffer() if the DTD input is an varchar buffer

■ parserDTDClob() if the DTD input is a CLOB

For the XML Input: For an XML input, the parsed result from Parse(),
ParserBuffer() , or ParserClob() procedures is sent to GetDocument().

3. getDocument() procedure performs the following:

■ Outputs the parsed XML document as a DOM document typically to be

used in a PL/SQL application, or

■ Applies other DOM functions, if applicable.

4. Use freeDocument() function to free up the parser and parse the next XML

input

5. Use freeParser() to free up any temporary document structures created

during the parsing process

For the DTD input: The parsed result from parseDTD() , parseDTDBuffer() , or

parseDTDClob() is used by getDocType() function.

6. getDocType() then uses setDocType() to generate a DTD object.

Table 20–1 XML Parser for PL/SQL: newParser() Properties

Property Description

setValidationMode Default = Not

setPreserveWhiteSpace Default = Not

setDocType Use if input type is a DTD

setBaseURL Refers to other locations to the base locations, if reading from
an outside source

showWarnings Turns warnings on or off.
20-4 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
7. The DTD object can be fed into the parser using setDocType() to override the

associated DTD.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for XML Parser for PLSQL XML:

■ A parse tree which can be accessed by DOM APIs is built

■ The parser is validating if a DTD is found, otherwise it is non-validating

■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

The types and methods described in this manual are supplied with the PLSQL

package xmlparser().

Using XML Parser for PL/SQL Examples in the Sample Directory

Setting Up the Environment to Run the Sample Programs
The $ORACLE_HOME/xdk/plsql/parser/sample/ directory contains two sample

XML applications:

■ domsample

■ xslsample

These show you how to use XML Parser for PL/SQL.

To run these sample programs carry out the following steps:

1. Load the PL/SQL parser into the database. To do this, follow the instructions

given in the README file under the lib directory.

2. You must have the appropriate Java security privileges to read and write from a

file on the file system. To this, first startup SQL*Plus (located typically under

See Also: ■

■ Oracle9i XML API Reference - XDK and Oracle XML DB for a list

of available optional DOM functions.

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB , the

chapter on the PL/SQL API for XMLType.
XML Parser for PL/SQL 20-5

Using XML Parser for PL/SQL Examples in the Sample Directory
$ORACLE_HOME/bin) and connect as a user with administration privileges,

such as, 'internal':

For example:

% sqlplus
SQL> connect / as sysdba

3. A password might be required or the appropriate user with administration

privileges. Contact your System Administrator, DBA, or Oracle support, if you

cannot login with administration privileges.

4. Give special privileges to the user running this sample. It must be the same one

under which you loaded the jar files and plsql files in Step 1.

For example, for user 'scott':

SQL> grant javauserpriv to scott;
SQL> grant javasyspriv to scott;

You should see two messages that say "Grant succeeded." Contact your System

Administrator, DBA, or Oracle support, if this does not occur.

Now, connect again as the user under which the PL/SQL parser was loaded in

step 1. For example, for user 'scott' with password 'tiger':

SQL> connect scott/tiger

Running domsample
To run domsample carry out the following steps:

1. Load domsample.sql script under SQL*Plus (if SQL*Plus is not up, first start it

up, connecting as the user running this sample) as follows:

 SQL> @domsample

The domsample.sql script defines a procedure domsample with the following

syntax:

domsample(dir varchar2, inpfile varchar2, errfile varchar2)

where:
20-6 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
2. Execute the domsample procedure inside SQL*Plus by supplying appropriate

arguments for 'dir', 'inpfile', and 'errfile'. For example:

On Unix, you can could do the following:

SQL>execute domsample('/private/scott', 'family.xml', 'errors.txt');

On Windows NT, you can do the following:

SQL>execute domsample('c:\xml\sample', 'family.xml', 'errors.txt');

where family.xml is provided as a test case

3. You should see the following output:

■ The elements are: family member member member member

■ The attributes of each element are:

family:
lastname = Smith
 member:
 memberid = m1
 member:
 memberid = m2
 member:
 memberid = m3 mom = m1 dad = m2
 member:
 memberid = m4 mom = m1 dad = m2

Running xslsample
To run xslsample, carry out these steps:

Argument Description

'dir' Must point to a valid directory on the external file system and
should be specified as a complete path name

'inpfile' Must point to the file located under 'dir', containing the XML
document to be parsed

'errfile' Must point to a file you wish to use to record errors; this file
will be created under 'dir'
XML Parser for PL/SQL 20-7

Using XML Parser for PL/SQL Examples in the Sample Directory
1. Load the xslsample.sql script under SQL*Plus (if SQL*Plus is not up, first

start it up, connecting as the user running this sample):

SQL>@xslsample

xslsample.sql script defines a procedure xslsample with the following

syntax:

xslsample (dir varchar2, xmlfile varchar2, xslfile varchar2, resfile
varchar2, errfile varchar2)

where:

2. Execute the xslsample procedure inside SQL*Plus by supplying appropriate

arguments for 'dir', 'xmlfile', 'xslfile', and 'errfile'.

For example:

■ On Unix, you can do the following:

SQL>executexslsample('/private/scott', 'family.xml', 'iden.xsl',
'family.out', 'errors.txt');

■ On NT, you can do the following:

SQL>executexslsample('c:\xml\sample', 'family.xml', 'iden.xsl',
'family.out', 'errors.txt');

3. The provided test cases are: family.xml and iden.xsl

Argument Description

'dir' Must point to a valid directory on the external file
system and should be specified as a complete path
name.

'xmlfile' Must point to the file located under 'dir', containing the XML
document to be parsed.

'xskfile' Must point to the file located under 'dir', containing the XSL
stylesheet to be applied.

'resfile' Must point to the file located under 'dir' where the
transformed document is to be placed.

'errfile' Must point to a file you wish to use to record errors; this file
will be created under 'dir'
20-8 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
4. You should see the following output:

Parsing XML document c:\/family.xml
Parsing XSL document c:\/iden.xsl
XSL Root element information
Qualified Name: xsl:stylesheet
Local Name: stylesheet
Namespace: http://www.w3.org/XSL/Transform/1.0
Expanded Name: http://www.w3.org/XSL/Transform/1.0:stylesheet
A total of 1 XSL instructions were found in the stylesheet
Processing XSL stylesheet
Writing transformed document

5. family.out should contain the following:

<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

You might see a delay in getting the output when executing the procedure for

the first time. This is because Oracle JVM performs various initialization tasks

before it can execute a Java Stored Procedure (JSP). Subsequent invocations

should run quickly.

If you get errors, ensure the directory name is specified as a complete path on

the file system

Otherwise, report the problem on the XML discussion forum at

http://otn.oracle.com

XML Parser for PL/SQL Example: XML — family.xml
This XML file inputs domsample.sql .

<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">
<member memberid="m1">Sarah</member>

Note: SQL directory aliases and shared directory syntax '\\' are

not supported at this time.
XML Parser for PL/SQL 20-9

Using XML Parser for PL/SQL Examples in the Sample Directory
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

XML Parser for PL/SQL Example: DTD — family.dtd
This DTD file is referenced by XML file, family.xml .

<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

XML Parser for PL/SQL Example: PL/SQL — domsample.sql
-- This file demonstrates a simple use of the parser and DOM API.
-- The XML file that is given to the application is parsed and the
-- elements and attributes in the document are printed.
-- It shows you how to set the parser options.

set serveroutput on;
create or replace procedure domsample(dir varchar2, inpfile varchar2,
 errfile varchar2) is
p xmlparser.parser;
doc xmldom.DOMDocument;

-- prints elements in a document
procedure printElements(doc xmldom.DOMDocument) is
nl xmldom.DOMNodeList;
len number;
n xmldom.DOMNode;

begin
 -- get all elements
 nl := xmldom.getElementsByTagName(doc, '*');
 len := xmldom.getLength(nl);

 -- loop through elements
 for i in 0..len-1 loop
 n := xmldom.item(nl, i);
20-10 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
 dbms_output.put(xmldom.getNodeName(n) || ' ');
 end loop;

 dbms_output.put_line('');
end printElements;

-- prints the attributes of each element in a document
procedure printElementAttributes(doc xmldom.DOMDocument) is
nl xmldom.DOMNodeList;
len1 number;
len2 number;
n xmldom.DOMNode;
e xmldom.DOMElement;
nnm xmldom.DOMNamedNodeMap;
attrname varchar2(100);
attrval varchar2(100);

begin

 -- get all elements
 nl := xmldom.getElementsByTagName(doc, '*');
 len1 := xmldom.getLength(nl);

 -- loop through elements
 for j in 0..len1-1 loop
 n := xmldom.item(nl, j);
 e := xmldom.makeElement(n);
 dbms_output.put_line(xmldom.getTagName(e) || ':');

 -- get all attributes of element
 nnm := xmldom.getAttributes(n);

 if (xmldom.isNull(nnm) = FALSE) then
 len2 := xmldom.getLength(nnm);

 -- loop through attributes
 for i in 0..len2-1 loop
 n := xmldom.item(nnm, i);
 attrname := xmldom.getNodeName(n);
 attrval := xmldom.getNodeValue(n);
 dbms_output.put(' ' || attrname || ' = ' || attrval);
 end loop;
 dbms_output.put_line('');
 end if;
 end loop;
XML Parser for PL/SQL 20-11

Using XML Parser for PL/SQL Examples in the Sample Directory
end printElementAttributes;

begin

-- new parser
 p := xmlparser.newParser;

-- set some characteristics
 xmlparser.setValidationMode(p, FALSE);
 xmlparser.setErrorLog(p, dir || '/' || errfile);
 xmlparser.setBaseDir(p, dir);

-- parse input file
 xmlparser.parse(p, dir || '/' || inpfile);

-- get document
 doc := xmlparser.getDocument(p);

-- Print document elements
 dbms_output.put('The elements are: ');
 printElements(doc);

-- Print document element attributes
 dbms_output.put_line('The attributes of each element are: ');
 printElementAttributes(doc);

-- deal with exceptions
exception

when xmldom.INDEX_SIZE_ERR then
 raise_application_error(-20120, 'Index Size error');

when xmldom.DOMSTRING_SIZE_ERR then
 raise_application_error(-20120, 'String Size error');

when xmldom.HIERARCHY_REQUEST_ERR then
 raise_application_error(-20120, 'Hierarchy request error');

when xmldom.WRONG_DOCUMENT_ERR then
 raise_application_error(-20120, 'Wrong doc error');

when xmldom.INVALID_CHARACTER_ERR then
 raise_application_error(-20120, 'Invalid Char error');
20-12 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
when xmldom.NO_DATA_ALLOWED_ERR then
 raise_application_error(-20120, 'Nod data allowed error');

when xmldom.NO_MODIFICATION_ALLOWED_ERR then
 raise_application_error(-20120, 'No mod allowed error');

when xmldom.NOT_FOUND_ERR then
 raise_application_error(-20120, 'Not found error');

when xmldom.NOT_SUPPORTED_ERR then
 raise_application_error(-20120, 'Not supported error');

when xmldom.INUSE_ATTRIBUTE_ERR then
 raise_application_error(-20120, 'In use attr error');

end domsample;
/
show errors;

XML Parser for PL/SQL Example: PL/SQL — xslsample.sql
-- This file demonstates a simple use of XSLT transformation capabilities.
-- The XML and XSL files that are given to the application are parsed,
-- the transformation specified is applied and the transformed document is
-- written to a specified result file.
-- It shows you how to set the parser options.

set serveroutput on;
create or replace procedure xslsample(dir varchar2, xmlfile varchar2,
 xslfile varchar2, resfile varchar2,
 errfile varchar2) is
p xmlparser.Parser;
xmldoc xmldom.DOMDocument;
xmldocnode xmldom.DOMNode;
proc xslprocessor.Processor;
ss xslprocessor.Stylesheet;
xsldoc xmldom.DOMDocument;
docfrag xmldom.DOMDocumentFragment;
docfragnode xmldom.DOMNode;
xslelem xmldom.DOMElement;
nspace varchar2(50);
xslcmds xmldom.DOMNodeList;

begin
XML Parser for PL/SQL 20-13

Using XML Parser for PL/SQL Examples in the Sample Directory
-- new parser
 p := xmlparser.newParser;

-- set some characteristics
 xmlparser.setValidationMode(p, FALSE);
 xmlparser.setErrorLog(p, dir || '/' || errfile);
 xmlparser.setPreserveWhiteSpace(p, TRUE);
 xmlparser.setBaseDir(p, dir);

-- parse xml file
 dbms_output.put_line('Parsing XML document ' || dir || '/' || xmlfile);
 xmlparser.parse(p, dir || '/' || xmlfile);

-- get document
 xmldoc := xmlparser.getDocument(p);

-- parse xsl file
 dbms_output.put_line('Parsing XSL document ' || dir || '/' || xslfile);
 xmlparser.parse(p, dir || '/' || xslfile);

-- get document
 xsldoc := xmlparser.getDocument(p);

 xslelem := xmldom.getDocumentElement(xsldoc);
 nspace := xmldom.getNamespace(xslelem);

-- print out some information about the stylesheet
 dbms_output.put_line('XSL Root element information');
 dbms_output.put_line('Qualified Name: ' ||
 xmldom.getQualifiedName(xslelem));
 dbms_output.put_line('Local Name: ' ||
 xmldom.getLocalName(xslelem));
 dbms_output.put_line('Namespace: ' || nspace);
 dbms_output.put_line('Expanded Name: ' ||
 xmldom.getExpandedName(xslelem));

 xslcmds := xmldom.getChildrenByTagName(xslelem, '*', nspace);
 dbms_output.put_line('A total of ' || xmldom.getLength(xslcmds) ||
 ' XSL instructions were found in the stylesheet');
-- make stylesheet
 ss := xslprocessor.newStylesheet(xsldoc, dir || '/' || xslfile);

-- process xsl
 proc := xslprocessor.newProcessor;
 xslprocessor.showWarnings(proc, true);
20-14 Oracle9i XML Developer’s Kits Guide - XDK

Using XML Parser for PL/SQL Examples in the Sample Directory
 xslprocessor.setErrorLog(proc, dir || '/' || errfile);

 dbms_output.put_line('Processing XSL stylesheet');
 docfrag := xslprocessor.processXSL(proc, ss, xmldoc);
 docfragnode := xmldom.makeNode(docfrag);

 dbms_output.put_line('Writing transformed document');
 xmldom.writeToFile(docfragnode, dir || '/' || resfile);

-- deal with exceptions
exception

when xmldom.INDEX_SIZE_ERR then
 raise_application_error(-20120, 'Index Size error');

when xmldom.DOMSTRING_SIZE_ERR then
 raise_application_error(-20120, 'String Size error');

when xmldom.HIERARCHY_REQUEST_ERR then
 raise_application_error(-20120, 'Hierarchy request error');

when xmldom.WRONG_DOCUMENT_ERR then
 raise_application_error(-20120, 'Wrong doc error');

when xmldom.INVALID_CHARACTER_ERR then
 raise_application_error(-20120, 'Invalid Char error');

when xmldom.NO_DATA_ALLOWED_ERR then
 raise_application_error(-20120, 'Nod data allowed error');

when xmldom.NO_MODIFICATION_ALLOWED_ERR then
 raise_application_error(-20120, 'No mod allowed error');

when xmldom.NOT_FOUND_ERR then
 raise_application_error(-20120, 'Not found error');

when xmldom.NOT_SUPPORTED_ERR then
 raise_application_error(-20120, 'Not supported error');

when xmldom.INUSE_ATTRIBUTE_ERR then
 raise_application_error(-20120, 'In use attr error');

end xslsample;
/
show errors;
XML Parser for PL/SQL 20-15

Frequently Asked Questions About the XML Parser for PL/SQL
Frequently Asked Questions About the XML Parser for PL/SQL

Why Do I Get an "Exception in Thread" Parser Error?
When I try to use the oraxsl I get the following: Exception in thread main :

java.lang.NoClassDefFoundError" oracle/xml/parser/v2/oraxsl.

How do I fix this?

Answer: If you are running outside the database you need to make sure the

xmlparserv2.jar is explicitly in your CLASS_PATH, not simply its directory. If

from the database you need to make sure it has been properly loaded and that

JServer initialized.

How Do I Use the xmldom.GetNodeValue in PL/SQL?
I cannot get the element value using the PL/SQL XMLDOM. Here is the code

fragment:

...nl := xmldom.getElementsByTagName(doc, '*');
len := xmldom.getLength(nl)
;-- loop through elements
 for i in 0..len-1 loop n := xmldom.item(nl, i);
 elename := xmldom.getNodeName(n);
eleval := xmldom.getNodeValue(n);
...elename is Ok, but eleval is NULL.

Associating with a text node does not seem to work, or I am not doing it correctly? I

receive a compile error, as in this example:

...t xmldom.DOMText;

...t := xmldom.makeText(n);
eleval := xmldom.getNodeValue(t);

What am I doing wrong?

Answer: To get the text node value associated with the element node, you must

perform additional node navigation through xmldom.getFirstChild(n) .

To illustrate, change printElements() in DOMSample.sql as follows:

begin
-- get all elements
nl := xmldom.getElementsByTagName(doc, '*');
 len := xmldom.getLength(nl);
20-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL
 -- loop through elements
for i in 0..len-1 loop n := xmldom.item(nl, i);
 dbms_output.put(xmldom.getNodeName(n));
 -- get the text node associated with the element node
 n := xmldom.getFirstChild(n);
 if xmldom.getNodeType(n) = xmldom.TEXT_NODE then
dbms_output.put('=' | | xmldom.getNodeValue(n));
 end if;
 dbms_output.put(' ');
 end loop;
 dbms_output.put_line('');
end printElements;

This produces the following output, listing the elements:

family member=Sarah member=Bob member=Joanne member=Jim

The attributes of each element are:

family:familylastname val=Smithmember:membermemberid val=m1member:membermemberid
val=m2member:membermemberid val=m3 mom val=m1 dad val=m2member:membermemberid
val=m4 mom val=m1 dad val=m2

Can I Run the XDK for PL/SQL in an IIS Environment?
I downloaded XDK for PL/SQL but it requires OAS. Do you have any idea how to

run this in an IIS environment?

Answer: If you're going to use IIS, it would be better to use the XML Parser for Java

version 2. You'll also need Oracle9i.

How Do I Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?
I am having problems parsing a DTD file contained in a CLOB. I used the

xmlparser.parseDTDClob API, provided by the XML Parser for PL/SQL.

 I received the following error:

"ORA-29531: no method parseDTD in class oracle/xml/parser/plsql/XMLParserCover".

The procedure xmlparser.parseDTDClob calls a Java Stored Procedure

xmlparsercover.parseDTDClob , which in turn calls another Java Stored

Procedure xmlparsercover.parseDTD .

I have confirmed that the class file,

oracle.xml.parser.plsql.XMLParserCove r, has been loaded into the
XML Parser for PL/SQL 20-17

Frequently Asked Questions About the XML Parser for PL/SQL
database, and that it has been published. So the error message does not make sense.

The procedure used to call xmlparser.parseDTDClob is:

create or replace procedure parse_my_dtd as p xmlparser.parser; l_clob clob;
begin p := xmlparser.newParser; select content into l_clob from
dca_documents where doc_id = 1;
xmlparser.parseDTDClob(p,l_clob,'site_template'); end; API Documentation for
xmlparser.parseDTDClob:

parseDTDClob PURPOSE Parses the DTD stored in the given clob SYNTAX
PROCEDURE parseDTDClob(p Parser, dtd CLOB, root VARCHAR2); PARAMETERS p
(IN)- parser instance dtd (IN)- dtd clob to parse root (IN)- name
of the root element RETURNS Nothing COMMENTS

Any changes to the default parser behavior should be made before calling this

procedure. An application error is raised if parsing failed, for some reason.

Description of the table dca_documents :

DOC_ID NOT NULL NUMBER DOC_NAME NOT NULL VARCHAR2(350)
DOC_TYPE VARCHAR2(30)
 DESCRIPTION VARCHAR2(4000) MIME_TYPE
VARCHAR2(48) CONTENT NOT NULL CLOB CREATED_BY NOT NULL
VARCHAR2(30) CREATED_ON NOT NULL DATE UPDATED_BY NOT NULL
VARCHAR2(30) UPDATED_ON NOT NULL DATE

The contents of the DTD:

<!ELEMENT site_template (component*)> <!ATTLIST site_template template_id CDATA
#REQUIRED> <!ATTLIST site_template template_name CDATA #REQUIRED> <!ELEMENT
component (#PCDATA)> <!ATTLIST component component_id ID #REQUIRED> <!ATTLIST
component parent_id ID #REQUIRED> <!ATTLIST component component_name ID
#REQUIRED>

Answer: This is a known issue in release 1.0.1 of the XML Parser for PL/SQL. Here

is the workaround.

First, make a backup of

./plsqlxmlparser_1.0.1/lib/sql/xmlparsercover.sql

Then, in line 18 of xmlparsercover.sql , change the string

oracle.xml.parser.plsql.XMLParserCover.parseDTD to

oracle.xml.parser.plsql.XMLParserCover.parseDTDClob

Verify that Line 18 now reads:

procedure parseDTDClob(id varchar2, DTD CLOB, root varchar2, err in out
20-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL
varchar2) is language java name
'oracle.xml.parser.plsql.XMLParserCover.parseDTDClob(java.lang.String,
oracle.sql.CLOB, java.lang.String, java.lang.String[])';

Save the file, then rerun xmlparsercover.sql in SQL*Plus. Assuming you've

loaded XMLParser version 2 release 2.0.2.6 into the database, this should solve your

problem.

How Do I Use Local Variables with the XML Parser for PL/SQL?
I have just started using XML Parser for PL/SQL. I am have trouble getting the text

between the begin tag and the end tag into a local variable. Do you have examples?

Answer: You just have to use the following:

selectSingleNode("pattern");
getNodeValue()

Remember, if you are trying to get value from a Element node, you have to move

down to the #text child node, for example, getFirstChild.getNodeValue()

Suppose you need to get the text contained between the starting and ending tags of

a xmldom.DOMNode n . The following two lines will suffice.

n_child:=xmldom.getFirstChild(n);
text_value:=xmldom.getNodeValue(n_child));

n_child is of type xmldom.DOMNode.

text_value is of type varchar2 .

Why Do I Get a Security Error When I Grant JavaSysPriv to a User?
We are using the XML Parser for PLSQL and are trying to parse an XML document.

We are getting a Java security error:

ORA-29532: Java call terminated by uncaught Java exception:
java.lang.SecurityException ORA-06512: at "NSEC.XMLPARSERCOVER", line 0
ORA-06512: at "NSEC.XMLPARSER", line 79 ORA-06512: at "NSEC.TEST1_XML line 36
ORA-06512: at line 5

Do we need to grant to user? The syntax appears correct. We also get the error when

we run the demo.
XML Parser for PL/SQL 20-19

Frequently Asked Questions About the XML Parser for PL/SQL
Answer: If the document you are parsing contains a doctype which has a System

URI with a protocol like file:/// or http:/// then you need to grant an

appropriate privilege to your current database user to be able to "reach out of the

database", so to speak, and open a stream on the file or URL.CONNECT
SYSTEM/MANAGER. The following code should do it:

GRANT JAVAUSERPRIV, JAVASYSPRIV TO youruser;

How Do I Install the XML Parser for PL/SQL with the JServer (JVM) Option?
I have downloaded and installed the plxmlparser_V1_0_1.tar.gz . The

readme said to use loadjava to upload xmlparserv2.jar and plsql.jar in

order. I tried to load xmlparserv2.jar using the following command:

loadjava -user test/test -r -v xmlparserv2.jar

to upload the jar file into Oracle8i. After much of the uploading, I got the following

error messages:

identical: oracle/xml/parser/v2/XMLConstants is unchanged from previously loaded
fileidentical: org/xml/sax/Locator is unchanged from previously loaded
fileloading : META-INF/MANIFEST.MFcreating : META-INF/MANIFEST.MFError while
creating resource META-INF/MANIFEST.MF ORA-29547: Java system class not
available: oracle/aurora/rdbms/Compilerloading :
oracle/xml/parser/v2/mesg/XMLErrorMesg_en_US.propertiescreating :
oracle/xml/parser/v2/mesg/XMLErrorMesg_en_US.propertiesError while creating
...

Then I removed -r from the previous command:

loadjava -user test/test -v xmlparserv2.jar

I still got errors but it's down to four:

.identical: org/xml/sax/Locator is unchanged from previously loaded fileloading
: META-INF/MANIFEST.MFcreating : META-INF/MANIFEST.MFError while creating
...
I think I have installed the JServer on the database correctly.

Answer: The JServer option is not properly installed if you're getting errors like this

during loadjava . You need to run INITJVM.SQL and INITDBJ.SQL to get the

JavaVM properly installed. Usually these are in the ./javavm subdirectory of your

Oracle Home.
20-20 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About the XML Parser for PL/SQL
How Do I Use the domsample Included with XML Parser for PL/SQL?
I am trying to execute domsample on dom1151. This is an example that is provided

with the XML Parser for PL/SQL. The XML file family.xml is present in the

directory /hrwork/log/pqpd115CM/out .

I am getting the following error:

Usage of domsample is domsample(dir, inpfile, errfile)

 SQL>
 begin
 domsample('/hrwork/log/pqpd115CM/out','family.xml','errors.txt');
 end;
 /
 Error generated :
 begin
 *
 ERROR at line 1:
 ORA-20100: Error occurred while parsing: No such file or directory
 ORA-06512: at "APPS.XMLPARSER", line 22
 ORA-06512: at "APPS.XMLPARSER", line 69
 ORA-06512: at "APPS.DOMSAMPLE", line 80
 ORA-06512: at line 2

Answer: From your description it sounds like you have not completed all of the

steps in the sample and Readme without errors. After confirming that the

xmlparserv2.jar is loaded, carefully complete the steps again.

How Do I Extract Part of a CLOB?
In an Oracle8i database, we have CLOBs which contain well-formed XML

documents up to 1 MB in size.

We want the ability to extract only part of the CLOB (XML document), modify it,

and replace it back in the database rather than processing the entire document.

 Second, we want this process to run entirely on the database tier.

Which products or tools are needed for this? This may be possible with the JVM

which comes with Oracle9i. There also may be some PL/SQL tools available to

achieve this by means of stored procedures.

Answer: You can do this by using either of the following:

■ Oracle XML Parser for PLSQL
XML Parser for PL/SQL 20-21

Frequently Asked Questions About the XML Parser for PL/SQL
■ Create your own custom Java stored procedure wrappers over some code you

write yourselves with the Oracle XML Parser for Java.

XML Parser for PLSQL has methods such as the following:

■ xmlparser.parseCLOB()

■ xslProcessor.selectNodes() , to find what part of the doc you are looking

for

■ xmldom.* methods to manipulate the content of the XML document

■ xmldom.writeToCLOB() to write it back

If you wanted to do fine-detail updates on the text of the CLOB, you would have to

use DBMS_LOB.* routines, but this would be tricky unless the changes being made

to the content don't involve any increase or decrease in the number of characters.

Why Do I Get "Out of Memory" Errors in the XML Parser?
We are parsing a 50Mb XML file. We have upped the java_pool_size to 150Mb with

a shared_pool_size of 200Mb. We get the following "out of memory" errors in the

Oracle XML parser:

 last entry at 2000-04-26 10:59:27.042:
 VisiBroker for Java runtime caught exception:
 java.lang.OutOfMemoryError
 at oracle.xml.parser.v2.XMLAttrList.put(XMLAttrList.java:251)
 at oracle.xml.parser.v2.XMLElement.setAttribute(XMLElement.java:260)
 at oracle.xml.parser.v2.XMLElement.setAttribute(XMLElement.java:228)
 at cars.XMLServer.processEXL(XMLServer.java:122)

It's trying to create a new XML attribute and crashes with OutOfMemoryError .

Answer: You should not be using the DOM parser for parsing a 50Mb XML file. You

need to use the SAX parser, which parses files of arbitrary size because it does not

create an in-memory tree of nodes as it goes.

If you are using DOM, you should seriously consider moving to SAX which

processes the XML file sequentially instead of trying to build an in-memory tree

that represents the file.

Using SAX we process XML files in excess of 180Mb without any problems and

with very low memory requirements.

Rule of thumb for choosing between DOM and SAX:

DOM:
20-22 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
■ DOM is very good when you need some sort of random access.

■ DOM consumes more memory.

■ DOM is also good when you are trying to transformations of some sort.

■ DOM is also good when you want to have tree iteration and want to walk

through the entire document tree.

■ See if you can use more attributes over elements in your XML (to reduce the

pipe size).

SAX:

■ SAX is good when data comes in a streaming manner (using some input

stream).

What Are the Memory Requirements for Using the PL/SQL Parser?
Answer: While the memory use is directly dependent on the document size, it

should also be realized that the PL/SQL parser uses the Java parser and thus the

Oracle JServer is being run. JServer typically requires 40-60 MB depending on its

configuration.

Is JServer (JVM) Needed to Run XML Parser for PL/SQL?
Answer: Yes, if you are running the parser in the database, you do need JServer

because the PL/SQL parser currently uses the XML Parser for Java under the

covers. JServer exists in both the Standard and Enterprise versions. A forthcoming

version of XML Parser for PL/SQL using C underneath is being developed for

applications that do not have access to a Java Virtual Machine (JVM).

Frequently Asked Questions About Using the DOM API

What Does the XML Parser for PL/SQL Do?
Answer: The XML parser accepts any XML document and gives you a tree-based

API (DOM) to access or modify the document’s elements and attributes. It also

supports XSLT which allows transformation from one XML document to another.
XML Parser for PL/SQL 20-23

Frequently Asked Questions About Using the DOM API
Can I Dynamically Set the Encoding in the XML Document?
Answer: No, you need to include the proper encoding declaration in your

document according to the specification. You cannot use

setCharset(DOMDocument) to set the encoding for the input of your document.

SetCharset(DOMDocument) is used with

oracle.xml.parser.v2.XMLDocument to set the correct encoding for the

printing.

How Do I Get the Number of Elements in a Particular Tag?
How do I get the number of elements in a tag using the Parser?

Answer: You can use the getElementByTagName (elem DOMElement, name
IN VARCHAR2)method that returns a DOMNodeList of all descent elements with a

given tag name. You can then find out the number of elements in that

DOMNodeList to determine the number of the elements in the particular tag.

How Do I Parse a String?
Answer: We do not currently have any method that can directly parse an XML

document contained within a string. You can use one of the following as a

workaround:

■ function parse (Parser, VARCHAR2) to parse XML data stored in the given

URL or the given file,

■ function parseBuffer (Parser, VARCHAR2) to parser XML data stored in

the given buffer, or

■ function parseCLOB (Parser, VARCHAR2) to parse XML data stored in the

give CLOB.

How Do I Display My XML Document?
Answer: If you are using Internet Explorer 5 as your browser, you can display the

XML document directly. Otherwise, you can use our XSLT processor in version 2 of

the parser to create the HTML document using an XSL Stylesheet. Our Java

Transviewer bean also enables you to view your XML document.
20-24 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
How Do I Write the XML Data Back Using Special Character Sets?
Answer: You can specify the character sets for writing to a file or a buffer. Writing to

a CLOB will be use the default character set for the database that you are writing to.

Here are the methods to use:

■ procedure writeToFile(doc DOMDocument, fileName VARCHAR2,
charset VARCHAR2);

■ procedure writeToBuffer(doc DOMDocument, buffer IN OUT
VARCHAR2, charset VARCHAR2);

■ procedure writeToClob(doc DOMDocument, cl IN OUT CLOB,
charset VARCHAR2);

How Do I Obtain an Ampersand from Character Data?
Answer: You cannot have "raw" ampersands in XML data. You need to use the

entity, & instead. This is defined in the XML standard.

How Do I Generate a Document Object from a File?
Answer: Refer to the following example:

inpPath VARCHAR2;
inpFile VARCHAR2;
p xmlparser.parser;
doc xmldom.DOMDocument;

-- initialize a new parser object;
p := xmlparser.newParser;
-- parse the file
xmlparser.parse(p, inpPath || inpFile);
-- generate a document object
doc := xmlparser.getDocument(p);

Can the Parser Run on Linux?
Answer: As long as a version 1.1.x or 1.2.x JavaVM for Linux exists in your

installation, you can run the Oracle XML Parser for Java there. Otherwise, you can

use the C or C++ XML Parser for Linux.
XML Parser for PL/SQL 20-25

Frequently Asked Questions About Using the DOM API
Is Support for Namespaces and Schema Included?
Answer: The current XML Parsers support Namespaces. Schema support will be

included in a future release.

Why Doesn’t My Parser Find the DTD File?
Answer: The DTD file defined in the <!DOCTYPE> declaration must be relative to

the location of the input XML document. Otherwise, you'll need to use the

setBaseDir(Parser, VARCHAR2) functions to set the base URL to resolve the

relative address of the DTD.

Can I Validate an XML File Using an External DTD?
Answer: You need to include a reference to the applicable DTD in your XML

document. Without it there is no way that the parser knows what to validate

against. Including the reference is the XML standard way of specifying an external

DTD. Otherwise you need to embed the DTD in your XML Document.

Does the Parser Have DTD Caching?
Answer: Yes, DTD caching is optional and it is not enabled automatically.

How Do I Get the DOCTYPE Tag into the XML Document After It Is Parsed?
Answer: You need to do some preprocessing to the file, and then put it through the

DOM parser again, which will produce a valid, well-formed XML document with

the DOCTYPE tag contained within.

How Does the XML DOM Parser Work?
Answer: The parser accepts an XML formatted document and constructs in

memory a DOM tree based on its structure. It will then check whether the

document is well-formed and optionally whether it complies with a DTD. It also

provides methods to traverse the tree and return data from it.

How Do I Create a Node Whose Value I Can Set Later?
Answer: If you check the DOM spec referring to the table discussing the node type,

you will find that if you are creating an element node, its nodeValue is to be null

and hence cannot be set. However, you can create a text node and append it to the

element node. You can store the value in the text node.
20-26 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
How Do I Extract Elements from the XML File?
Answer: If you're using DOM, the you can use the NamedNodeMap methods to get

the elements.

How Do I Append a Text Node to a DOMElement Using PL/SQL Parser?
Answer: Use the createTextNode() method to create a new text node. Then

convert the DOMElement to a DOMNode using makeNode() . Now, you can use

appendChild() to append the text node to the DOMElement.

I Am Using XML Parser with DOM; Why Can I Not Get the Actual Data?
Answer: You need to check at which level your data resides. For example,

■ <?xml version=1.0 ?>

■ <greeting>Hello World!</greeting>

The text is the first child node of the first DOM element in the document. According

to the DOM Level 1 spec, the value of an ELEMENT node is null and the

getNodeValue() method will always return null for an ELEMENT type node. You

have to get the TEXT children of an element and then use the getNodeValue()
method to retrieve the actual text from the nodes.

Can the XML Parser for PL/SQL Produce Non-XML Documents?
Answer: Yes it can.

I Cannot Run the Sample File. Did I Do Something Wrong In the Installation?
Answer: Here are two frequently missing steps in installing the PL/SQL parser:

■ initialize the JServer -- run

$ORACLE_HOME/javavm/install/initjvm.sql

■ load the included jar files from the parser archive.

How Do I Parse a DTD in a CLOB?
I am having problems parsing a DTD file contained in a CLOB. I used the

xmlparser.parseDTDClob API, provided by the XML Parser for PL/SQL.

The following error was thrown:
XML Parser for PL/SQL 20-27

Frequently Asked Questions About Using the DOM API
"ORA-29531: no method parseDTD in class oracle/xml/parser/plsql/XMLParserCover"

I managed to work out the following:

The procedure xmlparser.parseDTDClob calls a Java Stored Procedure

xmlparsercover.parseDTDClob , which in turn calls another Java Stored

Procedure xmlparsercover.parseDTD .

I have confirmed that the class file

oracle.xml.parser.plsql.XMLParserCover has been loaded into the

database, and that it has been published. So the error message does not make sense.

I am not able to figure out whether I am doing it right or whether this is a bug in the

parser API.

The procedure use to call "xmlparser.parseDTDClob" :
--
create or replace procedure parse_my_dtd as
p xmlparser.parser;
l_clob clob;
begin
 p := xmlparser.newParser;
 select content into l_clob from dca_documents where doc_id = 1;
 xmlparser.parseDTDClob(p,l_clob,'site_template');
end;

API Documentation for xmlparser.parseDTDClob :

parseDTDClob
PURPOSE
 Parses the DTD stored in the given clob
SYNTAX
 PROCEDURE parseDTDClob(p Parser, dtd CLOB, root VARCHAR2);
PARAMETERS
 p (IN)- parser instance
 dtd (IN)- dtd clob to parse
 root (IN)- name of the root element
RETURNS
 Nothing
COMMENTS

Any changes to the default parser behavior should be effected before calling this

procedure. An application error is raised if parsing failed, for some reason.

Description of the table dca_documents :
20-28 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
 DOC_ID NOT NULL NUMBER
 DOC_NAME NOT NULL VARCHAR2(350)
 DOC_TYPE VARCHAR2(30)
 DESCRIPTION VARCHAR2(4000)
 MIME_TYPE VARCHAR2(48)
 CONTENT NOT NULL CLOB
 CREATED_BY NOT NULL VARCHAR2(30)
 CREATED_ON NOT NULL DATE
 UPDATED_BY NOT NULL VARCHAR2(30)
 UPDATED_ON NOT NULL DATE

The contents of the DTD:

<!ELEMENT site_template (component*)>
<!ATTLIST site_template template_id CDATA #REQUIRED>
<!ATTLIST site_template template_name CDATA #REQUIRED>
<!ELEMENT component (#PCDATA)>
<!ATTLIST component component_id ID #REQUIRED>
<!ATTLIST component parent_id ID #REQUIRED>
<!ATTLIST component component_name ID #REQUIRED>

Answer 1: It appears to be a typo in the xmlparsercover.sql script which is

defining the Java Stored Procedures that wrap the XMLParser. It mentions the Java

method name parseDTD in the 'is language java name' part when parseDTD
should be parseDTDClob (case-sensitive).

If you:

1. Make a backup copy of this script

2. Edit the line that reads:

procedure parseDTDClob(id varchar2,
dtd CLOB, root varchar2, err in out varchar2) is language java name
'oracle.xml.parser.plsql.XMLParserCover.parseDTD (java.lang.String,
oracle.sql.CLOB, java.lang.String, java.lang.String[])';

to say:

procedure parseDTDClob(id varchar2,
dtd CLOB, root varchar2, err in out varchar2) is language java name
’oracle.xml.parser.plsql.XMLParserCover.parseDTDClob
(java.lang.String, oracle.sql.CLOB, java.lang.String,
java.lang.String[])';

That is, change the string:
XML Parser for PL/SQL 20-29

Frequently Asked Questions About Using the DOM API
'oracle.xml.parser.plsql.XMLParserCover.parseDTD
to

 'oracle.xml.parser.plsql.XMLParserCover.parseDTDClob

and rerun the xmlparsercover.sql script you should be in business.

I filed a bug 1147031 to get this typo corrected in a future release.

Note: Your DTD had syntactic errors in it, but I was able to run the following

without problem after making the change:

declare
 c clob;
 v varchar2(400) :=
'<!ELEMENT site_template (component*)>
<!ATTLIST site_template template_name CDATA #IMPLIED
 tempmlate_id CDATA #IMPLIED >
<!ELEMENT component (#PCDATA)>
<!ATTLIST component component_id ID #REQUIRED
 parent_id IDREF #IMPLIED
 component_name CDATA #IMPLIED >';
begin
 delete from dca_documents;
 insert into dca_documents values(1,empty_clob())
 returning content into c;
 dbms_lob.writeappend(c,length(v),v);
 commit;
 parse_my_dtd;
end;

Answer 2: What do you want to do with the LOB? The LOB can either be a

temporary LOB or a persistent LOB. In case of persistent LOBs, you need to insert

the value into a table. In case of temp LOB you can instantiate it in your program.

For example:

 persistant lob
 declare
 clob_var CLOB;
 begin
 insert into tab_xxx values(EMPTY_CLOB()) RETURNING clob_col INTO
clob_var;
 dbms_lob.write(,,,,);
 // send to AQ
 end;
 temp lob -----
20-30 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
 declare
 a clob;
 begin
 dbms_lob.createtemporary(a,DBMS_LOB.SESSION);
 dbms_lob.write(...);
 // send to AQ

 end;
 /
Also refer to Oracle9i Application Developer’s Guide - Large Objects (LOBs). There are

six books (in PDF), one for each language access (C(OCI), Java, PL/SQL, Visual

Basic, Pro*C/C++, Pro*Cobol)) and it is quite comprehensive. If this is PL/SQL, I

believe you can just do the following:

myClob CLOB = clob();

I have tried the DBMS_LOB.createtemporary() which works.

Answer 3: Here's what you need to do if you are using LOBs with AQ:

1. Create an ADT with one of the fields of type CLOB.

create type myAdt (id NUMBER, cdata CLOB);

The queue table must be declared to be of type myAdt

2. Instantiate the object - use empty_clob() to fill the LOB field

myMessage := myAdt(10, EMPTY_CLOB();
3. Enqueue the message

clob_loc clob;
enq_msgid RAW(16);
DBMS_AQ.enqueue('queue1', enq_opt, msg_prop, myMessage, enq_msgid)

4. Get the LOB locator

select t.user_data.cdata into clob_loc
from qtable t where t.msgid
= enq_msgid;

5. Populate the CLOB using dbms_lob.write

6. Commit

There is an example of this is in the Oracle9i Application Developer’s Guide - Advanced
Queuing. If you are using the Java API for AQ, the procedure is slightly more

complicated.
XML Parser for PL/SQL 20-31

Frequently Asked Questions About Using the DOM API
Why Do I Get Errors When Parsing a Document?
I downloaded the javaparser, version 2 and the XML parser utility, and I’m using

the PL/SQL parser interface. I have an XML file that is a composite of three tags

and when parsing it generates the following error:

ORA-20100: Error occurred while parsing: Unterminated string

When I separate the document into individual tags, two are OK, but the third

generates this error:

ORA-20100: Error occurred while parsing: Invalid UTF8 encoding

1. Why is the error different when separating the data?

2. I have not been able to find an "unterminated string" in the document.

3. I’m fairly anxious since this is the only way the data is coming and I don’t have

time to figure out another parser.

Answer: If you document is the "composite of three tags" then it is not a

well-formed document as it has more than one root element. Try putting a start and

end tag around the three.

How Do I Use PLXML to Parse a Given URL?
I am working with the XML parser for PL/SQL on NT. According to your Parser

API documentation it is possible to parse a given URL, too:> Parses XML stored in

the given URL/file and returns> the built DOM DocumentNow, parsing from file

works fine, but any form of URL raises ORA-29532:...
java.io.FileNotFoundException .

Can you give an example of a call?

Answer: To access external URLs, you need set up your proxy host and port. For

example using this type of syntax:

 java -Dhttp.proxyHost=myproxy.mydomain.com -Dhttp.proxyPort=3182DOMSample myxml.xml

How Do I Use the XML Parser to Parse HTML?
We need to parse HTML files as follows:

1. Find each a href

2. For each a href found, extract the file/pathname being linked to
20-32 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
3. Substitute a database procedure call for the a href , passing the file/pathname

as a parameter.

Does it make sense to use the PL/SQL XML parser to do this? If so, how easy/hard

would it be, and how can we find out how to do this?

Answer: Since HTML files aren't necessary well formed XML documents, are you

sure you want to use XML parser? Won't Perl be a better choice? I'm not sure

whether PL/SQL parser supports the following methods but just for your

information:

1. getElementsByTagName() retrieves all matching nodes.

2. getNodeValue() will return a string.

3. setNodeValue() sets node values.

Answer 3: It supports those methods, but not over an ill-formed HTML file.

How Do I Move Data to a Web Browser Using PL/SQL and Oracle 7.3.4?
I'm trying to get the data to a Web browser in the client side while all the processing

has to take place on the server (Oracle 7 release 7.3.4), using:

■ XML Parser for PL/SQL

■ XSQL servlet

Are these two components sufficient to get the job done?

Answer: Dependencies for XSQL Page Processor states:

■ Oracle XML Parser V2 R2.0.2.5

■ Oracle XML-SQL Utility for Java

■ Web server supporting Java Servlets

■ JDBC driver

You'll also need XSQL Page Processor itself.

Does the XML Parser for Java Work with Oracle 7.3.4?
Does the XML Parser for Java version 2, work with Oracle 7 release 7.3.4.?

Is XML- SQL Utility part of XML Parser for Java version 2, or does it need to be

downloaded separately?

Answer:
XML Parser for PL/SQL 20-33

Frequently Asked Questions About Using the DOM API
1. The XML Parser for Java version 2 works with Oracle 7 release 7.3.4 as long as

you have the proper JDBC driver and run it in a VM on a middle tier or client.

2. The XML-SQL Utility includes a copy of the version 2 parser in its download, as

it requires it.

getNodeValue(): Getting the Value of DomNode
I am having problems obtaining the value between XML tags after using

xmlparser() . Below is code from the DOMSAMPLE.SQL example:

-- loop through elementsfor i in 0..len-1 loop n := xmlparser.item(nl, i);
 dbms_output.put(xmlparser.getNodeName(n)

Answer: I encountered the same problem. I found out that getNodeValue() on

Element Node returns null. However, getNodeValue() on the text node returns

the value.

How Do I Retrieve All Children or Grandchildren of a Node?
Is there a way to retrieve all children or grandchildren, and so on, of a particular

node in a DOM tree using the DOM API? Or is there a work-around? We are using

the XML Parser for PL/SQL.

Answer: Try the following:

DECLARE nodeList xmldom.DOMNodeList;
theElement xmldom.DOMElement;
BEGIN :nodeList := xmldom.getElementsByTagName(theElement,'*');
:END;

This gets all children nodes rooted as the element in "theElement".

What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"
We want to parse XML, apply XSL, and get the transformed result in the form of an

XML document. We are using XML Parser for PL/SQL. Our script does not add PI

instruction <?xml version="1.0"?> to the transformed result.

XSLProcessor.processXSL method returns documentfragment object.

Create DOMdocument object from that documentfragment object using:

finaldoc := xmldom.MakeDocument(docfragnode);
20-34 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About Using the DOM API
Write to result file using where finaldoc is created of type

xmldom.DOMDocument:

xmldom.writeToFile(finaldoc, dir || '/' || resfile);

This method is available for DOMDocument, but we are getting:

ora-29532 "Uncaught java exception:java.lang.ClassCastException"

I am not sure if converting documentfragment to domdocument object adds

instruction "<?xml version="1.0"?> " , or must we add this instruction

through XSL?

Answer: If you have created a new DOMDocument and then appended the

document fragment to it, then you can use xmldom.WriteToBuffer() or similar

routine to serialize with the XML declaration in place.
XML Parser for PL/SQL 20-35

Frequently Asked Questions About Using the DOM API
20-36 Oracle9i XML Developer’s Kits Guide - XDK

XSLT Processor
21

XSLT Processor for PL/SQL

This chapter contains the following sections:

■ Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
 for PL/SQL 21-1

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
Extensible Stylesheet Language Transformation, abbreviated XSLT (or XSL-T),

describes rules for transforming a source tree into a result tree. A transformation

expressed in XSLT is called a stylesheet.

The transformation specified is achieved by associating patterns with templates

defined in the stylesheet. A template is instantiated to create part of the result tree.

This PLSQL implementation of the XSL processor follows the W3C XSLT working

draft (rev WD-xslt-19990813) and includes the required behavior of an XSL

processor in terms of how it must read XSLT stylesheets and the transformations it

must effect.

The types and methods described in this document are made available by the

PLSQL package, xslprocessor() .

Figure 21–1 shows the XML Parser for PL/SQL XSLT Processor main functionality.

1. The Process Stylesheet process receives input from the XML document and the

selected Stylesheet, which may or may not be indicated in the XML document.

Both the stylesheet and XML document can be the following types:

■ File name

■ Varchar buffer

■ CLOB

The XML document can be input 1 through n times.

2. The parsed XML document inputs

XSLProcessor.processXSL(xslstylesheet,xml instance)
procedure, where:

■ XML document is indicated in the "xml instance" argument

■ Stylesheet input is indicated in the "xslstylesheet" argument

3. Build the stylesheet using the Stylesheet input to the XSLStylesheet()
procedure. The following methods are available for this procedure:

■ removeParam()

■ resetParam()

■ setParam()
21-2 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
This produces a stylesheet object which then inputs the "Process Stylesheet"

step using procedure, XSLProcessor.processXSL(xslstylesheet,xml
instance) .

4. The "Process stylesheet" process can be repeated 1 through n times. In other

words, the same stylesheet can be applied to multiple parsed XML documents

to transform them wither into an XML document, HTML document, or other

text based format.

5. The resulting parsed and transformed document is output either as a stream or

a DOM document.

6. When the XSLT process if complete, call the freeProcessor() procedure to free up

any temporary structures and the XSLProcessor procedures used in the XSL

transformation process.
XSLT Processor for PL/SQL 21-3

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
Figure 21–1 "XML Parser for PL/SQL: XSLT processor (DOM Interface)

XML Parser for PL/SQL: XSLT Processor — Default Behavior
The following is the default behavior for the XML Parser for PL/SQL XSLT

Processor:

■ A result tree which can be accessed by DOM APIs is built

Build
stylesheet: new
XSLStylesheet()

XML input
1...n

Stylesheet
input

stylesheet object

output stream
(writes to a

stream)

DOM
document

XSLProcessor.processXSL
(xslstylesheet, xml instance)

Methods
· removeParam()
· resetParam()
· setParam()

· File name
· Varchar buffer
· CLOB

Process
stylesheet

1...n

freeProcessor()

XML Parser for PL/SQL: XSL-T (DOM only)
21-4 Oracle9i XML Developer’s Kits Guide - XDK

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

XML Parser for PL/SQL Example: XSL — iden.xsl
This XSL file inputs the xslsample.sql.

<?xml version="1.0"?>

<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="*|@*|comment()|processing-instruction()|text()">
 <xsl:copy>
 <xsl:apply-templates select="*|@*|comment()|processing-instruction()|text()"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>
XSLT Processor for PL/SQL 21-5

Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
21-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Schema Processor fo
22

XML Schema Processor for PL/SQL

This chapter contains the following sections:

■ Oracle XML Schema Processor for PL/SQL

■ Building Server-Side XML Schema Validation
r PL/SQL 22-1

Oracle XML Schema Processor for PL/SQL
Oracle XML Schema Processor for PL/SQL
The XML Schema Processor for Java is a component of the XDK that supports

simple and complex datatypes in XML applications.

Building Server-Side XML Schema Validation
This chapter gives an introduction to the XML schema validation process using the

XDK for Java and discusses how to build an Oracle Java Stored Procedure to

perform the schema validation on the server-side of the Oracle Database. The

included sample code also demonstrates the deployment procedure for Java Stored

Procedures.

XML Schema Validation can provide a flexible and portable form of data validation

for use in your applications. You can implement the XML validation process in your

client-side or mid-tier applications, but if you want to have either:

■ control of data validation whenever the data is updated or inserted, or

■ use of the data management capability of the Oracle database,

then putting your data validation process inside a trigger or your PL/SQL

procedures on the server-side is a good solution. Since there is not a builtin PL/SQL

API to do XML Schema validation, we can create one using Java Stored Procedures.

The first step in building a Java Stored Procedure for XML Schema validation is to

select the components and decide the environment requirements. The components

you need are:

■ XML Schema Processor for Java (xschema.jar])

■ XML Parser for Java (xmlparserv2.jar)

Both of these are part of the Oracle XML Developer’s Kit for Java. The Oracle

database (8.1.6 version and above) is also needed because these versions fully

support Java Stored Procedures.

If you download the XDK for Java and have an Oracle 8.1.6 database or above, you

can follow the following steps to build the Java Stored Procedure and take

advantage of XML Schema for data validation.

See Also: Download XML Developers Kit for Java from the

Oracle Technology Network:

http://technet.oracle.com/tech/xml/xdkhome.html

Source code for the demo is xdksample_093001.zip
22-2 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation
Creating the Java Classes for XML Schema Validation
To build the Java Class for XML Schema Validation, two XDK packages, XML

Schema Processor and XML Parser are needed:

import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;

To be able to accept the inputs from PL/SQL, we need another package:

import oracle.sql.CHAR;

You need to set xmlparserv2.jar , xschema.jar and classes12.zip in the

CLASSPATH. The JDBC library classes12.zip is for JDK 1.2.x. If you are using

JDK 1.1.x, classes111.zip is required.

The SchemaUtil Class is:

public class SchemaUtil
{

 public static String validation(CHAR xml, CHAR xsd)
 throws Exception
 {
 //Build Schema Object
 XSDBuilder builder = new XSDBuilder();
 byte [] docbytes = xsd.getBytes();
 ByteArrayInputStream in = new ByteArrayInputStream(docbytes);
 XMLSchema schemadoc = (XMLSchema)builder.build(in,null);
 //Parse the input XML document with Schema Validation
 docbytes = xml.getBytes();
 in = new ByteArrayInputStream(docbytes);
 DOMParser dp = new DOMParser();
 // Set Schema Object for Validation
 dp.setXMLSchema(schemadoc);
 dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
 dp.setPreserveWhitespace (true);
 StringWriter sw = new StringWriter();
 dp.setErrorStream (new PrintWriter(sw));
 try
 {
 dp.parse (in);
 sw.write("The input XML parsed without errors.\n");
 }
 catch (XMLParseException pe)
 {
XML Schema Processor for PL/SQL 22-3

Building Server-Side XML Schema Validation
 sw.write("Parser Exception: " + pe.getMessage());
 }
 catch (Exception e)
 {
 sw.write("NonParserException: " + e.getMessage());
 }
 return sw.toString();
 }
 }

This class defines a single method, validation , which does the XML Schema

validation for the input XML document and returns the error messages.

To compile the class, use following command line:

javac SchemaUtil.java

This produces the compiled Java class, SchemaUtil.class .

Loading and Resolving the Java Class
With the utility loadjava , you can upload the Java source, class, and resource files

into an Oracle database, where they are stored as Java schema objects. You can run

loadjava from the command line or from an application, and you can specify

several options, including a resolver. Make sure you have $ORACLE_HOME\bin in
your System Path to be able to run loadjava .

Before loading the SchemUtil.class into the database, you need to check if the

correct version of the two dependent XDK packages are loaded into the logon

database schema (in this case xdkdemo/xdkdemo).

connect xdkdemo/xdkdemo

To check the status of the oracle.xml.parser.v2.DOMParser class, you can

use the following SQL statement:

ELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status
FROM all_objects
WHERE object_type = ’JAVA CLASS’
 AND object_name = dbms_java.shortname(’oracle/xml/parser/v2/DOMParser’);

If you see the result:

 CLASS STATUS

 oracle/xml/parser/v2/DOMParser VALID
22-4 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation
then the Oracle XML Parser for Java is already installed and ready to be used.

If you see the preceding result, but the status is INVALID, try the command:

ALTER JAVA CLASS _oracle/xml/parser/v2/DOMParser Resolve

If the verification procedure produces the SQL*Plus message ’no rows selected’, you

need to load the XML Parser into the database by:

loadjava -resolve -verbose -user xdktemp/xdktemp xmlparserv2.jar

|If the parser is installed, then you do not need to complete any further installation

steps. The SQL command for status checking will be:

SELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status
FROM all_objects
WHERE object_type = ’JAVA CLASS’
 AND object_name =
dbms_java.shortname(’oracle/xml/parser/schema/XMLSchema’);

Before loading the SchemaUtil.class, make sure that the loaded XML Parser has the

same version with which you compiled the SchemaUtil.class. The following code

can be used to check the current version of the loaded Oracle XML Parser:

CREATE OR REPLACE FUNCTION XMLVersion RETURN VARCHAR2
IS LANGUAGE JAVA NAME
’oracle.xml.parser.v2.XMLParser.getReleaseVersion() returns java.lang.String’;
/
CREATE OR REPLACE Procedure getXMLVersion AS
begin
 dbms_output.put_line(XMLVersion());
end;
/

Then by issuing the command:

SQL> set serveroutput on
SQL> exec getXMLVersion;

You should receive the following result:

Oracle XDK Java 9.0.2.0.0A Beta

If the version does not match, you need to drop the package and reload it. To drop

the package, you can issue the following command line:
XML Schema Processor for PL/SQL 22-5

Building Server-Side XML Schema Validation
dropjava -verbose -user xdktemp/xdktemp xmlparserv2.jar xschema.jar

Once all of the versions are synchronizeded, you can finally load the

SchemaUtil.class by:

loadjava -resolve -verbose -user xdktemp/xdktemp SchemaUtil.class

Publishing the Java Class by Defining the Specification
For each Java method callable from SQL, you must write a call specification in Java,

which exposes the method’s top-level entry point to the Oracle server.

CREATE OR REPLACE FUNCTION SchemaValidation(xml IN VARCHAR2,xsd IN VARCHAR2)
return varchar2
IS LANGUAGE JAVA NAME
’SchemaUtil.validation(oracle.sql.CHAR,oracle.sql.CHAR) returns
 java.lang.String’;

Now the Java stored procedure specification is created, both SQL and PL/SQL can

call it as if it were a PL/SQL function.

Example Using the Stored Procedures
You can call Java stored procedures from SQL DML statements, PL/SQL blocks,

and PL/SQL subprograms. Using the SQL CALL statement, you can also call them

from the top level (from SQL*Plus, for example) and from database triggers. The

following example shows how to do XML Schema Validation using the created Java

stored procedure.

Creating a Database Schema to store XML and XML Schema Documents
create table schema_tab(id number, xsd VARCHAR2(4000));
create table xml_tab(id number, xml VARCHAR2(4000));

Loading the XML Schema Document into the Database
You can use the SQL commands to insert the data in DBData.sql:

INSERT INTO schema_tab(1, ‘[XML schema]‘);

Calling the Java Stored Procedure from the Trigger of the xml_tab Table
--Write XML Buffer to Output
CREATE OR REPLACE PROCEDURE printBufferOut(xmlstr IN OUT NOCOPY VARCHAR2) AS
BEGIN
22-6 Oracle9i XML Developer’s Kits Guide - XDK

Building Server-Side XML Schema Validation
 line VARCHAR2(20000);
 nlpos INTEGER;
 LOOP
 EXIT WHEN xmlstr is null;
 nlpos := instr(xmlstr,chr(10));
 line := substr(xmlstr,1,nlpos-1);
 -- print line
 IF(length(line) <250) THEN
 dbms_output.put_line(’| ’||line);
 ELSE
 dbms_output.put(’| ’);
 LOOP
 EXIT WHEN line is null;
 dbms_output.put_line(substr(line,1,250));
 line := substr(line,250+1);
 END loop;
 END if;
 xmlstr := substr(xmlstr,nlpos+1);
 IF (nlpos = 0) THEN
 dbms_output.put_line(’| ’||xmlstr);
 EXIT;
 END if;
 END LOOP;
END printBufferOut;
/

show errors;
CREATE OR REPLACE PROCEDURE dbvalid(xmlid IN NUMBER, xsdid IN NUMBER) IS
 p_xml varchar2(4000);
 p_xsd varchar2(4000);
 p_out varchar2(4000);
 begin
 select xml into p_xml from xml_tab where id=xmlid;
 select xsd into p_xsd from schema_tab where id=xsdid;
 p_out := SchemaValidation(p_xml,p_xsd);
 printBufferOut(p_out);
 end;
/

For the date with the xdksample_093001.zip you can execute the command and

get the following result:

SQL> exec dbvalid(1,1);
| The input XML parsed without errors.
PL/SQL procedure successfully completed.
XML Schema Processor for PL/SQL 22-7

Building Server-Side XML Schema Validation
SQL> exec dbvalid(2,1);
| | <Line 5, Column 42>: XSD-2023: (Error) Invalid value of attribute:
’1999-11-31’
| <Line 21, Column 27>: XSD-2105: (Error) Identity constraint validation error:
’Key sequence not found in key reference’.
| | Parser Exception: Invalid value of attribute: ’1999-11-31’
PL/SQL procedure successfully completed.

You can now use this Java Stored Procedure to validate the XML document using

PL/SQL.
22-8 Oracle9i XML Developer’s Kits Guide - XDK

XSU for
23

XSU for PL/SQL

This chapter contains the following sections:

■ XSU PL/SQL API

■ Setting Stylesheets in XSU (PL/SQL)

■ Binding Values in XSU (PL/SQL)

■ Storing XML in the Database Using DBMS_XMLSave

■ Insert Processing Using XSU (PL/SQL API)

■ Update Processing Using XSU (PL/SQL API)

■ Delete Processing Using XSU (PL/SQL API)

■ Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL

See Also: Chapter 8, "XML SQL Utility (XSU)" for information
about XSU in general.
 PL/SQL 23-1

XSU PL/SQL API
XSU PL/SQL API
XML SQL Utility (XSU) PL/SQL API reflects the Java API in the generation and

storage of XML documents from and to a database. DBMS_XMLQuery and

DBMS_XMLSave are the two packages that reflect the functions in the Java classes -

OracleXMLQuery and OracleXMLSave . Both of these packages have a context

handle associated with them. Create a context by calling one of the constructor-like

functions to get the handle and then use the handle in all subsequent calls.

XSU Supports XMLType
From Oracle9i Release 2 (9.2), XSU supports XMLType. Using XSU with XMLType is

useful if, for example, you have XMLType columns in objects or tables.

Generating XML with DBMS_XMLQuery()
Generating XML results in a CLOB that contains the XML document. To use

DBMS_XMLQuery and the XSU generation engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLQuery.getCtx function and

supplying it the query, either as a CLOB or a VARCHAR2.

2. Bind possible values to the query using the DBMS_XMLQuery.bind function.

The binds work by binding a name to the position. For example, the query can

be select * from emp where empno = :EMPNO_VAR . Here you are

binding the value for the EMPNO_VAR using the setBindValue function.

3. Set optional arguments like the ROW tag name, the ROWSET tag name, or the

number of rows to fetch, and so on.

4. Fetch the XML as a CLOB using the getXML() functions. getXML() can be

called to generate the XML with or without a DTD or schema.

5. Close the context.

Here are some examples that use the DBMS_XMLQuery PL/SQL package.

XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
In this example, you select rows from table emp, and obtain an XML document as a

CLOB. First get the context handle by passing in a query and then call the

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML DB, in
particular, the chapter on Generating XML, for examples on using XSU
with XMLType.
23-2 Oracle9i XML Developer’s Kits Guide - XDK

XSU PL/SQL API
getXMLClob routine to get the CLOB value. The document is in the same encoding

as the database character set.

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

 -- set up the query context...!
 queryCtx := DBMS_XMLQuery.newContext('select * from emp');

 -- get the result..!
 result := DBMS_XMLQuery.getXML(queryCtx);
 -- Now you can use the result to put it in tables/send as messages..
 printClobOut(result);
 DBMS_XMLQuery.closeContext(queryCtx); -- you must close the query handle..
end;
/

XSU Generating XML Example 2: Printing CLOB to Output Buffer
printClobOut () is a simple procedure that prints the CLOB to the output buffer. If

you run this PL/SQL code in SQL*Plus, the result of the CLOB is printed to screen.

Set the serveroutput to on in order to see the results.

CREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmlstr varchar2(32767);
line varchar2(2000);
begin
 xmlstr := dbms_lob.SUBSTR(result,32767);
 loop
 exit when xmlstr is null;
 line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
 dbms_output.put_line('| '||line);
 xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);
 end loop;
end;
/

XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
With the XSU PL/SQL API you can also change the ROW and the ROWSET tag

names. These are the default names placed around each row of the result, and
XSU for PL/SQL 23-3

XSU PL/SQL API
round the whole document, respectively. The procedures, setRowTagName and

setRowSetTagName accomplish this as shown in the following example:

--Setting the ROW tag names

declare
 queryCtx DBMS_XMLQuery.ctxType;
 result CLOB;
begin
 -- set the query context.
 queryCtx := DBMS_XMLQuery.newContext('select * from emp');

 DBMS_XMLQuery.setRowTag(queryCtx,'EMP'); -- sets the row tag name
 DBMS_XMLQuery.setRowSetTag(queryCtx,'EMPSET'); -- sets rowset tag name

 result := DBMS_XMLQuery.getXML(queryCtx); -- get the result

 printClobOut(result); -- print the result..!
 DBMS_XMLQuery.closeContext(queryCtx); -- close the query handle;
end;
/

The resulting XML document has an EMPSET document element. Each row is

separated using the EMP tag.

XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()
The results from the query generation can be paginated by using:

■ setMaxRows function. This sets the maximum number of rows to be

converted to XML. This is relative to the current row position from which the

last result was generated.

■ setSkipRows function. This specifies the number of rows to skip before

converting the row values to XML.

For example, to skip the first 3 rows of the emp table and then print out the rest of

the rows 10 at a time, you can set the skipRows to 3 for the first batch of 10 rows

and then set skipRows to 0 for the rest of the batches.

As in the case of XML SQL Utility’s Java API, call the keepObjectOpen()
function to ensure that the state is maintained between fetches. The default

behavior is to close the state after a fetch. For multiple fetches, you must determine

when there are no more rows to fetch. This can be done by setting the
23-4 Oracle9i XML Developer’s Kits Guide - XDK

Setting Stylesheets in XSU (PL/SQL)
setRaiseNoRowsException (). This causes an exception to be raised if no rows

are written to the CLOB. This can be caught and used as the termination condition.

-- Pagination of results

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

 -- set up the query context...!
 queryCtx := DBMS_XMLQuery.newContext('select * from emp');

 DBMS_XMLQuery.setSkipRows(queryCtx,3); -- set the number of rows to skip
 DBMS_XMLQuery.setMaxRows(queryCtx,10); -- set the max number of rows per fetch

 result := DBMS_XMLQuery.getXML(queryCtx); -- get the first result..!

 printClobOut(result); -- print the result out.. This is you own routine..!
 DBMS_XMLQuery.setSkipRows(queryCtx,0); -- from now don't skip any more rows..!

 DBMS_XMLQuery.setRaiseNoRowsException(queryCtx,true);
 -- raise no rows exception..!
 begin
 loop -- loop forever..!
 result := DBMS_XMLQuery.getXML(queryCtx); -- get the next batch
 printClobOut(result); -- print the next batch of 10 rows..!
 end loop;
 exception
 when others then
 -- dbms_output.put_line(sqlerrm);
 null; -- termination condition, nothing to do;
 end;
 DBMS_XMLQuery.closeContext(queryCtx); -- close the handle..!
end;
/

Setting Stylesheets in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to set stylesheets on the generated XML

documents as follows:
XSU for PL/SQL 23-5

Binding Values in XSU (PL/SQL)
■ Set the stylesheet header in the result XML. To do this, use

setStylesheetHeader () procedure, to set the stylesheet header in the result.

This simply adds the XML processing instruction to include the stylesheet.

■ Apply a stylesheet to the result XML document, before generation. This method

is a huge performance win since otherwise the XML document has to be

generated as a CLOB, sent to the parser again, and then have the stylesheet

applied. XSU generates a DOM document, calls the parser, applies the

stylesheet and then generates the result. To apply the stylesheet to the resulting

XML document, use the useStyleSheet () procedure. This uses the stylesheet

to generate the result.

Binding Values in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to bind values to the SQL statement. The

SQL statement can contain named bind variables. The variables must be prefixed

with a colon (:) to declare that they are bind variables. To use the bind variable

follow these steps:

1. Initialize the query context with the query containing the bind variables. For

example, the following statement registers a query to select the rows from the

emp table with the where clause containing the bind variables :EMPNO and

:ENAME. You will bind the values for employee number and employee name

later.

queryCtx = DBMS_XMLQuery.getCtx(’select * from emp where empno = :EMPNO and
ename = :ENAME’);

2. Set the list of bind values. The clearBindValues () clears all the bind

variables set. The setBindValue () sets a single bind variable with a string

value. For example, you will set the empno and ename values as shown later:

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,’EMPNO’,20);
DBMS_XMLQuery.setBindValue(queryCtx,’ENAME’,’John’);

3. Fetch the results. This will apply the bind values to the statement and then get

the result corresponding to the predicate empno = 20 and ename = ’John’ .

DBMS_XMLQuery.getXMLClob(queryCtx);

4. Re-bind values if necessary. For example to change the ENAME alone to scott
and reexecute the query,

DBMS_XMLQuery.setBindValue(queryCtx,’ENAME’,’Scott’);
23-6 Oracle9i XML Developer’s Kits Guide - XDK

Storing XML in the Database Using DBMS_XMLSave
The rebinding of ENAME will now use Scott instead of John .

XSU Generating XML Example 5: Binding Values to the SQL Statement
The following example illustrates the use of bind variables in the SQL statement:

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

queryCtx := DBMS_XMLQuery.newContext(
 'select * from emp where empno = :EMPNO and ename = :ENAME');

--No longer needed:
--DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,'EMPNO',7566);
DBMS_XMLQuery.setBindValue(queryCtx,'ENAME','JONES');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);

DBMS_XMLQuery.setBindValue(queryCtx,'ENAME','Scott');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);
end;
/

Storing XML in the Database Using DBMS_XMLSave
To use DBMS_XMLSave() and XML SQL Utility storage engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLSave.getCtx function and

supplying it the table name to use for the DML operations.

2. For inserts. You can set the list of columns to insert into using the

setUpdateColNames function. The default is to insert values into all the

columns.

For updates. The list of key columns must be supplied. Optionally the list of

columns to update may also be supplied. In this case, the tags in the XML
XSU for PL/SQL 23-7

Insert Processing Using XSU (PL/SQL API)
document matching the key column names will be used in the WHERE clause

of the update statement and the tags matching the update column list will be

used in the SET clause of the update statement.

For deletes. The default is to create a WHERE clause to match all the tag values

present in each ROW element of the document supplied. To override this

behavior you can set the list of key columns. In this case only those tag values

whose tag names match these columns will be used to identify the rows to

delete (in effect used in the WHERE clause of the delete statement).

3. Supply an XML document to the insertXML , updateXML, or deleteXML
functions to insert, update and delete respectively.

4. You can repeat the last operation any number of times.

5. Close the context.

Use the same examples as for the Java case, OracleXMLSave class examples.

Insert Processing Using XSU (PL/SQL API)
To insert a document into a table or view, simply supply the table or the view name

and then the XML document. XSU parses the XML document (if a string is given)

and then creates an INSERT statement, into which it binds all the values. By default,

XSU inserts values into all the columns of the table or view and an absent element is

treated as a NULL value.

The following code shows how the document generated from the emp table can be

put back into it with relative ease.

XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
This example creates a procedure, insProc , which takes in:

■ An XML document as a CLOB

■ A table name to put the document into

and then inserts the XML document into the table:

create or replace procedure insProc(xmlDoc IN CLOB, tableName IN VARCHAR2) is
 insCtx DBMS_XMLSave.ctxType;
 rows number;
 begin
 insCtx := DBMS_XMLSave.newContext(tableName); -- get the context handle
 rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- this inserts the document
23-8 Oracle9i XML Developer’s Kits Guide - XDK

Insert Processing Using XSU (PL/SQL API)
 DBMS_XMLSave.closeContext(insCtx); -- this closes the handle
end;
/

This procedure can now be called with any XML document and a table name. For

example, a call of the form:

insProc(xmlDocument, ’scott.emp’);

generates an INSERT statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,?,?,?,?);

and the element tags in the input XML document matching the column names will

be matched and their values bound. For the code snippet shown earlier, if you send

it the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
 <EMPNO>7369</EMPNO>
 <ENAME>Smith</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>12/17/1980 0:0:0</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </ROW>
 <!-- additional rows ... -->
</ROWSET>

you would have a new row in the emp table containing the values (7369, Smith,

CLERK, 7902, 12/17/1980,800,20). Any element absent inside the row element

would is considered a null value.

XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)
In certain cases, you may not want to insert values into all columns. This might be

true when the values that you are getting is not the complete set and you need

triggers or default values to be used for the rest of the columns. The code that

appears later shows how this can be done.

Assume that you are getting the values only for the employee number, name, and

job, and that the salary, manager, department number and hiredate fields are filled

in automatically. You create a list of column names that you want the insert to work
XSU for PL/SQL 23-9

Update Processing Using XSU (PL/SQL API)
on and then pass it to the DBMS_XMLSave procedure. The setting of these values

can be done by calling setUpdateColumnName() procedure repeatedly, passing

in a column name to update every time. The column name settings can be cleared

using clearUpdateColumnNames() .

create or replace procedure testInsert(xmlDoc IN clob) is
 insCtx DBMS_XMLSave.ctxType;
 doc clob;
 rows number;
begin

 insCtx := DBMS_XMLSave.newContext('scott.emp'); -- get the save context..!

 DBMS_XMLSave.clearUpdateColumnList(insCtx); -- clear the update settings

 -- set the columns to be updated as a list of values..
 DBMS_XMLSave.setUpdateColumn(insCtx,'EMPNO');
 DBMS_XMLSave.setUpdateColumn(insCtx,'ENAME');
 DBMS_XMLSave.setUpdatecolumn(insCtx,'JOB');

 -- Now insert the doc. This will only insert into EMPNO,ENAME and JOB columns
 rows := DBMS_XMLSave.insertXML(insCtx, xmlDoc);
 DBMS_XMLSave.closeContext(insCtx);

end;
/
If you call the procedure passing in a CLOB as a document, an INSERT statement of

the form:

insert into scott.emp (EMPNO, ENAME, JOB) VALUES (?, ?, ?);

is generated. Note that in the earlier example, if the inserted document contains

values for the other columns (JOB, HIREDATE, and so on), those are ignored.

Also an insert is performed for each ROW element that is present in the input.

These inserts are batched by default.

Update Processing Using XSU (PL/SQL API)
Now that you know how to insert values into the table from XML documents, let us

see how to update only certain values. If you get an XML document to update the

salary of an employee and also the department that she works in:

<ROWSET>
23-10 Oracle9i XML Developer’s Kits Guide - XDK

Update Processing Using XSU (PL/SQL API)
 <ROW num="1">
 <EMPNO>7369</EMPNO>
 <SAL>1800</SAL>
 <DEPTNO>30</DEPTNO>
 </ROW>
 <ROW>
 <EMPNO>2290</EMPNO>
 <SAL>2000</SAL>
 <HIREDATE>12/31/1992</HIREDATE>
 <!-- additional rows ... -->
</ROWSET>

you can call the update processing to update the values. In the case of update, you

need to supply XSU with the list of key column names. These form part of the

where clause in the update statement. In the emp table shown earlier, the employee

number (EMPNO) column forms the key and you use that for updates.

XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
Consider the PL/SQL procedure:

create or replace procedure testUpdate (xmlDoc IN clob) is
 updCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 updCtx := DBMS_XMLSave.newContext('scott.emp'); -- get the context
 DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear the update settings..

 DBMS_XMLSave.setKeyColumn(updCtx,'EMPNO'); -- set EMPNO as key column
 rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update the table.
 DBMS_XMLSave.closeContext(updCtx); -- close the context..!

end;
/

In this example, when the procedure is executed with a CLOB value that contains

the document described earlier, two update statements would be generated. For the

first ROW element, you would generate an UPDATE statement to update the SAL and

JOB fields as shown:

UPDATE scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROW element,
XSU for PL/SQL 23-11

Delete Processing Using XSU (PL/SQL API)
UPDATE scott.emp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)
You may want to specify the list of columns to update. This would speed up the

processing since the same update statement can be used for all the ROW elements.

Also you can ignore other tags which occur in the document. Note that when you

specify a list of columns to update, an element corresponding to one of the update

columns, if absent, will be treated as NULL.

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, then you can use the setUpdateColumnName ()
procedure to set the column name to update.

create or replace procedure testUpdate(xmlDoc IN CLOB) is
 updCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 updCtx := DBMS_XMLSave.newContext('scott.emp');
 DBMS_XMLSave.setKeyColumn(updCtx,'EMPNO'); -- set EMPNO as key column

 -- set list of columnst to update.
 DBMS_XMLSave.setUpdateColumn(updCtx,'SAL');
 DBMS_XMLSave.setUpdateColumn(updCtx,'JOB');

 rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update the XML document..!
 DBMS_XMLSave.closeContext(updCtx); -- close the handle

end;
/

Delete Processing Using XSU (PL/SQL API)
For deletes, you can set the list of key columns. These columns will be put as part of

the WHERE clause of the DELETE statement. If the key column names are not

supplied, then a new DELETE statement will be created for each ROW element of the

XML document where the list of columns in the WHERE clause of the DELETE will

match those in the ROW element.

XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
Consider the delete example shown here:
23-12 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (PL/SQL API)
create or replace procedure testDelete(xmlDoc IN clob) is
 delCtx DBMS_XMLSave.ctxType;
 rows number;
begin

 delCtx := DBMS_XMLSave.newContext('scott.emp');
 DBMS_XMLSave.setKeyColumn(delCtx,'EMPNO');

 rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
 DBMS_XMLSave.closeContext(delCtx);
end;
/

If you use the same XML document shown for the update example, you would end

up with two DELETE statements,

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;
DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
If instead you want the delete to only use the key values as predicates, you can use

the setKeyColumn function to set this.

create or replace package testDML AS
 saveCtx DBMS_XMLSave.ctxType := null; -- a single static variable

 procedure insertXML(xmlDoc in clob);
 procedure updateXML(xmlDoc in clob);
 procedure deleteXML(xmlDoc in clob);

 end;
/

create or replace package body testDML AS

 rows number;

 procedure insertXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.insertXML(saveCtx,xmlDoc);
 end;
XSU for PL/SQL 23-13

Delete Processing Using XSU (PL/SQL API)
 procedure updateXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.updateXML(saveCtx,xmlDoc);
 end;

 procedure deleteXML(xmlDoc in clob) is
 begin
 rows := DBMS_XMLSave.deleteXML(saveCtx,xmlDoc);
 end;

begin
 saveCtx := DBMS_XMLSave.newContext('scott.emp'); -- create the context once..!
 DBMS_XMLSave.setKeyColumn(saveCtx, 'EMPNO'); -- set the key column name.
end;
/

Here a single delete statement of the form,

DELETE FROM scott.emp WHERE EMPNO=?

will be generated and used for all ROW elements in the document.

XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
In all the three cases described earlier, insert, update, and delete , the same

context handle can be used to do more than one operation. That is, you can perform

more than one insert using the same context provided all of those inserts are

going to the same table that was specified when creating the save context. The

context can also be used to mix updates, deletes, and inserts .

For example, the following code shows how one can use the same context and

settings to insert, delete, or update values depending on the user’s input.

The example uses a PL/SQL supplied package static variable to store the context so

that the same context can be used for all the function calls.

create or replace package testDML AS
 saveCtx DBMS_XMLSave.ctxType := null; -- a single static variable

 procedure insert(xmlDoc in clob);
 procedure update(xmlDoc in clob);
 procedure delete(xmlDoc in clob);

 end;
/

23-14 Oracle9i XML Developer’s Kits Guide - XDK

Delete Processing Using XSU (PL/SQL API)
create or replace package body testDML AS

 procedure insert(xmlDoc in clob) is
 begin
 DBMS_XMLSave.insertXML(saveCtx, xmlDoc);
 end;

 procedure update(xmlDoc in clob) is
 begin
 DBMS_XMLSave.updateXML(saveCtx, xmlDoc);
 end;

 procedure delete(xmlDoc in clob) is
 begin
 DBMS_XMLSave.deleteXML(saveCtx, xmlDoc);
 end;

 begin
 saveCtx := DBMS_XMLSave.newContext(’scott.emp’); -- create the context
once..!
 DBMS_XMLSave.setKeyColumn(saveCtx, ’EMPNO’); -- set the key column name.
 end;
end;
/
In the earlier package, you create a context once for the whole package (thus the

session) and then reuse the same context for performing inserts, updates and

deletes.

Users of this package can now call any of the three routines to update the emp table:

testDML.insert(xmlclob);
testDML.delete(xmlclob);
testDML.update(xmlclob);

All of these calls would use the same context. This would improve the performance

of these operations, particularly if these operations are performed frequently.

Note: The key column EMPNO would be used both for updates

and deletes as a way of identifying the row.
XSU for PL/SQL 23-15

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
XSU Exception Handling in PL/SQL
Here is an XSU PL/SQL exception handling example:

declare
 queryCtx DBMS_XMLQuery.ctxType;
 result clob;
 errorNum NUMBER;
 errorMsg VARCHAR2(200);
begin

 queryCtx := DBMS_XMLQuery.newContext('select * from emp where df = dfdf');

 -- set the raise exception to true..
 DBMS_XMLQuery.setRaiseException(queryCtx, true);
 DBMS_XMLQuery.setRaiseNoRowsException(queryCtx, true);

 -- set propagate original exception to true to get the original exception..!
 DBMS_XMLQuery.propagateOriginalException(queryCtx,true);
 result := DBMS_XMLQuery.getXML(queryCtx);

 exception
 when others then
 -- get the original exception
 DBMS_XMLQuery.getExceptionContent(queryCtx,errorNum, errorMsg);
 dbms_output.put_line(' Exception caught ' || TO_CHAR(errorNum)
 || errorMsg);
end;
/

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
Here are FAQs about XSU for PL/SQL:

How Can I Use XMLGEN.insertXML with LOBs?
I am trying to use the insertXML procedure from XSU. I have little experience

with using LOBS. What is the problem in my script?

I have a table lob_temp :

 SQL> desc lob_temp
 Name Null? Type
 ----------------- -------- ------------------ ----------
 CHUNK CLOB
23-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
 SQL> set long 100000
 SQL> select * from lob_temp;

 CHUNK
 --- ----------
 <DOCID> 91739.1 </DOCID>

 <SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using
Intermedia
 </SUBJECT>
 <TYPE> PROBLEM </TYPE>
 <CONTENT_TYPE> TEXT/PLAIN </CONTENT_TYPE>
 <STATUS> PUBLISHED </STATUS>
 <CREATION_DATE> 14-DEC-1999 </CREATION_DATE>
 <LAST_REVISION_DATE> 05-JUN-2000 </LAST_REVISION_DATE>
 <LANGUAGE> USAENG </LANGUAGE>

I have another table where I need to insert data from lob_temp :

 SQL> desc metalink_doc
 Name Null? Type
 ---------------- -------- ------------------ ----------
 DOCID VARCHAR2(10)
 SUBJECT VARCHAR2(100)
 TYPE VARCHAR2(20)
 CONTENT_TYPE VARCHAR2(20)
 STATUS VARCHAR2(20)
 CREATION_DATE DATE
 LAST_REVISION_DATE DATE
 LANGUAGE VARCHAR2(10)

This is the script. It is supposed to read data from lob_temp and then insert the

data, extracted from the XML document, to table metalink_doc :

 declare
 xmlstr clob := null;
 amount integer := 255;
 position integer := 1;
 charstring varchar2(255);
 finalstr varchar2(4000) := null;
 ignore_case constant number := 0;
 default_date_format constant varchar2(21) := 'DD-MON-YYYY';
 default_rowtag constant varchar2(10) := 'MDOC_DATA';
 len integer;
XSU for PL/SQL 23-17

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
 insrow integer;
 begin
 select chunk into xmlstr from lob_temp;
 dbms_lob.open(xmlstr,dbms_lob.lob_readonly);
 len := dbms_lob.getlength(xmlstr);
 while position < len loop
 dbms_lob.read(xmlstr,amount,position,charstring);
 if finalstr is not null then
 finalstr := finalstr||charstring;
 else
 finalstr := charstring;
 end if;
 position := position + amount;
 end loop;
 insrow := xmlgen.insertXML('metalink_doc',finalstr);
 dbms_output.put_line(insrow);
 dbms_lob.close(xmlstr);
 exception
 when others then
 dbms_lob.close(xmlstr);
 dbms_lob.freetemporary(xmlstr);
 end;
 /

This is the error received:

ERROR at line 1:
ORA-22275: invalid LOB locator specified
ORA-06512: at "SYS.DBMS_LOB", line 485
ORA-06512: at line 31
ORA-29532: Java call terminated by uncaught Java exception:
oracle.xml.sql.OracleXMLSQLException: Expected 'EOF'.

The user I am logged in as owns both tables, and all objects created when I ran

oraclexmlsqlload.csh .

Answer: You need to have <ROWSET>and <ROW>tags to insert XML document into

a table. I modified your procedure. There is a problem when parsing the DATE
format, hence I used VARCHAR2:

drop table lob_temp;
 create table lob_temp (chunk clob);
 insert into lob_temp values ('
 <ROWSET>
 <ROW>
 <DOCID> 91739.1 </DOCID>
23-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
 <SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using
Intermedia </SUBJECT>
 <TYPE> PROBLEM </TYPE>
 <CONTENT_TYPE> TEXT/PLAIN </CONTENT_TYPE>
 <STATUS> PUBLISHED </STATUS>
 <CREATION_DATE> 14-DEC-1999 </CREATION_DATE>
 <LAST_REVISION_DATE> 05-JUN-2000 </LAST_REVISION_DATE>
 <LANGUAGE> USAENG </LANGUAGE>
 </ROW>
 </ROWSET>
 ');

 drop table metalink_doc;
 create table metalink_doc (
 DOCID VARCHAR2(10),
 SUBJECT VARCHAR2(100),
 TYPE VARCHAR2(20),
 CONTENT_TYPE VARCHAR2(20),
 STATUS VARCHAR2(20),
 CREATION_DATE VARCHAR2(50),
 LAST_REVISION_DATE varchar2(50),
 LANGUAGE VARCHAR2(10)
);

 create or replace procedure prtest as
 xmlstr clob := null;
 amount integer := 255;
 position integer := 1;
 charstring varchar2(255);
 finalstr varchar2(4000) := null;
 ignore_case constant number := 0;
 default_date_format constant varchar2(21) := 'DD-MON-YYYY';
 default_rowtag constant varchar2(10) := 'MDOC_DATA';
 len integer;
 insrow integer;
 begin

 select chunk into xmlstr from lob_temp;
 dbms_lob.open(xmlstr,dbms_lob.lob_readonly);
 len := dbms_lob.getlength(xmlstr);

 while position < len loop
 dbms_lob.read(xmlstr,amount,position,charstring);
 if finalstr is not null then
 finalstr := finalstr||charstring;
XSU for PL/SQL 23-19

Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
 else
 finalstr := charstring;
 end if;
 position := position + amount;
 end loop;

 insrow := xmlgen.insertXML('metalink_doc',finalstr);
 dbms_output.put_line(insrow);

 IF DBMS_LOB.ISOPEN(xmlstr) = 1 THEN
 dbms_lob.close(xmlstr);
 END IF;

 exception
 when others then
 IF DBMS_LOB.ISOPEN(xmlstr)=1 THEN
 dbms_lob.close(xmlstr);
 END IF;
 end;
 /
 show err
23-20 Oracle9i XML Developer’s Kits Guide - XDK

Part V

 Tools and Frameworks That Support XDK

This part contains the following chapters, appendixes, and the XML glossary:

■ Chapter 24, "Developing XML Applications with JDeveloper"

■ Chapter 25, "Introduction to BC4J"

■ Chapter 26, "Introduction to UIX"

■ Appendix A, "XDK for Java: Specifications and Quick References"

■ Appendix B, "XDK for PL/SQL: Specifications"

■ Glossary

Developing XML Applications with
24

Developing XML Applications with

JDeveloper

This chapter contains the following sections:

■ Introducing JDeveloper

■ What’s Needed to Run JDeveloper

■ XDK Features in JDeveloper

■ Building XML Applications with JDeveloper

■ Using XSQL Servlet from JDeveloper

■ Frequently Asked Questions About JDeveloper and XML Applications
 JDeveloper 24-1

Introducing JDeveloper
Introducing JDeveloper
Oracle JDeveloper is a J2EETM development environment with end-to-end support

for developing, debugging, and deploying e-business applications. JDeveloper

empowers users with highly productive tools, such as the industry's fastest Java

debugger, a new profiler, and the innovative CodeCoach tool for code performance

analysis and improvement.

To maximize productivity, JDeveloper provides a comprehensive set of integrated

tools that support the complete development life cycle, from source code control,

modeling, and coding through debugging, testing, profiling, and deploying.

JDeveloper simplifies J2EE development by providing wizards, editors, visual

design tools, and deployment tools to create high-quality standard J2EE

components, including applets, JavaBeans, JavaServer Pages (JSP), servlets, and

Enterprise JavaBeans (EJB). JDeveloper also provides a public Addin API to extend

and customize the development environment and seamlessly integrate it with

external products.

JDeveloper Covers the Complete Development Life Cycle
Java is a relatively new language, and Java development environments are catching

up with traditional client/server tools. Developers now require a well-integrated

development environment that supports the complete development life cycle:

 Checkout
 |
 |------ Design --------|
 | |
Tune Edit
 | |
Debug Compile
 | |
 |------- Test --------|
 |
 Checkin
 |
 Deploy

In a typical scenario, a developer launches JDeveloper, checks out an application

from the source control system and starts the development process. UML modelers

help the developer with the design of the application, and possibly with the

generation of source code. JDeveloper provides wizards and editor, both visual and

code-based, to add functionality, and it includes various tools to compile, test,

debug, and tune the application. When satisfied, the developer can check the
24-2 Oracle9i XML Developer’s Kits Guide - XDK

Introducing JDeveloper
application back into the source control system and deploy it to the final

destination.

JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment
The 9i release of JDeveloper was completely rewritten in Java and now JDeveloper

runs on any operating system that has a Java Virtual Machine (JDK 1.3 and later)

and will be supported on Windows (NT, 2000, and XP), Linux and Solaris™

Operating Environment.

Another advantage is that the development environment is now fully extensible

through the Addin API, which allows customers and third-party vendors to extend

the product and integrate it with other products.

Java Alone Is Not Enough
Over the last few years, Java has become the programming language for the

Internet. Some of the reasons for this popularity are its operating system

independence, its simplicity, and its powerful component model.

To build complete e-business applications, however, developers will need more

than Java alone. Oracle believes in, and has invested heavily, in the combination of

Java, SQL, and XML. Java is used for programming the business and presentation

logic, SQL for interacting with the database, and XML for passing information

between loosely coupled applications.

JDeveloper helps developers build e-business applications using Java, XML, HTML,

SQL, and PL/SQL. It provides various code editors and visual tools for each of

these languages.

XML Tools in JDeveloper
The Oracle XDK is integrated into JDeveloper, offering many ways to create,

handle, and transform XML. For example, with the XSQL Servlet, developers can

query and manipulate database information, generate XML documents, transform

the documents using XSLT stylesheets, and make them available on the Web.

JDeveloper has a new schema-driven XML editor. See Figure 24–1.
Developing XML Applications with JDeveloper 24-3

Introducing JDeveloper
Figure 24–1 JDeveloper’s Schema-Driven XML Editor in Action

An XML Schema Definition defines the structure of an XML document and is used

in the editor to validate the XML and help developers when typing. This feature is

called Code Insight and provides a list of valid alternatives for XML elements or

attributes in the document. Just by specifying the schema for a certain language, the

editor can assist you in creating a document in that markup language.

Oracle JDeveloper simplifies the task of working with Java application code and

XML data and documents at the same time. It features drag-and-drop XML

development modules. These include the following:

■ Color-coded syntax highlighting for XML

■ Built-in syntax checking for XML and Extensible Style Sheet Language (XSL)

■ XSQL Pages and Servlet support, where developers can edit and debug Oracle

XSQL Pages, Java programs that can query the database and return formatted

XML, or insert XML into the database without writing code. The integrated

servlet engine enables you to view XML output generated by Java code in the
24-4 Oracle9i XML Developer’s Kits Guide - XDK

Introducing JDeveloper
same environment as your program source, making it easy to do rapid, iterative

development and testing.

■ Includes Oracle's XML Parser for Java

■ Includes XSLT Processor

■ Related XDK for JavaBeans components

■ XSQL Page Wizard. See "Page Selector Wizard" on page 24-8.

■ XSQL Action Handlers

■ Schema-driven XML editor.

Oracle XML Developer’s Kit (XDK) is integrated into JDeveloper, so that it offers

many utilities to help Java developers handle, create, and transform XML. For

example, when designing with XSQL Servlet, you can query and manipulate

database information, generate XML documents, transform them using XSLT

stylesheets, and make them available on the web.

Business Components for Java (BC4J)
To take J2EE application development to a higher level of productivity, JDeveloper

now offers Business Components for Java (BC4J), a standards-based, server-side

framework for creating scalable, high-performance Internet applications. The

framework provides design-time facilities and runtime services to drastically

simplify the task of building and reusing business logic.

Oracle Business Components for Java (BC4J) is a 100%-Java, XML-powered

framework that enables productive development, portable deployment, and flexible

customization of multitier, database-savvy applications from reusable business

components.

Application developers use the Oracle Business Components framework and Oracle

JDeveloper 's integrated design-time wizards, component editors, and productive

See Also:

■ Chapter 9, "XSQL Pages Publishing Framework"

■ http://jdeveloper.us.oracle.com

■ http://otn.oracle.com/products/jdev/

■ The online discussion forum for JDeveloper is located at

http://www.oracle.com/forums
Developing XML Applications with JDeveloper 24-5

Introducing JDeveloper
Java coding environment to assemble and test application services from reusable

business components.

These application services can then be deployed as either CORBA Server Objects or

EJB Session Beans on enterprise-scale server platforms supporting Java technology.

The same server-side business component can be deployed without modification as

either a JavaServer Pages/Servlet application or Enterprise JavaBeans component.

This deployment flexibility, enables developers to reuse the same business logic and

data models to deliver applications to a variety of clients, browsers, and wireless

Internet devices without having to rewrite code.

In JDeveloper, you can customize the functionality of existing Business

Components by using the new visual wizards to modify your XML metadata

descriptions.

Integrated Web Services Development
JDeveloper integrates standard J2EE development techniques seamlessly with both

the latest XML and emerging Web Services Standards (including SOAP, UDDI, and

WSDL) and their Java-based equivalents. To preserve existing investments in

PL/SQL and J2EE applications, JDeveloper makes it very easy for developers to

create, deploy and consume Web Services from J2EE and PL/SQL applications

using:

■ Web Services creation from Java classes, Enterprise JavaBeans, and PL/SQL

procedures.

■ Automated WSDL file and SOAP deployment descriptor generation during

Web Services creation.

■ One-click SOAP service registration and de-registration.

■ Support for Oracle9i SOAP and Apache SOAP 2.x SOAP servers.

■ Web Service proxy creation from WSDL files.

■ One-click synchronization of Web Service proxies from WSDL files.

■ Server skeleton creation from WSDL files.

See Also: Chapter 25, "Introduction to BC4J"
24-6 Oracle9i XML Developer’s Kits Guide - XDK

What’s Needed to Run JDeveloper
What’s Needed to Run JDeveloper
JDeveloper is an IDE that has been written in Java and therefore, runs on Windows

NT, Windows 2000, Linux and Solaris™ Operating Environment systems. It needs a

minimum of 128 Mb RAM.

Minimum system requirements for JDeveloper
Refer to JDeveloper Release Notes. As more products are run on the same machine,

system requirements are increased. A typical development environment for

running JDeveloper includes:

■ Running JDeveloper

■ Running Oracle9i locally

■ Running Oracle9i Application Server locally

■ Additional third party tools (profilers, version control, modelers,...)

These add to system requirements, in terms of actual CPU usage and in disk space

needs.

Business rules can be changed on site without needing access to the underlying

component source code.

XSQL Component Palette
XSQL Component Palette provides you with a mechanism to add tags which allows

accessing database tables or BC4J View Objects. You can either perform queries

against them or update the underlying database tables through them. Figure 24–2,

"JDeveloper’s XSQL Component Palette" illustrates the JDeveloper XSQL

Component Palette.
Developing XML Applications with JDeveloper 24-7

What’s Needed to Run JDeveloper
Figure 24–2 JDeveloper’s XSQL Component Palette

Page Selector Wizard
When you need to create XSQL pages while building a web application, you can

invoke Page Wizard which enables you to create XSQL Pages on top of either

database tables directly or on top of BC4J View Objects. When you choose to build

an XSQL Page on top of a BC4J View Object, you are prompted to select an

application module from a list or create a new application module and then build

the XSQL Pages based application.

See Also: Oracle9i Java Developer’s Guide
24-8 Oracle9i XML Developer’s Kits Guide - XDK

XDK Features in JDeveloper
XDK Features in JDeveloper
The following lists JDeveloper’s supported XDK for Java components:

■ Oracle XML Parser for Java

■ Oracle XSQL Servlet

You can use the XML Parser for Java including the XSLT Processor and the XML

SQL Utility in JDeveloper as all these tools are written in Java. JDeveloper provides

these components.

Sample programs which demonstrate how to use these tools can be found in the

[JDeveloper]/Samples/xmlsamples directory.

Oracle XDK Integration in JDeveloper
Oracle XDK for Java consists of the following XML tools:

■ XML Parser for Java

■ XML SQL Utility for Java

■ XML Java Class Generator

■ XSQL Servlet

■ XML Transviewer Beans

All these utilities are written in Java and hence can easily be dropped into

JDeveloper and used with no further effort. You can also update the XDK for Java

components with the latest versions downloaded from Oracle Technology Network

(OTN) at http://technet.oracle.com/tech/xml.

Oracle XDK for Java also includes the XML Transviewer Beans. These are a set of

JavaBeans that permit the easy addition of graphical or visual interfaces to XML

applications. Bean encapsulation includes documentation and descriptors that make

them accessible directly from JDeveloper.

Developing Web Applications in JDeveloper Using XSQL Pages
The XSQL Servlet is a tool that processes SQL queries and outputs the result set as

XML. This processor is implemented as a Java servlet and takes as its input an XML

See Also: Chapter 10, "XDK JavaBeans" for more information on

how to use the Transviewer Beans.
Developing XML Applications with JDeveloper 24-9

XDK Features in JDeveloper
file containing embedded SQL queries. It uses the XML Parser for Java and the XML

SQL Utility to perform many of its operations.

The XSQL Servlet offers a productive and easy way to get XML in and out of the

database. Using simple scripts you can:

■ Generate simple and complex XML documents

■ Apply XSL Stylesheets to generate into any text format

■ Parse XML documents and store the data in the database

■ Create complete dynamic web applications without programming a single line

of code

JDeveloper XSQL Example 1: emp.xsql
For example, consider the following XML example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<FAQ xmlns:xsql="urn:oracle-xsql" connection = "scott">
 <xsql:query doc-element="EMPLOYEES" row-element="EMP">
 select e.ename, e.sal, d.dname as department
 from dept d, emp e
 where d.deptno = e.deptno
 </xsql:query>
</FAQ>

Generates the following:

<EMPLOYEES>
 <EMP>
 <ENAME>Scott</ENAME>
 <SAL>1000</SAL>
 <DEPARTMENT>Boston</DEPARTMENT>
 </EMP>
 <EMP>
 ...
</EMPLOYEES>

With JDeveloper you can easily develop and execute XSQL files. The built in Web

Server and the user's default Web Browser will be used to display the resulting

pages.
24-10 Oracle9i XML Developer’s Kits Guide - XDK

Building XML Applications with JDeveloper
Using Action Handlers in XSQL Pages
XSQL Action Handlers are Java classes which can be invoked from XSQL Page

applications very easily. Since these are Java classes they can be debugged from

JDeveloper just like any other Java application.

If you are building an XSQL Pages application, you can make use of the XSQL

Action Handler to extend the set of actions that can be performed to handle more

complex jobs. You will need to debug this Action Handler.

Your XSQL Pages should be in the directory specified in the Project Property

“HTML Paths” settings for “HTML Source Directory”.

To debug your Action Handler carry out these steps:

1. Assume you have created an .xsql file which has reference to a custom Action

Handler called MyActionHandler.

2. Debug this Action Handler because it is not exactly behaving as you expect.

3. Set breakpoints in your Java source file.

4. Right mouse click on the .xsql file and then choose Debug... from the menu.

Building XML Applications with JDeveloper
Consider the following example that demonstrates how XML is used to represent

data, not present it. It shows the many to one relationship between employees and

departments.

JDeveloper XDK Example 1: BC4J Metadata
<Departments>
<Dept>
 <Deptno>10</Deptno>
 <Dname>Sales></Dname>
 <Loc>
 <Employees>
 <Employee>
 <Empno>1001></Empno>
 <Ename>Scott</Ename>
 <Salary>80000</Salary>
 </Employee>
 </Employees>

See Also: The JDeveloper Guide under the online HELP menu.
Developing XML Applications with JDeveloper 24-11

Using XSQL Servlet from JDeveloper
...
 </Employee>
 </Employees>
</Dept>
<Dept>
...

Procedure for Building Applications in JDeveloper
To build an XSQL project in JDeveloper carry out the following steps:

1. Start a New JDeveloper Project by selecting File >New Project .

2. Create a Business Components for Java application.

3. Choose File >New from the menu. Click OK.

4. Choose WebObjects >XSQL from the menus.

5. Position the cursor between the <PAGE> and <?PAGE> tags.

6. From Component Palette, choose ViewObjects Show tag.

7. Select the application module from the list that pops up.

When you finish these steps in the Page Wizard, you should have an XSQL Page

based on the Business Components for Java (BC4J) framework View objects. When

you run this page, it sends the XML data to your browser. You could optionally

create a stylesheet to format the data so that it appears in a way that you prefer or

you can tune it so that it can be displayed on a PDA or cellphone.

Using XSQL Servlet from JDeveloper
XSQL Servlet offers a productive and easy way to get XML in and out of the

database.

When using XSQL Servlet in JDeveloper, you do not need to include the XSQL

Runtime in your project as this is already done for any new XSQL Page or XSQL

wizard-based application.

Using simple scripts you can do the following from JDeveloper:

■ Generate simple and complex XML documents

See Also: Chapter 9, "XSQL Pages Publishing Framework" for

information about how to use XSQL Servlet.
24-12 Oracle9i XML Developer’s Kits Guide - XDK

Using XSQL Servlet from JDeveloper
■ Apply XSL stylesheets to generate into any text format

■ Parse XML documents and store the data in the database

■ Create complete dynamic web applications without programming a single line

of code

Consider a simple query in an XSQL file, which returns details about all the

employees in the emp table. The XSQL code to get this information would be as

shown in Example 2.

JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql
<?xml version="1.0"?>
<xsql:query xmlns:xsql="urn:oracle-xsql" connection="demo">
 select *
 from emp
 order by empno
</xsql:query>

Figure 24–3 shows what the raw employee XML data displayed on the browser.
Developing XML Applications with JDeveloper 24-13

Using XSQL Servlet from JDeveloper
Figure 24–3 Employee Data in Raw XML Format

If you want to output your data in a tabular form, make a small modification to

your XSQL code to specify a stylesheet. The changes you would make in this

example are shown later highlighted.

JDeveloper XSQL Example 3: Employee Data with Stylesheet Added
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<xsql:query xmlns:xsql="urn:oracle-xsql" connection="demo">
 select *
 from emp
24-14 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About JDeveloper and XML Applications
 order by empno
</xsql:query>

The result would be a table. You can do a lot more with XSQL Servlet of course.

Frequently Asked Questions About JDeveloper and XML Applications
This section lists JDeveloper questions and answers.

How Do I Construct an XML Document in JSP?
I am dynamically constructing an XML document in a JSP page (from the results of

data returned by a PL/SQL API) using the classes generated by the Class generator

(based on a DTD) and then applying a XSL stylesheet to render the transformation

in HTML. I see that this works fine only for the first time, that is, when the JSP is

first accessed (and internally compiled), and fails every time the same page is

accessed thereafter.

The error I get is:

"oracle.xml.parser.v2.XMLDOMException: Node doesn't belong to the current
document"

The only way to make it work again is to compile the JSP, by just 'touching' the JSP

page. Of course, this again works only once. I am using Apache JServ.

How can this be overcome? Does the static code in the Java class generated for the

top level node have to do anything with it?

Answer: It seems to me that you may have stored some invalid state in your JSP.

The XML Parser picks this invalid state, then, throws the exception you mentioned.

As far as I know, CRM does not use an HTTP session in their application. I guess

this is true in your case also. You may have used a member variable to store some

invalid state unintentionally. Member variables are the variables declared by the

following syntax:

<%! %>

For example:

See Also: Chapter 9, "XSQL Pages Publishing Framework" and

also the XDK for Java, XSQL Servlet Release Notes on OTN at

http://technet.oracle.com/tech/xml
Developing XML Applications with JDeveloper 24-15

http://technet.oracle.com/tech/xml
http://technet.oracle.com/tech/xml

Frequently Asked Questions About JDeveloper and XML Applications
<%! Document doc=null; %>

Many JSP users misunderstand that they need to use this syntax to declare

variables. In fact, you do not need to do that. In most of cases, you do not need a

member variable. Member variables are shared by all requests and are initialized

only once in the lifetime of the JSP.

Most users need stack variables or method variables. These are created and

initialized for each request. They are declared as a form of scriptlet as shown in the

following example:

<% Document doc=null; %>

In this case, every request has its own doc object, and the doc object is initialized to

null for each request.

If you do not store an “invalid” state in session or method variables in your JSP,

then there may be other reasons that cause this.

Is There a Way to Use the @code Directly in the document() Line?
Now, if I wish to use the @code as a key, I use

<xsl:template match="aTextNode">
 ...
 <xsl:param name="labelCode" select="@code"/>
 <xsl:value-of
 select="document('messages.xml')/messages/msg[@id=$labelCode and
 @lang=$lang]"/>
 ...
 </xsl:template>

that works too, but I was wondering if there is a way to use the @code directly in

the document() line?

Answer: This is what the current() function is useful for. Rather than:

<xsl:param name="labelCode" select="@code"/>
<xsl:value-of
select="document('messages.xml')/messages/msg[@id=$labelCode and
@lang=$lang]"/>

you can do:

<xsl:value-of
select="document('messages.xml')/messages/msg[@id=current()/@code
24-16 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions About JDeveloper and XML Applications
 and @lang = $lang]"/>

How Do I Retrieve Data from messages.xml?
Is it, or will it be, possible to retrieve the data stored in messages.xml from the

database? How is the document() instruction going to work where listener and

servlet will run inside the database?

Answer: Yes. By the spec, the XSLT engine should read and cache the document

referred to in the document() function. It caches the parsed document based on

the string-form of the URI you pass in, so here's how you can achieve a

database-based message lookup:

1. CREATE TABLE MESSAGES (lang VARCHAR2(2), code NUMBER,
message VARCHAR2(200));

2. Create an XSQL page like msg.xsql :

<xsql:query lang="en" xmlns:xsql="urn:oracle-xsql" connection="demo"
 row-element="" rowset-element="">
 select message
 from messages
 where lang = '{@lang}'
 and code = {@code}
</xsql:query>

3. Create a stylesheet that uses msg.xsql in the document() function as in this

example:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:template match="/">
 <html><body>
 In English my name is
 <xsl:call-template name="msg">
 <xsl:with-param name="code">101</xsl:with-param>
 </xsl:call-template>

 En espanol mi nombre es
 <xsl:call-template name="msg">
 <xsl:with-param name="code">101</xsl:with-param>
 <xsl:with-param name="lang">es</xsl:with-param>
 </xsl:call-template>

 En français, je m'appelle
 <xsl:call-template name="msg">
 <xsl:with-param name="code">101</xsl:with-param>
 <xsl:with-param name="lang">fr</xsl:with-param>
Developing XML Applications with JDeveloper 24-17

Frequently Asked Questions About JDeveloper and XML Applications
 </xsl:call-template>

 In italiano, mi chiamo
 <xsl:call-template name="msg">
 <xsl:with-param name="code">101</xsl:with-param>
 <xsl:with-param name="lang">it</xsl:with-param>
 </xsl:call-template>
 </body></html>
 </xsl:template>
 <xsl:template name="msg">
 <xsl:param name="lang">en</xsl:param>
 <xsl:param name="code"/>
 <xsl:variable name="msgurl"
select="concat('http://xml/msg.xsql?lang=',$lang,'&code=',$code)"/>
 <xsl:value-of select="document($msgurl)/MESSAGE"/>
 </xsl:template>
</xsl:stylesheet>

4. Try it out at http://xml/testmessage.xsql

This is great if you want to fetch the message from over the web. Alternatively, you

could use the msg.xsql preceding but include it in your XSQL Page if that makes

sense using:

<xsql:include-xsql href="msg.xsql?lang={@lang}&code={@code}"/>

Or you could write your own custom action handler to use JDBC to fetch the

message and include it in the XSQL page yourself.

How Do I Move Complex XML Documents to a Database?
I am moving XML documents to an Oracle database. The documents are fairly

complex. Can an XML document and the Oracle Developer’s Kit (XDK) generate a

possible DDL format for how the XML Document should be stored in the database,

ideally generating an Object-Relational Structure. Does anyone know of a tool that

can do this?

Answer: The best way may be to use the Class Generator. Use the XML SQL Utility

(XSU) if DTD files are not already created. You'll still have to write a mapping

program.

Another method is to create views and write stored procedures to update multiple

tables. Unfortunately, you'll have to create your tables and views beforehand in

either case.
24-18 Oracle9i XML Developer’s Kits Guide - XDK

Introduction
25

Introduction to BC4J

This chapter contains the following sections:

■ Introducing Business Components for Java (BC4J)

■ Implementing XML Messaging

■ Creating a Mobile Application in JDeveloper

■ Building XSQL Clients with BC4J

■ Frequently Asked Questions for BC4J
 to BC4J 25-1

Introducing Business Components for Java (BC4J)
Introducing Business Components for Java (BC4J)
Business Components for Java is JDeveloper's programming framework for

building multitier database applications from reusable business components. Such

applications typically consist of:

■ A client-side user interface written in Java and/or HTML.

■ One or more business logic tier components that provide business logic and

views of business objects.

■ Tables on the database server that store the underlying data.

A multitier application built with the Business Components for Java framework

deploys views, business rules, and custom code in components that clients can

share. With the Business Components for Java framework, such components are

easy to build and maintain, easy to use and reuse, and easy to customize.

Components do not need modification to be deployed to any supported platform.

This approach provides many features and benefits, including:

See Also: Figure 25–1, "Using Business Components for Java

(BC4J)" for one example of a multitier application.

Table 25–1 Features and Benefits of BC4J

Feature Description

Encapsulated business logic Business logic, including validation, resides and executes in
the business logic tier, enabling truly thin clients, easy
customizing, and reuse.

Flexible views of data Views of data are SQL-based and completely separate from
the underlying entities, enabling flexible presentation
schemes.

Thin clients BC4J supports thin clients--simple windows to business logic
and views of data processed by the business logic tier.

flexible deployment Deploy locally or on standard server platforms as CORBA
server objects and EJB Session Beans.

Database interaction BC4J's component-based framework handles many repetitive
coding tasks, such as master-detail coordination and locking.

Transaction management Business Components for Java manages changes in its cache
and handles posting of changes to the database.
25-2 Oracle9i XML Developer’s Kits Guide - XDK

Introducing Business Components for Java (BC4J)
BC4J comprises a framework for building and customizing domain-specific

components. As a developer, you derive objects from the classes and interfaces

provided by the framework and add custom code to implement features specific to

your application. The following business components are used to support this

process:

Each business component you create is represented by an XML file and one or more

Java files. The XML file stores metadata (the descriptive information about features

and settings of an application you declare using wizards at design time), while the

Java file stores the object's code (which implements application-specific behavior).

Each object is organized into a package using the directory-based semantics of

packages in Java.

The Java and XML files that represent business components use a similar syntax to

identify the package they are part of:

Table 25–2 Business Components in BC4J

Object Description

Entity object An entity object encapsulates business logic for a database
table, view or synonym. Clients access an entity object's data
through one or more view objects. A given entity object can be
used by any number of view objects. Relationships between
entity objects are expressed using associations.

View object View objects use SQL queries to specify filtered subsets of
attributes from entity objects. Clients manipulate data by
navigating through the result set, getting and setting attribute
values. Relationships between view objects are expressed using
view links.

Application module An application module is a logical container for instances of
view objects, view links, and transactions specified by other
application modules.
Introduction to BC4J 25-3

Introducing Business Components for Java (BC4J)
What Is the Business Components Framework?
The business components framework is a class library, in oracle.jbo.* , with

built-in application functionality. Using the framework involves specializing base

classes to introduce application-specific behavior, allowing the framework to

coordinate many of the basic interactions between objects.

By using the Business Components for Java design-time wizards and editors, you

can build business logic tiers by defining the characteristics of components: their

attributes, relationships, and business rules. Business Components for Java

generates Java source code and XML metadata to implement the behavior you have

specified. Because the code inherits from a framework, the Java source files are

concise and do not contain large amounts of generated code, so it's easy to see

where to add the code that models your business. You can use JDeveloper to add

the Java code to enhance or change the behavior, and easily test the application

services, independently of the deployment platform.

Using Business Components
JDeveloper provides integrated support for the Business Components for Java

framework. Using design tools such as wizards and property editors you define the

characteristics of objects: their attributes, relationships, and business rules. Then

JDeveloper generates executable Java code and XML to implement the behavior you

define for the components.

In theory, you could write this code yourself. In practice, though, it's better to use

the wizards to be sure that all necessary code is generated and all dependencies are

addressed. Then you can edit the generated code to meet the specific needs of your

applications. JDeveloper enforces no particular methodology, but the development

process typically involves answering questions like these:

Table 25–3 Java and XML Syntax Used by BC4J

Java XML

package d2ePackage;

 ...

 public class DeptViewImpl extends

 oracle.jbo.server.ViewObjectImpl {

 ...

 }

<ViewObject

 Name="DeptView"

 ...

 ComponentClass="d2ePackage.DeptViewImpl">
25-4 Oracle9i XML Developer’s Kits Guide - XDK

Introducing Business Components for Java (BC4J)
■ What are the entities and business objects? You can use entity objects on their

own (for example, a customer), or you can combine several entity objects (for

example, a purchase order consisting of a header, line items, shipments, and

distributions).

■ How are the entities related? For example, you could define a one-to-many

association between departments and employees.

■ What are the validation rules? For example, a business rule might specify a

minimum salary for employees with more than five years of service. You can

apply rules to attributes, entities, and business objects.

■ What data will be presented and manipulated? By creating views, you define

SQL queries to select and filter data from the entities to minimize network

traffic and client-side processing requirements.

Advantages at BC4J Design Time
1. Real-world entities (for example, employees) are used to represent data stored in

tables in a database.

2. JDeveloper uses data and metadata from the table to create a Java class that

represents the entity. You can edit this Java code to change the default attributes and

behavior.

3. JDeveloper also represents metadata in a customizable XML file.

4. JDeveloper can create default view objects to specify criteria for selecting data.

You can define your own view objects in addition to (or instead of) the defaults.

5. JDeveloper generates customizable Java classes for each view object: a class for

the view object definition and a class for the row. It also generates an XML file for

each view object.

6. You use a wizard to define an application module. An application module is a

logical container for related objects. It provides a context for defining and executing

transactions.

After the application service comprising the business components is designed, built,

tested, and debugged, you can deploy it.

Advantages at BC4J Runtime
1. Client code initializes an application module, loading the entities and views it

contains.
Introduction to BC4J 25-5

Implementing XML Messaging
2. When a view object executes a query at run time, it manipulates data from the

corresponding entity or entities.

3. Each view object provides a default iterator that you can use to navigate through

its result set.

4. When a query fetches one or more result rows, individual rows are represented

by Row objects. Each column value in the result row is accessed through an

attribute of a Row object.

5. Controls in the client form enable users to view and edit the data. The controls

display rows provided by view objects, which are themselves bound to underlying

entity objects. So, when a user changes a value in a control, the Business

Components for Java framework sends the action to the view object, which sends it

to the entity object. Business rules (if any) attached to the entity object validate the

new value before the framework sends it to the database.

Implementing XML Messaging
The Business Components for Java (BC4J) framework provides a general,

metadata-driven solution for mapping E-commerce XML Messages into and out of

the database.

Sun Microsystems, Inc. provides a Java Message Service (JMS) API, and Oracle9i

provides an Advanced Queueing API, that you can use with Business Components

for Java to implement XML messaging.

To do so, you use business component framework methods in the
ViewObjectImpl and ViewRowImpl classes which enable the reading and writing

of a canonical format of XML data:

■ writeXML() - Writes the current object into an XML Element, which can be

added to any XML Document, including as a payload for an XML Message.

■ createXMLDefinition() - Creates an XML DTD for a ViewObject or

ViewRow.

■ readXML() - Reads the attribute values or rows in this object from the XML

Element, which could be derived from an XML Document or an XML Message.

The XML messaging sample shows you how to implement a working messaging

system. In addition, it provides the general steps you need to follow to implement

XML messaging. See $ORACLE_HOME\BC4J\samples.
25-6 Oracle9i XML Developer’s Kits Guide - XDK

Implementing XML Messaging
For more information on business component methods, see the Javadoc. For more

information on JMS, see the Javasoft web site. For more information on Advanced

Queueing, see your Oracle9i documentation.

Test BC4J Applications using JDeveloper
You can use Oracle BC4J framework and Oracle JDeveloper 's wizards and

component editors to assemble and test application services from your reusable

business components.

In JDeveloper, you can also customize the functionality of existing Business

Components by using the visual wizards to modify your XML metadata

descriptions.

BC4J Uses XML to Store Metadata
The business components for Java framework that ships with JDeveloper uses XML

to store metadata about its application components. Important information is now

stored in a structured document rather than in Java source code. This makes the

application easier to understand and customize.

The application is now customizable without having access to the source code.

Figure 25–1, "Using Business Components for Java (BC4J)" shows how you use BC4J

to generate XML documents.

BC4J framework provides a general, metadata-driven solution for mapping

e-commerce XML messages into and out of the database. BC4J has a technical white

paper on its features available at the following Web site:

 http://otn.oracle.com/products/jdev/content.html.

BC4J is a pure-Java, XML-based business components framework for making

building e-commerce applications easier. It is a Java framework usable on its own,

but also has tight development support built-into JDeveloper, available for

download from the same Web site:

See Also:

■ Chapter 21, "XSLT Processor for PL/SQL"

■ Oracle9i Java Developer’s Guide

■ http://otn.oracle.com/products/bc4j
Introduction to BC4J 25-7

Implementing XML Messaging
BC4J lets you flexibly map hierarchies of SQL-based view components to

underlying business components that manage all application behavior (rules and

processes) in a uniform way. It also supports dynamic functionality, so most of its

features can be driven completely off XML metadata. You can build a layer which

flexibly maps any XML document into and out of the database using this

framework. One key benefit is that when XML Documents are put into the system,

they automatically can have all the same business rules validated.

Figure 25–1 Using Business Components for Java (BC4J)

Business rules can be changed on site without needing access to the underlying

component source code.

XML

Oracle9 i

XSL
Stylesheet

XSQL Servlet

Oracle Business
components for
Java

Browser

Graphical or
non-graphical

browser

Personal
Digital

Assistant

Cell
Phone
25-8 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper
Creating a Mobile Application in JDeveloper
This mobile application is a Departments database application that demonstrates

how Business Components for Java (BC4J) and XML can be used to develop

applications that can be accessed over wireless devices. The application consists of

two main parts:

■ Server-side business logic which is developed using the Business Components

for Java (BC4J) Framework and the second is the client part. The business logic

consists of a view object based on the DEPT table in SCOTT's schema.

■ A mechanism to query the DEPT table and update it from any client device

including a browser, a cellular phone and a Palm Pilot. For the latter device, the

application uses emulators running on Windows NT.

Figure 25–2, "Creating a Mobile Application in JDeveloper Using BC4J and XSQL

Servlet" shows schematically how the mobile application works with BC4J, XSQL

Servlet, XSL Stylesheets, and Oracle9i.

You can see a more comprehensive demo of a similar application on

http://otn.oracle.com/tech/xml.
Introduction to BC4J 25-9

Creating a Mobile Application in JDeveloper
Figure 25–2 Creating a Mobile Application in JDeveloper Using BC4J and XSQL
Servlet

Create the BC4J Application
First create the BC4J application. It connects to the SCOTT schema on an Oracle9i
database. Figure 25–3, "BC4J Application: DEPT View Object XML File" shows the

XML file containing the metadata about the DEPT object. See "JDeveloper XDK

Example 1: BC4J Metadata" on page 24-11.
25-10 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper
Figure 25–3 BC4J Application: DEPT View Object XML File

Create JSP Pages Based on a BC4J Application
You can then create JSP pages based upon this BC4J application. In the JSP pages

you are introduced to the XML Data Generator Web Beans. Figure 25–4, "BC4J

Application: XSQL File Calling JSP Page" shows the XSQL file which calls the JSP

page to create the new department.
Introduction to BC4J 25-11

Creating a Mobile Application in JDeveloper
Figure 25–4 BC4J Application: XSQL File Calling JSP Page

Create XSLT Stylesheets According to the Devices Needed to Read the Data
We create XSLT stylesheets to go with the various client devices that we are going to

access our data from. In your XSQL files, you specify the list of stylesheets and the

protocols they go with which basically ties the stylesheets to the client device.

Example 25–5, "BC4J Application: XSL Stylesheet (indexPP.xsl)" shows an example

code snippet of a stylesheet (indexPP.xsl) which transforms the XML data to

HTML for displaying on a browser on the Palm Pilot emulator.
25-12 Oracle9i XML Developer’s Kits Guide - XDK

Creating a Mobile Application in JDeveloper
Figure 25–5 BC4J Application: XSL Stylesheet (indexPP.xsl)

Figure 25–6, "Cell Phone Emulator Running the Department Application Client"

shows the Cell Phone Emulator running the Departments Application Client. It also

shows the setup screen for the Cell Phone Emulator.
Introduction to BC4J 25-13

Creating a Mobile Application in JDeveloper
Figure 25–6 Cell Phone Emulator Running the Department Application Client

Figure 25–7, "Palm Pilot Emulator Accessing the BC4J Departments Application

Through HandWeb Browser" shows the Palm Pilot Emulator accessing the

Departments Application by means of HandWeb Browser.
25-14 Oracle9i XML Developer’s Kits Guide - XDK

Building XSQL Clients with BC4J
Figure 25–7 Palm Pilot Emulator Accessing the BC4J Departments Application
Through HandWeb Browser

Building XSQL Clients with BC4J
In JDeveloper9i, you can build XSQL Pages which can integrate with BC4J

application modules and thereby serve application logic from the middle tier to

multiple clients. You can retrieve XML data and present it to any kind of a client

device just by applying the corresponding stylesheet.

Building XSQL Clients with BC4J
In JDeveloper 9i, you can build XSQL Pages which can integrate with BC4J

application modules and thereby serve application logic from the middle tier to

See Also:

■ Chapter 21, "XSLT Processor for PL/SQL"

■ Oracle9i Java Developer’s Guide

■ Oracle9i XML Case Studies and Applications
Introduction to BC4J 25-15

Building XSQL Clients with BC4J
multiple clients. You can retrieve XML data and present it to any kind of a client

device just by applying the corresponding stylesheet.

Web Objects Gallery
The Web Objecst Gallery has icons to assist in creating XSQL, XML, and XSL

documents easily. When you click them, the basic tags for these pages are generated

and you can then enhance them.

The XSQL Pages icon is of special interest because the XSQL Component Palette can

be used, after generating your basic XSQL pages, to insert data bound tags in the

XSQL pages. Figure 25–8 illustrates JDeveloper’s Web Objects Gallery.
25-16 Oracle9i XML Developer’s Kits Guide - XDK

Building XSQL Clients with BC4J
Figure 25–8 JDeveloper’s Object Gallery Showing the new XSQL, XML, and XSL Icons

Generating and Managing Code When Building XML and Java Applications
The following lists some typical JDeveloper code requirements when using the BC4J

framework to build an XML application:

■ A .java file and a .xml file for each entity object and each view object

■ A .java file for each association object and each link object

■ A .java file and a .xml file for the application module

■ Double-click any of these files in the JDeveloper navigator to view the file

contents.

The BC4J framework represents each Business Component that uses a combination

of XML and Java code.
Introduction to BC4J 25-17

Frequently Asked Questions for BC4J
■ XML. The XML code defines the metadata representing declarative settings and

features of the object.

■ Java. The Java code implements the object’s behavior.

Other typical generated files are:

■ Java implementation of the entity

■ View XML file

■ Java implementation of the view

■ Application module XML file

■ Java implementation of the application module

Frequently Asked Questions for BC4J
Some FAQs for BC4J are:

Can Applications Built Using BC4J Work With Any J2EE-Compliant Container?
Answer: Yes. The BC4J framework works with any J2EE-compliant application

server. The Oracle9i JDeveloper IDE supports automatically packaging a

BC4J-powered J2EE application for deployment to any J2EE 1.2 container. In

addition, if you are using Oracle9iAS or WebLogic containers, in addition to this

packaging assistance, the tool can automatically carry out the deployment for you,

too.

Can J2EE Applications Built Using BC4J Work with Any Database?
Answer: Yes. Any SQL92-compatible database.

By default, the BC4J framework takes specific advantage of the Oracle database and

features of the Oracle JDBC Driver to maximize application performance. However,

by using the runtime-configurable "SQL Flavor" parameter, applications built with

BC4J can target non-Oracle databases as well. In particular, the Oracle9i JDeveloper

release of the BC4J framework has been tested against IBM’s DB2 database and

Microsoft’s SQL Server database (using Merant DataDirect drivers).
25-18 Oracle9i XML Developer’s Kits Guide - XDK

Frequently Asked Questions for BC4J
Is There Runtime Overhead from the Framework for Features That I Do Not Use?
Answer: No. The BC4J framework has been carefully designed and optimized to

avoid runtime overhead for features of the framework that are not being used. For

example, BC4J entity objects are designed to encapsulate business logic and handle

persistence. If you use them only to handle persistence, perhaps leaving business

logic enforcement to existing database triggers in your database, then you do not

pay runtime overhead for business logic enforcement that you are not using.

Similarly, the BC4J framework supports various kinds of lightweight listeners that

developers can use to be notified when interesting framework life cycle events

occur. Again, if there are no event subscriptions, there is no overhead associated.

Where Can I Find More Information About BC4J?
Answer: For additional information on BC4J and JDeveloper, please visit:

http://jdeveloper.us.oracle.com

For a good technical overview white paper of how BC4J can help J2EE and EJB

developers be more productive, please see:

http://otn.oracle.com/products/jdev/htdocs/j2ee_with_bc4j/j2ee_with_bc4j.html
Introduction to BC4J 25-19

Frequently Asked Questions for BC4J
25-20 Oracle9i XML Developer’s Kits Guide - XDK

Introductio
26

Introduction to UIX

This chapter contains the following sections:

■ What Is UIX?

■ When to Use UIX

■ When Not to Use UIX

■ What Are the UIX Technologies?

■ Which UIX Technologies to Use?

■ For More Information About UIX
n to UIX 26-1

What Is UIX?
What Is UIX?
UIX (User Interface XML) is a set of technologies that constitute a framework for

building web applications. The main focus of UIX is the user presentation layer of

an application, with additional functionality for managing events and for managing

the state of the application flow. UIX is designed to create applications with

page-based navigation, such as an online human resources application, rather than

full-featured applications requiring advanced interaction, such as an integrated

development environment (IDE).

An application can interact with UIX in predefined places called decision points,

where a decision is made by the operator or a certain action routine is automatically

triggered. Execution of an action terminates in a new decision point. The

application’s structure is provided to UIX in configuration files, which can be ASCII

files, databases, or resource files.

The main focus of UIX is the user presentation layer of an application, with

additional functionality for managing events and for managing the state of the

application flow. UIX is designed to create applications with page-based navigation,

such as an online human resources application, rather than full-featured

applications requiring advanced interaction, such as an integrated development

environment (IDE).

UIX includes Java class libraries, APIs, XML languages, and other technologies for

developing different aspects of web-based applications. You can use some or all of

these technologies, depending on what aspects of a web application you are

developing. It is worthwhile to familiarize yourself with all the UIX technologies to

make sure you take full advantage of what they provide.

When to Use UIX
Here are the features of using UIX that make for more rapid development:

■ UIX provides an open, flexible framework for development. You can choose

among the different UIX technologies for different development needs. For

instance, you can use UIX components for rendering pages, or you can use your

own HTML or Java Server Pages (JSP) for rendering while still taking

advantage of the remaining features of UIX. Additionally, you can use whatever

back-end data technologies that best suit your needs.

■ The UIX technologies are platform independent because they are implemented

in the Java programming language and other portable web technologies.
26-2 Oracle9i XML Developer’s Kits Guide - XDK

What Are the UIX Technologies?
■ UIX supports a wide range of client agents. UIX will adjust its presentation for

various browsers and locales. It also supports rendering for mobile devices.

■ Applications written to the UIX technology stack maintain a consistent

appearance. The UIX rendering projects implement high level user interface

controls, which are consistently rendered across your application (and the

applications of others using UIX).

■ UIX applications are customizable at multiple levels. You can change many

aspects of the application independently, including page layout, styles, and

imaging. The environment makes simple customizations easy, and more

complicated customizations possible.

■ If you choose, much of your UIX development can be declarative. This is

because the framework can derive its page layouts, styles, and many other

features from XML documents, with no programming or compiling involved.

■ The UIX architecture has been designed with localization and

internationalization support in mind. Its rendering technologies automatically

adjust for the target client’s locale, and the framework is built to help separate

localizable content from the user interface.

■ High performance has been designed into the framework, such as the caching

and reuse of shared resources.

When Not to Use UIX
These are some cases where it is inappropriate to use UIX:

■ If your target user environments have no Java requirements and they can be

standard web browsers or mobile devices, using UIX may not be justified. The

reason is that the deployment environment for your application must support a

Java Virtual Machine (JVM), because UIX is built in Java.

■ If your user interface requires advanced interactions such as drag-and-drop,

code editing, or visual design, you should use a more complicated user

interface technology than UIX provides, such as client-side Java.

What Are the UIX Technologies?
The UIX technologies can be used to implement the entire presentation layer of a

web application. However, you can use only a subset of UIX if you only need some

of its features. UIX is modularized into "subproducts" that target different aspects of

a web application development project. Each is described briefly next.
Introduction to UIX 26-3

What Are the UIX Technologies?
UIX Components
UIX Components comprise a class library for generating the content of pages, in

particular, pages used as the front end (user interface) to a web application. This

technology does not manage the navigation between pages or the data supplied to

those pages; that functionality is deferred to other sources (such as other UIX

technologies). Instead, the UIX Components technology focuses on the rendering of

a page itself. This rendering can be HTML for a browser page, or another

technology such as WML for a mobile device.

The UIX Components technology does this by including a collection of web beans

(or "nodes") for creating page layouts and standard user interface objects, such as

tables, tabs, and buttons. It also includes a set of rendering classes (Renderers) that

generate output using these Beans for a particular device, such as a browser.

UIX Components have a pluggable rendering architecture that enables rendering

the same page with alternative visual styles (that is, the "look and feel"). The default

renderers output HTML that conforms to the Oracle Browser Look and Feel (BLAF),

but other renderers are available for mobile devices, and additional renderers can

be created and added to the framework as needed.

The Java code and classes supporting UIX Components are all located in the

oracle.cabo.ui package and its subpackages.

UIX Controller
UIX Controller is a framework for developing web application flow. UIX Controller

is based on the Java Servlet technology, a standard part of the Java 2 Enterprise

Edition. Where UIX Components focus on rendering a given page, UIX Controller is

designed to manage the navigation among all pages in an application. UIX

Controller defers the rendering of those pages to other technologies (such as UIX

Components).

UIX Controller standardizes the way applications deal with HTML events and

provides built-in services such as error page loops, login support, and file

uploading. While it operates independently of the technology used to render

individual pages -- such as UIX Components, JSPs, or Extensible Stylesheet

Transformations (XSLT) -- it has built-in support to ease development when

technologies like UIX Components are used.

The Java code and classes supporting UIX Controller are all located in the

oracle.cabo.servlet package and its subpackages.
26-4 Oracle9i XML Developer’s Kits Guide - XDK

What Are the UIX Technologies?
UIX Language
The UIX language is a declarative alternative to creating web applications

programmatically with Java-based UIX Components Beans and/or UIX Controller

Java code. The UIX language builds on top of UIX Components and UIX Controller,

providing an XML language for specifying UIX Components page layouts and UIX

Controller server-side events. Essentially, the UIX language lets you create UIX

Components pages and UIX Controller events with an XML document, rather than

through Java programming.

While the UIX language provides an alternative way for you to create pages and

page flows, it is transformed into UIX Components and UIX Controller objects

behind the scenes and is thus treated equally by UIX.

The Java code and classes supporting the UIX language are all located in the

oracle.cabo.ui.xml and oracle.cabo.servlet.xml packages and their

subpackages.

UIX Dynamic Images
UIX Dynamic Images describes a utility for generating images that contain text,

including built-in support for buttons and tabs. UIX Dynamic Images can colorize

the images of an application to support color schemes, as well as provide

localization and accessibility support and provide caching support for improved

performance. UIX Dynamic Images generate images and, for those who need them,

image maps.

Because text is processed separately from images, localization with UIX Dynamic

Images is easier and more efficient. Translators work only with text and do not have

to edit images. The translated text can be stored separately (for example, in resource

files) and extracted when needed, to be combined with the image. Separating text

and image processing in this way also makes it possible to use different text styles

and sizes for special purposes, such as increasing the size of the text for complex

characters such as Kanji, or to adjust visual attributes for people with some visual

impairment, for example color blindness.

The Java code and classes supporting UIX Dynamic Images are all located in the

oracle.cabo.image package and its subpackages. UIX Components depend on

UIX Dynamic Images for their own rendered images.

UIX Styles
UIX Styles provide an architecture for defining and customizing stylesheets for

different end user environments (for example, locales, browsers, or platforms).
Introduction to UIX 26-5

Which UIX Technologies to Use?
Stylesheets provide a centralized mechanism for defining and altering the

appearance of pages separate from the content they contain.

 UIX Styles include a new XML Style Sheet Language (XSS) for defining

environment-specific stylesheets. XSS is based on Cascading Style Sheets (CSS). UIX

Styles also feature server-side APIs for managing style information, including a

facility to generate CSS stylesheets dynamically at runtime.

The Java code and classes supporting UIX Styles are all located in the

oracle.cabo.style package and its subpackages. UIX Components and UIX

Dynamic Images depend on UIX Styles for their own style information.

UIX Share
All UIX projects depend on common utility classes provided by UIX Share.

The UIX Share classes include functionality that is useful to all UIX web

applications, such as configuration support and localization. The Java code and

classes supporting UIX Share are all located in the oracle.cabo.share package

and its subpackages.

Which UIX Technologies to Use?
The UIX technology stack is open and flexible; you have the choice of using as

many of its subproducts as you need. Keep in mind, however, that using some UIX

subproducts requires the use of others. For instance, UIX Components use UIX

Dynamic Images and UIX Styles to render the images and stylesheets for its pages,

respectively, and thus it requires their presence. However, there is no requirement

that you use those subproducts in any way beyond UIX Components’ own internal

usage of them.

It is important to note that the various UIX technologies have been designed to

work together. This means that sometimes one UIX project can make it easier to use

another. As an example, the UIX Controller will automatically create and cache the

pages specified in the UIX language because it has built-in support for this. If you

use UIX without UIX Components, you will need to write some code to load in

your UIX language document and display it. Conversely, if you use UIX

Components without the UIX language, you may have to write some code telling

the UIX Framework how to display your own pages. In other words, the whole UIX

technology stack is definitely worth more than the sum of its parts!

Here are some recommendations for which technologies to use:

■ If you are starting a new web application from scratch.
26-6 Oracle9i XML Developer’s Kits Guide - XDK

Which UIX Technologies to Use?
We recommend you use UIX Controller to manage your application flow and

that you use UIX Components and the UIX Language to specify your page

layouts and events. This enables you to get the most functionality from UIX

with the least work on your part.

■ If you cannot replace your existing application flow management technology,

but you have flexibility on your page rendering.

We recommend you use UIX Components and the UIX language to create and

render your pages. This enables you to get the advantages of UIX Components

(agent-based rendering architecture, high level page beans, localization, and so

on) even if you can’t use the entire UIX stack. Keep in mind, however, that some

of the UIX Controller code might still be useful to your server-side flow

management, even if you do not adopt UIX Controller entirely. For example,

UIX Controller includes utility code for handling file uploads that is generally

useful for Java servlet-based applications.

■ If you have existing pages (JSPs or dynamic HTML) that you need to manage

through a servlet.

Consider using the UIX Controller servlet to manage logons, handle errors, and

provide other utilities that are missing from the basic servlet architecture. This

will also make it easier to include additional pages based on UIX Components

later on.

■ If you have some existing pages designed with HTML or JSPs, but need to

implement new pages for your application.

We ask that you consider using UIX Components and the UIX language for all

your pages. This is possible because UIX Components and the UIX language

provide easy ways to intersperse other content such as existing JSPs and HTML

on the same page using its passthrough capability. Doing so gives you the

opportunity to consolidate your pages on one technology later on and

transition as you go.

■ If you would like to use UIX Components beans, but are already using

Java-based page rendering for other parts of your page(s).

You can still use UIX Components beans on a page through the Java web bean

classes. The generated output can be merged into your existing Java-generated

page output. The decision to also use UIX Controller for page management is

independent of this choice.

■ If you cannot change your current page rendering technology, but you need

localizable images in your web application.
Introduction to UIX 26-7

For More Information About UIX
Consider using UIX Dynamic Images to generate images including text that are

localized.

■ If you cannot change your current page rendering technology, but you need

stylesheets for your product that are tailored to each viewer’s browser, locale,

or preferences.

Consider using UIX Styles to generate and cache individual stylesheets based

on variants.

For More Information About UIX
Here are sources of more information about UIX:

See Also: For sample JDeveloper Demonstration code for UIX:

■ http://otn.oracle.com/sample_code/products/jdev/c
ontent.html

■ The complete UIX Developer’s Guide is included in the

JDeveloper online help.
26-8 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: Specifications and Quick Refere
A

XDK for Java: Specifications and Quick

References

This appendix describes the XDK for Java specifications and quick references for

each XML component for Java. The quick references list the main APIs, classes, and

associated methods for each XDK for Java component.

This appendix contains the following sections:

■ XML Parser for Java Quick Reference

■ XML Parser for Java Specifications

■ XDK for Java: XML Schema Processor

■ XDK for Java: XML Class Generator for Java

■ XDK for Java: XSQL Servlet

■ XSQL Servlet Specifications
nces A-1

XML Parser for Java Quick Reference
XML Parser for Java Quick Reference

XML Parser for Java Specifications
The Oracle XML Parser for Java, Version 2 specifications follow:

■ New high performance architecture

■ Integrated support for W3C XSLT 1.0 Recommendation

■ Supports validation and non-validation modes

■ Built-in Error Recovery until fatal error

■ Integrated Document Object Model (DOM) Level 1.0 and 2.0 API

■ Integrated SAX 1.0 and 2.0 API

■ Supports W3C Recommendation for XML Namespaces

Requirements
Operating Systems: Any with Java 1.1.x support

JAVA: JDK 1.1.x. or later.

The contents of both the Windows and UNIX versions are identical. They are

simply archived differently for operating system compatibility and your

convenience.

Online Documentation
Documentation for Oracle XML Parser for Java is located in the doc/ directory in

your install area.

Note: The XML Parser for Java methods are listed in these places:

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ http://otn.oracle.com/tech/xml

■ Your installed software under doc/
A-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for Java Specifications
Release Specific Notes
The readme.html file in the root directory of the archive contains release specific

information including bug fixes, API additions, and so on.

Oracle XML Parser is an early adopter release and is written in Java. It will check if

an XML document is well-formed and, optionally, if it is valid. The parser will

construct a Java object tree which can be accessed. It also contains an integrated

XSLT processor for transforming XML documents.

Standards Conformance
The parser conforms to the following W3C Recommendations:

■ Extensible Markup Language (XML) 1.0

http://www.w3.org/TR/1998/REC-xml-19980210

■ Namespaces in XML at http://www.w3.org/TR/REC-xml-names/

■ Document Object Model Level 1 1.0

http://www.w3.org/TR/REC-DOM-Level-1/

■ Document Object Model Level 2

http://www.w3.org/TR/DOM-Level-2-Core/

■ XML Path Language (XPath) 1.0

http://www.w3.org/TR/1999/REC-xpath-19991116

■ XML Transformations (XSLT) 1.0

http://www.w3.org/TR/1999/REC-xslt-19991116

The parser also conforms to the following W3C Proposed Recommendations:

■ XML Schema Part 1: Structures http://www.w3.org/TR/xmlschema-1

■ XML Schema Part 2: Datatypes http://www.w3.org/TR/xmlschema-2

In addition, the parser implements the following interfaces defined by the XML

development community:

■ Simple API for XML (SAX) 1.0 and 2.0 at

http://www.megginson.com/SAX/index.html

Supported Character Set Encodings
The XML Parser for Java currently supports the following encodings:

■ BIG 5
XDK for Java: Specifications and Quick References A-3

XML Parser for Java Specifications
■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Default: UTF-8 is the default encoding if none is specified. Any other ASCII or

EBCDIC based encodings that are supported by the JDK may be used.However,

they must be specified in the format required by the JDK instead of as official

character set names defined by IANA.

Error Recovery
The parser also provides error recovery. It will recover from most errors and

continue processing until a fatal error is encountered.
A-4 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XSQL Servlet
XDK for Java: XML Schema Processor

XDK for Java: XML Class Generator for Java
Oracle XML Class Generator for Java requires Oracle XML Parser for Java. The XML

Document, printed by the generated classes, confirms to the W3C recommendation

for Extensible Markup Language (XML) 1.0. Oracle XML Class Generator can

optionally generate validating Java source files. It also optionally generates Javadoc

comments in the source files.

Oracle XML Class Generator supports the following encodings for printing the

XMLDocument:

UTF-8, UTF-16, ISO-10646-UCS-2, ISO-10646-UCS-4, US-ASCII, EBCDIC-CP-US,

ISO-8859-1, and Shift_SJIS.

ASCII is the default encoding if none is specified. Any other ASCII or EBCDIC

based encodings that are supported by the JDK can be used.

XDK for Java: XSQL Servlet

Downloading and Installing XSQL Servlet

Downloading XSQL Servlet from OTN
You can download XSQL Servlet distribution from:

http://otn.oracle.com/tech/xml/xsql_servlet

1. Click the 'Software' icon at the top of the page:

2. Log in with your OTN username and password (registration is free if you do

not already have an account).

See Also:

■ Chapter 6, "XML Schema Processor for Java"

■ The readme.txt file in your installed software’s doc/ directory.

This software can also be downloaded from

http://otn.oracle.com/tech/xml
XDK for Java: Specifications and Quick References A-5

XDK for Java: XSQL Servlet
3. Selecting whether you want the NT or Unix download (both contain the same

files)

4. Acknowledge the licensing agreement and download survey

5. Clicking on xsqlservlet_v1.0.2.0.tar.gz or xsqlservlet_v1.0.2.0.zip

Extracting the Files in the Distribution
To extract the contents of XSQL Servlet distribution, do the following:

1. Choose a directory under which you would like the .\xsql directory and

subdirectories to go, for example, C:\

2. Change directory to C:\, then extract the XSQL downloaded archive file there.

For example:

UNIX:

 tar xvfz xsqlservlet_v1.0.2.0.tar.gz

Windows NT:

 pkzip25 -extract -directories xsqlservlet_v1.0.2.0.zip

using the pkzip25 command-line tool or the WinZip visual archive extraction

tool.

Windows NT: Starting the Web-to-Go Server
XSQL Servlet comes bundled with the Oracle Web-to-go server that is

pre-configured to use XSQL Pages. The Web-to-go web server is a single-user

server, supporting the Servlet 2.1 API, used for mobile application deployment and

for development. This is a great way to try XSQL Pages out on your Windows

machine before delving into the details of configuring another Servlet Engine to run

XSQL Pages.

Windows NT users can get started quickly with XSQL Pages by following these

steps:

1. Running the xsql-wtg.bat script in the .\xsql directory.

Note: The Web-to-go Web server is part of Oracle's development

and deployment platform for mobile applications. For more

information on Web-to-go, see http://www.oracle.com/mobile.
A-6 Oracle9i XML Developer’s Kits Guide - XDK

XDK for Java: XSQL Servlet
2. Browsing the URL http://localhost:7070/xsql/index.html

If you get an error starting this script, edit the xsql-wtg.bat file to properly set the

two environment variables JAVA and XSQL_HOME to appropriate values for your

machine.

 REM --
 REM Set the 'JAVA' variable equal to the full path
 REM of your Java executable.
 REM --
 set JAVA=J:\java1.2\jre\bin\java.exe
 set XSQL_HOME=C:\xsql
 REM --
 REM Set the 'XSQL_HOME' variable equal to the full
 REM path of where you install the XSQL Servlet
 REM distribution.
 REM --

Then, repeat the two preceding steps.

If you get an error connecting to the database when you try the demos, you'll need

to go on to the next section, then try the preceding steps again after setting up your

database connection information correctly in the XSQLConfig.xml file.

Setting Up the Database Connection Definitions for Your Environment
The demos are set up to use the SCOTT schema on a database on your local

machine (that is, the machine where the web server is running). If you are running a

local database and have a SCOTT account whose password is TIGER, then you are

all set. Otherwise, you need to edit the .\xsql\lib\XSQLConfig.xml file to

correspond to your appropriate values for username, password, dburl, and driver

values for the connection named "demo".

<?xml version="1.0" ?>
 <XSQLConfig>
 :
 <connectiondefs>
 <connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 </connection>
 <connection name="lite">
 <username>system</username>
XDK for Java: Specifications and Quick References A-7

XSQL Servlet Specifications
 <password>manager</password>
 <dburl>jdbc:Polite:POlite</dburl>
 <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>
 </connection>
 </connectiondefs>
 :
</XSQLConfig>

UNIX: Setting Up Your Servlet Engine to Run XSQL Pages
UNIX users and any user wanting to install the XSQL Servlet on other web servers

should continue with the instructions below depending on the web server you're

trying to use. In every case, there are 3 basic steps:

1. Include the list of XSQL Java archives as well as the directory where

XSQLConfig.xml resides (by default ./xsql/lib) in the server CLASSPATH.

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet servlet class

3. Map a virtual directory /xsql to the directory where you extracted the XSQL

files (to access the on-line help and demos)

XSQL Servlet Specifications
The following lists the XSQL servlet specifications:

■ Produce dynamic XML documents based on one or more SQL queries

■ Optionally transforms the resulting XML document in the server or client using

XSLT

■ Supports W3C XML 1.0 Recommendation

■ Supports Document Object Model (DOM) Level 1.0 and 2.0 API

■ Support the W3C XSLT 1.0 Recommendation

■ Supports W3C Recommendation for XML Namespaces

Note: For convenience, the xsqlservlet_v1.0.2.0.tar.gz and

xsqlservlet_v1.0.2.0.zip distributions include the .jar files for the

Oracle XML Parser for Java (V2), the Oracle XML SQL Utilities for

Java, and the 8.1.6 JDBC driver in the .\lib subdirectory, along with

Oracle XSQL Pages' own .jar archive.
A-8 Oracle9i XML Developer’s Kits Guide - XDK

XSQL Servlet Specifications
Character Set Support
XSQL Servlet supports the following character set encodings:

■ BIG

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16
XDK for Java: Specifications and Quick References A-9

XSQL Servlet Specifications
A-10 Oracle9i XML Developer’s Kits Guide - XDK

XDK for PL/SQL: Specificati
B

XDK for PL/SQL: Specifications

This Appendix describes Oracle XDK for PL/SQL specifications. It contains the

following sections:

■ XML Parser for PL/SQL

■ XML Parser for PL/SQL Specifications
ons B-1

XML Parser for PL/SQL
XML Parser for PL/SQL
XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup. Markup encodes a description of

the document's storage layout and logical structure. XML provides a mechanism to

impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and

provide access to their content and structure. It is assumed that an XML processor is

doing its work on behalf of another module, called the application.

Oracle XML Parser Features
The XML Parser for PL/SQL parses an XML document (or a standalone DTD) so

that it can be processed by an application. Library and command-line versions are

provided supporting the following standards and features:

■ DOM (Document Object Model) support is provided compliant with the W3C

DOM 1.0 Recommendation. These APIs permit applications to access and

manipulate an XML document as a tree structure in memory. This interface is

used by such applications as editors.

■ SAX (Simple API for XML) support is also provided compliant with the SAX 1.0

specification. These APIs permit an application to process XML documents

using an event-driven model.

■ Support is also included for XML Namespaces 1.0 thereby avoiding name

collisions, increasing reusability and easing application integration.

■ Able to run on Oracle9i and Oracle9i Application Server.

■ C and C++ versions initially available for Windows, Solaris, and Linux.

Additional features include:

■ Validating and non-validating operation modes

■ Built-in error recovery until fatal error

■ DOM extension APIs for document creation Oracle XSL-Transform Processors

Version 2 of the Oracle XML Parsers include an integrated XSL-Transformation

(XSL-T) Processor for transforming XML data using XSL stylesheets. Using the

XSL-T processor, you can transform XML documents from XML to XML, HTML, or

virtually any other text-based format. These processors support the following

standards and features:
B-2 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL
■ Compliant with the W3C XSL Transform Proposed Recommendation 1.0

■ Compliant with the W3C XPath Proposed Recommendation 1.0

■ Integrated into the XML Parser for improved performance and scalability

■ Available with library and command-line interfaces for Java, C, C++, and

PL/SQL

Namespace Support
The Java, C, and C++ parsers also support XML Namespaces. Namespaces are a

mechanism to resolve or avoid name collisions between element types (tags) or

attributes in XML documents. This mechanism provides "universal" namespace

element types and attribute names whose scope extends beyond the containing

document. Such tags are qualified by uniform resource identifiers (URIs), such as

<oracle:EMP xmlns:oracle="http://www.oracle.com/xml"/>. For example,

namespaces can be used to identify an Oracle <EMP> data element as distinct from

another company's definition of an <EMP> data element. This enables an

application to more easily identify elements and attributes it is designed to process.

The Java, C, and C++ parsers support namespaces by being able to recognize and

parse universal element types and attribute names, as well as unqualified "local"

element types and attribute names.

Validating and Non-Validating Mode Support
The Java, C, and C++ parsers can parse XML in validating or non-validating modes.

In non-validating mode, the parser verifies that the XML is well-formed and parses

the data into a tree of objects that can be manipulated by the DOM API. In

validating mode, the parser verifies that the XML is well-formed and validates the

XML data against the DTD (if any). Validation involves checking whether or not the

attribute names and element tags are legal, whether nested elements belong where

they are, and so on.

Example Code
See Chapter 20, "XML Parser for PL/SQL" for example code and suggestions on

how to use the XML Parsers.

IXML Parser for PL/SQL Directory Structure
The following lists the XML Parser for PL/SQL directory structure in

$ORACLE_HOME/xdk/plsql/parser:
XDK for PL/SQL: Specifications B-3

XML Parser for PL/SQL
■ Windows NT

■ license.html - copy of license agreement

■ readme.html - release and installation notes

■ doc\ - directory for parser apis.

■ lib\ - directory for parser sql and class files

■ sample\ - sample code

■ UNIX

■ license.html — copy of license agreement

■ readme.html — release and installation notes

■ doc/ — directory for parser apis

■ lib/ — directory for parser sql and class files

■ sample/ — sample code files

DOM and SAX APIs
XML APIs generally fall into two categories: event-based and tree-based. An

event-based API (such as SAX) uses callbacks to report parsing events to the

application. The application deals with these events through customized event

handlers. Events include the start and end of elements and characters. Unlike

tree-based APIs, event-based APIs usually do not build in-memory tree

representations of the XML documents. Therefore, in general, SAX is useful for

applications that do not need to manipulate the XML tree, such as search

operations, among others. For example, the following XML document:

<?xml version="1.0"?>
 <EMPLIST>
 <EMP>
 <ENAME>MARTIN</ENAME>
 </EMP>
 <EMP>
 <ENAME>SCOTT</ENAME>
 </EMP>
 </EMPLIST>

Becomes a series of linear events:

start document
start element: EMPLIST
B-4 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL Specifications
start element: EMP
start element: ENAME
characters: MARTIN
end element: EMP
start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP
end element: EMPLIST
end document

A tree-based API (such as DOM) builds an in-memory tree representation of the

XML document. It provides classes and methods for an application to navigate and

process the tree. In general, the DOM interface is most useful for structural

manipulations of the XML tree, such as reordering elements, adding or deleting

elements and attributes, renaming elements, and so on.

XML Parser for PL/SQL Specifications
These are the Oracle XML Parser for PL/SQL specifications:

■ Supports validation and non-validation modes

■ Includes built-in error recovery until fatal error

■ Supports the W3C XML 1.0 Recommendation

■ Supports the W3C XSL-T Final Working Draft

This PL/SQL implementation of the XML processor (or parser) follows the W3C

XML specification (rev REC-xml-19980210) and included the required behavior of

an XML processor in terms of how it must read XML data and the information it

must provide to the application.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for this PLSQL XML parser:

■ A parse tree which can be accessed by DOM APIs is built

■ The parser is validating if a DTD is found, otherwise it is non-validating

■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

The types and methods described in this document are made available by the

PLSQL package xmlparser.
XDK for PL/SQL: Specifications B-5

XML Parser for PL/SQL Specifications
■ Integrated Document Object Model (DOM) Level 1.0 API

Supported Character Set Encodings
Supports documents in the following Oracle database encodings:

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

Default: UTF-8 is the default encoding if none is specified. Any other ASCII or

EBCDIC based encodings that are supported by the Oracle 9i database may be used.

Requirements
Oracle9i database with the Java option enabled.

Online Documentation
Documentation for Oracle XML Parser for PL/SQL is located in the doc directory in

your install area and also in Oracle9i XML API Reference - XDK and Oracle XML DB.

Release Specific Notes
The Oracle XML parser for PL/SQL is an early adopter release and is written in

PL/SQL and Java. It will check if an XML document is well-formed and, optionally,

if it is valid. The parser will construct an object tree which can be accessed through

PL/SQL interfaces.
B-6 Oracle9i XML Developer’s Kits Guide - XDK

XML Parser for PL/SQL Specifications
Standards Conformance
The parser conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0 at

http://www.w3.org/TR/1998/REC-xml-19980210

■ W3C recommendation for Document Object Model Level 1 1.0 at

http://www.w3.org/TR/REC-DOM-Level-1/

The parser currently does not currently have SAX or Namespace support. These

will be made available in a future version.

Error Recovery
The parser also provides error recovery. It will recover from most errors and

continue processing until a fatal error is encountered.

Important note: The contents of both the Windows and UNIX versions are identical.

They are simply archived differently for operating system compatibility and your

convenience.

See Also:

■ Oracle9i XML API Reference - XDK and Oracle XML DB

■ Chapter 8, "XML SQL Utility (XSU)"

■ http://otn.oracle.com/tech/xm l
XDK for PL/SQL: Specifications B-7

XML Parser for PL/SQL Specifications
B-8 Oracle9i XML Developer’s Kits Guide - XDK

Glossary

access control entry (ACE)

An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a

given resource or resources.

ACE

Access Control Entry. See access control entry.

ACL

Access Control List. See access control list.

API

Application Program Interface. See application program interface.

application program interface (API)

A set of public programmatic interfaces that consist of a language and message

format to communicate with an operating system or other programmatic

environment, such as databases, Web servers, JVMs, and so forth. These messages

typically call functions and methods available for application development.

application server

A server designed to host applications and their environments, permitting server

applications to run. A typical example is OAS, which is able to host Java, C, C++,

and PL/SQL applications in cases where a remote client controls the interface. See

also Oracle Application Server.
Glossary-1

attribute

A property of an element that consists of a name and a value separated by an equals

sign and contained within the start-tags after the element name. In this example,

<Price units=’USD’>5</Price> , units is the attribute and USD is its value,

which must be in single or double quotes. Attributes may reside in the document or

DTD. Elements may have many attributes but their retrieval order is not defined.

BC4J

Business Components for Java, a J2EE application development framework that

comes with JDeveloper. BC4J is an object-relational mapping tool that implements

J2EE Design Patterns.

BFILES

External binary files that exist outside the database tablespaces residing in the

operating system. BFILES are referenced from the database semantics, and are also

known as External LOBs.

Binary Large Object (BLOB)

A Large Object datatype whose content consists of binary data. Additionally, this

data is considered raw as its structure is not recognized by the database.

BLOB

See Binary Large Object.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods

and services to each other. The software infrastructure to enable this is referred to as

an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the

selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues.

The second process then calls the first as a result of an action, value, or other event.

This technique is used in most programs that have a user interface to allow

continuous interaction.
Glossary-2

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the

database to understand and manipulate a new datatype. Cartridges interface

through the Extensibility Framework within Oracle 8 or later. Oracle Text is such a

cartridge, adding support for reading, writing, and searching text documents stored

within the database.

Cascading Style Sheets

A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web

documents.

CDATA

See character data.

CDF

Channel Definition Format. Provides a way to exchange information about channels

on the internet.

CGI

See Common Gateway Interface.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This

allows for the inclusion of characters that would otherwise have special functions,

such as &, <, >, and so on. CDATA sections can be used in the content of an element

or in attributes.

child element

An element that is wholly contained within another, which is referred to as its

parent element. For example <Parent><Child></Child></Parent> illustrates a

child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have

corresponding functionality. In the case of the XML Class Generator, the input file is

a DTD and the output is a series of classes that can be used to create XML

documents conforming with the DTD.
Glossary-3

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it

needs to run applications.

client/server

The term used to describe the application architecture where the actual application

runs on the client but accesses data or other external processes on a server across a

network.

Character Large Object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the

database character set. A CLOB may be indexed and searched by the Oracle Text

search engine.

CLOB

See Character Large Object.

command line

The interface method in which the user enters in commands at the command

interpreter’s prompt.

Common Gateway Interface (CGI)

The programming interfaces enabling Web servers to execute other programs and

pass their output to HTML pages, graphics, audio, and video sent to browsers.

Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed

objects across a network. These self-contained software modules can be used by

applications running on different platforms or operating systems. CORBA objects

and their data formats and functions are defined in the Interface Definition

Language (IDL), which can be compiled in a variety of languages including Java, C,

C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create

code that can be easily ported to virtually any platform and operating system.

Content

The body of a resource is what you get when you treat the resource like a file and

ask for its contents. Content is always an XMLType.
Glossary-4

CORBA

See Common Object Request Broker API.

CSS

See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD

specifies information such as the database name or the Oracle Net service name, the

ORACLE_HOME directory, and Globalization Support configuration information

such as language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester

embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBURITYPE

The Oracle9i datatype used for storing instances of the datatype that permits

XPath-based navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML

document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares

the root element name as person and an external DTD as person.dtd in the file

system. Internal DTDs are declared within the DOCTYPE declaration.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables

programmatic access to its elements and attributes. The DOM object and its

interface is a W3C recommendation. It specifies the Document Object Model of an

XML Document including the APIs for programmatic access. DOM views the

parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are

text files that derive their format from SGML and can either be included in an XML

document by using the DOCTYPE element or by using an external file through a

DOCTYPE reference.
Glossary-5

DOM

See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating

XML documents stored in Oracle XML DB, Oracle XML DB uses a data integrity

mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML

documents are identical to the original XML document, particularly for purposes of

DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute,

SYS_XDBPD$.

DTD

See Document Type Definition.

EDI

Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other

elements such as children, data, and attributes and their values. Elements are

identified by start-tags, such as <name>, and end-tags, such as </name> , or in the

case of empty elements, <name/> .

empty element

An element without text content or child elements. It can only contain attributes

and their values. Empty elements are of the form <name/> or <name></name> ,

where there is no space between the tags.

Enterprise Java Bean (EJB)

An independent program module that runs within a JVM on the server. CORBA

provides the infrastructure for EJBs, and a container layer provides security,

transaction support, and other common functions on any supported server.

empty element

An element without text content or child elements. It may only contain attributes

and their values. Empty elements are of the form <name/> or <name></name>

where there is no space between the tags.
Glossary-6

entity

A string of characters that may represent either another string of characters or

special characters that are not part of the document’s character set. Entities and the

text that is substituted for them by the parser are declared in the DTD.

existnode

The SQL operator that returns a TRUE or FALSE based upon the existence of an

XPath within an XMLType.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web

Consortium (W3C) using a subset of the SGML syntax and designed for Internet

use.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents.

There are two W3C recommendations covering XSL stylesheets—XSL

Transformations (XSLT) and XSL Formatting Objects (XSLFO).

(W3C) eXtensible Stylesheet Language. XSL consists of two W3C recommendations:

XSL Transformations for transforming one XML document into another and XSL

Formatting Objects for specifying the presentation of an XML document. XSL is a

language for expressing stylesheets. It consists of two parts:

■ A language for transforming XML documents (XSLT), and

■ An XML vocabulary for specifying formatting semantics (XSLFO).

An XSL stylesheet specifies the presentation of a class of XML documents by

describing how an instance of the class is transformed into an XML document that

uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying

formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a

transformation language to convert one XML document into another.

extract

The SQL operator that retrieves fragments of XML documents stored as XMLType.
Glossary-7

Folder

A directory or node in the Oracle XML DB repository that contains or can contain a

resource. A folder is also a resource.

Foldering

A feature in Oracle XML DB that allows content to be stored in a hierarchical

structure of resources.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a

formatting object tree and then renders the resulting pages to a specified output.

Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree

representation), Print, AWT, MIF and TXT. The primary output target is PDF.

functional index

A database index that, when created, permits the results of known queries to be

returned much more quickly.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType

datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB

hierarchical index, which provides a fast mechanism for evaluating path names

similar to the directory mechanisms used by operating system filesystems. Any

pathname-based access will normally use the Oracle XML DB hierarchical index.

HTML

See Hypertext Markup Language.

HTTP

See Hypertext Transport Protocol.

HTTPURITYPE

The datatype used for storing instances of the datatype that permits XPath-based

navigation of database schemas in remote databases.
Glossary-8

hypertext

The method of creating and publishing text documents in which users can navigate

between other documents or graphics by selecting words or phrases designated as

hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves

as the basis of the World Wide Web. The next version of HTML will be called

xHTML and will be an XML application.

Hypertext Transport Protocol (HTTP)

The protocol used for transporting HTML files across the Internet between Web

servers and browsers.

iAS

See Oracle9iAS.

IDE

See Integrated Development Environment.

iFS

See Internet File System.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType

datatypes for searching for specific text within a specific XPath.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation

of an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aide in the development of software run from a

single user interface. JDeveloper is an IDE for Java development as it includes an

editor, compiler, debugger, syntax checker, help system, and so on, to permit Java

software development through a single user interface.
Glossary-9

interMedia

The collection of complex datatypes and their access in Oracle. These include text,

video, time-series, and spatial data.

Internet File System (iFS)

The Oracle file system and Java-based development environment that either runs

inside the database or on a middle tier and provides a means of creating, storing,

and managing multiple types of documents in a single database repository.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as

the Internet.

J2EE

See Java 2 Platform, Enterprise Edition.

Java

A high-level programming language developed and maintained by Sun

Microsystems where applications run in a virtual machine known as a JVM. The

JVM is responsible for all interfaces to the operating system. This architecture

permits developers to create Java applications and applets that can run on any

operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)

The Java platform (Sun Microsystems) that defines multi-tier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is

independent of a particular XML processor implementation.

JavaBean

An independent program module that runs within a JVM, typically for creating

user interfaces on the client. Also known as Java Bean. The server equivalent is

called an Enterprise JavaBean (EJB). See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through

the SQL language. JDBC drivers are written in Java for platform independence but

are specific to each database.
Glossary-10

Java Developer’s Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code

for a version of Java that makes up a Java development environment. JDKs are

designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface

A programming interface from Sun for connecting Java programs to naming and

directory services such as DNS, LDAP and NDS. Oracle XML DB Resource API for

Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a

platform. JREs are designated by versions, and Java 2 is used to designate versions

from 1.2 onward.

Java Server Page (JSP)

An extension to the servlet functionality that enables a simple programmatic

interface to Web pages. JSPs are HTML pages with special tags and embedded Java

code that is executed on the Web server or application server providing dynamic

functionality to HTML pages. JSPs are actually compiled into servlets when first

requested and run in the server’s JVM.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine

language of the platform and runs it. JVMs can run on a client, in a browser, in a

middle tier, on an intranet, on an application server such as Oracle9iAS, or in a

database server such as Oracle.

JAXP

See Java API for XML Processing.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle’s Java IDE that enables application, applet, and servlet development and

includes an editor, compiler, debugger, syntax checker, help system, an integrated

UML class modeler, and so on. JDeveloper has been enhanced to support

XML-based development by including the Oracle XDK for Java, integrated for easy

use along with XML support, in its editor.
Glossary-11

JDK

See Java Developer’s Kit.

JNDI

JServer

The Java Virtual Machine that runs within the memory space of the Oracle

database. In Oracle 8i Release 1 the JVM was Java 1.1 compatible while Release 2 is

Java 1.2 compatible.

JVM

See Java virtual machine.

LAN

See local area network.

Large Object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External

LOBs. Internal LOBs include BLOBs, CLOBS, and NCLOBs while External LOBs

include BFILES. See also BFILES, Binary Large Object, Character Large Object.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when

the Java application first asks for it. This saves typical type conversion bottlenecks

with JDBC.

listener

A separate application process that monitors the input process.

LOB

See Large Object.

local area network (LAN)

A computer communication network that serves users within a restricted

geographical area. LANs consist of servers, workstations, communications

hardware (routers, bridges, network cards, and so on) and a network operating

system.
Glossary-12

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking.

When a name is added to a collection, an exclusive write lock is not placed on the

collection, only that name within the collection is locked. The name modification is

put on a queue, and the collection is locked and modified only at commit time.

namespace

The term to describe a set of related element names or attributes within an XML

document. The namespace syntax and its usage is defined by a W3C

Recommendation. For example, the <xsl:apply-templates/ > element is identified as

part of the XSL namespace. Namespaces are declared in the XML document or DTD

before they are used be using the following attribute syntax:

xmlns:xsl="http://www.w3.org/TR/WD-xsl".

national Character Large Object (NCLOB)

The LOB datatype whose value is composed of character data corresponding to the

database national character set.

NCLOB

See National Character Large Object.

node

In XML, the term used to denote each addressable entity in the DOM tree.

Notation Attribute Declaration

In XML, the declaration of a content type that is not part of those understood by the

parser. These types include audio, video, and other multimedia.

N-tier

The designation for a computer communication network architecture that consists

of one or more tiers made up of clients and servers. Typically two-tier systems are

made up of one client level and one server level. A three-tier system utilizes two

server tiers, typically a database server as one and a Web or application server along

with a client tier.

OAG

Open Applications Group.
Glossary-13

OAI

Oracle Applications Integrator. Runtime with Oracle iStudio development tool that

provides a way for CRM applications to integrate with other ERP systems besides

Oracle ERP. Specific APIs must be "message-enabled." It uses standard extensibility

hooks to generate or parse XML streams exchanged with other application systems.

In development.

OASIS

See Organization for the Advancement of Structured Information.

Object View

A tailored presentation of the data contained in one or more object tables or other

views. The output of an Object View query is treated as a table. Object Views can be

used in most places where a table is used.

object-relational

The term to describe a relational database system that can also store and manipulate

higher-order data types, such as text documents, audio, video files, and

user-defined objects.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on

clients and between objects on servers. ORBs pass the action request and its

parameters to the object and return the results back. Common implementations are

JCORB and EJBs. See also CORBA.

OCT

See Ordered Collection in Tables.

OC4J

Oracle9iAS Containers for J2EE, a J2EE deployment tool that comes with

JDeveloper.

OE

Oracle Exchange.

OIS

See Oracle Integration Server.
Glossary-14

Oracle9iAS (iAS)

The Oracle application server that integrates all the core services and features

required for building, deploying, and managing high-performance, n-tier,

transaction-oriented Web applications within an open standards framework.

Oracle Integration Server (OIS)

The Oracle product that serves as the messaging hub for application integration.

OIS contains an Oracle 8i database with AQ and Oracle Workflow and interfaces to

applications using Oracle Message Broker to transport XML-formatted messages

between them.

ORACLE_HOME

The operating system environmental variable that identifies the location of the

Oracle database installation for use by applications.

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as

an Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to

do SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle

database server. It is based on the W3C XML data model.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information

standards through conferences, seminars, exhibits, and other educational events.

XML is a standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child

element. For example, <Parent><Child></Child></Parent> illustrates a parent

element wrapping its child element.
Glossary-15

parser

In XML, a software program that accepts as input an XML document and

determines whether it is well-formed and, optionally, valid. The Oracle XML Parser

supports both SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag

or nonparsed data.

pathname

The name of a resource that reflects its location in the repository hierarchy. A

pathname is composed of a root element (the first /), element separators (/) and

various sub-elements (or path elements). A path element may be composed of any

character in the database character set except ("\", "/"). These characters have a

special meaning for Oracle XML DB. Forward slash is the default name separator in

a path name and backward slash may be used to escape characters.

PCDATA

See Parsed Character Data.

PDA

Personal Digital Assistant, such as a Palm Pilot.

PL/SQL

The Oracle procedural database language that extends SQL. It is used to create

programs that can be run within the database.

principal

An entity that may be granted access control privileges to an Oracle XML DB

resource. Oracle XML DB supports as principals:

■ Database users.

■ Database roles. A database role can be understood as a group, for example, the

DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the

database's general authentication model.
Glossary-16

prolog

The opening part of an XML document containing the XML declaration and any

DTD or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

RDF

Resource Definition Framework.

renderer

A software processor that outputs a document in a specified format.

repository

The set of database objects, in any schema, that are mapped to path names. There is

one root to the repository ("/") which contains a set of resources, each with a

pathname.

resource

An object in the repository hierarchy.

resource name

The name of a resource within its parent folder. Resource names must be unique

(potentially subject to case-insensitivity) within a folder. Resource names are always

in the UTF8 character set (NVARCHAR).

result set

The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is

between the optional prolog and epilog. An XML document is only permitted to

have one root element.

SAX

See Simple API for XML.
Glossary-17

schema

The definition of the structure and data types within a database. It can also be used

to refer to an XML document that support the XML Schema W3C recommendation.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key

form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before

sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and

performs processing on that server. Servlets are the Java equivalent to CGI scripts.

session

The active connection between two tiers.

SGML

See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based

applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed

environment.

SOAP

See Simple Object Access Protocol.

SQL

See Structured Query Language.

SSI

See Server-side Include.
Glossary-18

SSL

See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An ISO standard for defining the format of a text document implemented using

markup and DTDs.

Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

Stylesheet

In XML, the term used to describe an XML document that consists of XSL

processing instructions used by an XSL processor to transform or format an input

XML document into an output one.

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The term used to specify the location on the host operating system of the reference

that follows.

SYS_XMLGEN

The native SQL function that returns as an XML document the results of a passed-in

SQKL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags

start with < and end with >. In XML, there are start-tags (<name>), end-tags

(</name>), and empty tags (<name/>).

TCP/IP

See Transmission Control Protocol/Internet Protocol.

thread

In programming, a single message or process execution path within an operating

system that supports concurrent execution (multithreading).
Glossary-19

Transmission Control Protocol/Internet Protocol (TCP/IP)

The communications network protocol that consists of the TCP which controls the

transport functions and IP which provides the routing mechanism. It is the standard

for Internet communications.

Transviewer

The Oracle term used to describe the Oracle XML JavaBeans included in the XDK

for Java.

TransXUtility

TransXUtility is a Java API that simplifies the loading of translated seed data and

messages into a database.

UDDI

See Universal Description, Discovery and Integration.

UIX

See User Interface XML.

Uniform Resource Identifier (URI)

The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are

used by browsers to navigate the World Wide Web and consist of a protocol prefix,

port number, domain name, directory and subdirectory names, and the file name.

For example http://technet.oracle.com:80/tech/xml/index.htm specifies the

location and path a browser will travel to find OTN’s XML site on the World Wide

Web.

Universal Description, Discovery and Integration (UDDI)

This specification provides a platform-independent framework using XML to

describe services, discover businesses, and integrate business services on the

Internet.

URI

See Uniform Resource Identifier.
Glossary-20

URL

See Uniform Resource Locator.

user interface (UI)

The combination of menus, screens, keyboard commands, mouse clicks, and

command language that defines how a user interacts with a software application.

User Interface XML (UIX)

A set of technologies that constitute a framework for building web applications.

valid

The term used to refer to an XML document when its structure and element content

is consistent with that declared in its referenced or included DTD.

W3C

See World Wide Web Consortium (W3C).

WAN

See wide area network.

WebDAV

See World Wide Web distributed authoring and versioning.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate

cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings,

and deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML

version declared in its XML declaration. This includes having a single root element,

properly nested tags, and so forth.

wide area network (WAN)

A computer communication network that serves users within a wide geographic

area, such as a state or country. WANs consist of servers, workstations,
Glossary-21

communications hardware (routers, bridges, network cards, and so on), and a

network operating system.

Working Group (WG)

The committee within the W3C that is made up of industry members that

implement the recommendation process in specific Internet technology areas.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the

World Wide Web. It is located at www.w3c.org.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on

the Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.

Wrapper

The term describing a data structure or software that wraps around other data or

software, typically to provide a generic or object interface.

WSDL

See Web Services Description Language.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data.

XDBbinary elements are stored in the repository when completely unstructured

binary data is uploaded into Oracle XML DB.

XDK

See XML Developer’s Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks

in XML documents. These rules are being developed by the XML Linking Group

under the W3C recommendation process. This is one of the three languages XML

supports to manage document presentation and hyperlinks (XLink, XPointer, and

XPath).

XML

See eXtensible Markup Language.
Glossary-22

XML Developer’s Kit (XDK)

The set of libraries, components, and utilities that provide software developers with

the standards-based functionality to XML-enable their applications. In the case of

the Oracle XDK for Java, the kit contains an XML parser, an XSLT processor, the

XML Class Generator, the Transviewer JavaBeans, and the XSQL Servlet.

XML Gateway

A set of services that allows for easy integration with the Oracle e-Business Suite to

create and consume XML messages triggered by business events.

XML Query

The W3C’s effort to create a standard for the language and syntax to query XML

documents.

XML Schema

The W3C’s effort to create a standard to express simple data types and complex

structures within an XML document. It addresses areas currently lacking in DTDs,

including the definition and validation of data types. Oracle XML Schema Processor

automatically ensures validity of XML documents and data used in e-business

applications, including online exchanges. It adds simple and complex datatypes to

XML documents and replaces DTD functionality with an XML Schema definition

XML document.

XMLType

An XMLType column stores XML data using an underlying CLOB column in the

database.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational

data in XML format. This is especially useful if, for example, your legacy data is not

in XML but you need to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL

and XPointer. XPath is currently a W3C recommendation. It specifies the data

model and grammar for navigating an XML document utilized by XSLT, XLink and

XML Query.
Glossary-23

XPointer

The term and W3C recommendation to describe a reference to an XML document

fragment. An XPointer can be used at the end of an XPath-formatted URI. It
specifies the identification of individual entities or fragments within an XML

document using XPath navigation.

XSL

See eXtensible Stylesheet Language.

XSLFO

See eXtensible Stylesheet Language Formatting Object.

XSLT

See eXtensible Stylesheet Language Transformation.

XSQL

The designation used by the Oracle Servlet providing the ability to produce

dynamic XML documents from one or more SQL queries and optionally transform

the document in the server using an XSL stylesheet.
Glossary-24

Index

A
access control entry, definition, Glossary-1

access control list, definition, Glossary-1

ACE, definition, Glossary-1

ACL, definition, Glossary-1

adding XML document as a child, 4-67

API, definition, Glossary-1

application program interface (API),

definition, Glossary-1

Application Program Interface,

definition, Glossary-1

application server, definition, Glossary-1

asynchronous parsing, 10-5

attribute, definition, Glossary-2

automatic population, 7-30

B
B2B

definition, Glossary-2

B2C

definition, Glossary-2

BC4J

building XSQL clients, 25-15

framework, 25-7

JDeveloper, 25-7

XSQL clients, 25-15

BC4J, definition, Glossary-2

binary data, 4-70

Binary Large Object, definition, Glossary-2

binding

clearBindValues(), 23-6

setBindValue, 23-2

values to queries in XSU PL/SQL API, 23-2

BLOB, definition, Glossary-2

Built-in Action Handler, 9-73

Built-in Action Handler, XSQL, 9-73

Business Components for Java

definition, Glossary-2

XSQL clients, 25-15

Business-to-Business, Glossary-2

Business-to-Consumer, definition, Glossary-2

C
C Parser, 13-1

C++ Parser, 16-1

callback, definition, Glossary-2

cartridge, definition, Glossary-3

Cascading Style Sheets, definition, Glossary-3,

Glossary-5

case-sensitivity, parser, 4-50

CDATA Section, 4-51

CDATA, definition, Glossary-3

Channel Definition Format, definition, Glossary-3

character sets

XML Parser for Java, supported by, A-3

XML Schema Processor for Java, supported

by, 6-6

characters, special

inserting in XML documents, 4-73

Class Generator

definition, Glossary-3

for Java, 7-2

complexType, 7-4

generate() method, 7-5

oracg, 7-3
Index-1

SchemaClassGenerator class, 7-5

simpleType, 7-4

using with DTDs, 7-8

XML Schema, 7-4

Java FAQs, 7-29

XML C++, 19-1

Class Generators

for Java, explained, 7-30

classes

CGXSDElement, 7-7

DOMBuilder(), 10-5

DTDClassGenerator(), 7-8

SchemaClassGenerator(), 7-5

setSchemaValidationMode(), 6-9

XMLTreeView(), 10-15

CLASSPATH, 9-16

configuring to run XSU, 8-17

definition, Glossary-4

settings for class generator for Java, 7-30

clearBindValues(), 23-6

clearUpdateColumnNames(), 23-10

client-server, definition, Glossary-4

CLOB, definition, Glossary-4

CLOBs, XML in, 20-21

command line interface

oracg, 7-3

oraxml, 5-6

command line utilities

oracg, 7-3

Common Gateway Interface (CGI),

definition, Glossary-4

Common Object Request Broker API,

definition, Glossary-4

Common Oracle Runtime Environment,

definition, Glossary-4

compression of XML, 4-10

connecting

to a database with a thin driver, 8-25

to the database, 8-24

Connection Definitions, 9-17

Content, definition, Glossary-4

context, creating one in XSU PL/SQL API, 23-15

CORBA, definition, Glossary-4

CORE, definition, Glossary-4

creating a node, 4-55

creating context handles

getCtx, 23-2

D
DAD, definition, Glossary-5

data compression, XML Parser for Java, 4-10

Database Access Descriptor, definition, Glossary-5

datagram, definition, Glossary-5

DB Access Bean, 10-4

DBMS_XMLQuery

bind, 23-2

clearBindValues(), 23-6

getXMLClob, 23-6

DBMS_XMLQuery(), 23-2

DBMS_XMLSave, 23-7

deleteXML, 23-8

getCtx, 23-7

insertXML, 23-8

updateXML, 23-8

DBMS_XMLSave(), 23-7

DBURITYPE, definition, Glossary-5

DBViewer Bean, 10-4

Default SQL to XML Mapping, 8-8

delete

using XSU, 8-16, 8-43

delete processing, 8-43, 23-12

development tools, 1-3

differ (XMLDiff) bean, 10-32

DocType Node, Creating, 4-56

DOCTYPE, definition, Glossary-5

document clones in multiple threads, 4-63

Document Object Model, definition, Glossary-5

Document Type Definition, definition, Glossary-5

documents

C, 1-22

C++, 1-24

Java, 1-20

PL/SQL, 1-26

DOM

API, 4-55

definition, Glossary-5

interface, 21-2

tree-based API, 4-8

using API, 20-23
Index-2

DOM and SAX APIs, 4-7, 13-6, 16-7

guidelines for usage, 4-9

DOM fidelity, definition, Glossary-6

DOMBuilder Bean, 10-3, 10-5

asynchronous parsing, 10-5

DOMException when Setting Node Value, 4-61

DOMNamespace() class, 4-22

domsample, 20-6

DTD

caching, 4-48

definition, Glossary-5

limitations, 6-3

using with Class Generator for Java, 7-8

E
EJB, definition, Glossary-6

Electronic Data Interchange, definition, Glossary-6

element, definition, Glossary-6

elements

complexType, 7-4

simpleType, 7-4

empty element, definition, Glossary-6

Enterprise Java Bean, definition, Glossary-6

entity references, 4-73

entity, definition, Glossary-7

errors when parsing a document, 20-32

errors, HTML, 5-13

existnode, definition, Glossary-7

eXtensible Stylesheet Language Formatting Object,

definition, Glossary-7

eXtensible Stylesheet Language Transformation,

definition, Glossary-7

eXtensible Stylesheet Language,

definition, Glossary-7

extract, definition, Glossary-7

F
FAQ, 1-28

JDeveloper, 25-9

XML applications, 24-15

XSU, 8-46, 23-16

first child node’s value, 4-59

Folder, definition, Glossary-8

Foldering, definition, Glossary-8

FOP

FAQ, 9-90

serializer, 9-53

serializer to produce PDF, 9-64

FOP, Apache, xxxviii

FOP, definition, Glossary-8

Frequently Asked Questions

Class Generator for Java, 7-29

XML Parser for PL/SQL, 20-16

XSQL Servlet, 9-79

functional index, Glossary-8

further references, 1-41

G
generated XML, 1-28

customizing, 8-12

generating

simpleType element classes, 7-7

top level complexType element classes, 7-7

generating XML, 8-17, 8-32

using DBMS_XMLQuery, 23-2

using XSU command line, getXML, 8-17

getCtx, 23-2, 23-7

getDocType(), 7-8

getNodeValue(), 20-34

getXML, 8-17

getXMLClob, 23-6

H
HASPATH, definition, Glossary-8

hierarchical indexing, definition, Glossary-8

hierarchical mapping, 4-80

HP/UX, 4-82

HTML

definition, Glossary-9

errors, 5-13

parsing, 20-32

HTTP

definition, Glossary-9

HTTPURITYPE, definition, Glossary-8

Hypertext Markup Language,

definition, Glossary-9
Index-3

Hypertext Transport Protocol,

definition, Glossary-9

hypertext, definition, Glossary-9

I
iAS, definition, Glossary-15

IDE, definition, Glossary-9

IIOP, definition, Glossary-10

INPATH, definition, Glossary-9

insert, XSU, 8-15

inserting special characters into XML, 4-73

inserting XML

using XSU, 8-38

insertXML, 23-8

installing

class generator for Java, 7-30

instantiate, definition, Glossary-9

Integrated Development Environment,

definition, Glossary-9

interMedia, definition, Glossary-10

Internet File System, definition, Glossary-10

J
Java 2 Platform, Enterprise Edition,

definition, Glossary-10

Java API for XML Processing (JAXP),

definition, Glossary-10

Java Class Generator, 7-1

Java Database Connectivity,

definition, Glossary-10

Java Naming and Directory Interface,

definition, Glossary-11

Java Runtime Environment,

definition, Glossary-11

Java, definition, Glossary-10

JavaBean, definition, Glossary-10

JavaBeans, 1-11

JAVASYSPRIV, granting, 4-77

JAXP, Glossary-11

examples, 4-37

JAXP (Java API for XML Processing), 4-37

JDBC driver, 8-24

JDBC, definition, Glossary-10, Glossary-11

JDeveloper, 22-1, 23-1, 25-1, 26-1

3.2, 24-2

BC4J, 25-7

definition, Glossary-11

FAQ, 24-15

introduction, 24-2

mobile application, 25-9

support for XDK for JavaBeans, 10-2

using XSQL servlet from, 24-12

what’s needed, 24-7

XML features, 24-9

JDK, 4-71

definition, Glossary-11

JRE, definition, Glossary-11

JServer(JVM) Option, 20-20

JServer, definition, Glossary-12

JSP, definition, Glossary-11

JVM, 20-20

definition, Glossary-11

JVM, definition, Glossary-12

K
keepObjectOpen(), 8-30, 23-4

L
LAN, definition, Glossary-12

lazy type conversions, definition, Glossary-12

Linux, 20-25

listener, definition, Glossary-12

LOB, definition, Glossary-12

local area network, definition, Glossary-12

M
mapping

hierarchical, 4-80

primer, XSU, 8-8

maxRows, 8-29

memory errors, 20-22

Merging XML Documents, 4-75

method

getDocument(), DOMBuilder Bean, 10-6

methods
Index-4

addXSLTransformerListener(), 10-11

DOMBuilder Bean, 10-6

domBuilderError(), 10-6

DOMBuilderOver(), 10-6

domBuilderStarted(), 10-6

generate(), 7-5, 7-8

getDocType(), 7-8

getPreferredSize(), TreeViewer Bean

(XML), 10-15

setType, 7-6

setXMLDocument(doc), 10-15

updateUI(), TreeViewer Bean (XML), 10-15

mobile application

JDeveloper, 25-9

multiple outputs, 5-20

multiple XML documents, delimiting, 4-74

N
name-level locking, definition, Glossary-13

namespace

feature in XML Class Generator for Java, 7-4

namespace, definition, Glossary-13

namespaces

XML, 4-5

national character Large Object,

definition, Glossary-13

NCLOB, definition, Glossary-13

no rows exception, 8-35

node, definition, Glossary-13

NOTATION, definition, Glossary-13

N-tier, definition, Glossary-13

O
OAG, definition, Glossary-13

OAI, definition, Glossary-14

OASIS, definition, Glossary-15

Object View, definition, Glossary-14

object-relational, definition, Glossary-14

OC4J

definition, Glossary-14

OE, definition, Glossary-14

OIS, definition, Glossary-15

Open Applications Group, definition, Glossary-13

ora

node-set, 5-10

output, 5-10

oracg, 7-3

oracg command line utility, 7-3

Oracle Application Server, definition, Glossary-15

Oracle Exchange

definition, Glossary-14

Oracle Integration Server, definition, Glossary-15

Oracle Text, 1-19

Oracle Text, definition, Glossary-15

Oracle XML DB, definition, Glossary-15

ORACLE_HOME, definition, Glossary-15

oracle.cabo.ui package, 26-4

OracleXML

putXML, 8-22

XSU command line, 8-17

OracleXMLNoRowsException, 8-45

OracleXMLQuery, 8-23

OracleXMLSave, 8-23, 8-37, 8-38, 8-40, 8-43

OracleXMLSQLException, 8-45

oraxml, 5-6

oraxsl, 5-6

command line interfaces

oraxsl, 5-6

OraXSL Parser, 4-80

ORB, definition, Glossary-14

Ordered Collection in Tables,

definition, Glossary-15

out of memory errors, 20-22

Out Variable, 9-84

Output Escaping, 4-74

P
package oracle.cabo.ui, 26-4

paginating results, 8-29

parent element, definition, Glossary-15

parser case-sensitivity, 4-50

Parser for C, 13-1

Parser for C++, 16-1

Parser for Java, 4-1

constructor extension functions, 5-8

oraxsl command line interfaces

oraxsl, 5-6
Index-5

return value extension function, 5-9

validation modes, 4-5

Parser for PL/SQL, 20-1

parser, definition, Glossary-16

Parsers, XML, 4-2

parsing

errors, 20-32

HTML, 20-32

string, 4-72

URLs, 20-32

pathname, definition, Glossary-16

PCDATA, definition, Glossary-16

PDA, definition, Glossary-16

PDF results using FOP, 9-53

Personal Digital Assistant, definition, Glossary-16

PL/SQL

binding values in XSU, 23-6

definition, Glossary-16

generating XML with DBMS_XMLQuery, 23-2

parser, 20-1

XSU, 23-2

PL/SQL parser specifications, B-1

principal, definition, Glossary-16

processing

delete, 23-12

insert, 8-38

insert in PL/SQL, 23-8

update, 8-40, 23-10

prolog, definition, Glossary-17

properties

setGeneraterComments(), 7-8

setJavaPackage(string), 7-8

setOutputDirectory(string), 7-8

PUBLIC, definition, Glossary-17

putXML, 8-20

Q
quick references

XDK for Java, A-1

XDK for PL/SQL, B-1

R
renderer, definition, Glossary-17

repository, definition, Glossary-17

Resource Definition Framework,

definition, Glossary-17

resource name, definition, Glossary-17

resource, definition, Glossary-17

result set objects, 8-32

result set, definition, Glossary-17

root element, definition, Glossary-17

root objects, creating multiple with class

generator, 7-30

S
SAX, 4-2

event -based API, 4-8

SAX API, 4-7, 4-57, 13-6, 16-7

SAX, definition, Glossary-18

SAXParser() class, 4-26

SAXSample.java, 4-58

schema, definition, Glossary-18

Schema, XML, definition, 4-71

SchemaClassGenerator, 7-5

Secure Sockets Layer, definition, Glossary-18

select

with XSU, 8-14

Server-Side Include (SSI), Glossary-18

Servlet Conditional Statements, 9-79

servlet, definition, Glossary-18

servlet, XSQL, 9-1

session, definition, Glossary-18

setBindValue, 23-2

setKeyColumn, 8-44

setKeyColumn(), 23-13

setMaxRows, 23-4

setRaiseNoRowsException(), 23-5

setSkipRows, 23-4

setStylesheetHeader(), 23-6

setUpdateColumnName(), 23-10, 23-12

setUpdateColumnNames()

XML SQL Utility (XSU)

setUpdateColumnNames(), 8-42

SGML, definition, Glossary-19

Simple API for XML, definition, Glossary-18

Simple Object Access Protocol (SOAP),

definition, Glossary-18
Index-6

simpleType, 7-4

generating element class, 7-7

skipRows, 8-29

SOAP

JDeveloper support for, 11-7

server, 11-6

what is, 11-2

SOAP, definition, Glossary-18

special characters, 4-72

SQL, definition, Glossary-19

storing XML, 8-37

using XSU command line, putXML, 8-20

storing XML in the database, 23-7

Stylesheet, definition, Glossary-19

stylesheets

XSU, 23-5

SYS_XMLAGG, definition, Glossary-19

SYS_XMLGEN, definition, Glossary-19

SYSTEM, definition, Glossary-19

System.out.primtln(), 4-72

T
tag, definition, Glossary-19

TCP/IP, definition, Glossary-20

thin driver

connecting XSU, 8-25

thread safety, 16-3

thread, definition, Glossary-19

Transviewer Beans, 10-1

Transviewer, definition, Glossary-20

TransX Utility, 1-18, 12-1

command-line syntax, 12-6

sample code, 12-8

TransXUtility, definition, Glossary-20

Treeviewer Bean, 10-3, 10-13

Tuning with XSQL, 9-59

U
UDDI, 11-3

UI, definition, Glossary-21

UIX, 26-2

components, 26-4

features, 26-2

more information about, 26-8

technologies, 26-3

when not to use, 26-3

which technologies to use, 26-6

UIX, definition, Glossary-21

Uniform Resource Identifier,

definition, Glossary-20

Uniform Resource Locator, definition, Glossary-20

update processing, 23-10

update, XSU, 8-15

updating

table using keyColumns, XSU, 8-41

using XSU, 8-40

upgrading

XDK for Java to Oracle9i, 5-2

URI, definition, Glossary-20

URL, definition, Glossary-20

usage techniques, 8-45

User Interface XML, 26-2

User Interface XML (UIX), definition, Glossary-21

user interface, definition, Glossary-21

useStyleSheet(), 23-6

UTF-16 Encoding, 4-65

V
valid, definition, Glossary-21

validating against XML schema, 4-70

validation

non-validating mode, 4-5

partial validation mode, 4-5

schema validation mode, 4-5

validating Mode, 4-5

value of a tag, obtaining, 4-77

W
W3C, definition, Glossary-22

WAN, definition, Glossary-21

Web Objects Gallery, 25-16

Web Request Broker, definition, Glossary-21

web services, 11-2

WebDAV, definition, Glossary-21, Glossary-22

web-to-go server, A-6

well-formed, definition, Glossary-21
Index-7

WG, definition, Glossary-22

wide area network, definition, Glossary-21

World Wide Web Consortium,

definition, Glossary-22

World Wide Web Distributed Authoring and

Versioning, definition, Glossary-22

Wrapper, definition, Glossary-22

WRB, definition, Glossary-21

WRONG_DOCUMENT_ERR, 4-60

wrong_document_err, 4-60

WSDL, 11-3

X
XDBbinary, definition, Glossary-22

XDK for C

installation, 3-2

XDK for C++

installation, 3-13

XDK for Java

globalization support, 2-16

installation, 2-2

XDK for Java Beans

installation, 2-17

XDK for PL/SQL

installation, 3-25

XDK for PL/SQL Toolkit, 20-17

XDK Version Numbers, 4-71

XLink, definition, Glossary-22

XML

good references, 4-81

serialization/compression, 4-10

XML applications, 22-1, 23-1, 25-1, 26-1

JDeveloper, 24-15

with JDeveloper, 24-11

XML C++ Class Generator, 19-1

XML Class Generator, 1-10

oracg utility, 7-3

XML Class Generator for Java, 7-2

XML components, 1-2

generating XML documents, 1-19

XML Compressor, 4-10

XML Developer’s Kit (XDK),

definition, Glossary-23

XML discussion forum, 13-2, 14-2

XML document, added as a child, 4-67

XML documents, 1-20

XML Documents, Merging, 4-75

XML features

in JDeveloper 3.2, 24-9

XML Gateway, 1-19

XML in CLOBs, 20-21

XML Namespaces, 4-5

XML Parser

oraxml command line interface, 5-6

XML Parser for C, 13-1

sample programs, 13-9, 14-6

XML Parser for C++, 16-1, 16-2

XML Parser for Java

compression

XML data, using XML Parser for Java, 4-10

XML parser for Java

character sets, A-3

XML Parser for PL/SQL, 20-1

FAQs, 20-16

XML parsers, 1-8

XML Query, definition, Glossary-23

XML Schema

compared to DTD, 6-2

DTD limitations, 6-3

explained, 6-2

features, 6-3

processor for Java

how to run the sample program, 6-10

supported character sets, 6-6

usage, 6-8

processor for Java features , Oracle’s, 6-6

XML Schema, definition, Glossary-23

XML schema, definition, 4-71

XML SQL Utility (XSU), 1-16, 23-2

advanced techniques, exception handling

(PL/SQL), 23-16

binding values

PL/SQL API, 23-6

clearBindValues() with PL/SQL API, 23-6

command line usage, 8-17

connecting to the database, 8-24

connecting with a thin driver, 8-25

connecting with OCI* JDBC driver, 8-24

customizing generated XML, 8-12
Index-8

DBMS_XMLQuery, 23-2

DBMS_XMLSave(), 23-7

deletes, 8-16

deleting from XML documents, 8-43

dependencies and installation, 8-4

explained, 8-2

for Java, 8-22

getXML command line, 8-17

getXMLClob, 23-6

how it works, 8-14

inserting with command line and putXML, 8-20

inserting XML into database, 8-38

inserts, 8-15

keepObjectOpen function, 8-30

mapping primer, 8-8

OracleXLlQuery API, 8-23

OracleXMLSave API, 8-23

putting XML back in database with

OracleXMLSave, 8-37

selects, 8-14

setKeycolumn function, 8-44

setRaiseNoRowsException(), 23-5

setting stylesheets, PL/SQL, 23-5

updates, 8-15

updating, 8-41

updating XML documents in tables, 8-40

XML SQL Utility XSU)

useStyleSheet(), 23-6

XML SQL Utility(XSU)

creating context handles with getCtx, 23-2

XML to Java Object Mapping, 7-30

XML Transviewer JavaBeans, 1-11, 10-2

XML Tree, Traversing, 4-55

XML, definition, Glossary-7

xmlcg usage, 19-5

XMLDiff Bean, 10-32

XMLGEN, is deprecated. See DBMS_XMLQUERY

and DBMS_XMLSAVE, 8-4

XMLNode.selectNodes() Method, 4-56

XMLSourceView Bean, 10-3, 10-15

XMLTransformPanel() Bean, 10-4, 10-20

XMLType views, definition, Glossary-23

XPath

definition, Glossary-23

XPointer, definition, Glossary-24

XSL

good references, 4-81

XSL stylesheets

setStylesheetHeader() in XSU PL/SQL, 23-6

useStyleSheet() with XSU PL/SQL, 23-6

XSL Transformation (XSLT) Processor, 1-9, 4-4, 5-2

XSL, definition, Glossary-7

XSLFO, definition, Glossary-7

xslsample, 20-7

XSLT, 4-4

ora

node-set built in extension, 5-10

output built in extension, 5-10

XSLTransformer bean, 10-9

XSLT Processor, 21-2

XSLT, definition, Glossary-7

XSLTransformer Bean, 10-3, 10-9

XSQL

action handler errors, 9-77

built-in action handler elements, 9-73

clients, building with BC4J, 25-15

XSQL Clients with BC4J, 25-15

XSQL Component Palette, 24-7

XSQL Page Processor, 1-12

XSQL servlet, 1-12, 9-1, 24-12

FAQs, 9-79

XSQL servlet specifications, A-6

XSQL, definition, Glossary-24

XSQLCommandLine Utility, 9-18

XSQLConfig.xml, 9-59

XSU, 1-16

client-side, 8-17

FAQ, 8-46, 23-16

generating XML, 8-17

generating XML strings from a table,

example, 8-24

insert processing in PL/SQL, 23-8

mapping primer, 8-8

PL/SQL, 23-2

stylesheets, 23-5

usage guidelines, 8-8

using, 8-2

where you can run, 8-5
Index-9

Index-10

	Contents
	Send Us Your Comments
	Preface
	About this Guide
	How to Order this Manual
	Downloading Release Notes, Installation Guides, White Papers
	How to Access this Manual On-Line
	Conventions
	Documentation Accessibility

	What’s New in XDK?
	XDK Features Introduced with Oracle9i, Release 2 (9.2)
	XDK Features Introduced with Oracle9i, Release 1 (9.0.1)
	XDK Features Introduced with Oracle8i Release 3 (8.1.7)

	Part I� XML Developer’s Kits (XDK)
	1 Overview of XML Developer’s Kits and Components
	Oracle XML Components: Overview
	Development Tools and Other XML-Enabled Oracle9i Features
	XDK for Java
	XDK for JavaBeans
	XDK for C
	XDK for C++
	XDK for PL/SQL

	XML Parsers
	XSL Transformation (XSLT) Processor
	XML Class Generator
	XML Transviewer JavaBeans
	Oracle XSQL Page Processor and Servlet
	Servlet Engines That Support XSQL Servlet
	JavaServer Pages Platforms That Support XSQL Servlet

	Oracle XML SQL Utility (XSU)
	Generating XML from Query Results
	XML Document Structure: Columns Are Mapped to Elements

	TransX Utility
	Oracle Text
	XML Gateway
	Oracle XML Components: Generating XML Documents
	Using Oracle XML Components to Generate XML Documents: Java
	Using Oracle XML Components to Generate XML Documents: C
	Using Oracle XML Components to Generate XML Documents: C++
	Using Oracle XML Components to Generate XML Documents: PL/SQL
	Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
	Frequently Asked Questions About the XDK
	What XML Components Do I Need to Install?
	What Software Is Needed to Build an XML Application?
	XML Questions
	Are There XDK Utilities That Translate Data from Other Formats to XML?
	Can Oracle Generate a Database Schema from a Rational Rose Generated XML File?
	Does Oracle Offer Any Tools to Create and Edit XML Documents?
	How Can I Format XML Documents as PDF?
	How Do I Load a Large XML Document into the Database?
	Can SQL*Loader Support Nesting?

	Frequently Asked Questions About Previous Oracle Releases
	Can I Use Parsers from Different Vendors?
	Is There XML Support in Oracle Release 8.0.6?
	Can I Do Data Transfers to Other Vendors Using XML from Oracle Release 7.3.4?
	If I Use Versions Prior to Oracle8i Can I Use Oracle XML Tools?
	Can I Create Magnetic Tape Files with Oracle XML?

	Frequently Asked Questions About Browsers that Support XML
	Which Browsers Support XML?

	Frequently Asked Questions About XML Standards
	Are There Advantages of XML Over EDI?
	What B2B Standards and Development Tools Does Oracle Support?
	What Is Oracle Corporation’s Direction Regarding XML?
	What Is Oracle Corporation’s Plans for XML Query?
	Are There Standard DTDs That We Can Use for Orders, Shipments, and So On?

	Frequently Asked Questions About XML, CLOBs, and BLOBs
	Is There Support for XML Messages in BLOBs?

	Frequently Asked Questions About Maximum File Sizes
	What Is the Maximum XML File Size When Stored in CLOBs?
	Are There Any Limitations on the Size of an XML File?
	What Is the Maximum Size for an XML Document?

	Frequently Asked Questions About Inserting XML Data into Tables
	What Do I Need to Insert Data Into Tables Using XML?

	Frequently Asked Questions About XML Performance in the Database
	Where Can I Find Information About the Performance of XML and Oracle?
	How Can I Speed Up the Record Retrieval in XML Documents?

	Frequently Asked Questions About Multiple National Languages
	How Do I Put Information in Chinese into XML?

	Frequently Asked Questions About Reference Material
	What Are Some Recommended XML and XSL Books?

	2 Getting Started with XDK for Java and JavaBeans
	Installation of the XDK for Java
	Installation Steps for XDK for Java
	What Are the XDK for Java Components?
	Environment Settings for XDK for Java
	XSU Setup
	XSQL Servlet Setup
	XDK for Java with Globalization Support
	XDK Dependencies

	Installation of the XDK for JavaBeans
	XDK for JavaBeans Components
	Setting Up the XDK for JavaBeans Environment
	XDK for JavaBeans with Globalization Support

	3 Getting Started with XDKs for C/C++ and PL/SQL
	Installation of XDK for C
	Getting the XDK for C
	UNIX Environment Setup
	Windows NT Environment Setup

	Installation of the XDK for C++
	Getting the XDK for C++
	Setting the UNIX Environment for C++
	Windows NT Environment Setup

	Installation of XDK for PL/SQL
	Setting the Environment for XDK for PL/SQL
	Installing XDK for PL/SQL into the Database
	Loading XDK for PL/SQL

	Part II� XDK for Java
	4 XML Parser for Java
	XML Parser for Java: Features
	XSL Transformation (XSLT) Processor
	Namespace Support
	Oracle XML Parsers Validation Modes

	Parsers Access XML Document’s Content and Structure
	DOM and SAX APIs
	DOM: Tree-Based API
	SAX: Event-Based API
	Guidelines for Using DOM and SAX APIs

	XML Compressor
	XML Serialization/Compression

	Running the XML Parser for Java Samples
	XML Parser for Java - XML Example 1: class.xml
	XML Parser for Java - XML Example 2: Using DTD employee — employee.xml
	XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml
	XML Parser for Java - XSL Example 1: XSL (iden.xsl)
	XML Parser for Java - DTD Example 1: (NSExample)

	Using XML Parser for Java: DOMParser() Class
	XML Parser for Java Example 1: Using the Parser and DOM API
	Comments on DOMParser() Example 1

	Using XML Parser for Java: DOMNamespace() Class
	XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java

	Using XML Parser for Java: SAXParser() Class
	XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
	XML Parser for Java Example 4: (SAXNamespace.java)
	oraxml - Oracle XML parser

	Using JAXP
	JAXP Example: (JAVAExamples.java)
	JAXP Example: (oraContentHandler.java

	Frequently Asked Questions About DTDs
	Why Can’t My Parser Find the DTD File?
	Can I Validate an XML File Using an External DTD?
	Does Oracle Perform DTD Caching?
	How Does the XML Parser for Java Recognize External DTDs?
	How Do I Load External DTDs from a JAR File?
	Can I Check the Correctness of an XML Document Using Their DTD?
	How Do I Parse a DTD Object Separately from My XML Document?
	Is the XML Parser Case-Sensitive?
	How Do I Extract Embedded XML from a CDATA Section?
	Why Am I Getting an Error When I Call DOMParser.parseDTD()?
	Is There a Standard Extension for External Entity References in an XML Document?

	Frequently Asked Questions About DOM and SAX APIs
	How Do I Use the DOM API to Count Tagged Elements?
	How Does the DOM Parser Work?
	How Do I Create a Node with a Value to Be Set Later?
	How Do I Traverse the XML Tree?
	How Do I Extract Elements from an XML File?
	Does a DTD Validate the DOM Tree?
	How Do I Find the First Child Node Element Value?
	How Do I Create DocType Node?
	How Do I Use the XMLNode.selectNodes() Method?
	How Does the SAX API Determine the Data Value?
	How Does SAXSample.java Call Methods?
	Does the DOMParser Use the org.xml.sax.Parser Interface?
	How Do I Create a New Document Type Node with DOM API?
	How Do I Query for First Child Node’s Value of a Certain Tag?
	Can I Generate an XML Document from Data in Variables?
	How Do I Use the DOM API to Print Data in the Element Tags?
	How Do I Build XML Files from Hash Table Value Pairs?
	XML Parser for Java: WRONG_DOCUMENT_ERR on Node.appendChild()
	Will WRONG_DOCUMENT_ERR Result from This Code Fragment?
	Why Are Only the Child Nodes Inserted?
	Why Do I Get DOMException when Setting Node Value?
	How Can I Force the SAX Parser to Not Discard Characters Following Whitespace?

	Frequently Asked Questions About Validation
	What Are the Rules for Locating DTDs?
	Can Multiple Threads Use a Single XSLProcessor/Stylesheet?
	Can I Use Document Clones in Multiple Threads?

	Frequently Asked Questions About Character Sets
	How Do I Parse iso-8859-1-encoded Documents with Special Characters?
	How Do I Parse XML Stored in NCLOB with UTF-8 Encoding?
	Is There Globalization Support Within XML?
	How Do I Parse a Document Containing Accented Characters?
	How Do I Store Accented Characters in an XML Document?

	Frequently Asked Questions: Adding an XML Document as a Child
	How Do I Add an XML Document as a Child to Another Element?
	How Do I Add an XML Document Fragment as a Child to an XML Document?

	Frequently Asked General Questions About XML Parser
	Why Do I Get an Error on Installing the XML Parser?
	How Do I Remove the XML Parser from the Database?
	What Does an XML Parser Do?
	How Do I Convert XML Files into HTML Files?
	Does the XML Parser Validate Against XML Schema?
	How Do I Include Binary Data in an XML Document?
	What Is XML Schema?
	Does Oracle Participate in Defining the XML/XSL Standard?
	How Do I Find XDK Version Numbers?
	Are Namespace and Schema Supported?
	Can I Use JDK 1.1.x with XML Parser for Java v2?
	How Do I Sort the Result Within the Page?
	Do I Need Oracle9i to Run XML Parser for Java?
	Can I Dynamically Set the Encoding in an XML File?
	How Do I Parse a String?
	How Do I Display an XML Document?
	How Do I Use System.out.println() and Special Characters?
	How Do I Insert Characters <, >, =, ’, ", and & in XML Documents?
	How Do I Use Special Characters in the Tags?
	How Do I Parse XML from Data of Type String?
	How Do I Extract Data from an XML Document into a String?
	Is Disabling Output Escaping Supported?
	Can I Delimit Multiple XML Documents with a Special Character?
	How Do I Use Entity References with the XML Parser for Java?
	Can I Divide and Store an XML Document Without a DDL Insert?
	In Querying, Can I Perform Hierarchical Searches Across XML Documents?
	How Do I Merge XML Documents?
	How Do I Find the Value of a Tag?
	How Do I Grant the JAVASYSPRIV Role to a User?
	How Do I Include an External XML File in Another XML File?
	Does the Parser Come with a Utility to View the Parsed Output?
	From Where Can I Download OraXSL, the Parser’s Command Line Interface?
	Does Oracle Support Hierarchical Mapping?
	What Good Books for XML/XSL Can You Recommend?
	Are There XML Developer Kits for the HP/UX Platform?
	How Do I Compress Large Volumes of XML Documents?
	How Do I Generate an XML Document Based on Two Tables?

	5 XSLT Processor for Java
	Using XML Parser for Java: XSLT Processor
	XSLT Processor for Java Example

	XSLT Processor for Java: Command-Line Interface, oraxsl
	oraxsl - Oracle XSL processor

	XML Extension Functions for XSLT Processing
	XSLT Processor Extension Functions: Introduction
	Static Versus Non-Static Methods
	Constructor Extension Function
	Return Value Extension Function
	Datatypes Extension Function
	Oracle XSLT Built-In Extensions: ora:node-set and ora:output

	Frequently Asked Questions About the XSLT Processor and XSL
	Why Am I Getting an HTML Error in XSL?
	Is the Output Method “html” Supported in the XSL Parser?
	Can I Prevent XSL from Returning a Meta-Tag in Netscape 4.0?
	How Do I Work Around a Display Bug in the Browser?
	Where Can I Get More Information on XSL Error Messages?
	How Do I Generate the HTML "Less Than" (<) Character?
	Why Does HTML “<“ Conversion Work in oraxsl But Not in XSLSample.java?
	Where Can I Find XSLT Examples?
	Where Can I Find a List of XSLT Features?
	How Do I Use XSL to Convert an XML Document to Another Form?
	Where Can I Find More Information on XSL?
	Can the XSL Processor Produce Multiple Outputs?

	6 XML Schema Processor for Java
	Introducing XML Schema
	How DTDs and XML Schema Differ
	XML Schema Features
	Oracle XML Schema Processor for Java Features
	Supported Character Sets
	What’s Needed to Run XML Schema Processor for Java
	XML Schema Processor for Java Directory Structure

	XML Schema Processor for Java Usage
	Modes for Schema Validation
	Using the XML Schema API

	How to Run the XML Schema for Java Sample Program
	Makefile for XML Schema Processor for Java
	XML Schema for Java Example 1: cat.xsd
	XML Schema for Java Example 2: catalogue.xml
	XML Schema for Java Example 3: catalogue_e.xml
	XML Schema for Java Example 4: report.xml
	XML Schema for Java Example 5: report.xsd
	XML Schema for Java Example 6: report_e.xml
	XML Schema for Java Example 7: XSDSample.java
	XML Schema for Java Example 8: XSDSetSchema.java
	XML Schema for Java Example 9: XSDLax.java
	XML Schema for Java Example 10: embeded_xsql.xsd
	XML Schema for Java Example 11: embeded_xsql.xml

	7 XML Class Generator for Java
	Accessing XML Class Generator for Java
	XML Class Generator for Java: Overview
	oracg Command Line Utility
	Class Generator for Java: XML Schema
	Namespace Features

	Using XML Class Generator for Java with XML Schema
	Generating Top Level Element Classes
	Generating Top Level ComplexType Element Classes
	Generating SimpleType Element Classes

	Using XML Class Generator for Java with DTDs
	Examples Using XML Java Class Generator with DTDs and XML Schema
	Running XML Class Generator for Java: DTD Examples
	Running XML Class Generator for Java: XML Schema Examples
	XML Class Generator for Java, DTD Example 1a: Application: SampleMain.java
	XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
	XML Class Generator for Java, DTD Example 1c: Input — widl.xml
	XML Class Generator for Java, DTD Example 1d: TestWidl.java
	XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
	XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd
	XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
	XML Class Generator for Java, Schema Example 2a: Schema: book.xsd
	XML Class Generator for Java, Schema Example 2b: BookCatalogue.java
	XML Class Generator for Java, Schema Example 3a: Schema: po.xsd
	XML Class Generator for Java, Schema Example 3b: Application: TestPo.java

	Frequently Asked Questions About the Class Generator for Java
	How Do I Install the XML Class Generator for Java?
	What Does the XML Class Generator for Java Do?
	Which DTDs Are Supported?
	Why Do I Get a "Classes Not Found" Error?
	In XML Class Generator, How Do I Create the Root Object More Than Once?
	How Can I Create XML Files from Scratch Using the DOM API?
	Can I Create an XML Document in a Java Class?

	8 XML SQL Utility (XSU)
	What Is XML SQL Utility (XSU)?
	XSU Features
	XSU Oracle9i New Features

	XSU Dependencies and Installation
	Dependencies
	Installation

	XML SQL Utility and the Bigger Picture
	XML SQL Utility in the Database
	XML SQL Utility in the Middle Tier
	XML SQL Utility in a Web Server
	XML SQL Utility in the Client Tier

	SQL-to-XML and XML-to-SQL Mapping Primer
	Default SQL-to-XML Mapping
	Customizing the Generated XML: Mapping SQL to XML
	Default XML-to-SQL Mapping

	How XML SQL Utility Works
	Selecting with XSU
	Inserting with XSU
	Updating with XSU
	Deleting with XSU

	Using the XSU Command Line Front End, OracleXML
	Generating XML Using the XSU Command Line
	XSU’s OracleXML getXML Options
	Inserting XML Using XSU’s Command Line (putXML)
	XSU OracleXML putXML Options

	XSU Java API
	Generating XML with XSU’s OracleXMLQuery
	Generating XML from SQL Queries Using XSU
	XSU Generating XML Example 1: Generating a String from Table emp (Java)
	XSU Generating XML Example 2: Generating DOM From Table emp (Java)

	Paginating Results: skipRows and maxRows
	Keeping the Object Open for the Duration of the User’s Session
	When the Number of Rows or Columns in a Row Is Too Large
	keepObjectOpen Function
	XSU Generating XML Example 3: Paginating Results: Generating an XML Page (Java)

	Generating XML from ResultSet Objects
	XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
	XSU Generating XML Example 5: Generating XML from Procedure Return Values

	Raising No Rows Exception
	XSU Generating XML Example 6: No Rows Exception (Java)

	Storing XML Back in the Database Using XSU OracleXMLSave
	Insert Processing Using XSU (Java API)
	XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
	XSU Inserting XML Example 8: Inserting XML Values into Columns (Java)

	Update Processing Using XSU (Java API)
	XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
	XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

	Delete Processing Using XSU (Java API)
	XSU Deleting XML Example 11: Deleting Operations Per Row (Java)
	XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

	Advanced XSU Usage Techniques
	XSU Exception Handling in Java

	Frequently Asked Questions About XML SQL Utility (XSU)
	What Schema Structure Should I Use with XSU to Store XML?
	Can XSU Store XML Data Across Tables?
	Can I Use XSU to Load XML Stored in Attributes?
	Is XSU Case-Sensitive? Can I Use ignoreCase?
	Will XSU Generate the Database Schema from a DTD?
	Can You Provide a Thin Driver Connect String Example for XSU?
	Does XSU Commit After INSERT, DELETE, or UPDATE?
	Can You Explain How to Map Table Columns to XML Attributes Using XSU?

	9 XSQL Pages Publishing Framework
	XSQL Pages Publishing Framework Overview
	What Can I Do with Oracle XSQL Pages?
	Where Can I Obtain Oracle XSQL Pages?
	What’s Needed to Run XSQL Pages?

	Overview of Basic XSQL Pages Features
	Producing XML Datagrams from SQL Queries
	Transforming XML Datagrams into an Alternative XML Format
	Transforming XML Datagrams into HTML for Display

	Setting Up and Using XSQL Pages in Your Environment
	Using XSQL Pages with Oracle JDeveloper
	Setting the CLASSPATH Correctly in Your Production Environment
	Setting Up the Connection Definitions
	Using the XSQL Command-Line Utility

	Overview of All XSQL Pages Capabilities
	Using All of the Core Built-in Actions
	Aggregating Information Using <xsql:include-xsql>
	Including XMLType Query Results
	Handling Posted Information
	Using Custom XSQL Action Handlers

	Description of XSQL Servlet Examples
	Setting Up the Demo Data

	Advanced XSQL Pages Topics
	Understanding Client Stylesheet-Override Options
	Controlling How Stylesheets Are Processed
	Using XSQLConfig.xml to Tune Your Environment
	Using the FOP Serializer to Produce PDF Output
	Using XSQL Page Processor Programmatically
	Writing Custom XSQL Action Handlers
	Writing Custom XSQL Serializers
	Writing Custom XSQL Connection Managers
	Formatting XSQL Action Handler Errors

	XSQL Servlet Limitations
	HTTP Parameters with Multibyte Names
	CURSOR() Function in SQL Statements

	Frequently Asked Questions About the XSQL Servlet
	Can I Specify a DTD While Transforming XSQL Output to a WML Document?
	Can I Write XSQL Servlet Conditional Statements?
	Can I Use a Value Retrieved in One Query in Another Query’s Where Clause?
	Can I Use the XSQL Servlet with Non-Oracle Databases?
	How Do I Use the XSQL Servlet to Access the JServ Process?
	How Do I Run XSQL on Oracle8i Lite?
	How Do I Handle Multi-Valued HTML Form Parameters?
	Can I Run the XSQL Servlet with Oracle 7.3?
	Why Isn’t the Out Variable Supported in <xsql:dml>?
	Why Am I Receiving "Unable to Connect" Errors?
	Can I Use Other File Extensions Besides *.xsql?
	How Do I Avoid Errors for Queries Containing XML Reserved Characters?
	Why Do I Get "No Posted Document to Process" When I Try to Post XML?
	Can XSQL Support SOAP?
	How Do I Pass the Connection for XSQL?
	How Do I Control How Database Connections and Passwords Are Stored?
	How Do I Access Authentication Information in a Custom Connection Manager?
	How Do I Retrieve the Name of the Current XSQL Page?
	How Do I Resolve Errors When I Try to Use the FOP Serializer?
	How Do I Tune XSQL Pages for Fastest Performance?
	How Do I Use XSQL with Other Connection Pool Implementations?
	How Do I Include XML Documents Stored in CLOBs?
	How Do I Combine JSP and XSQL in the Same Page?
	Can I Choose a Stylesheet Based on Input Arguments?

	10 XDK JavaBeans
	Accessing Oracle XML Transviewer Beans
	XDK for Java: XML Transviewer Bean Features
	Direct Access from JDeveloper
	Sample Transviewer Bean Application
	Database Connectivity
	XML Transviewer Beans

	Using the XML Transviewer Beans
	Using DOMBuilder Bean
	Used for Asynchronous Parsing in the Background
	DOMBuilder Bean Parses Many Files Fast
	DOMBuilder Bean Usage

	Using XSLTransformer Bean
	Do You Have Many Files to Transform? Use XSLTransformer Bean
	Do You Need a Responsive User Interface? Use XSLTransformer Bean
	XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Data Changes
	XSLTransformer Bean Usage

	Using Treeviewer Bean
	Using XMLSourceView Bean
	XMLSourceView Bean Usage

	Using XMLTransformPanel Bean
	XMLTransformPanel Bean Features

	Using DBViewer Bean
	DBViewer Bean Usage

	Using DBAccess Bean
	DBAcess Bean Usage

	Using the XMLDiff Bean
	XMLDiff Methods

	Running the Transviewer Bean Samples
	Installing the Transviewer Bean Samples
	Using Database Connectivity
	Running Makefile
	Transviewer Bean Example 1: AsyncTransformSample.java
	Transviewer Bean Example 2: ViewSample.java
	Transviewer Bean Example 3: XMLTransformPanelSample.java
	Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
	Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java
	Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
	XMLDiffSample.java
	XMLDiffFrame.java

	11 Using XDK and SOAP
	What Is SOAP?
	What Are UDDI and WSDL?
	What Is Oracle SOAP?
	How Does SOAP Work?
	What Is a SOAP Client?
	SOAP Client API
	What Is a SOAP Server?
	Oracle SOAP Security Features
	SOAP Transports
	Administrative Clients
	SOAP Request Handler
	SOAP Provider Interface and Providers
	SOAP Services
	JDeveloper Support for SOAP

	See the Developer’s Guides

	12 Oracle TransX Utility
	Overview of the TransX Utility
	Primary TransX Utility Features

	Installing TransX Utility
	Dependencies of TransX
	Installing TransX Using the Oracle Installer
	Installing TransX Downloaded from OTN

	TransX Utility Command-Line Syntax
	TransX Utility Command-Line Examples

	Sample Code for TransX Utility

	Part III� XDK for C/C++
	13 XML Parser for C
	Accessing XML Parser for C
	XML Parser for C Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C Usage
	XML Parser for C Default Behavior
	DOM and SAX APIs
	Using the SAX API

	Invoking XML Parser for C
	Command Line Usage
	Writing C Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C Sample Programs
	Building the Sample Programs
	Sample Programs

	14 XSLT Processor for C
	Accessing XSLT for C
	XSLT for C Features
	Specifications

	XML XSLT for C (DOM Interface) Usage
	Invoking XSLT for C
	Command Line Usage

	Using the Sample Files Included with the Software
	Running the XSLT for C Sample Programs
	Building the Sample Programs
	Sample Programs
	XSLT for C Example1: XSL — iden.xsl
	XSLT for C Example 2: C — XSLSample.c
	XSLT for C Example 3: C — XSLSample.std

	15 XML Schema Processor for C
	Oracle XML Schema Processor for C
	Oracle XML Schema for C Features
	Standards Conformance
	XML Schema Processor for C: Supplied Software

	Invoking XML Schema Processor for C
	XML Schema Processor for C Usage Diagram
	How to Run XML Schema for C Sample Programs

	16 XML Parser for C++
	Accessing XML Parser for C++
	XML Parser for C++ Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C++ Usage
	XML Parser for C++ Default Behavior
	DOM and SAX APIs
	Using the SAX API

	Invoking XML Parser for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C++ Sample Programs
	Building the Sample Programs
	Sample Programs

	17 XSLT Processor for C++
	Accessing XSLT for C++
	XSLT for C++ Features
	Specifications

	XSLT for C++ (DOM Interface) Usage
	Invoking XSLT for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XSLT for C++ Sample Programs
	Building the Sample programs
	Sample Programs

	18 XML Schema Processor for C++
	Oracle XML Schema Processor for C++ Features
	Oracle XML Schema for C++ Features
	Standards Conformance
	XML Schema Processor for C++: Provided Software

	Invoking XML Schema Processor for C++
	XML Schema Processor for C++ Usage Diagram
	Running the Provided XML Schema Sample Programs

	19 XML Class Generator for C++
	Accessing XML C++ Class Generator
	Using XML C++ Class Generator
	External DTD Parsing
	Error Message Files

	XML C++ Class Generator Usage
	Input to the XML C++ Class Generator

	xmlcg Usage
	Using the XML C++ Class Generator Examples in sample
	XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
	XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
	XML C++ Class Generator Example 3: CG Sample Program

	Part IV� XDK for PL/SQL
	20 XML Parser for PL/SQL
	Accessing XML Parser for PL/SQL
	What’s Needed to Run XML Parser for PL/SQL
	Using XML Parser for PL/SQL (DOM Interface)
	XML Parser for PL/SQL: Default Behavior

	Using XML Parser for PL/SQL Examples in the Sample Directory
	Setting Up the Environment to Run the Sample Programs
	Running domsample
	Running xslsample
	XML Parser for PL/SQL Example: XML — family.xml
	XML Parser for PL/SQL Example: DTD — family.dtd
	XML Parser for PL/SQL Example: PL/SQL — domsample.sql
	XML Parser for PL/SQL Example: PL/SQL — xslsample.sql

	Frequently Asked Questions About the XML Parser for PL/SQL
	Why Do I Get an "Exception in Thread" Parser Error?
	How Do I Use the xmldom.GetNodeValue in PL/SQL?
	Can I Run the XDK for PL/SQL in an IIS Environment?
	How Do I Parse a DTD Contained in a CLOB with the XML Parser for PL/SQL?
	How Do I Use Local Variables with the XML Parser for PL/SQL?
	Why Do I Get a Security Error When I Grant JavaSysPriv to a User?
	How Do I Install the XML Parser for PL/SQL with the JServer (JVM) Option?
	How Do I Use the domsample Included with XML Parser for PL/SQL?
	How Do I Extract Part of a CLOB?
	Why Do I Get "Out of Memory" Errors in the XML Parser?
	What Are the Memory Requirements for Using the PL/SQL Parser?
	Is JServer (JVM) Needed to Run XML Parser for PL/SQL?

	Frequently Asked Questions About Using the DOM API
	What Does the XML Parser for PL/SQL Do?
	Can I Dynamically Set the Encoding in the XML Document?
	How Do I Get the Number of Elements in a Particular Tag?
	How Do I Parse a String?
	How Do I Display My XML Document?
	How Do I Write the XML Data Back Using Special Character Sets?
	How Do I Obtain an Ampersand from Character Data?
	How Do I Generate a Document Object from a File?
	Can the Parser Run on Linux?
	Is Support for Namespaces and Schema Included?
	Why Doesn’t My Parser Find the DTD File?
	Can I Validate an XML File Using an External DTD?
	Does the Parser Have DTD Caching?
	How Do I Get the DOCTYPE Tag into the XML Document After It Is Parsed?
	How Does the XML DOM Parser Work?
	How Do I Create a Node Whose Value I Can Set Later?
	How Do I Extract Elements from the XML File?
	How Do I Append a Text Node to a DOMElement Using PL/SQL Parser?
	I Am Using XML Parser with DOM; Why Can I Not Get the Actual Data?
	Can the XML Parser for PL/SQL Produce Non-XML Documents?
	I Cannot Run the Sample File. Did I Do Something Wrong In the Installation?
	How Do I Parse a DTD in a CLOB?
	Why Do I Get Errors When Parsing a Document?
	How Do I Use PLXML to Parse a Given URL?
	How Do I Use the XML Parser to Parse HTML?
	How Do I Move Data to a Web Browser Using PL/SQL and Oracle 7.3.4?
	Does the XML Parser for Java Work with Oracle 7.3.4?
	getNodeValue(): Getting the Value of DomNode
	How Do I Retrieve All Children or Grandchildren of a Node?
	What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?"

	21 XSLT Processor for PL/SQL
	Using the XML Parser for PL/SQL: XSLT Processor (DOM Interface)
	XML Parser for PL/SQL: XSLT Processor — Default Behavior
	XML Parser for PL/SQL Example: XSL — iden.xsl

	22 XML Schema Processor for PL/SQL
	Oracle XML Schema Processor for PL/SQL
	Building Server-Side XML Schema Validation
	Creating the Java Classes for XML Schema Validation
	Loading and Resolving the Java Class
	Publishing the Java Class by Defining the Specification
	Example Using the Stored Procedures

	23 XSU for PL/SQL
	XSU PL/SQL API
	Generating XML with DBMS_XMLQuery()
	XSU Generating XML Example 1: Generating XML from Simple Queries (PL/SQL)
	XSU Generating XML Example 2: Printing CLOB to Output Buffer
	XSU Generating XML Example 3: Changing ROW and ROWSET Tag Names
	XSU Generating XML Example 4: Using setMaxRows() and setSkipRows()

	Setting Stylesheets in XSU (PL/SQL)
	Binding Values in XSU (PL/SQL)
	XSU Generating XML Example 5: Binding Values to the SQL Statement

	Storing XML in the Database Using DBMS_XMLSave
	Insert Processing Using XSU (PL/SQL API)
	XSU Inserting XML Example 6: Inserting Values into All Columns (PL/SQL)
	XSU Inserting XML Example 7: Inserting Values into Certain Columns (PL/SQL)

	Update Processing Using XSU (PL/SQL API)
	XSU Updating XML Example 8: Updating XML Document Key Columns (PL/SQL)
	XSU Updating XML Example 9: Specifying a List of Columns to Update (PL/SQL)

	Delete Processing Using XSU (PL/SQL API)
	XSU Deleting XML Example 10: Deleting Operations for Each Row (PL/SQL)
	XSU Example 11: Deleting by Specifying the Key Values (PL/SQL)
	XSU Deleting XML Example 12: Reusing the Context Handle (PL/SQL)
	XSU Exception Handling in PL/SQL

	Frequently Asked Questions About XML SQL Utility (XSU) for PL/SQL
	How Can I Use XMLGEN.insertXML with LOBs?

	Part V� Tools and Frameworks That Support XDK
	24 Developing XML Applications with JDeveloper
	Introducing JDeveloper
	JDeveloper Covers the Complete Development Life Cycle
	JDeveloper Runs on Windows, Linux, and Solaris™ Operating Environment
	Java Alone Is Not Enough
	XML Tools in JDeveloper
	Business Components for Java (BC4J)
	Integrated Web Services Development

	What’s Needed to Run JDeveloper
	XSQL Component Palette
	Page Selector Wizard

	XDK Features in JDeveloper
	Oracle XDK Integration in JDeveloper
	Developing Web Applications in JDeveloper Using XSQL Pages

	Building XML Applications with JDeveloper
	JDeveloper XDK Example 1: BC4J Metadata
	Procedure for Building Applications in JDeveloper

	Using XSQL Servlet from JDeveloper
	JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql
	JDeveloper XSQL Example 3: Employee Data with Stylesheet Added

	Frequently Asked Questions About JDeveloper and XML Applications
	How Do I Construct an XML Document in JSP?
	Is There a Way to Use the @code Directly in the document() Line?
	How Do I Retrieve Data from messages.xml?
	How Do I Move Complex XML Documents to a Database?

	25 Introduction to BC4J
	Introducing Business Components for Java (BC4J)
	What Is the Business Components Framework?
	Using Business Components
	Advantages at BC4J Design Time
	Advantages at BC4J Runtime

	Implementing XML Messaging
	Test BC4J Applications using JDeveloper
	BC4J Uses XML to Store Metadata

	Creating a Mobile Application in JDeveloper
	Create the BC4J Application
	Create JSP Pages Based on a BC4J Application
	Create XSLT Stylesheets According to the Devices Needed to Read the Data
	Building XSQL Clients with BC4J

	Building XSQL Clients with BC4J
	Web Objects Gallery
	Generating and Managing Code When Building XML and Java Applications

	Frequently Asked Questions for BC4J
	Can Applications Built Using BC4J Work With Any J2EE-Compliant Container?
	Can J2EE Applications Built Using BC4J Work with Any Database?
	Is There Runtime Overhead from the Framework for Features That I Do Not Use?
	Where Can I Find More Information About BC4J?

	26 Introduction to UIX
	What Is UIX?
	When to Use UIX
	When Not to Use UIX
	What Are the UIX Technologies?
	UIX Components
	UIX Controller
	UIX Language
	UIX Dynamic Images
	UIX Styles
	UIX Share

	Which UIX Technologies to Use?
	For More Information About UIX

	A XDK for Java: Specifications and Quick References
	XML Parser for Java Quick Reference
	XML Parser for Java Specifications
	Requirements
	Online Documentation
	Release Specific Notes
	Standards Conformance
	Supported Character Set Encodings

	XDK for Java: XML Schema Processor
	XDK for Java: XML Class Generator for Java
	XDK for Java: XSQL Servlet
	Downloading and Installing XSQL Servlet
	Windows NT: Starting the Web-to-Go Server
	Setting Up the Database Connection Definitions for Your Environment
	UNIX: Setting Up Your Servlet Engine to Run XSQL Pages

	XSQL Servlet Specifications
	Character Set Support

	B XDK for PL/SQL: Specifications
	XML Parser for PL/SQL
	Oracle XML Parser Features
	Namespace Support
	Validating and Non-Validating Mode Support
	Example Code
	IXML Parser for PL/SQL Directory Structure
	DOM and SAX APIs

	XML Parser for PL/SQL Specifications

	Glossary
	Index

