Oracle9i

SQLJ Developer’s Guide and Reference

Release 2 (9.2)

March 2002
Part No. A96655-01

ORACLE

Oracle9i SQLJ Developer’s Guide and Reference, Release 2 (9.2)
Part No. A96655-01

Copyright © 1999, 2002 Oracle Corporation. All rights reserved.
Primary Author: Brian Wright

Contributing Authors: Janice Nygard, Ekkehard Rohwedder

Contributors: Brian Becker, Alan Thiesen, Lei Tang, Julie Basu, Pierre Dufour, Quan Wang, Jerry
Schwarz, Risto Lankinen, Cheuk Chau, Vishu Krishnamurthy, Rafiul Ahad, Jack Melnick, Tim Smith,
Thomas Pfaeffle, Tom Portfolio, Ellen Barnes, Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, PL/SQL, SQL*Plus, and
Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send US YOUT COMMEBNTS ...t XV
PRI AC ...ttt ettt ettt ettt et ettt et ettt e enas Xvii
{101 (T gL (Y0 I AN U o [1T o 1o < IR XViii
Documentation ACCESSIDIITYoiiiiiiie e e e xviii
OFQANIZATION ...ttt ettt bbb et b et bt h et eb et eh et bt eb et bbb beb e beer e XiX
Related DOCUMEBNTATIONoieiieiiiiiieie ettt ettt e st e e ettt e e st e e et e e e et beseasaeesstbessssseesentesesrees XXi
(O00] 0 \VZ=T o] £ 1o] o F-THTRU TR XXiV

1 Overview

[Fak o To LU oA ToT a1 (o IS] I TSRS 1-2
2T Ty ol O o] g =] o £SO 1-2
Oracle-Specific Code Generation Versus ISO Standard Code Generationcccc........ 1-3
Java and SQLIVErsUS PLZSQL.....coiiiiiiiiiie ettt sr et e sraenaeere s 1-3

Overview Of SQLJI COMPONENLEScoiiiiiriiiirietire ettt sttt st st eb et eb et ebe st eb et en et er e eree s 1-5
SQLJ Translator and SQLJ RUNTIME. ..ot 1-5
SQLJ Profiles (ISO Standard COOE)cviiiieiiiiiiieieee e 1-6

Overview of Oracle Extensions to the SQLJ Standardccoceoviiininiiiene s 1-8

Basic Translation Steps and RUNTIME ProCeSSING.........couiiiriiiiinere e 1-10
SQLI TranSIatioN STEPScuevieiiriitire ettt ettt e eb et eb et eb et eb et bt eb bbb ben e 1-10
Summary of Translator INput aNd OULPULccoeriiiieiece e 1-13
SQLJ RUNTIME PrOCESSING .. .cevveiiiiiiiiteiit ettt s st se e 1-16

JDBC Versus SQLJ SAMPIE COUE.......coiiiiiieirie sttt e e e 1-18
JDBC Version of the SAmpPle Code ... e 1-19

SQLJ Version of the SAMPIe COUE ... e 1-22

Alternative DeploymMENt SCENAITOSccoociriiriiirieire et er e 1-25
RUNNING SQLI TN APPIELS ...ttt e s eenees 1-25
Introduction t0 SQLJ IN the SEIVELc.ioiii e s 1-29
UsiNg SQLJI With OracleOi LItecovieeiiiiie ettt st s 1-30

Alternative DevelopmMENT SCENATTOSoo ittt ettt er e er e enen 1-32
SQLJ Globalization SUPPOIT......cccoiiiie ettt e 1-32
SQLJ in Oracle9i JDeveloper and Other IDES..........cccooiiiiiiiiiie e 1-32
WiNAOWS CONSTAERIATIONScviiiiiiirie ittt e s e e 1-33

Getting Started

ASSUMPLIONS AN REGUITEMENTS........cuiiiiiiitiiet ittt sttt e et eb et eb et eb e er e ben e ben e 2-2
Assumptions About YOUr ENVIFONMENT ..ot s 2-2
Requirements for Using Oracle SQLU ...t e e 2-3
Oracle SQLJ Environment: Key Scenarios and GuUidelines ... 2-4
Environment Issues and LimMitationsS ... s 2-6
Oracle SQLJ Backward CompatiDility ..o 2-9

Checking the Installation and ConfigUIrationc.cccciieiiiiie i 2-11
Check for Installed Directories and FileS ..o 2-11
Set the Path and Classpath ... e 2-12
Verify Installation of sSqljutl Packagec.coiiiiiiii e 2-13

TESTING TNE SETUPiiitite ettt b e bbbt er e e 2-14
Set Up the RUNTIME CONNECTIONc.cviviiiiiieiiie ettt 2-14
Create a Table to Verify the Database..........ccoociiiiiiineiee e 2-16
VErTY the JIDBC DIIVEL ...ttt e e s eb bbb s 2-16
Verify the SQLJ Translator and RUNTIMEccoiiiiiiiieiie e 2-17
Verify the SQLJ Translator Connection to the Database...........cccocovviiieinie s 2-17

Basic Language Features

Overview 0f SQLJ DECIAratioNS.cccoii ittt sttt st s e en e e 3-2
Rules for SQLJ DeCIArationsccoveueiiiiieeeieiietre sttt s s se s e s neeneenen 3-2
Iterator DECIAratiONS........cociicie et s r e r e aae e 3-3
Connection ConteXt DECIAratioNS.........ccciicieiieiie ettt et ere s 3-4
Declaration IMPLEMENTS CIAUSEcccoiiiiiiieie ettt s 3-5
DeClaration WITH CIaUSE........ccuiiiiiiiiicee ettt ettt e sr et sr et s te st en e ebbenbeebeeanas 3-6

Overview of SQLJ Executable StatemMeNntS. ...t 3-9

Rules for SQLJ Executable StatemMENTSccoceviiiiiie et s 3-9
31O] O TSRS 3-10
Specifying Connection Context Instances and Execution Context Instances................... 3-11
Executable Statement EXamPIES ..ottt 3-12
PL/SQL Blocks in Executable StatemMents.oovviiiie it 3-14
Java Host Expressions, Context Expressions, and Result EXPressions..........cccvoevevnernens 3-16
OVeErview Of HOSt EXPIESSIONSc.iiieiiiiiiiieiirie ettt st eb e beb e ben e sben e 3-16
Basic HOSt EXPreSSION SYNTAXcccioieiiiiriiieiie ettt st ies et enee e snesnennenens 3-17
EXamples Of HOSE EXPIESSIONS.......c.ciiiiiiriiietie sttt ettt sttt et en e et sne e e 3-20
Overview of Result Expressions and Context EXPressions..........ccoceeveveeeveeiesiecnienie s 3-21
Evaluation of Java EXpressions at RUNTIME ..ot e 3-22
Examples of Evaluation of Java Expressions at Runtime (ISO Code Generation)............ 3-24
Restrictions 0N HOSE EXPIESSIONSooicuiiiciiiietiiietiietin ettt e 3-33
Single-Row Query Results: SELECT INTO Statementscccoooerieneeeneeeneeeneeene e 3-34
SELECT INTO SYNTAX ...tutteieiinireeteie et sese bttt et e st et ss b st b b s bbbt sb b e annba s 3-34
Examples of SELECT INTO StatemMeNtS.......ccooiiiiiiiiiiiie ittt enen 3-35
Examples with Host EXpressions in SELECT-LiSt.......coccciiiiiieieee e 3-35
SELECT INTO EFror CONAITIONScuviiiiirieiiiectisieiisietis ettt sttt sttt 3-36
Multi-Row Query Results: SQLJ ITEratorscccioi ettt e 3-37
1T oL (o] O] g To1= o] PP PR RSP 3-37
General Steps iN USING @N TTEFAtOrcccoiiiiieie it 3-41
Named Iterators Versus Positional Iterators Versus Result Set Iterators...........c.cccccoeeee. 3-42
USING NAMEA TEEIALOTS ...ttt ettt ettt et e s e st et r et e reebesnea 3-43
USING POSITIONAI TEEFATOIScvie ettt ettt 3-48
Using Iterators and Result Sets as Host Variables...........cccooviiniiniiniiccc 3-52
Using Iterators and Result Sets as Iterator COIUMNS..........cocooiivienice i 3-55
ASSIGNMENT STATEMENTS (SET) ..viititiiiieiiie ittt e e 3-58
Stored Procedure and FUNCLION CallS ..o 3-60
Calling STOred PrOCEAUIESco.oiie ettt et sttt bt e e e en e s 3-60
Calling STOred FUNCLIONScc.oiiiiiie ettt et sttt s s een e s 3-61
Using Iterators and Result Sets as Stored Function REtUINS.........cccoceiiiicieiiniine e 3-63

Key Programming Considerations
SEleCtioN OF the JDBEC DIFIVEL ..ottt ettt st ee sttt ae s st e e e s ete s e saae e s sreeestbeeeans 4-2

Overview Of the Oracle IDBC DIIVEIS ..ottt et e ste e saae s sreae s srae e 4-2

Driver Selection fOor TransSIation...........cocooiiiiiie i e 4-4
Driver Selection and Registration for RUNTIMEcooiiiiniinic e 4-5
CoNNECLION CONSIARTATIONS.cuiiiiiiie it s e e s 4-6
Single Connection or Multiple Connections Using DefaultContextccoceoevvineinnnnn. 4-6
(@1 T YT [0 [@0] 0 T=To1 1 o] o - J SRR 4-11
Multiple Connections Using Declared Connection Context CIassesccoceeevvvrivrnannne 4-12
More ADOUL the OFaCle CIASSciiiiieiie et 4-12
More About the DefaultConteXt CIaSS ..o s 4-14
Connection fOr TraNSIAtION. ..o e 4-17
Connection for CUSTOMIZATIONccooiiiiiiri e e 4-18
NUT-HANATING <ttt e b et b et eb et eb et en e ben e bebea 4-19
Wrapper Classes for NUI-HaNAIING ..o s 4-19
Examples of NUH-HANAING ..o e e 4-20
EXCEPLiON-HANAIING BASICSc.oiviiiiiiiiiiiietiie sttt 4-22
SQLJ and JDBC Exception-Handling REQUIFEMENTSccooeiieniiiniieneee e 4-22
ProcesSiNg EXCEPTIONSc.oiuiiiie ettt sttt ettt b e e st e e e neen 4-23
Using SQLEXCEPLION SUDCIASSES........coiiiiiiiiii sttt e 4-25
Basic TranSaction CONTIOL..........oiiiiiiiie e 4-26
OVEIVIEW Of TFaNSACTIONS.c.ecviictii ettt ettt ettt eb et er et en e 4-26
Automatic Commits Versus Manual COMMITScocooeriiiiiiiiiiiiciee e 4-26
Specifying Auto-Commit as You Define a CoONNECLIONccovevenneneee e 4-27
Modifying Auto-Commit in an EXisting CONNECLIONccccvviiieiie s 4-28
Using Manual COMMIT and ROLLBACK ..ot 4-28
Effect of Commits and Rollbacks on Iterators and Result Sets..........ccocvvevnenncncenienne, 4-29
USING SAVEPOINTS ..ottt et e s s s s bbb e 4-30
Summary: First Steps in SQLJ COUEccoiiviiiiiiie it 4-31
IMPOrt REQUITE CIASSES.......eiviiiiiietiietisie st e 4-31
Register JDBC Drivers and Set Default ConNectionc.ocoociiiiecie i 4-32
Set Up EXCePtion HaNAIINGooiiiie ettt 4-32
Set Up Host Variables, Execute SQLJ Clause, Process ReSUltScccooeiiiiriicie e, 4-33
Example of Single-Row Query using SELECT INTO......ccccoiiiiiinieiirene e 4-34
Set UP @ NAMEA HEIALOT ...ttt ettt en s 4-35
Example of Multiple-Row Query Using Named Iteratorccocevoeviiee e 4-36

Oracle-Specific Code Generation (NO Profiles) ... 4-39

Advantages and Disadvantages of Oracle-Specific Code Generation.............cccccoeeeeenne. 4-39

Environment Requirements for Oracle-Specific Code Generationcccocecveneiniennn, 4-40
Code Considerations and Limitations with Oracle-Specific Code Generation................. 4-41
SQLJ Usage Changes with Oracle-Specific Code Generationcccceoevvveienevencciennne, 4-42
Server-Side Considerations with Oracle-Specific Code Generationcccoccevveircennne 4-44
Requirements and Restrictions fOr Naming ..o e 4-45
Java Namespace: Local Variable and Class Naming Restrictions..........c.ccocoeveeneineennen 4-45
SQLI NAIMESPACEcceecvitie ettt ettt e et er st e r et es s 4-46
SQL NAMESPACEcceecviitit ettt et ettt e e et r st e r e sr e e ne et 4-47
File Name Requirements and ReStriCtiONS.........ccieiiiiieiie e 4-47
Considerations for SQLJ in the Middle TIerccoioiiiiiie i e 4-48

5 Type Support

Supported Types for HOSt EXPIrESSIONSoovciriciiriiiiiciirietinie ettt 5-2
SUMMArY Of SUPPOITEA TYPES ...cviiiviietirictiiet ittt ettt ettt ber b ben s 5-2
Supported Types and Requirements fOr IDBC 2.0ccoveoerrerireniiineeineeeee e 5-8
Using PL/SQL BOOLEAN, RECORD Types, and TABLE TYPES....ccccevceriervriere e 5-9
Backward Compatibility for Previous Oracle JDBC Releases...........ccocevveveeveeininiecesinenns 5-11

SUPPOIT FOP STFEAIMS ...ttt 5-14
General Use Of SQLI SEFEAMISoiiiiieeeieieer ettt ettt sttt ste e e e 5-14
Key Aspects of Stream SUPPOIt CIaSSES........ccoiiriiriiiriire e 5-15
Using SQLJ Streams t0 SENA Data.........ccooeiriiiiieiieiieise st 5-16
Retrieving Data into Streams: PreCautioNscocuiiiiiiiiiisee e s s enea 5-19
Using SQLJ Streams t0 RetrieVEe DAta...........ociieuirieineiiie e 5-20
Stream Class METNOUS. ..ot ettt er b ber e en e 5-22
Examples of Retrieving and Processing Stream Datacccoceveveieeienicieeie e 5-24
SQLJ Stream Objects as Output Parameters and Function Return Valuesccc...... 5-26

Support for JDBC 2.0 LOB Types and Oracle Type EXtENSIONS........ccccvevieencienicincineeene 5-29
Package Oracle.SOL. ..o e 5-30
Support for BLOB, CLOB, and BFILE...........ccccociiiiiiiie et 5-30
SUPPOIt fOr Oracle ROWIDcoiiiiiiictiict ettt ettt 5-37
Support for Oracle REF CURSOR TYPEScviiiiiieiiieite ettt 5-40
Support for Other Oracle9i DAtatyPeS........ccvierrerie ettt 5-42
Extended Support for BIgDECIMALcccciiiiiiiie e 5-42

vii

viii

Objects, Collections, and OPAQUE Types

Oracle ODbjects aNd COECLIONSoiiiiiiee e e e 6-2
Introduction to Objects and COHECHIONSccciiiiiiiiii s 6-2
Oracle Object FUNAAMENTAIScoiiii it e e 6-4
Oracle Collection FUNAAMENTAISccoiiiiiiiiii e 6-4
Object and Collection DAtatYPEScccceiriiiriiiieieee e e e e 6-5

CUSEOM JAVA CHASSEScveteiiieiiietirie sttt ettt e s e s et s s s e bbb e 6-6
Custom Java Class Interface SPecifiCations............cocvvieiiiiiiie i 6-6
Custom Java Class Support for Object Methods............ccoveiiineinei e 6-10
Custom Java Class REQUITEMENTS...........cciiiirieiieiiiet et 6-11
Compiling CUSLOM JaVa CIASSES......c.ccoiiieiiiieiirietiit ettt e 6-17
Reading and Writing CUSTOM Data..........ccoeiiiiieieiirieiiie et s s e 6-17
Additional Uses for ORAData Implementationsccccovoeveiein e 6-18

USEI-DETINEA TYPES ..ottt ettt bbbt eh b e bbb bbbt 6-23
Creating ODJECT TYPBSoii ittt ettt ettt ettt et eb e e bes e e et s beneas 6-23
Creating CollECtION TYPES ...ttt 6-25

JPublisher and the Creation of Custom Java CIaSSeSccocverceiienicie e 6-28
What JPUDIISNEr PrOQUCESuiiiiciiiitiie sttt e e 6-29
Generating CUStOM JAVA ClaSSESccciiiiiiriiee ettt e e et e 6-32
JPublisher INPUT Files and Properties Files ... 6-42
Creating Custom Java Classes and Specifying Member Names..........cccccoooevvniiniinenene 6-45
JPublisher Implementation of Wrapper Methods.............cccoiniininincce e 6-46
JPublisher Custom Java Class EXaAMPIES........cccooiiiiiiiii s 6-47
Extending Classes Generated by JPUBIISNEN ..o 6-51

Strongly Typed Objects and References in SQLJ Executable Statements............c..cccoeeeveneen. 6-55
Selecting Objects and Object References into Iterator ColUMNSccoeceviviinncieciens 6-55
UPating @n OBJECL........ooi ittt ettt ettt ebe et e s neen 6-57
Inserting an Object Created from Individual Object Attributesccccooviiiiieiciienee. 6-59
Updating an ODJect REFEIENCEooviiiiiiiie ettt e e 6-60

Strongly Typed Collections in SQLJ Executable Statements ..., 6-62
Accessing Nested Tables: TABLE syntax and CURSOR SyntaXc.ccccvevnieeienenicnnennn 6-62
Inserting a Row that Includes a Nested Table ... 6-63
Selecting a Nested Table into @ HOSt EXPreSSIONcoocuiiiiiiiiinciee e 6-64
Manipulating a Nested Table Using TABLE SYNTaXcccoiiiiiiniiiee e 6-65
Selecting Data from a Nested Table Using a Nested Iterator...........cccccooeoeenincncncncnenn. 6-67

7

Selecting a VARRAY into @ HOSt EXPIrESSIONueviiviiiiieiece ettt 6-69

Inserting a Row that InCludes @ VARRAY ..o e 6-70
Serialized Java ODJECTS ..o e 6-71
Serializing Java Classes to RAW and BLOB COlUMNSccccooiiiniiinninnee e, 6-71
SerializableDatum: an ORAData Implementationccocceveiereincincineeeseeeseeees 6-74
SerializableDatum in SQLJ APPLICAIONScoiiiiiiiiieie e 6-77
SerializableDatum (COMPIEe ClaSS)c.uiiiiiiiiiriiee ettt 6-78
Weakly Typed Obijects, References, and Collections.............ccccociiiiiniicii e 6-80
Support for Weakly Typed Objects, References, and Collectionsc.coeovveviiinincnne 6-80
Restrictions on Weakly Typed Objects, References, and Collectionsccocevcevveveennne. 6-81
Oracle OPAQUE TYPES ..ottt sttt ettt ettt bbb ettt b et et eb et er e en e 6-82

Advanced Language Features

CONNECTION CONTEXES ...ttt sttt ettt eb bbb et st b e st e eb e st eb et ebe st eb et bt eb et en e 7-2
ConNNECtioN CONTEXE CONCEPES ...c.vviuiieiiiieirietirie sttt e ne bbb een 7-2
ConNNECtioN CONTEXE LOGISTICSevviviiieiietiietinie st 7-4
More About Declaring and Using a Connection Context Classccocoevveneieneienice e, 7-5
Example of Multiple ConNection CONtEXES.........cuciiiiire i e 7-7
Implementation and Functionality of Connection Context Classes..........c.cooovevereieneieniennn. 7-9
Using the IMPLEMENTS Clause in Connection Context Declarationscc.cccccecvnene. 7-11
Semantics-Checking of Your Connection Context USage...........cccveireincineineineeneiennas 7-12
Standard Data SOUFCE SUPPOITc.oiueiiiiietiie ettt 7-13
SQLJ-SPECITIC DATA SOUICESc.ecvireitiietisiet ettt et ettt eb et bbb en e 7-16
SQLJ-Specific Connection JavaBeans for JavaServer PAgescocoveineineineinecneecns 7-20

EXECULION CONTEXLS ...ttt ettt ettt ettt e et et b et eb et en e 7-24
Relation of Execution Contexts to Connection CONEXESccovereiericienieieneeineine e 7-25
Creating and Specifying Execution Context INStaNCESccceivereieiireieie e 7-26
Execution Context SYNChroNiZation..........c.cociieiiiiiiie e 7-27
EXecution Context MEtNOS ...t e 7-28
Relation of Execution Contexts to Multithreadingccocooeviiiiinincinc 7-33

MUItIthreading N SQLJ......c.ciiiiieiie et 7-35

Iterator Class Implementation and Advanced Functionality.............ccccconiiniincincincnnns 7-38
Implementation and Functionality of Iterator Classes..........ocovviniiiniiincience e 7-38
Using the IMPLEMENTS Clause in Iterator Declarations...........ccoocoenieniincincincineenn, 7-40
Support for Subclassing Of Iterator CIASSES ..ot 7-40

R U L ST=Y M L (T = 1o £ TP OR RPN 7-41

SCrOllADIE TTEFALOISottt et eb e e eb et bbb b aen e 7-42
Advanced Transaction CONTIOL ... 7-49
SET TRANSACTION SYNTAX w.ecvtitiiirieeeiire ettt e st sese st es e s eae e e seees e s 7-49
ACCESS IMOAE SEELINGS ...cveetie ettt bbbt eb bbb bbb bbbt s 7-50
1SOIAtION LEVEI SEEEINGS ..ottt et e e e e 7-50
Using JDBC Connection Class Methods. ..o 7-51
SQLJ and JDBC INteroperability ..o e 7-53
SQLJ Connection Context and JDBC Connection Interoperabilityc.cccooooivniinnenn 7-53
SQLJ Iterator and JDBC Result Set Interoperability ... 7-58
SUPPOIt FOr DYNAMIC SQL ...cuiiiiiieie et s e bbb e 7-63
MELA BINA EXPIESSIONS ..ottt sttt sttt et bbb e bbb 7-63
SQLJ DYyNamic SQL EXAMPIESooiiiiiiiiice ettt e et 7-65

Translator Command Line and Options

Translator Command Line and Properties FIles ... 8-2
SQLJ Options, Flags, aNd PrefiXeS. ..ot 8-3
Command-Line Syntax and OPEratioNS. ..o e 8-12
Properties Files for Option SEtHINGSccccovoviiieiiiee et 8-16
SQLJ_OPTIONS Environment Variable for Option Settingsccocoviiiivinciiieeene 8-19
Order of Precedence of Option SETtINGScccciieeiiiiie e 8-20

BasiC TranSIator OPTIONS.cov ittt ettt 8-22
Basic Options for the Command Line ONIY ..o 8-22
Options for Output Files and DIrECTONIES.ccuvcuiiiiieiieeie s e 8-29
CONNECTION OPTIONS. ...tttk bttt et et sttt eb e e eb et eb et eb et eb et bt eb e bbbt 8-34
Options for Reporting and Line-Mappingcccouieireinnine et 8-45
Options for Code Generation, Optimizations, and CHAR Comparisonscc.cccveeae 8-51

Advanced Translator OPTIONS..........cciiiiieiieiet et e e e r et eb e bt er e ben e benen 8-60
Prefixes that Pass Option Settings to Other EXecutablescccoceviviieiiniiciiiiceecns 8-60
Flags for SPECial PrOCESSINGc.coiiiiiiiitie ittt e e st 8-65
Semantics-Checking and Offline-Parsing OPLtioNScovvieieiiniieie e 8-71

Translator Support and Options for Alternative ENVironments.........ccccocooeoeneienienecinecene, 8-80
Java and ComMPIler OPLIONSccuiiiiiit i 8-80

CUSTOMIZALION OPTIONS ...ttt ettt 8-87

9 Translator and Runtime Functionality

10

Internal TranSIator OPEIAtiONS.cui i e et eeen 9-2
Java and SQLJ Code-Parsing and Syntax-Checking..........ccccooeiieiriennenne e 9-2
SQL Semantics-Checking and Offline Parsing........c.ccccovvioeieieiinie e 9-2
COUE GENETALION ...ttt ettt b et bbbt b bbbt s 9-5
JAVA COMPITALION ...t bbb 9-9
Profile Customization (ISO Code GENeration).........c.ccuiereriennieniee e 9-10

Functionality of Translator Errors, Messages, and EXit COUES........cccocvvvniiiniiinciine s 9-12
Translator Error, Warning, and Information MeSSages...........cccvevreiinincine e 9-12
TranSlator StAtUS IMESSATESc.ciueurrieririe ittt sttt sttt sttt eb e bbb bbb et 9-15
TraNSIAtor EXIT COOESouiiiiiiii ettt bttt ettt en e 9-15

SQLI RUNTIMIE. ..ottt ettt et e et st e be ek eb e bbb e ne e benbe e et enbenee e e e 9-16
SQLJ RUNEIME PACKAGEScviieiiiciiie ittt e s 9-16
Categories Of RUNTIME EFTOISouiiiieeeieie ettt sae e 9-18

Globalization Support in the Translator and RUNTIME ... 9-19
Character Encoding and Language SUPPOItccceviriieie i e e e e 9-19
SQLJ and Java Settings for Character Encoding and Language SUppPOrt..........ccocccvievennee 9-22
Oracle SQLJ Extended Globalization SUPPOIT ..o 9-25
Manipulation Outside of SQLJ for Globalization SUPPOrt.........ccccviiiiniiiiici 9-29

Performance and Debugging

Performance ENNanCemMENt FEATUIES ..ot 10-2
ROW PrefetCRINGo s 10-3
] LT =T 0 | A @ Ted o Vo RSP SRRR 10-4
UPAAe BATCNING ..ottt bbb e 10-12
ColUMN DEFINITIONS ..ottt 10-23
Parameter Size DefiNitiONS ..o ettt 10-25

SQLJI DeDUGQING FEALUIES.cciiiiieiieie ettt e 10-28
SQLJ -linemap Flag for DEDUGQING.....c.coeiriiiriiirie et 10-28
Server-Side debUg OPLION ..ottt eneeneas 10-29
Introduction to the Auditorinstaller Specialized CUStOMIZErcccoceviiieieiiiiiie i 10-29
Introduction to Developing and Debugging in Oracle9i JDevelopercccoevvnenenen. 10-29

xi

11

Xil

SQLJ in the Server

INtroduction t0 SErver-Side SQLJ... ...ttt e e e e 11-2
Creating SQLJ Code TOr USe iN the SEIVEr ...ttt e 11-4
Database Connections Within the SErver ... 11-4
Coding ISSUES WIthIN the SEIVENocoiiiiie e e 11-5
Default Output DEVICE IN The SEIVEIcc.oiiee ettt 11-6
Name ReSOIULION 1N ThE SEIVENciiiiiiie e s 11-7
SQL Names VErsus JaVa INAIMESc.oioiiiiiiiiie ettt sttt e sa e sbessee e e 11-8
Translating SQLJ Source on a Client and Loading COmMpPONeNntscccooeeneeneeeneecne e 11-9
Loading Classes and Resources into the SEIVEN ... 11-9
Naming of Loaded Class and Resource Schema ODbjJectS.........cccovveriienincincinceee 11-11
Publishing the Application After Loading Class and Resource Filesccccccovvvvivennnne. 11-14
Summary: Running a Client Application in the Server ... 11-14
Loading SQLJ Source and Translating in the SErVer ... 11-16
Loading SQLJ Source Code iNt0 the SEIVErcccceiiiiiiiiie e 11-16
Option Support in the Server Embedded Translatorcccoce v, 11-18
Naming of Loaded Source and Generated Class and Resource Schema Objects............ 11-22
Error Output from the Server Embedded Translator.............ccoooovviiniiii s 11-24
Publishing the Application After Loading Source Filesc.cccooniiniinninninncee 11-24
Dropping Java SChema ODJECTSc.oociiiiie et 11-25
Additional CONSIAEIALIONScovcuiiieiii ettt s 11-26
Java Multithreading in the SEIVEN 11-26
Recursive SQLJ Calls iN the SEIVET ...ttt 11-26
Verifying that Code is RUNNINg in the SErVEr ... 11-28

Customization and Specialized Customizers

MOFE ADOUL PrOTIIES ...ttt ettt A-2
Creation of a Profile During Code GEeNEratioN..........ccceiieiieinie ittt A-2
SAMPIE Profile ENTIY ..ot et sttt sttt et eneenee s A-3

More About Profile CUSTOMIZATIONcciiiiiieiice et A-5
Overview of the Customizer Harness and CUSIOMIZErScccooevieiienicene e A-5
Steps in the CUSLOMIZALION PIOCESSciiiiiiiirieiire ettt se et eb e eb e er e benesienena A-6
Creation and Registration of a Profile Customization ... A-7
Customization Error and Status MESSAJEScovivirireieiiirieie e seeeerietea e eresee e e see e eeenee s A-9
Functionality of a Customized Profile at RUNTIMEccccooiiiiii i A-9

Customization Options and ChooSing @ CUSLOMIZENccoieriieniienice e A-11

Overview of Customizer Harness OPtiONS.........coiiieeiiiiie et A-12
General Customizer Harness OPtiONS........ccoeeiiiiieie ettt e A-14
Customizer Harness Options for CONNECLIONS..........coccvieiieiiieie e A-18
Customizer Harness Options that Invoke Specialized CUuStomizers...........ccccoceevvevncennnns A-21
Overview of Customizer-Specific OPLIONScoo i A-23
Oracle CUSTOMIZET OPLIONS......viviriitiietiriet ettt ettt eb et eb et bbb beb e ber e A-24
OPLioNs FOr OLNEr CUSTOMIZETSc.viiiiiiiieie ittt A-37
SQLJ Translator Options for Profile CuStomMIization..............coecveiiiiiiince e A-37
JAR FIIES TOF PrOTIIES. ...t e e s A-38
JAR File REQUITEIMENTS ...ttt et sr e en e A-38
JAR FIIE LOGISTICS ..ttt ittt ettt et sttt sttt ettt b b ekt st e es s e ne e seeneenaas A-39
SQLCheckerCustomizer for Profile Semantics-Checking..........ccooieniiniiincincinceccee A-40
Invoking SQLCheckerCustomizer with the Customizer Harness verify Option A-40
SQLCheckerCustomizer OPLIONScccuiiiiie i ettt s snesr e A-41
Auditorinstaller Customizer for DEDUGQINGccovoiiviiriiiiic s A-44
Overview of Auditors aNd COAE LAYEIScccoueiiriiiiieie ettt st s snesre s A-44
Invoking Auditorinstaller with the Customizer Harness debug Option...........cc.cccceu.... A-45
Auditorinstaller RUNTIME OULPUL ..ot enea A-46
AUditorInStaller OPLIONS ..ottt st eeeneas A-47
Full Command-Ling EXAMPIES........ccuiiiiiiiiii e A-51

B SQLJ Error Messages

SQLJI Translation TiMe IMESSAUESccoviuiriiiire ettt ettt ettt s eb et eb et eb et eb et eb et er e ere e B-2
SQLJI RUNTIME IMESSAGES ...ttt ettt etttk sttt et eb e st eb et eb e st eb et eb et eb et eb bbb ben e B-47
Index

xiii

Xiv

Send Us Your Comments

Oracle9i SQLJ Developer’s Guide and Reference, Release 2 (9.2)
Part No. A96655-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: jpgcomment_us@oracle.com

FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager

500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

This preface introduces you to the Oracle9i SQLJ Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A

Preface

list of related Oracle documents is also provided.

This preface contains these topics:

Intended Audience
Documentation Accessibility
Organization

Related Documentation

Conventions

Note: For space considerations, the Sample Applications chapter
has been removed from this document. Please try the demo
applications that are provided with Oracle SQLJ for examples of the
many programming features described here. Also see the OTN link
at the end of "Related Documentation".

Xvii

Intended Audience

This manual is intended for anyone with an interest in SQLJ programming but
assumes at least some prior knowledge of the following:

« Java

. SOL

« Oracle PL/SQL
« JDBC

« Oracle databases

Although general knowledge of SQL and JDBC is sufficient, any knowledge of
Oracle-specific SQL and JDBC features would be helpful as well.

See "Related Documentation” below for the names of Oracle documents that discuss
SQL and JDBC.

Documentation Accessibility

xviii

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: //waw or acl e. conf accessi bi lity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
The two major aspects of using SQLJ are:
= creating your SQLJ source code
= running the SQLJ translator

Chapters 3 through 7 provide information about programming features, with
chapters 3 and 4 covering the most important aspects.

Chapter 8 provides information about translator options and features.

In all, this document contains:

Chapter 1, "Overview"

Introduces SQLJ concepts, components, and processes. Discusses possible
alternative deployment or development scenarios.

Chapter 2, "Getting Started"

Guides you through the steps of testing and verifying the installation of an Oracle
database, Oracle JDBC drivers, and Oracle SQLJ.

Chapter 3, "Basic Language Features"

Discusses SQLJ programming features you must have for basic applications.
Focuses largely on standard SQLJ constructs, as opposed to Oracle extended
functionality.

Chapter 4, "Key Programming Considerations"

Discusses key issues to consider as you write your source code, such as connections,
null-handling, exception-handling, and Oracle-specific code generation.

Chapter 5, "Type Support"

Lists Java types that Oracle SQLJ supports, discusses the use of stream types, and
discusses Oracle datatype extensions and the Java types that correspond to them.

Xix

XX

Chapter 6, "Objects, Collections, and OPAQUE Types"

Discusses Oracle SQLJ support of user-defined object and collection types,
including use of the Oracle JPublisher utility to generate corresponding Java types.
There is also a brief discussion of support for Oracle OPAQUE types.

Chapter 7, "Advanced Language Features"

Discusses additional SQLJ programming features you may need for more advanced
applications.

Chapter 8, "Translator Command Line and Options"

Documents command-line syntax, properties files, and options for the Oracle SQLJ
translator.

Chapter 9, "Translator and Runtime Functionality"

Discusses the functionality of translator operations, translator and runtime error
messages, and globalization support.

Chapter 10, "Performance and Debugging"

Discusses standard and Oracle-specific performance tuning features, and general
SQLJ debugging considerations.

Chapter 11, "SQLJ in the Server"

Discusses how to create and load SQLJ applications to run in the server, typically as
stored procedures or functions. This includes optional use of the server-side
embedded translator.

Appendix A, "Customization and Specialized Customizers"

Describes SQLJ profiles, used in implementing SQL operations for ISO standard
code generation; documents options you can specify during translation regarding
the customization of your profiles for particular environments; discusses
specialized customizers, including one for semantics-checking for profiles and one
for installing "auditors" for debugging.

Appendix B, "SQLJ Error Messages"

Lists Oracle SQLJ translator and runtime error messages, their causes, and what
actions you should take in response.

Related Documentation

Also available from the Oracle Java Platform group, for Oracle9i releases:

Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle database Java environment in general,
rather than to a particular product such as JDBC or SQLJ, is in this book.

Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of the Oracle
implementation of the JDBC standard (for Java Database Connectivity). This
includes an overview of the Oracle JDBC drivers, details of the Oracle
implementation of JDBC 1.22, 2.0, and 3.0 features, and discussion of Oracle
JDBC type extensions and performance extensions.

Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

Oracle9i Support for JavaServer Pages Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described. Discussion covers considerations for the
Oracle9i release 2 Apache JServ environment, but also covers features for
servlet 2.2 environments and emulation of some of those features by the Oracle
JSP container for JServ.

Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

The following OC4J documents, for Oracle9i Application Server releases, are also
available from the Oracle Java Platform group.

XXi

xXii

Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OCA4l.

Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

Oracle9iAS Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J,
such as JTA, INDI, and the Oracle9i Application Server Java Object Cache.

Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book provides information about the EJB implementation and EJB
container in OC4J.

The following documents are from the Oracle Server Technologies group:

Oracle9i XML Database Developer’s Guide - Oracle XML DB
Oracle9i XML Developer’s Kits Guide - XDK

Oracle9i Application Developer’s Guide - Fundamentals

Oracle9i Application Developer’s Guide - Large Objects (LOBs)
Oracle9i Application Developer’s Guide - Object-Relational Features
Oracle9i Supplied Java Packages Reference

Oracle9i Supplied PL/SQL Packages and Types Reference

« PL/SQL User’s Guide and Reference

« Oracle9i SQL Reference

= Oracle9i Net Services Administrator’s Guide

« Oracle Advanced Security Administrator’s Guide
» Oracle9i Database Globalization Support Guide

= Oracle9i Database Reference

« Oracle9i Database Error Messages

« Oracle9i Sample Schemas

The following documents from the Oracle9i Application Server group may also be
of interest:

« Oracle9i Application Server Administrator’s Guide

= Oracle Enterprise Manager Administrator’s Guide

« Oracle HTTP Server Administration Guide

= Oracle9i Application Server Performance Guide

= Oracle9i Application Server Globalization Support Guide

» Oracle9iAS Web Cache Administration and Deployment Guide

= Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x
The following are available from the Oracle9i JDeveloper group:

« JDeveloper online help

« JDeveloper documentation on the Oracle Technology Network:

http://otn.oracl e. con product s/ j dev/ cont ent . ht m

In North America, printed documentation is available for sale in the Oracle Store at

htt p://oracl est ore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: / / waw or acl ebookshop. cont

Other customers can contact their Oracle representative to purchase printed
documentation.

XXiii

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. com adm n/ account / menber shi p. ht m
If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. com docs/ i ndex. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

For documentation of SQLJ standard features and syntax, refer to ANSI
specification X3.135.10-1998:

« Information Technology - Database Languages - SQL - Part 10: Object Language
Bindings (SQL/OLB)

You can obtain this from ANSI through the following Web site:

htt p://waw ansi . or g/

(Click "Electronic Standards Store" and search for the above specification number.)
The following location has SQLJ sample applications:

http://otn.oracl e. coni sanpl e_code/ t ech/ j ava/ sql j _j dbc/ content. ht m

Conventions

XXiV

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Italics

UPPERCASE
monospace
(fixed-width)
font

lowercase
monospace
(fixed-width)
font

| ower case
italic
nonospace

(fixed-width)

font

Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents place holders or variables.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only fora NUMBER
column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the
USER_TABLESIata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY _REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the paral | el _cl ause.

Run ol d_rel ease.SQL where ol d_r el ease
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROMdba_users WHERE usemame ='MIGRATE,

The following table describes typographic conventions used in code examples and

provides examples of their use.

XXV

Convention

Meaning

Example

<>

Other notation

Italics

UPPERCASE

| ower case

In this document, angle brackets are used
instead of regular brackets to enclose one
or more optional items. Do not enter the

angle brackets. (Regular brackets are not
used due to SQLJ syntax considerations.)

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates place holders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

DECI MAL (digits <, precision >)

{ENABLE | DI SABLE}
[COMPRESS | NOCOVPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col2, ... , coln FROM
enpl oyees;
acctbal NUMBER(11, 2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEM syst em password
DB _NAMVE = dat abase_nane
SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER_TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_id FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr
CREATE USER nj ones | DENTI Fl ED BY t y3MB;

XXVi

1

Overview

This chapter provides a general overview of SQLJ features and scenarios. The
following topics are discussed:

Introduction to SQLJ

Overview of SQLJ Components

Overview of Oracle Extensions to the SQLJ Standard
Basic Translation Steps and Runtime Processing
JDBC Versus SQLJ Sample Code

Alternative Deployment Scenarios

Alternative Development Scenarios

Overview 1-1

Introduction to SQLJ

Introduction to SQLJ

This section introduces the basic concepts of SQLJ and discusses the complementary
relationship between Java and PL/SQL in Oracle applications.

Basic Concepts

SQLJ enables applications programmers to embed SQL operations in Java code in a
way that is compatible with the Java design philosophy. A SQLJ program is a Java
program containing embedded SQL statements that comply with the ISO standard
SQLJ Language Reference syntax. Oracle9i SQLJ supports the ISO SQLJ standard
specification. The standard covers only static SQL operations—those that are
predefined and do not change in real-time as a user runs the application (although
the data values that are transmitted can change dynamically). Oracle SQLJ also
offers extensions to support dynamic SQL operations—those that are not predefined,
where the operations themselves can change in real-time. (It is also possible to use
dynamic SQL operations through JDBC code or PL/SQL code within a SQLJ
application.) Typical applications contain much more static SQL than dynamic SQL.

SQLJ consists of both a translator and a runtime component and is smoothly
integrated into your development environment. The developer runs the translator,
with translation, compilation, and customization (for 1SO standard code) taking
place in a single step when the sql j front-end utility is run. The translation process
replaces embedded SQL with calls to the SQLJ runtime, which implements the SQL
operations. In ISO standard SQLJ this is typically, but not necessarily, performed
through calls to a JDBC driver. To access an Oracle database, you would typically
use an Oracle JDBC driver. When the end user runs the SQLJ application, the
runtime is invoked to handle the SQL operations.

The Oracle SQLJ translator is conceptually similar to other Oracle precompilers and
allows the developer to check SQL syntax, verify SQL operations against what is
available in the schema, and check the compatibility of Java types with
corresponding database types. In this way, errors can be caught by the developer
instead of by a user at runtime. The translator checks the following:

« syntax of the embedded SQL

« SQL constructs, against a specified database schema to ensure consistency
within a particular set of SQL entities (optional)

It verifies table names and column names, for example.

« datatypes, to ensure that the data exchanged between Java and SQL have
compatible types and proper type conversions

1-2 Oracle9i SQLJ Developer’s Guide and Reference

Introduction to SQLJ

The SQLJ methodology of embedding SQL operations directly in Java code is much
more convenient and concise than the JDBC methodology. In this way, SQLJ reduces
development and maintenance costs in Java programs that require database
connectivity.

Oracle-Specific Code Generation Versus ISO Standard Code Generation

While the Oracle SQLJ implementation supports the ISO SQLJ standard, it also
offers the option of Oracle-specific code generation, where Oracle JDBC calls are
generated directly into the code. As of Oracle9i release 2, this is the default
behavior. In the case of Oracle-specific code generation, be aware of the following:

« There are no profile files, and therefore there is no customization step during
translation.

« Atruntime, SQL operations do not have to go through the SQLJ runtime layer,
because JDBC calls (instead of SQLJ runtime calls) are directly in the translated
code.

Much of the SQLJ introductory discussion in this chapter mentions features of ISO
standard code, so be aware of these key differences in Oracle-specific code.

For more information, see "Oracle-Specific Code Generation (No Profiles)" on
page 4-39.

Java and SQLJ Versus PL/SQL

Java (including SQLJ) in Oracle applications does not replace PL/SQL. Java and
PL/SQL are complementary to each other in the needs they serve.

While PL/SQL and Java can both be used to build database applications, the two
languages were designed with different intents and, as a result, are suited for
different kinds of applications:

« PL/SQL is a better solution for SQL-intensive applications. PL/SQL is
optimized for SQL, and so SQL operations are faster in PL/SQL than in Java.
Also, PL/SQL uses SQL datatypes directly, while Java applications must
convert between SQL datatypes and Java types.

« Java, with its superior programming model, is a better solution for
logic-intensive applications. Furthermore, the more general type system of Java
is better suited than PL/SQL for component-oriented applications.

Oracle provides easy interoperability between PL/SQL and Java, ensuring that you
can take advantage of the strengths of both languages. PL/SQL programs can

Overview 1-3

Introduction to SQLJ

transparently call Java stored procedures, enabling you to build component-based
Enterprise JavaBeans applications. PL/SQL programs can have transparent access
to a wide variety of existing Java class libraries through PL/SQL call specifications.

Java programs can call PL/SQL stored procedures and anonymous blocks through
JDBC or SQLJ. In particular, SQLJ provides syntax for calling stored procedures and
functions from within a SQLJ statement, and also supports embedded PL/SQL
anonymous blocks within a SQLJ statement.

Note: Using PL/SQL anonymous blocks within SQLJ statements
is one way to support dynamic SQL in a SQLJ application.
However, Oracle9i SQLJ includes extensions to support dynamic
SQL directly. (See "Support for Dynamic SQL" on page 7-63.)

1-4 Oracle9i SQLJ Developer’'s Guide and Reference

Overview of SQLJ Components

Overview of SQLJ Components

This section introduces the main SQLJ components and the concept of SQLJ
profiles. (Profiles are for ISO code generation only.)

SQLJ Translator and SQLJ Runtime

Oracle SQLIJ consists of two major components:

Oracle SQLJ translator—This component is a precompiler that developers run
after creating SQLJ source code.

The translator, written in pure Java, supports a programming syntax that allows
you to embed SQL operations inside SQLJ executable statements. SQLJ
executable statements, as well as SQLJ declarations, are preceded by the #sq|l
token and can be interspersed with Java statements in a SQLJ source code file.
SQLJ source code file names must have the . sql j extension. Here is a sample
SQLJ statement:

#sl{ INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };

The translator produces a . j ava file and, for ISO standard SQLJ code
generation, one or more SQLJ profiles, which contain information about your
SQL operations. SQLJ then automatically invokes a Java compiler to produce
. cl ass files from the . j ava file.

Note: By default as of Oracle9i release 2, there is an Oracle-specific
code generation setting that results in translation directly into
Oracle JDBC code. In this case, no profiles are produced. See
"Oracle-Specific Code Generation (No Profiles)" on page 4-39.

Oracle SQLJ runtime—This component, also written in pure Java, is invoked
automatically each time an end user runs a SQLJ application.

For ISO standard code generation, the SQLJ runtime implements the desired
actions of your SQL operations, accessing the database using a JDBC driver. The
generic ISO SQLJ standard does not require that a SQLJ runtime use a JDBC
driver to access the database; however, Oracle SQLJ does require a JDBC driver,
and, in fact, requires an Oracle JDBC driver if your application is customized
with the default Oracle customizer (see below).

Overview 1-5

Overview of SQLJ Components

For Oracle-specific code generation (the default), Oracle JDBC calls are
generated directly into the translated code and the SQLJ runtime plays a much
smaller role.

For more information about the runtime, see "SQLJ Runtime" on page 9-16.

In addition to the translator and runtime, there is a component known as the
customizer that plays a role if you use I1SO standard code generation. A customizer
tailors SQLJ profiles for a particular database implementation and vendor-specific
features and datatypes. By default, for ISO standard code, the Oracle SQLJ front end
invokes an Oracle customizer to tailor your profiles for an Oracle database and
Oracle-specific features and datatypes.

When you use the Oracle customizer during translation, your application will
require the Oracle SQLJ runtime and an Oracle JDBC driver when it runs.

SQLJ Profiles (ISO Standard Code)

With 1SO standard SQLJ code generation, SQLJ profiles are serialized Java resources
(or, optionally, classes) generated by the SQLJ translator, which contain details
about the embedded SQL operations in your SQLJ source code. The translator
creates these profiles, then either serializes them and puts them into binary resource
files, or puts them into . cl ass files (according to your translator option settings).

Note: By default, as of Oracle9i release 2, Oracle-specific code
generation is used. In this case, the translator generates Oracle
JDBC calls directly, and details of your embedded SQL operations
are embodied in the JDBC calls. There are no profiles. See
"Oracle-Specific Code Generation (No Profiles)" on page 4-39.

Overview of Profiles

SQLJ profiles are used in ISO standard code in implementing the embedded SQL
operations in your SQLJ executable statements. Profiles contain information about
your SQL operations and the types and modes of data being accessed. A profile
consists of a collection of entries, where each entry maps to one SQL operation.
Each entry fully specifies the corresponding SQL operation, describing each of the
parameters used in executing this instruction.

For ISO code generation, SQLJ generates a profile for each connection context class
in your application, where, typically, each connection context class corresponds to a
particular set of SQL entities you use in your database operations. (There is one
default connection context class, and you can declare additional classes.) The ISO

1-6 Oracle9i SQLJ Developer’'s Guide and Reference

Overview of SQLJ Components

SQLJ standard requires that the profiles be of standard format and content.
Therefore, for your application to use vendor-specific extended features, your
profiles must be customized. By default, this occurs automatically, with your
profiles being customized to use Oracle-specific extended features.

Profile customization allows vendors to add value in two ways:

« Vendors can support their own specific datatypes and SQL syntax. For example,
the Oracle customizer maps standard JDBC Pr epar edSt at ement method
calls in translated SQLJ code to Or acl ePr epar edSt at ement method calls,
which provide support for Oracle type extensions.

= Vendors can improve performance through specific optimizations.

For example, you must customize your profile to use Oracle objects in your SQLJ
application.

Notes:

« By default, SQLJ profile file names end in the . ser extension,
but this does not mean that all . ser files are profiles. Other
serialized objects can use that extension, and a SQLJ program
unit can use serialized objects other than its profiles.
(Optionally, profiles can be converted to . cl ass files instead of
. ser files.)

« A SQLIJ profile is not produced if there are no SQLJ executable
statements in the source code.

Binary Portability

SQLJ-generated profile files support binary portability. That is, you can port them as
is and use them with other kinds of databases or in other environments if you have
not employed vendor-specific datatypes or features. This is true of generated

. cl ass files as well.

Overview 1-7

Overview of Oracle Extensions to the SQLJ Standard

Overview of Oracle Extensions to the SQLJ Standard

Oracle9i SQLJ supports the ISO SQLJ specification. Because the ISO SQLJ standard
is a superset of the ANSI SQLJ standard, it requires a JDK 1.2 or later environment
that complies with J2EE. The ANSI SQLJ standard requires only JDK 1.1.x. The
Oracle SQLJ translator accepts a broader range of SQL syntax than the ANSI SQLJ
standard specifies.

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension
beyond that. Oracle SQLJ supports the Oracle SQL dialect, which is a superset of
SQL92. If you need to create SQLJ programs that work with other DBMS vendors,
avoid using SQL syntax and SQL types that are not in the standard and, therefore,
may not be supported in other environments. (On your product CD, the directory
[Oracl e_Hone]/sql j/denmo/ conponent s includes a semantics-checker that
you can use to verify that your SQLJ statements contain only standard SQL.)

For general information about Oracle SQLJ extensions, see Chapter 5, "Type
Support”, and Chapter 6, "Obijects, Collections, and OPAQUE Types".

Oracle SQLJ Type Extensions

Oracle SQLJ supports the Java types listed below as extensions to the SQLJ
standard. Do not use these or other types if you may want to use your code in other
environments. To ensure that your application is portable, use the Oracle SQLJ

- war n=por t abl e flag. See "Translator Warnings (-warn)" on page 8-45.

Using any of the following extensions requires Oracle-specific code generation or
Oracle customization during translation, as well as the Oracle SQLJ runtime and an
Oracle JDBC driver when your application runs.

« instances of or acl e. sql . * classes as wrappers for SQL data
See "Support for JDBC 2.0 LOB Types and Oracle Type Extensions" on
page 5-29.

« custom Java classes (classes that implement the or acl e. sql . ORADat a
interface or the JDBC standard j ava. sql . SQLdat a interface), typically
produced by the Oracle9i JPublisher utility to correspond to SQL objects, object
references, and collections

See "Custom Java Classes" on page 6-6. Note, however, that the SQLDat a
interface is standard. Classes that implement it are likely supported by other
vendors’ JDBC drivers and databases.

1-8 Oracle9i SQLJ Developer’'s Guide and Reference

Overview of Oracle Extensions to the SQLJ Standard

stream instances—Bi nar y St r eamand Char act er St r eam the latter of which
replaces the deprecated Asci i St r eamand Uni codeSt r eam used as output
parameters (see "Support for Streams" on page 5-14)

iterator and result set instances as input or output parameters anywhere

The SQLJ standard specifies them only in result expressions or cast statements;
see "Using Iterators and Result Sets as Host Variables" on page 3-52 and "Using
Iterators and Result Sets as Stored Function Returns" on page 3-63.

Unicode character types—NSt r i ng, NCHAR, NCLOB, and
NcharCharacterStream, the latter of which replaces the deprecated

Nchar Asci i St r eamand Nchar Uni codeSt r eam(see "Oracle SQLJ Extended
Globalization Support" on page 9-25)

Oracle SQLJ Functionality Extensions
Oracle SQLJ also supports the following extended functionality:

Oracle-specific code generation

This generates JDBC code directly. No profiles are produced and much of the
SQLJ runtime functionality is bypassed during program execution. See
"Oracle-Specific Code Generation (No Profiles)" on page 4-39.

dynamic SQL in SQLJ statements
See "Support for Dynamic SQL" on page 7-63.

scrollable result set iterators with additional navigation methods, and FETCH
syntax from result set iterators and scrollable result set iterators

See "Scrollable Iterators" on page 7-42.
optimization flags for column and parameter size definitions

See "Column Definitions" on page 10-23, "Parameter Size Definitions" on
page 10-25, and "Options for Code Generation, Optimizations, and CHAR
Comparisons" on page 8-51.

flags for modified translator behavior—binding host expressions by identifier,
accounting for blank padding in CHAR comparisons for WHERE clauses

See "Binding Host Expressions by Identifier (-bind-by-identifier)" on page 8-70
and "CHAR Comparisons with Blank Padding (-fixedchar)" on page 8-58.

SQLJ statement caching on connection contexts

See "Statement Caching" on page 10-4.

Overview 1-9

Basic Translation Steps and Runtime Processing

Basic Translation Steps and Runtime Processing
This section introduces the following:
« basic steps of the Oracle SQLJ translator in translating SQLJ source code
« asummary of translator input and output
= runtime processing when a user runs your application

For more detailed information about the translation steps, see "Internal Translator
Operations" on page 9-2.

SQLJ source code contains a mixture of standard Java source together with SQLJ
class declarations and SQLJ executable statements containing embedded SQL
operations.

SQLJ source files have the . sql j file name extension. The file name must be a legal
Java identifier. If the source file declares a public class (maximum of one), then the
file name must match the name of this class. If the source file does not declare a
public class, then the file name should match the first defined class.

SQLJ Translation Steps

After you have written your . sqlj file, you must run SQLJ to process the files.
(For coding the . sql j file, basic SQLJ programming features and key
considerations are discussed in Chapter 3 and Chapter 4.) The following example,
for the source file Foo. sql j whose first public class is Foo, shows SQLJ being run
in its simplest form, with no command-line options:

sqlj Foo.sdqlj

What this command actually runs is a front-end script or utility (depending on the
platform) that reads the command line, invokes a Java virtual machine (JVM), and
passes arguments to it. The JVM invokes the SQLJ translator and acts as a front end.

This document refers to running the front end as "running SQLJ" and to its
command line as the "SQLJ command line". For information about command-line
syntax, see "Command-Line Syntax and Operations" on page 8-12.

From this point the following sequence of events occurs (presuming each step
completes without fatal error). See "Internal Translator Operations" on page 9-2 for
more detailed information.

1-10 Oracle9i SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

The JVM invokes the SQLJ translator.

The translator parses the SQLJ and Java code in the . sql j file, checking for
proper SQLJ syntax and looking for type mismatches between your declared
SQL datatypes and corresponding Java host variables. (Host variables are local
Java variables used as input or output parameters in your SQL operations. "Java
Host Expressions, Context Expressions, and Result Expressions” on page 3-16
describes them.)

Depending on SQLJ option settings, the translator invokes the online
semantics-checker, the offline parser, neither, or both. This is to verify syntax of
embedded SQL and PL/SQL statements and, for online checking, to check the
use of database elements in your code against an appropriate database schema.
Even when neither is specified, some basic level of checking is performed.

When online checking is specified, SQLJ will connect to a specified database
schema to verify that the database supports all the database tables, stored
procedures, and SQL syntax that the application uses, and that the host variable
types in the SQLJ application are compatible with datatypes of corresponding
database columns.

For Oracle-specific SQLJ code generation (the default - codegen=or acl e),
SQL operations are converted directly into Oracle JDBC calls, and no profiles
are produced. See "Oracle-Specific Code Generation (No Profiles)" on page 4-39.

For ISO standard code generation (- codegen=i s0), the translator processes
your SQLJ source code, converts SQL operations to SQLJ runtime calls, and
generates Java output code and one or more SQLJ profiles. A separate profile is
generated for each connection context class in your source code, where a
different connection context class is typically used for each interrelated set of
SQL entities that you use in your operations.

Generated Java code is put into a . j ava output file containing the following:
« any class definitions and Java code from your . sql j source file

« class definitions created as a result of your SQLJ iterator and connection
context declarations

See "Overview of SQLJ Declarations" on page 3-2.

= aclass definition for a specialized class (known as the profile-keys class) that
SQLJ generates and uses in conjunction with your profiles (for ISO standard
SQLJ code generation only)

Overview 1-11

Basic Translation Steps and Runtime Processing

« calls to Oracle JDBC (for Oracle-specific code generation) or to the SQLJ
runtime (for ISO standard code generation) to implement the actions of
your embedded SQL operations

Generated profiles (for ISO standard code generation only) contain information
about all the embedded SQL statements in your SQLJ source code, such as
actions to take, datatypes being manipulated, and tables being accessed. When
your application is run, the SQLJ runtime accesses the profiles to retrieve your
SQL operations and passes them to the JDBC driver.

By default, profiles (if applicable) are put into . ser serialized resource files, but
SQLJ can optionally convert the . ser filesto. cl ass files as part of the
translation.

The JVM invokes the Java compiler, which is usually, but not necessarily, the
standard j avac provided with the Sun Microsystems JDK.

The compiler compiles the Java source file generated in step 4 and produces
Java . cl ass files as appropriate. This will include a . cl ass file for each class
you defined, a . cl ass file for each of your SQLJ declarations, and a . cl ass
file for the profile-keys class (for ISO code generation).

For ISO standard SQLJ code generation, the JVM invokes the Oracle SQLJ
customizer or other specified customizer to customize the profiles generated in
step 4.

General SQLJ Notes Consider the following when translating and running SQLJ
applications:

The preceding is a very generic example. It is also possible to specify
pre-existing . j ava files on the command line to be compiled (and to be
available for type resolution as well), or to specify pre-existing profiles to be
customized, or to specify . j ar files containing profiles to be customized. See
"Translator Command Line and Properties Files" on page 8-2 for more
information.

For Oracle-specific code generation, your application will require an Oracle
JDBC driver when it runs, even if your code does not use Oracle-specific
features.

For ISO code generation, SQLJ generates profiles and the profile-keys class only
if your source code includes SQLJ executable statements.

Also for ISO code, if you use the Oracle customizer during translation, your
application will require the Oracle SQLJ runtime and an Oracle JDBC driver
when it runs, even if your code does not use Oracle-specific features. You can

1-12 Oracle9i SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

avoid this by specifying - pr of i | e=f al se when you translate, to bypass
Oracle-specific customization.

Summary of Translator Input and Output

This section summarizes what the SQLJ translator takes as input, what it produces
as output, and where it places its output.

Note: This discussion mentions iterator class and connection
context class declarations. Iterators are similar to JDBC result sets;
connection contexts are used for database connections. For more
information about these class declarations, see "Overview of SQLJ
Declarations" on page 3-2.

Translator Input

In its most basic operation, the SQLJ translator takes one or more . sql j source files
as input in its command line. The name of your main . sqgl j file is based on the
public class it defines, if any, or else on the first class it defines. Each public class
you define must be in itsown . sqgl j file.

If your main . sqgl j file defines class MyCl ass, then the source file name must be:
M/Ad ass. sql j

This must also be the file name if there are no public class definitions but MyCl ass
is the first class defined.

When you run SQLJ, you can also specify numerous SQLJ options in the command
line or properties files.

For more information about SQLJ input, including additional types of files you can
specify in the command line, see "Translator Command Line and Properties Files"
on page 8-2.

Translator Output

The translation step produces a Java source file for each . sql j file in your
application, and, for ISO standard code generation, at least one application profile
(presuming your source code uses SQLJ executable statements).

Overview 1-13

Basic Translation Steps and Runtime Processing

SQLJ generates source files and profiles as follows:

« Javasource files will be . j ava files with the same base names as your . sql |
files.

For example, MyCl ass. sql j defines class MyCl ass and the translator
produces MyCl ass. j ava. The output .java file also contains class definitions
for any iterators or connection context classes you declare.

« The application profile files, if applicable, contain information about the SQL
operations of your SQLJ application. There will be one profile for each
connection class that you use in your application. The profiles will have names
with the same base name as your main . sql j file, plus the following
extensions:

_SIProfil e0. ser
_SIProfil el. ser
_SIProfil e2. ser

For example, for MyCl ass. sql j the translator produces:
M/d ass_SIProfil e0. ser

The . ser file extension reflects the fact that the profiles are serialized. The
. ser files are binary files.

Note: There is a translator option, - ser 2cl ass, that instructs the
translator to generate profiles as . cl ass files instead of . ser files.
Other than the file name extension, the naming is the same.

The compilation step compiles the Java source file into multiple class files. There is
one . cl ass file for each class you define in your . sql j source file (minimum of
one), and, for ISO code, one for a class known as the profile-keys class that the
translator generates and uses with the profiles to implement your SQL operations
(presuming your source code uses SQLJ executable statements). Additional . cl ass
files are produced if you declared any SQLJ iterators or connection contexts. (See
"Overview of SQLJ Declarations" on page 3-2.) Also, separate . cl ass files will be
produced for any inner classes or anonymous classes in your code.

For Oracle-specific code generation (the default), no profiles or profile-keys class are
produced. For information about Oracle-specific code generation, see
"Oracle-Specific Code Generation (No Profiles)" on page 4-39.

1-14 Oracle9i SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

The . cl ass files are named as follows:

« Theclass file for each class you define consists of the name of the class, with the
. ¢l ass extension.

For example, the translator output file MyCl ass. j ava is compiled into the
MyCl ass. cl ass class file.

« The profile-keys class (if applicable) that the translator generates is named
according to the base name of your main . sql j file, plus the following:

_SIProfil ekeys

So the class file has the following extension:
_SIProfil ekeys. cl ass
For example, for Myd ass. sql j , the translator together with the compiler
produce:
M/A ass_SJIProfi | eKeys. cl ass
= The translator names iterator classes and connection context classes according

to how you declare them. For example, if you declare an iterator Myl t er, there
will be a Myl ter. cl ass class file.

The customization step alters the profiles but produces no additional output.

Note: Itis not necessary to reference SQLJ profiles or the
profile-keys class directly. This is all handled automatically.

Output File Locations

By default, SQLJ places generated . j ava files in the same directory as your . sql |
file. You can specify a different . j ava file location, however, using the SQLJ-di r
option.

By default, SQLJ places generated . cl ass and . ser files (if any) in the same
directory as the generated . j ava files. You can specify a different . cl ass and

. ser file location, however, using the SQLJ - d option. This option setting is passed
to the Java compiler so that . cl ass filesand . ser files will be in the same location.

For either the - d or - di r option, you must specify a directory that already exists.
For more information about these options, see "Options for Output Files and
Directories" on page 8-29.

Overview 1-15

Basic Translation Steps and Runtime Processing

SQLJ Runtime Processing

This section discusses runtime processing during program execution, considering
both Oracle-specific code generation and ISO standard SQLJ code generation.

Processing for Oracle-Specific Generated Code
When you translate with the default setting - codegen=or acl e, your program at
runtime will execute the following:

« Oracle-specific APIs in the SQLJ runtime that ensure batching support and
proper creation and closing of Oracle JDBC statements

« direct calls into the Oracle JDBC APIs for registering, passing, and retrieving
parameters and result sets

For general information about Oracle-specific code generation, see "Oracle-Specific
Code Generation (No Profiles)" on page 4-39.

Processing for ISO Standard Generated Code

For I1SO standard SQLJ applications, the SQLJ runtime reads the profiles and creates
"connected profiles", which incorporate database connections. Then the following
occurs each time the application must access the database:

1. SQLJ-generated application code uses methods in a SQLJ-generated
profile-keys class to access the connected profile and read the relevant SQL
operations. There is a mapping between SQLJ executable statements in the
application and SQL operations in the profile.

2. The SQLIJ-generated application code calls the SQLJ runtime, which reads the
SQL operations from the profile.

3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to the
driver.

4. The SQLJ runtime passes any input parameters to the JDBC driver.
5. The JDBC driver executes the SQL operations.

6. If any data is to be returned, the database sends it to the JDBC driver, which
sends it to the SQLJ runtime for use by your application.

1-16 Oracle9i SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing

Note: Passing input parameters (step 4) can also be referred to as
"binding input parameters" or "binding host expressions". The
terms host variables, host expressions, bind variables, and bind
expressions are all used to describe Java variables or expressions that
are used as input or output for SQL operations.

Overview 1-17

JDBC Versus SQLJ Sample Code

JDBC Versus SQLJ Sample Code

This section presents a side-by-side comparison of two versions of the same sample
code—one version written in JDBC and the other in SQLJ. The objective of this
section is to point out the differences in coding requirements between SQLJ and
JDBC.

The particulars of SQLJ statements and features used here are described later in this
manual, but this example is still useful here to give you a general idea in comparing
and contrasting SQLJ and JDBC. You can look at it again when you are more
familiar with SQLJ concepts and features.

In the sample, two methods are defined: get Enpl oyeeAddr ess() , which selects
from a table and returns an employee’s address based on the employee’s number,
and updat eAddr ess(), which takes the retrieved address, calls a stored
procedure, and returns the updated address to the database.

In both versions of the sample code, the following assumptions are made:

« A SQL script (not shown here) has been run to create the schema in the
database and populate the tables. Both versions of the sample code refer to
objects and tables created by this script.

« A PL/SQL stored function UPDATE_ADDRESS() exists, and updates a given
address.

« The Connect i on object (for JDBC) and default connection context (for SQLJ)
have been created previously by the caller.

« Exceptions are handled by the caller.

« The value of the address argument (addr) passed to the updat eAddr ess()
method can be null.

Note: The JDBC and SQLJ versions of the sample code are only
partial samples and cannot run independently. There is no mai n()
method in either.

1-18 Oracle9i SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code

JDBC Version of the Sample Code

Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note that the to-do items in the comment lines indicate where you
might want to add additional code to increase the usefulness of the code sample.

inport java.sql.*;
inport oracle.jdbc.*;

/**

This is what we have to do in JDBC

**/
public class S npl eDenmoJDBC Il line 7
{

//TODQ nake a main that calls this

publ i ¢ Address get Enpl oyeeAddress(i nt enpno, Connection conn)

throws SQ.Exception /1 line 13
{

Address addr;

PreparedStatenent pstnt = /1 line 16

conn. prepar eSt at enent (" SELECT of fi ce_addr FROM enpl oyees" +

" WHERE enpnunber = ?");
pstnt.setint(1, enpno);
Qacl eResul t Set rs = (O acl eResul t Set) pst nt . execut eQuer y() ;
rs.next(); /1 line 21
//TODO what if false (result set contains no data)?
addr = (Address)rs. get C(RADat a(1, Address. get CRADat aFactory());
//TODQ what if additional rows?

rs.close(); /1 line 25

pstni. cl ose();

return addr; /] line 27
}
publ i ¢ Address updat eAddr ess(Address addr, Gonnecti on conn)

throws SQException /!l line 30
{

Qacl eCal | abl eSatenent cstnt = (Qacl eCal | abl et at enent)
conn.prepareCal | ("{ ? = call UPDATE ADDRESY(?) }"); [//line 34

cstm.registerQitParaneter (1, Address. SQ _TYPEQCDE, Address._SQ_NAME);
/1 line 36

if (addr == null) {
cstm.setNul | (2, Address. _SQ TYPEQDE, Address. _SQ. NAME);

Overview 1-19

JDBC Versus SQLJ Sample Code

} else {

cstn. set CRADat a(2, addr);
}
cstnt . execut eUpdat e() ; /1 line 43
addr = (Address)cstnt.get GRADat a(1, Address. get CRADat aFact ory());
cstn. cl ose(); /1 line 45
return addr;

}
}

Line 12: In the get Enpl oyeeAddr ess() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the
EMPLOYEES table, based on the employee number. The employee number is
represented by a marker variable, which is set with the set | nt () method. Note
that because the prepared statement does not recognize "I NTO' syntax, you must
provide your own code to populate the address (addr) variable. Because the
prepared statement is returning a custom object, cast the output to an Oracle result
set.

Lines 21-23: Because the Oracle result set contains a custom object of type Addr ess,
use the get ORADat a() method to retrieve it. The Addr ess class can be created by
JPublisher. The get ORADat a() method requires a "factory" object that it can use to
create additional custom objects (additional Addr ess objects in this case) as it
retrieves the data to populate them. Use the static factory method

Addr ess. get ORADat aFact or y() to materialize an Addr ess factory object for
the get ORADat a() method to use.

Because get ORADat a() returns a Dat um cast the output to an Addr ess object.

Note that the routine assumes a one-row result set. The to-do items in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updat eAddr ess() definition, you must pass the connection object
and the Addr ess object explicitly.

The updat eAddr ess() method passes an address object (Addr ess) to the
database for update, then fetches it back. The actual updating of the address is

1-20 Oracle9i SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code

performed by the stored function UPDATE_ADDRESS() . (The code for this function
is not provided in this example.)

Line 33-43: Prepare an Oracle callable statement that takes an address object

(Addr ess) and passes it to the UPDATE_ADDRESS() stored procedure. To register
an object as an output parameter, you must know the SQL type code and SQL type
name of the object.

Before passing the address object (addr) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different setter methods. If addr is null, the program calls

set Nul | ();ifaddr has a value, the program calls set ORADat a() .

Line 44: Fetch the return result addr . Because the Oracle callable statement returns a
custom object of type Addr ess, use the get ORADat a() method to retrieve it. The
Addr ess class can be created by JPublisher. The get ORADat a() method requires
you to use the factory method Addr ess. get ORADat aFact or y to materialize an
instance of an Addr ess object. Because get ORADat a() returns a Dat umobiject,
cast the output to an Addr ess object.

Lines 45, 46: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

« Theget Enpl oyeeAddr ess() and updat eAddr ess() definitions must
explicitly include the connection object.

« Long SQL strings must be concatenated with the SQL concatenation character
(ll+ll X

= You must explicitly manage resources. For example, close result set and
statement objects.

= You must cast datatypes as needed.

« You must know the _SQL_TYPECODE and _SQ._ NAME values of the factory
object and any objects that you are registering as output parameters.

« Null data must be explicitly processed.

« Host variables must be represented by parameter markers in callable and
prepared statements.

Overview 1-21

JDBC Versus SQLJ Sample Code

« If you want to reuse statement objects, for example if you want to repeatedly
call get Enpl oyeeAddr ess() and updat eAddr ess(), then you must code
this appropriately. Both Oracle SQLJ and Oracle JDBC support statement
caching.

Maintaining JDBC Programs

JDBC programs are potentially expensive to maintain. For example, in the above
code sample, if you add another WHERE clause, then you must change the SELECT
string. If you append another host variable, then you must increment the index of
the other host variables by one. A simple change to one line in a JDBC program
might require changes in several other areas of the program.

SQLJ Version of the Sample Code

Following is the SQLJ version of the sample code that defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database.

inport java.sql.*;

/**

This is what we have to do in SQJ

**/
public class S npl eDenoSQLI /1 line 6
{

//TODO nake a main that calls this

publ i ¢ Address get Enpl oyeeAddr ess(i nt enpno) /]l line 10
throws SQException
{
Address addr; I/l line 13
#sqgl { SELECT office_addr I NTO :addr FROM enpl oyees
WHERE enpnunber = :enpno };
return addr;

}

/1 line 18
publ i ¢ Address updat eAddr ess(Address addr)
throws SQException
{
#sgl addr = { VALUES(UPDATE ADDRESS(: addr)) }; /1 line 22
return addr;
}

}

1-22 Oracle9i SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code

Line 10: The get Enpl oyeeAddr ess() method does not require an explicit
connection object. SQLJ can use a default connection context instance, which would
have been initialized previously somewhere in the application.

Lines 13-15: The get Enpl oyeeAddr ess() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT | NTOsyntax to select
an employee’s address from the employee table if the employee number matches
the one (enpno) passed in to get Enpl oyeeAddr ess() . This requires a declaration
of the Address object (addr) that will receive the data. The enpno and addr
variables are used as input host variables.

Line 16: The get Enpl oyeeAddr ess() method returns the addr object.

Line 19: The updat eAddr ess() method also uses the default connection context
instance.

Lines 19-22: The address is passed to the updat eAddr ess() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS() stored function. (The code
for this function is not shown here.) Use standard SQLJ function-call syntax to
receive the address object (addr) output by UPDATE_ADDRESS() .

Line 23: The updat eAddr ess() method returns the addr object.

Coding Requirements of the SQLJ Version

Note the following coding requirements (and lack of requirements) for the SQLJ
version of the sample code:

= An explicit connection is not required—SQLJ can use a default connection
context that has been initialized previously in the application.

« No datatype casting is required.

« SQLJdoes not require knowledge of _SQ._TYPECODE, _SQL_NAME, or
factories.

« Null data is processed implicitly.

= No explicit code for resource management (for closing statements or results
sets, for example) is required.

« SQLJembeds host variables, in contrast to JDBC, which uses parameter
markers.

Overview 1-23

JDBC Versus SQLJ Sample Code

« String concatenation for long SQL statements is not required.
= You do not have to register output parameters.

» SQLJsyntax is simpler. For example, SELECT | NTOstatements are supported
and OBDC-style escapes are not used.

« You do not have to implement your own statement cache. By default, SQLJ will
automatically cache #sql statements. This results in improved performance, for
example, if you repeatedly call get Enpl oyeeAddr ess() and
updat eAddr ess().

1-24 Oracle9i SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

Alternative Deployment Scenarios

Although this manual mainly discusses writing for client-side SQLJ applications,
you may find it useful to run SQLJ code in the following scenarios:

from an applet
in the server (optionally running the SQLJ translator in the server as well)

against Oracle9i Lite

Running SQLJ in Applets

Because the SQLJ runtime is pure Java, you can use SQLJ source code in applets as
well as applications. There are, however, a few considerations, as discussed below.

For applet issues that apply more generally to the Oracle JDBC drivers, see the
Oracle9i JDBC Developer’s Guide and Reference, which includes discussion of firewalls
and security issues as well.

General Development and Deployment Considerations
The following general considerations apply to the use of Oracle SQLJ applets.

You must package all the SQLJ runtime packages with your applet:

sqlj.runtine
sqlj.runtine.ref
sqlj.runtine.profile
sqlj.runtine. profile.ref
sqlj.runtine.error

as well as the following if you used Oracle customization (for ISO code
generation):

oracle.sqlj.runtine
oracle.sqglj.runtine.error

These classes are included with your Oracle installation in one of several
runtime libraries in the [Or acl e_Hon®e] / | i b directory. (See "Requirements for
Using Oracle SQLJ" on page 2-3.)

You must specify a pure Java JDBC driver, such as the Oracle JDBC Thin driver,
for your database connection.

You must explicitly specify a connection context instance for each SQLJ
executable statement in an applet. This is a requirement because you could

Overview 1-25

Alternative Deployment Scenarios

conceivably run two SQLJ applets in a single browser and, thus, in the same
JVM. (For information about connections, see "Connection Considerations" on
page 4-6.)

« The default translator setting - codegen=or acl e generates Oracle-specific
code. This will eliminate the use of Java reflection at runtime, thereby increasing
portability across different browser environments. For information about the
- codegen option, see "Code Generation (-codegen)" on page 8-52. For general
information about Oracle-specific code generation, see "Oracle-Specific Code
Generation (No Profiles)" on page 4-39.

General End User Considerations

When end users run your SQLJ applet, classes in their classpath may conflict with
classes that are downloaded with the applet.

Oracle, therefore, recommends that end users clear their classpath before running
the applet.

Java Environment and the Java Plug-in

Here are some additional considerations regarding the Java environment and use of
Oracle-specific features.

= SQLJ requires the runtime environment of JDK 1.1.x or higher. Users cannot run
SQLJ applets in browsers employing JDK 1.0.x, such as Netscape Navigator 3.x
and Microsoft Internet Explorer 3.x, without a plug-in or some other means of
using JRE 1.1.x instead of the default JRE of the browser.

One option is to use a Java plug-in offered by Sun Microsystems. For
information, refer to the following Web site:

htt p://ww j avasof t. comd product s/ pl ugi n

= Some browsers, such as Netscape Navigator 4.x, do not support resource files
with a . ser extension, which is the extension employed by the SQLJ serialized
object files that are used for profiles (relevant for 1SO standard code only). The
Sun Microsystems Java plug-in, however, supports . ser files.

Alternatively, if you do not want to use the plug-in, Oracle SQLJ offers the

- ser 2cl ass option to convert . ser filesto. cl ass files during translation.
See "Conversion of .ser File to .class File (-ser2class)" on page 8-68 for more
information.

1-26 Oracle9i SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

Note: These considerations do not apply to the default
Oracle-specific code generation, where no profiles are produced.

Applets using Oracle-specific features require the Oracle SQLJ runtime to work.
The Oracle runtime consists of the classes in the SQLJ runtime library file under
oracl e. sqgl j.*.The Oracle SQLJr unt i ne library requires the Java
Reflection API (j ava. | ang. refl ect.*);therunti mell,runti mel2, and
runti mel2ee runtime libraries must use the Reflection API only in the
circumstances outlined below. Most browsers do not support the Reflection API
or impose security restrictions, but the Sun Microsystems Java plug-in provides
support for the Reflection API.

Note: The term "Oracle-specific features" refers to the use of
Oracle type extensions (discussed in Chapter 5, "Type Support")
and the use of SQLJ features that require Oracle-specific code
generation or, for ISO code generation, require your application to
be customized to work against an Oracle database. (For example,
this is true of the SET statement, discussed in Chapter 3, "Basic
Language Features".)

With 1SO standard SQLJ code generation, the following SQLJ language features
always require the Java Reflection API (j ava. | ang. ref | ect . *), regardless
of the version of the SQLJ runtime you are using:

— the CAST statement

— REF CURSOR parameters or REF CURSOR columns being retrieved from
the database as instances of a SQLJ iterator

— retrieval of j ava. sql . Ref, Struct, Bl ob, or C ob objects

— retrieval of SQL objects as instances of Java classes implementing the
oracl e. sql . ORADat a orj ava. sql . SQLDat a interfaces

Overview 1-27

Alternative Deployment Scenarios

Notes:

= Anexception to the preceding is if you use SQLJ in a mode that
is fully compatible with ISO. That is, if you use SQLJ in an
environment that complies with J2EE and you translate and run
your program with the SQLJr unt i nel2ee library, and you
employ connection context type maps as specified by 1SO. In
this case, instances of j ava. sql . Ref, Struct, Bl ob,
Cl ob, and SQLDat a are being retrieved without the use of
reflection.

« If you use Oracle-specific code generation (the default
translator setting - codegen=or acl e), you will eliminate the
use of reflection in all of the instances listed above.

Consider using the r unt i nel11 library for your applets, or
runtinmel2/runti nmel2ee if your browser supports JDK 1.2. Doing so
permits you to use Oracle-specific features and Oracle-specific customization.

If your applet does not use any Oracle-specific features, you can distribute it
with the generic SQLJ runtime library, r unt i me- nonor acl e. To support this,
do not use Oracle-specific code generation and do not customize the applet
during translation. Set - codegen=i so and - pr of i | e=f al se when you
translate the code. If you neglect to set - pr of i | e=f al se, then the default
Oracle customizer will load Oracle-specific runtime classes. This will result in
your applet requiring the Oracle runtime even though it does not use
Oracle-specific features.

The preceding issues can be summarized as follows, focusing on users with Internet
Explorer and Netscape browsers:

Distribute your applet with the r unti nel11 and cl asses111 libraries. In this
case, the SQLJ and JDBC versions must match. For example, to use the SQLJ
9.0.0 runtime, you must have the Oracle 9.0.0 JDBC driver.

If you use object types, JDBC 2.0 types, REF CURSORS, or the CAST statement
in your SQLJ statements, then you must adhere to your choice of the following:

— Use the default - codegen=or acl e setting when you translate your applet.
or:

— Ensure that the browser in which you run supports JDK 1.1 or higher and
permits reflection.

1-28 Oracle9i SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

or:
— Runyour applet through a browser Java plug-in.

If your applet does not use Oracle-specific features, then you can compile it
using I1SO standard code generation (- codegen=i so) without customization
(- profi |l e=f al se) and distribute it with the generic SQLJ runtime,

runti ne- nonor acl e.

Introduction to SQLJ in the Server

In addition to its use in client applications, SQLJ code can run within a target
Oracle9i database in stored procedures, stored functions, or triggers. Server-side
access occurs through an Oracle JDBC driver that runs inside the server itself.
Additionally, the Oracle9i database has an embedded SQLJ translator so that SQLJ
source files for server-side use can optionally be translated directly in the server.

The two main areas to consider, which Chapter 11, "SQLJ in the Server", discusses in
detail, are the following:

creating SQLJ code for use within the server

Coding a SQLJ application for use within the target Oracle9i database is similar
to coding for client-side use. What issues do exist are due to general JDBC
characteristics, as opposed to SQLJ-specific characteristics. The main differences
involve connections:

— You have only one connection.
— The connection is to the database in which the code is running.

— The connection is implicit (does not have to be explicitly initialized, unlike
on a client).

— The connection cannot be closed—any attempt to close it will be ignored.

Additionally, the JDBC server-side driver used for connections within the server
does not support auto-commit mode.

Note: There is also a server-side Thin driver for connecting to one
server from code that runs in another. This case is effectively the
same as using a Thin driver from a client and is coded in the same
way. See "Overview of the Oracle JDBC Drivers" on page 4-2.

Overview 1-29

Alternative Deployment Scenarios

« translating and loading SQLJ code for server-side use

You can translate and compile your code either on a client or in the server. If
you do this on a client, you can then load the class and resource files into the
server from your client machine, either pushing them from the client using the
Oracle | oadj ava utility, or pulling them in from the server using SQL
commands. (It is convenient to have them all in asingle . j ar file first.)

Alternatively, you can translate and load in one step, using the embedded
server-side SQLJ translator. If you load a SQLJ source file instead of class or
resource files, then translation and compilation are done automatically. In
general, | oadj ava or SQL commands can be used for class and resource files
or for source files. From a user perspective . sql j files are treated the same as
. j ava files, with translation taking place implicitly.

See "Loading SQLJ Source and Translating in the Server" on page 11-16 for
information about using the embedded server-side translator.

Note: The server-side translator does not support the Oracle SQLJ
- codegen option and generates Oracle-specific code. To use 1ISO
standard code in the server, you must translate on a client and load
the individual components into the server. Also note restrictions on
interoperability when running code generated with different
settings. For more information, see "Translating SQLJ Source on a
Client and Loading Components" on page 11-9 and "Oracle-Specific
Code Generation (No Profiles)" on page 4-39.

Using SQLJ with Oracle9i Lite

You can use SQLJ on top of Oracle9i Lite. This section provides an overview of this
functionality. For more information, refer to the Oracle9i Lite Java Developer’s Guide.

Overview of Oracle9i Lite and Java Support

Oracle9i Lite is a lightweight database that offers flexibility and versatility that
larger databases cannot. It requires only 350K to 750K of memory for full
functionality, natively synchronizes with the Palm Computing platform, and can
run on Windows NT (3.51 or higher), Windows 95, and Windows 98. It offers an
embedded environment that requires no background or server processes.

Oracle9i Lite is compatible with Oracle9i, Oracle8i, Oracle8, and Oracle?. It provides
comprehensive support for Java, including JDBC, SQLJ, and Java stored procedures.

1-30 Oracle9i SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios

There are two alternatives for access to Oracle9i Lite from Java programs, as
follows:

= native JDBC driver

This is intended for Java applications that use the relational data model,
allowing them direct communication with the object-relational database engine.

Use the relational data model if your program has to access data that is already
in SQL format, must run on top of other relational database systems, or uses
very complex queries.

« Java Access Classes (JAC)

This is intended for Java applications that use either the Java object model or
the Oracle9i Lite object model, allowing them to access persistent information
stored in Oracle9i Lite, without having to map between the object model and
the relational model. Use of JAC also requires a persistent Java proxy class to
model the Oracle9i Lite schema. This can be generated by Oracle9i Lite tools.

Use the object model if you want your program to have a smaller footprint and
run faster and you do not require the full capability of the SQL language.

There is interoperability between Oracle9i Lite JDBC and JAC, with JAC supporting
all types that JDBC supports, and JDBC supporting JAC types that meet certain
requirements.

Requirements to Run Java on Oracle9i Lite

Note the following requirements if you intend to run a Java program on top of
Oracle9i Lite:

« Windows NT 3.51 or higher, Windows 95, or Windows 98

= Oracle9i Lite 3.0 or higher

« JDK 1.1.xor higher

= Java Runtime Environment (JRE) that supports Java Native Interface (JNI)

The JREs supplied with JDK 1.1.x and higher, Oracle JDeveloper, and Symantec
Visual Cafe support JNI.

Support for Oracle Extensions

Oracle9i Lite 4.0.x and higher includes an Oracle-specific JDBC driver and
Oracle-specific SQLJ runtime classes (including the Oracle semantics-checkers and
customizer), allowing use of Oracle-specific features and type extensions.

Overview 1-31

Alternative Development Scenarios

Alternative Development Scenarios

The discussion in this book assumes that you are coding manually in a UNIX
environment for English-language deployment. However, you can use SQLJ on
other platforms and with IDEs. There is also globalization support for deployment
to other languages. This section introduces these topics:

« globalization support
« SQLJin IDEs

« Windows considerations

SQLJ Globalization Support

Oracle SQLJ support for native languages and character encodings is based on Java
built-in globalization support capabilities.

The standard user . | anguage and f i | e. encodi ng properties of the JVM
determine appropriate language and encoding for translator and runtime messages.
The SQLJ - encodi ng option determines encoding for interpreting and generating
source files during translation.

For information, see "Globalization Support in the Translator and Runtime" on
page 9-19.

SQLJ in Oracle9i JDeveloper and Other IDEs

Oracle SQLJ includes a programmatic API so that it can be embedded in integrated
development environments (IDEs) such as Oracle9i JDeveloper. The IDE takes on a
role similar to that of the front-end sql j script, invoking the translator,
semantics-checker, compiler, and customizer (as applicable).

JDeveloper is a Windows NT-based visual development environment for Java
programming. The JDeveloper Suite enables developers to build multitier, scalable
Internet applications using Java across the Oracle Internet Platform. The core
product of the suite—the JDeveloper Integrated Development Environment—excels
in creating, debugging, and deploying component-based applications.

The Oracle JDBC OCI and Thin drivers are included with JDeveloper, as well as
drivers to access Oracle9i Lite.

JDeveloper’s compilation functionality includes an integrated Oracle SQLJ
translator so that your SQLJ application is translated automatically as it is compiled.

1-32 Oracle9i SQLJ Developer’s Guide and Reference

Alternative Development Scenarios

Information about JDeveloper is available at the following URL:

http://otn.oracl e. con product s/ j dev/ cont ent . ht m

Windows Considerations

Note the following if you are using a Windows platform instead of a UNIX
environment:

This manual uses UNIX syntax. Use platform-specific file names and directory
separators (such as "\" on Windows) that are appropriate for your platform,
because your JVM expects file names and paths in the platform-specific format.
This is true even if you are using a shell (such as ksh on NT) that permits a
different file name syntax.

For UNIX, Oracle SQLJ provides a front-end script, sql j , that you use to
invoke the SQLJ translator. On Windows, Oracle SQLJ instead provides an
executable file, sql j . exe. Using a script is not feasible on Windows platforms
because . bat files on these platforms do not support embedded equals signs
(=) in arguments, string operations on arguments, or wildcard characters in file
name arguments.

How to set environment variables is specific to the operating system. There may
also be OS-specific restrictions. In Windows 95, use the Envi r onment tab in
the Syst emcontrol panel. Additionally, since Windows 95 does not support
the "=" character in variable settings, SQLJ supports the use of "#" instead of "="
in setting SQLJ_OPTI ONS, an environment variable that SQLJ can use for
option settings. Consult your operating system documentation regarding
settings and syntax for environment variables, and be aware of any size
limitations.

As with any operating system and environment you use, be aware of specific
limitations. In particular, the complete, expanded SQLJ command line must not
exceed the maximum command-line size, which is 250 characters for Windows
95 and 4000 characters for Windows NT. Consult your operating system
documentation.

Refer to the Windows platform README file for additional information.

Overview 1-33

Alternative Development Scenarios

1-34 Oracle9i SQLJ Developer’s Guide and Reference

2

Getting Started

This chapter guides you through the basics of testing your Oracle SQLJ installation
and configuration and running a simple application.

Note that if you are using an Oracle database and Oracle JDBC driver, you should
also verify your JDBC installation according to the Oracle9i JDBC Developer’s Guide
and Reference.

This chapter discusses the following topics:
« Assumptions and Requirements
« Checking the Installation and Configuration

« Testing the Setup

Getting Started 2-1

Assumptions and Requirements

Assumptions and Requirements

This section discusses basic assumptions about your environment and requirements
of your system so that you can run Oracle SQLJ, covering the following topics:

« Assumptions About Your Environment

« Requirements for Using Oracle SQLJ

« Oracle SQLJ Environment: Key Scenarios and Guidelines
« Environment Issues and Limitations

« Oracle SQLJ Backward Compatibility

Assumptions About Your Environment

The following assumptions are made about the system on which you will be
running Oracle SQLJ.

= You have a standard Java environment that is operational on your system. This
would typically be using a Sun Microsystems JDK, but other implementations
of Java will work. Make sure you can run Java (typically j ava) and your Java
compiler (typically j avac).

To translate and run Oracle SQLJ applications on a Sun JDK, you must use a
JDK 1.2.x (or higher) or JDK 1.1.x version, with an appropriate JDBC driver.

There are Oracle JDBC Thin and OCI driver versions that work with any of

these JDK scenarios.

For more information, see "Oracle SQLJ Environment: Key Scenarios and
Guidelines" on page 2-4.

Note: A Java runtime environment (JRE), such as the one installed
with Oracle9i, is not by itself sufficient for translating SQLJ
programs. A JRE is sufficient, however, for running SQLJ programs
that have already been translated and compiled.

= You can already run JDBC applications in your environment.

If you are using an Oracle database and Oracle JDBC driver, then you should
complete the steps in Chapter 2, "Getting Started", of the Oracle9i JDBC
Developer’s Guide and Reference.You can also refer to Chapter 1, "Overview", of

2-2 Oracle9i SQLJ Developer’s Guide and Reference

Assumptions and Requirements

that document for information about the Oracle JDBC drivers and how to
decide which is appropriate for your situation.

Notes: If you are using a non-Oracle JDBC driver, you must do
the following:

« Modify connect . properti es, as discussed in "Set Up the
Runtime Connection” on page 2-14.

« Modify the demo applications, as discussed in "Driver Selection
and Registration for Runtime" on page 4-5, so that your driver
is registered before the call to the Or acl e. connect ()
method.

Requirements for Using Oracle SQLJ

The following are required to use Oracle SQLJ:

a JDBC driver implementing the standard j ava. sql JDBC interfaces from Sun
Microsystems

Oracle SQLJ works with any standard JDBC driver.

a database system that is accessible using your JDBC driver
class files for the SQLJ translator

Translator-related classes are available in the file:

[Oracl e_Hone]/sqglj/lib/translator.jar (or.zip)
class files for the SQLJ runtime

Several SQLJ runtime versions are available. You must select a runtime version
that is compatible with your Java environment and JDBC driver (these are all in
[Oracl e_Hone]l/sqlj/lib).

— runtimel2.jar (or.zi p)—for use with Oracle9i JDBC drivers under
JDK 1.2.x or higher, providing full ISO SQLJ functionality

— runtinmel2ee.jar (or.zi p)—for use with Oracle9i JDBC driversin a
J2EE environment (using JDK 1.2.x or higher), providing full ISO SQLJ
functionality

— runtimell.jar (or.zi p)—for use with Oracle9i JDBC drivers under
JDK 1.1.x

Getting Started 2-3

Assumptions and Requirements

— runtine.jar (or.zi p)—for use with older Oracle JDBC drivers and any
JDK environment (intended for Oracle JDBC release 8.1.7 and prior)

— runtime-nonoracle.jar (or.zi p)—for use with non-Oracle JDBC
drivers and any JDK environment

Notes: Also be aware of the following:

« InSQLJrelease 8.1.6 and earlier, there was only one runtime
library, and the r unt i me JAR/ZIP file was a subset of the
transl at or JAR/ZIP file. In Oracle9i this is no longer the
case. You must now specify both a runtime file and the
translator file in your classpath.

« Theruntine-nonoracl e library provides portability across
different Java and JDBC environments, but does not support
Oracle-specific functionality.

« Therunti e library provides flexibility across different Java
and Oracle JDBC environments, but does not support all ISO
SQLJ functionality.

« For ISO SQLJ-compliant support for JDBC 2.0 types such as
j ava. sqgl . Ref, Cl ob, Bl ob, St ruct, and SQLDat a, use the
runti mel2 orrunti mel2ee library with JDK 1.2 or J2EE and
an Oracle9i JDBC driver.

« Ifyou will be running only SQLJ applications that have already
been translated, compiled, and customized, you will not need
thetransl at or JAR/ZIP file.

« Thetransl at or and runtime JAR files are compressed. The
ZIP files are uncompressed, however, for maximum portability.

Oracle SQLJ Environment: Key Scenarios and Guidelines

To ensure you have a fully working environment, you must consider several aspects
of your environment—SQLJ and its code generation mode, JDBC, and the JDK. This
section first discusses the two main Oracle scenarios of supported combinations,
and then discusses some important general guidelines.

Also see "Environment Issues and Limitations" on page 2-6 for related information.

2-4 Oracle9i SQLJ Developer’s Guide and Reference

Assumptions and Requirements

Note: Code generation is determined by the Oracle SQLJ
- codegen option. See "Code Generation (-codegen)" on page 8-52
for more information.

Scenario 1: Oracle-Specific Code

This section documents a typical environment setup for Oracle-specific code
generation. Note that in this case, the SQLJ generic runt i ne library is not an
option.

= SQLJcode generation: - codegen=or acl e (default)
« SQLJ library during translation:

— Oracle SQLJrunt i mell library with JDK 1.1

or:

— Oracle SQLJrunti mel2 orrunti mel2ee library with JDK 1.2 or higher
« JDBC and JDK: Oracle JDBC version 9.0.1 or higher with JDK 1.1 or higher

If you might be running against either the 9.0.1 or 9.2 JDBC driver, translate
against 9.0.1. In general, compile against the oldest driver you might use.

« SQLIJ library during runtime: same library as for translation

Scenario 2: ISO Standard Code

This section documents a typical environment setup for 1ISO standard code
generation.

1. SQLJcode generation: - codegen=i so
2. SQLJlibrary during translation:
— SQLJruntinmell library with JDK 1.1
or:
— SQUJruntimel2orruntinel2ee library with JDK 1.2 or higher
or, for Oracle JDBC versions 8.1.7 and prior:
— SQLJgenericrunti ne library with any JDK 1.1 or higher
3. JDBC and JDK: any Oracle JDBC version with any JDK 1.1 or higher

4. SQLJ library during runtime: same library as for translation

Getting Started 2-5

Assumptions and Requirements

Environment Scenarios: Key Guidelines
Regarding your environment for running Oracle SQLJ, be aware of the following
important guidelines and considerations:

In general, use the same versions of the SQLJ library, JDBC library, and JDK in
translating and compiling all components of your application.

Always be aware of the following cross-compatibility considerations:

If you want to be able to run the same compiled code in either a JDK 1.1
environment or a JDK 1.2 or higher environment, then translate against the
runti nell library under JDK 1.1. This allows the option of using the
runti mel2 orrunti mel2ee library under JDK 1.2 at runtime. If you
translate against JDK 1.2, several JDBC 2.0 APlIs that are not supported
under JDK 1.1 are compiled into your class files.

If you want to be able to run against either a version 9.0.1 or a version 9.2
Oracle JDBC driver, then translate against a 9.0.1 driver. This allows you to
use either driver version at runtime.

Generated code is optimized toward the JDBC driver in the classpath
during translation.

For maximal cross-compatibility, avoid using declared connection context
classes. If you use JPublisher, use the default settings for the - conpati bl e
and - cont ext options. See the Oracle9i JPublisher User’s Guide for
information about these options.

You can also consider using the r unt i me library for cross-compatibility, but
this library has disadvantages (such as not supporting the Oracle9i

oracl e. jdbc. O acl exXXXinterfaces, which causes problems in the middle
tier).

Environment Issues and Limitations

This section discusses a key environmental issue—JDK migration regarding type
maps—and lists resulting limitations and some additional environment issues and
limitations. These are among the considerations in planning the typical scenarios
outlined in "Oracle SQLJ Environment: Key Scenarios and Guidelines" on page 2-4.

2-6 Oracle9/ SQLJ Developer’s Guide and Reference

Assumptions and Requirements

Notes:

=« Where the generic r unt i ne library is discussed, an Oracle
JDBC environment is still assumed (version 8.1.7 or prior). For
non-Oracle JDBC environments, substitute the
runti me- nonor acl e library.

« Theruntineandruntine-nonoracl e libraries are intended
mainly for backward compatibility. They do not support
Oracle-specific features.

JDK Migration Issues Regarding Type Maps

The type for JDBC type maps changed between JDK 1.1.x and JDK 1.2.x, from
java.util.Dictionarytojava.util. Mp.

The get TypeMap() method of all SQLJ connection context classes returns a type
map instance. The Java type system requires that an implemented method must
return exactly the type specified in an underlying interface (in this case, the JDBC
Connect i on interface). Consider the following method signature:

java.util.Hashtabl e get TypeMap() { ... }

This would seem to implement both the JDK 1.1 and JDK 1.2 specifications, because
Hasht abl e extends Di cti onary and implements Map; however, it is not
acceptable to the Java type system.

This incompatibility between the JDK 1.1 and JDK 1.2 interfaces has the following
consequences if your SQLJ code declares connection context types:

« Ifyou compile under JDK 1.1.x, including when you translate against the SQLJ
runti mell library, or when you compile under any JDK when translating
against the SQLJ generic r unt i me library, the generated code will return
Di cti onary instances. The code should run under both JDK 1.1.x and JDK
1.2.x or higher. (Under JDK 1.2, the SQLJ runtime uses Java Reflection as
necessary.)

« Ifyou compile under JDK 1.2.x or higher, including when you translate against
the SQLJrunti mel2 orrunti mel2ee library, you will not be able to run
under JDK 1.1.x (because j ava. uti | . Map, among other things, was not
defined in JDK 1.1.x).

« Ifyoutranslate. sql j filesunder JDK 1.1.x, the generated . j ava files will not
compile under JDK 1.2.x or higher. (This is relevant if you run SQLJ with the

Getting Started 2-7

Assumptions and Requirements

- conpi | e=f al se setting, in order to translate and compile separately.)
Likewise, if you translate under JDK 1.2.x or higher, the generated . j ava files
will not compile under JDK 1.1.x.

Note: If you use JPublisher, the default setting is to use

Def aul t Cont ext instances for connections, in which case the
preceding issues do not arise. But with JPublisher nondefault

- cont ext option settings, or with a - conpat i bl e option setting
of bot h8i or 8i , JPublisher-generated . sql j source code declares
connection context types. See the Oracle9i JPublisher User’s Guide for
more information.

Other Environment Issues and Limitations

The following list notes additional environmental issues and limitations, mostly
related to the type map issues discussed above.

With the default - codegen=or acl e setting, you cannot use the generic
runti me library. Use the runt i mel1l library (for JDK 1.1) or therunt i mel2
orrunti nel2ee library (for JIDK 1.2 or higher).

For Oracle JDBC version 8.1.7 or prior, you must use - codegen=i so and the
generic runt i me library (notrunti mell, runti mel2, orrunti nel2ee).

For any SQLJ application using declared connection context classes, all modules
must be translated against JDK 1.1 (using the runt i ne orrunti nell library)
or all modules must be translated against JDK 1.2 or higher (using the

runti mel2orruntinel2ee library). There cannot be a mixture. This includes
situations where you use JPublisher with a nondefault - cont ext option
setting.

You can run against a JDK version that is at least as high as the version you
translated against. If you translate under JDK 1.1.x, you can run the application
under either JDK 1.1.x or JDK 1.2 or later. This assumes that you do not have
any JDBC code that uses the or acl e. j dbc2 package, which Oracle SQLJ does
not support. Oracle JDBC used this package to support JDBC 2.0 types under
JDK 1.1.x. If you translate under JDK 1.2, you can run the application under
JDK 1.2 or higher.

2-8 Oracle9i SQLJ Developer’s Guide and Reference

Assumptions and Requirements

Notes:
« Oracle JDBC releases 8.1.5 and prior do not support JDK 1.2.x.

« InOracle9i, Oracle SQLJ and Oracle JDBC do not support JIDK
1.0.2. (Release 8.1.6 was the last Oracle JDBC release to support
JDK 1.0.2, while Oracle SQLJ has never supported JDK 1.0.2.)
This includes applets running in browsers that use JDK 1.0.2
except where special preparations have been made. (This
chapter does not discuss applets. Refer to "Running SQLJ in
Applets" on page 1-25.)

Oracle SQLJ Backward Compatibility

Be aware of the following regarding Oracle SQLJ backward compatibility:

Code generated with an earlier release of the SQLJ translator will continue to do
the following (subject to cross-compatibility limitations discussed in
"Environment Issues and Limitations" on page 2-6):

— runagainst current runtime (. j ar or. zi p) libraries
— be compilable against current runtime (. j ar or . zi p) libraries

Oracle-specific translator output (code generated with the default
- codegen=or acl e setting) must be created and executed using the
runtimell, runtimel2, orrunti mel2ee library. Furthermore:

— Such code will be executable under future releases of Oracle JDBC and
SQLJ.

— Such code, however, will not be executable under previous releases of
Oracle JDBC and the Oracle SQLJ runtime. In these circumstances, you will
have to retranslate the code.

Also remember that Oracle-specific code is not portable.

ISO standard generated code (- codegen=i so0) can be created and executed
against an earlier Oracle JDBC release using the currentrunti me (. j ar or
. zi p) library.

Getting Started 2-9

Assumptions and Requirements

Note: Regarding Oracle JDBC backward compatibility to prior
database releases, any given Oracle JDBC driver release is
compatible with any Oracle database release from 7.3.4 up to the
release number of the JDBC driver. For more information see the
Oracle9i JDBC Developer’s Guide and Reference.

2-10 Oracle9/ SQLJ Developer’s Guide and Reference

Checking the Installation and Configuration

Checking the Installation and Configuration

Once you have verified that the above assumptions and requirements are satisfied,
you must check your Oracle SQLJ installation.

Check for Installed Directories and Files
Verify that the following directories have been installed and are populated.

Directories for Oracle JDBC

If you are using one of the Oracle JDBC drivers, refer to the Oracle9i JDBC
Developer’s Guide and Reference for information about JDBC files that should be
installed on your system.

Directories for Oracle SQLJ

Installing the Oracle9i Java environment will include, among other things, installing
asqlj directory under your [Or acl e_Hon®e] directory. The sql j directory
contains the following subdirectories:

« denp (demo applications, including some referenced in this chapter)
« doc
« |ib(.jar or.zipfiles containing class files for SQLJ)

In addition, directly under [Or acl e_Hone] is the following directory, containing
utilities for all Java product areas:

« bin

Check that all these directories have been created and populated, especially | i b
and bi n.

The structure is similar if you download SQLJ from a Web site, such as the Oracle
Technology Network htt p: // ot n. or acl e. comaddress. The bi n directory, with
both SQLJ and JPublisher executable files, is directly under the sql j directory.

Getting Started 2-11

Checking the Installation and Configuration

Set the Path and Classpath

Make sure your PATHand CLASSPATH environment variables have the necessary
settings for Oracle SQLJ (and Oracle JDBC if applicable).

Path and Classpath for Oracle JDBC
If you are using one of the Oracle JDBC drivers, you will need the Oracle JDBC
classes JAR/ZIP file that is appropriate for your environment.

JDK 1.1-compatible classes are in cl asses111.j ar or. zi p; JDK 1.2 (or higher)
compatible classes are incl asses12. j ar or. zi p; JDK 1.4-compatible classes are
in oj dbc14. j ar or. zi p. Presuming you use a Sun Microsystems JDK, make sure
the appropriate JAR/ZIP file name is in your classpath setting. There may also be
alternative JDBC driver libraries available, such as cl asses12_g. j ar, which
permits driver debugging information to be printed.

For more information about libraries and required path and classpath settings for
Oracle JDBC, refer to the Oracle9i JDBC Developer’s Guide and Reference.

Path and Classpath for Oracle SQLJ
Set your PATH and CLASSPATH variables as follows for Oracle SQLJ.

Path Setting To be able to run the sql j script (which invokes the SQLJ translator)
without having to fully specify its path, verify that your PATHenvironment variable
has been updated to include the following:

[Cacl e_Hone] / bin

Use backward slashes for Windows. Replace [Or acl e_Hone] with your actual
Oracle home directory.

Classpath Setting Update your CLASSPATH environment variable to include the
current directory as well as the following (either . j ar or. zi p):
[Qacle Hone]/sqlj/lib/translator.j ar

Use backward slashes for Windows. Replace [Or acl e_Hone] with your actual
Oracle home directory.

In addition, you must include one of the following runtime libraries in your
classpath (either . j ar or. zi p):

[Qacle Hone]/sqglj/lib/runtinel2.j ar
[Qacl e Hone]/sqglj/lib/runtinel2ee.j ar

2-12 Oracle9/ SQLJ Developer’s Guide and Reference

Checking the Installation and Configuration

[Qacle Hone]/sqglj/lib/runtinell.jar
[Qacle Hone]/sqglj/lib/runtine. | ar
[Qacl e Hone]/sqglj/lib/runtine-nonoracle.j ar

See "Requirements for Using Oracle SQLJ" on page 2-3 regarding which runtime
library to use for your JDBC driver and Java environment.

Important: You will not be able to run the SQLJ translator if you
do not add a runtime library. You must specify a runtime library as
well as the translator library in your classpath.

To see if SQLJ is installed correctly, and to see version information
for SQLJ, JIDBC, and Java, execute the following command:

sqlj -version-long

Verify Installation of sqgljutl Package

Note: This step is relevant only for online checking during
translation, and is applicable only if you are using SQLJ stored
procedures or functions with a pre-8.1.5 Oracle database (or an 8.1.5
or later database that was installed without a server-side JVM).

The package sql j ut | is required for online checking of stored procedures and
functions in an Oracle database. For Oracle release 8.1.5 and later, it should have
been installed automatically under the SYS schema during installation of your
database server-side JVM. To verify the installation of sqgl j ut | , issue the following
SQL command (from SQL* Pl us, for example):

descri be sys.sqljutl

This should result in a brief description of the package. If you get a message
indicating that the package cannot be found, then you must install it manually. To
do so, use SQL* Pl us to run the sql j ut | . sqgl script, which is located as follows:

[Gacle_ Hone]/sqlj/libl/sqljutl.sql

(The sql j ut | package is installed in the SYS schema.)

Consult your installation instructions if necessary.

Getting Started 2-13

Testing the Setup

Testing the Setup

You can test your database, JDBC, and SQLJ setup using demo applications defined
in the following source files:

« Testlnstall CreateTable.java
« TestlnstallJDBC. java

« Testlnstall SQJ. sql]

« Testlnstall SQLIChecker. sql]j

There is also a Java properties file, connect . properti es, that helps you set up
your database connection. You must edit this file to set appropriate user, password,
and URL values.

These demo applications are provided with your SQLJ installation in the denp
directory:

[G acl e_Hone] / sql j / denmo

You must edit some of the source files as necessary and translate/compile them as
appropriate (as explained in the following subsections).

The demo applications provided with the Oracle SQLJ installation refer to tables on
an Oracle account with user name scot t and password ti ger. Most Oracle
installations have this account. You can substitute other values for scot t and
tiger if desired.

Note: Running the demo applications requires that the deno
directory be the current directory and that the current directory
(". ") be in your classpath, as described earlier.

Set Up the Runtime Connection

This section describes how to update the connect . properti es file to configure
your Oracle connection for runtime. The file is in the deno directory and looks
something like the following:

Wsers shoul d uncomnment one of the foll owing URLs or add their own.
(If using Thin, edit as appropriate.)

#sqlj . url 5 dbc: oracl e: t hi n: @ocal host : 1521: CROL

#sqlj . url 5 dbc: oracl e: oci : @

#

Wser nane and password here

2-14 Oracle9/ SQLJ Developer’s Guide and Reference

Testing the Setup

sql j . user=scott
sql j . passwor d=t i ger

(User scot t and password ti ger are used for the demo applications.)

Connecting with an Oracle JDBC Driver

With Oracle9i, use "oci" in the connect string for the Oracle JDBC OCI driver in any
new code. For backward compatibility, however, "oci8" is still accepted, so you do
not have to change existing code. (Also, "oci7" is accepted for Oracle JDBC release
7.3.4)

If you are using the JDBC Thin driver, then uncomment the t hi n URL line in
connect . properti es and edit it as appropriate for your Oracle connection. Use
the same URL that was specified when your JDBC driver was set up.

Connecting with anon-Oracle JDBC Driver

If you are using a non-Oracle JDBC driver, then add a line to
connect . properti es to set the appropriate URL, as follows:

sqlj.url=your UR. here

Use the same URL that was specified when your JDBC driver was set up.

You must also register the driver explicitly in your code. This is performed
automatically in the demo and test programs if you use an Oracle JDBC driver. See
"Driver Selection and Registration for Runtime" on page 4-5.

In addition, in the SQLJ demo programs, you must replace the following code:

Q acl e. connect (ur!l, user, password);

with the following:

Dri ver Manager . r egi ster Dri ver (new yourdri ver());

Qonnection conn = Driver Manager . get Gonnecti on(ur/, user, password);
conn. set Aut oConmit (fal se) ;

Def aul t Cont ext . set Def aul t Gont ext (new Def aul t Gont ext (conn)) ;

Getting Started 2-15

Testing the Setup

Create a Table to Verify the Database
The following tests assume a table called SALES. If you compile and run
Test | nst al | Cr eat eTabl e as follows, it will create the table for you if the
database and your JDBC driver are working and your connection is set up properly
in the connect . properti es file:

javac Testlnstal |l OreateTabl e.j ava
java TestInstal | O eateTabl e

Note: If you already have a table called SALES in your schema
and do not want it altered, edit

Test I nstal | Creat eTabl e. j ava to change the table name.
Otherwise, your original table will be dropped and replaced.

If you do not want to use Test | nst al | Cr eat eTabl e, you can instead create the
SALES table using the following command in a command-line processor (such as
SQL* Pl us):
CREATE TABLE SALES (

| TEM NUMBER NUMBER

| TEM NAME GHAR(30),

SALES DATE DATE,

Q5T NUMBER

SALES REP NUMBER NUMBER

SALES REP_NAME CHAR(20)) ;

Verify the JDBC Driver
If you want to further test the Oracle JDBC driver, use the Test | nst al | JDBC
demo.

Verify that your connection is set up properly in connect . properties as
described above, then compile and run Test | nst al | JDBC.

javac Testlnstal | JOBC j ava
java TestlnstallJDBC

The program should print:
Hel 1o, JDBA

2-16 Oracle9/ SQLJ Developer’s Guide and Reference

Testing the Setup

Verify the SQLJ Translator and Runtime

Now translate and run the Test | nst al | SQLJ demo, a SQLJ application that has
similar functionality to Test | nst al | JDBC. Use the following command to
translate the source:

sqlj Testlnstall SQJ.sql]j

After a brief wait you should get your system prompt back with no error output.
Note that this command also compiles the application and customizes it to use an
Oracle database.

In a UNIX environment, the sqgl j scriptisin [Or acl e_Home] / bi n, which should
already be in your path as described above. (On Windows, use the sql j . exe
executable in the bi n directory.) The SQLJt r ansl at or JAR/ZIP file has the class
files for the SQLJ translator and runtime. It is located in

[Oracl e_Hone]/sqlj/libandshould already be in your classpath as described
above.

Now run the application:

java Testlnstall SQJ

The program should print:
Hel o, SQJ!

Verify the SQLJ Translator Connection to the Database

If the SQLJ translator is able to connect to a database, then it can provide online
semantics-checking of your SQL operations during translation. The SQLJ translator
is written in Java and uses JDBC to get information it needs from a database
connection that you specify. You provide the connection parameters for online
semantics-checking using the sqgl j script command line or using a SQLJ properties
file (called sql j . properti es by default).

While still in the deno directory, edit the file sql j . properti es and update,
comment, or uncomment the sqgl j . password, sqlj.url,andsqlj.driver
lines, as appropriate, to reflect your database connection information, as you did in
the connect . properti es file. For some assistance, see the comments in the
sqlj . properti es file.

Following is an example of what the appropriate driver, URL, and password
settings might be if you are using the Oracle JDBC OCI driver. The user name will
be discussed next.

Getting Started 2-17

Testing the Setup

sqlj.url=jdbc:oracl e:oci: @
sqlj.driver=oracle.jdbc. Oacl eDri ver
sql j . passwor d=t i ger

Online semantics-checking is enabled as soon as you specify a user name for the
translation-time connection. You can specify the user name either by uncommenting
thesql j . user lineinthesqlj. properti es file or by using the - user
command-line option. The user, password, URL, and driver options all can be set
either on the command line or in the properties file. This is explained in
"Connection Options" on page 8-34.

You can test online semantics-checking by translating the file
Test | nstal | SQLIChecker. sql j , located in the deno directory, as follows (or
using another user name if appropriate):

sqlj -user=scott Testlnstall SQJChecker. sql j

This should produce the following error message if you are using one of the Oracle
JDBC drivers:

Test I nstal | SQQIChecker.sqlj:41: Wrning: Lhable to check SQL query. Error

returned by database is: CRA-00904: invalid col um nane

Edit Test I nst al | SQLIChecker . sqgl j to fix the error on line 41. The column
name should be | TEM_NAME instead of | TEM_NAMAE. Once you make this change,
you can translate and run the application without error using the following
commands:

sqlj -user=scott Testlnstall SQJChecker. sqlj
java Testlnstal | SQ JChecker

If everything works, this prints:
Hel 1o, SQJ Checker!

2-18 Oracle9/ SQLJ Developer’s Guide and Reference

3

Basic Language Features

This chapter discusses basic SQLJ language features and constructs that you use in
coding your application.

SQLJ statements always begin with a #sqgl token and can be broken into two main
categories: 1) declarations, used for creating Java classes for iterators (similar to
JDBC result sets) or connection contexts (designed to help you strongly type your
connections according to the sets of SQL entities being used); and 2) executable
statements, used to execute embedded SQL operations.

For more advanced topics, see Chapter 7, "Advanced Language Features".

This chapter discusses the following topics.

Overview of SQLJ Declarations

Overview of SQLJ Executable Statements

Java Host Expressions, Context Expressions, and Result Expressions
Single-Row Query Results: SELECT INTO Statements

Multi-Row Query Results: SQLJ Iterators

Assignment Statements (SET)

Stored Procedure and Function Calls

Basic Language Features 3-1

Overview of SQLJ Declarations

Overview of SQLJ Declarations

A SQLJ declaration consists of the #sql token followed by the declaration of a class.
SQLJ declarations introduce specialized Java types into your application. There are
currently two kinds of SQLJ declarations, iterator declarations and connection context
declarations, defining Java classes as follows:

« lterator declarations define iterator classes. Iterators are conceptually similar to
JDBC result sets and are used to receive multi-row query data. An iterator is
implemented as an instance of an iterator class.

« Connection context declarations define connection context classes. Each
connection context class is typically used for connections whose operations use
a particular set of SQL entities (tables, views, stored procedures, and so on).
That is to say, instances of a particular connection context class are used to
connect to schemas that include SQL entities with the same names and
characteristics. SQLJ implements each database connection as an instance of a
connection context class.

SQLJ includes the predefined sql j . runt i me. Def aul t Cont ext connection
context class. If you only require one connection context class, you can use
Def aul t Cont ext , which does not require a connection context declaration.

In any iterator or connection context declaration, you may optionally include the
following clauses:

« i npl ement s clause—Specifies one or more interfaces that the generated class
will implement.

=« Wi t h clause—Specifies one or more initialized constants to be included in the
generated class.

These are described in "Declaration IMPLEMENTS Clause" on page 3-5and in
"Declaration WITH Clause" on page 3-6.

Rules for SQLJ Declarations

SQLJ declarations are allowed in your SQLJ source code anywhere that a class
definition would be allowed in standard Java. The only limitation is that you cannot
have a declaration inside a method block under JDK 1.1.x. For example:

SQJ decl arationm, |/ CK (top |evel scope)
class Quter

{
SQJ decl aration, /1 K (class |evel scope)

3-2 Oracle9i SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations

cl ass | nner

SQJ decl aration;, |/ K (nested cl ass scope)
}

voi d func()

{
}

SQJ declaration;, /| Kin JDK 1.2.x; ILLEGAL in JIK 1.1.x (nethod bl ock)

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
IDK):

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope. In this
case, it may be advisable to use publ i ¢ st ati ¢ modifiers.

Iterator Declarations

An iterator declaration creates a class that defines a kind of iterator for receiving
query data. The declaration will specify the column types of the iterator instances,
which must match the column types being selected from the database table.

Basic iterator declarations use the following syntax:

#sgl <nodifiers> iterator iterator_classname (type decl arations);
Modifiers are optional and can be any standard Java class modifiers such as
public,static, and so on. Type declarations are separated by commas.

There are two categories of iterators—named iterators and positional iterators. For
named iterators, specify column names and types; for positional iterators, specify
only types.

The following is an example of a named iterator declaration:

#sgl public iterator Enplter (String enane, double sal);

Basic Language Features 3-3

Overview of SQLJ Declarations

This statement results in the SQLJ translator creating a public Enpl t er class with a
St ri ng attribute enane and a doubl e attribute sal . You can use this iterator to
select data from a database table with corresponding employee name and salary
columns of matching names (ENAME and SAL) and datatypes (CHAR and NUVBER).

Declaring Enpl t er as a positional iterator, instead of a named iterator, would be
done as follows:

#sgl public iterator Enplter (String, double);

For more information about iterators, see "Multi-Row Query Results: SQLJ
Iterators” on page 3-37.

Connection Context Declarations

A connection context declaration creates a connection context class, whose instances
are typically used for database connections that use a particular set of SQL entities.

Basic connection context declarations use the following syntax:

#sql <nodi fiers> context context_cl assnang,

As for iterator declarations, modifiers are optional and can be any standard Java
class modifiers. The following is an example:

#sqgl public context M/Gontext;

As a result of this statement, the SQLJ translator creates a public MyCont ext class.
In your SQLJ code you can use instances of this class to create database connections
to schemas that include a desired set of entities, such as tables, views, and stored
procedures. Different instances of MyCont ext might be used to connect to different
schemas, but each schema might be expected, for example, to include an EMP table,
a DEPT table, and a TRANSFER_EMPLOYEE stored procedure.

Declared connection context classes are an advanced topic and are not necessary for
basic SQLJ applications that use only one interrelated set of SQL entities. In basic
scenarios, you can use multiple connections by creating multiple instances of the
sqlj.runtinme.ref. Defaul t Cont ext class, which does not require any
connection context declarations.

See "Connection Considerations" on page 4-6 for an overview of connections and
connection contexts. For information about creating additional connection contexts,
see "Connection Contexts" on page 7-2.

3-4 Oracle9i SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations

Declaration IMPLEMENTS Clause

When you declare any iterator class or connection context class, you can specify one
or more interfaces to be implemented by the generated class.

Use the following syntax for an iterator class:

#sql <nodifiers> iterator iterator_classname inplenments intfcl,..., intfcN
(type decl arations);

The portioni npl ements intfcl,..., intfcNisknownastheinplenents
clause. Note that in an iterator declaration, the i npl enent s clause precedes the
iterator type declarations.

Here is the syntax for a connection context declaration:

#sgl <nodifiers> context context_classnane inpl enents intfcl,..., intfcN

The i npl enent s clause is potentially useful in either an iterator declaration or a
connection context declaration, but is more likely to be useful in iterator
declarations—particularly in implementing the sql j . runti me. Scr ol | abl e or
sql j . runti nme. For Updat e interface. Scrollable iterators are supported in Oracle
SQLJ (see "Scrollable Iterators" on page 7-42); positioned updates or deletes are not
currently supported.

For more information about the i npl ement s clause, see "Using the IMPLEMENTS
Clause in Iterator Declarations" on page 7-40 and "Using the IMPLEMENTS Clause
in Connection Context Declarations” on page 7-11.

Note: The SQLJi npl enent s clause corresponds to the Java
i mpl ement s clause.

The following example uses an i npl enent s clause in declaring a named iterator
class. Presume you have created a package, mypackage, that includes an iterator
interface, Myl ter | ntfc.

#sgl public iterator M/lter inplenments nypackage. Miterintfc
(String enane, int enpno);

The declared class Myl t er will implement the mypackage. Myl terlntfc
interface.

Basic Language Features 3-5

Overview of SQLJ Declarations

This next example declares a connection context class that implements an interface
named MyConnCt xt | nt f c. Presume that it, too, is in the package mypackage.

#sgl public context M/Gontext inpl enents nypackage. MyGonnQ xt I ntfc;

Declaration WITH Clause

In declaring a connection context class or iterator class, you can use awi t h clause
to specify and initialize one or more constants to be included in the definition of the
generated class. Most of this usage is standard, although Oracle adds one kind of
extended functionality for iterator declarations.

Standard WITH Clause Usage

In using a wi t h clause, the constants that are produced are always publ i c
static final.Usethe following syntax for an iterator class:

#sql <nodifiers> iterator iterator_classname with (varl=val uel,..., varNval ueN
(type decl arations);

The portionwi t h (var I=val uel, ..., varN=val ueN isthew t h clause. Note
that in an iterator declaration, the wi t h clause precedes the iterator type
declarations.

Where there is both awi t h clause and an i npl enent s clause, the i npl ement s
clause must come first. Note that parentheses are used to enclose wi t h lists, but not
i mpl enent s lists.

Here is the syntax for a connection context declaration that uses a wi t h clause:

#sql <nodi fiers> context context_classnane with (varl=val uel, ..., varNeval ueN;

And here is an example:

#sqgl public context M/Gontext with (typeMp="MPack. M/A ass");

The declared class My Cont ext will define the attribute t ypeMap that will be
public static final ofthetypeString and initialized to the value
"MyPack.MyClass". This value is the fully qualified class name of a

Li st Resour ceBundl e implementation that provides the mapping between SQL
and Java types for statements executed on instances of the My Cont ext class.

Here is another example (see the note about sensi ti vi t y below):

#sgl public iterator M/Asensitivelter with (sensitivity=ASENS Tl VE)
(Sring enane, int enpno);

3-6 Oracle9i SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations

This declaration sets the cursor sensi ti vi t y to ASENSI Tl VE for a named iterator
class.

The following example uses both an i npl erment s clause and awi t h clause. (See
the note about hol dabi | i t y immediately below.)

#sgl public iterator M/Scrollablelterator inplenents sqlj.runtine.Scrollable
with (holdability=true) (String enange, int enpno);
The i npl enent s clause must precede the wi t h clause.

This declaration implements the interface sql j . runti me. Scr ol | abl e and
enables the cursor hol dabi | i t y for a named iterator class. (But hol dabi I i ty is
not currently meaningful to Oracle9i.)

The following standard constants on iterator declarations are not supported in
Oracle SQLJ. They mostly involve cursor states and can take only particular values,
as follows:

« holdability (true/fal se)

« updat eCol ums (a St ri ng literal containing a comma-delimited list of
column names)

An iterator declaration having awi t h clause that specifies updat eCol urms must
also have an i npl ement s clause that specifies the sql j . runti me. For Updat e
interface.

Oracle SQLJ supports the following standard constants on connection context
declarations.

« sensitivity (SENSI TI VE/ASENSI Tl VE/I NSENSI Tl VE, to define the
sensitivity of a scrollable iterator)

« returnability (true/fal se, to define whether an iterator can be returned
from a Java stored procedure or function)

« typeMap (aString literal defining the name of a type map properties
resource)

« dataSource (aString literal defining the name under which a data source is
looked up inthe I ni ti al Cont ext)

See "Standard Data Source Support" on page 7-13 for information about SQLJ
support for data sources.

Basic Language Features 3-7

Overview of SQLJ Declarations

The following standard constants on connection context declarations are not
currently supported in Oracle SQLJ:

« path(asString literal defining the name of a path to be prepended for
resolution of Java stored procedures and functions)

« transfornmGoup (aString literal defining the name of a SQL
transformation group that may be applied to SQL types)

Note: A predefined set of standard SQLJ constants can be defined
inawi t h clause; however, not all of these constants are meaningful
to Oracle9i or to the Oracle SQLJ runtime. Attempts to define
constants other than the standard constants (as in the example
above) is legal with Oracle9i, but may not be portable to other SQLJ
implementations and will generate a warning if you have the

-war n=por t abl e flag enabled. For information about this flag,
see "Translator Warnings (-warn)" on page 8-45.

Oracle-Specific WITH Clause Usage

In addition to standard wi t h clause usage in a connection context declaration to
associate a type map with the connection context class, Oracle allows you to use a
wi t h clause to associate a type map with the iterator class in an iterator declaration.
Here is an example:

#sql iterator M/lterator wth (typeMap="MTypeMap") (Person pers, Address addr);

If you use Oracle-specific code generation (through the default translator setting

- codegen=or acl e) and you use type maps in your application, then your iterator
and connection context declarations must use the same type map(s). See "Code
Considerations and Limitations with Oracle-Specific Code Generation" on page 4-41
for more information.

3-8 Oracle9i SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements

Overview of SQLJ Executable Statements

A SQLJ executable statement consists of the #sql token followed by a SQLJ clause,
which uses syntax that follows a specified standard for embedding executable SQL
statements in Java code. The embedded SQL operation of a SQLJ executable
statement can be any SQL operation supported by your JDBC driver (such as DML,
DDL, and transaction control).

Rules for SQLJ Executable Statements
A SQLJ executable statement must follow these rules:

It is permitted in Java code wherever Java block statements are permitted (in
other words, it is permitted inside method definitions and static initialization
blocks).

Its embedded SQL operation must be enclosed in curly braces: {. . . }.

It must be terminated with a semi-colon (";").

Notes:

«» Itisrecommended that you not close the SQL operation (inside
the braces) with a semi-colon. The parser will detect the end of
the operation when it encounters the closing curly brace of the
SQLJ clause.

« Everything inside the curly braces of a SQLJ executable
statement is treated as SQL syntax and must follow SQL rules,
with the exception of Java host expressions (which are
described in "Java Host Expressions, Context Expressions, and
Result Expressions" on page 3-16).

« During offline parsing of SQL operations, all SQL syntax is
checked. During online semantics-checking (done through a
database connection), however, only DML operations (such as
SELECT, UPDATE, | NSERT, and DELETE) can be parsed and
checked. DDL operations (such as CREATE. . . ,or ALTER. . .),
transaction-control operations (such as COVWM T and
ROLLBACK), or any other kinds of SQL operations cannot be.

Basic Language Features 3-9

Overview of SQLJ Executable Statements

SQLJ Clauses

A SQLIJ clause is the executable part of a statement—everything to the right of the
#sql token. This consists of embedded SQL inside curly braces, preceded by a Java
result expression if appropriate, such as r esul t in this example:

#sql { SQ operation}; // For a statement with no output, |ike | NSERT
#sql result ={ SQ operation}; |/ For a statenent wth output, |ike SELECT

A clause without a result expression, such as in the first example, is known as a
statement clause. A clause that does have a result expression, such as in the second
example, is known as an assignment clause.

A result expression can be anything from a simple variable that takes a
stored-function return value, to an iterator that takes several columns of data from a
multi-row SELECT (where the iterator can be an instance of an iterator class or
subclass).

A SQL operation in a SQLJ statement can use standard SQL syntax only, or can use
a clause with syntax specific to SQLJ (see Table 3-1 and Table 3-2 below).

For reference, Table 3-1 lists supported SQLJ statement clauses, and Table 3-2 lists
supported SQLJ assignment clauses. Details of how to use the various kinds of
clauses are discussed elsewhere, as indicated. The two entries in Table 3-1 are
general categories for statement clauses that use standard SQL syntax or Oracle
PL/SQL syntax, as opposed to SQLIJ-specific syntax.

Table 3-1 SQLJ Statement Clauses

Category Functionality More Information
SELECT | NTOclause Select data into Java host "Single-Row Query Results: SELECT
expressions. INTO Statements” on page 3-34
FETCH clause Fetch data from a "Using Positional Iterators" on
positional iterator. page 3-48
COW T clause Commit changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 4-28
ROLLBACK clause Cancel changes to the "Using Manual COMMIT and
data. ROLLBACK" on page 4-28
SET SAVEPO NT Set a savepoint for future "Using Savepoints" on page 4-30

RELEASE SAVEPQO NT rollbacks, release a
ROLLBACK TOclauses specified savepoint, roll
back to a savepoint.

3-10 Oracle9/ SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements

Table 3-1 SQLJ Statement Clauses (Cont.)

Category Functionality More Information

SET TRANSACTI ON Use advanced transaction "Advanced Transaction Control" on
clause control for access mode page 7-49
and isolation level.

procedure clause Call a stored procedure. "Calling Stored Procedures" on
page 3-60
assignment clause Assign values to Java host "Assignment Statements (SET)" on
expressions. page 3-58
SQL clause Use standard SQL syntax Oracle9i SQL Reference

and functionality: UPDATE,
| NSERT, DELETE.

PL/SQL block Use BEG N. . ENDor "PL/SQL Blocks in Executable
DECLARE. . BEG N. . END Statements" on page 3-14

anonymous block inside , .
SOLJ statement, PL/SQL User’s Guide and Reference

Table 3-2 SQLJ Assignment Clauses

Category Functionality More Information

query clause Select data into a SQLJ "Multi-Row Query Results: SQLJ
iterator. Iterators" on page 3-37

function clause Call a stored function. "Calling Stored Functions" on page 3-61

iterator conversion Convert a JDBC result set "Converting from Result Sets to Named

clause to a SQLJ iterator. or Positional Iterators" on page 7-58

Note: A SQLJ statement is referred to by the same name as the
clause that makes up the body of that statement. For example, an
executable statement consisting of #sql followed by a SELECT

I NTOclause is referred to as a SELECT | NTOstatement.

Specifying Connection Context Instances and Execution Context Instances

If you have defined multiple database connections and want to specify a particular
connection context instance for an executable statement, use the following syntax:

#sqgl [conn_context_instance] { SQ operation };

Basic Language Features 3-11

Overview of SQLJ Executable Statements

"Connection Considerations" on page 4-6 discusses connection context instances.

If you have defined one or more execution context instances (of the class
sqlj.runtinme. Executi onCont ext) and want to specify one of them for use
with an executable statement, use the following syntax (similar to that for
connection context instances):

#sqgl [exec_context_instance] { SQ operation };

You can use an execution context instance to provide status or control of the SQL
operation of a SQLJ executable statement. (This is an advanced topic.) For example,
you can use execution context instances in multithreading situations where multiple
operations are occurring on the same connection. See "Execution Contexts" on

page 7-24 for information.

You can also specify both a connection context instance and an execution context
instance:

#sqgl [conn_cont ext_i nstance, exec _context_instance] { SQ operation};

Notes:

« Include the square brackets around connection context
instances and execution context instances—they are part of the
syntax.

« If you specify both a connection context instance and an
execution context instance, the connection context instance
must come first.

Executable Statement Examples

3-12

Examples of elementary SQLJ executable statements appear below. More
complicated statements are discussed later in this chapter.

Elementary INSERT

The following example demonstrates a basic | NSERT. The statement clause does not
require any syntax specific to SQLJ.

Oracle9i SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements

Consider an employee table EMP with the following rows:

CREATE TABLE BWP (
ENAME VARCHARY(10) ,
SAL NOMBER(7,2));

Use the following SQLJ executable statement (that uses only standard SQL syntax)
to insert Joe as a new employee into the EMP table, specifying his name and salary:

#sgl{ INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };

Elementary INSERT with Connection Context or Execution Context Instances

The following examples use ct x as a connection context instance (an instance of
either the defaultsqgl j . runti me. r ef . Def aul t Cont ext or a class that you have
previously declared in a connection context declaration) and execct x as an
execution context instance:

#sql [ctX]{ INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };
#sql [execct] { INSERT INTO emp (ename, sal) VALUES (Joe’, 43000) };

#sq [ctx, execct] { INSERT INTO emp (ename, sal) VALUES (‘Joe’, 43000) };

A Simple SQLJ Method

This example demonstrates a simple method using SQLJ code, demonstrating how
SQLJ statements interrelate with and are interspersed with Java statements. The
SQLJ statement uses standard | NSERT | NTO t abl e VALUES syntax supported by
Oracle SQL. The statement also uses Java host expressions, marked by colons (:), to
define the values. Host expressions are used to pass data between your Java code
and SQL instructions. They are discussed in "Java Host Expressions, Context
Expressions, and Result Expressions" on page 3-16.

public static void wiiteSalesData (intf] temNums, String[] itemNames)
throws SQLException
{
for (inti =0; i < temNums.length; i++)
#sgl {INSERT INTO sales VALUES(:(temNums][i]), :(temNames(i]), SYSDATE) };
}

Basic Language Features 3-13

Overview of SQLJ Executable Statements

Notes:

« Thethrows SQ.Excepti on isrequired. For information
about exception-handling, see "Exception-Handling Basics" on
page 4-22.

« SQLIJ function calls also use a VALUES token, but these
situations are not related semantically.

PL/SQL Blocks in Executable Statements

PL/SQL blocks can be used within the curly braces of a SQLJ executable statement
just as SQL operations can, as in the following example:

#sqgl {
CEQLARE
n NUMBER
BEG N
n:=1;
VWH LE n <= 100 LQCP
I NSERT | NTO enp (enpno) VALUES(2000 + n);
n:=n+1;
END LOCP,
END

}

This example goes through a loop that inserts new employees in the EMP table,
creating employee numbers 2001-2100. (It presumes data other than the employee
number will be filled in later.)

Simple PL/SQL blocks can also be coded in a single line:
#sql { <DEQLARE ...> BEAN... B\D };

Using PL/SQL anonymous blocks within SQLJ statements is one way to use
dynamic SQL in your application. You can also use dynamic SQL directly through
Oracle SQLJ extensions, or through JDBC code within a SQLJ application. (See
"Support for Dynamic SQL" on page 7-63 and "SQLJ and JDBC Interoperability" on
page 7-53.)

3-14 Oracle9/ SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements

Notes:

« Itisrecommended that you not close a PL/SQL block with a
semi-colon after the END. The parser will detect the end of the
block when it encounters the closing curly brace of the SQLJ
clause.

« Remember that using PL/SQL in your SQLJ code would
prevent portability to other platforms, because PL/SQL is
Oracle-specific.

Basic Language Features 3-15

Java Host Expressions, Context Expressions, and Result Expressions

Java Host Expressions, Context Expressions, and Result Expressions

This section discusses three categories of Java expressions used in SQLJ code: host
expressions, context expressions, and result expressions. Host expressions are the most
frequently used and merit the most discussion. (Another category of expressions,
called meta bind expressions, are used specifically for dynamic SQL operations and
use syntax similar to that of host expressions. See "Support for Dynamic SQL" on
page 7-63.)

SQLJ uses Java host expressions to pass arguments between your Java code and
your SQL operations. This is how you pass information between Java and SQL.

Host expressions are interspersed within the embedded SQL operations in SQLJ
source code.

The most basic kind of host expression, consisting of only a Java identifier, is
referred to as a host variable.

A context expression specifies a connection context instance or execution context
instance to be used for a SQLJ statement.

A result expression specifies an output variable for query results or a function
return.

(Result expressions and the specification of connection context instances and
execution context instances were first introduced in "Overview of SQLJ Executable
Statements” on page 3-9.)

Overview of Host Expressions

Any valid Java expression can be used as a host expression. In the simplest case,
which is typical, the expression consists of just a single Java variable. Other kinds of
host expressions include the following:

« arithmetic expressions

« Java method calls with return values
« Javaclass field values

« array elements

« conditional expressions(a ? b :)
« logical expressions

« bitwise expressions

3-16 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Java identifiers used as host variables or in host expressions can represent any of the
following:

« local variables

« declared parameters

« class fields (such asnycl ass. nyfi el d)
« static or instance method calls

Local variables used in host expressions can be declared anywhere that other Java
variables can be declared. Fields can be inherited from a superclass.

Java variables that are legal in the Java scope where the SQLJ executable statement
appears can be used in a host expression in a SQL statement, presuming its type is
convertible to or from a SQL datatype.

Host expressions can be input, output, or input-output.

See "Supported Types for Host Expressions” on page 5-2 for information about data
conversion between Java and SQL during input and output operations.

Basic Host Expression Syntax

A host expression is preceded by a colon (":"). If the desired mode of the host
expression (input, output, or input-output) is not the default, then the colon must be
followed (before the host expression itself) by | N, OUT, or | NOUT, as appropriate.
These are referred to as mode specifiers. The default is OUT if the host expression is
part of an INTO-list or is the assignment expression in a SET statement. Otherwise,
the default is I N. (When using the default, you can still include the mode specifier if
desired.)

Any OUT or | NOUT host expression must be assignable (an I-value, meaning
something that can logically appear on the left side of an equals sign).

The SQL code that surrounds a host expression can use any vendor-specific SQL
syntax; therefore, no assumptions can be made about the syntax when parsing the
SQL operations and determining the host expressions. To avoid any possible
ambiguity, any host expression that is not a simple host variable (in other words,
that is more complex than a non-dotted Java identifier) must be enclosed in
parentheses. To summarize the basic syntax:

« For asimple host variable without a mode specifier, put the host variable after
the colon, as in the following example:

: host var

Basic Language Features 3-17

Java Host Expressions, Context Expressions, and Result Expressions

For a simple host variable with a mode specifier, put the mode specifier after
the colon, and put white space (space, tab, newline, or comment) between the
mode specifier and the host variable, as in the following example:

- I NQJT host var

The white space is required to distinguish between the mode specifier and the
variable name.

For any other host expression, enclose the expression in parentheses and place it
after the mode specifier, or after the colon if there is no mode specifier, as in the
following examples:

:1 N(host var 1+host var 2)
: (host var 3*host var 4)
(i ndex--)

White space is not required after the mode specifier in the above example,
because the parenthesis is a suitable separator, but it is allowed.

An outer set of parentheses is needed even if the expression already starts with
a begin-parenthesis, as in the following examples:

S((x+y).2)
S(((Y)x) . nyQutput ())

Syntax Notes

White space is always allowed after the colon as well as after the mode
specifier. Wherever white space is allowed, you can also have a comment—any
of the following in the SQL namespace:

— SQL comments after the colon and before the mode specifier

— SQL comments after the colon and before the host expression if there is no
mode specifier

— SQL comments after the mode specifier and before the host expression
or the following in the Java namespace:
— Java comments within the host expression (inside the parentheses)

The | N, QUT, and | NOUT syntax used for host variables and expressions is not
case sensitive; these tokens can be uppercase, lowercase, or mixed.

3-18 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Do not confuse the | N, OUT, and | NOUT syntax of SQLJ host expressions with
similar I N, OUT, and | N OUT syntax used in PL/SQL declarations to specify the
mode of parameters passed to PL/SQL stored functions and procedures.

Usage Notes

A simple host variable can appear multiple times in the same SQLJ statement,
as follows ("output" refers to OUT or | NOUT variables, as applicable):

— If the host variable appears only as an input variable, then there are no
restrictions or complications.

— If at least one appearance of the host variable is as an output variable in a
PL/SQL block, then you will receive a portability warning if the translator
-war n=port abi | i ty flag is set. SQLJ runtime behavior in this situation is
vendor-specific. The Oracle SQLJ runtime uses value semantics (as opposed
to reference semantics) for all occurrences of the host variable. For
information about the - war n=port abi | i ty flag, see "Translator Warnings
(-warn)" on page 8-45.

— If at least one appearance of the host variable is as an output variable in a
stored procedure call, stored function call, SET statement, or INTO-list, then
you will not receive any warning. SQLJ runtime behavior in this situation is
standardized, using value semantics.

If a host expression that is a simple host variable appears multiple times in a
SQLJ statement, then by default each appearance is treated completely
independently of the other appearances, using value semantics. However, if
you use the SQLJ translator - bi nd- by-i denti fi er =t r ue setting, then this is
not the case. With a t r ue setting, multiple appearances of the same host
variable in a given SQLJ statement or PL/SQL block are treated as a single bind
occurrence. See "Binding Host Expressions by Identifier (-bind-by-identifier)"
on page 8-70.

When binding a string host expression into a WHERE clause for comparison
against CHAR data, be aware that there is a SQLJ option, - f i xedchar, that
accounts for blank padding in the CHAR column when the comparison is made.
See "CHAR Comparisons with Blank Padding (-fixedchar)" on page 8-58.

For examples of Oracle SQLJ runtime evaluation of host expressions, see "Examples
of Evaluation of Java Expressions at Runtime (ISO Code Generation)" on page 3-24.

Basic Language Features 3-19

Java Host Expressions, Context Expressions, and Result Expressions

Examples of Host Expressions

The following examples will help clarify the preceding syntax discussion. (Some of
these examples use SELECT | NTOstatements, which are described in "Single-Row
Query Results: SELECT INTO Statements” on page 3-34.)

1. Inthis example, two input host variables are used—one as a test value for a
VWHERE clause, and one to contain new data to be sent to the database.

Presume you have a database employee table EMP with an ENAME column for
employee names and a SAL column for employee salaries.

The relevant Java code that defines the host variables is also shown.
Sring enpnane = "SMTH';

doubl e sal ary = 25000. 0;

#sgl { UPDATE enp SET sal = :salary WHERE enane = :enpnane };

I Nis the default, but you can state it explicitly as well:

#sgl { UPDATE enp SET sal = :IN salary WHERE enane = : I N enpnane };

As you can see, ":" can immediately precede the variable when not using the I N
token, but ":IN" must be followed by white space before the host variable.

2. This example uses an output host variable in a SELECT | NTOstatement, where
you want to find out the name of employee number 28959.

Sring enpnang;
#sgl { SELECT enane | NTO : enpnane FROM enp WHERE enpno = 28959 };

QUT is the default for an INTO-list, but you can state it explicitly as well:
#sgl { SELECT enane | NTO : QJT enphane FROM enp WHERE enpno = 28959 };

This looks in the EMPNO column of the EMP table for employee number 28959,
selects the name in the ename column of that row, and outputs it to the
enpname output host variable, which is a Java string.

3. This example uses an arithmetic expression as an input host expression. The
Java variables bal ance and mi nPnt Rat i o are multiplied, and the result is
used to update the mi nPayment column of the cr edi t acct table for account
number 537845.

float bal ance = 12500. O;
float mnPrtRatio = 0. 05;

3-20 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

#sgl { UPDATE creditacct SET ni nPaynent
WHERE acct num = 537845 };

:(bal ance * minPm Rati o)

or, to use the | Ntoken:
#sgl { UPDATE creditacct SET minPayrment = :IN (bal ance * mnPntRatio)
WHERE acct num = 537845 };

4. This example shows use of the output of a method call as an input host
expression and also uses an input host variable. This statement uses the value
returned by get NewSal () to update the SAL column in the EMP table for the
employee (in the ENAME column) who is specified by the Java enpnane
variable. Java code initializing the host variables is also shown.

Sring enpnane = "SMTH';
doubl e raise = 0. 1;

#sgl {UPDATE enp SET sal = :(get New&al (raise, enpnane))
WHERE enane = : enphang};

Overview of Result Expressions and Context Expressions

A context expression is an input expression that specifies the name of a connection
context instance or an execution context instance to be used in a SQLJ executable
statement. Any legal Java expression that yields such a nhame can be used.

A result expression is an output expression used for query results or a function
return. It can be any legal Java expression that is assignable, meaning that it can
logically appear on the left side of an equals sign (this is sometimes referred to as an
I-value).

The following examples can be used for either result expressions or context
expressions:

« local variables

« declared parameters

« class fields (such asnycl ass. nyfi el d)
« array elements

Result expressions and context expressions appear lexically in the SQLJ space,
unlike host expressions, which appear lexically in the SQL space (inside the curly

Basic Language Features 3-21

Java Host Expressions, Context Expressions, and Result Expressions

brackets of a SQLJ executable statement). Therefore, a result expression or context
expression must not be preceded by a colon.

Evaluation of Java Expressions at Runtime

This section discusses the evaluation of Java host expressions, connection context
expressions, execution context expressions, and result expressions when your
application executes.

Here is a simplified representation of a SQLJ executable statement that uses all these
kinds of expressions:

#sqgl [connct xt_exp, execctxt_exp|] result_exp = { SQ wth host expression };

Java expressions can be used as any of the following, as appropriate:

= connection context expression—evaluated to specify the connection context
instance to be used

= execution context expression—evaluated to specify the execution context
instance to be used

« result expression—to receive results (from a stored function, for example)
« host expression

For ISO standard code generation (the - codegen=i so setting), the evaluation of
Java expressions is well-defined, even for the use of any side effects that depend on
the order in which expressions are evaluated. Examples of such side effects are
shown in "Examples of Evaluation of Java Expressions at Runtime (ISO Code
Generation)" on page 3-24.

For Oracle-specific code generation (the default - codegen=or acl e setting),
evaluation of Java expressions follows the 1SO standard when there are no side
effects (except when the - bi nd- by-i denti fi er option is enabled), but is
implementation-specific and subject to change when there are side effects.

Important: The following discussion and the related examples
later do not apply to Oracle-specific code generation. If you use side
effects as described here, request ISO code generation during
translation.

3-22 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

The following is a summary, for ISO code, of the overall order of evaluation,
execution, and assignment of Java expressions for each statement that executes
during runtime.

1.

7.

If there is a connection context expression, then it is evaluated immediately
(before any other Java expressions are evaluated).

If there is an execution context expression, then it is evaluated after any
connection context expression, but before any result expression.

If there is a result expression, then it is evaluated after any context expressions,
but before any host expressions.

After evaluation of any context or result expressions, host expressions are
evaluated from left to right as they appear in the SQL operation. As each host
expression is encountered and evaluated, its value is saved to be passed to SQL.

Each host expression is evaluated once and only once.

I Nand | NOUT parameters are passed to SQL, and the SQL operation is
executed.

After execution of the SQL operation, the output parameters—Java OUT and
I NOUT host expressions—are assignhed output in order from left to right as they
appear in the SQL operation.

Each output host expression is assigned once and only once.

The result expression, if there is one, is assigned output last.

"Examples of Evaluation of Java Expressions at Runtime (ISO Code Generation)" on
page 3-24 provides examples that clarify this sequence, highlights key points, and
discusses a number of special considerations.

Note: Host expressions inside a PL/SQL block are all evaluated
together before any statements within the block are executed. They
are evaluated in the order in which they appear, regardless of
control flow within the block.

Once the expressions in a statement have been evaluated, input and input-output
host expressions are passed to SQL and then the SQL operation is executed. After
execution of the SQL operation, assignments are made to Java output host
expressions, input-output host expressions, and result expressions as follows.

Basic Language Features 3-23

Java Host Expressions, Context Expressions, and Result Expressions

1. QOUT and | NOUT host expressions are assigned output in order from left to right.
2. The result expression, if there is one, is assigned output last.

Note that during runtime all host expressions are treated as distinct values, even if
they share the same name or reference the same object. The execution of each SQL
operation is treated as if invoking a remote method, and each host expression is
taken as a distinct parameter. Each input or input-output parameter is evaluated
and passed as it is first encountered, before any output assignments are made for
that statement, and each output parameter is also taken as distinct and is assigned
exactly once.

It is also important to remember that each host expression is evaluated only once.
An | NOUT expression is evaluated when it is first encountered. When the output
assignment is made, the expression itself is not re-evaluated, nor are any side-effects
repeated.

Examples of Evaluation of Java Expressions at Runtime (ISO Code Generation)

For ISO code generation (- codegen=i so0), this section discusses some of the
subtleties of how Java expressions are evaluated when your application executes.
Do not count on these effects if you use Oracle-specific code generation (the default
- codegen=or acl e setting). Request ISO code generation during translation if you
depend on such effects.

Numerous examples are included here. Some of these examples use SELECT | NTO
statements, which are described in "Single-Row Query Results: SELECT INTO
Statements" on page 3-34; some use assignment statements, which are described in
"Assignment Statements (SET)" on page 3-58; and some use stored procedure and
function calls, which are described in "Stored Procedure and Function Calls" on
page 3-60.

Prefix Operators Act Before Evaluation; Postfix Operators Act After Evaluation

When a Java expression contains a Java postfix increment or decrement operator,
the incrementation or decrementation occurs after the expression has been
evaluated. Similarly, when a Java expression contains a Java prefix increment or
decrement operator, the incrementation or decrementation occurs before the
expression is evaluated.

This is equivalent to how these operators are handled in standard Java code.

Consider the following examples.

3-24 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Example 1: postfix operator
int indx = 1;
#sql { ... :QJ (array[indx]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[1]) ... :IN(D) ... };

The variable i ndx is incremented to 2 and will have that value the next time it
is encountered, but not until after : I N (i ndx++) has been evaluated.

Example 2: postfix operators
int indx =1,
#sql { ... :QJT (array[indx++]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[l]) ... :IN(2) ... };

The variable i ndx is incremented to 2 after the first expression is evaluated, but
before the second expression is evaluated. It is incremented to 3 after the second
expression is evaluated and will have that value the next time it is encountered.

Example 3: prefix and postfix operators
int indx = 1;
#sql { ... :QJT (array[++indx]) ... :IN(indx++) ... };
This example is evaluated as follows:
#sgl { ... :QJT (array[2]) ... (IN(2) ... };

The variable i ndx is incremented to 2 before the first expression is evaluated. It
is incremented to 3 after the second expression is evaluated and will have that
value the next time it is encountered.

Example 4: postfix operator

int grade = 0;
int countl = 0O;

Basic Language Features 3-25

Java Host Expressions, Context Expressions, and Result Expressions

#sgl { SELECT count INTO :count1l FROM st af f
WHERE grade = : (grade++) (R grade = :grade };

This example is evaluated as follows:
#sqgl { SELECT count |INTO :count1l FROM st af f
WHERE grade = 0 CRgrade =1 };
The variable gr ade is incremented to 1 after : (gr ade++) is evaluated and has
that value when : gr ade is evaluated.

Example 5: postfix operators

int count = 1;

int[] x = newint[10];
int[] y=newint[10];
int[] z =newint[10];

#sql { SET :(z[count++]) = :(x[count++]) + :(y[count++]) };

This example is evaluated as follows:
#sal { SET :(z[1]) =:(x[2]) +:(y[3]) };

The variable count is incremented to 2 after the first expression is evaluated,
but before the second expression is evaluated; it is incremented to 3 after the
second expression is evaluated, but before the third expression is evaluated,; it is
incremented to 4 after the third expression is evaluated and will have that value
the next time it is encountered.

Example 6: postfix operator

int[] arr = {3, 4, 5};

int i =0;
#sql { BEGN
CQJT (arr[i+H]) = :(arr[i]);
END };

This example is evaluated as follows:

#sgl { BEAN
(QJT (a[0]) :=:(a[1]);
END };

3-26 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

The variable i is incremented to 1 after the first expression is evaluated, but
before the second expression is evaluated; therefore, output will be assigned to
arr[0] . Specifically, ar r [0] will be assigned the value of ar r [1] , which is 4.
After execution of this statement, array ar r will have the values {4, 4, 5}.

IN versus INOUT versus OUT Makes No Difference in Evaluation Order

Host expressions are evaluated from left to right. Whether an expression is | N,
I NOUT, or OUT makes no difference in when it is evaluated; all that matters is its
position in the left-to-right order.

Example 7: | Nversus | NOUT versus OUT

int[5] arry;
int n=0;

#sql { SET :QJT (arry[n]) =:(++) };

This example is evaluated as follows:

#sgl { SET :QJT (arry[0]) =1};

One might expect input expressions to be evaluated before output expressions,
but that is not the case. The expression : OUT (arry[n]) isevaluated first
because it is the left-most expression. Then n is incremented prior to evaluation
of ++n, because it is being operated on by a prefix operator. Then ++n is

evaluated as 1. The result will be assigned to ar ry[0] , notarry[1], because 0
was the value of n when it was originally encountered.

Expressions in PL/SQL Blocks Are Evaluated Before Statements Are Executed

Host expressions in a PL/SQL block are all evaluated in one sequence, before any
have been executed.

Example 8: evaluation of expressions in a PL/SQL block

int x=3;
int z=5;

#sgl { BEAN:QUT x := 10; :QJr z :=:x; END};
Systemout. println("x=" + x +", z=" + 2);

This example is evaluated as follows:
#sgl { BEAN:QUT x :=10; :QJr z := 3; END };

Basic Language Features 3-27

Java Host Expressions, Context Expressions, and Result Expressions

Therefore, it would print "x=10, z=3".

All expressions in a PL/SQL block are evaluated before any are executed. In
this example, the host expressions in the second statement, : OUT z and : X,
are evaluated before the first statement is executed. In particular, the second
statement is evaluated while x still has its original value of 3, before it has been
assigned the value 10.

Example 9: evaluation of expressions in a PL/SQL block (with postfix)

Consider an additional example of how expressions are evaluated within a
PL/SQL block.

int x=1, y=4, z=3;

#sgl { BEAN
QT x i= i (y+H) + 1
CQJT z 1= :x;
END };

This example is evaluated as follows:

#sgl { BEAN
cQUr x :=4 + 1;
QJrz : = 1;
BEND };

The postfix increment operator is executed after : (y++) is evaluated, so the
expression is evaluated as 4 (the initial value of y). The second statement, : OUT
Z : = :X,isevaluated before the first statement is executed, so x still has its
initialized value of 1. After execution of this block, x will have the value 5 and z
will have the value 1.

Example 10: statements in one block versus separate SQLJ executable statements

This example demonstrates the difference between two statements appearing in
a PL/SQL block in one SQLJ executable statement, and the same statements
appearing in separate (consecutive) SQLJ executable statements.

First, consider the following, where two statements are in a PL/SQL block.
int y=1;

#sql { BEAN:QUT'y :=:y + 1, :QJTx :=:y +1, END};

3-28 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

This example is evaluated as follows:
#sql { BEAN:QUT'y :=1+1;, :QUTx :=1+1 END};
The : y in the second statement is evaluated before either statement is executed,

so y has not yet received its output from the first statement. After execution of
this block, both x and y have the value 2.

Now, consider the situation where the same two statements are in PL/SQL
blocks in separate SQLJ executable statements.

int y=1;
#sql { BEAN:QUT'y :=:y +1; BND };
#sql { BEQAN:QJUT x :=:y +1; BND};

The first statement is evaluated as follows:
#sql { BEQAN:QJTy := 1+ 1, END};

Then it is executed and y is assigned the value 2.

After execution of the first statement, the second statement is evaluated as
follows:

#sgl { BEQAN:QJT x :=2 + 1, END };
This time, as opposed to the PL/SQL block example above, y has already

received the value 2 from execution of the previous statement; therefore, x is
assigned the value 3 after execution of the second statement.

Expressions in PL/SQL Blocks Are Always Evaluated Once Only

Each host expression is evaluated once, and only once, regardless of program flow
and logic.

Example 11: evaluation of host expression in a loop

int count = 0O;
#sqgl {
DEQLARE
n NUMBER
BEA N
n:=1;
WA LE n <= 100 LOP

:IN (count ++) ;
n:=n+1;

Basic Language Features 3-29

Java Host Expressions, Context Expressions, and Result Expressions

BEND LOCP,
BEND

h

The Java variable count will have the value 0 when it is passed to SQL
(because it is operated on by a postfix operator, as opposed to a prefix operator),
then will be incremented to 1 and will hold that value throughout execution of
this PL/SQL block. It is evaluated only once as the SQLJ executable statement is
parsed and then is replaced by the value 1 prior to SQL execution.

Example 12: evaluation of host expressions in conditional blocks

This example demonstrates how each expression is always evaluated,
regardless of program flow. As the block is executed, only one branch of the

| F. .. THEN. . . ELSE construct can be executed. Before the block is executed,
however, all expressions in the block are evaluated, in the order that the
statements appear.

int x;
(operations on x)
#sqgl {
CEQLARE
n NUMBER
BEQ N
n:=:x
IF n <10 THEN
n:=:(x++;
BELSE
n:=:x*:x;
END LOCP,
END
¥

Say the operations performed on x resulted in x having a value of 15. When the
PL/SQL block is executed, the ELSE branch will be executed and the | F branch
will not; however, all expressions in the PL/SQL block are evaluated before
execution, regardless of program logic or flow. So x++ is evaluated, then x is
incremented, then each x is evaluated in the (x * X) expression. The

| F. .. THEN. . . ELSE block is, therefore, evaluated as follows:

IFn<10 THEN
n := 15
ELSE

3-30 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

n:=:16 * :16;
BND LACP,

After execution of this block, given an initial value of 15 for x, n will have the
value 256.

Output Host Expressions Are Assigned Left to Right, Before Result Expression

Remember that OUT and | NOUT host expressions are assigned in order from left to
right, and then the result expression, if there is one, is assigned last. If the same
variable is assigned more than once, then it will be overwritten according to this
order, with the last assignment taking precedence.

Note: Some of these examples use stored procedure and function
calls, whose syntax is explained in "Stored Procedure and Function
Calls" on page 3-60.

Example 13: multiple output host expressions referencing the same variable
#sgl { CALL foo(:QUT x, :QJT Xx) };

If f oo() outputs the values 2 and 3, respectively, then x will have the value 3
after the SQLJ executable statement has finished executing. The right-hand
assignment will be performed last, thereby taking precedence.

Example 14: multiple output host expressions referencing the same object

M/d ass x = new Md ass();
Mdass y = x;
#sql { ... aQJr (x.field):=1 ... :QJT (y.field):=2 ... };

After execution of the SQLJ executable statement, x. fi el d will have a value of
2, not 1, because x is the same object asy, and f i el d was assigned the value of
2 after it was assigned the value of 1.

Example 15: results assignment taking precedence over host expression assignment

This example demonstrates the difference between having the output results of
a function assigned to a result expression and having the results assigned to an
QUT host expression.

Consider the following function, with an inputi nvar, an output out var, and a
return value.

Basic Language Features 3-31

Java Host Expressions, Context Expressions, and Result Expressions

CREATE FUNCTION fn(invar NUMBER outvar GJT NUMBER)
RETURN NUMBER AS BEG N

outvar :=invar +invar;
return (invar * invar);
BEND fn;

Now consider an example where the output of the function is assigned to a
result expression:

int x =3;
#sgl x = { VALLES(fn(:x, :QJT x)) };

The function will take 3 as the input, will calculate 6 as the output, and will
return 9. After execution, the : OUT x will be assigned first, giving x a value of
6. But finally the result expression is assigned, giving x the return value of 9
and overwriting the value of 6 previously assigned to x. So x will have the
value 9 the next time it is encountered.

Now consider an example where the output of the function is assigned to an
QUT host variable instead of to a result expression:

int x =3;
#sgl { BEAN:QUT x :=fn(:x, :QJT x); END};

In this case, there is no result expression and the OUT variables are simply
assigned left to right. After execution, the first : OUT X, on the left side of the
equation, is assigned first, giving x the function return value of 9. Proceeding
left to right, however, the second : OQUT X, on the right side of the equation, is
assigned last, giving x the output value of 6 and overwriting the value of 9
previously assigned to x. So x will have the value 6 the next time it is
encountered.

Note: Some unlikely cases have been used in these examples to
explain the concepts of how host expressions are evaluated. In
practice, it is not advisable to use the same variable in both an OUT
or | NOUT host expression, or in an | Nhost expression inside a
single statement or PL/SQL block. The behavior in such cases is
well defined in Oracle SQLJ, but this practice is not covered in the
SQLJ specification, so code written in this manner will not be
portable. Such code will generate a warning from the Oracle SQLJ
translator if the por t abl e flag is set during semantics-checking.

3-32 Oracle9/ SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions

Restrictions on Host Expressions

Do not use "in", "out", and "inout" as identifiers in host expressions unless they are
enclosed in parentheses. Otherwise, they might be mistaken for mode specifiers.
This is case-insensitive.

For example, you could use an input host variable called "in" as follows:
2(in)

or:

IN(in)

Basic Language Features 3-33

Single-Row Query Results: SELECT INTO Statements

Single-Row Query Results: SELECT INTO Statements

When only a single row of data is being returned, SQLJ allows you to assign
selected items directly to Java host expressions inside SQL syntax. This is done
using the SELECT | NTOstatement.

SELECT INTO Syntax
The syntax for a SELECT | NTOstatement is as follows:
#sgl { SELECT expressionl,..., expressionN |NIO: host_expl,..., :host_expN
FROM t abl e <opt i onal _cl auses> };
where:

« Theitems expressi onlthrough expr essi onNare expressions specifying
what is to be selected from the database. These can be any expressions valid for
any SELECT statement. This list of expressions is referred to as the SELECT-list.

In a simple case, these would be names of columns from a database table.

It is also legal to include a host expression in the SELECT-list. See "Examples of
SELECT INTO Statements" below.

« Theitems host_explthrough host _expNare target host expressions, such as
variables or array elements. This list of host expressions is referred to as the
INTO-list.

« Theitem t abl e is the name of the database table, view, or snapshot from which
you are selecting the data.

« Theitem opti onal _cl auses is for any additional clauses you want to
include that are valid in a SELECT statement, such as a WHERE clause.

A SELECT | NTOstatement must return one, and only one, row of data, otherwise
an error will be generated at runtime.

The default is OUT for a host expression in an INTO-list, but you can optionally state
this explicitly:

#sql { SELECT col unm_nanel, col urm_name2 | NTO : QJT host_expl, :OJT host_exp2
FROM t abl e WHERE condi tion };

Trying to use an | Nor | NOUT token in the INTO-list will result in an error at
translation time.

3-34 Oracle9/ SQLJ Developer’s Guide and Reference

Single-Row Query Results: SELECT INTO Statements

Notes:

« Permissible syntax for expr essi onl1 through expr essi onN,
the t abl e, and the optional clauses is the same as for any SQL
SEL ECT statement. For information about what is permissible
in Oracle SQL, see the Oracle9i SQL Reference.

« There can be any number of SELECT-list and INTO-list items,
as long as they match—one INTO-list item per SELECT-list
item, with compatible types.

Examples of SELECT INTO Statements
The examples below use an employee table EMP with the following rows:

CREATE TABLE BIWP (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,
H REDATE DATE);

The first example is a SELECT | NTOstatement with a single host expression in the
INTO-list:

Sring enpnang;

#sgl { SELECT enane | NTO : enpnane FROM enp WHERE enpno=28959 };

The second example is a SELECT | NTOstatement with multiple host expressions in
the INTO-list:

Sring enpnang;

Dat e hdat €;

#sgl { SELECT enane, hiredate | NTO : enpnane, :hdate FROM enp
WHERE enpno=28959 };

Examples with Host Expressions in SELECT-List

It is legal to use Java host expressions in the SELECT-list as well as in the INTO-list.

For example, you can select directly from one host expression into another (though
this is of limited usefulness):

#sgl { SELECT : namel | NTO : nane2 FROM enp WHERE enpno=28959 };

Basic Language Features 3-35

Single-Row Query Results: SELECT INTO Statements

More realistically, you might want to perform an operation or concatenation on the
data selected, as in the following examples. Assume Java variables were previously
declared and assigned, as necessary.

#sgl { SELECT sal + :raise | NTO:newsal FROMenp WHERE enpno=28959 };

#sgl { SELECT :(firstnane + " ") || enp_last_nane | NTO : name FROM nyenp
WHERE enpno=28959 };

In the second example, presume MYEMP is a table much like the EMP table but with
an EMP_LAST_NAME column instead of an ENAME column. In the SELECT
statement, f i r st nane is prepended to " " (a single space), using a Java host
expression and Java string concatenation (the + operator). This result is then passed
to the SQL engine, which uses SQL string concatenation (the | | operator) to
append the last name.

SELECT INTO Error Conditions

Remember that SELECT | NTOstatements are intended for queries that return
exactly one row of data only.

A SELECT | NTOquery that finds zero rows or multiple rows will result in an
exception, as follows:

« A SELECT I NTOfinding now rows will return an exception with a SQL state of
2000, representing a "no data" condition.

« A SELECT | NTOfinding multiple rows will return an exception with a SQL
state of 21000, representing a cardinality violation.

These exceptions are listed under "SQLJ Runtime Messages" on page B-47. You can
retrieve the SQL state through the get SQLSt at e() method of the

java. sqgl . SQLExcept i on class, as described in "Retrieving SQL States and Error
Codes" on page 4-24.

This is vendor-independent behavior that is specified in the ISO SQLJ standard.
There is no vendor-specific error code in these cases—the error code is always 0.

3-36 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

Multi-Row Query Results: SQLJ Iterators

A large number of SQL operations are multi-row queries. Processing multi-row
query-results in SQLJ requires a SQLJ iterator, which is a strongly typed version of a
JDBC result set and is associated with the underlying database cursor. SQLJ
iterators are used first and foremost to take query results from a SELECT statement.

Additionally, Oracle SQLJ offers extensions that allow you to use SQLJ iterators and
result sets in the following ways:

« as OUT host variables in executable SQL statements
« asINTO-list targets, such as in a SELECT | NTOstatement
« asareturn type from a stored function call

« ascolumn types in iterator declarations (essentially, nested iterators)

Note: To use a SQLJ iterator in any of these ways, its class must be
declared as publ i c. If you declared it at the class level or
nested-class level, then it might be advisable to declare it as
public static.

For information about usage as stored function returns, see "Using Iterators and
Result Sets as Stored Function Returns" on page 3-63, after stored procedures and
stored functions have been discussed. The other uses listed above are documented
later in this section.

For information about advanced iterator topics, see "Iterator Class Implementation
and Advanced Functionality" on page 7-38. This section discusses how iterator
classes are implemented and what advanced functionality is available, such as
interoperability with JDBC result sets and subclassing of iterators.

Iterator Concepts

Using a SQLJ iterator declaration, as described in "Overview of SQLJ Declarations"
on page 3-2, results in a strongly typed iterator. This is the typical usage for
iterators, and takes particular advantage of SQLJ semantics-checking features
during translation.

It is also possible, and at times advantageous, to use weakly typed iterators. There
are generic classes you can instantiate in order to use a weakly typed iterator.

Basic Language Features 3-37

Multi-Row Query Results: SQLJ Iterators

This section primarily introduces features of strongly typed iterators, but concludes
with a brief introduction to weakly typed iterators.

Introduction to Strongly Typed Iterators

Before using a strongly typed iterator object, you must declare an iterator class. An
iterator declaration specifies a Java class that SQLJ constructs for you, where the
class attributes define the types (and, optionally, the names) of the columns of data
in the iterator.

A SQLJ iterator object is an instantiation of such a specifically declared iterator
class, with a fixed number of columns of predefined type. This is as opposed to a
JDBC result set object, which is a standard j ava. sql . Resul t Set instance and
can, in principle, contain any number of columns of any type.

When you declare an iterator, you specify either just the datatypes of the selected
columns, or both the datatypes and the names of the selected columns:

« Specifying the names and datatypes defines a named iterator class.
« Specifying just the datatypes defines a positional iterator class.

The datatypes (and names, if applicable) that you declare determine how query
results will be stored in iterator objects you instantiate from that class. SQL data
retrieved into an iterator object are converted to the Java types specified in the
iterator declaration.

When you query to populate a named iterator object, the names and datatypes of
the SELECT-fields must match the names and types of the iterator columns
(case-insensitive). The order of the SELECT-fields is irrelevant—all that matters is
that each SELECT-field name matches an iterator column name. In the simplest
case, the database column names directly match the iterator column names. For
example, data from an ENAME column in a database table can be selected and put
into an iterator enane column. Alternatively, you can use an alias to map a
database column name to an iterator column name if the names differ. Furthermore,
in a more complicated query, you can perform an operation between two columns
and alias the result to match the corresponding iterator column name. (These last
two cases are discussed in "Instantiating and Populating Named Iterators" on
page 3-45.)

Because SQLJ iterators are strongly typed, they offer the benefit of Java
type-checking during the SQLJ semantics-checking phase.

3-38 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

As an example, consider the following table:

CREATE TABLE BIWPSAL (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,

QLDSAL NUMBER(10),
RAl SE NUVBER(10));

Given this table, you can declare and use a named iterator as follows.
Declaration:

#sgl iterator Sal Nanedlter (int enpno, String enane, float raise);

Executable code:

class M/d ass {
voi d func() throws SQException {

Sal Nanedl ter niter;
#sgl niter = { SELECT enane, enpno, raise FROMenpsal };

. process niter ...

}

This is a simple case where the iterator column names match the table column
names. Note that the order of items in the SELECT statement does not matter when
you use a named iterator—data is matched by name, not position.

When you query to populate a positional iterator object, the data is retrieved
according to the order in which you select the columns. Data from the first column
selected from the database table is placed into the first column of the iterator, and so
on. The datatypes of the table columns must be convertible to the types of the
iterator columns, but the names of the database columns are irrelevant, as the
iterator columns have no names.

Given the EMPSAL table above, you can declare and use a positional iterator as
follows.

Declaration:
#sgl iterator Sal Poslter (int, Sring, float);

Basic Language Features 3-39

Multi-Row Query Results: SQLJ Iterators

Executable code:

class M/d ass {
voi d func() throws SQException {

Sal Poslter piter;
#sgl piter = { SELECT enpno, enane, raise FROMenpsal };

. process piter ...

}

Note that the order of the data items in the SELECT statement must be the same as
in the iterator.

The processing differs between named iterators and positional iterators, as
described in "Accessing Named Iterators" on page 3-46 and "Accessing Positional
Iterators"” on page 3-49.

General Iterator Notes In addition to the preceding concepts, be aware of the
following general notes about iterators:

« "SELECT *"syntax is allowed in populating an iterator, but is not
recommended. In the case of a positional iterator, this requires that the number
of columns in the table be equal to the number of columns in the iterator, and
that the types match in order. In the case of a named iterator, this requires that
the number of columns in the table be greater than or equal to the number of
columns in the iterator and that the name and type of each iterator column
match a database table column. If the number of columns in the table is greater,
however, a warning will be generated unless the translator - war n=nostri ct
flag is set. For information about this flag, see "Translator Warnings (-warn)" on
page 8-45.

« Positional and named iterators are distinct and incompatible kinds of Java
classes. An iterator object of one kind cannot be cast to an iterator object of the
other kind.

« Unlike a SQL cursor, an iterator instance is a first-class Java object (it can be
passed and returned as a method parameter, for example) and can be declared
using Java class modifiers, such as public or private.

« SQLJsupports interoperability and conversion between SQLJ iterators and
JDBC result sets. For information, see "SQLJ Iterator and JDBC Result Set
Interoperability” on page 7-58.

3-40 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

« Generally speaking, the contents of an iterator is determined only by the state of
the database at the time of execution of the SELECT statement that populated it.
Subsequent UPDATE, | NSERT, DELETE, COVM T, or ROLLBACK operations have
no effect on the iterator or its contents. This is further discussed in "Effect of
Commits and Rollbacks on Iterators and Result Sets" on page 4-29.

The exception to this is if you declare an iterator to be scrollable and "sensitive"
to changes in the data. See "Declaring Scrollable Iterators" on page 7-42 and
"Scrollable Iterator Sensitivity" on page 7-42.

Introduction to Weakly Typed Iterators

In case you would rather not declare an iterator class, Oracle SQLJ permits you to
use a weakly typed kind of iterator. Such iterators are known as result set iterators.
To use a plain (non-scrollable) result set iterator, instantiate the

sqlj.runtine. Resul t Setlterator class. To use a scrollable result set iterator,
instantiate the sql j . runti me. Scrol | abl eResul t Set | t er at or class.
(Scrollable iterators are described in "Scrollable Iterators" on page 7-42.)

The drawback to using result set iterators, compared to strongly typed iterators, is
that SQLJ cannot perform as much semantics-checking for your queries.

For more information, see "Result Set Iterators" on page 7-41.

General Steps in Using an Iterator
Five general steps are involved in using SQLJ named or positional iterator:

1. Use a SQLJ declaration to define the iterator class (in other words, to define the
iterator type).

2. Declare a variable of the iterator class.

3. Populate the iterator variable with the results from a SQL query, using a
SELECT statement.

4. Access the query columns in the iterator. How to accomplish this differs
between named iterators and positional iterators, as explained below.

5. When you finish processing the results of the query, close the iterator to release
its resources.

Basic Language Features 3-41

Multi-Row Query Results: SQLJ Iterators

Named lterators Versus Positional Iterators Versus Result Set Iterators
There are advantages and appropriate situations for each kind of SQLJ iterator.

Named iterators allow greater flexibility. Because data selection into a named
iterator matches SELECT-fields to iterator columns by name, you need not be
concerned about the order in your query. This is less prone to error, as it is not
possible for data to be placed into the wrong column. If the names do not match, the
SQLJ translator will generate an error when it checks your SQL statements against
the database.

Positional iterators offer a familiar paradigm and syntax to developers who have
experience with other embedded-SQL languages. With named iterators you use a
next () method to retrieve data, while with positional iterators you use FETCH

I NTOsyntax similar to that of Pro*C, for example. Each fetch implicitly advances to
the next available row of the iterator before retrieving the next set of values.

Positional iterators do, however, offer less flexibility than named iterators, because
you are selecting data into iterator columns by position, instead of by nhame. You
must be certain of the order of items in your SELECT statement. You also must
select data into all columns of the iterator, and it is possible to have data written
into the wrong iterator column if the type of that column happens to match the
datatype of the table column being selected.

Access to individual data elements is also less convenient with positional iterators.
Named iterators, because they store data by name, are able to have convenient
accessor methods for each column. For example, there would be an ename()
method to retrieve data from an enane iterator column. With positional iterators,
you must fetch data directly into Java host expressions with your FETCH | NTO
statement, and the host expressions must be in the correct order.

Finally, if you do not want to declare strongly typed iterator classes for your
gueries, you can choose the alternative of using weakly typed result set iterators.
Result set iterators are most convenient when converting JDBC code to SQLJ code.
You must balance this consideration against the fact that result set iterators (either
Resul t Set | t er at or instances or Scr ol | abl eResul t Set I t er at or instances)
do not allow complete SQLJ semantics-checking during translation. With named or
positional iterators, SQLJ verifies that SELECT-list types match the Java types into
which the data will be materialized. With result set iterators, this is not possible. See
"Result Set Iterators" on page 7-41 for more information.

Comparative Iterator Notes Be aware of the following notes regarding SQLJ iterators:

= Inpopulating a positional iterator, the number of columns you select from the
database must equal the number of columns in the iterator. In populating a

3-42 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

named iterator, the number of columns you select from the database can never
be less than the number of columns in the iterator, but can be greater than the
number of columns in the iterator if you have the translator - war n=nost ri ct
flag set. Unmatched columns are ignored in this case. For information about
this flag, see "Translator Warnings (-warn)" on page 8-45.

« Although the term "fetching" often refers to fetching data from a database,
remember that a FETCH | NTOstatement for a positional iterator does not
necessarily involve a round trip to the server, depending on the row-prefetch
value. This is because you are fetching data from the iterator, not the database.
If the row-prefetch value is 1, however, then each fetch does involve a separate
trip to the database. (The row-prefetch value determines how many rows are
retrieved with each trip to the database. See "Row Prefetching" on page 10-3.)

= Result set iterators use the same FETCH | NTOsyntax used with positional
iterators, and are subject to the same restriction at runtime—the size (number of
data items) of the SELECT-list must match the number of variables that are
assigned data in the FETCH statement.

Using Named Iterators

When you declare a named iterator class, you declare the name as well as the
datatype of each column of the iterator.

When you select data into a named iterator, the SELECT-fields must match the
iterator columns in two ways:

« The name of each SELECT-field, either a table column name or an alias, must
match an iterator column name (case-insensitive, so enamre would match
ENAVME).

= The type of each iterator column must be compatible with the datatype of the
corresponding SELECT-field, according to standard JDBC type mappings.

The order in which attributes are declared in your named iterator class declaration
is irrelevant. Data is selected into the iterator based on name alone.

A named iterator has a next () method to retrieve data row by row, and an
accessor method for each column to retrieve the individual data items. The accessor
method names are identical to the column names. (Unlike most accessor method
names in Java, accessor method names in named iterator classes do not start with
"get".) For example, a named iterator object with a column sal would have a

sal () accessor method.

Basic Language Features 3-43

Multi-Row Query Results: SQLJ Iterators

Note: The following restrictions apply in naming the columns of a
named iterator:

. Column names cannot use Java reserved words.

» Column names cannot have the same name as utility methods
provided in named iterator classes, such as the next (),
cl ose(),get ResultSet(),andi sCl osed() methods. For
scrollable named iterators, this includes additional methods
suchasprevious(),first(),andl ast (). (See"The
Scrollable Interface" on page 7-43 and "Scrollable Named
Iterators” on page 7-44.)

Declaring Named Iterator Classes
Use the following syntax to declare a named iterator class:

#sql <nodifiers> iterator classnane <inplenents cl ause> <with cl ause>
(type-nane-list);

In this syntax, nodi f i er s is an optional sequence of legal Java class modifiers,
cl assnane is the desired class name for the iterator, and t ype- nane- /i st is a
list of the Java types and names equivalent to (convertible from) the column types
and column names in a database table.

The i npl ement s clause and wi t h clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider the following table:

CREATE TABLE PRQJECTS (

I D NIVBER(4),

PROJNAME VARCHAR(30),

START_DATE DATE,

DURATI ON NIMVBER(3));
You might declare the following named iterator for use with this table:
#sgl public iterator Projlter (String projname, int id, Date deadline);

This will result in an iterator class with columns of data accessible using the
following provided accessor methods: pr oj name(),i d(),and deadl i ne().

3-44 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

Note: As with standard Java, any public class should be declared
in one of the following ways. This is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
JDK:

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope, with
public static modifiers.

Instantiating and Populating Named Iterators

Declare a variable of the Pr oj | t er positional iterator type from the preceding
section and populate it with a SELECT statement.

Continuing to use the PROJECTS table and Pr oj | t er iterator defined in the
preceding section, note that there are columns in the table whose names and
datatypes match the i d and pr oj name columns of the iterator, but you must use an
alias and perform an operation to populate the deadl i ne column of the iterator.
Here is an example:

Projlter projslter;

#sql projsliter = { SELECT start_date + duration AS deadline, projnane, id
FRCM proj ects WHERE start_date + duration >= sysdate };

This calculates a deadline for each project by adding its duration to its start date,
then aliases the results as deadl| i ne to match the deadl i ne iterator column. It
also uses a WHERE clause so that only future deadlines are processed (deadlines
beyond the current system date in the database).

Similarly, you must create an alias if you want to use a function call. Suppose you
have a function MAXI MUM) that takes a DURATI ON entry and an integer as input
and returns the maximum of the two. For example, you could input a 3 to make
sure each project has at least a three-month duration in your application.

Now presume you are declaring your iterator as follows:

#sgl public iterator Projlter2 (Sring projname, int id, float duration);

You could use the MAXI MUM) function in your query, with an alias for the result, as
follows.

Basic Language Features 3-45

Multi-Row Query Results: SQLJ Iterators

Projlter2 projsiter2;

#sql projsliter2 = { SELECT id, projnane, naxi nun{duration, 3) AS duration
FROM proj ects };

Generally, you must use an alias in your query for any SELECT-field whose name is
not a legal Java identifier or does not match a column name in your iterator.

Remember that in populating a named iterator, the number of columns you select
from the database can never be less than the number of columns in the iterator. The
number of columns you select can be greater than the number of columns in the
iterator (unmatched columns are ignored), but this will generate a warning unless
you have the SQLJ - war n=nost ri ct option set.

Accessing Named Iterators

Use the next () method of the named iterator object to step through the data that
was selected into it. To access each column of each row, use the accessor methods
generated by SQLJ, typically inside a whi | e loop.

Whenever next () is called:

« If there is another row to retrieve from the iterator, next () retrieves the row
and returnstr ue.

« If there are no more rows to retrieve, next () returnsf al se.

The following is an example of how to access the data of a named iterator, repeating
the declaration, instantiation, and population used under "Instantiating and
Populating Named Iterators" on page 3-45.

Note: Each iterator hasacl ose() method that you must always
call when you finish retrieving data from the iterator. This is
necessary to close the iterator and free its resources.

Presume the following iterator class declaration:

#sgl public iterator Projlter (String projnane, int id, Date deadline);

Populate and then access an instance of this iterator class as follows:

/] Declare the iterator variabl e
Projlter projslter;

Il Instantiate and populate iterator; order of SELECT doesn't matter

3-46 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

#sql projsliter = { SELECT start_date + duration AS deadline, projnane, id
FROM proj ects WHERE start_date + duration >= sysdate };

/1 Process the results

vhile (projsiter.next()) {
Systemout.printIn("Project nane is " + projslter.projnane());
Systemout.printIn("Project IDis " + projslter.id());
Systemout. printIn("Project deadline is " + projslter.deadline());

}

// Qose the iterator
projslter.close();

Note the convenient use of the pr oj nane(),i d(),and deadl i ne() accessor
methods to retrieve the data. Note also that the order of the SELECT items does not
matter, nor does the order in which the accessor methods are used.

Remember, however, that accessor method names are created with the case exactly
as in your declaration of the iterator class. The following will generate compilation
errors.

Declaration:
#sgl iterator Qursorl (Sring NAME);

Executable code:

Qursorl cl;
#sgl cl = { SELECT NAME FROM TABLE };
vhile (cl.next()) {
Systemout. printIn("The nane is " + cl. nane());

}

The Cur sor 1 class has a method called NAME() , not name() . You would have to
use c1. NAME() inthe Syst em out . pri nt| n statement.

Basic Language Features 3-47

Multi-Row Query Results: SQLJ Iterators

Using Positional Iterators

When you declare a positional iterator class, you declare the datatype of each
column but not the column name. The Java types into which the columns of the
SQL query results are selected must be compatible with the datatypes of the SQL
data. The names of the database columns or SELECT-fields are irrelevant.

Because names are not used, the order in which you declare your positional iterator
Java types must exactly match the order in which the data is selected.

To retrieve data from a positional iterator once data has been selected into it, use a
FETCH | NTOstatement followed by an endFet ch() method call to determine if
you have reached the end of the data (as detailed under "Accessing Positional
Iterators" on page 3-49).

Declaring Positional Iterator Classes
Use the following syntax to declare a positional iterator class:

#sql <nodifiers> iterator classnane <inplenents cl ause> <with cl ause>
(position-list);

In this syntax, nodi f i er s is an optional sequence of legal Java class modifiers, and
the position-1ist isalist of Java types compatible with the column typesin a
database table.

The i npl ement s clause and wi t h clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider an employee table EMP with the following rows:

CREATE TABLE BIWP (

EMPNO NUMBER(4)
ENAME VARCHARY(10) ,

SAL NIMBER(7,2));
And consider the following positional iterator declaration:

#sgl public iterator Enplter (String, int, float);

This example defines Java class Enpl t er with unnamed St ri ng,i nt,and f | oat
columns. Note that the table columns and iterator columns are in a different
order—the St ri ng corresponds to ENAME and the i nt corresponds to EMPNO. The

3-48 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

order of the iterator columns determines the order in which you must select the
data, as shown in "Instantiating and Populating Positional Iterators" below.

Note: As with standard Java, any public class should be declared
in one of the following ways. This is a requirement if you are using
the standard j avac compiler provided with the Sun Microsystems
JDK:

« Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

« Declare it at class-level scope or nested-class-level scope, with
public static modifiers.

Instantiating and Populating Positional Iterators
Declare a variable of the Enpl t er positional iterator type from the preceding
section and populate it with a SELECT statement.

Instantiating and populating a positional iterator is no different than doing so for a
named iterator, except that you must be certain that your SELECT-fields are in the
proper order.

The three datatypes in the Enpl t er iterator class are compatible with the types of
the EMP table, but be careful how you select the data, because the order is different.
The following will work, because the SELECT-fields are in the same order as the
iterator columns, as declared above in "Declaring Positional Iterator Classes":

Enplter enpslter;

#sgl enpslter = { SHLECT enane, enpno, sal FROMenp };

Remember that in populating a positional iterator, the number of columns you
select from the database must equal the number of columns in the iterator.

Accessing Positional Iterators

Access the columns defined by a positional iterator using SQL FETCH | NTOsyntax.
The | NTOpart of the command specifies Java host variables that receive the results
columns. The host variables must be in the same order as the corresponding iterator

columns. Use the endFet ch() method provided with all positional iterator classes
to determine whether the last fetch reached the end of the data.

Basic Language Features 3-49

Multi-Row Query Results: SQLJ Iterators

Notes:

« TheendFet ch() method initially returnst r ue before any
rows have been fetched, then returns f al se once a row has
been successfully retrieved, then returnst r ue again when a
FETCH finds no more rows to retrieve. Therefore, you must
perform the endFet ch() test after the FETCH | NTOstatement.
If your endFet ch() test precedes the FETCH | NTOstatement,
then you will never retrieve any rows, because endFet ch()
would be true before your first FETCH and you would
immediately break out of the whi | e loop.

« TheendFet ch() test must be before the results are processed,
however, because the FETCH does not throw a SQL exception
when it reaches the end of the data, it just triggers the next
endFet ch() call toreturntrue. If thereis no endFet ch()
test before results are processed, then your code will try to
process null or invalid data from the first FETCH attempt after
the end of the data had been reached.

« Eachiterator has a cl ose() method that you must always call
once you finish retrieving data from it. This is necessary to
close the iterator and free its resources.

The following is an example, repeating the declaration, instantiation, and
population used under "Instantiating and Populating Positional Iterators" above.

Note that the Java host variables in the SELECT statement are in the same order as
the columns of the positional iterator, which is mandatory.

First, presume the following iterator class declaration:

#sgl public iterator Enplter (String, int, float);

Populate and then access an instance of this iterator class as follows:

/] Declare and initialize host variables
int enpnun¥0;

Sring enpnane=nul | ;

float sal ary=0. Of;

/!l Declare an iterator instance
Enplter enpslter;

3-50 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

#sgl enpsliter = { SHECT enane, enpno, sal FROMenp };

vhile (true) {
#sgl { FETCH :enpslter INTO :enpnum :enpnare, :salary };
if (enpslter.endFetch()) break; // This test nust be AFTER fetch,
/1 but before results are processed.
Systemout.printIn("Nane is " + enpnane);
Systemout . printl n("Enpl oyee nunber is " + enpnun);
Systemout.printin("Salary is " + salary);

}

/1 Qose the iterator
enpslter.close();

The enpnane, enpnum and sal ar y variables are Java host variables whose types
must match the types of the iterator columns.

Do not use the next () method for a positional iterator. A FETCH operation calls it
implicitly to move to the next row.

Note: Host variablesin a FETCH | NTOstatement must always be
initialized because they are assigned in one branch of a conditional
statement. Otherwise, you will get a compiler error indicating they
may never be assigned. FETCH can assign the variables only if there
was a row to be fetched.

Positional Iterator Navigation with the next() Method

The positional iterator FETCH clause discussed in the previous section performs a
movement—an implicit next () call—before it populates the host variables (if any).
As an alternative, Oracle SQLJ supports using a special FETCH syntax in
conjunction with explicit next () calls in order to use the same movement logic as
with JDBC result sets and SQLJ named iterators. Using this special FETCH syntax,
the semantics differ—there is no implicit next () call before the INTO-list is
populated.

See "FETCH CURRENT Syntax: from JDBC Result Sets to SQLJ Iterators" on
page 7-46 for more information.

Basic Language Features 3-51

Multi-Row Query Results: SQLJ Iterators

Using Iterators and Result Sets as Host Variables

SQLJ supports SQLJ iterators and JDBC result sets as host variables, as illustrated in
the examples below.

Notes:

« Additionally, SQLJ supports iterators and result sets as return
variables for stored functions. This is discussed in "Using
Iterators and Result Sets as Stored Function Returns" on
page 3-63.

« The Oracle JDBC drivers do not currently support result sets as
input host variables. There is a set Cur sor () method in the
Or acl ePrepar edSt at enent class, but it raises an exception
at runtime if called.

As you will see from the following examples, using iterators and result sets is
fundamentally the same, with differences in declarations and in accessor methods
to retrieve the data.

For the examples in this section, consider the following department and employee
tables:

CREATE TABLE DEPT (

DEPTNO NUMBER 2)
DNAME VARCHAR2(14)) ;

CREATE TABLE BWP (
EMPNO NUVBER(4) ,
ENAME VARCHAR(10)
SAL NUMBER(7, 2),
DEPTNO NMBER(2)) ;

Example: Use of Result Set as OUT Host Variable This example uses a JDBC result set as
an output host variable.

Resul t Set rs;

#sgl { BEAN
CPEN : QJT rs FCR SELECT enane, enpno FROM enp;

BE\D };

3-52 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

vhile (rs.next())

{
Sring enpnane = rs.getSring(1l);
int enpnum=rs.getint(2);

}

rs. close();

This example opens the result set r s in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the result set to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable This example uses a named iterator as an
output host variable.

Declaration:

#sgl public <static> iterator Enplter (String enane, int enpno);

The publ i ¢ modifier is required, and st at i ¢ may be advisable if your declaration
is at class level or nested-class level.

Executable code:

Enplter iter;

#sgl { BEAN
CPEN : QJT iter FOR SELECT enane, enpno FROM enp;

BEND };

while (iter.next())
{

Sring enpnane = iter.enane();
int enpnum=iter.enpno();
... process/output enpnane and enpnum. .
iter.close();
This example opens the iterator i t er in a PL/SQL block to receive data from a

SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the iterator to retrieve data into local variables.

Basic Language Features 3-53

Multi-Row Query Results: SQLJ Iterators

Example: Use of Iterator as OUT Host Variable for SELECT INTO This example uses a
named iterator as an output host variable, taking data through a SELECT | NTO
statement. OUT is the default for host variables in an INTO-list. For information
about SELECT | NTOstatements and syntax, see "Single-Row Query Results:
SELECT INTO Statements" on page 3-34.

Declaration:

#sgl public <static>iterator ENanelter (String enane);

The publ i ¢ modifier is required, and st at i ¢ may be advisable if your declaration
is at class level or nested-class level.

Executable code:

ENanel ter enameslter;
Sring deptnane;

#sgl { SELECT dnane, cursor
(SELECT enarme FROM enp WHERE dept no = dept . dept no)
I NTO : dept nane, :enaneslter FROM dept WHERE deptno = 20 };

Systemout . printl n(dept nane) ;
vhi l e (enaneslter. next())

{
}

enaneslter.close();

Systemout . printl n(enaneslter.enane());

This example uses nested SELECT statements to accomplish the following:

« Select the name of department number 20 from the DEPT table, selecting it into
the output host variable dept nane.

« Query the EMP table to select all employees whose department number is 20,
selecting the resulting cursor into the output host variable enanesl t er, which
is a named iterator.

« Print the department name.

« Loop through the named iterator printing employee names. This prints the
names of all employees in the department.

3-54 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

In most cases, using SELECT | NTOis more convenient than using nested iterators if
you are retrieving a single row in the outer SELECT, although that option is also
available as discussed below (such as in "Example: Named Iterator Column in a
Positional Iterator" on page 3-57). Also, with nested iterators, you would have to
process the data to determine how many rows there are in the outer SELECT. With
SELECT | NTOyou are assured of just one row.

Using lterators and Result Sets as Iterator Columns

Oracle SQLJ includes extensions that allow iterator declarations to specify columns
of type Resul t Set or columns of other iterator types declared within the current
scope. In other words, iterators and result sets can exist within iterators in Oracle
SQLJ. These column types are used to retrieve a column in the form of a cursor. This
is useful for nested SELECT statements that return nested table information.

The following examples are functionally identical—each uses a nested result set or
iterator (result sets or iterators in a column within an iterator) to print all the
employees in each department in the DEPT table. The first example uses result sets
within a named iterator, the second example uses named iterators within a named
iterator, and the third example uses named iterators within a positional iterator.

Here are the steps:
1. Select each DNAME (department name) from the DEPT table.

2. Do anested SELECT into a cursor to get all employees from the EMP table for
each department.

3. Putthe department names and sets of employees into the outer iterator (i t er),
which has a name column and an iterator column. The cursor with the
employee information for any given department goes into the iterator column
of that department’s row of the outer iterator.

4. Go through a nested loop that, for each department, prints the department
name and then loops through the inner iterator to print all employee names for
that department.

Example: Result Set Column in a Named Iterator This example uses a column of type
Resul t Set in a named iterator.
Declaration:

#sqgl iterator Deptlter (String dnane, ResultSet enps);

Basic Language Features 3-55

Multi-Row Query Results: SQLJ Iterators

Executable code:

Deptlter iter;

#sqgl iter = { SHLECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
AS enps FROM dept };

vhile (iter.next())

{

Systemout. println(iter. dnane());
Resul t Set enanesRs = iter.enps();
vhi | e (enanesRs. next ())

{
Sring enpnane = enanesRs.get Sring(l);
Systemout . print| n(enpnarre) ;

}

enanesks. cl ose();

}

iter.close();

Example: Named Iterator Column in a Named lterator This example uses a named iterator
that has a column whose type is that of a previously defined named iterator (nested
iterators).

Declarations:
#sgl iterator ENanelter (Sring enane);
#sqgl iterator Deptlter (String dnane, BENanelter enps);

Executable code:

Deptlter iter;

#sqgl iter = { SH.LECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
AS enps FROM dept };

while (iter.next())
{

Systemout. println(iter. dnane());
ENanel ter enaneslter = iter.enps();
vhi l e (enaneslter.next())

3-56 Oracle9/ SQLJ Developer’s Guide and Reference

Multi-Row Query Results: SQLJ Iterators

{
}

enaneslter.close();

Systemout . printl n(enaneslter.enane());

}

iter.close();

Example: Named Iterator Column in a Positional Iterator This example uses a positional
iterator that has a column whose type is that of a previously defined named iterator
(nested iterators). This uses the FETCH | NTOsyntax of positional iterators. This
example is functionally equivalent to the previous two.

Note that because the outer iterator is a positional iterator, there does not have to be
an alias to match a column name, as was required when the outer iterator was a
named iterator in the previous example.

Declarations:

#sgl iterator ENanelter (Sring enane);
#sqgl iterator Deptlter (String, BENanelter);

Executable code:

Deptlter iter;

#sgl iter = { SHLECT dnane, cursor
(SELECT ename FROM enp WHERE dept no = dept . dept no)
FRCOM dept };
vhile (true)
{
Sring dnane = null;
ENanel ter enaneslter = null;
#sgl { FETCH :iter INTO:dnane, :enaneslter };
if (iter.endFetch()) break;
Systemout . printl n(dnane) ;
vhil e (enaneslter.next())

{
}

enaneslter.close();

Systemout . printl n(enaneslter.enane());

}

iter.close();

Basic Language Features 3-57

Assignment Statements (SET)

Assignment Statements (SET)

SQLJ allows you to assign a value to a Java host expression inside a SQL operation.
This is known as an assignment statement and is accomplished using the following
syntax:

#sgl { SET : host_exp = expression };
The host _exp is the target host expression, such as a variable or array index. The

expr essi on could be a number, host expression, arithmetic expression, function
call, or other construct that yields a valid result into the target host expression.

The default is OUT for a target host expression in an assignment statement, but you
can optionally state this explicitly:

#sgl { SET : QUT host_exp = expression };
Trying to use an | Nor | NOUT token in an assignment statement will result in an
error at translation time.

The preceding statements are functionally equivalent to the following PL/SQL
code:

#sgl { BEAN : QUT host_exp : = expression, END };

Here is a simple example of an assignment statement:
#sgl { SET :x = fool() + foo2() };
This statement assigns to x the sum of the return values of f 001() andf 002()

and assumes that the type of x is compatible with the type of the sum of the outputs
of these functions.

Consider the following additional examples:
int i2;
java.sql . Date dat;

#sql{ SET :i2=TO_NUMBER(substr('750etc.’, 1, 3)) +
TO_NUMBER(substr(250etc., 1, 3)))

;sql {SET :dat =sysdate };

The first statement will assign to i 2 the value 1000 (750 + 250). The subst r () calls
take the first three characters of the strings, or '750’ and ’250’. The TO_NUMBER()
calls convert the strings to the numbers 750 and 250.

3-58 Oracle9/ SQLJ Developer’s Guide and Reference

Assignment Statements (SET)

The second statement will read the database system date and assign it to dat .

An assignment statement is especially useful when you are performing operations
on return variables from functions stored in the database. You do not need an
assignment statement to simply assign a function result to a variable, because you
can accomplish this using normal function call syntax as explained in "Stored
Procedure and Function Calls" on page 3-60. You also do not need an assignment
statement to manipulate output from Java functions, because you can accomplish
that in a normal Java statement. So you can presume that f 0o1() and f 002()
above are stored functions in the database, not Java functions.

Basic Language Features 3-59

Stored Procedure and Function Calls

Stored Procedure and Function Calls

SQLJ provides convenient syntax for calling stored procedures and stored functions
in the database. These procedures and functions could be written in Java, PL/SQL,
or any other language supported by the database.

A stored function requires a result expression in your SQLJ executable statement to
accept the return value, and can optionally take input, output, or input-output
parameters as well.

A stored procedure does not have a return value but can optionally take input,
output, or input-output parameters. A stored procedure can return output through
any output or input-output parameter.

Note: Remember that instead of using the following
procedure-call and function-call syntax, you can optionally use
JPublisher to create Java wrappers for PL/SQL stored procedures
and functions, then call the Java wrappers as you would any other
Java methods. JPublisher is discussed in "JPublisher and the
Creation of Custom Java Classes" on page 6-28. For additional
information, see the Oracle9i JPublisher User’s Guide.

Calling Stored Procedures

Stored procedures do not have a return value but can take a list with input, output,
and input-output parameters. Stored procedure calls use the CALL token, as shown
below. The word "CALL" is followed by white space and then the procedure name.
There must be a space after the CALL token to differentiate it from the procedure
name. There cannot be a set of outer parentheses around the procedure call. This
differs from the syntax for function calls, as explained in "Calling Stored Functions"
on page 3-61.

#sql { CALL PROQ<PARAMLISTS) };
PRCCis the name of the stored procedure, which can optionally take a list of input,

output, and input-output parameters. PROCcan include a schema or package name
as well, such as SCOTT. MYPROC() .

Presume that you have defined the following PL/SQL stored procedure:

CREATE (R REPLACE PROCEDURE MAX DEADLI NE (deadl ine QJT DATE) | S
BEA N
SH ECT MAX(start_date + duration) |INIO deadl i ne FROM proj ects;
END,

3-60 Oracle9/ SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls

This reads the table PROJECTS, looks at the START _DATE and DURATI ON columns,
calculates start _date + durati onineach row, then takes the maximum
START_DATE + DURATI ONtotal and selects it into DEADLI NE, which is an output
parameter of type DATE.

In SQLJ, you can call this MAX_DEADLI| NE procedure as follows:

java. sql . Dat e maxDeadl i ne;
#sqgl { CALL MAX DEADLI NE(:out naxDeadline) };

For any parameters, you must use the host expression tokens | N (optional/default),
QUT, and | NOUT appropriately to match the input, output, and input-output
designations of the stored procedure. Additionally, the types of the host variables
you use in the parameter list must be compatible with the parameter types of the
stored procedure.

Note: If you want your application to be compatible with Oracle7,
do not include empty parentheses for the parameter list if the
procedure takes no parameters. For example:

#sql { CALL NAX DEADLINE };
not:

#sgl { CALL MAX DEADLI NH() };

Calling Stored Functions

Stored functions have a return value and can also take a list of input, output, and
input-output parameters. Stored function calls use the VALUES token, as shown
below. This syntax consists of the word "VALUES" followed by the function call. In
standard SQLJ, the function call must be enclosed in a set of outer parentheses, as
shown. In Oracle SQLJ, the outer parentheses are optional. When using the outer
parentheses, it does not matter if there is white space between the VALUES token
and the begin-parenthesis. (A VALUES token can also be used in | NSERT | NTO

t abl e VALUES syntax supported by Oracle SQL, but these situations are unrelated
semantically and syntactically.)

#sql result = { VALUES(FUNQ <PARAM LI ST>)) };

In this syntax, r esul t is the result expression, which takes the function return
value. FUNCis the name of the stored function, which can optionally take a list of

Basic Language Features 3-61

Stored Procedure and Function Calls

input, output, and input-output parameters. FUNCcan include a schema or package
name, such as SCOTT. MYFUNC() .

Referring back to the example in "Calling Stored Procedures" on page 3-60, consider
defining the stored procedure as a stored function instead, as follows:

CREATE (R REPLACE FUNCTI ON GET_MAX DEADLI NE RETURN DATE | S
deadl i ne DATE
BEQ N
SH ECT MAX(start_date + duration) |INTO deadl i ne FRCOM proj ects;
RETURN deadl i ne;
BEND,

In SQLJ, you can call this GET_MAX_DEADLI NE function as follows:

java. sql . Dat e maxDeadl i ne;

#sgl maxDeadline = { VALUES(GET_MAX DEADLINE) };

The result expression must have a type compatible with the return type of the
function.

In Oracle SQLJ, the following syntax (outer parentheses omitted) is also allowed:
#sqgl maxDeadline = { VALUES GET_MAX DEADLI NE };

For stored function calls, as with stored procedures, you must use the host
expression tokens | N (optional/default), OUT, and | NOUT appropriately to match
the input, output, and input-output parameters of the stored function. Additionally,

the types of the host variables you use in the parameter list must be compatible
with the parameter types of the stored function.

Note: If you want your stored function to be portable to
non-Oracle environments, then you should use only input
parameters in the calling sequence, not output or input-output
parameters.

If you want your application to be compatible with Oracle7, then
do not include empty parentheses for the parameter list if the
function takes no parameters. For example:

#sqgl maxDeadline = { VALUES(GET_MAX DEADLINE) };
not:
#sgl maxDeadline = { VALUES(GET_MAX DEADLI NK()) };

3-62 Oracle9/ SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls

Using lterators and Result Sets as Stored Function Returns

SQLJ supports assigning the return value of a stored function to an iterator or result
set variable, if the function returns a REF CURSOR type.

The following example uses an iterator to take a stored function return. Using a
result set is similar.

Example: Iterator as Stored Function Return This example uses an iterator as a return
type for a stored function, using a REF CURSOR type in the process. REF CURSOR
types are described in "Support for Oracle REF CURSOR Types" on page 5-40.

Presume the following function definition:

CREATE (R REPLACE PACKACGE sqlj _refcursor AS

TYPE EMP_QRTYPE | S REF OURS(R

FUNCTION job_listing (j varchar2) RETURN BEMP_QURTYPE
END sqlj _refcursor;

CREATE (R REPLACE PACKAGE BCDY sql j _refcursor AS
FUNCTION job_listing (j varchar) RETURN BW_QRTYPE | S
CEQLARE

rc BWP_CQURTYPE
BEG N
CPEN rc FCR SHLECT enane, enpno FROMenp WHERE job = j;
RETURN rc;
BND
END sqlj _refcursor;
Use this function as follows.
Declaration:
#sgl public <static> iterator Enplter (String enane, int enpno);
The publ i ¢ modifier is required, and st at i ¢ may be advisable if your declaration
is at class level or nested-class level.
Executable code:

Enplter iter;

#sqliter = { VALUES(sq]j_refcursorjob_listing(SALES)) };

Basic Language Features 3-63

Stored Procedure and Function Calls

while (iter.next())

{
Sring enpnane = iter.enane();
int enpnum=iter.enpno();
. process enpnanme and enpnum. . .
}
iter.close();

This example calls thej ob_l i sti ng() function to return an iterator that contains
the name and employee number of each employee whose job title is "SALES". It
then retrieves this data from the iterator.

3-64 Oracle9/ SQLJ Developer’s Guide and Reference

A

Key Programming Considerations

This chapter discusses key issues to consider before developing and running your
SQLJ application, and also provides a summary and sample applications. The
following topics are discussed:

« Selection of the JDBC Driver

« Connection Considerations

« Null-Handling

« Exception-Handling Basics

« Basic Transaction Control

« Summary: First Steps in SQLJ Code

« Oracle-Specific Code Generation (No Profiles)
« Requirements and Restrictions for Naming

« Considerations for SQLJ in the Middle Tier

Key Programming Considerations 4-1

Selection of the JDBC Driver

Selection of the JDBC Driver

You must consider which JDBC driver will be appropriate for your situation and
whether it may be advantageous to use different drivers for translation and
runtime. You must choose or register the appropriate driver class for each and then
specify the driver in your connection URL.

Note: Your application will require an Oracle JDBC driver if you
use Oracle-specific code generation or if you use 1SO code
generation with the Oracle customizer, even if your code does not
actually use Oracle-specific features.

Overview of the Oracle JDBC Drivers
Oracle provides the following JDBC drivers:

= OClI driver for client-side use with an Oracle client installation

« Thin driver, a 100% Java driver for client-side use, particularly with applets
(does not require an Oracle client installation)

« server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server

« server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Oracle provides client-side drivers compatible with JDK 1.1, JDK 1.2 (or higher),
and JDK 1.4. The versions in the Oracle9i database are compatible with JDK 1.2 or
higher. (The Oracle9i release 2 database includes a JDK 1.3 J2SE Java environment.)

The rest of this section provides a brief overview of each driver. For more
information about the drivers and about which might be most appropriate for your
particular situation, see the Oracle9i JDBC Developer’s Guide and Reference.

Remember that your choices may differ between translation time and runtime. For
example, you may want to use the Oracle JDBC OCI driver at translation time for
semantics-checking, but the Oracle JDBC Thin driver at runtime.

Core JDBC Functionality

The core functionality of all these drivers is the same. They support the same
feature set, syntax, programming interfaces, and Oracle extensions. All Oracle JDBC
drivers are supported by the oracl e. j dbc. O acl eDxi ver class.

4-2 Oracle9i SQLJ Developer’s Guide and Reference

Selection of the JDBC Driver

JDBC OCI Driver

The Oracle JDBC OCI driver accesses the database by calling the Oracle Call
Interface (OCI) directly from Java, providing the highest compatibility with the
different Oracle 7, 8, 8i, and 9i versions. These drivers support all installed Oracle9i
Net adapters, including IPC, named pipes, TCP/IP, and IPX/SPX.

The use of native methods to call C entry points makes the OCI driver dependent
on the Oracle platform, requiring an Oracle client installation that includes Oracle9i
Net. Therefore it is not suitable for applets.

"Connect strings" for the OCI driver is of the following form (where t ns is an
optional TNS alias or full TNS specification):

j dbc: oracl e: oci : @t ns>

(For backward compatibility, "oci8" is still acceptable instead of "oci". Also, "oci7" is
accepted for Oracle JDBC release 7.3.4.)

JDBC Thin Driver

The Oracle JDBC Thin driver is a platform-independent, 100% pure Java
implementation that uses Java sockets to connect directly to the Oracle server from
any Oracle or non-Oracle client. It can be downloaded into a browser
simultaneously with the Java applet being run.

The Thin driver supports only TCP/IP protocol and requires a TNS listener to be
listening on TCP/IP sockets from the database server. When the Thin driver is used
with an applet, the client browser must have the capability to support Java sockets.

Connect strings for the Thin driver are typically of the following form (though there
is also a longer form):

jdbc: oracl e: thi n: @ost: port: sid

JDBC Server-Side Thin Driver

The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside Oracle9i and accesses a remote server. This is
useful in accessing one Oracle server from inside another, such as from a Java stored
procedure.

Connect strings for the server-side Thin driver are the same as for the client-side
Thin driver.

Key Programming Considerations 4-3

Selection of the JDBC Driver

Note: In order to leave the originating database when using the
server-side Thin driver, the user account must have

Socket Per ni ssi on assigned. See the Oracle9i JDBC Developer’s
Guide and Reference for more information. See the Oracle9i Java
Developer’s Guide for general information about

Socket Per i ssi on and other permissions.

JDBC Server-Side Internal Driver

The Oracle JDBC server-side internal driver provides support for any Java code that
runs inside the target Oracle9i instance where the SQL operations are to be
performed. The server-side internal driver allows the Oracle JVM to communicate
directly with the SQL engine. This driver is the default JDBC driver for SQLJ code
running as a stored procedure, stored function, or trigger in Oracle9i.

Connect strings for the server-side internal driver are of the following form:

j dbc: or acl e: kpr b:

If your SQLJ code uses the default connection context, SQLJ will automatically use
this driver for code running in the Oracle JVM.

Driver Selection for Translation

Use SQLJ option settings, either on the command line or in a properties file, to
choose the driver manager class and specify a driver for translation.

Use the SQLJ - dri ver option to choose any driver manager class other than
O acl eDri ver, which is the default.

Specify the particular JDBC driver to choose (such as Thin or OCI for Oracle) as part
of the connection URL you specify in the SQLJ - ur | option.

For information about these options, see "Connection Options" on page 8-34.

You will typically, but not necessarily, use the same driver that you use in your
source code for the runtime connection.

4-4 Oracle9i SQLJ Developer’s Guide and Reference

Selection of the JDBC Driver

Note: Remember that the - dri ver option does not choose a
particular driver. It registers a driver class with the driver manager.
One driver class might be used for multiple driver protocols (such
as Oracl eDri ver, which is used for all of the Oracle JDBC
protocols).

Driver Selection and Registration for Runtime

To connect to the database at runtime, you must register one or more drivers that
will understand the URLs you specify for any of your connection instances, whether
they are instances of the sql j . runti me. r ef . Def aul t Cont ext class or of any
connection context classes that you declare.

If you are using an Oracle JDBC driver and create a default connection using the
Oracl e. connect () method (discussed below, under "Single Connection or
Multiple Connections Using DefaultContext" on page 4-6), then SQLJ handles this
automatically—Or acl e. connect () registers the oracl e. j dbc. Oracl eDri ver
class.

If you are using an Oracle JDBC driver, but do not use Or acl e. connect (), then
you must manually register the Or acl eDri ver class, as follows:

Dri ver Manager . regi ster Dri ver (new oracl e. jdbc. O acl eDriver());

If you are not using an Oracle JDBC driver, then you must register some
appropriate driver class, as follows:

Dri ver Manager . r egi ster Dri ver (new nydri ver. jdbc. dri ver. MDriver());

In any case, you must also set your connection URL, user name, and password. This

is described in "Single Connection or Multiple Connections Using DefaultContext"
on page 4-6. That section also further discusses the Or acl e. connect () method.

Note: As an alternative to using the JDBC driver manager in
establishing JDBC connections, you can use data sources. You can
specify a data source in awi t h clause, as described in "Declaration
WITH Clause" on page 3-6. For general information about data
sources, see the Oracle9i JDBC Developer’s Guide and Reference.

Key Programming Considerations 4-5

Connection Considerations

Connection Considerations

When deciding what database connection or connections you will need for your
SQLJ application, consider the following:

« Will you need just one database connection or multiple connections?

« Ifusing multiple connections (possibly to multiple schemas), will each
connection use SQL entities of the same name—tables of the same name,
columns of the same name and datatypes, stored procedures of the same name
and signature, and so on?

« Will you need different connections for translation and runtime, or will the
same suffice for both?

A SQLJ executable statement can specify a particular connection context instance
(either of Def aul t Cont ext or of a declared connection context class) for its
database connection. Alternatively, it can omit the connection context specification
and, thereby, use the default connection (an instance of Def aul t Cont ext that was
previously set as the default).

Note: If your operations will use different sets of SQL entities,
then you will typically want to declare and use additional
connection context classes. This is discussed in "Connection
Contexts" on page 7-2.

Single Connection or Multiple Connections Using DefaultContext
This section discusses scenarios where you will use connection instances of only the
Def aul t Cont ext class.

This is typical if you are using a single connection, or multiple connections that use
SQL entities with the same names and datatypes.

Single Connection

For a single connection, typically use one instance of the Def aul t Cont ext class,
specifying the database URL, user name, and password when you construct your
Def aul t Cont ext object.

You can use the connect () method of theor acl e. sql j . runti me. O acl e class
to accomplish this. Calling this method automatically initializes the default
connection context instance.

4-6 Oracle9i SQLJ Developer’s Guide and Reference

Connection Considerations

This method has several signatures, including ones that allow you to specify user
name, password, and URL, either directly or using a properties file. In the following
example, the properties file connect . properti es is used:

Q acl e. connect (/A ass. cl ass, "connect. properties");
Assume MyCl ass is the name of your class. There is an example of

connect . propertiesin[O acl e_Hone]/sqlj/deno, and also in "Set Up the
Runtime Connection" on page 2-14.

Note: The connect. properti es file is searched for relative to
the specified class. In the example, if MyCl ass is located in
ny- package, then connect . properti es must be found in the
same package location, my- package, as MyCl ass. cl ass.

If you use connect . properti es, you must edit it appropriately and package it
with your application. In this example, you must also import the
oracle.sqglj.runtine. O acl e class.

Alternatively, you can specify user name, password, and URL directly:

Q acl e. connect ("j dbc: oracl e: thi n: @ocal host : 1521: orcl ", "scott", "tiger");

In this example, the connection will use the JDBC Thin driver to connect user
scott (passwordti ger) to a database on the machine | ocal host through port
1521, where or cl is the SID (Oracle session ID) of the database to connect to on that
machine.

Either of these examples creates a special static instance of the Def aul t Cont ext
class and installs it as your default connection. It is not necessary to do anything
with that Def aul t Cont ext instance directly.

Once you have completed these steps, you do not need to specify the connection for
any of the SQLJ executable statements in your application if you want them all to
use the default connection.

Note that in using a Thin driver, the URL must include the hostname, port number,
and SID, as in the preceding example, and the database must have a listener
running at the specified port. In using the OCI driver, you can specify an SID, or no
SID if you intend to use the client’s default account. Alternatively, you can use
name-value pairs (see the Oracle9i JDBC Developer’s Guide and Reference for more
information).

Key Programming Considerations 4-7

Connection Considerations

The first example here will connect to the database with SID or cl ; the second
example will connect to the default account of the client:

j dbc: oracl e: oci : @r cl
jdbc:oracl e: oci : @

Notes:

« Oracl e. connect () will not set your default connection if
one had already been set. In that case, it returns nul | . (This
functionality allows you to use the same code on a client or in
the server.) If you do want to override your default connection,
use the static set Def aul t Cont ext () method of the
Def aul t Cont ext class, as described in the next section.

« TheOracl e. connect () method defaultsto af al se setting
of the auto-commit flag; however, it also has signatures to set it
explicitly. See "More About the Oracle Class" on page 4-12. For
general information about auto-commit functionality, see "Basic
Transaction Control" on page 4-26. (In Oracle JDBC, the
auto-commit flag defaults to t r ue.)

= You can optionally specify get Cl ass(), instead of
MyCl ass. cl ass, inthe Oracl e. connect () call, as long as
you are not calling get Cl ass() from a static method. The
get C ass() method is used in some of the SQLJ demo
applications.

= You can access the static Def aul t Cont ext instance, which
corresponds to your default connection, as follows:

Def aul t Cont ext . get Def aul t Cont ext () ;

Multiple Connections

For multiple connections, you can create and use additional instances of the
Def aul t Cont ext class, while optionally still using the default connection created
under "Single Connections" above.

You can use the Or acl e. get Connecti on() method to instantiate
Def aul t Cont ext , as in the following examples.

4-8 Oracle9i SQLJ Developer’s Guide and Reference

Connection Considerations

First, consider a case where you want most statements to use the default connection
created above, but other statements to use a different connection. You must create
one additional instance of Def aul t Cont ext :

Def aul t Gontext ctx = Cracl e. get Gonnection (
"jdbc: oracl e:thi n: @ocal host 2: 1521: orcl 2", "bill", "lion");

(Or ct x could also use the scot t /t i ger schema, if you want to perform multiple
sets of operations on the same schema.)

When you want to use the default connection, it is not necessary to specify a
connection context:

#sgl { SQ operation };

This is actually an understood shortcut for the following:
#sqgl [Defaul tGontext.getDefault Gontext()] { S@ operation };

When you want to use the additional connection, specify ct x as the connection:

#sql [ctx] { SQ operation};

Next, consider situations where you want to use multiple connections where each of
them is a named Def aul t Cont ext instance. This allows you to switch your
connection back and forth, for example.

The following statements establish multiple connections to the same schema (in
case you want to use multiple Oracle sessions or transactions, for example).
Instantiate the Def aul t Cont ext class for each connection you will need:

Def aul t Gontext ctx1 = O acl e. get Gonnecti on

("j dbc: oracl e: t hi n: @ocal host 1: 1521: orcl 1", "scott", "tiger");
Def aul t Gontext ctx2 = O acl e. get Gonnecti on

("j dbc: oracl e: t hi n: @ocal host 1: 1521: orcl 1", "scott", "tiger");

This creates two connection context instances that would use the same schema,
connectingtoscott/ti ger onSIDorcl 1 onthe machinel ocal host 1, using the
Oracle JDBC Thin driver.

Now consider a case where you want multiple connections to different schemas.
Again, instantiate the Def aul t Cont ext class for each connection you will need:

Def aul t Gontext ctx1 = Oracl e. get Gonnecti on

("j dbc: oracl e: t hi n: @ocal host 1: 1521: orcl 1", "scott", "tiger");
Def aul t Gontext ctx2 = O acl e. get Gonnecti on

("j dbc: oracl e: t hi n: @ocal host 2: 1521: orcl 2", "bill", "lion");

Key Programming Considerations 4-9

Connection Considerations

This creates two connection context instances that both use the Oracle JDBC Thin
driver but use different schemas. The ct x1 object connectsto scott/ti ger on
SID or cl 1 on the machine | ocal host 1, while the ct x2 object connects to
bill/liononSIDorcl 2onthe machinel ocal host 2.

There are two ways to switch back and forth between these connections for the
SQLJ executable statements in your application:

or:

If you switch back and forth frequently, then you can specify the connection for
each statement in your application:

#sgl [ctx1] { SQ@ operation };

#sql [ctx2] { S@ operation };

Note: Include the square brackets around the connection context
instance name; they are part of the syntax.

If you use either of the connections several times in a row within your code
flow, then you can periodically use the static set Def aul t Cont ext () method
of the Def aul t Cont ext class to reset the default connection. This method
initializes the default connection context instance. This way, you can avoid
specifying connections in your SQLJ statements.

Def aul t Gont ext . set Def aul t Cont ext (ct x1);

#sql { SQ operation}; // These three statenents all use ctxl
#sgl { SQ operation };

#sgl { SQ operation };

Def aul t Cont ext . set Def aul t Gont ext (ct x2) ;

#sql { SQ operation}; // These three statenents all use ctx2
#sgl { SQ operation };

#sgl { SQ operation };

Note: Because the preceding statements do not specify connection
contexts, at translation time they will all be checked against the
default connection context.

4-10 Oracle9/ SQLJ Developer’s Guide and Reference

Connection Considerations

Closing Connections

It is advisable to close your connection context instances when you are done,
preferably inafi nal | y clause (in case your application terminates with an
exception) of at ry block.

The Def aul t Cont ext class, as well as any connection context classes that you
declare, includes a cl ose() method. Calling this method closes the SQLJ
connection context instance and, by default, also closes the underlying JDBC
connection instance and the physical connection.

In addition, the or acl e. sgl j . runti me. Or acl e class has a static cl ose()
method to close the default connection only.

In the following example, presume ct x is an instance of any connection context
class:

finally
{
}

ctx. cl ose();

or, ifthe fi nal | y clause is not within at ry block in case a SQL exception is
encountered:

finally
{
}

try { ctx.close(); } catch(SQException ex) {...}

or, to close the default connection, the Or acl e class also provides acl ose()
method:

finally
{
}

Qacl e.close();

Always commit or roll back any pending changes before closing the connection.
Whether there would be an implicit COMM T operation as the connection is closed is

Key Programming Considerations 4-11

Connection Considerations

not specified in the JDBC standard and may vary from vendor to vendor. For
Oracle, there is an implicit COMM T when a connection is closed, and an implicit
ROLLBACK when a connection is garbage-collected without being closed, but it is
not advisable to rely on these mechanisms.

Note: Itis also possible to close a connection context instance
without closing the underlying connection (in case the underlying
connection is shared). See "Closing Shared Connections" on

page 7-57.

Multiple Connections Using Declared Connection Context Classes

For multiple connections that use different sets of SQL entities, it is advantageous to
use connection context declarations to define additional connection context classes.
Having a separate connection context class for each set of SQL entities that you use
allows SQLJ to do more rigorous semantics-checking of your code.

This situation is somewhat advance, however. See "Connection Contexts" on
page 7-2 for more information.

More About the Oracle Class

Oracle SQLJ provides the or acl e. sql j . runti nme. Or acl e class to simplify the
process of creating and using instances of the Def aul t Cont ext class.

The static connect () method initializes the default connection context
instance—instantiating a Def aul t Cont ext object and installing it as your default
connection. You do not need to assign or use the Def aul t Cont ext instance
returned by connect () . If you had already established a default connection, then
connect () returnsnul | .

The static get Connect i on() method simply instantiates a Def aul t Cont ext
object and returns it. You can use the returned instance as desired.

Both methods register the Oracle JDBC driver manager automatically if the
oracl e.jdbc. Oracl eDri ver class is found in your classpath.

The static cl ose() method closes the default connection.

4-12 Oracle9/ SQLJ Developer’s Guide and Reference

Connection Considerations

Signatures of the Oracle.connect() and Oracle.getConnection() Methods
Each method has signatures that take the following parameters as input:

« URL (String),user name (St ri ng), password (St ri ng)

« URL (String),user name (St ri ng), password (St ri ng), auto-commit flag
(bool ean)

« URL(String),java.util.Properti es object containing properties for the
connection

« URL(String),java.util.Properti es object, auto-commit flag (bool ean)

« URL (St ri ng) fully specifying the connection, including user name and
password

The following is an example of the format of a URL string specifying user name
(scot t)and password (t i ger) when using the Oracle JDBC drivers, in this
case the Thin driver:

"jdbc: oracl e: thin:scott/tiger@ocal host: 1521: orcl "

« URL (String), auto-commit flag (bool ean)

« java.l ang. C ass object for the class relative to which the properties file is
loaded, name of properties file (St ri ng)

« java.l ang. C ass object, name of properties file (St r i ng), auto-commit flag
(bool ean)

« java.l ang. C ass object, name of properties file (St r i ng), user name
(String), password (Stri ng)

« java.l ang. C ass object, name of properties file (St r i ng), user name
(St ring), password (St ri ng), auto-commit flag (bool ean)

« JDBC connection object (Connect i on)
= SQLJ connection context object

These last two signatures inherit an existing database connection. When you inherit
a connection, you will also inherit the auto-commit setting of that connection.

The auto-commit flag specifies whether SQL operations are automatically
committed. For the Or acl e. connect () and Or acl e. get Connecti on()
methods only, the default is f al se. If that is the setting you want, then you can use
one of the signatures that does not take auto-commit as input. However, anytime
yOou use a constructor to create an instance of a connection context class, including

Key Programming Considerations 4-13

Connection Considerations

Def aul t Cont ext , you must specify the auto-commit setting. In Oracle JDBC, the
default for the auto-commit flag ist r ue.

The auto-commit flag is discussed in "Basic Transaction Control" on page 4-26.

Some examples of connect () and get Connect i on() calls are under "Single
Connection or Multiple Connections Using DefaultContext" on page 4-6.

Optional Oracle.close() Method Parameters

In using the Or acl e. cl ose() method to close the default connection, you have
the option of specifying whether or not to close the underlying physical database
connection. By default it is closed. This is relevant if you are sharing this physical
connection between multiple connection objects, either SQLJ connection context
instances or JDBC connection instances.

To keep the underlying physical connection open:
QO acl e. cl ose(Gonnect i onCont ext . KEEP_CONNECTI ON) ;

To close the underlying physical connection (default behavior):

Q acl e. cl ose(Gonnect i onCont ext . A.CBE_ CONNECTI ON) ;

KEEP_CONNECTI ONand CLOSE_CONNECTI ON are static constants of the
Connect i onCont ext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-57.

More About the DefaultContext Class

Thesqlj.runtine.ref. Defaul t Context class provides a complete default
implementation of a connection context class. As with classes created using a
connection context declaration, the Def aul t Cont ext class implements the
sqlj.runtinme. Connecti onCont ext interface. (This interface is described in
"Implementation and Functionality of Connection Context Classes" on page 7-9.)

The Def aul t Cont ext class has the same class definition that would have been
generated by the SQLJ translator from the declaration:

#sqgl public context Defaul t Context;

4-14 Oracle9/ SQLJ Developer’s Guide and Reference

Connection Considerations

DefaultContext Methods
The Def aul t Cont ext class has four methods of note:

get Connect i on() —Gets the underlying JDBC connection object. This is
useful if you want to have JDBC code in your application (which is one way to
use dynamic SQL operations, for example). You can also use the

set Aut oConmi t () method of the underlying JDBC connection object to set
the auto-commit flag for the connection.

set Def aul t Cont ext () —Thisisa st at i c method that sets the default
connection your application uses; it takes a Def aul t Cont ext instance as
input. SQLJ executable statements that do not specify a connection context
instance will use the default connection that you define using this method (or
that you define using the Or acl e. connect () method).

get Def aul t Cont ext () —Thisisa st at i c method that returns the
Def aul t Cont ext instance currently defined as the default connection for your
application (through earlier use of the set Def aul t Cont ext () method).

cl ose() —Like any connection context class, the Def aul t Cont ext class
includes a cl ose() method to close the connection context instance.

The get Connecti on() and cl ose() methods are specified in the
sqlj.runtime. Connecti onCont ext interface.

Note: On aclient, get Def aul t Cont ext () returns nul | if

set Def aul t Cont ext () was not previously called. However, if a
data source object has been bound under "jdbc/defaultDataSource"
in JNDI, then the client will use this data source object as its default
connection. (For information about Oracle SQLJ support for data
sources and JNDI, see "Standard Data Source Support" on

page 7-13.)

In the server, get Def aul t Cont ext () returns the default
connection (the connection to the server itself).

DefaultContext Constructors

It is typical to instantiate Def aul t Cont ext using the Or acl e. connect () or
Oracl e. get Connecti on() method. If you want to create an instance directly,
however, there are five constructors for Def aul t Cont ext , which take input
parameters as follows.

Key Programming Considerations 4-15

Connection Considerations

URL (St ri ng), user name (St ri ng), password (St ri ng), auto-commit
(bool ean)

URL (String),java. util.Properti es object, auto-commit (bool ean)

URL (St ri ng fully specifying connection and including user name and
password), auto-commit setting (bool ean)

The following is an example of the format of a URL string specifying user name
(scot t)and password (t i ger) when using the Oracle JDBC drivers, in this
case the Thin driver:

"jdbc: oracl e: thin:scott/tiger@ocal host: 1521: orcl "

JDBC connection object (Connect i on)

SQLJ connection context object

The last two inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

Following is an example of constructing a Def aul t Cont ext instance:

Def aul t Cont ext def ct x = new Def aul t Gont ext

("jdbc:oracl e:thin: @ocal host: 1521: orcl ", "scott", "tiger", false);

Notes About Connection Context Constructors:

It is important to note that connection context class constructors, unlike the
Or acl e. connect () method, require an auto-commit setting.

To use any of the first three constructors above, you must first register your
JDBC driver. This happens automatically if you are using an Oracle JDBC driver
and call Or acl e. connect () . Otherwise, see "Driver Selection and
Registration for Runtime" on page 4-5.

Connection context classes that you declare generally have the same constructor
signatures as the Def aul t Cont ext class. However, if you declare a connection
context class to be associated with a data source, a different set of constructors is
provided. (See "Standard Data Source Support" on page 7-13 for more
information.)

When using the constructor that takes a JDBC connection object, do not
initialize the connection context instance with a null JDBC connection.

The auto-commit setting determines whether SQL operations are automatically
committed. For more information, see "Basic Transaction Control" on page 4-26.

4-16 Oracle9/ SQLJ Developer’s Guide and Reference

Connection Considerations

Optional DefaultContext close() Method Parameters

When you close a connection context instance (of the Def aul t Cont ext class or
any other class), you have the option of specifying whether or not to close the
underlying physical connection. By default it is closed. This is relevant if you are
sharing the physical connection between multiple connection objects, either SQLJ
connection context instances or JDBC connection instances. The following examples
presume a Def aul t Cont ext instance def ct x.

To keep the underlying physical connection open:
def ct x. cl ose(Gonnect i onCont ext . KEEP_CONNECTI ON) ;

To close the underlying physical connection (default behavior):
def ct x. ¢l ose(Gonnect i onCont ext . ALCBE CONNECTI QN ;

KEEP_CONNECTI ONand CLOSE_CONNECTI ON are static constants of the
Connect i onCont ext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-57.

Connection for Translation

If you want to use online semantics-checking during translation, you must specify a
database connection for SQLJ to use—these are referred to as exemplar schemas and
are further discussed in "Connection Context Concepts" on page 7-2

You can use different connections for translation and runtime; in fact, it is often
necessary or preferable to do so. It might be necessary if you are not developing in
the same kind of environment that your application will run in. But even if the
runtime connection is available during translation, it might be preferable to create
an account with a narrower set of resources so that your online checking will be
tighter. This would be true if your application uses only a small subset of the SQL
entities available in the runtime connection. Your online checking would be tighter
and more meaningful if you create an exemplar schema consisting only of SQL
entities that your application actually uses.

Use the SQLJ translator connection options (- ur | , - user, and - passwor d), either
on the command line or in a properties file, to specify a connection for translation.

For information about these options, see "Connection Options" on page 8-34.

Key Programming Considerations 4-17

Connection Considerations

Connection for Customization

Generally speaking, Oracle customization does not require a database connection;
however, Oracle SQLJ does support customizer connections. This is useful in two
circumstances:

« Ifyou are using the Oracle customizer with the opt col s option enabled, a
connection is required. This option allows iterator column type and size
definitions for performance optimization.

« Ifyou are using the SQLChecker Cust om zer, a specialized customizer that
performs semantics-checking on profiles, a connection is required if you are
using an online checker (which is true by default).

For information about the Oracle customizer opt col s option (for ISO standard
code generation), see "Oracle Customizer Column Definition Option (optcols)" on
page A-27. (For Oracle-specific code generation, the SQLJ translator has an

- opt col s option with the same functionality.)

The SQLChecker Cust om zer is invoked through the Oracle customizer harness
veri fy option. See "SQLCheckerCustomizer for Profile Semantics-Checking" on
page A-40.

Use the customizer harness user, passwor d, ur |, and dri ver options to specify
connection parameters for whatever customizer you are using, as appropriate. See
"Customizer Harness Options for Connections" on page A-18.

4-18 Oracle9/ SQLJ Developer’s Guide and Reference

Null-Handling

Null-Handling

Java primitive types (such asi nt, doubl e, or f | oat) cannot have null values,
which you must consider in choosing your result expression and host expression

types.

Wrapper Classes for Null-Handling

SQLJ consistently enforces retrieving SQL nulls as Java nulls, in contrast to JDBC,
which retrieves nulls as 0 or f al se for certain datatypes. Therefore, do not use Java
primitive types in SQLJ for output variables in situations where a SQL null may be
received, because Java primitive types cannot take null values.

This pertains to result expressions, output or input-output host expressions, and
iterator column types. If the receiving Java type is primitive and an attempt is made
to retrieve a SQL null, thenasql j . runti me. SQLNul | Except i on is thrown and
no assignment is made.

To avoid the possibility of null values being assigned to Java primitives, use the
following wrapper classes instead of primitive types:

= java.lang. Bool ean
= java.lang.Byte

= java.lang. Short

= java.lang.Integer
= java.lang. Long

« java.lang. Doubl e
« java.lang. Fl oat

In case you must convert back to a primitive value, each of these wrapper classes
has an xxxVal ue() method. For example, i nt Val ue() returnsani nt value from
an | nt eger objectand f | oat Val ue() returnsaf | oat value from a Fl oat
object. Do this as in the following example, presuming i nt obj isan | nt eger
object:

int j =intobj.intValue();

Key Programming Considerations 4-19

Null-Handling

Notes:

=« SQLNul | Excepti on is a subclass of the standard
java. sql . SQLExcept i on class. See "Using SQLException
Subclasses" on page 4-25.

« Because Java objects can have null values, there is no need in
SQLJ for indicator variables such as those used in other host
languages (C, C++, and COBOL for example).

Examples of Null-Handling
The following examples show the use of the j ava. | ang wrapper classes to handle
null data.

Example: Null Input Host Variable In the following example, a Fl oat object is used to
pass a null value to the database. You cannot use the Java primitive type f | oat to
accomplish this.

Example:
int enpno = 7499;

Hoat commission = nul |;

#sgl { UPDATE enp SET comm = : commi ssi on WHERE enpno = : enpno };

Example: Null Iterator Rows In the following example, a Doubl e column type is used
in an iterator to allow for the possibility of null data.

For each employee in the EMP table whose salary is at least $50,000, the employee
name (ENAME) and commission (COVM are selected into the iterator. Then each row
is tested to determine if the COMMfield is, in fact, null. If so, it is processed
accordingly.

Presume the following declaration:

#sqgl iterator Enpl oyeelter (Sring enane, Doubl e comm);

Example:

Enpl oyeel ter ei;
#sgl ei = { SELECT enanme, conm FROM enp WHERE sal >= 50000 };

vhile (ei.next())

4-20 Oracle9/ SQLJ Developer’s Guide and Reference

Null-Handling

{
if (ei.comm{) == null)
Systemout. println(ei.enange() + " is not on commission.");
}
ei.close();

Note: To execute a WHERE-clause comparison against null
values, use the following SQL syntax:

..WHERE :x |S NLLL

Key Programming Considerations 4-21

Exception-Handling Basics

Exception-Handling Basics

This section covers the basics of handling exceptions in your SQLJ application,
including requirements for error-checking.

SQLJ and JDBC Exception-Handling Requirements

Because SQLJ executable statements result in JDBC calls through sql j . runti e,
and JDBC requires SQL exceptions to be caught or thrown, SQLJ also requires SQL
exceptions to be caught or thrown in any block containing SQLJ executable
statements. Your source code will generate errors during compilation if you do not
include appropriate exception-handling.

Handling SQL exceptions requires the SQLExcept i on class, which is included in
the standard JDBC j ava. sql . * package.

Example: Exception Handling This example demonstrates the kind of basic
exception-handling required of SQLJ applications, with a mai n method with a
try/ cat ch block, and another method which is called from nmai n and throws
exceptions back to mai n when they are encountered.

/* Inport SQLExceptions class. The SQ.Exception cones from
JDBC. Executabl e #sql clauses result in calls to JDBC so nethods
cont ai ni ng execut abl e #sqgl clauses nust either catch or throw
SQ Except i on.
*/
inport java.sql.* ;
inport oracle.sqlj.runtime. Oacle;

/] iterator for the sel ect
#sgl iterator M/iter (Sring | TEM NAME) ;

public class Testlnstall SQJ

{
/1 Main net hod
public static void main (String args[])
{

try {
/* if you're using a non-Qacle JDBC Driver, add a call here to

Dri ver Manager . regi sterDriver() to register your Driver
*/

/] set the default connection to the UR., user, and password

4-22 Oracle9/ SQLJ Developer’s Guide and Reference

Exception-Handling Basics

/1 specified in your connect.properties file
Q acl e. connect (Test I nstal | SQLJ. cl ass, "connect. properties");

Testlnstal | SQJ ti = new Testlnstal | SQJ();
ti.runExanpl e();

} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

}

} //BEnd of nethod nain

//Method that runs the exanpl e
voi d runExanpl e() throws SQException

{
//1ssue SQL command to clear the SALES tabl e
#sql { DELETE FROM SALES };
#sol { | NSERT | NTO SALES(| TEM NAME) VALUES (' Hello, SQJ!")}:

Mlter iter;
#sql iter = { SEHLECT | TEM NAME FROM SALES };

vhile (iter.next()) {
Systemout. printin(iter. | TEVINAME));
}
}
}

Processing Exceptions

This section discusses ways to process and interpret exceptions in your SQLJ
application. During runtime, exceptions may come from any of the following:

« SQLJruntime
« JDBC driver
« RDBMS

Errors originating in the SQLJ runtime are listed in "SQLJ Runtime Messages" on
page B-47.

Errors originating in the Oracle JDBC driver are listed in the Oracle9i JIDBC
Developer’s Guide and Reference. Errors originating in the Oracle RDBMS are listed in
the Oracle9i Database Error Messages reference.

Key Programming Considerations 4-23

Exception-Handling Basics

Printing Error Text

The example in the previous section showed how to catch SQL exceptions and
output the error messages, which is repeated again here:

try {

} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

}

This will print the error text from the SQLExcept i on object.

You can also retrieve error information using the SQLExcept i on class
get Message(), get Error Code(), and get SQLSt at e() methods, as described
in the next section.

Printing the error text as in this example prints the error message with some
additional text, such as "SQLException".

Retrieving SQL States and Error Codes

Thej ava. sql . SQLExcept i on class and subclasses include the get Message(),
get Error Code(), and get SQLSt at e() methods. Depending on where the
exception originated and how error exceptions are implemented there, these
methods provide additional information as follows:

« String getMessage()

If the error originates in the SQLJ runtime or JDBC driver, this method returns
the error message with no prefix. If the error originates in the RDBMS, it returns
the error message prefixed by the ORA number.

« int getErrorCode()

If the error originates in the SQLJ runtime, this method returns no meaningful
information. If the error originates in the JDBC driver or RDBMS, it returns the
five-digit ORA number as an integer.

« String getSQLState()

If the error originates in the SQLJ runtime, this method returns a string with a
five-digit code indicating the SQL state. If the error originates in the JDBC
driver, it returns no meaningful information. If the error originates in the
RDBMS, it returns the five-digit SQL state. Your code should be prepared to
handle a null return.

4-24 Oracle9/ SQLJ Developer’s Guide and Reference

Exception-Handling Basics

The following example prints the error message as in the preceding example, but
also checks the SQL state.

try {
} catch (SQException e) {
Systemerr.printIn("Eror running the exanple: " + e);

Sring sql Sate = e.get SQAS ate();
Systemerr.printIn("SQL state =" + sql Sate);

Using SQLException Subclasses

For more specific error-checking, use any available and appropriate subclasses of
thej ava. sql . SQLExcept i on class.

SQLJ provides one such subclass, the sql j . runti me. Nul | Except i on class,
which you can catch in situations where a null value might be returned into a Java
primitive variable. (Java primitives cannot handle nulls.)

For batch-enabled environments, there is also the standard
j ava. sql . Bat chUpdat eExcept i on subclass. See "Error Conditions During
Batch Execution" on page 10-22 for further discussion.

When you use a SQLExcept i on subclass, catch the subclass exception first, before
catching a SQLExcept i on, as in the following example:

try {
} catch (SQNUI | Exception ne) {
Systemerr.println("Nul'l value encountered: " + ne); }

catch (SQException e) {
Systemerr.printin("Eror running the exanple: " + €); }

This is because a subclass exception can also be caught as a SQLExcept i on. If you
catch SQLExcept i on first, then execution would not drop through for any special
processing you want to use for the subclass exception.

Key Programming Considerations 4-25

Basic Transaction Control

Basic Transaction Control
This section discusses how to manage data updates.

For information about SQLJ support for more advanced transaction control
functions—access mode and isolation level—see "Advanced Transaction Control"
on page 7-49.

Overview of Transactions

A transaction is a sequence of SQL operations that Oracle treats as a single unit. A
transaction begins with the first executable SQL statement after any of the
following:

= connection to the database

« COW T (committing data updates, either automatically or manually)
» ROLLBACK (canceling data updates)

A transaction ends with a COVMM T or ROLLBACK operation.

Note: In Oracle9i, all DDL commands (such as CREATE and
ALTER) include an implicit COMM T. This will commit not only the
DDL command, but any preceding DML commands (I NSERT,
DELETE, UPDATE) that had not yet been committed or rolled back.

Automatic Commits Versus Manual Commits

In using SQLJ or JDBC, you can either have your data updates automatically
committed, or commit them manually. In either case, each COMM T operation starts
a new transaction. You can specify that changes be committed automatically by
enabling the auto-commit flag, either when you define a SQLJ connection, or by
using the set Aut oCommi t () method of the underlying JDBC connection object of
an existing connection. You can use manual control by disabling the auto-commit
flag and using SQLJ COVMM T and ROLLBACK statements.

Enabling auto-commit may be more convenient, but gives you less control. You
have no option to roll back changes, for example. In addition, some SQLJ or JDBC
features are incompatible with auto-commit mode. For example, you must disable
the auto-commit flag for update batching or SELECT FOR UPDATE syntax to work
properly.

4-26 Oracle9/ SQLJ Developer’s Guide and Reference

Basic Transaction Control

Specifying Auto-Commit as You Define a Connection

When you use the Or acl e. connect () or Or acl e. get Connecti on() method
to create a Def aul t Cont ext instance and define a connection, the auto-commit
flag is set to f al se by default. There are signatures of these methods, however, that
allow you to set this flag explicitly. The auto-commit flag is always the last
parameter.

The following is an example of instantiating Def aul t Cont ext and using the
default f al se setting for auto-commit mode:

QO acl e. get nnect i on
("j dbc: oracl e: t hin: @ocal host: 1521:orcl ", "scott", "tiger");

Or you can specify at r ue setting:

Q acl e. get nnect i on
("j dbc:oracl e:thin: @ocal host: 1521:orcl", "scott", "tiger", true);

For the complete list of signatures for O acl e. connect () and
O acl e. get Connecti on(), see "More About the Oracle Class" on page 4-12.

If you use a constructor to create a connection context instance, either of
Def aul t Cont ext or of a declared connection context class, you must specify the
auto-commit setting. Again, it is the last parameter, as in the following example:

Def aul t Cont ext ctx = new Def aul t Cont ext
("j dbc: oracl e:t hin: @ocal host: 1521:orcl ", "scott", "tiger", false);

For the complete list of signatures for Def aul t Cont ext constructors, see "More
About the DefaultContext Class" on page 4-14.

If you have reason to create a JDBC Connect i on instance directly, then the
auto-commit flag is set to t r ue by default if your program runs on a client, or

f al se by default if it runs in the server. You cannot specify an auto-commit setting
when you create a JDBC Connect i on instance directly, but you can use the

set Aut oCommi t () method to alter the setting, as described in "Modifying
Auto-Commit in an Existing Connection" below.

Note: Auto-commit functionality is not supported by the JDBC
server-side internal driver.

Key Programming Considerations 4-27

Basic Transaction Control

Modifying Auto-Commit in an Existing Connection

There is typically no reason to change the auto-commit flag setting for an existing
connection, but you can if you desire. You can do this by using the
set Aut oCommi t () method of the underlying JDBC connection object.

You can retrieve the underlying JDBC connection object by using the

get Connecti on() method of any SQLJ connection context instance, whether it is
an instance of the Def aul t Cont ext class or of a connection context class that you
declared.

You can accomplish these two steps at once, as follows. In these examples, ct x is a
SQLJ connection context instance:

ct x. get Gonnecti on() . set AutoCommit (fal se) ;

or:

ct x. get Gonnecti on() . set Aut oConmit (true);

Important: Do not alter the auto-commit setting in the middle of a
transaction.

Using Manual COMMIT and ROLLBACK

If you disable the auto-commit flag, then you must manually commit any data
updates.

To commit any changes (such as updates, inserts, or deletes) that have been
executed since the last COMM T operation, use the SQLJ COVM T statement, as
follows:

#sgl { COWT };

To roll back (cancel) any changes that have been executed since the last COMM T
operation, use the SQLJ ROLLBACK statement, as follows:

#sgl { ROLLBAXK };

Do not use the COVM T or ROLLBACK commands when auto-commit is enabled.
This will result in unspecified behavior, or perhaps SQL exceptions.

4-28 Oracle9/ SQLJ Developer’s Guide and Reference

Basic Transaction Control

Notes:

= You can also roll back to a specified savepoint. See "Using
Savepoints" on page 4-30.

« All DDL statements in Oracle SQL include an implicit COWM T
operation. There is no special SQLJ functionality in this regard,;
such statements follow standard Oracle SQL rules.

« If auto-commit mode is off and you close a connection context
instance from a client application, then any changes since your
last COVWM T will be committed, unless you close the connection
context instance with KEEP_CONNECTI ON (explained in
"Closing Shared Connections" on page 7-57).

Effect of Commits and Rollbacks on Iterators and Result Sets

COWM T operations (either automatic or manual) and ROLLBACK operations do not
affect open result sets and iterators. The result sets and iterators will still be open,
and usually all that is relevant to their content is the state of the database at the time
of execution of the SELECT statements that populated them.

Note: An exception to this is if you declared an iterator class with
sensi tivity=SENSI Tl VE. In this case, changes to the underlying
result set may be seen whenever the iterator is scrolled outside of
its window size. For more information about scrollable iterators,
see "Scrollable Iterators" on page 7-42. For more information about
the underlying scrollable result sets, see the Oracle9i JDBC
Developer’s Guide and Reference

This also applies to UPDATE, | NSERT, and DELETE statements that are executed
after the SELECT statements—execution of these statements does not affect the
contents of open result sets and iterators.

Consider a situation where you SELECT, then UPDATE, then COWM T. A
non-sensitive result set or iterator populated by the SELECT statement will be
unaffected by the UPDATE and COVM T.

As a further example, consider a situation where you UPDATE, then SELECT, then
ROLLBACK. A non-sensitive result set or iterator populated by the SELECT will still
contain the updated data, regardless of the subsequent ROLLBACK.

Key Programming Considerations 4-29

Basic Transaction Control

Using Savepoints

The JDBC 3.0 specification adds support for savepoints. A savepoint is a defined
point in a transaction which you can roll back to, if desired, instead of rolling back
the entire transaction. Oracle SQLJ and JDBC support savepoints as of Oracle9i
release 2, for use in any JDK of version 1.1 or higher.

SQLJ supports the following statements for savepoints:
#sgl { SET SAVEPQ NT : savepoint };

#sgl { ROLLBACK TO : savepoint };
#sgl { RELEASE : savepoint };

The savepoint is the point in the transaction where the SET SAVEPO NT statement
appears. The savepoi nt host expression specifies the name of the savepoint, as a
Java string. Later you can roll back to a specified savepoint or release (remove) a
savepoint.

Savepoints are saved into the SQLJ execution context, which has methods that
parallel the functionality of the three statements above. See "Savepoint Methods" on
page 7-31.

Because any COVM T operation ends the transaction, this also releases all savepoints
of the transaction. This includes manual COVMM T operations, automatic COMM T
operations, and DDL statements (which result in an automatic COVM T).

Note: As of Oracle9i release 2, Oracle9i and Oracle9i JDBC do not
support release-savepoint functionality.

4-30 Oracle9/ SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

Summary: First Steps in SQLJ Code

The best way to summarize the SQLJ executable statement features and
functionality discussed to this point is by examining short but complete programs.
This section presents two such examples.

The first example, presented one step at a time and then again in its entirety, uses a
SELECT | NTOstatement to perform a single-row query of two columns from a
table of employees. If you want to run the example, make sure to change the
parameters in the connect . properti es file to settings that will let you connect
to an appropriate database.

The second example, slightly more complicated, will make use of a SQL/J iterator for
a multi-row query.

Import Required Classes

Import any JDBC or SQLJ packages you will need. You will need at least some of
the classes in the j ava. sql package:

inport java.sql.*;

You may not need all the j ava. sql package, however. Key classes there are
j ava. sgl . SQLExcept i on and any classes that you refer to explicitly (for
example, j ava. sql . Dat e, j ava. sql . Resul t Set).

You will need the following package for the Or acl e class, which you typically use
to instantiate Def aul t Cont ext objects and establish your default connection:

inport oracle.sqlj.runtinme.*;

If you will be using any SQLJ runtime classes directly in your code, import the
following packages:

inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;

If your code does not use any SQLJ runtime classes directly, however, it will be
sufficient to have them in your classpath as described in "Set the Path and
Classpath" on page 2-12.

Key runtime classes include Resul t Set | t er at or and Executi onCont ext in
the sql j . runt i me package, and Def aul t Cont ext inthesqlj.runtine.ref
package.

Key Programming Considerations 4-31

Summary: First Steps in SQLJ Code

Register JDBC Drivers and Set Default Connection

Declare the Si npl eExanpl e class with a constructor that uses the static

Oracl e. connect () method to set the default connection. This also registers the
Oracle JDBC drivers. If you are using a non-Oracle JDBC driver, you must add code
to register it (as mentioned in the code comments below).

This uses a signature of connect () that takes the URL, user name, and password
from the connect . properti es file. An example of this file is in the directory
[Oracl e_Hone]/sql j/deno and also in "Set Up the Runtime Connection" on
page 2-14.

public class S npl eExanpl e {

public S npl eExanpl e() throws SQException {
/* If you are using a non-Cracle JDBC driver, add a call here to
DriverManager.regi sterDriver() to register your driver. */
/1 Set default connection (as defined in connect. properties).
Q acl e. connect (get d ass(), "connect. properties");

}

The mai n() method is defined in "Set Up Exception Handling" below.

Set Up Exception Handling

Create a mai n() that calls the Si npl eExanpl e constructor and then sets up a
try/ cat ch block to handle any SQL exceptions thrown by the r unExanpl e()
method, which performs the real work of this application:

public static void main (String [] args) {

try {
S npl eExanpl e 01 = new S npl eExanpl e() ;
ol. runExanpl e();

}
catch (SQException ex) {

Systemerr.printIn("Eror running the exanple: " + ex);

}
}

The r unExanpl e() method is defined in "Set Up Host Variables, Execute SQLJ
Clause, Process Results" below.

4-32 Oracle9/ SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

You can also use atry/ cat ch block inside afi nal | y clause when you close the
connection, presuming the f i nal | y clause is not already inside atry/ cat ch
block in case of SQL exceptions:

finally
{

}

try { GQacle.close(); } catch(SQException ex) {...}

Set Up Host Variables, Execute SQLJ Clause, Process Results
Create a r unExanpl e() method that performs the following:

1. Throws any SQL exceptions to the mai n() method for processing.
2. Declares Java host variables.

3. Executes a SQLJ clause that binds the Java host variables into an embedded
SEL ECT statement and selects the data into the host variables.

4. Prints the results.
Here is the code:

voi d runExanpl e() throws SQException {
Systemout. println("Runni ng the exanple--");

/] Declare two Java host vari abl es- -
Fl oat sal ary;
String enpnang;

/1 Use SHLECT INTO statenent to execute query and retrieve val ues.
#sgl { SELECT enane, sal INTO:enpnane, :salary FROMenp
WHERE enpno = 7499 };

/1 Print the results--
Systemout.printin("Nane is " + enpnane + ", and Salary is " + salary);

}
} /1 Qosing brace of S npl eExanpl e cl ass

This example declares sal ar y and enamne as Java host variables. The SQLJ clause
then selects data from the ENAME and SAL columns of the EMP table and places the
data into the host variables. Finally, the values of sal ary and enpnane are printed
out.

Key Programming Considerations 4-33

Summary: First Steps in SQLJ Code

Note that this SELECT statement could select only one row of the EMP table, because
the EMPNOcolumn in the WHERE clause is the primary key of the table.

Example of Single-Row Query using SELECT INTO

This section presents the entire Si npl eExanpl e class from the previous
step-by-step sections. Because this is a single-row query, no iterator is required.

/1 Inport SQJ cl asses:
inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;
inport oracle.sqlj.runtinme.*;

/1 Inport standard java.sqgl package:
inport java.sql.*;

public class S npl eExanpl e {

public S npl eExanpl e() throws SQException {
/* If you are using a non-Cracle JDBC driver, add a call here to
DriverManager.regi sterDriver() to register your driver. */
/1 Set default connection (as defined in connect. properties).
Q acl e. connect (get d ass(), "connect. properties");

}

public static void main (String [] args) throws SQException {

try {
S npl eExanpl e 01 = new S npl eExanpl e() ;
ol. runExanpl e();
}
catch (SQException ex) {
Systemerr.printIn("Eror running the exanple: " + ex);
}
}

finally
{

}

try { Gacle.close(); } catch(SQException ex) {...}

voi d runExanpl e() throws SQException {

Systemout. println("Runni ng the exanple--");

4-34 Oracle9/ SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

/] Declare two Java host vari abl es- -
Fl oat sal ary;
String enpnang;

/1 Use SELECT INTO statenent to execute query and retrieve val ues.
#sql { SELECT enane, sal |NTO:enpnane, :salary FROMenp
WHERE enpno = 7499 };

/1 Print the results--
Systemout.printin("Nane is " + enpnane + ", and Salary is " + salary);

Set Up a Named lterator

The next example will build on the previous example by adding a named iterator
and using it for a multiple-row query.

First, declare the iterator class. Use object types | nt eger and Fl oat , instead of
primitive typesi nt and f | oat, wherever there is the possibility of null values.

#sqgl iterator EnpRecs(
int enpno, /!l This colum cannot be null, soint is K
Il (If null is possible, use Integer.)
Sring enane,
Sring job,
I nt eger nur,
Dat e hiredat e,
H oat sal,
H oat comm
int deptno);

Later, instantiate the EnpRecs class and populate it with query results.
EnpRecs enpl oyees;

#sgl enpl oyees = { SELECT enpno, enane, job, ngr, hiredate,
sal, conm deptno FROMenp };

Then use the next () method of the iterator to print the results.

whil e (enpl oyees. next()) {

Systemout. println("Nane: " + enpl oyees. enane());
Systemout. println("EMPNQ " + enpl oyees. enpno());
Systemout. println("Job: " + enpl oyees.job());

Key Programming Considerations 4-35

Summary: First Steps in SQLJ Code

Systemout . println("Mnager:
Systemout.printIn("Date hired: "
Systemout.println("Sal ary: '
Systemout. println("Comm ssion: "
Systemout. println("Departnent: "
Systemout. printin();

}

enpl oyees. ngr ());
enpl oyees. hiredate());
enpl oyees. sal ());

enpl oyees. comn{));
enpl oyees. deptno());

+ 4+ + + +

Finally, close the iterator when you are done.

enpl oyees. cl ose();

Example of Multiple-Row Query Using Named Iterator

This example uses a named iterator for a multiple-row query that selects several
columns of data from a table of employees.

Aside from use of the named iterator, this example is conceptually similar to the
previous single-row query example.

/1 Inport SQJ cl asses:
inport sqlj.runtine. *;

inport sqlj.runtine.ref.*;
inport oracle.sqlj.runtinme.*;

/1 Inport standard java.sqgl package:
inport java.sql.*;

/] Declare a SQJ iterator.
/1 Wse object types (Integer, Float) for ngr, sal, And commrather
/1 than prinitive types to allow for possible null selection.

#sqgl iterator EnpRecs(
int enpno, // This col umm cannot be null, soint is K
[l (If null is possible, Integer is required.)
Sring enane,
Sring job,
I nt eger nur,
Dat e hiredat e,
H oat sal,
H oat comm
int deptno);

4-36 Oracle9/ SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code

/1 This is the application class.
public cl ass EmpDenolApp {

publ i ¢ EnpDenolApp() throws SQException {
/* If you are using a non-Qacle JDBC driver, add a call here to
Dri ver Manager.registerDriver() to register your driver. */
/1 Set default connection (as defined in connect.properties).
Q acl e. connect (get d ass(), "connect. properties");

}

public static void main(Sring[] args) {

try {
EnpDenolApp app = new EnpDemolApp();
app. runExanpl e() ;

}
cat ch(SQ.Exception exception) {

Systemerr.printin("Error running the exanple: " + exception);
}
}

finally

{
try { Gacle.close(); } catch(SQException ex) {...}

}

voi d runExanpl e() throws SQException {
Systemout . printl n("\ nRunni ng the exanple.\n");

/1 The query creates a new instance of the iterator and stores it in
/1 the variabl e 'enpl oyees’ of type 'EnpRecs’. SQJ translator has

/] automatically declared the iterator so that it has nethods for
/] accessing the rows and colunms of the result set.

EnpRecs enpl oyees;

#sgl enpl oyees = { SELECT enpno, enane, job, nmgr, hiredate,
sal, coom deptno FRMenp };

/1 Print the result using the iterator.
/1 Note how the next rowis accessed using nethod 'next()’, and how

/! the columns can be accessed with nethods that are naned after the
/] actual database col um nanes.

Key Programming Considerations 4-37

Summary: First Steps in SQLJ Code

vhi | e (enpl oyees. next ()

Systemout .
Systemout .
.println(
Systemout.
Systemout.
Systemout .
Systemout.
Systemout.
Systemout .

Syst em out

}

println("
println(

println(
println(
println(
print|n(
print|n(
printin();

{
Nane:

"BEMPNQ
"Job:

" Manager :
"Date hired: "
"Sal ary: '
"Comm ssion: "
"Departnent: "

+ 4+ + + + + 4+

I'Youmust close the iterator when it's no longer needed.

employees.close() ;
}
}

4-38 Oracle9/ SQLJ Developer’s Guide and Reference

enpl oyees.
enpl oyees.
enpl oyees.
enpl oyees.
enpl oyees.
enpl oyees.
enpl oyees.
enpl oyees.

enane());
enpno());
job());
ngr());
hiredate());
sal ());

comy));
deptno());

Oracle-Specific Code Generation (No Profiles)

Oracle-Specific Code Generation (No Profiles)

Throughout this manual there is general and standard discussion of the SQLJ
runtime layer and SQLJ profiles. As of Oracle9i release 2, however, Oracle SQLJ by
default generates Oracle-specific code with direct calls to Oracle JDBC, instead of
generating I1SO standard code that calls the SQLJ runtime for SQL operations, which
in turn contains calls to Oracle JDBC. With Oracle-specific code generation, there are
no profile files, and the role of the SQLJ runtime layer is greatly reduced during
program execution.

Oracle-specific code supports all Oracle-specific extended features.

Code generation is determined through the SQLJ translator - codegen option. The
default setting, for Oracle-specific code generation, is - codegen=or acl e.
Alternatively, you can set - codegen=i so for code generation according to the ISO
standard.

See "Code Generation (-codegen)" on page 8-52 for information about syntax for this
option.

The remainder of this section covers the following topics:

« Advantages and Disadvantages of Oracle-Specific Code Generation

« Environment Requirements for Oracle-Specific Code Generation

« Code Considerations and Limitations with Oracle-Specific Code Generation
» SQLJ Usage Changes with Oracle-Specific Code Generation

« Server-Side Considerations with Oracle-Specific Code Generation

Advantages and Disadvantages of Oracle-Specific Code Generation

Oracle-specific code generation offers many advantages over 1SO standard code
generation:

« Applications run more efficiently. The code calls JDBC APIs directly, placing
runtime performance directly at the JDBC level. The role of the intermediate
SQLJ runtime layer is greatly reduced during program execution.

« Applications are smaller in size.

« No profile files (. ser) are produced. This is especially convenient if you are
loading a translated application into the database or porting it to another
system—there are fewer components.

« Translation is faster, because there is no profile customization step.

Key Programming Considerations 4-39

Oracle-Specific Code Generation (No Profiles)

During runtime, Oracle SQLJ and Oracle JDBC use the same statement cache
resources, so partitioning resources between the two is unnecessary.

Having the SQL-specific information appear in the Java class files instead of in
separate profile files avoids potential security issues.

You will not have to rewrite your code to take advantage of possible future
Oracle JDBC performance enhancements, such as enhancements being
considered for execution of static SQL code. Future releases of the Oracle SQLJ
translator will handle this automatically.

The use of Java reflection at runtime is eliminated, thereby providing full
portability to browser environments.

There are relatively few disadvantages:

Oracle-specific generated code does not adhere to SQLJ standards and is not
portable to generic JDBC platforms.

Profile-specific functionality is not available. For example, you cannot perform
customizations at a later date to use the Oracle customizer harness - debug,
-verify,and - print options. (These options are described in "Customizer
Harness Options that Invoke Specialized Customizers" on page A-21. The
Audi t or | nst al | er invoked by the - debug option is described in
"Auditorinstaller Customizer for Debugging" on page A-44.)

Environment Requirements for Oracle-Specific Code Generation

Be aware of the following requirements of your environment if you use
Oracle-specific code generation:

You must use an Oracle9i JDBC driver, because Oracle-specific code generation
requires JDBC statement caching functionality. None of the Oracle8i (or prior)
JDBC releases will work.

The generic SQLJ runtime libraries, r unt i me and r unt i ne- nonor acl e, are
not supported for Oracle-specific code generation. You must have one of the
following Oracle SQLJ runtime libraries in your classpath:

— runtinmell.jar (or.zip)
— runtinmel2.jar (or.zip)
— runtinmel2ee.jar (or.zip)

These runtime libraries are further discussed in "Requirements for Using Oracle
SQLJ" on page 2-3.

4-40 Oracle9/ SQLJ Developer’s Guide and Reference

Oracle-Specific Code Generation (No Profiles)

Code Considerations and Limitations with Oracle-Specific Code Generation

When coding a SQLJ application where Oracle-specific code generation will be
used, be aware of the following programming considerations and restrictions:

To use a nondefault statement cache size, you must include appropriate method
calls in your code, because the Oracle customizer st nt cache option is
unavailable. See "SQLJ Usage Changes with Oracle-Specific Code Generation"
on page 4-42.

Do not mix Oracle-specific generated code with 1SO standard generated code in
the same application.

However, if Oracle-specific code and ISO standard code must share the same
connection, do one of the following:

— Ensure that the Oracle-specific code and ISO standard code use different
SQLJ execution context instances. (See "Execution Contexts" on page 7-24
for information about SQLJ execution contexts.)

or:

— Place a transaction boundary—a manual COVM T or ROLLBACK
statement—between the two kinds of code.

This limitation regarding mixing code is especially significant for server-side
code, because all Java code running in a given session uses the same JDBC
connection and SQLJ connection context. (Also see "Server-Side Considerations
with Oracle-Specific Code Generation" on page 4-44.)

Do not rely on side effects in parameter expressions when values are returned
from the database. Oracle-specific code generation does not create temporary
variables for evaluation of OUT parameters, | NOUT parameters, SELECT | NTO
variables, or return arguments on SQL statements.

For example, avoid statements such as the following:

#sql { SELECT * FROMEMP INTO: (x[i++]), :(f_wth_sideffect()[i++]),
t(apfi]) 1

or:

#sgl x[i++] ={ VALUES f(:INQUJT (x[i++]), :QJT (f_with sideffect())) };

Evaluation of arguments is performed "in place" in the generated code. This

may result in different behavior than when evaluation is according to 1SO SQLJ
standards.

Key Programming Considerations 4-41

Oracle-Specific Code Generation (No Profiles)

Side effects are discussed, and examples shown, in "Evaluation of Java
Expressions at Runtime" on page 3-22 and "Examples of Evaluation of Java
Expressions at Runtime (ISO Code Generation)" on page 3-24.

« Ifyou use type maps for Oracle object functionality (which assumes that the
corresponding Java classes implement the j ava. sql . SQLDat a interface,
given that JPublisher-generated Java classes do not otherwise require a type
map), then your iterator declarations and connection context declarations must
specify the same type map(s). Specify this through the declaration wi t h clause.

For example, if you declare a connection context class as follows:

#sgl context TypeMapQontext wth (typeMap="MTypeMap");

and you populate an iterator instance from a SQLJ statement that uses an
instance of this connection context class, as follows:

TypeMapQont ext tnt = new TypeMapQontext (...);

Mlterator it;
#sgl [tne] it = (SELECT pers, addr FROMtab WERE .. .);

then the iterator declaration is required to have specified the same type map, as
follows:

#sql iterator M/lterator wth (typeMap="MTypeMap")
(Person pers, Address addr);

Type maps are discussed in "Custom Java Class Requirements” on page 6-11.
For general information aboutwi t h clauses, see "Declaration WITH Clause" on
page 3-6.

Note: The reason for this restriction is that with Oracle-specific
code generation, all iterator getter methods are fully generated as
Oracle JDBC calls during translation. To generate the proper calls,
the SQLJ translator must know whether an iterator will be used
with a particular type map.

SQLJ Usage Changes with Oracle-Specific Code Generation

Some options that were previously available only as Oracle customizer options are
useful with Oracle-specific code generation as well. Because profile customization is
not applicable with Oracle-specific code generation, these options have been made
available through other means.

4-42 Oracle9/ SQLJ Developer’s Guide and Reference

Oracle-Specific Code Generation (No Profiles)

To alter the statement cache size or disable statement caching when generating
Oracle-specific code, use method calls in your code instead of using the customizer
st nt cache option. The sql j . runti me. r ef . Def aul t Cont ext class, as well as
any connection context class you declare, now has the following static methods:

« setDefaul tStntCacheSi ze(int)
« int getDefaultStntCacheSize()
and the following instance methods:

« setStntCacheSize(int)

« int getStntCacheSize()

By default, statement caching is enabled.

See "Connection Context Methods for Statement Caching (Oracle-Specific Code)" on
page 10-5 for more information. (This is a subsection under "Statement Caching" on
page 10-4, which provides an overview of statement caching.)

In addition, the following options are available as front-end Oracle SQLJ translator
options as well as Oracle customizer options:

« - opt col s—Enable iterator column type and size definitions to optimize
performance.

« - opt par ans—Enable parameter size definitions to optimize JDBC resource
allocation (used in conjunction with opt par andef aul t s).

« -optparandef aul t s—Set parameter size defaults for particular datatypes
(used in conjunction with opt par ans).

« -fixedchar—Enable CHAR comparisons with blank padding for WHERE
clauses.

See "Options for Code Generation, Optimizations, and CHAR Comparisons" on
page 8-51 for more information about these options.

Be aware of the following:

« Usethe - opt col s option only if you are using online semantics-checking
(where you have used the SQLJ translator - user, - passwor d, and - ur |
options appropriately to request a database connection during translation).

« The functionality of the - opt col s, - opt par ans, and - opt par andef aul t s
options, including default values, is the same as for the corresponding
customizer options.

Key Programming Considerations 4-43

Oracle-Specific Code Generation (No Profiles)

Server-Side Considerations with Oracle-Specific Code Generation
Note the following considerations if your SQLJ code will run in the server:

« The server-side SQLJ translator no longer supports 1ISO standard generated
code. SQLJ source code that is loaded into the server and compiled there will
always be translated with the default - codegen=or acl e setting.

Therefore, to use I1SO standard generated code in the server, you must translate
and compile the SQLJ code on a client and then load the individual components
into the server. (See "Translating SQLJ Source on a Client and Loading
Components" on page 11-9.)

« The caution against mixing Oracle-specific generated code with 1SO standard
generated code (described in "Code Considerations and Limitations with
Oracle-Specific Code Generation" on page 4-41) applies to server-side Java code
that calls a Java stored procedure or stored function, even if the stored
procedure is invoked through a PL/SQL wrapper. This constitutes a recursive
call-in—by default, the Execut i onCont ext object is shared by both the
calling module and the called module. Therefore, both modules should be
translated with the same - codegen setting.

If you want to ensure interoperability with code that has been translated with
ISO standard code generation, it is advisable to explicitly instantiate execution
context instances, as in the following example:

public static method() throws SQException
{

Execution ontext ec = new Executi onCont ext ();
try {
#sgl [ec] { SQ operation };

} fi”n;sllly{ ec.close(); }

}

Important: To avoid resource leakage when using an explicit
Execut i onCont ext instance, be sure to use the cl ose()
method, as shown in this example.

4-44 Oracle9/ SQLJ Developer’s Guide and Reference

Requirements and Restrictions for Naming

Requirements and Restrictions for Naming

There are four areas to consider in discussing haming requirements, naming
restrictions, and reserved words:

« theJava namespace, including additional restrictions imposed by SQLJ on the
naming of local variables and classes

« the SQLJ namespace
« the SQL namespace

= source file names

Java Namespace: Local Variable and Class Naming Restrictions

The Java namespace applies to all your standard Java statements and declarations,
including the naming of Java classes and local variables. All standard Java naming
restrictions apply, and you should avoid use of Java reserved words.

In addition, SQLJ places minor restrictions on the naming of local variables and
classes.

Note: Naming restrictions particular to host variables are
discussed in "Restrictions on Host Expressions" on page 3-33.

Local Variable Naming Restrictions

Some of the functionality of the SQLJ translator results in minor restrictions in
naming local variables.

The SQLJ translator replaces each SQLJ executable statement with a statement
block, where the SQLJ executable statement is of the standard syntax:

#sgl { SQ operation };

SQLJ may use temporary variable declarations within a generated statement block.
The name of any such temporary variables will include the following prefix:

sJT

(There are two underscores at the beginning and one at the end.)

The declarations that follow are examples of those that might occur in a
SQLJ-generated statement block.

Key Programming Considerations 4-45

Requirements and Restrictions for Naming

int _ sJT index;
(oj ect __SJT key;
java.sql . PreparedStatenent _ sJT stnt;

The string __sJT_ is a reserved prefix for SQLJ-generated variable names. SQLJ
programmers must not use this string as a prefix for the following:

= hames of variables declared in blocks that include executable SQL statements
= hames of parameters to methods that contain executable SQL statements

« names of fields in classes that contain executable SQL statements, or whose
subclasses or enclosed classes contain executable SQL statements

Class Naming Restrictions
Be aware of the following minor restrictions in naming classes in SQLJ applications:

= You must not declare class names that may conflict with SQLJ internal classes.
In particular, a top-level class cannot have a name of the following form if a is
the name of an existing class in the SQLJ application:

a_SJb (where a and b are legal Java identifiers)

For example, if your application class is Foo in file Foo. sql j , then SQLJ
generates a profile-keys class called Foo_SJPr of i | eKeys. Do not declare a
class name that conflicts with this.

« A class containing SQLJ executable statements must not have a name that is the
same as the first component of the name of any package that includes a Java
type used in the application. Examples of class names to avoid are j ava, sql j ,
and or acl e (case-sensitive). As another example, if your SQLJ statements use
host variables whose type is abc. def . MyCl ass, then you cannot use abc as
the name of the class that uses these host variables.

To avoid this restriction, follow Java naming conventions recommending that
package names start in lowercase and class names start in uppercase.

SQLJ Namespace

4-46

The SQLJ namespace refers to #sql class declarations and the portion of #sq|l
executable statements outside the curly braces.

Note: Restrictions particular to the naming of iterator columns are
discussed in "Using Named Iterators" on page 3-43.

Oracle9i SQLJ Developer’s Guide and Reference

Requirements and Restrictions for Naming

Avoid using the following SQLJ reserved words as class names for declared
connection context classes or iterator classes, inwi t h ori npl emrent s clauses, or in
iterator column type declaration lists:

« iterator
= context
= Wth

For example, do not have an iterator class or instance called i t er at or ora
connection context class or instance called cont ext .

Note, however, that it is permissible to have a stored function return variable whose
name is any of these words.

SQL Namespace

The SQL namespace refers to the portion of a SQLJ executable statement inside the
curly braces. Normal SQL naming restrictions apply here. See the Oracle9i SQL
Reference for more information.

Note, however, that host expressions follow rules of the Java namespace, not the
SQL namespace. This applies to the name of a host variable and to everything
between the outer parentheses of a host expression.

File Name Requirements and Restrictions

SQLJ source files have the . sql j file name extension. If the source file declares a
public class (maximum of one), then the base name of the file must match the name
of this class (case-sensitive). If the source file does not declare a public class, then
the file name must still be a legal Java identifier, and it is recommended that the file
name match the name of the first defined class.

For example, if you define the public class MySour ce in your source file, then your
file name must be:

M/Sour ce. sql j

Note: These file naming requirements follow the Java Language
Specification and are not SQLJ-specific. These requirements do not
directly apply in Oracle9i, but it is still advisable to adhere to them.

Key Programming Considerations 4-47

Considerations for SQLJ in the Middle Tier

Considerations for SQLJ in the Middle Tier

There are special considerations if you run SQLJ in the middle tier, such as in an
Oracle9iAS Containers for J2EE (OC4J) environment.

With release 9.0.1 and later, the Oracle JDBC drivers provide Oracle-specific
interfaces in the or acl e. j dbc package. The Oracle SQLJ libraries runt i mel1,
runti mel2, andrunti nmel2ee make full use of these interfaces. This is the reason
why these libraries are not compatible with Oracle JDBC releases 8.1.7 and prior.

In the Oracle9iAS product, connections are established through data sources, which
typically return instances of the or acl e. j dbc. Or acl eConnect i on interface
instead of the older or acl e. j dbc. dri ver. Oracl eConnecti on class. This is
necessary for certain connection functionality, such as distributed transactions (XA).
To support such features, connection objects must implement the new interface.

This has the following consequences, relevant in an Oracle9iAS middle-tier
environment, or any situation where data sources are used:

« For maximum portability and flexibility of your code, use
oracl e. jdbc. O acl eXXXtypes instead of
oracl e.jdbc.driver. O acl eXXX types.

« For custom Java types (typically for SQL objects and collections), implement
oracl e. sgl . ORADat a instead of the deprecated
oracl e. sql . Cust onDat uminterface.

« Do notuse the SQLJ runti ne library. Use runt i mell,runti mel2, or
runti mel2ee instead (depending on your JDK environment). The runtime
library is backward compatible with older JDBC drivers, such as release 8.1.7, so
supports the or acl e. j dbc. dri ver. O acl eXXX types, not the
oracl e. jdbc. Oracl eXXXtypes.

However, if you must use the r unt i ne library for some reason, then set the
option - pr of i | e=f al se during translation. In this case, your program will
not use Oracle-specific customization and therefore will not fail if passed an
oracl e. jdbc. Oracl eConnecti on instance instead of an

oracl e.jdbc. driver. Oracl eConnecti on instance. In this circumstance,
Oracle-specific features will not be supported.

To facilitate management of connections obtained through data sources and
connection JavaBeans (for SQLJ JavaServer Pages), Oracle9i SQLJ provides a
number of APIs in the runti nel2ee library.

4-48 Oracle9/ SQLJ Developer’s Guide and Reference

Considerations for SQLJ in the Middle Tier

For general information about SQLJ support for data sources and connection
JavaBeans, see the following sections:

« "Standard Data Source Support" on page 7-13
« "SQLIJ-Specific Data Sources" on page 7-16

« "SQLIJ-Specific Connection JavaBeans for JavaServer Pages" on page 7-20

Key Programming Considerations 4-49

Considerations for SQLJ in the Middle Tier

4-50 Oracle9/ SQLJ Developer’s Guide and Reference

D

Type Support

This chapter documents datatypes supported by Oracle SQLJ, listing supported
SQL types and the Java types that correspond to them, including information about
backward compatibility to Oracle8 and Oracle7. This is followed by details about
support for streams and Oracle type extensions. SQLJ "support” of Java types refers
to types that can be used in host expressions.

For information about Oracle SQLJ support for user-defined types—SQL objects,
object references, and collections—see Chapter 6, "Objects, Collections, and
OPAQUE Types".

This chapter covers the following topics:
« Supported Types for Host Expressions
« Support for Streams

« Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Type Support 5-1

Supported Types for Host Expressions

Supported Types for Host Expressions

This section summarizes the types supported by Oracle SQLJ, including
information about new support for JDBC 2.0 types, and backward compatibility for
the 8.0.x and 7.3.x Oracle JDBC drivers.

For a complete list of legal Java mappings for each Oracle SQL type, see the
reference information in the Oracle9i JDBC Developer’s Guide and Reference.

Note: SQLJ (and SQL) perform implicit conversions between SQL
and Java types. Although this is generally useful and helpful, it can
produce unexpected results. Do not rely on translation-time
type-checking alone to ensure the correctness of your code.

Summary of Supported Types

5-2

Table 5-1 lists the Java types that you can use in host expressions when employing
the Oracle JDBC drivers. This table also documents the correlation between Java
types, SQL types whose typecodes are defined in the class

oracl e. jdbc. Oracl eTypes, and datatypes in Oracle9i.

Note: The Or acl eTypes class simply defines a typecode, which
is an integer constant, for each Oracle datatype. For standard JDBC
types, the Or acl eTypes value is identical to the standard

j ava. sql . Types value.

SQL data output to a Java variable is converted to the corresponding Java type. A
Java variable input to SQL is converted to the corresponding Oracle datatype.

Oracle9i SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types

Java Type OracleTypes Definition Oracle SQL Datatype

STANDARD JDBC 1.x TYPES

boolean BIT NUMBER
byte TINYINT NUMBER
short SMALLINT NUMBER
int INTEGER NUMBER
long BIGINT NUMBER
float REAL NUMBER
double FLOAT, DOUBLE NUMBER
java.lang.String CHAR CHAR
VARCHAR VARCHAR2
LONGVARCHAR LONG
byte[] BINARY RAW
VARBINARY RAW
LONGVARBINARY LONGRAW
java.sgl.Date DATE DATE
java.sql.Time TIME DATE
java.sql.Timestamp TIMESTAMP DATE
TIMESTAMP TIMESTAMP
java.math.BigDecimal NUMERIC NUMBER
DECIMAL NUMBER
STANDARD JDBC 2.0 TYPES
java.sql.Blob BLOB BLOB
java.sql.Clob CLOB CLOB
java.sql.Struct STRUCT object types
java.sql.Ref REF reference types
java.sql.Array ARRAY collection types
custom object classes implementing STRUCT object types
java.sql.SQLData
JAVA WRAPPER CLASSES
java.lang.Boolean BIT NUMBER

Type Support

5-3

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type

OracleTypes Definition

Oracle SQL Datatype

java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double

SQLJ STREAM CLASSES
sqlj.runtime.BinaryStream
sglj.runtime.CharacterStream

sglj.runtime.AsciiStream
(deprecated; use CharacterStream)

sglj.runtime.UnicodeStream
(deprecated; use CharacterStream)

ORACLE EXTENSIONS
oracle.sql. NUMBER
oracle.sql.CHAR
oracle.sql.RAW
oracle.sql.DATE
oracle.sql. TIMESTAMP
oracle.sql. TIMESTAMPTZ

oracle.sql. TIMESTAMPLTZ

oracle.sql.ROWID
oracle.sql.BLOB
oracle.sql.CLOB
oracle.sql.BFILE
oracle.sql.STRUCT
oracle.sql.REF

5-4 Oracle9i SQLJ Developer’s Guide and Reference

TINYINT
SMALLINT
INTEGER
BIGINT

REAL

FLOAT, DOUBLE

LONGVARBINARY
LONGVARCHAR
LONGVARCHAR

LONGVARCHAR

NUMBER
CHAR

RAW

DATE
TIMESTAMP
TIMESTAMPTZ

TIMESTAMPLTZ

ROWID
BLOB
CLOB
BFILE
STRUCT
REF

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

LONG RAW
LONG
LONG

LONG

NUMBER
CHAR

RAW

DATE
TIMESTAMP

TIMESTAMP-WITH-
TIMEZONE

TIMESTAMP-WITH-
LOCAL-TIMEZONE

ROWID
BLOB
CLOB
BFILE
object types

reference types

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type

OracleTypes Definition

Oracle SQL Datatype

oracle.sql. ARRAY
oracle.sql. OPAQUE

custom object classes implementing
oracle.sql. ORAData

custom reference classes implementing
oracle.sql. ORAData

custom collection classes implementing
oracle.sql. ORAData

custom classes implementing
oracle.sql. ORAData for OPAQUE types
(for example, oracle.xdb.XMLType)

other custom Java classes implementing
oracle.sql. ORAData (to wrap any
oracle.sql type)

SQLJ object Java types (can implement
either SQLData or ORAData)

JAVA TYPES FOR PL/SQL TYPES

scalar indexed-by table (JDBC OCI driver

only), represented by a Java numeric
array or an array of St ri ng,

oracl e.sql . CHAR or

oracl e. sql . NUMBER

GLOBALIZATION SUPPORT
oracle.sql.NCHAR

oracle.sql.NString

oracle.sql.NCLOB

oracle.sglj.runtime.NcharCharacterStream

oracle.sqglj.runtime.NcharAsciiStream
(deprecated; use NcharCharacterStream)

ARRAY
OPAQUE
STRUCT

REF

ARRAY

OPAQUE

any

JAVA_STRUCT

n/a

CHAR

CHAR
VARCHAR
LONGVARCHAR

CLOB
LONGVARCHAR
LONGVARCHAR

collection types
OPAQUE types
object types

reference types

collection types

OPAQUE types

any

SQLJ object SQL types
(JAVA_STRUCT behind
the scenes; automatic
conversion to an
appropriate Java class)

n/a

Note: Thereis a
PLSQL_| NDEX_TABLE
type, but it does not
appear to be used
externally.

CHAR

CHAR
VARCHAR?2
LONG

CLOB
LONG
LONG

Type Support 5-5

Supported Types for Host Expressions

Table 5-1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type OracleTypes Definition Oracle SQL Datatype

oracle.sqglj.runtime.NcharUnicodeStream LONGVARCHAR LONG
(deprecated; use NcharCharacterStream)

QUERY RESULT OBJECTS
java.sql.ResultSet CURSOR CURSOR
SQLJ iterator objects CURSOR CURSOR

You can refer to the Oracle9i JIDBC Developer’s Guide and Reference for more
information about Oracle type support.

The following points relate to type support for standard features:

« JDBC and SQLJ do not support Java char and Char act er types. Instead, use
the Java St r i ng type to represent character data.

« Do not confuse the supported j ava. sql . Dat e type with j ava. uti | . Date,
which is not directly supported. The j ava. sql . Dat e class is a wrapper for
java. util . Dat e that allows JDBC to identify the data as a SQL DATE and
adds formatting and parsing operations to support JDBC escape syntax for date
values.

« Remember that all numeric types in Oracle9i are stored as NUVMBER. Although
you can specify additional precision when you declare a NUMBER during table
creation (by declaring the total number of places and the number of places to
the right of the decimal point), this precision may be lost when retrieving the
data through the Oracle JDBC drivers, depending on the Java type that you use
to receive the data. An or acl e. sgl . NUMBER instance would preserve full
information.

« ThelJava wrapper classes (such as | nt eger and Fl oat) are useful in cases
where null values may be returned by the SQL statement. Primitive types (such
asi nt and f| oat) cannot contain null values. See "Null-Handling" on
page 4-19 for more information.

« For information about SQLJ support for result set and iterator host variables,
see "Using Iterators and Result Sets as Host Variables" on page 3-52.

« The SQLJ stream classes are required in using streams as host variables. For
information, see "Support for Streams" on page 5-14.

5-6 Oracle9/ SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions

Weak types cannot be used for OUT or | NOUT parameters. This applies to the
Struct, Ref , and Ar r ay standard JDBC 2.0 types, as well as to corresponding
Oracle extended types.

A new set of interfaces, in the or acl e. j dbc package, is added in Oracle 9i
JDBC in place of classes of the or acl e. j dbc. dri ver package. These new
interfaces provide a more generic way for users to access Oracle-specific
features using Oracle JDBC drivers. Specifically, when creating programs for the
middle tier, you should use the new API. The Oracle 8i API will continue to be
supported for backward compatibility, so no change is required for existing
JDBC code to upgrade from Oracle 8i to Oracle 9i. (SQLJ programmers,
however, will not typically use these interfaces directly. They are used
transparently by the SQLJ runtime or in Oracle-specific generated code.)

For more information, see "Custom Java Class Interface Specifications" on
page 6-6.

The following points relate to Oracle extensions, most of which are covered in
"Support for JDBC 2.0 LOB Types and Oracle Type Extensions" on page 5-29 and in
Chapter 6, "Objects, Collections, and OPAQUE Types":

Oracle SQLJ requires any class that implements or acl e. sql . ORADat a to set
thepublic static _SQ _TYPECODE parameter according to values defined
in the Or acl eTypes class. In some cases, an additional parameter must be set
as well, suchas _SQ._NANME for objects and _SQ._BASETYPE for object
references. This occurs automatically if you use the Oracle JPublisher utility to
generate the class.

See "Oracle Requirements for Classes Implementing ORAData" on page 6-11.

The or acl e. sql classes are wrappers for SQL data for each of the Oracle
datatypes. The ARRAY, STRUCT, REF, BLOB, and CL OB classes correspond to
standard JDBC 2.0 interfaces. For background information about these classes
and Oracle extensions, see the Oracle9i JDBC Developer’s Guide and Reference.

Custom Java classes can map to Oracle objects (implementing ORADat a or
SQLDat a), references (implementing ORADat a only), collections (implementing
ORADat a only), OPAQUE types (implementing ORADat a only), or other SQL
types (for customized handling, implementing ORADat a only). See "Custom
Java Classes" on page 6-6.

You can use the Oracle JPublisher utility to automatically generate custom Java
classes. See "JPublisher and the Creation of Custom Java Classes" on page 6-28.

Oracle SQLJ has functionality for automatic blank padding when comparing a
string to a CHAR column value for a WHERE clause. Otherwise the string would

Type Support 5-7

Supported Types for Host Expressions

have to be padded to match the number of characters in the database column.
This is available as a SQLJ translator option for Oracle-specific code generation,
or as an Oracle customizer option for ISO standard code generation. See "CHAR
Comparisons with Blank Padding (-fixedchar)" on page 8-58 and "Oracle
Customizer CHAR Comparisons with Blank Padding (fixedchar)" on

page A-32.

« Weak types cannot be used for QUT or | NOUT parameters. This applies to the
STRUCT, REF, and ARRAY Oracle extended types and corresponding standard
JDBC 2.0 types, as well as to Oracle OPAQUE types.

« Using any of the Oracle extensions requires the following:
— an Oracle JDBC driver
— Oracle-specific code generation or Oracle customization during translation

— the Oracle SQLJ runtime when your application runs

Supported Types and Requirements for JDBC 2.0

As indicated in Table 5-1 above, Oracle JDBC and SQLJ support JDBC 2.0 types in
the standard j ava. sql package.

This section lists JDBC 2.0 supported types and related Oracle extensions.

Important: In a Sun Microsystems JDK environment, JDBC 2.0
types require a JDK 1.2.x or higher version. While Oracle JDBC
under JDK 1.1.x supports or acl e. j dbc2 extensions to mimic
JDBC 2.0 type functionality, Oracle SQLJ has never supported the
oracl e. j dbc?2 package.

To use JDBC 2.0 types or corresponding Oracle extended types in
Oracle SQLJ, use the SQLJrunt i mel2 orrunti nel2ee library,
which support JDK 1.2.x or higher.

Table 5-2 lists the JDBC 2.0 types supported by Oracle SQLJ. You can use them
wherever you can use the corresponding Oracle extensions, summarized in the
table.

The Oracle extensions have been available in prior releases and are still available as
well. These or acl e. sql . * classes provide functionality to wrap raw SQL data,
and are described in the Oracle9i JDBC Developer’s Guide and Reference.

5-8 Oracle9i SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions

Table 5-2 Correlation between Oracle Extensions and JDBC 2.0 Types

JDBC 2.0 Type Oracle Extension
java.sql.Blob oracle.sql.BLOB
java.sql.Clob oracle.sql.CLOB
java.sql.Struct oracle.sql.STRUCT
java.sql.Ref oracle.sql.REF
java.sql.Array oracle.sql. ARRAY
java.sql.SQLData n/a

n/a oracle.sql. ORAData

(_SQ.__TYPECODE = Or acl eTypes. STRUCT)

ORADat a functionality is an Oracle-specific alternative to standard SQLDat a
functionality for Java support of user-defined types. For information, see "Custom
Java Classes" on page 6-6.

For information about support for other types in Table 5-2, see "Support for BLOB,
CLOB, and BFILE" on page 5-30 and "Support for Weakly Typed Obijects,
References, and Collections" on page 6-80.

The following JDBC 2.0 types are currently not supported in Oracle JDBC or SQLJ:
« JAVA OBJECT—Represents an instance of a Java type in a SQL column.

« DI STI NCT—A distinct SQL type represented in or retrievable from a basic SQL
type (for example, SHOESI ZE --> NUMBER).

Using PL/SQL BOOLEAN, RECORD Types, and TABLE Types

Oracle SQLJ and JDBC do not support calling arguments or return values of the
PL/SQL BOOLEANtype or RECORD types. Also, when using the Thin driver, they
do not support calling arguments or return values of PL/SQL TABLE types (known
as indexed-by tables). TABLE types are supported for the OCI driver, however.

Support for TABLE Types (with OCI driver only)

The Oracle JDBC OCI driver has supported scalar PL/SQL indexed-by tables since
Oracle8i release 8.1.7. For details about the JDBC support, see the Oracle9i JDBC
Developer’s Guide and Reference.

Type Support 5-9

Supported Types for Host Expressions

Oracle9i SQLJ simplifies the process of writing and retrieving data in scalar
indexed-by tables. The following array types are supported:

« humerictypes—int[],long[],float[],double[],short[],
java. mat h. Bi gDeci mal [], oracl e. sql . NUMBER]]

« character types—j ava. | ang. String[],oracl e. sql . CHAR[]
Here is an example of writing indexed-by table data to the database:
int[] vas ={1,2, 3};

#sgl { call procin(:vals) };

Here is an example of retrieving indexed-by table data from the database:
oracle.sqgl. CHAR] outval s;

#sqgl { call procout(:QUJT outval s/*[111] (22)*/) };

You must specify the maximum length of the output array being retrieved, using

[xxx] syntaxinside/*...*/ syntax as shown. Also, for character-like binds, you
can optionally include (xx) syntax, as shown, to specify the maximum length (in
bytes) of an array element.

Note: Theoracl e. sqgl . Dat umclass is not supported directly.
You must use an appropriate subclass, such as or acl e. sgl . CHAR
or or acl e. sql . NUMBER

Workarounds for Non-Supported Types

As a workaround for an unsupported type, you can create wrapper procedures that
process the data using supported types. For example, to wrap a stored procedure
that uses PL/SQL boolean values, you can create a stored procedure that takes a
character or number from JDBC and passes it to the original procedure as BOOLEAN,
or, for an output parameter, accepts a BOOLEAN argument from the original
procedure and passes it as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored
procedure that uses PL/SQL records, you can create a stored procedure that
handles a record in its individual components (such as CHAR and NUMBER). To wrap
a stored procedure that uses PL/SQL TABLE types, you can break the data into
components or perhaps use Oracle collection types.

5-10 Oracle9/ SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions

Here is an example of a PL/SQL wrapper procedure MY_PRCC for a stored
procedure PROC that takes a BOOLEAN as input:

PROCEDURE MY_PRCC (n NUMBER) 1S
BEG N
IF n=0
THEN proc(fal se);
BLSE proc(true);
END | F;
END,

PROCEDURE PROC (b BOOLEAN) 1S
BEG N

BEND,

Note: When using these non-supported PL/SQL types in method
signatures in PL/SQL packages or SQL objects, consider using the
Oracle9i JPublisher utility. This facilitates the creation of Java types
to call such methods. See "JPublisher and the Creation of Custom
Java Classes" on page 6-28 for an overview of JPublisher, and the
Oracle9i JPublisher User’s Guide for more information.

Backward Compatibility for Previous Oracle JDBC Releases

This section summarizes backward compatibility issues when using Oracle SQLJ
with previous Oracle JDBC releases.

Note: Oracle9i release 2 adds support for OPAQUE types and
TIMESTAMP types.

Backward Compatibility for Oracle8i

The following Oracle9i features are not supported, or are supported differently, in
the Oracle8i JDBC drivers:

=« oracle.sqgl.ORADat a and ORADat aFact or y interfaces for Java mapping of
user-defined SQL types

Use the Oracle8i or acl e. sql . Cust onDat umand Cust onDat unfact ory
interfaces instead. See "ORAData Versus CustomDatum Interfaces" on page 6-8.

Type Support 5-11

Supported Types for Host Expressions

« Oracle extensions for character types for globalization support—NCHAR, NCL OB,
NSt ri ng, and Nchar Char act er St r eam(or Nchar Asci i St r eamand
Nchar Uni codeSt r eamin previous releases)

Backward Compatibility for Oracle 8.0.x and 7.3.x
Some of the Oracle type extensions supported by the Oracle9i JDBC drivers are

either not supported or supported differently by the Oracle 8.0.x and 7.3.x JDBC
drivers. Following are the key points:

« The Oracle 8.0.x and 7.3.x drivers have no or acl e. sql package, meaning
there are no wrapper types such as or acl e. sql . NUMBER and
oracl e. sgl . CHARthat you can use to wrap raw SQL data.

« The Oracle 8.0.x and 7.3.x drivers do not support Oracle object and collection
types.

« The Oracle 8.0.x and 7.3.x drivers support the Oracle RON D datatype with the
Or acl eRowi d class in the or acl e. j dbc package.

=« The Oracle 8.0.x drivers support the Oracle BLOB, CLOB, and BFI LE datatypes
with the Or acl eBl ob, Or acl eCl ob, and Or acl eBf i | e classes in the
oracl e. j dbc package. These classes do not include LOB and BFILE
manipulation methods such as those discussed in "Support for BLOB, CLOB,
and BFILE" on page 5-30. You must, instead, use the PL/SQL DBMS_LOB
package, which is discussed in the same section.

« The Oracle 7.3.x drivers do not support BLOB, CLOB, and BFI LE.

Table 5-3 summarizes these differences.

Table 5-3 Type Support Differences for Oracle 8.0.x and 7.3.x JDBC Drivers

Java Type (Oracle Extensions) Oracle Types Definition Oracle Datatype
oracle.sql. NUMBER not supported n/a
oracle.sql.CHAR not supported n/a
oracle.sql.RAW not supported n/a
oracle.sql.DATE not supported n/a
oracle.jdbc.OracleRowid ROWID ROWID
oracle.jdbc.OracleBlob BLOB in 8.0.x BLOB in 8.0.x
not supported in 7.3.x n/ain 7.3.x

5-12 Oracle9/ SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions

Table 5-3 Type Support Differences for Oracle 8.0.x and 7.3.x JDBC Drivers (Cont.)

Java Type (Oracle Extensions) Oracle Types Definition Oracle Datatype
oracle.jdbc.OracleClob CLOB in 8.0.x CLOB in 8.0.x
not supported in 7.3.x n/ain 7.3.x
oracle.jdbc.OracleBfile BFILE in 8.0.x BFILE in 8.0.x
not supported in 7.3.x n/ain 7.3.x
oracle.sql.STRUCT not supported n/a
oracle.sql.REF not supported n/a
oracle.sql. ARRAY not supported n/a
JPub-generated objects not supported n/a
JPub-generated object references not supported n/a
JPub-generated arrays not supported n/a
client-customized types not supported n/a

(customization of any or acl e. sql
types, including objects, references,
and collections)

Type Support 5-13

Support for Streams

Support for Streams

Standard SQLJ provides two specialized classes, listed below, for convenient
processing of long data in streams. These stream types can be used for iterator
columns to retrieve data from the database, or for input host variables to send data
to the database. As with Java streams in general, these classes allow the convenience
of processing and transferring large data items in manageable chunks.

« sqglj.runtinme.BinaryStream
« sqglj.runtime. CharacterStream

This section discusses general use of these classes, Oracle SQLJ extended
functionality, and stream class methods.

Note: As of IDBC 2.0, the Char act er St r eamclass replaces the
Asci i St reamand Uni codeSt r eamclasses. Char act er St r eam
shelters users from unnecessary logistics regarding encoding. The
Asci i St reamand Uni codeSt r eamclasses are still supported for
backward compatibility, but are deprecated.

General Use of SQLJ Streams

With respect to Oracle9i, Table 5-1 on page 5-3 lists the datatypes you would
typically process using these stream classes. To summarize:

« Bi narySt reamis typically used for datatype LONG RAW
(Types. LONGVARBI NARY), but might also be used for datatype RAW
(Types. Bl NARY or Types. VARBI NARY).

« Charact er St r eamis typically used for datatype LONG
(j ava. sqgl . Types. LONGVARCHAR), but might also be used for datatype
VARCHAR2 (Types. VARCHAR).

Of course, any use of streams is at your discretion. As Table 5-1 documents, LONG
and VARCHAR?2 data can also be manifested in Java strings, while RAWand LONGRAW
data can also be manifested in Java byte arrays. Furthermore, if your database
supports large object types such as BLOB (binary large object) and CLOB (character
large object), you may find these to be preferable to using types such as LONGand
LONG RAW(although streams may still be used in extracting data from large
objects). Oracle SQLJ and JDBC support large object types—see "Support for BLOB,
CLOB, and BFILE" on page 5-30.

5-14 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

Both SQLJ stream classes are subclasses of standard Java classes,

java.io. | nput Streamfor Bi narySt reamand j ava. i 0. Reader for

Char act er St r eam and act as wrappers to provide the functionality required by
SQLJ. This functionality is to communicate to SQLJ the type and length of the
underlying data so that it can be processed and formatted properly.

You can use the SQLJ stream types for host variables to either send or retrieve data.

Key Aspects of Stream Support Classes

The following abbreviated code illustrates key aspects of the Bi narySt r eam
class—what it extends, constructor signatures, and key method signatures:

public class sqglj.runtine. B narySreamextends sqlj.runtine.StreanVWapper
{ public sqlj.runtine. B naryStreanfjava.io.lnputSrean;

public sqlj.runtine.B naryStrean{java.io.lnput Sreamint);

public java.io.|nputStreamget | nput Streant);

public int getlLength();

public void setlLength(int);
}

And the following abbreviated code illustrates key aspects of the
Char act er St r eamclass:

public class sqglj.runtine. CharacterSreamextends java.io. FilterReader
{ public sqglj.runtine. CharacterStrean{java.io.Reader);

public sqlj.runtine. CharacterStrean{java.io. Reader,int);

public int getlLength();

public java.io. Reader getReader();

public void setlLength(int);

}

Constructor i nt parameters are for data length, in bytes or characters as applicable.

Notes:

« Forany method that takes aj ava. i 0. | nput St r eamobject as
input, you can use a Bi nar ySt r eamobject instead. Similarly,
for any method that takes a j ava. i 0. Reader object as input,
you can use a Char act er St r eamobject instead.

« Thedeprecated Asci i St reamand Uni codeSt r eamclasses
have the same key aspects and signatures as Bi har ySt r eam

Type Support 5-15

Support for Streams

Using SQLJ Streams to Send Data

Standard SQLJ allows you to use streams as host variables to update the database.

A key point in sending a SQLJ stream to the database is that you must somehow
determine the length of the data and specify that length to the constructor of the
SQLJ stream. This will be further discussed below.

You can use a SQLJ stream to send data to the database as follows:

1.
2.

5.

Determine the length of your data.

Create an appropriate standard Java data object for input. For Bi nar ySt r eam
this would be an input stream—an instance of j ava. i 0. | nput St r eamor
some subclass. For Char act er St r eamthis would be a reader object—an
instance of j ava. i 0. Reader or some subclass.

Create an instance of the appropriate SQLJ stream class (depending on the type
of data), passing the data object and length (as an i nt) to the constructor.

Use the SQLJ stream instance as a host variable in a suitable SQL operation in a
SQLJ executable statement.

Close the stream. (This is not required, but is recommended.)

The following subsections now go into more detail regarding two typical examples
of sending a SQLJ stream to the database:

using an operating system file to update a LONG or LONG RAWcolumn

This can be either a binary file to update a LONG RAWcolumn, or a character file
to update a LONGcolumn.

using a byte array to update a LONG RAWcolumn

Updating LONG or LONG RAW from a File

This section shows how to create a Char act er St r eamobject or a Bi naryStream
object from a Fi | e object and use it to update the database. The code example at
the end uses a Char act er St r eamfor a LONGcolumn.

In updating a database column (presumably a LONGor LONG RAWcolumn) from a
file, a step is needed to determine the length. You can do this by creating a
java.i o. Fi | e object before you create your input stream.

Here are the steps in updating the database from a file:

1.

Create aj ava. i 0. Fi | e object from your file. You can specify the file path
name to the Fi | e class constructor.

5-16 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

2. Usethel engt h() method of the Fi | e object to determine the length of the
data. This method returns a | ong value, which you must cast to an i nt for
input to the SQLJ stream class constructor.

Note: Before performing this cast, test the | ong value to make
sure it is not too big to fit into an i nt variable. The static constant
MAX_VALUEin the classj ava. | ang. | nt eger indicates the largest
possible Javai nt value.

3. For character data, create aj ava. i 0. Fi | eReader object from your Fi | e
object. You can pass the Fi | e object to the Fi | eReader constructor.

For binary data, create aj ava. i 0. Fi | el nput St r eamobject from your Fi | e
object. You can pass the Fi | e object to the Fi | el nput St r eamconstructor.

4. Create an appropriate SQLJ stream object. This would be a Char act er St r eam
object for a character file or a Bi nar y St r eamobject for a binary file. Pass the
Fi | eReader or Fi | el nput St r eamobiject, as applicable, and the data length
(as ani nt) to the SQLJ stream class constructor.

5. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG data to the database from a file.
Presume you have an HTML filein/ pri vat e/ mydi r/ nyfil e. ht M and you
want to insert the file contents into a LONG column called char dat a in a database
table named fi | et abl e.

Imports:

inport java.io.*;
inport sqlj.runtine. *;

Executable code:

Filenyfile =newFle ("/private/nydir/nyfile.htm");

int length = (int)nyfile.length(); /1 Mist cast long output to int.
Fi | eReader filereader = new Fil eReader (nyfile);

Char act er St r eam char st ream = new Char act er Strean{fil ereader, |ength);
#sgl { INSERT INTOfiletable (chardata) VALUES (:charstrean) };
charstreamcl ose() ;

Type Support 5-17

Support for Streams

Updating LONG RAW from a Byte Array

This section and code example at the end shows how to create a Bi nar ySt r eam
object from a byte array and uses it to update the database.

You must determine the length of the data before updating the database from a byte
array. (Presumably you would be updating a LONG RAWcolumn.) This is more
trivial for arrays than for files, though, because all Java arrays have functionality to
return the length.

Here are the steps in updating the database from a byte array:

1. Usethel engt h functionality of the array to determine the length of the data.
This returns an i nt , which is what you will need for the constructor of any of
the SQLJ stream classes.

2. Createajava.i 0. Byt eArrayl nput St r eamobject from your array. You can
pass the byte array to the Byt eAr r ayl nput St r eamconstructor.

3. Create a Bi nar ySt r eamobject. Pass the Byt eArr ayl nput St r eamobject and
data length (as an i nt) to the Bi nar ySt r eamclass constructor.

The constructor signature is as follows:

B naryStream (I nput Sreamin, int |ength)

You can use an instance of j ava. i 0. | nput St r eamor of any subclass, such as
the Byt eArr ayl nput St r eamclass.

4. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG RAWAdata to the database from a byte
array. Presume you have a byte array byt earray[] and you want to insert its
contents into a LONG RAWcolumn called Bl NDATA in a database table named

Bl NTABLE.

Imports:

inport java.io.*;
inport sqlj.runtine. *;

Executable code:

byte[] bytearray = new byt e[100];
(Popul at e bytearray sonehow)

int length = bytearray.|ength;

5-18 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

Byt eArrayl nput St ream arrayst ream = new Byt eArrayl nput St rear(byt earray) ;
B naryStream bi nstream = new B naryStrean{arraystream |ength);

#sqgl { INSERT I NTO bi ntabl e (bi ndata) VALUES (:binstrean) };

bi nstream cl ose();

Note: Itis not necessary to use a stream as in this example—you
can also update the database directly from a byte array.

Retrieving Data into Streams: Precautions

You can also use the SQLJ stream classes to retrieve data, but the logistics of using
streams make certain precautions necessary with some database products.

When reading long data and writing it to a stream using Oracle9i and an Oracle
JDBC driver, you must be careful in how you access and process the stream data.

As the Oracle JDBC drivers access data from an iterator row, they must flush any
stream item from the communications pipe before accessing the next data item.
Even though the stream data is written to a local stream as the iterator row is
processed, this stream data will be lost if you do not read it from the local stream
before the JDBC driver accesses the next data item. This is because of the way
streams must be processed, due to their potentially large size and unknown length.

Therefore, as soon as your Oracle JDBC driver has accessed a stream item and
written it to a local stream variable, you must read and process the local stream
before anything else is accessed from the iterator.

This is especially problematic in using positional iterators, with their requisite
FETCH | NTOsyntax. With each fetch, all columns are read before any are
processed. Therefore, there can be only one stream item, and it must be the last item
accessed.

To summarize the precautions you must take:

« When using a positional iterator, you can have only one stream column, and it
must be the last column. As soon as you have fetched each row of the iterator,
writing the stream item to a local input stream variable in the process, you must
read and process the local stream variable before advancing to the next row of
the iterator.

=« When using a named iterator, you can have multiple stream columns; however,
as you process each iterator row, each time you access a stream field, writing the

Type Support 5-19

Support for Streams

data to a local stream variable in the process, you must read and process the
local stream immediately, before reading anything else from the iterator.

Furthermore, in processing each row of a named iterator, you must call the
column accessor methods in the same order in which the database columns
were selected in the query that populated the iterator. As mentioned in a similar
preceding discussion, this is because stream data remains in the
communications pipe after the query. If you try to access columns out of order,
then the stream data may be skipped over and lost in the course of accessing
other columns.

Note: Oracle9i and the Oracle JDBC drivers do not support use of
streams in SELECT | NTOstatements.

Using SQLJ Streams to Retrieve Data

To retrieve data as a stream, standard SQLJ allows you to select data into a named
or positional iterator that has a column of the appropriate SQLJ stream type.

This section covers the basic steps in retrieving data into a SQLJ stream using a
positional iterator or a named iterator, taking into account the precautions
documented in "Retrieving Data into Streams: Precautions" on page 5-19.

These are general steps. For more information, see "Stream Class Methods" on
page 5-22 and "Examples of Retrieving and Processing Stream Data" on page 5-24.

Using a SQLJ Stream Column in a Positional Iterator
Use the following steps to retrieve data into a SQLJ stream using a positional

iterator:

1. Declare a positional iterator class with the last column being of the appropriate
SQLJ stream type.

2. Declare a local variable of your iterator type.

3. Declare a local variable of the appropriate SQLJ stream type. This will be used
as a host variable to receive data from each row of the SQLJ stream column of
the iterator.

4. Execute a query to populate the iterator you declared in step 2.

5. Process the iterator as usual. (See "Using Positional Iterators" on page 3-48.)

Because the host variables in the INTO-list of the FETCH | NTOstatement must

5-20 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

8.

be in the same order as the columns of the positional iterator, the local input
stream variable is the last host variable in the list.

In the iterator processing loop, after each iterator row is accessed, immediately
read and process the local input stream, storing or outputting the stream data as
desired.

Close the local input stream each time through the iterator processing loop.
(This is not required, but is recommended.)

Close the iterator.

Using SQLJ Stream Columns in a Named Iterator

Use the following steps to retrieve data into one or more SQLJ streams using a
named iterator:

1.

Declare a named iterator class with one or more columns of appropriate SQLJ
stream type.

Declare a local variable of your iterator type.

Declare a local variable of some input stream or reader type for each SQLJ
stream column in the iterator. These will be used to receive data from the
stream-column accessor methods. These local stream variables do not have to
be SQLJ stream types; they can be standard j ava. i 0. | nput St r eamor

java. i o. Reader (as applicable) if desired. They do not have to be SQLJ
stream types, because the data was already correctly formatted as a result of the
iterator columns being of appropriate SQLJ stream types.

Execute a query to populate the iterator you declared in step 2.

Process the iterator as usual. (See "Using Named Iterators" on page 3-43.) In
processing each row of the iterator, as each stream-column accessor method
returns the stream data, write it to the corresponding local input stream
variable you declared in step 3.

To ensure that stream data will not be lost, call the column accessor methods in
the same order in which columns were selected in the query in step 4.

In the iterator processing loop, immediately after calling the accessor method
for any stream column and writing the data to a local input stream variable,
read and process the local input stream, storing or outputting the stream data as
desired.

Close the local input stream each time through the iterator processing loop.
(This is not required, but is recommended.)

Type Support 5-21

Support for Streams

8. Close the iterator.

Note: When you populate a SQLJ stream object with data, the
length attribute of the stream will not be meaningful. This attribute
is meaningful only when you set it explicitly, either using the

set Lengt h() method that each SQLJ stream class provides, or
specifying the length to the constructor (as discussed in "Using
SQLJ Streams to Send Data" on page 5-16).

Stream Class Methods

In processing a SQLJ stream column in a named or positional iterator, the local
stream variable used to receive the stream data can be either a SQLJ stream type or
the standard j ava. i 0. | nput St r eamtype orj ava. i 0. Reader type (as
applicable). In either case, standard methods of the input data object are supported.

If the local stream variable is a SQLJ stream type—Bi nar y St r eamor

Char act er St r eam—you have the option of either reading data directly from the
SQLJ stream object, or retrieving the underlying | nput St r eamor Reader object
and reading data from that. This is just a matter of preference—the former approach
is simpler; the latter approach involves more direct and efficient data access.

Binary Stream Methods

The Bi nar ySt r eamclass is a subclass of the sql j . runti ne. St r eamW apper
class. The St r eamW apper class provides the following key methods:

« | nput Stream get | nput St ream) —You can optionally use this method to
get the underlying j ava. i 0. | nput St r eamobject. This is not required,
however, as you can also process SQLJ stream objects directly.

« void setlLength(int |ength)—Youcan use thistosetthel ength
attribute of a SQLJ stream object. This is not necessary if you have already set
| engt h in constructing the stream object, unless you want to change it for
some reason.

The | engt h attribute must be set to an appropriate value before you send a
SQLJ stream to the database.

« int getLength()—This method returns the value of the | engt h attribute of
a SQLJ stream. This value is meaningful only if you explicitly set it using the
stream object constructor or the set Lengt h() method. When you retrieve data
into a stream, the | engt h attribute is not set automatically.

5-22 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

Thesqlj.runtine. Stream/ apper class is a subclass of the

java.io. Filterlnput Streamclass, which is a subclass of the

java.io. | nput St r eamclass. The following important methods of the

| nput St r eamclass—the ski p() method, cl ose() method, and three forms of
the r ead() method—are supported by the SQLJ Bi nar ySt r eamclass as well.

int read ()—Reads the next byte of data from the input stream. The byte of
data is returned as an i nt value in the range 0 to 255. If the end of the stream
has already been reached, then the value -1 is returned. This method blocks
program execution until one of the following: 1) input data is available; 2) the
end of the stream is detected; or 3) an exception is thrown.

int read (byte b[])—Readsuptob. | ength bytes of data from the input
stream, writing the data into the specified b[] byte array. It returns an i nt
value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks program execution until input is
available.

int read (byte b[], int off, int I|en)—Readsuptol en (length)
bytes of data from the input stream, starting at the byte specified by the offset,
of f , and writing the data into the specified b[] byte array. It returns an i nt
value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks until input is available.

l ong skip (long n)—Skipsover and discards n bytes of data from the
input stream. In some circumstances, however, this method will actually skip a
smaller number of bytes. It returns a | ong value indicating the actual number
of bytes skipped.

voi d cl ose()—Closes the stream and releases any associated resources.

Character Stream Methods
The Char act er St r eamclass provides the following key methods:

Reader get Reader () —You can optionally use this method to get the
underlying j ava. i 0. Reader object. This is not required, however, as you can
also process SQLJ stream objects directly.

voi d setLength(int |ength)
int getLength()

Use these to set or get the length of the stream object. This is the same
functionality as for binary streams—see "Binary Stream Methods" immediately
above.

Type Support 5-23

Support for Streams

Thesqgl j . runtinme. Charact er St r eamclass is a subclass of the

java.io. FilterReader class, which is a subclass of the j ava. i 0. Reader class.

The following important methods of the Reader class—the ski p() method,
cl ose() method, and three forms of the r ead() method—are supported by the
SQLJ Char act er St r eamclass as well.

« int read ()—Reads the nextcharacter of data from the reader. The data is
returned as an i nt value in the range 0 to 65535. If the end of the data has
already been reached, then the value -1 is returned. This method blocks
program execution until one of the following: 1) input data is available; 2) the
end of the data is detected; or 3) an exception is thrown.

« int read (char chbuf[])—Reads characters into an array, writing the data
into the specified cbuf [] char array. It returns an i nt value indicating how
many characters were read or -1 if the end of the data has already been reached.
This method blocks program execution until input is available.

« int read (char cbuf[], int off, int |en)—Readsuptolen
(length) characters of data from the input, starting at the character specified by
the offset, of f , and writing the data into the specified char [] char array. It
returns an i nt value indicating how many characters were read or -1 if the end
of the data has already been reached. This method blocks until input is
available.

« long skip (long n)—Skipsover and discards n characters of data from the
input. In some circumstances, however, this method will actually skip a smaller
number of characters. It returns a | ong value indicating the actual number of
characters skipped.

« void cl ose()—Closes the stream and releases any associated resources.

Examples of Retrieving and Processing Stream Data

This section provides examples of various scenarios of retrieving stream data, as
follows:

= using a SELECT statement to select data from a LONG column and populate a
SQLJ Char act er St r eamcolumn in a named iterator

« using a SELECT statement to select data from a LONG RAWcolumn and
populate a SQLJ Bi nar y St r eamcolumn in a positional iterator

Example: Selecting LONG Data into CharacterStream Column of Named Iterator This
example selects data from a LONG database column, populating a SQLJ
Char act er St r eamcolumn in a named iterator.

5-24 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

Assume there is a table named FI LETABLE with a VARCHAR2 column called
FI LENAME that contains file names, and a LONGcolumn called FI LECONTENTS that
contains file contents in character format.

Imports and declarations:

inport sqlj.runtine. *;
inport java.io.*;

#sgl iterator M/Nanediter (String fil enane, Character Sreamfilecontents);

Executable code:

M/Nanedlt er nanmediter = null;
Sring fnang;
Char act er &t r eam char st r eam
#sgl nanediter = { SELECT filenane, filecontents FROMfiletabl e };
vhile (nanediter.next()) {
fnane = nanediter.filenane();
charstream= nanedi ter.filecontents();
Systemout. println("Gntents for file " + fnane + ":");
print Streanfcharstrean);
charstreamcl ose();

}

nanedi ter. cl ose();

public void printStrean{Reader in) throws | CException

{
int character;
vwhile ((character = in.read()) !'=-1) {
Systemout . print ((char)character);
}
}

Remember that you can pass a SQLJ character stream to any method that takes a
standard j ava. i 0. Reader as an input parameter.

Example: Selecting LONG RAW Data into BinaryStream Column of Positional Iterator This
example selects data from a LONG RAWcolumn, populating a SQLJ Bi nar ySt r eam
column in a positional iterator.

As explained in "Retrieving Data into Streams: Precautions" on page 5-19, there can
be only one stream column in a positional iterator, and it must be the last column.

Type Support 5-25

Support for Streams

Assume there is a table named Bl NTABLE with a NUMBER column called
| DENTI FI ERand a LONG RAWCcolumn called Bl NDATA that contains binary data
associated with the identifier.

Imports and declarations:

inport sqlj.runtine. *;
#sgl iterator M/Poslter (int, BinaryStrean);

Executable code:

M/Posl ter positer = null;
int id=0;
Bi narySt ream bi nst r ean¥nul | ;
#sgl positer = { SHLECT identifier, bindata FROMbintabl e };
vhile (true) {
#sgl { FETCH :positer INTO:id, :binstream};
if (positer.endFetch()) break;

(...process data as desired...)

bi nstream cl ose();

}

positer.close();

SQLJ Stream Objects as Output Parameters and Function Return Values

As described in the preceding sections, standard SQLJ supports use of the
Bi nar ySt r eamand Char act er St r eamclasses in the package sql j . runti me
for retrieval of stream data into iterator columns.

In addition, the Oracle SQLJ implementation allows the following uses of SQLJ
stream types if you use Oracle9i, an Oracle JDBC driver, Oracle-specific code
generation or the Oracle customizer, and the Oracle SQLJ runtime:

« They can appear as OUT or | NOUT host variables from a stored procedure or
function call.

« They can appear as the return value from a stored function call.

5-26 Oracle9/ SQLJ Developer’s Guide and Reference

Support for Streams

Streams as Stored Procedure Output Parameters

You can use the types Bi nar ySt r eamand Char act er St r eamas the assignment

type for a stored procedure or stored function OUT or | NOUT parameter.
Assume the following table definition:

CREATE TABLE st reanexanpl e (nane VARCHAR? (256), data LONG;

I NSERT | NTO st r earexanpl e (data, nane)
VALUES
(’ 0000000000111111111112222222222333333333344444444445555555555" ,
'S reankxanpl €');

Also presume the following stored procedure definition, which uses the
STREAMEXANMPLE table:

CREATE (R REPLACE PROCEDURE out _| ongdat a
(dat anane VARCHAR?, longdata QUT LONG IS
BEQ N
SH ECT data I NTO | ongdat a FROM st r eamexanpl e WHERE nane = dat anane;
BEND out _| ongdat a;

The following sample code uses a call to the out _| ongdat a stored procedure to

read the long data.
Imports:

inport sqlj.runtine. *;

Executable code:

Char act er &t r eam dat a;
#sgl { CALL out _| ongdata(’ Streanitxanpl e, : QJT data) };
int c;
vwhile ((c = data.read ()) '=-1)
Systemout. print((char)c);
Systemout . flush();
dat a. cl ose();

Note: Closing the stream is recommended, but not required.

Type Support

5-27

Support for Streams

Streams as Stored Function Results

You can use the types Bi nar ySt r eamand Char act er St r eamas the assignment
type for a stored function return result.

Assume the same STREAMEXAMPLE table definition as in the preceding stored
procedure example.

Also assume the following stored function definition, which uses the
STREAMEXAMPLE table:

CREATE CR REPLACE FUNCTI CN get _| ongdat a (dat anane VARCHAR?) RETURN | ong
IS | ongdata LONG

BEQ N
SH ECT data I NTO | ongdat a FROM st r eamexanpl e WHERE nane = dat anane;
RETURN | ongdat a;

END get _| ongdat a;

The following sample code uses a call to the get _| ongdat a stored function to read
the long data.

Imports:

inport sqlj.runtine. *;

Executable code:

Char act er &t r eam dat a;
#sgl data = { VALUES(get | ongdata(’ S reantExanpl €')) };
int c;
vwhile ((c = data.read ()) '=-1)
Systemout. print((char)c);
Systemout . flush();
dat a. cl ose();

Note: Closing the stream is recommended, but not required.

5-28 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Oracle SQLJ offers extended functionality for the following JDBC 2.0 and
Oracle-specific datatypes:

«» JDBC 2.0 LOB datatypes (BLOB and CLOB)

« Oracle BFI LE datatype

« Oracle ROW Ddatatype

« Oracle REF CURSOR datatypes

« other Oracle9i datatypes (such as NUMBER and RAW

These datatypes are supported by classes in the or acl e. sql package, discussed
below. LOBs and BFILEs are handled similarly in many ways, so are discussed
together.

Additionally, Oracle SQLJ offers extended support for the following standard JDBC
type:
« BigDecinal

JDBC 2.0 functionality for user-defined SQL objects (both weakly and strongly
typed), object references, and collections (variable arrays and nested tables) are also
supported. These are discussed in Chapter 6, "Objects, Collections, and OPAQUE
Types".

Note that using Oracle extensions in your code requires the following:
« Use one of the Oracle JDBC drivers.

« Use Oracle-specific code generation (the default - codegen=or acl e setting) or,
for ISO code generation (- codegen=i so0), customize the profiles appropriately.
The default customizer, oracl e. sql j.runtine.util.O aCustom zer,is
recommended.

« Use the Oracle SQLJ runtime when your application runs.

The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever you use
the Oracle customizer, even if you do not actually use Oracle extensions in your
code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

Type Support 5-29

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Oracle-specific types are defined in the or acl e. sql package, discussed in
"Package oracle.sql" below.

Package oracle.sql

SQLJ users, as well as JDBC users, should be aware of the or acl e. sql package,
which includes classes to support all the Oracle9i datatypes (for example,

oracl e. sql . RON D, or acl e. sql . CLOB, and or acl e. sql . NUMBER). The
oracl e. sqgl classes are wrappers for the raw SQL data and provide appropriate
mappings and conversion methods to Java formats. An or acl e. sqgl . * object
contains a binary representation of the corresponding SQL data in the form of a byte
array.

Eachoracl e. sqgl . * datatype class is a subclass of the or acl e. sql . Dat umclass.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-34 and "Semantics-Checking and Offline-Parsing
Options" on page 8-71.

For more information about the or acl e. sqgl classes, see the Oracle9i JDBC
Developer’s Guide and Reference.

Support for BLOB, CLOB, and BFILE

Oracle JDBC and SQLJ support JDBC 2.0 large object (LOB) datatypes—BLOB
(binary LOB) and CLOB (character LOB)—and provide similar support for the
Oracle-specific BFI LE type (read-only binary files stored outside the database).
These datatypes are supported by the following classes:

« oracle.sqgl.BLOB
« oracle.sql.CLOB
« oracle.sqgl.BFILE

See the Oracle9i JDBC Developer’s Guide and Reference for more information about
LOBs and files and use of supported stream APIs.

5-30 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Theoracl e. sgl . BLOB, or acl e. sgl . CLOB, and or acl e. sqgl . BFI LE classes
can be used in Oracle-specific SQLJ applications in the following ways:

« as| N, QUT, or | NOUT host variables in executable SQLJ statements (including
use in INTO-lists)

« asreturn values from stored function calls
« ascolumn types in iterator declarations (both named and positional)

You can manipulate LOBs by using methods defined in the BLOB and CLOB classes
(recommended) or by using the procedures and functions defined in the PL/SQL
package DBMS_LOB. All procedures and functions defined in this package can be
called by SQLJ programs.

You can manipulate BFILEs by using methods defined in the BFI LE class
(recommended) or by using the file-handling routines of the DBMS_L OB package.

Using methods of the BLOB, CLOB, and BFI LE classes in a Java application is more
convenient than using the DBMS_ L OB package and may also lead to faster execution
in some cases.

Note that the type of the chunk being read or written depends on the kind of LOB
being manipulated. For example, CLOBs contain character data; therefore, Java
strings are used to hold chunks of data. BLOBs contain binary data; therefore, Java
byte arrays are used to hold chunks of data.

Note: DBMS_LOBis an Oracle9i package, requiring a round trip to
the server. Methods in the BLOB, CLOB, and BFI LE classes may also
result in a round trip to the server.

BFILE Class versus DBMS_LOB Functionality for BFILES

The following examples contrast use of the or acl e. sql methods with use of the
DBMS_L OB package for BFILEs.

Example: Use of oracle.sql.BFILE File-Handling Methods with BFILE This example
manipulates a BFILE using file-handling methods of the or acl e. sqgl . BFI LE class.

BFl LE openFile (BFILE file) throws SQException
{

String dirAias, nang;

dirAlias = file.getDrAias();

nane = fil e.get Nane();
Systemout.printin("name: " + dirAias + "/" + nane);

Type Support 5-31

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

if (!file.isFileQen())

{
file. openFile();

}

return file;

}

The BFI LEget Di r Al i as() and get Name() methods construct the full path and
file name. The openFi | e() method opens the file. You cannot manipulate BFILEs
until they have been opened.

Example: Use of DBMS_LOB File-Handling Routines with BFILE This example manipulates
a BFILE using file-handling routines of the DBMS_L OB package.

BFl LE openFi | e(BFI LE file) throws SQException

{
Sring dirAias, nang;
#sgl { CALL dbns_lob.filegetname(:file, :out dirAias, :out nane) };
Systemout.printin("nane: " + dirAias +"/" + nane);
bool ean i sCpen;
#sqgl isQpen = { VALUES(dbns_| ob.fileisopen(:file)) };
if (!isQpen)
{
#sgl { CALL dbns_lob.fileopen(:inout file) };
}
return file;
}

The openFi | e() method prints the name of a file object then returns an opened
version of the file. Note that BFILEs can be manipulated only after being opened
with a call to DBMS_LOB. FI LEOPEN or equivalent method in the BFI LE class.

BLOB and CLOB Classes versus DBMS_LOB Functionality for LOBs

The following examples contrast use of the or acl e. sgl methods with use of the
DBMS_L OB package for BLOBs and CLOBs. For each example using or acl e. sq|l
methods, the example that follows it is functionally identical but uses DBMS_LOB
instead.

Example: Use of oracle.sql.CLOB Read Methods with CLOB This example reads data from
a CLOB using methods of the or acl e. sql . CLOB class.

5-32 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

voi d readFromd ob(LGB cl ob) throws SQException
{

I ong cl obLen, readLen;
String chunk;

clobLen = clob.length();

for (longi =0; i < clobLen; i+=readLen) {
chunk = clob.getSubSring(i, 10);
readLen = chunk. | ength();
Systemout. printin("read " + readLen + " chars: " + chunk);

}
}

This method contains a loop that reads from the CLOB and returns a 10-character
Java string each time. The loop continues until the entire CLOB has been read.

Example: Use of DBMS_LOB Read Routines with CLOB This example uses routines of the
DBMS_L OB package to read from a CLOB.

voi d readFromd ob(LGB cl ob) throws SQException

{
I ong cl obLen, readLen;
Sring chunk;
#sqgl clobLen = { VALLES(dbns_| ob. getl ength(: cl ob)) };
for (longi =1; i <= clobLen; i +=readLen) {
readLen = 10;
#sqgl { CALL dbns_| ob.read(:clob, :inout readLen, :i, :out chunk) };
Systemout. printin("read " + readLen + " chars: " + chunk);
}
}

This method reads the contents of a CLOB in chunks of 10 characters at a time. Note
that the chunk host variable is of the type St ri ng.

Example: Use of oracle.sql.BLOB Write Routines with BLOB This example writes data to a
BLOB using methods of the or acl e. sqgl . BLOB class. Input a BLOB and specified
length.

voi d writeToB ob(BLOB bl ob, |ong bl obLen) throws SQException

{
byte[] chunk ={ 0, 1, 2, 3, 4, 5 6, 7, 8 91};
I ong chunkLen = (I ong)chunk. | ength;

Type Support 5-33

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

for (longi =0; i < blobLen; i+= chunkLen) {
if (blobLen < chunkLen) chunkLen = bl obLen;
chunk[Q] (byte) (i+1);
chunkLen = bl ob. put Bytes(i, chunk);
}
}

This method goes through a loop that writes to the BLOB in 10-byte chunks until
the specified BLOB length has been reached.

Example: Use of DBMS_LOB Write Routines with BLOB This example uses routines of the
DBMS_L OB package to write to a BLOB.

voi d writeToB ob(BL(B bl ob, |ong bl obLen) throws SQException

byte[] chunk ={ 0, 1, 2, 3, 4, 5 6, 7, 8 91};
I ong chunkLen = (I ong) chunk. | engt h;

for (longi =1; i <= blobLen; i += chunkLen) {
if ((blobLen - i + 1) < chunkLen) chunkLen = bl obLen - i + 1;
chunk[O] = (byte)i;
#sgl { CALL dbns_l ob.write(: I NQUT bl ob, :chunkLen, :i, :chunk) };
}
}

This method fills the contents of a BLOB in 10-byte chunks. Note that the chunk
host variable is of the type byt e[] .

LOB and BFILE Stored Function Results

Host variables of type BLOB, CLOB, and BFI LE can be assigned to the result of a
stored function call. The following example is for a CLOB, but code for BLOBs and
BFILEs would be functionally the same.

First, presume the following function definition:

CREATE CR REPLACE function | onger_clob (cl1 clob, ¢2 clob) return clob is
result cl ob;
BEQ N
if dbns_| ob. get Length(c2) > dbns_| ob. get Lengt h(cl) then
result = c2;
el se
result = cl;
end if;
RETUN resul t;

5-34 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

END | onger _cl ob;

The following example uses a CLOB as the assignment type for a return value from
the function defined above.

voi d readFromongest (OL(B c1, OB c2) throws SQException

{
A.B | ongest ;
#sqgl longest = { VALLES(I onger_clob(:cl, :c2)) };
r eadFr ond ob(| ongest) ;

}

The r eadFr omLongest () method prints the contents of the longer passed CLOB,
using the r eadFr onCl ob() method defined previously.

LOB and BFILE Host Variables and SELECT INTO Targets

Host variables of type BLOB, CLOB, and BFI LE can appear in the INTO-list of a
SELECT | NTOexecutable statement. The following example is for a BLOB and
CLOB, but code for BFILEs would be functionally the same.

Assume the following table definition:

CREATE TABLE basi c_| ob_t abl e(x varchar2(30), b blob, c clob);
I NSERT INTO basic_| ob_tabl e
VALUES(’ one’, ' 010101010101010101010101010101', ’onetwot hreefour’);
I NSERT INTO basic_|ob_table
VALUES(' two' , ' 020202020202020202020202020202' , ' twot hreef ourfivesi X');

The following example uses a BLOB and a CLOB as host variables that receive data
from the table defined above, using a SELECT | NTO statement.

BLCB bl ob;
A.CB cl ob;
#sgl { SELECT one. b, two.c INTO:blob, :clob
FROM basic | ob table one, basic Iob table two
WHERE one. x=" one’ AND two. x="two’ };
#sgl { INSERT INTO basic_|ob_table VALUES('three’, :blob, :clob) };

This example selects the BLOB from the first row and the CLOB from the second
row of the BASI C_LOB_TABLE. It then inserts a third row into the table using the
BLOB and CLOB selected in the previous operation.

Type Support 5-35

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

LOBs and BFILEs in Iterator Declarations

The types BLOB, CLOB, and BFI LE can be used as column types for SQLJ positional
and named iterators. Such iterators can be populated as a result of compatible
executable SQLJ operations.

Here are sample declarations that will be repeated and used below.

#sqgl iterator NanedL(Blter(COLCB c);
#sqgl iterator PositionedL(Bl ter(BLCB);
#sgl iterator NanedFl LEter(BF LE bf);

LOB and BFILE Host Variables and Named Iterator Results

The following example employs the table BASI C_LOB_TABLE and the method
readFr omLongest () defined in previous examples, and uses a CLOB in a hamed
iterator. Similar code could be written for BLOBs and BFILEs.

Declaration:
#sqgl iterator NanedL(Blter (OB c);

Executable code:

NamedL(Bl ter iter;
#sgl iter = { SHLECT ¢ FROMbasic_lob_table };
if (iter.next())
aABcl =iter.c();
if (iter.next())
aABc2 =iter.c();
iter.close();
readFr onLongest (c1, c2);

This example uses an iterator to select two CLOBs from the first two rows of the
BASI C_LOB_TABLE, then prints the larger of the two using the
readFr onLongest () method.

LOB and BFILE Host Variables and Positional Iterator FETCH INTO Targets

Host variables of type BLOB, CLOB, and BFI LE can be used with positional iterators
and appear in the INTO-list of the associated FETCH | NTOstatement if the
corresponding column attribute in the iterator is of the identical type.

5-36 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

The following example employs table BASI C_LOB_TABLE and method
wri t eToBl ob() defined in previous examples. Similar code could be written for
CLOBs and BFILEs.

Declaration:
#sqgl iterator PositionedL(Blter(BLCB);

Executable code:

Positi onedL(Blter iter;

BLAB blob = nul | ;

#sgl iter = { SEHLECT b FROMbasic_lob table };
for (long ronNum= 1; ; rowNum+)

{
#sql { FETCH :iter INTO:blob };
if (iter.endFetch()) break;
witeToB ob(bl ob, 512*rowNun);

}

iter.close();

This example callswri t eToBl ob() for each BLOB in BASI C_LOB_TABLE. Each
row writes an additional 512 bytes of data.

Support for Oracle ROWID

The Oracle-specific type ROW D stores the unique address for each row in a
database table. The class or acl e. sql . RON Dwraps ROWID information and is
used to bind and define variables of type ROW D.

Variables of type or acl e. sql . ROW D can be employed in SQLJ applications
connecting to Oracle9i in the following ways:

« as| N, OUT or | NOUT host variables in SQLJ executable statements (including
use in INTO-lists)

= asareturn value from a stored function call

« ascolumn types in iterator declarations (both named and positional)

Type Support 5-37

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Note: Oracle does not currently support positioned UPDATE or
positioned DELETE by way of a WHERE CURRENT OF clause, as
specified by the SQLJ specification. Instead, Oracle recommends the
use of ROWIDs to simulate this functionality.

ROWIDs in Iterator Declarations

You can use the type or acl e. sql . RON Das a column type for SQLJ positional
and named iterators, as shown in the following declarations:

#sgl iterator NanedRowi dliter (String ename, ROND rowid);

#sgl iterator PositionedRowiditer (Sring, ROND;

ROWID Host Variables and Named-Iterator SELECT Results

You can employ ROW Dobjects as | N, OUT and | NOUT parameters in SQLJ
executable statements. In addition, you can populate iterators whose columns
include ROW Dtypes. This code example uses the preceding example declarations.

Declaration:
#sgl iterator NanedRowi dliter (String ename, ROND rowid);

Executable code:

NarmedRowi diter iter;

ROND rowi d;

#sgl iter = { SHEHLECT enane, rowid FROMenp };
vhile (iter.next())

{
if (iter.enane().equal s("CHUXK TURNER'))
{
ronid =iter.rowd();
#sgl { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };
}
iter.close();

The preceding example increases the salary of the employee named Chuck Turner
by $500 according to the ROWID. Note that this is the recommended way to encode
WHERE CURRENT OF semantics.

5-38 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

ROWID Stored Function Results

Presume the following function exists in Oracle9i.

CREATE (R REPLACE function get_rowid (nane varchar2) return rowd is
rid rowd;

BEA N
SHECT rowid INTOrid FROMenp WERE enane = nang;
RETUN ri d;

END get _rowi d;

Given the preceding stored function, the following example indicates how a RON D
object is used as the assignment type for the function return result.

ROND rowi d;
#sgl rowid = { val ues(get_row d(' AW FEENER)) };
#sql { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };

This example increases the salary of the employee named Amy Feiner by $500
according to the ROWID.

ROWID SELECT INTO Targets

Host variables of type ROW Dcan appear in the INTO-list of a SELECT | NTO
statement.

ROND rowi d;
#sgl { SELECT rowid INTO :row d FROM enp WHERE enane=" CHUK TURNER };
#sql { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };

This example increases the salary of the employee named Chuck Turner by $500
according to the ROWID.

ROWID Host Variables and Positional Iterator FETCH INTO Targets

Host variables of type ROW D can appear in the INTO-list of a FETCH | NTO
statement if the corresponding column attribute in the iterator is of the identical

type.
Declaration:
#sgl iterator PositionedRowiditer (Sring, ROND);

Type Support 5-39

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

Executable code:

Positi onedFRowi dlter iter;
RONDrowid = nul | ;
Sring enane = nul | ;
#sgl iter = { SHLECT enane, rowid FROMenp };
vhile (true)
{
#sgl { FETCH :iter INTO:enane, :rowd };
if (iter.endFetch()) break;
if (enane.equal s("CHUICK TURNER'))

{
#sgl { UPDATE enp SET sal = sal + 500 WERE rowid = :rowid };
}
}
iter.close();

This example is similar to the previous named iterator example, but uses a
positional iterator with its customary FETCH | NTOsyntax.

Support for Oracle REF CURSOR Types

Oracle PL/SQL and Oracle SQLJ support the use of cursor variables that represent
database cursors.

Overview of REF CURSOR Types

Cursor variables are functionally equivalent to JDBC result sets, essentially
encapsulating the results of a query. A cursor variable is often referred to as a REF
CURSOR, but REF CURSORitself is a type specifier, not a type name. Instead,
named REF CURSOR types must be specified. The following example shows a REF
CURSOR type specification:

TYPE EnpQur Type | S REF AURCR

Stored procedures and stored functions can return parameters of Oracle REF
CURSOR types. You must use PL/SQL to return a REF CURSOR parameter; you
cannot accomplish this using SQL alone. A PL/SQL stored procedure or function
can declare a variable of some named REF CURSOR type, execute a SELECT
statement, and return the results in the REF CURSOR variable.

For more information about cursor variables, see the PL/SQL User’s Guide and
Reference.

5-40 Oracle9/ SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

REF CURSOR Types in SQLJ

In Oracle SQLJ, a REF CURSOR type can be mapped to iterator columns or host
variables of any iterator class type or of type j ava. sql . Resul t Set, but host
variables can be OUT only. Support for REF CURSOR types can be summarized as
follows:

= as result expressions for stored function returns

» asoutput host expressions for stored procedure or function output parameters
« asoutput host expressions in INTO-lists

« asiterator columns

You can use the Oracle SQL CURSOR operator for a nested SELECT within an outer
SELECT statement. This is how you can write a REF CURSOR object to an iterator

column or Resul t Set column in an iterator, or write a REF CURSOR object to an

iterator host variable or Resul t Set host variable in an INTO-list.

"Using Iterators and Result Sets as Host Variables" on page 3-52 has examples
showing the use of implicit REF CURSOR variables, including an example of the
CURSCR operator.

Notes:
« Use the typecode Or acl eTypes. CURSOR for REF CURSOR
types.

« Thereisnooracle. sql class for REF CURSOR types. Use
either j ava. sqgl . Resul t Set or an iterator class. Close the
result set or iterator to release resources when you are done
processing it.

REF CURSOR Example

The following sample method shows a REF CURSOR type being retrieved from an
anonymous block.

private static Enplter refQurslnAnonBl ock(String nane, int no)
throws java. sql . SQLExcepti on {
Enpl ter enps = nul | ;
Systemout . print|n("UWsing anonymous bl ock for ref cursor..");
#sgl { begin
I NSERT | NTO enp (enane, enpno) VALUES (:nane, :no);
CPEN :out enps FCR SHLECT enane, enpno FROMenp CRDER BY enpno;

Type Support 5-41

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

end
b
return enps;

}

Support for Other Oracle9i Datatypes

All or acl e. sql classes can be used for iterator columns or for input, output, or
input-output host variables in the same way that any standard Java type can be
used. This includes the classes mentioned in the preceding sections and others, such
asthe oracl e. sql . NUMBER, or acl e. sgl . CHAR and or acl e. sql . RAWclasses.

Because the or acl e. sqgl . * classes do not require conversion to Java type format,
they offer greater efficiency and precision than equivalent Java types. You would
have to convert the data to standard Java types, however, to use it with standard
Java programs or to display it to end users.

Extended Support for BigDecimal
SQLJsupportsj ava. mat h. Bi gDeci mal in the following situations:
« as host variables in SQLJ executable statements
« asreturn values from stored function calls
« asiterator column types

Standard SQLJ has the limitation that a value can be retrieved as Bi gDeci mal only
if that is the JDBC default mapping, which is the case only for numeric and decimal
data. (See Table 5-1 on page 5-3 for more information about JDBC default
mappings.)

In Oracle SQLJ, however, you can map to nondefault types as long as the datatype
is convertible from numeric and you use Oracle9i, an Oracle JDBC driver,
Oracle-specific code generation (or the Oracle customizer), and the Oracle SQLJ
runtime. The datatypes CHAR, VARCHAR2, LONG, and NUMBER are convertible. For
example, you can retrieve data from a CHAR column into a Bi gDeci nmal variable.
To avoid errors, however, you must be careful that the character data consists only
of numbers.

Note: The Bi gDeci mal class is in the standard j ava. mat h
package.

5-42 Oracle9/ SQLJ Developer’s Guide and Reference

S

Objects, Collections, and OPAQUE Types

This chapter discusses how Oracle SQLJ supports user-defined SQL types—namely
objects (and related object references) and collections (variable arrays and nested
tables). This includes discussion of the Oracle JPublisher utility, which you can use
to generate Java classes corresponding to user-defined SQL types.

There is also a small section at the end regarding Oracle OPAQUE types. These can
be similar in functionality to object types, but with a different kind of
implementation. Data is represented as an opaque payload of bytes rather than in
structured object format.

The following topics are discussed:

Oracle Objects and Collections

Custom Java Classes

User-Defined Types

JPublisher and the Creation of Custom Java Classes

Strongly Typed Objects and References in SQLJ Executable Statements
Strongly Typed Collections in SQLJ Executable Statements

Serialized Java Objects

Weakly Typed Obijects, References, and Collections

Oracle OPAQUE Types

Objects, Collections, and OPAQUE Types 6-1

Oracle Objects and Collections

Oracle Objects and Collections

This section provides some background conceptual information about Oracle9i
objects and collections.

For additional conceptual and reference information about Oracle objects,
references, and collections, refer to the Oracle9i SQL Reference and the Oracle9i
Application Developer’s Guide - Fundamentals.

For information about how to declare objects and collections, see "User-Defined
Types" on page 6-23.

Introduction to Objects and Collections

Oracle9i and Oracle SQLJ support user-defined SQL object types (composite data
structures), related SQL object reference types, and user-defined SQL collection types.
Oracle objects and collections are composite data structures consisting of individual
data elements.

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types, and collection types to use in iterators or host
expressions. Strongly typed representations use a custom Java class that maps to a
particular object type, reference type, or collection type and must implement either
the JDBC 2.0 standard j ava. sql . SQLDat a interface (for object types only) or the
Oracle or acl e. sql . ORADat a interface. Either paradigm is supported by the
Oracle9i JPublisher utility, which you can use to automatically generate custom Java
classes. Weakly typed representations use the class or acl e. sql . STRUCT (for
objects), or acl e. sql . REF (for object references), or or acl e. sql . ARRAY (for
collections). Or, alternatively, you can use standard j ava. sql . Struct, Ref , or

Ar r ay objects in a weakly typed scenario.

The term "strongly typed" is used where a particular Java type is associated with a
particular SQL named (user-defined) type. For example, if there is a PERSON type
with a corresponding Per son Java class.

The term "weakly typed" is used where a Java type is used in a generic way and can
map to multiple SQL named types. The Java class (or interface) has no special
information particular to any SQL type. This is the case for the

or acl e. sgl . STRUCT, REF, and ARRAY types and the j ava. sqgl . Struct, Ref,
and Ar r ay types.

6-2 Oracle9/ SQLJ Developer’s Guide and Reference

Oracle Objects and Collections

Note that using Oracle extensions in your code requires the following:
« Use one of the Oracle JDBC drivers.

« Use default Oracle-specific code generation or, for ISO code generation,
customize the profiles appropriately. (The default customizer,
oracle.sqglj.runtine.util.OraCustom zer, is recommended.)

For Oracle-specific generated code, produced through the default

- codegen=or acl e translator setting, no profiles are produced so
customization is not applicable. Oracle JDBC APIs are called directly through
the generated Java code.

= Use the Oracle SQLJ runtime when your application runs.

The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever
you use the Oracle customizer, even if you do not actually use Oracle extensions
in your code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, or acl e. sql j . checker. Oracl eChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

Oracle-specific types for Oracle objects and collections are included in the
oracl e. sgl package.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-34 and "Semantics-Checking and Offline-Parsing
Options" on page 8-71.

Custom Java Class Usage Notes

« This chapter primarily discusses the use of custom Java classes with
user-defined types; however, classes implementing ORADat a can be used for
other Oracle SQL types as well. A class implementing ORADat a can be
employed to perform any kind of desired processing or conversion in the
course of transferring data between SQL and Java. See "Additional Uses for
ORAData Implementations" on page 6-18.

« The SQLDat a interface is intended only for custom object classes. The ORADat a
interface can be used for any custom Java class.
Terminology Notes

« User-defined SQL object types and user-defined SQL collection types are
referred to as user-defined types (UDTSs).

Objects, Collections, and OPAQUE Types 6-3

Oracle Objects and Collections

« Custom Java classes for objects, references, and collections are referred to as
custom object classes, custom reference classes, and custom collection classes,
respectively.

For general information about Oracle object features and functionality, see the
Oracle9i Application Developer’s Guide - Object-Relational Features.

Oracle Object Fundamentals

Oracle objects (SQL objects) are composite data structures that group related data
items, such as facts about each employee, into a single data unit. An object type is
functionally similar to a Java class—you can populate and use any number of
individual objects of a given object type, just as you can instantiate and use
individual objects of a Java type.

For example, you can define an object type EMPLOYEE that has the attributes nane
(type CHAR), addr ess (type CHAR), phonenunber (type CHAR), and
enpl oyeenunber (type NUVBER).

Oracle objects can also have methods—stored procedures associated with the object
type. These methods can be either static methods or instance methods and can be
implemented either in PL/SQL or in Java. Their signatures can include any number
of input, output, or input-output parameters. All this depends on how they are
initially defined.

Oracle Collection Fundamentals
There are two categories of Oracle collections (SQL collections):
« Vvariable-length arrays (VARRAY types)
« nested tables (TABLE types)

Both categories are one-dimensional, although the elements can be complex object
types. VARRAY types are used for one-dimensional arrays; nested table types are
used for single-column tables within an outer table. A variable of any VARRAY type
can be referred to as a VARRAY; a variable of any nested table type can be referred
to as a nested table.

A VARRAY, as with any array, is an ordered set of data elements, with each element
having an index and all elements being of the same datatype. The size of a VARRAY
refers to the maximum number of elements. Oracle VARRAYS, as indicated by their
name, are of variable size, but the maximum size of any particular VARRAY type
must be specified when the VARRAY type is declared.

6-4 Oracle9/ SQLJ Developer’s Guide and Reference

Oracle Objects and Collections

A nested table is an unordered set of elements. Nested table elements within a table
can themselves be queried in SQL. A nested table, as with any table, is not created
with any particular number of rows—this is determined dynamically.

Notes: The elements in a VARRAY or the rows in a nested table
can be of a user-defined object type, and VARRAY and nested table
types can be used for attributes in a user-defined object type.
Oracle9i supports nesting of collection types. The elements of a
VARRAY or rows of a nested table can be of another VARRAY or
nested table type, or these elements can be of a user-defined object
type that has VARRAY or nested table attributes.

Object and Collection Datatypes

User-specified object and collection definitions in Oracle9i function as SQL datatype
definitions. You can then use these datatypes, as with any other datatype, in
defining table columns, SQL object attributes, and stored procedure or function
parameters. In addition, once you have defined an object type, the related object
reference type can be used as any other SQL reference type.

Once you have defined EMPLOYEE as an Oracle object, as described in "Oracle
Object Fundamentals" on page 6-4, it becomes an Oracle datatype, and you can
have a table column of type EMPLOYEE just as you can have a table column of type
NUMBER. Each row in an EMPLOYEE column contains a complete EMPLOYEE object.
You can also have a column type of REF EMPLOYEE, consisting of references to
EMPLOYEE obijects.

Similarly, you can define a variable-length array MYVARR as VARRAY(10) of
NUMBER and a nested table NTBL of CHAR(20) . The MYVARR and NTBL collection
types become Oracle datatypes, and you can have table columns of either type.
Each row of a MYVARR column consists of an array of up to ten numbers; each row
of an NTBL column consists of 20 characters.

Objects, Collections, and OPAQUE Types 6-5

Custom Java Classes

Custom Java Classes

The purpose of custom Java classes is to provide a way to convert data between
SQL and Java and make the data accessible, particularly in supporting objects and
collections or if you want to perform custom data conversions.

It is generally advisable to provide custom Java classes for all user-defined types
(objects and collections) that you use in a SQLJ application. The Oracle JDBC driver
will use instances of these classes in converting data, which is more convenient and
less error-prone than using the weakly typed or acl e. sql . STRUCT, REF, and
ARRAY classes.

Custom Java classes are first-class types that you can use to read from and write to
user-defined SQL types transparently.

To be used in SQLJ iterators or host expressions, a custom Java class must
implement either the or acl e. sql . ORADat a (and ORADat aFact or y) interface or
the standard j ava. sql . SQLDat a interface. This section provides an overview of
these interfaces and custom Java class functionality, covering the following topics:

« Custom Java Class Interface Specifications

« Custom Java Class Support for Object Methods
« Custom Java Class Requirements

« Compiling Custom Java Classes

« Reading and Writing Custom Data

« Additional Uses for ORAData Implementations

Custom Java Class Interface Specifications

This section discusses specifications of the ORADat a and ORADat aFact ory
interfaces and the standard SQLDat a interface.

Oracle9i includes a set of new APIs for Oracle-specific custom Java class
functionality for user-defined types—or acl e. sql . ORADat a and
oracl e. sql . ORADat aFact ory.

The or acl e. sqgl . Cust onDat umand or acl e. sql . Cust onDat untact ory
interfaces used previously for this functionality are deprecated in Oracle9i, but still
supported for backward compatibility. You must use the Cust onDat uminterfaces if
you are working with an Oracle8i JDBC driver.

6-6 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

ORAData and ORADataFactory Specifications

Oracle provides the interface or acl e. sql . ORADat a and the related interface
oracl e. sgl . ORADat aFact ory to use in mapping and converting Oracle object
types, reference types, and collection types to custom Java classes.

Data is sent or retrieved in the form of an or acl e. sql . Dat umobject, with the
underlying data being in the format of the appropriate or acl e. sql . Dat um
subclass—or acl e. sql . STRUCT, for example. This data is still in its SQL format;
the or acl e. sqgl . Dat umobject is just a wrapper. (For information about classes in
the or acl e. sql package that support Oracle type extensions, see the Oracle9i
JDBC Developer’s Guide and Reference.)

The ORADat a interface specifies at oDat um() method for data conversion from
Java format to SQL format. This method takes as input your connection object and
converts data to the appropriate or acl e. sql . * representation. The connection
object is necessary so that the JDBC driver can perform appropriate type checking
and type conversions at runtime. Here is the ORADat a and t oDat unt)
specification:

interface oracl e. sgl . CRADat a

{
}

oracl e. sgl . Dat umt oDat unfj ava. sql . Gnnection c¢) throws SQException;

The ORADat aFact ory interface specifies a cr eat e() method that constructs
instances of your custom Java class, converting from SQL format to Java format.
This method takes as input a Dat umobject containing the data, and a typecode,
such as Or acl eTypes. RAWindicating the SQL type of the underlying data. It
returns an object of your custom Java class, which implements the ORADat a
interface. This object receives its data from the Dat umobject that was input. Here is
the ORADat aFact ory and cr eat e() specification:

interface oracl e. sgl . CRADat aFact ory

{
oracl e.sqgl . CRADat a create(oracl e.sql . Datumd, int sqgl Type)

throws SQLExcepti on;
}

To complete the relationship between the ORADat a and ORADat aFact ory
interfaces, you must implement a static get ORADat aFact or y() method in any
custom Java class that implements the ORADat a interface. This method returns an
object that implements the ORADat aFact or y interface and that, therefore, can be
used to create instances of your custom Java class. This returned object can itself be
an instance of your custom Java class, and its cr eat e() method is used by the

Objects, Collections, and OPAQUE Types 6-7

Custom Java Classes

Oracle JDBC driver to produce further instances of your custom Java class, as
necessary.

Note: JPublisher output implements the ORADat a interface and
itst oDat um() method and the ORADat aFact ory interface and its
creat e() method in a single custom Java class; however,

toDat um() and creat e() are specified in different interfaces to
allow the option of implementing them in separate classes. You can
have one custom Java class that implements ORADat a, its

t oDat un() method, and the get ORADat aFact or y() method,
and have a separate factory class that implements

ORADat aFact ory and its cr eat e() method. For purposes of
discussion here, however, the assumption is that both interfaces are
implemented in a single class.

For information about Oracle SQLJ requirements of a class that implements
ORADat a, see "Oracle Requirements for Classes Implementing ORAData" on
page 6-11.

For more information about the ORADat a and ORADat aFact or y interfaces, the
oracl e. sqgl classes, and the Or acl eTypes class, see the Oracle9i JDBC Developer’s
Guide and Reference.

If you use JPublisher, specifying - usert ypes=or acl e will result in JPublisher
generating custom Java classes that implement the ORADat a and

ORADat aFact ory interfaces and the get ORADat aFact or y() method. Or, for
backward compatibility, you have the option of using the JPublisher - conpati bl e
option in conjunction with - usert ypes=or acl e to use the Cust onDat umand
Cust onDat unfact ory interfaces instead. See the Oracle9i JPublisher User’s Guide
for more information.

ORAData Versus CustomDatum Interfaces

As aresult of the or acl e. j dbc interfaces being introduced in Oracle9i as
replacements for the or acl e. j dbc. dri ver classes, the

oracl e. sql . Cust onDat umand or acl e. sql . Cust onDat unfact ory
interfaces, formerly used to access customized objects, have been deprecated in
favor of new interfaces—or acl e. sql . ORADat a and

oracl e. sql . ORADat aFact ory. Like the Cust onDat uminterfaces, these can be
used as an Oracle-specific alternative to the standard SQ.Dat a interface. The
Cust onDat uminterfaces are still supported for backward compatibility.

6-8 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

Cust onDat umand Cust onDat unfact or y have the following definitions:

public interface Qustonbatum

{
oracl e. sgl . Dat um t oDat un{

oracl e.j dbc. driver. O acl eGnnecti on conn
) throws SQException;

public interface Qustonbatunfactory

{
oracl e. sql . Qust onbat um cr eat e(
oracl e.sql . Datumd, int sql Type
) throws SQLException;
}

The connection conn and typecode sql Type are used as described for ORADat a
and ORADat aFact ory in "ORAData and ORADataFactory Specifications" on
page 6-7. Note, however, that Cust onDat umuses the Oracle-specific

Or acl eConnect i on type instead of the standard Connect i on type.

SQLData Specification

Standard JDBC 2.0 supplies the interface j ava. sql . SQLDat a to use in mapping
and converting structured object types to Java classes. This interface is intended for
mapping structured object types only, not object references, collections/arrays, or
other SQL types.

The SQLDat a interface is a JDBC 2.0 standard, specifying ar eadSQL() method to
read data into a Java object,and awr i t eSQL() method to write to the database
from a Java object.

For information about functionality that is required of a class that implements
SQLDat a, see "Requirements for Classes Implementing SQLData" on page 6-13.

For additional information about standard SQLDat a functionality, refer to the Sun
Microsystems JDBC 2.0 or higher API specification.

If you use JPublisher, specifying - user t ypes=j dbc will result in JPublisher
generating custom Java classes that implement the SQLDat a interface.

Objects, Collections, and OPAQUE Types 6-9

Custom Java Classes

Custom Java Class Support for Object Methods

Methods of Oracle objects can be invoked from custom Java class wrappers.
Whether the underlying stored procedure is written in PL/SQL or is written in Java
and published to SQL is invisible to the user.

A Java wrapper method used to invoke a server method requires a connection to
communicate with the server. The connection object can be provided as an explicit
parameter or can be associated in some other way (as an attribute of your custom
Java class, for example).

If the connection object used by the wrapper method is a non-static attribute, then
the wrapper method must be an instance method of the custom Java class in order
to have access to the connection. Custom Java classes generated by JPublisher use
this technique.

There are also issues regarding output and input-output parameters in methods of
Oracle objects. If a stored procedure (SQL object method) modifies the internal state
of one of its arguments, then the actual argument passed to the stored procedure is
modified. In Java this is not possible. When a JDBC output parameter is returned
from a stored procedure call, it must be stored in a newly created object. The
original object identity is lost.

One way to return an output or input-output parameter to the caller is to pass the
parameter as an element of an array. If the parameter is input-output, the wrapper
method takes the array element as input; after processing, the wrapper assigns the
output to the array element. Custom Java classes generated by JPublisher use this
technique—each output or input-output parameter is passed in a one-element array.

When you use JPublisher, it implements wrapper methods by default. This is true
for generated classes implementing either the SQLDat a interface or the ORADat a
interface. To disable this feature, set the JPublisher - net hods flag to f al se. See the
Oracle9i JPublisher User’s Guide for more information.

Note: If you are implementing a custom Java class yourself, there
are various ways that you can implement wrapper methods. Data
processing in the server can be done either through the SQL object
method directly, or by forwarding the object value from the client to
the server and then executing the method there. To see how
JPublisher implements wrapper methods, and whether this may
meet your needs, see "JPublisher Implementation of Wrapper
Methods" on page 6-46.

6-10 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

Custom Java Class Requirements

Custom Java classes must satisfy certain requirements to be recognized by the
Oracle SQLJ translator as valid host variable types, and to allow type-checking by
the translator.

This section discusses Oracle-specific requirements of custom Java classes so they
can support this functionality. Requirements for both ORADat a implementations
and SQLDat a implementations are covered.

Note: Custom Java classes for user-defined types are often
referred to in this manual as "wrapper classes".

Oracle Requirements for Classes Implementing ORAData

Oracle requirements for ORADat a implementations are primarily the same for any
kind of custom Java class but vary slightly depending on whether the class is for
mapping to objects, object references, collections, or some other SQL type.

These requirements are as follows:
« Theclass implements the or acl e. sql . ORADat a interface.

« Theclass implements a method get ORADat aFact or y() that returns an
oracl e. sql . ORADat aFact ory object, as follows:

public static oracle.sql . GRADat aFact ory get CRADat aFactory();
If using the deprecated Cust onDat uminterface, the class implements the

method get Fact or y() thatreturnsanor acl e. sql . Cust onDat unfact ory
object as follows:

public static oracle.sql.Qustonbat unfFactory get Factory();
« Theclass has a constant, _SQL_TYPECODE (string), initialized to the

oracl e. jdbc. Oracl eTypes typecode of the Dat umsubclass instance that
t oDat um() returns.

— For custom object classes:
public static final int _SQ TYPECQXE = O acl eTypes. STRUCT;

— For custom reference classes:

public static final int _SQ TYPEQOXE = Q acl eTypes. REF;

Objects, Collections, and OPAQUE Types 6-11

Custom Java Classes

— For custom collection classes:

public static final int _SQ TYPEGQXTE = O acl eTypes. ARRAY;
For other uses, some other typecode might be appropriate. For example, for
using a custom Java class to serialize and deserialize Java objects into or out of

RAWfields, a _SQL_TYPECODE of Or acl eTypes. RAWis used. See "Serialized
Java Objects" on page 6-71.

(The Or acl eTypes class simply defines a typecode, which is an integer
constant, for each Oracle datatype. For standard SQL types, the Or acl eTypes
entry is identical to the entry in the standard j ava. sql . Types type
definitions class.)

For custom Java classes with _SQL_TYPECODE of STRUCT, REF, or ARRAY (in
other words, for custom Java classes that represent objects, object references, or
collections), the class has a constant that indicates the relevant user-defined
type name.

— Custom object classes and custom collection classes must have a constant,
_SQL_NAME (string), initialized to the SQL name you declared for the
user-defined type, as follows:

public static final Sring _SQ_NAME = UDT nang;

Custom object class example for a user-defined PERSON object:
public static final Sring _SQ_NAME = "PERSON';

or (to specify the schema, if that is appropriate):
public static final Sring _SQ NAME = " SQOIT. PERSCN';
Custom collection class example for a collection of PERSON objects, which
you have declared as PERSON_ARRAY:
public static final Sring _SQ NAME = " PERSON ARRAY";
— Custom reference classes must have a constant, _SQL_BASETYPE (string),

initialized to the SQL name you declared for the user-defined type being
referenced, as follows:

public static final Sring _SQ_BASETYPE = (DT nang,

Custom reference class example for PERSON references:
public static final Sring _SQ BASETYPE = "PERSON';

6-12 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

For other ORADat a uses, specifying a UDT name is hot applicable.

Usage Notes

A collection type name reflects the collection type, not the base type. For
example, if you have declared a VARRAY or nested table type PERSON_ARRAY
for PERSON objects, then the name of the collection type that you specify for the
_SQL_NANME entry is PERSON_ARRAY, not PERSON.

When specifying the SQL type in a_SQL_NAME field, if the SQL type was
declared in a case-sensitive way (in quotes), then you must specify the SQL
name exactly as it was declared, such as CaseSensi ti ve or

SCOTT. CaseSensi ti ve. (Note that this differs from usage in a JPublisher
input file, where the case-sensitive name must also appear in quotes.) If you did
not declare the SQL type in a case-sensitive way (no quotes), then you must
specify the SQL name in all uppercase, such as ADDRESS or SCOTT. ADDRESS.

JPublisher automatically generates the value of this field appropriately,
according to case-sensitivity and the JPublisher - omi t _schema_nanes setting
if applicable.

Requirements for Classes Implementing SQLData

The 1SO SQLJ standard outlines requirements for type map definitions for classes
implementing the SQLDat a interface.

Alternatively, SQLData wrapper classes can identify associated SQL object types
through publ i ¢ static final fields. This non-standard functionality was
introduced in Oracle SQLJ release 8.1.6 and continues to be supported.

Be aware of the following important points:

Whether you use a type map or use alternative (non-standard) publ i ¢
static final fields to specify mappings, you must be consistent in your
approach. Either use a type map that specifies all relevant mappings so that you
do not require publ i ¢ static final fields, or do not use a type map at all
and specify all mappings through publ i ¢ static final fields.

SQLDat a, unlike ORADat a, is for mapping structured object types only. It is not
for object references, collections/arrays, or any other SQL types. If you are not
using ORADat a, then your only choices for mapping object references and
collections are the weak types j ava. sql . Ref andj ava. sql . Arr ay,
respectively, or or acl e. sql . REF and or acl e. sql . ARRAY.

Objects, Collections, and OPAQUE Types 6-13

Custom Java Classes

SQLDat a implementations require a JDK 1.2.x or higher environment.
Although Oracle JDBC supports JDBC 2.0 extensions under JDK 1.1.x through
the or acl e. j dbc2 package, Oracle SQLJ does not.

When specifying the mapping from a SQL type to a Java type (described
below), if the SQL type was declared in a case-sensitive way (in quotes), then
you must specify the SQL name exactly as it was declared, such as

CaseSensi tive or SCOTT. CaseSensi ti ve. (Note that this differs from
usage in a JPublisher input file, where the case-sensitive name must also appear
in quotes.) If you did not declare the SQL type in a case-sensitive way (no
quotes), then you must specify the SQL name in all uppercase, such as
ADDRESS or SCOTT. ADDRESS.

Mapping Specified in Type Map Resource First, consider the mapping representation
according to the 1ISO SQLJ standard. Assume that Addr ess, pack. Per son, and
pack. Manager . | nner PM(where | nner PMis an inner class of Manager) are three
wrapper classes that implement j ava. sqgl . SQLDat a.

You must employ these classes only in statements that use explicit connection
context instances of a declared connection context type. Assume, for example,
that this type is called SDCont ext . Example:

Addr ess a .

pack. Person p=..;

pack. Manager . | nner PMpm=.. . ;

SDCont ext ¢t x = new SDont ext (url, user, pwd, fal se);
#sgl [etx] { ... ta... :p... :pm... };

The connection context type must have been declared using the wi t h attribute
t ypeMap that specifies an associated class implementing a
java.util.PropertyResourceBundl e. In the preceding example,
SDCont ext might have been declared as follows:

#sqgl public static context SDOontext wth (typeMap="SDvap");
The type map resource must provide the mapping from SQL object types to

corresponding Java classes that implement the j ava. sql . SQLDat a interface.
This mapping is specified with entries of the following form:

cl ass. < ava _cl ass_nane>=STRUCT <sql_t ype nane>

The keyword STRUCT can also be omitted. In the example, the resource file
SDMVap. pr operti es might contain the following entries:

cl ass. Addr ess=STRUCT SQOTT. ADDRESS

6-14 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

cl ass. pack. Per son=PERSON
cl ass. pack. Manager $I nner PM-STRUCT PRCDUCT_VANAGER

Although ". " separates package and class name, you must use the character "$"
to separate an inner class name.

Important: If you used default Oracle-specific code generation in
this example, then any iterator that is used for a statement whose
context type is SDCont ext must also have been declared with the
same associated type map, SDMap, such as in the following
example:

#sgl public static iterator SOter wth (typeMap="SD\vap");
SCont ext sdctx = ...

SDter sditer;
#sgl [sdctx] sditer = { SEHECT ...};

This is to ensure that proper code is generated for the iterator class.

This mechanism of specifying mappings in a type map resource is more
complicated than the non-standard alternative (discussed next). Furthermore, it is
not possible to associate a type map resource with the default connection context.
The advantage is that all the mapping information is placed in a single
location—the type map resource.This means that the type mapping in an already
compiled application can be easily adjusted at a later time, for example to
accommodate new SQL types and Java wrappers in an expanding SQL-Java type
hierarchy.

Be aware of the following:

= You must employ the SQLJrunt i mel2 or runti nel2ee library to use this
feature. Type maps are represented as j ava. uti | . Map objects. These are
exposed in the SQLJ runtime API and, therefore, cannot be supported by the
JDK 1.1 or generic runtime libraries.

= You must use the Oracle SQLJ runtime and Oracle-specific code generation or
profile customization if your SQLDat a wrapper classes occur as OUT or
INOUT parameters in SQLJ statements. This is because the SQL type of such
parameters is required for r egi st er Qut Par anet er () by the Oracle JDBC
driver. Furthermore, for OUT parameter type registration, the SQL type is
"frozen in" by the type map in effect during translation.

Objects, Collections, and OPAQUE Types 6-15

Custom Java Classes

The SQLJ type map is independent of any JDBC type map you may be using on
the underlying connection. Thus, you must be careful if you are mixing SQLJ
and JDBC code that both use SQLDat a wrappers. However, you can easily
extract the type map in effect on a given SQLJ connection context:

ct x. get TypeMap() ;

Mapping Specified in Static Field of Wrapper Class Alternatively, a class that implements
SQLDat a can satisfy the following non-standard requirement.

The Java class declares the publ i ¢ static final String-valued field
_SQL_NAME. This field defines the name of the SQL type that is being wrapped
by the Java class.

In the example, the Addr ess class would have the following field declaration:
public static final Sring _SQ NAME="SOOIT. ADDRESS';

The following declaration would be in pack. Per son:
public static final Sring _SQ NAME="PERSCON';

And the class pack. Manager . | nner PMwould have the following:
public static final Sring _SQ NAME="PRODUCT MANAGER';

Note that JPublisher always generates SQLDat a wrapper classes with the
_SQL_NAME field. However, this field is ignored in SQLJ statements that reference a

type map.

Notes:

« Ifaclass that implements the _SQL_NANME field is used in a
SQLJ statement with an explicit connection context type and
associated type map, then that type map is used, and the
_SQL_NAME field is ignored, thereby simplifying migration of
existing SQLJ programs to the new ISO SQLJ standard.

« The static SQL-Java type correspondence specified in the
_SQL_NAME field is independent from any JDBC type map you
may be using on the underlying connection. Thus, you must be
careful if you are mixing SQLJ and JDBC code that both use
SQLDat a wrappers.

6-16 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

Compiling Custom Java Classes

You can include any . j ava files for your custom Java classes (whether ORADat a or
SQLDat a implementations) on the SQLJ command line together with the . sql j
file(s) for your application. However, this is not necessary if the SQLJ

- checksource flag is set to t r ue (the default) and your classpath includes the
directory where the custom Java source is located. (This discussion assumes you are
creating . j ava files for your custom objects and collections, not . sql j files. Any
.sqlj files must be included in the SQLJ command line.)

For example, if Obj ect Deno. sql j uses Oracle object types ADDRESS and PERSON
and you have produced custom Java classes for these objects, then you can run
SQLJ as follows.

« If-checksour ce=t rue (default) and the classpath includes the custom Java
source location:

%sqlj bjectleno. sqlj

« If-checksource=fal se (this is a single wraparound line):

%sqlj (bjectDeno.sqlj Address.java AddressRef.java Person.java
Per sonRef . j ava

You also have the choice of using your Java compiler to compile custom . j ava
source files directly. If you do this, you must do it prior to translating . sqgl j files.

Running the SQLJ translator is discussed in Chapter 8, "Translator Command Line
and Options". For more information about the - checksour ce flag, see "Source
Check for Type Resolution (-checksource)" on page 8-69.

Note: Because ORADat a implementations rely on Oracle-specific
features, SQLJ will report numerous portability warnings if you do
not use the translator portability setting - war n=noport abl e (the
default). For information about the - war n flag, see "Translator
Warnings (-warn)" on page 8-45.

Reading and Writing Custom Data

Through the use of custom Java class instances, Oracle SQLJ and JDBC allow you to
read and write user-defined types as though they are built-in types. Exactly how
this is accomplished is transparent to the user.

Objects, Collections, and OPAQUE Types 6-17

Custom Java Classes

For the mechanics of how data is read and written, for both ORADat a
implementations and SQLDat a implementations, see the Oracle9i JDBC Developer’s
Guide and Reference.

Additional Uses for ORAData Implementations

To this point, discussion of custom Java classes has been for use as one of the
following:

wrappers for SQL objects—custom object classes, for use with
oracl e. sgl . STRUCT instances

wrappers for SQL references—custom reference classes, for use with
or acl e. sqgl . REF instances

wrappers for SQL collections—custom collection classes, for use with
oracl e. sgl . ARRAY instances

It might be useful, however, to provide custom Java classes to wrap other

oracl e. sql . * types as well, for customized conversions or processing. You can
accomplish this with classes that implement ORADat a (but not SQLDat a), as in the
following examples:

Perform encryption and decryption or validation of data.
Perform logging of values that have been read or are being written.

Parse character columns (such as character fields containing URL information)
into smaller components.

Map character strings into numeric constants.

Map data into more desirable Java formats (such as mapping a DATE field to
java. util . Dat e format).

Customize data representation (for example, data in a table column is in feet,
but you want it represented in meters after it is selected).

Serialize and deserialize Java objects—into or out of RAWfields, for example

This last use is further discussed in "Serialized Java Objects" on page 6-71.

The rest of this section provides an example of a class (Bet t er Dat e) that
implements ORADat a and can be used instead of j ava. sql . Dat e to represent
dates.

6-18 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

Note: This sort of functionality is not possible through the
SQLDat a interface, as SQLDat a implementations can wrap only
structured object types.

General Use of ORAData—BetterDate java This example shows a class that implements
the ORADat a interface to provide a customized representation of Java dates.

Note: This is not a complete application—there is no mai n()
method.

inport java. util.Date;

inport oracle.sql . CQRADat a;

inport oracl e. sql . DATE;

inport oracl e. sql . GQRADat aFact or y;
inport oracl e.jdbc. O acl eTypes;

/1 a Date class customzed for user’s preferences:
/1] - nonths are nunbers 1..12, not 0..11
/1l - years are referred to via four-digit numbers, not two.

public class BetterDate extends java. util.Date
i npl enents CRADat a, CRADat aFactory {
public static final int _SQ TYPEQXDE = O acl eTypes. DATE,

String[]nont hNames={"JAN', "FEB', "MAR', "APR', "MAY', "JWN',
"Ju, "AUG, "seP, tacrt, "Nov', "DEC'};
String[]JtoD gi t={"0", "1*, "2", "3", "4, "&5", "e€", "7", "8", "9'};

static final BetterDate BetterDateFactory = new BetterDate();
public static CRADat aFactory get CRADat aFactory() { return _BetterDateFactory;}

/] the current tine...
public BetterDate() {
super () ;

}

publ i c oracl e. sql . Dat um t oDat ung j ava. sqgl . Gonnecti on conn) {
return new DATHt oSQ.Dat e());

}

Objects, Collections, and OPAQUE Types 6-19

Custom Java Classes

public oracle.sql.RAData create(oracl e.sgl.Datumdat, int intx) {
if (dat==null) return null;
DATE DAT = ((DATE) dat);
java.sql . Date jsd = DAT. dat eVal ue();
return new BetterDate(jsd);

}

public java.sql.Date toSQDate() {
java.sql .Date retval;
retval = new java. sql.Date(this.getVYear()-1900, this.gethnth()-1,
this. getDate());
return retval ;
}
public BetterDate(java.sql .Date d) {
thi s(d. get Year () +1900, d.getMonth()+1, d.getDate());
}
private static int [] deconstructSring(String s) {
int [] retval = newint[3];
int y,md; char tenp;, int offset;
SringBuffer sb = new SringBuffer(s);
t enp=sb. char At (1);
/1 figure the day of nonth
if (tenp<’'0 || tenp>"'9) {
m= sh.charA (0)-'0";
of f set =2;
} else {
m= (sb.charA(0)-'0)*10 + (tenp-'0");
of f set =3;

}

/1 figure the nmonth
tenp = sb. char At (of fset +1);
if (tenp<'0 || tenp>"'9) {
d = sh.charAt (of fset)-'0";
of f set +=2;
} else {
d = (sb.char At (offset)-"0")*10 + (tenp-'0');
of f set +=3;
}
/] figure the year, which is either in the fornat "yy" or "yyyy"
/1 (the fornmer assunes the current century)
if (sh.length() <= (offset+2)) {
y = (((new BetterDate()). get Year())/100)*100 +
(sb.char At (offset)- '0") * 10 +
(sb.char At (of fset+1)- '0');

6-20 Oracle9/ SQLJ Developer’s Guide and Reference

Custom Java Classes

} else {
y = (sbh.char A (offset)- '0") * 1000 +
(sb.char At (of fset+1)- '0') * 100 +
(sb.char At (of fset+2)- '0') * 10 +
(sb.char At (offset+3)- '0");
}
retval [0] =y;
retval [1] =m
retval [2] =d;
/1 Systemout. println("Gonstructing date fromstring as: "+d+'/"+m"/"+y);
return retval ;
}
private BetterDate(int [] stuff) {
this(stuff[0], stuff[1], stuff[2]);
}
/] takes a string in the fornmat: "mmdd-yyyy" or "mdd/ yyyy" or
/1 "mmdd-yy" or "nmdd/yy" (which assunes the current century)
public BetterDate(Sring s) {
thi s(BetterDate.deconstruct Sring(s));

}

/] years are as '1990', nonths from1..12 (unlike java.util.Date!), date
/l as'1 to '3
public BetterDate(int year, int nonths, int date) {
super (year - 1900, nont hs- 1, dat €) ;
}
/] returns "Date: dd-non-yyyy"
public Sring toSring() {
int yr = getYear();
return get Dat e() +"-"+mont hNanes[get Mont h() - 1] +"-" +
toDi git[(yr/1000)%0] +
toDi git[(yr/100)%0] +
toDi git[(yr/10)9d0] +
toDi git[yrod0];
/1l return "Date: " + getDate() + "-"+get Month()+"-"+(get Year () %d00);
}
public BetterDate addDays(int i) {
if (i==0) return this;
return new BetterDate(getYear(), getMnth(), getDate()+);
}
public BetterDate addMbonths(int i) {
if (i==0) return this;
int yr=getYear();
int non=get Month() + ;
int dat=getDate();

Objects, Collections, and OPAQUE Types 6-21

Custom Java Classes

vhi | e(non<l) {
--yr; non+=12;

}

return new BetterDate(yr, mon,dat);
}
/] returns year as in 1996, 2007
public int getYear() {

return super. get Year () +1900;
}
/Il returns nonth as 1..12
public int getMnth() {

return super. get Mnth() +1;
}
publ i ¢ bool ean equal s(BetterDate sd) {

return (sd.getDate() == this.getDate() &&

sd. get Mont h() == this.getMnth() &
sd. get Year () == this.getYear());

}
/] subtract the two dates; return the answer in whol e years
/1 uses the average length of a year, which is 365 days plus
/1 a leap year every 4, except 100, except 400 years =
/1 = 365 97/400 = 365. 2425 days = 31, 556, 952 seconds
publ i ¢ doubl e m nusl nYears(BetterDate sd) {

/1 the year (as defined above) in mlliseconds

long yearInMIlis = 31556952L;

long diff = nyUrQ)-sd. nyUrq);

return (((double)diff/(double)yearlnMIlis)/1000.0);
}
public long nyuUrq) {

return Date. Urq get Year ()-1900, getMnth()-1, getDate(),0,0,0);

}

/] returns <0 if thisis earlier than sd

Il returns = if this = sd

/1 else returns >0

public int conpare(BetterDate sd) {
if (getYear()!=sd. getYear()) {return getYear()-sd.getVYear();}
if (getMnth()!=sd.getMnth()) {return getMnth()-sd.getMnth();}
return getDate()-sd.getDate();

}

}

6-22 Oracle9/ SQLJ Developer’s Guide and Reference

User-Defined Types

User-Defined Types

This section contains examples of creating and using user-defined object types and
collection types in Oracle9i. For more information about any of the SQL commands
used here, refer to the Oracle9i SQL Reference.

Creating Object Types
Oracle SQL commands to create object types are of the following form:

CREATE TYPE typenane AS CBIECT

(
attrnanel dat at ypel,

attrnane2 dat at ype2,

attr nameN dat at ypeN
);

Where t ypenane is the desired name of your object type, at t r nanel through
at t r naneNare the desired attribute names, and dat at ypel through dat at ypeN
are the attribute datatypes.

The remainder of this section provides an example of creating user-defined object
types in Oracle9i.

The following items are created using the SQL script below:
« two object types, PERSON and ADDRESS
« atyped table for PERSON objects

= an EMPLOYEES table that includes an ADDRESS column and two columns of
PERSON references

Here is the script:

[*** Usi ng user-defined types (WDTs) in SQLJ ***/
/

[*** (reate ACDRESS WDT ***/

CREATE TYPE ADDRESS AS (BJECT

(
street VARCHAR 60) ,
city VARCHAR 30),
state HAR 2),

zi p_code CHAR(5)

Objects, Collections, and OPAQUE Types 6-23

User-Defined Types

[*** (reate PERSON WDT contai ni ng an enbedded ADDRESS DT ***/
CREATE TYPE PERSON AS (BJIECT

(
nane VARCHAR(30),
ssh NUMBER
addr ADDRESS
)
/
/*** Oreate a typed table for PERSON obj ects ***/
CREATE TABLE persons CF PERSON
/
[*** (reate arelational table wth two colums that are REFs
to PERSON obj ects, as well as a col unm which is an Address ADT. ***/
CREATE TABLE enpl oyees

(
enpnunber | NTEGER PR MARY KEY,
person_dat a R PERSON
manager REF PERSON
of fi ce_addr ADDRESS,
sal ary NUMBER

)

/*** Insert some data--2 objects into the persons typed table ***/
I NSERT | NTO per sons VALUES (
PERSON(’ V@Il f gang Anadeus Mozart', 123456,
ADDRESS(’ AmBerg 100', 'Salzburg', 'AT,’10424')))
/
I NSERT | NTO per sons VALUES (
PERSON(’ Ludwi g van Beet hoven', 234567,
ACDRESS(’ Rhei nal lee’, "Bonn', 'DE, '69234')))
/
/** Put a rowin the enpl oyees table **/
I NSERT | NTO enpl oyees (enpnunber, office_addr, sal ary) VALUES (
1001,
ACDRESS(’ 500 Gracl e Parkway’, ' Redwood Shores’, 'CA, '94065'),
50000)
/
/** Set the manager and PERSON REFs for the enpl oyee **/
UPDATE enpl oyees
SET nmanager =
(SELECT REF(p) FROM persons p WHERE p. nane

"Wl fgang Anadeus Mbzart')
/
UPDATE enpl oyees
SET person_data =
(SELECT REF(p) FROM persons p WHERE p. nane = ' Ludw g van Beet hoven’)

6-24 Oracle9/ SQLJ Developer’s Guide and Reference

User-Defined Types

Note: Use of a table alias, such as p above, is a recommended
general practice in Oracle SQL, especially in accessing tables with
user-defined types. It is required syntax in some cases where object
attributes are accessed. Even when not required, it helps in
avoiding ambiguities. See the Oracle9i SQL Reference for more
information about table aliases.

Creating Collection Types
There are two categories of collections
« variable-length arrays (VARRAYS)
= nested tables
Oracle SQL commands to create VARRAY types are of the following form:
CREATE TYPE typenane | S VARRAY(n) CF dat at ype;
The t ypenane designation is the desired name of your VARRAY type, n is the

desired maximum number of elements in the array, and dat at ype is the datatype
of the array elements. For example:

CREATE TYPE nyvarr |'S VARRAY(10) CF | NTEGER

Oracle SQL commands to create nested table types are of the following form:
CREATE TYPE typename AS TABLE CF dat at ype,

The t ypenane designation is the desired name of your nested table type, and

dat at ype is the datatype of the table elements. This can be a user-defined type as
well as a standard datatype. A nested table is limited to one column, although that

one column type can be a complex object with multiple attributes. The nested table,
as with any database table, can have any number of rows. For example:

CREATE TYPE person_array AS TABLE CF person;

This command creates a nested table where each row consists of a PERSON object.

The rest of this section provides an example of creating a user-defined collection
type (as well as object types) in Oracle9i.

Objects, Collections, and OPAQUE Types 6-25

User-Defined Types

The following items are created and populated using the SQL script below:

two object types, PARTI Cl PANT_T and MODULE_T
a collection type, MODULETBL_ T, which is a nested table of MODULE_T objects

a PRQJECTS table that includes a column of PARTI Cl PANT_T references and a
column of MODULETBL_T nested tables

a collection type PHONE_ARRAY, which is a VARRAY of VARCHAR2(30)

PERSON and ADDRESS objects (repeating the same definitions used earlier in
"Creating Object Types" on page 6-23)

an EMPLOYEES table, which includes a PHONE_ARRAY column

Here is the script:

RemThis is a SQ*P us script used to create schena to denonstrate coll ection
Rem nani pul ation in SQJ

CREATE TYPE PARTI O PANT_T AS CBJECT (

/

enpno NUMBER(4),
enane VARCHAR2(20),
j ob VARCHAR2(12)
ngr NUMBER(4) ,

hi redat e DATE,

sal NUMBER 7, 2) ,
deptno NUMBER 2))

show errors
CREATE TYPE MDULE T AS QBIECT (

/

nmodul e_id NUMBER(4),

nmodul e_nane VARCHAR2(20),

nodul e_owner REF PARTI A PANT T,
nodul e_start _dat e DATE,

nmodul e_dur ati on NUMBER)

show errors
create TYPE MDUWETBL T AS TABLE - MDULE T;

/

show errors
CREATE TABLE proj ects (

id NUMBER 4),

nane VARCHAR 30),

owner REF PARTI A PANT T,
start _date DATE,

duration NUMBER 3),

6-26 Oracle9/ SQLJ Developer’s Guide and Reference

User-Defined Types

nmodul es MIDULETBL T) NESTED TABLE nodul es STORE AS nodul es_t ab;

show errors
CREATE TYPE PHONE_ARRAY | S VARRAY (10) CF var char 2(30)
/

[*** (reate ACDRESS WDT ***/
CREATE TYPE ACDRESS AS (BIECT

(
street VARCHAR 60) ,
city VARCHAR(30),
state HAR 2),

Zi p_code CHAR(5)
)
/
/*** reate PERSON WDT containing an enbedded ADDRESS WDT ***/
CREATE TYPE PERSON AS (BJECT

(
nane VARCHAR(30),
ssh NUMBER,
addr ADDRESS

)

/

CREATE TABLE enpl oyees

(enpnunber | NTEGER PR MARY KEY,
person_dat a REF person,
nanager REF person,
of fi ce_addr addr ess,
sal ary NUMBER,
phone_nuns phone_ar ray

Objects, Collections, and OPAQUE Types 6-27

JPublisher and the Creation of Custom Java Classes

JPublisher and the Creation of Custom Java Classes

Oracle offers flexibility in how users can customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm. Developers have the following choices in creating these custom Java
classes:

= using Oracle JPublisher to automatically generate custom Java classes and using
those classes directly without modification

« using JPublisher to automatically generate custom Java classes and
corresponding subclasses, which can subsequently be user-modified for any
desired functionality

« manually coding custom Java classes without using JPublisher, if the classes
meet the requirements stated in "Custom Java Class Requirements" on page 6-11

Although you have the option of manually coding your custom Java classes, it is
advisable to instead use JPublisher-generated classes directly or modify
JPublisher-generated subclasses.

JPublisher can implement either the Oracle or acl e. sql . ORADat a interface or the
standard j ava. sqgl . SQLDat a interface when it generates a custom object class. If
you choose the ORADat a implementation, then JPublisher will also generate a
custom reference class. For compatibility with older JDBC versions, JPublisher can
also generate classes that implement the deprecated or acl e. sql . Cust onDat um
interface.

The SQLDat a interface is not intended for custom reference or custom collection
classes. If you want your code to be portable, you have no choice but to use
standard weakly typed j ava. sql . Ref objects to map to references, and

j ava. sql . Arr ay objects to map to collections.

This manual provides only minimal information and detail regarding the JPublisher
utility. See the Oracle9i JPublisher User’s Guide for more information.

For detailed discussion of the ORADat a and SQLDat a interfaces and relative
advantages of the ORADat a interface, see the Oracle9i JDBC Developer’s Guide and
Reference.

6-28 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

What JPublisher Produces

When you use JPublisher to generate custom Java classes, you can use either an
ORADat a implementation (for custom object classes, custom reference classes, or
custom collection classes) or a SQLDat a implementation (for custom object classes
only). An ORADat a implementation will also implement the ORADat aFact ory
interface, for creating instances of the custom Java class.

This is controlled by how you set the JPublisher - user t ypes option. A setting of
- usertypes=or acl e specifies an ORADat a implementation; a setting of
- usertypes=j dbc specifies a SQLDat a implementation.

ORAData Implementation

When you run JPublisher for a user-defined object type and use the ORADat a
implementation for your custom object class (through the default
- usertypes=or acl e setting), JPublisher automatically creates the following:

= acustom object class, typically ina. sql j source file, to act as a type definition
to correspond to your Oracle object type

This class includes getter and setter methods for each attribute. The method
names are of the form get Foo() and set Foo() for attribute f 0o.

In addition, JPublisher by default will generate wrapper methods in your class
that invoke the associated Oracle object methods executing in the server. This
can be disabled, however, by setting - met hods=f al se. In this case, JPublisher
produces no wrapper methods and generates . j ava files instead of . sql j files
for custom objects. The - met hods option is described later in this section.

« arelated custom reference class for object references to your Oracle object type

This class includes a get Val ue() method that returns an instance of your
custom object class, and a set Val ue() method that updates an object value in
the database, taking as input an instance of the custom object class.

A strongly typed reference class is always generated, regardless of whether the
SQL object type uses references.

Advantages of using strongly typed instead of weakly typed references are
described in"Strongly Typed Object References for ORAData Implementations"
on page 6-30.

= custom classes for any object or collection attributes of the top-level object

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized.

Objects, Collections, and OPAQUE Types 6-29

JPublisher and the Creation of Custom Java Classes

When you run JPublisher for a user-defined collection type, choosing the ORADat a
implementation, JPublisher automatically creates the following:

= acustom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded get Array() and set Array() methods to
retrieve or update a collection as a whole, a get El enent () method and
set El enent () method to retrieve or update individual elements of a
collection, and additional utility methods.

= acustom object class for the elements, if the elements of the collection are
objects

This is necessary so that object elements can be materialized in Java whenever
an instance of the collection is materialized.

JPublisher-generated custom Java classes in any of these categories implement the
ORADat a interface, the ORADat aFact or y interface, and the
get ORADat aFact or y() method.

Notes:

« If you specify the ORADat a implementation, the generated
classes will use Oracle-specific features and therefore will not
be portable.

« JPublisher still supports implementation of the Cust onDat um
interface, replaced by ORADat a and deprecated in Oracle9i,
through the - conpat i bl e option. This is described in "Choose
the Implementation for Generated Classes" on page 6-32.

Strongly Typed Object References for ORAData Implementations

For Oracle ORADat a implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed or acl e. sql . REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as Per sonRef for references to PERSON objects) are essentially wrappers for
the REF class.

In these strongly typed REF wrappers, there is a get Val ue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a

6-30 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

PERSON SQL object type, with a corresponding Per son Java class, there will also be
a Per sonRef Java class. The get Val ue() method of the Per sonRef class would
return a Per son instance containing the data for a PERSON object in the database.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is
a PERSON object with a MANAGER REF attribute, then the corresponding Per son
Java class will have a Manager Ref attribute.

SQLData Implementation

When you run JPublisher for a user-defined object type and choose the SQLDat a
implementation for your custom object class (through the - usert ypes=j dbc
setting), JPublisher will produce a custom object class to act as a type definition to
correspond to your Oracle object type. This class will include the following:

« getter and setter methods for each attribute

« implementations of the standard SQ_Dat a interface r eadSQL() and
writeSQ. () methods

« wrapper methods that invoke the Oracle object methods executing in the server
(unless you specify - met hods=f al se when you run JPublisher)

Because the SQLDat a interface is intended only for objects, however, and not for
references or collections, JPublisher will not generate a custom reference class for
references to the Oracle object type. You will have to use standard weakly typed
j ava. sgl . Ref instances, or perhaps or acl e. sql . REF instances if you do not
require portability. Note that REF instances, like custom reference class instances,
have Oracle extension methods get Val ue() and set Val ue() to read or write
instances of the referenced object. Standard Ref instances do not have this
functionality.

Similarly, because you cannot use a SQLDat a implementation for a custom
collection class, you must use standard weakly typed j ava. sqgl . Ar r ay instances,
or perhaps or acl e. sgl . ARRAY instances if you do not require portability. Ar r ay
and ARRAY instances, like custom collection class instances, have get Array()
functionality to read the collection as a whole or in part, but do not have the
element-level access and writability offered by the custom collection class

get El ement () and set El ement () methods.

Objects, Collections, and OPAQUE Types 6-31

JPublisher and the Creation of Custom Java Classes

Note: The SQLDat a interface is defined in the JDBC specification
to be portable. However, if you want the SQLDat a implementation
produced by JPublisher to be portable, you must avoid using any
Oracle-specific features and Oracle type mapping (which uses the
Oracle-specific or acl e. sql . * classes).

Generating Custom Java Classes

This section discusses key JPublisher command-line functionality for specifying the
user-defined types that you want to map to Java and for specifying object class
names, collection class names, attribute type mappings, and wrapper methods.
These key points can be summarized as follows:

« Specify the implementation to use (ORADat a or SQLDat a), through the
JPublisher - user t ypes option.

« Specify user-defined types to map to Java. You can specify the custom object
and custom collection class names for JPublisher to use, or you can accept the
default names. Use the JPublisher - sql , - user, and - case options, as
appropriate.

« Optionally specify attribute type mappings through the JPublisher - XXXt ypes
options: - nunmber t ypes, - bui | ti ntypes, and - | obt ypes.

« Choose whether or not JPublisher will create wrapper methods, in particular for
Oracle object methods. Use the JPublisher - met hods flag, which is enabled by
default.

Note: Throughout the remainder of this section, we simplify
discussion of custom reference classes or custom collection classes
by referring only to ORADat a implementations.

Choose the Implementation for Generated Classes

Before running JPublisher, consider whether you want the generated classes to
implement the Oracle ORADat a interface or the standard SQLDat a interface. Using
SQLDat a will likely make your code more portable, but using ORADat a offers a
number of advantages, including no need for type maps.

The preceding section, "What JPublisher Produces" on page 6-29, discusses some of
the implementation details for each scenario.

6-32 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Remember the following:

« You must use ORADat a implementations for custom collection classes. The
SQLDat a interface does not support collections (arrays).

« Strongly typed reference classes are always generated for ORADat a custom
object class implementations, but not for SQLDat a custom object class
implementations. The SQLData interface does not support strongly typed object
references—use the weak j ava. sql . Ref type or or acl e. sql . REF type
instead.

For detailed discussion of the ORADat a and SQLDat a interfaces and relative
advantages of the ORADat a interface, see the Oracle9i JDBC Developer’s Guide and
Reference.

Use the JPublisher - user t ypes option to specify which interface you want your
classes to implement. A setting of - user t ypes=or acl e (the default) specifies the
ORADat a interface, while a setting of - user t ypes=j dbc specifies the SQLDat a
interface.

Note: If you have a requirement to implement the Cust onDat um
interface, which is replaced by ORADat a and deprecated in
Oracle9i, you can do so with a JPublisher - conpat i bl e setting of
cust ondat um This, combined with a - user t ypes=or acl e
setting, results in generated classes implementing the

Cust onDat uminterface. The default is - conpat i bl e=or adat a.

The setting - conpati bl e=8i or-conpati bl e=bot h8i also
directs JPublisher to use Cust omDat um as well as resulting in code
generation that is backward compatible to Oracle8i versions of
JPublisher. See the Oracle9i JPublisher User’s Guide for more
information.

The following JPublisher command-line examples will result in implementation of
ORADat a, Cust onDat um and SQLDat a, respectively (assume %is a system
prompt).

%] pub -usertypes=oracle ... <other option settings>
%] pub -usertypes=oracl e -conpati bl e=custondatum... <other option settings>
%] pub -usertypes=jdbc ... <other option settings>

Objects, Collections, and OPAQUE Types 6-33

JPublisher and the Creation of Custom Java Classes

JPublisher will ignore a - conpat i bl e=cust ondat umor
- conpat i bl e=or adat a setting if - user t ypes=j dbc.

Specify User-Defined Types to Map to Java

In using JPublisher to create custom Java classes, use the - sql option to specify the
user-defined SQL types that you want to map to Java. You can either specify the
custom object class names and custom collection class names, or you can accept the
defaults.

The default names of your top-level custom classes—the classes that will
correspond to the user-defined type names you specify to the - sql option—are
identical to the user-defined type names as you enter them on the JPublisher
command line. Because SQL names in the database are case-insensitive by default,
you can capitalize them to ensure that your class names are capitalized according to
Java convention. For example, if you want to generate a custom class for enpl oyee
objects, you can run JPublisher as follows:

%] pub -sqgl =Enpl oyee . ..

The default names of other classes, such as for hormre_addr ess objects that are
attributes of enpl oyee objects, are determined by the JPublisher - case option. If
you do not set the - case option, it is set to mi xed. This means that the default for
the custom class name is to capitalize the initial character of the corresponding
user-defined type name and the initial character of every word unit thereafter.
JPublisher interprets underscores (_), dollar signs ($), and any characters that are
illegal in Java identifiers as word-unit separators; these characters are discarded in
the process.

For example, for Oracle object type hone_addr ess, JPublisher would create class
HoneAddr ess in a HonmeAddr ess. sql j or.j ava source file.

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the

name in the JPublisher | NPUT file instead of on the command line,
and in quotes. See "Using JPublisher INPUT Files" on page 6-42.

Note: For backward compatibility to previous versions of
JPublisher, the - t ypes option is still accepted as an alternative to
-sql .

6-34 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

On the JPublisher command line, use the following syntax for the - sql option (you
can specify multiple actions in a single option setting).

- sql =udt 1<: napcl ass1><, udt 2<: napcl ass2>>, . . . , <udt N&: ngpcl assNe> . . .

And use the - user option to specify the database schema. Following is an example:

%] pub -sqgl =Myobj , nycol | : M/Col | A ass -user=scott/tiger

(There can be no space before or after the comma.)

For the Oracle object MYOBJ, this command will name it as you typed it, creating
source Myobj . sqgl j to define a Myobj class. For the Oracle collection MYCOLL, this
command will create source MyCol | Cl ass. j ava to define aMyCol | Cl ass class.

You can optionally specify schema names in the - sql option—for example, the
scott schema:

%] pub -sqgl =scott.Mobj, scott.nycol|: MCol | Aass -user=scott/tiger

You cannot specify custom reference class names; JPublisher automatically derives
them by adding "Ref" to custom object class names (relevant to ORADat a
implementations only). For example, if JPublisher produces Java source

Myobj . sql j to define custom object class Myobj , then it will also produce Java
source Myobj Ref . j ava to define a Myobj Ref custom reference class.

Note: When specifying the schema, such as scot t in the above
example, this is not incorporated into the custom Java class name.

To create custom Java classes for the object and collection types defined in
"User-Defined Types" on page 6-23, you can run JPublisher as follows:

%pub -user=scott/tiger -sgl =Address, Person, Phone_array, Participant _t,
Mbdul e_t, Modul et bl _t
or, to explicitly specify custom object class and custom collection class hames:

%pub -user=scott/tiger -sgl =Address, Person, phone_array: PhoneArray,
participant_t:ParticipantT, nodul e_t: Mdul eT, nodul et bl _t: Mdul etbl T

(Each of the preceding two examples is a single wraparound command line.)

The second example will produce Java source files Addr ess. sql j ,
Addr essRef . j ava, Person. sql j, Per sonRef . j ava, PhoneArray. j ava,
ParticipantT.sqglj,Participant TRef.java, Mdul eT. sqlj,

Objects, Collections, and OPAQUE Types 6-35

JPublisher and the Creation of Custom Java Classes

Modul eTRef . j ava, and Mbdul et bl T. j ava. Examples of some of these source
files are provided in "JPublisher Custom Java Class Examples" on page 6-47.

So that it knows how to populate the custom Java classes, JPublisher connects to the
specified schema (here, scot t / ti ger) to determine attributes of your specified
object types or elements of your specified collection types.

Note: As of Oracle9i release 2, as an alternative to specifying
multiple mappings in a single - sgl setting, you can use multiple
- sgl options in the same command line. The effect of multiple

- sqgl options is cumulative.

If you want to change how JPublisher uses character case in default names for the
methods and attributes that it generates, including lower-level custom Java class
names for attributes that are objects or collections, you can accomplish this using
the - case option. There are four possible settings:

- case=m xed (default)—The following will be uppercase: the first character of
every word unit of a class name, every word unit of an attribute name, and
every word unit after the first word unit of a method name. All other characters
are in lowercase. JPublisher interprets underscores (_), dollar signs ($), and any
characters that are illegal in Java identifiers as word-unit separators; these
characters are discarded in the process.

- case=same—Character case is unchanged from its representation in the
database. Underscores and dollar signs are retained; illegal characters are
discarded.

- case=upper —Lowercase letters are converted to uppercase. Underscores and
dollar signs are retained; illegal characters are discarded.

- case=| ower —Uppercase letters are converted to lowercase. Underscores and
dollar signs are retained; illegal characters are discarded.

Note: If you run JPublisher without specifying the user-defined
types to map to Java, it will process all user-defined types in the
schema. Generated class names, for both your top-level custom
classes and any other classes for object attributes or collection
elements, will be based on the setting of the - case option.

6-36 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Specify Type Mappings

JPublisher offers several choices for how to map user-defined types and their
attribute and element types between SQL and Java. The rest of this section lists
categories of SQL types and the mapping options available for each category.

(See "Supported Types for Host Expressions" on page 5-2 for general information
about how Oracle datatypes map to Java types.)

For more information about JPublisher features or options, see the Oracle9i
JPublisher User’s Guide.

Categories of SQL Types JPublisher categorizes SQL types into the following groups,
with corresponding JPublisher options as noted:

= numeric types—anything stored as SQL type NUMBER

Use the JPublisher - nunber t ypes option to specify type-mapping for numeric
types.

« LOB types—SQL types BLOB and CLOB
Use the JPublisher - | obt ypes option to specify type-mapping for LOB types.

= Dbuilt-in types—anything stored as a SQL type not covered by the preceding
categories, for example: CHAR, VARCHAR2, LONG and RAW

Use the JPublisher - bui | ti nt ypes option to specify type-mapping for built-in
types.

Type-Mapping Modes JPublisher defines the following type-mapping modes:

« JDBC mapping (setting j dbc)—Uses standard default mappings between SQL
types and Java native types. This setting is valid for the - nunber t ypes,
-1 obt ypes, and - bui | ti nt ypes options.

« Oracle mapping (setting or acl e)—Uses corresponding or acl e. sql types to
map to SQL types. This setting is valid for the - nunber t ypes, - | obt ypes,
and - bui | ti nt ypes options.

« Object-JDBC mapping (setting obj ect j dbc)—This is an extension of JDBC
mapping. Where relevant, object-JDBC mapping uses numeric object types from
the standard j ava. | ang package (such asj ava. | ang. | nt eger, Fl oat , and
Doubl e) instead of primitive Java types (such asi nt, f | oat, and doubl e).
Thej ava. | ang types are nullable; the primitive types are not. This setting is
valid for the - nunber t ypes option only.

Objects, Collections, and OPAQUE Types 6-37

JPublisher and the Creation of Custom Java Classes

« BigDeci mal mapping (setting bi gdeci mal)—Uses
j ava. mat h. Bi gDeci mal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the
or acl e. sgl . NUMBERtype. This setting is valid for the - nunber t ypes option
only.

Note: Using Bi gDeci mal mapping can significantly degrade
performance.

The next section discusses type mapping options that you can use for object
attributes and collection elements.

Mapping Attribute or Element Types to Java If you do not specify mappings for the
attribute types of a SQL object type or the element types of a SQL collection type,
then JPublisher uses the following defaults:

« For numeric types, object-JDBC mapping is the default mapping.
« For LOB types, Oracle mapping is the default mapping.
« For built-in type types, JDBC mapping is the default mapping.

If you want alternate mappings, use the - nunbert ypes, - | obt ypes, and
-bui | ti ntypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself a SQL object type, it will be mapped according to the
- usertypes setting.

Important: Be especially aware that if you specify a SQLDat a
implementation for the custom object class and want the code to be
portable, you must use portable mappings for the attribute types.
The defaults for numeric types and built-in types are portable, but
for LOB types you must specify - | obt ypes=j dbc.

Summary of SQL Type Categories and Mapping Settings Table 6-1 summarizes JPublisher
categories for SQL types, the mapping settings relevant for each category, and the
default settings.

6-38 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Table 6-1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type JPublisher

Category Mapping Option Mapping Settings Default
UDT types -usertypes oracle, jdbc oracle
numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc
LOB types -lobtypes oracle, jdbc oracle
built-in types -builtintypes oracle, jdbc jdbc

Note: The JPublisher - mappi ng option used in previous releases
is deprecated but still supported. For information about how
JPublisher converts - mappi ng option settings to settings for the
new mapping options, see the Oracle9i JPublisher User’s Guide.

Generate Wrapper Methods

In creating custom object classes to map Oracle objects to Java, the - met hods
option instructs JPublisher whether to include Java wrappers for Oracle object
methods (member functions). The default - met hods=t r ue setting generates
wrappers, and also results in JPublisher generating a . sql j file instead ofa. j ava
file for a custom object class (unless the underlying SQL object actually has no
methods).

Wrapper methods generated by JPublisher are always instance methods, even when
the original object methods are static. See "Custom Java Class Support for Object
Methods" on page 6-10 for more information.

The following example shows how to set the - net hods option:

%] pub -sqgl =Myobj , nycol | : M/Col | A ass -user=scott/tiger -nethods=true

This will use default naming—the Java method names will be derived in the same
fashion as custom Java class names (as described in "Specify User-Defined Types to
Map to Java" on page 6-34), except that the initial character will be lowercase. For
example, by default an object method name of CALC_SAL results in a Java wrapper
method of cal cSal () .

Alternatively, you can specify desired Java method names, but this requires use of a
JPublisher I NPUT file and is discussed in "Creating Custom Java Classes and
Specifying Member Names" on page 6-45.

Objects, Collections, and OPAQUE Types 6-39

JPublisher and the Creation of Custom Java Classes

Note: The - met hods option has additional uses as well, such as
for generating wrapper classes for packages, or wrapper methods
for package methods. This is beyond the scope of this manual—see
the Oracle9i JPublisher User’s Guide for information.

Regarding Overloaded Methods If you run JPublisher for an Oracle object that has an
overloaded method where multiple signatures have the same corresponding Java
signature, then JPublisher will generate a uniquely named method for each
signature. It accomplishes this by appending _n to function names, where nis a
number. This is to ensure that no two methods in the generated custom Java class
have the same name and signature. Consider, for example, the SQL functions
defined in creating a MY_TYPE object type:

CREATE (R REPLACE TYPE ny_type AS (BIECT
(

MEVBER FUNCTI ON nyf unc(x | NTEGER
RETURN ny_return IS
BEG N

BND,

MEVBER FUNCTI ON nyf unc(y SMALLI NT)
RETURN ny_return IS
BEG N

BEND,

N

Without precaution, both definitions of nyf unc result in the following name and
signature in Java:

nyf unc(| nt eger)

This is because both | NTEGERand SMALLI NT in SQL map to the Java | nt eger
type.

Instead, JPublisher might call one nyf unc_1 and the other myf unc_2. (The _nis
unique for each. In simple cases it will likely be _1, 2, and so on, but it might
sometimes be arbitrary, other than being unique for each.)

6-40 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Note: How JPublisher handles overloaded wrapper methods
applies to SQL functions created within an object or within a
package, but not to top-level functions—overloading is not allowed
at the top level.

Generate Custom Java Classes and Map Alternate Classes

You can use JPublisher to generate a custom Java class but instruct it to map the
object type (or collection type) to an alternative class instead of to the generated
class.

A typical scenario is to treat JPublisher-generated classes as superclasses, extend
them to add functionality, and map the object types to the subclasses. For example,
presume you have an Oracle object type ADDRESS and want to produce a custom
Java class for it that has functionality beyond what is produced by JPublisher. You
can use JPublisher to generate a custom Java class JAddr ess for the purpose of
subclassing it to produce a class My Addr ess. Under this scenario you will add any
special functionality to MyAddr ess and will want JPublisher to map ADDRESS
objects to that class, not to the JAddr ess class. You will also want JPublisher to
produce a reference class for MyAddr ess, not JAddr ess.

JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your - sgl option setting:

-sql =obj ect _t ype: gener at ed_cl ass: nap_cl ass

For the above example, use this setting:
- sql =ADDRESS:; JAddr ess: M/Addr ess

This generates class JAddr ess in source file JAddr ess. sql j (or possibly . j ava)
but does the following:

« Maps the object type ADDRESS to the MyAddr ess class, not to the JAddr ess
class. Therefore, if you retrieve an object from the database that has an
ADDRESS attribute, then this attribute will be created as an instance of
MyAddr ess in Java. Or, if you retrieve an ADDRESS object directly, you will
retrieve it into a MyAddr ess instance.

« Createsa MyAddr essRef class in MyAddr essRef . j ava, instead of creating a
JAddr essRef class.

Objects, Collections, and OPAQUE Types 6-41

JPublisher and the Creation of Custom Java Classes

« Creates an initial version of the MyAddr ess class ina MyAddr ess. sql j source
file (or possibly MyAddr ess. j ava), unless the file already exists (in which case
it is not changed).

MyAddr ess subclasses JAddr ess. In order to implement the extended
functionality for My Addr ess, you can start with the JPublisher-generated
MyAddr ess source file, editing it as desired.

For further discussion about subclassing JPublisher-generated classes (continuing
the preceding example), see "Extending Classes Generated by JPublisher" on
page 6-51.

JPublisher INPUT Files and Properties Files

JPublisher supports the use of special | NPUT files and standard properties files to
specify type mappings and additional option settings.

Using JPublisher INPUT Files
You can use the JPublisher - i nput command-line option to specify an | NPUT file
for JPublisher to use for additional type mappings.

" SQL"inan | NPUT file is equivalent to "- sgl " on the command line, and "AS" or
"GENERATE. . . AS" syntax is equivalent to command-line colon syntax. Use the
following syntax, specifying just one mapping per SQL command:

SQ wdt1 <GENERATE Gener at edd ass1> <AS Mapd ass1>
S udt2 <GENERATE Gener at edd ass2> <AS Mapd ass2>

This generates Gener at edCl ass1 and Gener at edC ass2, but maps udt 1 to
MapC ass1 and udt 2to MapCl ass2.

6-42 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQ "CaseSensti veType" AS CaseSensitiveType
or, if also specifying a non-case-sensitive schema name:

SQ SOOIT. "CaseSensi ti veType" AS CaseSensitiveType
or, if also specifying a case-sensitive schema name:

SQ "Scott"."CaseSensitiveType AS CaseSensitiveType

The AS clauses are optional.

Avoid using a dot (".") as part of the schema name or type name
itself.

INPUT File Example In the following example, JPublisher will pick up the - user
option from the command line and go to | NPUT file myi nput . i n for type
mappings.

Command line:

%] pub -input=nyinput.in -user=scott/tiger

Contents of | NPUT file nyi nput . i n:

SQ Myobj
SQ nycol | AS M/Gol | A ass

SQ enpl oyee GENERATE Enpl oyee AS M/Enpl oyee

This accomplishes the following:

User-defined type MYOBJ gets the custom object class name Myobj because that
is how you typed it—JPublisher creates source Myobj . sql j (or possibly
Myobj . j ava, if Myobj has no methods) and Myobj Ref . j ava.

User-defined type MYCOLL is mapped to MyCol | C ass. JPublisher creates a
MyCol | Cl ass. j ava source file.

User-defined type EMPLOYEE is mapped to the MyEnpl oyee class. JPublisher
creates source Enpl oyee. sql j (or possibly Enpl oyee. j ava) and

MyEnpl oyeeRef . j ava, as well as an initial version of MyEnpl oyee. sql j (or
. j ava) unless the file already exists. If you retrieve an object from the database
that has an EMPLOYEE attribute, this attribute would be created as an instance

Objects, Collections, and OPAQUE Types 6-43

JPublisher and the Creation of Custom Java Classes

of MyEnpl oyee in Java. Or, if you retrieve an EMPLOYEE object directly,
presumably you will retrieve it into a M/Enpl oyee instance. You are
responsible for the MyEnpl oyee code, but for convenience you can start with
the JPublisher-generated MyEnpl oyee source file and edit it to implement your
specialized functionality for EMPLOYEE objects in Java. MyEnpl oyee subclasses
the Enpl oyee class.

Using JPublisher Properties Files

You can use the JPublisher - pr ops command-line option to specify a properties file
for JPublisher to use for additional type mappings and other option settings.

In a properties file, "j pub. " (including the period) is equivalent to the
command-line "- " (single-dash), and other syntax remains the same. Specify only
one option per line.

For type mappings, for example, "j pub. sql " is equivalent to "- sgl ". You can
specify multiple mappings in a single j pub. sqgl setting. Alternatively, as of
Oracle9i release 2, you can use multiple j pub. sql options—the effect would be
cumulative (as for multiple - sql options on the command line).

Note: As of Oracle9i release 2, the behavior of properties files is to
ignore any line that does not begin with "jpub.” or "--jpub." (two
dashes followed by "jpub."). This allows you to use the same file as
both a SQL script to create the types, and a properties file for
JPublisher. If you start each JPublisher statement with "--", which
indicates a SQL comment, it will be ignored by SQL*Plus. And SQL
statements will be ignored by JPublisher.

Properties File Example In the following example, JPublisher will pick up the - user
option from the command line and go to properties file j pub. pr operti es for
type mappings and the attribute-mapping option.

Command line:
%] pub -props=j pub. properties -user=scott/tiger
Contents of properties file j pub. properti es:

j pub. sgl =Myobj , nycol | : M/Col | A ass, enpl oyee: Enpl oyee: M/Enpl oyee
j pub. user t ypes=or acl e

6-44 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

This produces the same results as the input-file example above, explicitly specifying
the or acl e mapping setting.

Note: Unlike SQLJ, JPublisher has no default properties file. To
use a properties file, you must use the - pr ops option.

Creating Custom Java Classes and Specifying Member Names

In generating custom Java classes, you can specify the names of any attributes or
methods of the custom class. This cannot be specified on the JPublisher command
line, however—only in a JPublisher | NPUT file using TRANSLATE syntax, as
follows:

SQA udt <GENERATE Gener at edd ass> <AS Mapd ass> <TRANSLATE nenber nanel AS
Javananel> <, nenbernane2 AS Javanane2> ...

TRANSLATE pairs (member naneNAS JavananeN) are separated by commas.

For example, presume the Oracle object type EMPLOYEE has an ADDRESS attribute
that you want to call HoneAddr ess, and a Gl VE_RAI SE method that you want to
call gi veRai se() . Also presume that you want to generate an Enpl oyee class but
map EMPLOYEE objects to a MyEnpl oyee class that you will create. (This is not
related to specifying member names, but provides a full example of | NPUT file
syntax.)

SQ enpl oyee GENERATE Enpl oyee AS M/Enpl oyee
TRANSLATE address AS HoneAddress, Q VE RAl SE AS gi veRai se

Notes:

« When you specify member names, any members you do not
specify will be given the default naming.

« The reason to capitalize the specified attribute—HomeAddr ess
instead of homre Addr ess—is that it will be used exactly as
specified to name the accessor methods; get HoneAddr ess(),
for example, follows naming conventions;
get homeAddr ess() does not.

Objects, Collections, and OPAQUE Types 6-45

JPublisher and the Creation of Custom Java Classes

JPublisher Implementation of Wrapper Methods

This section describes how JPublisher generates wrapper methods and how
wrapper method calls are processed at runtime.

Generation of Wrapper Methods
The following points describe how JPublisher generates wrapper methods:

« JPublisher-generated wrapper methods are implemented in SQLJ; therefore,
whenever - met hods=t r ue, the custom object class will be defined ina . sql j
file instead of ina . j ava file, assuming the object type defines methods. Run
SQLJ to translate the . sql j file.

Note: Even if the object type does not define methods, you can
ensure thata . sql j file is generated by setting

- met hods=al ways. See the Oracle9i JPublisher User’s Guide for
more information.

« All wrapper methods generated by JPublisher are implemented as instance
methods. This is because a database connection is required for you to invoke
the corresponding server method. Each instance of a JPublisher-generated
custom Java class has a connection associated with it.

Runtime Execution of Wrapper Method Calls

The following points describe what JPublisher-generated Java wrapper methods
execute at runtime. In this discussion, "Java wrapper method" refers to a method in
the custom Java object, while "wrapped SQL method" refers to the SQL object
method that is wrapped by the Java wrapper method.

« The custom Java object is converted to a SQL object and passed to the database,
where the wrapped SQL method is invoked. After this method invocation, the
new value of the SQL object is returned to Java in a new custom Java object,
either as a function return from the wrapped SQL method (if the SQL method is
a stored procedure), or, if there already is a function return, as an array element
in an additional output parameter (if the SQL method is a stored function).

= Any output or input-output parameter is passed as the element of a
one-element array. (This is to work around logistical issues with output and
input-output parameters, as discussed in "Custom Java Class Support for Object
Methods" on page 6-10.) If the parameter is input-output, then the wrapper

6-46 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

method takes the array element as input; after processing, the wrapper assigns
the output to the array element.

JPublisher Custom Java Class Examples

This section provides examples of JPublisher-generated ORADat a implementations
for the following user-defined types (created in "User-Defined Types" on page 6-23):

« acustom object class (Addr ess, corresponding to the Oracle object type
ADDRESS) and related custom reference class (Addr essRef)

= acustom collection class (Mbdul et bl T, corresponding to the Oracle collection
type MODULETBL_T)

Assume that the - met hods option has its defaultt r ue setting and that the
ADDRESS type has methods, so thata . sql j file is generated for the Addr ess class.

Note: For examples of JPublisher-generated SQLDat a
implementations, as well as further examples of
JPublisher-generated ORADat a implementations, see the Oracle9i
JPublisher User’s Guide.

Custom Object Class—Address.sqlj

Following is an example of the source code that JPublisher generates for a custom
object class. Implementation details have been omitted.

In this example, unlike in "Creating Object Types" on page 6-23, assume the Oracle
object ADDRESS has only the st r eet and zi p_code attributes.

package bar;

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

java. sql . SQLExcept i on;

j ava. sqgl . Gonnecti on;

oracl e. j dbc. O acl eTypes;
oracl e. sgl . GRADat a;

or acl e. sgl . GRADat aFact ory;
oracl e. sqgl . Datum

oracl e. sqgl . STRUCT;

oracl e. j pub. Mit abl eX ruct;

public class Address inpl enents CRAData, CRADat aFactory

{

public static final Sring _SQ NAME = "SQOOIT. ADDRESS';

Objects, Collections, and OPAQUE Types 6-47

JPublisher and the Creation of Custom Java Classes

public static final int _SQ TYPEQE = O acl eTypes. STRULCT;

public static CRADat aFactory get CRADat aFact ory()
{ ...}

/* constructors */
publ i ¢ Address()

{ ...}

public Address(String street, java.nath. B gDecimal zip_code)
throws SQLException

{ ...}

/* CRAData interface */
publ i ¢ Dat umt oDat un{Gonnection c¢) throws SQException

{ ...}

/* CRADat aFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ ...}

/* accessor nethods */
public Sring getSreet() throws SQException

{ ...}

public void setStreet(String street) throws SQException
{ ...}

public java.nath. B gDeci nal getZi pCode() throws SQ.Exception
{ ...}

publ i c voi d setZ pGode(j ava. mat h. B gDeci nal zi p_code) throws SQException
{ ...}

Custom Reference Class—AddressRef.java

Following is an example of the source code that JPublisher generates for a custom
reference class to be used for references to ADDRESS objects. Implementation details
have been omitted.

6-48 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

package bar;

inport java. sql . SQ Excepti on;
inport java. sql . Gonnecti on;
inport oracl e.jdbc. O acl eTypes;
inport oracle.sql . CQRADat a;

i nport oracl e. sql . GQRADat aFact ory;
inport oracle.sql.Datu

inport oracl e.sql . REF,

i nport oracl e. sql . STRUCT;

public class AddressRef inpl enents CRAData, CRADat aFactory

{
public static final Sring _SQ BASETYPE = "SQOOTT. ADDRESS';

public static final int _SQ TYPEQDE = O acl eTypes. REF;

public static CRADat aFactory get CRADat aFact ory()
{ ...}

/* constructors */
publ i ¢ AddressRef ()

{ ...}
public static AddressRef(CRAData 0) throws SQLException
{ ...}

/* CRAData interface */
publ i ¢ Dat um t oDat un{Gonnection c) throws SQ Exception

{ ...}

/* CRADataFactory interface */
public CRADat a create(Datumd, int sqgl Type) throws SQException

{ ...}

public static AddressRef cast(CRAData 0) throws SQ.Exception
{ ...}

publ i c Address getVal ue() throws SQException

{ ...}
public voi d setVal ue(Address c) throws SQException
{ ...}

}

Objects, Collections, and OPAQUE Types 6-49

JPublisher and the Creation of Custom Java Classes

Custom Collection Class—ModuletbIT.java

Following is an example of the source code that JPublisher generates for a custom
collection class. Implementation details have been omitted.

inport java. sql . SQLExcepti on;

inport java. sql . Gonnecti on;

inport oracl e.jdbc. O acl eTypes;

inport oracle. sql . CQRADat a;

inport oracl e. sql . GQRADat aFact or y;

inport oracl e.sql . Datum

inport oracl e. sql . ARRAY;,

inport oracle.sql.ArayDescriptor;
inport oracl e.jpub. runtime. Mit abl eArray;

public class Mdul ethl T i npl enents CRAData, CRADat aFactory

{
public static final Sring _SQ@ NAME = "SCOIT. MDULETBL_T";
public static final int _SQ TYPEQCE = O acl eTypes. ARRAY;

public static CRADat aFactory get CRADat aFact ory()
{ ...}

/* constructors */
publ i ¢ Mbdul et bl T()

{ ...}
publ i ¢ Mbdul et bl T(Mdul eT[] a)
{ ...}

/* CRAData interface */
publ i ¢ Dat umt oDat un{ Connecti on c¢) throws SQException

{ ...}

/* CRADataFactory interface */
publ ic CRADat a create(Datumd, int sqgl Type) throws SQException

{ ...}

public Sring get BaseTypeNane() throws SQException
{ ...}

public int getBaseType() throws SQException
{ ...}

public ArrayDescriptor getDescriptor() throws SQException
{ ...}

6-50 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

/* array accessor nethods */
public Mdul eT[] get Array() throws SQException

{ ...}
public void set Array(Mdul eT[] a) throws SQException
{ ...}

public Mxdul eT[] get Array(long index, int count) throws SQException
{ ...}

public void setArray(Mdul eT[] a, |ong index) throws SQException
{ ...}

publ i ¢ Mbdul eT get (bj ect BH enent (1 ong i ndex) throws SQException
{ ...}

public voi d set H enent (Mdul eT a, | ong index) throws SQException
{ ...}
}

Extending Classes Generated by JPublisher

You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields. You can accomplish this by
extending the JPublisher-generated class.

For example, suppose you want JPublisher to generate the class JAddr ess from the
SQL object type ADDRESS. You also want to use a class MyAddr ess to represent
ADDRESS objects and implement special functionality. The MyAddr ess class must
extend JAddr ess.

Another way to enhance the functionality of a JPublisher-generated class is to
simply add methods to it. However, adding methods to the generated class is not
recommended if you anticipate running JPublisher at some future time to
regenerate the class. If you run JPublisher to regenerate a class that you have
modified in this way, you would have to save a copy and then manually merge
your changes back in.

Objects, Collections, and OPAQUE Types 6-51

JPublisher and the Creation of Custom Java Classes

JPublisher Functionality for Extending Generated Classes

As discussed in "Generate Custom Java Classes and Map Alternate Classes” on
page 6-41, the syntax to have JPublisher generate JAddr ess but map to
My Addr ess is as follows:

- sql =ADDRESS:; JAddr ess: M/Addr ess

or, inan | NPUT file:
SQ ADDRESS CENERATE JAddress AS M/Addr ess

As a result of this, JPublisher will generate the reference class MyAddr essRef (in
MyAddr essRef . j ava) rather than JAddr essRef .

In addition, JPublisher alters the code it generates to implement the following
functionality:

=« The MyAddr ess class, instead of the JAddr ess class, is used to represent
attributes whose SQL type is ADDRESS.

=« The MyAddr ess class, instead of the JAddr ess class, is used to represent
method arguments and function results whose type is ADDRESS.

« The MyAddr ess factory, instead of the JAddr ess factory, is used to construct
Java objects whose SQL type is ADDRESS.

You would presumably use MyAddr ess similarly in any additional code that you
write.

At runtime, the Oracle JDBC driver will map any occurrences of ADDRESS data in
the database to MyAddr ess instances, instead of to JAddr ess instances.

Requirements of Extended Classes

By default, JPublisher will create an initial version of the user subclass MyAddr ess
in a file MyAddr ess. sql j or MWAddr ess. j ava (MyAddr ess. sql j if the original
class uses methods and you are publishing these methods), unless the file to be
created already exists, in which case it will not be changed. You can edit this file as
necessary to add your desired functionality.

My Addr ess must have a ho-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

As a result of subclassing the JPublisher-generated class, the subclass will inherit
definitions of the _SQL_ NAME field, which it requires, and the _SQL_TYPECODE
field.

6-52 Oracle9/ SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes

In addition, one of the following will be true.

« Ifthe JPublisher-generated class implements the ORADat a and
ORADat aFact ory interfaces, then the subclass will inherit this implementation
and the necessary t oDat un() and cr eat e() functionality of the generated
class. The subclass implements a get ORADat aFact or y() method that returns
an instance of your map class (such as a My Addr ess object).

or:

« Ifthe JPublisher-generated class implements the SQLDat a interface, then the
subclass will inherit this implementation and the necessary r eadSQL() and
writeSQL() functionality of the generated class.

JPublisher-Generated Custom Object Class—JAddress.sqlj

The code for the JPublisher-generated JAddr ess class, implementing ORADat a and
ORADat aFact ory, is mostly identical to the code shown previously for the

Addr ess class, with the exception that mentions of Addr ess are replaced by
mentions of JAddr ess.

JPublisher-Generated Alternate Reference Class—MyAddressRef.java

Continuing the example in the preceding sections, consider code for the
JPublisher-generated reference class, M\yAddr essRef (as opposed to

JAddr essRef , because MyAddr ess is the class that ADDRESS objects map to). This
class also implements ORADat a and ORADat aFact or y. The implementation is
nearly identical to that of Addr essRef . j ava, except for the change in class name
and the fact that setter and getter methods use MyAddr ess instances instead of
Addr ess instances.

Extended Custom Object Class—MyAddress.sql]

Again continuing the example, here is sample code for a MyAddr ess class that
subclasses the JPublisher-generated JAddr ess class. The comments in the code
show what is inherited from JAddr ess. Implementation details have been omitted.

inport java. sql . SQ.Excepti on;

inport oracle.sql . GQRADat a;

inport oracl e. sql . CQRADat aFact or y;

inport oracl e.sql . Datum

i mport oracl e. sql . STRUCT;

inport oracle.jpub.runtime. Mitabl eXruct;

Objects, Collections, and OPAQUE Types 6-53

JPublisher and the Creation of Custom Java Classes

public class M/Address extends JAddress

{
/* _SQ_NAME inherited from M/Address */

/* _SQ_TYPEQXE inherited fromMAddress */
static _nyAddressFactory = new M/Address();

public static CRADat aFactory get CRADat aFact ory()

{
ret