
Oracle9 i

SQL Reference

Release 2 (9.2)

October 2002

Part No. A96540-02

Oracle9i SQL Reference, Release 2 (9.2)

Part No. A96540-02

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: Diana Lorentz

Contributing Author: Joan Gregoire

Contributors: Sundeep Abraham, Nipun Agarwal, Dave Alpern, Angela Amor, Patrick Amor, Rick
Anderson, Vikas Arora, Lance Ashdown, Hermann Baer, Subhransu Basu, Ruth Baylis, Paula Bingham,
Rae Burns, Yujie Cao, Larry Carpenter, Sivasankaran Chandrasekar, Thomas Chang, Tim Chorma, Lex de
Haan, Norbert Debes, George Eadon, Bill Gietz, Ray Guzman, John Haydu, Lilian Hobbs, Jiansheng
Huang, Ken Jacobs, Archna Johnson, Vishy Karra, Thomas Keefe, Susan Kotsovolos, Muralidhar
Krishnaprasad, Goutam Kulkarni, Paul Lane, Shilpa Lawande, Geoff Lee, Yunrui Li, Lenore Luscher,
Kevin MacDowell, Anand Manikutty, Vineet Marwah, Steve McGee, Bill McGuirk, Bill McKenna,
Meghna Mehta, Tony Morales, Sujatha Muthulingam, Michael Orlowski, Jennifer Polk, Dmitry Potapov,
Rebecca Reitmeyer, Kathy Rich, John Russell, Vivian Schupmann, Shrikanth Shankar, Vikram Shukla,
Mike Stewart, Sankar Subramanian, Seema Sundara, Hal Takahara, Ashish Thusoo, Anh-Tuan Tran,
Randy Urbano, Guhan Viswanathan, David Wang, Jim Warner, Andy Witkowski, Daniel Wong, Jianping
Yang, Adiel Yoaz, Qin Yu, Tim Yu, Mohamed Zait, Fred Zemke

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle7, Oracle8, Oracle8i, Oracle9i, Oracle Store, PL/SQL,
Pro*Ada, Pro*C, Pro*C/C++, Pro*COBOL, Pro*FORTRAN, Pro*Pascal, Pro*PL/1, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. xv

Preface ... xvii

What’s New in SQL Reference? ... xxvii

1 Introduction to Oracle SQL

2 Basic Elements of Oracle SQL

Datatypes ... 2-2
Literals .. 2-53
Format Models .. 2-61
Nulls ... 2-80
Pseudocolumns .. 2-82
Comments .. 2-90
Database Objects .. 2-106
Schema Object Names and Qualifiers .. 2-110
Syntax for Schema Objects and Parts in SQL Statements .. 2-115

3 Operators

About SQL Operators .. 3-2
Arithmetic Operators .. 3-3
Concatenation Operator .. 3-4
Set Operators .. 3-6
User-Defined Operators .. 3-6

iv

4 Expressions

About SQL Expressions .. 4-2
Simple Expressions .. 4-3
Compound Expressions .. 4-5
CASE Expressions .. 4-6
CURSOR Expressions .. 4-7
Datetime Expressions .. 4-9
Function Expressions ... 4-11
INTERVAL Expressions .. 4-11
Object Access Expressions ... 4-12
Scalar Subquery Expressions ... 4-13
Type Constructor Expressions ... 4-13
Variable Expressions ... 4-15
Expression Lists .. 4-16

5 Conditions

About SQL Conditions .. 5-2
Comparison Conditions .. 5-4
Logical Conditions.. 5-8
Membership Conditions ... 5-9
Range Conditions ... 5-12
Null Conditions .. 5-13
EQUALS_PATH .. 5-13
EXISTS Conditions .. 5-14
LIKE Conditions ... 5-15
IS OF type Conditions ... 5-19
UNDER_PATH .. 5-20
Compound Conditions ... 5-21

6 Functions

SQL Functions .. 6-2
ABS ... 6-17
ACOS .. 6-17
ADD_MONTHS ... 6-18
ASCII .. 6-18

v

ASCIISTR .. 6-19
ASIN ... 6-20
ATAN .. 6-21
ATAN2 .. 6-21
AVG .. 6-22
BFILENAME ... 6-23
BIN_TO_NUM ... 6-25
BITAND ... 6-25
CAST .. 6-27
CEIL .. 6-30
CHARTOROWID .. 6-30
CHR .. 6-31
COALESCE ... 6-33
COMPOSE .. 6-34
CONCAT ... 6-35
CONVERT ... 6-36
CORR ... 6-37
COS ... 6-39
COSH ... 6-40
COUNT .. 6-40
COVAR_POP .. 6-42
COVAR_SAMP .. 6-44
CUME_DIST ... 6-47
CURRENT_DATE .. 6-49
CURRENT_TIMESTAMP .. 6-50
DBTIMEZONE ... 6-51
DECODE .. 6-52
DECOMPOSE ... 6-53
DENSE_RANK ... 6-55
DEPTH .. 6-57
DEREF .. 6-58
DUMP .. 6-59
EMPTY_BLOB, EMPTY_CLOB .. 6-61
EXISTSNODE ... 6-61
EXP .. 6-62

vi

EXTRACT (datetime) ... 6-63
EXTRACT (XML) ... 6-65
EXTRACTVALUE .. 6-66
FIRST .. 6-67
FIRST_VALUE .. 6-69
FLOOR ... 6-71
FROM_TZ .. 6-71
GREATEST .. 6-72
GROUP_ID .. 6-72
GROUPING .. 6-74
GROUPING_ID ... 6-75
HEXTORAW ... 6-77
INITCAP .. 6-77
INSTR ... 6-78
LAG ... 6-80
LAST ... 6-81
LAST_DAY .. 6-83
LAST_VALUE ... 6-84
LEAD .. 6-86
LEAST .. 6-87
LENGTH .. 6-88
LN .. 6-89
LOCALTIMESTAMP ... 6-90
LOG .. 6-91
LOWER .. 6-91
LPAD ... 6-92
LTRIM .. 6-93
MAKE_REF ... 6-94
MAX .. 6-95
MIN ... 6-97
MOD ... 6-98
MONTHS_BETWEEN .. 6-99
NCHR ... 6-100
NEW_TIME ... 6-100
NEXT_DAY .. 6-102

vii

NLS_CHARSET_DECL_LEN .. 6-102
NLS_CHARSET_ID .. 6-103
NLS_CHARSET_NAME .. 6-104
NLS_INITCAP .. 6-104
NLS_LOWER .. 6-106
NLSSORT .. 6-107
NLS_UPPER .. 6-108
NTILE ... 6-109
NULLIF .. 6-110
NUMTODSINTERVAL .. 6-111
NUMTOYMINTERVAL ... 6-112
NVL .. 6-113
NVL2 .. 6-114
PATH ... 6-115
PERCENT_RANK .. 6-116
PERCENTILE_CONT .. 6-118
PERCENTILE_DISC .. 6-121
POWER .. 6-122
RANK ... 6-123
RATIO_TO_REPORT .. 6-125
RAWTOHEX ... 6-126
RAWTONHEX .. 6-126
REF .. 6-127
REFTOHEX ... 6-128
REGR_ (Linear Regression) Functions .. 6-129
REPLACE ... 6-137
ROUND (number) ... 6-138
ROUND (date) .. 6-139
ROW_NUMBER ... 6-139
ROWIDTOCHAR .. 6-141
ROWIDTONCHAR ... 6-141
RPAD .. 6-142
RTRIM .. 6-143
SESSIONTIMEZONE ... 6-143
SIGN ... 6-144

viii

SIN .. 6-145
SINH ... 6-145
SOUNDEX ... 6-146
SQRT .. 6-147
STDDEV .. 6-148
STDDEV_POP .. 6-149
STDDEV_SAMP .. 6-151
SUBSTR ... 6-152
SUM .. 6-154
SYS_CONNECT_BY_PATH ... 6-155
SYS_CONTEXT .. 6-156
SYS_DBURIGEN ... 6-161
SYS_EXTRACT_UTC .. 6-162
SYS_GUID ... 6-163
SYS_TYPEID ... 6-164
SYS_XMLAGG ... 6-165
SYS_XMLGEN .. 6-166
SYSDATE ... 6-167
SYSTIMESTAMP ... 6-168
TAN ... 6-169
TANH ... 6-169
TO_CHAR (character) ... 6-170
TO_CHAR (datetime) .. 6-171
TO_CHAR (number) ... 6-173
TO_CLOB .. 6-175
TO_DATE .. 6-175
TO_DSINTERVAL ... 6-177
TO_LOB ... 6-178
TO_MULTI_BYTE .. 6-179
TO_NCHAR (character) .. 6-180
TO_NCHAR (datetime) .. 6-181
TO_NCHAR (number) .. 6-182
TO_NCLOB ... 6-182
TO_NUMBER ... 6-183
TO_SINGLE_BYTE .. 6-184

ix

TO_TIMESTAMP .. 6-185
TO_TIMESTAMP_TZ ... 6-186
 TO_YMINTERVAL ... 6-187
TRANSLATE ... 6-188
TRANSLATE ... USING .. 6-189
TREAT .. 6-191
TRIM .. 6-192
TRUNC (number) .. 6-194
TRUNC (date) ... 6-194
TZ_OFFSET ... 6-195
UID ... 6-196
UNISTR ... 6-196
UPDATEXML ... 6-197
UPPER .. 6-199
USER .. 6-199
USERENV .. 6-200
VALUE .. 6-202
VAR_POP .. 6-202
VAR_SAMP ... 6-204
VARIANCE ... 6-206
VSIZE ... 6-207
WIDTH_BUCKET .. 6-208
XMLAGG ... 6-210
XMLCOLATTVAL .. 6-212
XMLCONCAT ... 6-213
XMLELEMENT ... 6-214
XMLFOREST ... 6-217
XMLSEQUENCE... 6-218
XMLTRANSFORM... 6-219
ROUND and TRUNC Date Functions .. 6-221
User-Defined Functions .. 6-222

7 Common SQL DDL Clauses

allocate_extent_clause .. 7-2
constraints ... 7-5

x

deallocate_unused_clause... 7-37
file_specification ... 7-39
logging_clause .. 7-45
parallel_clause ... 7-49
physical_attributes_clause... 7-52
storage_clause .. 7-56

8 SQL Queries and Subqueries

About Queries and Subqueries ... 8-2
Creating Simple Queries .. 8-2
Hierarchical Queries .. 8-3
The UNION [ALL], INTERSECT, MINUS Operators ... 8-7
Sorting Query Results ... 8-10
Joins .. 8-10
Using Subqueries.. 8-13
Unnesting of Nested Subqueries .. 8-15
Selecting from the DUAL Table .. 8-16
Distributed Queries ... 8-16

9 SQL Statements: ALTER CLUSTER to ALTER SEQUENCE

Types of SQL Statements .. 9-2
Organization of SQL Statements .. 9-4
ALTER CLUSTER .. 9-6
ALTER DATABASE ... 9-11
ALTER DIMENSION .. 9-56
ALTER FUNCTION ... 9-59
ALTER INDEX .. 9-62
ALTER INDEXTYPE .. 9-85
ALTER JAVA ... 9-87
ALTER MATERIALIZED VIEW ... 9-90
ALTER MATERIALIZED VIEW LOG ... 9-110
ALTER OPERATOR ... 9-117
ALTER OUTLINE .. 9-118
ALTER PACKAGE ... 9-120
ALTER PROCEDURE ... 9-124

xi

ALTER PROFILE .. 9-127
ALTER RESOURCE COST .. 9-131
ALTER ROLE .. 9-134
ALTER ROLLBACK SEGMENT .. 9-136
ALTER SEQUENCE ... 9-140

10 SQL Statements: ALTER SESSION to ALTER SYSTEM

ALTER SESSION ... 10-2
ALTER SYSTEM .. 10-20

11 SQL Statements: ALTER TABLE to ALTER TABLESPACE

ALTER TABLE .. 11-2
ALTER TABLESPACE ... 11-102

12 SQL Statements: ALTER TRIGGER to COMMIT

ALTER TRIGGER .. 12-2
ALTER TYPE ... 12-6
ALTER USER .. 12-22
ALTER VIEW .. 12-31
ANALYZE .. 12-34
ASSOCIATE STATISTICS ... 12-50
AUDIT .. 12-54
CALL .. 12-68
COMMENT ... 12-72
COMMIT ... 12-75

13 SQL Statements: CREATE CLUSTER to CREATE JAVA

CREATE CLUSTER .. 13-2
CREATE CONTEXT .. 13-12
CREATE CONTROLFILE ... 13-15
CREATE DATABASE .. 13-23
CREATE DATABASE LINK ... 13-37
CREATE DIMENSION ... 13-43
CREATE DIRECTORY .. 13-49
CREATE FUNCTION .. 13-52

xii

CREATE INDEX ... 13-65
CREATE INDEXTYPE ... 13-95
CREATE JAVA ... 13-98

14 SQL Statements: CREATE LIBRARY to CREATE SPFILE

CREATE LIBRARY .. 14-2
CREATE MATERIALIZED VIEW .. 14-5
CREATE MATERIALIZED VIEW LOG .. 14-34
CREATE OPERATOR .. 14-44
CREATE OUTLINE .. 14-48
CREATE PACKAGE .. 14-52
CREATE PACKAGE BODY ... 14-57
CREATE PFILE ... 14-62
CREATE PROCEDURE ... 14-64
CREATE PROFILE ... 14-71
CREATE ROLE ... 14-79
CREATE ROLLBACK SEGMENT .. 14-82
CREATE SCHEMA .. 14-86
CREATE SEQUENCE .. 14-89
CREATE SPFILE ... 14-94

15 SQL Statements: CREATE SYNONYM to CREATE TRIGGER

CREATE SYNONYM ... 15-2
CREATE TABLE ... 15-7
CREATE TABLESPACE .. 15-80
CREATE TEMPORARY TABLESPACE ... 15-92
CREATE TRIGGER ... 15-95

16 SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT

CREATE TYPE .. 16-3
CREATE TYPE BODY ... 16-25
CREATE USER .. 16-32
CREATE VIEW ... 16-39
DELETE .. 16-55
DISASSOCIATE STATISTICS .. 16-64

xiii

DROP CLUSTER ... 16-67
DROP CONTEXT .. 16-69
DROP DATABASE LINK ... 16-70
DROP DIMENSION ... 16-72
DROP DIRECTORY .. 16-74
DROP FUNCTION .. 16-75
DROP INDEX ... 16-77
DROP INDEXTYPE ... 16-79
DROP JAVA .. 16-81
DROP LIBRARY .. 16-83
DROP MATERIALIZED VIEW ... 16-84
DROP MATERIALIZED VIEW LOG .. 16-86
DROP OPERATOR .. 16-88
DROP OUTLINE ... 16-90
DROP PACKAGE .. 16-91
DROP PROCEDURE ... 16-93
DROP PROFILE ... 16-95
DROP ROLE ... 16-97
DROP ROLLBACK SEGMENT .. 16-98

17 SQL Statements: DROP SEQUENCE to ROLLBACK

DROP SEQUENCE .. 17-2
DROP SYNONYM ... 17-4
DROP TABLE ... 17-6
DROP TABLESPACE .. 17-10
DROP TRIGGER ... 17-13
DROP TYPE .. 17-15
DROP TYPE BODY ... 17-18
DROP USER ... 17-20
DROP VIEW ... 17-22
EXPLAIN PLAN ... 17-24
GRANT .. 17-29
INSERT .. 17-53
LOCK TABLE .. 17-73
MERGE .. 17-77

xiv

NOAUDIT .. 17-81
RENAME ... 17-86
REVOKE .. 17-88
ROLLBACK ... 17-99

18 SQL Statements: SAVEPOINT to UPDATE

SAVEPOINT .. 18-2
SELECT .. 18-4
SET CONSTRAINT[S] .. 18-45
SET ROLE .. 18-47
SET TRANSACTION .. 18-50
TRUNCATE ... 18-54
UPDATE ... 18-59

A How to Read Syntax Diagrams

B Oracle and Standard SQL

C Oracle Reserved Words

D Examples

Using Extensible Indexing .. D-2
Using XML in SQL Statements ... D-11

Index

xv

Send Us Your Comments

Oracle9 i SQL Reference, Release 2 (9.2)

Part No. A96540-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xvi

xvii

Preface

This reference contains a complete description of the Structured Query Language

(SQL) used to manage information in an Oracle database. Oracle SQL is a superset

of the American National Standards Institute (ANSI) and the International

Standards Organization (ISO) SQL99 standard.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility

xviii

Audience
The Oracle9i SQL Reference is intended for all users of Oracle SQL.

Organization
This reference is divided into the following parts:

Volume 1

Chapter 1, "Introduction to Oracle SQL"
This chapter discusses the history of SQL and describes the advantages of using it

to access relational databases.

Chapter 2, "Basic Elements of Oracle SQL"
This chapter describes the basic building blocks of an Oracle database and of

Oracle SQL.

Chapter 3, "Operators"
This chapter describes SQL operators.

Chapter 4, "Expressions"
This chapter describes SQL expressions.

Chapter 5, "Conditions"
This chapter describes SQL conditions.

Chapter 6, "Functions"
This chapter describes how to use SQL functions.

Chapter 7, "Common SQL DDL Clauses"
This chapter describes a number of DDL clauses that are frequently used in

multiple top-level SQL statements.

Chapter 8, "SQL Queries and Subqueries"
This chapter describes the different types of SQL queries and lists the various types

of SQL statements.

xix

Volume 2

Chapter 9, "SQL Statements: ALTER CLUSTER to ALTER SEQUENCE"
Chapter 10, "SQL Statements: ALTER SESSION to ALTER SYSTEM"
Chapter 11, "SQL Statements: ALTER TABLE to ALTER TABLESPACE"
Chapter 12, "SQL Statements: ALTER TRIGGER to COMMIT"
Chapter 13, "SQL Statements: CREATE CLUSTER to CREATE JAVA"
Chapter 14, "SQL Statements: CREATE LIBRARY to CREATE SPFILE"
Chapter 15, "SQL Statements: CREATE SYNONYM to CREATE TRIGGER"
Chapter 16, "SQL Statements: CREATE TYPE to DROP ROLLBACK
SEGMENT"
Chapter 17, "SQL Statements: DROP SEQUENCE to ROLLBACK"
Chapter 18, "SQL Statements: SAVEPOINT to UPDATE"
Chapters 9 through 18 list and describe all Oracle SQL statements in alphabetical

order.

Appendix A, "How to Read Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle compliance with ANSI and ISO standards.

Appendix C, "Oracle Reserved Words"
This appendix lists words that are reserved for internal use by Oracle.

Appendix D, "Examples"
This appendix provides extended examples that use multiple SQL statements and

are therefore not appropriate for any single section of the reference.

Structural Changes in the SQL Reference in Oracle9 i Release 2 (9.2)
The following frequently used DDL clauses have been separated into their own

chapter, Chapter 7, "Common SQL DDL Clauses": allocate_extent_clause on

page 7-2, constraints on page 7-5, deallocate_unused_clause on page 7-37,

file_specification on page 7-39, logging_clause on page 7-45,

parallel_clause on page 7-49, physical_attributes_clause on page 7-52,

storage_clause on page 7-56.

xx

In earlier releases, the autoextend_clause appeared in a number of SQL

statements. It now is documented as part of the datafile_tempfile_spec form

of file_specification , to clarify that this attribute relates to datafiles and

tempfiles.

Structural Changes in the SQL Reference in Oracle9 i Release 1 (9.0.1)
The chapter that formerly described expressions, conditions, and queries has been

divided. Conditions and expressions are now two separate chapters, and queries

are described in Chapter 8, "SQL Queries and Subqueries".

CAST, DECODE, and EXTRACT (datetime), which were formerly documented as

forms of expression, are now documented as SQL built-in functions.

LIKE and the elements formerly called "comparison operators" and "logical

operators" are now documented as SQL conditions.

The chapters containing all SQL statements (formerly Chapters 7 through 10) have

been divided into ten chapters for printing purposes.

Related Documentation
For more information, see these Oracle resources:

■ PL/SQL User’s Guide and Reference for information on PL/SQL, Oracle’s

procedural language extension to SQL

■ Pro*C/C++ Precompiler Programmer’s Guide, SQL*Module for Ada Programmer’s
Guide, and the Pro*COBOL Precompiler Programmer’s Guide for detailed

descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

xxi

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

xxii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

xxiii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;

NAME

/fsl/dbs/tbs_01.dbf

/fs1/dbs/tbs_02.dbf

.

.

.

/fsl/dbs/tbs_09.dbf

9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

xxiv

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxv

evaluates nor makes any representations regarding the accessibility of these Web

sites.

xxvi

xxvii

What’s New in SQL Reference?

This section describes new features of Oracle9i release 2 and provides pointers to

additional information. New features information from previous releases is also

retained to help those users upgrading to the current release.

The following sections describe the new features in the Oracle9i SQL Reference:

■ Oracle9i Release 2 (9.2) New Features in the SQL Reference

■ Oracle9i Release 1 (9.0.1) New Features in the SQL Reference

■ Oracle8i New Features in SQL Reference

xxviii

Oracle9 i Release 2 (9.2) New Features in the SQL Reference
The following built-in conditions are new to this release:

■ EQUALS_PATH on page 5-13

■ UNDER_PATH on page 5-20

The following built-in expression is enhanced in this release:

■ The syntax for type constructor expressions now allows creation of new

user-defined constructors (see "Type Constructor Expressions" on page 4-13).

The following built-in functions are new to this release:

■ DEPTH on page 6-57

■ EXTRACTVALUE on page 6-66

■ PATH on page 6-115

■ UPDATEXML on page 6-197

■ XMLAGG on page 6-210

■ XMLCONCAT on page 6-213

■ XMLCOLATTVAL on page 6-212

■ XMLELEMENT on page 6-214

■ XMLFOREST on page 6-217

■ XMLSEQUENCE on page 6-218

■ XMLTRANSFORM on page 6-219

The following privileges are new or enhanced in this release:

■ DEBUG CONNECT SESSION system privilege on page 17-37 (new)

■ DEBUG ANY PROCEDURE system privilege on page 17-37 (new)

■ DEBUG object privilege on page 17-46 (new)

■ EXECUTE object privilege on procedures, packages, libraries, and object types

(enhanced)

■ GRANT ANY OBJECT PRIVILEGE system privilege on page 17-44

The following top-level SQL statements are new or enhanced in this release:

xxix

■ ALTER DATABASE on page 9-11 has new syntax for managing standby

databases, for managed standby recovery, and for logical standby.

■ ALTER OPERATOR on page 9-117 lets you recompile an existing user-defined

operator.

■ ALTER TABLE on page 11-2 contains new clauses that let you rename a column

or a constraint.

■ CREATE DATABASE on page 13-23:

■ Contains two new clauses for assigning passwords to the SYS and SYSTEM
users

■ Lets you create a locally managed SYSTEM tablespace

■ CREATE SYNONYM on page 15-2 now allows creation of synonyms for object

types.

■ CREATE TABLE on page 15-7:

■ Allows creation of a default list partition to capture rows that do not fall

within any of the other list partitions

■ Allows creation of range-list composite-partitioned tables

■ Contains syntax for creating a table of type XMLType and for creating

range-list composite-partitioned tables

■ Allows data compression of data in table and partition segments

■ CREATE TYPE on page 16-3 allows creation of object types with of NCHAR,
NVARCHAR2, and NCLOB attributes.

■ CREATE VIEW on page 16-39 now contains syntax for creating an XML view

by transforming a table of type XMLType.

■ SELECT on page 18-4 provides syntax for "flashback queries", which let you

query data at a specified system change number or time in the past.

Oracle9 i Release 1 (9.0.1) New Features in the SQL Reference
The following built-in datatypes were new or modified in this release:

■ Oracle provides SQL-based interfaces for defining new types when the built-in

or ANSI-supported types are not sufficient. See "Oracle-Supplied Types" on

page 2-40.

xxx

■ "CHAR Datatype" on page 2-10 can take the CHAR or BYTE parameter to

indicate character or byte semantics, respectively.

■ "INTERVAL YEAR TO MONTH Datatype" on page 2-24 and "INTERVAL DAY

TO SECOND Datatype" on page 2-24 are provided for additional datetime

functionality

■ "TIMESTAMP Datatype" on page 2-21 is provided for additional datetime

functionality.

■ "VARCHAR2 Datatype" on page 2-11 can take the CHAR or BYTE parameter to

indicate character or byte semantics, respectively.

The following expression forms were new or enhanced in this release:

■ "CASE Expressions" on page 4-6 (enhanced with searched case expression)

■ "CURSOR Expressions" on page 4-7 (enhanced; they can be passed as REF
CURSOR arguments to functions)

■ "Datetime Expressions" on page 4-9 (new)

■ "INTERVAL Expressions" on page 4-11 (new)

■ "Scalar Subquery Expressions" on page 4-13 (new)

The following condition was new in this release:

■ IS OF type Conditions on page 5-19

The following built-in functions were new to this release:

■ ASCIISTR on page 6-19

■ BIN_TO_NUM on page 6-25

■ COALESCE on page 6-33

■ COMPOSE on page 6-34

■ CURRENT_DATE on page 6-49

■ CURRENT_TIMESTAMP on page 6-50

■ DBTIMEZONE on page 6-51

■ DECOMPOSE on page 6-53

■ EXISTSNODE on page 6-61

■ EXTRACT (datetime) on page 6-63

■ EXTRACT (XML) on page 6-65

xxxi

■ FIRST on page 6-67

■ FROM_TZ on page 6-71

■ GROUP_ID on page 6-72

■ GROUPING_ID on page 6-75

■ LAST on page 6-81

■ LOCALTIMESTAMP on page 6-90

■ NULLIF on page 6-110

■ PERCENTILE_CONT on page 6-118

■ PERCENTILE_DISC on page 6-121

■ RAWTONHEX on page 6-126

■ ROWIDTONCHAR on page 6-141

■ SESSIONTIMEZONE on page 6-143

■ SYS_CONNECT_BY_PATH on page 6-155

■ SYS_DBURIGEN on page 6-161

■ SYS_EXTRACT_UTC on page 6-162

■ SYS_XMLAGG on page 6-165

■ SYS_XMLGEN on page 6-166

■ SYSTIMESTAMP on page 6-168

■ TO_CHAR (character) on page 6-170

■ TO_CLOB on page 6-175

■ TO_DSINTERVAL on page 6-177

■ TO_NCHAR (character) on page 6-180

■ TO_NCHAR (datetime) on page 6-181

■ TO_NCHAR (number) on page 6-182

■ TO_NCLOB on page 6-182

■ TO_TIMESTAMP on page 6-185

■ TO_TIMESTAMP_TZ on page 6-186

■ TO_YMINTERVAL on page 6-187

xxxii

■ TREAT on page 6-191

■ TZ_OFFSET on page 6-195

■ UNISTR on page 6-196

■ WIDTH_BUCKET on page 6-208

The following functions were enhanced for this release:

■ INSTR on page 6-78

■ LENGTH on page 6-88

■ SUBSTR on page 6-152

The following privileges were new to this release:

■ EXEMPT ACCESS POLICY system privilege on page 17-44

■ RESUMABLE system privilege on page 17-44

■ SELECT ANY DICTIONARY system privilege on page 17-44

■ UNDER ANY TYPE system privilege on page 17-42

■ UNDER ANY VIEW system privilege on page 17-43

■ UNDER object privilege on page 17-46

The following top-level SQL statements were new to this release:

■ CREATE PFILE on page 14-62

■ CREATE SPFILE on page 14-94

■ MERGE on page 17-77

The following SQL statements had new syntax:

■ ALTER DATABASE on page 9-11 has new syntax that lets you end a "hot

backup" procedure while the database is mounted. It also has new syntax

related to standby databases.

■ ALTER INDEX on page 9-62 lets you gather statistics on index usage.

■ ALTER OUTLINE on page 9-118 allows modification of both public and private

outlines.

■ ALTER ROLE on page 9-134 lets you identify a role using an

application-specified package.

xxxiii

■ ALTER SESSION on page 10-2 lets you specify whether statements issued

during the session can be suspended under some conditions.

■ ALTER SYSTEMon page 10-20 has extended SETclause and new RESETclause;

lets you put the database in quiesed state.

■ ALTER TABLE on page 11-2 allows partitioning by a list of specified values.

■ ALTER TYPEon page 12-6 lets you modify the attribute or method definition of

an object type.

■ ALTER VIEW on page 12-31 lets you add constraints to views.

■ ANALYZE on page 12-34 now has ONLINE and OFFLINE clauses as part of the

VALIDATE STRUCTURE syntax. In addition, you can now choose whether to

collect standard statistics, user-defined statistics, or both.

■ constraints on page 7-5 has been enhanced to facilitate index handling

when dropping or disabling constraints.

■ CREATE CONTEXT on page 13-12 has added syntax to let you initialize the

context from the LDAP directory or from an OCI interface and to make the

context accessible throughout an instance.

■ CREATE CONTROLFILE on page 13-15 allows creation of Oracle-managed files.

■ CREATE DATABASE on page 13-23 lets you create default temporary

tablespaces when you create the database; lets you create undo tablespaces.

■ CREATE FUNCTION on page 13-52 lets you create pipelined and parallel table

functions and user-defined aggregate functions.

■ CREATE OUTLINE on page 14-48 allows creation of both public and private

outlines.

■ CREATE ROLE on page 14-79 lets you identify a role using an

application-specified package.

■ CREATE TABLE on page 15-7 allows creation of external tables (tables whose

data is outside the database); allows creation of Oracle-managed files; allows

partitioning by a list of specified values.

■ CREATE TABLESPACEon page 15-80 allows for segment space management by

bitmaps as well as by free lists; allows creation of Oracle-managed files; lets you

create undo tablespaces.

■ CREATE TEMPORARY TABLESPACE on page 15-92 allows creation of

Oracle-managed files.

xxxiv

■ CREATE TYPE on page 16-3 lets you create subtypes.

■ CREATE VIEW on page 16-39 lets you create subviews of object views; lets you

define constraints on views.

■ DROP TABLESPACE on page 17-10 has added syntax that lets you drop

operating system files when you drop the contents from a dropped tablespace.

■ file_specification on page 7-39 allows creation of Oracle-managed files.

■ INSERT on page 17-53 has added syntax that lets you insert default column

values.

■ SELECT on page 18-4 lets you specify multiple groupings in the GROUP BY
clause, for selective analysis across multiple dimensions; lets you assign names

to subquery blocks; has new ANSI-compliant join syntax.

■ SET TRANSACTION on page 18-50 lets you specify a name for a transaction.

■ UPDATE on page 18-59 has added syntax that lets you update to default column

values.

Oracle8 i New Features in SQL Reference
The following SQL functions were new to this version:

■ BITAND on page 6-25

■ CORR on page 6-37

■ COVAR_POP on page 6-42

■ COVAR_SAMP on page 6-44

■ CUME_DIST on page 6-47

■ DENSE_RANK on page 6-55

■ FIRST_VALUE on page 6-69

■ LAG on page 6-80

■ LAST_VALUE on page 6-84

■ LEAD on page 6-86

■ NTILE on page 6-109

■ NUMTOYMINTERVAL on page 6-112

■ NUMTODSINTERVAL on page 6-111

xxxv

■ NVL2 on page 6-114

■ PERCENT_RANK on page 6-116

■ RANK on page 6-123

■ RATIO_TO_REPORT on page 6-125

■ REGR_ (Linear Regression) Functions on page 6-129

■ STDDEV_POP on page 6-149

■ STDDEV_SAMP on page 6-151

■ VAR_POP on page 6-202

■ VAR_SAMP on page 6-204

The following top-level SQL statements were new to Release 8.1.5:

■ ALTER DIMENSION on page 9-56

■ ALTER JAVA on page 9-87

■ ALTER OUTLINE on page 9-118

■ ASSOCIATE STATISTICS on page 12-50

■ CALL on page 12-68

■ CREATE CONTEXT on page 13-12

■ CREATE DIMENSION on page 13-43

■ CREATE INDEXTYPE on page 13-95

■ CREATE JAVA on page 13-98

■ CREATE OPERATOR on page 14-44

■ CREATE OUTLINE on page 14-48

■ CREATE TEMPORARY TABLESPACE on page 15-92

■ DISASSOCIATE STATISTICS on page 16-64

■ DROP CONTEXT on page 16-69

■ DROP DIMENSION on page 16-72

■ DROP INDEXTYPE on page 16-79

■ DROP JAVA on page 16-81

■ DROP OPERATOR on page 16-88

xxxvi

■ DROP OUTLINE on page 16-90

In addition, the following features were enhanced:

■ The aggregate functions have expanded functionality. See "Aggregate

Functions" on page 6-8.

■ When specifying LOB storage parameters, you can now specify caching of

LOBs for read-only purposes. See CREATE TABLE on page 15-7.

■ The section on Expressions now contains a new expression. See "CASE

Expressions" on page 4-6.

■ Subqueries can now be unnested. See "Unnesting of Nested Subqueries" on

page 8-15.

Introduction to Oracle SQL 1-1

1
Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs

and users access data in an Oracle database. Application programs and Oracle tools

often allow users access to the database without using SQL directly, but these

applications in turn must use SQL when executing the user’s request. This chapter

provides background information on SQL as used by most database systems.

This chapter contains these topics:

■ History of SQL

■ SQL Standards

■ Embedded SQL

■ Lexical Conventions

■ Tools Support

1-2 Oracle9i SQL Reference

History of SQL
Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared

Data Banks", in June 1970 in the Association of Computer Machinery (ACM)

journal, Communications of the ACM. Codd’s model is now accepted as the definitive

model for relational database management systems (RDBMS). The language,

Structured English Query Language ("SEQUEL") was developed by IBM

Corporation, Inc., to use Codd’s model. SEQUEL later became SQL (still

pronounced "sequel"). In 1979, Relational Software, Inc. (now Oracle Corporation)

introduced the first commercially available implementation of SQL. Today, SQL is

accepted as the standard RDBMS language.

SQL Standards
Oracle Corporation strives to comply with industry-accepted standards and

participates actively in SQL standards committees. Industry-accepted committees

are the American National Standards Institute (ANSI) and the International

Standards Organization (ISO), which is affiliated with the International

Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have accepted SQL

as the standard language for relational databases. When a new SQL standard is

simultaneously published by these organizations, the names of the standards

conform to conventions used by the organization, but the standards are technically

identical.

The latest SQL standard was adopted in July 1999 and is often called SQL:99. The

formal names of this standard are:

■ ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2

("Foundation"), and 5 ("Bindings")

■ ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2

("Foundation"), and 5 ("Bindings")

How SQL Works
The strengths of SQL provide benefits for all types of users, including application

programmers, database administrators, managers, and end users. Technically

speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface

to a relational database such as Oracle, and all SQL statements are instructions to

the database. In this SQL differs from general-purpose programming languages like

C and BASIC. Among the features of SQL are the following:

See Also: Appendix B, "Oracle and Standard SQL" for a detailed

description of Oracle’s conformance to the SQL:99 standards

Introduction to Oracle SQL 1-3

■ It processes sets of data as groups rather than as individual units.

■ It provides automatic navigation to the data.

■ It uses statements that are complex and powerful individually, and that

therefore stand alone. Flow-control statements were not part of SQL originally,

but they are found in the recently accepted optional part of SQL, ISO/IEC

9075-5: 1996. Flow-control statements are commonly known as "persistent

stored modules" (PSM), and Oracle’s PL/SQL extension to SQL is similar to

PSM.

Essentially, SQL lets you work with data at the logical level. You need to be

concerned with the implementation details only when you want to manipulate the

data. For example, to retrieve a set of rows from a table, you define a condition used

to filter the rows. All rows satisfying the condition are retrieved in a single step and

can be passed as a unit to the user, to another SQL statement, or to an application.

You need not deal with the rows one by one, nor do you have to worry about how

they are physically stored or retrieved. All SQL statements use the optimizer, a part

of Oracle that determines the most efficient means of accessing the specified data.

Oracle also provides techniques that you can use to make the optimizer perform its

job better.

SQL provides statements for a variety of tasks, including:

■ Querying data

■ Inserting, updating, and deleting rows in a table

■ Creating, replacing, altering, and dropping objects

■ Controlling access to the database and its objects

■ Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases
All major relational database management systems support SQL, so you can

transfer all skills you have gained with SQL from one database to another. In

addition, all programs written in SQL are portable. They can often be moved from

one database to another with very little modification.

1-4 Oracle9i SQL Reference

Embedded SQL
Embedded SQL refers to the use of standard SQL statements embedded within a

procedural programming language. The embedded SQL statements are

documented in the Oracle precompiler books.

Embedded SQL is a collection of these statements:

■ All SQL commands, such as SELECT and INSERT, available with SQL with

interactive tools

■ Dynamic SQL execution commands, such as PREPARE and OPEN, which

integrate the standard SQL statements with a procedural programming

language

Embedded SQL also includes extensions to some standard SQL statements.

Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers

interpret embedded SQL statements and translate them into statements that can be

understood by procedural language compilers.

Each of these Oracle precompilers translates embedded SQL programs into a

different procedural language:

■ Pro*C/C++ precompiler

■ Pro*COBOL precompiler

Lexical Conventions
The following lexical conventions for issuing SQL statements apply specifically to

Oracle’s implementation of SQL, but are generally acceptable in other SQL

implementations.

When you issue a SQL statement, you can include one or more tabs, carriage

returns, spaces, or comments anywhere a space occurs within the definition of the

statement. Thus, Oracle evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN(hire_date, SYSDATE)
 FROM employees;

See Also: Pro*C/C++ Precompiler Programmer’s Guide and

Pro*COBOL Precompiler Programmer’s Guide for a definition of the

Oracle precompilers and embedded SQL statements

Introduction to Oracle SQL 1-5

SELECT last_name,
 salary * 12,
 MONTHS_BETWEEN(hire_date, SYSDATE)
FROM employees;

Case is insignificant in reserved words, keywords, identifiers and parameters.

However, case is significant in text literals and quoted names.

Tools Support
Most (but not all) Oracle tools support all features of Oracle SQL. This reference

describes the complete functionality of SQL. If the Oracle tool that you are using

does not support this complete functionality, you can find a discussion of the

restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

See Also: "Text Literals" on page 2-54 for a syntax description

1-6 Oracle9i SQL Reference

Basic Elements of Oracle SQL 2-1

2
Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.

These elements are the simplest building blocks of SQL statements. Therefore,

before using the statements described in Chapter 9 through Chapter 18, you should

familiarize yourself with the concepts covered in this chapter, as well as in

Chapter 3, "Operators", Chapter 4, "Expressions", Chapter 6, "Functions", and

Chapter 8, "SQL Queries and Subqueries".

This chapter contains these sections:

■ Datatypes

■ Literals

■ Format Models

■ Nulls

■ Pseudocolumns

■ Comments

■ Database Objects

■ Schema Object Names and Qualifiers

■ Syntax for Schema Objects and Parts in SQL Statements

Datatypes

2-2 Oracle9i SQL Reference

Datatypes
Each value manipulated by Oracle has a datatype. A value’s datatype associates a

fixed set of properties with the value. These properties cause Oracle to treat values

of one datatype differently from values of another. For example, you can add values

of NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify a datatype for each of its

columns. When you create a procedure or stored function, you must specify a

datatype for each of its arguments. These datatypes define the domain of values

that each column can contain or each argument can have. For example, DATE
columns cannot accept the value February 29 (except for a leap year) or the values 2

or ’SHOE’. Each value subsequently placed in a column assumes the column’s

datatype. For example, if you insert ’01-JAN-98’ into a DATEcolumn, then Oracle

treats the ’01-JAN-98’ character string as a DATE value after verifying that it

translates to a valid date.

Oracle provides a number of built-in datatypes as well as several categories for

user-defined types that can be used as datatypes. The syntax of Oracle datatypes

appears in the diagrams that follow. The text of this section is divided into the

following sections:

■ Oracle Built-in Datatypes

■ ANSI, DB2, and SQL/DS Datatypes

■ User-Defined Types

■ Oracle-Supplied Types

Note: The Oracle precompilers recognize other datatypes in embedded

SQL programs. These datatypes are called external datatypes and are

associated with host variables. Do not confuse built-in datatypes and

user-defined types with external datatypes. For information on external

datatypes, including how Oracle converts between them and built-in

datatypes or user-defined types, see Pro*COBOL Precompiler Programmer’s
Guide, and Pro*C/C++ Precompiler Programmer’s Guide.

Datatypes

Basic Elements of Oracle SQL 2-3

datatypes::=

Oracle_built_in_datatypes::=

character_datatypes::=

number_datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

Oracle_supplied_types

character_datatypes

number_datatypes

long_and_raw_datatypes

datetime_datatypes

large_object_datatypes

rowid_datatypes

CHAR (size

BYTE

CHAR
)

VARCHAR2 (size

BYTE

CHAR
)

NCHAR (size)

NVARCHAR2 (size)

NUMBER
(precision

, scale
)

Datatypes

2-4 Oracle9i SQL Reference

long_and_raw_datatypes::=

datetime_datatypes::=

large_object_datatypes::=

rowid_datatypes::=

The ANSI-supported datatypes appear in the figure that follows. Table 2–6 on

page 2-36 shows the mapping of ANSI-supported datatypes to Oracle built-in

datatypes.

LONG

LONG RAW

RAW (size)

DATE

TIMESTAMP
(fractional_seconds_precision) WITH

LOCAL
TIME ZONE

INTERVAL YEAR
(year_precision)

TO MONTH

INTERVAL DAY
(day_precision)

TO SECOND
(fractional_seconds_precision)

BLOB

CLOB

NCLOB

BFILE

ROWID

UROWID
(size)

Datatypes

Basic Elements of Oracle SQL 2-5

ANSI_supported_datatypes::=

Oracle_supplied_types::=

CHARACTER
VARYING

(size)

CHAR

NCHAR
VARYING (size)

VARCHAR (size)

NATIONAL
CHARACTER

CHAR

VARYING
(size)

NUMERIC

DECIMAL

DEC

(precision
, scale

)

INTEGER

INT

SMALLINT

FLOAT
(size)

DOUBLE PRECISION

REAL

any_types

XML_types

spatial_type

media_types

Datatypes

2-6 Oracle9i SQL Reference

any_types::=

XML_types::=

spatial_type::=

media_types::=

Oracle Built-in Datatypes
Table 2–1 summarizes Oracle built-in datatypes.

SYS.AnyData

SYS.AnyType

SYS.AnyDataSet

XMLType

URIType

MDSYS.SDO_Geometry

ORDSYS.ORDAudio

ORDSYS.ORDImage

ORDSYS.ORDVideo

ORDSYS.ORDDoc

ORDSYS.OrdImageSignature

Datatypes

Basic Elements of Oracle SQL 2-7

Table 2–1 Built-In Datatype Summary

Codea Built-In Datatype Description

1 VARCHAR2(size)
[BYTE | CHAR]

Variable-length character string having maximum
length size bytes or characters. Maximum size is
4000 bytes, and minimum is 1 byte or 1 character.
You must specify size for VARCHAR2.

BYTE indicates that the column will have byte
length semantics; CHAR indicates that the column
will have character semantics.

1 NVARCHAR2(size) Variable-length character string having maximum
length size characters. Maximum size is
determined by the national character set definition,
with an upper limit of 4000 bytes. You must specify
size for NVARCHAR2.

2 NUMBER(p,s) Number having precision p and scale s . The
precision p can range from 1 to 38. The scale s can
range from -84 to 127.

8 LONG Character data of variable length up to 2 gigabytes,

or 231 -1 bytes.

12 DATE Valid date range from January 1, 4712 BC to
December 31, 9999 AD.

180 TIMESTAMP
(fractional_
seconds_precision)

Year, month, and day values of date, as well as hour,
minute, and second values of time, where
fractional_seconds_precision is the number
of digits in the fractional part of the SECOND
datetime field. Accepted values of fractional_
seconds_precision are 0 to 9. The default is 6.

181 TIMESTAMP
(fractional_
seconds_precision)
WITH TIME ZONE

All values of TIMESTAMP as well as time zone
displacement value, where fractional_
seconds_precision is the number of digits in the
fractional part of the SECOND datetime field.
Accepted values are 0 to 9. The default is 6.

231 TIMESTAMP
(fractional_
seconds_precision)
WITH LOCAL TIME
ZONE

All values of TIMESTAMP WITH TIME ZONE, with
the following exceptions:

■ Data is normalized to the database time zone
when it is stored in the database.

■ When the data is retrieved, users see the data in
the session time zone.

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMP function.

Datatypes

2-8 Oracle9i SQL Reference

182 INTERVAL YEAR
(year_precision) TO
MONTH

Stores a period of time in years and months, where
year_precision is the number of digits in the
YEAR datetime field. Accepted values are 0 to 9. The
default is 2.

183 INTERVAL DAY (day_
precision) TO
SECOND
(fractional_
seconds_precision)

Stores a period of time in days, hours, minutes, and
seconds, where

■ day_precision is the maximum number of
digits in the DAY datetime field. Accepted
values are 0 to 9. The default is 2.

■ fractional_seconds_precision is the
number of digits in the fractional part of the
SECOND field. Accepted values are 0 to 9. The
default is 6.

23 RAW(size) Raw binary data of length size bytes. Maximum
size is 2000 bytes. You must specify size for a
RAW value.

24 LONG RAW Raw binary data of variable length up to 2
gigabytes.

69 ROWID Base 64 string representing the unique address of a
row in its table. This datatype is primarily for values
returned by the ROWID pseudocolumn.

208 UROWID [(size)] Base 64 string representing the logical address of a
row of an index-organized table. The optional size
is the size of a column of type UROWID. The
maximum size and default is 4000 bytes.

96 CHAR(size)[BYTE |
CHAR]

Fixed-length character data of length size bytes.
Maximum size is 2000 bytes. Default and
minimum size is 1 byte.

BYTE and CHAR have the same semantics as for
VARCHAR2.

96 NCHAR(size) Fixed-length character data of length size
characters. Maximum size is determined by the
national character set definition, with an upper limit
of 2000 bytes. Default and minimum size is 1
character.

Table 2–1 (Cont.) Built-In Datatype Summary

Codea Built-In Datatype Description

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMP function.

Datatypes

Basic Elements of Oracle SQL 2-9

Character Datatypes
Character datatypes store character (alphanumeric) data, which are words and

free-form text, in the database character set or national character set. They are less

restrictive than other datatypes and consequently have fewer properties. For

example, character columns can store all alphanumeric values, but NUMBER
columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the

character sets, such as 7-bit ASCII or EBCDIC, specified when the database was

created. Oracle supports both single-byte and multibyte character sets.

These datatypes are used for character data:

■ CHAR Datatype

■ NCHAR Datatype

■ NVARCHAR2 Datatype

■ VARCHAR2 Datatype

112 CLOB A character large object containing single-byte
characters. Both fixed-width and variable-width
character sets are supported, both using the CHAR
database character set. Maximum size is 4 gigabytes.

112 NCLOB A character large object containing Unicode
characters. Both fixed-width and variable-width
character sets are supported, both using the NCHAR
database character set. Maximum size is 4 gigabytes.
Stores national character set data.

113 BLOB A binary large object. Maximum size is 4 gigabytes.

114 BFILE Contains a locator to a large binary file stored
outside the database. Enables byte stream I/O
access to external LOBs residing on the database
server. Maximum size is 4 gigabytes.

Table 2–1 (Cont.) Built-In Datatype Summary

Codea Built-In Datatype Description

a The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMP function.

Datatypes

2-10 Oracle9i SQL Reference

CHAR Datatype
The CHAR datatype specifies a fixed-length character string. Oracle subsequently

ensures that all values stored in that column have the length specified by size . If

you insert a value that is shorter than the column length, then Oracle blank-pads

the value to column length. If you try to insert a value that is too long for the

column, then Oracle returns an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000

bytes. A 1-byte string can be inserted into a CHAR(10) column, but the string is

blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column

length in bytes. The BYTE qualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR(10 CHAR), then you supply the column length in

characters. A character is technically a codepoint of the database character set. Its

size can range from 1 byte to 4 bytes, depending on the database character set. The

BYTE and CHAR qualifiers override the semantics specified by the NLS_LENGTH_
SEMANTICS parameter, which has a default of byte semantics.

NCHAR Datatype
Beginning with Oracle9i, the NCHAR datatype is redefined to be a Unicode-only

datatype. When you create a table with an NCHAR column, you define the column

length in characters. You define the national character set when you create your

database.

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NCHAR refer to the number of

characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads

the value to column length. You cannot insert a CHAR value into an NCHAR column,

nor can you insert an NCHAR value into a CHAR column.

Note: To ensure proper data conversion between databases with

different character sets, you must ensure that CHAR data consists of

well-formed strings. See Oracle9i Database Globalization Support
Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-45 for

information on comparison semantics

Datatypes

Basic Elements of Oracle SQL 2-11

The following example compares the col1 column of tab1 with national character

set string ’NCHAR literal’:

SELECT translated_description from product_descriptions
 WHERE translated_name = N’LCD Monitor 11/PM’;

NVARCHAR2 Datatype
Beginning with Oracle9i, the NVARCHAR2 datatype is redefined to be a

Unicode-only datatype. When you create a table with an NVARCHAR2 column, you

supply the maximum number of characters it can hold. Oracle subsequently stores

each value in the column exactly as you specify it, provided the value does not

exceed the column’s maximum length.

The column’s maximum length is determined by the national character set

definition. Width specifications of character datatype NVARCHAR2 refer to the

number of characters. The maximum column size allowed is 4000 bytes.

VARCHAR2 Datatype
The VARCHAR2 datatype specifies a variable-length character string. When you

create a VARCHAR2 column, you supply the maximum number of bytes or

characters of data that it can hold. Oracle subsequently stores each value in the

column exactly as you specify it, provided the value does not exceed the column’s

maximum length. If you try to insert a value that exceeds the specified length, then

Oracle returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum must

be at least 1 byte, although the actual string stored is permitted to be a zero-length

string (’’). You can use the CHAR qualifier, for example VARCHAR2(10 CHAR), to
give the maximum length in characters instead of bytes. A character is technically a

codepoint of the database character set. CHAR and BYTE qualifiers override the

setting of the NLS_LENGTH_SEMANTICS parameter, which has a default of bytes.

The maximum length of VARCHAR2 data is 4000 bytes. Oracle compares VARCHAR2
values using nonpadded comparison semantics.

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode datatype support

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode datatype support

Datatypes

2-12 Oracle9i SQL Reference

VARCHAR Datatype
The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.

Oracle recommends that you use VARCHAR2 rather than VARCHAR. In the future,

VARCHARmight be defined as a separate datatype used for variable-length character

strings compared with different comparison semantics.

NUMBER Datatype
The NUMBER datatype stores zero, positive, and negative fixed and floating-point

numbers with magnitudes between 1.0 x 10-130 and 9.9...9 x 10125 (38 nines followed

by 88 zeroes) with 38 digits of precision. If you specify an arithmetic expression

whose value has a magnitude greater than or equal to 1.0 x 10126, then Oracle

returns an error.

Specify a fixed-point number using the following form:

NUMBER(p,s)

where:

■ p is the precision, or the total number of digits. Oracle guarantees the

portability of numbers with precision ranging from 1 to 38.

■ s is the scale, or the number of digits to the right of the decimal point. The scale

can range from -84 to 127.

Specify an integer using the following form:

NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent

to NUMBER(p,0) .

Specify a floating-point number using the following form:

NUMBER

Note: To ensure proper data conversion between databases with

different character sets, you must ensure that VARCHAR2 data

consists of well-formed strings. See Oracle9i Database Globalization
Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-45 for

information on comparison semantics

Datatypes

Basic Elements of Oracle SQL 2-13

The absence of precision and scale designators specifies the maximum range and

precision for an Oracle number.

Scale and Precision
Specify the scale and precision of a fixed-point number column for extra integrity

checking on input. Specifying scale and precision does not force all values to a fixed

length. If a value exceeds the precision, then Oracle returns an error. If a value

exceeds the scale, then Oracle rounds it.

Table 2–2 show how Oracle stores data using different precisions and scales.

Negative Scale
If the scale is negative, then the actual data is rounded to the specified number of

places to the left of the decimal point. For example, a specification of (10,-2) means

to round to hundreds.

Scale Greater than Precision
You can specify a scale that is greater than precision, although it is uncommon. In

this case, the precision specifies the maximum number of digits to the right of the

decimal point. As with all number datatypes, if the value exceeds the precision,

then Oracle returns an error message. If the value exceeds the scale, then Oracle

rounds the value. For example, a column defined as NUMBER(4,5) requires a zero

for the first digit after the decimal point and rounds all values past the fifth digit

after the decimal point. Table 2–3 show the effects of a scale greater than precision:

See Also: "Floating-Point Numbers" on page 2-14

Table 2–2 Storage of Scale and Precision

Actual Data Specified As Stored As

7456123.89 NUMBER 7456123.89

7456123.89 NUMBER(9) 7456124

7456123.89 NUMBER(9,2) 7456123.89

7456123.89 NUMBER(9,1) 7456123.9

7456123.89 NUMBER(6) exceeds precision

7456123.89 NUMBER(7,-2) 7456100

7456123.89 NUMBER(7,2) exceeds precision

Datatypes

2-14 Oracle9i SQL Reference

Floating-Point Numbers
Oracle lets you specify floating-point numbers, which can have a decimal point

anywhere from the first to the last digit or can have no decimal point at all. An

exponent may optionally be used following the number to increase the range (for

example, 1.777 e-20). A scale value is not applicable to floating-point numbers,

because the number of digits that can appear after the decimal point is not

restricted.

You can specify floating-point numbers with the range of values discussed in

"NUMBER Datatype" on page 2-12. The format is defined in "Number Literals" on

page 2-56. Oracle also supports the ANSI datatype FLOAT. You can specify this

datatype using one of these syntactic forms:

■ FLOAT specifies a floating-point number with decimal precision 38 or binary

precision 126.

■ FLOAT(b) specifies a floating-point number with binary precision b. The

precision b can range from 1 to 126. To convert from binary to decimal

precision, multiply b by 0.30103. To convert from decimal to binary precision,

multiply the decimal precision by 3.32193. The maximum of 126 digits of binary

precision is roughly equivalent to 38 digits of decimal precision.

LONG Datatype
LONG columns store variable-length character strings containing up to 2 gigabytes,

or 231-1 bytes. LONG columns have many of the characteristics of VARCHAR2
columns. You can use LONG columns to store long text strings. The length of LONG
values may be limited by the memory available on your computer.

Table 2–3 Scale Greater Than Precision

Actual Data Specified As Stored As

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012

Datatypes

Basic Elements of Oracle SQL 2-15

You can reference LONG columns in SQL statements in these places:

■ SELECT lists

■ SET clauses of UPDATE statements

■ VALUES clauses of INSERT statements

The use of LONG values is subject to some restrictions:

■ A table can contain only one LONG column.

■ You cannot create an object type with a LONG attribute.

■ LONG columns cannot appear in WHERE clauses or in integrity constraints

(except that they can appear in NULL and NOT NULL constraints).

■ LONG columns cannot be indexed.

■ A stored function cannot return a LONG value.

■ You can declare a variable or argument of a PL/SQL program unit using the

LONG datatype. However, you cannot then call the program unit from SQL.

■ Within a single SQL statement, all LONG columns, updated tables, and locked

tables must be located on the same database.

■ LONGand LONG RAWcolumns cannot be used in distributed SQL statements and

cannot be replicated.

■ If a table has both LONG and LOB columns, you cannot bind more than 4000

bytes of data to both the LONG and LOB columns in the same SQL statement.

However, you can bind more than 4000 bytes of data to either the LONG or the

LOB column.

Note: Oracle Corporation strongly recommends that you convert

LONGcolumns to LOB columns as soon as possible. Creation of new

LONG columns is scheduled for desupport.

LOB columns are subject to far fewer restrictions than LONG
columns. Further, LOB functionality is enhanced in every release,

whereas LONG functionality has been static for several releases. See

the modify_col_properties clause of ALTER TABLE on

page 11-2 and TO_LOB on page 6-178 for more information on

converting LONG columns to LOB.

Datatypes

2-16 Oracle9i SQL Reference

■ A table with LONG columns cannot be stored in a tablespace with automatic

segment-space management.

LONG columns cannot appear in certain parts of SQL statements:

■ GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the

DISTINCT operator in SELECT statements

■ The UNIQUE operator of a SELECT statement

■ The column list of a CREATE CLUSTER statement

■ The CLUSTER clause of a CREATE MATERIALIZED VIEW statement

■ SQL built-in functions, expressions, or conditions

■ SELECT lists of queries containing GROUP BY clauses

■ SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or

MINUS set operators

■ SELECT lists of CREATE TABLE ... AS SELECT statements

■ ALTER TABLE ... MOVE statements

■ SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

■ A SQL statement within a trigger can insert data into a LONG column.

■ If data from a LONGcolumn can be converted to a constrained datatype (such as

CHAR and VARCHAR2), a LONG column can be referenced in a SQL statement

within a trigger.

■ Variables in triggers cannot be declared using the LONG datatype.

■ :NEW and :OLD cannot be used with LONG columns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONG value

from the database.

Datetime and Interval Datatypes
The datetime datatypes are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE and

TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime datatypes are sometimes

called "datetimes". The interval datatypes are INTERVAL YEAR TO MONTH and

INTERVAL DAY TO SECOND. Values of interval datatypes are sometimes called

intervals.

See Also: Oracle Call Interface Programmer’s Guide

Datatypes

Basic Elements of Oracle SQL 2-17

Both datetimes and intervals are made up of fields. The values of these fields

determine the value of the datatype. Table 2–4 lists the datetime fields and their

possible values for datetimes and intervals.

Table 2–4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0 to 11

DAY 01 to 31 (limited by the values
of MONTH and YEAR, according
to the rules of the current NLS
calendar parameter)

Any positive or negative
integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where "9(n)" is the
precision of time fractional
seconds The "9(n)" portion is
not applicable for DATE.

0 to 59.9(n), where “9(n)” is the
precision of interval fractional
seconds

TIMEZONE_HOUR

(See Note that follows.)

-12 to 14 (This range
accommodates daylight
savings time changes.) Not
applicable for DATE.

Not applicable

TIMEZONE_MINUTE

(See Note that follows.)

00 to 59. Not applicable for
DATE.

Not applicable

Note: TIMEZONE_HOURand TIMEZONE_MINUTEare specified together and interpreted as an
entity in the format +|- hh:mm , with values ranging from -12:59 to +14:00.

TIMEZONE_REGION Query the TZNAME column of
the V$TIMEZONE_NAMES data
dictionary view. Not applicable
for DATE.

Not applicable

TIMEZONE_ABBR Query the TZABBREV column
of the V$TIMEZONE_NAMES
data dictionary view. Not
applicable for DATE.

Not applicable

Datatypes

2-18 Oracle9i SQL Reference

DATE Datatype
The DATE datatype stores date and time information. Although date and time

information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the

following information: century, year, month, date, hour, minute, and second.

You can specify a date value as a literal, or you can convert a character or numeric

value to a date value with the TO_DATE function. To specify a date as a literal, you

must use the Gregorian calendar. You can specify an ANSI date literal, as shown in

this example:

DATE ’1998-12-25’

The ANSI date literal contains no time portion, and must be specified in exactly this

format (’YYYY-MM-DD’). Alternatively you can specify an Oracle date literal, as in

the following example:

TO_DATE(’98-DEC-25:17:30’,’YY-MON-DD:HH24:MI’)

The default date format for an Oracle date literal is specified by the initialization

parameter NLS_DATE_FORMAT. This example date format includes a two-digit

number for the day of the month, an abbreviation of the month name, the last two

digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format

into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is

12:00:00 AM (midnight). If you specify a date value without a date, then the default

date is the first day of the current month.

Oracle DATE columns always contain both the date and time fields. If your queries

use a date format without a time portion, then you must ensure that the time fields

in the DATE column are set to zero (that is, midnight). Otherwise, Oracle may not

Note: To avoid unexpected results in your DML operations on

datetime data, you can verify the database and session time zones

by querying the built-in SQL functions DBTIMEZONE and

SESSIONTIMEZONE. If the time zones have not been set manually,

Oracle uses the operating system time zone by default. If the

operating system time zone is not a valid Oracle time zone, Oracle

uses UTC as the default value.

Datatypes

Basic Elements of Oracle SQL 2-19

return the query results you expect. Here are some examples that assume a table

my_table with a number column row_num and a DATE column datecol :

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC(SYSDATE));

SELECT * FROM my_table;

 ROW_NUM DATECOL
---------- ---------
 1 04-OCT-00
 2 04-OCT-00

SELECT * FROM my_table
 WHERE datecol = TO_DATE(’04-OCT-00’,’DD-MON-YY’);

 ROW_NUM DATECOL
---------- ---------
 2 04-OCT-00

If you know that the time fields of your DATE column are set to zero, then you can

query your DATE column as shown in the immediately preceding example, or by

using the DATE literal:

SELECT * FROM my_table WHERE datecol = DATE ’2000-10-04’;

However, if the DATE column contains nonzero time fields, then you must filter out

the time fields in the query to get the correct result. For example:

SELECT * FROM my_table WHERE TRUNC(datecol) = DATE ’2000-10-04’;

Oracle applies the TRUNCfunction to each row in the query, so performance is better

if you ensure the zero value of the time fields in your data. To ensure that the time

fields are set to zero, use one of the following methods during inserts and updates:

■ Use the TO_DATE function to mask out the time fields:

INSERT INTO my_table VALUES
 (3, TO_DATE(’4-APR-2000’,’DD-MON-YYYY’));

■ Use the DATE literal:

INSERT INTO my_table VALUES (4, ’04-OCT-00’);

■ Use the TRUNC function:

INSERT INTO my_table VALUES (5, TRUNC(SYSDATE));

Datatypes

2-20 Oracle9i SQL Reference

The date function SYSDATE returns the current system date and time. The function

CURRENT_DATE returns the current session date. For information on SYSDATE, the

TO_* datetime functions, and the default date format, see Chapter 6, "Functions".

Date Arithmetic You can add and subtract number constants as well as other dates

from dates. Oracle interprets number constants in arithmetic date expressions as

numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE - 7 is one week

ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the hiredate
column of the sample table employees from SYSDATE returns the number of days

since each employee was hired. You cannot multiply or divide DATE values.

Oracle provides functions for many common date operations. For example, the

ADD_MONTHS function lets you add or subtract months from a date. The MONTHS_
BETWEEN function returns the number of months between two dates. The fractional

portion of the result represents that portion of a 31-day month.

Because each date contains a time component, most results of date operations

include a fraction. This fraction means a portion of one day. For example, 1.5 days is

36 hours.

Using Julian Dates A Julian date is the number of days since January 1, 4712 BC.

Julian dates allow continuous dating from a common reference. You can use the

date format model “J” with date functions TO_DATE and TO_CHAR to convert

between Oracle DATE values and their Julian equivalents.

Example This statement returns the Julian equivalent of January 1, 1997:

SELECT TO_CHAR(TO_DATE(’01-01-1997’, ’MM-DD-YYYY’),’J’)
 FROM DUAL;

TO_CHAR

2450450

See Also:

■ "Datetime Functions" on page 6-5 for more information on date

functions

■ "Datetime/Interval Arithmetic" on page 2-25 for information on

arithmetic involving other datetime and interval datatypes

Datatypes

Basic Elements of Oracle SQL 2-21

TIMESTAMP Datatype
The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year,

month, and day of the DATE datatype, plus hour, minute, and second values. This

datatype is useful for storing precise time values. Specify the TIMESTAMP datatype

as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds_precision optionally specifies the number of

digits Oracle stores in the fractional part of the SECOND datetime field. When you

create a column of this datatype, the value can be a number in the range 0 to 9. The

default is 6. When you specify TIMESTAMP as a literal, the fractional_
seconds_precision value can be any number of digits up to 9, as follows:

TIMESTAMP’1997-01-31 09:26:50.124’

TIMESTAMP WITH TIME ZONE Datatype
TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone
displacement in its value. The time zone displacement is the difference (in hours

and minutes) between local time and UTC (Coordinated Universal Time—formerly

Greenwich Mean Time). This datatype is useful for collecting and evaluating date

information across geographic regions.

Specify the TIMESTAMP WITH TIME ZONE datatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of

digits Oracle stores in the fractional part of the SECOND datetime field. When you

create a column of this datatype, the value can be a number in the range 0 to 9. The

default is 6. When you specify TIMESTAMP WITH TIME ZONE as a literal, the

fractional_seconds_precision value can be any number of digits up to 9.

For example:

TIMESTAMP ’1997-01-31 09:26:56.66 +02:00’

See Also: "Selecting from the DUAL Table" on page 8-16 for a

description of the DUAL table

See Also: TO_TIMESTAMP on page 6-185 for information on

converting character data to TIMESTAMP data

Datatypes

2-22 Oracle9i SQL Reference

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For

example,

TIMESTAMP ’1999-04-15 8:00:00 -8:00’

is the same as

TIMESTAMP ’1999-04-15 11:00:00 -5:00’

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard

Time.

You can replace the UTC offset with the TZR (time zone region) format element. For

example, the following example has the same value as the preceding example:

TIMESTAMP ’1999-04-15 8:00:00 US/Pacific’

To eliminate the ambiguity of boundary cases when the daylight savings time

switches, use both the TZR and a corresponding TZD format element. The following

example ensures that the preceding example will return a daylight savings time

value:

TIMESTAMP ’1999-10-29 01:30:00 US/Pacific PDT’

If you do not add the TZD format element, and the datetime value is ambiguous,

then Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session

parameter set to TRUE. If that parameter is set to FALSE, then Oracle interprets the

ambiguous datetime as standard time.

Note: Oracle’s time zone data is derived from the public domain

information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time

zone data may not reflect the most recent data available at this site.

Please refer to Oracle9i Database Globalization Support Guide for more

information on Oracle time zone data.

Datatypes

Basic Elements of Oracle SQL 2-23

TIMESTAMP WITH LOCAL TIME ZONE Datatype
TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that

includes a time zone displacement in its value. It differs from TIMESTAMP WITH
TIME ZONE in that data stored in the database is normalized to the database time

zone, and the time zone displacement is not stored as part of the column data.

When users retrieve the data, Oracle returns it in the users’ local session time zone.

The time zone displacement is the difference (in hours and minutes) between local

time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time).

This datatype is useful for displaying date information in the time zone of the client

system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE datatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of

digits Oracle stores in the fractional part of the SECOND datetime field. When you

create a column of this datatype, the value can be a number in the range 0 to 9. The

default is 6.

There is no literal for TIMESTAMP WITH LOCAL TIME ZONE.

See Also:

■ "Support for Daylight Savings Times" on page 2-26 and

Table 2–15, " Datetime Format Elements" on page 2-69 for

information on daylight savings support

■ TO_TIMESTAMP_TZ on page 6-186 for information on

converting character data to TIMESTAMP WITH TIME ZONE data

■ ALTER SESSION on page 10-2 for information on the ERROR_
ON_OVERLAP_TIME session parameter

Note: Oracle’s time zone data is derived from the public domain

information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time

zone data may not reflect the most recent data available at this site.

Please refer to Oracle9i Database Globalization Support Guide for more

information on Oracle time zone data.

Datatypes

2-24 Oracle9i SQL Reference

INTERVAL YEAR TO MONTH Datatype
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. This datatype is useful for representing the precise difference

between two datetime values.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The

default value of year_precision is 2.

INTERVAL DAY TO SECOND Datatype
INTERVAL DAY TO SECONDstores a period of time in terms of days, hours, minutes,

and seconds. This datatype is useful for representing the difference between two

datetime values when only the year and month values are significant.

Specify this datatype as follows:

INTERVAL DAY [(day_precision)]
 TO SECOND [(fractional_seconds_precision)]

where

■ day_precision is the number of digits in the DAY datetime field. Accepted

values are 0 to 9. The default is 2.

■ fractional_seconds_precision is the number of digits in the fractional

part of the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

examples of using this datatype

■ CAST on page 6-27 for information on converting character

data to TIMESTAMP WITH LOCAL TIME ZONE

Note: You have a great deal of flexibility when specifying interval

values as literals. Please refer to "Interval Literals" on page 2-57 for

detailed information on specify interval values as literals.

Datatypes

Basic Elements of Oracle SQL 2-25

Datetime/Interval Arithmetic
Oracle lets you derive datetime and interval value expressions. Datetime value

expressions yield values of datetime datatype. Interval value expressions yield

values of interval datatype. Table 2–5 lists the operators that you can use in these

expressions.

For example, you can add an interval value expression to a start time. Consider the

sample table oe.orders with a column order_date . The following statement

adds 30 days to the value of the order_date column:

SELECT order_id, order_date + INTERVAL ’30’ DAY FROM orders;

Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH
LOCAL TIME ZONE, Oracle converts the datetime value from the database time zone

to UTC and converts back to the database time zone after performing the

arithmetic. For TIMESTAMP WITH TIME ZONE, the datetime value is always in UTC,

so no conversion is necessary.

Note: You have a great deal of flexibility when specifying interval

values as literals. Please refer to "Interval Literals" on page 2-57 for

detailed information on specify interval values as literals.

Table 2–5 Operators in Datetime/Interval Value Expressions

Operand 1 Operator Operand 2 Result Type

Datetime + Interval Datetime

Datetime - Interval Datetime

Interval + Datetime Datetime

Datetime - Datetime Intervala

Interval + Interval Interval

Interval - Interval Interval

Interval * Numeric Interval

Numeric * Interval Interval

Interval / Numeric Interval

a This operation is not valid for DATE values.

Datatypes

2-26 Oracle9i SQL Reference

Support for Daylight Savings Times
Oracle automatically determines, for any given time zone region, whether daylight

savings is in effect and returns local time values based accordingly. The datetime

value is sufficient for Oracle to determine whether daylight savings time is in effect

for a given region in all cases except boundary cases. A boundary case occurs

during the period when daylight savings goes into or comes out of effect. For

example, in the US-Pacific region, when daylight savings goes into effect, the time

changes from 2:00 a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does

not exist. When daylight savings goes out of effect, the time changes from 2:00 a.m.

back to 1:00 a.m., and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as

described in Table 2–15 on page 2-69. TZR represents the time zone region in

datetime input strings. Examples are ’Australia/North ’, ’UTC’, and

’Singapore ’. TZD represents an abbreviated form of the time zone region with

daylight savings information. Examples are ’PST’ for US/Pacific standard time and

’PDT’ for US/Pacific daylight time. To see a listing of valid values for the TZR and

TZD format elements, query the TZNAME and TZABBREV columns of the

V$TIMEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight savings

feature. The region names are stored in two time zone files. The

default time zone file is a small file containing only the most

common time zones to maximize performance. If your time zone is

not in the default file, then you will not have daylight savings

support until you provide a path to the complete (larger) file by

way of the ORA_TZFILE environment variable. Please refer to

Oracle9i Database Administrator’s Guide for more information about

setting the ORA_TZFILE environment variable.

Note: Oracle’s time zone data is derived from the public domain

information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time

zone data may not reflect the most recent data available at this site.

Please refer to Oracle9i Database Globalization Support Guide for more

information on Oracle time zone data.

Datatypes

Basic Elements of Oracle SQL 2-27

Datetime and Interval Example
The following example shows how to declare some datetime and interval datatypes.

CREATE TABLE time_table (
 start_time TIMESTAMP,
 duration_1 INTERVAL DAY (6) TO SECOND (5),
 duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMP. The implicit fractional seconds

precision of TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum

number of digits in field DAY is 6 and the maximum number of digits in the

fractional second is 5. The maximum number of digits in all other datetime fields is

2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum

number of digits of the value in each field (YEAR and MONTH) is 2.

RAW and LONG RAW Datatypes
The RAW and LONG RAW datatypes store data that is not to be interpreted (not

explicitly converted when moving data between different systems) by Oracle. These

datatypes are intended for binary data or byte strings. For example, you can use

LONG RAW to store graphics, sound, documents, or arrays of binary data, for which

the interpretation is dependent on the use.

RAW is a variable-length datatype like VARCHAR2, except that Oracle Net (which

connects user sessions to the instance) and the Import and Export utilities do not

perform character conversion when transmitting RAWor LONG RAWdata. In contrast,

See Also:

■ "Date Format Models" on page 2-68 for information on the

format elements

■ Oracle9i Database Reference for information on the dynamic

performance views

Note: Oracle Corporation strongly recommends that you convert

LONG RAW columns to binary LOB (BLOB) columns. LOB columns

are subject to far fewer restrictions than LONG columns. See TO_

LOB on page 6-178 for more information.

Datatypes

2-28 Oracle9i SQL Reference

Oracle Net and Import/Export automatically convert CHAR, VARCHAR2, and LONG
data from the database character set to the user session character set (which you can

set with the NLS_LANGUAGE parameter of the ALTER SESSION statement), if the

two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data,

the binary data is represented in hexadecimal form, with one hexadecimal character

representing every four bits of RAW data. For example, one byte of RAW data with

bits 11001011 is displayed and entered as ’CB’.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFILE
(stored externally), can store large and unstructured data such as text, image, video,

and spatial data up to 4 gigabytes in size.

When creating a table, you can optionally specify different tablespace and storage

characteristics for LOB columns or LOB object attributes from those specified for the

table.

LOB columns contain LOB locators that can refer to out-of-line or in-line LOB

values. Selecting a LOB from a table actually returns the LOB’s locator and not the

entire LOB value. The DBMS_LOB package and Oracle Call Interface (OCI)

operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

■ LOBs can be attributes of a user-defined datatype (object).

■ The LOB locator is stored in the table column, either with or without the actual

LOB value. BLOB, NCLOB, and CLOB values can be stored in separate

tablespaces. BFILE data is stored in an external file on the server.

■ When you access a LOB column, the locator is returned.

■ A LOB can be up to 4 gigabytes in size. BFILE maximum size is operating

system dependent, but cannot exceed 4 gigabytes.

■ LOBs permit efficient, random, piece-wise access to and manipulation of data.

■ You can define more than one LOB column in a table.

■ With the exception of NCLOB, you can define one or more LOB attributes in an

object.

■ You can declare LOB bind variables.

■ You can select LOB columns and LOB attributes.

Datatypes

Basic Elements of Oracle SQL 2-29

■ You can insert a new row or update an existing row that contains one or more

LOB columns or an object with one or more LOB attributes. (You can set the

internal LOB value to NULL, empty, or replace the entire LOB with data. You

can set the BFILE to NULL or make it point to a different file.)

■ You can update a LOB row/column intersection or a LOB attribute with

another LOB row/column intersection or LOB attribute.

■ You can delete a row containing a LOB column or LOB attribute and thereby

also delete the LOB value. Note that for BFILEs, the actual operating system file

is not deleted.

You can access and populate rows of an internal LOB column (a LOB column stored

in the database) simply by issuing an INSERT or UPDATE statement. However, to

access and populate a LOB attribute that is part of an object type, you must first

initialize the LOB attribute using the EMPTY_CLOB or EMPTY_BLOB function. You

can then select the empty LOB attribute and populate it using the DBMS_LOB
package or some other appropriate interface.

Restrictions on LOB Columns LOB columns are subject to the following

restrictions:

■ Distributed LOBs are not supported. Therefore, you cannot use a remote locator

in SELECT or WHERE clauses of queries or in functions of the DBMS_LOB
package.

The following syntax is not supported for LOBs:

SELECT lobcol FROM table1@remote_site;
INSERT INTO lobtable SELECT type1.lobattr FROM table1@remote_
site;
SELECT DBMS_LOB.getlength(lobcol) FROM table1@remote_site;

However, you can use a remote locator in others parts of queries that reference

LOBs. The following syntax is supported on remote LOB columns:

CREATE TABLE t AS SELECT * FROM table1@remote_site;
INSERT INTO t SELECT * FROM table1@remote_site;
UPDATE t SET lobcol = (SELECT lobcol FROM table1@remote_site);
INSERT INTO table1@remote_site ...
UPDATE table1@remote_site ...
DELETE table1@remote_site ...

For the first three types of statement, which contain subqueries, only standalone

LOB columns are allowed in the select list. SQL functions or DBMS_LOBAPIs on

LOBs are not supported. For example, the following statement is supported:

Datatypes

2-30 Oracle9i SQL Reference

CREATE TABLE AS SELECT clob_col FROM tab@dbs2;

However, the following statement is not supported:

CREATE TABLE AS SELECT dbms_lob.substr(clob_col) from tab@dbs2;

■ Clusters cannot contain LOBs, either as key or nonkey columns.

■ You cannot create a varray of LOBs.

■ You cannot specify LOB columns in the ORDER BY clause of a query, or in the

GROUP BY clause of a query or in an aggregate function.

■ You cannot specify a LOB column in a SELECT ... DISTINCT or SELECT ...
UNIQUE statement or in a join. However, you can specify a LOB attribute of an

object type column in a SELECT ... DISTINCT statement or in a query that uses

the UNION or MINUS set operator if the column’s object type has a MAP or

ORDER function defined on it.

■ You cannot specify LOB columns in ANALYZE ... COMPUTE or ANALYZE ...
ESTIMATE statements.

■ The first (INITIAL) extent of a LOB segment must contain at least three

database blocks.

■ When creating an UPDATE DML trigger, you cannot specify a LOB column in

the UPDATE OF clause.

■ You cannot specify a LOB as a primary key column.

■ You cannot specify a LOB column as part of an index key. However, you can

specify a LOB column in the function of a function-based index or in the

indextype specification of a domain index. In addition, Oracle Text lets you

define an index on a CLOB column.

■ In an INSERT or UPDATE operation, you can bind data of any size to a LOB

column, but you cannot bind data to a LOB attribute of an object type. In an

INSERT ... AS SELECT operation, you can bind up to 4000 bytes of data to LOB

columns.

■ If a table has both LONG and LOB columns, you cannot bind more than 4000

bytes of data to both the LONG and LOB columns in the same SQL statement.

See Also: "Keywords and Parameters" section of individual SQL

statements in Oracle9i SQL Reference for additional semantics for the

use of LOBs

Datatypes

Basic Elements of Oracle SQL 2-31

However, you can bind more than 4000 bytes of data to either the LONG or the

LOB column.

The following example shows how the sample table pm.print_media was

created. (This example assumes the existence of the textdoc_tab object table,

which is nested table in the print_media table.)

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE

Notes:

■ Oracle8i Release 2 (8.1.6) and higher support the CACHE READS
setting for LOBs. If you have such LOBs and you downgrade to

an earlier release, Oracle generates a warning and converts the

LOBs from CACHE READS to CACHE LOGGING. You can

subsequently alter the LOBs to either NOCACHE LOGGING or

NOCACHE NOLOGGING.

■ For a table on which you have defined a DML trigger, if you

use OCI functions or DBMS_LOBroutines to change the value of

a LOB column or the LOB attribute of an object type column,

Oracle does not fire the DML trigger.

See Also:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

more information about LOBs, including details about

migrating from LONG to LOB and about the CACHE READS
setting

■ EMPTY_BLOB, EMPTY_CLOB on page 6-61

■ "Oracle-Supplied Types" on page 2-40 for alternative ways of

storing image, audio, video, and spatial data

Datatypes

2-32 Oracle9i SQL Reference

 , ad_header adheader_typ
 , press_release LONG
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

BFILE Datatype
The BFILE datatype enables access to binary file LOBs that are stored in file

systems outside the Oracle database. A BFILE column or attribute stores a BFILE
locator, which serves as a pointer to a binary file on the server’s file system. The

locator maintains the directory alias and the filename.

You can change the filename and path of a BFILE without affecting the base table

by using the BFILENAME function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather,

the underlying operating system provides file integrity and durability. The

maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle

processes have operating system read permissions on the file.

The BFILE datatype enables read-only support of large binary files. You cannot

modify or replicate such a file. Oracle provides APIs to access file data. The primary

interfaces that you use to access file data are the DBMS_LOB package and the OCI.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference and Oracle
Call Interface Programmer’s Guide for more information about

these interfaces and LOBs

■ the modify_col_properties clause of ALTER TABLE on

page 11-2 and TO_LOB on page 6-178 for more information on

converting LONG columns to LOB columns

See Also: BFILENAME on page 6-23 for more information on this

built-in SQL function

See Also:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) and

Oracle Call Interface Programmer’s Guide for more information

about LOBs.

■ CREATE DIRECTORY on page 13-49

Datatypes

Basic Elements of Oracle SQL 2-33

BLOB Datatype
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought

of as bitstreams with no character set semantics. BLOBs can store up to 4 gigabytes

of binary data.

BLOBs have full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. BLOB value manipulations

can be committed and rolled back. However, you cannot save a BLOB locator in a

PL/SQL or OCI variable in one transaction and then use it in another transaction or

session.

CLOB Datatype
The CLOB datatype stores single-byte and multibyte character data. Both

fixed-width and variable-width character sets are supported, and both use the CHAR
database character set. CLOBs can store up to 4 gigabytes of character data.

CLOBs have full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. CLOB value manipulations

can be committed and rolled back. However, you cannot save a CLOB locator in a

PL/SQL or OCI variable in one transaction and then use it in another transaction or

session.

NCLOB Datatype
The NCLOB datatype stores Unicode data using the national character set. Both

fixed-width and variable-width character sets are supported. NCLOBs can store up

to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through SQL, the DBMS_
LOB package, or the OCI participate fully in the transaction. NCLOB value

manipulations can be committed and rolled back. However, you cannot save an

NCLOB locator in a PL/SQL or OCI variable in one transaction and then use it in

another transaction or session.

ROWID Datatype
Each row in the database has an address. You can examine a row’s address by

querying the pseudocolumn ROWID. Values of this pseudocolumn are strings

representing the address of each row. These strings have the datatype ROWID. You

can also create tables and clusters that contain actual columns having the ROWID

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode datatype support

Datatypes

2-34 Oracle9i SQL Reference

datatype. Oracle does not guarantee that the values of such columns are valid

rowids.

Restricted Rowids
Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to

efficiently support partitioned tables and indexes and tablespace-relative data block

addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called

restricted rowids. Their format is as follows:

block.row.file

where:

■ block is a hexadecimal string identifying the data block of the datafile

containing the row. The length of this string depends on your operating system.

■ row is a four-digit hexadecimal string identifying the row in the data block. The

first row of the block has a digit of 0.

■ file is a hexadecimal string identifying the database file containing the row.

The first datafile has the number 1. The length of this string depends on your

operating system.

Extended Rowids
The extended ROWID datatype stored in a user column includes the data in the

restricted rowid plus a data object number. The data object number is an

identification number assigned to every database segment. You can retrieve the data

object number from the data dictionary views USER_OBJECTS, DBA_OBJECTS, and

ALL_OBJECTS. Objects that share the same segment (clustered tables in the same

cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z,

a-z, 0-9, as well as the plus sign (+) and forward slash (/). Extended rowids are not

available directly. You can use a supplied package, DBMS_ROWID, to interpret

extended rowid contents. The package functions extract and provide information

that would be available directly from a restricted rowid as well as information

specific to extended rowids.

See Also: "Pseudocolumns" on page 2-82 for more information on

the ROWID pseudocolumn

Datatypes

Basic Elements of Oracle SQL 2-35

Compatibility and Migration
The restricted form of a rowid is still supported in Oracle9i for backward

compatibility, but all tables return rowids in the extended format.

UROWID Datatype
Each row in a database has an address. However, the rows of some tables have

addresses that are not physical or permanent or were not generated by Oracle. For

example, the row addresses of index-organized tables are stored in index leaves,

which can move. Rowids of foreign tables (such as DB2 tables accessed through a

gateway) are not standard Oracle rowids.

Oracle uses "universal rowids" (urowids) to store the addresses of index-organized

and foreign tables. Index-organized tables have logical urowids and foreign tables

have foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn

(as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on a table’s primary key. The logical rowids do

not change as long as the primary key does not change. The ROWID pseudocolumn

of an index-organized table has a datatype of UROWID. You can access this

pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table

(that is, using the SELECT ROWID statement). If you wish to store the rowids of an

index-organized table, then you can define a column of type UROWID for the table

and retrieve the value of the ROWID pseudocolumn into that column.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the functions available with the DBMS_ROWID
package and how to use them

See Also: Oracle9i Database Migration Guide for information

regarding compatibility and migration issues

Note: Heap-organized tables have physical rowids. Oracle

Corporation does not recommend that you specify a column of

datatype UROWID for a heap-organized table.

Datatypes

2-36 Oracle9i SQL Reference

ANSI, DB2, and SQL/DS Datatypes
SQL statements that create tables and clusters can also use ANSI datatypes and

datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or

IBM datatype name that differs from the Oracle datatype name, records it as the

name of the datatype of the column, and then stores the column’s data in an Oracle

datatype based on the conversions shown in Table 2–6 and Table 2–7.

See Also:

■ Oracle9i Database Concepts for more information on universal

rowids

■ "ROWID Datatype" on page 2-33 for a discussion of the address

of database rows

Table 2–6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)

CHAR(n)

CHAR(n)

CHARACTER VARYING(n)

CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)

DECIMAL(p,s) a

NUMBER(p,s)

aThe NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

cThe DOUBLE PRECISION datatype is a floating-point number with binary precision 126.
dThe REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.

Datatypes

Basic Elements of Oracle SQL 2-37

Do not define columns with the following SQL/DS and DB2 datatypes, because

they have no corresponding Oracle datatype:

■ GRAPHIC

■ LONG VARGRAPHIC

INTEGER

INT

SMALLINT

NUMBER(38)

FLOAT(b) b

DOUBLE PRECISIONc

REALd

NUMBER

Table 2–7 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype

CHARACTER(n) CHAR(n)

VARCHAR(n) VARCHAR(n)

LONG VARCHAR(n) LONG

DECIMAL(p,s) a NUMBER(p,s)

INTEGER

SMALLINT

NUMBER(38)

FLOAT(b)b NUMBER

aThe DECIMAL datatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

Table 2–6 (Cont.) ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

aThe NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

bThe FLOAT datatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

cThe DOUBLE PRECISION datatype is a floating-point number with binary precision 126.
dThe REAL datatype is a floating-point number with a binary precision of 63, or 18 decimal.

Datatypes

2-38 Oracle9i SQL Reference

■ VARGRAPHIC

■ TIME

Note that data of type TIME can also be expressed as Oracle DATE data.

User-Defined Types
User-defined datatypes use Oracle built-in datatypes and other user-defined

datatypes as the building blocks of types that model the structure and behavior of

data in applications.

The sections that follow describe the various categories of user-defined types.

Object Types
Object types are abstractions of the real-world entities, such as purchase orders, that

application programs deal with. An object type is a schema object with three kinds

of components:

■ A name, which identifies the object type uniquely within that schema

■ Attributes, which are built-in types or other user-defined types. Attributes

model the structure of the real-world entity.

■ Methods, which are functions or procedures written in PL/SQL and stored in

the database, or written in a language like C or Java and stored externally.

Methods implement operations the application can perform on the real-world

entity.

REFs
An object identifier (OID) uniquely identifies an object and enables you to

reference the object from other objects or from relational tables. A datatype category

called REF represents such references. A REF is a container for an object identifier.

REFs are pointers to objects.

See Also:

■ Oracle9i Database Concepts for information about Oracle built-in

datatypes

■ CREATE TYPE on page 16-3 and the CREATE TYPE BODY on

page 16-25 for information about creating user-defined types

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about using user-defined types

Datatypes

Basic Elements of Oracle SQL 2-39

When a REF value points to a nonexistent object, the REF is said to be "dangling". A

dangling REF is different from a null REF. To determine whether a REF is dangling

or not, use the predicate IS [NOT] DANGLING. For example, given object view oc_
orders in the sample schema oe , the column customer_ref is of type REF to

type customer_typ , which has an attribute cust_email :

SELECT o.customer_ref.cust_email
 FROM oc_orders o
 WHERE o.customer_ref IS NOT DANGLING;

Varrays
An array is an ordered set of data elements. All elements of a given array are of the

same datatype. Each element has an index, which is a number corresponding to the

element’s position in the array.

The number of elements in an array is the size of the array. Oracle arrays are of

variable size, which is why they are called varrays. You must specify a maximum

size when you declare the array.

When you declare a varray, it does not allocate space. It defines a type, which you

can use as:

■ The datatype of a column of a relational table

■ An object type attribute

■ A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)

or out of line (in a LOB), depending on its size. However, if you specify separate

storage characteristics for a varray, then Oracle will store it out of line, regardless of

its size.

Nested Tables
A nested table type models an unordered set of elements. The elements may be

built-in types or user-defined types. You can view a nested table as a single-column

table or, if the nested table is an object type, as a multicolumn table, with a column

for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can

use to declare:

See Also: the varray_col_properties of CREATE TABLE on

page 15-40

Datatypes

2-40 Oracle9i SQL Reference

■ Columns of a relational table

■ Object type attributes

■ PL/SQL variables, parameters, and function return values

When a nested table appears as the type of a column in a relational table or as an

attribute of the underlying object type of an object table, Oracle stores all of the

nested table data in a single table, which it associates with the enclosing relational

or object table.

Oracle-Supplied Types
Oracle Corporation provides SQL-based interfaces for defining new types when the

built-in or ANSI-supported types are not sufficient. The behavior for these types can

be implemented in C/C++, Java, or PL/ SQL. Oracle automatically provides the

low-level infrastructure services needed for input-output, heterogeneous client-side

access for new datatypes, and optimizations for data transfers between the

application and the database.

These interfaces can be used to build user-defined (or object) types, and are also

used by Oracle to create some commonly useful datatypes. Several such datatypes

are supplied with the server, and they serve both broad horizontal application areas

(for example, the "Any" types) and specific vertical ones (for example, the spatial

type).

The Oracle-supplied types, along with cross-references to the documentation of

their implementation and use, are described in the following sections:

■ "Any" Types

■ XML Types

■ Spatial Type

■ Media Types

"Any" Types
The "Any" types provide highly flexible modeling of procedure parameters and

table columns where the actual type is not known. These datatypes let you

dynamically encapsulate and access type descriptions, data instances, and sets of

data instances of any other SQL type. These types have OCI and PL/SQL interfaces

for construction and access.

Datatypes

Basic Elements of Oracle SQL 2-41

SYS.ANYTYPE
This type can contain a type description of any named SQL type or unnamed

transient type.

SYS.ANYDATA
This type contains an instance of a given type, with data, plus a description of the

type. ANYDATA can be used as a table column datatype and lets you store

heterogeneous values in a single column. The values can be of SQL built-in types as

well as user-defined types.

SYS.ANYDATASET
This type contains a description of a given type plus a set of data instances of that

type. ANYDATASET can be used as a procedure parameter datatype where such

flexibility is needed. The values of the data instances can be of SQL built-in types as

well as user-defined types.

XML Types
Extensible Markup Language (XML) is a standard format developed by the World

Wide Web Consortium (W3C) for representing structured and unstructured data on

the Web. Universal Resource Identifiers (URIs) identify resources such as Web pages

anywhere on the Web. Oracle provides types to handle XML and URI data, as well

as a class of URIs called DBURIRef s to access data stored within the database itself.

It also provides a new set of types to store and access both external and internal

URIs from within the database.

XMLType
This Oracle-supplied type can be used to store and query XML data in the database.

XMLType has member functions you can use to access, extract, and query the XML

data using XPath expressions. XPath is another standard developed by the W3C

committee to traverse XML documents. Oracle XMLType functions support many

W3C XPath expressions. Oracle also provides a set of SQL functions and PL/SQL

packages to create XMLType values from existing relational or object-relational data.

See Also: Oracle Call Interface Programmer’s Guide, PL/SQL User’s
Guide and Reference, and Oracle9i Application Developer’s Guide -
Fundamentals for the implementation of these types and guidelines

for using them

Datatypes

2-42 Oracle9i SQL Reference

XMLType is a system-defined type, so you can use it as an argument of a function or

as the datatype of a table or view column. You can also create tables and views of

XMLType. When you create an XMLType column in a table, you can choose to store

the XML data in a CLOB column or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create

a table or column conforming to the registered schema. In this case Oracle stores the

XML data in underlying object-relational columns by default, but you can specify

storage in a CLOB column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage

mechanism.

URI Datatypes
Oracle supplies a family of URI types—URIType , DBURIType, XDBURIType, and

HTTPURIType—which are related by an inheritance hierarchy. URIType is an

object type and the others are subtypes of URIType . Since URIType is the

supertype, you can create columns of this type and store DBURIType or

HTTPURIType type instances in this column.

HTTPURIType You can use HTTPURIType to store URLs to external Web pages or

to files. Oracle accesses these files using the HTTP (Hypertext Transfer Protocol)

protocol.

XDBURIType You can use XDBURIType to expose documents in the XML database

hierarchy as URIs that can be embedded in any URIType column in a table. The

XDBURIType consists of a URL, which comprises the hierarchical name of the XML

document to which it refers and an optional fragment representing the XPath

syntax. The fragment is separated from the URL part by a pound sign (#). The

following lines are examples of XDBURIType:

/home/oe/doc1.xml
/home/oe/doc1.xml#/orders/order_item

DBURIType DBURIType can be used to store DBURIRef s, which reference data

inside the database. Storing DBURIRef s lets you reference data stored inside or

outside the database and access the data consistently.

DBURIRef s use an XPath-like representation to reference data inside the database.

If you imagine the database as an XML tree, then you would see the tables, rows,

and columns as elements in the XML document. For instance, the sample human

resources user hr would see the following XML tree:

Datatypes

Basic Elements of Oracle SQL 2-43

<HR>
 <EMPLOYEES>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 <SALARY>12000</SALARY>
 .. <!-- other columns -->
 </ROW>
 ... <!-- other rows -->
 </EMPLOYEES>
 <!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is simply an XPath expression over this virtual XML document. So

to reference the SALARY value in the EMPLOYEES table for the employee with

employee number 205, we can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns

and expose them as URLs to the external world.

URIFactory Package
Oracle also provides the URIFactory package, which can create and return

instances of the various subtypes of the URITypes . The package analyzes the URL

string, identifies the type of URL (HTTP, DBURI, and so on), and creates an instance

of the subtype. To create a DBURI instance, the URL must start with the prefix

/oradb . For example, URIFactory.getURI(’/oradb/HR/EMPLOYEES’)
would create a DBURIType instance and

URIFactory.getUri(’/sys/schema’) would create an XDBURIType instance.

See Also:

■ Oracle9i Application Developer’s Guide - Object-Relational Features
for general information on object types and type inheritance

■ Oracle9i XML Developer’s Kits Guide - XDK for more information

about these supplied types and their implementation

■ Oracle9i Application Developer’s Guide - Advanced Queuing for

information about using XMLType with Oracle Advanced

Queuing

Datatypes

2-44 Oracle9i SQL Reference

Spatial Type
The object-relational implementation of Oracle Spatial consists of a set of object data

types, an index method type, and operators on these types.

MDSYS.SDO_GEOMETRY
The geometric description of a spatial object is stored in a single row, in a single

column of object type SDO_GEOMETRY in a user-defined table. Any table that has a

column of type SDO_GEOMETRY must have another column, or set of columns, that

defines a unique primary key for that table. Tables of this sort are sometimes

referred to as geometry tables.

Media Types
Oracle interMedia uses object types, similar to Java or C++ classes, to describe

multimedia data. An instance of these object types consists of attributes, including

metadata and the media data, and methods. The Oracle interMedia types are:

ORDSYS.ORDAudio
The ORDAUDIO object type supports the storage and management of audio data.

ORDSYS.ORDImage
The ORDIMAGE object type supports the storage and management of image data.

ORDSYS.ORDImageSignature
The ORDSYS.ORDImageSignature type supports a compact representation of the

color, texture, and shape information of image data.

ORDSYS.ORDVideo
The ORDVIDEO object type supports the storage and management of video data.

ORDSYS.ORDDoc
The ORDDOC object type supports storage and management of any type of media

data, including audio, image and video data. Use this type when you want all

media to be stored in a single column.

See Also: Oracle Spatial User’s Guide and Reference for information

on the implementation of this type and guidelines for using it

Datatypes

Basic Elements of Oracle SQL 2-45

Datatype Comparison Rules
This section describes how Oracle compares values of each datatype.

Number Values
A larger value is considered greater than a smaller one. All negative numbers are

less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values
A later date is considered greater than an earlier one. For example, the date

equivalent of ’29-MAR-1997’ is less than that of ’05-JAN-1998’ and ’05-JAN-1998

1:35pm’ is greater than ’05-JAN-1998 10:09am’.

Character String Values
Character values are compared using one of these comparison rules:

■ Blank-padded comparison semantics

■ Nonpadded comparison semantics

The following sections explain these comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths,

then Oracle first adds blanks to the end of the shorter one so their lengths are equal.

Oracle then compares the values character by character up to the first character that

differs. The value with the greater character in the first differing position is

considered greater. If two values have no differing characters, then they are

considered equal. This rule means that two values are equal if they differ only in the

number of trailing blanks. Oracle uses blank-padded comparison semantics only

when both values in the comparison are either expressions of datatype CHAR,
NCHAR, text literals, or values returned by the USER function.

Nonpadded Comparison Semantics Oracle compares two values character by character

up to the first character that differs. The value with the greater character in that

position is considered greater. If two values of different length are identical up to

the end of the shorter one, then the longer value is considered greater. If two values

of equal length have no differing characters, then the values are considered equal.

See Also: Oracle interMedia User’s Guide and Reference for

information on the implementation of these types and guidelines

for using them

Datatypes

2-46 Oracle9i SQL Reference

Oracle uses nonpadded comparison semantics whenever one or both values in the

comparison have the datatype VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison

semantics may vary. The table that follows shows the results of comparing five pairs

of character values using each comparison semantic. Usually, the results of

blank-padded and nonpadded comparisons are the same. The last comparison in

the table illustrates the differences between the blank-padded and nonpadded

comparison semantics.

Single Characters
Oracle compares single characters according to their numeric values in the database

character set. One character is greater than another if it has a greater numeric value

than the other in the character set. Oracle considers blanks to be less than any

character, which is true in most character sets.

These are some common character sets:

■ 7-bit ASCII (American Standard Code for Information Interchange)

■ EBCDIC Code (Extended Binary Coded Decimal Interchange Code)

■ ISO 8859/1 (International Standards Organization)

■ JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2–8 and Table 2–9.

Note that uppercase and lowercase letters are not equivalent. Also, note that the

numeric values for the characters of a character set may not match the linguistic

sequence for a particular language.

Blank-Padded Nonpadded

’ac’ > ’ab’ ’ac’ > ’ab’

’ab’ > ’a ’ ’ab’ > ’a ’

’ab’ > ’a’ ’ab’ > ’a’

’ab’ = ’ab’ ’ab’ = ’ab’

’a ’ = ’a’ ’a ’ > ’a’

Datatypes

Basic Elements of Oracle SQL 2-47

Table 2–8 ASCII Character Set

Symbol Decimal value Symbol Decimal value

blank 32 ; 59

! 33 < 60

" 34 = 61

35 > 62

$ 36 ? 63

% 37 @ 64

& 38 A-Z 65-90

’ 39 [91

(40 \ 92

) 41] 93

* 42 ^ 94

+ 43 _ 95

, 44 ‘ 96

- 45 a-z 97-122

. 46 { 123

/ 47 | 124

0-9 48-57 } 125

: 58 ~ 126

Table 2–9 EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

blank 64 % 108

¢ 74 _ 109

. 75 > 110

< 76 ? 111

(77 : 122

Datatypes

2-48 Oracle9i SQL Reference

Object Values
Object values are compared using one of two comparison functions: MAP and

ORDER. Both functions compare object type instances, but they are quite different

from one another. These functions must be specified as part of the object type.

Varrays and Nested Tables
You cannot compare varrays and nested tables in Oracle9i.

Data Conversion
Generally an expression cannot contain values of different datatypes. For example,

an expression cannot multiply 5 by 10 and then add ’JAMES’. However, Oracle

supports both implicit and explicit conversion of values from one datatype to

another.

+ 78 # 123

| 79 @ 124

& 80 ’ 125

! 90 = 126

$ 91 " 127

* 92 a-i 129-137

) 93 j-r 145-153

; 94 s-z 162-169

ÿ 95 A-I 193-201

- 96 J-R 209-217

/ 97 S-Z 226-233

See Also: CREATE TYPE on page 16-3 and Oracle9i Application
Developer’s Guide - Fundamentals for a description of MAPand ORDER
methods and the values they return

Table 2–9 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

Datatypes

Basic Elements of Oracle SQL 2-49

Implicit and Explicit Data Conversion
Oracle recommends that you specify explicit conversions rather than rely on

implicit or automatic conversions, for these reasons:

■ SQL statements are easier to understand when you use explicit datatype

conversion functions.

■ Automatic datatype conversion can have a negative impact on performance,

especially if the datatype of a column value is converted to that of a constant

rather than the other way around.

■ Implicit conversion depends on the context in which it occurs and may not

work the same way in every case. For example, implicit conversion from a date

value to a VARCHAR2 value may return an unexpected year depending on the

value of the NLS_DATE_FORMAT parameter.

■ Algorithms for implicit conversion are subject to change across software

releases and among Oracle products. Behavior of explicit conversions is more

predictable.

Implicit Data Conversion
Oracle automatically converts a value from one datatype to another when such a

conversion makes sense. Table 2–10 is a matrix of Oracle implicit conversions. The

table shows all possible conversions, without regard to the direction of the

conversion or the context in which it is made. The rules governing these details

follow the table.

Table 2–10 Implicit Type Conversion Matrix

C
H

A
R

VA
R

C
H

A
R

2

D
AT

E

D
AT

E
T

IM
E

/

IN
T

E
R

VA
L

LO
N

G

N
U

M
B

E
R

R
A

W

R
O

W
ID

C
LO

B

B
LO

B

N
C

H
A

R

N
VA

R
C

H
A

R

N
C

LO
B

CHAR — X X X X X X — X — X X —

VARCHAR2 X — X X X X X X X — X X —

DATE X X — — — — — — — — X X —

DATETIME/
INTERVAL

X X — — X — — — — — X X —

LONG X X — X — — X — X — X X X

NUMBER X X — — — — — — — — X X —

Datatypes

2-50 Oracle9i SQL Reference

The following rules govern the direction in which Oracle makes implicit datatype

conversions:

■ During INSERT and UPDATE operations, Oracle converts the value to the

datatype of the affected column.

■ During SELECT FROM operations, Oracle converts the data from the column to

the type of the target variable.

■ When comparing a character value with a NUMBER value, Oracle converts the

character data to NUMBER.

■ When comparing a character value with a DATE value, Oracle converts the

character data to DATE.

■ When you use a SQL function or operator with an argument of a datatype other

than the one it accepts, Oracle converts the argument to the accepted datatype.

■ When making assignments, Oracle converts the value on the right side of the

equal sign (=) to the datatype of the target of the assignment on the left side.

■ During concatenation operations, Oracle converts from noncharacter datatypes

to CHAR or NCHAR.

■ During arithmetic operations on and comparisons between character and

noncharacter datatypes, Oracle converts from any character datatype to a

number, date, or rowid, as appropriate. In arithmetic operations between

CHAR/VARCHAR2 and NCHAR/NVARCHAR2, Oracle converts to a number.

RAW X X — — X — — — — X X X —

ROWID X X — — — — — — — — X X —

CLOB X X — — X — — — — — — — —

BLOB — — — — — — X — — — — — —

NCHAR X X X X X X X X — — — X X

NVARCHAR2 X X X X X X X X — — X — X

NCLOB — — — — X — — — — — X X —

Table 2–10 (Cont.) Implicit Type Conversion Matrix

C
H

A
R

VA
R

C
H

A
R

2

D
AT

E

D
AT

E
T

IM
E

/

IN
T

E
R

VA
L

LO
N

G

N
U

M
B

E
R

R
A

W

R
O

W
ID

C
LO

B

B
LO

B

N
C

H
A

R

N
VA

R
C

H
A

R

N
C

LO
B

Datatypes

Basic Elements of Oracle SQL 2-51

■ Comparisons between CHAR/VARCHAR2 and NCHAR/NVARCHAR2 types may

entail different character sets. The default direction of conversion in such cases

is from the database character set to the national character set. Table 2–11 shows

the direction of implicit conversions between different character types.

■ Most SQL character functions are enabled to accept CLOBs as parameters, and

Oracle performs implicit conversions between CLOBand CHARtypes. Therefore,

functions that are not yet enabled for CLOBs can accept CLOBs through implicit

conversion. In such cases, Oracle converts the CLOBs to CHAR or VARCHAR2
before the function is invoked. If the CLOBis larger than 4000 bytes, then Oracle

converts only the first 4000 bytes to CHAR.

Implicit Data Conversion Examples

Text Literal Example The text literal ’10’ has datatype CHAR. Oracle implicitly

converts it to the NUMBER datatype if it appears in a numeric expression as in the

following statement:

SELECT salary + ’10’
 FROM employees;

Character and Number Values Example When a condition compares a character

value and a NUMBER value, Oracle implicitly converts the character value to a

NUMBER value, rather than converting the NUMBER value to a character value. In the

following statement, Oracle implicitly converts ’200’ to 200:

SELECT last_name
 FROM employees
 WHERE employee_id = ’200’;

Date Example In the following statement, Oracle implicitly converts ’03-MAR-97 ’

to a DATE value using the default date format ’DD-MON-YY’:

SELECT last_name

Table 2–11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2

from CHAR -- VARCHAR2 NCHAR NVARCHAR2

from VARCHAR2 VARCHAR2 -- NVARCHAR2 NVARCHAR2

from NCHAR NCHAR NCHAR -- NVARCHAR2

from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR2 --

Datatypes

2-52 Oracle9i SQL Reference

 FROM employees
 WHERE hire_date = ’03-MAR-97’;

Rowid Example In the following statement, Oracle implicitly converts the text

literal ’AAAFYmAAFAAAAFGAAH’ to a rowid value. (Rowids are unique within a

database, so to use this example you must know an actual rowid in your database.)

SELECT last_name
 FROM employees
 WHERE ROWID = ’AAAFd1AAFAAAABSAAH’;

Explicit Data Conversion
You can also explicitly specify datatype conversions using SQL conversion

functions. The following table shows SQL functions that explicitly convert a value

from one datatype to another.

Table 2–12 Explicit Type Conversion

to
 C

H
A

R
,

VA
R

C
H

A
R

2,
N

C
H

A
R

,
N

VA
R

C
H

A
R

2

to
 N

U
M

B
E

R

to
 D

at
et

im
e/

In
te

rv
al

to
 R

A
W

to
 R

O
W

ID

to
 L

O
N

G
,

LO
N

G
 R

A
W

to
 C

LO
B

, N
C

LO
B

,
B

LO
B

from CHAR,
VARCHAR2,
NCHAR,
NVARCHAR2

TO_CHAR
(character)

TO_NCHAR
(character)

TO_
NUMBER

TO_DATE

TO_TIMESTAMP

TO_TIMESTAMP_TZ

TO_YMINTERVAL

TO_DSINTERVAL

HEX-
TORAW

CHARTO-
ROWID

— TO_CLOB

TO_NCLOB

from NUMBER TO_CHAR
(number)

TO_NCHAR
(number)

— TO_DATE

NUMTOYMINTERVAL

NUMTODSINTERVAL

— — — —

from Datetime/
Interval

TO_CHAR
(date)

TO_NCHAR
(datetime)

— — — — — —

Literals

Basic Elements of Oracle SQL 2-53

Literals
The terms literal and constant value are synonymous and refer to a fixed data

value. For example, ’JACK’, ’BLUE ISLAND’, and ’101’ are all character literals;

5001 is a numeric literal. Character literals are enclosed in single quotation marks,

which enable Oracle to distinguish them from schema object names.

This section contains these topics:

■ Text Literals

■ Integer Literals

from RAW RAWTOHEX

RAWTONHEX

— — — — — TO_BLOB

from ROWID ROWIDTOCHAR — — — — — —

from LONG /
LONG RAW

— — — — — — TO_LOB

from CLOB,
NCLOB, BLOB

TO_CHAR

TO_NCHAR

— — — — — TO_CLOB

TO_NCLOB

Note: You cannot specify LONG and LONG RAW values in cases in

which Oracle can perform implicit datatype conversion. For

example, LONG and LONG RAW values cannot appear in expressions

with functions or operators. For information on the limitations on

LONG and LONG RAW datatypes, see "LONG Datatype" on page 2-14.

See Also: "Conversion Functions" on page 6-6 of the SQL

Reference for details on all of the explicit conversion functions

Table 2–12 (Cont.) Explicit Type Conversion

to
 C

H
A

R
,

VA
R

C
H

A
R

2,
N

C
H

A
R

,
N

VA
R

C
H

A
R

2

to
 N

U
M

B
E

R

to
 D

at
et

im
e/

In
te

rv
al

to
 R

A
W

to
 R

O
W

ID

to
 L

O
N

G
,

LO
N

G
 R

A
W

to
 C

LO
B

, N
C

LO
B

,
B

LO
B

Literals

2-54 Oracle9i SQL Reference

■ Number Literals

■ Interval Literals

Many SQL statements and functions require you to specify character and numeric

literal values. You can also specify literals as part of expressions and conditions. You

can specify character literals with the ’text ’ notation, national character literals

with the N’text’ notation, and numeric literals with the integer or number
notation, depending on the context of the literal. The syntactic forms of these

notations appear in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account

any optional precisions included in the datatypes. Examples of specifying datetime

and interval datatypes as literals are provided in the relevant sections of

"Datatypes" on page 2-2.

Text Literals
Text specifies a text or character literal. You must use this notation to specify values

whenever ’text’ or char appear in expressions, conditions, SQL functions, and

SQL statements in other parts of this reference.

The syntax of text is as follows:

text::=

where

■ N specifies representation of the literal using the national character set. Text

entered using this notation is translated into the national character set by Oracle

when used.

■ c is any member of the user’s character set, except a single quotation mark (’).

■ ’ ’ are two single quotation marks that begin and end text literals. To represent

one single quotation mark within a literal, enter two single quotation marks.

A text literal must be enclosed in single quotation marks. This reference uses the

terms text literal and character literal interchangeably.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

N
’ c ’

Literals

Basic Elements of Oracle SQL 2-55

■ Within expressions and conditions, Oracle treats text literals as though they

have the datatype CHAR by comparing them using blank-padded comparison

semantics.

■ A text literal can have a maximum length of 4000 bytes.

Here are some valid text literals:

’Hello’
’ORACLE.dbs’
’Jackie’’s raincoat’
’09-MAR-98’
N’nchar literal’

Integer Literals
You must use the integer notation to specify an integer whenever integer appears

in expressions, conditions, SQL functions, and SQL statements described in other

parts of this reference.

The syntax of integer is as follows:

integer::=

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

See Also:

■ "About SQL Expressions" on page 4-2 for the syntax description

of expr

■ "Blank-Padded Comparison Semantics" on page 2-45

+

–
digit

Literals

2-56 Oracle9i SQL Reference

Number Literals
You must use the number notation to specify values whenever number appears in

expressions, conditions, SQL functions, and SQL statements in other parts of this

reference.

The syntax of number is as follows:

number::=

where

■ + or - indicates a positive or negative value. If you omit the sign, then a positive

value is the default.

■ digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

■ e or E indicates that the number is specified in scientific notation. The digits

after the E specify the exponent. The exponent can range from -130 to 125.

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the

initialization parameter NLS_NUMERIC_CHARACTERS, then you must specify

numeric literals with ’text’ notation. In such cases, Oracle automatically converts

the text literal to a numeric value.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal

character of comma, specify the number 5.123 as follows:

’5,123’

See Also: "About SQL Expressions" on page 4-2 for the syntax

description of expr

+

– digit
. digit

. digit

E

e

+

–
digit

Literals

Basic Elements of Oracle SQL 2-57

Here are some valid representations of number :

25
+6.34
0.5
25e-03
-1

Interval Literals
An interval literal specifies a period of time. You can specify these differences in

terms of years and months, or in terms of days, hours, minutes, and seconds. Oracle

supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND. Each

type contains a leading field and may contain a trailing field. The leading field

defines the basic unit of date or time being measured. The trailing field defines the

smallest increment of the basic unit being considered. For example, a YEAR TO
MONTH interval considers an interval of years to the nearest month. A DAY TO
MINUTE interval considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or

NUMTODSINTERVAL conversion function to convert the numeric data into interval

literals.

Interval literals are used primarily with analytic functions.

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTH interval literals using the following syntax:

See Also: ALTER SESSION on page 10-2 and Oracle9i Database
Reference

See Also: "About SQL Expressions" on page 4-2 for the syntax

description of expr

See Also:

■ "Analytic Functions" on page 6-10 and Oracle9i Data
Warehousing Guide

■ NUMTODSINTERVAL on page 6-111 and

NUMTOYMINTERVAL on page 6-112

Literals

2-58 Oracle9i SQL Reference

interval_year_to_month::=

where

■ ’integer [-integer]’ specifies integer values for the leading and optional

trailing field of the literal. If the leading field is YEAR and the trailing field is

MONTH, then the range of integer values for the month field is 0 to 11.

■ precision is the maximum number of digits in the leading field. The valid

range of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field The leading field must be more significant than

the trailing field. For example, INTERVAL ’0-1 ’ MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTHliteral indicates an interval of 123 years, 2

months:

INTERVAL ’123-2’ YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated

versions:

Form of Interval Literal Interpretation

INTERVAL ’123-2’ YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL ’123’ YEAR(3) An interval of 123 years 0 months.

INTERVAL ’300’ MONTH(3) An interval of 300 months.

INTERVAL ’4’ YEAR Maps to INTERVAL ’4-0’ YEAR TO
MONTH and indicates 4 years.

INTERVAL ’50’ MONTH Maps to INTERVAL ’4-2’ YEAR TO
MONTH and indicates 50 months or 4 years 2
months.

INTERVAL ’ integer
– integer

’

YEAR

MONTH

(precision)
TO

YEAR

MONTH

Literals

Basic Elements of Oracle SQL 2-59

You can add or subtract one INTERVAL YEAR TO MONTHliteral to or from another to

yield another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL ’5-3’ YEAR TO MONTH + INTERVAL’20’ MONTH =
INTERVAL ’6-11’ YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=

where

■ integer specifies the number of days. If this value contains more digits than

the number specified by the leading precision, then Oracle returns an error.

INTERVAL ’123’ YEAR Returns an error, because the default
precision is 2, and ’123’ has 3 digits.

Form of Interval Literal Interpretation

INTERVAL ’

integer

integer time_expr

time_expr

’

DAY

HOUR

MINUTE

(leading_precision)

SECOND
(leading_precision

, fractional_seconds_precision
)

TO

DAY

HOUR

MINUTE

SECOND
(fractional_seconds_precision)

Literals

2-60 Oracle9i SQL Reference

■ time_expr specifies a time in the format HH[:MI[:SS[.n]]]or MI[:SS[.n]] or

SS[.n], where n specifies the fractional part of a second. If n contains more digits

than the number specified by fractional_seconds_precision , then n is

rounded to the number of digits specified by the fractional_seconds_
precision value. You can specify time_expr following an integer and a

space only if the leading field is DAY.

■ leading_precision is the number of digits in the leading field. Accepted

values are 0 to 9. The default is 2.

■ fractional_seconds_precision is the number of digits in the fractional

part of the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field: The leading field must be more significant than

the trailing field. For example, INTERVAL MINUTE TO DAY is not valid. As a result

of this restriction, if SECOND is the leading field, the interval literal cannot have any

trailing field.

The valid range of values for the trailing field are as follows:

■ HOUR: 0 to 23

■ MINUTE: 0 to 59

■ SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow,

including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL ’4 5:12:10.222’ DAY TO
SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds, and
222 thousandths of a second.

INTERVAL ’4 5:12’ DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL ’400 5’ DAY(3) TO HOUR 400 days 5 hours.

INTERVAL ’400’ DAY(3) 400 days.

INTERVAL ’11:12:10.2222222’ HOUR
TO SECOND(7)

11 hours, 12 minutes, and 10.2222222
seconds.

INTERVAL ’11:20’ HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL ’10’ HOUR 10 hours.

INTERVAL ’10:22’ MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL ’10’ MINUTE 10 minutes.

Format Models

Basic Elements of Oracle SQL 2-61

You can add or subtract one DAY TO SECOND interval literal from another DAY TO
SECOND literal. For example.

INTERVAL’20’ DAY - INTERVAL’240’ HOUR = INTERVAL’10-0’ DAY TO SECOND

Format Models
A format model is a character literal that describes the format of DATE or NUMBER
data stored in a character string. When you convert a character string into a date or

number, a format model tells Oracle how to interpret the string. In SQL statements,

you can use a format model as an argument of the TO_CHAR and TO_DATE
functions:

■ To specify the format for Oracle to use to return a value from the database

■ To specify the format for a value you have specified for Oracle to store in the

database

For example,

■ The date format model for the string ’17:45:29 ’ is ’HH24:MI:SS ’.

■ The date format model for the string ’11-Nov-1999 ’ is ’DD-Mon-YYYY’.

■ The number format model for the string ’$2,304.25 ’ is ’$9,999.99 ’.

INTERVAL ’4’ DAY 4 days.

INTERVAL ’25’ HOUR 25 hours.

INTERVAL ’40’ MINUTE 40 minutes.

INTERVAL ’120’ HOUR(3) 120 hours

INTERVAL ’30.12345’ SECOND(2,4) 30.1235 seconds. The fractional second
’12345’ is rounded to ’1235’ because the
precision is 4.

Note: A format model does not change the internal representation

of the value in the database.

Form of Interval Literal Interpretation

Format Models

2-62 Oracle9i SQL Reference

For lists of date and number format model elements, see Table 2–13, " Number

Format Elements" on page 2-64 and Table 2–15, " Datetime Format Elements" on

page 2-69.

The values of some formats are determined by the value of initialization

parameters. For such formats, you can specify the characters returned by these

format elements implicitly using the initialization parameter NLS_TERRITORY. You

can change the default date format for your session with the ALTER SESSION
statement.

Format of Return Values: Examples You can use a format model to specify the

format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and

uses the TO_CHAR function to convert these salaries into character values with the

format specified by the number format model ’$9,990.99 ’:

SELECT last_name employee, TO_CHAR(salary, ’$99,990.99’)
 FROM employees
 WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,

commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department

20 was hired and uses the TO_CHAR function to convert these dates to character

strings with the format specified by the date format model ’fmMonth DD, YYYY ’:

SELECT last_name employee,
 TO_CHAR(hire_date,’fmMonth DD, YYYY’) hiredate
 FROM employees
 WHERE department_id = 20;

With this format model, Oracle returns the hire dates (as specified by "fm") without

blank padding, two digits for the day, and the century included in the year.

See Also:

■ Oracle9i Database Reference and Oracle9i Database Globalization
Support Guide for information on these parameters

■ ALTER SESSION on page 10-2 for information on changing the

values of these parameters

Format Models

Basic Elements of Oracle SQL 2-63

Supplying the Correct Format Model: Examples When you insert or update a

column value, the datatype of the value that you specify must correspond to the

column’s datatype. You can use format models to specify the format of a value that

you are converting from one datatype to another datatype required for a column.

For example, a value that you insert into a DATE column must be a value of the

DATE datatype or a character string in the default date format (Oracle implicitly

converts character strings in the default date format to the DATE datatype). If the

value is in another format, then you must use the TO_DATE function to convert the

value to the DATE datatype. You must also use a format model to specify the format

of the character string.

The following statement updates Hunold’s hire date using the TO_DATE function

with the format mask ’YYYY MM DD’ to convert the character string ’1998 05 20’ to

a DATE value:

UPDATE employees
 SET hire_date = TO_DATE(’1998 05 20’,’YYYY MM DD’)
 WHERE last_name = ’Hunold’;

This remainder of this section describes how to use:

■ Number Format Models

■ Date Format Models

■ Format Model Modifiers

Number Format Models
You can use number format models:

■ In the TO_CHAR function to translate a value of NUMBER datatype to VARCHAR2
datatype

■ In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 datatype

to NUMBER datatype

All number format models cause the number to be rounded to the specified number

of significant digits. If a value has more significant digits to the left of the decimal

See Also: "Format Model Modifiers" on page 2-75 for a

description of the fm format element

See Also: TO_CHAR (datetime) on page 6-171, TO_CHAR

(number) on page 6-173, and TO_DATE on page 6-175

Format Models

2-64 Oracle9i SQL Reference

place than are specified in the format, then pound signs (#) replace the value. If a

positive value is extremely large and cannot be represented in the specified format,

then the infinity sign (~) replaces the value. Likewise, if a negative value is

extremely small and cannot be represented by the specified format, then the

negative infinity sign replaces the value (-~). This event typically occurs when you

are using TO_CHAR with a restrictive number format string, causing a rounding

operation.

Number Format Elements
A number format model is composed of one or more number format elements.

Table 2–13 lists the elements of a number format model. Examples are shown in

Table 2–14.

Negative return values automatically contain a leading negative sign and positive

values automatically contain a leading space unless the format model contains the

MI , S, or PR format element.

Table 2–13 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:

■ A comma element cannot begin a number format model.

■ A comma cannot appear to the right of a decimal character
or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.

Restriction: You can specify only one period in a number format
model.

$ $9999 Returns value with a leading dollar sign.

0 0999

9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading
space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

Format Models

Basic Elements of Oracle SQL 2-65

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of "0"s in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the
current value of the NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTER parameter.
The default is a period (.).

Restriction: You can specify only one decimal character in a
number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

FM FM90.9 Returns a value with no leading or trailing blanks.

G 9G999 Returns in the specified position the group separator (the
current value of the NLS_NUMERIC_CHARACTER parameter).
You can specify multiple group separators in a number format
model.

Restriction: A group separator cannot appear to the right of a
decimal character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last
position of a number format model.

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last
position of a number format model.

RN

rn

RN

rn

Returns a value as Roman numerals in uppercase.

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

Table 2–13 (Cont.) Number Format Elements

Element Example Description

Format Models

2-66 Oracle9i SQL Reference

Table 2–14 shows the results of the following query for different values of number
and ’fmt’ :

S S9999

9999S

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or
last position of a number format model.

TM TM "Text minimum". Returns (in decimal output) the smallest
number of characters possible. This element is case-insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If output exceeds 64
characters, then Oracle automatically returns the number in
scientific notation.

Restrictions:

■ You cannot precede this element with any other element.

■ You can follow this element only with 9 or E (only one) or e
(only one).

U U9999 Returns in the specified position the "Euro" (or other) dual
currency symbol (the current value of the NLS_DUAL_
CURRENCY parameter).

V 999V99 Returns a value multiplied by 10n (and if necessary, round it up),
where n is the number of 9’s after the "V".

X XXXX

xxxx

Returns the hexadecimal value of the specified number of digits.
If the specified number is not an integer, then Oracle rounds it to
an integer.

Restrictions:

■ This element accepts only positive values or 0. Negative
values return an error.

■ You can precede this element only with 0 (which returns
leading zeroes) or FM. Any other elements return an error.
If you specify neither 0 nor FM with X, then the return
always has 1 leading blank.

Table 2–13 (Cont.) Number Format Elements

Element Example Description

Format Models

Basic Elements of Oracle SQL 2-67

SELECT TO_CHAR(number, ’fmt’)
 FROM DUAL;

Table 2–14 Results of Example Number Conversions

number ’fmt’ Result

-1234567890 9999999999S ’1234567890-’

 0 99.99 ’ .00’

 +0.1 99.99 ’ .10’

 -0.2 99.99 ’ -.20’

 0 90.99 ’ 0.00’

 +0.1 90.99 ’ 0.10’

 -0.2 90.99 ’ -0.20’

 0 9999 ’ 0’

 1 9999 ’ 1’

 0 B9999 ’ ’

 1 B9999 ’ 1’

 0 B90.99 ’ ’

 +123.456 999.999 ’ 123.456’

 -123.456 999.999 ’-123.456’

 +123.456 FM999.009 ’123.456’

 +123.456 9.9EEEE ’ 1.2E+02’

 +1E+123 9.9EEEE ’ 1.0E+123’

 +123.456 FM9.9EEEE ’1.2E+02’

 +123.45 FM999.009 ’123.45’

 +123.0 FM999.009 ’123.00’

 +123.45 L999.99 ’ $123.45’

 +123.45 FML999.99 ’$123.45’

+1234567890 9999999999S ’1234567890+’

Format Models

2-68 Oracle9i SQL Reference

Date Format Models
You can use date format models:

■ In the TO_* datetime function to translate a character value that is in a format

other than the default date format into a DATE value. (The TO_* datetime

functions are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_TIMESTAMP_TZ, TO_
YMINTERVAL, and TO_DSINTERVAL.)

■ In the TO_CHAR function to translate a DATE value that is in a format other than

the default date format into a string (for example, to print the date from an

application)

The total length of a date format model cannot exceed 22 characters.

The default date format is specified either explicitly with the initialization

parameter NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_
TERRITORY. You can change the default date format for your session with the

ALTER SESSION statement.

Date Format Elements
A date format model is composed of one or more datetime format elements as listed

in Table 2–15 on page 2-69.

■ For input format models, format items cannot appear twice, and format items

that represent similar information cannot be combined. For example, you

cannot use ’SYYYY’ and ’BC’ in the same format string.

■ Some of the datetime format elements cannot be used in the TO_* datetime

functions, as noted in Table 2–15.

■ The following datetime format elements can be used in interval and timestamp

format models, but not in the original DATE format model: FF, TZD, TZH, TZM,

and TZR.

Capitalization of Date Format Elements Capitalization in a spelled-out word,

abbreviation, or Roman numeral follows capitalization in the corresponding format

element. For example, the date format model ’DAY’ produces capitalized words like

’MONDAY’; ’Day’ produces ’Monday’; and ’day’ produces ’monday’.

See Also:

■ Oracle9i Database Reference for information on the NLS

parameters

■ ALTER SESSION on page 10-2

Format Models

Basic Elements of Oracle SQL 2-69

Punctuation and Character Literals in Date Format Models You can also include these

characters in a date format model:

■ Punctuation such as hyphens, slashes, commas, periods, and colons

■ Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in

the format model.

Table 2–15 Datetime Format Elements

Element

Specify in TO_*
datetime

functions? a Meaning

-
/
,
.
;
:
"text"

Yes Punctuation and quoted text is reproduced in
the result.

AD
A.D.

Yes AD indicator with or without periods.

AM
A.M.

Yes Meridian indicator with or without periods.

BC
B.C.

Yes BC indicator with or without periods.

CC
SCC

No Century.

■ If the last 2 digits of a 4-digit year are
between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits
of that year.

■ If the last 2 digits of a 4-digit year are 00,
then the century is the same as the first 2
digits of that year.

For example, 2002 returns 21; 2000 returns 20.

D Yes Day of week (1-7).

a The TO_* datetime functions are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_
TIMESTAMP_TZ, TO_YMINTERVAL, and TO_DSINTERVAL.

Format Models

2-70 Oracle9i SQL Reference

DAY Yes Name of day, padded with blanks to length of 9
characters.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DY Yes Abbreviated name of day.

E No Abbreviated era name (Japanese Imperial, ROC
Official, and Thai Buddha calendars).

EE No Full era name (Japanese Imperial, ROC Official,
and Thai Buddha calendars).

FF [1..9] Yes Fractional seconds; no radix character is printed
(use the X format element to add the radix
character). Use the numbers 1 to 9 after FF to
specify the number of digits in the fractional
second portion of the datetime value returned.
If you do not specify a digit, then Oracle uses
the precision specified for the datetime datatype
or the datatype’s default precision.

Examples: ’HH:MI:SS.FF’

SELECT TO_CHAR(SYSTIMESTAMP,
’SS.FF3’) from dual;

HH Yes Hour of day (1-12).

HH12 No Hour of day (1-12).

HH24 Yes Hour of day (0-23).

IW No Week of year (1-52 or 1-53) based on the ISO
standard.

IYY
IY
I

No Last 3, 2, or 1 digit(s) of ISO year.

IYYY No 4-digit year based on the ISO standard.

Table 2–15 (Cont.) Datetime Format Elements

Element

Specify in TO_*
datetime

functions? a Meaning

a The TO_* datetime functions are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_
TIMESTAMP_TZ, TO_YMINTERVAL, and TO_DSINTERVAL.

Format Models

Basic Elements of Oracle SQL 2-71

J Yes Julian day; the number of days since January 1,
4712 BC. Number specified with ’J’ must be
integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; JAN = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length
of 9 characters.

PM
P.M.

No Meridian indicator with or without periods.

Q No Quarter of year (1, 2, 3, 4; JAN-MAR = 1).

RM Yes Roman numeral month (I-XII; JAN = I).

RR Yes Lets you store 20th century dates in the 21st
century using only two digits. See "The RR Date
Format Element" on page 2-73 for detailed
information.

RRRR Yes Round year. Accepts either 4-digit or 2-digit
input. If 2-digit, provides the same return as RR.
If you don’t want this functionality, then simply
enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TZD Yes Daylight savings information. The TZD value is
an abbreviated time zone string with daylight
savings information. It must correspond with
the region specified in TZR.

Example: PST (for US/Pacific standard time);
PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZM format element.)

Example: ’HH:MI:SS.FFTZH:TZM’ .

Table 2–15 (Cont.) Datetime Format Elements

Element

Specify in TO_*
datetime

functions? a Meaning

a The TO_* datetime functions are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_
TIMESTAMP_TZ, TO_YMINTERVAL, and TO_DSINTERVAL.

Format Models

2-72 Oracle9i SQL Reference

Oracle returns an error if an alphanumeric character is found in the date string

where punctuation character is found in the format string. For example:

TO_CHAR (TO_DATE(’0297’,’MM/YY’), ’MM/YY’)

returns an error.

TZM Yes Time zone minute. (See TZH format element.)

Example: ’HH:MI:SS.FFTZH:TZM’ .

TZR Yes Time zone region information. The value must
be one of the time zone regions supported in
the database.

Example: US/Pacific

WW No Week of year (1-53) where week 1 starts on the
first day of the year and continues to the
seventh day of the year.

W No Week of month (1-5) where week 1 starts on the
first day of the month and ends on the seventh.

X Yes Local radix character.

Example: ’HH:MI:SSXFF’ .

Y,YYY Yes Year with comma in this position.

YEAR
SYEAR

No Year, spelled out; “S” prefixes BC dates with “-”.

YYYY
SYYYY

Yes 4-digit year; “S” prefixes BC dates with “-”.

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year.

Table 2–15 (Cont.) Datetime Format Elements

Element

Specify in TO_*
datetime

functions? a Meaning

a The TO_* datetime functions are TO_CHAR, TO_DATE, TO_TIMESTAMP, TO_
TIMESTAMP_TZ, TO_YMINTERVAL, and TO_DSINTERVAL.

Format Models

Basic Elements of Oracle SQL 2-73

Date Format Elements and Globalization Support
The functionality of some datetime format elements depends on the country and

language in which you are using Oracle. For example, these datetime format

elements return spelled values:

■ MONTH

■ MON

■ DAY

■ DY

■ BC or AD or B.C. or A.D.

■ AM or PM or A.M or P.M.

The language in which these values are returned is specified either explicitly with

the initialization parameter NLS_DATE_LANGUAGE or implicitly with the

initialization parameter NLS_LANGUAGE. The values returned by the YEAR and

SYEAR datetime format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The

day of the week that is numbered 1 is specified implicitly by the initialization

parameter NLS_TERRITORY.

ISO Standard Date Format Elements
Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY,

I, and IW according to the ISO standard. For information on the differences between

these values and those returned by the datetime format elements YYYY, YYY, YY, Y,

and WW, see the discussion of Globalization Support in Oracle9i Database
Globalization Support Guide.

The RR Date Format Element
The RR datetime format element is similar to the YY datetime format element, but it

provides additional flexibility for storing date values in other centuries. The RR

datetime format element lets you store 20th century dates in the 21st century by

specifying only the last two digits of the year.

See Also: Oracle9i Database Reference and Oracle9i Database
Globalization Support Guide for information on Globalization

Support initialization parameters

Format Models

2-74 Oracle9i SQL Reference

If you use the TO_DATE function with the YY datetime format element, then the

year returned always has the same first 2 digits as the current year. If you use the

RR datetime format element instead, then the century of the return value varies

according to the specified two-digit year and the last two digits of the current year.

Table 2–16 summarizes the behavior of the RR datetime format element.

The following examples demonstrate the behavior of the RR datetime format

element.

RR Date Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE(’27-OCT-98’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Table 2–16 The RR Date Element Format

—

If the specified two-digit year is

00-49 50-99

If the last two
digits of the
current year
are

00-49 The returned year has the same
first 2 digits as the current year.

The first 2 digits of the returned
year are 1 less than the first 2
digits of the current year.

50-99 The first 2 digits of the returned
year are 1 greater than the first 2
digits of the current year.

The returned year has the same
first 2 digits as the current year.

Format Models

Basic Elements of Oracle SQL 2-75

Year

1998

SELECT TO_CHAR(TO_DATE(’27-OCT-17’, ’DD-MON-RR’) ,’YYYY’) "Year"
 FROM DUAL;

Year

2017

Note that the queries return the same values regardless of whether they are issued

before or after the year 2000. The RR datetime format element lets you write SQL

statements that will return the same values from years whose first two digits are

different.

Date Format Element Suffixes
Table 2–17 lists suffixes that can be added to datetime format elements:

Format Model Modifiers
The FM and FX modifiers, used in format models in the TO_CHAR function, control

blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each

subsequent occurrence toggles the effects of the modifier. Its effects are enabled for

the portion of the model following its first occurrence, and then disabled for the

portion following its second, and then reenabled for the portion following its third,

and so on.

Table 2–17 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes:

■ When you add one of these suffixes to a datetime format element, the return value
is always in English.

■ Date suffixes are valid only to format output. You cannot use them to insert a date
into the database.

Format Models

2-76 Oracle9i SQL Reference

FM "Fill mode". This modifier suppresses blank padding in the return value of the

TO_CHAR function:

■ In a datetime format element of a TO_CHAR function, this modifier suppresses

blanks in subsequent character elements (such as MONTH) and suppresses

leading zeroes for subsequent number elements (such as MI) in a date format

model. Without FM, the result of a character element is always right padded

with blanks to a fixed length, and leading zeroes are always returned for a

number element. With FM, because there is no blank padding, the length of the

return value may vary.

■ In a number format element of a TO_CHAR function, this modifier suppresses

blanks added to the left of the number, so that the result is left-justified in the

output buffer. Without FM, the result is always right-justified in the buffer,

resulting in blank-padding to the left of the number.

FX "Format exact". This modifier specifies exact matching for the character

argument and date format model of a TO_DATE function:

■ Punctuation and quoted text in the character argument must exactly match

(except for case) the corresponding parts of the format model.

■ The character argument cannot have extra blanks. Without FX, Oracle ignores

extra blanks.

■ Numeric data in the character argument must have the same number of digits

as the corresponding element in the format model. Without FX, numbers in the

character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the

FM modifier as well.

If any portion of the character argument violates any of these conditions, then

Oracle returns an error message.

Format Modifier Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, ’fmDDTH’)||’ of ’||TO_CHAR
 (SYSDATE, ’fmMonth’)||’, ’||TO_CHAR(SYSDATE, ’YYYY’) "Ides"
 FROM DUAL;

Ides

3RD of April, 1998

Format Models

Basic Elements of Oracle SQL 2-77

The preceding statement also uses the FM modifier. If FM is omitted, then the

month is blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, ’DDTH’)||’ of ’||
 TO_CHAR(SYSDATE, ’Month’)||’, ’||
 TO_CHAR(SYSDATE, ’YYYY’) "Ides"
 FROM DUAL;

Ides

03RD of April , 1998

The following statement places a single quotation mark in the return value by using

a date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, ’fmDay’)||’’’s Special’ "Menu"
 FROM DUAL;

Menu

Tuesday’s Special

Two consecutive single quotation marks can be used for the same purpose within a

character literal in a format model.

Table 2–18 shows whether the following statement meets the matching conditions

for different values of char and ’fmt’ using FX (the table named table has a

column date_column of datatype DATE):

UPDATE table
 SET date_column = TO_DATE(char, ’fmt’);

Format Models

2-78 Oracle9i SQL Reference

String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to

date values (unless you have used the FX or FXFM modifiers in the format model to

control exact format checking):

■ You can omit punctuation included in the format string from the date string if

all the digits of the numerical format elements, including leading zeros, are

specified. In other words, specify 02 and not 2 for two-digit format elements

such as MM, DD, and YY.

■ You can omit time fields found at the end of a format string from the date

string.

■ If a match fails between a datetime format element and the corresponding

characters in the date string, then Oracle attempts alternative format elements,

as shown in Table 2–19.

Table 2–18 Matching Character Data and Format Models with the FX Format Model
Modifier

char ’fmt’ Match or Error?

’15/ JAN /1998’ ’DD-MON-YYYY’ Match

’ 15! JAN % /1998’ ’DD-MON-YYYY’ Error

’15/JAN/1998’ ’FXDD-MON-YYYY’ Error

’15-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXDD-MON-YYYY’ Error

’01-JAN-1998’ ’FXDD-MON-YYYY’ Match

’1-JAN-1998’ ’FXFMDD-MON-YYYY’ Match

Table 2–19 Oracle Format Matching

Original Format Element

Additional Format
Elements to Try in Place of
the Original

’MM’ ’MON’ and ’MONTH’

’MON ’MONTH’

’MONTH’ ’MON’

Format Models

Basic Elements of Oracle SQL 2-79

XML Format Model
The SYS_XMLGENfunction returns an instance of type XMLType containing an XML

document. Oracle provides the XMLFormat object, which lets you format the

output of the SYS_XMLGEN function.

Table 2–20 lists and describes the attributes of the XMLFormat object. The function

that implements this type follows the table.

’YY’ ’YYYY’

’RR’ ’RRRR’

See Also:

■ SYS_XMLGEN on page 6-166 for information on the SYS_
XMLGEN function

■ Oracle9i XML API Reference - XDK and Oracle XML DB and

Oracle9i XML Developer’s Kits Guide - XDK for more information

on the implementation of the XMLFormat object and its use

Table 2–20 Attributes of the XMLFormat Object

Attribute Datatype Purpose

enclTag VARCHAR2(100) The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, the default
is the column name. Otherwise the default is ROW. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also
gives the name of the XMLSchema element.

schemaType VARCHAR2(100) The type of schema generation for the output document. Valid
values are ’NO_SCHEMA’ and ’USE_GIVEN_SCHEMA’. The default
is ’NO_SCHEMA’.

schemaName VARCHAR2(4000) The name of the target schema Oracle uses if the value of the
schemaType is ’USE_GIVEN_SCHEMA’. If you specify
schemaName, then Oracle uses the enclosing tag as the element
name.

processingIns VARCHAR2(4000) User-provided processing instructions, which are appended to the
top of the function output before the element.

Table 2–19 (Cont.) Oracle Format Matching

Original Format Element

Additional Format
Elements to Try in Place of
the Original

Nulls

2-80 Oracle9i SQL Reference

The function that implements the XMLFormat object follows:

 STATIC FUNCTION createFormat(
 enclTag IN varchar2 := ’ROWSET’,
 schemaType IN varchar2 := ’NO_SCHEMA’,
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dburlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN XMLGenFormatType,
 MEMBER PROCEDURE genSchema (spec IN varchar2),
 MEMBER PROCEDURE setSchemaName(schemaName IN varchar2),
 MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
 MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
 MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
 MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
 CONSTRUCTOR FUNCTION XMLGenFormatType (
 enclTag IN varchar2 := ’ROWSET’,
 schemaType IN varchar2 := ’NO_SCHEMA’,
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dbUrlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN SELF AS RESULT

Nulls
If a column in a row has no value, then the column is said to be null, or to contain

null. Nulls can appear in columns of any datatype that are not restricted by NOT
NULL or PRIMARY KEY integrity constraints. Use a null when the actual value is not

known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent. (Oracle

currently treats a character value with a length of zero as null. However, this may

not continue to be true in future releases, and Oracle recommends that you do not

treat empty strings the same as nulls.) Any arithmetic expression containing a null

always evaluates to null. For example, null added to 10 is null. In fact, all operators

(except concatenation) return null when given a null operand.

Nulls in SQL Functions
All scalar functions (except REPLACE, NVL, and CONCAT) return null when given a

null argument. You can use the NVL function to return a value when a null occurs.

For example, the expression NVL(COMM,0) returns 0 if COMM is null or the value of

COMM if it is not null.

Nulls

Basic Elements of Oracle SQL 2-81

Most aggregate functions ignore nulls. For example, consider a query that averages

the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and

calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Conditions
To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If
you use any other condition with nulls and the result depends on the value of the

null, then the result is UNKNOWN. Because null represents a lack of data, a null

cannot be equal or unequal to any value or to another null. However, Oracle

considers two nulls to be equal when evaluating a DECODE function.

Oracle also considers two nulls to be equal if they appear in compound keys. That

is, Oracle considers identical two compound keys containing nulls if all the

non-null components of the keys are equal.

Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a

SELECT statement with a condition in the WHERE clause that evaluates to UNKNOWN
returns no rows. However, a condition evaluating to UNKNOWN differs from FALSE
in that further operations on an UNKNOWN condition evaluation will evaluate to

UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but NOT UNKNOWN evaluates to

UNKNOWN.

Table 2–21 shows examples of various evaluations involving nulls in conditions. If

the conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT
statement, then no rows would be returned for that query.

See Also: DECODE on page 6-52 for syntax and additional

information

Pseudocolumns

2-82 Oracle9i SQL Reference

For the truth tables showing the results of logical conditions containing nulls, see

Table 5–4 on page 5-8, Table 5–5 on page 5-9, and Table 5–6 on page 5-9.

Pseudocolumns
A pseudocolumn behaves like a table column, but is not actually stored in the table.

You can select from pseudocolumns, but you cannot insert, update, or delete their

values. This section describes these pseudocolumns:

■ CURRVAL and NEXTVAL

■ LEVEL

■ ROWID

■ ROWNUM

■ XMLDATA

CURRVAL and NEXTVAL
A sequence is a schema object that can generate unique sequential values. These

values are often used for primary and unique keys. You can refer to sequence values

in SQL statements with these pseudocolumns:

■ CURRVAL: returns the current value of a sequence

Table 2–21 Conditions Containing Nulls

If A is: Condition Evaluates to:

10 a IS NULL FALSE

10 a IS NOT NULL TRUE

NULL a IS NULL TRUE

NULL a IS NOT NULL FALSE

10 a = NULL UNKNOWN

10 a != NULL UNKNOWN

NULL a = NULL UNKNOWN

NULL a != NULL UNKNOWN

NULL a = 10 UNKNOWN

NULL a != 10 UNKNOWN

Pseudocolumns

Basic Elements of Oracle SQL 2-83

■ NEXTVAL: increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you

must have been granted either SELECT object privilege on the sequence or SELECT
ANY SEQUENCE system privilege, and you must qualify the sequence with the

schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the

sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in:

■ The SELECT list of a SELECT statement that is not contained in a subquery,

materialized view, or view

■ The SELECT list of a subquery in an INSERT statement

■ The VALUES clause of an INSERT statement

■ The SET clause of an UPDATE statement

Restrictions on Sequence Values You cannot use CURRVAL and NEXTVAL in the

following constructs:

■ A subquery in a DELETE, SELECT, or UPDATE statement

■ A query of a view or of a materialized view

■ A SELECT statement with the DISTINCT operator

■ A SELECT statement with a GROUP BY clause or ORDER BY clause

See Also: "Referring to Objects in Remote Databases" on

page 2-118 for more information on referring to database links

Pseudocolumns

2-84 Oracle9i SQL Reference

■ A SELECT statement that is combined with another SELECT statement with the

UNION, INTERSECT, or MINUS set operator

■ The WHERE clause of a SELECT statement

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement

■ The condition of a CHECK constraint

Also, within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced

LONG columns, updated tables, and locked tables must be located on the same

database.

How to Use Sequence Values
When you create a sequence, you can define its initial value and the increment

between its values. The first reference to NEXTVAL returns the sequence’s initial

value. Subsequent references to NEXTVAL increment the sequence value by the

defined increment and return the new value. Any reference to CURRVAL always

returns the sequence’s current value, which is the value returned by the last

reference to NEXTVAL. Note that before you use CURRVAL for a sequence in your

session, you must first initialize the sequence with NEXTVAL.

Within a single SQL statement containing a reference to NEXTVAL, Oracle

increments the sequence only once:

■ For each row returned by the outer query block of a SELECT statement. Such a

query block can appear in the following places:

■ A top-level SELECT statement

■ An INSERT ... SELECT statement (either single-table or multi-table). For a

multi-table insert, the reference to NEXTVAL must appear in the VALUES
clause, and the sequence is updated once for each row returned by the

subquery, even though NEXTVALmay be referenced in multiple branches of

the multi-table insert.

■ A CREATE TABLE ... AS SELECT statement

■ A CREATE MATERIALIZED VIEW ... AS SELECT statement

■ For each row updated in an UPDATE statement

■ For each INSERT statement containing a VALUES clause

■ For row "merged" (either inserted or updated) in a MERGE statement. The

reference to NEXTVAL can appear in the merge_insert_clause or the

merge_update_clause .

Pseudocolumns

Basic Elements of Oracle SQL 2-85

If any of these locations contains more than one reference to NEXTVAL, then Oracle

increments the sequence once and returns the same value for all occurrences of

NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then

Oracle increments the sequence and returns the same value for both CURRVAL and

NEXTVAL.

A sequence can be accessed by many users concurrently with no waiting or locking.

Finding the current value of a sequence: Example This example selects the next

value of the employee sequence in the sample schema hr :

SELECT employees_seq.nextval
 FROM DUAL;

Inserting sequence values into a table: Example This example increments the

employee sequence and uses its value for a new employee inserted into the sample

table hr.employees :

INSERT INTO employees
 VALUES (employees_seq.nextval, ’John’, ’Doe’, ’jdoe’,
 ’555-1212’, TO_DATE(SYSDATE), ’PU_CLERK’, 2500, null, null,
 30);

Reusing the current value of a sequence: Example This example adds a new

order with the next order number to the master order table. It then adds suborders

with this number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)
 VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 3, 2381);

See Also: CREATE SEQUENCE on page 14-89 for information on

sequences

Pseudocolumns

2-86 Oracle9i SQL Reference

LEVEL
For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1

for a root row, 2 for a child of a root, and so on. A root row is the highest row within

an inverted tree. A child row is any nonroot row. A parent row is any row that has

children. A leaf row is any row without children. Figure 2–1 shows the nodes of an

inverted tree with their LEVEL values.

Figure 2–1 Hierarchical Tree

To define a hierarchical relationship in a query, you must use the START WITH and

CONNECT BY clauses.

Restriction on LEVEL in WHERE Clauses In a [NOT] IN condition in a WHERE
clause, if the right-hand side of the condition is a subquery, you cannot use LEVEL
on the left-hand side of the condition. However, you can specify LEVEL in a

subquery of the FROM clause to achieve the same result. For example, the following

statement is not valid:

SELECT employee_id, last_name FROM employees
 WHERE (employee_id, LEVEL)
 IN (SELECT employee_id, 2 FROM employees)
 START WITH employee_id = 2
 CONNECT BY PRIOR employee_id = manager_id;

But the following statement is valid because it encapsulates the query containing

the LEVEL information in the FROM clause:

Level 1

Level 2

Level 3

Level 4 child/
leaf

parent/
child

root/
parent

parent/
child

child/
leaf

child/
leaf

child/
leaf

child/
leaf

parent/
child

parent/
child

Pseudocolumns

Basic Elements of Oracle SQL 2-87

SELECT v.employee_id, v.last_name, v.lev
 FROM
 (SELECT employee_id, last_name, LEVEL lev
 FROM employees v
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id) v
 WHERE (v.employee_id, v.lev) IN
 (SELECT employee_id, 2 FROM employees);

ROWID
For each row in the database, the ROWID pseudocolumn returns a row’s address.

Oracle9i rowid values contain information necessary to locate a row:

■ The data object number of the object

■ Which data block in the datafile

■ Which row in the data block (first row is 0)

■ Which datafile (first file is 1). The file number is relative to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in

different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the datatype ROWID or UROWID.

Rowid values have several important uses:

■ They are the fastest way to access a single row.

■ They can show you how a table’s rows are stored.

■ They are unique identifiers for rows in a table.

You should not use ROWID as a table’s primary key. If you delete and reinsert a row

with the Import and Export utilities, for example, then its rowid may change. If you

delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause

of a query, these pseudocolumn values are not actually stored in the database. You

cannot insert, update, or delete a value of the ROWID pseudocolumn.

See Also: "Hierarchical Queries" on page 8-3 for information on

hierarchical queries in general

See Also: "ROWID Datatype" on page 2-33 and "UROWID

Datatype" on page 2-35

Pseudocolumns

2-88 Oracle9i SQL Reference

Example This statement selects the address of all rows that contain data for

employees in department 20:

SELECT ROWID, last_name
 FROM employees
 WHERE department_id = 20;

ROWNUM
For each row returned by a query, the ROWNUM pseudocolumn returns a number

indicating the order in which Oracle selects the row from a table or set of joined

rows. The first row selected has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this

example:

SELECT * FROM employees WHERE ROWNUM < 10;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be

reordered by the ORDER BY clause. The results can vary depending on the way the

rows are accessed. For example, if the ORDER BY clause causes Oracle to use an

index to access the data, then Oracle may retrieve the rows in a different order than

without the index. Therefore, the following statement will not have the same effect

as the preceding example:

SELECT * FROM employees WHERE ROWNUM < 11 ORDER BY last_name;

If you embed the ORDER BYclause in a subquery and place the ROWNUMcondition in

the top-level query, then you can force the ROWNUM condition to be applied after the

ordering of the rows. For example, the following query returns the 10 smallest

employee numbers. This is sometimes referred to as a "top-N query":

SELECT * FROM
 (SELECT * FROM employees ORDER BY employee_id)
 WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by

employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always

false. For example, this query returns no rows:

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about top-N queries

Pseudocolumns

Basic Elements of Oracle SQL 2-89

SELECT * FROM employees
 WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The

second row to be fetched is now the first row and is also assigned a ROWNUM of 1

and makes the condition false. All rows subsequently fail to satisfy the condition, so

no rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this

example:

UPDATE my_table
 SET column1 = ROWNUM;

XMLDATA
Oracle stores XMLType data either in LOB or object-relational columns, based on

XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to

specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn.

Suppose you create a simple table of XMLType:

CREATE TABLE xml_lob_tab of XMLTYPE;

The default storage is in a CLOBcolumn. To change the storage characteristics of the

underlying LOB column, you can use the following statement:

ALTER TABLE xml_lob_tab MODIFY LOB (XMLDATA)
 (STORAGE (BUFFER_POOL DEFAULT) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses
table created in "Using XML in SQL Statements" on page D-11. You could then use

the XMLDATA column to set the properties of the underlying columns, as shown in

the following statement:

ALTER TABLE xwarehouses ADD (UNIQUE(XMLDATA."WarehouseId"));

Note: Using ROWNUM in a query can affect view optimization. For

more information, see Oracle9i Database Concepts.

Comments

2-90 Oracle9i SQL Reference

Comments
You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements
Comments within SQL statements do not affect the statement execution, but they

may make your application easier for you to read and maintain. You may want to

include a comment in a statement that describes the statement’s purpose within

your application.

A comment can appear between any keywords, parameters, or punctuation marks

in a statement. You can include a comment in a statement using either of these

means:

■ Begin the comment with a slash and an asterisk (/*). Proceed with the text of

the comment. This text can span multiple lines. End the comment with an

asterisk and a slash (*/). The opening and terminating characters need not be

separated from the text by a space or a line break.

■ Begin the comment with -- (two hyphens). Proceed with the text of the

comment. This text cannot extend to a new line. End the comment with a line

break.

A SQL statement can contain multiple comments of both styles. The text of a

comment can contain any printable characters in your database character set.

Example These statements contain many comments:

SELECT last_name, salary + NVL(commission_pct, 0),
 job_id, e.department_id
/* Select all employees whose compensation is
greater than that of Pataballa.*/
 FROM employees e, departments d
 /*The DEPARTMENTS table is used to get the department name.*/
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct,0) > /* Subquery: */
 (SELECT salary + NVL(commission_pct,0)
 /* total compensation is salar + commission_pct */
 FROM employees
 WHERE last_name = ’Pataballa’);

SELECT last_name, -- select the name
 salary + NVL(commission_pct, 0),-- total compensation
 job_id, -- job

Comments

Basic Elements of Oracle SQL 2-91

 e.department_id -- and department
 FROM employees e, -- of all employees
 departments d
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct, 0) > -- whose compensation
 -- is greater than
 (SELECT salary + NVL(commission_pct,0) -- the compensation
 FROM employees
 WHERE last_name = ’Pataballa’) -- of Pataballa.
;

Comments on Schema Objects
You can associate a comment with a table, view, materialized view, or column using

the COMMENTcommand. Comments associated with schema objects are stored in the

data dictionary.

Hints
You can use comments in a SQL statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses these hints as suggestions for choosing an

execution plan for the statement.

A statement block can have only one comment containing hints, and that comment

must follow the SELECT, UPDATE, INSERT, or DELETE keyword. The following

syntax shows hints contained in both styles of comments that Oracle supports

within a statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or

{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]]...

where:

■ DELETE, INSERT, SELECT, or UPDATE is a DELETE, INSERT, SELECT, or

UPDATE keyword that begins a statement block. Comments containing hints

can appear only after these keywords.

■ + is a plus sign that causes Oracle to interpret the comment as a list of hints. The

plus sign must follow immediately after the comment delimiter (no space is

permitted).

See Also: COMMENT on page 12-72 for a description of comments

Comments

2-92 Oracle9i SQL Reference

■ hint is one of the hints discussed in this section. The space between the plus

sign and the hint is optional. If the comment contains multiple hints, then

separate the hints by at least one space.

■ text is other commenting text that can be interspersed with the hints.

Table 2–22 lists the hints by functional category. An alphabetical listing of the hints,

including the syntax and a brief description of each hint, follow the table.

Note: Oracle treats misspelled hints as regular comments and

does not return an error.

See Also: Oracle9i Database Performance Tuning Guide and Reference
and Oracle9i Database Concepts for more information on hints

Table 2–22 Hints by Functional Category

Category Hint

Optimization Goals and Approaches ALL_ROWS and FIRST_ROWS

CHOOSE

RULE

Access Method Hints AND_EQUAL

CLUSTER

FULL

HASH

INDEX and NO_INDEX

INDEX_ASC and INDEX_DESC

INDEX_COMBINE

INDEX_FFS

ROWID

Join Order Hints ORDERED

STAR

Comments

Basic Elements of Oracle SQL 2-93

all_rows_hint::=

Join Operation Hints DRIVING_SITE

HASH_SJ, MERGE_SJ, and NL_SJ

LEADING

USE_HASH and USE_MERGE

USE_NL

Parallel Execution Hints PARALLEL and NOPARALLEL

PARALLEL_INDEX

PQ_DISTRIBUTE

NOPARALLEL_INDEX

Query Transformation Hints EXPAND_GSET_TO_UNION

FACT and NOFACT

MERGE

NO_EXPAND

NO_MERGE

REWRITE and NOREWRITE

STAR_TRANSFORMATION

USE_CONCAT

Other Hints APPEND and NOAPPEND

CACHE and NOCACHE

CURSOR_SHARING_EXACT

DYNAMIC_SAMPLING

NESTED_TABLE_GET_REFS

UNNEST and NO_UNNEST

ORDERED_PREDICATES

PUSH_PRED and NO_PUSH_PRED

PUSH_SUBQ and NO_PUSH_SUBQ

Table 2–22 (Cont.) Hints by Functional Category

Category Hint

/*+ ALL_ROWS */

Comments

2-94 Oracle9i SQL Reference

The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

and_equal_hint::=

The AND_EQUAL hint explicitly chooses an execution plan that uses an access path

that merges the scans on several single-column indexes.

append_hint::=

The APPEND hint lets you enable direct-path INSERT if your database is running in

serial mode. Your database is in serial mode if you are not using Enterprise Edition.

Conventional INSERT is the default in serial mode, and direct-path INSERT is the

default in parallel mode.

In direct-path INSERT, data is appended to the end of the table, rather than using

existing space currently allocated to the table. As a result, direct-path INSERT can

be considerably faster than conventional INSERT.

cache_hint::=

The CACHE hint specifies that the blocks retrieved for the table are placed at the

most recently used end of the LRU list in the buffer cache when a full table scan is

performed. This option is useful for small lookup tables.

choose_hint::=

The CHOOSE hint causes the optimizer to choose between the rule-based and

cost-based approaches for a SQL statement. The optimizer bases its selection on the

presence of statistics for the tables accessed by the statement. If the data dictionary

has statistics for at least one of these tables, then the optimizer uses the cost-based

approach and optimizes with the goal of best throughput. If the data dictionary

does not have statistics for these tables, then it uses the rule-based approach.

/*+ AND_EQUAL (table index index
index index index

) */

/*+ APPEND */

/*+ CACHE (table) */

/*+ CHOOSE */

Comments

Basic Elements of Oracle SQL 2-95

cluster_hint::=

The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It

applies only to clustered objects.

cursor_sharing_exact_hint::=

Oracle can replace literals in SQL statements with bind variables, if it is safe to do

so. This is controlled with the CURSOR_SHARING startup parameter. The CURSOR_
SHARING_EXACT hint causes this behavior to be switched off. In other words,

Oracle executes the SQL statement without any attempt to replace literals by bind

variables.

driving_site_hint::=

The DRIVING_SITE hint forces query execution to be done at a different site than

that selected by Oracle. This hint can be used with either rule-based or cost-based

optimization.

dynamic_sampling_hint::=

The DYNAMIC_SAMPLING hint lets you control dynamic sampling to improve

server performance by determining more accurate selectivity and cardinality

estimates. You can set the value of DYNAMIC_SAMPLINGto a value from 0 to 10. The

higher the level, the more effort the compiler puts into dynamic sampling and the

more broadly it is applied. Sampling defaults to cursor level unless you specify a

table.

expand_gset_to_union_hint::=

The EXPAND_GSET_TO_UNION hint is used for queries containing grouping sets

(such as queries with GROUP BY GROUPING SETor GROUP BY ROLLUP). The hint

/*+ CLUSTER (table) */

/*+ CURSOR_SHARING_EXACT */

/*+ DRIVING_SITE (table) */

/*+ DYNAMIC_SAMPLING (
table

integer) */

/*+ EXPAND_GSET_TO_UNION */

Comments

2-96 Oracle9i SQL Reference

forces a query to be transformed into a corresponding query with UNION ALL of

individual groupings.

fact_hint::=

The FACT hint is used in the context of the star transformation to indicate to the

transformation that the hinted table should be considered as a fact table.

first_rows_hint::=

The hints FIRST_ROWS(n) (where n is any positive integer) or FIRST_ROWS
instruct Oracle to optimize an individual SQL statement for fast response. FIRST_
ROWS(n) affords greater precision, because it instructs Oracle to choose the plan that

returns the first n rows most efficiently. The FIRST_ROWS hint, which optimizes for

the best plan to return the first single row, is retained for backward compatibility

and plan stability.

full_hint::=

The FULL hint explicitly chooses a full table scan for the specified table.

hash_hint::=

The HASH hint explicitly chooses a hash scan to access the specified table. It applies

only to tables stored in a cluster.

hash_aj_hint::=

For a specific query, place the HASH_SJ, MERGE_SJ, or NL_SJ hint into the EXISTS
subquery. HASH_SJ uses a hash semi-join, MERGE_SJ uses a sort merge semi-join,

and NL_SJ uses a nested loop semi-join.

/*+ FACT (table) */

/*+ FIRST_ROWS (n) */

/*+ FULL (table) */

/*+ HASH (table) */

/*+ HASH_AJ */

Comments

Basic Elements of Oracle SQL 2-97

hash_sj_hint::=

For a specific query, place the HASH_SJ, MERGE_SJ, or NL_SJ hint into the EXISTS
subquery. HASH_SJ uses a hash semi-join, MERGE_SJ uses a sort merge semi-join,

and NL_SJ uses a nested loop semi-join.

index_hint::=

The INDEX hint explicitly chooses an index scan for the specified table. You can use

the INDEX hint for domain, B-tree, bitmap, and bitmap join indexes. However,

Oracle recommends using INDEX_COMBINE rather than INDEX for bitmap indexes,

because it is a more versatile hint.

index_asc_hint::=

The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in ascending

order of their indexed values.

index_combine_hint::=

The INDEX_COMBINE hint explicitly chooses a bitmap access path for the table. If

no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer

uses whatever Boolean combination of bitmap indexes has the best cost estimate for

the table. If certain indexes are given as arguments, then the optimizer tries to use

some Boolean combination of those particular bitmap indexes.

/*+ HASH_SJ */

/*+ INDEX (table
index

) */

/*+ INDEX_ASC (table
index

) */

/*+ INDEX_COMBINE (table
index

) */

Comments

2-98 Oracle9i SQL Reference

index_desc_hint::=

The INDEX_DESC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in

descending order of their indexed values. In a partitioned index, the results are in

descending order within each partition.

index_ffs_hint::=

The INDEX_FFS hint causes a fast full index scan to be performed rather than a full

table scan.

leading_hint::=

The LEADING hint causes Oracle to use the specified table as the first table in the

join order.

If you specify two or more LEADING hints on different tables, then all of them are

ignored. If you specify the ORDERED hint, then it overrides all LEADING hints.

merge_hint::=

The MERGE hint lets you merge a view for each query.

If a view’s query contains a GROUP BYclause or DISTINCT operator in the SELECT
list, then the optimizer can merge the view’s query into the accessing statement

only if complex view merging is enabled. Complex merging can also be used to

merge an IN subquery into the accessing statement if the subquery is uncorrelated.

Complex merging is not cost-based; that is, the accessing query block must include

the MERGE hint. Without this hint, the optimizer uses another approach.

/*+ INDEX_DESC (table
index

) */

/*+ INDEX_FFS (table
index

) */

/*+ LEADING (table) */

/*+ MERGE (table) */

Comments

Basic Elements of Oracle SQL 2-99

merge_aj_hint::=

See HASH_AJ hint.

merge_sj_hint::=

See HASH_SJ hint.

nl_aj_hint::=

See HASH_AJ hint.

nl_sj_hint::=

See HASH_SJ hint.

noappend_hint::=

The NOAPPEND hint enables conventional INSERT by disabling parallel mode for

the duration of the INSERT statement. (Conventional INSERT is the default in serial

mode, and direct-path INSERT is the default in parallel mode).

nocache_hint::=

The NOCACHE hint specifies that the blocks retrieved for the table are placed at the

least recently used end of the LRU list in the buffer cache when a full table scan is

performed. This is the normal behavior of blocks in the buffer cache.

no_expand_hint::=

/*+ MERGE_AJ */

/*+ MERGE_SJ */

/*+ NL_AJ */

/*+ NL_SJ */

/*+ NOAPPEND */

/*+ NOCACHE (table) */

/*+ NO_EXPAND */

Comments

2-100 Oracle9i SQL Reference

The NO_EXPAND hint prevents the cost-based optimizer from considering

OR-expansion for queries having OR conditions or IN -lists in the WHERE clause.

Usually, the optimizer considers using OR expansion and uses this method if it

decides that the cost is lower than not using it.

no_fact_hint::=

The NO_FACT hint is used in the context of the star transformation to indicate to the

transformation that the hinted table should not be considered as a fact table.

no_index_hint::=

The NO_INDEX hint explicitly disallows a set of indexes for the specified table.

no_merge_hint::=

The NO_MERGE hint causes Oracle not to merge mergeable views.

noparallel_hint::=

The NOPARALLEL hint overrides a PARALLEL specification in the table clause. In

general, hints take precedence over table clauses.

Restriction on NOPARALLEL You cannot parallelize a query involving a nested

table.

noparallel_index_hint::=

The NOPARALLEL_INDEX hint overrides a PARALLEL attribute setting on an index

to avoid a parallel index scan operation.

/*+ NO_FACT (table) */

/*+ NO_INDEX (table
index

) */

/*+ NO_MERGE (table) */

/*+ NOPARALLEL (table) */

/*+ NOPARALLEL_INDEX (table
index

) */

Comments

Basic Elements of Oracle SQL 2-101

no_push_pred_hint::=

The NO_PUSH_PRED hint prevents pushing of a join predicate into the view.

no_push_subq_hint::=

The NO_PUSH_SUBQ hint causes non-merged subqueries to be evaluated as the last

step in the execution plan. If the subquery is relatively expensive or does not reduce

the number of rows significantly, then it improves performance to evaluate the

subquery last.

norewrite_hint::=

The NOREWRITE hint disables query rewrite for the query block, overriding the

setting of the parameter QUERY_REWRITE_ENABLED. Use the NOREWRITE hint on

any query block of a request.

no_unnest_hint::=

Use of the NO_UNNEST hint turns off unnesting for specific subquery blocks.

ordered_hint::=

The ORDERED hint causes Oracle to join tables in the order in which they appear in

the FROM clause.

If you omit the ORDERED hint from a SQL statement performing a join, then the

optimizer chooses the order in which to join the tables. You might want to use the

ORDERED hint to specify a join order if you know something about the number of

Note: The NOREWRITE hint disables the use of function-based

indexes.

/*+ NO_PUSH_PRED (table) */

/*+ NO_PUSH_SUBQ */

/*+ NOREWRITE */

/*+ NO_UNNEST */

/*+ ORDERED */

Comments

2-102 Oracle9i SQL Reference

rows selected from each table that the optimizer does not. Such information lets you

choose an inner and outer table better than the optimizer could.

ordered_predicates_hint::=

The ORDERED_PREDICATES hint forces the optimizer to preserve the order of

predicate evaluation, except for predicates used as index keys. Use this hint in the

WHERE clause of SELECT statements.

If you do not use the ORDERED_PREDICATES hint, then Oracle evaluates all

predicates in the following order:

1. Predicates without user-defined functions, type methods, or subqueries are

evaluated first, in the order specified in the WHERE clause.

2. Predicates with user-defined functions and type methods that have

user-computed costs are evaluated next, in increasing order of their cost.

3. Predicates with user-defined functions and type methods without

user-computed costs are evaluated next, in the order specified in the WHERE
clause.

4. Predicates not specified in the WHERE clause (for example, predicates

transitively generated by the optimizer) are evaluated next.

5. Predicates with subqueries are evaluated last, in the order specified in the

WHERE clause.

parallel_hint::=

Note: Remember, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

/*+ ORDERED_PREDICATES */

/*+ PARALLEL (table

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

Comments

Basic Elements of Oracle SQL 2-103

The PARALLEL hint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the SELECT, INSERT,

UPDATE, and DELETE portions of a statement, as well as to the table scan portion.

If any parallel restrictions are violated, then the hint is ignored.

parallel_index_hint::=

The PARALLEL_INDEX hint specifies the desired number of concurrent servers that

can be used to parallelize index range scans for partitioned indexes.

pq_distribute_hint::=

The PQ_DISTRIBUTEhint improves the performance of parallel join operations. Do

this by specifying how rows of joined tables should be distributed among producer

and consumer query servers. Using this hint overrides decisions the optimizer

would normally make.

Use the EXPLAIN PLAN statement to identify the distribution chosen by the

optimizer. The optimizer ignores the distribution hint, if both tables are serial.

Note: The number of servers that can be used is twice the value in

the PARALLEL hint, if sorting or grouping operations also take

place.

Note: Oracle ignores parallel hints on a temporary table.

See Also: CREATE TABLE on page 15-7 and Oracle9i Database
Concepts

/*+ PARALLEL_INDEX (table
index

,

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

/*+ PQ_DISTRIBUTE (table
,

outer_distribution , inner_distribution) */

Comments

2-104 Oracle9i SQL Reference

push_pred_hint::=

The PUSH_PRED hint forces pushing of a join predicate into the view.

push_subq_hint::=

The PUSH_SUBQ hint causes non-merged subqueries to be evaluated at the earliest

possible step in the execution plan. Generally, subqueries that are not merged are

executed as the last step in the execution plan. If the subquery is relatively

inexpensive and reduces the number of rows significantly, then it improves

performance to evaluate the subquery earlier.

This hint has no effect if the subquery is applied to a remote table or one that is

joined using a merge join.

rewrite_hint::=

The REWRITE hint forces the cost-based optimizer to rewrite a query in terms of

materialized views, when possible, without cost consideration. Use the REWRITE
hint with or without a view list. If you use REWRITE with a view list and the list

contains an eligible materialized view, then Oracle uses that view regardless of its

cost.

Oracle does not consider views outside of the list. If you do not specify a view list,

then Oracle searches for an eligible materialized view and always uses it regardless

of its cost.

rowid_hint::=

The ROWID hint explicitly chooses a table scan by rowid for the specified table.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for the permitted combinations of distributions for the outer and

inner join tables

/*+ PUSH_PRED (table) */

/*+ PUSH_SUBQ */

/*+ REWRITE
(view)

*/

/*+ ROWID (table) */

Comments

Basic Elements of Oracle SQL 2-105

rule_hint::=

The RULE hint explicitly chooses rule-based optimization for a statement block. It

also makes the optimizer ignore other hints specified for the statement block.

star_hint::=

The STAR hint forces a star query plan to be used, if possible. A star plan has the

largest table in the query last in the join order and joins it with a nested loops join

on a concatenated index. The STAR hint applies when there are at least three tables,

the large table’s concatenated index has at least three columns, and there are no

conflicting access or join method hints. The optimizer also considers different

permutations of the small tables.

star_transformation_hint::=

The STAR_TRANSFORMATION hint makes the optimizer use the best plan in which

the transformation has been used. Without the hint, the optimizer could make a

cost-based decision to use the best plan generated without the transformation,

instead of the best plan for the transformed query.

Even if the hint is given, there is no guarantee that the transformation will take

place. The optimizer only generates the subqueries if it seems reasonable to do so. If

no subqueries are generated, then there is no transformed query, and the best plan

for the untransformed query is used, regardless of the hint.

unnest_hint::=

The UNNEST hint tells Oracle to check the subquery block for validity only. If the

subquery block is valid, then subquery unnesting is enabled without Oracle’s

checking the heuristics.

use_concat_hint::=

/*+ RULE */

/*+ STAR */

/*+ STAR_TRANSFORMATION */

/*+ UNNEST */

/*+ USE_CONCAT */

Database Objects

2-106 Oracle9i SQL Reference

The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a

query to be transformed into a compound query using the UNION ALL set operator.

Generally, this transformation occurs only if the cost of the query using the

concatenations is cheaper than the cost without them.

The USE_CONCAT hint turns off IN -list processing and OR-expands all disjunctions,

including IN -lists.

use_hash_hint::=

The USE_HASH hint causes Oracle to join each specified table with another row

source, using a hash join.

use_merge_hint::=

The USE_MERGE hint causes Oracle to join each specified table with another row

source, using a sort-merge join.

use_nl_hint::=

The USE_NL hint causes Oracle to join each specified table to another row source

with a nested loops join, using the specified table as the inner table.

Database Objects
Oracle recognizes objects that are associated with a particular schema and objects

that are not associated with a particular schema, as described in the sections that

follow.

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is

owned by a database user and has the same name as that user. Each user owns a

single schema. Schema objects can be created and manipulated with SQL and

include the following types of objects:

/*+ USE_HASH (table) */

/*+ USE_MERGE (table) */

/*+ USE_NL (table) */

Database Objects

Basic Elements of Oracle SQL 2-107

Clusters

Constraints

Database links

Database triggers

Dimensions

External procedure libraries

Index-organized tables

Indexes

Indextypes

Java classes, Java resources, Java sources

Materialized views

Materialized view logs

Object tables

Object types

Object views

Operators

Packages

Sequences

Stored functions, stored procedures

Synonyms

Tables

Views

Nonschema Objects
Other types of objects are also stored in the database and can be created and

manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFILE s) and server parameter files (SPFILE s)

Profiles

Roles

Rollback segments

Tablespaces

Users

In this reference, each type of object is briefly defined in Chapter 9 through

Chapter 18, in the section describing the statement that creates the database object.

These statements begin with the keyword CREATE. For example, for the definition

of a cluster, see CREATE CLUSTER on page 13-2.

Database Objects

2-108 Oracle9i SQL Reference

You must provide names for most types of database objects when you create them.

These names must follow the rules listed in the following sections.

Parts of Schema Objects
Some schema objects are made up of parts that you can or must name, such as:

■ Columns in a table or view

■ Index and table partitions and subpartitions

■ Integrity constraints on a table

■ Packaged procedures, packaged stored functions, and other objects stored

within a package

Partitioned Tables and Indexes
Tables and indexes can be partitioned. When partitioned, these schema objects

consist of a number of parts called partitions, all of which have the same logical

attributes. For example, all partitions in a table share the same column and

constraint definitions, and all partitions in an index share the same index columns.

When you partition a table or index using the range method, you specify a

maximum value for the partitioning key column(s) for each partition. When you

partition a table or index using the list method, you specify actual values for the

partitioning key column(s) for each partition. When you partition a table or index

using the hash method, you instruct Oracle to distribute the rows of the table into

partitions based on a system-defined hash function on the partitioning key

column(s). When you partition a table or index using the composite-partitioning

method, you specify ranges for the partitions, and Oracle distributes the rows in

each partition into one or more hash subpartitions based on a hash function. Each

subpartition of a table or index partitioned using the composite method has the

same logical attributes.

Partition-Extended and Subpartition-Extended Names
Partition-extended and subpartition-extended names let you perform some

partition-level and subpartition-level operations, such as deleting all rows from a

partition or subpartition, on only one partition or subpartition. Without extended

names, such operations would require that you specify a predicate (WHERE clause).

See Also: Oracle9i Database Concepts for an overview of database

objects

Database Objects

Basic Elements of Oracle SQL 2-109

For range- and list-partitioned tables, trying to phrase a partition-level operation

with a predicate can be cumbersome, especially when the range partitioning key

uses more than one column. For hash partitions and subpartitions, using a predicate

is more difficult still, because these partitions and subpartitions are based on a

system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage

of this method, which is most useful for range-partitioned tables, is that you can

build partition-level access control mechanisms by granting (or revoking) privileges

on these views to (or from) other users or roles.To use a partition as a table, create a

view by selecting data from a single partition, and then use the view as a table.

You can specify partition-extended or subpartition-extended table names for the

following DML statements:

■ DELETE

■ INSERT

■ LOCK TABLE

■ SELECT

■ UPDATE

Syntax The basic syntax for using partition-extended and subpartition-extended

table names is:

partition_extended_name::=

Restrictions on Extended Names Currently, the use of partition-extended and

subpartition-extended table names has the following restrictions:

Note: For application portability and ANSI syntax compliance,

Oracle strongly recommends that you use views to insulate

applications from this Oracle proprietary extension.

schema . table

view

@ dblink

PARTITION (partition)

SUBPARTITION (subpartition)

Schema Object Names and Qualifiers

2-110 Oracle9i SQL Reference

■ No remote tables: A partition-extended or subpartition-extended table name

cannot contain a database link (dblink) or a synonym that translates to a table

with a dblink. To use remote partitions and subpartitions, create a view at the

remote site that uses the extended table name syntax and then refer to the

remote view.

■ No synonyms: A partition or subpartition extension must be specified with a

base table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sales is a partitioned table with partition

sales_q1_2000 . You can create a view of the single partition sales_q1_2000 ,

and then use it as if it were a table. This example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
 SELECT * FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales WHERE amount_sold < 0;

Schema Object Names and Qualifiers
This section provides:

■ Rules for naming schema objects and schema object location qualifiers

■ Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules
Every database object has a name. In a SQL statement, you represent the name of an

object with a quoted identifier or a nonquoted identifier.

■ A quoted identifier begins and ends with double quotation marks ("). If you

name a schema object using a quoted identifier, then you must use the double

quotation marks whenever you refer to that object.

■ A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object,

with one exception: database links must be named with nonquoted identifiers. In

addition, Oracle Corporation strongly recommends that you not use quotation

marks to make usernames and passwords case sensitive.

See Also: CREATE USER on page 16-32 for additional rules for

naming users and passwords

Schema Object Names and Qualifiers

Basic Elements of Oracle SQL 2-111

 The following list of rules applies to both quoted and nonquoted identifiers unless

otherwise indicated:

1. Names must be from 1 to 30 bytes long with these exceptions:

■ Names of databases are limited to 8 bytes.

■ Names of database links can be as long as 128 bytes.

2. Nonquoted identifiers cannot be Oracle reserved words. Quoted identifiers can

be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,

names might be further restricted by other product-specific reserved words.

3. The Oracle SQL language contains other words that have special meanings.

These words include datatypes, function names, the dummy system table DUAL,
and keywords (the uppercase words in SQL statements, such as DIMENSION,

SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not reserved.

However, Oracle uses them internally in specific ways. Therefore, if you use

these words as names for objects and object parts, then your SQL statements

may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with "SYS_" as schema object names,

and do not use the names of SQL built-in functions for the names of schema

objects or user-defined functions.

Note: The reserved word ROWID is an exception to this rule. You

cannot use the uppercase word ROWID as a name, even in double

quotation marks. However, you can use the word with one or more

lower case letters (for example, "Rowid " or "rowid ").

See Also:

■ Appendix C, "Oracle Reserved Words" for a listing of all Oracle

reserved words

■ The manual for the specific product, such as PL/SQL User’s
Guide and Reference, for a list of the product’s reserved words

See Also:

■ "Datatypes" on page 2-2 and "SQL Functions" on page 6-2

■ "Selecting from the DUAL Table" on page 8-16

Schema Object Names and Qualifiers

2-112 Oracle9i SQL Reference

4. You should use ASCII characters in database names, global database names,

and database link names, because ASCII characters provide optimal

compatibility across different platforms and operating systems.

5. Nonquoted identifiers must begin with an alphabetic character from your

database character set. Quoted identifiers can begin with any character.

6. Nonquoted identifiers can contain only alphanumeric characters from your

database character set and the underscore (_), dollar sign ($), and pound sign

(#). Database links can also contain periods (.) and "at" signs (@). Oracle

Corporation strongly discourages you from using $ and #.

Quoted identifiers can contain any characters and punctuations marks as well

as spaces. However, neither quoted nor nonquoted identifiers can contain

double quotation marks.

7. Within a namespace, no two objects can have the same name.

The following schema objects share one namespace:

■ Tables

■ Views

■ Sequences

■ Private synonyms

■ Stand-alone procedures

■ Stand-alone stored functions

■ Packages

■ Materialized views

■ User-defined types

Each of the following schema objects has its own namespace:

■ Indexes

Note: Oracle Corporation recommends that user names and

passwords be encoded in ASCII or EBCDIC characters only,

depending on your platform. Please refer to Oracle9i Database
Administrator’s Guide for more information about this

recommendation.

Schema Object Names and Qualifiers

Basic Elements of Oracle SQL 2-113

■ Constraints

■ Clusters

■ Database triggers

■ Private database links

■ Dimensions

Because tables and views are in the same namespace, a table and a view in the

same schema cannot have the same name. However, tables and indexes are in

different namespaces. Therefore, a table and an index in the same schema can

have the same name.

Each schema in the database has its own namespaces for the objects it contains.

This means, for example, that two tables in different schemas are in different

namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:

■ User roles

■ Public synonyms

■ Public database links

■ Tablespaces

■ Rollback segments

■ Profiles

■ Parameter files (PFILE s) and server parameter files (SPFILE s)

Because the objects in these namespaces are not contained in schemas, these

namespaces span the entire database.

8. Nonquoted identifiers are not case sensitive. Oracle interprets them as

uppercase. Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following

names to different objects in the same namespace:

employees
"employees"
"Employees"
"EMPLOYEES"

Schema Object Names and Qualifiers

2-114 Oracle9i SQL Reference

Note that Oracle interprets the following names the same, so they cannot be

used for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

9. If you name a user or a password with a quoted identifier, then the name

cannot contain lowercase letters.

10. Columns in the same table or view cannot have the same name. However,

columns in different tables or views can have the same name.

11. Procedures or functions contained in the same package can have the same

name, if their arguments are not of the same number and datatypes. Creating

multiple procedures or functions with the same name in the same package with

different arguments is called overloading the procedure or function.

Schema Object Naming Examples
The following examples are valid schema object names:

last_name
horse
hr.hire_date
"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on

page 2-110. The following example is not valid, because it exceeds 30 characters:

a_very_very_long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or

parts of objects, they must also follow these naming rules unless otherwise specified

in the rules themselves.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

■ Use full, descriptive, pronounceable names (or well-known abbreviations).

■ Use consistent naming rules.

■ Use the same name to describe the same entity or attribute across tables.

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-115

When naming objects, balance the objective of keeping names short and easy to use

with the objective of making names as descriptive as possible. When in doubt,

choose the more descriptive name, because the objects in the database may be used

by many people over a period of time. Your counterpart ten years from now may

have difficulty understanding a table column with a name like pmdd instead of

payment_due_date .

Using consistent naming rules helps users understand the part that each table plays

in your application. One such rule might be to begin the names of all tables

belonging to the FINANCE application with fin_ .

Use the same names to describe the same things across tables. For example, the

department number columns of the sample employees and departments tables

are both named deptno .

Syntax for Schema Objects and Parts in SQL Statements
This section tells you how to refer to schema objects and their parts in the context of

a SQL statement. This section shows you:

■ The general syntax for referring to an object

■ How Oracle resolves a reference to an object

■ How to refer to objects in schemas other than your own

■ How to refer to objects in remote databases

The following diagram shows the general syntax for referring to an object or a part:

object_part::=

where:

■ object is the name of the object.

■ schema is the schema containing the object. The schema qualifier lets you refer

to an object in a schema other than your own. You must be granted privileges to

refer to objects in other schemas. If you omit schema , then Oracle assumes that

you are referring to an object in your own schema.

Only schema objects can be qualified with schema . Schema objects are shown

with list item 7 on page 2-112. Nonschema objects, also shown with list item 7

schema .
object

. part @ dblink

Syntax for Schema Objects and Parts in SQL Statements

2-116 Oracle9i SQL Reference

on page 2-112, cannot be qualified with schema because they are not schema

objects. (An exception is public synonyms, which can optionally be qualified

with "PUBLIC". The quotation marks are required.)

■ part is a part of the object. This identifier lets you refer to a part of a schema

object, such as a column or a partition of a table. Not all types of objects have

parts.

■ dblink applies only when you are using Oracle’s distributed functionality.

This is the name of the database containing the object. The dblink qualifier lets

you refer to an object in a database other than your local database. If you omit

dblink , then Oracle assumes that you are referring to an object in your local

database. Not all SQL statements allow you to access objects on remote

databases.

You can include spaces around the periods separating the components of the

reference to the object, but it is conventional to omit them.

How Oracle Resolves Schema Object References
When you refer to an object in a SQL statement, Oracle considers the context of the

SQL statement and locates the object in the appropriate namespace. After locating

the object, Oracle performs the statement’s operation on the object. If the named

object cannot be found in the appropriate namespace, then Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within

SQL statements. Consider this statement that adds a row of data to a table identified

by the name departments :

INSERT INTO departments VALUES (
 280, ’ENTERTAINMENT_CLERK’, 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:

■ A table in your own schema

■ A view in your own schema

■ A private synonym for a table or view

■ A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your

own schema before considering namespaces outside your schema. In this example,

Oracle attempts to resolve the name dept as follows:

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-117

1. First, Oracle attempts to locate the object in the namespace in your own schema

containing tables, views, and private synonyms. If the object is a private

synonym, then Oracle locates the object for which the synonym stands. This

object could be in your own schema, another schema, or on another database.

The object could also be another synonym, in which case Oracle locates the

object for which this synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement

on the object. In this example, Oracle attempts to add the row of data to dept . If

the object is not of the correct type for the statement, then Oracle returns an

error. In this example, dept must be a table, view, or a private synonym

resolving to a table or view. If dept is a sequence, then Oracle returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches

the namespace containing public synonyms. If the object is in that namespace,

then Oracle attempts to perform the statement on it. If the object is not of the

correct type for the statement, then Oracle returns an error. In this example, if

dept is a public synonym for a sequence, then Oracle returns an error.

Referring to Objects in Other Schemas
To refer to objects in schemas other than your own, prefix the object name with the

schema name:

schema.object

For example, this statement drops the employees table in the sample schema hr :

DROP TABLE hr.employees

Note: If a public object type synonym has any dependent tables or

user-defined types, then you cannot create an object with the same

name as the synonym in the same schema as the dependent objects.

If the public object type synonym does not have any dependent

tables or user-defined types, then you can create an object with the

same name in the same schema as the dependent objects. Oracle

invalidates any dependent objects and attempts to revalidate them

when they are next accessed.

Syntax for Schema Objects and Parts in SQL Statements

2-118 Oracle9i SQL Reference

Referring to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object

name with the name of the database link to that database. A database link is a

schema object that causes Oracle to connect to a remote database to access an object

there. This section tells you:

■ How to create database links

■ How to use database links in your SQL statements

Creating Database Links
You create a database link with the statement CREATE DATABASE LINK on

page 13-37. The statement lets you specify this information about the database link:

■ The name of the database link

■ The database connect string to access the remote database

■ The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be

as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the

database to which the database link refers and the location of that database in the

hierarchy of database names. The following syntax diagram shows the form of the

name of a database link:

dblink::=

where:

■ database should specify the name portion of the global name of the remote

database to which the database link connects. This global name is stored in the

data dictionary of the remote database; you can see this name in the GLOBAL_
NAME view.

■ domain should specify the domain portion of the global name of the remote

database to which the database link connects. If you omit domain from the

database
. domain @ connect_descriptor

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-119

name of a database link, then Oracle qualifies the database link name with the

domain of your local database as it currently exists in the data dictionary.

■ connect_descriptor lets you further qualify a database link. Using connect

descriptors, you can create multiple database links to the same database. For

example, you can use connect descriptors to create multiple database links to

different instances of the Real Application Clusters that access the same

database.

The combination database.domain is sometimes called the "service name".

Username and Password Oracle uses the username and password to connect to the

remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by

Oracle Net to access the remote database. For information on writing database

connect strings, see the Oracle Net documentation for your specific network

protocol. The database string for a database link is optional.

Referring to Database Links
Database links are available only if you are using Oracle’s distributed functionality.

When you issue a SQL statement that contains a database link, you can specify the

database link name in one of these forms:

■ complete is the complete database link name as stored in the data dictionary,

including the database , domain , and optional connect_descriptor
components.

■ partial is the database and optional connect_descriptor components,

but not the domain component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle

expands the name to contain the domain of the local database as found in the

global database name stored in the data dictionary. (You can see the current

global database name in the GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the

same name as the database link in the statement. Then, if necessary, it searches

for a public database link with the same name.

See Also: Oracle9i Net Services Administrator’s Guide

Syntax for Schema Objects and Parts in SQL Statements

2-120 Oracle9i SQL Reference

■ Oracle always determines the username and password from the first

matching database link (either private or public). If the first matching

database link has an associated username and password, then Oracle uses

it. If it does not have an associated username and password, then Oracle

uses your current username and password.

■ If the first matching database link has an associated database string, then

Oracle uses it. Otherwise Oracle searches for the next matching (public)

database link. If no matching database link is found, or if no matching link

has an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing

the remote database, if the value of the GLOBAL_NAMES parameter is true ,

then Oracle verifies that the database.domain portion of the database link

name matches the complete global name of the remote database. If this

condition is true, then Oracle proceeds with the connection, using the username

and password chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is

successful, then Oracle attempts to access the specified object on the remote

database using the rules for resolving object references and referring to objects

in other schemas discussed earlier in this section.

You can disable the requirement that the database.domain portion of the

database link name must match the complete global name of the remote database

by setting to false the initialization parameter GLOBAL_NAMES or the GLOBAL_
NAMES parameter of the ALTER SYSTEM or ALTER SESSION statement.

Referencing Object Type Attributes and Methods
To reference object type attributes or methods in a SQL statement, you must fully

qualify the reference with a table alias. Consider the following example from the

sample schema oe , which contains a type cust_address_typ and a table

customers with a cust_address column based on the cust_address_typ :

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)

See Also: Oracle9i Database Administrator’s Guide for more

information on remote name resolution

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-121

);
/

CREATE TABLE customers
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20) CONSTRAINT cust_fname_nn NOT NULL
 , cust_last_name VARCHAR2(20) CONSTRAINT cust_lname_nn NOT NULL
 , cust_address cust_address_typ
.
.
.

In a SQL statement, reference to the postal_code attribute must be fully qualified

using a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code FROM customers c;

UPDATE customers c SET c.cust_address.postal_code = ’GU13 BE5’
 WHERE c.cust_address.city = ’Fleet’;

To reference an object type’s member method that does not accept arguments, you

must provide "empty" parentheses. For example, the sample schema oe contains an

object table categories_tab , based on catalog_typ , which contains the

member function getCatalogName . In order to call this method in a SQL

statement, you must provide empty parentheses as shown in this example:

SELECT c.getCatalogName() FROM categories_tab c
 WHERE category_id = 90;

See Also: Oracle9i Database Concepts for more information on

user-defined datatypes

Syntax for Schema Objects and Parts in SQL Statements

2-122 Oracle9i SQL Reference

Operators 3-1

3
Operators

An operator manipulates individual data items and returns a result.

This chapter contains these sections:

■ About SQL Operators

■ Arithmetic Operators

■ Concatenation Operator

■ Set Operators

■ User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot

by themselves serve as the condition of a WHERE or HAVING clause in queries or

subqueries. For information on logical operators, which serve as conditions, please

refer to Chapter 5, "Conditions".

About SQL Operators

3-2 Oracle9i SQL Reference

About SQL Operators
Operators manipulate individual data items called operands or arguments.

Operators are represented by special characters or by keywords. For example, the

multiplication operator is represented by an asterisk (*).

Unary and Binary Operators
The two general classes of operators are:

■ unary: A unary operator operates on only one operand. A unary operator

typically appears with its operand in this format:

operator operand

■ binary: A binary operator operates on two operands. A binary operator appears

with its operands in this format:

operand1 operator operand2

Other operators with special formats accept more than two operands. If an operator

is given a null operand, the result is always null. The only operator that does not

follow this rule is concatenation (||).

Operator Precedence
Precedence is the order in which Oracle evaluates different operators in the same

expression. When evaluating an expression containing multiple operators, Oracle

evaluates operators with higher precedence before evaluating those with lower

precedence. Oracle evaluates operators with equal precedence from left to right

within an expression.

Table 3–1 lists the levels of precedence among SQL operators from high to low.

Operators listed on the same line have the same precedence.

Note: If you have installed Oracle Text, you can use the SCORE
operator, which is part of that product, in Oracle Text queries. For

more information on this operator, please refer to Oracle Text
Reference.

Arithmetic Operators

Operators 3-3

Precedence Example In the following expression, multiplication has a higher

precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result

to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle

evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS),

which combine sets of rows returned by queries, rather than individual data items.

All set operators have equal precedence.

Arithmetic Operators
You can use an arithmetic operator in an expression to negate, add, subtract,

multiply, and divide numeric values. The result of the operation is also a numeric

value. Some of these operators are also used in date arithmetic. Table 3–2 lists

arithmetic operators.

Table 3–1 SQL Operator Precedence

Operator Operation

+, - (as unary operators), PRIOR identity, negation, location in hierarchy

*, / multiplication, division

+, - (as binary operators), || addition, subtraction, concatenation

SQL conditions are evaluated after SQL
operators

See "Condition Precedence" on page 5-3

See Also:

■ "Set Operators" on page 3-6

■ "Hierarchical Queries" on page 8-3 for information on the

PRIOR operator, which is used only in hierarchical queries

Concatenation Operator

3-4 Oracle9i SQL Reference

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate

double negation or the subtraction of a negative value. The characters -- are used to

begin comments within SQL statements. You should separate consecutive minus

signs with a space or a parenthesis.

Concatenation Operator
The concatenation operator manipulates character strings and CLOB data. Table 3–3

describes the concatenation operator.

The result of concatenating two character strings is another character string. If both

character strings are of datatype CHAR, the result has datatype CHAR and is limited

to 2000 characters. If either string is of datatype VARCHAR2, the result has datatype

VARCHAR2 and is limited to 4000 characters. If either argument is a CLOB, the result

is a temporary CLOB. Trailing blanks in character strings are preserved by

concatenation, regardless of the datatypes of the string or CLOB.

Table 3–2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive
or negative expression, they are
unary operators.

SELECT * FROM order_items
 WHERE quantity = -1;
SELECT * FROM employees
 WHERE -salary < 0;

When they add or subtract,
they are binary operators.

SELECT hire_date
 FROM employees
 WHERE SYSDATE - hire_date
 > 365;

* / Multiply, divide. These are
binary operators.

UPDATE employees
 SET salary = salary * 1.1;

See Also: "Comments" on page 2-90 for more information on

comments within SQL statements

Table 3–3 Concatenation Operator

Operator Purpose Example

|| Concatenates
character strings
and CLOB data.

SELECT ’Name is ’ || last_name
 FROM employees;

Concatenation Operator

Operators 3-5

On most platforms, the concatenation operator is two solid vertical bars, as shown

in Table 3–3. However, some IBM platforms use broken vertical bars for this

operator. When moving SQL script files between systems having different character

sets, such as between ASCII and EBCDIC, vertical bars might not be translated into

the vertical bar required by the target Oracle environment. Oracle provides the

CONCAT character function as an alternative to the vertical bar operator for cases

when it is difficult or impossible to control translation performed by operating

system or network utilities. Use this function in applications that will be moved

between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a

zero-length character string with another operand always results in the other

operand, so null can result only from the concatenation of two null strings.

However, this may not continue to be true in future versions of Oracle. To

concatenate an expression that might be null, use the NVL function to explicitly

convert the expression to a zero-length string.

Example This example creates a table with both CHAR and VARCHAR2 columns,

inserts values both with and without trailing blanks, and then selects these values

and concatenates them. Note that for both CHAR and VARCHAR2 columns, the

trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6));

INSERT INTO tab1 (col1, col2, col3, col4)
 VALUES (’abc’, ’def ’, ’ghi ’, ’jkl’);

SELECT col1||col2||col3||col4 "Concatenation"
 FROM tab1;

Concatenation

abcdef ghi jkl

See Also:

■ "Character Datatypes" on page 2-9 for more information on the

differences between the CHAR and VARCHAR2 datatypes

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

more information about CLOBs

■ The functions CONCAT on page 6-35 and NVL on page 6-113

Set Operators

3-6 Oracle9i SQL Reference

Set Operators
Set operators combine the results of two component queries into a single result.

Queries containing set operators are called compound queries. Table 3–4 lists SQL

set operators. They are fully described, including restrictions on these operators, in

"The UNION [ALL], INTERSECT, MINUS Operators" on page 8-7.

User-Defined Operators
Like built-in operators, user-defined operators take a set of operands as input and

return a result. However, you create them with the CREATE OPERATOR statement,

and they are identified by names. They reside in the same namespace as tables,

views, types, and standalone functions.

Once you have defined a new operator, you can use it in SQL statements like any

other built-in operator. For example, you can use user-defined operators in the

select list of a SELECT statement, the condition of a WHERE clause, or in ORDER BY
clauses and GROUP BY clauses. However, you must have EXECUTE privilege on the

operator to do so, because it is a user-defined object.

For example, if you define an operator includes , which takes as input a text

column and a keyword and returns 1 if the row contains the specified keyword, you

can then write the following SQL query:

SELECT * FROM product_descriptions
 WHERE includes (translated_description, ’Oracle and UNIX’) = 1;

Table 3–4 Set Operators

Operator Returns

UNION All rows selected by either query

UNION ALL All rows selected by either query, including all duplicates

INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query but not the second

See Also: CREATE OPERATOR on page 14-44 and Oracle9i Data
Cartridge Developer’s Guide for more information on user-defined operators

Expressions 4-1

4
Expressions

This chapter describes how to combine values, operators, and functions into

expressions.

This chapter includes these sections:

■ About SQL Expressions

■ Simple Expressions

■ Compound Expressions

■ CASE Expressions

■ CURSOR Expressions

■ Datetime Expressions

■ Function Expressions

■ INTERVAL Expressions

■ Object Access Expressions

■ Scalar Subquery Expressions

■ Type Constructor Expressions

■ Variable Expressions

■ Expression Lists

About SQL Expressions

4-2 Oracle9i SQL Reference

About SQL Expressions
An expression is a combination of one or more values, operators, and SQL

functions that evaluate to a value. An expression generally assumes the datatype of

its components.

This simple expression evaluates to 4 and has datatype NUMBER (the same datatype

as its components):

2*2

The following expression is an example of a more complex expression that uses

both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR
datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

■ The select list of the SELECT statement

■ A condition of the WHERE clause and HAVING clause

■ The CONNECT BY, START WITH, and ORDER BY clauses

■ The VALUES clause of the INSERT statement

■ The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string ’smith’ in

this UPDATE statement SET clause:

SET last_name = ’Smith’;

This SET clause has the expression INITCAP (last_name) instead of the quoted

string ’Smith ’:

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

Simple Expressions

Expressions 4-3

expr::=

Oracle does not accept all forms of expressions in all parts of all SQL statements.

You must use appropriate expression notation whenever expr appears in

conditions, SQL functions, or SQL statements in other parts of this reference. The

sections that follow describe and provide examples of the various forms of

expressions.

Simple Expressions
A simple expression specifies column, pseudocolumn, constant, sequence number,

or null.

See Also: The individual SQL statements in Chapter 9 through

Chapter 18 for information on restrictions on the expressions in that

statement

simple_expression

compound_expression

case_expression

cursor_expression

datetime_expression

function_expression

interval_expression

object_access_expression

scalar_subquery_expression

type_constructor_expression

variable_expression

Simple Expressions

4-4 Oracle9i SQL Reference

simple_expression::=

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation

marks required), in which case it must qualify a public synonym for a table, view, or

materialized view. Qualifying a public synonym with "PUBLIC" is supported only

in data manipulation language (DML) statements, not data definition language

(DDL) statements.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. You can use a

pseudocolumn only with a table, not with a view or materialized view. NCHAR and

NVARCHAR2 are not valid pseudocolumn datatypes.

Some valid simple expressions are:

employees.last_name
’this is a text string’
10
N’this is an NCHAR string’

See Also:

■ "Pseudocolumns" on page 2-82 for more information on

pseudocolumns

■ subquery_factoring_clause on page 18-10 for

information on query_name

query_name

schema
table

view

materialized view

.

column

ROWID

ROWNUM

text

number

sequence .
CURRVAL

NEXTVAL

NULL

Compound Expressions

Expressions 4-5

Compound Expressions
A compound expression specifies a combination of other expressions.

compound_expression::=

The PRIOR operator is used in CONNECT BY clauses of hierarchical queries.

Some valid compound expressions are:

(’CLARK’ || ’SMITH’)
LENGTH(’MOOSE’) * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,’DD-MMM-YY’))

Note: You can use any built-in function as an expression

("Function Expressions" on page 4-11). However, in a compound

expression, some combinations of functions are inappropriate and

are rejected. For example, the LENGTH function is inappropriate

within an aggregate function.

See Also: "Operator Precedence" on page 3-2 and "Hierarchical

Queries" on page 8-3

(expr)

+

–

PRIOR

expr

expr

*

/

+

–

| |

expr

CASE Expressions

4-6 Oracle9i SQL Reference

CASE Expressions
CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without

having to invoke procedures. The syntax is:

case_expression::=

simple_case_expression::=

searched_case_expression::=

else_clause::=

In a simple CASE expression, Oracle searches for the first WHEN ... THEN pair for

which expr is equal to comparison_expr and returns return_expr . If none of

the WHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle

returns else_expr . Otherwise, Oracle returns null. You cannot specify the literal

NULL for all the return_expr s and the else_expr .

All of the expressions (expr , comparison_expr , and return_expr) must be of

the same datatype, which can be CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

In a searched CASE expression, Oracle searches from left to right until it finds an

occurrence of condition that is true, and then returns return_expr . If no

condition is found to be true, and an ELSE clause exists, Oracle returns else_
expr . Otherwise, Oracle returns null.

Note: The maximum number of arguments in a CASE expression

is 255, and each WHEN ... THEN pair counts as two arguments. To

avoid exceeding the limit of 128 choices, you can nest CASE
expressions. That is return_expr can itself be a CASE expression.

CASE
simple_case_expression

searched_case_expression

else_clause
END

expr WHEN comparison_expr THEN return_expr

WHEN condition THEN return_expr

ELSE else_expr

CURSOR Expressions

Expressions 4-7

Simple CASE Example For each customer in the sample oe.customers table, the

following statement lists the credit limit as "Low" if it equals $100, "High" if it

equals $5000, and "Medium" if it equals anything else.

SELECT cust_last_name,
 CASE credit_limit WHEN 100 THEN ’Low’
 WHEN 5000 THEN ’High’
 ELSE ’Medium’ END
 FROM customers;

CUST_LAST_NAME CASECR
-------------------- ------
...
Bogart Medium
Nolte Medium
Loren Medium
Gueney Medium

Searched CASE Example The following statement finds the average salary of the

employees in the sample table oe.employees , using $2000 as the lowest salary

possible:

SELECT AVG(CASE WHEN e.salary > 2000 THEN e.salary
 ELSE 2000 END) "Average Salary" from employees e;

Average Salary

 6461.68224

CURSOR Expressions
A CURSOR expression returns a nested cursor. This form of expression is equivalent

to the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a

function.

See Also:

■ COALESCE on page 6-33 and NULLIF on page 6-110 for

alternative forms of CASE logic

■ Oracle9i Data Warehousing Guide for examples using various

forms of the CASE expression

CURSOR Expressions

4-8 Oracle9i SQL Reference

cursor_expression::=

A nested cursor is implicitly opened when the cursor expression is evaluated. For

example, if the cursor expression appears in a SELECT list, a nested cursor will be

opened for each row fetched by the query. The nested cursor is closed only when:

■ The nested cursor is explicitly closed by the user

■ The parent cursor is reexecuted

■ The parent cursor is closed

■ The parent cursor is cancelled

■ An error arises during fetch on one of its parent cursors (it is closed as part of

the clean-up)

Restrictions on CURSOR Expressions

■ If the enclosing statement is not a SELECTstatement, nested cursors can appear

only as REF CURSOR arguments of a procedure.

■ If the enclosing statement is a SELECT statement, nested cursors can also

appear in the outermost SELECT list of the query specification, or in the

outermost SELECT list of another nested cursor.

■ Nested cursors cannot appear in views.

■ You cannot perform BIND and EXECUTE operations on nested cursors.

Examples The following example shows the use of a CURSOR expression in the

select list of a query:

SELECT department_name, CURSOR(SELECT salary, commission_pct
 FROM employees e
 WHERE e.department_id = d.department_id)
 FROM departments d;

The next example shows the use of a CURSOR expression as a function argument.

The example begins by creating a function in the sample OE schema that can accept

the REF CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTION f(cur SYS_REFCURSOR, mgr_hiredate DATE)
 RETURN NUMBER IS

emp_hiredate DATE;

CURSOR (subquery)

Datetime Expressions

Expressions 4-9

 before number :=0;
 after number:=0;
begin
 loop
 fetch cur into emp_hiredate;
 exit when cur%NOTFOUND;
 if emp_hiredate > mgr_hiredate then
 after:=after+1;
 else
 before:=before+1;
 end if;
 end loop;
 close cur;
 if before > after then
 return 1;
 else
 return 0;
 end if;
end ;
/

The function accepts a cursor and a date. The function expects the cursor to be a

query returning a set of dates. The following query uses the function to find those

managers in the sample employees table, most of whose employees were hired

before the manager.

SELECT e1.last_name FROM employees e1
 WHERE f(
 CURSOR(SELECT e2.hire_date FROM employees e2
 WHERE e1.employee_id = e2.manager_id),
 e1.hire_date) = 1;

LAST_NAME

De Haan
Mourgos
Cambrault
Zlotkey
Higgens

Datetime Expressions
A datetime expression yields a value of one of the datetime datatypes.

Datetime Expressions

4-10 Oracle9i SQL Reference

datetime_expression::=

A datetime_value_expr can be a datetime column or a compound expression

that yields a datetime value. Datetimes and intervals can be combined according to

the rules defined in Table 2–5 on page 2-25. The three combinations that yield

datetime values are valid in a datetime expression.

If you specify AT LOCAL, Oracle uses the current session time zone.

The settings for AT TIME ZONE are interpreted as follows:

■ The string ’(+|-)HH:MM’ specifies a time zone as an offset from UTC.

■ DBTIMEZONE: Oracle uses the database time zone established (explicitly or by

default) during database creation.

■ SESSIONTIMEZONE: Oracle uses the session time zone established by default or

in the most recent ALTER SESSION statement.

■ time_zone_name : Oracle returns the datetime_value_expr in the time

zone indicated by time_zone_name . For a listing of valid time zone names,

query the V$TIMEZONE_NAMES dynamic performance view.

■ expr : If expr returns a character string with a valid time zone format, Oracle

returns the input in that time zone. Otherwise, Oracle returns an error.

Example The following example converts the datetime value of one time zone to

another time zone:

SELECT FROM_TZ(CAST(TO_DATE(’1999-12-01 11:00:00’,

See Also: Oracle9i Database Reference for information on the

dynamic performance views

datetime_value_expr AT

LOCAL

TIME ZONE

’

+

–
hh : mm ’

DBTIMEZONE

SESSIONTIMEZONE

’ time_zone_name ’

expr

INTERVAL Expressions

Expressions 4-11

 ’YYYY-MM-DD HH:MI:SS’) AS TIMESTAMP), ’America/New_York’)
 AT TIME ZONE ’America/Los_Angeles’ "West Coast Time"
 FROM DUAL;

West Coast Time
--
01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

Function Expressions
You can use any built-in SQL function or user-defined function as an expression.

Some valid built-in function expressions are:

LENGTH(’BLAKE’)
ROUND(1234.567*43)
SYSDATE

A user-defined function expression specifies a call to:

■ A function in an Oracle-supplied package (see Oracle9i Supplied PL/SQL
Packages and Types Reference)

■ A function in a user-defined package or type or in a standalone user-defined

function (see "User-Defined Functions" on page 6-222)

■ A user-defined function or operator (see CREATE OPERATOR on page 14-44,

CREATE FUNCTION on page 13-52, and Oracle9i Data Cartridge Developer’s
Guide)

Some valid user-defined function expressions are:

circle_area(radius)
payroll.tax_rate(empno)
hr.employees.comm_pct(dependents, empno)@remote
DBMS_LOB.getlength(column_name)
my_function(DISTINCT a_column)

INTERVAL Expressions
An interval expression yields a value of INTERVAL YEAR TO MONTH or INTERVAL
DAY TO SECOND.

See Also: "SQL Functions" on page 6-2 and "Aggregate

Functions" on page 6-8 for information on built-in functions

Object Access Expressions

4-12 Oracle9i SQL Reference

interval_expression::=

The interval_value_expr can be the value of an INTERVAL column or a

compound expression that yields an interval value. Datetimes and intervals can be

combined according to the rules defined in Table 2–5 on page 2-25. The six

combinations that yield interval values are valid in an interval expression.

For example, the following statement subtracts the value of the order_date
column in the sample table orders (a datetime value) from the system timestamp

(another datetime value) to yield an interval value expression:

SELECT (SYSTIMESTAMP - order_date) DAY TO SECOND from orders;

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

The column parameter can be an object or REF column. If you specify expr , it must

resolve to an object type.

When a type’s member function is invoked in the context of a SQL statement, if the

SELF argument is null, Oracle returns null and the function is not invoked.

Examples The following example creates a table based on the sample oe.order_
item_typ object type, and then shows how you would update and select from the

object column attributes.

interval_value_expr
DAY TO SECOND

YEAR TO MONTH

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (
argument

,

)

Type Constructor Expressions

Expressions 4-13

CREATE TABLE short_orders (
 sales_rep VARCHAR2(25), item order_item_typ);

UPDATE short_orders s SET sales_rep = ’Unassigned’;

SELECT o.item.line_item_id, o.item.quantity FROM short_orders o;

Scalar Subquery Expressions
A scalar subquery expression is a subquery that returns exactly one column value

from one row. The value of the scalar subquery expression is the value of the select

list item of the subquery. If the subquery returns 0 rows, then the value of the scalar

subquery expression is NULL. If the subquery returns more than one row, then

Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression

(expr). However, scalar subqueries are not valid expressions in the following

places:

■ As default values for columns

■ As hash expressions for clusters

■ In the RETURNING clause of DML statements

■ As the basis of a function-based index

■ In CHECK constraints

■ In WHEN conditions of CASE expressions

■ In GROUP BY and HAVING clauses

■ In START WITH and CONNECT BY clauses

■ In statements that are unrelated to queries, such as CREATE PROFILE

Type Constructor Expressions
A type constructor expression specifies a call to a type constructor. The argument to

the type constructor is any expression.

Type Constructor Expressions

4-14 Oracle9i SQL Reference

type_constructor_expression::=

The NEW keyword applies to constructors for object types but not for collection

types. It instructs Oracle to construct a new object by invoking an appropriate

constructor. The use of the NEW keyword is optional, but it is good practice to

specify it.

If type_name is an object type, then the expressions must be an ordered list, where

the first argument is a value whose type matches the first attribute of the object

type, the second argument is a value whose type matches the second attribute of the

object type, and so on. The total number of arguments to the constructor must

match the total number of attributes of the object type.

If type_name is a varray or nested table type, then the expression list can contain

zero or more arguments. Zero arguments implies construction of an empty

collection. Otherwise, each argument corresponds to an element value whose type

is the element type of the collection type.

Type constructors can be invoked anywhere functions are invoked. They also have

similar restrictions, such as a limit on the maximum number of arguments.

Expression Example This example uses the cust_address_typ type in the

sample oe schema to show the use of an expression in the call to a type constructor

(the PL/SQL is shown in italics):

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
DECLARE

myaddr cust_address_typ := cust_address_typ(
’500 Oracle Parkway’, 94065, ’Redwood Shores’, ’CA’,’USA’);

alladdr address_book_t := address_book_t();
BEGIN

INSERT INTO customers VALUES (
666999, ’Smith’, ’Joe’, myaddr, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);

END;
/

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for additional information on type constructors

NEW schema .
type_name (

expr

,

)

Variable Expressions

Expressions 4-15

Subquery Example This example uses the warehouse_typ type in the sample

schema oe to illustrate the use of a subquery in the call to the type constructor.

CREATE TABLE warehouse_tab OF warehouse_typ;

INSERT INTO warehouse_tab
 VALUES (warehouse_typ(101, ’new_wh’, 201));

CREATE TYPE facility_typ AS OBJECT (
 facility_id NUMBER,
 warehouse_ref REF warehouse_typ);

CREATE TABLE buildings (b_id NUMBER, building facility_typ);

INSERT INTO buildings VALUES (10, facility_typ(102,
 (SELECT REF(w) FROM warehouse_tab w
 WHERE warehouse_name = ’new_wh’)));

SELECT b.b_id, b.building.facility_id "FAC_ID",
 DEREF(b.building.warehouse_ref) "WH" FROM buildings b;

 B_ID FAC_ID WH(WAREHOUSE_ID, WAREHOUSE_NAME, LOCATION_ID)
---------- ---------- ---
 10 102 WAREHOUSE_TYP(101, ’new_wh’, 201)

Variable Expressions
A variable expression specifies a host variable with an optional indicator variable.

This form of expression can appear only in embedded SQL statements or SQL

statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

Some valid variable expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

: host_variable

INDICATOR
: indicator_variable

Expression Lists

4-16 Oracle9i SQL Reference

Expression Lists
An expression list is a combination of other expressions.

expression_list::=

Expression lists can appear in comparison and membership conditions and in

GROUP BY clauses of queries and subqueries.

Comparison and membership conditions appear in the conditions of WHEREclauses.

They can contain either one or more comma-delimited expressions, or one or more

sets of expressions where each set contains one or more comma-delimited

expressions. In the latter case (multiple sets of expressions):

■ Each set is bounded by parentheses

■ Each set must contain the same number of expressions

■ The number of expressions in each set must match the number of expressions

before the operator in the comparison condition or before the IN keyword in the

membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions.

A comma-delimited list of sets of expressions can contain any number of sets, but

each set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
(’SCOTT’, ’BLAKE’, ’TAYLOR’)
((’Guy’, ’Himuro’, ’GHIMURO’),(’Karen’, ’Colmenares’, ’KCOLMENA’))

In the third example, the number of expressions in each set must equal the number

of expressions in the first part of the condition. For example:

SELECT * FROM employees
 WHERE (first_name, last_name, email) IN
 ((’Guy’, ’Himuro’, ’GHIMURO’),(’Karen’, ’Colmenares’, ’KCOLMENA’))

expr

,

(expr

,

)

Expression Lists

Expressions 4-17

In a simple GROUP BY clause, you can use either the upper or lower form of

expression list:

SELECT department_id, MIN(salary), MAX(salary)
 FROM employees
 GROUP BY department_id, salary;

SELECT department_id, MIN(salary), MAX(salary)
 FROM employees
 GROUP BY (department_id, salary);

In ROLLUP, CUBE, and GROUPING SETS clauses of GROUP BY clauses, you can

combine individual expressions with sets of expressions in the same expression list.

The following example shows several valid grouping sets expression lists in one

SQL statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
 FROM products, sales, customers
 WHERE sales.prod_id = products.prod_id
 AND sales.cust_id=customers.cust_id
 AND sales.time_id = ’01-oct-00’
 AND customers.cust_year_of_birth BETWEEN 1960 and 1970
GROUP BY GROUPING SETS
 (
 (prod_category, prod_subcategory, country_id, cust_city),
 (prod_category, prod_subcategory, country_id),
 (prod_category, prod_subcategory),

country_id
);

See Also: "Comparison Conditions" on page 5-4 and

"Membership Conditions" on page 5-9

See Also: SELECT on page 18-4

Expression Lists

4-18 Oracle9i SQL Reference

Conditions 5-1

5
Conditions

A condition specifies a combination of one or more expressions and logical

(Boolean) operators and returns a value of TRUE, FALSE, or unknown

This chapter contains the following sections:

■ About SQL Conditions

■ Comparison Conditions

■ Logical Conditions

■ Membership Conditions

■ Range Conditions

■ Null Conditions

■ EQUALS_PATH

■ EXISTS Conditions

■ LIKE Conditions

■ IS OF type Conditions

■ UNDER_PATH

■ Compound Conditions

About SQL Conditions

5-2 Oracle9i SQL Reference

About SQL Conditions
Conditions can have several forms, as shown in the following syntax.

condition::=

The sections that follow describe the various forms of conditions. You must use

appropriate condition syntax whenever condition appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

■ DELETE

■ SELECT

■ UPDATE

You can use a condition in any of these clauses of the SELECT statement:

■ WHERE

Note: If you have installed Oracle Text, then you can use the

built-in conditions that are part of that product, including

CONTAINS, CATSEARCH, and MATCHES. For more information on

these Oracle Text elements, please refer to Oracle Text Reference.

comparison_condition

logical_condition

membership_condition

range_condition

null_condition

equals_path

exists_condition

like_condition

is_of_type_condition

under_path

compound_condition

About SQL Conditions

Conditions 5-3

■ START WITH

■ CONNECT BY

■ HAVING

A condition could be said to be of the "logical" datatype, although Oracle does not

formally support such a datatype.

The following simple condition always evaluates to TRUE:

1 = 1

The following more complex condition adds the sal value to the comm value

(substituting the value 0 for null) and determines whether the sum is greater than

the number constant 2500:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For

example, you can use the AND condition to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = ’SMITH’
employees.department_id = departments.department_id
hire_date > ’01-JAN-88’
job_id IN (’SA_MAN’, ’SA_REP’)
salary BETWEEN 5000 AND 10000
commission_pct IS NULL AND salary = 2100

Condition Precedence
Precedence is the order in which Oracle evaluates different conditions in the same

expression. When evaluating an expression containing multiple conditions, Oracle

evaluates conditions with higher precedence before evaluating those with lower

precedence. Oracle evaluates conditions with equal precedence from left to right

within an expression.

Table 5–1 lists the levels of precedence among SQL condition from high to low.

Conditions listed on the same line have the same precedence. As the table indicates,

Oracle evaluates operators before conditions.

See Also: The description of each statement in Chapter 9 through

Chapter 18 for the restrictions on the conditions in that statement

Comparison Conditions

5-4 Oracle9i SQL Reference

Comparison Conditions
Comparison conditions compare one expression with another. The result of such a

comparison can be TRUE, FALSE, or UNKNOWN.

Table 5–2 lists comparison conditions.

Table 5–1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL
conditions

See "Operator Precedence" on page 3-2

=, !=, <, >, <=, >=, comparison

IS [NOT] NULL, LIKE, [NOT]
BETWEEN, [NOT] IN, EXISTS, IS OF
type

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction

Note: Large objects (LOBs) are not supported in comparison

conditions. However, you can use PL/SQL programs for

comparisons on CLOB data.

Table 5–2 Comparison Conditions

Type of
Condition Purpose Example

= Equality test. SELECT *
 FROM employees
 WHERE salary = 2500;

!=
^=
< >
¬=

Inequality test. Some forms of the
inequality condition may be
unavailable on some platforms.

SELECT *
 FROM employees
 WHERE salary != 2500;

Comparison Conditions

Conditions 5-5

Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or

subquery results.

>

<

"Greater than" and "less than"
tests.

SELECT * FROM employees
 WHERE salary > 2500;
SELECT * FROM employees
 WHERE salary < 2500;

>=

<=

"Greater than or equal to" and
"less than or equal to" tests.

SELECT * FROM employees
 WHERE salary >= 2500;
SELECT * FROM employees
 WHERE salary <= 2500;

ANY
SOME

Compares a value to each value in
a list or returned by a query. Must
be preceded by =, !=, >, <, <=, >=.

Evaluates to FALSE if the query
returns no rows.

SELECT * FROM employees
 WHERE salary = ANY
 (SELECT salary
 FROM employees
 WHERE department_id = 30);

ALL Compares a value to every value
in a list or returned by a query.
Must be preceded by =, !=, >, <,
<=, >=.

Evaluates to TRUE if the query
returns no rows.

SELECT * FROM employees
 WHERE salary >=
 ALL (1400, 3000);

Table 5–2 (Cont.) Comparison Conditions

Type of
Condition Purpose Example

Comparison Conditions

5-6 Oracle9i SQL Reference

simple_comparison_condition::=

expression_list::=

If you use the lower form of this condition (with multiple expressions to the left of

the operator), then you must use the lower form of the expression_list , and the

values returned by the subquery must match in number and datatype the

expressions in expression_list .

See Also:

■ "Expression Lists" on page 4-16 for more information about

combining expressions

■ SELECT on page 18-4 for information about subqueries

expr

=

!=

^=

<>

>

<

>=

<=

expr

(expr

,

)

=

!=

^=

<>

(subquery)

expr

,

(expr

,

)

Comparison Conditions

Conditions 5-7

Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a

list or subquery.

group_comparison_condition::=

expression_list::=

If you use the upper form of this condition (with a single expression to the left of

the operator), then you must use the upper form of expression_list . If you use

the lower form of this condition (with multiple expressions to the left of the

operator), then you must use the lower form of expression_list , and the

expressions in each expression_list must match in number and datatype the

expressions to the left of the operator.

expr

=

!=

^=

<>

>

<

>=

<=

ANY

SOME

ALL

(
expression_list

subquery
)

(expr

,

)

=

!=

^=

<>

ANY

SOME

ALL

(
expression_list

’

subquery
)

expr

,

(expr

,

)

Logical Conditions

5-8 Oracle9i SQL Reference

Logical Conditions
A logical condition combines the results of two component conditions to produce a

single result based on them or to invert the result of a single condition. Table 5–3

lists logical conditions.

Table 5–4 shows the result of applying the NOT condition to an expression.

Table 5–5 shows the results of combining the AND condition to two expressions.

See Also:

■ "Expression Lists" on page 4-16

■ SELECT on page 18-4

Table 5–3 Logical Conditions

Type of
Condition Operation Examples

NOT Returns TRUEif the following
condition is FALSE. Returns
FALSE if it is TRUE. If it is
UNKNOWN, then it remains
UNKNOWN.

SELECT *
 FROM employees
 WHERE NOT (job_id IS NULL);
SELECT *
 FROM employees
 WHERE NOT
 (salary BETWEEN 1000 AND 2000);

AND Returns TRUE if both
component conditions are
TRUE. Returns FALSEif either
is FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = ’PU_CLERK’
 AND department_id = 30;

OR Returns TRUE if either
component condition is TRUE.
Returns FALSE if both are
FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = ’PU_CLERK’
 OR department_id = 10;

Table 5–4 NOT Truth Table

— TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Membership Conditions

Conditions 5-9

For example, in the WHERE clause of the following SELECT statement, the AND
logical condition is used to ensure that only those hired before 1984 and earning

more than $1000 a month are returned:

SELECT * FROM employees
WHERE hire_date < TO_DATE(’01-JAN-1989’, ’DD-MON-YYYY’)
 AND salary > 2500;

Table 5–6 shows the results of applying OR to two expressions.

For example, the following query returns employees who have a 40% commission

rate or a salary greater than $20,000:

SELECT employee_id FROM employees
 WHERE commission_pct = .4 OR salary > 20000;

Membership Conditions
A membership condition tests for membership in a list or subquery.

Table 5–5 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Table 5–6 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Membership Conditions

5-10 Oracle9i SQL Reference

membership_condition::=

expression_list::=

If you use the upper form of this condition (with a single expression to the left of

the operator), then you must use the upper form of expression_list . If you use

the lower form of this condition (with multiple expressions to the left of the

operator), then you must use the lower form of expression_list , and the

expressions in each expression_list must match in number and datatype the

expressions to the left of the operator.

Table 5–7 lists the membership conditions.

See Also: "Expression Lists" on page 4-16

expr
NOT

IN (
expression_list

subquery
)

(expr

,

)
NOT

IN (
expression_list

,

subquery
)

expr

,

(expr

,

)

Membership Conditions

Conditions 5-11

If any item in the list following a NOT IN operation evaluates to null, then all rows

evaluate to FALSE or UNKNOWN, and no rows are returned. For example, the

following statement returns the string ’TRUE’ for each row:

SELECT ’True’ FROM employees
 WHERE department_id NOT IN (10, 20);

However, the following statement returns no rows:

SELECT ’True’ FROM employees
 WHERE department_id NOT IN (10, 20, NULL);

The preceding example returns no rows because the WHERE clause condition

evaluates to:

department_id != 10 AND department_id != 20 AND department_id != null

Because the third condition compares department_id with a null, it results in an

UNKNOWN, so the entire expression results in FALSE (for rows with department_
id equal to 10 or 20). This behavior can easily be overlooked, especially when the

NOT IN operator references a subquery.

Table 5–7 Membership Conditions

Type of
Condition Operation Example

IN "Equal to any member of"
test. Equivalent to "= ANY".

SELECT * FROM employees
 WHERE job_id IN
 (’PU_CLERK’,’SH_CLERK’);
SELECT * FROM employees
 WHERE salary IN
 (SELECT salary
 FROM employees
 WHERE department_id =30);

NOT IN Equivalent to "!=ALL".
Evaluates to FALSE if any
member of the set is NULL.

SELECT * FROM employees
 WHERE salary NOT IN
 (SELECT salary
 FROM employees
 WHERE department_id = 30);
SELECT * FROM employees
 WHERE job_id NOT IN
 (’PU_CLERK’, ’SH_CLERK’);

Range Conditions

5-12 Oracle9i SQL Reference

Moreover, if a NOT IN condition references a subquery that returns no rows at all,

then all rows will be returned, as shown in the following example:

SELECT ’True’ FROM employees
 WHERE department_id NOT IN (SELECT 0 FROM dual WHERE 1=2);

Restriction on LEVEL in WHERE Clauses In a [NOT] IN condition in a WHERE
clause, if the right-hand side of the condition is a subquery, you cannot use LEVEL
on the left-hand side of the condition. However, you can specify LEVEL in a

subquery of the FROM clause to achieve the same result. For example, the following

statement is not valid:

SELECT employee_id, last_name FROM employees
 WHERE (employee_id, LEVEL)
 IN (SELECT employee_id, 2 FROM employees)
 START WITH employee_id = 2
 CONNECT BY PRIOR employee_id = manager_id;

But the following statement is valid because it encapsulates the query containing

the LEVEL information in the FROM clause:

SELECT v.employee_id, v.last_name, v.lev
 FROM
 (SELECT employee_id, last_name, LEVEL lev
 FROM employees v
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id) v
 WHERE (v.employee_id, v.lev) IN
 (SELECT employee_id, 2 FROM employees);

Range Conditions
A range condition tests for inclusion in a range.

range_condition::=

Table 5–8 describes the range conditions.

expr
NOT

BETWEEN expr AND expr

EQUALS_PATH

Conditions 5-13

Null Conditions
A NULL condition tests for nulls.

null_condition::=

Table 5–9 lists the null conditions.

EQUALS_PATH
The EQUALS_PATH condition determines whether a resource in the Oracle XML

database can be found in the database at a specified path.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public

views provide a mechanism for SQL access to data stored in the XML database

repository. RESOURCE_VIEW contains one row for each resource in the repository,

and PATH_VIEW contains one row for each unique path in the repository.

equals_path::=

Table 5–8 Range Conditions

Type of
Condition Operation Example

[NOT]
BETWEEN x
AND y

[Not] greater than or equal to
x and less than or equal to y.

SELECT * FROM employees
 WHERE salary
 BETWEEN 2000 AND 3000;

Table 5–9 Null Conditions

Type of
Condition Operation Example

IS [NOT]
NULL

Tests for nulls. This is the
only condition that you
should use to test for nulls.

See Also: "Nulls" on
page 2-80

SELECT last_name
 FROM employees
 WHERE commission_pct
 IS NULL;

expr IS
NOT

NULL

EQUALS_PATH (column , path_string
, correlation_integer

)

EXISTS Conditions

5-14 Oracle9i SQL Reference

This condition applies only to the path as specified. It is similar to but more

restrictive than UNDER_PATH.

The optional correlation_number argument correlates the EQUALS_PATH
condition with its ancillary functions PATH and DEPTH.

Example
The view RESOURCE_VIEW computes the paths (in the any_path column) that

lead to all XML resources (in the res column) in the database repository. The

following example queries the RESOURCE_VIEW view to find the paths to the

resources in the sample schema oe . The EQUALS_PATH condition causes the query

to return only the specified path:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE EQUALS_PATH(res, ’/sys/schemas/OE/www.oracle.com’)=1;

ANY_PATH

/sys/schemas/OE/www.oracle.com

Compare this example with that for UNDER_PATH on page 5-20.

EXISTS Conditions
An EXISTS condition tests for existence of rows in a subquery.

exists_condition::=

Table 5–10 shows the EXISTS condition.

See Also: UNDER_PATH on page 5-20, DEPTH on page 6-57, and

PATH on page 6-115

EXISTS (subquery)

LIKE Conditions

Conditions 5-15

LIKE Conditions
The LIKE conditions specify a test involving pattern matching. Whereas the

equality operator (=) exactly matches one character value to another, the LIKE
conditions match a portion of one character value to another by searching the first

value for the pattern specified by the second. LIKE calculates strings using

characters as defined by the input character set. LIKEC uses Unicode complete

characters. LIKE2 uses UCS2 codepoints. LIKE4 uses USC4 codepoints.

like_condition::=

In this syntax:

■ char1 is a character expression, such as a character column, called the search
value.

■ char2 is a character expression, usually a literal, called the pattern.

■ esc_char is a character expression, usually a literal, called the escape
character.

If esc_char is not specified, then there is no default escape character. If any of

char1 , char2 , or esc_char is null, then the result is unknown. Otherwise, the

escape character, if specified, must be a character string of length 1.

Table 5–10 EXISTS Condition

Type of
Condition Operation Example

EXISTS TRUE if a subquery returns at
least one row.

SELECT department_id
 FROM departments d
 WHERE EXISTS
 (SELECT * FROM employees e
 WHERE d.department_id
 = e.department_id);

char1
NOT

LIKE

LIKEC

LIKE2

LIKE4

char2
ESCAPE esc_char

LIKE Conditions

5-16 Oracle9i SQL Reference

All of the character expressions (char1 , char2 , and esc_char) can be of any of

the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. If they differ, then Oracle

converts all of them to the datatype of char1 .

The pattern can contain the special pattern-matching characters:

■ % matches any string of any length (including length 0)

■ _ matches any single character.

To search for the characters % and _, precede them by the escape character. For

example, if the escape character is @, then you can use @% to search for %, and @_

to search for _.

To search for the escape character, repeat it. For example, if @ is the escape

character, then you can use @@ to search for @.

In the pattern, the escape character should be followed by one of %, _, or the escape

character itself.

Table 5–11 describes the LIKE conditions.

To process the LIKE conditions, Oracle divides the pattern into subpatterns

consisting of one or two characters each. The two-character subpatterns begin with

the escape character and the other character is %, or _, or the escape character.

Table 5–11 LIKE Conditions

Type of
Condition Operation Example

x [NOT]
LIKE y

[ESCAPE
’z’]

TRUE if x does [not] match
the pattern y. Within y, the
character "%" matches any
string of zero or more
characters except null. The
character "_" matches any
single character. Any
character can follow ESCAPE
except percent (%) and
underbar (_). A wildcard
character is treated as a literal
if preceded by the character
designated as the escape
character.

SELECT last_name
 FROM employees
 WHERE last_name LIKE ’%A_B%’
ESCAPE ’\’;

LIKE Conditions

Conditions 5-17

Let P1, P2, ..., Pn be these subpatterns. The like condition is true if there is a way to

partition the search value into substrings S1, S2, ..., Sn so that for all i between 1 and

n:

■ If Pi is _, then Si is a single character.

■ If Pi is %, then Si is any string.

■ If Pi is two characters beginning with an escape character, then Si is the second

character of Pi.

■ Otherwise, Pi = Si.

With the LIKE conditions, you can compare a value to a pattern rather than to a

constant. The pattern must appear after the LIKE keyword. For example, you can

issue the following query to find the salaries of all employees with names beginning

with ’R’:

SELECT salary
 FROM employees
 WHERE last_name LIKE ’R%’;

The following query uses the = operator, rather than the LIKE condition, to find the

salaries of all employees with the name ’R%’:

SELECT salary
 FROM employees
 WHERE last_name = ’R%’;

The following query finds the salaries of all employees with the name ’SM%’.

Oracle interprets ’SM%’ as a text literal, rather than as a pattern, because it precedes

the LIKE keyword:

SELECT salary
 FROM employees
 WHERE ’SM%’ LIKE last_name;

Patterns typically use special characters that Oracle matches with different

characters in the value:

■ An underscore (_) in the pattern matches exactly one character (as opposed to

one byte in a multibyte character set) in the value.

■ A percent sign (%) in the pattern can match zero or more characters (as opposed

to bytes in a multibyte character set) in the value. The pattern ’%’ cannot match

a null.

LIKE Conditions

5-18 Oracle9i SQL Reference

Case Sensitivity
Case is significant in all conditions comparing character expressions including the

LIKE condition and the equality (=) operators. You can use the UPPER function to

perform a case-insensitive match, as in this condition:

UPPER(last_name) LIKE ’SM%’

Pattern Matching on Indexed Columns
When you use LIKE to search an indexed column for a pattern, Oracle can use the

index to improve the statement’s performance if the leading character in the pattern

is not "%" or "_". In this case, Oracle can scan the index by this leading character. If

the first character in the pattern is "%" or "_", then the index cannot improve the

query’s performance because Oracle cannot scan the index.

General Examples
This condition is true for all last_name values beginning with "Ma":

last_name LIKE ’Ma%’

All of these last_name values make the condition true:

Mallin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so last_name values beginning with "MA", "ma", and "mA"

make the condition false.

Consider this condition:

last_name LIKE ’SMITH_’

This condition is true for these last_name values:

SMITHE, SMITHY, SMITHS

This condition is false for ’SMITH’, since the special character "_" must match

exactly one character of the lastname value.

ESCAPE Clause Example
You can include the actual characters "%" or "_" in the pattern by using the ESCAPE
clause, which identifies the escape character. If the escape character appears in the

pattern before the character "%" or "_" then Oracle interprets this character literally

in the pattern, rather than as a special pattern matching character.

To search for employees with the pattern ’A_B’ in their name:

IS OF type Conditions

Conditions 5-19

SELECT last_name
 FROM employees
 WHERE last_name LIKE ’%A_B%’ ESCAPE ’\’;

The ESCAPE clause identifies the backslash (\) as the escape character. In the

pattern, the escape character precedes the underscore (_). This causes Oracle to

interpret the underscore literally, rather than as a special pattern matching

character.

Patterns Without % Example
If a pattern does not contain the "%" character, then the condition can be true only if

both operands have the same length. Consider the definition of this table and the

values inserted into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));
INSERT INTO ducks VALUES (’DUCK’, ’DUCK’);
SELECT ’*’||f||’*’ "char",
 ’*’||v||’*’ "varchar"
 FROM ducks;

char varchar
-------- --------
*DUCK * *DUCK*

Because Oracle blank-pads CHAR values, the value of f is blank-padded to 6 bytes.

v is not blank-padded and has length 4.

IS OF type Conditions
Use the IS OF type condition to test object instances based on their specific type

information.

is_of_type_condition::=

You must have EXECUTE privilege on all types referenced by type , and all type s

must belong to the same type family.

expr IS
NOT

OF
TYPE

(
ONLY schema .

type

,

)

UNDER_PATH

5-20 Oracle9i SQL Reference

This condition evaluates to null if expr is null. If expr is not null, then the

condition evaluates to true (or false if you specify the NOT keyword) under either of

these circumstances:

■ The most specific type of expr is the subtype of one of the types specified in the

type list and you have not specified ONLY for the type, or

■ The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation

variable.

The following example uses the sample table oe.persons , which is built on a type

hierarchy in "Substitutable Table and Column Examples" on page 15-67. The

example uses the IS OF type condition to restrict the query to specific subtypes:

SELECT * FROM persons p
 WHERE VALUE(p) IS OF TYPE (employee_t);

NAME SSN

Joe 32456
Tim 5678

SELECT * FROM persons p
 WHERE VALUE(p) IS OF (ONLY part_time_emp_t);

NAME SSN

Tim 5678

UNDER_PATH
The UNDER_PATH condition determines whether resources specified in a column

can be found under a particular path specified by path_string in the Oracle XML

database repository. The path information is computed by the RESOURCE_VIEW
view, which you query to use this condition.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public

views provide a mechanism for SQL access to data stored in the XML database

repository. RESOURCE_VIEW contains one row for each resource in the repository,

and PATH_VIEW contains one row for each unique path in the repository.

Compound Conditions

Conditions 5-21

under_path::=

The optional levels argument indicates the number of levels down from path_
string Oracle should search. Oracle treats values less than 0 as 0.

The optional correlation_integer argument correlates the UNDER_PATH
condition with its ancillary functions PATH and DEPTH.

Example
The view RESOURCE_VIEW computes the paths (in the any_path column) that

lead to all XML resources (in the res column) in the database repository. The

following example queries the RESOURCE_VIEW view to find the paths to the

resources in the sample schema oe . The query returns the path of the XML schema

that was created in "XMLType Table Examples" on page 15-71:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, ’/sys/schemas/OE/www.oracle.com’)=1;

ANY_PATH
--
/sys/schemas/OE/www.oracle.com/xwarehouses.xsd

Compound Conditions
A compound condition specifies a combination of other conditions.

compound_condition::=

See Also:

■ The related condition EQUALS_PATH on page 5-13

■ The ancillary functions DEPTH on page 6-57 and PATH on

page 6-115

UNDER_PATH (column
, levels

, path_string
, correlation_integer

)

(condition)

NOT condition

condition
AND

OR
condition

Compound Conditions

5-22 Oracle9i SQL Reference

See Also: "Logical Conditions" on page 5-8 for more information

about NOT, AND, and OR conditions

Functions 6-1

6
Functions

Functions are similar to operators in that they manipulate data items and return a

result. Functions differ from operators in the format of their arguments. This format

enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

This chapter contains these sections:

■ SQL Functions

■ User-Defined Functions

SQL Functions

6-2 Oracle9i SQL Reference

SQL Functions
SQL functions are built into Oracle and are available for use in various appropriate

SQL statements. Do not confuse SQL functions with user functions written in

PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype

expected by the SQL function, then Oracle implicitly converts the argument to the

expected datatype before performing the SQL function. If you call a SQL function

with a null argument, then the SQL function automatically returns null. The only

SQL functions that do not necessarily follow this behavior are CONCAT, NVL, and

REPLACE.

In the syntax diagrams for SQL functions, arguments are indicated by their

datatypes. When the parameter "function" appears in SQL syntax, replace it with

one of the functions described in this section. Functions are grouped by the

datatypes of their arguments and their return values.

The syntax showing the categories of functions follows:

Note: When you apply SQL functions to LOB columns, Oracle

creates temporary LOBs during SQL and PL/SQL processing. You

should ensure that temporary tablespace quota is sufficient for

storing these temporary LOBs for your application.

See Also:

■ "User-Defined Functions" on page 6-222 for information on user

functions

■ Oracle Text Reference for information on functions used with

Oracle Text

■ "Data Conversion" on page 2-48 for implicit conversion of

datatypes

SQL Functions

Functions 6-3

function::=

single_row_function::=

The sections that follow list the built-in SQL functions in each of the groups

illustrated in the preceding diagrams except user-defined functions. All of the

built-in SQL functions are then described in alphabetical order. User-defined

functions are described at the end of this chapter.

Single-Row Functions
Single-row functions return a single result row for every row of a queried table or

view. These functions can appear in select lists, WHERE clauses, START WITH and

CONNECT BY clauses, and HAVING clauses.

Number Functions
Number functions accept numeric input and return numeric values. Most of these

functions return values that are accurate to 38 decimal digits. The transcendental

functions COS, COSH, EXP, LN, LOG, SIN , SINH, SQRT, TAN, and TANHare accurate to

36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and ATAN2 are

accurate to 30 decimal digits. The number functions are:

ABS
ACOS
ASIN

single_row_function

aggregate_function

analytic_function

object_reference_function

user_defined_function

number_function

character_function

datetime_function

conversion_function

miscellaneous_single_row_function

SQL Functions

6-4 Oracle9i SQL Reference

ATAN
ATAN2
BITAND
CEIL
COS
COSH
EXP
FLOOR
LN
LOG
MOD
POWER
ROUND (number)
SIGN
SIN
SINH
SQRT
TAN
TANH
TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values
Character functions that return character values return values of the same datatype

as the input argument.

■ Functions that return CHAR values are limited in length to 2000 bytes.

■ Functions that return VARCHAR2 values are limited in length to 4000 bytes.

For both of these types of functions, if the length of the return value exceeds the

limit, then Oracle truncates it and returns the result without an error message.

■ Functions that return CLOB values are limited to 4 GB.

For CLOB functions, if the length of the return values exceeds the limit, then

Oracle raises an error and returns no data.

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER

SQL Functions

Functions 6-5

LPAD
LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT
TRIM
UPPER

Character Functions Returning Number Values
Character functions that return number values can take as their argument any

character datatype.

The character functions that return number values are:

ASCII
INSTR
LENGTH

Datetime Functions
Datetime functions operate on values of the DATE datatype. All datetime functions

return a datetime or interval value of DATE datatype, except the MONTHS_BETWEEN
function, which returns a number. The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ
LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME

SQL Functions

6-6 Oracle9i SQL Reference

NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

Conversion Functions
Conversion functions convert a value from one datatype to another. Generally, the

form of the function names follows the convention datatype TOdatatype . The

first datatype is the input datatype. The second datatype is the output datatype. The

SQL conversion functions are:

ASCIISTR
BIN_TO_NUM
CAST
CHARTOROWID
COMPOSE
CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB
TO_DATE
TO_DSINTERVAL

SQL Functions

Functions 6-7

TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_SINGLE_BYTE
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Miscellaneous Single-Row Functions
The following single-row functions do not fall into any of the other single-row

function categories:

BFILENAME
COALESCE
DECODE
DEPTH
DUMP
EMPTY_BLOB, EMPTY_CLOB
EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
GREATEST
LEAST
NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME
NULLIF
NVL
NVL2
PATH
SYS_CONNECT_BY_PATH
SYS_CONTEXT
SYS_DBURIGEN
SYS_EXTRACT_UTC
SYS_GUID
SYS_TYPEID
SYS_XMLAGG

SQL Functions

6-8 Oracle9i SQL Reference

SYS_XMLGEN
UID
UPDATEXML
USER
USERENV
VSIZE
XMLAGG
XMLCOLATTVAL
XMLCONCAT
XMLFOREST
XMLSEQUENCE
XMLTRANSFORM

Aggregate Functions
Aggregate functions return a single result row based on groups of rows, rather than

on single rows. Aggregate functions can appear in select lists and in ORDER BY and

HAVING clauses. They are commonly used with the GROUP BY clause in a SELECT
statement, where Oracle divides the rows of a queried table or view into groups. In

a query containing a GROUP BY clause, the elements of the select list can be

aggregate functions, GROUP BY expressions, constants, or expressions involving one

of these. Oracle applies the aggregate functions to each group of rows and returns a

single result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the

select list to all the rows in the queried table or view. You use aggregate functions in

the HAVING clause to eliminate groups from the output based on the results of the

aggregate functions, rather than on the values of the individual rows of the queried

table or view.

Many (but not all) aggregate functions that take a single argument accept these

clauses:

■ DISTINCT causes an aggregate function to consider only distinct values of the

argument expression.

■ ALL causes an aggregate function to consider all values, including all

duplicates.

See Also: "Using the GROUP BY Clause: Examples" on

page 18-30 and the "HAVING Clause" on page 18-23 for more

information on the GROUP BYclause and HAVINGclauses in queries

and subqueries

SQL Functions

Functions 6-9

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If

you specify neither, then the default is ALL.

All aggregate functions except COUNT(*) and GROUPING ignore nulls. You can use

the NVLfunction in the argument to an aggregate function to substitute a value for a

null. COUNT never returns null, but returns either a number or zero. For all the

remaining aggregate functions, if the data set contains no rows, or contains only

rows with nulls as arguments to the aggregate function, then the function returns

null.

You can nest aggregate functions. For example, the following example calculates the

average of the maximum salaries of all the departments in the sample schema hr :

SELECT AVG(MAX(salary)) FROM employees GROUP BY department_id;

AVG(MAX(SALARY))

 10925

This calculation evaluates the inner aggregate (MAX(salary)) for each group

defined by the GROUP BY clause (department_id), and aggregates the results

again.

The aggregate functions are:

AVG
CORR
COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST
GROUP_ID
GROUPING
GROUPING_ID
LAST
MAX
MIN
PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK
RANK
REGR_ (Linear Regression) Functions

SQL Functions

6-10 Oracle9i SQL Reference

STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP
VARIANCE

Analytic Functions
Analytic functions compute an aggregate value based on a group of rows. They

differ from aggregate functions in that they return multiple rows for each group.

The group of rows is called a window and is defined by the analytic clause. For

each row, a "sliding" window of rows is defined. The window determines the range

of rows used to perform the calculations for the "current row". Window sizes can be

based on either a physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the

final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are

completed before the analytic functions are processed. Therefore, analytic functions

can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered,

and reporting aggregates.

analytic_function::=

analytic_clause::=

query_partition_clause ::=

analytic_function (
arguments

) OVER (analytic_clause)

query_partition_clause order_by_clause
windowing_clause

PARTITION BY value_expr

,

SQL Functions

Functions 6-11

order_by_clause ::=

windowing_clause ::=

The semantics of this syntax are discussed in the sections that follow.

analytic_function
Specify the name of an analytic function (see the listing of analytic functions

following this discussion of semantics).

arguments
Analytic functions take 0 to 3 arguments.

analytic_clause
Use OVERanalytic_clause to indicate that the function operates on a query

result set. That is, it is computed after the FROM, WHERE, GROUP BY, and HAVING
clauses. You can specify analytic functions with this clause in the select list or

ORDER BY clause. To filter the results of a query based on an analytic function, nest

these functions within the parent query, and then filter the results of the nested

subquery.

ORDER
SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

ROWS

RANGE

BETWEEN

UNBOUNDED PRECEDING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

AND

UNBOUNDED FOLLOWING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

UNBOUNDED PRECEDING

CURRENT ROW

value_expr PRECEDING

SQL Functions

6-12 Oracle9i SQL Reference

query_partition_clause
Use the PARTITION BY clause to partition the query result set into groups based on

one or more value_expr . If you omit this clause, then the function treats all rows

of the query result set as a single group.

You can specify multiple analytic functions in the same query, each with the same or

different PARTITION BY keys.

Valid values of value_expr are constants, columns, nonanalytic functions,

function expressions, or expressions involving any of these.

order_by_clause
Use the order_by_clause to specify how data is ordered within a partition. For

all analytic functions except PERCENTILE_CONT and PERCENTILE_DISC (which

take only a single key), you can order the values in a partition on multiple keys,

each defined by a value_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is

especially useful when using functions that rank values, because the second

expression can resolve ties between identical values for the first expression.

Notes:

■ You cannot specify any analytic function in any part of the

analytic_clause . That is, you cannot nest analytic

functions. However, you can specify an analytic function in a

subquery and compute another analytic function over it.

■ You can specify OVERanalytic_clause with user-defined

analytic functions as well as built-in analytic functions. See

CREATE FUNCTION on page 13-52.

Note: If the objects being queried have the parallel attribute, and

if you specify an analytic function with the query_partition_
clause , then the function computations are parallelized as well.

SQL Functions

Functions 6-13

Restriction on the ORDER BY Clause When used in an analytic function, the

order_by_clause must take an expression (expr). The SIBLINGS keyword is

not valid (it is relevant only in hierarchical queries). Position (position) and

column aliases (c_alias) are invalid. Otherwise this order_by_clause is the

same as that used to order the overall query or subquery.

ASC | DESC Specify the ordering sequence (ascending or descending). ASC is the

default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls

should appear first or last in the ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for

descending order.

windowing_clause
Some analytic functions allow the windowing_clause . In the listing of analytic

functions at the end of this section, the functions that allow the windowing_
clause are followed by an asterisk (*).

ROWS | RANGE These keywords define for each row a "window" (a physical or

logical set of rows) used for calculating the function result. The function is then

applied to all the rows in the window. The window "slides" through the query result

set or partition from top to bottom.

Note: Whenever the order_by_clause results in identical

values for multiple rows, the function returns the same result for

each of those rows. Please refer to the analytic example for SUM on

page 6-154 for an illustration of this behavior.

Note: Analytic functions always operate on rows in the order

specified in the order_by_clause of the function. However, the

order_by_clause of the function does not guarantee the order of

the result. Use the order_by_clause of the query to guarantee

the final result ordering.

See Also: order_by_clause of SELECT on page 18-25 for more

information on this clause

SQL Functions

6-14 Oracle9i SQL Reference

■ ROWS specifies the window in physical units (rows).

■ RANGE specifies the window as a logical offset.

You cannot specify this clause unless you have specified the order_by_clause .

BETWEEN ... AND Use the BETWEEN ... AND clause to specify a start point and end

point for the window. The first expression (before AND) defines the start point and

the second expression (after AND) defines the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the

start point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDING to indicate that the

window starts at the first row of the partition. This is the start point specification

and cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOWING to indicate that the

window ends at the last row of the partition. This is the end point specification and

cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT ROW specifies that the window begins

at the current row or value (depending on whether you have specified ROW or

RANGE, respectively). In this case the end point cannot be value_expr
PRECEDING.

As an end point, CURRENT ROWspecifies that the window ends at the current row or

value (depending on whether you have specified ROW or RANGE, respectively). In

this case the start point cannot be value_expr FOLLOWING.

value_expr PRECEDING or value_expr FOLLOWING For RANGE or ROW:

■ If value_expr FOLLOWING is the start point, then the end point must be

value_expr FOLLOWING.

Note: The value returned by an analytic function with a logical

offset is always deterministic. However, the value returned by an

analytic function with a physical offset may produce

nondeterministic results unless the ordering expression results in a

unique ordering. You may have to specify multiple columns in the

order_by_clause to achieve this unique ordering.

SQL Functions

Functions 6-15

■ If value_expr PRECEDING is the end point, then the start point must be

value_expr PRECEDING.

If you are defining a logical window defined by an interval of time in numeric

format, then you may need to use conversion functions.

If you specified ROWS:

■ value_expr is a physical offset. It must be a constant or expression and must

evaluate to a positive numeric value.

■ If value_expr is part of the start point, then it must evaluate to a row before

the end point.

If you specified RANGE:

■ value_expr is a logical offset. It must be a constant or expression that

evaluates to a positive numeric value or an interval literal.

■ You can specify only one expression in the order_by_clause

■ If value_expr evaluates to a numeric value, then the ORDER BYexpr must be

a NUMBER or DATE datatype.

■ If value_expr evaluates to an interval value, then the ORDER BYexpr must be

a DATE datatype.

If you omit the windowing_clause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW.

Analytic functions are commonly used in data warehousing environments. The

analytic functions follow. Functions followed by an asterisk (*) allow the full syntax,

including the windowing_clause .

AVG *
CORR *
COVAR_POP *
COVAR_SAMP *
COUNT *

See Also: NUMTOYMINTERVAL on page 6-112 and

NUMTODSINTERVAL on page 6-111 for information on converting

numeric times into intervals

See Also: "Literals" on page 2-53 for information on interval

literals

SQL Functions

6-16 Oracle9i SQL Reference

CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE *
LAG
LAST
LAST_VALUE *
LEAD
MAX *
MIN *
NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
STDDEV_SAMP *
SUM *
VAR_POP *
VAR_SAMP *
VARIANCE *

Object Reference Functions
Object reference functions manipulate REFs, which are references to objects of

specified object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also: Oracle9i Data Warehousing Guide for more information

on these functions, and for scenarios illustrating their use

See Also: Oracle9i Database Concepts and Oracle9i Application
Developer’s Guide - Fundamentals for more information about REFs

ACOS

Functions 6-17

Alphabetical Listing of SQL Functions

ABS

Syntax
abs::=

Purpose
ABS returns the absolute value of n.

Examples
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute" FROM DUAL;

 Absolute

 15

ACOS

Syntax
acos::=

Purpose
ACOSreturns the arc cosine of n. The argument n must be in the range of -1 to 1, and

the function returns values in the range of 0 to π, expressed in radians.

Examples
The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

ABS (n)

ACOS (n)

ADD_MONTHS

6-18 Oracle9i SQL Reference

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax
add_months::=

Purpose
ADD_MONTHS returns the date d plus n months. The argument n can be any integer.

If d is the last day of the month or if the resulting month has fewer days than the

day component of d, then the result is the last day of the resulting month.

Otherwise, the result has the same day component as d.

Examples
The following example returns the month after the hire_date in the sample table

employees :

SELECT TO_CHAR(
 ADD_MONTHS(hire_date,1),
 ’DD-MON-YYYY’) "Next month"
 FROM employees
 WHERE last_name = ’Baer’;

Next Month

07-JUL-1994

ASCII

Syntax
ascii::=

ADD_MONTHS (d , n)

ASCII (char)

ASCIISTR

Functions 6-19

Purpose
ASCII returns the decimal representation in the database character set of the first

character of char .

char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value

returned is of datatype NUMBER. If your database character set is 7-bit ASCII, then

this function returns an ASCII value. If your database character set is EBCDIC

Code, then this function returns an EBCDIC value. There is no corresponding

EBCDIC character function.

Examples
The following example returns the ASCII decimal equivalent of the letter Q:

SELECT ASCII(’Q’) FROM DUAL;

ASCII(’Q’)

 81

ASCIISTR

Syntax
asciistr::=

Purpose
ASCIISTR takes as its argument a string in any character set and returns an ASCII

string in the database character set. The value returned contains only characters that

appear in SQL, plus the forward slash (/). Non-ASCII characters are converted to

their Unicode (UTF-16) binary code value.

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

ASCIISTR (’ string ’)

ASIN

6-20 Oracle9i SQL Reference

Examples
The following example returns the ASCII string equivalent of the text string

"ABÄCDE":

SELECT ASCIISTR(’ABÄCDE’) FROM DUAL;

ASCIIS

ABDCDE

ASIN

Syntax
asin::=

Purpose
ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and

the function returns values in the range of -π/2 to π/2 and are expressed in radians.

Examples
The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

 Arc_Sine

.304692654

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode character sets and character semantics

ASIN (n)

ATAN2

Functions 6-21

ATAN

Syntax
atan::=

Purpose
ATAN returns the arc tangent of n. The argument n can be in an unbounded range,

and the function returns values in the range of -π/2 to π/2 and are expressed in

radians.

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

ATAN2

Syntax
atan2::=

Purpose
ATAN2 returns the arc tangent of n and m. The argument n can be in an unbounded

range, and the function returns values in the range of -π to π, depending on the

signs of n and m, and are expressed in radians. ATAN2(n,m) is the same as

ATAN2(n/m)

Examples
The following example returns the arc tangent of .3 and .2:

ATAN (n)

ATAN2 (n
,

/
m)

AVG

6-22 Oracle9i SQL Reference

SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

 .982793723

AVG

Syntax
avg::=

Purpose
AVG returns average value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Example
The following example calculates the average salary of all employees in the

hr.employees table:

SELECT AVG(salary) "Average" FROM employees;

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

AVG (

DISTINCT

ALL
expr)

OVER (analytic_clause)

BFILENAME

Functions 6-23

 Average

 6425

Analytic Example
The following example calculates, for each employee in the employees table, the

average salary of the employees reporting to the same manager who were hired in

the range just before through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
 AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
 FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
---------- ------------------------- --------- ---------- ----------
 100 Kochhar 21-SEP-89 17000 17000
 100 De Haan 13-JAN-93 17000 15000
 100 Raphaely 07-DEC-94 11000 11966.6667
 100 Kaufling 01-MAY-95 7900 10633.3333
 100 Hartstein 17-FEB-96 13000 9633.33333
 100 Weiss 18-JUL-96 8000 11666.6667
 100 Russell 01-OCT-96 14000 11833.3333
.
.
.

BFILENAME

Syntax
bfilename::=

Purpose
BFILENAME returns a BFILE locator that is associated with a physical LOB binary

file on the server’s file system.

■ ’directory ’ is a database object that serves as an alias for a full path name on

the server’s file system where the files are actually located

■ ’filename ’ is the name of the file in the server’s file system

BFILENAME (’ directory ’ , ’ filename ’)

BFILENAME

6-24 Oracle9i SQL Reference

You must create the directory object and associate a BFILE value with a physical

file before you can use them as arguments to BFILENAME in a SQL or PL/SQL

statement, DBMS_LOB package, or OCI operation.

You can use this function in two ways:

■ In a DML statement to initialize a BFILE column

■ In a programmatic interface to access BFILE data by assigning a value to the

BFILE locator.

The directory argument is case sensitive. That is, you must ensure that you specify

the directory object name exactly as it exists in the data dictionary. For example, if

an "Admin" directory object was created using mixed case and a quoted identifier in

the CREATE DIRECTORY statement, then when using the BFILENAME function you

must refer to the directory object as ’Admin’. You must specify the filename

argument according to the case and punctuation conventions for your operating

system.

Examples
The following example inserts a row into the sample table pm.print_media . The

example uses the BFILENAME function to identify a binary file on the server’s file

system:

CREATE DIRECTORY media_dir AS ’/demo/schema/product_media’;

INSERT INTO print_media (product_id, ad_id, ad_graphic)
 VALUES (3000, 31001,
 bfilename(’MEDIA_DIR’, ’modem_comp_ad.gif’));

See Also:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) and

Oracle Call Interface Programmer’s Guide for more information on

LOBs and for examples of retrieving BFILE data

■ CREATE DIRECTORY on page 13-49

BITAND

Functions 6-25

BIN_TO_NUM

Syntax
bin_to_num::=

Purpose
BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this

function represents a bit in the bit vector. Each expr must evaluate to 0 or 1. This

function returns Oracle NUMBER.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of

interest from a materialized view using grouping sets.

Examples
The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0) FROM DUAL;

BIN_TO_NUM(1,0,1,0)

 10

BITAND

Syntax
bitand::=

See Also:

■ group_by_clause on page 18-21 for information on

GROUPING SETS syntax

■ Oracle9i Data Warehousing Guide for information on data

aggregation in general

BIN_TO_NUM (expr

,

)

BITAND (argument1 , argument2)

BITAND

6-26 Oracle9i SQL Reference

Purpose
BITAND computes an AND operation on the bits of argument1 and argument2 ,

both of which must resolve to nonnegative integers, and returns an integer. This

function is commonly used with the DECODE function, as illustrated in the example

that follows.

Examples
The following represents each order_status in the sample table oe.orders by

individual bits. (The example specifies options that can total only 7, so rows with

order_status greater than 7 are eliminated.)

SELECT order_id, customer_id,
 DECODE(BITAND(order_status, 1), 1, 'Warehouse', 'PostOffice')
 Location,
 DECODE(BITAND(order_status, 2), 2, 'Ground', 'Air') Method,
 DECODE(BITAND(order_status, 4), 4, 'Insured', 'Certified') Receipt
 FROM orders
 WHERE order_status < 8;

 ORDER_ID CUSTOMER_ID LOCATION MET RECEIPT
---------- ----------- ---------- --- ---------
 2458 101 Postoffice Air Certified
 2397 102 Warehouse Air Certified
 2454 103 Warehouse Air Certified
 2354 104 Postoffice Air Certified
 2358 105 Postoffice G Certified
 2381 106 Warehouse G Certified
 2440 107 Warehouse G Certified
 2357 108 Warehouse Air Insured
 2394 109 Warehouse Air Insured
 2435 144 Postoffice G Insured
 2455 145 Warehouse G Insured
.
.
.

Note: This function does not determine the datatype of the value

returned. Therefore, in SQL*Plus, you must specify BITAND in a

wrapper, such as TO_NUMBER, which returns a datatype.

CAST

Functions 6-27

CAST

Syntax
cast::=

Purpose
CAST converts one built-in datatype or collection-typed value into another built-in

datatype or collection-typed value.

CAST lets you convert built-in datatypes or collection-typed values of one type into

another built-in datatype or collection type. You can cast an unnamed operand

(such as a date or the result set of a subquery) or a named collection (such as a

varray or a nested table) into a type-compatible datatype or named collection. The

type_name must be the name of a built-in datatype or collection type and the

operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype or a collection type, and

subquery must return a single value of collection type or built-in type. MULTISET
informs Oracle to take the result set of the subquery and return a collection value.

Table 6–1 shows which built-in datatypes can be cast into which other built-in

datatypes. (CAST does not support LONG, LONG RAW, any of the LOB datatypes, or

the Oracle-supplied types.)

Table 6–1 Casting Built-In Datatypes

from
CHAR,

VARCHAR2
from

NUMBER

from
DATETIME /
INTERVALb

from
RAW

from
ROWID,
UROWID

from
NCHAR,

NVARCHAR2

to CHAR,
VARCHAR2

X X X X X —

to NUMBER X X — — — —

a You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of an
index-organized table.

b Datetime/Interval includes DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, INTERVAL DAY TO
SECOND, and INTERVAL YEAR TO MONTH,

CAST (

expr

(subquery)

MULTISET (subquery)

AS type_name)

CAST

6-28 Oracle9i SQL Reference

If you want to cast a named collection type into another named collection type, then

the elements of both collections must be of the same type.

If the result set of subquery can evaluate to multiple rows, then you must specify

the MULTISET keyword. The rows resulting from the subquery form the elements

of the collection value into which they are cast. Without the MULTISET keyword,

the subquery is treated as a scalar subquery.

Built-In Datatype Examples
The following examples use the CAST function with scalar datatypes:

SELECT CAST(’22-OCT-1997’ AS TIMESTAMP WITH LOCAL TIME ZONE)
 FROM dual;

SELECT product_id,
 CAST(ad_sourcetext AS VARCHAR2(30))
 FROM print_media;

Collection Examples
The CAST examples that follow build on the cust_address_typ found in the

sample order entry schema, oe .

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
/
CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/

to DATE,
TIMESTAMP,
INTERVAL

X — X — — —

to RAW X — — X — —

to ROWID,
UROWID

X — — — Xa —

to NCHAR,
NVARCHAR2

— X X X X X

Table 6–1 (Cont.) Casting Built-In Datatypes

from
CHAR,

VARCHAR2
from

NUMBER

from
DATETIME /
INTERVALb

from
RAW

from
ROWID,
UROWID

from
NCHAR,

NVARCHAR2

a You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of an
index-organized table.

b Datetime/Interval includes DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, INTERVAL DAY TO
SECOND, and INTERVAL YEAR TO MONTH,

CAST

Functions 6-29

CREATE TABLE cust_address (
 custno NUMBER,
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2(31));

CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custno, s.name,
 CAST(MULTISET(SELECT ca.street_address,
 ca.postal_code,
 ca.city,
 ca.state_province,
 ca.country_id
 FROM cust_address ca
 WHERE s.custno = ca.custno)
 AS address_book_t)
FROM cust_short s;

CAST converts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
 FROM states s
 WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
 (employee_id NUMBER, project_name VARCHAR2(10));

CREATE TABLE emps_short
 (employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
 /
The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
 CAST(MULTISET(SELECT p.project_name
 FROM projects p

CEIL

6-30 Oracle9i SQL Reference

 WHERE p.employee_id = e.employee_id
 ORDER BY p.project_name)
 AS project_table_typ)
FROM emps_short e;

CEIL

Syntax
ceil::=

Purpose
CEIL returns smallest integer greater than or equal to n.

Examples
The following example returns the smallest integer greater than or equal to 15.7:

SELECT CEIL(15.7) "Ceiling" FROM DUAL;

 Ceiling

 16

CHARTOROWID

Syntax
chartorowid::=

Purpose
CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to ROWID datatype.

CEIL (n)

CHARTOROWID (char)

CHR

Functions 6-31

Examples
The following example converts a character rowid representation to a rowid. (The

function will return a different rowid on different databases).

SELECT last_name FROM employees
 WHERE ROWID = CHARTOROWID('AAAFd1AAFAAAABSAA/');

LAST_NAME

Greene

CHR

Syntax
chr::=

Purpose
CHR returns the character having the binary equivalent to n in either the database

character set or the national character set.

If USING NCHAR_CS is not specified, then this function returns the character having

the binary equivalent to n as a VARCHAR2 value in the database character set.

If USING NCHAR_CS is specified, then this function returns the character having the

binary equivalent to n as a NVARCHAR2 value in the national character set.

For single-byte character sets, if n > 256, then Oracle returns the binary equivalent

of n mod 256. For multibyte character sets, n must resolve to one entire codepoint.

Invalid codepoints are not validated, and the result of specifying invalid codepoints

is indeterminate.

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

CHR (n
USING NCHAR_CS

)

CHR

6-32 Oracle9i SQL Reference

Examples
The following example is run on an ASCII-based machine with the database

character set defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the

WE8EBCDIC1047 character set, the preceding example would have to be modified

as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
 FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For

example, given a multibyte character whose hexadecimal value is a1a2 (a1
representing the first byte and a2 the second byte), you must specify for n the

decimal equivalent of ’a1a2 ’, or 41378. That is, you must specify:

SELECT CHR(41378) FROM DUAL;

You cannot specify the decimal equivalent of a1 concatenated with the decimal

equivalent of a2, as in the following example:

SELECT CHR(161)||CHR(162) FROM DUAL;

However, you can concatenate whole multibyte codepoints, as in the following

example, which concatenates the multibyte characters whose hexadecimal values

are a1a2 and a1a3 :

Note: Use of the CHRfunction (either with or without the optional

USING NCHAR_CS clause) results in code that is not portable

between ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 6-100

COALESCE

Functions 6-33

SELECT CHR(41378)||CHR(41379) FROM DUAL;

The following example uses the UTF8 character set:

SELECT CHR (50052 USING NCHAR_CS) FROM DUAL;

CH
--
Ä

COALESCE

Syntax
coalesce::=

Purpose
COALESCE returns the first non-null expr in the expression list. At least one expr

must not be the literal NULL. If all occurrences of expr evaluate to null, then the

function returns null.

This function is a generalization of the NVL function.

You can also use COALESCE as a variety of the CASE expression. For example,

COALESCE (expr1, expr2)

is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1 ELSE expr2 END

Similarly,

COALESCE (expr1, expr2, ..., expr n), for n>=3

is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1
 ELSE COALESCE (expr2, ..., expr n) END

COALESCE (expr

,

)

COMPOSE

6-34 Oracle9i SQL Reference

Examples
The following example uses the sample oe.product_information table to

organize a "clearance sale" of products. It gives a 10% discount to all products with

a list price. If there is no list price, then the sale price is the minimum price. If there

is no minimum price, then the sale price is "5":

SELECT product_id, list_price, min_price,
 COALESCE(0.9*list_price, min_price, 5) "Sale"
 FROM product_information
 WHERE supplier_id = 102050;

PRODUCT_ID LIST_PRICE MIN_PRICE Sale
---------- ---------- ---------- ----------
 2382 850 731 765
 3355 5
 1770 73 73
 2378 305 247 274.5
 1769 48 43.2

COMPOSE

Syntax
compose::=

Purpose
COMPOSE takes as its argument a string in any datatype, and returns a Unicode

string in its fully normalized form in the same character set as the input. string
can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or

NCLOB. For example, an "o" codepoint qualified by an umlaut codepoint will be

returned as the o-umlaut codepoint.

See Also: NVL on page 6-113 and "CASE Expressions" on

page 4-6

See Also: Oracle9i Database Concepts for information on Unicode

character sets and character semantics

COMPOSE (’ string ’)

CONCAT

Functions 6-35

Examples
The following example returns the o-umlaut codepoint:

SELECT COMPOSE (’o’ || UNISTR(’\0308’)) FROM DUAL;

CO
--
ö

CONCAT

Syntax
concat::=

Purpose
CONCAT returns char1 concatenated with char2 . Both char1 and char2 can be

any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The

string returned is in the same character set as char1 . Its datatype depends on the

datatypes of the arguments.

In concatenations of two different datatypes, Oracle returns the datatype that

results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the

returned value is a LOB. If one of the arguments is a national datatype, then the

returned value is a national datatype. For example:

■ CONCAT(CLOB, NCLOB) returns NCLOB

■ CONCAT(NCLOB, NCHAR) returns NCLOB

■ CONCAT(NCLOB, CHAR) returns NCLOB

■ CONCAT(NCHAR, CLOB) returns NCLOB

This function is equivalent to the concatenation operator (||).

See Also: UNISTR on page 6-196

See Also: "Concatenation Operator" on page 3-4 for information

on the CONCAT operator

CONCAT (char1 , char2)

CONVERT

6-36 Oracle9i SQL Reference

Examples
This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(last_name, '''s job category is '),
 job_id) "Job"
 FROM employees
 WHERE employee_id = 152;

Job
--
Hall's job category is SA_REP

CONVERT

Syntax
convert::=

Purpose
CONVERTconverts a character string from one character set to another. The datatype

of the returned value is VARCHAR2.

■ The char argument is the value to be converted. It can be any of the datatypes

CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

■ The dest_char_set argument is the name of the character set to which char
is converted.

■ The source_char_set argument is the name of the character set in which

char is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or

columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the

destination character set contains a representation of all the characters defined in

the source character set. Where a character does not exist in the destination

character set, a replacement character appears. Replacement characters can be

defined as part of a character set definition.

CONVERT (char , dest_char_set
, source_char_set

)

CORR

Functions 6-37

Examples
The following example illustrates character set conversion by converting a Latin-1

string to ASCII. The result is the same as importing the same string from a

WE8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT(’Ä Ê Í Õ Ø A B C D E ’, ’US7ASCII’, ’WE8ISO8859P1’)
 FROM DUAL;

CONVERT(’ÄÊÍÕØABCDE’

A E I ? ? A B C D E ?

Common character sets include:

■ US7ASCII: US 7-bit ASCII character set

■ WE8DEC: West European 8-bit character set

■ WE8HP: HP West European Laserjet 8-bit character set

■ F7DEC: DEC French 7-bit character set

■ WE8EBCDIC500: IBM West European EBCDIC Code Page 500

■ WE8PC850: IBM PC Code Page 850

■ WE8ISO8859P1: ISO 8859-1 West European 8-bit character set

CORR

Syntax
corr::=

Purpose
CORR returns the coefficient of correlation of a set of number pairs. You can use it as

an aggregate or analytic function.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

CORR (expr1 , expr2)
OVER (analytic_clause)

CORR

6-38 Oracle9i SQL Reference

Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) after eliminating the pairs for which either expr1 or expr2
is null. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty

set, then it returns null.

Aggregate Example
The following example calculates the coefficient of correlation between the list

prices and minimum prices of products by weight class in the sample view

oe.products :

SELECT weight_class, CORR(list_price, min_price)
 FROM product_information
 GROUP BY weight_class;

WEIGHT_CLASS CORR(LIST_PRICE,MIN_PRICE)
------------ --------------------------
 1 .99914795
 2 .999022941
 3 .998484472
 4 .999359909
 5 .999536087

Analytic Example
The following example returns the cumulative coefficient of correlation of monthly

sales revenues and monthly units sold from the sample tables sh.sales and

sh.times for year 1998:

SELECT t.calendar_month_number,
 CORR (SUM(s.amount_sold), SUM(s.quantity_sold))
 OVER (ORDER BY t.calendar_month_number) as CUM_CORR
 FROM sales s, times t
 WHERE s.time_id = t.time_id AND calendar_year = 1998
 GROUP BY t.calendar_month_number
 ORDER BY t.calendar_month_number;

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

COS

Functions 6-39

CALENDAR_MONTH_NUMBER CUM_CORR
--------------------- ----------
 1
 2 1
 3 .994309382
 4 .852040875
 5 .846652204
 6 .871250628
 7 .910029803
 8 .917556399
 9 .920154356
 10 .86720251
 11 .844864765
 12 .903542662

Correlation functions require more than one row on which to operate, so the first

row in the preceding example has no value calculated for it.

COS

Syntax
cos::=

Purpose
COS returns the cosine of n (an angle expressed in radians).

Examples
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180)
 "Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

 -1

COS (n)

COSH

6-40 Oracle9i SQL Reference

COSH

Syntax
cosh::=

Purpose
COSH returns the hyperbolic cosine of n.

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

 1

COUNT

Syntax
count::=

Purpose
COUNT returns the number of rows in the query. You can use it as an aggregate or

analytic function.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

COSH (n)

COUNT (

*

DISTINCT

ALL
expr

)
OVER (analytic_clause)

COUNT

Functions 6-41

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

If you specify expr , then COUNT returns the number of rows where expr is not

null. You can count either all rows, or only distinct values of expr .

If you specify the asterisk (*), then this function returns all rows, including

duplicates and nulls. COUNT never returns null.

Aggregate Examples
The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total" FROM employees;

 Total

 107

SELECT COUNT(*) "Allstars" FROM employees
 WHERE commission_pct > 0;

 Allstars

 35

SELECT COUNT(commission_pct) "Count" FROM employees;

 Count

 35

SELECT COUNT(DISTINCT manager_id) "Managers" FROM employees;

 Managers

 18

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

COVAR_POP

6-42 Oracle9i SQL Reference

Analytic Example
The following example calculates, for each employee in the employees table, the

moving count of employees earning salaries in the range $50 less than through $150

greater than the employee’s salary.

SELECT last_name, salary,
 COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
 AND 150 FOLLOWING) AS mov_count FROM employees;

LAST_NAME SALARY MOV_COUNT
------------------------- ---------- ----------
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Patel 2500 10
.
.
.

COVAR_POP

Syntax
covar_pop::=

Purpose
COVAR_POPreturns the population covariance of a set of number pairs. You can use

it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) pairs after eliminating all pairs for which either expr1 or

expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

COVAR_POP (expr1 , expr2)
OVER (analytic_clause)

COVAR_POP

Functions 6-43

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is

null.

The function returns a value of type NUMBER. If the function is applied to an empty

set, then it returns null.

Aggregate Example
The following example calculates the population covariance for the sales revenue

amount and the units sold for each year from the sample table sh.sales :

SELECT t.calendar_month_number,
 COVAR_POP(s.amount_sold, s.quantity_sold) AS covar_pop,
 COVAR_SAMP(s.amount_sold, s.quantity_sold) AS covar_samp
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.calendar_year = 1998
 GROUP BY t.calendar_month_number;

CALENDAR_MONTH_NUMBER COVAR_POP COVAR_SAMP
--------------------- ---------- ----------
 1 5437.68586 5437.88704
 2 5923.72544 5923.99139
 3 6040.11777 6040.38623
 4 5946.67897 5946.92754
 5 5986.22483 5986.4463
 6 5726.79371 5727.05703
 7 5491.65269 5491.9239
 8 5672.40362 5672.66882
 9 5741.53626 5741.80025
 10 5050.5683 5050.78195
 11 5256.50553 5256.69145
 12 5411.2053 5411.37709

Analytic Example
The following example calculates cumulative sample covariance of the list price and

minimum price of the products in the sample schema oe :

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

COVAR_SAMP

6-44 Oracle9i SQL Reference

SELECT product_id, supplier_id,
 COVAR_POP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVP,
 COVAR_SAMP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVS
 FROM product_information p
 WHERE category_id = 29
 ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
---------- ----------- ---------- ----------
 1774 103088 0
 1775 103087 1473.25 2946.5
 1794 103096 1702.77778 2554.16667
 1825 103093 1926.25 2568.33333
 2004 103086 1591.4 1989.25
 2005 103086 1512.5 1815
 2416 103088 1475.97959 1721.97619
.
.
.

COVAR_SAMP

Syntax
covar_samp::=

Purpose
COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it

as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the

set of (expr1 , expr2) pairs after eliminating all pairs for which either expr1 or

expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

COVAR_SAMP (expr1 , expr2)
OVER (analytic_clause)

COVAR_SAMP

Functions 6-45

where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is

null.

The function returns a value of type NUMBER. If the function is applied to an empty

set, then it returns null.

Aggregate Example
The following example calculates the population covariance for the sales revenue

amount and the units sold for each year from the sample table sh.sales :

SELECT t.calendar_month_number,
 COVAR_POP(s.amount_sold, s.quantity_sold) AS covar_pop,
 COVAR_SAMP(s.amount_sold, s.quantity_sold) AS covar_samp
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.calendar_year = 1998
 GROUP BY t.calendar_month_number;

CALENDAR_MONTH_NUMBER COVAR_POP COVAR_SAMP
--------------------- ---------- ----------
 1 5437.68586 5437.88704
 2 5923.72544 5923.99139
 3 6040.11777 6040.38623
 4 5946.67897 5946.92754
 5 5986.22483 5986.4463
 6 5726.79371 5727.05703
 7 5491.65269 5491.9239
 8 5672.40362 5672.66882
 9 5741.53626 5741.80025
 10 5050.5683 5050.78195
 11 5256.50553 5256.69145
 12 5411.2053 5411.37709

Analytic Example
The following example calculates cumulative sample covariance of the list price and

minimum price of the products in the sample schema oe :

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

COVAR_SAMP

6-46 Oracle9i SQL Reference

SELECT product_id, supplier_id,
 COVAR_POP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVP,
 COVAR_SAMP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVS
 FROM product_information p
 WHERE category_id = 29
 ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
---------- ----------- ---------- ----------
 1774 103088 0
 1775 103087 1473.25 2946.5
 1794 103096 1702.77778 2554.16667
 1825 103093 1926.25 2568.33333
 2004 103086 1591.4 1989.25
 2005 103086 1512.5 1815
 2416 103088 1475.97959 1721.97619
.
.
.

CUME_DIST

Functions 6-47

CUME_DIST

Aggregate Syntax
cume_dist_aggregate::=

Analytic Syntax
cume_dist_analytic::=

Purpose
CUME_DIST calculates the cumulative distribution of a value in a group of values.

The range of values returned by CUME_DIST is >0 to <=1. Tie values always

evaluate to the same cumulative distribution value.

■ As an aggregate function, CUME_DIST calculates, for a hypothetical row R

identified by the arguments of the function and a corresponding sort

specification, the relative position of row R among the rows in the aggregation

group. Oracle makes this calculation as if the hypothetical row R were inserted

into the group of rows to be aggregated over. The arguments of the function

identify a single hypothetical row within each aggregate group. Therefore, they

must all evaluate to constant expressions within each aggregate group. The

constant argument expressions and the expressions in the ORDER BY clause of

the aggregate match by position. Therefore, the number of arguments must be

the same and their types must be compatible.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

CUME_DIST (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

CUME_DIST () OVER (
query_partition_clause

order_by_clause)

CUME_DIST

6-48 Oracle9i SQL Reference

■ As an analytic function, CUME_DIST computes the relative position of a

specified value in a group of values. For a row R, assuming ascending ordering,

the CUME_DIST of R is the number of rows with values lower than or equal to

the value of R, divided by the number of rows being evaluated (the entire query

result set or a partition).

Aggregate Example
The following example calculates the cumulative distribution of a hypothetical

employee with a salary of $15,500 and commission rate of 5% among the employees

in the sample table oe.employees :

SELECT CUME_DIST(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Cume-Dist of 15500"
 FROM employees;

Cume-Dist of 15500

 .972222222

Analytic Example
The following example calculates the salary percentile for each employee in the

purchasing area. For example, 40% of clerks have salaries less than or equal to

Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
 OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
 FROM employees
 WHERE job_id LIKE ’PU%’;

JOB_ID LAST_NAME SALARY CUME_DIST
---------- ------------------------- ---------- ----------
PU_CLERK Colmenares 2500 .2
PU_CLERK Himuro 2600 .4
PU_CLERK Tobias 2800 .6
PU_CLERK Baida 2900 .8
PU_CLERK Khoo 3100 1
PU_MAN Raphaely 11000 1

CURRENT_DATE

Functions 6-49

CURRENT_DATE

Syntax
current_date::=

Purpose
CURRENT_DATE returns the current date in the session time zone, in a value in the

Gregorian calendar of datatype DATE.

Examples
The following example illustrates that CURRENT_DATE is sensitive to the session

time zone:

ALTER SESSION SET TIME_ZONE = ’-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT = ’DD-MON-YYYY HH24:MI:SS’;
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = ’-8:0’;
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-08:00 29-MAY-2000 10:14:33

CURRENT_DATE

CURRENT_TIMESTAMP

6-50 Oracle9i SQL Reference

CURRENT_TIMESTAMP

Syntax
current_timestamp::=

Purpose
CURRENT_TIMESTAMP returns the current date and time in the session time zone,

in a value of datatype TIMESTAMP WITH TIME ZONE. The time zone displacement

reflects the current local time of the SQL session. If you omit precision, then the

default is 6. The difference between this function and LOCALTIMESTAMP is that

CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME ZONE value while

LOCALTIMESTAMP returns a TIMESTAMP value.

In the optional argument, precision specifies the fractional second precision of

the time value returned.

Examples
The following example illustrates that CURRENT_TIMESTAMP is sensitive to the

session time zone:

ALTER SESSION SET TIME_ZONE = ’-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT = ’DD-MON-YYYY HH24:MI:SS’;
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- ---
-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = ’-8:0’;
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- --
-08:00 04-APR-00 10.18.21.366065 AM -08:00

If you use the CURRENT_TIMESTAMP with a format mask, take care that the format

mask matches the value returned by the function. For example, consider the

following table:

CURRENT_TIMESTAMP
(precision)

DBTIMEZONE

Functions 6-51

CREATE TABLE current_test (col1 TIMESTAMP WITH TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE
portion of the type returned by the function:

INSERT INTO current_test VALUES
 (TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, ’DD-MON-RR HH.MI.SSXFF PM’));

The following statement uses the correct format mask to match the return type of

CURRENT_TIMESTAMP:

INSERT INTO current_test VALUES (TO_TIMESTAMP_TZ
 (CURRENT_TIMESTAMP, ’DD-MON-RR HH.MI.SSXFF PM TZH:TZM’));

DBTIMEZONE

Syntax
dbtimezone::=

Purpose
DBTIMEZONE returns the value of the database time zone. The return type is a time

zone offset (a character type in the format ’[+|-]TZH:TZM’) or a time zone region

name, depending on how the user specified the database time zone value in the

most recent CREATE DATABASE or ALTER DATABASE statement.

Examples
The following example assumes that the database time zone is set to UTC time

zone:

SELECT DBTIMEZONE FROM DUAL;

DBTIME

-08:00

DBTIMEZONE

DECODE

6-52 Oracle9i SQL Reference

DECODE

Syntax
decode::=

Purpose
DECODE compares expr to each search value one by one. If expr is equal to a

search , then Oracle returns the corresponding result . If no match is found, then

Oracle returns default . If default is omitted, then Oracle returns null.

If expr and search contain character data, then Oracle compares them using

nonpadded comparison semantics. expr , search , and result can be any of the

datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The string returned is of

VARCHAR2 datatype and is in the same character set as the first result parameter.

The search , result , and default values can be derived from expressions.

Oracle evaluates each search value only before comparing it to expr , rather than

evaluating all search values before comparing any of them with expr .

Consequently, Oracle never evaluates a search if a previous search is equal to

expr .

Oracle automatically converts expr and each search value to the datatype of the

first search value before comparing. Oracle automatically converts the return

value to the same datatype as the first result . If the first result has the datatype

CHAR or if the first result is null, then Oracle converts the return value to the

datatype VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null,

then Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODE function, including expr ,

searches , results , and default , is 255.

DECODE (expr , search , result

,
, default

)

DECOMPOSE

Functions 6-53

Examples
This example decodes the value warehouse_id . If warehouse_id is 1, then the

function returns ’Southlake ’; if warehouse_id is 2, then it returns ’San
Francisco ’; and so forth. If warehouse_id is not 1, 2, 3, or 4, then the function

returns ’Non-domestic ’.

SELECT product_id,
 DECODE (warehouse_id, 1, ’Southlake’,
 2, ’San Francisco’,
 3, ’New Jersey’,
 4, ’Seattle’,
 ’Non-domestic’)
 "Location of inventory" FROM inventories
 WHERE product_id < 1775;

DECOMPOSE

Syntax
decompose::=

Purpose
DECOMPOSE is valid only for Unicode characters. DECOMPOSE takes as its argument

a string in any datatype and returns a Unicode string after decomposition in the

same character set as the input. For example, an o-umlaut codepoint will be

returned as the "o" codepoint followed by an umlaut codepoint.

See Also:

■ "Datatype Comparison Rules" on page 2-45 for information on

comparison semantics

■ "Data Conversion" on page 2-48 for information on datatype

conversion in general

■ "Implicit and Explicit Data Conversion" on page 2-49 for

information on the drawbacks of implicit conversion

DECOMPOSE (’ string ’

CANONICAL

COMPATIBILITY
)

DECOMPOSE

6-54 Oracle9i SQL Reference

■ string can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

■ CANONICAL causes canonical decomposition, which allows recomposition (for

example, with the COMPOSE function) to the original string. This is the default.

■ COMPATIBILITY causes decomposition in compatibility mode. In this mode,

recomposition is not possible. This mode is useful, for example, when

decomposing half-width and full-width katakana characters, where

recomposition might not be desirable without external formatting or style

information.

Examples
The following example decomposes the string "Châteaux " into its component

codepoints:

SELECT DECOMPOSE (’Châteaux’) FROM DUAL;

DECOMPOSE

Cha^teaux

See Also: Oracle9i Database Concepts for information on Unicode

character sets and character semantics

DENSE_RANK

Functions 6-55

DENSE_RANK

Aggregate Syntax
dense_rank_aggregate::=

Analytic Syntax
dense_rank_analytic::=

Purpose
DENSE_RANK computes the rank of a row in an ordered group of rows. The ranks

are consecutive integers beginning with 1. The largest rank value is the number of

unique values returned by the query. Rank values are not skipped in the event of

ties. Rows with equal values for the ranking criteria receive the same rank.

■ As an aggregate function, DENSE_RANK calculates the dense rank of a

hypothetical row identified by the arguments of the function with respect to a

given sort specification. The arguments of the function must all evaluate to

constant expressions within each aggregate group, because they identify a

single row within each group. The constant argument expressions and the

expressions in the order_by_clause of the aggregate match by position.

Therefore, the number of arguments must be the same and types must be

compatible.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

DENSE_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

DENSE_RANK () OVER (
query_partition_clause

order_by_clause)

DENSE_RANK

6-56 Oracle9i SQL Reference

■ As an analytic function, DENSE_RANK computes the rank of each row returned

from a query with respect to the other rows, based on the values of the value_
exprs in the order_by_clause .

Aggregate Example
The following example computes the ranking of a hypothetical employee with the

salary $15,500 and a commission of 5% in the sample table oe.employees :

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary DESC, commission_pct) "Dense Rank"
 FROM employees;

 Dense Rank

 3

Analytic Example
The following statement selects the department name, employee name, and salary

of all employees who work in the HUMAN RESOURCES or PURCHASING department,

and then computes a rank for each unique salary in each of the two departments.

The salaries that are equal receive the same rank. Compare this example with the

example for RANK on page 6-123.

SELECT d.department_name, e.last_name, e.salary, DENSE_RANK()
 OVER (PARTITION BY e.department_id ORDER BY e.salary) as drank
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 AND d.department_id IN (’30’, ’40’);

DEPARTMENT_NAME LAST_NAME SALARY DRANK
----------------------- ------------------ ---------- ----------
Purchasing Colmenares 2500 1
Purchasing Himuro 2600 2
Purchasing Tobias 2800 3
Purchasing Baida 2900 4
Purchasing Khoo 3100 5
Purchasing Raphaely 11000 6
Human Resources Marvis 6500

DEPTH

Functions 6-57

DEPTH

Syntax
depth::=

Purpose
DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable.

The correlation_integer can be any integer. Use it to correlate this ancillary

function with its primary condition if the statement contains multiple primary

conditions. Values less than 1 are treated as 1.

Examples
The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions,

one of which is DEPTH. The following example shows the use of both ancillary

functions. The example assumes the existence of the XMLSchema

warehouses.xsd (created in "Using XML in SQL Statements" on page D-11).

SELECT PATH(1), DEPTH(2)
 FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, ’/sys/schemas/OE’, 1)=1
 AND UNDER_PATH(res, ’/sys/schemas/OE’, 2)=1;

PATH(1) DEPTH(2)
-------------------------------- --------
/www.oracle.com 1

/www.oracle.com/xwarehouses.xsd 2

See Also:

■ EQUALS_PATH on page 5-13, UNDER_PATH on page 5-20

■ the related function PATH on page 6-115

DEPTH (correlation_integer)

DEREF

6-58 Oracle9i SQL Reference

DEREF

Syntax
deref::=

Purpose
DEREF returns the object reference of argument expr , where expr must return a

REF to an object. If you do not use this function in a query, then Oracle returns the

object ID of the REF instead, as shown in the example that follows.

Examples
The sample schema oe contains an object type cust_address_typ (its creation is

duplicated in the example that follows). The following example creates a table of

cust_address_typ_new , and another table with one column that is a REF to

cust_address_typ :

CREATE TYPE cust_address_typ_new AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)
);
/
CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ_new
 SCOPE IS address_table);

INSERT INTO address_table VALUES
 (’1 First’, ’G45 EU8’, ’Paris’, ’CA’, ’US’);

INSERT INTO customer_addresses
 SELECT 999, REF(a) FROM address_table a;

SELECT address FROM customer_addresses;

See Also: MAKE_REF on page 6-94

DEREF (expr)

DUMP

Functions 6-59

ADDRESS
--
000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FE03400400B40DCB1

SELECT DEREF(address) FROM customer_addresses;

DEREF(ADDRESS)(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TYP(’1 First’, ’G45 EU8’, ’Paris’, ’CA’, ’US’)

DUMP

Syntax
dump::=

Purpose
DUMP returns a VARCHAR2 value containing the datatype code, length in bytes, and

internal representation of expr . The returned result is always in the database

character set. For the datatype corresponding to each code, see Table 2–1 on

page 2-7.

The argument return_fmt specifies the format of the return value and can have

any of the following values:

■ 8 returns result in octal notation.

■ 10 returns result in decimal notation.

■ 16 returns result in hexadecimal notation.

■ 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the

character set name of expr , specify any of the preceding format values, plus 1000.

For example, a return_fmt of 1008 returns the result in octal, plus provides the

character set name of expr .

DUMP (expr
, return_fmt

, start_position
, length

)

DUMP

6-60 Oracle9i SQL Reference

The arguments start_position and length combine to determine which

portion of the internal representation to return. The default is to return the entire

internal representation in decimal notation.

If expr is null, then this function returns a null.

Examples
The following examples show how to extract dump information from a string

expression and a column:

SELECT DUMP(’abc’, 1016)
 FROM DUAL;

DUMP(’ABC’,1016)
--
Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP(last_name, 8, 3, 2) "OCTAL"
 FROM employees
 WHERE last_name = ’Hunold’;

OCTAL

Typ=1 Len=6: 156,157

SELECT DUMP(last_name, 10, 3, 2) "ASCII"
 FROM employees
 WHERE last_name = ’Hunold’;

ASCII
--
Typ=1 Len=6: 110,111

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

EXISTSNODE

Functions 6-61

EMPTY_BLOB, EMPTY_CLOB

Syntax
empty_LOB::=

Purpose
EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to

initialize a LOB variable or, in an INSERT or UPDATE statement, to initialize a LOB

column or attribute to EMPTY. EMPTY means that the LOB is initialized, but not

populated with data.

Restriction on LOB Locators You cannot use the locator returned from this

function as a parameter to the DBMS_LOB package or the OCI.

Examples
The following example initializes the ad_photo column of the sample pm.print_
media table to EMPTY:

UPDATE print_media SET ad_photo = EMPTY_BLOB();

EXISTSNODE

Syntax
existsnode::=

Purpose
EXISTSNODE determines whether traversal of the document using the path results

in any nodes. It takes as arguments the XMLType instance containing an XML

document and a VARCHAR2 XPath string designating a path. The optional

namespace_string must resolve to a VARCHAR2 value that specifies a default

EMPTY_BLOB

EMPTY_CLOB
()

EXISTSNODE (XMLType_instance , XPath_string
, namespace_string

)

EXP

6-62 Oracle9i SQL Reference

mapping or namespace mapping for prefixes, which Oracle uses when evaluating

the XPath expression(s).

The return value is NUMBER:

■ 0 if no nodes remain after applying the XPath traversal on the document

■ 1 if any nodes remain

Examples
The following example tests for the existence of the /Warehouse/Dock node in the

XML path of the warehouse_spec column of the sample table oe.warehouses :

SELECT warehouse_id, warehouse_name
 FROM warehouses
 WHERE EXISTSNODE(warehouse_spec, ’/Warehouse/Docks’) = 1;

WAREHOUSE_ID WAREHOUSE_NAME
------------ -----------------------------------
 1 Southlake, Texas
 2 San Francisco
 4 Seattle, Washington

EXP

Syntax
exp::=

Purpose
EXP returns e raised to the nth power, where e = 2.71828183 ...

Examples
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

 54.59815

EXP (n)

EXTRACT (datetime)

Functions 6-63

EXTRACT (datetime)

Syntax
extract_datetime::=

Purpose
EXTRACT extracts and returns the value of a specified datetime field from a

datetime or interval value expression. When you extract a TIMEZONE_REGION or

TIMEZONE_ABBR (abbreviation), the value returned is a string containing the

appropriate time zone name or abbreviation. When you extract any of the other

values, the value returned is in the Gregorian calendar. When extracting from a

datetime with a time zone value, the value returned is in UTC. For a listing of time

zone names and their corresponding abbreviations, query the V$TIMEZONE_NAMES
dynamic performance view.

Some combinations of datetime field and datetime or interval value expression

result in ambiguity. In these cases, Oracle returns ’UNKNOWN’ (see the examples that

follow for additional information).

EXTRACT (

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

TIMEZONE_HOUR

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

FROM
datetime_value_expression

interval_value_expression
)

EXTRACT (datetime)

6-64 Oracle9i SQL Reference

Examples
The following example returns the year 1998.

SELECT EXTRACT(YEAR FROM DATE ’1998-03-07’) FROM DUAL;

EXTRACT(YEARFROMDATE’1998-03-07’)

 1998

The following example selects from the sample table hr.employees all employees

who were hired after 1998:

SELECT last_name, employee_id, hire_date
 FROM employees
 WHERE EXTRACT(YEAR FROM
 TO_DATE(hire_date, ’DD-MON-RR’)) > 1998
 ORDER BY hire_date;

LAST_NAME EMPLOYEE_ID HIRE_DATE
------------------------- ----------- ---------
Landry 127 14-JAN-99
Lorentz 107 07-FEB-99
Cabrio 187 07-FEB-99
.
.
.
The following example results in ambiguity, so Oracle returns ’UNKNOWN’:

Note: The field you are extracting must be a field of the

datetime_value_expr or interval_value_expr . For

example, you can extract only YEAR, MONTH, and DAY from a DATE
value. Likewise, you can extract TIMEZONE_HOUR and TIMEZONE_
MINUTE only from the TIMESTAMP WITH TIME ZONE datatype.

See Also:

■ "Datetime/Interval Arithmetic" on page 2-25 for a description

of datetime_value_expr and interval_value_expr

■ Oracle9i Database Reference for information on the dynamic

performance views

EXTRACT (XML)

Functions 6-65

SELECT EXTRACT(TIMEZONE_REGION
 FROM TIMESTAMP ’1999-01-01 10:00:00 -08:00’)
 FROM DUAL;

EXTRACT(TIMEZONE_REGIONFROMTIMESTAMP’1999-01-0110:00:00-08:00’)
--
UNKNOWN

The ambiguity arises because the time zone numerical offset is provided in the

expression, and that numerical offset may map to more than one time zone region.

EXTRACT (XML)

Syntax
extract_xml::=

Purpose
EXTRACT (XML) is similar to the EXISTSNODE function. It applies a VARCHAR2
XPath string and returns an XMLType instance containing an XML fragment. The

optional namespace_string must resolve to a VARCHAR2 value that specifies a

default mapping or namespace mapping for prefixes, which Oracle uses when

evaluating the XPath expression(s).

Examples
The following example extracts the value of the /Warehouse/Dock node of the

XML path of the warehouse_spec column in the sample table oe.warehouses :

SELECT warehouse_name, EXTRACT(warehouse_spec, ’/Warehouse/Docks’)
 "Number of Docks"
 FROM warehouses
 WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Number of Docks
-------------------- --------------------
Southlake, Texas <Docks>2</Docks>
San Francisco <Docks>1</Docks>
New Jersey <Docks/>
Seattle, Washington <Docks>3</Docks>

EXTRACT (XMLType_instance , XPath_string
, namespace_string

EXTRACTVALUE

6-66 Oracle9i SQL Reference

Compare this example with the example for EXTRACTVALUE on page 6-66, which

returns the scalar value of the XML fragment.

EXTRACTVALUE

Syntax
extractvalue::=

The EXTRACTVALUE function takes as arguments an XMLType instance and an

XPath expression and returns a scalar value of the resultant node. The result must

be a single node and be either a text node, attribute, or element. If the result is an

element, the element must have a single text node as its child, and it is this value

that the function returns. If the specified XPath points to a node with more than one

child, or if the node pointed to has a non-text node child, Oracle returns an error.

The optional namespace_string must resolve to a VARCHAR2 value that specifies

a default mapping or namespace mapping for prefixes, which Oracle uses when

evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return

value, then a scalar value of the appropriate type is returned. Otherwise, the result

is of type VARCHAR2. For documents that are not based on XML schemas, the return

type is always VARCHAR2.

Examples
The following example takes as input the same arguments as the example for

EXTRACT (XML) on page 6-65. Instead of returning an XML fragment, as does the

EXTRACT function, it returns the scalar value of the XML fragment:

SELECT warehouse_name,
 EXTRACTVALUE(e.warehouse_spec, ’/Warehouse/Docks’)
 "Docks"
 FROM warehouses e
 WHERE warehouse_spec IS NOT NULL;

EXTRACTVALUE (XMLType_instance , XPath_string
, namespace_string

)

FIRST

Functions 6-67

WAREHOUSE_NAME Docks
-------------------- ------------
Southlake, Texas 2
San Francisco 1
New Jersey
Seattle, Washington 3

FIRST

Syntax
first::=

Purpose
FIRST and LAST are very similar functions. Both are aggregate and analytic

functions that operate on a set of values from a set of rows that rank as the FIRST
or LAST with respect to a given sorting specification. If only one row ranks as

FIRST or LAST, the aggregate operates on the set with only one element.

When you need a value from the first or last row of a sorted group, but the needed

value is not the sort key, the FIRST and LAST functions eliminate the need for self

joins or views and enable better performance.

■ The aggregate_function is any one of the MIN, MAX, SUM, AVG, COUNT,
VARIANCE, or STDDEV functions. It operates on values from the rows that rank

either FIRST or LAST. If only one row ranks as FIRST or LAST, the aggregate

operates on a singleton (nonaggregate) set.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions of the ORDER BY clause and

OVER clause

aggregate_function KEEP

(DENSE_RANK FIRST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER query_partitioning_clause

FIRST

6-68 Oracle9i SQL Reference

■ DENSE_RANK FIRSTor DENSE_RANK LASTindicates that Oracle will aggregate

over only those rows with the minimum (FIRST) or the maximum (LAST)

dense rank ("olympic rank").

You can use the FIRST and LAST functions as analytic functions by specifying the

OVER clause. The query_partitioning_clause is the only part of the OVER
clause valid with these functions.

Aggregate Example
The following example returns, within each department of the sample table

hr.employees , the minimum salary among the employees who make the lowest

commission and the maximum salary among the employees who make the highest

commission:

SELECT department_id,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
 FROM employees
 GROUP BY department_id;

DEPARTMENT_ID Worst Best
------------- ---------- ----------
 10 4400 4400
 20 6000 13000
 30 2500 11000
 40 6500 6500
 50 2100 8200
 60 4200 9000
 70 10000 10000
 80 6100 14000
 90 17000 24000
 100 6900 12000
 110 8300 12000
 7000 7000

Analytic Example
The next example makes the same calculation as the previous example but returns

the result for each employee within the department:

SELECT last_name, department_id, salary,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Best"

FIRST_VALUE

Functions 6-69

 FROM employees
 ORDER BY department_id, salary;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
.
.
.
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000

FIRST_VALUE

Syntax
first_value::=

Purpose
FIRST_VALUE is an analytic function. It returns the first value in an ordered set of

values.

You cannot use FIRST_VALUE or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

Examples
The following example selects, for each employee in Department 90, the name of

the employee with the lowest salary.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

FIRST_VALUE (expr) OVER (analytic_clause)

FIRST_VALUE

6-70 Oracle9i SQL Reference

SELECT departmeent_id, last_name, salary, FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
 FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER BY employee_id);

DEPARTMENT_ID LAST_NAME SALARY LOWEST_SAL
------------- ------------- ---------- -------------------------
 90 Kochhar 17000 Kochhar
 90 De Haan 17000 Kochhar
 90 King 24000 Kochhar

The example illustrates the nondeterministic nature of the FIRST_VALUE function.

Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar

appears first because the rows returned by the subquery are ordered by employee_
id . However, if the rows returned by the subquery are ordered by employee_id in

descending order, as in the next example, then the function returns a different

value:

SELECT department_id, last_name, salary, FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) as fv
 FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER by employee_id DESC);

DEPARTMENT_ID LAST_NAME SALARY FV
------------- ------------- ---------- -------------------------
 90 De Haan 17000 De Haan
 90 Kochhar 17000 De Haan
 90 King 24000 De Haan

The following example shows how to make the FIRST_VALUE function

deterministic by ordering on a unique key.

SELECT department_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name) OVER
 (ORDER BY salary ASC, hire_date ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90 ORDER BY employee_id DESC);

DEPARTMENT_ID LAST_NAME SALARY HIRE_DATE FV
------------- ------------- ---------- --------- ---------------
 90 Kochhar 17000 21-SEP-89 Kochhar
 90 De Haan 17000 13-JAN-93 Kochhar
 90 King 24000 17-JUN-87 Kochhar

FROM_TZ

Functions 6-71

FLOOR

Syntax
floor::=

Purpose
FLOOR returns largest integer equal to or less than n.

Examples
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROM DUAL;

 Floor

 15

FROM_TZ

Syntax
from_tz::=

Purpose
FROM_TZ converts a timestamp value at a time zone to a TIMESTAMP WITH TIME
ZONEvalue. time_zone_value is a character string in the format ’TZH:TZM’ or a

character expression that returns a string in TZR with optional TZD format.

Examples
The following example returns a timestamp value to TIMESTAMP WITH TIME ZONE:

SELECT FROM_TZ(TIMESTAMP ’2000-03-28 08:00:00’, ’3:00’)
 FROM DUAL;

FLOOR (n)

FROM_TZ (timestamp_value , time_zone_value)

GREATEST

6-72 Oracle9i SQL Reference

FROM_TZ(TIMESTAMP’2000-03-2808:00:00’,’3:00’)

28-MAR-00 08.00.00 AM +03:00

GREATEST

Syntax
greatest::=

Purpose
GREATEST returns the greatest of the list of exprs . All expr s after the first are

implicitly converted to the datatype of the first expr before the comparison. Oracle

compares the expr s using nonpadded comparison semantics. Character

comparison is based on the value of the character in the database character set. One

character is greater than another if it has a higher character set value. If the value

returned by this function is character data, then its datatype is always VARCHAR2.

Examples
The following statement selects the string with the greatest value:

SELECT GREATEST (’HARRY’, ’HARRIOT’, ’HAROLD’)
 "Greatest" FROM DUAL;

Greatest

HARRY

GROUP_ID

Syntax
group_id::=

See Also: "Datatype Comparison Rules" on page 2-45

GREATEST (expr

,

)

GROUP_ID ()

GROUP_ID

Functions 6-73

Purpose
GROUP_IDdistinguishes duplicate groups resulting from a GROUP BYspecification.

It is therefore useful in filtering out duplicate groupings from the query result. It

returns an Oracle NUMBER to uniquely identify duplicate groups. This function is

applicable only in a SELECT statement that contains a GROUP BY clause.

If n duplicates exist for a particular grouping, then GROUP_ID returns numbers in

the range 0 to n-1.

Examples
The following example assigns the value "1" to the duplicate co.country_region
grouping from a query on the sample tables sh.countries and sh.sales :

SELECT co.country_region, co.country_subregion,
 SUM(s.amount_sold) "Revenue",
 GROUP_ID() g
FROM sales s, customers c, countries co
WHERE s.cust_id = c.cust_id AND
 c.country_id = co.country_id AND
 s.time_id = ’1-JAN-00’ AND
 co.country_region IN (’Americas’, ’Europe’)
GROUP BY co.country_region,
 ROLLUP (co.country_region, co.country_subregion);

COUNTRY_REGION COUNTRY_SUBREGION Revenue G
-------------------- -------------------- ---------- ----------
Americas Northern America 220844 0
Americas Southern America 10872 0
Europe Eastern Europe 12751 0
Europe Western Europe 558686 0
Americas 231716 0
Europe 571437 0
Americas 231716 1
Europe 571437 1

You could add the following HAVING clause to the end of the statement to ensure

that only rows with GROUP_ID < 1 are returned:

HAVING GROUP_ID() < 1

GROUPING

6-74 Oracle9i SQL Reference

GROUPING

Syntax
grouping::=

Purpose
GROUPING distinguishes superaggregate rows from regular grouped rows. GROUP
BY extensions such as ROLLUP and CUBE produce superaggregate rows where the

set of all values is represented by null. Using the GROUPING function, you can

distinguish a null representing the set of all values in a superaggregate row from a

null in a regular row.

The expr in the GROUPING function must match one of the expressions in the

GROUP BYclause. The function returns a value of 1 if the value of expr in the row is

a null representing the set of all values. Otherwise, it returns zero. The datatype of

the value returned by the GROUPING function is Oracle NUMBER.

Examples
In the following example, which uses the sample tables hr.departments and

hr.employees , if the GROUPING function returns 1 (indicating a superaggregate

row rather than a regular row from the table), then the string "All Jobs" appears in

the "JOB" column instead of the null that would otherwise appear:

SELECT DECODE(GROUPING(department_name), 1, ’All Departments’,
 department_name) AS department,
 DECODE(GROUPING(job_id), 1, ’All Jobs’, job_id) AS job,
 COUNT(*) "Total Empl", AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY ROLLUP (department_name, job_id);

DEPARTMENT JOB Total Empl Average Sal
------------------------------ ---------- ---------- -----------
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800

See Also: group_by_clause of the SELECT statement on

page 18-21 for a discussion of these terms

GROUPING (expr)

GROUPING_ID

Functions 6-75

Administration All Jobs 1 52800
Executive AD_PRES 1 288000
Executive AD_VP 2 204000
Executive All Jobs 3 232000
Finance FI_ACCOUNT 5 95040
Finance FI_MGR 1 144000
Finance All Jobs 6 103200
.
.
.

GROUPING_ID

Syntax
grouping_id::=

Purpose
GROUPING_ID returns a number corresponding to the GROUPING bit vector

associated with a row. GROUPING_ID is applicable only in a SELECT statement that

contains a GROUP BY extension, such as ROLLUP or CUBE, and a GROUPING
function. In queries with many GROUP BY expressions, determining the GROUP BY
level of a particular row requires many GROUPING functions, which leads to

cumbersome SQL. GROUPING_ID is useful in these cases.

GROUPING_ID is functionally equivalent to taking the results of multiple

GROUPING functions and concatenating them into a bit vector (a string of ones and

zeros). By using GROUPING_ID you can avoid the need for multiple GROUPING
functions and make row filtering conditions easier to express. Row filtering is easier

with GROUPING_ID because the desired rows can be identified with a single

condition of GROUPING_ID = n. The function is especially useful when storing

multiple levels of aggregation in a single table.

Examples
The following example shows how to extract grouping IDs from a query of the

sample table sh.sales :

SELECT channel_id, promo_id, sum(amount_sold) s_sales,
 GROUPING(channel_id) gc,
 GROUPING(promo_id) gp,

GROUPING_ID (expr

,

)

GROUPING_ID

6-76 Oracle9i SQL Reference

 GROUPING_ID(channel_id, promo_id) gcp,
 GROUPING_ID(promo_id, channel_id) gpc
 FROM sales
 WHERE promo_id > 496
 GROUP BY CUBE(channel_id, promo_id);

C PROMO_ID S_SALES GC GP GCP GPC
- ---------- ---------- ---------- ---------- ---------- ----------
C 497 26094.35 0 0 0 0
C 498 22272.4 0 0 0 0
C 499 19616.8 0 0 0 0
C 9999 87781668 0 0 0 0
C 87849651.6 0 1 1 2
I 497 50325.8 0 0 0 0
I 498 52215.4 0 0 0 0
I 499 58445.85 0 0 0 0
I 9999 169497409 0 0 0 0
I 169658396 0 1 1 2
P 497 31141.75 0 0 0 0
P 498 46942.8 0 0 0 0
P 499 24156 0 0 0 0
P 9999 70890248 0 0 0 0
P 70992488.6 0 1 1 2
S 497 110629.75 0 0 0 0
S 498 82937.25 0 0 0 0
S 499 80999.15 0 0 0 0
S 9999 267205791 0 0 0 0
S 267480357 0 1 1 2
T 497 8319.6 0 0 0 0
T 498 5347.65 0 0 0 0
T 499 19781 0 0 0 0
T 9999 28095689 0 0 0 0
T 28129137.3 0 1 1 2
 497 226511.25 1 0 2 1
 498 209715.5 1 0 2 1
 499 202998.8 1 0 2 1
 9999 623470805 1 0 2 1
 624110031 1 1 3 3

INITCAP

Functions 6-77

HEXTORAW

Syntax
hextoraw::=

Purpose
HEXTORAW converts char containing hexadecimal digits in the CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 character set to a raw value.

Examples
The following example creates a simple table with a raw column, and inserts a

hexadecimal value that has been converted to RAW:

CREATE TABLE test (raw_col RAW(10));

INSERT INTO test VALUES (HEXTORAW(’7D’));

INITCAP

Syntax
initcap::=

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

See Also: "RAW and LONG RAW Datatypes" on page 2-27 and

RAWTOHEX on page 6-126

HEXTORAW (char)

INITCAP (char)

INSTR

6-78 Oracle9i SQL Reference

Purpose
INITCAP returns char , with the first letter of each word in uppercase, all other

letters in lowercase. Words are delimited by white space or characters that are not

alphanumeric.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The

return value is the same datatype as char .

Examples
The following example capitalizes each word in the string:

SELECT INITCAP(’the soap’) "Capitals" FROM DUAL;

Capitals

The Soap

INSTR

Syntax
instr::=

Purpose
The "in string" functions search string for substring . The function returns an

integer indicating the position of the character in string that is the first character

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

INSTR

INSTRB

INSTRC

INSTR2

INSTR4

(string , substring
, position

, occurrence

)

INSTR

Functions 6-79

of this occurrence. INSTR calculates strings using characters as defined by the input

character set. INSTRB uses bytes instead of characters. INSTRC uses Unicode

complete characters. INSTR2 uses UCS2 codepoints. INSTR4 uses UCS4

codepoints.

■ position is an nonzero integer indicating the character of string where

Oracle begins the search. If position is negative, then Oracle counts and
searches backward from the end of string .

■ occurrence is an integer indicating which occurrence of string Oracle

should search for. The value of occurrence must be positive.

Both string and substring can be any of the datatypes CHAR, VARCHAR2,
NCHAR, NVARCHAR2, CLOB, or NCLOB. The value returned is of NUMBER datatype.

The default values of both position and occurrence are 1, meaning Oracle

begins searching at the first character of string for the first occurrence of

substring . The return value is relative to the beginning of string , regardless of

the value of position , and is expressed in characters. If the search is unsuccessful

(if substring does not appear occurrence times after the position character

of string), then the return value is 0.

Examples
The following example searches the string "CORPORATE FLOOR", beginning with the

third character, for the string "OR". It returns the position in CORPORATE FLOOR at

which the second occurrence of "OR" begins:

SELECT INSTR(’CORPORATE FLOOR’,’OR’, 3, 2)
 "Instring" FROM DUAL;

 Instring

 14

In the next example, Oracle counts backward from the last character to the third

character from the end, which is the first "O" in "FLOOR". Oracle then searches

backward for the second occurrence of OR, and finds that this second occurrence

begins with the second character in the search string :

SELECT INSTR(’CORPORATE FLOOR’,’OR’, -3, 2)
"Reversed Instring"
 FROM DUAL;

Reversed Instring

LAG

6-80 Oracle9i SQL Reference

 2
This example assumes a double-byte database character set.

SELECT INSTRB(’CORPORATE FLOOR’,’OR’,5,2) "Instring in bytes"
 FROM DUAL;

Instring in bytes

 27

LAG

Syntax
lag::=

Purpose
LAG is an analytic function. It provides access to more than one row of a table at the

same time without a self join. Given a series of rows returned from a query and a

position of the cursor, LAG provides access to a row at a given physical offset prior

to that position.

If you do not specify offset , then its default is 1. The optional default value is

returned if the offset goes beyond the scope of the window. If you do not specify

default , then its default value is null.

You cannot use LAG or any other analytic function for value_expr . That is, you

can use other built-in function expressions for value_expr , but you cannot nest

analytic functions.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

LAG (value_expr
, offset , default

)

OVER (
query_partition_clause

order_by_clause)

LAST

Functions 6-81

Examples
The following example provides, for each salesperson in the employees table, the

salary of the employee hired just before:

SELECT last_name, hire_date, salary,
 LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
 FROM employees
 WHERE job_id = ’PU_CLERK’;

LAST_NAME HIRE_DATE SALARY PREV_SAL
------------------------- --------- ---------- ----------
Khoo 18-MAY-95 3100 0
Tobias 24-JUL-97 2800 3100
Baida 24-DEC-97 2900 2800
Himuro 15-NOV-98 2600 2900
Colmenares 10-AUG-99 2500 2600

LAST

Syntax
last::=

Purpose
FIRST and LAST are very similar functions. Both are aggregate and analytic

functions that operate on a set of values from a set of rows that rank as the FIRST
or LAST with respect to a given sorting specification. If only one row ranks as

FIRST or LAST, the aggregate operates on the set with only one element.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions of the query_partitioning_
clause

aggregate_function KEEP

(DENSE_RANK LAST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER query_partitioning_clause

LAST

6-82 Oracle9i SQL Reference

When you need a value from the first or last row of a sorted group, but the needed

value is not the sort key, the FIRST and LAST functions eliminate the need for self

joins or views and enable better performance.

■ The aggregate_function is any one of the MIN, MAX, SUM, AVG, COUNT,
VARIANCE, or STDDEV functions. It operates on values from the rows that rank

either FIRST or LAST. If only one row ranks as FIRST or LAST, the aggregate

operates on a singleton (nonaggregate) set.

■ DENSE_RANK FIRSTor DENSE_RANK LASTindicates that Oracle will aggregate

over only those rows with the minimum (FIRST) or the maximum (LAST)

dense rank ("olympic rank").

You can use the FIRST and LAST functions as analytic functions by specifying the

OVER clause. The query_partitioning_clause is the only part of the OVER
clause valid with these functions.

Aggregate Example
The following example returns, within each department of the sample table

hr.employees , the minimum salary among the employees who make the lowest

commission and the maximum salary among the employees who make the highest

commission:

SELECT department_id,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
 FROM employees
 GROUP BY department_id;

DEPARTMENT_ID Worst Best
------------- ---------- ----------
 10 4400 4400
 20 6000 13000
 30 2500 11000
 40 6500 6500
 50 2100 8200
 60 4200 9000
 70 10000 10000
 80 6100 14000
 90 17000 24000
 100 6900 12000
 110 8300 12000
 7000 7000

LAST_DAY

Functions 6-83

Analytic Example
The next example makes the same calculation as the previous example but returns

the result for each employee within the department:

SELECT last_name, department_id, salary,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Best"
 FROM employees
 ORDER BY department_id, salary;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
.
.
.
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000

LAST_DAY

Syntax
last_day::=

Purpose
LAST_DAY returns the date of the last day of the month that contains date .

Examples
The following statement determines how many days are left in the current month.

SELECT SYSDATE,
 LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL;

LAST_DAY (date)

LAST_VALUE

6-84 Oracle9i SQL Reference

SYSDATE Last Days Left
--------- --------- ----------
30-MAY-01 31-MAY-01 1

The following example adds 5 months to the hire date of each employee to give an

evaluation date:

SELECT last_name, hire_date, TO_CHAR(
 ADD_MONTHS(LAST_DAY(hire_date), 5)) "Eval Date"
 FROM employees;

LAST_NAME HIRE_DATE Eval Date
------------------------- --------- ---------
King 17-JUN-87 30-NOV-87
Kochhar 21-SEP-89 28-FEB-90
De Haan 13-JAN-93 30-JUN-93
Hunold 03-JAN-90 30-JUN-90
Ernst 21-MAY-91 31-OCT-91
Austin 25-JUN-97 30-NOV-97
Pataballa 05-FEB-98 31-JUL-98
Lorentz 07-FEB-99 31-JUL-99
.
.
.

LAST_VALUE

Syntax
last_value::=

Purpose
LAST_VALUE is an analytic function. It returns the last value in an ordered set of

values.

You cannot use LAST_VALUE or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

LAST_VALUE (expr) OVER (analytic_clause)

LAST_VALUE

Functions 6-85

Examples
The following example returns, for each row, the hire date of the employee earning

the highest salary.

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER
 (ORDER BY salary
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER BY hire_date);

LAST_NAME SALARY HIRE_DATE LV
------------------------- ---------- --------- ---------
Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

This example illustrates the nondeterministic nature of the LAST_VALUE function.

Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar

appears first because the rows in the subquery are ordered by hire_date .

However, if the rows are ordered by hire_date in descending order, as in the next

example, then the function returns a different value:

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER
 (ORDER BY salary
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER BY hire_date DESC);

LAST_NAME SALARY HIRE_DATE LV
------------------------- ---------- --------- ---------
De Haan 17000 13-JAN-93 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

The following two examples show how to make the LAST_VALUE function

deterministic by ordering on a unique key. By ordering within the function by both

salary and hire_date , you can ensure the same result regardless of the ordering

in the subquery.

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

LEAD

6-86 Oracle9i SQL Reference

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER
(ORDER BY salary, hire_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER BY hire_date);

LAST_NAME SALARY HIRE_DATE LV
------------------------- ---------- --------- ---------
Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER
 (ORDER BY salary, hire_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv
FROM (SELECT * FROM employees WHERE department_id = 90
 ORDER BY hire_date DESC);

LAST_NAME SALARY HIRE_DATE LV
------------------------- ---------- --------- ---------
Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

LEAD

Syntax
lead::=

Purpose
LEAD is an analytic function. It provides access to more than one row of a table at

the same time without a self join. Given a series of rows returned from a query and

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

LEAD (value_expr
, offset , default

)

OVER (
query_partition_clause

order_by_clause)

LEAST

Functions 6-87

a position of the cursor, LEAD provides access to a row at a given physical offset

beyond that position.

If you do not specify offset , then its default is 1. The optional default value is

returned if the offset goes beyond the scope of the table. If you do not specify

default , then its default value is null.

You cannot use LEAD or any other analytic function for value_expr . That is, you

can use other built-in function expressions for value_expr , but you cannot nest

analytic functions.

Examples
The following example provides, for each employee in the employees table, the

hire date of the employee hired just after:

SELECT last_name, hire_date,
 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
 FROM employees WHERE department_id = 30;

LAST_NAME HIRE_DATE NextHired
------------------------- --------- ---------
Raphaely 07-DEC-94 18-MAY-95
Khoo 18-MAY-95 24-JUL-97
Tobias 24-JUL-97 24-DEC-97
Baida 24-DEC-97 15-NOV-98
Himuro 15-NOV-98 10-AUG-99
Colmenares 10-AUG-99

LEAST

Syntax
least::=

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

LEAST (expr

,

)

LENGTH

6-88 Oracle9i SQL Reference

Purpose
LEAST returns the least of the list of expr s. All expr s after the first are implicitly

converted to the datatype of the first expr before the comparison. Oracle compares

the expr s using nonpadded comparison semantics. If the value returned by this

function is character data, then its datatype is always VARCHAR2.

Examples
The following statement is an example of using the LEAST function:

SELECT LEAST(’HARRY’,’HARRIOT’,’HAROLD’) "LEAST"
 FROM DUAL;

LEAST

HAROLD

LENGTH

Syntax
length::=

Purpose
The "length" functions return the length of char . LENGTH calculates length using

characters as defined by the input character set. LENGTHB uses bytes instead of

characters. LENGTHC uses Unicode complete characters. LENGTH2 uses UCS2

codepoints. LENGTH4 uses UCS4 codepoints.

char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or

NCLOB. The return value is of datatype NUMBER. If char has datatype CHAR, then

the length includes all trailing blanks. If char is null, then this function returns

null.

LENGTH

LENGTHB

LENGTHC

LENGTH2

LENGTH4

(char)

LN

Functions 6-89

Examples
The following example uses the LENGTH function using a single-byte database

character set.

SELECT LENGTH(’CANDIDE’) "Length in characters"
 FROM DUAL;

Length in characters

 7

This example assumes a double-byte database character set.

SELECT LENGTHB (’CANDIDE’) "Length in bytes"
 FROM DUAL;

Length in bytes

 14

LN

Syntax
ln::=

Purpose
LN returns the natural logarithm of n, where n is greater than 0.

Examples
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95" FROM DUAL;

Natural log of 95

 4.55387689

LN (n)

LOCALTIMESTAMP

6-90 Oracle9i SQL Reference

LOCALTIMESTAMP

Syntax
localtimestamp::=

Purpose
LOCALTIMESTAMP returns the current date and time in the session time zone in a

value of datatype TIMESTAMP. The difference between this function and CURRENT_
TIMESTAMP is that LOCALTIMESTAMP returns a TIMESTAMP value while

CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME ZONE value.

Examples
This example illustrates the difference between LOCALTIMESTAMP and CURRENT_
TIMESTAMP:

ALTER SESSION SET TIME_ZONE = ’-5:00’;
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP

04-APR-00 01.27.18.999220 PM -05:00 04-APR-00 01.27.19 PM

ALTER SESSION SET TIME_ZONE = ’-8:00’;
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP
----------------------------------- ------------------------------
04-APR-00 10.27.45.132474 AM -08:00 04-APR-00 10.27.451 AM

If you use the LOCALTIMESTAMP with a format mask, take care that the format

mask matches the value returned by the function. For example, consider the

following table:

CREATE TABLE local_test (col1 TIMESTAMP WITH LOCAL TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE
portion of the return type of the function:

See Also: CURRENT_TIMESTAMP on page 6-50

LOCALTIMESTAMP
(timestamp_precision)

LOWER

Functions 6-91

INSERT INTO local_test VALUES
 (TO_TIMESTAMP(LOCALTIMESTAMP, ’DD-MON-RR HH.MI.SSXFF’));

The following statement uses the correct format mask to match the return type of

LOCALTIMESTAMP:

INSERT INTO local_test VALUES
 (TO_TIMESTAMP(LOCALTIMESTAMP, ’DD-MON-RR HH.MI.SSXFF PM’));

LOG

Syntax
log::=

Purpose
LOG returns the logarithm, base m, of n. The base m can be any positive number

other than 0 or 1 and n can be any positive number.

Examples
The following example returns the log of 100:

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

 2

LOWER

Syntax
lower::=

LOG (m , n)

LOWER (char)

LPAD

6-92 Oracle9i SQL Reference

Purpose
LOWER returns char , with all letters lowercase. char can be any of the datatypes

CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the

same datatype as char .

Examples
The following example returns a string in lowercase:

SELECT LOWER(’MR. SCOTT MCMILLAN’) "Lowercase"
 FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD

Syntax
lpad::=

Purpose
LPAD returns char1 , left-padded to length n with the sequence of characters in

char2 ; char2 defaults to a single blank. If char1 is longer than n, then this

function returns the portion of char1 that fits in n.

Both char1 and char2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char1 .

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multibyte character sets, the display length of a

character string can differ from the number of characters in the string.

Examples
The following example left-pads a string with the characters "*" and ".":

LPAD (char1 , n
, char2

)

LTRIM

Functions 6-93

SELECT LPAD(’Page 1’,15,’*.’) "LPAD example"
 FROM DUAL;

LPAD example

..*.*.*Page 1

LTRIM

Syntax
ltrim::=

Purpose
LTRIM removes characters from the left of char , with all the leftmost characters

that appear in set removed; set defaults to a single blank. If char is a character

literal, then you must enclose it in single quotes. Oracle begins scanning char from

its first character and removes all characters that appear in set until reaching a

character not in set and then returns the result.

Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char .

Examples
The following example trims all of the left-most x’s and y’s from a string:

SELECT LTRIM(’xyxXxyLAST WORD’,’xy’) "LTRIM example"
 FROM DUAL;

LTRIM example

XxyLAST WORD

LTRIM (char
, set

)

MAKE_REF

6-94 Oracle9i SQL Reference

MAKE_REF

Syntax
make_ref::=

Purpose
MAKE_REF creates a REF to a row of an object view or a row in an object table

whose object identifier is primary key based.

Examples
The sample schema oe contains an object view oc_inventories based on

inventory_typ . The object identifier is product_id . The following example

creates a REF to the row in the oc_inventories object view with a product_id
of 3003:

SELECT MAKE_REF (oc_inventories, 3003) FROM DUAL;

MAKE_REF(OC_INVENTORIES,3003)
--
00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about object views

■ DEREF on page 6-58

MAKE_REF (
table

view
, key

,

)

MAX

Functions 6-95

MAX

Syntax
max::=

Purpose
MAX returns maximum value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Example
The following example determines the highest salary in the hr.employees table:

SELECT MAX(salary) "Maximum" FROM employees;

 Maximum

 24000

Analytic Example
The following example calculates, for each employee, the highest salary of the

employees reporting to the same manager as the employee.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

MAX (

DISTINCT

ALL
expr)

OVER (analytic_clause)

MAX

6-96 Oracle9i SQL Reference

SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS mgr_max
 FROM employees;

MANAGER_ID LAST_NAME SALARY MGR_MAX
---------- ------------------------- ---------- ----------
 100 Kochhar 17000 17000
 100 De Haan 17000 17000
 100 Raphaely 11000 17000
 100 Kaufling 7900 17000
 100 Fripp 8200 17000
 100 Weiss 8000 17000
...

If you enclose this query in the parent query with a predicate, then you can

determine the employee who makes the highest salary in each department:

SELECT manager_id, last_name, salary
 FROM (SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
 FROM employees) WHERE salary = rmax_sal;

MANAGER_ID LAST_NAME SALARY
---------- ------------------------- ----------
 100 Kochhar 17000
 100 De Haan 17000
 101 Greenberg 12000
 101 Higgens 12000
 102 Hunold 9000
 103 Ernst 6000
 108 Faviet 9000
 114 Khoo 3100
 120 Nayer 3200
 120 Taylor 3200
 121 Sarchand 4200
 122 Chung 3800
 123 Bell 4000
 124 Rajs 3500
 145 Tucker 10000
 146 King 10000
 147 Vishney 10500
 148 Ozer 11500
 149 Abel 11000
 201 Goyal 6000
 205 Gietz 8300
 King 24000

MIN

Functions 6-97

MIN

Syntax
min::=

Purpose
MIN returns minimum value of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Example
The following statement returns the earliest hire date in the hr.employees table:

SELECT MIN(hire_date) "Earliest" FROM employees;

Earliest

17-JUN-87

Analytic Example
The following example determines, for each employee, the employees who were

hired on or before the same date as the employee. It then determines the subset of

employees reporting to the same manager as the employee, and returns the lowest

salary in that subset.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

MIN (

DISTINCT

ALL
expr)

OVER (analytic_clause)

MOD

6-98 Oracle9i SQL Reference

SELECT manager_id, last_name, hire_date, salary,
 MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
 RANGE UNBOUNDED PRECEDING) as p_cmin
 FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE SALARY P_CMIN
---------- ------------------------- --------- ---------- ----------
 100 Kochhar 21-SEP-89 17000 17000
 100 De Haan 13-JAN-93 17000 17000
 100 Raphaely 07-DEC-94 11000 11000
 100 Kaufling 01-MAY-95 7900 7900
 100 Hartstein 17-FEB-96 13000 7900
 100 Weiss 18-JUL-96 8000 7900
 100 Russell 01-OCT-96 14000 7900
 100 Partners 05-JAN-97 13500 7900
 100 Errazuriz 10-MAR-97 12000 7900
.
.
.

MOD

Syntax
mod::=

Purpose
MOD returns the remainder of m divided by n. Returns m if n is 0.

Examples
The following example returns the remainder of 11 divided by 4:

SELECT MOD(11,4) "Modulus" FROM DUAL;

 Modulus

 3

This function behaves differently from the classical mathematical modulus function

when m is negative. The classical modulus can be expressed using the MOD function

with this formula:

MOD (m , n)

MONTHS_BETWEEN

Functions 6-99

m - n * FLOOR(m/n)

The following table illustrates the difference between the MOD function and the

classical modulus:

MONTHS_BETWEEN

Syntax
months_between::=

Purpose
MONTHS_BETWEEN returns number of months between dates date1 and date2 . If

date1 is later than date2 , then the result is positive. If date1 is earlier than

date2 , then the result is negative. If date1 and date2 are either the same days of

the month or both last days of months, then the result is always an integer.

Otherwise Oracle calculates the fractional portion of the result based on a 31-day

month and considers the difference in time components date1 and date2 .

Examples
The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
 (TO_DATE(’02-02-1995’,’MM-DD-YYYY’),
 TO_DATE(’01-01-1995’,’MM-DD-YYYY’)) "Months"
 FROM DUAL;

m n MOD(m,n) Classical Modulus

11 4 3 3

11 -4 3 -1

-11 4 -3 1

-11 -4 -3 -3

See Also: FLOOR on page 6-71

MONTHS_BETWEEN (date1 , date2)

NCHR

6-100 Oracle9i SQL Reference

 Months

1.03225806

NCHR

Syntax
nchr::=

Purpose
NCHR returns the character having the binary equivalent to number in the national

character set. This function is equivalent to using the CHR function with the USING
NCHAR_CS clause.

Examples
The following examples return the nchar character 187:

SELECT NCHR(187) FROM DUAL;

NC
--
>

SELECT CHR(187 USING NCHAR_CS) FROM DUAL;

CH
--
>

NEW_TIME

Syntax
new_time::=

See Also: CHR on page 6-31

NCHR (number)

NEW_TIME (date , zone1 , zone2)

NEW_TIME

Functions 6-101

Purpose
NEW_TIME returns the date and time in time zone zone2 when date and time in

time zone zone1 are date . Before using this function, you must set the NLS_DATE_
FORMAT parameter to display 24-hour time.

The arguments zone1 and zone2 can be any of these text strings:

■ AST, ADT: Atlantic Standard or Daylight Time

■ BST, BDT: Bering Standard or Daylight Time

■ CST, CDT: Central Standard or Daylight Time

■ EST, EDT: Eastern Standard or Daylight Time

■ GMT: Greenwich Mean Time

■ HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.

■ MST, MDT: Mountain Standard or Daylight Time

■ NST: Newfoundland Standard Time

■ PST, PDT: Pacific Standard or Daylight Time

■ YST, YDT: Yukon Standard or Daylight Time

Examples
The following example returns an Atlantic Standard time, given the Pacific

Standard time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT =
 ’DD-MON-YYYY HH24:MI:SS’;

SELECT NEW_TIME(TO_DATE(
 ’11-10-99 01:23:45’, ’MM-DD-YY HH24:MI:SS’),
 ’AST’, ’PST’) "New Date and Time" FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

Note: This function takes as input only a limited number of time

zones. You can have access to a much greater number of time zones

by combining the FROM_TZ function and the datetime expression.

See FROM_TZ on page 6-71 and the example for "Datetime

Expressions" on page 4-9.

NEXT_DAY

6-102 Oracle9i SQL Reference

NEXT_DAY

Syntax
next_day::=

Purpose
NEXT_DAY returns the date of the first weekday named by char that is later than

the date date . The argument char must be a day of the week in the date language

of your session, either the full name or the abbreviation. The minimum number of

letters required is the number of letters in the abbreviated version. Any characters

immediately following the valid abbreviation are ignored. The return value has the

same hours, minutes, and seconds component as the argument date .

Examples
This example returns the date of the next Tuesday after February 2, 2001:

SELECT NEXT_DAY(’02-FEB-2001’,’TUESDAY’) "NEXT DAY"
 FROM DUAL;

NEXT DAY

06-FEB-2001

NLS_CHARSET_DECL_LEN

Syntax
nls_charset_decl_len::=

Purpose
NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters)

of an NCHAR column. The byte_count argument is the width of the column. The

char_set_id argument is the character set ID of the column.

NEXT_DAY (date , char)

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

NLS_CHARSET_ID

Functions 6-103

Examples
The following example returns the number of characters that are in a 200-byte

column when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN
 (200, nls_charset_id(’ja16eucfixed’))
 FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID(’JA16EUCFIXED’))
--
 100

NLS_CHARSET_ID

Syntax
nls_charset_id::=

Purpose
NLS_CHARSET_ID returns the character set ID number corresponding to character

set name text . The text argument is a run-time VARCHAR2value. The text value

’CHAR_CS’ returns the database character set ID number of the server. The text
value ’NCHAR_CS’ returns the national character set ID number of the server.

Invalid character set names return null.

Examples
The following example returns the character set ID of a character set:

SELECT NLS_CHARSET_ID(’ja16euc’)
 FROM DUAL;

NLS_CHARSET_ID(’JA16EUC’)

 830

See Also: Oracle9i Database Globalization Support Guide for a list of

character set names

NLS_CHARSET_ID (text)

NLS_CHARSET_NAME

6-104 Oracle9i SQL Reference

NLS_CHARSET_NAME

Syntax
nls_charset_name::=

Purpose
NLS_CHARSET_NAME returns the name of the character set corresponding to ID

number number . The character set name is returned as a VARCHAR2 value in the

database character set.

If number is not recognized as a valid character set ID, then this function returns

null.

Examples
The following example returns the chartacter set corresponding to character set ID

number 2:

SELECT NLS_CHARSET_NAME(2)
 FROM DUAL;

NLS_CH

WE8DEC

NLS_INITCAP

Syntax
nls_initcap::=

See Also: Oracle9i Database Globalization Support Guide for a list of

character set IDs

NLS_CHARSET_NAME (number)

NLS_INITCAP (char
, ’ nlsparam ’

)

NLS_INITCAP

Functions 6-105

Purpose
NLS_INITCAP returns char , with the first letter of each word in uppercase, all

other letters in lowercase. Words are delimited by white space or characters that are

not alphanumeric.

Both char and ’nlsparam’ can be any of the datatypes CHAR, VARCHAR2, NCHAR,
or NVARCHAR2. The string returned is of VARCHAR2 datatype and is in the same

character set as char .

The value of ’nlsparam’ can have this form:

’NLS_SORT = sort’

where sort is either a linguistic sort sequence or BINARY. The linguistic sort

sequence handles special linguistic requirements for case conversions. These

requirements can result in a return value of a different length than the char . If you

omit ’nlsparam’ , then this function uses the default sort sequence for your

session.

Examples
The following examples show how the linguistic sort sequence results in a different

return value from the function:

SELECT NLS_INITCAP
(’ijsland’) "InitCap" FROM DUAL;

InitCap

Ijsland

SELECT NLS_INITCAP
 (’ijsland’, ’NLS_SORT = XDutch’) "InitCap"
 FROM DUAL;

InitCap

IJsland

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

NLS_LOWER

6-106 Oracle9i SQL Reference

NLS_LOWER

Syntax
nls_lower::=

Purpose
NLS_LOWER returns char , with all letters lowercase.

Both char and ’nlsparam’ can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char .

The ’nlsparam’ can have the same form and serve the same purpose as in the

NLS_INITCAP function.

Examples
The following statement returns the character string ’citta’ ’ using the XGerman

linguistic sort sequence:

SELECT NLS_LOWER
 (’CITTA’’’, ’NLS_SORT = XGerman’) "Lowercase"
 FROM DUAL;

Lowerc

citta’

See Also: Oracle9i Database Globalization Support Guide for

information on sort sequences

NLS_LOWER (char
, ’ nlsparam ’

)

NLSSORT

Functions 6-107

NLSSORT

Syntax
nlssort::=

Purpose
NLSSORT returns the string of bytes used to sort char .

Both char and ’nlsparam’ can be any of the datatypes CHAR, VARCHAR2, NCHAR,
or NVARCHAR2. The string returned is of RAW datatype.

The value of ’nlsparams’ can have the form

’NLS_SORT = sort’

where sort is a linguistic sort sequence or BINARY. If you omit ’nlsparams’ ,

then this function uses the default sort sequence for your session. If you specify

BINARY, then this function returns char .

Examples
This function can be used to specify comparisons based on a linguistic sort

sequence rather than on the binary value of a string. The following example creates

a test table containing two values and shows how the values returned can be

ordered by the NLSSORT function:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO test VALUES (’Gaardiner’);
INSERT INTO test VALUES (’Gaberd’);

SELECT * FROM test ORDER BY name;

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

NLSSORT (char
, ’ nlsparam ’

)

NLS_UPPER

6-108 Oracle9i SQL Reference

NAME

Gaardiner
Gaberd

SELECT * FROM test
 ORDER BY NLSSORT(name, ’NLS_SORT = XDanish’);

NAME

Gaberd
Gaardiner

NLS_UPPER

Syntax
nls_upper::=

Purpose
NLS_UPPER returns char , with all letters uppercase.

Both char and ’nlsparam’ can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char .

The ’nlsparam’ can have the same form and serve the same purpose as in the

NLS_INITCAP function.

Examples
The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER (’große’) "Uppercase"
 FROM DUAL;

See Also: Oracle9i Database Globalization Support Guide for

information on sort sequences

NLS_UPPER (char
, ’ nlsparam ’

)

NTILE

Functions 6-109

Upper

GROßE

SELECT NLS_UPPER (’große’, ’NLS_SORT = XGerman’) "Uppercase"
 FROM DUAL;

Upperc

GROSSE

NTILE

Syntax
ntile::=

Purpose
NTILE is an analytic function. It divides an ordered dataset into a number of

buckets indicated by expr and assigns the appropriate bucket number to each row.

The buckets are numbered 1 through expr, and expr must resolve to a positive

constant for each partition.

The number of rows in the buckets can differ by at most 1. The remainder values

(the remainder of number of rows divided by buckets) are distributed one for each

bucket, starting with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the

number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTILE or any other analytic function for expr . That is, you can use

other built-in function expressions for expr , but you cannot nest analytic functions.

See Also: NLS_INITCAP on page 6-104

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

NTILE (expr) OVER (
query_partition_clause

order_by_clause)

NULLIF

6-110 Oracle9i SQL Reference

Examples
The following example divides into 4 buckets the values in the salary column of

the oe.employees table from Department 100. The salary column has 6 values

in this department, so the two extra values (the remainder of 6 / 4) are allocated to

buckets 1 and 2, which therefore have one more value than buckets 3 or 4.

SELECT last_name, salary, NTILE(4) OVER (ORDER BY salary DESC)
 AS quartile FROM employees
 WHERE department_id = 100;

LAST_NAME SALARY QUARTILE
------------------------- ---------- ----------
Greenberg 12000 1
Faviet 9000 1
Chen 8200 2
Urman 7800 2
Sciarra 7700 3
Popp 6900 4

NULLIF

Syntax
nullif::=

Purpose
NULLIF compares expr1 and expr2 . If they are equal, then the function returns

null. If they are not equal, then the function returns expr1 . You cannot specify the

literal NULL for expr1 .

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr 2 THEN NULL ELSE expr1 END

Examples
The following example selects those employees from the sample schema hr who

have changed jobs since they were hired, as indicated by a job_id in the job_
history table different from the current job_id in the employees table:

See Also: "CASE Expressions" on page 4-6

NULLIF (expr1 , expr2)

NUMTODSINTERVAL

Functions 6-111

SELECT e.last_name, NULLIF(e.job_id, j.job_id) "Old Job ID"
 FROM employees e, job_history j
 WHERE e.employee_id = j.employee_id
 ORDER BY last_name;

LAST_NAME Old Job ID
------------------------- ----------
De Haan AD_VP
Hartstein MK_MAN
Kaufling ST_MAN
Kochhar AD_VP
Kochhar AD_VP
Raphaely PU_MAN
Taylor SA_REP
Taylor
Whalen AD_ASST
Whalen

NUMTODSINTERVAL

Syntax
numtodsinterval::=

Purpose
NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. n can be a

number or an expression resolving to a number. char_expr can be of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 datatype. The value for char_expr specifies

the unit of n and must resolve to one of the following string values:

■ ’DAY’

■ ’HOUR’

■ ’MINUTE’

■ ’SECOND’

char_expr is case insensitive. Leading and trailing values within the parentheses

are ignored. By default, precision of the return is 9.

NUMTODSINTERVAL (n , ’ char_expr ’)

NUMTOYMINTERVAL

6-112 Oracle9i SQL Reference

Examples
The following example calculates, for each employee, the number of employees

hired by the same manager within the last 100 days from his/her hire date:

SELECT manager_id, last_name, hire_date,
 COUNT(*) OVER (PARTITION BY manager_id ORDER BY hire_date
 RANGE NUMTODSINTERVAL(100, ’day’) PRECEDING) AS t_count
 FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE T_COUNT
---------- ------------------------- --------- ----------
 100 Kochhar 21-SEP-89 1
 100 De Haan 13-JAN-93 1
 100 Raphaely 07-DEC-94 1
 100 Kaufling 01-MAY-95 1
 100 Hartstein 17-FEB-96 1
.
.
.
 149 Grant 24-MAY-99 1
 149 Johnson 04-JAN-00 1
 201 Goyal 17-AUG-97 1
 205 Gietz 07-JUN-94 1
 King 17-JUN-87 1

NUMTOYMINTERVAL

Syntax
numtoyminterval::=

Purpose
NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH literal. n
can be a number or an expression resolving to a number. char_expr can be of

CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype. The value for char_expr
specifies the unit of n, and must resolve to one of the following string values:

■ ’YEAR’

■ ’MONTH’

char_expr is case insensitive. Leading and trailing values within the parentheses

are ignored. By default, precision of the return is 9.

NUMTOYMINTERVAL (n , ’ char_expr ’)

NVL

Functions 6-113

Examples
The following example calculates, for each employee, the total salary of employees

hired in the past one year from his/her hire date.

SELECT last_name, hire_date, salary, SUM(salary)
 OVER (ORDER BY hire_date
 RANGE NUMTOYMINTERVAL(1,’year’) PRECEDING) AS t_sal
 FROM employees;

LAST_NAME HIRE_DATE SALARY T_SAL
------------------------- --------- ---------- ----------
King 17-JUN-87 24000 24000
Whalen 17-SEP-87 4400 28400
Kochhar 21-SEP-89 17000 17000
.
.
.
Markle 08-MAR-00 2200 112400
Ande 24-MAR-00 6400 106500
Banda 21-APR-00 6200 109400
Kumar 21-APR-00 6100 109400

NVL

Syntax
nvl::=

Purpose
NVL lets you replace a null (blank) with a string in the results of a query. If expr1 is

null, then NVL returns expr2 . If expr1 is not null, then NVL returns expr1 . The

arguments expr1 and expr2 can have any datatype. If their datatypes are

different, then Oracle converts expr2 to the datatype of expr1 before comparing

them.

The datatype of the return value is always the same as the datatype of expr1 ,

unless expr1 is character data, in which case the return value’s datatype is

VARCHAR2 and is in the character set of expr1 .

NVL (expr1 , expr2)

NVL2

6-114 Oracle9i SQL Reference

Examples
The following example returns a list of employee names and commissions,

substituting "Not Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR(commission_pct), ’Not Applicable’)
 "COMMISSION" FROM employees
 WHERE last_name LIKE ’B%’
 ORDER BY last_name;

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom .2
Bull Not Applicable

NVL2

Syntax
nvl2::=

Purpose
NVL2 lets you determine the value returned by a query based on whether a

specified expression is null or not null. If expr1 is not null, then NVL2 returns

expr2 . If expr1 is null, then NVL2 returns expr3 . The argument expr1 can have

any datatype. The arguments expr2 and expr3 can have any datatypes except

LONG.

If the datatypes of expr2 and expr3 are different, then Oracle converts expr3 to

the datatype of expr2 before comparing them unless expr3 is a null constant. In

that case, a datatype conversion is not necessary.

The datatype of the return value is always the same as the datatype of expr2 ,

unless expr2 is character data, in which case the return value’s datatype is

VARCHAR2.

NVL2 (expr1 , expr2 , expr3)

PATH

Functions 6-115

Examples
The following example shows whether the income of some employees is made up

of salary plus commission, or just salary, depending on whether the commission_
pct column of employees is null or not.

SELECT last_name, salary, NVL2(commission_pct,
 salary + (salary * commission_pct), salary) income
 FROM employees WHERE last_name like ’B%’
 ORDER BY last_name;

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900
Banda 6200 6882
Bates 7300 8468
Bell 4000 4000
Bernstein 9500 11970
Bissot 3300 3300
Bloom 10000 12100
Bull 4100 4100

PATH

Syntax
path::=

Purpose
PATH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the relative path that leads to the resource specified in the

parent condition.

The correlation number can be any number and is used to correlate this ancillary

function with its primary condition. Values less than 1 are treated as 1.

See Also:

■ EQUALS_PATH on page 5-13 UNDER_PATH on page 5-20

■ the related function DEPTH on page 6-57

PATH (correlation_integer)

PERCENT_RANK

6-116 Oracle9i SQL Reference

Examples
The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions,

one of which is PATH. The following example shows the use of both ancillary

functions. The example assumes the existence of the XMLSchema

warehouses.xsd (created in "Using XML in SQL Statements" on page D-11).

SELECT PATH(1), DEPTH(2)
 FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, ’/sys/schemas/OE’, 1)=1
 AND UNDER_PATH(res, ’/sys/schemas/OE’, 2)=1;

PATH(1) DEPTH(2)
-------------------------------- --------
/www.oracle.com 1

/www.oracle.com/xwarehouses.xsd 2

PERCENT_RANK

Aggregate Syntax
percent_rank_aggregate::=

Analytic Syntax
percent_rank_analytic::=

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

PERCENT_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

PERCENT_RANK () OVER (
query_partition_clause

order_by_clause)

PERCENT_RANK

Functions 6-117

Purpose
PERCENT_RANK is similar to the CUME_DIST (cumulative distribution) function.

The range of values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in

any set has a PERCENT_RANK of 0.

■ As an aggregate function, PERCENT_RANK calculates, for a hypothetical row R

identified by the arguments of the function and a corresponding sort

specification, the rank of row R minus 1 divided by the number of rows in the

aggregate group. This calculation is made as if the hypothetical row R were

inserted into the group of rows over which Oracle is to aggregate. The

arguments of the function identify a single hypothetical row within each

aggregate group. Therefore, they must all evaluate to constant expressions

within each aggregate group. The constant argument expressions and the

expressions in the ORDER BY clause of the aggregate match by position.

Therefore the number of arguments must be the same and their types must be

compatible.

■ As an analytic function, for a row R, PERCENT_RANK calculates the rank of R

minus 1, divided by 1 less than the number of rows being evaluated (the entire

query result set or a partition).

Aggregate Example
The following example calculates the percent rank of a hypothetical employee in the

sample table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT PERCENT_RANK(15000, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Percent-Rank"
 FROM employees;

Percent-Rank

 .971962617

Analytic Example
The following example calculates, for each employee, the percent rank of the
employee’s salary within the department: SELECT department_id, last_name,
salary,
 PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC) AS pr
 FROM employees
 ORDER BY pr, salary;

PERCENTILE_CONT

6-118 Oracle9i SQL Reference

DEPARTMENT_ID LAST_NAME SALARY PR
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 40 Marvis 6500 0
.
.
.
 80 Vishney 10500 .176470588
 50 Everett 3900 .181818182
 30 Khoo 3100 .2
.
.
.
 80 Johnson 6200 .941176471
 50 Markle 2200 .954545455
 50 Philtanker 2200 .954545455
 50 Olson 2100 1
.
.
.

PERCENTILE_CONT

Syntax
percentile_cont::=

Purpose
PERCENTILE_CONT is an inverse distribution function that assumes a continuous

distribution model. It takes a percentile value and a sort specification, and returns

an interpolated value that would fall into that percentile value with respect to the

sort specification. Nulls are ignored in the calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a

percentile value. This expr must be constant within each aggregation group. The

ORDER BY clause takes a single expression that must be a numeric or datetime

value, as these are the types over which Oracle can perform interpolation.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions of the OVER clause

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC
)

OVER (query_partition_clause)

PERCENTILE_CONT

Functions 6-119

The result of PERCENTILE_CONT is computed by linear interpolation between

values after ordering them. Using the percentile value (P) and the number of rows

(N) in the aggregation group, we compute the row number we are interested in

after ordering the rows with respect to the sort specification. This row number (RN)

is computed according to the formula RN = (1+ (P*(N-1)) . The final result of

the aggregate function is computed by linear interpolation between the values from

rows at row numbers CRN = CEILING(RN) and FRN = FLOOR(RN) .

The final result will be:

 if (CRN = FRN = RN) then
 (value of expression from row at RN)
 else
 (CRN - RN) * (value of expression for row at FRN) +
 (RN - FRN) * (value of expression for row at CRN)

You can use the PERCENTILE_CONT function as an analytic function. You can

specify only the query_partitioning_clause in its OVER clause. It returns, for

each row, the value that would fall into the specified percentile among a set of

values within each partition.

Aggregate Example
The following example computes the median salary in each department:

SELECT department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
 "Median cont",
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
 "Median disc"
 FROM employees GROUP BY department_id;

DEPARTMENT_ID Median-cont Median-disc
------------- ----------- -----------
 10 4400 4400
 20 9500 13000
 30 2850 2900
 40 6500 6500
 50 3100 3100
 60 4800 4800
 70 10000 10000
 80 8800 8800
 90 17000 17000
 100 8000 8200
 110 10150 12000

PERCENTILE_CONT

6-120 Oracle9i SQL Reference

PERCENTILE_CONT and PERCENTILE_DISC may return different results.

PERCENTILE_CONT returns a computed result after doing linear interpolation.

PERCENTILE_DISC simply returns a value from the set of values that are

aggregated over. When the percentile value is 0.5, as in this example, PERCENTILE_
CONT returns the average of the two middle values for groups with even number of

elements, whereas PERCENTILE_DISC returns the value of the first one among the

two middle values. For aggregate groups with an odd number of elements, both

functions return the value of the middle element.

Analytic Example
In the following example, the median for Department 60 is 4800, which has a

corresponding percentile (Percent_Rank) of 0.5. None of the salaries in

Department 30 have a percentile of 0.5, so the median value must be interpolated

between 2900 (percentile 0.4) and 2800 (percentile 0.6), which evaluates to 2850.

SELECT last_name, salary, department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Cont",
 PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC)
"Percent_Rank"
FROM employees WHERE department_id IN (30, 60);

LAST_NAME SALARY DEPARTMENT_ID Percentile_Cont Percent_Rank
------------- ---------- ------------- --------------- ------------
Raphaely 11000 30 2850 0
Khoo 3100 30 2850 .2
Baida 2900 30 2850 .4
Tobias 2800 30 2850 .6
Himuro 2600 30 2850 .8
Colmenares 2500 30 2850 1
Hunold 9000 60 4800 0
Ernst 6000 60 4800 .25
Austin 4800 60 4800 .5
Pataballa 4800 60 4800 .5
Lorentz 4200 60 4800 1

PERCENTILE_DISC

Functions 6-121

PERCENTILE_DISC

Syntax
percentile_disc::=

Purpose
PERCENTILE_DISC is an inverse distribution function that assumes a discrete

distribution model. It takes a percentile value and a sort specification and returns an

element from the set. Nulls are ignored in the calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a

percentile value. This expression must be constant within each aggregate group.

The ORDER BY clause takes a single expression that can be of any type that can be

sorted.

For a given percentile value P, PERCENTILE_DISC function sorts the values of the

expression in the ORDER BY clause, and returns the one with the smallest CUME_
DIST value (with respect to the same sort specification) that is greater than or equal

to P.

Aggregate Example
See aggregate example for PERCENTILE_CONT on page 6-118.

Analytic Example
The following example calculates the median discrete percentile of the salary of

each employee in the sample table hr.employees :

SELECT last_name, salary, department_id,
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Disc",
 CUME_DIST() OVER (PARTITION BY department_id

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions of the OVER clause

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC
)

OVER (query_partition_clause)

POWER

6-122 Oracle9i SQL Reference

 ORDER BY salary DESC) "Cume_Dist"
FROM employees where department_id in (30, 60);

LAST_NAME SALARY DEPARTMENT_ID Percentile_Disc Cume_Dist
------------- ---------- ------------- --------------- ----------
Raphaely 11000 30 2900 .166666667
Khoo 3100 30 2900 .333333333
Baida 2900 30 2900 .5
Tobias 2800 30 2900 .666666667
Himuro 2600 30 2900 .833333333
Colmenares 2500 30 2900 1
Hunold 9000 60 4800 .2
Ernst 6000 60 4800 .4
Austin 4800 60 4800 .8
Pataballa 4800 60 4800 .8
Lorentz 4200 60 4800 1

The median value for Department 30 is 2900, which is the value whose

corresponding percentile (Cume_Dist) is the smallest value greater than or equal to

0.5. The median value for Department 60 is 4800, which is the value whose

corresponding percentile is the smallest value greater than or equal to 0.5.

POWER

Syntax
power::=

Purpose
POWER returns m raised to the nth power. The base m and the exponent n can be any

numbers, but if m is negative, then n must be an integer.

Examples
The following example returns 3 squared:

SELECT POWER(3,2) "Raised" FROM DUAL;

 Raised

 9

POWER (m , n)

RANK

Functions 6-123

RANK

Aggregate Syntax
rank_aggregate::=

Analytic Syntax
rank_analytic::=

Purpose
RANKcalculates the rank of a value in a group of values. Rows with equal values for

the ranking criteria receive the same rank. Oracle then adds the number of tied rows

to the tied rank to calculate the next rank. Therefore, the ranks may not be

consecutive numbers.

■ As an aggregate function, RANK calculates the rank of a hypothetical row

identified by the arguments of the function with respect to a given sort

specification. The arguments of the function must all evaluate to constant

expressions within each aggregate group, because they identify a single row

within each group. The constant argument expressions and the expressions in

the ORDER BY clause of the aggregate match by position. Therefore, the number

of arguments must be the same and their types must be compatible.

■ As an analytic function, RANK computes the rank of each row returned from a

query with respect to the other rows returned by the query, based on the values

of the value_exprs in the order_by_clause .

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

RANK () OVER (
query_partition_clause

order_by_clause)

RANK

6-124 Oracle9i SQL Reference

Aggregate Example
The following example calculates the rank of a hypothetical employee in the sample

table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Rank"
 FROM employees;

 Rank

 105

Similarly, the following query returns the rank for a $15,500 salary among the

employee salaries:

SELECT RANK(15500) WITHIN GROUP
 (ORDER BY salary DESC) "Rank of 15500"
 FROM employees;

Rank of 15500

 4

Analytic Example
The following statement ranks the employees in the sample hr schema within each

department based on their salary and commission. Identical salary values receive

the same rank and cause nonconsecutive ranks. Compare this example with the

example for DENSE_RANK on page 6-55.

SELECT department_id, last_name, salary, commission_pct,
 RANK() OVER (PARTITION BY department_id
 ORDER BY salary DESC, commission_pct) "Rank"
 FROM employees;

DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank
------------- --------------- ---------- -------------- ----------
 10 Whalen 4400 1
 20 Hartstein 13000 1
 20 Fay 6000 2
 30 Raphaely 11000 1
 30 Khoo 3100 2
 30 Baida 2900 3
 30 Tobias 2800 4
.
.
.

RATIO_TO_REPORT

Functions 6-125

RATIO_TO_REPORT

Syntax
ratio_to_report::=

Purpose
RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to the

sum of a set of values. If expr evaluates to null, then the ratio-to-report value also

evaluates to null.

The set of values is determined by the query_partition_clause . If you omit

that clause, then the ratio-to-report is computed over all rows returned by the query.

You cannot use RATIO_TO_REPORTor any other analytic function for expr . That is,

you can use other built-in function expressions for expr , but you cannot nest

analytic functions.

Examples
The following example calculates the ratio-to-report value of each purchasing

clerk’s salary to the total of all purchasing clerks’ salaries:

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
 FROM employees
 WHERE job_id = ’PU_CLERK’;

LAST_NAME SALARY RR
------------------------- ---------- ----------
Khoo 3100 .223021583
Baida 2900 .208633094
Tobias 2800 .201438849
Himuro 2600 .18705036
Colmenares 2500 .179856115

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

RATIO_TO_REPORT (expr) OVER (
query_partition_clause

)

RAWTOHEX

6-126 Oracle9i SQL Reference

RAWTOHEX

Syntax
rawtohex::=

Purpose
RAWTOHEXconverts raw to a character value containing its hexadecimal equivalent.

The raw argument can be either RAW or BLOB datatype.

Examples
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics;

Graphics

7D

RAWTONHEX

Syntax
rawtonhex::=

Purpose
RAWTONHEX converts raw to an NVARCHAR2 character value containing its

hexadecimal equivalent.

See Also: "RAW and LONG RAW Datatypes" on page 2-27 and

HEXTORAW on page 6-77

RAWTOHEX (raw)

RAWTONHEX (raw)

REF

Functions 6-127

Examples
The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTONHEX(raw_column),
 DUMP (RAWTONHEX (raw_column)) "DUMP"
 FROM graphics;

RAWTONHEX(RA) DUMP
----------------------- ------------------------------
7D Typ=1 Len=4: 0,55,0,68

REF

Syntax
ref::=

Purpose
REF takes as its argument a correlation variable (table alias) associated with a row

of an object table or an object view. A REF value is returned for the object instance

that is bound to the variable or row.

Examples
The sample schema oe contains a type called cust_address_typ , described as

follows:

 Attribute Type
 ----------------------------- ----------------
 STREET_ADDRESS VARCHAR2(40)
 POSTAL_CODE VARCHAR2(10)
 CITY VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(10)
 COUNTRY_ID CHAR(2)

The following example creates a table based on the sample type oe.cust_
address_typ , inserts a row into the table, and retrieves a REF value for the object

instance of the type in the addresses table:

REF (correlation_variable)

REFTOHEX

6-128 Oracle9i SQL Reference

CREATE TABLE addresses OF cust_address_typ;

INSERT INTO addresses VALUES (
 ’123 First Street’, ’4GF H1J’, ’Our Town’, ’Ourcounty’, ’US’);

SELECT REF(e) FROM addresses e;

REF(E)

00002802097CD1261E51925B60E0340800208254367CD1261E51905B60E034080020825436010101820000

REFTOHEX

Syntax
reftohex::=

Purpose
REFTOHEXconverts argument expr to a character value containing its hexadecimal

equivalent. expr must return a REF.

Examples
The sample schema oe contains a warehouse_typ . The following example builds

on that type to illustrate how to convert the REF value of a column to a character

value containing its hexadecimal equivalent:

CREATE TABLE warehouse_table OF warehouse_typ
 (PRIMARY KEY (warehouse_id));

CREATE TABLE location_table
 (location_number NUMBER, building REF warehouse_typ
 SCOPE IS warehouse_table);

INSERT INTO warehouse_table VALUES (1, ’Downtown’, 99);

INSERT INTO location_table SELECT 10, REF(w) FROM warehouse_table w;

SELECT REFTOHEX(building) FROM location_table;

See Also: Oracle9i Database Concepts

REFTOHEX (expr)

REGR_ (Linear Regression) Functions

Functions 6-129

REFTOHEX(BUILDING)
--
0000220208859B5E9255C31760E034080020825436859B5E9255C21760E034080020825436

REGR_ (Linear Regression) Functions
The linear regression functions are:

■ REGR_SLOPE

■ REGR_INTERCEPT

■ REGR_COUNT

■ REGR_R2

■ REGR_AVGX

■ REGR_AVGY

■ REGR_SXX

■ REGR_SYY

■ REGR_SXY

Syntax
linear_regr::=

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)
OVER (analytic_clause)

REGR_ (Linear Regression) Functions

6-130 Oracle9i SQL Reference

Purpose
The linear regression functions fit an ordinary-least-squares regression line to a set

of number pairs. You can use them as both aggregate and analytic functions.

Oracle applies the function to the set of (expr1 , expr2) pairs after eliminating all

pairs for which either expr1 or expr2 is null. Oracle computes all the regression

functions simultaneously during a single pass through the data.

expr1 is interpreted as a value of the dependent variable (a "y value"), and expr2
is interpreted as a value of the independent variable (an "x value"). Both expressions

must be numbers.

■ REGR_SLOPEreturns the slope of the line. The return value is a number and can

be null. After the elimination of null (expr1 , expr2) pairs, it makes the

following computation:

COVAR_POP(expr1, expr2) / VAR_POP(expr2)

■ REGR_INTERCEPT returns the y-intercept of the regression line. The return

value is a number and can be null. After the elimination of null (expr1 , expr2)

pairs, it makes the following computation:

AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)

■ REGR_COUNT returns an integer that is the number of non-null number pairs

used to fit the regression line.

■ REGR_R2 returns the coefficient of determination (also called "R-squared" or

"goodness of fit") for the regression. The return value is a number and can be

null. VAR_POP(expr1) and VAR_POP(expr2) are evaluated after the

elimination of null pairs. The return values are:

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

REGR_ (Linear Regression) Functions

Functions 6-131

 NULL if VAR_POP(expr2) = 0

 1 if VAR_POP(expr1) = 0 and
 VAR_POP(expr2) != 0

POWER(CORR(expr1,expr),2) if VAR_POP(expr1) > 0 and
 VAR_POP(expr2 != 0

All of the remaining regression functions return a number and can be null:

■ REGR_AVGX evaluates the average of the independent variable (expr2) of the

regression line. It makes the following computation after the elimination of null

(expr1 , expr2) pairs:

AVG(expr2)

■ REGR_AVGY evaluates the average of the dependent variable (expr1) of the

regression line. It makes the following computation after the elimination of null

(expr1 , expr2) pairs:

AVG(expr1)

REGR_SXY, REGR_SXX, REGR_SYY are auxiliary functions that are used to compute

various diagnostic statistics.

■ REGR_SXX makes the following computation after the elimination of null

(expr1 , expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr2)

■ REGR_SYY makes the following computation after the elimination of null

(expr1 , expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr1)

■ REGR_SXY makes the following computation after the elimination of null

(expr1 , expr2) pairs:

REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)

The following examples are based on the sample tables sh.sales and

sh.products .

General Linear Regression Example
The following example provides a comparison of the various linear regression

functions:

REGR_ (Linear Regression) Functions

6-132 Oracle9i SQL Reference

SELECT
s.channel_id,
REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE ,
REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT ,
REGR_R2(s.quantity_sold, p.prod_list_price) RSQR ,
REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT ,
REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP ,
REGR_AVGY(s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sales s, products p
WHERE s.prod_id=p.prod_id AND
p.prod_category=’Men’ AND
s.time_id=to_DATE(’10-OCT-2000’)
GROUP BY s.channel_id
;

C SLOPE INTCPT RSQR COUNT AVGLISTP AVGQSOLD
- ---------- ---------- ---------- ---------- ---------- ----------
C -.03529838 16.4548382 .217277422 17 87.8764706 13.3529412
I -.0108044 13.3082392 .028398018 43 116.77907 12.0465116
P -.01729665 11.3634927 .026191191 33 80.5818182 9.96969697
S -.01277499 13.488506 .000473089 71 52.571831 12.8169014
T -.01026734 5.01019929 .064283727 21 75.2 4.23809524

REGR_SLOPE and REGR_INTERCEPT Examples
The following example determines the slope and intercept of the regression line for

the amount of sales and sale profits for each fiscal year:

SELECT t.fiscal_year,
 REGR_SLOPE(s.amount_sold, s.quantity_sold) "Slope",
 REGR_INTERCEPT(s.amount_sold, s.quantity_sold) "Intercept"
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.fiscal_year;

FISCAL_YEAR Slope Intercept
----------- ---------- ----------
 1998 49.3934247 71.6015479
 1999 49.3443482 70.1502601
 2000 49.2262135 75.0287476

The following example determines the cumulative slope and cumulative intercept

of the regression line for the amount of and quantity of sales for two products (270

and 260) for weekend transactions (day_number_in_week = 6 or 7) during the last

three weeks (fiscal_week_number of 50, 51, or 52) of 1998:

REGR_ (Linear Regression) Functions

Functions 6-133

SELECT t.fiscal_month_number "Month", t.day_number_in_month "Day",
 REGR_SLOPE(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_SLOPE,
 REGR_INTERCEPT(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_ICPT
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND s.prod_id IN (270, 260)
 AND t.fiscal_year=1998
 AND t.fiscal_week_number IN (50, 51, 52)
 AND t.day_number_in_week IN (6,7)
 ORDER BY t.fiscal_month_desc, t.day_number_in_month;

 Month Day CUM_SLOPE CUM_ICPT
---------- ---------- ---------- ----------
 12 12 -68 1872
 12 12 -68 1872
 12 13 -20.244898 1254.36735
 12 13 -20.244898 1254.36735
 12 19 -18.826087 1287
 12 20 62.4561404 125.28655
 12 20 62.4561404 125.28655
 12 20 62.4561404 125.28655
 12 20 62.4561404 125.28655
 12 26 67.2658228 58.9712313
 12 26 67.2658228 58.9712313
 12 27 37.5245541 284.958221
 12 27 37.5245541 284.958221
 12 27 37.5245541 284.958221

REGR_COUNT Examples
The following example returns the number of customers in the customers table

(out of a total of 319) who have account managers.

SELECT REGR_COUNT(customer_id, account_mgr_id) FROM customers;

REGR_COUNT(CUSTOMER_ID,ACCOUNT_MGR_ID)

 231

The following example computes the cumulative number of transactions for each

day in April of 1998:

SELECT UNIQUE t.day_number_in_month,
 REGR_COUNT(s.amount_sold, s.quantity_sold)

REGR_ (Linear Regression) Functions

6-134 Oracle9i SQL Reference

 OVER (PARTITION BY t.fiscal_month_number
 ORDER BY t.day_number_in_month) "Regr_Count"
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.fiscal_year = 1998 AND t.fiscal_month_number = 4;

DAY_NUMBER_IN_MONTH Regr_Count
------------------- ----------
 1 825
 2 1650
 3 2475
 4 3300
.
.
.
 26 21450
 30 22200

REGR_R2 Examples
The following example computes the coefficient of determination of the regression

line for amount of sales greater than 5000 and quantity sold:

SELECT REGR_R2(amount_sold, quantity_sold) FROM sales
 WHERE amount_sold > 5000;

REGR_R2(AMOUNT_SOLD,QUANTITY_SOLD)

 .024087453

The following example computes the cumulative coefficient of determination of the

regression line for monthly sales amounts and quantities for each month during

1998:

SELECT t.fiscal_month_number,
 REGR_R2(SUM(s.amount_sold), SUM(s.quantity_sold))
 OVER (ORDER BY t.fiscal_month_number) "Regr_R2"
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND t.fiscal_year = 1998
 GROUP BY t.fiscal_month_number
 ORDER BY t.fiscal_month_number;

FISCAL_MONTH_NUMBER Regr_R2
------------------- ----------
 1
 2 1

REGR_ (Linear Regression) Functions

Functions 6-135

 3 .927372984
 4 .807019972
 5 .932745567
 6 .94682861
 7 .965342011
 8 .955768075
 9 .959542618
 10 .938618575
 11 .880931415
 12 .882769189

REGR_AVGY and REGR_AVGX Examples
The following example calculates the regression average for the amount and

quantity of sales for each year:

SELECT t.fiscal_year,
 REGR_AVGY(s.amount_sold, s.quantity_sold) "Regr_AvgY",
 REGR_AVGX(s.amount_sold, s.quantity_sold) "Regr_AvgX"
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.fiscal_year;

FISCAL_YEAR Regr_AvgY Regr_AvgX
----------- ---------- ----------
 1998 716.602044 13.0584283
 1999 714.910831 13.0665536
 2000 717.331304 13.0479781

The following example calculates the cumulative averages for the amount and

quantity of sales profits for product 260 during the last two weeks of December

1998:

SELECT t.day_number_in_month,
 REGR_AVGY(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
 "Regr_AvgY",
 REGR_AVGX(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
 "Regr_AvgX"
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 AND s.prod_id = 260
 AND t.fiscal_month_desc = ’1998-12’
 AND t.fiscal_week_number IN (51, 52)
 ORDER BY t.day_number_in_month;

REGR_ (Linear Regression) Functions

6-136 Oracle9i SQL Reference

DAY_NUMBER_IN_MONTH Regr_AvgY Regr_AvgX
------------------- ---------- ----------
 14 882 24.5
 14 882 24.5
 15 801 22.25
 15 801 22.25
 16 777.6 21.6
 18 642.857143 17.8571429
 18 642.857143 17.8571429
 20 589.5 16.375
 21 544 15.1111111
 22 592.363636 16.4545455
 22 592.363636 16.4545455
 24 553.846154 15.3846154
 24 553.846154 15.3846154
 26 522 14.5
 27 578.4 16.0666667

REGR_SXY, REGR_SXX, and REGR_SYY Examples
The following example computes the REGR_SXY, REGR_SXX, and REGR_SYYvalues

for the regression analysis of amount and quantity of sales for each year in the

sample sh.sales table:

SELECT t.fiscal_year,
 REGR_SXY(s.amount_sold, s.quantity_sold) "Regr_sxy",
 REGR_SYY(s.amount_sold, s.quantity_sold) "Regr_syy",
 REGR_SXX(s.amount_sold, s.quantity_sold) "Regr_sxx"
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.fiscal_year;

FISCAL_YEAR Regr_sxy Regr_syy Regr_sxx
----------- ---------- ---------- ----------
 1998 1620591607 2.3328E+11 32809865.2
 1999 1955866724 2.7695E+11 39637097.2
 2000 2127877398 3.0630E+11 43226509.7

The following example computes the cumulative REGR_SXY, REGR_SXX, and

REGR_SYYstatistics for amount and quantity of weekend sales for products 270 and

260 for each year-month value in 1998:

SELECT t.day_number_in_month,
 REGR_SXY(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxy",

REPLACE

Functions 6-137

 REGR_SYY(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_syy",
 REGR_SXX(s.amount_sold, s.quantity_sold)
 OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxx"
FROM sales s, times t
WHERE s.time_id = t.time_id
 AND prod_id IN (270, 260)
 AND t.fiscal_month_desc = ’1998-02’
 AND t.day_number_in_week IN (6,7)
ORDER BY t.day_number_in_month;

DAY_NUMBER_IN_MONTH Regr_sxy Regr_syy Regr_sxx
------------------- ---------- ---------- ----------
 1 130973783 1.8916E+10 2577797.94
 .
 .
 .
 30 130973783 1.8916E+10 2577797.94

REPLACE

Syntax
replace::=

Purpose
REPLACE returns char with every occurrence of search_string replaced with

replacement_string . If replacement_string is omitted or null, then all

occurrences of search_string are removed. If search_string is null, then

char is returned.

Both search_string and replacement_string , as well as char , can be any of

the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string

returned is of VARCHAR2 datatype and is in the same character set as char .

This function provides functionality related to that provided by the TRANSLATE
function. TRANSLATE provides single-character, one-to-one substitution. REPLACE
lets you substitute one string for another as well as to remove character strings.

See Also: TRANSLATE on page 6-188

REPLACE (char , search_string
, replacement_string

)

ROUND (number)

6-138 Oracle9i SQL Reference

Examples
The following example replaces occurrences of "J" with "BL":

SELECT REPLACE(’JACK and JUE’,’J’,’BL’) "Changes"
 FROM DUAL;

Changes

BLACK and BLUE

ROUND (number)

Syntax
round_number::=

Purpose
ROUND returns number rounded to integer places right of the decimal point. If

integer is omitted, then number is rounded to 0 places. integer can be negative

to round off digits left of the decimal point. integer must be an integer.

Examples
The following example rounds a number to one decimal point:

SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

The following example rounds a number one digit to the left of the decimal point:

SELECT ROUND(15.193,-1) "Round" FROM DUAL;

 Round

 20

ROUND (number
, integer

)

ROW_NUMBER

Functions 6-139

ROUND (date)

Syntax
round_date::=

Purpose
ROUND returns date rounded to the unit specified by the format model fmt . If you

omit fmt , then date is rounded to the nearest day.

Examples
The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE (’27-OCT-00’),’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-01

ROW_NUMBER

Syntax
row_number::=

See Also: "ROUND and TRUNC Date Functions" on page 6-221

for the permitted format models to use in fmt

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

ROUND (date
, fmt

)

ROW_NUMBER () OVER (
query_partition_clause

order_by_clause)

ROW_NUMBER

6-140 Oracle9i SQL Reference

Purpose
ROW_NUMBER is an analytic function. It assigns a unique number to each row to

which it is applied (either each row in the partition or each row returned by the

query), in the ordered sequence of rows specified in the order_by_clause ,

beginning with 1.

You cannot use ROW_NUMBER or any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic

functions.

Examples
For each department in the sample table oe.employees , the following example

assigns numbers to each row in order of employee’s hire date:

SELECT department_id, last_name, employee_id, ROW_NUMBER()
 OVER (PARTITION BY department_id ORDER BY employee_id) AS emp_id
 FROM employees;

DEPARTMENT_ID LAST_NAME EMPLOYEE_ID EMP_ID
------------- ------------------------- ----------- ----------
 10 Whalen 200 1
 20 Hartstein 201 1
 20 Fay 202 2
 30 Raphaely 114 1
 30 Khoo 115 2
 30 Baida 116 3
 30 Tobias 117 4
 30 Himuro 118 5
 30 Colmenares 119 6
 40 Mavris 203 1
.
.
.
 100 Popp 113 6
 110 Higgins 205 1
 110 Gietz 206 2

ROW_NUMBER is a nondeterministic function. However, employee_id is a unique

key, so the results of this application of the function are deterministic.

See Also: "About SQL Expressions" on page 4-2 for information

on valid forms of expr

See Also: FIRST_VALUE on page 6-69 and LAST_VALUE on

page 6-84 for examples of nondeterministic behavior

ROWIDTONCHAR

Functions 6-141

ROWIDTOCHAR

Syntax
rowidtochar::=

Purpose
ROWIDTOCHAR converts a rowid value to VARCHAR2 datatype. The result of this

conversion is always 18 characters long.

Examples
The following example converts a rowid value in the employees table to a

character value. (Results vary for each build of the sample database.)

SELECT ROWID FROM employees
 WHERE ROWIDTOCHAR(ROWID) LIKE ’%SAAb%’;

ROWID

AAAFfIAAFAAAABSAAb

ROWIDTONCHAR

Syntax
rowidtonchar::=

Purpose
ROWIDTONCHAR converts a rowid value to NVARCHAR2 datatype. The result of this

conversion is always 18 characters long.

Examples
SELECT LENGTHB(ROWIDTONCHAR(ROWID)), ROWIDTONCHAR(ROWID)
 FROM employees;

ROWIDTOCHAR (rowid)

ROWIDTONCHAR (rowid)

RPAD

6-142 Oracle9i SQL Reference

LENGTHB(ROWIDTONCHAR(ROWID)) ROWIDTONCHAR(ROWID
---------------------------- ------------------
 36 AAAFfIAAFAAAABSAAA
.
.
.

RPAD

Syntax
rpad::=

Purpose
RPAD returns char1 , right-padded to length n with char2 , replicated as many

times as necessary; char2 defaults to a single blank. If char1 is longer than n, then

this function returns the portion of char1 that fits in n.

Both char1 and char2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char1 .

The argument n is the total length of the return value as it is displayed on your

terminal screen. In most character sets, this is also the number of characters in the

return value. However, in some multibyte character sets, the display length of a

character string can differ from the number of characters in the string.

Examples
The following example right-pads a name with the letters "ab" until it is 12

characters long:

SELECT RPAD(’MORRISON’,12,’ab’) "RPAD example"
 FROM DUAL;

RPAD example

MORRISONabab

RPAD (char1 , n
, char2

)

SESSIONTIMEZONE

Functions 6-143

RTRIM

Syntax
rtrim::=

Purpose
RTRIM returns char , with all the rightmost characters that appear in set removed;

set defaults to a single blank. If char is a character literal, then you must enclose it

in single quotes. RTRIM works similarly to LTRIM.

Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is

in the same character set as char .

Examples
The following example trims the letters "xy" from the right side of a string:

SELECT RTRIM(’BROWNINGyxXxy’,’xy’) "RTRIM example"
 FROM DUAL;

RTRIM examp

BROWNINGyxX

SESSIONTIMEZONE

Syntax
sessiontimezone::=

Purpose
SESSIONTIMEZONE returns the value of the current session’s time zone. The return

type is a time zone offset (a character type in the format ’[+|]TZH:TZM’) or a time

See Also: LTRIM on page 6-93

RTRIM (char
, set

)

SESSIONTIMEZONE

SIGN

6-144 Oracle9i SQL Reference

zone region name, depending on how the user specified the session time zone value

in the most recent ALTER SESSION statement.

Examples
The following example returns the current session’s time zone:

SELECT SESSIONTIMEZONE FROM DUAL;

SESSION

-08:00

SIGN

Syntax
sign::=

Purpose
SIGN returns -1 if n<0, then . If n=0, then the function returns 0. If n>0, then SIGN
returns 1.

Examples
The following example indicates that the function’s argument (-15) is <0:

SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

Note: You can set the default client session time zone using the

ORA_SDTZ environment variable. Please refer to Oracle9i Database
Globalization Support Guide for more information on this variable.

SIGN (n)

SINH

Functions 6-145

SIN

Syntax
sin::=

Purpose
SIN returns the sine of n (an angle expressed in radians).

Examples
The following example returns the sin of 30 degrees:

SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

SINH

Syntax
sinh::=

Purpose
SINH returns the hyperbolic sine of n.

Examples
The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

SIN (n)

SINH (n)

SOUNDEX

6-146 Oracle9i SQL Reference

SOUNDEX

Syntax
soundex::=

Purpose
SOUNDEX returns a character string containing the phonetic representation of char .

This function lets you compare words that are spelled differently, but sound alike in

English.

The phonetic representation is defined in The Art of Computer Programming, Volume

3: Sorting and Searching, by Donald E. Knuth, as follows:

■ Retain the first letter of the string and remove all other occurrences of the

following letters: a, e, h, i, o, u, w, y.

■ Assign numbers to the remaining letters (after the first) as follows:

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

■ If two or more letters with the same number were adjacent in the original name

(before step 1), or adjacent except for any intervening h and w, then omit all but

the first.

■ Return the first four bytes padded with 0.

char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The

return value is the same datatype as char .

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

SOUNDEX (char)

SQRT

Functions 6-147

Examples
The following example returns the employees whose last names are a phonetic

representation of "Smyth":

SELECT last_name, first_name
 FROM hr.employees
 WHERE SOUNDEX(last_name)
 = SOUNDEX(’SMYTHE’);

LAST_NAME FIRST_NAME
---------- ----------
Smith Lindsey
Smith William

SQRT

Syntax
sqrt::=

Purpose
SQRT returns the square root of n. The value n cannot be negative. SQRT returns a

real number.

Examples
The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

SQRT (n)

STDDEV

6-148 Oracle9i SQL Reference

STDDEV

Syntax
stddev::=

Purpose
STDDEVreturns sample standard deviation of expr , a set of numbers. You can use it

as both an aggregate and analytic function. It differs from STDDEV_SAMP in that

STDDEV returns zero when it has only 1 row of input data, whereas STDDEV_SAMP
returns a null.

Oracle calculates the standard deviation as the square root of the variance defined

for the VARIANCE aggregate function.

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Examples
The following example returns the standard deviation of the salaries in the sample

hr.employees table:

SELECT STDDEV(salary) "Deviation"
 FROM employees;

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8, VARIANCE on page 6-206,

and STDDEV_SAMP on page 6-151

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

STDDEV (

DISTINCT

ALL
expr)

OVER (analytic_clause)

STDDEV_POP

Functions 6-149

 Deviation

3909.36575

Analytic Examples
The query in the following example returns the cumulative standard deviation of

the salaries in Department 80 in the sample table hr.employees , ordered by

hire_date :

SELECT last_name, salary,
 STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
 FROM employees
 WHERE department_id = 30;

LAST_NAME SALARY StdDev
------------------------- ---------- ----------
Raphaely 11000 0
Khoo 3100 5586.14357
Tobias 2800 4650.0896
Baida 2900 4035.26125
Himuro 2600 3649.2465
Colmenares 2500 3362.58829

STDDEV_POP

Syntax
stddev_pop::=

Purpose
STDDEV_POP computes the population standard deviation and returns the square

root of the population variance. You can use it as both an aggregate and analytic

function.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

STDDEV_POP (expr)
OVER (analytic_clause)

STDDEV_POP

6-150 Oracle9i SQL Reference

The expr is a number expression, and the function returns a value of type NUMBER.
This function is the same as the square root of the VAR_POP function. When VAR_
POP returns null, this function returns null.

Aggregate Example
The following example returns the population and sample standard deviations of

the amount of sales in the sample table sh.sales :

SELECT STDDEV_POP(amount_sold) "Pop",
 STDDEV_SAMP(amount_sold) "Samp"
 FROM sales;

 Pop Samp
---------- ----------
896.355151 896.355592

Analytic Example
The following example returns the population standard deviations of salaries in the

sample hr.employees table by department:

SELECT department_id, last_name, salary,
 STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
 FROM employees;

DEPARTMENT_ID LAST_NAME SALARY POP_STD
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 20 Hartstein 13000 3500
 20 Goyal 6000 3500
.
.
.
 100 Sciarra 7700 1644.18166
 100 Urman 7800 1644.18166
 100 Popp 6900 1644.18166
 110 Higgens 12000 1850
 110 Gietz 8300 1850

See Also:

■ "Aggregate Functions" on page 6-8 and VAR_POP on

page 6-202

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

STDDEV_SAMP

Functions 6-151

STDDEV_SAMP

Syntax
stddev_samp::=

Purpose
STDDEV_SAMPcomputes the cumulative sample standard deviation and returns the

square root of the sample variance. You can use it as both an aggregate and analytic

function.

The expr is a number expression, and the function returns a value of type NUMBER.
This function is same as the square root of the VAR_SAMP function. When VAR_
SAMP returns null, this function returns null.

Aggregate Example
The following example returns the population and sample standard deviations of

the amount of sales in the sample table sh.sales :

SELECT STDDEV_POP(amount_sold) "Pop",
 STDDEV_SAMP(amount_sold) "Samp"
 FROM sales;

 Pop Samp
---------- ----------
896.355151 896.355592

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8 and VAR_SAMP on

page 6-204

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

STDDEV_SAMP (expr)
OVER (analytic_clause)

SUBSTR

6-152 Oracle9i SQL Reference

Analytic Example
The following example returns the sample standard deviation of salaries in the

employees table by department:

SELECT department_id, last_name, hire_date, salary,
 STDDEV_SAMP(salary) OVER (PARTITION BY department_id
 ORDER BY hire_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
 FROM employees;

DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV
------------- --------------- --------- ---------- ----------
 10 Whalen 17-SEP-87 4400
 20 Hartstein 17-FEB-96 13000
 20 Goyal 17-AUG-97 6000 4949.74747
 30 Raphaely 07-DEC-94 11000
 30 Khoo 18-MAY-95 3100 5586.14357
 30 Tobias 24-JUL-97 2800 4650.0896
 30 Baida 24-DEC-97 2900 4035.26125
.
.
.
 100 Chen 28-SEP-97 8200 2003.33056
 100 Sciarra 30-SEP-97 7700 1925.91969
 100 Urman 07-MAR-98 7800 1785.49713
 100 Popp 07-DEC-99 6900 1801.11077
 110 Higgens 07-JUN-94 12000
 110 Gietz 07-JUN-94 8300 2616.29509

SUBSTR

Syntax
substr::=

SUBSTR

SUBSTRB

SUBSTRC

SUBSTR2

SUBSTR4

(string , position
, substring_length

)

SUBSTR

Functions 6-153

Purpose
The "substring" functions return a portion of string , beginning at character

position , substring_length characters long. SUBSTR calculates lengths using

characters as defined by the input character set. SUBSTRB uses bytes instead of

characters. SUBSTRC uses Unicode complete characters. SUBSTR2 uses UCS2

codepoints. SUBSTR4 uses UCS4 codepoints.

■ If position is 0, then it is treated as 1.

■ If position is positive, then Oracle counts from the beginning of string to

find the first character.

■ If position is negative, then Oracle counts backward from the end of string .

■ If substring_length is omitted, then Oracle returns all characters to the end

of string . If substring_length is less than 1, then a null is returned.

string can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The return value is the same datatype as string . Floating-point

numbers passed as arguments to SUBSTR are automatically converted to integers.

Examples
The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR(’ABCDEFG’,3,4) "Substring"
 FROM DUAL;

Substring

CDEF

SELECT SUBSTR(’ABCDEFG’,-5,4) "Substring"
 FROM DUAL;

Substring

CDEF

Assume a double-byte database character set:

SELECT SUBSTRB(’ABCDEFG’,5,4.2) "Substring with bytes"
 FROM DUAL;

Substring with bytes

CD

SUM

6-154 Oracle9i SQL Reference

SUM

Syntax
sum::=

Purpose
SUM returns the sum of values of expr . You can use it as an aggregate or analytic

function.

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Example
The following example calculates the sum of all salaries in the sample

hr.employees table:

SELECT SUM(salary) "Total"
 FROM employees;

 Total

 691400

Analytic Example
The following example calculates, for each manager in the sample table

hr.employees , a cumulative total of salaries of employees who answer to that

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

SUM (

DISTINCT

ALL
expr)

OVER (analytic_clause)

SYS_CONNECT_BY_PATH

Functions 6-155

manager that are equal to or less than the current salary. You can see that Raphaely

and Cambrault have the same cumulative total. This is because Raphaely and

Cambrault have the identical salaries, so Oracle adds together their salary values

and applies the same cumulative total to both rows.

SELECT manager_id, last_name, salary,
 SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary
 RANGE UNBOUNDED PRECEDING) l_csum
 FROM employees;

MANAGER_ID LAST_NAME SALARY L_CSUM
---------- --------------- ---------- ----------
 100 Mourgos 5800 5800
 100 Vollman 6500 12300
 100 Kaufling 7900 20200
 100 Weiss 8000 28200
 100 Fripp 8200 36400
 100 Zlotkey 10500 46900
 100 Raphaely 11000 68900
 100 Cambrault 11000 68900
 100 Errazuriz 12000 80900
.
.
.
 149 Taylor 8600 30200
 149 Hutton 8800 39000
 149 Abel 11000 50000
 201 Fay 6000 6000
 205 Gietz 8300 8300
 King 24000 24000

SYS_CONNECT_BY_PATH

Syntax
sys_connect_by_path::=

Purpose
SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path of

a column value from root to node, with column values separated by char for each

row returned by CONNECT BY condition.

SYS_CONNECT_BY_PATH (column , char)

SYS_CONTEXT

6-156 Oracle9i SQL Reference

Both column and char can be any of the datatypes CHAR, VARCHAR2, NCHAR, or

NVARCHAR2. The string returned is of VARCHAR2 datatype and is in the same

character set as column .

Examples
The following example returns the path of employee names from employee

Kochhar to all employees of Kochhar (and their employees):

SELECT LPAD(’ ’, 2*level-1)||SYS_CONNECT_BY_PATH(last_name, ’/’) "Path"
 FROM employees
 START WITH last_name = ’Kochhar’
 CONNECT BY PRIOR employee_id = manager_id;

Path

 /Kochhar
 /Kochhar/Greenberg
 /Kochhar/Greenberg/Faviet
 /Kochhar/Greenberg/Chen
 /Kochhar/Greenberg/Sciarra
 /Kochhar/Greenberg/Urman
 /Kochhar/Greenberg/Popp
 /Kochhar/Whalen
 /Kochhar/Mavris
 /Kochhar/Baer
 /Kochhar/Higgins
 /Kochhar/Higgins/Gietz

SYS_CONTEXT

Syntax
sys_context::=

See Also: "Hierarchical Queries" on page 8-3 for more

information about hierarchical queries and CONNECT BY conditions

SYS_CONTEXT (’ namespace ’ , ’ parameter ’
, length

)

SYS_CONTEXT

Functions 6-157

Purpose
SYS_CONTEXT returns the value of parameter associated with the context

namespace . You can use this function in both SQL and PL/SQL statements.

For namespace and parameter , you can specify either a string (constant) or an

expression that resolves to a string designating a namespace or an attribute. The

context namespace must already have been created, and the associated

parameter and its value must also have been set using the DBMS_SESSION.set_
context procedure. The namespace must be a valid SQL identifier. The

parameter name can be any string. It is not case sensitive, but it cannot exceed 30

bytes in length.

The datatype of the return value is VARCHAR2. The default maximum size of the

return value is 256 bytes. You can override this default by specifying the optional

length parameter. The valid range of values is 1 to 4000 bytes. (If you specify an

invalid value, then Oracle ignores it and uses the default.)

Oracle9i provides a built-in namespace called USERENV, which describes the current

session. The predefined parameters of namespace USERENV are listed Table 6–2 on

page 6-158, along with the lengths of their return strings.

Restriction on SYS_CONTEXT You cannot specify this function in a parallel query.

Examples
The following statement returns the name of the user who logged onto the

database:

CONNECT OE/OE
SELECT SYS_CONTEXT (’USERENV’, ’SESSION_USER’)
 FROM DUAL;

SYS_CONTEXT (’USERENV’, ’SESSION_USER’)
--

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on using the application context feature in your

application development

■ CREATE CONTEXT on page 13-12 for information on creating

user-defined context namespaces

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_SESSION.set_context procedure

SYS_CONTEXT

6-158 Oracle9i SQL Reference

OE

The following hypothetical example returns the group number that was set as the

value for the attribute group_no in the PL/SQL package that was associated with

the context hr_apps when hr_apps was created:

SELECT SYS_CONTEXT (’hr_apps’, ’group_no’) "User Group"
 FROM DUAL;

Table 6–2 Predefined Parameters of Namespace USERENV

Parameter Return Value

Return
Length
(bytes)

AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the
audit.

NA

AUTHENTICATION_DATA Data being used to authenticate the login user. For
X.503 certificate authenticated sessions, this field
returns the context of the certificate in HEX2 format.

Note: You can change the return value of the
AUTHENTICATION_DATAattribute using the length
parameter of the syntax. Values of up to 4000 are
accepted. This is the only attribute of USERENV for
which Oracle implements such a change.

256

AUTHENTICATION_TYPE How the user was authenticated:

■ DATABASE: user name/password authentication

■ OS: operating system external user
authentication

■ NETWORK: network protocol or ANO
authentication

■ PROXY: OCI proxy connection authentication

30

BG_JOB_ID Job ID of the current session if it was established by
an Oracle background process. Null if the session
was not established by a background process.

64

CLIENT_IDENTIFIER Returns the client session identifier in the global
context—that is, the globally accessed application
context or (in the OCI context) the OCI_ATTR_
CLIENT_IDENTIFIER attribute. If no globally
relevant identifier has been set, returns null.

NA

CLIENT_INFO Returns up to 64 bytes of user session information
that can be stored by an application using the DBMS_
APPLICATION_INFO package.

64

SYS_CONTEXT

Functions 6-159

CURRENT_SCHEMA Name of the default schema being used in the
current schema. This value can be changed during
the session with an ALTER SESSION SET CURRENT_
SCHEMA statement.

30

CURRENT_SCHEMAID Identifier of the default schema being used in the
current session.

30

CURRENT_SQL Returns the current SQL that triggered the
fine-grained auditing event. You can specify this
attribute only inside the event handler for the
Fine-Grained Auditing feature.

64

CURRENT_USER The name of the user whose privilege the current
session is under.

30

CURRENT_USERID User ID of the user whose privilege the current
session is under.

30

DB_DOMAIN Domain of the database as specified in the DB_
DOMAIN initialization parameter.

256

DB_NAME Name of the database as specified in the DB_NAME
initialization parameter.

30

ENTRY_ID The available auditing entry identifier. You cannot
use this attribute in distributed SQL statements. To
use this keyword in USERENV, the initialization
parameter AUDIT_TRAIL must be set to TRUE.

30

EXTERNAL_NAME External name of the database user. For SSL
authenticated sessions using v.503 certificates, this
field returns the distinguished name (DN) stored in
the user certificate.

256

FG_JOB_ID Job ID of the current session if it was established by a
client foreground process. Null if the session was not
established by a foreground process.

30

GLOBAL_CONTEXT_
MEMORY

Returns the number being used in the System Global
Area by the globally accessed context.

NA

HOST Name of the host machine from which the client has
connected.

54

INSTANCE The instance identification number of the current
instance.

30

Table 6–2 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

Return
Length
(bytes)

SYS_CONTEXT

6-160 Oracle9i SQL Reference

IP_ADDRESS IP address of the machine from which the client is
connected.

30

ISDBA Returns TRUE if the user has been authenticated as
having DBA privileges either through the operating
system or through a password file.

30

LANG The ISO abbreviation for the language name, a
shorter form than the existing ’LANGUAGE’
parameter.

62

LANGUAGE The language and territory currently used by your
session, along with the database character set, in this
form:

language_territory.characterset

52

NETWORK_PROTOCOL Network protocol being used for communication, as
specified in the ’PROTOCOL=protocol ’ portion of
the connect string.

256

NLS_CALENDAR The current calendar of the current session. 62

NLS_CURRENCY The currency of the current session. 62

NLS_DATE_FORMAT The date format for the session. 62

NLS_DATE_LANGUAGE The language used for expressing dates. 62

NLS_SORT BINARY or the linguistic sort basis. 62

NLS_TERRITORY The territory of the current session. 62

OS_USER Operating system user name of the client process that
initiated the database session.

30

PROXY_USER Name of the database user who opened the current
session on behalf of SESSION_USER.

30

PROXY_USERID Identifier of the database user who opened the
current session on behalf of SESSION_USER.

30

SESSION_USER Database user name by which the current user is
authenticated. This value remains the same
throughout the duration of the session.

30

SESSION_USERID Identifier of the database user name by which the
current user is authenticated.

30

Table 6–2 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

Return
Length
(bytes)

SYS_DBURIGEN

Functions 6-161

SYS_DBURIGEN

Syntax
sys_dburigen::=

Purpose
SYS_DBURIGen takes as its argument one or more columns or attributes, and

optionally a rowid, and generates a URL of datatype DBURIType to a particular

column or row object. You can then use the URL to retrieve an XML document from

the database.

All columns or attributes referenced must reside in the same table. They must

perform the function of a primary key. That is, they need not actually match the

primary keys of the table, but they must reference a unique value. If you specify

multiple columns, then all but the final column identify the row in the database,

and the last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to

point only to the text of the document, then specify the optional ’text() ’. (In this

XML context, the lowercase ’text ’ is a keyword, not a syntactic placeholder.)

SESSIONID The auditing session identifier. You cannot use this
attribute in distributed SQL statements.

30

TERMINAL The operating system identifier for the client of the
current session. In distributed SQL statements, this
attribute returns the identifier for your local session.
In a distributed environment, this is supported only
for remote SELECT statements, not for remote
INSERT, UPDATE, or DELETE operations. (The return
length of this parameter may vary by operating
system.)

10

Table 6–2 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

Return
Length
(bytes)

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text () ’
)

SYS_EXTRACT_UTC

6-162 Oracle9i SQL Reference

If the table or view containing the columns or attributes does not have a schema

specified in the context of the query, then Oracle interprets the table or view name

as a public synonym.

Examples
The following example uses the SYS_DBURIGen function to generate a URL of

datatype DBURIType to the email column of the row in the sample table

hr.employees where the employee_id = 206:

SELECT SYS_DBURIGEN(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)
--
DBURITYPE(’/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=’’206’’]/EMAIL’, NULL)

SYS_EXTRACT_UTC

Syntax
sys_extract_utc::=

Purpose
SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time—formerly

Greenwich Mean Time) from a datetime with time zone displacement.

Examples
The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC(TIMESTAMP ’2000-03-28 11:30:00.00 -08:00’)
 FROM DUAL;

SYS_EXTRACT_UTC(TIMESTAMP’2000-03-2811:30:00.00-08:00’)

28-MAR-00 07.30.00 PM

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
and Oracle9i XML Developer’s Kits Guide - XDK for information on

the URIType datatype and XML documents in the database

SYS_EXTRACT_UTC (datetime_with_timezone)

SYS_GUID

Functions 6-163

SYS_GUID

Syntax
sys_guid::=

Purpose
SYS_GUID generates and returns a globally unique identifier (RAW value) made up

of 16 bytes. On most platforms, the generated identifier consists of a host identifier

and a process or thread identifier of the process or thread invoking the function,

and a nonrepeating value (sequence of bytes) for that process or thread.

Examples
The following example adds a column to the sample table hr.locations , inserts

unique identifiers into each row, and returns the 32-character hexadecimal

representation of the 16-byte RAW value of the global unique identifier:

ALTER TABLE locations ADD (uid_col RAW(32));

UPDATE locations SET uid_col = SYS_GUID();

SELECT location_id, uid_col FROM locations;

LOCATION_ID UID_COL
----------- --
 1000 7CD5B7769DF75CEFE034080020825436
 1100 7CD5B7769DF85CEFE034080020825436
 1200 7CD5B7769DF95CEFE034080020825436
 1300 7CD5B7769DFA5CEFE034080020825436
.
.
.

SYS_GUID ()

SYS_TYPEID

6-164 Oracle9i SQL Reference

SYS_TYPEID

Syntax
sys_typeid::=

Purpose
SYS_TYPEIDreturns the typeid of the most specific type of the operand. This value

is used primarily to identify the type-discriminant column underlying a

substitutable column. For example, you can use the value returned by SYS_TYPEID
to build an index on the type-discriminant column.

Examples
The following examples use the tables persons and books , which are created in

"Substitutable Table and Column Examples" on page 15-67. Both tables in turn use

the person_t type, which is created in "Type Hierarchy Example" on page 16-22.

The first query returns the most specific types of the object instances stored in the

persons table.

SELECT name, SYS_TYPEID(VALUE(p)) "Type_id" FROM persons p;

NAME Type_id
------------------------- --------------------------------
Bob 01
Joe 02
Tim 03

The next query returns the most specific types of authors stored in the table books :

Notes:

■ Use this function only on object type operands.

■ All final root object types—that is, final types not belonging to a

type hierarchy—have a null typeid. Oracle assigns to all types

belonging to a type hierarchy a unique non-null typeid.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on typeids

SYS_TYPEID (object_type_value)

SYS_XMLAGG

Functions 6-165

SELECT b.title, b.author.name, SYS_TYPEID(author)
 "Type_ID" FROM books b;

TITLE AUTHOR.NAME Type_ID
------------------------- -------------------- -------------------
An Autobiography Bob 01
Business Rules Joe 02
Mixing School and Work Tim 03

You can use the SYS_TYPEID function to create an index on the type-discriminant

column of a table. For an example, see "Indexing on Substitutable Columns:

Examples" on page 13-93.

SYS_XMLAGG

Syntax
SYS_XMLAgg::=

Purpose
SYS_XMLAgg aggregates all of the XML documents or fragments represented by

expr and produces a single XML document. It adds a new enclosing element with a

default name ROWSET. If you want to format the XML document differently, then

specify fmt , which is an instance of the XMLFormat object.

Examples
The following example uses the SYS_XMLGen function to generate an XML

document for each row of the sample table employees where the employee’s last

See Also:

■ "XML Format Model" on page 2-79 for using the attributes of

the XMLFormat type to format SYS_XMLAgg results

■ SYS_XMLGEN on page 6-166

■ Oracle9i XML API Reference - XDK and Oracle XML DB and

Oracle9i XML Developer’s Kits Guide - XDK for information on

XML types and their use

SYS_XMLAGG (expr
fmt

)

SYS_XMLGEN

6-166 Oracle9i SQL Reference

name begins with the letter R, and then aggregates all of the rows into a single XML

document in the default enclosing element ROWSET:

SELECT SYS_XMLAGG(SYS_XMLGEN(last_name))
 FROM employees
 WHERE last_name LIKE ’R%’;

SYS_XMLAGG(SYS_XMLGEN(LAST_NAME))
--
<ROWSET>
 <LAST_NAME>Raphaely</LAST_NAME>
 <LAST_NAME>Rogers</LAST_NAME>
 <LAST_NAME>Rajs</LAST_NAME>
 <LAST_NAME>Russell</LAST_NAME>
</ROWSET>

SYS_XMLGEN

Syntax
SYS_XMLGen::=

Purpose
SYS_XMLGen takes an expression that evaluates to a particular row and column of

the database, and returns an instance of type XMLType containing an XML

document. The expr can be a scalar value, a user-defined type, or an XMLType
instance.

■ If expr is a scalar value, then the function returns an XML element containing

the scalar value.

■ If expr is a type, then the function maps the user-defined type attributes to

XML elements.

■ If expr is an XMLType instance, then the function encloses the document in an

XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr . For

example, if expr resolves to a column name, then the enclosing XML element will

be the same column name. If you want to format the XML document differently,

then specify fmt , which is an instance of the XMLFormat object.

SYS_XMLGEN (expr
fmt

)

SYSDATE

Functions 6-167

Examples
The following example retrieves the employee email ID from the sample table

oe.employees where the employee_id value is 205, and generates an instance of

an XMLType containing an XML document with an EMAIL element.

SELECT SYS_XMLGEN(email)
 FROM employees
 WHERE employee_id = 205;

SYS_XMLGEN(EMAIL)

<EMAIL>SHIGGINS</EMAIL>

SYSDATE

Syntax
sysdate::=

Purpose
SYSDATE returns the current date and time. The datatype of the returned value is

DATE. The function requires no arguments. In distributed SQL statements, this

function returns the date and time on your local database. You cannot use this

function in the condition of a CHECK constraint.

Examples
The following example returns the current date and time:

See Also:

■ "XML Format Model" on page 2-79 for a description of the

XMLFormat type and how to use its attributes to format SYS_
XMLGen results

■ Oracle9i XML API Reference - XDK and Oracle XML DB and

Oracle9i XML Developer’s Kits Guide - XDK for information on

XML types and their use

SYSDATE

SYSTIMESTAMP

6-168 Oracle9i SQL Reference

SELECT TO_CHAR
 (SYSDATE, ’MM-DD-YYYY HH24:MI:SS’)"NOW"
 FROM DUAL;

NOW

04-13-2001 09:45:51

SYSTIMESTAMP

Syntax
systimestamp::=

Purpose
SYSTIMESTAMP returns the system date, including fractional seconds and time

zone of the system on which the database resides. The return type is TIMESTAMP
WITH TIME ZONE.

Examples
The following example returns the system date.

SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP
--
28-MAR-00 12.38.55.538741 PM -08:00

The following example shows how to explicitly specify fractional seconds:

SELECT TO_CHAR(SYSTIMESTAMP, ’SSSS.FF’) FROM DUAL;

TO_CHAR(SYSTIM

5050.105900

SYSTIMESTAMP

TANH

Functions 6-169

TAN

Syntax
tan::=

Purpose
TAN returns the tangent of n (an angle expressed in radians).

Examples
The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3.14159265359/180)
 "Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

TANH

Syntax
tanh::=

Purpose
TANH returns the hyperbolic tangent of n.

Examples
The following example returns the hyperbolic tangent of .5:

SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

TAN (n)

TANH (n)

TO_CHAR (character)

6-170 Oracle9i SQL Reference

TO_CHAR (character)

Syntax
to_char_char::=

Purpose
TO_CHAR (character) converts NCHAR, NVARCHAR2, CLOB, or NCLOB data to the

database character set.

Examples
The following example interprets a simple string as character data:

SELECT TO_CHAR(’01110’) FROM DUAL;

TO_CH

01110

Compare this example with the first example for TO_CHAR (number) on

page 6-173.

The following example converts some CLOB data from the pm.print_media table

to the database character set:

SELECT TO_CHAR(ad_sourcetext) FROM print_media
 WHERE product_id = 2268;

TO_CHAR(AD_SOURCETEXT)
--

TIGER2 2268...Standard Hayes Compatible Modem
Product ID: 2268
The #1 selling modem in the universe! Tiger2’s modem includes call
management and Internet voicing. Make real-time full duplex phone
calls at the same time you’re online.

TO_CHAR (

nchar

clob

nclob

)

TO_CHAR (datetime)

Functions 6-171

TO_CHAR (datetime)

Syntax
to_char_date::=

Purpose
TO_CHAR (datetime) converts date of DATE, TIMESTAMP, TIMESTAMP WITH TIME
ZONE, or TIMESTAMP WITH LOCAL TIME ZONE datatype to a value of VARCHAR2
datatype in the format specified by the date format fmt . If you omit fmt , then date
is converted to a VARCHAR2 value as follows:

■ DATE is converted to a value in the default date format.

■ TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE are converted to values

in the default timestamp format.

■ TIMESTAMP WITH TIME ZONE is converted to a value in the default timestamp

with time zone format.

The ’nlsparams ’ specifies the language in which month and day names and

abbreviations are returned. This argument can have this form:

’NLS_DATE_LANGUAGE = language’

If you omit ’nlsparams’ , then this function uses the default date language for

your session.

Examples
The following example uses this table:

CREATE TABLE date_tab (
 ts_col TIMESTAMP,
 tsltz_col TIMESTAMP WITH LOCAL TIME ZONE,
 tstz_col TIMESTAMP WITH TIME ZONE);

See Also: "Format Models" on page 2-61 for information on date

formats

TO_CHAR (date
, fmt

, ’ nlsparam ’

)

TO_CHAR (datetime)

6-172 Oracle9i SQL Reference

The example shows the results of applying TO_CHAR to different TIMESTAMP
datatypes. The result for a TIMESTAMP WITH LOCAL TIME ZONEcolumn is sensitive

to session time zone, whereas the results for the TIMESTAMP and TIMESTAMP WITH
TIME ZONE columns are not sensitive to session time zone:

ALTER SESSION SET TIME_ZONE = ’-8:00’;
INSERT INTO date_tab VALUES (
 TIMESTAMP’1999-12-01 10:00:00’,
 TIMESTAMP’1999-12-01 10:00:00’,
 TIMESTAMP’1999-12-01 10:00:00’);
INSERT INTO date_tab VALUES (
 TIMESTAMP’1999-12-02 10:00:00 -8:00’,
 TIMESTAMP’1999-12-02 10:00:00 -8:00’,
 TIMESTAMP’1999-12-02 10:00:00 -8:00’);

SELECT TO_CHAR(ts_col, ’DD-MON-YYYY HH24:MI:SSxFF’),
 TO_CHAR(tstz_col, ’DD-MON-YYYY HH24:MI:SSxFF TZH:TZM’)
 FROM date_tab;

TO_CHAR(TS_COL,’DD-MON-YYYYHH2 TO_CHAR(TSTZ_COL,’DD-MON-YYYYHH24:MI:
------------------------------ -------------------------------------
01-DEC-1999 10:00:00 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
 TO_CHAR(tsltz_col, ’DD-MON-YYYY HH24:MI:SSxFF’)
 FROM date_tab;

SESSIONTIMEZONE TO_CHAR(TSLTZ_COL,’DD-MON-YYYY
--------------- ------------------------------
-08:00 01-DEC-1999 10:00:00.000000
-08:00 02-DEC-1999 10:00:00.000000

ALTER SESSION SET TIME_ZONE = ’-5:00’;
SELECT TO_CHAR(ts_col, ’DD-MON-YYYY HH24:MI:SSxFF’),
 TO_CHAR(tstz_col, ’DD-MON-YYYY HH24:MI:SSxFF TZH:TZM’)
 FROM date_tab;

TO_CHAR(TS_COL,’DD-MON-YYYYHH2 TO_CHAR(TSTZ_COL,’DD-MON-YYYYHH24:MI:
------------------------------ -------------------------------------
01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

TO_CHAR (number)

Functions 6-173

SELECT SESSIONTIMEZONE,
 TO_CHAR(tsltz_col, ’DD-MON-YYYY HH24:MI:SSxFF’)
 FROM date_tab;

SESSIONTIMEZONE TO_CHAR(TSLTZ_COL,’DD-MON-YYYY
------------------------- ------------------------------
-05:00 01-DEC-1999 13:00:00.000000
-05:00 02-DEC-1999 13:00:00.000000

TO_CHAR (number)

Syntax
to_char_number::=

Purpose
TO_CHAR (number) converts n of NUMBER datatype to a value of VARCHAR2
datatype, using the optional number format fmt . If you omit fmt , then n is

converted to a VARCHAR2 value exactly long enough to hold its significant digits.

The ’nlsparam’ specifies these characters that are returned by number format

elements:

■ Decimal character

■ Group separator

■ Local currency symbol

■ International currency symbol

This argument can have this form:

’NLS_NUMERIC_CHARACTERS = ’’dg’’
 NLS_CURRENCY = ’’text’’
 NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and group separator,

respectively. They must be different single-byte characters. Within the quoted

string, you must use two single quotation marks around the parameter values. Ten

characters are available for the currency symbol.

TO_CHAR (n
, fmt

, ’ nlsparam ’

)

TO_CHAR (number)

6-174 Oracle9i SQL Reference

If you omit ’nlsparam’ or any one of the parameters, then this function uses the

default parameter values for your session.

Examples
The following statement uses implicit conversion to interpret a string and a number

into a number:

SELECT TO_CHAR(’01110’ + 1) FROM dual;

TO_C

1111

Compare this example with the first example for TO_CHAR (character) on

page 6-170.

In the next example, the output is blank padded to the left of the currency symbol.

SELECT TO_CHAR(-10000,’L99G999D99MI’) "Amount"
 FROM DUAL;

Amount

 $10,000.00-

SELECT TO_CHAR(-10000,’L99G999D99MI’,
 ’NLS_NUMERIC_CHARACTERS = ’’,.’’
 NLS_CURRENCY = ’’AusDollars’’ ’) "Amount"
 FROM DUAL;

Amount

AusDollars10.000,00-

See Also: "Format Models" on page 2-61 for information on

number formats

Note: In the optional number format fmt , L designates local

currency symbol and MI designates a trailing minus sign. See

Table 2–13 on page 2-64 for a complete listing of number format

elements.

TO_DATE

Functions 6-175

TO_CLOB

Syntax
to_clob::=

Purpose
TO_CLOB converts NCLOB values in a LOB column or other character strings to

CLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. Oracle executes this function by converting the

underlying LOB data from the national character set to the database character set.

Examples
The following statement converts NCLOB data from the sample pm.print_media
table to CLOB and inserts it into a CLOB column, replacing existing data in that

column.

UPDATE PRINT_MEDIA
 SET AD_FINALTEXT = TO_CLOB (AD_FLTEXTN);

TO_DATE

Syntax
to_date::=

Purpose
TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype to a

value of DATE datatype. The fmt is a date format specifying the format of char . If

you omit fmt , then char must be in the default date format. If fmt is ’J’, for Julian,

then char must be an integer.

TO_CLOB (
lob_column

char
)

TO_DATE (char
, fmt

, ’ nlsparam ’

)

TO_DATE

6-176 Oracle9i SQL Reference

The default date format is determined implicitly by the NLS_TERRITORY
initialization parameter, or can be set explicitly by the NLS_DATE_FORMAT
parameter.

The ’nlsparam’ has the same purpose in this function as in the TO_CHARfunction

for date conversion.

Do not use the TO_DATE function with a DATE value for the char argument. The

first two digits of the returned DATE value can differ from the original char ,

depending on fmt or the default date format.

Examples
The following example converts a character string into a date:

SELECT TO_DATE(
 ’January 15, 1989, 11:00 A.M.’,
 ’Month dd, YYYY, HH:MI A.M.’,
 ’NLS_DATE_LANGUAGE = American’)
 FROM DUAL;

TO_DATE(’

15-JAN-89

The value returned reflects the default date format if the NLS_TERRITORY
parameter is set to ’AMERICA’. Different NLS_TERRITORY values result in different

default date formats:

Note: This function does not convert data to any of the other

datetime datatypes. For information on other datetime conversions,

please refer to TO_TIMESTAMP on page 6-185, TO_TIMESTAMP_

TZ on page 6-186, TO_DSINTERVAL on page 6-177, and "TO_

YMINTERVAL" on page 6-187.

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

See Also: "Date Format Models" on page 2-68

TO_DSINTERVAL

Functions 6-177

ALTER SESSION SET NLS_TERRITORY = ’KOREAN’;

SELECT TO_DATE(
 ’January 15, 1989, 11:00 A.M.’,
 ’Month dd, YYYY, HH:MI A.M.’,
 ’NLS_DATE_LANGUAGE = American’)
 FROM DUAL;

TO_DATE(

89/01/15

TO_DSINTERVAL

Syntax
to_dsinterval::=

Purpose
TO_DSINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or

NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type.

■ char is the character string to be converted.

■ The only valid nlsparam you can specify in this function is NLS_NUMERIC_
CHARACTERS. This argument can have the form:

NLS_NUMERIC_CHARACTERS = "dg"

where d and g represent the decimal character and group separator

respectively.

Examples
The following example selects from the employees table the employees who had

worked for the company for at least 100 days on January 1, 1990:

SELECT employee_id, last_name FROM employees
 WHERE hire_date + TO_DSINTERVAL(’100 10:00:00’)
 <= DATE ’1990-01-01’;

TO_DSINTERVAL (char
’ nlsparam ’

)

TO_LOB

6-178 Oracle9i SQL Reference

EMPLOYEE_ID LAST_NAME
----------- ---------------
 100 King
 101 Kochhar
 200 Whalen

TO_LOB

Syntax
to_LOB::=

Purpose
TO_LOB converts LONG or LONG RAW values in the column long_column to LOB

values. You can apply this function only to a LONG or LONG RAW column, and only

in the SELECT list of a subquery in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted

LONG values. To convert LONGs, create a CLOB column. To convert LONG RAWs,

create a BLOB column.

Note: You cannot use the TO_LOB function to convert a LONG
column to a LOB column in the subquery of a CREATE TABLE ...AS
SELECT statement if you are creating an index-organized table.

Instead, create the index-organized table without the LONGcolumn,

and then use the TO_LOB function in an INSERT ... AS SELECT
statement.

See Also:

■ the modify_col_properties clause of ALTER TABLE on

page 11-2 for an alternative method of converting LONG
columns to LOB

■ INSERT on page 17-53 for information on the subquery of an

INSERT statement

TO_LOB (long_column)

TO_MULTI_BYTE

Functions 6-179

Examples
The sample table pm.print_media has a column press_release of type LONG.
This example re-creates part of the table, with LOB data in the press_release
column:

CREATE TABLE new_print_media (
 product_id NUMBER(6),
 ad_id NUMBER(6),
 press_release CLOB);

INSERT INTO new_print_media
 (SELECT p.product_id, p.ad_id, TO_LOB(p.press_release)
 FROM print_media p);

TO_MULTI_BYTE

Syntax
to_multi_byte::=

Purpose
TO_MULTI_BYTE returns char with all of its single-byte characters converted to

their corresponding multibyte characters. char can be of datatype CHAR,
VARCHAR2, NCHAR, or NVARCHAR2. The value returned is in the same datatype as

char .

Any single-byte characters in char that have no multibyte equivalents appear in

the output string as single-byte characters. This function is useful only if your

database character set contains both single-byte and multibyte characters.

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TO_MULTI_BYTE (char)

TO_NCHAR (character)

6-180 Oracle9i SQL Reference

Examples
The following example illustrates converting from a single byte ’A’ to a multibyte

’A’ in UTF8:

SELECT dump(TO_MULTI_BYTE(’A’)) FROM DUAL;

DUMP(TO_MULTI_BYTE(’A’))

Typ=1 Len=3: 239,188,161

TO_NCHAR (character)

Syntax
to_nchar_char::=

Purpose
TO_NCHAR (character) converts a character string, CLOB, or NCLOB from the

database character set to the national character set. This function is equivalent to the

TRANSLATE ... USING function with a USING clause in the national character set.

Examples
The following example converts NCLOB data from the pm.print_media table to

the national character set:

SELECT TO_NCHAR(ad_fltextn) FROM print_media
 WHERE product_id = 3106;

TO_NCHAR(AD_FLTEXTN)
--
TIGER2 Tastaturen...weltweit fuehrend in Computer-Ergonomie.
TIGER2 3106 Tastatur
Product Nummer: 3106

See Also: "Data Conversion" on page 2-48 and TRANSLATE ...

USING on page 6-189

TO_NCHAR (

char

clob

nclob

, fmt
, ’ nlsparam ’

)

TO_NCHAR (datetime)

Functions 6-181

Nur 39 EURO!
Die Tastatur KB 101/CH-DE ist eine Standard PC/AT Tastatur mit 102
Tasten. Tasta
turbelegung: Schweizerdeutsch.
. NEU: Kommt mit ergonomischer Schaumstoffunterlage.
. Extraflache und ergonimisch-geknickte Versionen verfugbar auf Anfrage.
. Lieferbar in Elfenbein, Rot oder Schwarz.

TO_NCHAR (datetime)

Syntax
to_nchar_date::=

Purpose
TO_NCHAR(datetime) converts a character string of DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO
YEAR, or INTERVAL DAY TO SECONDdatatype from the database character set to the

national character set.

Examples
SELECT TO_NCHAR(order_date) FROM orders
 WHERE order_status > 9;

TO_NCHAR(ORDER_DATE)

14-SEP-99 08.53.40.223345 AM
13-SEP-99 09.19.00.654279 AM
27-JUN-00 08.53.32.335522 PM
26-JUN-00 09.19.43.190089 PM
06-DEC-99 01.22.34.225609 PM

TO_NCHAR (
datetime

interval

, fmt
, ’ nlsparam ’

)

TO_NCHAR (number)

6-182 Oracle9i SQL Reference

TO_NCHAR (number)

Syntax
to_nchar_number::=

Purpose
TO_NCHAR (number) converts a number to a string in the NVARCHAR2 character set.

The optional fmt and ’nlsparam’ corresponding to n can be of DATE,

TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE,

INTERVAL MONTH TO YEAR, or INTERVAL DAY TO SECOND datatype.

Examples
SELECT TO_NCHAR(customer_id) "NCHAR_Customer_ID" FROM orders
 WHERE order_status > 9;

NCHAR_Customer_ID

102
103
148
149
148

TO_NCLOB

Syntax
to_nclob::=

Purpose
TO_NCLOB converts CLOB values in a LOB column or other character strings to

NCLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR,

TO_NCHAR (n
, fmt

, ’ nlsparam ’

)

TO_NCLOB (
lob_column

char
)

TO_NUMBER

Functions 6-183

NVARCHAR2, CLOB, or NCLOB. Oracle implements this function by converting the

character set of the LOB column from the database character set to the national

character set.

Examples
The following example inserts some character data into an NCLOB column of the

pm.print_media table by first converting the data with the TO_NCLOB function:

INSERT INTO print_media (product_id, ad_id, ad_fltextn)
 VALUES (3502, 31001,
 TO_NCLOB(’Placeholder for new product description’));

TO_NUMBER

Syntax
to_number::=

Purpose
TO_NUMBER converts char , a value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype containing a number in the format specified by the optional format model

fmt , to a value of NUMBER datatype.

Examples
The following example converts character string data into a number:

UPDATE employees SET salary = salary +
 TO_NUMBER(’100.00’, ’9G999D99’)
 WHERE last_name = ’Perkins’;

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TO_NUMBER (char
, fmt

, ’ nlsparam ’

)

TO_SINGLE_BYTE

6-184 Oracle9i SQL Reference

The ’nlsparam’ string in this function has the same purpose as it does in the TO_
CHAR function for number conversions.

SELECT TO_NUMBER(’-AusDollars100’,’L9G999D99’,
 ’ NLS_NUMERIC_CHARACTERS = ’’,.’’
 NLS_CURRENCY = ’’AusDollars’’
 ’) "Amount"
 FROM DUAL;

 Amount

 -100

TO_SINGLE_BYTE

Syntax
to_single_byte::=

Purpose
TO_SINGLE_BYTE returns char with all of its multibyte characters converted to

their corresponding single-byte characters. char can be of datatype CHAR,
VARCHAR2, NCHAR, or NVARCHAR2. The value returned is in the same datatype as

char .

Any multibyte characters in char that have no single-byte equivalents appear in

the output as multibyte characters. This function is useful only if your database

character set contains both single-byte and multibyte characters.

See Also: TO_CHAR (number) on page 6-173

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TO_SINGLE_BYTE (char)

TO_TIMESTAMP

Functions 6-185

Examples
The following example illustrates going from a multibyte ’A’ in UTF8 to a single

byte ASCII ’A’:

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;

T
-
A

TO_TIMESTAMP

Syntax
to_timestamp::=

Purpose
TO_TIMESTAMP converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype.

The optional fmt specifies the format of char . If you omit fmt , then char must be

in the default format of the TIMESTAMP datatype. The optional ’nlsparam’ has

the same purpose in this function as in the TO_CHAR function for date conversion.

Examples
The following example converts a character string to a timestamp:

SELECT TO_TIMESTAMP (’1999-12-01 11:00:00’, ’YYYY-MM-DD HH:MI:SS’)
 FROM DUAL;

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TO_TIMESTAMP (char
, fmt

’ nlsparam ’

)

TO_TIMESTAMP_TZ

6-186 Oracle9i SQL Reference

TO_TIMESTAMP(’1999-12-0111:00:00’,’YYYY-MM-DDHH:MI:SS’)

01-DEC-99 11.00.00.000000000 AM

TO_TIMESTAMP_TZ

Syntax
to_timestamp_tz::=

Purpose
TO_TIMESTAMP_TZ converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP WITH TIME ZONE datatype.

The optional fmt specifies the format of char . If you omit fmt , then char must be

in the default format of the TIMESTAMP WITH TIME ZONE datatype. The optional

’nlsparam’ has the same purpose in this function as in the TO_CHAR function for

date conversion.

Examples
The following example converts a character string to a value of TIMESTAMP WITH
TIME ZONE:

SELECT TO_TIMESTAMP_TZ(’1999-12-01 11:00:00 -8:00’,
 ’YYYY-MM-DD HH:MI:SS TZH:TZM’) FROM DUAL;

TO_TIMESTAMP_TZ(’1999-12-0111:00:00-08:00’,’YYYY-MM-DDHH:MI:SSTZH:TZM’)
--
01-DEC-99 11.00.00.000000000 AM -08:00

Note: This function does not convert character strings to

TIMESTAMP WITH LOCAL TIME ZONE. To do this, use a CAST
function, as shown in CAST on page 6-27.

TO_TIMESTAMP_TZ (char
, fmt

’ nlsparam ’

)

TO_YMINTERVAL

Functions 6-187

The following example casts a null column in a UNION operation as TIMESTAMP
WITH LOCAL TIME ZONE using the sample tables oe.order_items and

oe.orders :

SELECT order_id, line_item_id,
 CAST(NULL AS TIMESTAMP WITH LOCAL TIME ZONE) order_date
 FROM order_items
UNION
SELECT order_id, to_number(null), order_date
 FROM orders;

 ORDER_ID LINE_ITEM_ID ORDER_DATE
---------- ------------ -----------------------------------
 2354 1
 2354 2
 2354 3
 2354 4
 2354 5
 2354 6
 2354 7
 2354 8
 2354 9
 2354 10
 2354 11
 2354 12
 2354 13
 2354 14-JUL-00 05.18.23.234567 PM
 2355 1
 2355 2
...

 TO_YMINTERVAL

Syntax
to_yminterval::=

Purpose
TO_YMINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or

NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type, where char is the

character string to be converted.

TO_YMINTERVAL (char)

TRANSLATE

6-188 Oracle9i SQL Reference

Examples
The following example calculates for each employee in the sample hr.employees
table a date one year two months after the hire date:

SELECT hire_date, hire_date + TO_YMINTERVAL(’01-02’) "14 months"
 FROM employees;

HIRE_DATE 14 months
--------- ---------
17-JUN-87 17-AUG-88
21-SEP-89 21-NOV-90
13-JAN-93 13-MAR-94
03-JAN-90 03-MAR-91
21-MAY-91 21-JUL-92
.
.
.

TRANSLATE

Syntax
translate::=

Purpose
TRANSLATE returns char with all occurrences of each character in from_string
replaced by its corresponding character in to_string . Characters in char that are

not in from_string are not replaced. The argument from_string can contain

more characters than to_string . In this case, the extra characters at the end of

from_string have no corresponding characters in to_string . If these extra

characters appear in char , then they are removed from the return value.

You cannot use an empty string for to_string to remove all characters in from_
string from the return value. Oracle interprets the empty string as null, and if this

function has a null argument, then it returns null.

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TRANSLATE (’ char ’ , ’ from_string ’ , ’ to_string ’)

TRANSLATE ... USING

Functions 6-189

Examples
The following statement translates a license number. All letters ’ABC...Z’ are

translated to ’X’ and all digits ’012 . . . 9’ are translated to ’9’:

SELECT TRANSLATE(’2KRW229’,
’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX’) "License"
 FROM DUAL;

License

9XXX999

The following statement returns a license number with the characters removed and

the digits remaining:

SELECT TRANSLATE(’2KRW229’,
 ’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ’0123456789’)
 "Translate example"
 FROM DUAL;

Translate example

2229

TRANSLATE ... USING

Syntax
translate_using::=

Purpose
TRANSLATE... USINGconverts text into the character set specified for conversions

between the database character set and the national character set.

TRANSLATE (text USING
CHAR_CS

NCHAR_CS
)

TRANSLATE ... USING

6-190 Oracle9i SQL Reference

The text argument is the expression to be converted.

■ Specifying the USING CHAR_CS argument converts text into the database

character set. The output datatype is VARCHAR2.

■ Specifying the USING NCHAR_CS argument converts text into the national

character set. The output datatype is NVARCHAR2.

This function is similar to the Oracle CONVERTfunction, but must be used instead of

CONVERT if either the input or the output datatype is being used as NCHAR or

NVARCHAR2. If the input contains UCS2 codepoints or backslash characters (\), then

use the UNISTR function.

Examples
The following statements use data from the sample table oe.product_
descriptions to show the use of the TRANSLATE ... USING function:

CREATE TABLE translate_tab (char_col VARCHAR2(100),
 nchar_col NVARCHAR2(50));
INSERT INTO translate_tab
 SELECT NULL, translated_name
 FROM product_descriptions
 WHERE product_id = 3501;

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
------------------------- -------------------------
...
 C per a SPNIX4.0 - Sys
 C pro SPNIX4.0 - Sys
 C for SPNIX4.0 - Sys
 C til SPNIX4.0 - Sys
...

Note: The TRANSLATE ... USING function is supported primarily

for ANSI compatibility. Oracle Corporation recommends that you

use the TO_CHAR and TO_NCHAR functions, as appropriate, for

converting data to the database or national character set. TO_CHAR
and TO_NCHARcan take as arguments a greater variety of datatypes

than TRANSLATE ... USING, which accepts only character data.

See Also: CONVERT on page 6-36 and UNISTR on page 6-196

TREAT

Functions 6-191

UPDATE translate_tab
 SET char_col = TRANSLATE (nchar_col USING CHAR_CS);

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
------------------------- -------------------------
...
C per a SPNIX4.0 - Sys C per a SPNIX4.0 - Sys
C pro SPNIX4.0 - Sys C pro SPNIX4.0 - Sys
C for SPNIX4.0 - Sys C for SPNIX4.0 - Sys
C til SPNIX4.0 - Sys C til SPNIX4.0 - Sys
...

TREAT

Syntax
treat::=

Purpose
TREAT changes the declared type of an expression.

You must have the EXECUTE object privilege on type to use this function.

■ If the declared type of expr is source_type , then type must be some

supertype or subtype of source_type . If the most specific type of expr is

type (or some subtype of type), then TREAT returns expr . If the most specific

type of expr is not type (or some subtype of type), then TREAT returns NULL.

■ If the declared type of expr is REFsource_type , then type must be some

subtype or supertype of source_type . If the most specific type of

DEREF(expr) is type (or a subtype of type), then TREAT returns expr . If the

most specific type of DEREF(expr) is not type (or a subtype of type), then

TREAT returns NULL.

TREAT (expr AS
REF schema .

type)

TRIM

6-192 Oracle9i SQL Reference

Examples
The following statement uses the table oe.persons , which is created in

"Substitutable Table and Column Examples" on page 15-67. That table is based on

the person_t type, which is created in "Type Hierarchy Example" on page 16-22.

The example retrieves the salary attribute of all people in the persons table, the

value being null for instances of people that are not employees.

SELECT name, TREAT(VALUE(p) AS employee_t).salary salary
 FROM persons p;

NAME SALARY
------------------------- ----------
Bob
Joe 100000
Tim 1000

You can use the TREAT function to create an index on the subtype attributes of a

substitutable column. For an example, see "Indexing on Substitutable Columns:

Examples" on page 13-93.

TRIM

Syntax
trim::=

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

TRIM (

LEADING

TRAILING

BOTH

trim_character

trim_character

FROM

trim_source)

TRIM

Functions 6-193

Purpose
TRIM enables you to trim leading or trailing characters (or both) from a character

string. If trim_character or trim_source is a character literal, then you must

enclose it in single quotes.

■ If you specify LEADING, then Oracle removes any leading characters equal to

trim_character .

■ If you specify TRAILING , then Oracle removes any trailing characters equal to

trim_character .

■ If you specify BOTH or none of the three, then Oracle removes leading and

trailing characters equal to trim_character .

■ If you do not specify trim_character , then the default value is a blank space.

■ If you specify only trim_source , then Oracle removes leading and trailing

blank spaces.

■ The function returns a value with datatype VARCHAR2. The maximum length of

the value is the length of trim_source .

■ If either trim_source or trim_character is null, then the TRIM function

returns null.

Both trim_character and trim_source can be any of the datatypes CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string returned is of

VARCHAR2 datatype and is in the same character set as trim_source .

Examples
This example trims leading and trailing zeroes from a number:

SELECT TRIM (0 FROM 0009872348900) "TRIM Example"
 FROM DUAL;

TRIM Example

 98723489

TRUNC (number)

6-194 Oracle9i SQL Reference

TRUNC (number)

Syntax
trunc_number::=

Purpose
The TRUNC (number) function returns n truncated to m decimal places. If m is

omitted, then n is truncated to 0 places. m can be negative to truncate (make zero) m
digits left of the decimal point.

Examples
The following example truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

 Truncate

 10

TRUNC (date)

Syntax
trunc_date::=

TRUNC (n
, m

)

TRUNC (date
, fmt

)

TZ_OFFSET

Functions 6-195

Purpose
The TRUNC (date) function returns date with the time portion of the day truncated

to the unit specified by the format model fmt . If you omit fmt , then date is

truncated to the nearest day.

Examples
The following example truncates a date:

SELECT TRUNC(TO_DATE(’27-OCT-92’,’DD-MON-YY’), ’YEAR’)
 "New Year" FROM DUAL;

New Year

01-JAN-92

TZ_OFFSET

Syntax
tz_offset::=

Purpose
TZ_OFFSET returns the time zone offset corresponding to the value entered based

on the date the statement is executed. You can enter a valid time zone name, a time

zone offset from UTC (which simply returns itself), or the keyword

SESSIONTIMEZONE or DBTIMEZONE. For a listing of valid values, query the

TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

See Also: "ROUND and TRUNC Date Functions" on page 6-221

for the permitted format models to use in fmt

TZ_OFFSET (

’ time_zone_name ’

’
+

–
hh : mi ’

SESSIONTIMEZONE

DBTMEZONE

)

UID

6-196 Oracle9i SQL Reference

Examples
The following example returns the time zone offset of the US/Eastern time zone

from UTC:

SELECT TZ_OFFSET(’US/Eastern’) FROM DUAL;

TZ_OFFS

-04:00

UID

Syntax
uid::=

Purpose
UID returns an integer that uniquely identifies the session user (the user who

logged on).

Examples
The following example returns the UID of the current user:

SELECT UID FROM DUAL;

UNISTR

Syntax
unistr::=

See Also: Oracle9i Database Reference for information on the

dynamic performance views

UID

UNISTR (’ string ’)

UPDATEXML

Functions 6-197

Purpose
UNISTR takes as its argument a string and returns it in the national character

set.The national character set of the database can be either AL16UTF16 or UTF8.

UNISTR provides support for Unicode string literals by letting you specify the

Unicode encoding value of characters in the string. This is useful, for example, for

inserting data into NCHAR columns.

The Unicode encoding value has the form ’\xxxx’ where ’xxxx’ is the hexadecimal

value of a character in UCS-2 encoding format. To include the backslash in the

string itself, precede it with another backslash (\\).

For portability and data preservation, Oracle Corporation recommends that in the

UNISTR string argument you specify only ASCII characters and the Unicode

encoding values.

Examples
The following example passes both ASCII characters and Unicode encoding values

to the UNISTR function, which returns the string in the national character set:

SELECT UNISTR(’abc\00e5\00f1\00f6’) FROM DUAL;

UNISTR

abcåñö

UPDATEXML

Syntax
updatexml::=

Purpose
UPDATEXML takes as arguments an XMLType instance and an XPath-value pair, and

returns an XMLType instance with the updated value. If XPath_string is an XML

element, then the corresponding value_expr must be an XMLType instance. If

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode and and national character sets

UPDATEXML (XMLType_instance , XPath_string , value_expr

,
, namespace_string

)

UPDATEXML

6-198 Oracle9i SQL Reference

XPath_string is an attribute or text node, then the value_expr can be any

scalar datatype. The datatypes of the target of each XPath_string and its

corresponding value_expr must match. The optional namespace_string must

resolve to a VARCHAR2 value that specifies a default mapping or namespace

mapping for prefixes, which Oracle uses when evaluating the XPath expression(s).

If you update an XML element to null, Oracle removes the attributes and children of

the element, and the element becomes empty. If you update the text node of an

element to null, Oracle removes the text value of the element, and the element itself

remains but is empty.

In most cases, this function materializes an XML document in memory and updates

the value. However, UPDATEXML is optimized for UPDATE statements on

object-relational columns so that the function updates the value directly in the

column. This optimization requires the following conditions:

■ The XMLType_instance must be the same as the column in the UPDATE ...
SET clause.

■ The XPath_string must resolve to scalar content.

Examples
The following example updates to 4 the number of docks in the San Francisco

warehouse in the sample schema OE, which has a warehouse_spec column of

type XMLType:

SELECT warehouse_name,
 EXTRACT(warehouse_spec, ’/Warehouse/Docks’)
 "Number of Docks"
 FROM warehouses
 WHERE warehouse_name = ’San Francisco’;

WAREHOUSE_NAME Number of Docks
-------------------- --------------------
San Francisco <Docks>1</Docks>

UPDATE warehouses SET warehouse_spec =
 UPDATEXML(warehouse_spec,
 ’/Warehouse/Docks/text()’,4)
 WHERE warehouse_name = ’San Francisco’;

1 row updated.

SELECT warehouse_name,
 EXTRACT(warehouse_spec, ’/Warehouse/Docks’)

USER

Functions 6-199

 "Number of Docks"
 FROM warehouses
 WHERE warehouse_name = ’San Francisco’;

WAREHOUSE_NAME Number of Docks
-------------------- --------------------
San Francisco <Docks>4</Docks>

UPPER

Syntax
upper::=

Purpose
UPPER returns char , with all letters uppercase. char can be any of the datatypes

CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the

same datatype as char .

Examples
The following example returns a string in uppercase:

SELECT UPPER(’Large’) "Uppercase"
 FROM DUAL;

Upper

LARGE

USER

Syntax
user::=

UPPER (char)

USER

USERENV

6-200 Oracle9i SQL Reference

Purpose
USER returns the name of the session user (the user who logged on) with the

datatype VARCHAR2. Oracle compares values of this function with blank-padded

comparison semantics.

In a distributed SQL statement, the UID and USER functions identify the user on

your local database. You cannot use these functions in the condition of a CHECK
constraint.

Examples
The following example returns the current user and the user’s UID:

SELECT USER, UID FROM DUAL;

USERENV

Syntax
userenv::=

Purpose

USERENV returns information about the current session. This information can be

useful for writing an application-specific audit trail table or for determining the

language-specific characters currently used by your session. You cannot use

USERENV in the condition of a CHECK constraint. Table 6–3 describes the values for

the parameter argument.

All calls to USERENV return VARCHAR2 data except for calls with the SESSIONID,

ENTRYID, and COMMITSCN parameters, which return NUMBER.

Note: USERENV is a legacy function that is retained for backward

compatibility. Oracle Corporation recommends that you use the

SYS_CONTEXT function with the built-in USERENV namespace for

current functionality. See SYS_CONTEXT on page 6-156 for more

information.

USERENV (’ parameter ’)

USERENV

Functions 6-201

Examples
The following example returns the LANGUAGE parameter of the current session:

SELECT USERENV(’LANGUAGE’) "Language" FROM DUAL;

Table 6–3 Parameters of the USERENV Function

Parameter Return Value

CLIENT_INFO CLIENT_INFO returns up to 64 bytes of user session
information that can be stored by an application using the
DBMS_APPLICATION_INFO package.

Caution: Some commercial applications may be using this
context value. Check the applicable documentation for those
applications to determine what restrictions they may impose
on use of this context area.

See Also:

■ Oracle9i Database Concepts for more on application context

■ CREATE CONTEXT on page 13-12 and SYS_CONTEXT on
page 6-156

ENTRYID ENTRYID returns available auditing entry identifier. You
cannot use this attribute in distributed SQL statements. To use
this keyword in USERENV, the initialization parameter AUDIT_
TRAIL must be set to TRUE.

ISDBA ISDBA returns ’TRUE’ if the user has been authenticated as
having DBA privileges either through the operating system or
through a password file.

LANG LANG returns the ISO abbreviation for the language name, a
shorter form than the existing ’LANGUAGE’ parameter.

LANGUAGE LANGUAGE returns the language and territory currently used
by your session along with the database character set in this
form:

language_territory.characterset

SESSIONID SESSIONID returns your auditing session identifier. You
cannot use this attribute in distributed SQL statements.

TERMINAL TERMINAL returns the operating system identifier for your
current session’s terminal. In distributed SQL statements, this
attribute returns the identifier for your local session. In a
distributed environment, this is supported only for remote
SELECT statements, not for remote INSERT, UPDATE, or
DELETE operations.

VALUE

6-202 Oracle9i SQL Reference

Language

AMERICAN_AMERICA.WE8DEC

VALUE

Syntax
value::=

Purpose
VALUE takes as its argument a correlation variable (table alias) associated with a

row of an object table and returns object instances stored in the object table. The

type of the object instances is the same type as the object table.

Examples
The following example uses the sample table oe.persons , which is created in
"Substitutable Table and Column Examples" on page 15-67: SELECT VALUE(p) FROM
persons p;

VALUE(P)(NAME, SSN)

PERSON_T(’Bob’, 1234)
EMPLOYEE_T(’Joe’, 32456, 12, 100000)
PART_TIME_EMP_T(’Tim’, 5678, 13, 1000, 20)

VAR_POP

Syntax
var_pop::=

See Also: "IS OF type Conditions" on page 5-19 for information

on using IS OF type conditions with the VALUE function

VALUE (correlation_variable)

VAR_POP (expr)
OVER (analytic_clause)

VAR_POP

Functions 6-203

Purpose
VAR_POP returns the population variance of a set of numbers after discarding the

nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER.
If the function is applied to an empty set, then it returns null. The function makes

the following calculation:

(SUM(expr 2) - SUM(expr) 2 / COUNT(expr)) / COUNT(expr)

Aggregate Example
The following example returns the population variance of the salaries in the

employees table:

SELECT VAR_POP(salary) FROM employees;

VAR_POP(SALARY)

 15140307.5

Analytic Example
The following example calculates the cumulative population and sample variances

of the monthly sales in 1998:

SELECT t.calendar_month_desc,
 VAR_POP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
 VAR_SAMP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
 FROM sales s, times t
 WHERE s.time_id = t.time_id AND t.calendar_year = 1998
 GROUP BY t.calendar_month_desc;

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

VAR_SAMP

6-204 Oracle9i SQL Reference

CALENDAR Var_Pop Var_Samp
-------- ---------- ----------
1998-01 0
1998-02 6.1321E+11 1.2264E+12
1998-03 4.7058E+11 7.0587E+11
1998-04 4.6929E+11 6.2572E+11
1998-05 1.5524E+12 1.9405E+12
1998-06 2.3711E+12 2.8453E+12
1998-07 3.7464E+12 4.3708E+12
1998-08 3.7852E+12 4.3260E+12
1998-09 3.5753E+12 4.0222E+12
1998-10 3.4343E+12 3.8159E+12
1998-11 3.4245E+12 3.7669E+12
1998-12 4.8937E+12 5.3386E+12

VAR_SAMP

Syntax
var_samp::=

Purpose
VAR_SAMP returns the sample variance of a set of numbers after discarding the

nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER.
If the function is applied to an empty set, then it returns null. The function makes

the following calculation:

(SUM(expr 2) - SUM(expr) 2 / COUNT(expr)) / (COUNT(expr) - 1)

This function is similar to VARIANCE, except that given an input set of one element,

VARIANCE returns 0 and VAR_SAMP returns null.

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

VAR_SAMP (expr)
OVER (analytic_clause)

VAR_SAMP

Functions 6-205

Aggregate Example
The following example returns the sample variance of the salaries in the sample

employees table.

SELECT VAR_SAMP(salary) FROM employees;

VAR_SAMP(SALARY)

 15283140.5

Analytic Example
The following example calculates the cumulative population and sample variances

of the monthly sales in 1998:

SELECT t.calendar_month_desc,
 VAR_POP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
 VAR_SAMP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
 FROM sales s, times t
 WHERE s.time_id = t.time_id AND t.calendar_year = 1998
 GROUP BY t.calendar_month_desc;

CALENDAR Var_Pop Var_Samp
-------- ---------- ----------
1998-01 0
1998-02 6.1321E+11 1.2264E+12
1998-03 4.7058E+11 7.0587E+11
1998-04 4.6929E+11 6.2572E+11
1998-05 1.5524E+12 1.9405E+12
1998-06 2.3711E+12 2.8453E+12
1998-07 3.7464E+12 4.3708E+12
1998-08 3.7852E+12 4.3260E+12
1998-09 3.5753E+12 4.0222E+12
1998-10 3.4343E+12 3.8159E+12
1998-11 3.4245E+12 3.7669E+12
1998-12 4.8937E+12 5.3386E+12

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

VARIANCE

6-206 Oracle9i SQL Reference

VARIANCE

Syntax
variance::=

Purpose
VARIANCE returns variance of expr . You can use it as an aggregate or analytic

function.

Oracle calculates the variance of expr as follows:

■ 0 if the number of rows in expr = 1

■ VAR_SAMP if the number of rows in expr > 1

If you specify DISTINCT , then you can specify only the query_partition_
clause of the analytic_clause . The order_by_clause and windowing_
clause are not allowed.

Aggregate Example
The following example calculates the variance of all salaries in the sample

employees table:

SELECT VARIANCE(salary) "Variance"
 FROM employees;

 Variance

15283140.5

See Also: "Analytic Functions" on page 6-10 for information on

syntax, semantics, and restrictions

See Also:

■ "Aggregate Functions" on page 6-8

■ "About SQL Expressions" on page 4-2 for information on valid

forms of expr

VARIANCE (

DISTINCT

ALL
expr)

OVER (analytic_clause)

VSIZE

Functions 6-207

Analytic Example
The query returns the cumulative variance of salary values in Department 30

ordered by hire date.

SELECT last_name, salary, VARIANCE(salary)
 OVER (ORDER BY hire_date) "Variance"
 FROM employees
 WHERE department_id = 30;

LAST_NAME SALARY Variance
--------------- ---------- ----------
Raphaely 11000 0
Khoo 3100 31205000
Tobias 2800 21623333.3
Baida 2900 16283333.3
Himuro 2600 13317000
Colmenares 2500 11307000

VSIZE

Syntax
vsize::=

Purpose
VSIZE returns the number of bytes in the internal representation of expr . If expr is

null, then this function returns null.

Examples
The following example returns the number of bytes in the last_name of the

employee in department 10:

Note: This function does not support CLOB data directly.

However, CLOBs can be passed in as arguments through implicit

data conversion. Please refer to "Datatype Comparison Rules" on

page 2-45 for more information.

VSIZE (expr)

WIDTH_BUCKET

6-208 Oracle9i SQL Reference

SELECT last_name, VSIZE (last_name) "BYTES"
 FROM employees
 WHERE department_id = 10;

LAST_NAME BYTES
--------------- ----------
Whalen 6

WIDTH_BUCKET

Syntax
width_bucket::=

Purpose
WIDTH_BUCKET lets you construct equiwidth histograms, in which the histogram

range is divided into intervals that have identical size. (Compare this function with

NTILE , which creates equiheight histograms.) Ideally each bucket is a "closed-open"

interval of the real number line. For example, a bucket can be assigned to scores

between 10.00 and 19.999... to indicate that 10 is included in the interval and 20 is

excluded. This is sometimes denoted [10, 20).

For a given expression, WIDTH_BUCKET returns the bucket number into which the

value of this expression would fall after being evaluated.

■ expr is the expression for which the histogram is being created. This expression

must evaluate to a number or a datetime value. If expr evaluates to null, then

the expression returns null.

■ min_value and max_value are expressions that resolve to the end points of

the acceptable range for expr . Both of these expressions must also evaluate to

number or datetime values, and neither can evaluate to null.

■ num_buckets is an expression that resolves to a constant indicating the

number of buckets. This expression must evaluate to a positive integer.

Oracle also creates (when needed) an underflow bucket numbered 0 and an

overflow bucket numbered num_buckets +1. These buckets handle values less than

min_value and more than max_value and are helpful in checking the

reasonableness of endpoints.

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

WIDTH_BUCKET

Functions 6-209

Examples
The following example creates a ten-bucket histogram on the credit_limit
column for customers in Switzerland in the sample table oe.customers and

returns the bucket number ("Credit Group") for each customer. Customers with

credit limits greater than the maximum value are assigned to the overflow bucket,

11:

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit Group"
 FROM customers WHERE nls_territory = ’SWITZERLAND’
 ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
----------- -------------------- ------------ ------------
 825 Dreyfuss 500 1
 826 Barkin 500 1
 853 Palin 400 1
 827 Siegel 500 1
 843 Oates 700 2
 844 Julius 700 2
 835 Eastwood 1200 3
 840 Elliott 1400 3
 842 Stern 1400 3
 841 Boyer 1400 3
 837 Stanton 1200 3
 836 Berenger 1200 3
 848 Olmos 1800 4
 849 Kaurusmdki 1800 4
 828 Minnelli 2300 5
 829 Hunter 2300 5
 852 Tanner 2300 5
 851 Brown 2300 5
 850 Finney 2300 5
 830 Dutt 3500 7
 831 Bel Geddes 3500 7
 832 Spacek 3500 7
 838 Nicholson 3500 7
 839 Johnson 3500 7
 833 Moranis 3500 7
 834 Idle 3500 7
 845 Fawcett 5000 11
 846 Brando 5000 11
 847 Streep 5000 11

XMLAGG

6-210 Oracle9i SQL Reference

XMLAGG

Syntax
XMLAgg::=

Purpose
XMLAggis an aggregate function. It takes a collection of XML fragments and returns

an aggregated XML document. Any arguments that return null are dropped from

the result.

XMLAggis similar to SYS_XMLAggexcept that XMLAggreturns a collection of nodes,

but it does not accept formatting using the XMLFormat object. Also, XMLAgg does

not enclose the output in an element tag as does SYS_XMLAgg.

Examples
The following example produces a Department element containing Employee
elements with employee job ID and last name as the contents of the elements:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee",
 e.job_id||’ ’||e.last_name)
 ORDER BY last_name))
 as "Dept_list"
 FROM employees e
 WHERE e.department_id = 30;

Dept_list

<Department>
 <Employee>PU_CLERK Baida</Employee>

Note: Within the order_by_clause , Oracle does not interpret

number literals as column positions, as it does in other uses of this

clause, but simply as number literals.

See Also: XMLELEMENT on page 6-214 and SYS_XMLAGG on

page 6-165

XMLAGG (XMLType_instance
order_by_clause

)

XMLAGG

Functions 6-211

 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Tobias</Employee>
</Department>

The result is a single row, because XMLAgg aggregates the rows. You can use the

GROUP BY clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee", e.job_id||’ ’||e.last_name)))
 AS "Dept_list"
 FROM employees e
 GROUP BY e.department_id;

Dept_list

<Department>
 <Employee>AD_ASST Whalen</Employee>
</Department>

<Department>
 <Employee>MK_MAN Hartstein</Employee>
 <Employee>MK_REP Fay</Employee>
</Department>

<Department>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_CLERK Tobias</Employee>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
</Department>
...

XMLCOLATTVAL

6-212 Oracle9i SQL Reference

XMLCOLATTVAL

Syntax
XMLColAttVal::=

Purpose
XMLColAttVal creates an XML fragment and then expands the resulting XML so

that each XML fragment has the name "column" with the attribute "name". You can

use the ASc_alias clause to change the value of the name attribute to something

other than the column name.

You must specify a value for value_expr . If value_expr is null, then no element

is returned.

Restriction on XMLColAttVal You cannot specify an object type column for

value_expr .

Examples
The following example creates an Emp element for a subset of employees, with

nested employee_id , last_name , and salary elements as the contents of Emp.
Each nested element is named column and has a name attribute with the column

name as the attribute value:

SELECT XMLELEMENT("Emp",
 XMLCOLATTVAL(e.employee_id, e.last_name, e.salary)) "Emp Element"
 FROM employees e
 WHERE employee_id = 204;

Emp Element
--
<Emp>
 <column name="EMPLOYEE_ID">204</column>
 <column name="LAST_NAME">Baer</column>
 <column name="SALARY">10000</column>
</Emp>

XMLCOLATTVAL (value_expr
AS c_alias

,

)

XMLCONCAT

Functions 6-213

XMLCONCAT

Syntax
XMLConcat::=

Purpose
XMLConcat takes as input a series of XMLType instances, concatenates the series of

elements for each row, and returns the concatenated series. XMLConcat is the

inverse of XMLSequence.

Null expressions are dropped from the result. If all the value expressions are null,

then the function returns null.

Examples
The following example creates XML elements for the first and last names of a subset

of employees, and then concatenates and returns those elements:

SELECT XMLCONCAT(XMLELEMENT("First", e.first_name),
 XMLELEMENT("Last", e.last_name)) AS "Result"
 FROM employees e
 WHERE e.employee_id > 202;

Result
--
<First>Susan</First>
<Last>Mavris</Last>

<First>Hermann</First>
<Last>Baer</Last>

<First>Shelley</First>
<Last>Higgins</Last>

See Also: the example for XMLFOREST on page 6-217 to compare

the output of these two functions

See Also: XMLSEQUENCE on page 6-218

XMLCONCAT (XMLType_instance

,

)

XMLELEMENT

6-214 Oracle9i SQL Reference

<First>William</First>
<Last>Gietz</Last>

4 rows selected.

XMLELEMENT

Syntax
XMLElement::=

XML_attributes_clause::=

Purpose
XMLElement takes an element name for identifier , an optional collection of

attributes for the element, and arguments that make up the element’s content. It

returns an instance of type XMLType. XMLElement is similar to SYS_XMLGen
except that XMLElement can include attributes in the XML returned, but it does not

accept formatting using the XMLFormat object.

The XMLElement function is typically nested to produce an XML document with a

nested structure, as in the example in the following section.

You must specify a value for identifier , which Oracle uses as the enclosing tag.

The identifier does not have to be a column name or column reference. It cannot be

an expression or null.

In the XML_attributes_clause , if the value_expr is null, then no attribute is

created for that value expression. The type of value_expr cannot be an object type

or collection.

The objects that make up the element content follow the XMLATTRIBUTES
keyword.

XMLELEMENT (
NAME

identifier
, XML_attributes_clause , value_expr

,

)

XMLATTRIBUTES (value_expr
AS c_alias

,

)

XMLELEMENT

Functions 6-215

■ If value_expr is a scalar expression, then you can omit the AS clause, and

Oracle uses the column name as the element name.

■ If value_expr is an object type or collection, then the AS clause is mandatory,

and Oracle uses the specified c_alias as the enclosing tag.

■ If value_expr is null, then no element is created for that value expression.

Examples
The following example produces an Emp element for a series of employees, with

nested elements that provide the employee’s name and hire date:

SELECT XMLELEMENT("Emp", XMLELEMENT("Name",
 e.job_id||’ ’||e.last_name),
 XMLELEMENT("Hiredate", e.hire_date)) as "Result"
 FROM employees e WHERE employee_id > 200;

Result

<Emp>
 <Name>MK_MAN Hartstein</Name>
 <Hiredate>17-FEB-96</Hiredate>
</Emp>

<Emp>
 <Name>MK_REP Fay</Name>
 <Hiredate>17-AUG-97</Hiredate>
</Emp>

<Emp>
 <Name>HR_REP Mavris</Name>
 <Hiredate>07-JUN-94</Hiredate>
</Emp>

<Emp>
 <Name>PR_REP Baer</Name>
 <Hiredate>07-JUN-94</Hiredate>
</Emp>

<Emp>
 <Name>AC_MGR Higgins</Name>
 <Hiredate>07-JUN-94</Hiredate>
</Emp>

See Also: SYS_XMLGEN on page 6-166

XMLELEMENT

6-216 Oracle9i SQL Reference

<Emp>
 <Name>AC_ACCOUNT Gietz</Name>
 <Hiredate>07-JUN-94</Hiredate>
</Emp>

6 rows selected.

The following similar example uses the XMLElement function with the XML_
attributes_clause to create nested XML elements with attribute values for the

top-level element:

SELECT XMLELEMENT("Emp",
 XMLATTRIBUTES(e.employee_id AS "ID", e.last_name),
 XMLELEMENT("Dept", e.department_id),
 XMLELEMENT("Salary", e.salary)) AS "Emp Element"
 FROM employees e
 WHERE e.employee_id = 206;

Emp Element

<Emp ID="206" LAST_NAME="Gietz">
 <Dept>110</Dept>
 <Salary>8300</Salary>
</Emp>

Notice that the ASidentifier clause was not specified for the last_name
column. As a result, the XML returned uses the column name last_name as the

default.

Finally, the next example uses a subquery within the XML_attributes_clause to

retrieve information from another table into the attributes of an element:

SELECT XMLELEMENT("Emp", XMLATTRIBUTES(e.employee_id, e.last_name),
 XMLELEMENT("Dept", XMLATTRIBUTES(e.department_id,
 (SELECT d.department_name FROM departments d
 WHERE d.department_id = e.department_id) as "Dept_name")),
 XMLELEMENT("salary", e.salary),
 XMLELEMENT("Hiredate", e.hire_date)) AS "Emp Element"
 FROM employees e
 WHERE employee_id = 205;

Emp Element

<Emp EMPLOYEE_ID="205" LAST_NAME="Higgins">
 <Dept DEPARTMENT_ID="110" Dept_name="Accounting"/>

XMLFOREST

Functions 6-217

 <salary>12000</salary>
 <Hiredate>07-JUN-94</Hiredate>
</Emp>

XMLFOREST

Syntax
XMLForest::=

Purpose
XMLForest converts each of its argument parameters to XML, and then returns an

XML fragment that is the concatenation of these converted arguments.

■ If value_expr is a scalar expression, then you can omit the AS clause, and

Oracle uses the column name as the element name.

■ If value_expr is an object type or collection, then the AS clause is mandatory,

and Oracle uses the specified c_alias as the enclosing tag.

■ If value_expr is null, then no element is created for that value_expr .

Examples
The following example creates an Emp element for a subset of employees, with

nested employee_id , last_name , and salary elements as the contents of Emp:

SELECT XMLELEMENT("Emp",
 XMLFOREST(e.employee_id, e.last_name, e.salary))
 "Emp Element"
 FROM employees e WHERE employee_id = 204;

Emp Element
--
<Emp>
 <EMPLOYEE_ID>204</EMPLOYEE_ID>
 <LAST_NAME>Baer</LAST_NAME>
 <SALARY>10000</SALARY>
</Emp>

XMLFOREST (value_expr
AS c_alias

,

)

XMLSEQUENCE

6-218 Oracle9i SQL Reference

XMLSEQUENCE

Syntax
XMLSequence::=

Purpose
XMLSequence has two forms:

■ The first form takes as input an XMLType instance and returns a varray of the

top-level nodes in the XMLType.

■ The second form takes as input a REFCURSOR instance, with an optional

instance of the XMLFormat object, and returns as an XMLSequence type an

XML document for each row of the cursor.

Because XMLSequence returns a collection of XMLType, you can use this function

in a TABLE clause to unnest the collection values into multiple rows, which can in

turn be further processed in the SQL query.

Examples
The following example shows how XMLSequence divides up an XML document

with multiple elements into VARRAYsingle-element documents. In this example, the

TABLE keyword instructs Oracle to consider the collection a table value that can be

used in the FROM clause of the subquery:

SELECT EXTRACT(warehouse_spec, ’/Warehouse’) as "Warehouse"
 FROM warehouses WHERE warehouse_name = ’San Francisco’;

See Also: the example for XMLCOLATTVAL on page 6-212 to

compare the output of these two functions

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information on this function

XMLSEQUENCE (

XMLType_instance

sys_refcursor_instance
, fmt)

XMLTRANSFORM

Functions 6-219

Warehouse
--
<Warehouse>
 <Building>Rented</Building>
 <Area>50000</Area>
 <Docks>1</Docks>
 <DockType>Side load</DockType>
 <WaterAccess>Y</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Lot</Parking>
 <VClearance>12 ft</VClearance>
</Warehouse>

1 row selected.

SELECT VALUE(p)
 FROM warehouses w,
 TABLE(XMLSEQUENCE(EXTRACT(warehouse_spec, ’/Warehouse/*’))) p
 WHERE w.warehouse_name = ’San Francisco’;

VALUE(P)
--
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

8 rows selected.

XMLTRANSFORM

Syntax
XMLTransform::=

XMLTRANSFORM (XMLType_instance , XMLType_instance)

XMLTRANSFORM

6-220 Oracle9i SQL Reference

Purpose
XMLTransform takes as arguments an XMLType instance and an XSL style sheet,

which is itself a form of XMLType instance. It applies the style sheet to the instance

and returns an XMLType.

This function is useful for organizing data according to a style sheet as you are

retrieving it from the database.

Examples
The XMLTransform function requires the existence of an XSL style sheet. Here is an

example of a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl_tab (col1 XMLTYPE);

INSERT INTO xsl_tab VALUES (
 XMLTYPE.createxml(
 ’<?xml version="1.0"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:output encoding="utf-8"/>
 <!-- alphabetizes an xml tree -->
 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="*|text()">
 <xsl:sort select="name(.)" data-type="text" order="ascending"/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space(.)"/>
 </xsl:template>
 </xsl:stylesheet> ’));

1 row created.

The next example uses the xsl_tab XSL style sheet to alphabetize the elements in

one warehouse_spec of the sample table oe.warehouses :

SELECT XMLTRANSFORM(w.warehouse_spec, x.col1).GetClobVal()
 FROM warehouses w, xsl_tab x
 WHERE w.warehouse_name = ’San Francisco’;

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information on this function

ROUND and TRUNC Date Functions

Functions 6-221

XMLTRANSFORM(W.WAREHOUSE_SPEC,X.COL1).GETCLOBVAL()
--
<Warehouse>
 <Area>50000</Area>
 <Building>Rented</Building>
 <DockType>Side load</DockType>
 <Docks>1</Docks>
 <Parking>Lot</Parking>
 <RailAccess>N</RailAccess>
 <VClearance>12 ft</VClearance>
 <WaterAccess>Y</WaterAccess>
</Warehouse>

ROUND and TRUNC Date Functions
Table 6–4 lists the format models you can use with the ROUND and TRUNC date

functions and the units to which they round and truncate dates. The default model,

’DD’, returns the date rounded or truncated to the day with a time of midnight.

Table 6–4 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

ISO Year

Q Quarter (rounds up on the sixteenth day of the second month of the
quarter)

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

User-Defined Functions

6-222 Oracle9i SQL Reference

The starting day of the week used by the format models DAY, DY, and D is specified

implicitly by the initialization parameter NLS_TERRITORY.

User-Defined Functions
You can write user-defined functions in PL/SQL or Java to provide functionality

that is not available in SQL or SQL built-in functions. User-defined functions can

appear in a SQL statement anywhere SQL functions can appear, that is, wherever an

expression can occur.

For example, user-defined functions can be used in the following:

■ The select list of a SELECT statement

■ The condition of a WHERE clause

■ CONNECT BY, START WITH, ORDER BY, and GROUP BYclauses

■ The VALUES clause of an INSERT statement

■ The SET clause of an UPDATE statement

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

See Also: Oracle9i Database Reference and Oracle9i Database
Globalization Support Guide for information on this parameter

Table 6–4 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

User-Defined Functions

Functions 6-223

user_defined_function::=

The optional expression list must match attributes of the function, package, or

operator.

Restriction on User-defined Functions The DISTINCT and ALL keywords are

valid only with a user-defined aggregate function.

Prerequisites
User-defined functions must be created as top-level functions or declared with a

package specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE
privilege on the user function. To query a view defined with a user function, you

must have SELECT privileges on the view. No separate EXECUTE privileges are

needed to select from the view.

Note: Oracle SQL does not support calling of functions with

boolean parameters or returns. Therefore, if your user-defined

functions will be called from SQL statements, you must design

them to return numbers (0 or 1) or character strings (’TRUE’ or

’FALSE’).

See Also:

■ CREATE FUNCTION on page 13-52 for information on creating

functions, including restrictions on user-defined functions

■ Oracle9i Application Developer’s Guide - Fundamentals for a

complete description on the creation and use of user functions

schema .
package .

function

user_defined_operator

@ dblink . (

DISTINCT

ALL
expr

,

)

User-Defined Functions

6-224 Oracle9i SQL Reference

Name Precedence
Within a SQL statement, the names of database columns take precedence over the

names of functions with no parameters. For example, if the Human Resources

manager creates the following two objects in the hr schema:

CREATE TABLE new_emps (new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END ;

then in the following two statements, the reference to new_sal refers to the column

new_emps.new_sal :

SELECT new_sal FROM new_emps;
SELECT new_emps.new_sal FROM new_emps;

To access the function new_sal , you would enter:

SELECT hr.new_sal FROM new_emps;

Here are some sample calls to user functions that are allowed in SQL expressions:

circle_area (radius)
payroll.tax_rate (empno)
hr.employees.tax_rate (dependent, empno)@remote

Example To call the tax_rate user function from schema hr , execute it against

the ss_no and sal columns in tax_table , and place the results in the variable

income_tax , specify the following:

SELECT hr.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table
 WHERE ss_no = tax_id;

Naming Conventions
If only one of the optional schema or package names is given, then the first

identifier can be either a schema name or a package name. For example, to

See Also:

■ CREATE FUNCTION on page 13-52 for information on creating

top-level functions

■ CREATE PACKAGE on page 14-52 for information on

specifying packaged functions

User-Defined Functions

Functions 6-225

determine whether PAYROLL in the reference PAYROLL.TAX_RATE is a schema or

package name, Oracle proceeds as follows:

1. Check for the PAYROLL package in the current schema.

2. If a PAYROLL package is not found, then look for a schema name PAYROLL that

contains a top-level TAX_RATE function. If no such function is found, then

return an error.

3. If the PAYROLL package is found in the current schema, then look for a TAX_
RATE function in the PAYROLL package. If no such function is found, then

return an error.

You can also refer to a stored top-level function using any synonym that you have

defined for it.

User-Defined Functions

6-226 Oracle9i SQL Reference

Common SQL DDL Clauses 7-1

7
Common SQL DDL Clauses

This chapter describes some SQL data definition clauses that appear in multiple

SQL statements.

This chapter contains these sections:

■ allocate_extent_clause

■ constraints

■ deallocate_unused_clause

■ file_specification

■ logging_clause

■ parallel_clause

■ physical_attributes_clause

■ storage_clause

allocate_extent_clause

7-2 Oracle9i SQL Reference

allocate_extent_clause

Purpose
Use the allocate_extent_clause clause to explicitly allocate a new extent for a

database object.

Explicitly allocating an extent with this clause does not change the values of the

NEXT and PCTINCREASE storage parameters, so does not affect the size of the next

extent to be allocated implicitly by Oracle.

You can allocate an extent in the following SQL statements:

■ ALTER CLUSTER (see ALTER CLUSTER on page 9-6)

■ ALTER INDEX: to allocate an extent to the index, an index partition, or an index

subpartition (see ALTER INDEX on page 9-62)

■ ALTER MATERIALIZED VIEW: to allocate an extent to the materialized view, one

of its partitions or subpartitions, or the overflow segment of an index-organized

materialized view (see ALTER MATERIALIZED VIEW on page 9-6)

■ ALTER MATERIALIZED VIEW LOG(see ALTER MATERIALIZED VIEW LOG on

page 9-110)

■ ALTER TABLE: to allocate an extent to the table, a table partition, a table

subpartition, the mapping table of an index-organized table, the overflow

segment of an index-organized table, or a LOB storage segment (see ALTER

TABLE on page 11-2)

Syntax
allocate_extent_clause::=

See Also: storage_clause on page 7-56 for information about

the NEXT and PCTINCREASE storage parameters

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

allocate_extent_clause

Common SQL DDL Clauses 7-3

Semantics
This section describes the parameters of the allocate_extent_clause . For

additional information, refer to the SQL statement in which you set or reset these

parameters for a particular database object.

SIZE
Specify the size of the extent in bytes. Use K or M to specify the extent size in

kilobytes or megabytes.

For a table, index, materialized view, or materialized view log, if you omit SIZE ,

then Oracle determines the size based on the values of the storage parameters of the

object. However, for a cluster, Oracle does not evaluate the cluster’s storage

parameters, so you must specify SIZE if you do not want Oracle to use a default

value.

DATAFILE ’ filename ’
Specify one of the datafiles in the tablespace of the table, cluster, index, materialized

view, or materialized view log to contain the new extent. If you omit DATAFILE,

then Oracle chooses the datafile.

INSTANCE integer
Use this parameter only if you are using Oracle with Real Application Clusters.

Specifying INSTANCEinteger makes the new extent available to the freelist group

associated with the specified instance. If the instance number exceeds the maximum

number of freelist groups, then Oracle divides the specified number by the

maximum number and uses the remainder to identify the freelist group to be used.

An instance is identified by the value of its initialization parameter INSTANCE_
NUMBER.

If you omit this parameter, then the space is allocated to the table, cluster, index,

materialized view, or materialized view log but is not drawn from any particular

freelist group. Instead, Oracle uses the master freelist and allocates space as needed.

Note: You cannot specify the allocate_extent_clause and

the deallocate_unused_clause in the same statement.

allocate_extent_clause

7-4 Oracle9i SQL Reference

Note: If you are using automatic segment-space management,

then the INSTANCE parameter of the allocate_extent_clause
may not reserve the newly allocated space for the specified

instance, because automatic segment-space management does not

maintain rigid affinity between extents and instances.

See Also: Oracle9i Real Application Clusters Administration for more

information on setting the INSTANCE parameter of allocate_
extent_clause

constraints

Common SQL DDL Clauses 7-5

constraints

Purpose
Use one of the constraints to define an integrity constraint—a rule that restricts

the values in a database. Oracle lets you create six types of constraints and lets you

declare them in two ways.

The six types of integrity constraint are described briefly here and more fully in

"Semantics" on page 7-10:

■ A NOT NULL constraint prohibits a database value from being null.

■ A unique constraint prohibits multiple rows from having the same value in the

same column or combination of columns but allows some values to be null.

■ A primary key constraint combines a NOT NULL constraint and a unique

constraint in a single declaration. That is, it prohibits multiple rows from having

the same value in the same column or combination of columns and prohibits

values from being null.

■ A foreign key constraint requires values in one table to match values in

another table.

■ A check constraint requires a value in the database to comply with a specified

condition.

■ A REF column by definition references an object in another object type or in a

relational table. A REF constraint lets you further describe the relationship

between the REF column and the object it references.

You can define constraints syntactically in two ways:

■ As part of the definition of an individual column or attribute. This is called

inline specification.

■ As part of the table definition. This is called out-of-line specification.

NOT NULL constraints must be declared inline. All other constraints can be declared

either inline or out of line.

Constraint clauses can appear in the following statements:

■ CREATE TABLE (see CREATE TABLE on page 15-7)

■ ALTER TABLE (see ALTER TABLE on page 11-2)

■ CREATE VIEW (see CREATE VIEW on page 16-39)

constraints

7-6 Oracle9i SQL Reference

■ ALTER VIEW (see ALTER VIEW on page 12-31)

View Constraints Oracle does not enforce view constraints. However, you can

enforce constraints on views through constraints on base tables.

You can specify only unique, primary key, and foreign key constraints on views,

and they are supported only in DISABLE NOVALIDATE mode. You cannot define

view constraints on attributes of an object column.

Prerequisites
You must have the privileges necessary to issue the statement in which you are

defining the constraint.

To create a foreign key constraint, in addition, the parent table or view must be in

your own schema, or you must have the REFERENCES privilege on the columns of

the referenced key in the parent table or view.

Syntax
constraints::=

(inline_constraint::= on page 7-7, out_of_line_constraint::= on

page 7-7, inline_ref_constraint::= on page 7-7, out_of_line_ref_
constraint::= on page 7-8)

See Also:

■ "View Constraints" on page 7-26 for additional information on

view constraints

■ "DISABLE Clause" on page 7-22 for information on DISABLE
NOVALIDATE mode

inline_constraint

out_of_line_constraint

inline_ref_constraint

out_of_line_ref_constraint

constraints

Common SQL DDL Clauses 7-7

inline_constraint::=

(references_clause::= on page 7-8)

out_of_line_constraint::=

(references_clause::= on page 7-8, constraint_state::= on page 7-8)

inline_ref_constraint::=

(references_clause::= on page 7-8, constraint_state::= on page 7-8)

CONSTRAINT constraint_name

NOT
NULL

UNIQUE

PRIMARY KEY

references_clause

CHECK (condition)

constraint_state

CONSTRAINT constraint_name

UNIQUE (column

,

)

PRIMARY KEY (column

,

)

FOREIGN KEY (column

,

) references_clause

CHECK (condition)

constraint_state

SCOPE IS
schema .

scope_table

WITH ROWID

CONSTRAINT constraint_name
references_clause

constraint_state

constraints

7-8 Oracle9i SQL Reference

out_of_line_ref_constraint::=

(references_clause::= on page 7-8, constraint_state::= on page 7-8)

references_clause ::=

constraint_state ::=

(using_index_clause::= on page 7-9, exceptions_clause::= on page 7-10)

SCOPE FOR (
ref_col

ref_attr
) IS

schema .
scope_table

REF (
ref_col

ref_attr
) WITH ROWID

CONSTRAINT constraint_name
FOREIGN KEY (

ref_col

ref_attr
) references_clause

constraint_state

REFERENCES
schema .

object
(column)

ON DELETE
CASCADE

SET NULL

NOT
DEFERRABLE

INITIALLY
IMMEDIATE

DEFERRED

ENABLE

DISABLE

VALIDATE

NOVALIDATE

RELY

NORELY

using_index_clause

exceptions_clause

constraints

Common SQL DDL Clauses 7-9

using_index_clause ::=

(create_index_statement : create_index::= on page 13-66, storage_
clause s on page 7-56, logging_clause on page 7-45, global_partitioned_
index::= on page 7-9)

global_partitioned_index ::=

index_partitioning_clause ::=

USING INDEX

schema .
index

(create_index_statement)

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

SORT

NOSORT

logging_clause

LOCAL

global_partitioned_index

GLOBAL PARTITION BY RANGE (column_list) (index_partitioning_clause)

PARTITION
partition

VALUES LESS THAN (value

,

)
segment_attributes_clause

constraints

7-10 Oracle9i SQL Reference

segment_attributes_clause::=

(physical_attributes_clause::= on page 7-53, logging_clause on

page 7-45)

physical_attributes_clause::=

(storage_clause on page 7-56)

exceptions_clause ::=

Semantics
This section describes the semantics of the constraints . For additional

information, refer to the SQL statement in which you define or redefine a constraint

for a table or view.

physical_attributes_clause

TABLESPACE tablespace

logging_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

EXCEPTIONS INTO
schema .

table

constraints

Common SQL DDL Clauses 7-11

CONSTRAINT constraint_name Specify a name for the constraint. If you omit this

identifier, then Oracle generates a name with the form SYS_Cn. Oracle stores the

name and the definition of the integrity constraint in the USER_, ALL_, and DBA_
CONSTRAINTS data dictionary views (in the CONSTRAINT_NAME and SEARCH_
CONDITION columns, respectively).

NOT NULL Constraints
A NOT NULL constraint prohibits a column from containing nulls. The NULL
keyword does not actually define an integrity constraint, but you can specify it to

explicitly permit a column to contain nulls. You must define NOT NULL and NULL
using inline specification. If you specify neither NOT NULL nor NULL, then the

default is NULL.

NOT NULL constraints are the only constraints you can specify inline on XMLType
and VARRAY columns.

To satisfy a NOT NULLconstraint, every row in the table must contain a value for the

column.

Note: Oracle does not support constraints on columns or

attributes whose type is a user-defined object, nested table, VARRAY,
REF, or LOB, with two exceptions:

■ NOT NULL constraints are supported for a column or attribute

whose type is user-defined object, VARRAY, REF, or LOB.

■ NOT NULL, foreign key, and REF constraints are supported on a

column of type REF.

See Also: Oracle9i Database Reference for information on the data

dictionary views

Note: Oracle does not index table rows in which all key columns

are null except in the case of bitmap indexes. Therefore, if you want

an index on all rows of a table, then you must either specify NOT
NULL constraints for at least one of the index key columns or create

a bitmap index.

constraints

7-12 Oracle9i SQL Reference

Restrictions on NOT NULL Constraints

■ You cannot specify NULL or NOT NULL in a view constraint.

■ You cannot specify NULL or NOT NULL for an attribute of an object. Instead, use

a CHECK constraint with the IS [NOT] NULL condition.

Unique Constraints
A unique constraint designates a column as a unique key. A composite unique key
designates a combination of columns as the unique key. When you define a unique

constraint inline, you need only the UNIQUE keyword. When you define a unique

constraint out of line, you must also specify one or more columns. You must define

a composite unique key out of line.

To satisfy a unique constraint, no two rows in the table can have the same value for

the unique key. However, the unique key made up of a single column can contain

nulls. To satisfy a composite unique key, no two rows in the table or view can have

the same combination of values in the key columns. Any row that contains nulls in

all key columns automatically satisfies the constraint. However, two rows that

contain nulls for one or more key columns and the same combination of values for

the other key columns violate the constraint.

Restrictions on Unique Constraints

■ A table or view can have only one unique key.

■ None of the columns in the unique key can have datatype LOB, LONG, LONG
RAW, VARRAY, NESTED TABLE, OBJECT, BFILE , or REF, or TIMESTAMP WITH
TIME ZONE. However, the unique key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE.

■ A composite unique key cannot have more than 32 columns.

See Also: "Attribute-Level Constraints Example" on page 7-34

and "NOT NULL Example" on page 7-29

Note: When you specify a unique constraint on one or more

columns, Oracle implicitly creates an index on the unique key. If

you are defining uniqueness for purposes of query performance,

then Oracle Corporation recommends that you instead create the

unique index explicitly using a CREATE UNIQUE INDEX statement.

See CREATE INDEX on page 13-65 for more information.

constraints

Common SQL DDL Clauses 7-13

■ You cannot designate the same column or combination of columns as both a

primary key and a unique key.

■ You cannot specify a unique key when creating a subtable or a subview in an

inheritance hierarchy. The unique key can be specified only for the top-level

(root) table or view.

Primary Key Constraints
A primary key constraint designates a column as the primary key of a table or view.

A composite primary key designates a combination of columns as the primary key.

When you define a primary key constraint inline, you need only the PRIMARY KEY
keywords. When you define a primary key constraint out of line, you must also

specify one or more columns. You must define a composite primary key out of line.

A primary key constraint combines a NOT NULL and unique constraint in one

declaration. Therefore, to satisfy a primary key constraint:

■ No primary key value can appear in more than one row in the table.

■ No column that is part of the primary key can contain a null.

Restrictions on Primary Key Constraints

■ A table or view can have only one primary key.

■ None of the columns in the primary key can have datatype LOB, LONG, LONG
RAW, VARRAY, NESTED TABLE, OBJECT, BFILE , or REF, or TIMESTAMP WITH
TIME ZONE. However, the primary key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE.

■ The size of the primary key cannot exceed approximately one database block.

■ A composite primary key cannot have more than 32 columns.

■ You cannot designate the same column or combination of columns as both a

primary key and a unique key.

■ You cannot specify a primary key when creating a subtable or a subview in an

inheritance hierarchy. The primary key can be specified only for the top-level

(root) table or view.

See Also: "Unique Key Example" on page 7-27 and Composite

Unique Key Example on page 7-28

See Also: "Primary Key Example" on page 7-28 and "Composite

Primary Key Example" on page 7-29

constraints

7-14 Oracle9i SQL Reference

Foreign Key Constraints
A foreign key constraint (also called a referential integrity constraint) designates a

column as the foreign key and establishes a relationship between that foreign key

and a specified primary or unique key, called the referenced key. A composite
foreign key designates a combination of columns as the foreign key.

The table or view containing the foreign key is called the child object, and the table

or view containing the referenced key is called the parent object. The foreign key

and the referenced key can be in the same table or view. In this case, the parent and

child tables are the same. If you identify only the parent table or view and omit the

column name, then the foreign key automatically references the primary key of the

parent table or view. The corresponding column or columns of the foreign key and

the referenced key must match in order and datatype.

You can define a foreign key constraint on a single key column either inline or out

of line. You must specify a composite foreign key and a foreign key on an attribute

out of line.

To satisfy a composite foreign key constraint, the composite foreign key must refer

to a composite unique key or a composite primary key in the parent table or view,

or the value of at least one of the columns of the foreign key must be null.

You can designate the same column or combination of columns as both a foreign

key and a primary or unique key. You can also designate the same column or

combination of columns as both a foreign key and a cluster key.

You can define multiple foreign keys in a table or view. Also, a single column can be

part of more than one foreign key.

Restrictions on Foreign Key Constraints

■ None of the columns in the foreign key can have datatype LOB, LONG, LONG
RAW, VARRAY, NESTED TABLE, OBJECT, BFILE , or REF, or TIMESTAMP WITH
TIME ZONE. However, the primary key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE.

■ The referenced unique or primary key constraint on the parent table or view

must already be defined.

■ A composite foreign key cannot have more than 32 columns.

■ The child and parent tables must be on the same database. To enable referential

integrity constraints across nodes of a distributed database, you must use

database triggers. See CREATE TRIGGER on page 15-95.

constraints

Common SQL DDL Clauses 7-15

■ If either the child or parent object is a view, then the constraint is subject to all

restrictions on view constraints. See "View Constraints" on page 7-26.

■ You cannot define a foreign key constraint in a CREATE TABLE statement that

contains an ASsubquery clause. Instead, you must create the table without the

constraint and then add it later with an ALTER TABLE statement.

references_clause Foreign key constraints use the references_clause syntax.

When you specify a foreign key constraint inline, you need only the references_
clause . When you specify a foreign key constraint out of line, you must also

specify the FOREIGN KEY keywords and one or more columns.

ON DELETE Clause The ON DELETE clause lets you determine how Oracle

automatically maintains referential integrity if you remove a referenced primary or

unique key value. If you omit this clause, then Oracle does not allow you to delete

referenced key values in the parent table that have dependent rows in the child

table.

■ Specify CASCADE if you want Oracle to remove dependent foreign key values.

■ Specify SET NULL if you want Oracle to convert dependent foreign key values

to NULL.

Restriction on ON DELETE You cannot specify this clause for a view constraint.

Check Constraints
A check constraint lets you specify a condition that each row in the table must

satisfy. To satisfy the constraint, each row in the table must make the condition

either TRUE or unknown (due to a null). When Oracle evaluates a check constraint

condition for a particular row, any column names in the condition refer to the

column values in that row.

The syntax for inline and out-of-line specification of check constraints is the same.

However, inline specification can refer only to the column (or the attributes of the

column if it is an object column) currently being defined, whereas out-of-line

specification can refer to multiple columns or attributes.

See Also: Oracle9i Application Developer’s Guide - Fundamentals and

"Foreign Key Constraint Example" on page 7-29 and "Composite

Foreign Key Constraint Example" on page 7-31

See Also: "ON DELETE Example" on page 7-31

constraints

7-16 Oracle9i SQL Reference

Restrictions on Check Constraints

■ You cannot specify a check constraint for a view. However, you can define the

view using the WITH CHECK OPTION clause, which is equivalent to specifying a

check constraint for the view.

■ The condition of a check constraint can refer to any column in the table, but it

cannot refer to columns of other tables.

■ Conditions of check constraints cannot contain the following constructs:

■ Subqueries and scalar subquery expressions

■ Calls to the functions that are not deterministic (CURRENT_DATE,
CURRENT_TIMESTAMP, DBTIMEZONE, LOCALTIMESTAMP,
SESSIONTIMEZONE, SYSDATE, SYSTIMESTAMP, UID , USER, and USERENV)

■ Calls to user-defined functions

■ Dereferencing of REF columns (for example, using the DEREF function)

■ Nested table columns or attributes

■ The pseudocolumns CURRVAL, NEXTVAL, LEVEL, or ROWNUM

■ Date constants that are not fully specified

REF Constraints
REFconstraints let you describe the relationship between a column of type REFand

the object it references.

Note: Oracle does not verify that conditions of check constraints

are not mutually exclusive. Therefore, if you create multiple check

constraints for a column, design them carefully so their purposes

do not conflict. Do not assume any particular order of evaluation of

the conditions.

See Also:

■ Chapter 5, "Conditions" for additional information and syntax

■ "Check Constraint Examples" on page 7-32 and "Attribute-

Level Constraints Example" on page 7-34

constraints

Common SQL DDL Clauses 7-17

ref_constraint REF constraints use the ref_constraint syntax. You define a

REF constraint either inline or out of line. Out-of-line specification requires you to

specify the REF column or attribute you are further describing.

■ For ref_column , specify the name of a REF column of an object or relational

table.

■ For ref_attribute , specify an embedded REF attribute within an object

column of a relational table.

Both inline and out-of-line specification let you define a scope constraint, a rowid

constraint, or a referential integrity constraint on a REF column.

If the REF column’s scope table or referenced table has a primary-key-based object

identifier, then it is a user-defined REF column.

SCOPE REF Constraints
In a table with a REF column, each REF value in the column can conceivably

reference a row in a different object table. The SCOPE clause restricts the scope of

references to a single table, scope_table . The values in the REF column or

attribute point to objects in scope_table , in which object instances (of the same

type as the REF column) are stored.

Specify the SCOPE clause to restrict the scope of references in the REF column to a

single table. For you to specify this clause, scope_table must be in your own

schema or you must have SELECT privileges on scope_table or SELECT ANY
TABLE system privileges. You can specify only one scope table for each REF
column.

Restrictions on Scope Constraints

■ You cannot add a scope constraint to an existing column unless the table is

empty.

■ You cannot specify a scope constraint for the REF elements of a VARRAY
column.

■ You must specify this clause if you specify ASsubquery and the subquery

returns user-defined REFs.

■ You cannot subsequently drop a scope constraint from a REF column.

See Also: Oracle9i Database Concepts for more information on

REFs, "Foreign Key Constraints" on page 7-14, and "REF Constraint

Examples" on page 7-34

constraints

7-18 Oracle9i SQL Reference

Rowid REF Constraints
Specify WITH ROWID to store the rowid along with the REF value in ref_column
or ref_attribute . Storing the rowid with the REF value can improve the

performance of dereferencing operations, but will also use more space. Default

storage of REF values is without rowids.

Restrictions on Rowid Constraints

■ You cannot define a rowid constraint for the REF elements of a VARRAY column.

■ You cannot subsequently drop a rowid constraint from a REF column.

■ If the REF column or attribute is scoped, then this clause is ignored and the

rowid is not stored with the REF value.

Referential Integrity Constraints on REF Columns
The references_clause of the ref_constraint syntax lets you define a

foreign key constraint on the REF column.This clause also implicitly restricts the

scope of the REF column or attribute to the referenced table. However, whereas a

foreign key constraint on a non-REF column references an actual column in the

parent table, a foreign key constraint on a REF column references the implicit object

identifier (OID) column of the parent table.

If you do not specify CONSTRAINT, then Oracle generates a system name for the

constraint of the form SYS_Cn.

If you add a referential integrity constraint to an existing REFcolumn that is already

scoped, then the referenced table must be the same as the scope table of the REF
column. If you later drop the referential integrity constraint, then the REF column

will remain scoped to the referenced table.

As is the case for foreign key constraints on other types of columns, you can use the

references_clause alone for inline declaration. For out-of-line declaration you

must also specify the FOREIGN KEY keywords plus one or more REF columns or

attributes.

See Also: the function DEREF on page 6-58 for an example of

dereferencing

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on object identifiers

constraints

Common SQL DDL Clauses 7-19

Restrictions on Foreign Key Constraints of REF Columns

■ Oracle implicitly adds a scope constraint when you add a referential integrity

constraint to an existing unscoped REF column. Therefore, all the restrictions

that apply for scope constraints also apply in this case.

■ You cannot specify a column after the object name in the references_
clause .

Specifying Constraint State
As part of constraint definition, you can specify how and when Oracle should

enforce the constraint.

constraint_state You can use the constraint_state with both inline and out-

of-line specification. You can specify the clauses of constraint_state in any

order, but you can specify each clause only once.

DEFERRABLE Clause The DEFERRABLE and NOT DEFERRABLE parameters

indicate whether or not, in subsequent transactions, constraint checking can be

deferred until the end of the transaction using the SET CONSTRAINT(S) statement.

If you omit this clause, then the default is NOT DEFERRABLE.

■ Specify NOT DEFERRABLE to indicate that in subsequent transactions you

cannot use the SET CONSTRAINT[S] clause to defer checking of this constraint

until the transaction is committed. The checking of a NOT DEFERRABLE
constraint can never be deferred to the end of the transaction.

■ Specify DEFERRABLE to indicate that in subsequent transactions you can use

the SET CONSTRAINT[S] clause to defer checking of this constraint until after

the transaction is committed. This setting in effect lets you disable the constraint

temporarily while making changes to the database that might violate the

constraint until all the changes are complete.

You cannot alter a constraint’s deferrability. That is, whether you specify either of

these parameters, or make the constraint NOT DEFERRABLE implicitly by specifying

neither of them, you cannot specify this clause in an ALTER TABLE statement. You

must drop the constraint and re-create it.

Note: If you declare a new constraint NOT DEFERRABLE, then it

must be valid at the time the CREATE TABLE statement is

committed or the CREATE statement will fail.

constraints

7-20 Oracle9i SQL Reference

Restriction on [NOT] DEFERRABLE You cannot specify either of these parameters

for a view constraint.

INITIALLY Clause The INITIALLY clause establishes the default checking

behavior for constraints that are DEFERRABLE. The INITIALLY setting can be

overridden by a SET CONSTRAINT(S) statement in a subsequent transaction.

■ Specify INITIALLY IMMEDIATE to indicate that Oracle should check this

constraint at the end of each subsequent SQL statement. If you do not specify

INITIALLY at all, then the default is INITIALLY IMMEDIATE .

■ Specify INITIALLY DEFERRED to indicate that Oracle should check this

constraint at the end of subsequent transactions.

This clause is not valid if you have declared the constraint to be NOT DEFERRABLE,
because a NOT DEFERRABLE constraint is automatically INITIALLY IMMEDIATE
and cannot ever be INITIALLY DEFERRED .

VALIDATE | NOVALIDATE The behavior of VALIDATE and NOVALIDATE always

depends on whether the constraint is enabled or disabled, either explicitly or by

default. Therefore they are described in the context of "ENABLE Clause" on

page 7-20 and "DISABLE Clause" on page 7-22.

ENABLE Clause Specify ENABLE if you want the constraint to be applied to the

data in the table.

See Also:

■ SET CONSTRAINT[S] on page 18-45 for information on setting

constraint checking for a transaction

■ Oracle9i Database Administrator’s Guide and Oracle9i Database
Concepts for more information about deferred constraints

■ "DEFERRABLE Constraint Examples" on page 7-36

Note: If you declare a new constraint INITIALLY IMMEDIATE ,

then it must be valid at the time the CREATE TABLE statement is

committed or the create statement will fail.

constraints

Common SQL DDL Clauses 7-21

■ ENABLE VALIDATE specifies that all old and new data also complies with the

constraint. An enabled validated constraint guarantees that all data is and will

continue to be valid.

If any row in the table violates the integrity constraint, the constraint remains

disabled and Oracle returns an error. If all rows comply with the constraint,

Oracle enables the constraint. Subsequently, if new data violates the constraint,

Oracle does not execute the statement and returns an error indicating the

integrity constraint violation.

■ ENABLE NOVALIDATE ensures that all new DML operations on the constrained

data comply with the constraint. This clause does not ensure that existing data

in the table complies with the constraint and therefore does not require a table

lock.

If you specify neither VALIDATE nor NOVALIDATE, the default is VALIDATE.

If you change the state of any single constraint from ENABLE NOVALIDATE to
ENABLE VALIDATE, the operation can be performed in parallel, and does not block

reads, writes, or other DDL operations.

Note: If you enable a unique or primary key constraint, and if no

index exists on the key, Oracle creates a unique index. This index is

dropped if the constraint is subsequently disabled, and Oracle

rebuilds the index every time the constraint is enabled.

To avoid rebuilding the index and eliminate redundant indexes,

create new primary key and unique constraints initially disabled.

Then create (or use existing) nonunique indexes to enforce the

constraint. Oracle does not drop a nonunique index when the

constraint is disabled, so subsequent ENABLE operations are

facilitated.

Note: If you place a primary key constraint in ENABLE VALIDATE
mode, the validation process will verify that the primary key

columns contain no nulls. To avoid this overhead, mark each

column in the primary key NOT NULL before entering data into the

column and before enabling the table’s primary key constraint.

constraints

7-22 Oracle9i SQL Reference

Restriction on the ENABLE Clause You cannot enable a foreign key that

references a disabled unique or primary key.

DISABLE Clause Specify DISABLE to disable the integrity constraint. Disabled

integrity constraints appear in the data dictionary along with enabled constraints. If

you do not specify this clause when creating a constraint, Oracle automatically

enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the index on the

constraint, but keeps the constraint valid. This feature is most useful in data

warehousing situations, because it lets you load large amounts of data while

also saving space by not having an index. This setting lets you load data from a

nonpartitioned table into a partitioned table using the exchange_partition_
clause of the ALTER TABLE statement or using SQL*Loader. All other

modifications to the table (inserts, updates, and deletes) by other SQL

statements are disallowed.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the

constraint (because it is disabled) and cannot guarantee that the constraint is

true (because it is not being validated).

You cannot drop a table whose primary key is being referenced by a foreign key

even if the foreign key constraint is in DISABLE NOVALIDATEstate. Further, the

optimizer can use constraints in DISABLE NOVALIDATE state.

If you specify neither VALIDATE nor NOVALIDATE, the default is NOVALIDATE.

If you disable a unique or primary key constraint that is using a unique index,

Oracle drops the unique index.

RELY Clause RELY and NORELY are valid only when you are modifying an

existing constraint (that is, in the ALTER TABLE... MODIFYconstraint syntax). These

parameters specify whether a constraint in NOVALIDATE mode is to be taken into

See Also: Oracle9i Data Warehousing Guide for more information

on using this setting

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on when to use this setting

See Also: the enable_disable_clause of CREATE TABLE on

page 15-55 for additional notes and restrictions

constraints

Common SQL DDL Clauses 7-23

account for query rewrite. Specify RELY to activate an existing constraint in

NOVALIDATE mode for query rewrite in an unenforced query rewrite integrity

mode. The constraint is in NOVALIDATE mode, so Oracle does not enforce it. The

default is NORELY.

Unenforced constraints are generally useful only with materialized views and

query rewrite. Depending on the QUERY_REWRITE_INTEGRITY mode (see ALTER

SESSION on page 10-2), query rewrite can use only constraints that are in

VALIDATE mode, or that are in NOVALIDATEmode with the RELYparameter set, to

determine join information.

Restriction on the RELY Clause You cannot set a nondeferrable NOT NULL
constraint to RELY.

Using Indexes to Enforce Constraints
When defining the state of a unique or primary key constraint, you can specify an

index for Oracle to use to enforce the constraint, or you can instruct Oracle to create

the index used to enforce the constraint.

using_index_clause You can specify the using_index_clause only when

enabling unique or primary key constraints. You can specify the clauses of the

using_index_clause in any order, but you can specify each clause only once.

■ If you specify schema .index , Oracle attempts to enforce the constraint using

the specified index. If Oracle cannot find the index or cannot use the index to

enforce the constraint, Oracle returns an error.

■ If you specify the create_index_statement , Oracle attempts to create the

index and use it to enforce the constraint. If Oracle cannot create the index or

cannot use the index to enforce the constraint, Oracle returns an error.

■ If you neither specify an existing index nor create a new index, Oracle creates

the index. In this case:

■ The index receives the same name as the constraint.

■ You can choose the values of the INITRANS , MAXTRANS, TABLESPACE,
PCTFREE, and STORAGE parameters for the index. You cannot specify

PCTUSED or the logging_clause for the index.

See Also: Oracle9i Data Warehousing Guide for more information

on materialized views and query rewrite

constraints

7-24 Oracle9i SQL Reference

■ If table is partitioned, you can specify a locally or globally partitioned

index for the unique or primary key constraint.

Restrictions on the using_index_clause

■ You cannot specify this clause for a view constraint.

■ You cannot specify this clause for a NOT NULL, foreign key, or check constraint.

■ You cannot specify an index (schema.index) or create an index (create_
index_statement) when enabling the primary key of an index-organized

table.

NOSORT clause Specify NOSORT to indicate that the table rows are stored in the

database in ascending order and that therefore Oracle does not have to sort the

rows when creating the index.

logging_clause The logging_clause lets you specify whether creation of the

index should be logged in the redo log file.

global_partitioned_index The global_partitioned_index clause lets you

specify that the partitioning of the index is user defined and is not equipartitioned

with the underlying table. By default, nonpartitioned indexes are global indexes.

Oracle will partition the global index on the ranges of values from the table

columns you specify in column_list . You cannot specify this clause for a local

index.

The column_list must specify a left prefix of the index column list. That is, if the

index is defined on columns a, b, and c , then for column_list you can specify (a ,

b, c) , or (a, b) , or (a, c) , but you cannot specify (b, c) or (c) or (b, a).

See Also:

■ physical_attributes_clause on page 7-52 for

information on the INITRANS , MAXTRANS, TABLESPACE, and

PCTFREE parameters and storage_clause on page 7-56 for

information on the storage parameters

■ CREATE INDEX on page 13-65 for a description of LOCAL and

global_partitioned_index clause, and for a description

of NOSORT and logging_clause in relation to indexes

■ "Explicit Index Control Example" on page 7-35

See Also: logging_clause on page 7-45

constraints

Common SQL DDL Clauses 7-25

Restrictions on the Global Partitioned Index Key

■ You cannot specify more than 32 columns in column_list .

■ The columns cannot contain the ROWID pseudocolumn or a column of type

ROWID.

index_partitioning_clause Use this clause to describe the individual index

partitions. The number of repetitions of this clause determines the number of

partitions. If you omit partition , Oracle generates a name with the form SYS_Pn.

For VALUES LESS THAN(value_list), specify the (noninclusive) upper bound for

the current partition in a global index. The value list is a comma-delimited, ordered

list of literal values corresponding to the column list in the global_
partitioned_index clause. Always specify MAXVALUE as the value of the last

partition.

Handling Constraint Exceptions
When defining the state of a constraint, you can specify a table into which Oracle

places the rowids of all rows violating the constraint.

exceptions_clause Use the exceptions_clause syntax to define exception

handling. If you omit schema , then Oracle assumes the exceptions table is in your

own schema. If you omit this clause altogether, then Oracle assumes that the table is

named EXCEPTIONS. The EXCEPTIONS table or the table you specify must exist on

your local database.

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns.

The sort sequence of characters is not identical in all character sets.

See Also: Oracle9i Database Globalization Support Guide for more

information on character set support

Note: If the index is partitioned on a DATEcolumn, and if the date

format does not specify the first two digits of the year, you must

use the TO_DATE function with a 4-character format mask for the

year. The date format is determined implicitly by NLS_TERRITORY
or explicitly by NLS_DATE_FORMAT.

constraints

7-26 Oracle9i SQL Reference

You can create the EXCEPTIONS table using one of these scripts:

■ UTLEXCPT.SQLuses physical rowids. Therefore it can accommodate rows from

conventional tables but not from index-organized tables. (See the Note that

follows.)

■ UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both

conventional and index-organized tables.

If you create your own exceptions table, then it must follow the format prescribed

by one of these two scripts.

Restrictions on the exceptions_clause

■ You cannot specify this clause for a view constraint.

■ You cannot specify this clause in a CREATE TABLE statement, because no

rowids exist until after the successful completion of the statement.

View Constraints
Oracle does not enforce view constraints. However, operations on views are subject

to the integrity constraints defined on the underlying base tables. This means that

you can enforce constraints on views through constraints on base tables.

Restrictions on View Constraints View constraints are a subset of table

constraints and are subject to the following restrictions:

Note: If you are collecting exceptions from index-organized tables

based on primary keys (rather than universal rowids), then you

must create a separate exceptions table for each index-organized

table to accommodate its primary-key storage. You create multiple

exceptions tables with different names by modifying and

resubmitting the script.

See Also:

■ Oracle9i Database Migration Guide for compatibility issues

related to the use of these scripts

■ The DBMS_IOT package in Oracle9i Supplied PL/SQL Packages
and Types Reference for information on the SQL scripts

■ Oracle9i Database Performance Tuning Guide and Reference for

information on eliminating migrated and chained rows

constraints

Common SQL DDL Clauses 7-27

■ You can specify only unique, primary key, and foreign key constraints on views.

However, you can define the view using the WITH CHECK OPTION clause,

which is equivalent to specifying a check constraint for the view.

■ Because view constraints are not enforced directly, you cannot specify

INITIALLY DEFERRED or DEFERRABLE.

■ View constraints are supported only in DISABLE NOVALIDATEmode. You must

specify the keywords DISABLE NOVALIDATE when you declare the view

constraint, and you cannot specify any other mode.

■ You cannot specify the using_index_clause , the exceptions_clause
clause, or the ON DELETE clause of the references_clause .

■ You cannot define view constraints on attributes of an object column.

Examples

Unique Key Example The following statement is a variation of the statement that

created the sample table sh.promotions . It defines inline and implicitly enables a

unique key on the promo_id column (other constraints are not shown):

CREATE TABLE promotions_var1
 (promo_id NUMBER(6)
 CONSTRAINT promo_id_u UNIQUE
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
) ;

The constraint promo_id_u identifies the promo_id column as a unique key. This

constraint ensures that no two promotions in the table have the same ID. However,

the constraint does allow promotions without identifiers.

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE promotions_var2
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id)

constraints

7-28 Oracle9i SQL Reference

 USING INDEX PCTFREE 20
 TABLESPACE stocks
 STORAGE (INITIAL 8K NEXT 6K));

The preceding statement also contains the using_index_clause , which specifies

storage characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example The following statement defines and enables a

composite unique key on the combination of the warehouse_id and warehouse_
name columns of the oe.warehouses table:

ALTER TABLE warehouses
 ADD CONSTRAINT wh_unq UNIQUE (warehouse_id, warehouse_name)
 USING INDEX PCTFREE 5
 EXCEPTIONS INTO wrong_id;

The wh_unq constraint ensures that the same combination of warehouse_id and

warehouse_name values does not appear in the table more than once.

The ADD CONSTRAINT clause also specifies other properties of the constraint:

■ The USING INDEX clause specifies storage characteristics for the index Oracle

creates to enable the constraint.

■ The EXCEPTIONS INTO clause causes Oracle to write information to the

wrong_id table about any rows currently in the customers table that violate

the constraint. If the wrong_id exceptions table does not already exist, then

this statement will fail.

Primary Key Example The following statement is a variation of the statement that

created the sample table hr.locations . It creates the locations_demo table

and defines and enables a primary key on the location_id column (other

constraints from the hr.locations table are omitted):

CREATE TABLE locations_demo
 (location_id NUMBER(4) CONSTRAINT loc_id_pk PRIMARY KEY
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
) ;

The loc_id_pk constraint, specified inline, identifies the location_id column as

the primary key of the locations_demo table. This constraint ensures that no two

constraints

Common SQL DDL Clauses 7-29

locations in the table have the same location number and that no location identifier

is NULL.

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE locations_demo
 (location_id NUMBER(4)
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
 , CONSTRAINT loc_id_pk PRIMARY KEY (location_id));

NOT NULL Example The following statement alters the locations_demo table

(created in "Primary Key Example" on page 7-28) to define and enable a NOT NULL
constraint on the country_id column:

ALTER TABLE locations_demo
 MODIFY (country_id CONSTRAINT country_nn NOT NULL);

The constraint country_nn ensures that no location in the table has a null

country_id .

Composite Primary Key Example The following statement defines a composite

primary key on the combination of the prod_id and cust_id columns of the

sample table sh.sales :

ALTER TABLE sales
 ADD CONSTRAINT sales_pk PRIMARY KEY (prod_id, cust_id) DISABLE;

This constraint identifies the combination of the prod_id and cust_id columns as

the primary key of the sales table. The constraint ensures that no two rows in the

table have the same values for both the prod_id column and the cust_id column.

The constraint clause (PRIMARY KEY) also specifies the following properties of the

constraint:

■ The constraint definition does not include a constraint name, so Oracle

generates a name for the constraint.

■ The DISABLE clause causes Oracle to define the constraint but not enable it.

Foreign Key Constraint Example The following statement creates the dept_20
table and defines and enables a foreign key on the department_id column that

constraints

7-30 Oracle9i SQL Reference

references the primary key on the department_id column of the departments
table:

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id CONSTRAINT fk_deptno
 REFERENCES departments(department_id));

The constraint fk_deptno ensures that all departments given for employees in the

dept_20 table are present in the departments table. However, employees can

have null department numbers, meaning they are not assigned to any department.

To ensure that all employees are assigned to a department, you could create a NOT
NULL constraint on the department_id column in the dept_20 table, in addition

to the REFERENCES constraint.

Before you define and enable this constraint, you must define and enable a

constraint that designates the department_id column of the departments table

as a primary or unique key.

The foreign key constraint definition does not use the FOREIGN KEYclause, because

the constraint is defined inline. The datatype of the department_id column is not

needed, because Oracle automatically assigns to this column the datatype of the

referenced key.

The constraint definition identifies both the parent table and the columns of the

referenced key. Because the referenced key is the parent table’s primary key, the

referenced key column names are optional.

Alternatively, you can define this foreign key constraint out of line:

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id,
 CONSTRAINT fk_deptno

constraints

Common SQL DDL Clauses 7-31

 FOREIGN KEY (department_id)
 REFERENCES departments(department_id));

The foreign key definitions in both statements of this statement omit the ON DELETE
clause, causing Oracle to prevent the deletion of a department if any employee

works in that department.

ON DELETE Example This statement creates the dept_20 table, defines and

enables two referential integrity constraints, and uses the ON DELETE clause:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4) CONSTRAINT fk_mgr
 REFERENCES employees ON DELETE SET NULL,
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id NUMBER(2) CONSTRAINT fk_deptno
 REFERENCES departments(department_id)
 ON DELETE CASCADE);

Because of the first ON DELETE clause, if manager number 2332 is deleted from the

employees table, then Oracle sets to null the value of manager_id for all

employees in the dept_20 table who previously had manager 2332.

Because of the second ON DELETE clause, Oracle cascades any deletion of a

department_id value in the departments table to the department_id values

of its dependent rows of the dept_20 table. For example, if Department 20 is

deleted from the departments table, then Oracle deletes all of that department’s

employees from the dept_20 table.

Composite Foreign Key Constraint Example The following statement defines and

enables a foreign key on the combination of the employee_id and last_name
columns of the dept_20 table:

ALTER TABLE dept_20
 ADD CONSTRAINT fk_empid_hiredate
 FOREIGN KEY (employee_id, hire_date)
 REFERENCES hr.job_history(employee_id, start_date)
 EXCEPTIONS INTO wrong_emp;

constraints

7-32 Oracle9i SQL Reference

The constraint fk_empid_empname ensures that all the employees in the dept_20
table have employee_id and last_name combinations that exist in the

employees table. Before you define and enable this constraint, you must define

and enable a constraint that designates the combination of the employee_id and

last_name columns of the employees table as a primary or unique key.

The EXCEPTIONS INTO clause causes Oracle to write information to the wrong_id
table about any rows in the dept_20 table that violate the constraint. If the wrong_
id exceptions table does not already exist, then this statement will fail.

Check Constraint Examples The following statement creates a divisions table

and defines a check constraint in each of the table’s columns:

CREATE TABLE divisions
 (div_no NUMBER CONSTRAINT check_divno
 CHECK (div_no BETWEEN 10 AND 99)
 DISABLE,
 div_name VARCHAR2(9) CONSTRAINT check_divname
 CHECK (div_name = UPPER(div_name))
 DISABLE,
 office VARCHAR2(10) CONSTRAINT check_office
 CHECK (office IN (’DALLAS’,’BOSTON’,
 ’PARIS’,’TOKYO’))
 DISABLE);

Each constraint restricts the values of the column in which it is defined:

■ check_divno ensures that no division numbers are less than 10 or greater than

99.

■ check_divname ensures that all department names are in uppercase.

■ check_office restricts department locations to Dallas, Boston, Paris, or

Tokyo.

Because each CONSTRAINTclause contains the DISABLE clause, Oracle only defines

the constraints and does not enable them.

The following statement creates the dept_20 table, defining out of line and

implicitly enabling a check constraint:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 salary NUMBER(7,2),

constraints

Common SQL DDL Clauses 7-33

 commission_pct NUMBER(7,2),
 department_id NUMBER(2),
 CONSTRAINT check_sal CHECK (salary * commission_pct <= 5000));

This constraint uses an inequality condition to limit an employee’s total

commission, the product of salary and commission_pct , to $5000:

■ If an employee has non-null values for both salary and commission, then the

product of these values must not exceed $5000 to satisfy the constraint.

■ If an employee has a null salary or commission, then the result of the condition

is unknown and the employee automatically satisfies the constraint.

Because the constraint clause in this example does not supply a constraint name,

Oracle generates a name for the constraint.

The following statement defines and enables a primary key constraint, two foreign

key constraints, a NOT NULL constraint, and two check constraints:

CREATE TABLE order_detail
 (CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
 order_id NUMBER
 CONSTRAINT fk_oid
 REFERENCES oe.orders(order_id),
 part_no NUMBER
 CONSTRAINT fk_pno
 REFERENCES oe.product_information(product_id),
 quantity NUMBER
 CONSTRAINT nn_qty NOT NULL
 CONSTRAINT check_qty CHECK (quantity > 0),
 cost NUMBER
 CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

■ pk_od identifies the combination of the order_id and product_id columns

as the primary key of the table. To satisfy this constraint, no two rows in the

table can contain the same combination of values in the order_id and the

product_id columns, and no row in the table can have a null in either the

order_id or the product_id column.

■ fk_oid identifies the order_id column as a foreign key that references the

order_id column in the orders table in the sample schema oe . All new

values added to the column order_detail .order_id must already appear in

the column oe.orders.order_id .

constraints

7-34 Oracle9i SQL Reference

■ fk_pno identifies the product_id column as a foreign key that references the

product_id column in the product_information table owned by oe . All

new values added to the column order_detail.product_id must already

appear in the column oe.product_information.product_id .

■ nn_qty forbids nulls in the quantity column.

■ check_qty ensures that values in the quantity column are always greater

than zero.

■ check_cost ensures the values in the cost column are always greater than

zero.

This example also illustrates the following points about constraint clauses and

column definitions:

■ Out-of-line constraint definition can appear before or after the column

definitions. In this example, the out-of-line definition of the pk_od constraint

precedes the column definitions.

■ A column definition can contain multiple inline constraint definitions. In this

example, the definition of the quantity column contains the definitions of

both the nn_qty and check_qty constraints.

■ A table can have multiple CHECK constraints. Multiple CHECK constraints, each

with a simple condition enforcing a single business rule, is better than a single

CHECK constraint with a complicated condition enforcing multiple business

rules. When a constraint is violated, Oracle returns an error identifying the

constraint. Such an error more precisely identifies the violated business rule if

the identified constraint enables a single business rule.

Attribute-Level Constraints Example The following example guarantees that a

value exists for both the first_name and last_name attributes of the name
column in the students table:

CREATE TYPE person_name AS OBJECT
 (first_name VARCHAR2(30), last_name VARCHAR2(30));
/

CREATE TABLE students (name person_name, age INTEGER,
 CHECK (name.first_name IS NOT NULL AND
 name.last_name IS NOT NULL));

REF Constraint Examples The following example creates a duplicate of the

sample schema object type cust_address_typ , and then creates a table

containing a REF column with a SCOPE constraint:

constraints

Common SQL DDL Clauses 7-35

CREATE TYPE cust_address_typ_new AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)
);
/
CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ_new
 SCOPE IS address_table);

The following example creates the same table but with a referential integrity

constraint on the REF column that references the OID column of the parent table:

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ REFERENCES address_table);

The following example uses the type department_typ and the table

departments_obj_t (created in "Creating Object Tables: Examples" on

page 15-77). A table with a scoped REF is then created.

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ SCOPE IS departments_obj_t);

The following statement creates a table with a REF column which has a referential

integrity constraint defined on it:

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ REFERENCES departments_obj_t);

Explicit Index Control Example The following statement shows another way to

create a unique (or primary key) constraint that gives you explicit control over the

index (or indexes) Oracle uses to enforce the constraint:

CREATE TABLE promotions_var3
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)

constraints

7-36 Oracle9i SQL Reference

 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id, promo_cost)
 USING INDEX (CREATE UNIQUE INDEX promo_ix1
 ON promotions_var3 (promo_id, promo_cost))
 , CONSTRAINT promo_id_u2 UNIQUE (promo_cost, promo_id)
 USING INDEX promo_ix1);

This example also shows that you can create an index for one constraint and use

that index to create and enable another constraint in the same statement.

DEFERRABLE Constraint Examples The following statement creates table games
with a NOT DEFERRABLE INITIALLY IMMEDIATE constraint check (by default) on

the scores column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

To define a unique constraint on a column as INITIALLY DEFERRED DEFERRABLE,
issue the following statement:

CREATE TABLE games
 (scores NUMBER, CONSTRAINT unq_num UNIQUE (scores)
 INITIALLY DEFERRED DEFERRABLE);

deallocate_unused_clause

Common SQL DDL Clauses 7-37

deallocate_unused_clause

Purpose
Use the deallocate_unused_clause to explicitly deallocate unused space at the

end of a database object segment and make the space available for other segments

in the tablespace.

You can deallocate unused space using the following statements:

■ ALTER CLUSTER (see ALTER CLUSTER on page 9-6)

■ ALTER INDEX: to deallocate unused space from the index, an index partition, or

an index subpartition (see ALTER INDEX on page 9-62)

■ ALTER MATERIALIZED VIEW: to deallocate unused space from the overflow

segment of an index-organized materialized view (see ALTER MATERIALIZED

VIEW on page 9-90)

■ ALTER TABLE: to deallocate unused space from the table, a table partition, a

table subpartition, the mapping table of an index-organized table, the overflow

segment of an index-organized table, or a LOB storage segment (see ALTER

TABLE on page 11-2)

Syntax
deallocate_unused_clause::=

Semantics
This section describes the semantics of the deallocate_unused_clause . For

additional information, refer to the SQL statement in which you set or reset this

clause for a particular database object.

Note: You cannot specify both the deallocate_unused_
clause and the allocate_extent_clause in the same

statement.

DEALLOCATE UNUSED
KEEP integer

K

M

deallocate_unused_clause

7-38 Oracle9i SQL Reference

Oracle frees only unused space above the high water mark (that is, the point

beyond which database blocks have not yet been formatted to receive data). Oracle

deallocates unused space beginning from the end of the object and moving toward

the beginning of the object to the high water mark.

If an extent is completely contained in the deallocation, then the whole extent is

freed for reuse. If an extent is partially contained in the deallocation, then the used

part up to the high water mark becomes the extent, and the remaining unused space

is freed for reuse.

Oracle credits the amount of the released space to the user quota for the tablespace

in which the deallocation occurs.

The exact amount of space freed depends on the values of the INITIAL ,

MINEXTENTS, and NEXT storage parameters.

KEEP integer
Specify the number of bytes above the high water mark that the segment of the

database object is to have after deallocation.

■ If you omit KEEP and the high water mark is above the size of INITIAL and

MINEXTENTS, then all unused space above the high water mark is freed. When

the high water mark is less than the size of INITIAL or MINEXTENTS, then all

unused space above MINEXTENTS is freed.

■ If you specify KEEP, then the specified amount of space is kept and the

remaining space is freed. When the remaining number of extents is less than

MINEXTENTS, then MINEXTENTS is adjusted to the new number of extents. If

the initial extent becomes smaller than INITIAL , then INITIAL is adjusted to

the new size.

■ In either case, Oracle sets the value of the NEXT storage parameter to the size of

the last extent that was deallocated.

See Also: storage_clause on page 7-56 for a description of

these parameters

file_specification

Common SQL DDL Clauses 7-39

file_specification

Purpose
Use one of the file_specification forms to specify a file as a datafile or

tempfile, or to specify a group of one or more files as a redo log file group.

A file_specification can appear in the following statements:

■ CREATE CONTROLFILE (see CREATE CONTROLFILE on page 13-15)

■ CREATE DATABASE (see CREATE DATABASE on page 13-23)

■ ALTER DATABASE (see ALTER DATABASE on page 9-11)

■ CREATE TABLESPACE (see CREATE TABLESPACE on page 15-80)

■ CREATE TEMPORARY TABLESPACE (see CREATE TEMPORARY TABLESPACE

on page 15-92)

■ ALTER TABLESPACE (see ALTER TABLESPACE on page 11-102)

Prerequisites
You must have the privileges necessary to issue one of the statements listed in the

preceding section.

Syntax
file_specification::=

datafile_tempfile_spec::=

datafile_tempfile_spec

redo_log_file_spec

’ filename ’ SIZE integer

K

M
REUSE autoextend_clause

file_specification

7-40 Oracle9i SQL Reference

redo_log_file_spec::=

autoextend_clause::=

maxsize_clause::=

Semantics
This section describes the semantics of file_specification . For additional

information, refer to the SQL statement in which you specify a datafile, tempfile, or

redo log file.

’filename’
For a new file, filename is the name of the new file. If you are not using Oracle-

managed files, then you must specify filename or the statement fails. However, if

you are using Oracle-managed files, then filename is optional, as are the

remaining clauses of the specification. In this case, Oracle creates a unique name for

the file and saves it in the directory specified by either the DB_CREATE_FILE_DEST
initialization parameter (for any type of file) or by the DB_CREATE_ONLINE_LOG_
DEST_n initialization parameter (which takes precedence over DB_CREATE_FILE_
DEST for log files).

’ filename ’

(’ filename ’

,

) SIZE integer

K

M
REUSE

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

file_specification

Common SQL DDL Clauses 7-41

For an existing file, you must specify a filename. Specify the name of either a

datafile, tempfile, or a redo log file member. The filename can contain only single-

byte characters from 7-bit ASCII or EBCDIC character sets. Multibyte characters are

not valid.

A redo log file group can have one or more members (copies). Each filename must

be fully specified according to the conventions for your operating system.

SIZE Clause
Specify the size of the file in bytes. Use K or M to specify the size in kilobytes or

megabytes.

■ For undo tablespaces, you must specify the SIZE clause for each datafile. For

other tablespaces, you can omit this parameter if the file already exists, or if you

are creating an Oracle-managed file.

■ If you omit this clause when creating an Oracle-managed file, then Oracle

creates a 100M file.

■ The size of a tablespace must be one block greater than the sum of the sizes of

the objects contained in it.

REUSE
Specify REUSE to allow Oracle to reuse an existing file. You must specify REUSE if
you specify a filename that already exists.

■ If the file already exists, then Oracle reuses the filename and applies the new

size (if you specify SIZE) or retains the original size.

■ If the file does not exist, then Oracle ignores this clause and creates the file.

Restriction on the REUSE Clause You cannot specify REUSE unless you have

specified filename .

See Also: Oracle9i Database Administrator’s Guide for more

information on Oracle-managed files, "Specifying a Datafile:

Example" on page 7-43, and "Specifying a Log File: Example" on

page 7-43

See Also: Oracle9i Database Administrator’s Guide for information

on Automatic Undo Management and undo tablespaces and

"Adding a Log File: Example" on page 7-43

file_specification

7-42 Oracle9i SQL Reference

autoextend_clause
Use the autoextend_clause to enable or disable the automatic extension of a

new datafile or tempfile. If you omit this clause:

■ For Oracle-managed files:

■ If you specify SIZE , Oracle creates a file of the specified size with

AUTOEXTEND disabled.

■ If you do not specify SIZE , Oracle creates a 100M file with AUTOEXTEND
enabled and MAXSIZE unlimited.

■ For user-managed files, with or without SIZE specified, Oracle creates a file

with AUTOEXTEND disabled.

ON Specify ON to enable autoextend.

OFF Specify OFF to turn off autoextend if is turned on.

NEXT Use the NEXTclause to specify the size in bytes of the next increment of disk

space to be allocated automatically when more extents are required. Use K or M to

specify this size in kilobytes or megabytes. The default is the size of one data block.

MAXSIZE Use the MAXSIZEclause to specify the maximum disk space allowed for

automatic extension of the datafile.

UNLIMITED Use the UNLIMITED clause if you do not want to limit the disk space

that Oracle can allocate to the datafile or tempfile.

Note: Whenever Oracle uses an existing file, the file’s previous

contents are lost.

See Also: "Adding a Datafile: Example" on page 7-44 and

"Adding a Log File: Example" on page 7-43

Note: When you turn off autoextend, the values of NEXT and

MAXSIZE are set to zero. If you turn autoextend back on in a

subsequent statement, you must reset these values.

file_specification

Common SQL DDL Clauses 7-43

Restriction on the autoextend_clause You cannot specify this clause as part of

datafile_tempfile_spec in a CREATE CONTROLFILE statement or in an

ALTER DATABASE CREATE DATAFILE clause.

Examples

Specifying a Log File: Example The following statement creates a database named

payable that has two redo log file groups, each with two members, and one

datafile:

CREATE DATABASE payable
 LOGFILE GROUP 1 (’diska:log1.log’, ’diskb:log1.log’) SIZE 50K,
 GROUP 2 (’diska:log2.log’, ’diskb:log2.log’) SIZE 50K
 DATAFILE ’diskc:dbone.dat’ SIZE 30M;

The first file specification in the LOGFILE clause specifies a redo log file group with

the GROUP value 1. This group has members named ’diska:log1.log ’ and

’diskb:log1.log ’, each 50 kilobytes in size.

The second file specification in the LOGFILE clause specifies a redo log file group

with the GROUP value 2. This group has members named ’diska:log2.log ’ and

’diskb:log2.log ’, also 50 kilobytes in size.

The file specification in the DATAFILE clause specifies a datafile named

’diskc:dbone.dat ’, 30 megabytes in size.

Each file specification specifies a value for the SIZE parameter and omits the REUSE
clause, so none of these files can already exist. Oracle must create them.

Adding a Log File: Example The following statement adds another redo log file

group with two members to the payable database:

ALTER DATABASE payable
 ADD LOGFILE GROUP 3 (’diska:log3.log’, ’diskb:log3.log’)
 SIZE 50K REUSE;

The file specification in the ADD LOGFILE clause specifies a new redo log file group

with the GROUP value 3. This new group has members named ’diska:log3.log ’

and ’diskb:log3.log ’, each 50 kilobytes in size. Because the file specification

specifies the REUSE clause, each member can (but need not) already exist.

Specifying a Datafile: Example The following statement creates a tablespace

named stocks that has three datafiles:

file_specification

7-44 Oracle9i SQL Reference

CREATE TABLESPACE stocks
 DATAFILE ’stock1.dat’ SIZE 10M,
 ’stock2.dat’ SIZE 10M,
 ’stock3.dat’ SIZE 10M;

The file specifications for the datafiles specify files named ’diskc:stock1.dat ’,

’diskc:stock2.dat ’, and ’diskc:stock3.dat ’.

Adding a Datafile: Example The following statement alters the stocks tablespace

and adds a new datafile:

ALTER TABLESPACE stocks
 ADD DATAFILE ’stock4.dat’ SIZE 10M REUSE;

The file specification specifies a datafile named ’diskc:stock4.dat ’. If the

filename does not exist, then Oracle simply ignores the REUSE keyword.

logging_clause

Common SQL DDL Clauses 7-45

logging_clause

Purpose
The logging_clause lets you specify whether creation of a database object will

be logged in the redo log file (LOGGING) or not (NOLOGGING).

This clause also specifies whether subsequent Direct Loader (SQL*Loader) and

direct-path INSERT operations against the object are logged (LOGGING) or not

logged (NOLOGGING).

You can specify the logging_clause in the following statements:

■ CREATE TABLEand ALTER TABLE: for logging of the table, one of its partitions,

a LOB segment, or the overflow segment of an index-organized table (see

CREATE TABLE on page 15-7 and ALTER TABLE on page 11-2).

■ CREATE INDEX and ALTER INDEX: for logging of the index or one of its

partitions (see CREATE INDEX on page 13-65 and ALTER INDEX on

page 9-62).

■ CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: for logging

of the materialized view, one of its partitions, or a LOB segment (see CREATE

MATERIALIZED VIEW on page 14-5 and ALTER MATERIALIZED VIEW on

page 9-90).

■ CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: for

logging of the materialized view log or one of its partitions (see CREATE

MATERIALIZED VIEW LOG on page 14-34 and ALTER MATERIALIZED

VIEW LOG on page 9-110.)

■ CREATE TABLESPACE and ALTER TABLESPACE: to set or modify the default

logging characteristics for all objects created in the tablespace (see CREATE

TABLESPACE on page 15-80 and ALTER TABLESPACE on page 11-102.)

You can also specify LOGGING or NOLOGGING for the following operations:

■ Rebuilding an index (using CREATE INDEX ... REBUILD)

■ Moving a table (using ALTER TABLE ... MOVE)

logging_clause

7-46 Oracle9i SQL Reference

Syntax
logging_clause::=

Semantics
This section describes the semantics of the logging_clause . For additional

information, refer to the SQL statement in which you set or reset logging

characteristics for a particular database object.

Specify LOGGING if you want the creation of a database object, as well as

subsequent inserts into the object, to be logged in the redo log file.

Specify NOLOGGING if you do not want these operations to be logged.

■ For a nonpartitioned object, the value specified for this clause is the actual

physical attribute of the segment associated with the object.

■ For partitioned objects, the value specified for this clause is the default

physical attribute of the segments associated with all partitions specified in the

CREATE statement (and in subsequent ALTER ... ADD PARTITION statements),

unless you specify the logging attribute in the PARTITION description.

If the object for which you are specifying the logging attributes resides in a database

or tablespace in force logging mode, then Oracle ignores any NOLOGGING setting

until the database or tablespace is taken out of force logging mode.

If the database is run in ARCHIVELOG mode, then media recovery from a backup

made before the LOGGING operation re-creates the object. However, media recovery

from a backup made before the NOLOGGING operation does not re-create the object.

The size of a redo log generated for an operation in NOLOGGING mode is

significantly smaller than the log generated in LOGGING mode.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents

INVALID and to record dictionary changes). When applied during media recovery,

the extent invalidation records mark a range of blocks as logically corrupt, because

the redo data is not fully logged. Therefore, if you cannot afford to lose the database

object, then you should take a backup after the NOLOGGING operation.

NOLOGGING is supported in only a subset of the clauses that support LOGGING.
Only the following operations support the NOLOGGING mode:

LOGGING

NOLOGGING

logging_clause

Common SQL DDL Clauses 7-47

DML:

■ Direct-path INSERT (serial or parallel)

■ Direct Loader (SQL*Loader)

DDL:

■ CREATE TABLE ... AS SELECT

■ CREATE TABLE ... LOB_storage_clause ... LOB_parameters ... NOCACHE |
CACHE READS

■ ALTER TABLE ... LOB_storage_clause ... LOB_parameters ... NOCACHE |
CACHE READS (for specify logging of newly created LOB columns)

■ ALTER TABLE ... modify_LOB_storage_clause ... modify_LOB_
parameters ... NOCACHE | CACHE READS (to change logging of existing LOB

columns)

■ ALTER TABLE ... MOVE

■ ALTER TABLE ... [all partition operations that involve data movement]

■ ALTER TABLE ... ADD PARTITION (hash partition only)

■ ALTER TABLE ... MERGE PARTITIONS

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... MODIFY PARTITION ... ADD SUBPARTITION

■ ALTER TABLE ... MODIFY PARTITION ... COALESCE SUBPARTITION

■ ALTER TABLE ... MODIFY PARTITION ... REBUILD UNUSABLE INDEXES

■ CREATE INDEX

■ ALTER INDEX ... REBUILD

■ ALTER INDEX ... REBUILD PARTITION

■ ALTER INDEX ... SPLIT PARTITION

For objects other than LOBs, if you omit this clause, then the logging attribute of

the object defaults to the logging attribute of the tablespace in which it resides.

For LOBs, if you omit this clause:

■ If you specify CACHE, then LOGGING is used (because you cannot have CACHE
NOLOGGING).

logging_clause

7-48 Oracle9i SQL Reference

■ If you specify NOCACHE or CACHE READS, then the logging attribute defaults to

the logging attribute of the tablespace in which it resides.

NOLOGGING does not apply to LOBs that are stored inline with row data. That is, if

you specify NOLOGGING for LOBs with values less than 4000 bytes and you have

not disabled STORAGE IN ROW, then Oracle ignores the NOLOGGING specification

and treats the LOB data the same as other table data.

See Also: Oracle9i Database Concepts and Oracle9i Database
Administrator’s Guide for more information about logging and

parallel DML

parallel_clause

Common SQL DDL Clauses 7-49

parallel_clause

Purpose
The parallel_clause lets you parallelize the creation of a database object and

set the default degree of parallelism for subsequent queries of and DML operations

on the object.

You can specify the parallel_clause in the following statements:

■ CREATE TABLE: to set parallelism for the table (see CREATE TABLE on

page 15-7).

■ ALTER TABLE (see ALTER TABLE on page 11-2):

■ To change parallelism for the table

■ To parallelize the operations of adding, coalescing, exchanging, merging,

splitting, truncating, dropping, or moving a table partition

■ CREATE CLUSTER and ALTER CLUSTER: to set or alter parallelism for a cluster

(see CREATE CLUSTER on page 13-2 and ALTER CLUSTER on page 9-6).

■ CREATE INDEX: to set parallelism for the index (see CREATE INDEX on

page 13-65).

■ ALTER INDEX (see ALTER INDEX on page 9-62):

■ To change parallelism for the table

■ To parallelize the rebuilding of the index or the splitting of an index

partition

■ CREATE MATERIALIZED VIEW: to set parallelism for the materialized view (see

CREATE MATERIALIZED VIEW on page 14-5).

■ ALTER MATERIALIZED VIEW (see ALTER MATERIALIZED VIEW on

page 9-90):

■ To change parallelism for the materialized view

■ To parallelize the operations of adding, coalescing, exchanging, merging,

splitting, truncating, dropping, or moving a materialized view partition

■ To parallelize the operations of adding or moving materialized view

subpartitions

parallel_clause

7-50 Oracle9i SQL Reference

■ CREATE MATERIALIZED VIEW LOG: to set parallelism for the table (see

CREATE MATERIALIZED VIEW LOG on page 14-34).

■ ALTER MATERIALIZED VIEW LOG(see ALTER MATERIALIZED VIEW LOG on

page 9-110):

■ To change parallelism for the materialized view

■ To parallelize the operations of adding, coalescing, exchanging, merging,

splitting, truncating, dropping, or moving a materialized view partition

■ ALTER DATABASE... RECOVER: to recover the database (see ALTER DATABASE

on page 9-11).

■ ALTER DATABASE ... standby_database_clauses : to parallelize operations

on the standby database (see ALTER DATABASE on page 9-11).

Syntax
parallel_clause::=

Semantics
This section describes the semantics of the parallel_clause . For additional

information, refer to the SQL statement in which you set or reset parallelism for a

particular database object or operation.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

NOPARALLEL

PARALLEL
integer

parallel_clause

Common SQL DDL Clauses 7-51

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

physical_attributes_clause

7-52 Oracle9i SQL Reference

physical_attributes_clause

Purpose
The physical_attributes_clause lets you specify the value of the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters and the storage characteristics of

a table, cluster, index, or materialized view.

You can specify the physical_attributes_clause in the following statements:

■ CREATE CLUSTERand ALTER CLUSTER: to set or change the physical attributes

of the cluster and all tables in the cluster (see CREATE CLUSTER on page 13-2

and ALTER CLUSTER on page 9-6).

■ CREATE TABLE: to set the physical attributes of the table, a table partition, the

OIDINDEX of an object table, or the overflow segment of an index-organized

table (see CREATE TABLE on page 15-7).

■ ALTER TABLE: to change the physical attributes of the table, the default

physical attributes of future table partitions, or the physical attributes of

existing table partitions (see ALTER TABLE on page 11-2).

■ CREATE INDEX: to set the physical attributes of an index, or index partition (see

CREATE INDEX on page 13-65).

■ ALTER INDEX: to change the physical attributes of the index, the default

physical attributes of future partitions, or the physical attributes of existing

index partitions (see ALTER INDEX on page 9-62).

■ CREATE MATERIALIZED VIEW: to set the physical attributes of the materialized

view, one of its partitions, or the index Oracle generates to maintain the

materialized view (see CREATE MATERIALIZED VIEW on page 14-5).

■ ALTER MATERIALIZED VIEW: to change the physical attributes of the

materialized view, the default physical attributes of future partitions, the

physical attributes of an existing partition, or the index Oracle creates to

Notes:

■ You cannot specify physical attributes for a temporary table.

■ You cannot specify physical attributes for a clustered table.

Tables in a cluster inherit the cluster’s physical attributes.

physical_attributes_clause

Common SQL DDL Clauses 7-53

maintain the materialized view (see ALTER MATERIALIZED VIEW on

page 9-90).

■ CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to
set or change the physical attributes of the materialized view log (see CREATE

MATERIALIZED VIEW LOG on page 14-34 and ALTER MATERIALIZED

VIEW LOG on page 9-110).

Syntax
physical_attributes_clause::=

(storage_clause on page 7-56)

Semantics
This section describes the parameters of the physical_attributes_clause . For

additional information, refer to the SQL statement in which you set or reset these

parameters for a particular database object.

PCTFREE integer
Specify a whole number representing the percentage of space in each data block of

the database object reserved for future updates to the object’s rows. The value of

PCTFREE must be a value from 0 to 99. A value of 0 means that the entire block can

be filled by inserts of new rows. The default value is 10. This value reserves 10% of

each block for updates to existing rows and allows inserts of new rows to fill a

maximum of 90% of each block.

PCTFREE has the same function in the statements that create and alter tables,

partitions, clusters, indexes, materialized views, and materialized view logs. The

combination of PCTFREE and PCTUSED determines whether new rows will be

inserted into existing data blocks or into new blocks.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

physical_attributes_clause

7-54 Oracle9i SQL Reference

Restriction on the PCTFREE Clause When altering an index, you can specify this

parameter only in the modify_index_default_attrs clause and the split_
partition_clause .

PCTUSED integer
Specify a whole number representing the minimum percentage of used space that

Oracle maintains for each data block of the database object. A block becomes a

candidate for row insertion when its used space falls below PCTUSED. PCTUSED is
specified as a positive integer from 0 to 99 and defaults to 40.

PCTUSED has the same function in the statements that create and alter tables,

partitions, clusters, materialized views, and materialized view logs.

PCTUSED is not a valid table storage characteristic for an index-organized table

(ORGANIZATION INDEX).

The sum of PCTFREE and PCTUSED must be equal to or less than 100. You can use

PCTFREE and PCTUSED together to utilize space within a table more efficiently.

Restrictions on the PCTUSED Clause You cannot specify this parameter for an

index or for the index segment of an index-organized table.

INITRANS integer
Specify the initial number of concurrent transaction entries allocated within each

data block allocated to the database object. This value can range from 1 to 255 and

defaults to 1, with the following exceptions:

■ The default INITRANS value for a cluster or index is 2 or the default INITRANS
value of the cluster’s tablespace, whichever is greater.

■ The default value for an index is 2

In general, you should not change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry in the block. The

size of a transaction entry depends on your operating system.

This parameter ensures that a minimum number of concurrent transactions can

update the block and helps avoid the overhead of dynamically allocating a

transaction entry.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on the performance effects of different values

PCTUSED and PCTFREE

physical_attributes_clause

Common SQL DDL Clauses 7-55

The INITRANS parameter serves the same purpose in the statements that create and

alter tables, partitions, clusters, indexes, materialized views, and materialized view

logs.

MAXTRANS integer
Specify the maximum number of concurrent transactions that can update a data

block allocated to the database object. This limit does not apply to queries. This

value can range from 1 to 255 and the default is a function of the data block size.

You should not change the MAXTRANS value from its default.

If the number of concurrent transactions updating a block exceeds the INITRANS
value, then Oracle dynamically allocates transaction entries in the block until either

the MAXTRANS value is exceeded or the block has no more free space.

The MAXTRANS parameter serves the same purpose in the PARTITION description,

clusters, materialized views, and materialized view logs as in tables.

storage_clause The storage_clause lets you specify storage characteristics for

the table, object table OID index, partition, LOB data segment, LOB index segment,

or index-organized table overflow data segment. This clause has performance

ramifications for large tables. Storage should be allocated to minimize dynamic

allocation of additional space.

See Also: storage_clause on page 7-56

storage_clause

7-56 Oracle9i SQL Reference

storage_clause

Purpose
The storage_clause lets you specify how Oracle should store a database object.

Storage parameters affect both how long it takes to access data stored in the

database and how efficiently space in the database is used.

When you create a cluster, index, rollback segment, materialized view, materialized

view log, table, or partition, you can specify values for the storage parameters for

the segments allocated to these objects. If you omit any storage parameter, then

Oracle uses the value of that parameter specified for the tablespace in which the

object resides.

When you alter a cluster, index, rollback segment, materialized view, materialized

view log, table, or partition, you can change the values of storage parameters. The

new values affect only future extent allocations.

The storage_clause is part of the physical_attributes_clause , so you can

specify this clause in any of the statements where you can specify the physical

attributes clause (see physical_attributes_clause on page 7-52).

In addition, you can specify the storage_clause in the following statements:

■ CREATE CLUSTER and ALTER CLUSTER: to set or change the storage

characteristics of the cluster and all tables in the cluster (see CREATE CLUSTER

on page 13-2 and ALTER CLUSTER on page 9-6).

■ CREATE INDEX and ALTER INDEX: to set or change the storage characteristics

of an index or index partition (see CREATE INDEX on page 13-65 and ALTER

INDEX on page 9-62).

■ CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: to set or

change the storage characteristics of a materialized view, one of its partitions, or

the index Oracle generates to maintain the materialized view (see CREATE

MATERIALIZED VIEW on page 14-5 and ALTER MATERIALIZED VIEW on

page 9-90).

■ CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to
set or change the storage characteristics of the materialized view log (see

See Also: Oracle9i Database Performance Tuning Guide and Reference
for a discussion of the effects of the storage parameters

storage_clause

Common SQL DDL Clauses 7-57

CREATE MATERIALIZED VIEW LOG on page 14-34 and ALTER

MATERIALIZED VIEW LOG on page 9-110).

■ CREATE ROLLBACK SEGMENTand ALTER ROLLBACK SEGMENT: to set or change

the storage attributes of a rollback segment (see CREATE ROLLBACK

SEGMENT on page 14-82 and ALTER ROLLBACK SEGMENT on page 9-136).

■ CREATE TABLE and ALTER TABLE: to set the storage characteristics of a LOB

data segment of the table or one of its partitions or subpartitions (see CREATE

TABLE on page 15-7 and ALTER TABLE on page 11-2).

■ CREATE TABLESPACE and ALTER TABLESPACE: to set or change the default

storage characteristics for objects created in the tablespace (see CREATE

TABLESPACE on page 15-80 and ALTER TABLESPACE on page 11-102).

■ constraints : to specify storage for the index (and its partitions, if it is a

partitioned index) used to enforce the constraint (see constraints on

page 7-5).

Prerequisites
To change the value of a STORAGE parameter, you must have the privileges

necessary to use the appropriate CREATE or ALTER statement.

storage_clause

7-58 Oracle9i SQL Reference

Syntax
storage_clause::=

Semantics
This section describes the parameters of the storage_clause . For additional

information, refer to the SQL statement in which you set or reset these parameters

for a particular database object.

STORAGE (

INITIAL integer

K

M

NEXT integer

K

M

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

integer

K

M

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

)

storage_clause

Common SQL DDL Clauses 7-59

INITIAL
Specify in bytes the size of the object’s first extent. Oracle allocates space for this

extent when you create the schema object. Use Kor Mto specify this size in kilobytes

or megabytes.

The default value is the size of 5 data blocks. In tablespaces with manual segment-

space management, the minimum value is the size of 2 data blocks plus one data

block for each free list group you specify. In tablespaces with automatic segment-

space management, the minimum value is 5 data blocks. The maximum value

depends on your operating system.

In dictionary-managed tablespaces, if MINIMUM EXTENT was specified for the

tablespace when it was created, then Oracle rounds the value of INITIAL up to the

specified MINIMUM EXTENTsize if necessary. If MINIMUM EXTENTwas not specified,

then Oracle rounds the INITIAL extent size for segments created in that tablespace

up to the minimum value (see preceding paragraph), or to multiples of 5 blocks if

the requested size is greater than 5 blocks.

In locally managed tablespaces, Oracle uses the value of INITIAL in conjunction

with the size of extents specified for the tablespace to determine the object’s first

extent. For example, in a uniform locally managed tablespace with 5Mextents, if you

specify an INITIAL value of 1M, then Oracle creates five 1M extents.

Restriction on INITIAL You cannot specify INITIAL in an ALTER statement.

Note: The storage_clause is interpreted differently for locally

managed tablespaces. At creation, Oracle ignores MAXEXTENTSand

uses the remaining parameter values to calculate the initial size of

the segment. For more information, see CREATE TABLESPACE on

page 15-80.

See Also: "Specifying Table Storage Attributes: Example" on

page 7-64 and "Specifying Rollback Segment Storage Attributes:

Example" on page 7-65

See Also: FREELIST GROUPS on page 7-62 for information on

freelist groups

storage_clause

7-60 Oracle9i SQL Reference

NEXT
Specify in bytes the size of the next extent to be allocated to the object. Use K or M to

specify the size in kilobytes or megabytes. The default value is the size of 5 data

blocks. The minimum value is the size of 1 data block. The maximum value

depends on your operating system. Oracle rounds values up to the next multiple of

the data block size for values less than 5 data blocks. For values greater than 5 data

blocks, Oracle rounds up to a value that minimizes fragmentation, as described in

Oracle9i Database Administrator’s Guide.

If you change the value of the NEXT parameter (that is, if you specify it in an ALTER
statement), then the next allocated extent will have the specified size, regardless of

the size of the most recently allocated extent and the value of the PCTINCREASE
parameter.

PCTINCREASE
Specify the percent by which the third and subsequent extents grow over the

preceding extent. The default value is 50, meaning that each subsequent extent is

50% larger than the preceding extent. The minimum value is 0, meaning all extents

after the first are the same size. The maximum value depends on your operating

system.

Oracle rounds the calculated size of each new extent to the nearest multiple of the

data block size.

If you change the value of the PCTINCREASE parameter (that is, if you specify it in

an ALTER statement), then Oracle calculates the size of the next extent using this

new value and the size of the most recently allocated extent.

Restriction on PCTINCREASE You cannot specify PCTINCREASE for rollback

segments. Rollback segments always have a PCTINCREASE value of 0.

See Also: Oracle9i Database Administrator’s Guide for information

on how Oracle minimizes fragmentation

Suggestion: If you wish to keep all extents the same size, you can

prevent SMON from coalescing extents by setting the value of

PCTINCREASE to 0. In general, Oracle Corporation recommends a

setting of 0 as a way to minimize fragmentation and avoid the

possibility of very large temporary segments during processing.

storage_clause

Common SQL DDL Clauses 7-61

MINEXTENTS
Specify the total number of extents to allocate when the object is created. This

parameter lets you allocate a large amount of space when you create an object, even

if the space available is not contiguous. The default and minimum value is 1,

meaning that Oracle allocates only the initial extent, except for rollback segments,

for which the default and minimum value is 2. The maximum value depends on

your operating system.

If the MINEXTENTS value is greater than 1, then Oracle calculates the size of

subsequent extents based on the values of the INITIAL , NEXT, and PCTINCREASE
storage parameters.

When changing the value of MINEXTENTS (that is, in an ALTER statement), you can

reduce the value from its current value, but you cannot increase it. Resetting

MINEXTENTSto a smaller value might be useful, for example, before a TRUNCATE...
DROP STORAGE statement, if you want to ensure that the segment will maintain a

minimum number of extents after the TRUNCATE operation.

Restriction on MINEXTENTS You cannot change the value of MINEXTENTS for an

object that resides in a locally managed tablespace.

MAXEXTENTS
Specify the total number of extents, including the first, that Oracle can allocate for

the object. The minimum value is 1 (except for rollback segments, which always

have a minimum value of 2). The default value depends on your data block size.

Restriction on MAXEXTENTS You cannot change the value of MAXEXTENTSfor an

object that resides in a locally managed tablespace.

UNLIMITED Specify UNLIMITED if you want extents to be allocated automatically

as needed. Oracle Corporation recommends this setting as a way to minimize

fragmentation.

However, do not use this clause for rollback segments. Rogue transactions

containing inserts, updates, or deletes that continue for a long time will continue to

create new extents until a disk is full.

storage_clause

7-62 Oracle9i SQL Reference

FREELIST GROUPS
Specify the number of groups of free lists for the database object you are creating.

The default and minimum value for this parameter is 1. Oracle uses the instance

number of Real Application Clusters instances to map each instance to one free list

group.

Each free list group uses one database block. Therefore:

■ If you do not specify a large enough value for INITIAL to cover the minimum

value plus one data block for each free list group, then Oracle increases the

value of INITIAL the necessary amount.

■ If you are creating an object in a uniform locally managed tablespace, and the

extent size is not large enough to accommodate the number of freelist groups,

then the create operation will fail.

Restriction on FREELIST GROUPS You can specify the FREELIST GROUPS
parameter only in CREATE TABLE, CREATE CLUSTER, CREATE MATERIALIZED
VIEW, CREATE MATERIALIZED VIEW LOG, and CREATE INDEX statements.

FREELISTS
For objects other than tablespaces, specify the number of free lists for each of the

free list groups for the table, partition, cluster, or index. The default and minimum

value for this parameter is 1, meaning that each free list group contains one free list.

The maximum value of this parameter depends on the data block size. If you

Caution: A rollback segment that you create without specifying

the storage_clause has the same storage parameters as the

tablespace in which the rollback segment is created. Thus, if you

create the tablespace with MAXEXTENTS UNLIMITED, then the

rollback segment will also have the same default.

Note: Oracle ignores a setting of FREELIST GROUPS if the

tablespace in which the object resides is in automatic segment-

space management mode. If you are running your database in this

mode, please refer to the FREEPOOLS parameter of the LOB_
storage_clause on page 15-36.

See Also: Oracle9i Real Application Clusters Administration

storage_clause

Common SQL DDL Clauses 7-63

specify a FREELISTS value that is too large, then Oracle returns an error indicating

the maximum value.

Restriction on FREELISTS You can specify FREELISTS in the storage_clause
of any statement except when creating or altering a tablespace or rollback segment.

OPTIMAL
The OPTIMAL keyword is relevant only to rollback segments. It specifies an optimal

size in bytes for a rollback segment. Use K or M to specify this size in kilobytes or

megabytes. Oracle tries to maintain this size for the rollback segment by

dynamically deallocating extents when their data is no longer needed for active

transactions. Oracle deallocates as many extents as possible without reducing the

total size of the rollback segment below the OPTIMAL value.

The value of OPTIMAL cannot be less than the space initially allocated by the

MINEXTENTS, INITIAL , NEXT, and PCTINCREASE parameters. The maximum

value depends on your operating system. Oracle rounds values up to the next

multiple of the data block size.

NULL Specify NULL for no optimal size for the rollback segment, meaning that

Oracle never deallocates the rollback segment’s extents. This is the default behavior.

BUFFER_POOL
The BUFFER_POOLclause lets you specify a default buffer pool (cache) for a schema

object. All blocks for the object are stored in the specified cache.

■ If you define a buffer pool for a partitioned table or index, then the partitions

inherit the buffer pool from the table or index definition, unless overridden by a

partition-level definition.

■ For an index-organized table, you can specify a buffer pool separately for the

index segment and the overflow segment.

Note: Oracle ignores a setting of FREELISTS if the tablespace in

which the object resides is in automatic segment-space

management mode. If you are running your database in this mode,

please refer to the FREEPOOLS parameter of the LOB_storage_
clause on page 15-36.

storage_clause

7-64 Oracle9i SQL Reference

Restrictions on BUFFER_POOL

■ You cannot specify this clause for a cluster table. However, you can specify it for

a cluster.

■ You cannot specify this clause for a tablespace or for a rollback segment.

KEEP Specify KEEP to put blocks from the segment into the KEEP buffer pool.

Maintaining an appropriately sized KEEP buffer pool lets Oracle retain the schema

object in memory to avoid I/O operations. KEEP takes precedence over any

NOCACHE clause you specify for a table, cluster, materialized view, or materialized

view log.

RECYCLE Specify RECYCLE to put blocks from the segment into the RECYCLE
pool. An appropriately sized RECYCLE pool reduces the number of objects whose

default pool is the RECYCLE pool from taking up unnecessary cache space.

DEFAULT Specify DEFAULT to indicate the default buffer pool. This is the default

for objects not assigned to KEEP or RECYCLE.

Examples

Specifying Table Storage Attributes: Example The following statement creates a

table and provides storage parameter values:

CREATE TABLE divisions
 (div_no NUMBER(2),
 div_name VARCHAR2(14),
 location VARCHAR2(13))
 STORAGE (INITIAL 100K NEXT 50K
 MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5);

Oracle allocates space for the table based on the STORAGE parameter values as

follows:

■ The MINEXTENTS value is 1, so Oracle allocates 1 extent for the table upon

creation.

■ The INITIAL value is 100K, so the first extent’s size is 100 kilobytes.

■ If the table data grows to exceed the first extent, then Oracle allocates a second

extent. The NEXTvalue is 50K, so the second extent’s size would be 50 kilobytes.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about using multiple buffer pools

storage_clause

Common SQL DDL Clauses 7-65

■ If the table data subsequently grows to exceed the first two extents, then Oracle

allocates a third extent. The PCTINCREASE value is 5, so the calculated size of

the third extent is 5% larger than the second extent, or 52.5 kilobytes. If the data

block size is 2 kilobytes, then Oracle rounds this value to 52 kilobytes.

If the table data continues to grow, then Oracle allocates more extents, each 5%

larger than the previous one.

■ The MAXEXTENTS value is 50, so Oracle can allocate as many as 50 extents for

the table.

Specifying Rollback Segment Storage Attributes: Example The following

statement creates a rollback segment and provides storage parameter values:

CREATE ROLLBACK SEGMENT rs_store
 STORAGE (INITIAL 10K NEXT 10K
 MINEXTENTS 2 MAXEXTENTS 25
 OPTIMAL 50K);

Oracle allocates space for the rollback segment based on the STORAGE parameter

values as follows:

■ The MINEXTENTS value is 2, so Oracle allocates 2 extents for the rollback

segment upon creation.

■ The INITIAL value is 10K, so the first extent’s size is 10 kilobytes.

■ The NEXT value is 10K, so the second extent’s size is 10 kilobytes.

■ If the rollback data exceeds the first two extents, then Oracle allocates a third

extent. The PCTINCREASE value for rollback segments is always 0, so the third

and subsequent extents are the same size as the second extent, 10 kilobytes.

■ The MAXEXTENTS value is 25, so Oracle can allocate as many as 25 extents for

the rollback segment.

■ The OPTIMALvalue is 50K, so Oracle deallocates extents if the rollback segment

exceeds 50 kilobytes. Oracle deallocates only extents that contain data for

transactions that are no longer active.

storage_clause

7-66 Oracle9i SQL Reference

SQL Queries and Subqueries 8-1

8
SQL Queries and Subqueries

This chapter describes SQL queries and subqueries.

This chapter contains these sections:

■ About Queries and Subqueries

■ Creating Simple Queries

■ Hierarchical Queries

■ The UNION [ALL], INTERSECT, MINUS Operators

■ Sorting Query Results

■ Joins

■ Using Subqueries

■ Unnesting of Nested Subqueries

■ Selecting from the DUAL Table

■ Distributed Queries

About Queries and Subqueries

8-2 Oracle9i SQL Reference

About Queries and Subqueries
A query is an operation that retrieves data from one or more tables or views. In this

reference, a top-level SELECTstatement is called a query, and a query nested within

another SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them.

The top level of the syntax is shown in this chapter.

select::=

subquery::=

Creating Simple Queries
The list of expressions that appears after the SELECT keyword and before the FROM
clause is called the select list. Within the select list, you specify one or more

columns in the set of rows you want Oracle to return from one or more tables,

views, or materialized views. The number of columns, as well as their datatype and

length, are determined by the elements of the select list.

See Also: SELECT on page 18-4 for the full syntax of all the

clauses and the semantics of this statement

subquery
for_update_clause

;

subquery_factoring_clause
SELECT

hint

DISTINCT

UNIQUE

ALL
select_list

FROM table_reference

,
where_clause hierarchical_query_clause group_by_clause

HAVING condition

UNION
ALL

INTERSECT

MINUS

(subquery)

order_by_clause

Hierarchical Queries

SQL Queries and Subqueries 8-3

If two or more tables have some column names in common, then you must qualify

column names with names of tables. Otherwise, fully qualified column names are

optional. However, it is always a good idea to qualify table and column references

explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, c_alias , to label the preceding expression in the select

list so that the column is displayed with a new heading. The alias effectively

renames the select list item for the duration of the query. The alias can be used in

the ORDER BY clause, but not other clauses in the query.

You can use comments in a SELECT statement to pass instructions, or hints, to the

Oracle optimizer. The optimizer uses hints to choose an execution plan for the

statement.

Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order

using the hierarchical query clause:

hierarchical_query_clause::=

■ START WITH specifies the root row(s) of the hierarchy.

■ CONNECT BY specifies the relationship between parent rows and child rows of

the hierarchy. In a hierarchical query, one expression in condition must be

qualified with the PRIOR operator to refer to the parent row. For example,

... PRIOR expr = expr
or
... expr = PRIOR expr

If the CONNECT BYcondition is compound, then only one condition requires

the PRIOR operator. For example:

CONNECT BY last_name != ’King’ AND PRIOR employee_id = manager_id

In addition, the CONNECT BYcondition cannot contain a subquery.

See Also: "Hints" on page 2-91 and Oracle9i Database Performance
Tuning Guide and Reference for more information on hints

START WITH condition
CONNECT BY condition

Hierarchical Queries

8-4 Oracle9i SQL Reference

PRIOR is a unary operator and has the same precedence as the unary + and -

arithmetic operators. It evaluates the immediately following expression for the

parent row of the current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the

equality operator. (The PRIOR keyword can be on either side of the operator.)

PRIOR causes Oracle to use the value of the parent row in the column.

Operators other than the equal sign (=) are theoretically possible in CONNECT
BY clauses. However, the conditions created by these other operators can result

in an infinite loop through the possible combinations. In this case Oracle detects

the loop at run time and returns an error.

The manner in which Oracle processes a WHERE clause (if any) in a hierarchical

query depends on whether the WHERE clause contains a join:

■ If the WHERE predicate contains a join, Oracle applies the join predicates before
doing the CONNECT BY processing.

■ If the WHERE clause does not contain a join, Oracle applies all predicates other

than the CONNECT BYpredicates after doing the CONNECT BY processing

without affecting the other rows of the hierarchy.

Oracle uses the information from the hierarchical query clause to form the hierarchy

using the following steps:

1. Oracle processes the WHERE clause either before or after the CONNECT BY clause

depending on whether the WHERE clause contains any join predicates (as

described in the preceding bullet list).

2. Oracle selects the root row(s) of the hierarchy—those rows that satisfy the

START WITH condition.

3. Oracle selects the child rows of each root row. Each child row must satisfy the

condition of the CONNECT BY condition with respect to one of the root rows.

4. Oracle selects successive generations of child rows. Oracle first selects the

children of the rows returned in step 3, and then the children of those children,

and so on. Oracle always selects children by evaluating the CONNECT BY
condition with respect to a current parent row.

5. If the query contains a WHERE clause without a join, then Oracle eliminates all

rows from the hierarchy that do not satisfy the condition of the WHERE clause.

Oracle evaluates this condition for each row individually, rather than removing

all the children of a row that does not satisfy the condition.

See Also: "Examples" on page 8-5

Hierarchical Queries

SQL Queries and Subqueries 8-5

6. Oracle returns the rows in the order shown in Figure 8–1. In the diagram,

children appear below their parents. For an explanation of hierarchical trees, see

Figure 2–1, "Hierarchical Tree" on page 2-86.

Figure 8–1 Hierarchical Queries

To find the children of a parent row, Oracle evaluates the PRIOR expression of the

CONNECT BY condition for the parent row and the other expression for each row in

the table. Rows for which the condition is true are the children of the parent. The

CONNECT BY condition can contain other conditions to further filter the rows

selected by the query. The CONNECT BY condition cannot contain a subquery.

If the CONNECT BY condition results in a loop in the hierarchy, then Oracle returns

an error. A loop occurs if one row is both the parent (or grandparent or direct

ancestor) and a child (or a grandchild or a direct descendent) of another row.

Examples
The following hierarchical query uses the CONNECT BY clause to define the

relationship between employees and managers:

Note: In a hierarchical query, do not specify either ORDER BY or

GROUP BY, as they will destroy the hierarchical order of the

CONNECT BY results. If you want to order rows of siblings of the

same parent, then use the ORDER SIBLINGS BY clause. See order_
by_clause on page 18-25.

1

7

8

ROOT

2 9

3 4 10 12

1165

Hierarchical Queries

8-6 Oracle9i SQL Reference

SELECT employee_id, last_name, manager_id
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- ------------------------- ----------
 101 Kochhar 100
 108 Greenberg 101
 109 Faviet 108
 110 Chen 108
 111 Sciarra 108
 112 Urman 108
 113 Popp 108
 200 Whalen 101
.
.
.

The next example is similar to the preceding example, but uses the LEVEL
pseudocolumn to show parent and child rows:

SELECT employee_id, last_name, manager_id, LEVEL
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID LEVEL
----------- ------------------------- ---------- ----------
 101 Kochhar 100 1
 108 Greenberg 101 2
 109 Faviet 108 3
 110 Chen 108 3
 111 Sciarra 108 3
 112 Urman 108 3
 113 Popp 108 3
...

Finally, the next example adds a START WITH clause to specify a root row for the

hierarchy, and an ORDER BY clause using the SIBLINGS keyword to preserve

ordering within the hierarchy:

SELECT last_name, employee_id, manager_id, LEVEL
 FROM employees
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id
 ORDER SIBLINGS BY last_name;

The UNION [ALL], INTERSECT, MINUS Operators

SQL Queries and Subqueries 8-7

LAST_NAME EMPLOYEE_ID MANAGER_ID LEVEL
------------------------- ----------- ---------- ----------
King 100 1
Cambrault 148 100 2
Bates 172 148 3
Bloom 169 148 3
Fox 170 148 3
Kumar 173 148 3
Ozer 168 148 3
Smith 171 148 3
De Haan 102 100 2
Hunold 103 102 3
Austin 105 103 4
Ernst 104 103 4
Lorentz 107 103 4
Pataballa 106 103 4
Errazuriz 147 100 2
Ande 166 147 3
Banda 167 147 3
...

The UNION [ALL], INTERSECT, MINUS Operators
You can combine multiple queries using the set operators UNION, UNION ALL,
INTERSECT, and MINUS. All set operators have equal precedence. If a SQL

statement contains multiple set operators, then Oracle evaluates them from the left

to right if no parentheses explicitly specify another order.

The corresponding expressions in the select lists of the component queries of a

compound query must match in number and datatype. If component queries select

character data, then the datatype of the return values are determined as follows:

■ If both queries select values of datatype CHAR, then the returned values have

datatype CHAR.

See Also:

■ LEVEL on page 2-86 for a discussion of how the LEVEL
pseudocolumn operates in a hierarchical query

■ SYS_CONNECT_BY_PATH on page 6-155 for information on

retrieving the path of column values from root to node

■ order_by_clause on page 18-25 for more information on the

SIBLINGS keyword of ORDER BY clauses

The UNION [ALL], INTERSECT, MINUS Operators

8-8 Oracle9i SQL Reference

■ If either or both of the queries select values of datatype VARCHAR2, then the

returned values have datatype VARCHAR2.

Restrictions on Set Operators

■ The set operators are not valid on columns of type BLOB, CLOB, BFILE ,

VARRAY, or nested table.

■ The UNION, INTERSECT, and MINUS operators are not valid on LONG columns.

■ If the select list preceding the set operator contains an expression, then you

must provide a column alias for the expression in order to refer to it in the

order_by_clause .

■ You cannot also specify the for_update_clause with these set operators.

■ You cannot specify the order_by_clause in the subquery of these

operators.

■ You cannot use these operators in SELECT statements containing TABLE
collection expressions.

The following examples combine the two query results with each of the set

operators.

UNION Example The following statement combines the results with the UNION
operator, which eliminates duplicate selected rows. This statement shows that you

must match datatype (using the TO_CHAR function) when columns do not exist in

one or the other table:

SELECT location_id, department_name "Department",
 TO_CHAR(NULL) "Warehouse" FROM departments
 UNION
 SELECT location_id, TO_CHAR(NULL) "Department", warehouse_name
 FROM warehouses;

Note: To comply with emerging SQL standards, a future release of

Oracle will give the INTERSECT operator greater precedence than

the other set operators. Therefore, you should use parentheses to

specify order of evaluation in queries that use the INTERSECT
operator with other set operators.

The UNION [ALL], INTERSECT, MINUS Operators

SQL Queries and Subqueries 8-9

LOCATION_ID Department Warehouse
----------- --------------------- --------------------------
 1400 IT
 1400 Southlake, Texas
 1500 Shipping
 1500 San Francisco
 1600 New Jersey
 1700 Accounting
 1700 Administration
 1700 Benefits
 1700 Construction
...

UNION ALL Example The UNION operator returns only distinct rows that appear

in either result, while the UNION ALL operator returns all rows. The UNION ALL
operator does not eliminate duplicate selected rows:

SELECT product_id FROM order_items
UNION
SELECT product_id FROM inventories;

SELECT location_id FROM locations
UNION ALL
SELECT location_id FROM departments;

A location_id value that appears multiple times in either or both queries (such

as ’1700 ’) is returned only once by the UNION operator, but multiple times by the

UNION ALL operator.

INTERSECT Example The following statement combines the results with the

INTERSECT operator, which returns only those rows returned by both queries:

SELECT product_id FROM inventories
INTERSECT
SELECT product_id FROM order_items;

MINUS Example The following statement combines results with the MINUS
operator, which returns only rows returned by the first query but not by the second:

SELECT product_id FROM inventories
MINUS
SELECT product_id FROM order_items;

Sorting Query Results

8-10 Oracle9i SQL Reference

Sorting Query Results
Use the ORDER BY clause to order the rows selected by a query. Sorting by position

is useful in the following cases:

■ To order by a lengthy select list expression, you can specify its position, rather

than duplicate the entire expression, in the ORDER BY clause.

■ For compound queries (containing set operators UNION, INTERSECT, MINUS, or

UNION ALL), the ORDER BY clause must use positions, rather than explicit

expressions. Also, the ORDER BY clause can appear only in the last component

query. The ORDER BY clause orders all rows returned by the entire compound

query.

The mechanism by which Oracle sorts values for the ORDER BY clause is specified

either explicitly by the NLS_SORT initialization parameter or implicitly by the NLS_
LANGUAGE initialization parameter. You can change the sort mechanism

dynamically from one linguistic sort sequence to another using the ALTER SESSION
statement. You can also specify a specific sort sequence for a single query by using

the NLSSORT function with the NLS_SORT parameter in the ORDER BY clause.

Joins
A join is a query that combines rows from two or more tables, views, or

materialized views. Oracle performs a join whenever multiple tables appear in the

query’s FROM clause. The query’s select list can select any columns from any of

these tables. If any two of these tables have a column name in common, then you

must qualify all references to these columns throughout the query with table names

to avoid ambiguity.

Join Conditions
Most join queries contain WHERE clause conditions that compare two columns, each

from a different table. Such a condition is called a join condition. To execute a join,

Oracle combines pairs of rows, each containing one row from each table, for which

the join condition evaluates to TRUE. The columns in the join conditions need not

also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on

the join conditions comparing their columns and then joins the result to another

table based on join conditions containing columns of the joined tables and the new

See Also: Oracle9i Database Globalization Support Guide for

information on the NLS parameters

Joins

SQL Queries and Subqueries 8-11

table. Oracle continues this process until all tables are joined into the result. The

optimizer determines the order in which Oracle joins tables based on the join

conditions, indexes on the tables, and, in the case of the cost-based optimization

approach, statistics for the tables.

In addition to join conditions, the WHERE clause of a join query can also contain

other conditions that refer to columns of only one table. These conditions can

further restrict the rows returned by the join query.

Equijoins
An equijoin is a join with a join condition containing an equality operator. An

equijoin combines rows that have equivalent values for the specified columns.

Depending on the internal algorithm the optimizer chooses to execute the join, the

total size of the columns in the equijoin condition in a single table may be limited to

the size of a data block minus some overhead. The size of a data block is specified

by the initialization parameter DB_BLOCK_SIZE.

Self Joins
A self join is a join of a table to itself. This table appears twice in the FROM clause

and is followed by table aliases that qualify column names in the join condition. To

perform a self join, Oracle combines and returns rows of the table that satisfy the

join condition.

Cartesian Products
If two tables in a join query have no join condition, then Oracle returns their

Cartesian product. Oracle combines each row of one table with each row of the

other. A Cartesian product always generates many rows and is rarely useful. For

example, the Cartesian product of two tables, each with 100 rows, has 10,000 rows.

Always include a join condition unless you specifically need a Cartesian product. If

a query joins three or more tables and you do not specify a join condition for a

Note: You cannot specify LOB columns in the WHERE clause if the

WHERE clause contains any joins. The use of LOBs in WHERE clauses

is also subject to other restrictions. See Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information.

See Also: "Using Join Queries: Examples" on page 18-34

See Also: "Using Self Joins: Example" on page 18-36

Joins

8-12 Oracle9i SQL Reference

specific pair, then the optimizer may choose a join order that avoids producing an

intermediate Cartesian product.

Inner Joins
An inner join (sometimes called a "simple join") is a join of two or more tables that

returns only those rows that satisfy the join condition.

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that

satisfy the join condition and also returns some or all of those rows from one table

for which no rows from the other satisfy the join condition.

■ To write a query that performs an outer join of tables A and B and returns all

rows from A (a left outer join), use the LEFT [OUTER] JOIN syntax in the FROM
clause, or apply the outer join operator (+) to all columns of B in the join

condition in the WHERE clause. For all rows in A that have no matching rows in

B, Oracle returns null for any select list expressions containing columns of B.

■ To write a query that performs an outer join of tables A and B and returns all

rows from B (a right outer join), use the RIGHT [OUTER] JOIN syntax in the

FROM clause, or apply the outer join operator (+) to all columns of A in the join

condition in the WHERE clause. For all rows in B that have no matching rows in

A, Oracle returns null for any select list expressions containing columns of A.

■ To write a query that performs an outer join and returns all rows from A and B,

extended with nulls if they do not satisfy the join condition (a full outer join),

use the FULL [OUTER] JOIN syntax in the FROM clause.

Oracle Corporation recommends that you use the FROM clause OUTER JOIN syntax

rather than the Oracle join operator. Outer join queries that use the Oracle join

operator (+) are subject to the following rules and restrictions, which do not apply

to the FROM clause join syntax:

■ You cannot specify the (+) operator in a query block that also contains FROM
clause join syntax.

■ The (+) operator can appear only in the WHERE clause or, in the context of

left-correlation (that is, when specifying the TABLE clause) in the FROM clause,

and can be applied only to a column of a table or view.

■ If A and B are joined by multiple join conditions, then you must use the (+)

operator in all of these conditions. If you do not, then Oracle will return only

the rows resulting from a simple join, but without a warning or error to advise

you that you do not have the results of an outer join.

Using Subqueries

SQL Queries and Subqueries 8-13

■ The (+) operator does not produce an outer join if you specify one table in the

outer query and the other table in an inner query.

■ You cannot use the (+) operator to outer-join a table to itself, although self joins

are valid. For example, the following statement is not valid:

-- The following statement is not valid:
SELECT employee_id, manager_id
 FROM employees
 WHERE employees.manager_id(+) = employees.employee_id;

However, the following self join is valid:

SELECT e1.employee_id, e1.manager_id, e2.employee_id
 FROM employees e1, employees e2
 WHERE e1.manager_id(+) = e2.employee_id;

■ The (+) operator can be applied only to a column, not to an arbitrary expression.

However, an arbitrary expression can contain one or more columns marked

with the (+) operator.

■ A condition containing the (+) operator cannot be combined with another

condition using the OR logical operator.

■ A condition cannot use the IN comparison condition to compare a column

marked with the (+) operator with an expression.

■ A condition cannot compare any column marked with the (+) operator with a

subquery.

If the WHERE clause contains a condition that compares a column from table B with

a constant, then the (+) operator must be applied to the column so that Oracle

returns the rows from table A for which it has generated nulls for this column.

Otherwise Oracle will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single table

can be the null-generated table for only one other table. For this reason, you cannot

apply the (+) operator to columns of B in the join condition for A and B and the join

condition for B and C.

Using Subqueries
A subquery answers multiple-part questions. For example, to determine who

works in Taylor’s department, you can first use a subquery to determine the

See Also: SELECT on page 18-4 for the syntax for an outer join

Using Subqueries

8-14 Oracle9i SQL Reference

department in which Taylor works. You can then answer the original question with

the parent SELECT statement. A subquery in the FROM clause of a SELECT
statement is also called an inline view. A subquery in the WHERE clause of a

SELECT statement is also called a nested subquery.

A subquery can contain another subquery. Oracle imposes no limit on the number

of subquery levels in the FROM clause of the top-level query. You can nest up to 255

levels of subqueries in the WHERE clause.

If columns in a subquery have the same name as columns in the containing

statement, then you must prefix any reference to the column of the table from the

containing statement with the table name or alias. To make your statements easier

for you to read, always qualify the columns in a subquery with the name or alias of

the table, view, or materialized view.

Oracle performs a correlated subquery when the subquery references a column

from a table referred to in the parent statement. A correlated subquery is evaluated

once for each row processed by the parent statement. The parent statement can be a

SELECT, UPDATE, or DELETE statement.

A correlated subquery answers a multiple-part question whose answer depends on

the value in each row processed by the parent statement. For example, you can use

a correlated subquery to determine which employees earn more than the average

salaries for their departments. In this case, the correlated subquery specifically

computes the average salary for each department.

Use subqueries for the following purposes:

■ To define the set of rows to be inserted into the target table of an INSERT or

CREATE TABLE statement

■ To define the set of rows to be included in a view or materialized view in a

CREATE VIEW or CREATE MATERIALIZED VIEW statement

■ To define one or more values to be assigned to existing rows in an UPDATE
statement

■ To provide values for conditions in a WHERE clause, HAVING clause, or START
WITH clause of SELECT, UPDATE, and DELETE statements

■ To define a table to be operated on by a containing query

See Also: "Using Correlated Subqueries: Examples" on page 18-43

Unnesting of Nested Subqueries

SQL Queries and Subqueries 8-15

You do this by placing the subquery in the FROM clause of the containing query

as you would a table name. You may use subqueries in place of tables in this

way as well in INSERT, UPDATE, and DELETE statements.

Subqueries so used can employ correlation variables, but only those defined

within the subquery itself, not outer references. Outer references

("left-correlated subqueries") are allowed only in the FROM clause of a SELECT
statement.

Scalar subqueries, which return a single column value from a single row, are a

valid form of expression. You can use scalar subquery expressions in most of

the places where expr is called for in syntax.

Unnesting of Nested Subqueries
Subqueries are "nested" when they appear in the WHERE clause of the parent

statement. When Oracle evaluates a statement with a nested subquery, it must

evaluate the subquery portion multiple times and may overlook some efficient

access paths or joins.

Subquery unnesting unnests and merges the body of the subquery into the body of

the statement that contains it, allowing the optimizer to consider them together

when evaluating access paths and joins. The optimizer can unnest most subqueries,

with some exceptions. Those exceptions include hierarchical subqueries and

subqueries that contain a ROWNUM pseudocolumn, one of the set operators, a nested

aggregate function, or a correlated reference to a query block that is not the

subquery’s immediate outer query block.

Assuming no restrictions exist, the optimizer automatically unnests some (but not

all) of the following nested subqueries:

■ Uncorrelated IN subqueries

■ IN and EXISTS correlated subqueries, as long as they do not contain aggregate

functions or a GROUP BY clause

You can enable extended subquery unnesting by instructing the optimizer to

unnest additional types of subqueries:

■ You can unnest an uncorrelated NOT INsubquery by specifying the HASH_AJor

MERGE_AJ hint in the subquery.

See Also: table_collection_expression on page 18-17

See Also: "Scalar Subquery Expressions" on page 4-13

Selecting from the DUAL Table

8-16 Oracle9i SQL Reference

■ You can unnest other subqueries by specifying the UNNESThint in the subquery.

Selecting from the DUAL Table
DUAL is a table automatically created by Oracle along with the data dictionary.

DUAL is in the schema of the user SYS, but is accessible by the name DUAL to all

users. It has one column, DUMMY, defined to be VARCHAR2(1), and contains one

row with a value ’X’. Selecting from the DUAL table is useful for computing a

constant expression with the SELECT statement. Because DUAL has only one row,

the constant is returned only once. Alternatively, you can select a constant,

pseudocolumn, or expression from any table, but the value will be returned as

many times as there are rows in the table.

Distributed Queries
Oracle’s distributed database management system architecture lets you access data

in remote databases using Oracle Net and an Oracle server. You can identify a

remote table, view, or materialized view by appending @dblink to the end of its

name. The dblink must be a complete or partial name for a database link to the

database containing the remote table, view, or materialized view.

Restrictions on Distributed Queries Distributed queries are currently subject to

the restriction that all tables locked by a FOR UPDATE clause and all tables with

LONG columns selected by the query must be located on the same database. For

example, the following statement will raise an error because it selects press_
release , a LONGvalue, from the print_media table on the remote database and

locks the print_media table on the local database:

See Also: Chapter 2, "Basic Elements of Oracle SQL" for

information on hints

See Also: "SQL Functions" on page 6-2 for many examples of

selecting a constant value from DUAL

See Also:

■ "Referring to Objects in Remote Databases" on page 2-118 for

more information on referring to database links

■ Oracle9i Net Services Administrator’s Guide for information on

accessing remote databases

Distributed Queries

SQL Queries and Subqueries 8-17

SELECT r.product_id, l.ad_id, r.press_release
 FROM pm.print_media@remote r, pm.print_media l
 FOR UPDATE OF l.ad_id;

In addition, Oracle currently does not support distributed queries that select

user-defined types or object REFs on remote tables.

Distributed Queries

8-18 Oracle9i SQL Reference

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-1

9
SQL Statements: ALTER CLUSTER to

ALTER SEQUENCE

This chapter lists the various types of SQL statements and then describes the first

set (in alphabetical order) of SQL statements. The remaining SQL statements appear

in alphabetical order in Chapter 10 through Chapter 18.

This chapter contains the following sections:

■ Types of SQL Statements

■ Organization of SQL Statements

■ ALTER CLUSTER

■ ALTER DATABASE

■ ALTER DIMENSION

■ ALTER FUNCTION

■ ALTER INDEX

■ ALTER INDEXTYPE

■ ALTER JAVA

■ ALTER MATERIALIZED VIEW

■ ALTER MATERIALIZED VIEW LOG

■ ALTER OPERATOR

■ ALTER OUTLINE

■ ALTER PACKAGE

■ ALTER PROCEDURE

■ ALTER PROFILE

■ ALTER RESOURCE COST

■ ALTER ROLE

■ ALTER ROLLBACK SEGMENT

■ ALTER SEQUENCE

Types of SQL Statements

9-2 Oracle9i SQL Reference

Types of SQL Statements
The tables in the following sections provide a functional summary of SQL

statements and are divided into these categories:

■ Data definition language (DDL) statements

■ Data manipulation language (DML) statements

■ Transaction control statements

■ Session control statements

■ System control statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements enable you to perform these tasks:

■ Create, alter, and drop schema objects

■ Grant and revoke privileges and roles

■ Analyze information on a table, index, or cluster

■ Establish auditing options

■ Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the specified

object. For example, an ALTER TABLE statement fails if another user has an open

transaction on the specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not require

exclusive access to the specified object. For example, you can analyze a table while

other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL

statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema

objects. For information on how Oracle recompiles and reauthorizes schema objects

and the circumstances under which a DDL statement would cause this, see Oracle9i
Database Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQL package.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

Types of SQL Statements

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-3

The DDL statements are:

ALTER ... (All statements beginning with ALTER)
ANALYZE
ASSOCIATE STATISTICS
AUDIT
COMMENT
CREATE ... (All statements beginning with CREATE)
DISASSOCIATE STATISTICS
DROP ... (All statements beginning with DROP)
GRANT
NOAUDIT
RENAME
REVOKE
TRUNCATE

Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements query and manipulate data in

existing schema objects. These statements do not implicitly commit the current

transaction. The data manipulation language statements are:

CALL
DELETE
EXPLAIN PLAN
INSERT
LOCK TABLE
MERGE
SELECT
UPDATE

The CALL and EXPLAIN PLAN statements are supported in PL/SQL only when

executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements. The

transaction control statements are:

COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION

Organization of SQL Statements

9-4 Oracle9i SQL Reference

All transaction control statements, except certain forms of the COMMIT and

ROLLBACK commands, are supported in PL/SQL. For information on the

restrictions, see COMMIT on page 12-75 and ROLLBACK on page 17-99.

Session Control Statements
Session control statements dynamically manage the properties of a user session.

These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements. The session control

statements are:

ALTER SESSION
SET ROLE

System Control Statement
The single system control statement, ALTER SYSTEM, dynamically manages the

properties of an Oracle instance. This statement does not implicitly commit the

current transaction and is not supported in PL/SQL.

Embedded SQL Statements
Embedded SQL statements place DDL, DML, and transaction control statements

within a procedural language program. Embedded SQL is supported by the Oracle

precompilers and is documented in the following books:

■ Pro*COBOL Precompiler Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide

■ SQL*Module for Ada Programmer’s Guide

Organization of SQL Statements
All SQL statements in this chapter, as well as in Chapters 10 through 18, are

organized into the following sections:

Syntax The syntax diagrams show the keywords and parameters that make up the

statement.

Organization of SQL Statements

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-5

Purpose The "Purpose" section describes the basic uses of the statement.

Prerequisites The "Prerequisites" section lists privileges you must have and steps

that you must take before using the statement. In addition to the prerequisites

listed, most statements also require that the database be opened by your instance,

unless otherwise noted.

Semantics The "Semantics" section describes the purpose of the keywords,

parameter, and clauses that make up the syntax, as well as restrictions and other

usage notes that may apply to them. (The conventions for keywords and

parameters used in this chapter are explained in the Preface of this reference.)

Examples The "Examples" section shows how to use the various clauses and

parameters of the statement.

Caution: Not all keywords and parameters are valid in all

circumstances. Be sure to refer to the "Semantics" section of each

statement and clause to learn about any restrictions on the syntax.

ALTER CLUSTER

9-6 Oracle9i SQL Reference

ALTER CLUSTER

Purpose
Use the ALTER CLUSTER statement to redefine storage and parallelism

characteristics of a cluster.

Prerequisites
The cluster must be in your own schema or you must have the ALTER ANY
CLUSTER system privilege.

Syntax
alter_cluster::=

Note: You cannot use this statement to change the number or the

name of columns in the cluster key, and you cannot change the

tablespace in which the cluster is stored.

See Also:

■ CREATE CLUSTER on page 13-2 for information on creating a

cluster

■ DROP CLUSTER on page 16-67 and DROP TABLE on

page 17-6 for information on removing tables from a cluster

ALTER CLUSTER
schema .

cluster

physical_attributes_clause

SIZE integer

K

M

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

parallel_clause
;

ALTER CLUSTER

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-7

physical_attributes_clause ::=

(storage_clause on page 7-56)

allocate_extent_clause ::=

deallocate_unused_clause ::=

parallel_clause ::=

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

NOPARALLEL

PARALLEL
integer

ALTER CLUSTER

9-8 Oracle9i SQL Reference

Semantics

schema
Specify the schema containing the cluster. If you omit schema , Oracle assumes the

cluster is in your own schema.

cluster
Specify the name of the cluster to be altered.

physical_attributes_clause
Use this clause to change the values of the PCTUSED, PCTFREE, INITRANS , and

MAXTRANS parameters of the cluster.

Use the STORAGE clause to change the storage characteristics of the cluster.

Restriction on Physical Attributes You cannot change the values of the storage

parameters INITIAL and MINEXTENTS for a cluster.

SIZE integer
Use the SIZE clause to specify the number of cluster keys that will be stored in data

blocks allocated to the cluster.

Restriction on SIZE You can change the SIZE parameter only for an indexed

cluster, not for a hash cluster.

allocate_extent_clause
Specify the allocate_extent_clause to explicitly allocate a new extent for the

cluster.

See Also:

■ physical_attributes_clause on page 7-52 for a full

description of this clause

■ storage_clause on page 7-56 for a full description of the

storage parameters

See Also: CREATE CLUSTER on page 13-2 for a description of

the SIZE parameter and "Modifying a Cluster: Example" on

page 9-10

ALTER CLUSTER

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-9

When you explicitly allocate an extent with this clause, Oracle does not evaluate the

cluster’s storage parameters and determine a new size for the next extent to be

allocated (as it does when you create a table). Therefore, specify SIZE if you do not

want Oracle to use a default value.

Restriction on Allocating Extents You can allocate a new extent only for an

indexed cluster, not for a hash cluster.

deallocate_unused_clause
Use the deallocate_unused_clause to explicitly deallocate unused space at the

end of the cluster and make the freed space available for other segments.

CACHE | NOCACHE

CACHE Specify CACHE if you want the blocks retrieved for this cluster to be

placed at the most recently used end of the least recently used (LRU) list in the buffer

cache when a full table scan is performed. This clause is useful for small lookup

tables.

NOCACHE Specify NOCACHE if you want the blocks retrieved for this cluster to be

placed at the least recently used end of the LRU list in the buffer cache when a full

table scan is performed. This is the default behavior.

parallel_clause
Specify the parallel_clause to change the default degree of parallelism for

queries and DML on the cluster.

Restriction on Parallelized Clusters If the tables in cluster contain any columns

of LOB or user-defined object type, this statement as well as subsequent INSERT,

UPDATE, or DELETE operations on cluster are executed serially without

notification.

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause and "Deallocating Unused Space:

Example" on page 9-10

See Also: deallocate_unused_clause on page 7-37 for a full

description of this clause

ALTER CLUSTER

9-10 Oracle9i SQL Reference

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

Examples
The following examples modify the clusters that were created in the "Examples"

section of CREATE CLUSTER on on page 13-9.

Modifying a Cluster: Example The next statement alters the personnel cluster:

ALTER CLUSTER personnel
 SIZE 1024 CACHE;

Oracle allocates 1024 bytes for each cluster key value and turns on the cache

attribute. Assuming a data block size of 2 kilobytes, future data blocks within this

cluster contain 2 cluster keys in each data block, or 2 kilobytes divided by 1024

bytes.

Deallocating Unused Space: Example The following statement deallocates

unused space from the language cluster, keeping 30 kilobytes of unused space for

future use:

ALTER CLUSTER language
 DEALLOCATE UNUSED KEEP 30 K;

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-11

ALTER DATABASE

Purpose
Use the ALTER DATABASE statement to modify, maintain, or recover an existing

database.

Prerequisites
You must have the ALTER DATABASE system privilege.

To specify the RECOVER clause, you must also have the SYSDBA system privilege.

See Also:

■ Oracle9i User-Managed Backup and Recovery Guide and Oracle9i Recovery
Manager User’s Guide for examples of performing media recovery

■ Oracle Data Guard Concepts and Administration for additional

information on using the ALTER DATABASE statement to maintain

standby databases

■ CREATE DATABASE on page 13-23 for information on creating a

database

ALTER DATABASE

9-12 Oracle9i SQL Reference

Syntax
alter_database::=

Groups of ALTER DATABASE syntax:

■ startup_clauses::= on page 9-13

■ recovery_clauses::= on page 9-13

■ database_file_clauses::= on page 9-17

■ logfile_clauses::= on page 9-19

■ controlfile_clauses::= on page 9-20

■ standby_database_clauses::= on page 9-21

■ default_settings_clauses::= on page 9-22

■ conversion_clauses::= on page 9-22

■ redo_thread_clauses::= on page 9-22

■ security_clause::= on page 9-22

ALTER DATABASE
database

startup_clauses

recovery_clauses

database_file_clauses

logfile_clauses

controlfile_clauses

standby_database_clauses

default_settings_clauses

conversion_clauses

redo_thread_clauses

security_clause

;

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-13

startup_clauses ::=

recovery_clauses ::=

(general_recovery::= on page 9-13, managed_standby_recovery::= on

page 9-15)

general_recovery ::=

(full_database_recovery::= on page 9-14, partial_database_
recovery::= on page 9-14, parallel_clause::= on page 9-14)

MOUNT

STANDBY

CLONE
DATABASE

OPEN

READ WRITE

RESETLOGS

NORESETLOGS MIGRATE

READ ONLY

general_recovery

managed_standby_recovery

END BACKUP

RECOVER
AUTOMATIC FROM ’ location ’

full_database_recovery

partial_database_recovery

LOGFILE ’ filename ’

TEST

ALLOW integer CORRUPTION

parallel_clause

CONTINUE
DEFAULT

CANCEL

ALTER DATABASE

9-14 Oracle9i SQL Reference

full_database_recovery ::=

partial_database_recovery ::=

parallel_clause::=

STANDBY
DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

USING BACKUP CONTROLFILE

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

STANDBY

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,
UNTIL

CONSISTENT WITH
CONTROLFILE

NOPARALLEL

PARALLEL
integer

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-15

managed_standby_recovery ::=

(recover_clause::= on page 9-15, cancel_clause::= on page 9-16,

finish_clause::= on page 9-16)

recover_clause::=

(parallel_clause::= on page 9-14)

RECOVER MANAGED STANDBY DATABASE

recover_clause

cancel_clause

finish_clause

DISCONNECT
FROM SESSION

TIMEOUT integer

NOTIMEOUT

NODELAY

DEFAULT DELAY

DELAY integer

NEXT integer

EXPIRE integer

NO EXPIRE

parallel_clause

THROUGH

THREAD integer
SEQUENCE integer

ALL ARCHIVELOG

ALL

LAST

NEXT

SWITCHOVER

ALTER DATABASE

9-16 Oracle9i SQL Reference

cancel_clause::=

finish_clause::=

(parallel_clause::= on page 9-14)

CANCEL
IMMEDIATE

WAIT

NOWAIT

DISCONNECT
FROM SESSION

parallel_clause

FINISH
SKIP

STANDBY LOGFILE
WAIT

NOWAIT

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-17

database_file_clauses ::=

(datafile_tempfile_spec::= on page 7-39, autoextend_clause::= on

page 9-18)

CREATE DATAFILE
’ filename ’

filenumber

,
AS

datafile_tempfile_spec

,

NEW

DATAFILE
’ filename ’

filenumber

,

ONLINE

OFFLINE
DROP

RESIZE integer

K

M

autoextend_clause

END BACKUP

TEMPFILE
’ filename ’

filenumber

,

RESIZE integer

K

M

autoextend_clause

DROP
INCLUDING DATAFILES

ONLINE

OFFLINE

RENAME FILE ’ filename ’

,

TO ’ filename ’

ALTER DATABASE

9-18 Oracle9i SQL Reference

autoextend_clause ::=

maxsize_clause::=

AUTOEXTEND

OFF

ON
NEXT integer

K

M
maxsize_clause

MAXSIZE

UNLIMITED

integer

K

M

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-19

logfile_clauses ::=

(redo_log_file_spec::= on page 7-40)

ARCHIVELOG

NOARCHIVELOG

NO
FORCE LOGGING

ADD
STANDBY

LOGFILE
THREAD integer GROUP integer

redo_log_file_spec

,

DROP
STANDBY

LOGFILE logfile_descriptor

,

ADD
STANDBY

LOGFILE MEMBER ’ filename ’
REUSE

,

TO logfile_descriptor

,

DROP
STANDBY

LOGFILE MEMBER ’ filename ’

,

ADD SUPPLEMENTAL LOG DATA

(
PRIMARY KEY

UNIQUE INDEX

,

) COLUMNS

DROP SUPPLEMENTAL LOG DATA

RENAME FILE ’ filename ’

,

TO ’ filename ’

CLEAR
UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE

ALTER DATABASE

9-20 Oracle9i SQL Reference

logfile_descriptor::=

controlfile_clauses ::=

trace_file_clause::=

GROUP integer

(’ filename ’

,

)

’ filename ’

CREATE STANDBY CONTROLFILE AS ’ filename ’
REUSE

BACKUP CONTROLFILE TO
’ filename ’

REUSE

trace_file_clause

TRACE
AS ’ filename ’

REUSE
RESETLOGS

NORESETLOGS

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-21

standby_database_clauses ::=

(redo_log_file_spec::= on page 7-40)

commit_switchover_clause::=

ACTIVATE

PHYSICAL

LOGICAL
STANDBY DATABASE

SKIP
STANDBY LOGFILE

SET STANDBY DATABASE TO MAXIMIZE

PROTECTION

AVAILABILITY

PERFORMANCE

REGISTER
OR REPLACE

PHYSICAL

LOGICAL
LOGFILE

redo_log_file_spec

,

commit_switchover_clause

START LOGICAL STANDBY APPLY

NEW PRIMARY dblink

INITIAL
scn_value

STOP

ABORT
LOGICAL STANDBY APPLY

parallel_clause

COMMIT TO SWITCHOVER TO

PHYSICAL

LOGICAL
PRIMARY

PHYSICAL

LOGICAL
STANDBY

WITH

WITHOUT
SESSION SHUTDOWN

WAIT

NOWAIT

ALTER DATABASE

9-22 Oracle9i SQL Reference

default_settings_clauses ::=

set_time_zone_clause ::=

conversion_clauses ::=

redo_thread_clauses ::=

security_clause ::=

CHARACTER SET character_set

NATIONAL CHARACTER SET character_set

set_time_zone_clause

DEFAULT TEMPORARY TABLESPACE tablespace

RENAME GLOBAL_NAME TO database . domain

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

RESET COMPATIBILITY

CONVERT

ENABLE
PUBLIC

THREAD integer

DISABLE THREAD integer

GUARD

ALL

STANDBY

NONE

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-23

Semantics

database
Specify the name of the database to be altered. The database name can contain only

ASCII characters. If you omit database , Oracle alters the database identified by

the value of the initialization parameter DB_NAME. You can alter only the database

whose control files are specified by the initialization parameter CONTROL_FILES.
The database identifier is not related to the Oracle Net database specification.

startup_clauses
The startup_clauses let you mount and open the database so that it is

accessible to users.

MOUNT Clause
Use the MOUNT clause to mount the database. Do not use this clause when the

database is mounted.

MOUNT STANDBY DATABASE Specify MOUNT STANDBY DATABASE to mount a

physical standby database. As soon as this statement executes, the standby instance

can receive archived redo logs from the primary instance and can archive the logs to

the STANDBY_ARCHIVE_DEST location.

MOUNT CLONE DATABASE Specify MOUNT CLONE DATABASE to mount the clone

database.

OPEN Clause
Use the OPEN clause to make the database available for normal use. You must

mount the database before you can open it.

If you specify only OPEN, without any other keywords, the default is OPEN READ
WRITE NORESETLOGS.

READ WRITE Specify READ WRITE to open the database in read/write mode,

allowing users to generate redo logs. This is the default.

See Also: Oracle Data Guard Concepts and Administration

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information on clone databases

ALTER DATABASE

9-24 Oracle9i SQL Reference

RESETLOGS Specify RESETLOGS to reset the current log sequence number to 1

and discards any redo information that was not applied during recovery, ensuring

that it will never be applied. This effectively discards all changes that are in the redo

log, but not in the database.

You must specify RESETLOGS to open the database after performing media

recovery with an incomplete recovery using the RECOVER clause or with a backup

control file. After opening the database with this clause, you should perform a

complete database backup.

NORESETLOGS Specify NORESETLOGS to retain the current state of the log

sequence number and redo log files.

Restriction on Resetting Logs You can specify RESETLOGS and NORESETLOGS
only after performing incomplete media recovery or complete media recovery with

a backup control file. In any other case, Oracle uses the NORESETLOGS
automatically.

MIGRATE Use the MIGRATE clause only if you are upgrading from Oracle release

7.3.4 to the current release. This clause instructs Oracle to modify system

parameters dynamically as required for the upgrade. For upgrade from releases

other than 7.3.4, you can use the SQL*Plus STARTUP MIGRATE command.

READ ONLY Specify READ ONLY to restrict users to read-only transactions,

preventing them from generating redo logs. You can use this clause to make a

physical standby database available for queries even while archive logs are being

copied from the primary database site.

Restrictions on the OPEN Clause

■ You cannot open a database READ ONLY if it is currently opened READ WRITE
by another instance.

■ You cannot open a database READ ONLY if it requires recovery.

See Also: "READ ONLY / READ WRITE: Example" on page 9-52

See Also:

■ Oracle9i Database Migration Guide for information on the steps

required to migrate a database from one release to another

■ SQL*Plus User’s Guide and Reference for information on the

SQL*Plus STARTUP command

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-25

■ You cannot take tablespaces offline while the database is open READ ONLY.
However, you can take datafiles offline and online, and you can recover offline

datafiles and tablespaces while the database is open READ ONLY.

recovery_clauses
The recovery_clauses include post-backup operations.

general_recovery
The general_recovery clause lets you control media recovery for the database

or standby database, or for specified tablespaces or files. You can use this clause

when your instance has the database mounted, open or closed, and the files

involved are not in use.

Restrictions on General Database Recovery

■ You can recover the entire database only when the database is closed.

■ Your instance must have the database mounted in exclusive mode.

■ You can recover tablespaces or datafiles when the database is open or closed, if

the tablespaces or datafiles to be recovered are offline.

■ You cannot perform media recovery if you are connected to Oracle through the

Shared Server architecture.

See Also: Oracle9i Backup and Recovery Concepts and Oracle9i
Recovery Manager User’s Guide for information on backing up the

database and "Database Recovery: Examples" on page 9-54

Note: If you do not have special media requirements, Oracle

Corporation recommends that you use the SQL*Plus RECOVER
command rather than the general_recovery_clause .

See Also:

■ Oracle9i User-Managed Backup and Recovery Guide for more

information on media recovery

■ SQL*Plus User’s Guide and Reference for information on the

SQL*Plus RECOVER command

ALTER DATABASE

9-26 Oracle9i SQL Reference

AUTOMATIC
Specify AUTOMATIC if you want Oracle to automatically generate the name of the

next archived redo log file needed to continue the recovery operation. If the LOG_
ARCHIVE_DEST_n parameters are defined, Oracle scans those that are valid and

enabled for the first local destination. It uses that destination in conjunction with

LOG_ARCHIVE_FORMAT to generate the target redo log filename. If the LOG_
ARCHIVE_DEST_n parameters are not defined, Oracle uses the value of the LOG_
ARCHIVE_DEST parameter instead.

If the resulting file is found, Oracle applies the redo contained in that file. If the file

is not found, Oracle prompts you for a filename, displaying the generated filename

as a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, Oracle prompts you for a

filename, displaying the generated filename as a suggestion. You can then accept

the generated filename or replace it with a fully qualified filename. If you know that

the archived filename differs from what Oracle would generate, you can save time

by using the LOGFILE clause.

FROM ’location’
Specify FROM’location’ to indicate the location from which the archived redo

log file group is read. The value of location must be a fully specified file location

following the conventions of your operating system. If you omit this parameter,

Oracle assumes that the archived redo log file group is in the location specified by

the initialization parameter LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_1.

full_database_recovery
The full_database_recovery clause lets you recover an entire database.

DATABASE Specify the DATABASEclause to recover the entire database. This is the

default. You can use this clause only when the database is closed.

STANDBY DATABASE Specify the STANDBY DATABASE clause to manually

recover a physical standby database using the control file and archived redo log

files copied from the primary database. The standby database must be mounted but

not open.

■ Use the UNTIL clause to specify the duration of the recovery operation.

Note: This clause recovers only online datafiles.

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-27

■ CANCEL indicates cancel-based recovery. This clause recovers the database

until you issue the ALTER DATABASE statement with the RECOVER CANCEL
clause.

■ TIME indicates time-based recovery. This parameter recovers the database

to the time specified by the date. The date must be a character literal in the

format ’YYYY-MM-DD:HH24:MI:SS’ .

■ CHANGE indicates change-based recovery. This parameter recovers the

database to a transaction-consistent state immediately before the system

change number (SCN) specified by integer .

■ Specify USING BACKUP CONTROLFILE if you want to use a backup control file

instead of the current control file.

partial_database_recovery
The partial_database_recovery clause lets you recover individual

tablespaces and datafiles.

TABLESPACE Specify the TABLESPACE clause to recover only the specified

tablespaces. You can use this clause if the database is open or closed, provided the

tablespaces to be recovered are offline.

DATAFILE Specify the DATAFILE clause to recover the specified datafiles. You can

use this clause when the database is open or closed, provided the datafiles to be

recovered are offline.

You can identify the datafile by name or by number. If you identify it by number,

then filenumber is an integer representing the number found in the FILE#
column of the V$DATAFILE dynamic performance view or in the FILE_ID column

of the DBA_DATA_FILES data dictionary view.

STANDBY TABLESPACE Specify STANDBY TABLESPACE to reconstruct a lost or

damaged tablespace in the standby database using archived redo log files copied

from the primary database and a control file.

STANDBY DATAFILE Specify STANDBY DATAFILE to manually reconstruct a lost

or damaged datafile in the physical standby database using archived redo log files

copied from the primary database and a control file. You can identify the file by

name or by number, as described for the DATAFILE clause.

See Also: "Using Parallel Recovery Processes: Example" on

page 9-52

ALTER DATABASE

9-28 Oracle9i SQL Reference

■ Specify UNTIL [CONSISTENT WITH] CONTROLFILEif you want the recovery of

an old standby datafile or tablespace to use the current standby database

control file. However, any redo in advance of the standby controlfile will not be

applied. The keywords CONSISTENT WITH are optional and are provided for

semantic clarity.

LOGFILE
Specify the LOGFILE ’filename ’ to continue media recovery by applying the

specified redo log file.

TEST
Use the TESTclause to conduct a trial recovery. A trial recovery is useful if a normal

recovery procedure has encountered some problem. It lets you look ahead into the

redo stream to detect possible additional problems. The trial recovery applies redo

in a way similar to normal recovery, but it does not write changes to disk, and it

rolls back its changes at the end of the trial recovery.

ALLOW ... CORRUPTION
The ALLOWinteger CORRUPTION clause lets you specify, in the event of logfile

corruption, the number of corrupt blocks that can be tolerated while allowing

recovery to proceed.

When you use this clause during trial recovery (that is, in conjunction with the

TEST clause), integer can exceed 1. When using this clause during normal

recovery, integer cannot exceed 1.

parallel_clause
Use the PARALLEL clause to specify whether the recovery of media will be

parallelized.

See Also:

■ Oracle9i User-Managed Backup and Recovery Guide for

information on database recovery in general

■ Oracle Data Guard Concepts and Administration for information

on managed recovery of standby databases

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-29

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

CONTINUE
Specify CONTINUE to continue multi-instance recovery after it has been interrupted

to disable a thread.

Specify CONTINUE DEFAULTto continue recovery using the redo log file that Oracle

would automatically generate if no other logfile were specified. This clause is

equivalent to specifying AUTOMATIC, except that Oracle does not prompt for a

filename.

CANCEL
Specify CANCEL to terminate cancel-based recovery.

managed_standby_recovery
The managed_standby_recovery clause applies to physical standby only. Use it

to specify managed standby recovery mode. This mode assumes that the managed

standby database is an active component of an overall standby database

architecture. A primary database actively archives its redo log files to the standby

site. As these archived redo logs arrive at the standby site, they become available for

use by a managed standby recovery operation. Managed standby recovery is

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

ALTER DATABASE

9-30 Oracle9i SQL Reference

restricted to media recovery. You can use this clause when your instance has the

database mounted, open or closed, and the files involved are not in use.

Restrictions on Managed Standby Recovery The same restrictions apply as are

listed under general_recovery on page 9-25.

DISCONNECT Specify DISCONNECT to indicate that the managed redo process

(MRP), an Oracle background process, should apply archived redo files as a

detached background process. Doing so leaves the current session available for

other tasks. (The FROM SESSION keywords are optional and are provided for

semantic clarity.)

Restrictions on DISCONNECT

■ You can specify DISCONNECT only when you are initiating managed standby

recovery. You cannot specify it after the operation has started.

■ You cannot specify both TIMEOUT and DISCONNECT [FROM SESSION].
TIMEOUT applies only to foreground recovery operations, whereas the

DISCONNECT clause initiates background recovery operations.

TIMEOUT integer Specify in minutes the wait period of the managed recovery

operation. The recovery process waits for integer minutes for a requested

archived log redo to be available for writing to the managed standby database. If

the redo log file does not become available within that time, the recovery process

terminates with an error message. You can then issue the statement again to return

to managed standby recovery mode.

If you omit TIMEOUT or if you specify NOTIMEOUT, the database remains in

managed standby recovery mode until you reissue the statement with the RECOVER
CANCEL clause or until instance shutdown or failure.

Restrictions on TIMEOUT

■ If you specify TIMEOUT, you cannot also specify FINISH .

■ You cannot specify both TIMEOUT and DISCONNECT [FROM SESSION].
TIMEOUT applies only to foreground recovery operations, whereas the

DISCONNECT clause initiates background recovery operations.

See Also: Oracle Data Guard Concepts and Administration for more

information on the parameters of this clause "Recovering a

Managed Standby Database: Examples" on page 9-55

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-31

NODELAY | DEFAULT DELAY | DELAY integer Specify DELAY to instruct Oracle to

wait the specified interval (in minutes) before applying the archived redo logs. The

delay interval begins after the archived redo logs have been selected for recovery.

■ Specify NODELAY if the need arises to apply a delayed archivelog immediately

on the standby database.

■ Specify DEFAULT DELAY to revert to the number of minutes specified in the

LOG_ARCHIVE_DEST_n initialization parameter on the primary database.

Both of these parameters override any setting of DELAY in the LOG_ARCHIVE_
DEST_n parameter on the primary database. If you specify neither of these

parameters, application of the archivelog is delayed according to the LOG_
ARCHIVE_DEST_n setting. If DELAY was not specified in that parameter, the

archivelog is applied immediately.

Restrictions on DELAY

■ You cannot specify both NODELAY and DELAY.

■ If you specify DELAY, you cannot also specify FINISH .

NEXT integer Use the NEXT parameter to apply the specified number of archived

redo logs as soon as possible after they have been archived. This parameter

temporarily overrides any delay setting in the LOG_ARCHIVE_DEST_n initialization

parameter on the primary database and over any DELAY values specified in an

earlier ALTER DATABASE ... managed_standby_recovery statement. Once the

integer archived redo logs are processed, any such delay again takes effect.

Restriction on NEXT If you specify NEXT, you cannot also specify FINISH .

EXPIRE integer Specify the number of minutes from the current time after which

the managed recovery operation terminates automatically. The process may actually

expire after the interval specified, because Oracle will finish processing any

archived redo log that is being processed at the expiration time.

Specify NOEXPIRE to disable a previously specified EXPIRE option.

See Also: Oracle9i Database Reference for detailed information on

the LOG_ARCHIVE_DEST_n parameter

See Also: Oracle9i Database Reference for detailed information on

the LOG_ARCHIVE_DEST_n parameter

ALTER DATABASE

9-32 Oracle9i SQL Reference

Expiration is always relative to the time the current statement is issued rather than

to the start time of the managed recovery process. To terminate an existing

managed recovery operation, use the CANCEL parameter.

Restriction on EXPIRE If you specify EXPIRE, you cannot also specify FINISH .

THROUGH Clause Use this clause to instruct Oracle when to terminate managed

recovery.

■ THROUGH ... SEQUENCE: Specify this clause if you want Oracle to terminate

managed recovery based on thread number and sequence number of an

archivelog. Once the corresponding archivelog has been applied, managed

recovery terminates. If you omit the THREAD clause, Oracle assumes thread 1.

■ THROUGH ALL ARCHIVELOG: Specify this clause if you want Oracle to continue

the managed standby process until all archivelogs have been recovered. You

can use this statement to override an earlier statement that specified THROUGH
... SEQUENCE. If you omit the THROUGH clause entirely, this is the default.

■ THROUGH ... SWITCHOVER: The managed standby recovery process normally

stops when it encounters a switchover operation, because these operations

produce an "end-of-redo archival" indicator. This clause is useful if you have

more than one standby database, all but one of which will remain in the

standby role after the switchover. This clause keeps the managed standby

recovery process operational. It lets these "secondary" standby databases wait to

receive the redo stream from the new primary database, rather than stopping

the recovery process and then starting it again after the new primary database

is activated.

■ Specify ALL to keep managed standby recovery operational through all

switchover operations.

■ Specify LAST to cancel managed standby recovery operations after the final

end-of-redo archival indicator.

■ Specify NEXT to cancel managed standby recovery after recovering the next

end-of-redo archival indicator encountered. This is the default.

CANCEL Specify CANCEL to terminate the managed standby recovery operation

after applying all the redo in the current archived redo file. If you specify only the

CANCEL keyword, session control returns when the recovery process actually

terminates.

■ Specify CANCEL IMMEDIATEto terminate the managed recovery operation after

applying all the redo in the current archived redo file or after the next redo log

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-33

file read, whichever comes first. Session control returns when the recovery

process actually terminates.

Restriction on CANCEL IMMEDIATE The CANCEL IMMEDIATE clause cannot be

issued from the same session that issued the RECOVER MANAGED STANDBY
DATABASE statement.

■ CANCEL IMMEDIATE NOWAIT is the same as CANCEL IMMEDIATE except that

session control returns immediately, not after the recovery process terminates.

■ CANCEL NOWAITterminates the managed recovery operation after the next redo

log file read and returns session control immediately.

FINISH The FINISH clause applies only to physical standby databases. Specify

FINISH to recover the current standby online redo logfiles of the standby database.

Use this clause only in the event of the failure of the primary database, when the

logwriter (LGWR) process has been transmitting redo to the standby current logs.

This clause overrides any delay intervals specified for the archivelogs, so that

Oracle applies the logs immediately.

After the FINISH operation, you must open the standby database as the primary

database.

Specify NOWAITto have control returned immediately rather than after the recovery

process is complete.

Restrictions on FINISH You cannot specify FINISH if you have also specified

TIMEOUT, DELAY, EXPIRE, or NEXT.

parallel_clause Use the parallel_clause to indicate whether Oracle should

parallelize the managed recovery processes. If you specify NOPARALLEL or omit

this clause entirely, Oracle performs the managed standby recovery operation

serially.

See Also:

■ parallel_clause on page 7-49 for more information on this

clause

■ Oracle Data Guard Concepts and Administration for guidelines on

determining whether parallel managed standby recovery will

result in performance gains

ALTER DATABASE

9-34 Oracle9i SQL Reference

END BACKUP Clause
Specify END BACKUP to take out of online backup mode any datafiles in the

database currently in online backup mode. The database must be mounted but not

open when you perform this operation.

You can end online ("hot") backup operations in three ways. During normal

operation, you can take a tablespace out of online backup mode using the ALTER
TABLESPACE ... END BACKUP statement. Doing so avoids the increased overhead of

leaving the tablespace in online backup mode.

After a system failure, instance failure, or SHUTDOWN ABORT operation, Oracle does

not know whether the files in online backup mode match the files at the time the

system crashed. If you know the files are consistent, you can take either individual

datafiles or all datafiles out of online backup mode. Doing so avoids media recovery

of the files upon startup.

■ To take an individual datafile out of online backup mode, use the ALTER
DATABASE DATAFILE ... END BACKUP statement. See database_file_
clauses on page 9-34.

■ To take all datafiles in a tablespace out of online backup mode, use an ALTER
TABLESPACE ... END BACKUP statement.

database_file_clauses
The database_file_clauses let you modify datafiles and tempfiles. You can

use any of the following clauses when your instance has the database mounted,

open or closed, and the files involved are not in use.

CREATE DATAFILE
Use the CREATE DATAFILE clause to create a new empty datafile in place of an old

one. You can use this clause to re-create a datafile that was lost with no backup. The

filename or filenumber must identify a file that is or was once part of the

database. If you identify the file by number, then filenumber is an integer

representing the number found in the FILE# column of the V$DATAFILE dynamic

performance view or in the FILE_ID column of the DBA_DATA_FILES data

dictionary view.

■ Specify AS NEW to create an Oracle-managed datafile with a system-generated

filename, the same size as the file being replaced, in the default file system

location for datafiles.

See Also: ALTER TABLESPACE on page 11-102 for information

on ending online tablespace backup

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-35

■ Specify ASdatafile_tempfile_spec to assign a filename (and optional

size) for the new datafile.

If the original file (filename or filenumber) is an existing Oracle-managed

datafile, then Oracle attempts to delete the original file after creating the new file. If

the original file is an existing user-managed datafile, Oracle does not attempt to

delete the original file.

If you omit the AS clause entirely, Oracle creates the new file with the same name

and size as the file specified by filename or filenumber .

During recovery, all archived redo logs written to since the original datafile was

created must be applied to the new, empty version of the lost datafile.

Oracle creates the new file in the same state as the old file when it was created. You

must perform media recovery on the new file to return it to the state of the old file

at the time it was lost.

Restrictions on Creating New Datafiles

■ You cannot create a new file based on the first datafile of the SYSTEM
tablespace.

■ You cannot specify the autoextend_clause of datafile_tempfile_spec
in this CREATE DATAFILE clause.

DATAFILE Clauses
The DATAFILE clauses let you manipulate a file that you identify by name or by

number. If you identify it by number, then filenumber is an integer representing

the number found in the FILE# column of the V$DATAFILE dynamic performance

view or in the FILE_ID column of the DBA_DATA_FILESdata dictionary view. The

DATAFILE clauses affect your database files as follows:

ONLINE Specify ONLINE to bring the datafile online.

OFFLINE Specify OFFLINE to take the datafile offline. If the database is open, you

must perform media recovery on the datafile before bringing it back online, because

a checkpoint is not performed on the datafile before it is taken offline.

See Also: file_specification on page 7-39 for a full

description of the file specification (datafile_tempfile_spec)

and "Creating a New Datafile: Example" on page 9-54

ALTER DATABASE

9-36 Oracle9i SQL Reference

DROP If the database is in NOARCHIVELOG mode, you must specify the DROP
clause to take a datafile offline. However, the DROP clause does not remove the

datafile from the database. To do that, you must drop the tablespace in which the

datafile resides. Until you do so, the datafile remains in the data dictionary with the

status RECOVER or OFFLINE.

If the database is in ARCHIVELOG mode, Oracle ignores the DROP keyword.

RESIZE Specify RESIZE if you want Oracle to attempt to increase or decrease the

size of the datafile to the specified absolute size in bytes. Use K or M to specify this

size in kilobytes or megabytes. There is no default, so you must specify a size.

If sufficient disk space is not available for the increased size, or if the file contains

data beyond the specified decreased size, Oracle returns an error.

END BACKUP Specify END BACKUPto take the datafile out of online backup mode.

The END BACKUP clause is described more fully at the top level of the syntax of

ALTER DATABASE. See "END BACKUP Clause" on page 9-34.

TEMPFILE Clause
Use the TEMPFILE clause to resize your temporary datafile or specify the

autoextend_clause , with the same effect as with a permanent datafile. You can

identify the tempfile by name or by number. If you identify it by number, then

filenumber is an integer representing the number found in the FILE# column of

the V$TEMPFILE dynamic performance view.

See Also: "Resizing a Datafile: Example" on page 9-54

Note: On some operating systems, Oracle does not allocate space

for the tempfile until the tempfile blocks are actually accessed. This

delay in space allocation results in faster creation and resizing of

tempfiles, but it requires that sufficient disk space is available when

the tempfiles are later used. To avoid potential problems, before

you create or resize a tempfile, ensure that the available disk space

exceeds the size of the new tempfile or the increased size of a

resized tempfile. The excess space should allow for anticipated

increases in disk space use by unrelated operations as well. Then

proceed with the creation or resizing operation.

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-37

Restriction on Modifying Tempfiles You cannot specify TEMPFILE unless the

database is open.

DROP Specify DROP to drop tempfile from the database. The tablespace

remains.

If you specify INCLUDING DATAFILES, Oracle also deletes the associated operating

system files and writes a message to the alert log for each such deleted file.

autoextend_clause
Use the autoextend_clause to enable or disable the automatic extension of a

new datafile or tempfile.

RENAME FILE Clause
Use the RENAME FILE clause to rename datafiles, tempfiles, or redo log file

members. You must create each filename using the conventions for filenames on

your operating system before specifying this clause.

■ To use this clause for datafiles and tempfiles, the database must be mounted.

The database can also be open, but the datafile or tempfile being renamed must

be offline.

■ To use this clause for logfiles, the database must be mounted but not open.

This clause renames only files in the control file. It does not actually rename them

on your operating system. The operating system files continue to exist, but Oracle

no longer uses them. If the old files were Oracle managed, Oracle drops the old

operating system file after this statement executes, because the control file no longer

points to them as datafiles, tempfiles, or redo log files.

logfile_clauses
The logfile clauses let you add, drop, or modify log files.

ARCHIVELOG | NOARCHIVELOG
Use the ARCHIVELOG clause and NOARCHIVELOG clause only if your instance has

the database mounted but not open, with Real Application Clusters disabled.

See Also: file_specification on page 7-39 for information

about the autoextend_clause

See Also: "Renaming a Log File Member: Example" on page 9-53

ALTER DATABASE

9-38 Oracle9i SQL Reference

ARCHIVELOG Specify ARCHIVELOG if you want the contents of a redo log file

group to be archived before the group can be reused. This mode prepares for the

possibility of media recovery. Use this clause only after shutting down your

instance normally, or immediately with no errors, and then restarting it and

mounting the database with Real Application Clusters disabled.

NOARCHIVELOG Specify NOARCHIVELOG if you do not want the contents of a

redo log file group to be archived so that the group can be reused. This mode does

not prepare for recovery after media failure.

[NO] FORCE LOGGING
Use this clause to put the database into or take the database out of FORCE LOGGING
mode. The database must be mounted or open.

In FORCE LOGGING mode, Oracle will log all changes in the database except for

changes in temporary tablespaces and temporary segments. This setting takes

precedence over and is independent of any NOLOGGING or FORCE LOGGING
settings you specify for individual tablespaces and any NOLOGGING settings you

specify for individual database objects.

If you specify FORCE LOGGING, Oracle waits for all ongoing unlogged operations to

finish.

ADD [STANDBY] LOGFILE Clause
Use the ADD LOGFILE clause to add one or more redo log file groups to the

specified thread, making them available to the instance assigned the thread. If you

specify STANDBY, the redo log file created is for use by physical standby databases

only.

To learn whether a logfile has been designated for online or standby database use,

query the TYPE column of the V$LOGFILE dynamic performance view.

THREAD The THREAD clause is applicable only if you are using Oracle with the

Real Application Clusters option in parallel mode. integer is the thread number.

The number of threads you can create is limited by the value of the MAXINSTANCES
parameter specified in the CREATE DATABASE statement.

See Also: Oracle9i Database Administrator’s Guide for information

on when to use FORCE LOGGING mode

See Also: "Adding Redo Log File Groups: Examples" on

page 9-52

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-39

If you omit THREAD, the redo log file group is added to the thread assigned to your

instance.

GROUP The GROUP clause uniquely identifies the redo log file group among all

groups in all threads and can range from 1 to the MAXLOGFILES value. You cannot

add multiple redo log file groups having the same GROUP value. If you omit this

parameter, Oracle generates its value automatically. You can examine the GROUP
value for a redo log file group through the dynamic performance view V$LOG.

redo_log_file_spec Each redo_log_file_spec specifies a redo log file group

containing one or more members (that is, one or more copies).

DROP LOGFILE Clause
Use the DROP LOGFILE clause to drop all members of a redo log file group. Specify

a redo log file group as indicated for the ADD LOGFILE MEMBER clause.

■ To drop the current log file group, you must first issue an ALTER SYSTEM
SWITCH LOGFILE statement.

■ You cannot drop a redo log file group if it needs archiving.

■ You cannot drop a redo log file group if doing so would cause the redo thread

to contain less than two redo log file groups.

ADD [STANDBY] LOGFILE MEMBER Clause
Use the ADD LOGFILE MEMBER clause to add new members to existing redo log file

groups. Each new member is specified by ’filename’ . If the file already exists, it

must be the same size as the other group members, and you must specify REUSE. If
the file does not exist, Oracle creates a file of the correct size. You cannot add a

member to a group if all of the group’s members have been lost through media

failure.

You can specify STANDBY for symmetry, to indicate that the logfile member is for

use only by a physical standby database. However, this keyword is not required. If

See Also:

■ file_specification on page 7-39

■ Oracle9i Database Reference for information on dynamic

performance views

See Also: ALTER SYSTEM on page 10-20 and "Dropping Log File

Members: Example" on page 9-53

ALTER DATABASE

9-40 Oracle9i SQL Reference

group integer was added for standby database use, all of its members will be

used only for standby databases as well.

You can specify an existing redo log file group in one of two ways:

GROUP integer Specify the value of the GROUP parameter that identifies the redo

log file group.

filename (s) List all members of the redo log file group. You must fully specify each

filename according to the conventions of your operating system.

DROP LOGFILE MEMBER Clause
Use the DROP LOGFILE MEMBER clause to drop one or more redo log file members.

Each ’filename’ must fully specify a member using the conventions for

filenames on your operating system.

■ To drop a log file in the current log, you must first issue an ALTER SYSTEM
SWITCH LOGFILE statement.

■ You cannot use this clause to drop all members of a redo log file group that

contains valid data. To perform that operation, use the DROP LOGFILE clause.

ADD SUPPLEMENTAL LOG DATA Clause
Specify the ADD SUPPLEMENTAL LOG DATA clause to place additional column data

into the log stream any time an update operation is performed. These four

keywords alone enable minimal supplemental logging, which is not enabled by

default.

Minimal supplemental logging ensures that Logminer (and any products building

on Logminer technology) will have sufficient information to support chained rows

and various storage arrangements such as cluster tables.

If supplemental log data will be the source of change in another database, such as a

logical standby, the log data must also uniquely identify each row updated. In this

case, you should enable identification key ("full") supplemental logging by

specifying PRIMARY KEY COLUMNS and UNIQUE KEY COLUMNS.

See Also: "Adding Redo Log File Group Members: Example" on

page 9-53

See Also: ALTER SYSTEM on page 10-20

See Also: "Dropping Log File Members: Example" on page 9-53

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-41

PRIMARY KEY COLUMNS When you specify PRIMARY KEY COLUMNS, Oracle

ensures, for all tables with a primary key, that all columns of the primary key are

placed into the redo log whenever an update operation is performed. If no primary

key is defined, Oracle places into the redo log a set of columns that uniquely

identifies the row. This set may include all columns with a fixed-length maximum

size.

UNIQUE INDEX COLUMNS When you specify UNIQUE INDEX COLUMNS, Oracle

ensures, for all tables with a unique key, that if any unique key columns are

modified, all other columns belonging to the unique key are also placed into the

redo log.

DROP SUPPLEMENTAL LOG DATA Clause
Use the DROP SUPPLEMENTAL LOG DATA clause to instruct Oracle to stop placing

additional log information into the redo log stream whenever an update operation

occurs. This statement terminates the effect of a previous ADD SUPPLEMENTAL LOG
DATA statement.

CLEAR LOGFILE Clause
Use the CLEAR LOGFILEclause to reinitialize an online redo log, optionally without

archiving the redo log. CLEAR LOGFILE is similar to adding and dropping a redo

log, except that the statement may be issued even if there are only two logs for the

thread and also may be issued for the current redo log of a closed thread.

■ You must specify UNARCHIVED if you want to reuse a redo log that was not

archived.

Note: You can issue this statement when the database is open.

However, Oracle will invalidate all DML cursors in the cursor

cache, which will have an effect on performance until the cache is

repopulated.

See Also: Oracle Data Guard Concepts and Administration for

information on supplemental logging

See Also: Oracle Data Guard Concepts and Administration for

information on supplemental logging

ALTER DATABASE

9-42 Oracle9i SQL Reference

■ You must specify UNRECOVERABLE DATAFILE if you have taken the datafile

offline with the database in ARCHIVELOG mode (that is, you specified ALTER
DATABASE ... DATAFILE OFFLINE without the DROP keyword), and if the

unarchived log to be cleared is needed to recover the datafile before bringing it

back online. In this case, you must drop the datafile and the entire tablespace

once the CLEAR LOGFILE statement completes.

Do not use CLEAR LOGFILE to clear a log needed for media recovery. If it is

necessary to clear a log containing redo after the database checkpoint, you must

first perform incomplete media recovery. The current redo log of an open thread

can be cleared. The current log of a closed thread can be cleared by switching

logs in the closed thread.

If the CLEAR LOGFILE statement is interrupted by a system or instance failure,

then the database may hang. If this occurs, reissue the statement after the

database is restarted. If the failure occurred because of I/O errors accessing one

member of a log group, then that member can be dropped and other members

added.

controlfile_clauses
The controlfile_clauses let you create or back up a control file.

CREATE STANDBY CONTROLFILE Clause
The CREATE STANDBY CONTROLFILE clause applies only to physical standby

databases. Use this clause to create a control file to be used to maintain a physical

standby database. If the file already exists, you must specify REUSE.

BACKUP CONTROLFILE Clause
Use the BACKUP CONTROLFILE clause to back up the current control file. The

database must be open or mounted when you specify this clause.

Caution: Specifying UNARCHIVED makes backups unusable if the

redo log is needed for recovery.

See Also: "Clearing a Log File: Example" on page 9-54

See Also: Oracle Data Guard Concepts and Administration

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-43

TO ’filename ’ Specify the file to which the control file is backed up. You must fully

specify the filename using the conventions for your operating system. If the

specified file already exists, you must specify REUSE.

TO TRACE Specify TO TRACE if you want Oracle to write SQL statements to a

trace file rather than making a physical backup of the control file. You can use SQL

statements written to the trace file to start up the database, re-create the control file,

and recover and open the database appropriately, based on the created control file.

 You can copy the statements from the trace file into a script file, edit the statements

as necessary, and use the script if all copies of the control file are lost (or to change

the size of the control file).

■ Specify ASfilename if you want Oracle to place the script into a file called

filename rather than into the standard trace file.

■ Specify REUSE to allow Oracle to overwrite any existing file called filename .

■ RESETLOGS indicates that the SQL statement written to the trace file for

starting the database is ALTER DATABASE OPEN RESETLOGS. This setting is

valid only if the online logs are unavailable.

■ NORESETLOGS indicates that the SQL statement written to the trace file for

starting the database is ALTER DATABASE OPEN NORESETLOGS. This setting is

valid only if all the online logs are available.

If you cannot predict the future state of the online logs, specify neither RESETLOGS
nor NORESETLOGS. In this case, Oracle puts both versions of the script into the trace

file, and you can choose which version is appropriate when the script becomes

necessary.

standby_database_clauses
Use these clauses to activate the standby database or to specify whether it is in

protected or unprotected mode.

ACTIVATE STANDBY DATABASE Clause
The ACTIVATE STANDBY DATABASE clause changes the state of a standby database

to an active database and prepares it to become the primary database. The database

must be mounted before you can specify this clause.

See Also: Oracle Data Guard Concepts and Administration for

descriptions of physical and logical the standby database and for

information on maintaining and using standby databases

ALTER DATABASE

9-44 Oracle9i SQL Reference

PHYSICAL Specify PHYSICAL to activate a physical standby database. This is the

default.

LOGICAL Specify LOGICAL to activate a logical standby database. If you have

more than one logical standby database, you should first ensure that the same log

data is available on all the standby systems.

SKIP [STANDBY LOGFILE] This clause applies only to physical standby databases.

Use this clause to force the operation to proceed even if standby redo logfiles

contain data that could be recovered using the RECOVER MANAGED STANDBY
DATABASE FINISH command.

SET STANDBY [DATABASE] Clause
Use this clause to specify the level of protection for the data in your database

environment. You specify this clause from the primary database, which must be

mounted but not open.

TO MAXIMIZE PROTECTION This setting establishes "maximum protection mode"

and offers the highest level of data protection. A transaction does not commit until

all data needed to recover that transaction has been written to at least one physical

standby database that is configured to use the SYNC log transport mode. If the

primary database is unable to write the redo records to at least one such standby

database, the primary database is shut down. This mode guarantees zero data loss,

but it has the greatest potential impact on the performance and availability of the

primary database.

TO MAXIMIZE AVAILABILITY This setting establishes "maximum availability

mode" and offers the next highest level of data protection. A transaction does not

Note: Oracle Corporation recommends that you always use the

RECOVER MANAGED STANDBY DATABASE FINISH statement for

physical standby even if you do not use standby redo logfiles. Use

the SKIP clause only if it is acceptable to discard the contents of the

standby redo log.

Note: The PROTECTED and UNPROTECTED keywords have been

replaced for clarity but are still supported. PROTECTED is
equivalent to TO MAXIMIZE PROTECTION. UNPROTECTED is
equivalent to TO MAXIMIZE PERFORMANCE.

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-45

commit until all data needed to recover that transaction has been written to at least

one (physical or logical) standby database that is configured to use the SYNC log

transport mode. Unlike maximum protection mode, the primary database does not

shut down if it is unable to write the redo records to at least one such standby

database. Instead, the protection is lowered to maximum performance mode until

the fault has been corrected and the standby database has caught up with the

primary database. This mode guarantees zero data loss unless the primary database

fails while in maximum performance mode. Maximum availability mode provides

the highest level of data protection that is possible without affecting the availability

of the primary database.

TO MAXIMIZE PERFORMANCE This setting establishes "maximum performance

mode" and is the default setting. A transaction commits before the data needed to

recover that transaction has been written to a standby database. Therefore, some

transactions may be lost if the primary database fails and you are unable to recover

the redo records from the primary database. This mode provides the highest level of

data protection that is possible without affecting the performance of the primary

database.

To determine the current mode of the database, query the PROTECTION_MODE
column of the V$DATABASE dynamic performance view.

REGISTER LOGFILE Clause
Specify the REGISTER LOGFILE clause from the standby database to manually

register log files from the failed primary.

For a logical standby database, you can use this command to seed the initial starting

point for a new logical standby database. Then when you issue an ALTER
DATABASE START LOGICAL STANDBY APPLY INITIAL command, Oracle will use

the lowest registered logfile as its starting point.

OR REPLACE Specify OR REPLACE to allow an existing archivelog entry in the

standby database to be updated, for example, when its location or file specification

changes. The SCNs of the entries must match exactly, and the original entry must

have been created by the managed standby log transmittal mechanism.

COMMIT TO SWITCHOVER Clause
Use this clause to perform a "graceful switchover", in which the current primary

database take on standby status, and one standby database becomes the primary

See Also: Oracle Data Guard Concepts and Administration for full

information on using these standby database settings

ALTER DATABASE

9-46 Oracle9i SQL Reference

database. In a Real Application Clusters environment, all instances other than the

instance from which you issue this statement must be shutdown normally.

■ Specify PHYSICAL to prepare the primary database to run in the role of a

physical standby database.

■ Specify LOGICAL to prepare the primary database to run in the role of a logical

standby database. If you specify LOGICAL, you must then issue an ALTER
DATABASE START LOGICAL STANDBY APPLY statement.

■ On the primary database, specify COMMIT TO SWITCHOVER TO STANDBY to

perform a graceful database switchover of the primary database to standby

database status. The primary database must be open.

■ On one of the standby databases, issue a COMMIT TO SWITCHOVER TO PRIMARY
statement to perform a graceful switchover of this standby database to primary

status. The standby database must be mounted or open in READ ONLY mode.

WITH | WITHOUT SESSION SHUTDOWN If you specify WITH SESSION
SHUTDOWN, Oracle shuts down any open application sessions and rolls back

uncommitted transactions as part of the execution of this statement. If you omit this

clause or specify WITHOUT SESSION SHUTDOWN (which is the default), the

statement will fail if any application sessions are open.

Restriction on WITH SESSION SHUTDOWN This clause is not necessary or

supported for a logical database.

WAIT | NOWAIT Specify WAIT if you want Oracle to return control after the

completion of the SWITCHOVER command. Specify NOWAIT if you want Oracle to

return control before the switchover operation is complete. the default is WAIT.

START LOGICAL STANDBY APPLY Clause
Specify the START LOGICAL STANDBY APPLY clause to begin applying redo logs to

a logical standby database.

■ Specify INITIAL the first time you apply the logs to the standby database.

■ Specify NEW PRIMARY after the ALTER DATABASE COMMIT TO SWITCHOVER TO
LOGICAL STANDBY statement or when a standby database has completed

See Also: Oracle Data Guard Concepts and Administration for full

information on graceful switchover between primary and standby

databases

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-47

processing logs from one primary and now a new database becomes the

primary.

STOP | ABORT LOGICAL STANDBY Clause
Use this clause to stop the log apply services. This clause applies only to logical

standby databases, not to physical standby databases. Use the STOP clause to stop

the apply in an orderly fashion.

default_settings_clauses
Use these clauses to modify the default settings of the database.

CHARACTER SET, NATIONAL CHARACTER SET
CHARACTER SET changes the character set the database uses to store data.

NATIONAL CHARACTER SET changes the national character set used to store data in

columns specifically defined as NCHAR, NCLOB, or NVARCHAR2. Specify

character_set without quotation marks. The database must be open.

Notes on Changing Character Sets

In Oracle9i, CLOB data is stored as UCS-2 (two-byte fixed-width Unicode) for

multibyte database character sets. For single-byte database character sets, CLOB
data is stored in the database character set. When you change the database or

national character set with an ALTER DATABASE statement, no data conversion is

performed. Therefore, if you change the database character set from single byte to

multibyte using this statement, CLOB columns will remain in the original database

Cautions:

■ You cannot roll back an ALTER DATABASE CHARACTER SET or

ALTER DATABASE NATIONAL CHARACTER SET statement.

Therefore, you should perform a full backup before issuing

either of these statements.

■ Oracle Corporation recommends that you use the Character Set

Scanner (CSSCAN) to analyze your data before migrating your

existing database character set to a new database character set.

Doing so will help you avoid losing non-ASCII data that you

might not have been aware was in your database. Please see

Oracle9i Database Globalization Support Guide for more

information about CSSCAN.

ALTER DATABASE

9-48 Oracle9i SQL Reference

character set. This may introduce data inconsistency in your CLOB columns.

Likewise, if you change the national character set from one Unicode set to another,

your SQL NCHAR columns (NCHAR, NVARCHAR2, NCLOB) may be corrupted.

The recommended procedure for changing database character sets is:

1. Export the CLOB and SQL NCHAR datatype columns.

2. Drop the tables containing the CLOB and SQL NCHAR columns.

3. Use ALTER DATABASE statements to change the character set and national

character set.

4. Reimport the CLOB and SQL NCHAR columns.

Restrictions on Changing Character Sets

■ You must have SYSDBAsystem privilege, and you must start up the database in

restricted mode (for example, with the SQL*Plus STARTUP RESTRICT
command).

■ The current character set must be a strict subset of the character set to which

you change. That is, each character represented by a codepoint value in the

source character set must be represented by the same codepoint value in the

target character set.

set_time_zone_clause
Use the SET TIME_ZONEclause to set the time zone of the database. You can specify

the time zone in two ways:

■ By specifying a displacement from UTC (Coordinated Universal

Time—formerly Greenwich Mean Time). The valid range of hh:mm is -12:00 to

+14:00.

■ By specifying a time zone region. To see a listing of valid region names, query

the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

See Also: Oracle9i Database Globalization Support Guide for

information on database character set migration and "Changing a

Character Set: Example" on page 9-54

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-49

Oracle normalizes all new TIMESTAMP WITH LOCAL TIME ZONE data to the time

zone of the database when the data is stored on disk. Oracle does not automatically

update existing data in the database to the new time zone. To determine the time

zone of the database, query the built-in function DBTIMEZONE (see DBTIMEZONE

on page 6-51).

After setting or changing the time zone with this clause, you must restart the

database for the new time zone to take effect.

DEFAULT TEMPORARY TABLESPACE Clause
Specify this clause to change the default temporary tablespace of the database. After

this operation completes, Oracle automatically reassigns to the new default

temporary tablespace all users who had been assigned to the old default temporary

tablespace. You can then drop the old default temporary tablespace if you wish.

To learn the name of the current default temporary tablespace, query the

PROPERTY_VALUE column of the DATABASE_PROPERTIES data dictionary table

where the PROPERTY_NAME = ’DEFAULT_TEMP_TABLESPACE’.

Restrictions on Default Temporary Tablespaces

■ The tablespace you assign or reassign as the default temporary tablespace must

have a standard block size.

■ If the SYSTEM tablespace is locally managed, the tablespace you specify as the

default temporary tablespace must also be locally managed.

Note: Oracle Corporation recommends that you set the database

time zone to UTC ("0:00"). Doing so can improve performance,

especially across databases, as no conversion of time zones will be

required.

See Also: Oracle9i Database Reference for information on the

dynamic performance views

See Also: "Defining a Default Temporary Tablespace: Example"

on page 9-53

ALTER DATABASE

9-50 Oracle9i SQL Reference

conversion_clauses

RESET COMPATIBILITY Clause
Specify RESET COMPATIBILITY to mark the database to be reset to an earlier

version of Oracle when the database is next restarted. The database must be open.

CONVERT Clause
Use the CONVERT clause to complete the conversion of the Oracle7 data dictionary.

After you use this clause, the Oracle7 data dictionary no longer exists in the Oracle

database.

redo_thread_clauses
Use these clauses to enable and disable the thread of redo log file groups.

ENABLE THREAD Clause
In an Oracle Real Application Clusters environment, specify ENABLE THREAD to
enable the specified thread of redo log file groups. The thread must have at least

two redo log file groups before you can enable it. The database must be open.

PUBLIC Specify PUBLIC to make the enabled thread available to any instance that

does not explicitly request a specific thread with the initialization parameter

THREAD. If you omit PUBLIC, the thread is available only to the instance that

explicitly requests it with the initialization parameter THREAD.

Note: RESET COMPATIBILITY works only if you have

successfully disabled Oracle features that affect backward

compatibility.

See Also: Oracle9i Database Migration Guide for more information

on downgrading to an earlier version of Oracle

Note: Use this clause only when you are migrating to Oracle9i,
and do not use this clause when the database is mounted.

See Also: Oracle9i Database Migration Guide

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-51

DISABLE THREAD Clause
Specify DISABLE THREAD to disable the specified thread, making it unavailable to

all instances. The database must be open, but you cannot disable a thread if an

instance using it has the database mounted.

RENAME GLOBAL_NAME Clause
Specify RENAME GLOBAL_NAME to change the global name of the database. The

database is the new database name and can be as long as eight bytes. The optional

domain specifies where the database is effectively located in the network hierarchy.

Do not use this clause when the database is mounted.

security_clause
Use the security_clause (GUARD) to protect data in the database from being

changed.

ALL Specify ALL to prevent all users other than SYS from making changes to any

data in the database.

STANDBY Specify STANDBY to prevent all users other than SYS from making

changes to any database object being maintained by logical standby. This setting is

See Also: Oracle9i Real Application Clusters Administration for more

information on enabling and disabling threads

See Also: Oracle9i Real Application Clusters Administration for more

information on enabling and disabling threads and "Disabling and

Enabling a Real Application Clusters Thread: Examples" on

page 9-53

Note: Renaming your database does not change global references

to your database from existing database links, synonyms, and

stored procedures and functions on remote databases. Changing

such references is the responsibility of the administrator of the

remote databases.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information on global names and "Changing the Global

Database Name: Example" on page 9-54

ALTER DATABASE

9-52 Oracle9i SQL Reference

useful if you want report operations to be able to modify data as long as it is not

being replicated by logical standby.

NONE Specify NONE if you want normal security for all data in the database.

Examples

READ ONLY / READ WRITE: Example The first statement that follows opens the

database in read-only mode. The second statement returns the database to

read/write mode and clears the online redo logs:

ALTER DATABASE OPEN READ ONLY;

ALTER DATABASE OPEN READ WRITE RESETLOGS;

Using Parallel Recovery Processes: Example The following statement performs

tablespace recovery using parallel recovery processes:

ALTER DATABASE
 RECOVER TABLESPACE tbs_03
 PARALLEL;

Adding Redo Log File Groups: Examples The following statement adds a redo

log file group with two members and identifies it with a GROUP parameter value of

3:

ALTER DATABASE
 ADD LOGFILE GROUP 3
 (’diska:log3.log’ ,
 ’diskb:log3.log’) SIZE 50K;

The following statement adds a redo log file group containing two members to

thread 5 (in a Real Application Clusters environment) and assigns it a GROUP
parameter value of 4:

ALTER DATABASE
 ADD LOGFILE THREAD 5 GROUP 4
 (’diska:log4.log’,
 ’diskb:log4:log’);

See Also: Oracle Data Guard Concepts and Administration for

information on logical standby

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-53

Dropping Log File Members: Example The following statement drops one redo

log file member added in the previous example:

ALTER DATABASE
 DROP LOGFILE MEMBER ’diskb:log3.log’;

The following statement drops all members of the redo log file group 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

Adding Redo Log File Group Members: Example The following statement adds a

member to the redo log file group added in the previous example:

ALTER DATABASE
 ADD LOGFILE MEMBER ’diskc:log3.log’
 TO GROUP 3;

Renaming a Log File Member: Example The following statement renames a redo

log file member:

ALTER DATABASE
 RENAME FILE ’diskc:log3.log’ TO ’diskb:log3.log’;

The preceding statement only changes the member of the redo log group from one

file to another. The statement does not actually change the name of the file

’diskc:log3.log’ to ’diskb:log3.log’ . You must perform this operation

through your operating system.

Defining a Default Temporary Tablespace: Example The following statement

makes the tbs_5 tablespace the default temporary tablespace of the database. This

statement either establishes a default temporary tablespace if none was specified at

create time, or replaces an existing default temporary tablespace with temp :

ALTER DATABASE
 DEFAULT TEMPORARY TABLESPACE tbs_5;

Disabling and Enabling a Real Application Clusters Thread: Examples The

following statement disables thread 5 in a Real Application Clusters environment:

ALTER DATABASE
 DISABLE THREAD 5;

The following statement enables thread 5 in a Real Application Clusters

environment, making it available to any Oracle instance that does not explicitly

request a specific thread:

ALTER DATABASE

9-54 Oracle9i SQL Reference

ALTER DATABASE
 ENABLE PUBLIC THREAD 5;

Creating a New Datafile: Example The following statement creates a new datafile

’tabspace_file04.dbf ’ based on the file ’tabspace_file03.dbf ’. Before

creating the new datafile, you must take the existing datafile (or the tablespace in

which it resides) offline.

ALTER DATABASE
 CREATE DATAFILE ’tbs_f03.dbf’
 AS ’tbs_f04.dbf’;

Changing the Global Database Name: Example The following statement changes

the global name of the database and includes both the database name and domain:

ALTER DATABASE
 RENAME GLOBAL_NAME TO demo.world.oracle.com;

Changing a Character Set: Example The following statements change the

database character set and national character set to the UTF8 character set:

ALTER DATABASE CHARACTER SET UTF8;
ALTER DATABASE NATIONAL CHARACTER SET UTF8;

The database name is optional, and the character set name is specified without

quotation marks.

Resizing a Datafile: Example The following statement attempts to change the size

of datafile ’disk1:db1.dat’ :

ALTER DATABASE
 DATAFILE ’disk1:db1.dat’ RESIZE 10 M;

Clearing a Log File: Example The following statement clears a log file:

ALTER DATABASE
 CLEAR LOGFILE ’diskc:log3.log’;

Database Recovery: Examples The following statement performs complete

recovery of the entire database, letting Oracle generate the name of the next

archived redo log file needed:

ALTER DATABASE
 RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle to apply:

ALTER DATABASE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-55

ALTER DATABASE
 RECOVER LOGFILE ’diskc:log3.log’;

The following statement recovers the standby datafile /finance/stbs_21.f ,

using the corresponding datafile in the original standby database, plus all relevant

archived logs and the current standby database control file:

ALTER DATABASE
 RECOVER STANDBY DATAFILE ’/finance/stbs_21.f’
 UNTIL CONTROLFILE;

The following statement performs time-based recovery of the database:

ALTER DATABASE
 RECOVER AUTOMATIC UNTIL TIME ’2001-10-27:14:00:00’;

Oracle recovers the database until 2:00 p.m. on October 27, 2001.

For an example of recovering a tablespace, see "Using Parallel Recovery Processes:

Example" on page 9-52.

Recovering a Managed Standby Database: Examples The following statement

recovers the standby database in managed standby recovery mode:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE;

The following statement puts the database in managed standby recovery mode. The

managed recovery process will wait up to 60 minutes for the next archive log:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE TIMEOUT 60;

 If each subsequent log arrives within 60 minutes of the last log, recovery continues

indefinitely or until manually terminated.

The following statement terminates the managed recovery operation:

ALTER DATABASE
 RECOVER MANAGED STANDBY DATABASE CANCEL IMMEDIATE;

The managed recovery operation terminates before the next group of redo is read

from the current redo log file. Media recovery ends in the "middle" of applying redo

from the current redo log file.

ALTER DIMENSION

9-56 Oracle9i SQL Reference

ALTER DIMENSION

Purpose
Use the ALTER DIMENSION statement to change the hierarchical relationships or

dimension attributes of a dimension.

Prerequisites
The dimension must be in your schema or you must have the ALTER ANY
DIMENSION system privilege to use this statement.

A dimension is always altered under the rights of the owner.

Syntax
alter_dimension::=

See Also: CREATE DIMENSION on page 13-43 for more

information on dimensions

ALTER DIMENSION
schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE level

COMPILE

;

ALTER DIMENSION

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-57

level_clause::=

hierarchy_clause::=

join_clause::=

attribute_clause::=

Semantics
The following keywords, parameters, and clauses have meaning unique to ALTER
DIMENSION. Keywords, parameters, and clauses that do not appear here have the

same functionality that they have in the CREATE DIMENSION statement.

schema
Specify the schema of the dimension you want to modify. If you do not specify

schema , Oracle assumes the dimension is in your own schema.

See Also: CREATE DIMENSION on page 13-43

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

ALTER DIMENSION

9-58 Oracle9i SQL Reference

dimension
Specify the name of the dimension. This dimension must already exist.

ADD
The ADD clauses let you add a level, hierarchy, or attribute to the dimension.

Adding one of these elements does not invalidate any existing materialized view.

Oracle processes ADD LEVEL clauses prior to any other ADD clauses.

DROP
The DROP clauses let you drop a level, hierarchy, or attribute from the dimension.

Any level, hierarchy, or attribute you specify must already exist.

Restriction on DROP If any attributes or hierarchies reference a level, you cannot

drop the level until you either drop all the referencing attributes and hierarchies or

specify CASCADE.

CASCADE Specify CASCADE if you want Oracle to drop any attributes or

hierarchies that reference the level, along with the level itself.

RESTRICT Specify RESTRICTif you want to prevent Oracle from dropping a level

that is referenced by any attributes or hierarchies. This is the default.

COMPILE
Specify COMPILE to explicitly recompile an invalidated dimension. Oracle

automatically compiles a dimension when you issue an ADD clause or DROP clause.

However, if you alter an object referenced by the dimension (for example, if you

drop and then re-create a table referenced in the dimension), the dimension will be

invalidated, and you must recompile it explicitly.

Example

Modifying a Dimension: Examples The following examples modify the

customers_dim dimension in the sample schema sh :

ALTER DIMENSION customers_dim
 DROP ATTRIBUTE country;

ALTER DIMENSION customers_dim
 ADD LEVEL zone IS customers.cust_postal_code
 ADD ATTRIBUTE zone DETERMINES (cust_city);

ALTER FUNCTION

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-59

ALTER FUNCTION

Purpose
Use the ALTER FUNCTION statement to recompile an invalid standalone stored

function. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

The ALTER FUNCTION statement is similar to ALTER PROCEDURE on page 9-124.

For information on how Oracle recompiles functions and procedures, see Oracle9i
Database Concepts.

Prerequisites
The function must be in your own schema or you must have ALTER ANY
PROCEDURE system privilege.

Syntax
alter_function::=

Semantics

schema
Specify the schema containing the function. If you omit schema , Oracle assumes

the function is in your own schema.

function
Specify the name of the function to be recompiled.

Note: This statement does not change the declaration or definition

of an existing function. To redeclare or redefine a function, use the

CREATE FUNCTION statement with the OR REPLACE clause; see

CREATE FUNCTION on page 13-52.

ALTER FUNCTION
schema .

function C0MPILE
DEBUG REUSE SETTINGS

;

ALTER FUNCTION

9-60 Oracle9i SQL Reference

COMPILE
Specify COMPILE to cause Oracle to recompile the function. The COMPILE keyword

is required. If Oracle does not compile the function successfully, you can see the

associated compiler error messages with the SQL*Plus command SHOW ERRORS.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves

them again from the session, and stores them at the end of compilation. To avoid

this process, specify the REUSE SETTINGS clause.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

REUSE SETTINGS
Specify REUSE SETTINGS to prevent Oracle from dropping and reacquiring

compiler switch settings. With this clause, Oracle preserves the existing settings and

uses them for the recompilation.

If you specify both DEBUGand REUSE SETTINGS, Oracle sets the persistently stored

value of the PLSQL_COMPILER_FLAGS parameter to INTERPRETED, DEBUG. No

other compiler switch values are changed.

Example

Recompiling a Function: Example To explicitly recompile the function get_bal
owned by the sample user oe , issue the following statement:

ALTER FUNCTION oe.get_bal
 COMPILE;

If Oracle encounters no compilation errors while recompiling get_bal , get_bal
becomes valid. Oracle can subsequently execute it without recompiling it at run

time. If recompiling get_bal results in compilation errors, Oracle returns an error,

and get_bal remains invalid.

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on

the interaction of the PLSQL_COMPILER_FLAGS parameter with

the COMPILE clause

ALTER FUNCTION

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-61

Oracle also invalidates all objects that depend upon get_bal . If you subsequently

reference one of these objects without explicitly recompiling it first, Oracle

recompiles it implicitly at run time.

ALTER INDEX

9-62 Oracle9i SQL Reference

ALTER INDEX

Purpose
Use the ALTER INDEX statement to change or rebuild an existing index.

Prerequisites
The index must be in your own schema or you must have ALTER ANY INDEX
system privilege.

To execute the MONITORING USAGE clause, the index must be in your own schema.

To modify a domain index, you must have EXECUTE object privilege on the

indextype of the index.

Schema object privileges are granted on the parent index, not on individual index

partitions or subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to

modify or rebuild an index subpartition.

See Also: CREATE INDEX on page 13-65 for information on

creating an index

See Also: CREATE INDEX on page 13-65 and Oracle9i Data
Cartridge Developer’s Guide for information on domain indexes

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-63

Syntax
alter_index::=

(deallocate_unused_clause::= on page 9-64, allocate_extent_
clause::= on page 9-64, parallel_clause::= on page 9-64, physical_
attributes_clause::= on page 9-64, logging_clause::= on page 7-46,

rebuild_clause::= on page 9-65, alter_index_partitioning::= on

page 9-66)

ALTER INDEX
schema .

index

deallocate_unused_clause

allocate_extent_clause

parallel_clause

physical_attributes_clause

logging_clause

rebuild_clause

PARAMETERS (’ ODCI_parameters ’)

ENABLE

DISABLE

UNUSABLE

RENAME TO new_name

COALESCE

MONITORING

NOMONITORING
USAGE

UPDATE BLOCK REFERENCES

alter_index_partitioning

;

ALTER INDEX

9-64 Oracle9i SQL Reference

deallocate_unused_clause ::=

allocate_extent_clause ::=

parallel_clause ::=

physical_attributes_clause ::=

(storage_clause::= on page 7-58)

DEALLOCATE UNUSED
KEEP integer

K

M

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-65

logging_clause::=

rebuild_clause ::=

(physical_attributes_clause::= on page 9-64, key_compression::= on

page 9-65, logging_clause::= on page 7-46)

key_compression::=

LOGGING

NOLOGGING

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

PARAMETERS (’ ODCI_parameters ’)

ONLINE

COMPUTE STATISTICS

physical_attributes_clause

key_compression

logging_clause

COMPRESS
integer

NOCOMPRESS

ALTER INDEX

9-66 Oracle9i SQL Reference

alter_index_partitioning ::=

(modify_index_default_attrs::= on page 9-66, modify_index_
partition::= on page 9-67, rename_index_partition::= on page 9-67,

drop_index_partition::= on page 9-67, split_index_partition::= on

page 9-67, modify_index_subpartition::= on page 9-68)

modify_index_default_attrs ::=

(physical_attributes_clause::= on page 9-64, logging_clause::= on

page 7-46)

modify_index_default_attrs

modify_index_partition

rename_index_partition

drop_index_partition

split_index_partition

modify_index_subpartition

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

logging_clause

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-67

modify_index_partition ::=

(physical_attributes_clause::= on page 9-64, logging_clause::= on

page 7-46, allocate_extent_clause::= on page 9-64, deallocate_unused_
clause::= on page 9-64)

rename_index_partition ::=

drop_index_partition ::=

split_index_partition ::=

(parallel_clause::= on page 9-64)

MODIFY PARTITION partition

physical_attributes_clause

logging_clause

deallocate_unused_clause

allocate_extent_clause

PARAMETERS (’ alter_partition_params ’)

COALESCE

UPDATE BLOCK REFERENCES

UNUSABLE

RENAME
PARTITION partition

SUBPARTITION subpartition
TO new_name

DROP PARTITION partition_name

SPLIT PARTITION partition_name_old AT (value

,

)

INTO (index_partition_description , index_partition_description) parallel_clause

ALTER INDEX

9-68 Oracle9i SQL Reference

index_partition_description::=

(key_compression::= on page 9-65)

segment_attributes_clause::=

(physical_attributes_clause::= on page 9-64, logging_clause::= on

page 7-46)

modify_index_subpartition ::=

(allocate_extent_clause::= on page 9-64, deallocate_unused_
clause::= on page 9-64)

Semantics

schema
Specify the schema containing the index. If you omit schema , Oracle assumes the

index is in your own schema.

index
Specify the name of the index to be altered.

PARTITION
partition

segment_attributes_clause

key_compression

physical_attributes_clause

TABLESPACE tablespace

logging_clause

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-69

Restrictions on Modifying Indexes

■ If index is a domain index, you can specify only the PARAMETERS clause, the

RENAME clause, the rebuild_clause (with or without the PARAMETERS
clause), the parallel_clause , or the UNUSABLE clause. No other clauses are

valid.

■ You cannot alter or rename a domain index that is marked LOADING or

FAILED . If an index is marked FAILED , the only clause you can specify is

REBUILD.

deallocate_unused_clause
Use the deallocate_unused_clause to explicitly deallocate unused space at the

end of the index and make the freed space available for other segments in the

tablespace.

If index is range-partitioned or hash-partitioned, Oracle deallocates unused space

from each index partition. If index is a local index on a composite-partitioned

table, Oracle deallocates unused space from each index subpartition.

Restrictions on Deallocating Space

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify this clause and also specify the rebuild_clause .

KEEP integer The KEEP clause lets you specify the number of bytes above the

high water mark that the index will have after deallocation. If the number of

remaining extents are less than MINEXTENTS, then MINEXTENTS is set to the

current number of extents. If the initial extent becomes smaller than INITIAL , then

INITIAL is set to the value of the current initial extent. If you omit KEEP, all unused

space is freed.

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on the LOADING and FAILED states of domain indexes

See Also: deallocate_unused_clause on page 7-37 for a full

description of this clause

See Also: ALTER TABLE on page 11-2 for a complete description

of this clause

ALTER INDEX

9-70 Oracle9i SQL Reference

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocate a new extent for the

index. For a local index on a hash-partitioned table, Oracle allocates a new extent

for each partition of the index.

Restriction on Allocating Extents You cannot specify this clause for an index on a

temporary table or for a range-partitioned or composite-partitioned index.

parallel_clause
Use the PARALLEL clause to change the default degree of parallelism for queries

and DML on the index.

Restriction on Parallelizing Indexes You cannot specify this clause for an index on

a temporary table.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54 and "Enabling Parallel Queries: Example" on page 9-83

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-71

physical_attributes_clause
Use the physical_attributes_clause to change the values of parameters for a

nonpartitioned index, all partitions and subpartitions of a partitioned index, a

specified partition, or all subpartitions of a specified partition.

Restrictions on Index Physical Attributes

■ You cannot specify this clause for an index on a temporary table.

■ You cannot specify the PCTUSED parameter at all when altering an index.

■ You can specify the PCTFREE parameter only as part of the rebuild_clause ,

the modify_index_default_attrs clause, or the split_partition_
clause .

storage_clause
Use the storage_clause to change the storage parameters for a nonpartitioned

index, index partition, or all partitions of a partitioned index, or default values of

these parameters for a partitioned index.

logging_clause
Use the logging_clause to specify whether subsequent Direct Loader

(SQL*Loader) and direct-path INSERT operations against a nonpartitioned index, a

range or hash index partition, or all partitions or subpartitions of a composite-

partitioned index will be logged (LOGGING) or not logged (NOLOGGING) in the redo

log file.

An index segment can have logging attributes different from those of the base table

and different from those of other index segments for the same base table.

Restriction on Index Logging You cannot specify this clause for an index on a

temporary table.

See Also:

■ the physical attributes parameters in CREATE TABLE on

page 15-7

■ "Modifying Real Attributes: Example" on page 9-82 and

"Changing MAXEXTENTS: Example" on page 9-83

See Also: storage_clause on page 7-56

ALTER INDEX

9-72 Oracle9i SQL Reference

RECOVERABLE | UNRECOVERABLE
These keywords are deprecated and have been replaced with LOGGING and

NOLOGGING, respectively. Although RECOVERABLE and UNRECOVERABLE are

supported for backward compatibility, Oracle Corporation strongly recommends

that you use the LOGGING and NOLOGGING keywords.

RECOVERABLEis not a valid keyword for creating partitioned tables or LOB storage

characteristics. UNRECOVERABLE is not a valid keyword for creating partitioned or

index-organized tables. Also, it can be specified only with the ASsubquery clause of

CREATE INDEX.

rebuild_clause
Use the rebuild_clause to re-create an existing index or one of its partitions or

subpartitions. If index is marked UNUSABLE, a successful rebuild will mark it

USABLE. For a function-based index, this clause also enables the index. If the

function on which the index is based does not exist, the rebuild statement will fail.

Restrictions on Rebuilding Indexes

■ You cannot rebuild an index on a temporary table.

■ You cannot rebuild a bitmap index that is marked INVALID . Instead, you must

drop and then re-create it.

■ You cannot rebuild an entire partitioned index. You must rebuild each partition

or subpartition, as described for the PARTITION clause.

■ You cannot also specify the deallocate_unused_clause in this statement.

■ You cannot change the value of the PCTFREE parameter for the index as a

whole (ALTER INDEX) or for a partition (ALTER INDEX... MODIFY PARTITION).

You can specify PCTFREE in all other forms of the ALTER INDEX statement.

See Also:

■ logging_clause on page 7-45 for a full description of this

clause

■ Oracle9i Database Concepts and the Oracle9i Data Warehousing
Guide for more information about LOGGING and parallel DML

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-73

■ For a domain index:

■ You can specify only the PARAMETERS clause (either for the index or for a

partition of the index) or the parallel_clause . No other rebuild clauses

are valid.

■ You can rebuild the index only if index is not marked IN_PROGRESS.

■ You can rebuild the index partitions only if index is not marked IN_
PROGRESS or FAILED and partition is not marked IN_PROGRESS.

■ You cannot rebuild a local index, but you can rebuild a partition of a local index

(ALTER INDEX ... REBUILD PARTITION).

■ For a local index on a hash partition or subpartition, the only parameter you

can specify is TABLESPACE.

PARTITION Clause
Use the PARTITION clause to rebuild one partition of an index. You can also use

this clause to move an index partition to another tablespace or to change a create-

time physical attribute.

Restriction on Rebuilding Partitions You cannot specify this clause for a local

index on a composite-partitioned table. Instead, use the REBUILD SUBPARTITION
clause.

SUBPARTITION Clause
Use the SUBPARTITIONclause to rebuild one subpartition of an index. You can also

use this clause to move an index subpartition to another tablespace. If you do not

specify TABLESPACE, the subpartition is rebuilt in the same tablespace.

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

See Also: Oracle9i Database Administrator’s Guide for more

information about partition maintenance operations and

"Rebuilding Unusable Index Partitions: Example" on page 9-83

ALTER INDEX

9-74 Oracle9i SQL Reference

Restrictions on Modifying Index Subpartitions

■ The only parameters you can specify for a subpartition are TABLESPACE and

the parallel_clause .

■ You cannot rebuild the subpartition of a list partition.

REVERSE | NOREVERSE
Indicate whether the bytes of the index block are stored in reverse order:

■ REVERSE stores the bytes of the index block in reverse order and excludes the

rowid when the index is rebuilt.

■ NOREVERSE stores the bytes of the index block without reversing the order

when the index is rebuilt. Rebuilding a REVERSEindex without the NOREVERSE
keyword produces a rebuilt, reverse-keyed index.

Restrictions on Reverse Indexes

■ You cannot reverse a bitmap index or an index-organized table.

■ You cannot specify REVERSE or NOREVERSE for a partition or subpartition.

parallel_clause
Use the parallel_clause to parallelize the rebuilding of the index.

TABLESPACE Clause
Specify the tablespace where the rebuilt index, index partition, or index subpartition

will be stored. The default is the default tablespace where the index or partition

resided before you rebuilt it.

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

See Also: "Storing Index Blocks in Reverse Order: Example" on

page 9-82

See Also: "Rebuilding an Index in Parallel: Example" on

page 9-82

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-75

COMPRESS | NOCOMPRESS
Specify COMPRESS to enable key compression, which eliminates repeated

occurrence of key column values. Use integer to specify the prefix length

(number of prefix columns to compress).

■ For unique indexes, the range of valid prefix length values is from 1 to the

number of key columns minus 1. The default prefix length is the number of key

columns minus 1.

■ For nonunique indexes, the range of valid prefix length values is from 1 to the

number of key columns. The default prefix length is number of key columns.

Oracle compresses only nonpartitioned indexes that are nonunique or unique

indexes of at least two columns.

Specify NOCOMPRESS to disable key compression. This is the default.

Restriction on Key Compression You cannot specify COMPRESS for a bitmap

index.

ONLINE Clause
Specify ONLINE to allow DML operations on the table or partition during

rebuilding of the index.

Restrictions on ONLINE

■ Parallel DML is not supported during online index building. If you specify

ONLINE and then issue parallel DML statements, Oracle returns an error.

■ You cannot specify ONLINE for a bitmap index or a cluster index.

■ For a unique index on an index-organized table, the number of index key

columns plus the number of primary key columns in the index-organized table

cannot exceed 32.

COMPUTE STATISTICS Clause
Specify COMPUTE STATISTICSif you want to collect statistics at relatively little cost

during the rebuilding of an index. These statistics are stored in the data dictionary

for ongoing use by the optimizer in choosing a plan of execution for SQL

statements.

The types of statistics collected depend on the type of index you are rebuilding.

ALTER INDEX

9-76 Oracle9i SQL Reference

Additional methods of collecting statistics are available in PL/SQL packages and

procedures

logging_clause
Specify whether the ALTER INDEX ... REBUILD operation will be logged.

PARAMETERS Clause
The PARAMETERS clause applies only to domain indexes. This clause specifies the

parameter string that is passed uninterpreted to the appropriate ODCI indextype

routine. The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, the string must refer to index-level

parameters. If you are rebuilding a partition of the index, the string must refer to

partition-level parameters.

If index is marked UNUSABLE, modifying the parameters alone does not make it

USABLE. You must also rebuild the UNUSABLE index to make it usable.

Restrictions on the PARAMETERS Clause

■ You can specify this clause only for a domain index.

Note: If you create an index using another index (instead of a

table), the original index might not provide adequate statistical

information. Therefore, Oracle generally uses the base table to

compute the statistics, which will improve the statistics but may

negatively affect performance.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
and "Collecting Index Statistics: Example" on page 9-82

See Also: logging_clause on page 7-45 for a full description of

this clause

Note: If you have installed Oracle Text, you can rebuild your

Oracle Text domain indexes using parameters specific to that

product. For more information on those parameters, please refer to

Oracle Text Reference.

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-77

■ You can modify index partitions only if index is not marked IN_PROGRESS or

FAILED , no index partitions are marked IN_PROGRESS, and the partition being

modified is not marked FAILED .

ENABLE Clause
ENABLE applies only to a function-based index that has been disabled because a

user-defined function used by the index was dropped or replaced. This clause

enables such an index if these conditions are true:

■ The function is currently valid

■ The signature of the current function matches the signature of the function

when the index was created

■ The function is currently marked as DETERMINISTIC

Restriction on Enabling Function-based Indexes You cannot specify any other

clauses of ALTER INDEX in the same statement with ENABLE.

DISABLE Clause
DISABLE applies only to a function-based index. This clause enables you to disable

the use of a function-based index. You might want to do so, for example, while

working on the body of the function. Afterward you can either rebuild the index or

specify another ALTER INDEX statement with the ENABLE keyword.

UNUSABLE Clause
Specify UNUSABLE to mark the index or index partition(s) or index subpartition(s)

UNUSABLE. An unusable index must be rebuilt, or dropped and re-created, before it

can be used. While one partition is marked UNUSABLE, the other partitions of the

index are still valid. You can execute statements that require the index if the

statements do not access the unusable partition. You can also split or rename the

unusable partition before rebuilding it.

Restriction on Marking Indexes Unusable You cannot specify this clause for an

index on a temporary table.

See Also:

■ Oracle9i Data Cartridge Developer’s Guide for more information

on indextype routines.

■ CREATE INDEX on page 13-65 for more information on

domain indexes

ALTER INDEX

9-78 Oracle9i SQL Reference

RENAME Clause
Use this clause to rename an index. The new_index_name is a single identifier and

does not include the schema name.

Restriction on Renaming Indexes For a domain index, neither index nor any

partitions of index can be marked IN_PROGRESS or FAILED .

COALESCE Clause
Specify COALESCE to instruct Oracle to merge the contents of index blocks where

possible to free blocks for reuse.

Restrictions on Coalescing Index Blocks

■ You cannot specify this clause for an index on a temporary table.

■ Do not specify this clause for the primary key index of an index-organized

table. Instead use the COALESCE clause of ALTER TABLE.

MONITORING USAGE | NOMONITORING USAGE
Use this clause to determine whether Oracle should monitor index use.

■ Specify MONITORING USAGE to begin monitoring the index. Oracle first clears

existing information on index usage, and then monitors the index for use until a

subsequent ALTER INDEX ... NOMONITORING USAGE statement is executed.

■ To terminate monitoring of the index, specify NOMONITORING USAGE.

To see whether the index has been used since this ALTER INDEX ... NOMONITORING
USAGE statement was issued, query the USED column of the V$OBJECT_USAGE
dynamic performance view.

See Also: "Renaming an Index: Example" on page 9-83

See Also:

■ Oracle9i Database Administrator’s Guide for more information on

space management and coalescing indexes

■ COALESCE on page 11-109 for information on coalescing space

of an index-organized table

See Also: Oracle9i Database Reference for information on the data

dictionary and dynamic performance views

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-79

UPDATE BLOCK REFERENCES Clause
The UPDATE BLOCK REFERENCES clause is valid only for normal and domain

indexes on index-organized tables. Specify this clause to update all the stale "guess"

data block addresses stored as part of the index row with the correct database

address for the corresponding block identified by the primary key.

Restriction on UPDATE BLOCK REFERENCES You cannot combine this clause

with any other clause of ALTER INDEX.

alter_index_partitioning
The partitioning clauses of the ALTER INDEX statement are valid only for

partitioned indexes.

Restrictions on Altering Index Partitions

■ You cannot specify any of these clauses for an index on a temporary table.

■ You can combine several operations on the base index into one ALTER INDEX
statement (except RENAME and REBUILD), but you cannot combine partition

operations with other partition operations or with operations on the base index.

modify_index_default_attrs
Specify new values for the default attributes of a partitioned index.

Restriction on Modifying Partition Default Attributes The only attribute you can

specify for an index on a hash-partitioned or composite-partitioned table is

TABLESPACE.

Note: For a domain index, Oracle executes the ODCIIndexAlter
routine with the alter_option parameter set to

AlterIndexUpdBlockRefs . This routine enables the cartridge

code to update the stale "guess" data block addresses in the index.

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

ALTER INDEX

9-80 Oracle9i SQL Reference

TABLESPACE Specify the default tablespace for new partitions of an index or

subpartitions of an index partition.

logging_clause Specify the default logging attribute of a partitioned index or an

index partition.

FOR PARTITION Use the FOR PARTITION clause to specify the default attributes

for the subpartitions of a partition of a local index on a composite-partitioned table.

Restriction on FOR PARTITION You cannot specify FOR PARTITION for a list

partition.

modify_index_partition
Use the modify_index_partition clause to modify the real physical attributes,

logging attribute, or storage characteristics of index partition partition or its

subpartitions.

UPDATE BLOCK REFERENCES The UPDATE BLOCK REFERENCES clause is valid

only for normal indexes on index-organized tables. Use this clause to update all

stale "guess" data block addresses stored in the secondary index partition.

Restrictions on UPDATE BLOCK REFERENCES

■ You cannot specify the physical_attributes_clause for an index on a

hash-partitioned table.

■ You cannot specify UPDATE BLOCK REFERENCES with any other clause in

ALTER INDEX.

See Also: logging_clause on page 7-45 for a full description of

this clause

See Also: "Modifying Default Attributes: Example" on page 9-84

Note: If the index is a local index on a composite-partitioned

table, the changes you specify here will override any attributes

specified earlier for the subpartitions of index, as well as establish

default values of attributes for future subpartitions of that partition.

To change the default attributes of the partition without overriding

the attributes of subpartitions, use ALTER TABLE ... MODIFY
DEFAULT ATTRIBUTES OF PARTITION.

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-81

rename_index_partition
Use the rename_index_partition clauses to rename index partition or

subpartition to new_name.

Restrictions on Renaming Index Partitions

■ You cannot rename the subpartition of a list partition.

■ For a partition of a domain index, index must not be marked IN_PROGRESSor

FAILED , none of the partitions can be marked IN_PROGRESS, and the partition

you are renaming must not be marked FAILED .

a

drop_index_partition
Use the drop_index_partition clause to remove a partition and the data in it

from a partitioned global index. When you drop a partition of a global index, Oracle

marks the index’s next partition UNUSABLE. You cannot drop the highest partition

of a global index.

split_index_partition
Use the split_index_partition clause to split a partition of a global

partitioned index into two partitions, adding a new partition to the index.

Splitting a partition marked UNUSABLE results in two partitions, both marked

UNUSABLE. You must rebuild the partitions before you can use them.

Splitting a usable partition results in two partitions populated with index data. Both

new partitions are usable.

AT Clause Specify the new noninclusive upper bound for split_partition_1 .

The value_list must evaluate to less than the presplit partition bound for

partition_name_old and greater than the partition bound for the next lowest

partition (if there is one).

INTO Clause Specify (optionally) the name and physical attributes of each of the

two partitions resulting from the split.

See Also: "Marking an Index Unusable: Examples" on page 9-83

See Also: "Renaming an Index Partition: Example" on page 9-84

See Also: "Dropping an Index Partition: Example" on page 9-84

See Also: "Splitting a Partition: Example" on page 9-84

ALTER INDEX

9-82 Oracle9i SQL Reference

modify_index_subpartition
Use the modify_index_subpartition clause to mark UNUSABLE or allocate or

deallocate storage for a subpartition of a local index on a composite-partitioned

table. All other attributes of such a subpartition are inherited from partition-level

default attributes.

Examples

Storing Index Blocks in Reverse Order: Example The following statement

rebuilds index ord_customer_ix (created in "Creating an Index: Example" on

page 13-87) so that the bytes of the index block are stored in reverse order:

ALTER INDEX ord_customer_ix REBUILD REVERSE;

Collecting Index Statistics: Example The following statement collects statistics on

the nonpartitioned ord_customer_ix index:

ALTER INDEX ord_customer_ix REBUILD COMPUTE STATISTICS;

The type of statistics collected depends on the type of index you are rebuilding.

Rebuilding an Index in Parallel: Example The following statement causes the

index to be rebuilt from the existing index by using parallel execution processes to

scan the old and to build the new index:

ALTER INDEX ord_customer_ix REBUILD PARALLEL;

Modifying Real Attributes: Example The following statement alters the oe.cust_
lname_ix index so that future data blocks within this index use 5 initial

transaction entries and an incremental extent of 100 kilobytes:

/* Unless you change the default tablespace of sample user oe,
 or specify different tablespace storage for the index, this
 example fails because the default tablespace originally assigned
 to oe is locally managed.
*/
ALTER INDEX oe.cust_lname_ix
 INITRANS 5
 STORAGE (NEXT 100K);

If the oe.cust_lname_ix index were partitioned, this statement would also alter

the default attributes of future partitions of the index. New partitions added in the

See Also: Oracle9i Database Concepts

ALTER INDEX

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-83

future would then use 5 initial transaction entries and an incremental extent of

100K.

Enabling Parallel Queries: Example The following statement sets the parallel

attributes for index upper_ix (created in "Creating a Function-Based Index:

Example" on page 13-89) so that scans on the index will be parallelized:

ALTER INDEX upper_ix PARALLEL;

Renaming an Index: Example The following statement renames an index:

ALTER INDEX upper_ix RENAME TO upper_name_ix;

Marking an Index Unusable: Examples The following statements use the cost_
ix index, which was created in "Creating a Global Partitioned Index: Example" on

page 13-90. Partition p1 of that index was dropped in "Dropping an Index Partition:

Example" on page 9-84. The first statement marks the marks index partition p2 as

UNUSABLE:

ALTER INDEX cost_ix
 MODIFY PARTITION p2 UNUSABLE;

The next statement marks the entire index cost_ix as UNUSABLE:

ALTER INDEX cost_ix UNUSABLE;

Rebuilding Unusable Index Partitions: Example The following statements rebuild

partitions p2 and p3 of the cost_ix index, making the index once more usable:

The rebuilding of partition p3 will not be logged:

ALTER INDEX cost_ix
 REBUILD PARTITION p2;
ALTER INDEX cost_ix
 REBUILD PARTITION p3 NOLOGGING;

Changing MAXEXTENTS: Example The following statement changes the

maximum number of extents for partition p3 and changes the logging attribute:

/* This example will fail if the tablespace in which partition p3
 resides is locally managed.
*/
ALTER INDEX cost_ix MODIFY PARTITION p3
 STORAGE(MAXEXTENTS 30) LOGGING;

ALTER INDEX

9-84 Oracle9i SQL Reference

Renaming an Index Partition: Example The following statement renames an index

partition of the cost_ix index (created in "Creating a Global Partitioned Index:

Example" on page 13-90):

ALTER INDEX cost_ix
 RENAME PARTITION p3 TO p3_Q3;

Splitting a Partition: Example The following statement splits partition p2 of index

cost_ix (created in "Creating a Global Partitioned Index: Example" on page 13-90)

into p2a and p2b :

ALTER INDEX cost_ix
 SPLIT PARTITION p2 AT (1500)
 INTO (PARTITION p2a TABLESPACE tbs_01 LOGGING,
 PARTITION p2b TABLESPACE tbs_02);

Dropping an Index Partition: Example The following statement drops index

partition p1 from the cost_ix index:

ALTER INDEX cost_ix
 DROP PARTITION p1;

Modifying Default Attributes: Example The following statement alters the default

attributes of local partitioned index prod_idx , which was created in "Creating an

Index on a Hash-Partitioned Table: Example." on page 13-91. New partitions added

in the future will use 5 initial transaction entries and an incremental extent of 100K:

ALTER INDEX prod_idx
 MODIFY DEFAULT ATTRIBUTES INITRANS 5 STORAGE (NEXT 100K);

ALTER INDEXTYPE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-85

ALTER INDEXTYPE

Purpose
Use the ALTER INDEXTYPE statement to add or drop an operator of the indextype

or to modify the implementation type or change the properties of the indextype.

Prerequisites
To alter an indextype in your own or another schema, you must have the ALTER
ANY INDEXTYPE system privilege.

To add a new operator, you must have the EXECUTE object privilege on the

operator.

To change the implementation type, you must have the EXECUTEobject privilege on

the new implementation type.

Syntax
alter_indextype::=

using_type_clause::=

Semantics

schema
Specify the name of the schema in which the indextype resides. If you omit schema ,

Oracle assumes the indextype is in your own schema.

ALTER INDEXTYPE
schema .

indextype

ADD

DROP

schema .
operator (parameter_types)

,

using_type_clause

COMPILE

;

USING
schema .

implementation_type

ALTER INDEXTYPE

9-86 Oracle9i SQL Reference

indextype
Specify the name of the indextype to be modified.

ADD | DROP
Use the ADD or DROP clause to add or drop an operator.

■ For schema , specify the schema containing the operator. If you omit schema ,

Oracle assumes the operator is in your own schema.

■ For operator , specify the name of the operator supported by the indextype.

All the operators listed in this clause should be valid operators.

■ For parameter_type , list the types of parameters to the operator.

USING Clause
The USINGclause lets you specify a new type to provide the implementation for the

indextype.

COMPILE
Use this clause to recompile the indextype explicitly. This clause is required only

after some upgrade operations, because Oracle normally recompiles the indextype

automatically.

Examples

Altering an Indextype: Example The following example adds another operator

binding to the TextIndexType indextype created in the CREATE INDEXTYPE
statement. TextIndexType can now support a new operator lob_contains with

the bindings(CLOB, CLOB):

ALTER INDEXTYPE TextIndexType ADD lob_contains(CLOB, CLOB);

ALTER JAVA

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-87

ALTER JAVA

Purpose
Use the ALTER JAVA statement to force the resolution of a Java class schema object

or compilation of a Java source schema object. (You cannot call the methods of a

Java class before all its external references to Java names are associated with other

classes.)

Prerequisites
The Java source or class must be in your own schema, or you must have the ALTER
ANY PROCEDURE system privilege. You must also have the EXECUTE object

privilege on Java classes.

Syntax
alter_java::=

invoker_rights_clause ::=

See Also: Oracle9i Java Stored Procedures Developer’s Guide for more

information on resolving Java classes and compiling Java sources

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
)) COMPILE

RESOLVE

invoker_rights_clause

;

AUTHID
CURRENT_USER

DEFINER

ALTER JAVA

9-88 Oracle9i SQL Reference

Semantics

JAVA SOURCE
Use ALTER JAVA SOURCE to compile a Java source schema object.

JAVA CLASS
Use ALTER JAVA CLASS to resolve a Java class schema object.

object_name
Specify a previously created Java class or source schema object. Use double

quotation marks to preserve lower- or mixed-case names.

RESOLVER
The RESOLVER clause lets you specify how schemas are searched for referenced

fully specified Java names, using the mapping pairs specified when the Java class or

source was created.

RESOLVE | COMPILE
RESOLVE and COMPILE are synonymous keywords. They let you specify that

Oracle should attempt to resolve the primary Java class schema object.

■ When applied to a class, resolution of referenced names to other class schema

objects occurs.

■ When applied to a source, source compilation occurs.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the methods of the class

execute with the privileges and in the schema of the user who defined it or with the

privileges and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

See Also: CREATE JAVA on page 13-98 and "Resolving a Java

Class: Example" on page 9-89

ALTER JAVA

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-89

AUTHID CURRENT_USER Specify CURRENT_USERif you want the methods of the

class to execute with the privileges of CURRENT_USER. This clause is the default

and creates an "invoker-rights class."

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External names

in all other statements resolve in the schema in which the methods reside.

AUTHID DEFINER Specify DEFINER if you want the methods of the class to

execute with the privileges of the user who defined it.

This clause also specifies that external names resolve in the schema where the

methods reside.

Example

Resolving a Java Class: Example The following statement forces the resolution of

a Java class:

ALTER JAVA CLASS "Agent"
 RESOLVER (("/home/java/bin/*" pm)(* public))
 RESOLVE;

See Also:

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

■ Oracle9i Java Stored Procedures Developer’s Guide

ALTER MATERIALIZED VIEW

9-90 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

Purpose
 A materialized view is a database object that contains the results of a query. The

FROM clause of the query can name tables, views, and other materialized views.

Collectively these are called master tables (a replication term) or detail tables (a

data warehouse term). This reference uses "master tables" for consistency. The

databases containing the master tables are called the master databases.

Use the ALTER MATERIALIZED VIEW statement to modify an existing materialized

view in one or more of the following ways:

■ To change its storage characteristics

■ To change its refresh method, mode, or time

■ To alter its structure so that it is a different type of materialized view

■ To enable or disable query rewrite.

Prerequisites
The privileges required to alter a materialized view should be granted directly, as

follows:

The materialized view must be in your own schema, or you must have the ALTER
ANY MATERIALIZED VIEW system privilege.

To enable a materialized view for query rewrite:

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 for more

information on creating materialized views

■ Oracle9i Advanced Replication for information on materialized

views in a replication environment

■ Oracle9i Data Warehousing Guide for information on

materialized views in a data warehousing environment

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-91

■ If all of the master tables in the materialized view are in your schema, you must

have the QUERY REWRITE privilege.

■ If any of the master tables are in another schema, you must have the GLOBAL
QUERY REWRITE privilege.

■ If the materialized view is in another user’s schema, both you and the owner of

that schema must have the appropriate QUERY REWRITE privilege, as described

in the preceding two items. In addition, the owner of the materialized view

must have SELECT access to any master tables that the materialized view

owner does not own.

See Also: Oracle9i Advanced Replication and Oracle9i Data
Warehousing Guide

ALTER MATERIALIZED VIEW

9-92 Oracle9i SQL Reference

Syntax
alter_materialized_view::=

(physical_attributes_clause::= on page 9-93, data_segment_
compression::= on page 9-93, LOB_storage_clause::= on page 9-93,

modify_LOB_storage_clause::= on page 9-94, alter_table_
partitioning on page 11-60 — part of ALTER TABLE syntax, parallel_

physical_attributes_clause

data_segment_compression

LOB_storage_clause

,

modify_LOB_storage_clause

,

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

CACHE

NOCACHE alter_iot_clauses

ALTER MATERIALIZED VIEW
schema .

materialized_view

USING INDEX physical_attributes_clause

MODIFY scoped_table_ref_constraint

REBUILD

alter_mv_refresh

ENABLE

DISABLE
QUERY REWRITE

COMPILE

CONSIDER FRESH
;

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-93

clause::= on page 9-95, logging_clause::= on page 9-95, allocate_
extent_clause::= on page 9-96)

physical_attributes_clause ::=

(storage_clause::= on page 7-58)

data_segment_compression ::=

LOB_storage_clause ::=

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

COMPRESS

NOCOMPRESS

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

ALTER MATERIALIZED VIEW

9-94 Oracle9i SQL Reference

LOB_parameters::=

(storage_clause::= on page 7-58, logging_clause::= on page 7-46)

modify_LOB_storage_clause ::=

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

MODIFY LOB (LOB_item) (modify_LOB_parameters)

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-95

modify_LOB_parameters::=

(storage_clause::= on page 7-58, logging_clause::= on page 7-46,

allocate_extent_clause::= on page 9-96, deallocate_unused_
clause::= on page 9-96)

parallel_clause ::=

logging_clause::=

storage_clause

PCTVERSION integer

RETENTION

FREEPOOLS integer

REBUILD FREEPOOLS

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

deallocate_unused_clause

NOPARALLEL

PARALLEL
integer

LOGGING

NOLOGGING

ALTER MATERIALIZED VIEW

9-96 Oracle9i SQL Reference

allocate_extent_clause ::=

deallocate_unused_clause::=

alter_iot_clauses ::=

(index_org_table_clause::= on page 9-96, alter_overflow_clause::=
on page 9-97, alter_mapping_table_clauses : not supported with materialized

views)

index_org_table_clause::=

(mapping_table_clause : not supported with materialized views, key_
compression : not supported with materialized views, index_org_overflow_
clause::= on page 9-97)

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP integer

K

M

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-97

index_org_overflow_clause::=

alter_overflow_clause::=

(allocate_extent_clause::= on page 9-96, deallocate_unused_
clause::= on page 9-96)

add_overflow_clause::=

scoped_table_ref_constraint::=

INCLUDING column_name
OVERFLOW

segment_attributes_clause

OVERFLOW
allocate_extent_clause

deallocate_unused_clause

add_overflow_clause

ADD OVERFLOW
segment_attributes_clause

(PARTITION
segment_attributes_clause

,

)

SCOPE FOR (
ref_column

ref_attribute
) IS

schema .
scope_table_name

,

ALTER MATERIALIZED VIEW

9-98 Oracle9i SQL Reference

alter_mv_refresh ::=

Semantics

schema
Specify the schema containing the materialized view. If you omit schema , Oracle

assumes the materialized view is in your own schema.

materialized_view
Specify the name of the materialized view to be altered.

physical_attributes_clause
Specify new values for the PCTFREE, PCTUSED, INITRANS , and MAXTRANS
parameters (or, when used in the USING INDEX clause, for the INITRANS and

MAXTRANS parameters only) and the storage characteristics for the materialized

view.

See Also:

■ ALTER TABLE on page 11-2 for information on the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters

■ storage_clause on page 7-56 for information about storage

characteristics

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-99

data_segment_compression
Use the data_segment_compression clause to instruct Oracle whether to

compress data segments to reduce disk and memory use. The COMPRESS keyword

enables data segment compression. The NOCOMPRESS keyword disables data

segment compression.

LOB_storage_clause
The LOB_storage_clause lets you specify the storage characteristics of a new

LOB. LOB storage behaves for materialized views exactly as it does for tables.

modify_LOB_storage_clause
The modify_LOB_storage_clause lets you modify the physical attributes of the

LOB attribute lob_item or LOB object attribute. Modification of LOB storage

behaves for materialized views exactly as it does for tables.

alter_table_partitioning
The syntax and general functioning of the partitioning clauses for materialized

views is the same as for partitioned tables.

Restrictions on Altering Table Partitions

■ You cannot specify the LOB_storage_clause or modify_LOB_storage_
clause within any of the partitioning_clauses .

■ If you attempt to drop, truncate, or exchange a materialized view partition,

Oracle raises an error.

See Also: data_segment_compression clause of CREATE
TABLE on page 15-29 for more information on data segment

compression

See Also: the LOB_storage_clause of CREATE TABLE on

page 15-36 for information on the LOB storage parameters

See Also: the modify_LOB_storage_clause of ALTER TABLE
on page 11-57 for information on the LOB storage parameters that

can be modified

See Also: alter_table_partitioning on page 11-60

ALTER MATERIALIZED VIEW

9-100 Oracle9i SQL Reference

MODIFY PARTITION UNUSABLE LOCAL INDEXES Use this clause to mark

UNUSABLE all the local index partitions associated with partition .

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES Use this clause to

rebuild the unusable local index partitions associated with partition .

parallel_clause
The parallel_clause lets you change the default degree of parallelism for the

materialized view.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

logging_clause
Specify or change the logging characteristics of the materialized view.

Note: If you wish to keep the contents of the materialized view

synchronized with those of the master table, Oracle Corporation

recommends that you manually perform a complete refresh of all

materialized views dependent on the table after dropping or

truncating a table partition.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-101

allocate_extent_clause
The allocate_extent_clause lets you explicitly allocate a new extent for the

materialized view.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this table are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

alter_iot_clauses
Use the alter_iot_clauses to change the characteristics of an index-organized

materialized view. The keywords and parameters of the components of the alter_
iot_clauses have the same semantics as in ALTER TABLE, with the restrictions

that follow.

Restrictions on Altering Index-organized Materialized Views You cannot specify

the mapping_table_clause or the key_compression clause of the index_
org_table_clause .

USING INDEX Clause
Use this clause to change the value of INITRANS , MAXTRANS, and STORAGE
parameters for the index Oracle uses to maintain the materialized view’s data.

Restriction on the USING INDEX clause You cannot specify the PCTUSED or

PCTFREE parameters in this clause.

See Also: logging_clause on page 7-45 for a full description of

this clause

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause

See Also: ALTER TABLE on page 11-2 for information about

specifying CACHE or NOCACHE

See Also: "index_org_table_clause" of CREATE
MATERIALIZED VIEWon page 14-18 for information on creating an

index-organized materialized view

ALTER MATERIALIZED VIEW

9-102 Oracle9i SQL Reference

MODIFY scoped_table_ref_constraint
Use the MODIFYscoped_table_ref_constraint clause to rescope a REF
column or attribute to a new table.

Restrictions on Rescoping REF Columns You can rescope only one REF column

or attribute in each ALTER MATERIALIZED VIEW statement, and this must be the

only clause in this statement.

REBUILD Clause
Specify REBUILD to regenerate refresh operations if a type that is referenced in

materialized_view has evolved.

Restriction on the REBUILD clause You cannot specify any other clause in the

same ALTER MATERIALIZED VIEW statement.

alter_mv_refresh
Use the alter_mv_refresh to change the default method and mode and the

default times for automatic refreshes. If the contents of a materialized view’s master

tables are modified, the data in the materialized view must be updated to make the

materialized view accurately reflect the data currently in its master table(s). This

clause lets you schedule the times and specify the method and mode for Oracle to

refresh the materialized view.

FAST Clause
Specify FAST for incremental refresh method, which performs the refresh according

to the changes that have occurred to the master tables. The changes are stored either

in the materialized view log associated with the master table (for conventional DML

changes) or in the direct loader log (for direct-path INSERT operations).

For both conventional DML changes and for direct-path INSERTs, other conditions

may restrict the eligibility of a materialized view for fast refresh.

Note: This clause only sets the default refresh options. For

instructions on actually implementing the refresh, refer to Oracle9i
Advanced Replication and Oracle9i Data Warehousing Guide.

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-103

Restrictions on FAST Refresh

■ When you specify FAST refresh at create time, Oracle verifies that the

materialized view you are creating is eligible for fast refresh. When you change

the refresh method to FAST in an ALTER MATERIALIZED VIEW statement,

Oracle does not perform this verification. If the materialized view is not eligible

for fast refresh, Oracle will return an error when you attempt to refresh this

view.

■ Materialized views are not eligible for fast refresh if the defining query contains

an analytic function.

COMPLETE Clause
Specify COMPLETE for the complete refresh method, which is implemented by

executing the materialized view’s defining query. If you request a complete refresh,

Oracle performs a complete refresh even if a fast refresh is possible.

FORCE Clause
Specify FORCEif, when a refresh occurs, you want Oracle to perform a fast refresh if

one is possible or a complete refresh otherwise.

ON COMMIT Clause
Specify ON COMMIT if you want a fast refresh to occur whenever Oracle commits a

transaction that operates on a master table of the materialized view.

Restriction on ON COMMIT This clause is supported only for materialized join

views and single-table materialized aggregate views.

See Also:

■ Oracle9i Advanced Replication for restrictions on fast refresh in

replication environments

■ Oracle9i Data Warehousing Guide for restrictions on fast refresh

in data warehouse environments

■ "Automatic Refresh: Examples" on page 9-107

See Also: "Analytic Functions" on page 6-10

See Also: "Complete Refresh: Example" on page 9-108

ALTER MATERIALIZED VIEW

9-104 Oracle9i SQL Reference

ON DEMAND Clause
Specify ON DEMANDif you want the materialized view to be refreshed on demand by

calling one of the three DBMS_MVIEW refresh procedures. If you omit both ON
COMMIT and ON DEMAND, ON DEMAND is the default.

START WITH Clause
Specify START WITHdate to indicate a date for the first automatic refresh time.

NEXT Clause
Specify NEXT to indicate a date expression for calculating the interval between

automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you

omit the START WITH value, Oracle determines the first automatic refresh time by

evaluating the NEXTexpression with respect to the creation time of the materialized

view. If you specify a START WITH value but omit the NEXT value, Oracle refreshes

the materialized view only once. If you omit both the START WITH and NEXT
values, or if you omit the alter_mv_refresh entirely, Oracle does not

automatically refresh the materialized view.

WITH PRIMARY KEY Clause
Specify WITH PRIMARY KEY to change a rowid materialized view to a primary key

materialized view. Primary key materialized views allow materialized view master

tables to be reorganized without affecting the materialized view’s ability to continue

to fast refresh.

See Also: Oracle9i Advanced Replication and Oracle9i Data
Warehousing Guide

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on these procedures

■ Oracle9i Data Warehousing Guide on the types of materialized

views you can create by specifying REFRESH ON DEMAND

Note: If you specify ON COMMIT or ON DEMAND, you cannot also

specify START WITH or NEXT.

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-105

For you to specify this clause, the master table must contain an enabled primary key

constraint and must have defined on it a materialized view log that logs primary

key information.

USING ROLLBACK SEGMENT Clause
Specify USING ROLLBACK SEGMENT to change the remote rollback segment to be

used during materialized view refresh, where rollback_segment is the name of

the rollback segment to be used.

DEFAULT Specify DEFAULT if you want Oracle to choose the rollback segment to

use. If you specify DEFAULT, you cannot specify rollback_segment.

MASTER ... rollback_segment Specify the remote rollback segment to be used at

the remote master for the individual materialized view. (To change the local

materialized view rollback segment, use the DBMS_REFRESH package, described in

Oracle9i Advanced Replication.)

One master rollback segment is stored for each materialized view and is validated

during materialized view creation and refresh. If the materialized view is complex,

the master rollback segment, if specified, is ignored.

QUERY REWRITE Clause
Use this clause to determine whether the materialized view is eligible to be used for

query rewrite.

ENABLE Clause
Specify ENABLE to enable the materialized view for query rewrite.

See Also:

■ Oracle9i Advanced Replication for detailed information about

primary key materialized views and Oracle9i Database Migration
Guide for information on changing rowid materialized views to

primary key materialized views

■ "Primary Key Materialized View: Example" on page 9-109

See Also: Oracle9i Advanced Replication for information on

changing the local materialized view rollback segment using the

DBMS_REFRESH package and "Changing Materialized View

Rollback Segments: Examples" on page 9-109

ALTER MATERIALIZED VIEW

9-106 Oracle9i SQL Reference

Restrictions on Enabling Materialized Views

■ If the materialized view is in an invalid or unusable state, it is not eligible for

query rewrite in spite of the ENABLE mode.

■ You cannot enable query rewrite if the materialized view was created totally or

in part from a view.

■ You can enable query rewrite only if all user-defined functions in the

materialized view are DETERMINISTIC.

■ You can enable query rewrite only if expressions in the statement are

repeatable. For example, you cannot include CURRENT_TIME or USER.

DISABLE Clause
Specify DISABLE if you do not want the materialized view to be eligible for use by

query rewrite. (If a materialized view is in the invalid state, it is not eligible for use

by query rewrite, whether or not it is disabled.) However, a disabled materialized

view can be refreshed.

COMPILE
Specify COMPILE to explicitly revalidate a materialized view. If an object upon

which the materialized view depends is dropped or altered, the materialized view

remains accessible, but it is invalid for query rewrite. You can use this clause to

explicitly revalidate the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, it cannot be refreshed or used for query

rewrite.

CONSIDER FRESH
This clause lets you manage the staleness state of a materialized after changes have

been made to its master tables. CONSIDER FRESH directs Oracle to consider the

See Also: "Enabling Query Rewrite: Example" on page 9-108

See Also: CREATE FUNCTION on page 13-52

See Also: Oracle9i Data Warehousing Guide for more information

on query rewrite

See Also: "Compiling a Materialized View: Example" on

page 9-109

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-107

materialized view fresh and therefore eligible for query rewrite in the TRUSTED or

STALE_TOLERATED modes. Because Oracle cannot guarantee the freshness of the

materialized view, query rewrite in ENFORCED mode is not supported. This clause

also sets the staleness state of the materialized view to UNKNOWN. The staleness state

is displayed in the STALENESS column of the ALL_MVIEWS, DBA_MVIEWS, and

USER_MVIEWS data dictionary views.

Examples

Automatic Refresh: Examples The following statement changes the default

refresh method for the sales_by_month_by_state materialized view (created in

"Creating Materialized Aggregate Views: Example" on page 14-28) to FAST:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it

is a simple materialized view and its master table has a materialized view log that

was created before the materialized view was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT values, Oracle

will use the refresh intervals established by the REFRESH clause when the sales_
by_month_by_state materialized view was created or last altered.

The following statement stores a new interval between automatic refreshes for the

sales_by_month_by_state materialized view:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH NEXT SYSDATE+7;

Note: A materialized view is stale if changes have been made to

the contents of any of its master tables. This clause directs Oracle to

assume that the materialized view is fresh and that no such changes

have been made. Therefore, actual updates to those tables pending

refresh are purged with respect to the materialized view.

See Also: Oracle9i Data Warehousing Guide for more information

on query rewrite and the implications of performing partition

maintenance operations on master tables, and "CONSIDER FRESH:

Example" on page 9-108

ALTER MATERIALIZED VIEW

9-108 Oracle9i SQL Reference

Because the REFRESH clause does not specify a START WITH value, the next

automatic refresh occurs at the time established by the START WITH and NEXT
values specified when the sales_by_month_by_state materialized view was

created or last altered.

At the time of the next automatic refresh, Oracle refreshes the materialized view,

evaluates the NEXT expression SYSDATE+7 to determine the next automatic refresh

time, and continues to refresh the materialized view automatically once a week.

Because the REFRESH clause does not explicitly specify a refresh method, Oracle

continues to use the refresh method specified by the REFRESHclause of the CREATE
MATERIALIZED VIEW or most recent ALTER MATERIALIZED VIEW statement.

CONSIDER FRESH: Example The following statement instructs Oracle that

materialized view sales_by_month_by_state should be considered fresh. This

statement allows sales_by_month_by_state to be eligible for query rewrite in

TRUSTED mode even after you have performed partition maintenance operations

on the master tables of sales_by_month_by_state :

ALTER MATERIALIZED VIEW sales_by_month_by_state CONSIDER FRESH;

Complete Refresh: Example The following statement specifies a new refresh

method, a new NEXT refresh time, and a new interval between automatic refreshes

of the emp_data materialized view (created in "Periodic Refresh of Materialized

Views: Example" on page 14-30):

ALTER MATERIALIZED VIEW emp_data
 REFRESH COMPLETE
 START WITH TRUNC(SYSDATE+1) + 9/24
 NEXT SYSDATE+7;

The START WITH value establishes the next automatic refresh for the materialized

view to be 9:00 a.m. tomorrow. At that point, Oracle performs a complete refresh of

the materialized view, evaluates the NEXT expression, and subsequently refreshes

the materialized view every week.

Enabling Query Rewrite: Example The following statement enables query rewrite

on the materialized view mv1 and implicitly revalidates it:

See Also: Splitting Table Partitions: Examples on page 11-93 for a

partitioning maintenance example that would require this ALTER
MATERIALIZED VIEW example

ALTER MATERIALIZED VIEW

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-109

ALTER MATERIALIZED VIEW emp_data
 ENABLE QUERY REWRITE;

Changing Materialized View Rollback Segments: Examples The following

statement changes the remote master rollback segment used during materialized

view refresh to rbs_two :

ALTER MATERIALIZED VIEW new_employees
 REFRESH USING MASTER ROLLBACK SEGMENT rbs_two;

The following statement changes the remote master rollback segment used during

materialized view refresh to one chosen by Oracle:

ALTER MATERIALIZED VIEW new_employees
 REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

Primary Key Materialized View: Example The following statement changes the

rowid materialized view order_data (created in "Creating Rowid Materialized

Views: Example" on page 14-30) to a primary key materialized view. This example

requires that you have already defined a materialized view log with a primary key

on order_data .

ALTER MATERIALIZED VIEW order_data
 REFRESH WITH PRIMARY KEY;

Compiling a Materialized View: Example The following statement revalidates the

materialized view store_mv :

ALTER MATERIALIZED VIEW order_data COMPILE;

ALTER MATERIALIZED VIEW LOG

9-110 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW LOG

Purpose
Use the ALTER MATERIALIZED VIEW LOG statement to alter the storage

characteristics, refresh mode or time, or type of an existing materialized view log. A

materialized view log is a table associated with the master table of a materialized

view.

Prerequisites
Only the owner of the master table or a user with the SELECT privilege on the

master table and the ALTER privilege on the materialized view log can alter a

materialized view log.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ CREATE MATERIALIZED VIEW LOG on page 14-34 for

information on creating a materialized view log

■ ALTER MATERIALIZED VIEW on page 9-90 for more

information on materialized views, including refreshing them

■ CREATE MATERIALIZED VIEW on page 14-5 for a description

of the various types of materialized views

See Also: Oracle9i Advanced Replication for detailed information

about the prerequisites for ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-111

Syntax
alter_materialized_view_log::=

(physical_attributes_clause::= on page 9-112, alter_table_
partitioning on page 11-60 — part of ALTER TABLE syntax, parallel_
clause::= on page 9-112, logging_clause::= on page 7-46, allocate_
extent_clause::= on page 9-112, new_values_clause::= on page 9-111),

new_values_clause::=

ALTER MATERIALIZED VIEW LOG ON
schema .

table

physical_attributes_clause

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

CACHE

NOCACHE

ADD

OBJECT ID

PRIMARY KEY

ROWID

(column

,

)

(column

,

)

,

new_values_clause

;

INCLUDING

EXCLUDING
NEW VALUES

ALTER MATERIALIZED VIEW LOG

9-112 Oracle9i SQL Reference

physical_attributes_clause ::=

(storage_clause::= on page 7-58)

allocate_extent_clause ::=

parallel_clause ::=

Semantics

schema
Specify the schema containing the master table. If you omit schema , Oracle

assumes the materialized view log is in your own schema.

table
Specify the name of the master table associated with the materialized view log to be

altered.

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

NOPARALLEL

PARALLEL
integer

ALTER MATERIALIZED VIEW LOG

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-113

physical_attributes_clause
The physical_attributes_clause lets you change the value of PCTFREE,
PCTUSED, INITRANS , and MAXTRANSparameters and storage characteristics for the

table, the partition, the overflow data segment, or the default characteristics of a

partitioned table.

Restriction on Materialized View Physical Attributes You cannot use the

storage_clause to modify extent parameters if the materialized view log resides

in a locally managed tablespace.

alter_table_partitioning
The syntax and general functioning of the partitioning clauses is the same as

described for the ALTER TABLE statement.

Restrictions on Altering Materialized View Partitions

■ You cannot use the LOB_storage_clause or modify_LOB_storage_
clause when modifying partitions of a materialized view log.

■ If you attempt to drop, truncate, or exchange a materialized view log partition,

Oracle raises an error.

parallel_clause
The parallel_clause lets you specify whether parallel operations will be

supported for the materialized view log.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

See Also: CREATE TABLE on page 15-7 for a description of these

parameters

See Also: alter_table_partitioning on page 11-60

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

ALTER MATERIALIZED VIEW LOG

9-114 Oracle9i SQL Reference

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

logging_clause
Specify the logging attribute of the materialized view log.

allocate_extent_clause
Use the allocate_extent_clause to explicitly allocate a new extent for the

materialized view log.

CACHE | NOCACHE Clause
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this log are placed at the most recently used end of the LRU list in the buffer

cache when a full table scan is performed. This attribute is useful for small lookup

tables. NOCACHE specifies that the blocks are placed at the least recently used end of

the LRU list.

ADD Clause
The ADD clause lets you augment the materialized view log so that it records the

primary key values, rowid values, or object ID values when rows in the

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

See Also: logging_clause on page 7-45 for a full description of

this clause

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause

See Also: CREATE TABLE on page 15-7 for information about

specifying CACHE or NOCACHE

ALTER MATERIALIZED VIEW LOG

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-115

materialized view master table are changed. This clause can also be used to record

additional columns.

To stop recording any of this information, you must first drop the materialized view

log and then re-create it. Dropping the materialized view log and then re-creating it

forces each of the existing materialized views that depend on the master table to

complete refresh on its next refresh.

Restriction on Augmenting Materialized View Logs You can specify only one

PRIMARY KEY, one ROWID, one OBJECT ID and one column list for each

materialized view log. Therefore, if any of these three values were specified at create

time (either implicitly or explicitly), you cannot specify those values in this ALTER
statement.

OBJECT ID Specify OBJECT ID if you want the appropriate object identifier of all

rows that are changed to be recorded in the materialized view log.

Restriction on the OBJECT ID clause You can specify OBJECT ID only for logs on

object tables, and you cannot specify it for storage tables.

PRIMARY KEY Specify PRIMARY KEY if you want the primary key values of all

rows that are changed to be recorded in the materialized view log.

ROWID Specify ROWID if you want the rowid values of all rows that are changed

to be recorded in the materialized view log.

column Specify the additional columns whose values you want to be recorded in

the materialized view log for all rows that are changed. Typically these columns are

filter columns (non-primary-key columns referenced by materialized views) and

join columns (non-primary-key columns that define a join in the WHERE clause of

the subquery).

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 for details on

explicit and implicit inclusion of materialized view log values

■ Oracle9i Advanced Replication for more information about filter

columns and join columns

■ "Rowid Materialized View Log: Example" on page 9-116

ALTER MATERIALIZED VIEW LOG

9-116 Oracle9i SQL Reference

NEW VALUES Clause
The NEW VALUES clause lets you specify whether Oracle saves both old and new

values in the materialized view log. The value you set in this clause applies to all

columns in the log, not only to primary key, rowid, or columns you may have

added in this ALTER MATERIALIZED VIEW LOG statement.

INCLUDING Specify INCLUDING to save both new and old values in the log. If this

log is for a table on which you have a single-table materialized aggregate view, and

if you want the materialized view to be eligible for fast refresh, you must specify

INCLUDING.

EXCLUDING Specify EXCLUDINGto disable the recording of new values in the log.

You can use this clause to avoid the overhead of recording new values.

If you have a fast-refreshable single-table materialized aggregate view defined on

this table, do not specify EXCLUDING NEW VALUES unless you first change the

refresh mode of the materialized view to something other than FAST.

Examples

Rowid Materialized View Log: Example The following statement alters an existing

primary key materialized view log to also record rowid information:

ALTER MATERIALIZED VIEW LOG ON order_items ADD ROWID;

Materialized View Log EXCLUDING NEW VALUES: Example The following

statement alters the materialized view log on hr.employees by adding a filter

column and excluding new values. Any materialized aggregate views that use this

log will no longer be fast refreshable. However, if fast refresh is no longer needed,

this action avoids the overhead of recording new values:

ALTER MATERIALIZED VIEW LOG ON employees
 ADD (commission_pct)
 EXCLUDING NEW VALUES;

See Also: "Materialized View Log EXCLUDING NEW VALUES:

Example" on page 9-116

ALTER OPERATOR

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-117

ALTER OPERATOR

Purpose
Use the ALTER OPERATOR statement to compile an existing operator.

Prerequisites
The operator must be in your own or another schema, or you must have the ALTER
ANY OPERATOR system privilege.

Syntax
alter_operator::=

Semantics

schema
Specify the schema containing the operator. If you omit this clause, Oracle assumes

the operator is in your own schema.

operator
Specify the name of the operator to be recompiled.

COMPILE
Specify COMPILE to cause Oracle to recompile the operator. The COMPILE keyword

is required.

Examples

Compiling a User-defined Operator: Example The following example compiles

the operator eq_op (which was created in "Creating User-Defined Operators:

Example" on page 14-47):

ALTER OPERATOR eq_op COMPILE;

See Also: CREATE OPERATOR on page 14-44

ALTER OPERATOR
schema .

operator COMPILE ;

ALTER OUTLINE

9-118 Oracle9i SQL Reference

ALTER OUTLINE

Purpose
Use the ALTER OUTLINE statement to rename a stored outline, reassign it to a

different category, or regenerate it by compiling the outline’s SQL statement and

replacing the old outline data with the outline created under current conditions.

Prerequisites
To modify an outline, you must have the ALTER ANY OUTLINE system privilege.

Syntax
alter_outline::=

Semantics

PUBLIC | PRIVATE
Specify PUBLIC if you want to modify the public version of this outline. This is the

default.

Specify PRIVATE if you want to modify the outline that is private to the current

session and whose data is stored in the current parsing schema.

outline
Specify the name of the outline to be modified.

REBUILD
Specify REBUILD to regenerate the execution plan for outline using current

conditions.

See Also: CREATE OUTLINE on page 14-48 and Oracle9i Database
Performance Tuning Guide and Reference for more information on outlines

ALTER OUTLINE

PUBLIC

PRIVATE
outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

;

ALTER OUTLINE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-119

RENAME TO Clause
Use the RENAME TO clause to specify an outline name to replace outline .

CHANGE CATEGORY TO Clause
Use the CHANGE CATEGORY TO clause to specify the name of the category into

which the outline will be moved.

Example

Rebuilding an Outline: Example The following statement regenerates a stored

outline called salaries by compiling the outline’s text and replacing the old

outline data with the outline created under current conditions.

ALTER OUTLINE salaries REBUILD;

See Also: "Rebuilding an Outline: Example" on page 9-119

ALTER PACKAGE

9-120 Oracle9i SQL Reference

ALTER PACKAGE

Purpose
Use the ALTER PACKAGE statement to explicitly recompile a package specification,

body, or both. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGE statement

recompiles all package objects together. You cannot use the ALTER PROCEDURE
statement or ALTER FUNCTION statement to recompile individually a procedure or

function that is part of a package.

Prerequisites
For you to modify a package, the package must be in your own schema or you must

have ALTER ANY PROCEDURE system privilege.

Syntax
alter_package::=

Note: This statement does not change the declaration or definition

of an existing package. To redeclare or redefine a package, use the

CREATE PACKAGE or the CREATE PACKAGE BODY on

page 14-52 statement with the OR REPLACE clause.

ALTER PACKAGE
schema .

package

COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY REUSE SETTINGS
;

ALTER PACKAGE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-121

Semantics

schema
Specify the schema containing the package. If you omit schema , Oracle assumes the

package is in your own schema.

package
Specify the name of the package to be recompiled.

COMPILE
You must specify COMPILE to recompile the package specification or body. The

COMPILE keyword is required.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves

them again from the session, and stores them at the end of compilation. To avoid

this process, specify the REUSE SETTINGS clause.

If recompiling the package results in compilation errors, Oracle returns an error and

the body remains invalid. You can see the associated compiler error messages with

the SQL*Plus command SHOW ERRORS.

SPECIFICATION
Specify SPECIFICATION to recompile only the package specification, regardless of

whether it is invalid. You might want to recompile a package specification to check

for compilation errors after modifying the specification.

When you recompile a package specification, Oracle invalidates any local objects

that depend on the specification, such as procedures that call procedures or

functions in the package. The body of a package also depends on its specification. If

you subsequently reference one of these dependent objects without first explicitly

recompiling it, Oracle recompiles it implicitly at run time.

BODY
Specify BODYto recompile only the package body regardless of whether it is invalid.

You might want to recompile a package body after modifying it. Recompiling a

package body does not invalidate objects that depend upon the package

specification.

See Also: "Recompiling a Package: Examples" on page 9-122

ALTER PACKAGE

9-122 Oracle9i SQL Reference

When you recompile a package body, Oracle first recompiles the objects on which

the body depends, if any of those objects are invalid. If Oracle recompiles the body

successfully, the body becomes valid.

PACKAGE
Specify PACKAGEto recompile both the package specification and the package body

if one exists, regardless of whether they are invalid. This is the default. The

recompilation of the package specification and body lead to the invalidation and

recompilation as described for SPECIFICATION and BODY.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

REUSE SETTINGS
Specify REUSE SETTINGS to prevent Oracle from dropping and reacquiring

compiler switch settings. With this clause, Oracle preserves the existing settings and

uses them for the recompilation.

If you specify both DEBUGand REUSE SETTINGS, Oracle sets the persistently stored

value of the PLSQL_COMPILER_FLAGS parameter to INTERPRETED, DEBUG. No

other compiler switch values are changed.

Examples

Recompiling a Package: Examples This statement explicitly recompiles the

specification and body of the hr.emp_mgmt package that was created in "Creating

a Package: Example" on page 14-55:

See Also: Oracle9i Database Concepts for information on how

Oracle maintains dependencies among schema objects, including

remote objects

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

information on debugging packages

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on

the interaction of the PLSQL_COMPILER_FLAGS parameter with

the COMPILE clause

ALTER PACKAGE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-123

ALTER PACKAGE emp_mgmt
 COMPILE PACKAGE;

If Oracle encounters no compilation errors while recompiling the accounting
specification and body, emp_mgmt becomes valid. The user hr can subsequently

call or reference all package objects declared in the specification of emp_mgmt
without run-time recompilation. If recompiling emp_mgmt results in compilation

errors, Oracle returns an error and emp_mgmt remains invalid.

Oracle also invalidates all objects that depend upon emp_mgmt. If you subsequently

reference one of these objects without explicitly recompiling it first, Oracle

recompiles it implicitly at run time.

To recompile the body of the emp_mgmt package in the schema hr , issue the

following statement:

ALTER PACKAGE hr.emp_mgmt
 COMPILE BODY;

If Oracle encounters no compilation errors while recompiling the package body, the

body becomes valid. The user hr can subsequently call or reference all package

objects declared in the specification of emp_mgmt without run-time recompilation.

If recompiling the body results in compilation errors, Oracle returns an error

message and the body remains invalid.

Because this statement recompiles the body and not the specification of emp_mgmt,
Oracle does not invalidate dependent objects.

ALTER PROCEDURE

9-124 Oracle9i SQL Reference

ALTER PROCEDURE

Purpose
Use the ALTER PROCEDURE statement to explicitly recompile a standalone stored

procedure. Explicit recompilation eliminates the need for implicit run-time

recompilation and prevents associated run-time compilation errors and

performance overhead.

To recompile a procedure that is part of a package, recompile the entire package

using the ALTER PACKAGE statement (see ALTER PACKAGE on page 9-120).

The ALTER PROCEDURE statement is quite similar to the ALTER FUNCTION
statement.

Prerequisites
The procedure must be in your own schema or you must have ALTER ANY
PROCEDURE system privilege.

Syntax
alter_procedure::=

Semantics

schema
Specify the schema containing the procedure. If you omit schema , Oracle assumes

the procedure is in your own schema.

Note: This statement does not change the declaration or definition

of an existing procedure. To redeclare or redefine a procedure, use

the CREATE PROCEDURE statement with the OR REPLACE clause

(see CREATE PROCEDURE on page 14-64).

See Also: ALTER FUNCTION on page 9-59

ALTER PROCEDURE
schema .

procedure COMPILE
DEBUG REUSE SETTINGS

;

ALTER PROCEDURE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-125

procedure
Specify the name of the procedure to be recompiled.

COMPILE
Specify COMPILE to recompile the procedure. The COMPILE keyword is required.

Oracle recompiles the procedure regardless of whether it is valid or invalid.

■ Oracle first recompiles objects upon which the procedure depends, if any of

those objects are invalid.

■ Oracle also invalidates any local objects that depend upon the procedure, such

as procedures that call the recompiled procedure or package bodies that define

procedures that call the recompiled procedure.

■ If Oracle recompiles the procedure successfully, the procedure becomes valid. If

recompiling the procedure results in compilation errors, then Oracle returns an

error and the procedure remains invalid. You can see the associated compiler

error messages with the SQL*Plus command SHOW ERRORS.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves

them again from the session, and stores them at the end of compilation. To avoid

this process, specify the REUSE SETTINGS clause.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for

use by the PL/SQL debugger.

REUSE SETTINGS
Specify REUSE SETTINGS to prevent Oracle from dropping and reacquiring

compiler switch settings. With this clause, Oracle preserves the existing settings and

uses them for the recompilation.

If you specify both DEBUGand REUSE SETTINGS, Oracle sets the persistently stored

value of the PLSQL_COMPILER_FLAGS parameter to INTERPRETED, DEBUG. No

other compiler switch values are changed.

See Also: Oracle9i Database Concepts for information on how

Oracle maintains dependencies among schema objects, including

remote objects and "Recompiling a Procedure: Example" on

page 9-126

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

information on debugging procedures

ALTER PROCEDURE

9-126 Oracle9i SQL Reference

Example

Recompiling a Procedure: Example To explicitly recompile the procedure

remove_emp owned by the user hr , issue the following statement:

ALTER PROCEDURE hr.remove_emp
 COMPILE;

If Oracle encounters no compilation errors while recompiling credit , credit
becomes valid. Oracle can subsequently execute it without recompiling it at run

time. If recompiling credit results in compilation errors, Oracle returns an error

and credit remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,

functions, and package bodies that call credit . If you subsequently reference one

of these objects without first explicitly recompiling it, Oracle recompiles it implicitly

at run time.

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on

the interaction of the PLSQL_COMPILER_FLAGS parameter with

the COMPILE clause

ALTER PROFILE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-127

ALTER PROFILE

Purpose
Use the ALTER PROFILE statement to add, modify, or remove a resource limit or

password management parameter in a profile.

Changes made to a profile with an ALTER PROFILE statement affect users only in

their subsequent sessions, not in their current sessions.

Prerequisites
You must have ALTER PROFILE system privilege to change profile resource limits.

To modify password limits and protection, you must have ALTER PROFILE and

ALTER USER system privileges.

Syntax
alter_profile::=

See Also: CREATE PROFILE on page 14-71 for information on

creating a profile

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters
;

ALTER PROFILE

9-128 Oracle9i SQL Reference

resource_parameters::=

password_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

ALTER PROFILE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-129

Semantics
The keywords, parameters, and clauses in the ALTER PROFILE statement all have

the same meaning as in the CREATE PROFILE statement.

 Examples

Making a Password Unavailable: Example The following statement makes the

password of the new_profile profile (created in "Creating a Profile: Example" on

page 14-76) unavailable for reuse for 90 days:

ALTER PROFILE new_profile
 LIMIT PASSWORD_REUSE_TIME 90
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Password Values: Example The following statement defaults the

PASSWORD_REUSE_TIME value of the app_user profile (created in "Setting Profile

Password Limits: Example" on page 14-77) to its defined value in the DEFAULT
profile:

ALTER PROFILE app_user
 LIMIT PASSWORD_REUSE_TIME DEFAULT
 PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time: Example The following

statement alters profile app_user with FAILED_LOGIN_ATTEMPTS set to 5 and

PASSWORD_LOCK_TIME set to 1:

ALTER PROFILE app_user LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This statement causes app_user ’s account to become locked for 1 day after 5

unsuccessful login attempts.

Note: You cannot remove a limit from the DEFAULT profile.

See Also: CREATE PROFILE on page 14-71 and the examples in

the next section

ALTER PROFILE

9-130 Oracle9i SQL Reference

Changing Password Lifetime and Grace Period: Example The following

statement modifies profile app_user2 PASSWORD_LIFE_TIME to 90 days and

PASSWORD_GRACE_TIME to 5 days:

ALTER PROFILE app_user2 LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 5;

Limiting Concurrent Sessions: Example This statement defines a new limit of 5

concurrent sessions for the app_user profile:

ALTER PROFILE app_user LIMIT SESSIONS_PER_USER 5;

If the engineer profile does not currently define a limit for SESSIONS_PER_USER,
the preceding statement adds the limit of 5 to the profile. If the profile already

defines a limit, the preceding statement redefines it to 5. Any user assigned the

engineer profile is subsequently limited to 5 concurrent sessions.

Removing Profile Limits: Example This statement removes the IDLE_TIME limit

from the app_user profile:

ALTER PROFILE app_user LIMIT IDLE_TIME DEFAULT;

Any user assigned the app_user profile is subject in their subsequent sessions to

the IDLE_TIME limit defined in the DEFAULT profile.

Limiting Profile Idle Time: Example This statement defines a limit of 2 minutes of

idle time for the DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

■ Users who are not explicitly assigned any profile

■ Users who are explicitly assigned a profile that does not define an IDLE_TIME
limit

This statement defines unlimited idle time for the app_user2 profile:

ALTER PROFILE app_user2 LIMIT IDLE_TIME UNLIMITED;

Any user assigned the app_user2 profile is subsequently permitted unlimited idle

time.

ALTER RESOURCE COST

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-131

ALTER RESOURCE COST

Purpose
Use the ALTER RESOURCE COST statement to specify or change the formula by

which Oracle calculates the total resource cost used in a session.

Although Oracle monitors the use of other resources, only the four resources shown

in the syntax can contribute to the total resource cost for a session.

Once you have specified a formula for the total resource cost, you can limit this cost

for a session with the COMPOSITE_LIMIT parameter of the CREATE PROFILE
statement. If a session’s cost exceeds the limit, Oracle aborts the session and returns

an error. If you use the ALTER RESOURCE COST statement to change the weight

assigned to each resource, Oracle uses these new weights to calculate the total

resource cost for all current and subsequent sessions.

Prerequisites
You must have ALTER RESOURCE COST system privilege.

Syntax
alter_resource_cost::=

Semantics

CPU_PER_SESSION
Specify the amount of CPU time that can be used by a session measured in

hundredth of seconds.

See Also: CREATE PROFILE on page 14-71 for information on all

resources and on establishing resource limits

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;

ALTER RESOURCE COST

9-132 Oracle9i SQL Reference

CONNECT_TIME
Specify the elapsed time allowed for a session measured in minutes.

LOGICAL_READS_PER_SESSION
Specify the number of data blocks that can be read during a session, including

blocks read from both memory and disk.

PRIVATE_SGA
Specify the number of bytes of private space in the system global area (SGA) that

can be used by a session. This limit applies only if you are using Shared Server

architecture and allocating private space in the SGA for your session.

integer
Specify the weight of each resource. The weight that you assign to each resource

determines how much the use of that resource contributes to the total resource cost.

If you do not assign a weight to a resource, the weight defaults to 0, and use of the

resource subsequently does not contribute to the cost. The weights you assign apply

to all subsequent sessions in the database.

Oracle calculates the total resource cost by first multiplying the amount of each

resource used in the session by the resource’s weight, and then summing the

products for all four resources. For any session, this cost is limited by the value of

the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the

total cost are expressed in units called service units.

Example

Altering Resource Costs: Examples The following statement assigns weights to

the resources CPU_PER_SESSION and CONNECT_TIME:

ALTER RESOURCE COST
 CPU_PER_SESSION 100
 CONNECT_TIME 1;

The weights establish this cost formula for a session:

cost = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

where the values of CPU_PER_SESSION and CONNECT_TIME are either values in

the DEFAULT profile or in the profile of the user of the session.

ALTER RESOURCE COST

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-133

Because the preceding statement assigns no weight to the resources LOGICAL_
READS_PER_SESSION and PRIVATE_SGA, these resources do not appear in the

formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, a session

exceeds this limit whenever cost exceeds 500. For example, a session using 0.04

seconds of CPU time and 101 minutes of elapsed time exceeds the limit. A session

using 0.0301 seconds of CPU time and 200 minutes of elapsed time also exceeds the

limit.

You can subsequently change the weights with another ALTER RESOURCE
statement:

ALTER RESOURCE COST
 LOGICAL_READS_PER_SESSION 2
 CONNECT_TIME 0;

These new weights establish a new cost formula:

cost = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SECOND are

either the values in the DEFAULT profile or in the profile of the user of this session.

This ALTER RESOURCE COST statement changes the formula in these ways:

■ The statement omits a weight for the CPU_PER_SESSION resource and the

resource was already assigned a weight, so the resource remains in the formula

with its original weight.

■ The statement assigns a weight to the LOGICAL_READS_PER_SESSION
resource, so this resource now appears in the formula.

■ The statement assigns a weight of 0 to the CONNECT_TIME resource, so this

resource no longer appears in the formula.

■ The statement omits a weight for the PRIVATE_SGA resource and the resource

was not already assigned a weight, so the resource still does not appear in the

formula.

ALTER ROLE

9-134 Oracle9i SQL Reference

ALTER ROLE

Purpose
Use the ALTER ROLE statement to change the authorization needed to enable a role.

Prerequisites
You must either have been granted the role with the ADMIN OPTION or have ALTER
ANY ROLE system privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:

■ Revoke all grants of roles identified externally to the role and

■ Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user

who is currently altering the role.

Syntax
alter_role::=

Semantics
The keywords, parameters, and clauses in the ALTER ROLE statement all have the

same meaning as in the CREATE ROLE statement.

See Also:

■ CREATE ROLE on page 14-79 for information on creating a role

■ SET ROLE on page 18-47 for information on enabling or

disabling a role for your session

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING
schema .

package

EXTERNALLY

GLOBALLY

;

ALTER ROLE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-135

Examples

Changing Role Identification: Example The following statement changes the role

warehouse_user (created in "Creating a Role: Example" on page 14-81) to NOT
IDENTIFIED :

ALTER ROLE warehouse_user NOT IDENTIFIED;

Changing a Role Password: Example This statement changes the password on the

dw_manager role (created in "Creating a Role: Example" on page 14-81) to data :

ALTER ROLE dw_manager
 IDENTIFIED BY data;

Users granted the dw_manager role must subsequently enter the new password

"data" to enable the role.

Application Roles: Example The following example changes the dw_manager
role to an application role using the hr.admin package:

ALTER ROLE dw_manager IDENTIFIED USING hr.admin;

Notes:

■ When you alter a role, user sessions in which the role is already

enabled are not affected.

■ If you change a role identified by password to an application

role (with the USINGpackage clause), password information

associated with the role is lost. Oracle will use the new

authentication mechanism the next time the role is to be

enabled.

■ If you have the ALTER ANY ROLE system privilege and you

change a role that is IDENTIFIED GLOBALLY to IDENTIFIED
BYpassword , IDENTIFIED EXTERNALLY, or NOT
IDENTIFIED , then Oracle grants you the altered role with the

ADMIN OPTION, as it would have if you had created the role

identified nonglobally.

See Also: CREATE ROLE on page 14-79 and the examples that

follow

ALTER ROLLBACK SEGMENT

9-136 Oracle9i SQL Reference

ALTER ROLLBACK SEGMENT

Purpose
Use the ALTER ROLLBACK SEGMENTstatement to bring a rollback segment online or

offline, change its storage characteristics, or shrink it to an optimal or specified size.

The information in this section assumes that your database is running in rollback

undo mode (the UNDO_MANAGEMENT initialization parameter is set to MANUAL or

not set at all).

If your database is running in Automatic Undo Management mode (the UNDO_
MANAGEMENT initialization parameter is set to AUTO), then user-created rollback

segments are irrelevant. In this case, Oracle returns an error in response to any

CREATE ROLLBACK SEGMENT or ALTER ROLLBACK SEGMENT statement. To

suppress these errors, set the UNDO_SUPPRESS_ERRORS parameter to TRUE.

Prerequisites
You must have ALTER ROLLBACK SEGMENT system privilege.

Syntax
alter_rollback_segment::=

(storage_clause on page 7-56)

See Also:

■ CREATE ROLLBACK SEGMENT on page 14-82 for

information on creating a rollback segment

■ Oracle9i Database Reference for information on the UNDO_
MANAGEMENT and UNDO_SUPPRESS_ERRORS parameters

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK
TO integer

K

M

;

ALTER ROLLBACK SEGMENT

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-137

Semantics

rollback_segment
Specify the name of an existing rollback segment.

ONLINE
Specify ONLINE to bring the rollback segment online. When you create a rollback

segment, it is initially offline and not available for transactions. This clause brings

the rollback segment online, making it available for transactions by your instance.

You can also bring a rollback segment online when you start your instance with the

initialization parameter ROLLBACK_SEGMENTS.

OFFLINE
Specify OFFLINE to take the rollback segment offline.

■ If the rollback segment does not contain any information needed to roll back an

active transaction, Oracle takes it offline immediately.

■ If the rollback segment does contain information for active transactions, Oracle

makes the rollback segment unavailable for future transactions and takes it

offline after all the active transactions are committed or rolled back.

Once the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query the data dictionary

view DBA_ROLLBACK_SEGS. Online rollback segments have a STATUS value of IN_
USE. Offline rollback segments have a STATUS value of AVAILABLE.

Restriction on Taking Rollback Segments Offline You cannot take the SYSTEM
rollback segment offline.

storage_clause
Use the storage_clause to change the rollback segment’s storage characteristics.

See Also: "Bringing a Rollback Segment Online: Example" on

page 9-138

See Also: Oracle9i Database Administrator’s Guide for more

information on making rollback segments available and

unavailable

ALTER ROLLBACK SEGMENT

9-138 Oracle9i SQL Reference

Restriction on Rollback Segment Storage You cannot change the values of the

INITIAL and MINEXTENTS for an existing rollback segment.

SHRINK Clause
Specify SHRINK if you want Oracle to attempt to shrink the rollback segment to an

optimal or specified size. The success and amount of shrinkage depend on the

available free space in the rollback segment and how active transactions are holding

space in the rollback segment.

The value of integer is in bytes, unless you specify K or M for kilobytes or

megabytes.

If you do not specify TOinteger , then the size defaults to the OPTIMAL value of

the storage_clause of the CREATE ROLLBACK SEGMENT statement that created

the rollback segment. If OPTIMAL was not specified, then the size defaults to the

MINEXTENTS value of the storage_clause of the CREATE ROLLBACK SEGMENT
statement.

Regardless of whether you specify TOinteger :

■ The value to which Oracle shrinks the rollback segment is valid for the

execution of the statement. Thereafter, the size reverts to the OPTIMAL value of

the CREATE ROLLBACK SEGMENT statement.

■ The rollback segment cannot shrink to less than two extents.

To determine the actual size of a rollback segment after attempting to shrink it,

query the BYTES, BLOCKS, and EXTENTS columns of the DBA_SEGMENTS view.

Restriction on Shrinking Rollback Segments In a Real Application Clusters

environment, you can shrink only rollback segments that are online to your

instance.

Examples

Bringing a Rollback Segment Online: Example This statement brings the rollback

segment rbs_one online:

See Also: storage_clause on page 7-56 for syntax and

additional information "Changing Rollback Segment Storage:

Example" on page 9-139

See Also: "Resizing a Rollback Segment: Example" on page 9-139

ALTER ROLLBACK SEGMENT

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-139

ALTER ROLLBACK SEGMENT rbs_one ONLINE;

Changing Rollback Segment Storage: Example This statement changes the

STORAGE parameters for rbs_one :

ALTER ROLLBACK SEGMENT rbs_one
 STORAGE (NEXT 1000 MAXEXTENTS 20);

Resizing a Rollback Segment: Example This statement attempts to resize a

rollback segment to 100 megabytes:

ALTER ROLLBACK SEGMENT rbs_one
 SHRINK TO 100 M;

ALTER SEQUENCE

9-140 Oracle9i SQL Reference

ALTER SEQUENCE

Purpose
Use the ALTER SEQUENCE statement to change the increment, minimum and

maximum values, cached numbers, and behavior of an existing sequence. This

statement affects only future sequence numbers.

Prerequisites
The sequence must be in your own schema, or you must have the ALTER object

privilege on the sequence, or you must have the ALTER ANY SEQUENCE system

privilege.

Syntax
alter_sequence::=

See Also: CREATE SEQUENCE on page 14-89 for additional

information on sequences

ALTER SEQUENCE
schema .

sequence

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

;

ALTER SEQUENCE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-141

Semantics
The keywords and parameters in this statement serve the same purposes they serve

when you create a sequence.

■ To restart the sequence at a different number, you must drop and re-create it.

■ If you change the INCREMENT BY value before the first invocation of NEXTVAL,
some sequence numbers will be skipped. Therefore, if you want to retain the

original START WITH value, you must drop the sequence and re-create it with

the original START WITH value and the new INCREMENT BY value.

■ Oracle performs some validations. For example, a new MAXVALUE cannot be

imposed that is less than the current sequence number.

Examples

Modifying a Sequence: Examples This statement sets a new maximum value for

the customers_seq sequence:

ALTER SEQUENCE customers_seq
 MAXVALUE 1500;

This statement turns on CYCLE and CACHE for the customers_seq sequence:

ALTER SEQUENCE customers_seq
 CYCLE
 CACHE 5;

See Also:

■ CREATE SEQUENCE on page 14-89 for information on

creating a sequence

■ DROP SEQUENCE on page 17-2 for information on dropping

and re-creating a sequence

ALTER SEQUENCE

9-142 Oracle9i SQL Reference

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-1

10
SQL Statements: ALTER SESSION to

ALTER SYSTEM

This chapter contains the following SQL statements:

■ ALTER SESSION

■ ALTER SYSTEM

ALTER SESSION

10-2 Oracle9i SQL Reference

ALTER SESSION

Purpose
Use the ALTER SESSION statement to specify or modify any of the conditions or

parameters that affect your connection to the database. The statement stays in effect

until you disconnect from the database.

Prerequisites
To enable and disable the SQL trace facility, you must have ALTER SESSIONsystem

privilege.

To enable or disable resumable space allocation, you must have the RESUMABLE
system privilege.

You do not need any privileges to perform the other operations of this statement

unless otherwise indicated.

Syntax
alter_session::=

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

ENABLE RESUMABLE
TIMEOUT integer NAME string

DISABLE RESUMABLE

alter_session_set_clause

;

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-3

alter_session_set_clause ::=

Semantics

ADVISE Clause
The ADVISE clause sends advice to a remote database to force a distributed

transaction. The advice appears in the ADVICE column of the DBA_2PC_PENDING
view on the remote database (the values are ’C’ for COMMIT, ’R’ for ROLLBACK, and ’

’ for NOTHING). If the transaction becomes in doubt, then the administrator of that

database can use this advice to decide whether to commit or roll back the

transaction.

You can send different advice to different remote databases by issuing multiple

ALTER SESSION statements with the ADVISE clause in a single transaction. Each

such statement sends advice to the databases referenced in the following statements

in the transaction until another such statement is issued.

CLOSE DATABASE LINK Clause
Specify CLOSE DATABASE LINK to close the database link dblink . When you issue

a statement that uses a database link, Oracle creates a session for you on the remote

database using that link. The connection remains open until you end your local

session or until the number of database links for your session exceeds the value of

the initialization parameter OPEN_LINKS. If you want to reduce the network

overhead associated with keeping the link open, then use this clause to close the

link explicitly if you do not plan to use it again in your session.

ENABLE | DISABLE COMMIT IN PROCEDURE
Procedures and stored functions written in PL/SQL can issue COMMIT and

ROLLBACK statements. If your application would be disrupted by a COMMIT or

ROLLBACK statement not issued directly by the application itself, then specify

See Also: "Forcing a Distributed Transaction: Example" on

page 10-16

See Also: Closing a Database Link: Example on page 10-17

SET parameter_name = parameter_value
COMMENT = ’ text ’

ALTER SESSION

10-4 Oracle9i SQL Reference

DISABLE COMMIT IN PROCEDURE clause to prevent procedures and stored

functions called during your session from issuing these statements.

You can subsequently allow procedures and stored functions to issue COMMIT and

ROLLBACK statements in your session by issuing the ENABLE DISABLE COMMIT IN
PROCEDURE.

Some applications (such as SQL*Forms) automatically prohibit COMMIT and

ROLLBACKstatements in procedures and stored functions. Refer to your application

documentation for more information.

PARALLEL DML | DDL | QUERY
The PARALLEL parameter determines whether all subsequent DML, DDL, or query

statements in the session will be considered for parallel execution. This clause

enables you to override the degree of parallelism of tables during the current

session without changing the tables themselves. Uncommitted transactions must

either be committed or rolled back prior to executing this clause for DML.

ENABLE Clause
Specify ENABLE to execute subsequent statements in the session in parallel. This is

the default for DDL and query statements.

■ DML: The session’s DML statements are executed in parallel mode if a parallel

hint or a parallel clause is specified.

■ DDL: The session’s DDL statements are executed in parallel mode if a parallel

clause is specified.

■ QUERY: The session’s queries are executed in parallel mode if a parallel hint or a

parallel clause is specified

Restriction on the ENABLE clause You cannot specify the optional PARALLEL
integer with ENABLE.

DISABLE Clause
Specify DISABLE to execute subsequent statements serially. This is the default for

DML statements.

■ DML: The session’s DML statements are executed serially.

■ DDL: The session’s DDL statements are executed serially.

See Also: "Enabling Parallel DML: Example" on page 10-16

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-5

■ QUERY: The session’s queries are executed serially.

Restriction on the DISABLE clause You cannot specify the optional PARALLEL
integer with DISABLE.

FORCE Clause
FORCE forces parallel execution of subsequent statements in the session. If no

parallel clause or hint is specified, then a default degree of parallelism is used. This

clause overrides any parallel_clause specified in subsequent statements in the

session, but is overridden by a parallel hint.

■ DML: Provided no parallel DML restrictions are violated, subsequent DML

statements in the session are executed with the default degree of parallelism,

unless a degree is specified in this clause.

■ DDL: Subsequent DDL statements in the session are executed with the default

degree of parallelism, unless a degree is specified in this clause. Resulting

database objects will have associated with them the prevailing degree of

parallelism.

Using FORCE DDL automatically causes all tables created in this session to be

created with a default level of parallelism. The effect is the same as if you had

specified the parallel_clause (with default degree) with the CREATE
TABLE statement.

■ QUERY: Subsequent queries are executed with the default degree of parallelism,

unless a degree is specified in this clause.

PARALLEL integer Specify an integer to explicitly specify a degree of parallelism:

■ For FORCE DDL, the degree overrides any parallel clause in subsequent DDL

statements.

■ For FORCE DML and QUERY, the degree overrides the degree currently stored for

the table in the data dictionary.

■ A degree specified in a statement through a hint will override the degree being

forced.

The following types of DML operations are not parallelized regardless of this

clause:

■ Operations on clustered tables

■ Operations with embedded functions that either write or read database or

package states

ALTER SESSION

10-6 Oracle9i SQL Reference

■ Operations on tables with triggers that could fire

■ Operations on tables or schema objects containing object types, or LONG or LOB

datatypes.

RESUMABLE Clauses
These clauses let you enable and disable resumable space allocation. This feature

allows an operation to be suspended in the event of an out-of-space error condition

and to resume automatically from the point of interruption when the error

condition is fixed.

ENABLE RESUMABLE
This clause enables resumable space allocation for the session.

TIMEOUT TIMEOUT lets you specify (in seconds) the time during which an

operation can remain suspended while waiting for the error condition to be fixed. If

the error condition is not fixed within the TIMEOUT period, then Oracle aborts the

suspended operation.

NAME NAME lets you specify a user-defined text string to help users identify the

statements issued during the session while the session is in resumable mode. Oracle

inserts the text string into the USER_RESUMABLE and DBA_RESUMABLE data

dictionary views. If you do not specify NAME, then Oracle inserts the default string

’User username (userid), Session sessionid , Instance instanceid ’.

DISABLE RESUMABLE
This clause disables resumable space allocation for the session.

alter_session_set_clause
Use the alter_session_set_clause to set the parameters that follow (session

parameters and initialization parameters that are dynamic in the scope of the

Note: Resumable space allocation is fully supported for

operations on locally managed tablespaces. Some restrictions apply

if you are using dictionary-managed tablespaces. For information

on these restrictions, please refer to Oracle9i Database Administrator’s
Guide.

See Also: Oracle9i Database Reference for information on the data

dictionary views

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-7

ALTER SESSIONstatement). You can set values for multiple parameters in the same

alter_session_set_clause .

COMMENT lets you associate a comment string with this change in the value of the

parameter.

Initialization Parameters and ALTER SESSION

All initialization parameters that can be set using an ALTER SYSTEM statement are

documented at ALTER SYSTEM on page 10-20. The initialization parameters that

are dynamic in the scope of ALTER SESSION are listed in Table 10–1 on page 10-7

with cross-references to their descriptions in ALTER SYSTEM. The only difference in

behavior is that when you set these parameters using ALTER SESSION, the value

you set persists only for the duration of the current session.

A number of parameters that can be set using ALTER SESSIONare not initialization

parameters. That is, you can set them only with ALTER SESSION, not in an

initialization parameter file. Those session parameters are described after Table 10–1.

Caution: Unless otherwise indicated, the parameters described

here are initialization parameters, and the descriptions indicate

only the general nature of the parameters. Before changing the

values of initialization parameters, please refer to their full

description in Oracle9i Database Reference or Oracle9i Database
Globalization Support Guide.

Table 10–1 Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

CURSOR_SHARING on page 10-43 See also Oracle9i Database Performance
Tuning Guide and Reference for
information on setting this parameter in
these and other environments.

DB_BLOCK_CHECKING on page 10-45 The setting made by ALTER SESSION
SET DB_BLOCK_CHECKING will be
overridden by any subsequent ALTER
SYSTEM SET DB_BLOCK_CHECKING
statement.

DB_CREATE_FILE_DEST on page 10-47 —

Initialization Parameters and ALTER SESSION

10-8 Oracle9i SQL Reference

DB_CREATE_ONLINE_LOG_DEST_n on page 10-47 —

DB_FILE_MULTIBLOCK_READ_COUNT on
page 10-48

—

FILESYSTEMIO_OPTIONS on page 10-59 —

GLOBAL_NAMES on page 10-60 See "Referring to Objects in Remote

Databases" on page 2-118 and Oracle9i
Heterogeneous Connectivity
Administrator’s Guide for more
information on global name resolution
and how Oracle enforces it.

HASH_AREA_SIZE on page 10-60 —

HASH_JOIN_ENABLED on page 10-61 —

LOG_ARCHIVE_DEST_n on page 10-69 —

LOG_ARCHIVE_DEST_STATE_n on page 10-70 —

LOG_ARCHIVE_MIN_SUCCEED_DESTon page 10-72 —

MAX_DUMP_FILE_SIZE on page 10-77 —

Globalization Support (NLS_) Parameters:

When you start an instance, Oracle establishes globalization support based on the values of
initialization parameters that begin with "NLS". You can query the dynamic performance table
V$NLS_PARAMETERS to see the current globalization attributes for your session. For more

information about NLS parameters, see Oracle9i Database Globalization Support Guide.

NLS_CALENDAR on page 10-78 —

NLS_COMP on page 10-79 —

NLS_CURRENCY on page 10-79 —

NLS_DATE_FORMAT on page 10-79 See "Date Format Models" on page 2-68
for information on valid date format
models.

NLS_DATE_LANGUAGE on page 10-80 —

NLS_DUAL_CURRENCY on page 10-80 See "Number Format Models" on
page 2-63 for information on number
format elements.

NLS_ISO_CURRENCY on page 10-80 —

Table 10–1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-9

NLS_LANGUAGE on page 10-81 —

NLS_LENGTH_SEMANTICS on page 10-81 —

NLS_NCHAR_CONV_EXCP on page 10-81 —

NLS_NUMERIC_CHARACTERS on page 10-82 —

NLS_SORT on page 10-82 —

NLS_TERRITORY on page 10-82 —

NLS_TIMESTAMP_FORMAT on page 10-83 —

NLS_TIMESTAMP_TZ_FORMAT on page 10-83 —

OBJECT_CACHE_MAX_SIZE_PERCENT on
page 10-84

—

OBJECT_CACHE_OPTIMAL_SIZE on page 10-84 —

OLAP_PAGE_POOL_SIZE on page 10-84 —

OPTIMIZER_DYNAMIC_SAMPLING on page 10-86 See Oracle9i Database Performance Tuning
Guide and Reference for information on
how to set this parameter.

OPTIMIZER_INDEX_CACHING on page 10-87 —

OPTIMIZER_INDEX_COST_ADJ on page 10-87 —

OPTIMIZER_MAX_PERMUTATIONS on page 10-87 —

OPTIMIZER_MODE on page 10-88 See Oracle9i Database Concepts and
Oracle9i Database Performance Tuning
Guide and Reference for information on
how to choose a goal for the cost-based
approach based on the characteristics of
your application.

ORACLE_TRACE_ENABLE on page 10-89 —

PARALLEL_INSTANCE_GROUP on page 10-92 —

PARALLEL_MIN_PERCENT on page 10-93 —

PARTITION_VIEW_ENABLED on page 10-94 For important information on partition
views, see "Partition Views" on
page 16-40.

PLSQL_COMPILER_FLAGS on page 10-95 —

Table 10–1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

Session Parameters and ALTER SESSION

10-10 Oracle9i SQL Reference

Session Parameters and ALTER SESSION

The following parameters are session parameters only, not initialization parameters:

CONSTRAINT[S]
Syntax:

CONSTRAINT[S] = { IMMEDIATE | DEFERRED | DEFAULT }

The CONSTRAINT[S] parameter determines when conditions specified by a

deferrable constraint are enforced.

■ immediate indicates that the conditions specified by the deferrable constraint

are checked immediately after each DML statement. This setting is equivalent to

issuing the SET CONSTRAINTS ALL IMMEDIATE statement at the beginning of

each transaction in your session.

■ deferred indicates that the conditions specified by the deferrable constraint

are checked when the transaction is committed. This setting is equivalent to

QUERY_REWRITE_ENABLED on page 10-99 —

QUERY_REWRITE_INTEGRITY on page 10-99 —

REMOTE_DEPENDENCIES_MODE on page 10-101 —

SESSION_CACHED_CURSORS on page 10-105 —

SORT_AREA_RETAINED_SIZE on page 10-109 —

SORT_AREA_SIZE on page 10-110 —

STAR_TRANSFORMATION_ENABLEDon page 10-112 —

STATISTICS_LEVEL on page 10-112 —

TIMED_OS_STATISTICS on page 10-113 —

TIMED_STATISTICS on page 10-114 —

TRACE_ENABLED on page 10-114 —

UNDO_SUPPRESS_ERRORS on page 10-117 —

WORKAREA_SIZE_POLICY on page 10-119 —

Table 10–1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-11

issuing the SET CONSTRAINTS ALL DEFERRED statement at the beginning of

each transaction in your session.

■ default restores all constraints at the beginning of each transaction to their

initial state of DEFERRED or IMMEDIATE.

CREATE_STORED_OUTLINES
Syntax:

CREATE_STORED_OUTLINES = {TRUE | FALSE | ’category_name’}

The CREATE_STORED_OUTLINES parameter determines whether Oracle should

automatically create and store an outline for each query submitted during the

session.

■ true enables automatic outline creation for subsequent queries in the same

session. These outlines receive a unique system-generated name and are stored

in the DEFAULT category. If a particular query already has an outline defined

for it in the DEFAULT category, then that outline will remain and a new outline

will not be created.

■ false disables automatic outline creation during the session. This is the

default.

■ category_name has the same behavior as TRUE except that any outline

created during the session is stored in the category_name category.

CURRENT_SCHEMA
Syntax:

CURRENT_SCHEMA = schema

The CURRENT_SCHEMA parameter changes the current schema of the session to the

specified schema. Subsequent unqualified references to schema objects during the

session will resolve to objects in the specified schema. The setting persists for the

duration of the session or until you issue another ALTER SESSION SET CURRENT_
SCHEMA statement.

This setting offers a convenient way to perform operations on objects in a schema

other than that of the current user without having to qualify the objects with the

schema name. This setting changes the current schema, but it does not change the

session user or the current user, nor does it give you any additional system or object

privileges for the session.

Session Parameters and ALTER SESSION

10-12 Oracle9i SQL Reference

ERROR_ON_OVERLAP_TIME
Syntax:

ERROR_ON_OVERLAP_TIME = {TRUE | FALSE}

The ERROR_ON_OVERLAP_TIME determines how Oracle should handle an

ambiguous boundary datetime value—that is, a case in which it is not clear whether

the datetime is in standard or daylight savings time.

■ Specify TRUE to return an error for the ambiguous overlap timestamp.

■ Specify FALSE to default the ambiguous overlap timestamp to the standard

time. This is the default.

FLAGGER
Syntax:

FLAGGER = { ENTRY | INTERMEDIATE | FULL | OFF }

The FLAGGER parameter specifies FIPS flagging, which causes an error message to

be generated when a SQL statement issued is an extension of ANSI SQL92.

FLAGGER is a session parameter only, not an initialization parameter.

In Oracle, there is currently no difference between Entry, Intermediate, or Full level

flagging. Once flagging is set in a session, a subsequent ALTER SESSION SET
FLAGGER statement will work, but generates the message, ORA-00097. This allows

FIPS flagging to be altered without disconnecting the session. OFF turns off

flagging.

INSTANCE
Syntax:

INSTANCE = integer

The INSTANCE parameter in a Real Application Clusters environment accesses

database files as if the session were connected to the instance specified by integer.

INSTANCEis a session parameter only, not an initialization parameter. For optimum

performance, each instance of Real Application Clusters uses its own private

rollback segments, freelist groups, and so on. In a Real Application Clusters

environment, you normally connect to a particular instance and access data that is

See Also: Appendix B, "Oracle and Standard SQL", for more

information about Oracle compliance with current ANSI SQL

standards

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-13

partitioned primarily for your use. If you must connect to another instance, then the

data partitioning can be lost. Setting this parameter lets you access an instance as if

you were connected to your own instance.

ISOLATION_LEVEL
Syntax:

ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED}

The ISOLATION_LEVEL parameter specifies how transactions containing database

modifications are handled. ISOLATION_LEVEL is a session parameter only, not an

initialization parameter.

■ SERIALIZABLE indicates that transactions in the session use the serializable

transaction isolation mode as specified in SQL92. That is, if a serializable

transaction attempts to execute a DML statement that updates rows currently

being updated by another uncommitted transaction at the start of the

serializable transaction, then the DML statement fails. A serializable transaction

can see its own updates.

■ READ COMMITTED indicates that transactions in the session will use the default

Oracle transaction behavior. Thus, if the transaction contains DML that requires

row locks held by another transaction, then the DML statement will wait until

the row locks are released.

PLSQL_DEBUG
Syntax:

PLSQL_DEBUG = { TRUE | FALSE }

The PLSQL_DEBUG parameter sets the default for including or not including

debugging information during compile operations. Setting this parameter to TRUE
has the same effect as adding the DEBUG keyword to ALTER {FUNCTION |
PROCEDURE | PACKAGE} COMPILE statements.

SKIP_UNUSABLE_INDEXES
Syntax:

SKIP_UNUSABLE_INDEXES = { TRUE | FALSE }

The SKIP_UNUSABLE_INDEXES parameter controls the use and reporting of tables

with unusable indexes or index partitions. SKIP_UNUSABLE_INDEXES is a session

parameter only, not an initialization parameter.

Session Parameters and ALTER SESSION

10-14 Oracle9i SQL Reference

■ TRUE disables error reporting of indexes and index partitions marked

UNUSABLE. This setting allows all operations (inserts, deletes, updates, and

selects) on tables with unusable indexes or index partitions.

■ FALSE enables error reporting of indexes marked UNUSABLE. This setting does

not allow inserts, deletes, and updates on tables with unusable indexes or index

partitions. This is the default.

SQL_TRACE
Syntax:

INSTANCE = integer

SQL_TRACE is an initialization parameter. However, when you change its value

with an ALTER SESSION statement, the results are not reflected in the

V$PARAMETER view. Therefore, in this context it is considered a session parameter

only.

TIME_ZONE
Syntax:

TIME_ZONE = ’[+ | -] hh:mm’
 | LOCAL
 | DBTIMEZONE
 | ’time_zone_region’

The TIME_ZONE parameter specifies the default local time zone displacement for

the current SQL session. TIME_ZONE is a session parameter only, not an

initialization parameter. To determine the time zone of the current session, query

the built-in function SESSIONTIMEZONE (see SESSIONTIMEZONE on page 6-143).

Note: If an index is used to enforce a UNIQUE constraint on a

table, then allowing insert and update operations on the table

might violate the constraint. Therefore, this setting does not disable

error reporting for unusable indexes that are unique.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on the SQL trace facility, including how to

format and interpret its output

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-15

■ Specify a format mask (’[+|-]hh:mm’) indicating the hours and minutes

before or after UTC (Coordinated Universal Time—formerly Greenwich Mean

Time). The valid range for hh:mm is -12:00 to +14:00.

■ Specify LOCAL to set the default local time zone displacement of the current

SQL session to the original default local time zone displacement that was

established when the current SQL session was started.

■ Specify DBTIMEZONE to set the current session time zone to match the value set

for the database time zone. If you specify this setting, then the DBTIMEZONE
function will return the database time zone as a UTC offset or a time zone

region, depending on how the database time zone has been set.

■ Specify a valid time_zone_region . To see a listing of valid region names,

query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance

view. If you specify this setting, then the SESSIONTIMEZONE function will

return the region name.

USE_PRIVATE_OUTLINES
Syntax:

USE_PRIVATE_OUTLINES = { TRUE | FALSE | category_name }

The USE_PRIVATE_OUTLINES parameter lets you control the use of private

outlines. When this parameter is enabled and an outlined SQL statement is issued,

the optimizer retrieves the outline from the session private area rather than the

public area used when USE_STORED_OUTLINES is enabled. If no outline exists in

the session private area, then the optimizer will not use an outline to compile the

statement. USE_PRIVATE_OUTLINES is not an initialization parameter.

■ TRUE causes the optimizer to use private outlines stored in the DEFAULT
category when compiling requests.

■ FALSE specifies that the optimizer should not use stored private outlines. This

is the default. If USE_STORED_OUTLINES is enabled, then the optimizer will

use stored public outlines.

■ category_name causes the optimizer to use outlines stored in the category_
name category when compiling requests.

Note: You can also set the default client session time zone using

the ORA_SDTZ environment variable. Please refer to Oracle9i
Database Globalization Support Guide for more information on this

variable.

Session Parameters and ALTER SESSION

10-16 Oracle9i SQL Reference

Restriction on USE_PRIVATE_OUTLINES You cannot enable this parameter if

USE_STORED_OUTLINES is enabled.

USE_STORED_OUTLINES
Syntax:

USE_STORED_OUTLINES = { TRUE | FALSE | category_name }

The USE_STORED_OUTLINESparameter determines whether the optimizer will use

stored public outlines to generate execution plans. USE_STORED_OUTLINES is not

an initialization parameter.

■ TRUEcauses the optimizer to use outlines stored in the DEFAULTcategory when

compiling requests.

■ FALSE specifies that the optimizer should not use stored outlines. This is the

default.

■ category_name causes the optimizer to use outlines stored in the category_
name category when compiling requests.

Restriction on USED_STORED_OUTLINES You cannot enable this parameter if

USE_PRIVATE_OUTLINES is enabled.

Examples

Enabling Parallel DML: Example Issue the following statement to enable parallel

DML mode for the current session:

ALTER SESSION ENABLE PARALLEL DML;

Forcing a Distributed Transaction: Example The following transaction inserts an

employee record into the employees table on the database identified by the

database link remote and deletes an employee record from the employees table

on the database identified by local :

ALTER SESSION
 ADVISE COMMIT;

INSERT INTO employees@remote
 VALUES (8002, ’Juan’, ’Fernandez’, ’juanf@hr.com’, NULL,
 TO_DATE(’04-OCT-1992’, ’DD-MON-YYYY’), ’SA_CLERK’, 3000,
 NULL, 121, 20);

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-17

ALTER SESSION
 ADVISE ROLLBACK;

DELETE FROM employees@local
 WHERE employee_id = 8002;

COMMIT;

This transaction has two ALTER SESSIONstatements with the ADVISE clause. If the

transaction becomes in doubt, then remote is sent the advice ’COMMIT’ by virtue of

the first ALTER SESSION statement and local is sent the advice ’ROLLBACK’ by

virtue of the second.

Closing a Database Link: Example This statement updates the jobs table on the

local database using a database link, commits the transaction, and explicitly closes

the database link:

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = ’SH_CLERK’;

COMMIT;

ALTER SESSION
 CLOSE DATABASE LINK local;

Changing the Date Format Dynamically: Example The following statement

dynamically changes the default date format for your session to ’YYYY MM
DD-HH24:MI:SS’ :

ALTER SESSION
 SET NLS_DATE_FORMAT = ’YYYY MM DD HH24:MI:SS’;

Oracle uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
 FROM DUAL;

TODAY

2001 04 12 12:30:38

Changing the Date Language Dynamically: Example The following statement

changes the language for date format elements to French:

Session Parameters and ALTER SESSION

10-18 Oracle9i SQL Reference

ALTER SESSION
 SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, ’Day DD Month YYYY’) Today
 FROM DUAL;

TODAY

Jeudi 12 Avril 2001

Changing the ISO Currency: Example The following statement dynamically

changes the ISO currency symbol to the ISO currency symbol for the territory

America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(salary), ’C999G999D99’) Total
 FROM employees;

TOTAL

 USD694,900.00

Changing the Decimal Character and Group Separator: Example The following

statement dynamically changes the decimal character to comma (,) and the group

separator to period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ’,.’ ;

Oracle returns these new characters when you use their number format elements:

ALTER SESSION SET NLS_CURRENCY = ’FF’;

SELECT TO_CHAR(SUM(salary), ’L999G999D99’) Total FROM employees;

TOTAL

 FF694.900,00

Changing the NLS Currency: Example The following statement dynamically

changes the local currency symbol to ’DM’:

ALTER SESSION
 SET NLS_CURRENCY = ’DM’;

ALTER SESSION

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-19

SELECT TO_CHAR(SUM(salary), ’L999G999D99’) Total
 FROM employees;

TOTAL

 DM694.900,00

Changing the NLS Language: Example The following statement dynamically

changes to French the language in which error messages are displayed:

ALTER SESSION
 SET NLS_LANGUAGE = FRENCH;

Session modifiee.

SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Changing the Linguistic Sort Sequence: Example The following statement

dynamically changes the linguistic sort sequence to Spanish:

ALTER SESSION
 SET NLS_SORT = XSpanish;

Oracle sorts character values based on their position in the Spanish linguistic sort

sequence.

Enabling SQL Trace: Example To enable the SQL trace facility for your session,

issue the following statement:

ALTER SESSION
 SET SQL_TRACE = TRUE;

Enabling Query Rewrite: Example This statement enables query rewrite in the

current session for all materialized views that have not been explicitly disabled:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

ALTER SYSTEM

10-20 Oracle9i SQL Reference

ALTER SYSTEM

Purpose
Use the ALTER SYSTEM statement to dynamically alter your Oracle instance. The

settings stay in effect as long as the database is mounted.

Prerequisites
You must have ALTER SYSTEM system privilege.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-21

Syntax
alter_system::=

ALTER SYSTEM

archive_log_clause

CHECKPOINT

GLOBAL

LOCAL

CHECK DATAFILES

GLOBAL

LOCAL

ENABLE

DISABLE
DISTRIBUTED RECOVERY

ENABLE

DISABLE
RESTRICTED SESSION

FLUSH SHARED_POOL

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

QUIESCE RESTRICTED

UNQUIESCE

SHUTDOWN
IMMEDIATE

dispatcher_name

REGISTER

SET alter_system_set_clause

RESET alter_system_reset_clause

;

ALTER SYSTEM

10-22 Oracle9i SQL Reference

archive_log_clause ::=

end_session_clauses::=

alter_system_set_clause ::=

ARCHIVE LOG
THREAD integer

SEQUENCE integer

CHANGE integer

CURRENT
NOSWITCH

GROUP integer

LOGFILE ’ filename ’
USING BACKUP CONTROLFILE

NEXT

ALL

START

TO ’ location ’

STOP

DISCONNECT SESSION ’ integer1 , integer2 ’
POST_TRANSACTION

KILL SESSION ’ integer1 , integer2 ’

IMMEDIATE

SCOPE =

MEMORY

SPFILE

BOTH
SID =

’ sid ’

*

parameter_name = parameter_value

,
COMMENT ’ text ’ DEFERRED

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-23

alter_system_reset_clause ::=

Semantics

archive_log_clause
The archive_log_clause manually archives redo log files or enables or disables

automatic archiving. To use this clause, your instance must have the database

mounted. The database can be either open or closed unless otherwise noted.

THREAD Clause
Specify THREAD to indicate the thread containing the redo log file group to be

archived.

Restriction on the THREAD clause Set this parameter only if you are using Oracle

with Real Application Clusters.

SEQUENCE Clause
Specify SEQUENCE to manually archive the online redo log file group identified by

the log sequence number integer in the specified thread. If you omit the THREAD
parameter, then Oracle archives the specified group from the thread assigned to

your instance.

CHANGE Clause
Specify CHANGE to manually archive the online redo log file group containing the

redo log entry with the system change number (SCN) specified by integer in the

specified thread. If the SCN is in the current redo log file group, then Oracle

performs a log switch. If you omit the THREAD parameter, then Oracle archives the

groups containing this SCN from all enabled threads.

You can use this clause only when your instance has the database open.

See Also: "Archiving Redo Logs Manually: Examples" on

page 10-119

parameter_name

SCOPE =

MEMORY

SPFILE

BOTH SID = ’ sid ’

ALTER SYSTEM

10-24 Oracle9i SQL Reference

CURRENT Clause
Specify CURRENT to manually archive the current redo log file group of the

specified thread, forcing a log switch. If you omit the THREAD parameter, then

Oracle archives all redo log file groups from all enabled threads, including logs

previous to current logs. You can specify CURRENT only when the database is open.

NOSWITCH Specify NOSWITCH if you want to manually archive the current redo

log file group without forcing a log switch. This setting is used primarily with

standby databases to prevent data divergence when the primary database shuts

down. Divergence implies the possibility of data loss in case of primary database

failure.

You can use the NOSWITCH clause only when your instance has the database

mounted but not open. If the database is open, then this operation closes the

database automatically. You must then manually shut down the database before

you can reopen it.

GROUP Clause
Specify GROUP to manually archive the online redo log file group with the GROUP
value specified by integer . You can determine the GROUP value for a redo log file

group by querying the data dictionary view DBA_LOG_FILES. If you specify both

the THREAD and GROUP parameters, then the specified redo log file group must be

in the specified thread.

LOGFILE Clause n
Specify LOGFILE to manually archive the online redo log file group containing the

redo log file member identified by ’filename ’. If you specify both the THREAD and

LOGFILE parameters, then the specified redo log file group must be in the specified

thread.

If the database was mounted with a backup controlfile, then specify USING BACKUP
CONTROLFILE to permit archiving of all online logfiles, including the current

logfile.

Restriction on the LOGFILE clause You must archive redo log file groups in the

order in which they are filled. If you specify a redo log file group for archiving with

the LOGFILE parameter, and earlier redo log file groups are not yet archived, then

Oracle returns an error.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-25

NEXT Clause
Specify NEXT to manually archive the next online redo log file group from the

specified thread that is full but has not yet been archived. If you omit the THREAD
parameter, then Oracle archives the earliest unarchived redo log file group from any

enabled thread.

ALL Clause
Specify ALL to manually archive all online redo log file groups from the specified

thread that are full but have not been archived. If you omit the THREAD parameter,

then Oracle archives all full unarchived redo log file groups from all enabled

threads.

START Clause
Specify START to enable automatic archiving of redo log file groups.

Restriction on the START clause You can enable automatic archiving only for the

thread assigned to your instance.

TO location Clause
Specify TO ’location ’ to indicate the primary location to which the redo log file

groups are archived. The value of this parameter must be a fully specified file

location following the conventions of your operating system. If you omit this

parameter, then Oracle archives the redo log file group to the location specified by

the initialization parameters LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_n.

STOP Clause
Specify STOP to disable automatic archiving of redo log file groups. You can disable

automatic archiving only for the thread assigned to your instance.

CHECKPOINT Clause
Specify CHECKPOINT to explicitly force Oracle to perform a checkpoint, ensuring

that all changes made by committed transactions are written to datafiles on disk.

You can specify this clause only when your instance has the database open. Oracle

does not return control to you until the checkpoint is complete.

GLOBAL In a Real Application Clusters environment, this setting causes Oracle to

perform a checkpoint for all instances that have opened the database. This is the

default.

ALTER SYSTEM

10-26 Oracle9i SQL Reference

LOCAL In a Real Application Clusters environment, this setting causes Oracle to

perform a checkpoint only for the thread of redo log file groups for the instance

from which you issue the statement.

CHECK DATAFILES Clause
In a distributed database system, such as a Real Application Clusters environment,

this clause updates an instance’s SGA from the database control file to reflect

information on all online datafiles.

■ Specify GLOBAL to perform this synchronization for all instances that have

opened the database. This is the default.

■ Specify LOCAL to perform this synchronization only for the local instance.

Your instance should have the database open.

end_session_clauses
The end_session_clauses give you several ways to end the current session.

DISCONNECT SESSION Clause
Use the DISCONNECT SESSION clause to disconnect the current session by

destroying the dedicated server process (or virtual circuit if the connection was

made by way of a Shared Server). To use this clause, your instance must have the

database open. You must identify the session with both of the following values from

the V$SESSION view:

■ For integer1 , specify the value of the SID column.

■ For integer2 , specify the value of the SERIAL# column.

If system parameters are appropriately configured, then application failover will

take effect.

■ The POST_TRANSACTION setting allows ongoing transactions to complete

before the session is disconnected. If the session has no ongoing transactions,

then this clause has the same effect described for as KILL SESSION .

■ The IMMEDIATE setting disconnects the session and recovers the entire session

state immediately, without waiting for ongoing transactions to complete.

See Also: "Forcing a Checkpoint: Example" on page 10-120

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-27

■ If you also specify POST_TRANSACTION and the session has ongoing

transactions, then the IMMEDIATE keyword is ignored.

■ If you do not specify POST_TRANSACTION, or you specify POST_
TRANSACTIONbut the session has no ongoing transactions, then this clause

has the same effect as described for KILL SESSION IMMEDIATE.

KILL SESSION Clause
The KILL SESSION clause lets you mark a session as terminated, roll back ongoing

transactions, release all session locks, and partially recover session resources. To use

this clause, your instance must have the database open, and your session and the

session to be killed must be on the same instance. You must identify the session

with both of the following values from the V$SESSION view:

■ For integer1 , specify the value of the SID column.

■ For integer2 , specify the value of the SERIAL# column.

If the session is performing some activity that must be completed, such as waiting

for a reply from a remote database or rolling back a transaction, then Oracle waits

for this activity to complete, marks the session as terminated, and then returns

control to you. If the waiting lasts a minute, then Oracle marks the session to be

killed and returns control to you with a message that the session is marked to be

killed. The PMON background process then marks the session as terminated when

the activity is complete.

Whether or not the session has an ongoing transaction, Oracle does not recover the

entire session state until the session user issues a request to the session and receives

a message that the session has been killed.

IMMEDIATE Specify IMMEDIATE to instruct Oracle to roll back ongoing

transactions, release all session locks, recover the entire session state, and return

control to you immediately.

DISTRIBUTED RECOVERY Clause
The DISTRIBUTED RECOVERY clause lets you enable or disable distributed

recovery. To use this clause, your instance must have the database open.

See Also: "Disconnecting a Session: Example" on page 10-123

See Also: "Killing a Session: Example" on page 10-122

ALTER SYSTEM

10-28 Oracle9i SQL Reference

ENABLE Specify ENABLE to enable distributed recovery. In a single-process

environment, you must use this clause to initiate distributed recovery.

You may need to issue the ENABLE DISTRIBUTED RECOVERY statement more than

once to recover an in-doubt transaction if the remote node involved in the

transaction is not accessible. In-doubt transactions appear in the data dictionary

view DBA_2PC_PENDING.

DISABLE Specify DISABLE to disable distributed recovery.

RESTRICTED SESSION Clause
The RESTRICTED SESSION clause lets you restrict logon to Oracle.

You can use this clause regardless of whether your instance has the database

dismounted or mounted, open or closed.

ENABLE Specify ENABLE to allows only users with RESTRICTED SESSION
system privilege to log on to Oracle. Existing sessions are not terminated.

DISABLE Specify DISABLE to reverse the effect of the ENABLE RESTRICTED
SESSION clause, allowing all users with CREATE SESSION system privilege to log

on to Oracle. This is the default.

FLUSH SHARED_POOL Clause
The FLUSH SHARED POOL clause lets you clear all data from the shared pool in the

system global area (SGA). The shared pool stores

■ Cached data dictionary information and

■ Shared SQL and PL/SQL areas for SQL statements, stored procedures, function,

packages, and triggers.

This statement does not clear shared SQL and PL/SQL areas for items that are

currently being executed. You can use this clause regardless of whether your

instance has the database dismounted or mounted, open or closed.

See Also: "Enabling Distributed Recovery: Example" on

page 10-122

See Also: "Restricting Session Logons: Example" on page 10-120

See Also: "Clearing the Shared Pool: Example" on page 10-120

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-29

SWITCH LOGFILE Clause
The SWITCH LOGFILE clause lets you explicitly force Oracle to begin writing to a

new redo log file group, regardless of whether the files in the current redo log file

group are full. When you force a log switch, Oracle begins to perform a checkpoint

but returns control to you immediately rather than when the checkpoint is

complete. To use this clause, your instance must have the database open.

SUSPEND | RESUME
The SUSPEND clause lets you suspend all I/O (datafile, control file, and file header)

as well as queries, in all instances, enabling you to make copies of the database

without having to handle ongoing transactions.

Restrictions on SUSPEND and RESUME

■ Do not use this clause unless you have put the database tablespaces in hot

backup mode.

■ If you start a new instance while the system is suspended, then that new

instance will not be suspended.

The RESUME clause lets you make the database available once again for queries and

I/O.

QUIESCE RESTRICTED | UNQUIESCE
Use the QUIESCE RESTRICTED and UNQUIESCE clauses to put the database in and

take it out of the quiesced state. This state enables database administrators to

perform administrative operations that cannot be safely performed in the presence

of concurrent transactions, queries, or PL/SQL operations.

If multiple QUIESCE RESTRICTEDor UNQUIESCEstatements issue at the same time

from different sessions or instances, then all but one will receive an error.

See Also: "Forcing a Log Switch: Example" on page 10-122

Note: The QUIESCE RESTRICTED clause is valid only if the

Database Resource Manager feature is installed and only if the

Resource Manager has been on continuously since database startup

in any instances that have opened the database.

ALTER SYSTEM

10-30 Oracle9i SQL Reference

QUIESCE RESTRICTED
Specify QUIESCE RESTRICTED to put the database in the quiesced state. For all

instances with the database open, this clause has the following effect:

■ Oracle instructs the Database Resource Manager in all instances to prevent all

inactive sessions (other than SYS and SYSTEM) from becoming active. No user

other than SYS and SYSTEM can start a new transaction, a new query, a new

fetch, or a new PL/SQL operation.

■ Oracle waits for all existing transactions in all instances that were initiated by a

user other than SYS or SYSTEM to finish (either commit or abort). Oracle also

waits for all running queries, fetches, and PL/SQL procedures in all instances

that were initiated by users other than SYS or SYSTEM and that are not inside

transactions to finish. If a query is carried out by multiple successive OCI

fetches, then Oracle does not wait for all fetches to finish. It waits for the current

fetch to finish and then blocks the next fetch. Oracle also waits for all sessions

(other than those of SYS or SYSTEM) that hold any shared resources (such as

enqueues) to release those resources. After all these operations finish, Oracle

places the database into quiesced state and finishes executing the QUIESCE
RESTRICTED statement.

■ If an instance is running in shared server mode, then Oracle instructs the

Database Resource Manager to block logins (other than SYSor SYSTEM) on that

instance. If an instance is running in non-shared-server mode, then Oracle does

not impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any

instance.

UNQUIESCE
Specify UNQUIESCE to take the database out of quiesced state. Doing so permits

transactions, queries, fetches, and PL/SQL procedures that were initiated by users

other than SYS or SYSTEM to be undertaken once again. The UNQUIESCE statement

does not have to originate in the same session that issued the QUIESCE
RESTRICTED statement.

SHUTDOWN Clause
The SHUTDOWNclause is relevant only if your system is using Oracle’s shared server

architecture. It shuts down a dispatcher identified by dispatcher_name . The

dispatcher_name must be a string of the form ’Dxxx ’, where xxx indicates the

number of the dispatcher. For a listing of dispatcher names, query the NAMEcolumn

of the V$DISPATCHER dynamic performance view.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-31

■ If you specify IMMEDIATE, then the dispatcher stops accepting new connections

immediately and Oracle terminates all existing connections through that

dispatcher. After all sessions are cleaned up, the dispatcher process literally

shuts down.

■ If you do not specify IMMEDIATE, then the dispatcher stops accepting new

connections immediately but waits for all its users to disconnect and for all its

database links to terminate. Then it literally shuts down.

REGISTER Clause
Specify REGISTER to instruct the PMON background process to register the instance

with the listeners immediately. If you do not specify this clause, then registration of

the instance does not occur until the next time PMON executes the discovery routine.

As a result, clients may not be able to access the services for as long as 60 seconds

after the listener is started.

alter_system_set_clause
The alter_system_set_clause lets you set or reset the value of any

initialization parameter. The parameters are described in "Initialization Parameters

and ALTER SYSTEM" on page 10-33.

The ability to change initialization parameter values depends on whether you have

started up the database with a traditional parameter file (pfile) or with a server

parameter file (spfile). To determine whether you can change the value of a

particular parameter, query the ISSYS_MODIFIABLE column of the V$PARAMETER
dynamic performance view.

When setting the parameter’s value, you can specify additional settings as follows:

COMMENT
The COMMENT clause lets you associate a comment string with this change in the

value of the parameter. If you also specify SPFILE , then this comment will appear

in the parameter file to indicate the most recent change made to this parameter.

DEFERRED
The DEFERRED keyword sets or modifies the value of the parameter for future

sessions that connect to the database. Current sessions retain the old value.

See Also: Oracle9i Database Concepts and Oracle9i Net Services
Administrator’s Guide for information on the PMON background

process and listeners

ALTER SYSTEM

10-32 Oracle9i SQL Reference

You must specify DEFERRED if the value of the ISSYS_MODIFIABLE column of

V$PARAMETER for this parameter is DEFERRED. If the value of that column is

IMMEDIATE, then the DEFERRED keyword in this clause is optional. If the value of

that column is FALSE, then you cannot specify DEFERRED in this ALTER SYSTEM
statement.

SCOPE
The SCOPE clause lets you specify when the change takes effect. Scope depends on

whether you are started up the database using a parameter file (pfile) or server

parameter file (spfile).

MEMORY MEMORY indicates that the change is made in memory, takes effect

immediately, and persists until the database is shut down. If you started up the

database using a parameter file (pfile), then this is the only scope you can specify.

SPFILE SPFILE indicates that the change is made in the server parameter file. The

new setting takes effect when the database is next shut down and started up again.

You must specify SPFILE when changing the value of a static parameter.

BOTH BOTH indicates that the change is made in memory and in the server

parameter file. The new setting takes effect immediately and persists after the

database is shut down and started up again.

If a server parameter file was used to start up the database, then BOTHis the default.

If a parameter file was used to start up the database, then MEMORY is the default, as

well as the only scope you can specify.

SID
The SID clause is relevant only in a Real Application Clusters environment. This

clause lets you specify the SID of the instance where the value will take effect.

■ Specify SID = ’*’ if you want Oracle to change the value of the parameter for

all instances.

■ Specify SID = ’sid’ if you want Oracle to change the value of the parameter

only for the instance sid . This setting takes precedence over previous and

subsequent ALTER SYSTEM SET statements that specify SID = ’*’ .

If you do not specify this clause:

See Also: Oracle9i Database Reference for information on the

V$PARAMETER dynamic performance view

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-33

■ If the instance was started up with a pfile (client-side initialization parameter

file), then Oracle assumes the SID of the current instance.

■ If the instance was started up with an spfile (server parameter file), then Oracle

assumes SID = ’*’ .

If you specify an instance other than the current instance, then Oracle sends a

message to that instance to change the parameter value in the memory of that

instance.

alter_system_reset_clause
The alter_system_reset_clause is for use in a Real Application Clusters

environment. It gives you separate control for an individual instance over

parameters that may have been set for all instances in a server parameter file. The

SCOPE clause has the same behavior as described for the alter_system_set_
clause .

SID Specify the SID clause to remove a previously specified setting of this

parameter for your instance (that is, a previous ALTER SYSTEM SET... SID =

’sid’ statement). Your instance will assume the value of the parameter as specified

in a previous or subsequent ALTER SYSTEM SET... SID = ’*’ statement.

Initialization Parameters and ALTER SYSTEM

This section contains an alphabetical listing of all initialization parameters with

brief descriptions only. For a complete description of these parameters, please refer

to their full description in Oracle9i Database Reference. Oracle9i Database Reference

ACTIVE_INSTANCE_COUNT

See Also: Oracle9i Database Reference for information about the

V$PARAMETER view

See Also: Oracle9i Real Application Clusters Deployment and
Performance for information on setting parameter values for an

individual instance in a Real Application Clusters environment

Parameter type Integer

Default value There is no default value.

Parameter class Static

Initialization Parameters and ALTER SYSTEM

10-34 Oracle9i SQL Reference

ACTIVE_INSTANCE_COUNT enables you to designate one instance in a

two-instance cluster as the primary instance and the other instance as the secondary

instance. This parameter has no functionality in a cluster with more than two

instances.

AQ_TM_PROCESSES

AQ_TM_PROCESSES enables time monitoring of queue messages. The times can be

used in messages that specify delay and expiration properties. Values from 1 to 10

specify the number of queue monitor processes created to monitor the messages. If

AQ_TM_PROCESSES is not specified or is set to 0, then the queue monitor is not

created.

ARCHIVE_LAG_TARGET

Range of values 1 or >= the number of instances in the cluster. (Values other

than 1 have no effect on the active or standby status of any

instances.)

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Note: This parameter functions only in a cluster with only two

instances.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 10

Parameter type Integer

Default value 0 (disabled)

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 or any integer in [60, 7200]

Real Application
Clusters

Multiple instances should use the same value.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-35

ARCHIVE_LAG_TARGET limits the amount of data that can be lost and effectively

increases the availability of the standby database by forcing a log switch after a

user-specified time period elapses.

AUDIT_FILE_DEST

AUDIT_FILE_DEST specifies the directory where Oracle stores auditing files.

AUDIT_SYS_OPERATIONS

AUDIT_SYS_OPERATIONS enables or disables the auditing of operations issued by

user SYS, and users connecting with SYSDBA or SYSOPER privileges. The audit

records are written to the operating system’s audit trail.

AUDIT_TRAIL

AUDIT_TRAIL enables or disables the automatic writing of rows to the audit trail.

BACKGROUND_CORE_DUMP

Parameter type String

Syntax AUDIT_FILE_DEST = ’ directory ’

Default value ORACLE_HOME/rdbms/audit

Parameter class Static

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type String

Syntax AUDIT_TRAIL = {NONE | FALSE | DB | TRUE | OS}

Default value There is no default value.

Parameter class Static

Parameter type String

Initialization Parameters and ALTER SYSTEM

10-36 Oracle9i SQL Reference

BACKGROUND_CORE_DUMP specifies whether Oracle includes the SGA in the core

file for Oracle background processes.

BACKGROUND_DUMP_DEST

BACKGROUND_DUMP_DEST specifies the pathname (directory or disc) where

debugging trace files for the background processes (LGWR, DBWn, and so on) are

written during Oracle operations.

BACKUP_TAPE_IO_SLAVES

BACKUP_TAPE_IO_SLAVES specifies whether I/O server processes (also called

slaves) are used by the Recovery Manager to back up, copy, or restore data to tape.

When the value is set to true , Oracle uses an I/O server process to write to or read

from a tape device. When the value is set to false (the default), Oracle does not

use I/O server process for backups. Instead, the shadow process engaged in the

backup accesses the tape device.

BITMAP_MERGE_AREA_SIZE

Syntax BACKGROUND_CORE_DUMP = {partial | full}

Default value partial

Parameter class Static

Parameter type String

Syntax BACKGROUND_DUMP_DEST = {pathname | directory }

Default value Operating system-dependent

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid local path, directory, or disk

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SYSTEM ... DEFERRED

Range of values true | false

Parameter type Integer

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-37

BITMAP_MERGE_AREA_SIZE is relevant only for systems containing bitmap

indexes. It specifies the amount of memory Oracle uses to merge bitmaps retrieved

from a range scan of the index. The default value is 1 MB. A larger value usually

improves performance, because the bitmap segments must be sorted before being

merged into a single bitmap.

BLANK_TRIMMING

BLANK_TRIMMING specifies the data assignment semantics of character datatypes.

BUFFER_POOL_KEEP

Default value 1048576 (1 MB)

Parameter class Static

Range of values Operating system-dependent

Note: Oracle does not recommend using the BITMAP_MERGE_
AREA_SIZE parameter unless the instance is configured with the

shared server option. Oracle recommends that you enable

automatic sizing of SQL working areas by setting PGA_
AGGREGATE_TARGET instead. BITMAP_MERGE_AREA_SIZE is
retained for backward compatibility.

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type String

Syntax BUFFER_POOL_KEEP = {integer |

 (BUFFERS: integer , LRU_LATCHES: integer)}

where integer is the number of buffers and, optionally, the

number of LRU latches.

Default value There is no default value.

Initialization Parameters and ALTER SYSTEM

10-38 Oracle9i SQL Reference

BUFFER_POOL_KEEP lets you save objects in the buffer cache by setting aside a

portion of the total number of buffers (the value of the DB_BLOCK_BUFFERS
parameter) as a KEEP buffer pool. You can also allocate to the KEEP buffer pool a

specified portion of the total number of LRU latches.

BUFFER_POOL_RECYCLE

BUFFER_POOL_RECYCLE lets you limit the size of objects in the buffer cache by

setting aside a portion of the total number of buffers (the value of the DB_BLOCK_

Parameter class Static

Note: This parameter is deprecated in favor of the DB_KEEP_
CACHE_SIZE parameter. Oracle recommends that you use DB_
KEEP_CACHE_SIZE instead. Also, BUFFER_POOL_KEEP cannot be

combined with the new dynamic DB_KEEP_CACHE_SIZE
parameter; combining these parameters in the same parameter file

will produce an error. BUFFER_POOL_KEEPis retained for

backward compatibility only.

Parameter type String

Syntax BUFFER_POOL_RECYCLE = {integer |

 (BUFFERS: integer , LRU_LATCHES: integer)}

where integer is the number of buffers and, optionally, the

number of LRU latches.

Default value There is no default value.

Parameter class Static

Note: This parameter is deprecated in favor of the DB_RECYCLE_
CACHE_SIZE parameter. Oracle recommends that you use DB_
RECYCLE_CACHE_SIZE instead. Also, BUFFER_POOL_RECYCLE
cannot be combined with the new dynamic DB_RECYCLE_CACHE_
SIZE parameter; combining these parameters in the same

parameter file will produce an error. BUFFER_POOL_RECYCLEis
retained for backward compatibility only.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-39

BUFFERS parameter) as a RECYCLE buffer pool. You can also allocate to the

RECYCLE buffer pool a specified portion of the total number of LRU latches.

CIRCUITS

CIRCUITS specifies the total number of virtual circuits that are available for

inbound and outbound network sessions. It is one of several parameters that

contribute to the total SGA requirements of an instance.

CLUSTER_DATABASE

CLUSTER_DATABASE is an Oracle9i Real Application Clusters parameter that

specifies whether or not Oracle9i Real Application Clusters is enabled.

CLUSTER_DATABASE_INSTANCES

Parameter type Integer

Default value Derived:

■ If you are using shared server architecture, then the

value of SESSIONS

■ If you are not using the shared server architecture, then

the value is 0

Parameter class Static

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Real Application
Clusters

Multiple instances must have the same value.

Parameter type Integer

Default value 1

Parameter class Static

Range of values Any nonzero value

Initialization Parameters and ALTER SYSTEM

10-40 Oracle9i SQL Reference

CLUSTER_DATABASE_INSTANCES is an Oracle9i Real Application Clusters

parameter that specifies the number of instances that are configured as part of your

cluster database. You must set this parameter for every instance. Normally you

should set this parameter to the number of instances in your Oracle9i Real

Application Clusters environment. A proper setting for this parameter can improve

memory use.

CLUSTER_INTERCONNECTS

CLUSTER_INTERCONNECTS provides Oracle with information about additional

cluster interconnects available for use in Oracle9i Real Application Clusters

environments.

COMMIT_POINT_STRENGTH

COMMIT_POINT_STRENGTH is relevant only in distributed database systems. It

specifies a value that determines the commit point site in a distributed transaction.

The node in the transaction with the highest value for COMMIT_POINT_STRENGTH
will be the commit point site.

COMPATIBLE

Parameter type String

Syntax CLUSTER_INTERCONNECTS =ifn [: ifn ...]

Default value There is no default value.

Parameter class Static

Range of values One or more IP addresses, separated by colons

Parameter type Integer

Default value 1

Parameter class Static

Range of values 0 to 255

Parameter type String

Syntax COMPATIBLE = release_number

Default value 8.1.0

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-41

COMPATIBLE allows you to use a new release, while at the same time guaranteeing

backward compatibility with an earlier release. This is helpful if it becomes

necessary to revert to the earlier release.

CONTROL_FILE_RECORD_KEEP_TIME

CONTROL_FILE_RECORD_KEEP_TIME specifies the minimum number of days

before a reusable record in the control file can be reused. In the event a new record

needs to be added to a reusable section and the oldest record has not aged enough,

the record section expands. If this parameter is set to 0, then reusable sections never

expand, and records are reused as needed.

CONTROL_FILES

Parameter class Static

Range of values Default release to current release

Real Application
Clusters

Multiple instances must have the same value.

Parameter type Integer

Default value 7 (days)

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 365 (days)

Parameter type String

Syntax CONTROL_FILES = filename [, filename [...]]

Note: The control file name can be an OMF (Oracle Managed

Files) name. This occurs when the control file is re-created

using the CREATE CONTROLFILE REUSE statement.

Default value Operating system-dependent

Parameter class Static

Range of values 1 to 8 filenames

Real Application
Clusters

Multiple instances must have the same value.

Initialization Parameters and ALTER SYSTEM

10-42 Oracle9i SQL Reference

Every database has a control file, which contains entries that describe the structure

of the database (such as its name, the timestamp of its creation, and the names and

locations of its datafiles and redo files). CONTROL_FILES specifies one or more

names of control files, separated by commas.

CORE_DUMP_DEST

CORE_DUMP_DEST is primarily a UNIX parameter and may not be supported on

your platform. It specifies the directory where Oracle dumps core files.

CPU_COUNT

CPU_COUNT specifies the number of CPUs available to Oracle. On single-CPU

computers, the value of CPU_COUNT is 1.

CREATE_BITMAP_AREA_SIZE

Parameter type String

Syntax CORE_DUMP_DEST =directory

Default value ORACLE_HOME/DBS

Parameter class Dynamic: ALTER SYSTEM

Parameter type Integer

Default value Set automatically by Oracle

Parameter class Static

Range of values 0 to unlimited

Caution: On most platforms, Oracle automatically sets the value

of CPU_COUNT to the number of CPUs available to your Oracle

instance. Do not change the value of CPU_COUNT.

Parameter type Integer

Default value 8388608 (8 MB)

Parameter class Static

Range of values Operating system-dependent

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-43

CREATE_BITMAP_AREA_SIZE is relevant only for systems containing bitmap

indexes. It specifies the amount of memory (in bytes) allocated for bitmap creation.

The default value is 8 MB. A larger value may speed up index creation.

CREATE_STORED_OUTLINES
Syntax:

CREATE_STORED_OUTLINES = {TRUE | FALSE | category_name} [NOOVERRIDE]

The CREATE_STORED_OUTLINES parameter determines whether Oracle should

automatically create and store an outline for each query submitted on the system.

CREATE_STORED_OUTLINES is not an initialization parameter.

■ TRUE enables automatic outline creation for subsequent queries in the system.

These outlines receive a unique system-generated name and are stored in the

DEFAULT category. If a particular query already has an outline defined for it in

the DEFAULT category, then that outline will remain and a new outline will not

be created.

■ FALSE disables automatic outline creation for the system. This is the default.

■ category_name has the same behavior as TRUE except that any outline

created in the system is stored in the category_name category.

■ NOOVERRIDE specifies that this system setting will not override the setting for

any session in which this parameter was explicitly set. If you do not specify

NOOVERRIDE, then this setting takes effect in all sessions.

CURSOR_SHARING

Note: Oracle does not recommend using the CREATE_BITMAP_
AREA_SIZE parameter unless the instance is configured with the

shared server option. Oracle recommends that you enable

automatic sizing of SQL working areas by setting PGA_
AGGREGATE_TARGET instead. CREATE_BITMAP_AREA_SIZE is
retained for backward compatibility.

Parameter type String

Syntax CURSOR_SHARING = {SIMILAR | EXACT | FORCE}

Default value EXACT

Initialization Parameters and ALTER SYSTEM

10-44 Oracle9i SQL Reference

CURSOR_SHARING determines what kind of SQL statements can share the same

cursors.

CURSOR_SPACE_FOR_TIME

CURSOR_SPACE_FOR_TIME lets you use more space for cursors in order to save

time. It affects both the shared SQL area and the client’s private SQL area.

DB_nK_CACHE_SIZE

DB_nK_CACHE_SIZE (where n = 2, 4, 8, 16, 32) specifies the size of the cache for the

nK buffers. You can set this parameter only when DB_BLOCK_SIZE has a value

other than nK. For example, if DB_BLOCK_SIZE=4096 , then it is illegal to specify

the parameter DB_4K_CACHE_SIZE (because the size for the 4 KB block cache is

already specified by DB_CACHE_SIZE).

DB_BLOCK_BUFFERS

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Big integer

Syntax DB_[2 | 4 | 8 | 16 | 32]K_CACHE_SIZE =
integer [K | M | G]

Default value 0 (additional block size caches are not configured by default)

Parameter class Dynamic: ALTER SYSTEM

Range of values Minimum: the granule size

Maximum: operating system-dependent

Parameter type Integer

Default value Derived: 48 MB / DB_BLOCK_SIZE

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-45

DB_BLOCK_BUFFERSspecifies the number of database buffers in the buffer cache. It

is one of several parameters that contribute to the total memory requirements of the

SGA of an instance.

DB_BLOCK_CHECKING

DB_BLOCK_CHECKING controls whether Oracle performs block checking for data

blocks. When this parameter is set to true , Oracle performs block checking for all

data blocks. When it is set to false , Oracle does not perform block checking for

blocks in the user tablespaces. However, block checking for the SYSTEM tablespace

is always turned on.

DB_BLOCK_CHECKSUM

Range of values 50 to an operating system-specific maximum

Real Application
Clusters

Multiple instances can have different values, and you can

change the values as needed.

Note: This parameter is deprecated in favor of the DB_CACHE_
SIZE parameter. Oracle recommends that you use DB_CACHE_
SIZE instead. Also, DB_BLOCK_BUFFERScannot be combined with

the new dynamic DB_CACHE_SIZE parameter; combining these

parameters in the same parameter file will produce an error. DB_
BLOCK_BUFFERS is retained for backward compatibility.

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type Boolean

Default value true

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Initialization Parameters and ALTER SYSTEM

10-46 Oracle9i SQL Reference

DB_BLOCK_CHECKSUM determines whether DBWn and the direct loader will

calculate a checksum (a number calculated from all the bytes stored in the block)

and store it in the cache header of every data block when writing it to disk.

Checksums are verified when a block is read-only if this parameter is true and the

last write of the block stored a checksum. In addition, Oracle gives every log block a

checksum before writing it to the current log.

DB_BLOCK_SIZE

DB_BLOCK_SIZE specifies the size (in bytes) of Oracle database blocks. Typical

values are 2048 and 4096. The value for DB_BLOCK_SIZE in effect at the time you

create the database determines the size of the blocks. The value must remain set to

its initial value.

DB_CACHE_ADVICE

DB_CACHE_ADVICE enables or disables statistics gathering used for predicting

behavior with different cache sizes through the V$DB_CACHE_ADVICEperformance

view.

Parameter type Integer

Default value 2048

Parameter class Static

Range of values 2048 to 32768, but your operating system may have a

narrower range

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Caution: Set this parameter at the time of database creation. Do

not alter it afterward.

Parameter type String

Syntax DB_CACHE_ADVICE = {ON | READY | OFF}

Default value If STATISTICS_LEVEL is set to TYPICAL or ALL, then ON

If STATISTICS_LEVEL is set to BASIC, then OFF

Parameter class Dynamic: ALTER SYSTEM

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-47

DB_CACHE_SIZE

DB_CACHE_SIZE specifies the size of the DEFAULT buffer pool for buffers with the

primary block size (the block size defined by the DB_BLOCK_SIZE parameter).

DB_CREATE_FILE_DEST

DB_CREATE_FILE_DEST sets the default location for Oracle-managed datafiles.

This location is also used as the default for Oracle-managed control files and online

redo logs if DB_CREATE_ONLINE_LOG_DEST_n is not specified.

DB_CREATE_ONLINE_LOG_DEST_ n

DB_CREATE_ONLINE_LOG_DEST_n (where n = 1, 2, 3, ... 5) sets the default location

for Oracle-managed control files and online redo logs.

DB_DOMAIN

Parameter type Big integer

Syntax DB_CACHE_SIZE = integer [K | M | G]

Default value 48 MB, rounded up to the nearest granule size

Parameter class Dynamic: ALTER SYSTEM

Parameter type String

Syntax DB_CREATE_FILE_DEST = directory

Default value There is no default value.

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type String

Syntax DB_CREATE_ONLINE_LOG_DEST_[1 | 2 | 3 | 4 | 5]
= directory

Default value There is no default value.

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type String

Syntax DB_DOMAIN = domain_name

Initialization Parameters and ALTER SYSTEM

10-48 Oracle9i SQL Reference

In a distributed database system, DB_DOMAIN specifies the logical location of the

database within the network structure. You should set this parameter if this

database is or ever will be part of a distributed system. The value consists of the

extension components of a global database name, consisting of valid identifiers,

separated by periods. Oracle Corporation recommends that you specify DB_
DOMAIN as a unique string for all databases in a domain.

DB_FILE_MULTIBLOCK_READ_COUNT

DB_FILE_MULTIBLOCK_READ_COUNT is one of the parameters you can use to

minimize I/O during table scans. It specifies the maximum number of blocks read

in one I/O operation during a sequential scan. The total number of I/Os needed to

perform a full table scan depends on such factors as the size of the table, the

multiblock read count, and whether parallel execution is being utilized for the

operation.

DB_FILE_NAME_CONVERT

Default value There is no default value.

Parameter class Static

Range of values Any legal string of name components, separated by periods

and up to 128 characters long (including the periods). This

value cannot be NULL.

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Parameter type Integer

Default value 8

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values Operating system-dependent

Parameter type String

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-49

DB_FILE_NAME_CONVERT is useful for creating a duplicate database for recovery

purposes. It converts the filename of a new datafile on the primary database to a

filename on the standby database. If you add a datafile to the primary database, you

must add a corresponding file to the standby database. When the standby database

is updated, this parameter converts the datafile name on the primary database to

the datafile name on the standby database. The file on the standby database must

exist and be writable, or the recovery process will halt with an error.

DB_FILES

Syntax DB_FILE_NAME_CONVERT = [(]’string1’ ,
’string2’ , ’string3’ , ’string4’ , ...[)]

Where:

■ string1 is the pattern of the primary database filename

■ string2 is the pattern of the standby database filename

■ string3 is the pattern of the primary database filename

■ string4 is the pattern of the standby database filename

You can use as many pairs of primary and standby

replacement strings as required. You can use single or

double quotation marks. The parentheses are optional.

Following are example settings that are acceptable:

DB_FILE_NAME_CONVERT =
(’/dbs/t1/’,’/dbs/t1/s_’,’dbs/t2/
’,’dbs/t2/s_’)

Default value None

Parameter class Static

Parameter type Integer

Default value 200

Parameter class Static

Range of values Minimum: the largest among the absolute file numbers of

the datafiles in the database

Maximum: operating system-dependent

Initialization Parameters and ALTER SYSTEM

10-50 Oracle9i SQL Reference

DB_FILES specifies the maximum number of database files that can be opened for

this database. The maximum valid value is the maximum number of files, subject to

operating system constraint, that will ever be specified for the database, including

files to be added by ADD DATAFILE statements.

DB_KEEP_CACHE_SIZE

DB_KEEP_CACHE_SIZE specifies the size of the KEEP buffer pool. The size of the

buffers in the KEEP buffer pool is the primary block size (the block size defined by

the DB_BLOCK_SIZE parameter).

DB_NAME

DB_NAME specifies a database identifier of up to 8 characters. If specified, it must

correspond to the name specified in the CREATE DATABASE statement. Although

the use of DB_NAME is optional, you should generally set it before issuing the

CREATE DATABASE statement, and then reference it in that statement.

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Parameter type Big integer

Syntax DB_KEEP_CACHE_SIZE = integer [K | M | G]

Default value 0 (KEEP cache is not configured by default)

Parameter class Dynamic: ALTER SYSTEM

Range of values Minimum: the granule size

Maximum: operating system-dependent

Parameter type String

Syntax DB_NAME = database_name

Default value There is no default value.

Parameter class Static

Real Application
Clusters

You must set this parameter for every instance. Multiple

instances must have the same value, or the same value must

be specified in the STARTUP OPEN SQL*Plus statement or

the ALTER DATABASE MOUNT SQL statement.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-51

DB_RECYCLE_CACHE_SIZE

DB_RECYCLE_CACHE_SIZE specifies the size of the RECYCLE buffer pool. The size

of the buffers in the RECYCLE pool is the primary block size (the block size defined

by the DB_BLOCK_SIZE parameter).

DB_WRITER_PROCESSES

DB_WRITER_PROCESSES is useful for systems that modify data heavily. It specifies

the initial number of database writer processes for an instance.

DBLINK_ENCRYPT_LOGIN

When you attempt to connect to a database using a password, Oracle encrypts the

password before sending it to the database. DBLINK_ENCRYPT_LOGIN specifies

whether or not attempts to connect to other Oracle servers through database links

should use encrypted passwords.

Parameter type Big integer

Syntax DB_RECYCLE_CACHE_SIZE =integer [K | M | G]

Default value 0 (RECYCLE cache is not configured by default)

Parameter class Dynamic: ALTER SYSTEM

Range of values Minimum: the granule size

Maximum: operating system-dependent

Parameter type Integer

Default value 1

Parameter class Static

Range of values 1 to 20

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Initialization Parameters and ALTER SYSTEM

10-52 Oracle9i SQL Reference

DBWR_IO_SLAVES

DBWR_IO_SLAVES is relevant only on systems with only one database writer

process (DBW0). It specifies the number of I/O server processes used by the DBW0
process. The DBW0 process and its server processes always write to disk. By default,

the value is 0 and I/O server processes are not used.

DG_BROKER_CONFIG_FILE n

DG_BROKER_CONFIG_FILEn (where n = 1, 2) specifies the names for the Data

Guard broker configuration files.

DG_BROKER_START

DG_BROKER_START enables Oracle to determine whether or not the DMON (Data

Guard broker) process should be started. DMON is a non-fatal Oracle background

process and exists as long as the instance exists, whenever this parameter is set to

true .

Parameter type Integer

Default value 0

Parameter class Static

Range of values 0 to operating system-dependent

Parameter type String

Syntax DG_BROKER_CONFIG_FILE[1 | 2] = filename

Default value Operating system-dependent

Parameter class Dynamic: ALTER SYSTEM

Range of values One filename

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-53

DISK_ASYNCH_IO

DISK_ASYNCH_IO controls whether I/O to datafiles, control files, and logfiles is

asynchronous (that is, whether parallel server processes can overlap I/O requests

with CPU processing during table scans). If your platform supports asynchronous

I/O to disk, Oracle Corporation recommends that you leave this parameter set to its

default value. However, if the asynchronous I/O implementation is not stable, you

can set this parameter to false to disable asynchronous I/O. If your platform does

not support asynchronous I/O to disk, this parameter has no effect.

DISPATCHERS

Parameter type Boolean

Default value true

Parameter class Static

Range of values true | false

Parameter type String

Syntax DISPATCHERS = ’ dispatch_clause ’

dispatch_clause::=

(PROTOCOL = protocol) |

(ADDRESS = address) |

(DESCRIPTION = description)

[options_clause]

Initialization Parameters and ALTER SYSTEM

10-54 Oracle9i SQL Reference

DISPATCHERS configures dispatcher processes in the shared server architecture.

The parsing software supports a name-value syntax to enable the specification of

attributes in a position-independent case-insensitive manner. For example:

DISPATCHERS = "(PROTOCOL=TCP)(DISPATCHERS=3)"

DISTRIBUTED_LOCK_TIMEOUT

DISTRIBUTED_LOCK_TIMEOUT specifies the amount of time (in seconds) for

distributed transactions to wait for locked resources.

options_clause::=

(DISPATCHERS = integer |

 SESSIONS = integer |

 CONNECTIONS = integer |

 TICKS = seconds |

 POOL = {1 | ON | YES | TRUE | BOTH |

 ({IN | OUT} = ticks) | 0 | OFF | NO |
FALSE |

ticks } |

 MULTIPLEX = {1 | ON | YES | TRUE |

 0 | OFF | NO | FALSE | BOTH | IN | OUT} |

 LISTENER = tnsname |

 SERVICE = service |

 INDEX = integer)

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Parameter type Integer

Default value 60

Parameter class Static

Range of values 1 to unlimited

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-55

DML_LOCKS

A DML lock is a lock obtained on a table that is undergoing a DML operation

(insert, update, delete). DML_LOCKS specifies the maximum number of DML

locks—one for each table modified in a transaction. The value should equal the

grand total of locks on tables currently referenced by all users. For example, if three

users are modifying data in one table, then three entries would be required. If three

users are modifying data in two tables, then six entries would be required.

DRS_START

DRS_START enables Oracle to determine whether or not the DMON (Data Guard

broker) process should be started. DMON is a non-fatal Oracle background process

and exists as long as the instance exists, whenever this parameter is set to true .

Parameter type Integer

Default value Derived: 4 * TRANSACTIONS

Parameter class Static

Range of values 20 to unlimited; a setting of 0 disables enqueues

Real Application
Clusters

You must set this parameter for every instance, and all

instances must have positive values or all must be 0.

Note: You can set this parameter using ALTER SYSTEMonly if you

have started up the database using a server parameter file (spfile),

and you must specify SCOPE = SPFILE .

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Note: This parameter is deprecated in favor of the DG_BROKER_
START parameter. Oracle recommends that you use DG_BROKER_
START instead. DRS_START is retained for backward compatibility

only.

Initialization Parameters and ALTER SYSTEM

10-56 Oracle9i SQL Reference

ENQUEUE_RESOURCES

ENQUEUE_RESOURCESsets the number of resources that can be concurrently locked

by the lock manager. An enqueue is a sophisticated locking mechanism that

permits several concurrent processes to share known resources to varying degrees.

Any object that can be used concurrently can be protected with enqueues. For

example, Oracle allows varying levels of sharing on tables: two processes can lock a

table in share mode or in share update mode.

EVENT

EVENT is a parameter used only to debug the system. Do not alter the value of this

parameter except under the supervision of Oracle Support Services staff.

FAL_CLIENT

FAL_CLIENT specifies the FAL (fetch archive log) client name that is used by the

FAL service, configured through the FAL_SERVER parameter, to refer to the FAL

Parameter type Integer

Default value Derived from SESSIONS parameter

Parameter class Static

Range of values 10 to unlimited

Note: You can set this parameter using ALTER SYSTEMonly if you

have started up the database using a server parameter file (spfile),

and you must specify SCOPE = SPFILE .

Parameter type String

Default value There is no default value.

Parameter class Static

Parameter type String

Syntax FAL_CLIENT = string

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-57

client. The value is an Oracle Net service name, which is assumed to be configured

properly on the FAL server system to point to the FAL client (standby database).

FAL_SERVER

FAL_SERVER specifies the FAL (fetch archive log) server for a standby database.

The value is an Oracle Net service name, which is assumed to be configured

properly on the standby database system to point to the desired FAL server.

FAST_START_IO_TARGET

FAST_START_IO_TARGET (available only with the Oracle Enterprise Edition)

specifies the number of I/Os that should be needed during crash or instance

recovery.

Parameter type String

Syntax FAL_SERVER = string

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Parameter type Integer

Default value All the buffers in the cache

Parameter class Dynamic: ALTER SYSTEM

Range of values 1000 to all buffers in the cache. A setting of 0 disables

limiting recovery I/Os.

Real Application
Clusters

Multiple instances can have different values, and you can

change the values at runtime.

Note: This parameter is deprecated in favor of the FAST_START_
MTTR_TARGET parameter. Oracle recommends that you use FAST_
START_MTTR_TARGET instead. FAST_START_IO_TARGETis
retained for backward compatibility only.

Initialization Parameters and ALTER SYSTEM

10-58 Oracle9i SQL Reference

FAST_START_MTTR_TARGET

FAST_START_MTTR_TARGET enables you to specify the number of seconds the

database takes to perform crash recovery of a single instance. When specified,

FAST_START_MTTR_TARGET

■ Is overridden by FAST_START_IO_TARGET

■ Is overridden by LOG_CHECKPOINT_INTERVAL

FAST_START_PARALLEL_ROLLBACK

FAST_START_PARALLEL_ROLLBACK determines the maximum number of

processes that can exist for performing parallel rollback. This parameter is useful on

systems in which some or all of the transactions are long running.

FILE_MAPPING

FILE_MAPPING enables or disables file mapping. The FMON background process

will be started to manage the mapping information when file mapping is enabled.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 3600 seconds

Real Application
Clusters

Multiple instances can have different values, and you can

change the values at runtime.

Parameter type String

Syntax FAST_START_PARALLEL_ROLLBACK = {HI | LO |
FALSE}

Default value LOW

Parameter class Dynamic: ALTER SYSTEM

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-59

FILESYSTEMIO_OPTIONS

FILESYSTEMIO_OPTIONS specifies I/O operations for file system files.

FIXED_DATE

FIXED_DATE enables you to set a constant date that SYSDATE will always return

instead of the current date. This parameter is useful primarily for testing. The value

can be in the format shown above or in the default Oracle date format, without a

time.

GC_FILES_TO_LOCKS

Parameter type String

Syntax FILESYSTEMIO_OPTIONS = {none | setall |
directIO | asynch}

Default value There is no default value.

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type String

Syntax FIXED_DATE = YYYY-MM-DD-HH24:MI:SS (or the default

Oracle date format)

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Parameter type String

Syntax GC_FILES_TO_LOCKS =

’{ file_list =lock_count [! blocks][EACH][:...]}’

Spaces are not allowed within the quotation marks.

Default value There is no default value.

Parameter class Static

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have identical values. To change the value,

you must shut down all instances in the cluster, change the

value for each instance, and then start up each instance.

Initialization Parameters and ALTER SYSTEM

10-60 Oracle9i SQL Reference

GC_FILES_TO_LOCKS is an Oracle9i Real Application Clusters parameter that has

no effect on an instance running in exclusive mode. It controls the mapping of

pre-release 9.0.1 parallel cache management (PCM) locks to datafiles.

GLOBAL_CONTEXT_POOL_SIZE

GLOBAL_CONTEXT_POOL_SIZE specifies the amount of memory to allocate in the

SGA for storing and managing global application context.

GLOBAL_NAMES

GLOBAL_NAMES specifies whether a database link is required to have the same

name as the database to which it connects.

HASH_AREA_SIZE

Note: Setting this parameter to any value other than the default

will disable Cache Fusion processing in Oracle9i Real Application

Clusters.

Parameter type String

Default value 1 MB

Parameter class Static

Range of values Any integer value in MB

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type Integer

Default value Derived: 2 * SORT_AREA_SIZE

Parameter class Dynamic: ALTER SESSION

Range of values 0 to operating system-dependent

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-61

HASH_AREA_SIZE is relevant to parallel execution operations and to the query

portion of DML or DDL statements. It specifies the maximum amount of memory,

in bytes, to be used for hash joins.

HASH_JOIN_ENABLED

HASH_JOIN_ENABLED specifies whether the optimizer should consider using a

hash join as a join method. If set to false , then hashing is not available as a join

method. If set to true , then the optimizer compares the cost of a hash join with

other types of joins, and chooses hashing if it gives the best cost. Oracle Corporation

recommends that you set this parameter to true for all data warehousing

applications.

HI_SHARED_MEMORY_ADDRESS

HI_SHARED_MEMORY_ADDRESS specifies the starting address at runtime of the

system global area (SGA). It is ignored on platforms that specify the SGA’s starting

address at linktime.

Note: Oracle does not recommend using the HASH_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends that you enable automatic sizing of

SQL working areas by setting PGA_AGGREGATE_TARGET instead.

HASH_AREA_SIZE is retained for backward compatibility.

Parameter type Boolean

Default value true

Parameter class Dynamic: ALTER SESSION

Range of values true | false

Parameter type Integer

Default value 0

Parameter class Static

Initialization Parameters and ALTER SYSTEM

10-62 Oracle9i SQL Reference

HS_AUTOREGISTER

HS_AUTOREGISTER enables or disables automatic self-registration of

Heterogeneous Services (HS) agents. When enabled, information is uploaded into

the server’s data dictionary to describe a previously unknown agent class or a new

agent version.

IFILE

Use IFILE to embed another parameter file within the current parameter file. For

example:

IFILE = COMMON.ORA

INSTANCE_GROUPS

Parameter type Boolean

Default value true

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Parameter type Parameter file

Syntax IFILE = parameter_file_name

Default value There is no default value.

Parameter class Static

Range of values Valid parameter filenames

Real Application
Clusters

Multiple instances can have different values.

Parameter type String

Syntax INSTANCE_GROUPS =group_name [, group_name
...]

Default value There is no default value.

Parameter class Static

Range of values One or more instance group names, separated by commas

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-63

INSTANCE_GROUPS is an Oracle9i Real Application Clusters parameter that you

can specify only in parallel mode. Used in conjunction with the PARALLEL_
INSTANCE_GROUP parameter, it lets you restrict parallel query operations to a

limited number of instances.

INSTANCE_NAME

In an Oracle9i Real Application Clusters environment, multiple instances can be

associated with a single database service. Clients can override Oracle’s connection

load balancing by specifying a particular instance by which to connect to the

database. INSTANCE_NAME specifies the unique name of this instance.

INSTANCE_NUMBER

Real Application
Clusters

Multiple instances can have different values.

Parameter type String

Syntax INSTANCE_NAME = instance_id

Default value The instance’s SID

Note: The SID identifies the instance’s shared memory on a

host, but may not uniquely distinguish this instance from

other instances.

Parameter class Static

Range of values Any alphanumeric characters

Parameter type Integer

Default value Lowest available number; derived from instance start up

order and INSTANCE_NUMBER value of other instances. If

not configured for Oracle9i Real Application Clusters, then

0.

Parameter class Static

Range of values 1 to maximum number of instances specified when the

database was created

Real Application
Clusters

You must set this parameter for every instance, and all

instances must have different values.

Initialization Parameters and ALTER SYSTEM

10-64 Oracle9i SQL Reference

INSTANCE_NUMBER is an Oracle9i Real Application Clusters parameter that can be

specified in parallel mode or exclusive mode. It specifies a unique number that

maps the instance to one free list group for each database object created with

storage parameter FREELIST GROUPS.

JAVA_MAX_SESSIONSPACE_SIZE

Java session space is the memory that holds Java state from one database call to

another. JAVA_MAX_SESSIONSPACE_SIZE specifies (in bytes) the maximum

amount of session space made available to a Java program executing in the server.

When a user’s session-duration Java state attempts to exceed this amount, the Java

virtual machine kills the session with an out-of-memory failure.

JAVA_POOL_SIZE

JAVA_POOL_SIZE specifies the size (in bytes) of the Java pool, from which the Java

memory manager allocates most Java state during runtime execution. This memory

includes the shared in-memory representation of Java method and class definitions,

as well as the Java objects that are migrated to the Java session space at end-of-call.

JAVA_SOFT_SESSIONSPACE_LIMIT

Parameter type Integer

Default value 0

Parameter class Static

Range of values 0 to 4 GB

Parameter type Big integer

Syntax LARGE_POOL_SIZE = integer [K | M | G]

Default value 24 MB, rounded up to the nearest granule size

Parameter class Static

Range of values Minimum: the granule size

Maximum: operating system-dependent

Parameter type Integer

Default value 0

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-65

Java session space is the memory that holds Java state from one database call to

another. JAVA_SOFT_SESSIONSPACE_LIMIT specifies (in bytes) a soft limit on

Java memory usage in a session, as a means to warn you if a user’s session-duration

Java state is using too much memory. When a user’s session-duration Java state

exceeds this size, Oracle generates a warning that goes into the trace files.

JOB_QUEUE_PROCESSES

JOB_QUEUE_PROCESSES specifies the maximum number of processes that can be

created for the execution of jobs. It specifies the number of job queue processes per

instance (J000, ... J999). Replication uses job queues for data refreshes. Advanced

queuing uses job queues for message propagation. You can create user job requests

through the DBMS_JOB package.

LARGE_POOL_SIZE

Parameter class Static

Range of values 0 to 4 GB

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 1000

Real Application
Clusters

Multiple instances can have different values.

Parameter type Big integer

Syntax LARGE_POOL_SIZE = integer [K | M | G]

Default value 0 if both of the following are true:

■ The pool is not required by parallel execution

■ DBWR_IO_SLAVES is not set

Otherwise, derived from the values of PARALLEL_MAX_
SERVERS, PARALLEL_THREADS_PER_CPU, CLUSTER_
DATABASE_INSTANCES, DISPATCHERS, and DBWR_IO_
SLAVES.

Initialization Parameters and ALTER SYSTEM

10-66 Oracle9i SQL Reference

LARGE_POOL_SIZE lets you specify the size (in bytes) of the large pool allocation

heap. The large pool allocation heap is used in shared server systems for session

memory, by parallel execution for message buffers, and by backup processes for

disk I/O buffers. (Parallel execution allocates buffers out of the large pool only

when PARALLEL_AUTOMATIC_TUNING is set to true .)

LICENSE_MAX_SESSIONS

LICENSE_MAX_SESSIONS specifies the maximum number of concurrent user

sessions allowed. When this limit is reached, only users with the RESTRICTED
SESSION privilege can connect to the database. Users who are not able to connect

receive a warning message indicating that the system has reached maximum

capacity.

LICENSE_MAX_USERS

Parameter class Dynamic: ALTER SYSTEM

Range of values 300 KB to at least 2 GB (actual maximum is operating

system-specific)

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to number of session licenses

Real Application
Clusters

Multiple instances can have different values, but the total for

all instances mounting a database should be less than or

equal to the total number of sessions licensed for that

database.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to number of user licenses

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-67

LICENSE_MAX_USERS specifies the maximum number of users you can create in

the database. When you reach this limit, you cannot create more users. You can,

however, increase the limit.

Restriction on LICENSE_MAX_USERS You cannot reduce the limit on users

below the current number of users created for the database.

LICENSE_SESSIONS_WARNING

LICENSE_SESSIONS_WARNING specifies a warning limit on the number of

concurrent user sessions. When this limit is reached, additional users can connect,

but Oracle writes a message in the alert file for each new connection. Users with

RESTRICTED SESSION privilege who connect after the limit is reached receive a

warning message stating that the system is nearing its maximum capacity.

LOCAL_LISTENER

Real Application
Clusters

Multiple instances should have the same values. If different

instances specify different values for this parameter, then the

value of the first instance to mount the database takes

precedence.

See Also: "Changing Licensing Parameters: Examples" on

page 10-121

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to value of LICENSE_MAX_SESSIONS parameter

Real Application
Clusters

Multiple instances can have different values.

Parameter type String

Syntax LOCAL_LISTENER = network_name

Default value (ADDRESS = (PROTOCOL=TCP)(HOST=)(PORT=1521))

Parameter class Dynamic: ALTER SYSTEM

Initialization Parameters and ALTER SYSTEM

10-68 Oracle9i SQL Reference

LOCAL_LISTENER specifies a network name that resolves to an address or address

list of Oracle Net local listeners (that is, listeners that are running on the same

machine as this instance). The address or address list is specified in the

TNSNAMES.ORA file or other address repository as configured for your system.

LOCK_NAME_SPACE

LOCK_NAME_SPACE specifies the namespace that the distributed lock manager

(DLM) uses to generate lock names. Consider setting this parameter if a standby or

clone database has the same database name on the same cluster as the primary

database.

LOCK_SGA

LOCK_SGAlocks the entire SGA into physical memory. It is usually advisable to lock

the SGA into real (physical) memory, especially if the use of virtual memory would

include storing some of the SGA using disk space. This parameter is ignored on

platforms that do not support it.

LOG_ARCHIVE_DEST

Parameter type String

Syntax LOCK_NAME_SPACE =namespace

Default value There is no default value.

Parameter class Static

Range of values Up to 8 alphanumeric characters. No special characters

allowed.

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type String

Syntax LOG_ARCHIVE_DEST = filespec

Default value Null

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-69

LOG_ARCHIVE_DEST is applicable only if you are running the database in

ARCHIVELOG mode or are recovering a database from archived redo logs. LOG_
ARCHIVE_DEST is incompatible with the LOG_ARCHIVE_DEST_n parameters, and

must be defined as the null string ("") or (’ ’) when any LOG_ARCHIVE_DEST_n
parameter has a value other than a null string. Use a text string to specify the

default location and root of the disk file or tape device when archiving redo log

files. (Archiving to tape is not supported on all operating systems.) The value

cannot be a raw partition.

LOG_ARCHIVE_DEST_n

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid path or device name, except raw partitions

Real Application
Clusters

Multiple instances can have different values.

Note: For Enterprise Edition users, this parameter has been

deprecated in favor of the LOG_ARCHIVE_DEST_n parameters. If

Oracle Enterprise Edition is not installed or it is installed, but you

have not specified any LOG_ARCHIVE_DEST_n parameters, this

parameter is valid.

Parameter type String

Initialization Parameters and ALTER SYSTEM

10-70 Oracle9i SQL Reference

The LOG_ARCHIVE_DEST_n parameters (where n = 1, 2, 3, ... 10) define up to ten

archive log destinations. The parameter integer suffix is defined as the handle
displayed by the V$ARCHIVE_DEST dynamic performance view.

LOG_ARCHIVE_DEST_STATE_ n

Syntax LOG_ARCHIVE_DEST_[1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10] =

 { null_string } |
 { LOCATION= path_name | SERVICE= service_name }
 [{ MANDATORY | OPTIONAL }]
 [REOPEN[= seconds] | NOREOPEN]
 [DELAY[= minutes] | NODELAY]
 [REGISTER[= template] | NOREGISTER]
 [TEMPLATE= template] | NOTEMPLATE]
 [ALTERNATE= destination | NOALTERNATE]
 [DEPENDENCY= destination | NODEPENDENCY]
 [MAX_FAILURE= count | NOMAX_FAILURE]
 [QUOTA_SIZE= blocks | NOQUOTA_SIZE]
 [QUOTA_USED= blocks | NOQUOTA_USED]
 [ARCH | LGWR]
 [SYNC[=PARALLEL|NOPARALLEL] | ASYNC[= blocks]]
 [AFFIRM | NOAFFIRM]
 [NET_TIMEOUT= seconds | NONET_TIMEOUT]
 }

Default value There is no default value.

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Note: This parameter is valid only if you have installed Oracle

Enterprise Edition. You may continue to use LOG_ARCHIVE_DEST
if you have installed Oracle Enterprise Edition. However, you

cannot use both LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_
DEST, as they are not compatible.

Parameter type String

Syntax LOG_ARCHIVE_DEST_STATE_n = {alternate | reset
| defer | enable}

Default value enable

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-71

The LOG_ARCHIVE_DEST_STATE_n parameters (where n = 1, 2, 3, ... 10) specify

the availability state of the corresponding destination. The parameter suffix (1

through 10) specifies one of the ten corresponding LOG_ARCHIVE_DEST_n
destination parameters.

LOG_ARCHIVE_DUPLEX_DEST

LOG_ARCHIVE_DUPLEX_DEST is similar to the initialization parameter LOG_
ARCHIVE_DEST. This parameter specifies a second archive destination: the duplex
archive destination. This duplex archive destination can be either a must-succeed or

a best-effort archive destination, depending on how many archive destinations

must succeed (as specified in the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter).

LOG_ARCHIVE_FORMAT

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type String

Syntax LOG_ARCHIVE_DUPLEX_DEST =filespec

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Either a null string or any valid path or device name, except

raw partitions

Note: If you are using Oracle Enterprise Edition, this parameter is

deprecated in favor of the LOG_ARCHIVE_DEST_n parameters. If

Oracle Enterprise Edition is not installed or it is installed but you

have not specified any LOG_ARCHIVE_DEST_n parameters, this

parameter is valid.

Parameter type String

Syntax LOG_ARCHIVE_FORMAT =filename

Default value Operating system-dependent

Parameter class Static

Range of values Any string that resolves to a valid filename

Initialization Parameters and ALTER SYSTEM

10-72 Oracle9i SQL Reference

LOG_ARCHIVE_FORMAT is applicable only if you are using the redo log in

ARCHIVELOG mode. Use a text string and variables to specify the default filename

format when archiving redo log files. The string generated from this format is

appended to the string specified in the LOG_ARCHIVE_DEST parameter.

LOG_ARCHIVE_MAX_PROCESSES

LOG_ARCHIVE_MAX_PROCESSES specifies the number of archiver background

processes (ARC0 through ARC9) Oracle initially invokes.

LOG_ARCHIVE_MIN_SUCCEED_DEST

LOG_ARCHIVE_MIN_SUCCEED_DESTdefines the minimum number of destinations

that must succeed in order for the online logfile to be available for reuse.

LOG_ARCHIVE_START

Real Application
Clusters

Multiple instances can have different values, but identical

values are recommended.

Parameter type Integer

Default value 1

Parameter class Dynamic: ALTER SYSTEM

Range of values Any integer from 1 to 10

Parameter type Integer

Default value 1

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values 1 to 10 if you are using LOG_ARCHIVE_DEST_n

1 or 2 if you are using LOG_ARCHIVE_DEST and LOG_
ARCHIVE_DUPLEX_DEST

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-73

LOG_ARCHIVE_START is applicable only when you use the redo log in

ARCHIVELOG mode. It indicates whether archiving should be automatic or manual

when the instance starts up.

LOG_ARCHIVE_TRACE

LOG_ARCHIVE_TRACE controls output generated by the archivelog process.

LOG_BUFFER

LOG_BUFFER specifies the amount of memory (in bytes) that Oracle uses when

buffering redo entries to a redo log file. Redo log entries contain a record of the

changes that have been made to the database block buffers. The LGWR process

writes redo log entries from the log buffer to a redo log file.

LOG_CHECKPOINT_INTERVAL

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0, 1, 2, 4, 8, 16, 32, 64, 128

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value 512 KB or 128 KB * CPU_COUNT, whichever is greater

Parameter class Static

Range of values Operating system-dependent

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values Unlimited

Initialization Parameters and ALTER SYSTEM

10-74 Oracle9i SQL Reference

LOG_CHECKPOINT_INTERVAL specifies the frequency of checkpoints in terms of

the number of redo log file blocks that can exist between an incremental checkpoint

and the last block written to the redo log. This number refers to physical operating

system blocks, not database blocks.

LOG_CHECKPOINT_TIMEOUT

LOG_CHECKPOINT_TIMEOUT specifies (in seconds) the amount of time that has

passed since the incremental checkpoint at the position where the last write to the

redo log (sometimes called the tail of the log) occurred. This parameter also

signifies that no buffer will remain dirty (in the cache) for more than integer
seconds.

LOG_CHECKPOINTS_TO_ALERT

LOG_CHECKPOINTS_TO_ALERT lets you log your checkpoints to the alert file.

Doing so is useful for determining whether checkpoints are occurring at the desired

frequency.

LOG_FILE_NAME_CONVERT

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value 1800

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to unlimited

Real Application
Clusters

Multiple instances can have different values.

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Parameter type String

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-75

LOG_FILE_NAME_CONVERT converts the filename of a new log file on the primary

database to the filename of a log file on the standby database. If you add a log file to

the primary database, you must add a corresponding file to the standby database.

LOG_PARALLELISM

LOG_PARALLELISM specifies the level of concurrency for redo allocation within

Oracle.

LOGMNR_MAX_PERSISTENT_SESSIONS

Syntax LOG_FILE_NAME_CONVERT = [(]’string1’ ,
’string2’ , ’string3’ , ’string4’ , ...[)]

Where:

■ string1 is the pattern of the primary database filename

■ string2 is the pattern of the standby database filename

■ string3 is the pattern of the primary database filename

■ string4 is the pattern of the standby database filename

You can use as many pairs of primary and standby

replacement strings as required. You can use single or

double quotation marks. The parentheses are optional.

Following are example settings that are acceptable:

LOG_FILE_NAME_CONVERT=(’/dbs/t1/’,’/dbs/t1/s_
’,’dbs/t2/ ’,’dbs/t2/s_’)

Default value None

Parameter class Static

Range of values Character strings

Parameter type Integer

Default value 1

Parameter class Static

Range of values 1 to 255

Parameter type Integer

Initialization Parameters and ALTER SYSTEM

10-76 Oracle9i SQL Reference

LOGMNR_MAX_PERSISTENT_SESSIONS enables you to specify the maximum

number of persistent LogMiner mining sessions (which are LogMiner sessions that

are backed up on disk) that are concurrently active when all sessions are mining

redo logs generated by standalone instances. This pre-allocates 2*LOGMNR_MAX_
PERSISTENT_SESSIONS MB of contiguous memory in the SGA for use by

LogMiner.

MAX_COMMIT_PROPAGATION_DELAY

MAX_COMMIT_PROPAGATION_DELAY is an Oracle9i Real Application Clusters

parameter. This initialization parameter should not be changed except under a

limited set of circumstances specific to the cluster database.

MAX_DISPATCHERS

Default value 1

Parameter class Static

Range of values 1 to LICENSE_MAX_SESSIONS

Parameter type Integer

Default value 700

Parameter class Static

Range of values 0 to 90000

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have identical values.

Caution: Change this parameter only when it is absolutely

necessary to see the most current version of the database when

performing a query.

Parameter type Integer

Default value 5

Parameter class Static

Range of values 5 or the number of dispatchers configured, whichever is

greater

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-77

MAX_DISPATCHERS specifies the maximum number of dispatcher processes

allowed to be running simultaneously. The default value applies only if dispatchers

have been configured for the system.

MAX_DUMP_FILE_SIZE

MAX_DUMP_FILE_SIZE specifies the maximum size of trace files (excluding the

alert file). Change this limit if you are concerned that trace files may use too much

space.

MAX_ENABLED_ROLES

MAX_ENABLED_ROLES specifies the maximum number of database roles that users

can enable, including roles contained within other roles.

MAX_ROLLBACK_SEGMENTS

MAX_ROLLBACK_SEGMENTS specifies the maximum size of the rollback segment

cache in the SGA. The number specified signifies the maximum number of rollback

Parameter type String

Syntax MAX_DUMP_FILE_SIZE = { integer [K | M] |
UNLIMITED}

Default value UNLIMITED

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values 0 to unlimited, or UNLIMITED

Parameter type Integer

Default value 20

Parameter class Static

Range of values 0 to 148

Parameter type Integer

Default value MAX(30, TRANSACTIONS/TRANSACTIONS_PER_
ROLLBACK_SEGMENT)

Parameter class Static

Range of values 2 to 65535

Initialization Parameters and ALTER SYSTEM

10-78 Oracle9i SQL Reference

segments that can be kept online (that is, status of ONLINE) simultaneously by one

instance.

MTS Parameters

See "Shared Server Parameters" on page 10-108.

MAX_SHARED_SERVERS

MAX_SHARED_SERVERS specifies the maximum number of shared server processes

allowed to be running simultaneously. If artificial deadlocks occur too frequently on

your system, you should increase the value of MAX_SHARED_SERVERS.

NLS_CALENDAR

NLS_CALENDAR specifies which calendar system Oracle uses. It can have one of the

following values:

■ Arabic Hijrah

■ English Hijrah

■ Gregorian

■ Japanese Imperial

■ Persian

■ ROC Official (Republic of China)

Parameter type Integer

Default value Derived from SHARED_SERVERS (either 20 or 2*SHARED_
SERVERS)

Parameter class Static

Range of values Operating system-dependent

Parameter type String

Syntax NLS_CALENDAR = " calendar_system "

Default value None

Parameter class Dynamic: ALTER SESSION

Range of values Any valid calendar format name

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-79

■ Thai Buddha

NLS_COMP

Normally, comparisons in the WHERE clause and in PL/SQL blocks is binary unless

you specify the NLSSORT function. By setting NLS_COMP to ANSI, you indicate that

comparisons in the WHERE clause and in PL/SQL blocks should use the linguistic

sort specified in the NLS_SORT parameter. You must also define an index on the

column for which you want linguistic sorts.

NLS_CURRENCY

NLS_CURRENCY specifies the string to use as the local currency symbol for the L

number format element. The default value of this parameter is determined by NLS_
TERRITORY.

NLS_DATE_FORMAT

Parameter type String

Syntax NLS_COMP = {BINARY | ANSI}

Default value BINARY

Parameter class Dynamic: ALTER SESSION

Parameter type String

Syntax NLS_CURRENCY =currency_symbol

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Range of values Any valid character string, with a maximum of 10 bytes (not

including null)

Parameter type String

Syntax NLS_DATE_FORMAT = "format "

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Range of values Any valid date format mask but not exceeding a fixed length

Initialization Parameters and ALTER SYSTEM

10-80 Oracle9i SQL Reference

NLS_DATE_FORMAT specifies the default date format to use with the TO_CHAR and

TO_DATE functions. The default value of this parameter is determined by NLS_
TERRITORY.

NLS_DATE_LANGUAGE

NLS_DATE_LANGUAGE specifies the language to use for the spelling of day and

month names and date abbreviations (a.m., p.m., AD, BC) returned by the TO_DATE
and TO_CHAR functions.

NLS_DUAL_CURRENCY

NLS_DUAL_CURRENCY specifies the dual currency symbol (such as "Euro") for the

territory. The default is the dual currency symbol defined in the territory of your

current language environment.

NLS_ISO_CURRENCY

Parameter type String

Syntax NLS_DATE_LANGUAGE =language

Default value Derived from NLS_LANGUAGE

Parameter class Dynamic: ALTER SESSION

Range of values Any valid NLS_LANGUAGE value

Parameter type String

Syntax NLS_DUAL_CURRENCY =currency_symbol

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Range of values Any valid format name up to 10 characters

Parameter type String

Syntax NLS_ISO_CURRENCY =territory

Default value Derived from NLS_TERRITORY

Parameter class Dynamic : ALTER SESSION

Range of values Any valid NLS_TERRITORY value

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-81

NLS_ISO_CURRENCY specifies the string to use as the international currency

symbol for the C number format element.

NLS_LANGUAGE

NLS_LANGUAGE specifies the default language of the database. This language is

used for messages, day and month names, symbols for AD, BC, a.m., and p.m., and

the default sorting mechanism. This parameter also determines the default values of

the parameters NLS_DATE_LANGUAGE and NLS_SORT.

NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS enables you to create CHAR and VARCHAR2 columns

using either byte or character length semantics. Existing columns are not affected.

NLS_NCHAR_CONV_EXCP

Parameter type String

Syntax NLS_LANGUAGE =language

Default value Operating system-dependent, derived from the NLS_LANG
environment variable

Parameter class Dynamic: ALTER SESSION

Range of values Any valid language name

Parameter type String

Syntax NLS_LENGTH_SEMANTICS =string

Example: NLS_LENGTH_SEMANTICS = ’CHAR’

Default value BYTE

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values BYTE | CHAR

Parameter type String

Syntax NLS_NCHAR_CONV_EXCP = {TRUE | FALSE}

Default value FALSE

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Initialization Parameters and ALTER SYSTEM

10-82 Oracle9i SQL Reference

NLS_NCHAR_CONV_EXCP determines whether data loss during an implicit or

explicit character type conversion will report an error.

NLS_NUMERIC_CHARACTERS

NLS_NUMERIC_CHARACTERS specifies the characters to use as the group separator

and decimal character. It overrides those characters defined implicitly by NLS_
TERRITORY. The group separator separates integer groups (that is, thousands,

millions, billions, and so on). The decimal separates the integer portion of a number

from the decimal portion.

NLS_SORT

NLS_SORT specifies the collating sequence for ORDER BY queries.

NLS_TERRITORY

Parameter type String

Syntax NLS_NUMERIC_CHARACTERS =

 " decimal_character group_separator "

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Parameter type String

Syntax NLS_SORT = {BINARY | linguistic_definition }

Default value Derived from NLS_LANGUAGE

Parameter class Dynamic: ALTER SESSION

Range of values BINARY or any valid linguistic definition name

Parameter type String

Syntax NLS_TERRITORY = territory

Default value Operating system-dependent

Parameter class Dynamic: ALTER SESSION

Range of values Any valid territory name

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-83

NLS_TERRITORY specifies the name of the territory whose conventions are to be

followed for day and week numbering.

NLS_TIMESTAMP_FORMAT

NLS_TIMESTAMP_FORMAT defines the default timestamp format to use with the

TO_CHAR and TO_TIMESTAMP functions.

NLS_TIMESTAMP_TZ_FORMAT

NLS_TIMESTAMP_TZ_FORMAT defines the default timestamp with time zone

format to use with the TO_CHAR and TO_TIMESTAMP_TZfunctions.

O7_DICTIONARY_ACCESSIBILITY

O7_DICTIONARY_ACCESSIBILITY is intended for use when you migrate from

Oracle7 to Oracle Security Server. It controls restrictions on SYSTEM privileges. If

the parameter is set to true , access to objects in the SYSschema is allowed (Oracle7

Parameter type String

Syntax NLS_TIMESTAMP_FORMAT = "format "

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Range of values Any valid datetime format mask

Parameter type String

Syntax NLS_TIMESTAMP_TZ_FORMAT = "format "

Default value Derived from NLS_TERRITORY

Parameter class Dynamic: ALTER SESSION

Range of values Any valid datetime format mask

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Initialization Parameters and ALTER SYSTEM

10-84 Oracle9i SQL Reference

behavior). The default setting of false ensures that system privileges that allow

access to objects in "any schema" do not allow access to objects in SYS schema.

OBJECT_CACHE_MAX_SIZE_PERCENT

The object cache is a memory block on the client that allows applications to store

entire objects and to navigate among them without round trips to the server.

OBJECT_CACHE_MAX_SIZE_PERCENT specifies the percentage of the optimal

cache size that the session object cache can grow past the optimal size. The

maximum size is equal to the optimal size plus the product of this percentage and

the optimal size. When the cache size exceeds this maximum size, the system will

attempt to shrink the cache to the optimal size.

OBJECT_CACHE_OPTIMAL_SIZE

The object cache is a memory block on the client that allows applications to store

entire objects and to navigate among them without round trips to the server.

OBJECT_CACHE_OPTIMAL_SIZE specifies (in bytes) the size to which the session

object cache is reduced when the size of the cache exceeds the maximum size.

OLAP_PAGE_POOL_SIZE

Parameter type Integer

Default value 10

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM ...
DEFERRED

Range of values 0 to operating system-dependent maximum

Parameter type Integer

Default value 102400 (100K)

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM ...
DEFERRED

Range of values 10 KB to operating system-dependent maximum

Parameter type Integer

Default value 32 MB

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-85

OLAP_PAGE_POOL_SIZE specifies the size (in bytes) of the OLAP pool.

OPEN_CURSORS

OPEN_CURSORSspecifies the maximum number of open cursors (handles to private

SQL areas) a session can have at once. You can use this parameter to prevent a

session from opening an excessive number of cursors. This parameter also

constrains the size of the PL/SQL cursor cache which PL/SQL uses to avoid having

to reparse as statements are reexecuted by a user.

OPEN_LINKS

OPEN_LINKS specifies the maximum number of concurrent open connections to

remote databases in one session. These connections include database links, as well

as external procedures and cartridges, each of which uses a separate process.

OPEN_LINKS_PER_INSTANCE

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM ...
DEFERRED

Range of values 32 MB to 2 GB

Parameter type Integer

Default value 50

Parameter class Dynamic: ALTER SYSTEM

Range of values 1 to 4294967295 (4 GB -1)

Parameter type Integer

Default value 4

Parameter class Static

Range of values 0 to 255

Parameter type Integer

Default value 4

Parameter class Static

Range of values 0 to 4294967295 (4 GB -1)

Initialization Parameters and ALTER SYSTEM

10-86 Oracle9i SQL Reference

OPEN_LINKS_PER_INSTANCE specifies the maximum number of migratable open

connections globally for each database instance. XA transactions use migratable

open connections so that the connections are cached after a transaction is

committed. Another transaction can use the connection, provided the user who

created the connection is the same as the user who owns the transaction.

OPTIMIZER_DYNAMIC_SAMPLING

OPTIMIZER_DYNAMIC_SAMPLING controls the level of dynamic sampling

performed by the optimizer.

OPTIMIZER_FEATURES_ENABLE

OPTIMIZER_FEATURES_ENABLE acts as an umbrella parameter for enabling a

series of optimizer features based on an Oracle release number.

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value If OPTIMIZER_FEATURES_ENABLE is set to 9.2.0 or

higher, then 1

If OPTIMIZER_FEATURES_ENABLEis set to 9.0.1 or lower,

then 0

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values 0 to 10

Parameter type String

Syntax OPTIMIZER_FEATURES_ENABLE = {8.0.0 | 8.0.3 |
8.0.4 | 8.0.5 | 8.0.6 | 8.0.7 | 8.1.0 | 8.1.3
| 8.1.4 | 8.1.5 | 8.1.6 | 8.1.7 | 9.0.0 |
9.0.1 | 9.2.0}

Default value 9.2.0

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-87

OPTIMIZER_INDEX_CACHING

OPTIMIZER_INDEX_CACHING lets you adjust the behavior of cost-based

optimization to favor nested loops joins and IN-list iterators.

OPTIMIZER_INDEX_COST_ADJ

OPTIMIZER_INDEX_COST_ADJ lets you tune optimizer behavior for access path

selection to be more or less index friendly—that is, to make the optimizer more or

less prone to selecting an index access path over a full table scan.

OPTIMIZER_MAX_PERMUTATIONS

OPTIMIZER_MAX_PERMUTATIONS restricts the number of permutations of the

tables the optimizer will consider in queries with joins. Such a restriction ensures

that the parse time for the query stays within acceptable limits. However, a slight

risk exists that the optimizer will overlook a good plan it would otherwise have

found.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SESSION

Range of values 0 to 100

Parameter type Integer

Default value 100

Parameter class Dynamic: ALTER SESSION

Range of values 1 to 10000

Parameter type Integer

Default value If OPTIMIZER_FEATURES_ENABLE is set to 9.0.0 or

higher, then 2000

If OPTIMIZER_FEATURES_ENABLEis set to 8.1.7 or lower,

then 80000

Parameter class Dynamic: ALTER SESSION

Range of values 4 to 80000

Initialization Parameters and ALTER SYSTEM

10-88 Oracle9i SQL Reference

OPTIMIZER_MODE

OPTIMIZER_MODE establishes the default behavior for choosing an optimization

approach for the instance.

ORACLE_TRACE_COLLECTION_NAME

A collection is data collected for events that occurred while an instrumented

product was running. ORACLE_TRACE_COLLECTION_NAME specifies the Oracle

Trace collection name for this instance. Oracle also uses this parameter in the output

file names (collection definition file .cdf and data collection file .dat). If you set

ORACLE_TRACE_ENABLE to true , setting this value to a non-null string will start a

default Oracle Trace collection that will run until this value is set to null again.

ORACLE_TRACE_COLLECTION_PATH

Parameter type String

Syntax OPTIMIZER_MODE =

 {first_rows_[1 | 10 | 100 | 1000] | first_
rows | all_rows | choose | rule}

Default value choose

Parameter class Dynamic: ALTER SESSION

Parameter type String

Syntax ORACLE_TRACE_COLLECTION_NAME =collection_
name

Default value There is no default value.

Parameter class Static

Range of values Valid collection name up to 16 characters long (except for

platforms that enforce 8-character file names)

Parameter type String

Syntax ORACLE_TRACE_COLLECTION_PATH =pathname

Default value Operating system-specific

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-89

ORACLE_TRACE_COLLECTION_PATH specifies the directory pathname where the

Oracle Trace collection definition (.cdf) and data collection (.dat) files are located. If

you accept the default, the Oracle Trace .cdf and .dat files will be located in

ORACLE_HOME/otrace/admin/cdf .

ORACLE_TRACE_COLLECTION_SIZE

ORACLE_TRACE_COLLECTION_SIZE specifies (in bytes) the maximum size of the

Oracle Trace collection file (.dat). Once the collection file reaches this maximum, the

collection is disabled. A value of 0 means that the file has no size limit.

ORACLE_TRACE_ENABLE

To enable Oracle Trace collections for the server, set ORACLE_TRACE_ENABLE to

true . This setting alone does not start an Oracle Trace collection, but it allows

Oracle Trace to be used for the server.

ORACLE_TRACE_FACILITY_NAME

Range of values Full directory pathname

Parameter type Integer

Default value 5242880

Parameter class Static

Range of values 0 to 4294967295

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type String

Syntax ORACLE_TRACE_FACILITY_NAME =

 {ORACLED | ORACLEE | ORACLESM | ORACLEC}

Default value ORACLED

Parameter class Static

Initialization Parameters and ALTER SYSTEM

10-90 Oracle9i SQL Reference

ORACLE_TRACE_FACILITY_NAME specifies the event set that Oracle Trace collects.

The value of this parameter, followed by the .fdf extension, is the name of the

Oracle Trace product definition file. That file must be located in the directory

specified by the ORACLE_TRACE_FACILITY_PATH parameter. The product

definition file contains definition information for all the events and data items that

can be collected for products that use the Oracle Trace data collection API.

ORACLE_TRACE_FACILITY_PATH

ORACLE_TRACE_FACILITY_PATH specifies the directory pathname where Oracle

Trace facility definition files are located. On Solaris, the default path is ORACLE_
HOME/otrace/admin/fdf/ . On NT, the default path is

%OTRACE80%\ADMIN\FDF\.

OS_AUTHENT_PREFIX

OS_AUTHENT_PREFIX specifies a prefix that Oracle uses to authenticate users

attempting to connect to the server. Oracle concatenates the value of this parameter

to the beginning of the user’s operating system account name and password. When

a connection request is attempted, Oracle compares the prefixed username with

Oracle usernames in the database.

OS_ROLES

Parameter type String

Syntax ORACLE_TRACE_FACILITY_PATH = pathname

Default value Operating system-specific

Parameter class Static

Range of values Full directory pathname

Parameter type String

Syntax OS_AUTHENT_PREFIX = authentication_prefix

Default value OPS$

Parameter class Static

Parameter type Boolean

Default value false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-91

OS_ROLES determines whether Oracle or the operating system identifies and

manages the roles of each username.

PARALLEL_ADAPTIVE_MULTI_USER

PARALLEL_ADAPTIVE_MULTI_USER, when set to true , enables an adaptive

algorithm designed to improve performance in multiuser environments that use

parallel execution. The algorithm automatically reduces the requested degree of

parallelism based on the system load at query startup time. The effective degree of

parallelism is based on the default degree of parallelism, or the degree from the

table or hints, divided by a reduction factor.

PARALLEL_AUTOMATIC_TUNING

When PARALLEL_AUTOMATIC_TUNING is set to true , Oracle determines the

default values for parameters that control parallel execution. In addition to setting

this parameter, you must specify the PARALLEL clause for the target tables in the

system. Oracle then tunes all subsequent parallel operations automatically.

Parameter class Static

Range of values true | false

Parameter type Boolean

Default value Derived from the value of PARALLEL_AUTOMATIC_TUNING

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Note: This parameter applies to parallel execution in exclusive

mode as well as in the Oracle9i Real Application Clusters

environment.

Initialization Parameters and ALTER SYSTEM

10-92 Oracle9i SQL Reference

PARALLEL_EXECUTION_MESSAGE_SIZE

PARALLEL_EXECUTION_MESSAGE_SIZE specifies the size of messages for parallel

execution (formerly referred to as parallel query, PDML, Parallel Recovery,

replication).

PARALLEL_INSTANCE_GROUP

PARALLEL_INSTANCE_GROUP is an Oracle9i Real Application Clusters parameter

that you can specify in parallel mode only. Used in conjunction with the

INSTANCE_GROUPS parameter, it lets you restrict parallel query operations to a

limited number of instances.

PARALLEL_MAX_SERVERS

Parameter type Integer

Default value Operating system-dependent

Parameter class Static

Range of values 2148 to 65535 (64 KB - 1)

Real Application
Clusters

Multiple instances must have the same value.

Parameter type String

Syntax PARALLEL_INSTANCE_GROUP =group_name

Default value A group consisting of all instances currently active

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values Any group name specified in the INSTANCE_GROUPS
parameter of any active instance

Real Application
Clusters

Different instances can have different values.

Parameter type Integer

Default value Derived from the values of CPU_COUNT, PARALLEL_
AUTOMATIC_TUNING, and PARALLEL_ADAPTIVE_MULTI_
USER

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-93

PARALLEL_MAX_SERVERS specifies the maximum number of parallel execution

processes and parallel recovery processes for an instance. As demand increases,

Oracle increases the number of processes from the number created at instance

startup up to this value.

PARALLEL_MIN_PERCENT

PARALLEL_MIN_PERCENToperates in conjunction with PARALLEL_MAX_SERVERS
and PARALLEL_MIN_SERVERS. It lets you specify the minimum percentage of

parallel execution processes (of the value of PARALLEL_MAX_SERVERS) required

for parallel execution. Setting this parameter ensures that parallel operations will

not execute sequentially unless adequate resources are available. The default value

of 0 means that no minimum percentage of processes has been set.

PARALLEL_MIN_SERVERS

Range of values 0 to 3599

Real Application
Clusters

Multiple instances must have the same value.

Note: This parameter applies to parallel execution in exclusive

mode as well as in the Oracle9i Real Application Clusters

environment.

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SESSION

Range of values 0 to 100

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value 0

Parameter class Static

Range of values 0 to value of PARALLEL_MAX_SERVERS

Initialization Parameters and ALTER SYSTEM

10-94 Oracle9i SQL Reference

PARALLEL_MIN_SERVERS specifies the minimum number of parallel execution

processes for the instance. This value is the number of parallel execution processes

Oracle creates when the instance is started.

PARALLEL_THREADS_PER_CPU

PARALLEL_THREADS_PER_CPU specifies the default degree of parallelism for the

instance and determines the parallel adaptive and load balancing algorithms. The

parameter describes the number of parallel execution processes or threads that a

CPU can handle during parallel execution.

PARTITION_VIEW_ENABLED

Real Application
Clusters

Multiple instances can have different values.

Note: This parameter applies to parallel execution in exclusive

mode as well as in the Oracle9i Real Application Clusters

environment.

Parameter type Integer

Default value Operating system-dependent, usually 2

Parameter class Dynamic: ALTER SYSTEM

Range of values Any nonzero number

Note: This parameter applies to parallel execution in exclusive

mode as well as in the Oracle9i Real Application Clusters

environment.

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION

Range of values true | false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-95

PARTITION_VIEW_ENABLED specifies whether the optimizer uses partition views.

If you set this parameter to true , the optimizer prunes (or skips) unnecessary table

accesses in a partition view and alters the way it computes statistics on a partition

view from statistics on underlying tables.

PGA_AGGREGATE_TARGET

PGA_AGGREGATE_TARGET specifies the target aggregate PGA memory available to

all server processes attached to the instance. You must set this parameter to enable

the automatic sizing of SQL working areas used by memory-intensive SQL

operators such as sort, group-by, hash-join, bitmap merge, and bitmap create.

PLSQL_COMPILER_FLAGS

PLSQL_COMPILER_FLAGSis a parameter used by the PL/SQL compiler. It specifies

a list of compiler flags as a comma-separated list of strings.

Note: Oracle Corporation recommends that you use partitioned

tables (available starting with Oracle8) rather than partition views.

Partition views are supported for backward compatibility only.

Parameter type Big integer

Syntax PGA_AGGREGATE_TARGET =integer [K | M | G]

Default value 0 (automatic memory management is turned OFF by

default)

Parameter class Dynamic: ALTER SYSTEM

Range of values Minimum: 10 MB

Maximum: 4096 GB - 1

Parameter type String

Syntax PLSQL_COMPILER_FLAGS = { [DEBUG | NON_DEBUG]
[INTERPRETED | NATIVE] }

Default value INTERPRETED, NON_DEBUG

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Initialization Parameters and ALTER SYSTEM

10-96 Oracle9i SQL Reference

PLSQL_NATIVE_C_COMPILER

PLSQL_NATIVE_C_COMPILERspecifies the full path name of a C compiler which is

used to compile the generated C file into an object file.

PLSQL_NATIVE_LIBRARY_DIR

PLSQL_NATIVE_LIBRARY_DIR is a parameter used by the PL/SQL compiler. It

specifies the name of a directory where the shared objects produced by the native

compiler are stored.

PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT

PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT specifies the number of subdirectories

created by the database administrator in the directory specified by PLSQL_
NATIVE_LIBRARY_DIR.

Parameter type String

Syntax PLSQL_NATIVE_C_COMPILER = pathname

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid path name

Parameter type String

Syntax PLSQL_NATIVE_LIBRARY_DIR = directory

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid directory path

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 232-1 (max value represented by 32 bits)

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-97

PLSQL_NATIVE_LINKER

PLSQL_NATIVE_LINKERspecifies the full path name of a linker such as ld in UNIX

or GNU ld which is used to link the object file into a shared object or DLL.

PLSQL_NATIVE_MAKE_FILE_NAME

PLSQL_NATIVE_MAKE_FILE_NAME specifies the full path name of a make file. The

make utility (specified by PLSQL_NATIVE_MAKE_UTILITY) uses this make file to

generate the shared object or DLL.

PLSQL_NATIVE_MAKE_UTILITY

PLSQL_NATIVE_MAKE_UTILITY specifies the full path name of a make utility such

as make in UNIX or gmake (GNU make). The make utility is needed to generate the

shared object or DLL from the generated C source.

Parameter type String

Syntax PLSQL_NATIVE_LINKER = pathname

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid path name

Parameter type String

Syntax PLSQL_NATIVE_MAKE_FILE_NAME = pathname

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid path name

Parameter type String

Syntax PLSQL_NATIVE_MAKE_UTILITY = pathname

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid path name

Initialization Parameters and ALTER SYSTEM

10-98 Oracle9i SQL Reference

PLSQL_V2_COMPATIBILITY

PL/SQL Version 2 allows some abnormal behavior that Version 8 disallows. If you

want to retain that behavior for backward compatibility, set PLSQL_V2_
COMPATIBILITY to true . If you set it to false , PL/SQL Version 8 behavior is

enforced and Version 2 behavior is not allowed.

PRE_PAGE_SGA

PRE_PAGE_SGA determines whether Oracle reads the entire SGA into memory at

instance startup. Operating system page table entries are then prebuilt for each page

of the SGA. This setting can increase the amount of time necessary for instance

startup, but it is likely to decrease the amount of time necessary for Oracle to reach

its full performance capacity after startup.

PROCESSES

PROCESSESspecifies the maximum number of operating system user processes that

can simultaneously connect to Oracle. Its value should allow for all background

processes such as locks, job queue processes, and parallel execution processes.

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Integer

Default value Derived from PARALLEL_MAX_SERVERS

Parameter class Static

Range of values 6 to operating system-dependent

Real Application
Clusters

Multiple instances can have different values.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-99

QUERY_REWRITE_ENABLED

QUERY_REWRITE_ENABLED allows you to enable or disable query rewriting

globally for the database.

QUERY_REWRITE_INTEGRITY

QUERY_REWRITE_INTEGRITYdetermines the degree to which Oracle must enforce

query rewriting. At the safest level, Oracle does not use query rewrite

transformations that rely on unenforced relationships.

RDBMS_SERVER_DN

Parameter type String

Syntax QUERY_REWRITE_ENABLED = {force | true |
false}

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Real Application
Clusters

Multiple instances can have different values.

See Also: "Enabling Query Rewrite: Example" on page 10-120

Parameter type String

Syntax QUERY_REWRITE_INTEGRITY =

 {stale_tolerated | trusted | enforced}

Default value enforced

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Real Application
Clusters

Multiple instances can have different values.

Parameter type X.500 Distinguished Name

Default value There is no default value.

Parameter class Static

Range of values All X.500 Distinguished Name format values

Initialization Parameters and ALTER SYSTEM

10-100 Oracle9i SQL Reference

RDBMS_SERVER_DN specifies the Distinguished Name (DN) of the Oracle server. It

is used for retrieving Enterprise Roles from an enterprise directory service.

READ_ONLY_OPEN_DELAYED

READ_ONLY_OPEN_DELAYED determines when datafiles in read-only tablespaces

are accessed.

RECOVERY_PARALLELISM

RECOVERY_PARALLELISM specifies the number of processes to participate in

instance or crash recovery. A value of 0 or 1 indicates that recovery is to be

performed serially by one process.

REMOTE_ARCHIVE_ENABLE

REMOTE_ARCHIVE_ENABLE enables or disables the sending of redo archival to

remote destinations and the receipt of remotely archived redo.

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Integer

Default value Operating system-dependent

Parameter class Static

Range of values Operating system-dependent, but cannot exceed

PARALLEL_MAX_SERVERS

Parameter type String

Syntax REMOTE_ARCHIVE_ENABLE = {receive [, send] |
false | true}

Default value true

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-101

REMOTE_DEPENDENCIES_MODE

REMOTE_DEPENDENCIES_MODE specifies how Oracle should handle dependencies

upon remote PL/SQL stored procedures.

REMOTE_LISTENER

REMOTE_LISTENER specifies a network name that resolves to an address or

address list of Oracle Net remote listeners (that is, listeners that are not running on

the same machine as this instance). The address or address list is specified in the

TNSNAMES.ORA file or other address repository as configured for your system.

REMOTE_LOGIN_PASSWORDFILE

REMOTE_LOGIN_PASSWORDFILE specifies whether Oracle checks for a password

file and how many databases can use the password file.

Parameter type String

Syntax REMOTE_DEPENDENCIES_MODE = {TIMESTAMP |
SIGNATURE}

Default value TIMESTAMP

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Parameter type String

Syntax REMOTE_LISTENER = network_name

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Parameter type String

Syntax REMOTE_LOGIN_PASSWORDFILE=

 {NONE | SHARED | EXCLUSIVE}

Default value NONE

Parameter class Static

Real Application
Clusters

Multiple instances must have the same value.

Initialization Parameters and ALTER SYSTEM

10-102 Oracle9i SQL Reference

REMOTE_OS_AUTHENT

REMOTE_OS_AUTHENT specifies whether remote clients will be authenticated with

the value of the OS_AUTHENT_PREFIX parameter.

REMOTE_OS_ROLES

REMOTE_OS_ROLES specifies whether operating system roles are allowed for

remote clients. The default value, false , causes Oracle to identify and manage

roles for remote clients.

REPLICATION_DEPENDENCY_TRACKING

REPLICATION_DEPENDENCY_TRACKING enables or disables dependency tracking

for read/write operations to the database. Dependency tracking is essential for

propagating changes in a replicated environment in parallel.

RESOURCE_LIMIT

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Boolean

Default value true

Parameter class Static

Range of values true | false

Parameter type Boolean

Default value false

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-103

RESOURCE_LIMIT determines whether resource limits are enforced in database

profiles.

RESOURCE_MANAGER_PLAN

RESOURCE_MANAGER_PLAN specifies the top-level resource plan to use for an

instance. The resource manager will load this top-level plan along with all its

descendants (subplans, directives, and consumer groups). If you do not specify this

parameter, the resource manager is off by default.

ROLLBACK_SEGMENTS

ROLLBACK_SEGMENTS allocates one or more rollback segments by name to this

instance. If you set this parameter, the instance acquires all of the rollback segments

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

See Also: "Enabling Resource Limits: Example" on page 10-120

Parameter type String

Syntax RESOURCE_MANAGER_PLAN =plan_name

Default value There is no default value.

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid character string

Parameter type String

Syntax ROLLBACK_SEGMENTS =

 (segment_name [, segment_name] ...)

Default value The instance uses public rollback segments by default if you

do not specify this parameter

Parameter class Static

Range of values Any rollback segment names listed in DBA_ROLLBACK_
SEGS except SYSTEM

Real Application
Clusters

Multiple instances must have different values.

Initialization Parameters and ALTER SYSTEM

10-104 Oracle9i SQL Reference

named in this parameter, even if the number of rollback segments exceeds the

minimum number required by the instance (calculated as TRANSACTIONS /
TRANSACTIONS_PER_ROLLBACK_SEGMENT).

ROW_LOCKING

ROW_LOCKING specifies whether row locks are acquired during UPDATE operations.

SERIAL_REUSE

SERIAL_REUSE specifies which types of cursors make use of the serial-reusable

memory feature. This feature allocates private cursor memory in the SGA so that it

can be reused (serially, not concurrently) by sessions executing the same cursor.

SERVICE_NAMES

Parameter type String

Syntax ROW_LOCKING = {ALWAYS | DEFAULT | INTENT}

Default value ALWAYS

Parameter class Static

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Parameter type String

Syntax SERIAL_REUSE =

 {DISABLE | SELECT | DML | PLSQL | ALL}

Default value DISABLE

Parameter class Static

Parameter type String

Syntax SERVICE_NAMES =

db_service_name [, db_service_name [,...]
]

Default value DB_NAME.DB_DOMAIN if defined

Parameter class Dynamic: ALTER SYSTEM

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-105

SERVICE_NAMESspecifies one or more names for the database service to which this

instance connects. You can specify multiple service names in order to distinguish

among different uses of the same database.

SESSION_CACHED_CURSORS

SESSION_CACHED_CURSORS lets you specify the number of session cursors to

cache. Repeated parse calls of the same SQL statement cause the session cursor for

that statement to be moved into the session cursor cache. Subsequent parse calls

will find the cursor in the cache and do not need to reopen the cursor. Oracle uses a

least recently used algorithm to remove entries in the session cursor cache to make

room for new entries when needed.

SESSION_MAX_OPEN_FILES

SESSION_MAX_OPEN_FILESspecifies the maximum number of BFILEs that can be

opened in any session. Once this number is reached, subsequent attempts to open

more files in the session by using DBMS_LOB.FILEOPEN() or

OCILobFileOpen() will fail. The maximum value for this parameter depends on

the equivalent parameter defined for the underlying operating system.

Range of values Any ASCII string or comma-separated list of string names

Parameter type Integer

Default value 0

Parameter class Dynamic: ALTER SESSION

Range of values 0 to operating system-dependent

Real Application
Clusters

Multiple instances can have different values.

Parameter type Integer

Default value 10

Parameter class Static

Range of values 1 to either 50 or the value of MAX_OPEN_FILES defined at

the operating system level, whichever is less

Initialization Parameters and ALTER SYSTEM

10-106 Oracle9i SQL Reference

SESSIONS

SESSIONS specifies the maximum number of sessions that can be created in the

system. Because every login requires a session, this parameter effectively

determines the maximum number of concurrent users in the system. You should

always set this parameter explicitly to a value equivalent to your estimate of the

maximum number of concurrent users, plus the number of background processes,

plus approximately 10% for recursive sessions.

SGA_MAX_SIZE

SGA_MAX_SIZE specifies the maximum size of SGA for the lifetime of the instance.

SHADOW_CORE_DUMP

SHADOW_CORE_DUMP specifies whether Oracle includes the SGA in the core file for

foreground (client) processes.

Parameter type Integer

Default value Derived: (1.1 * PROCESSES) + 5

Parameter class Static

Range of values 1 to 231

Parameter type Big integer

Syntax SGA_MAX_SIZE = integer [K | M | G]

Default value Initial size of SGA at startup, dependent on the sizes of

different pools in the SGA, such as buffer cache, shared pool,

large pool, and so on.

Parameter class Static

Range of values 0 to operating system-dependent

Parameter type String

Syntax SHADOW_CORE_DUMP = {partial | full | none}

Default value partial

Parameter class Static

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-107

SHARED_MEMORY_ADDRESS

SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS specify the

starting address at runtime of the system global area (SGA). This parameter is

ignored on the many platforms that specify the SGA’s starting address at linktime.

SHARED_POOL_RESERVED_SIZE

SHARED_POOL_RESERVED_SIZE specifies (in bytes) the shared pool space that is

reserved for large contiguous requests for shared pool memory.

SHARED_POOL_SIZE

Parameter type Integer

Default value 0

Parameter class Static

Parameter type Big integer

Syntax SHARED_POOL_RESERVED_SIZE =integer [K | M |
G]

Default value 5% of the value of SHARED_POOL_SIZE

Parameter class Static

Range of values Minimum: 5000

Maximum: one half of the value of SHARED_POOL_SIZE

Parameter type Big integer

Syntax SHARED_POOL_SIZE = integer [K | M | G]

Default value 32-bit platforms: 8 MB, rounded up to the nearest granule

size

64-bit platforms: 64 MB, rounded up to the nearest granule

size

Parameter class Dynamic: ALTER SYSTEM

Range of values Minimum: the granule size

Maximum: operating system-dependent

Initialization Parameters and ALTER SYSTEM

10-108 Oracle9i SQL Reference

SHARED_POOL_SIZE specifies (in bytes) the size of the shared pool. The shared

pool contains shared cursors, stored procedures, control structures, and other

structures. If you set PARALLEL_AUTOMATIC_TUNING to false , then Oracle also

allocates parallel execution message buffers from the shared pool. Larger values

improve performance in multi-user systems. Smaller values use less memory.

Shared Server Parameters
Beginning in Oracle9i, the multi-threaded server architecture is called shared server
architecture.

When you start your instance, Oracle creates shared server processes and

dispatcher processes for the shared server architecture based on the values of the

SHARED_SERVERS and DISPATCHERS initialization parameters. You can also set

the SHARED_SERVERS and DISPATCHERS parameters with ALTER SYSTEM to
perform one of the following operations while the instance is running:

■ Create additional shared server processes by increasing the minimum number

of shared server processes.

■ Terminate existing shared server processes after their current calls finish

processing.

■ Create more dispatcher processes for a specific protocol, up to a maximum

across all protocols specified by the initialization parameter MAX_
DISPATCHERS.

■ Terminate existing dispatcher processes for a specific protocol after their current

user processes disconnect from the instance.

SHARED_SERVERS

SHARED_SERVERS specifies the number of server processes that you want to create

when an instance is started up. If system load decreases, this minimum number of

Parameter type Integer

Default value If you are using shared server architecture, then the value is

1.

If you are not using shared server architecture, then the

value is 0.

Parameter class Dynamic: ALTER SYSTEM

Range of values Operating system-dependent

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-109

servers is maintained. Therefore, you should take care not to set SHARED_SERVERS
too high at system startup.

SHARED_SERVER_SESSIONS

SHARED_SERVER_SESSIONS specifies the total number of shared server

architecture user sessions to allow. Setting this parameter enables you to reserve

user sessions for dedicated servers.

SORT_AREA_RETAINED_SIZE

SORT_AREA_RETAINED_SIZE specifies (in bytes) the maximum amount of the

user global area (UGA) memory retained after a sort run completes. The retained

size controls the size of the read buffer, which Oracle uses to maintain a portion of

See Also: "Changing Shared Server Settings: Examples" on

page 10-121

Parameter type Integer

Default value Derived: the lesser of CIRCUITS and SESSIONS - 5

Parameter class Static

Range of values 0 to SESSIONS - 5

Parameter type Integer

Default value Derived from SORT_AREA_SIZE

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM ...
DEFERRED

Range of values From the value equivalent of two database blocks to the

value of SORT_AREA_SIZE

Note: Oracle does not recommend using the SORT_AREA_
RETAINED_SIZE parameter unless the instance is configured with

the shared server option. Oracle recommends that you enable

automatic sizing of SQL working areas by setting PGA_
AGGREGATE_TARGET instead. SORT_AREA_RETAINED_SIZE is
retained for backward compatibility.

Initialization Parameters and ALTER SYSTEM

10-110 Oracle9i SQL Reference

the sort in memory. This memory is released back to the UGA, not to the operating

system, after the last row is fetched from the sort space.

SORT_AREA_SIZE

SORT_AREA_SIZE specifies in bytes the maximum amount of memory Oracle will

use for a sort. After the sort is complete, but before the rows are returned, Oracle

releases all of the memory allocated for the sort, except the amount specified by the

SORT_AREA_RETAINED_SIZE parameter. After the last row is returned, Oracle

releases the remainder of the memory.

SPFILE

Parameter type Integer

Default value 65536

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM ...
DEFERRED

Range of values Minimum: the value equivalent of six database blocks

Maximum: operating system-dependent

Note: Oracle does not recommend using the SORT_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends that you enable automatic sizing of

SQL working areas by setting PGA_AGGREGATE_TARGET instead.

SORT_AREA_SIZE is retained for backward compatibility.

Parameter type String

Syntax SPFILE = spfile_name

Default value ORACLE_HOME/dbs/spfile.ora

Parameter class Static

Range of values Any valid SPFILE

Real Application
Clusters

Multiple instances should have the same value.

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-111

The value of this parameter is the name of the current server parameter file

(SPFILE) in use. This parameter can be defined in a client side PFILE to indicate the

name of the server parameter file to use.

SQL92_SECURITY

The SQL92 standards specify that security administrators should be able to require

that users have SELECT privilege on a table when executing an UPDATE or DELETE
statement that references table column values in a WHERE or SET clause. SQL92_
SECURITY lets you specify whether users must have been granted the SELECT
object privilege in order to execute such UPDATE or DELETE statements.

SQL_TRACE

The value of SQL_TRACE disables or enables the SQL trace facility. Setting this

parameter to true provides information on tuning that you can use to improve

performance. You can change the value using the DBMS_SYSTEM package.

STANDBY_ARCHIVE_DEST

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type String

Syntax STANDBY_ARCHIVE_DEST =filespec

Default value Operating system-specific

Parameter class Dynamic: ALTER SYSTEM

Range of values A valid path or device name other than RAW

Initialization Parameters and ALTER SYSTEM

10-112 Oracle9i SQL Reference

STANDBY_ARCHIVE_DEST is relevant only for a standby database in managed

recovery mode. It specifies the location of archive logs arriving from a primary

database. Oracle uses STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT to

fabricate the fully qualified standby log filenames and stores the filenames in the

standby control file.

STANDBY_FILE_MANAGEMENT

STANDBY_FILE_MANAGEMENT enables or disables automatic standby file

management. When automatic standby file management is enabled, operating

system file additions and deletions on the primary database are replicated on the

standby database.

STAR_TRANSFORMATION_ENABLED

STAR_TRANSFORMATION_ENABLED determines whether a cost-based query

transformation will be applied to star queries.

STATISTICS_LEVEL

Parameter type String

Syntax STANDBY_FILE_MANAGEMENT = {MANUAL | AUTO}

Default value MANUAL

Parameter class Dynamic: ALTER SYSTEM

Parameter type String

Syntax STAR_TRANSFORMATION_ENABLED =

 {TEMP_DISABLE | TRUE | FALSE}

Default value FALSE

Parameter class Dynamic: ALTER SESSION

Parameter type String

Syntax STATISTICS_LEVEL = {ALL | TYPICAL | BASIC}

Default value TYPICAL

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-113

STATISTICS_LEVEL sets the statistics collection level of the database.

TAPE_ASYNCH_IO

TAPE_ASYNCH_IOcontrols whether I/O to sequential devices (for example, backup

or restore of Oracle data to or from tape) is asynchronous—that is, whether parallel

server processes can overlap I/O requests with CPU processing during table scans.

If your platform supports asynchronous I/O to sequential devices, Oracle

Corporation recommends that you leave this parameter set to its default. However,

if the asynchronous I/O implementation is not stable, you can set TAPE_ASYNCH_
IO to false to disable asynchronous I/O. If your platform does not support

asynchronous I/O to sequential devices, this parameter has no effect.

THREAD

THREAD is an Oracle9i Real Application Clusters parameter that specifies the

number of the redo thread to be used by an instance.

TIMED_OS_STATISTICS

Parameter type Boolean

Default value true

Parameter class Static

Range of values true | false

Parameter type Integer

Default value 0

Parameter class Static

Range of values 0 to the maximum number of enabled threads

Real Application
Clusters

If specified, multiple instances must have different values.

Parameter type Integer

Default value If STATISTICS_LEVEL is set to ALL, then 5

If STATISTICS_LEVEL is set to BASIC or TYPICAL, then 0

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Initialization Parameters and ALTER SYSTEM

10-114 Oracle9i SQL Reference

TIMED_OS_STATISTICS specifies the interval (in seconds) at which Oracle collects

operating system statistics when a request is made from the client to the server or

when a request completes.

TIMED_STATISTICS

TIMED_STATISTICS specifies whether or not statistics related to time are collected.

TRACE_ENABLED

TRACE_ENABLED controls tracing of the execution history, or code path, of Oracle.

Oracle Support Services uses this information for debugging.

TRACEFILE_IDENTIFIER

Range of values Unlimited

Parameter type Boolean

Default value If STATISTICS_LEVEL is set to TYPICAL or ALL, then true

If STATISTICS_LEVEL is set to BASIC, then false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type Boolean

Default value true

Parameter class Dynamic: ALTER SYSTEM

Range of values true | false

Real Application
Clusters

You must set this parameter for every instance, and multiple

instances must have the same value.

Parameter type String

Syntax TRACEFILE_IDENTIFIER = " traceid "

Default value There is no default value.

Parameter class Dynamic: ALTER SESSION

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-115

TRACEFILE_IDENTIFIER specifies a custom identifier that becomes part of the

Oracle Trace file name. Such a custom identifier is used to identify a trace file

simply from its name and without having to open it or view its contents.

TRANSACTION_AUDITING

If TRANSACTION_AUDITING is true , Oracle generates a special redo record that

contains the user logon name, username, the session ID, some operating system

information, and client information. For each successive transaction, Oracle

generates a record that contains only the session ID. These subsequent records link

back to the first record, which also contains the session ID.

TRANSACTIONS

TRANSACTIONSspecifies the maximum number of concurrent transactions. Greater

values increase the size of the SGA and can increase the number of rollback

segments allocated. The default value is greater than SESSIONS (and, in turn,

PROCESSES) to allow for recursive transactions.

Range of values Any characters that can occur as part of a file name on the

customer platform

Parameter type Boolean

Default value true

Parameter class Dynamic: ALTER SYSTEM ... DEFERRED

Range of values true | false

Parameter type Integer

Default value Derived: (1.1 * SESSIONS)

Parameter class Static

Range of values 4 to 232

Real Application
Clusters

Multiple instances can have different values.

Note: You can set this parameter using ALTER SYSTEMonly if you

have started up the database using a server parameter file (spfile),

and you must specify SCOPE = SPFILE .

Initialization Parameters and ALTER SYSTEM

10-116 Oracle9i SQL Reference

TRANSACTIONS_PER_ROLLBACK_SEGMENT

TRANSACTIONS_PER_ROLLBACK_SEGMENT specifies the number of concurrent

transactions you expect each rollback segment to have to handle. The minimum

number of rollback segments acquired at startup is TRANSACTIONS divided by the

value for this parameter. For example, if TRANSACTIONS is 101 and this parameter

is 10, then the minimum number of rollback segments acquired would be the ratio

101/10, rounded up to 11.

UNDO_MANAGEMENT

UNDO_MANAGEMENT specifies which undo space management mode the system

should use. When set to AUTO, the instance starts in automatic undo management

mode. In manual undo management mode, undo space is allocated externally as

rollback segments.

UNDO_RETENTION

Parameter type Integer

Default value 5

Parameter class Static

Range of values 1 to operating system-dependent

Real Application
Clusters

Multiple instances can have different values.

Parameter type String

Syntax UNDO_MANAGEMENT = {MANUAL | AUTO}

Default value MANUAL

Parameter class Static

Real Application
Clusters

Multiple instances must have the same value.

Parameter type Integer

Default value 900

Parameter class Dynamic: ALTER SYSTEM

Range of values 0 to 232-1 (max value represented by 32 bits)

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-117

UNDO_RETENTION specifies (in seconds) the amount of committed undo

information to retain in the database. You can use UNDO_RETENTION to satisfy

queries that require old undo information to rollback changes to produce older

images of data blocks. You can set the value at instance startup.

UNDO_SUPPRESS_ERRORS

UNDO_SUPPRESS_ERRORSenables users to suppress errors while executing manual

undo management mode operations (for example, ALTER ROLLBACK SEGMENT
ONLINE) in automatic undo management mode. Setting this parameter enables

users to use the undo tablespace feature before all application programs and scripts

are converted to automatic undo management mode. For example, if you have a

tool that uses SET TRANSACTION USE ROLLBACK SEGMENT statement, you can

add the statement "ALTER SESSION SET UNDO_SUPPRESS_ERRORS = true" to

the tool to suppress the ORA-30019 error.

UNDO_TABLESPACE

UNDO_TABLESPACE specifies the undo tablespace to be used when an instance

starts up. If this parameter is specified when the instance is in manual undo

management mode, an error will occur and startup will fail.

Real Application
Clusters

Multiple instances must have the same value.

Parameter type Boolean

Default value false

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Range of values true | false

Parameter type String

Syntax UNDO_TABLESPACE =undoname

Default value The first available undo tablespace in the database.

Parameter class Dynamic: ALTER SYSTEM

Range of values Legal name of an existing undo tablespace

Real Application
Clusters

Multiple instances can have different values.

Initialization Parameters and ALTER SYSTEM

10-118 Oracle9i SQL Reference

USE_INDIRECT_DATA_BUFFERS

USE_INDIRECT_DATA_BUFFERS controls how the system global area (SGA) uses

memory. It enables or disables the use of the extended buffer cache mechanism for

32-bit platforms that can support more than 4 GB of physical memory. On platforms

that do not support this much physical memory, this parameter is ignored.

USE_STORED_OUTLINES
Syntax: USE_STORED_OUTLINES = { TRUE | FALSE | category_name }

The USE_STORED_OUTLINESparameter determines whether the optimizer will use

stored public outlines to generate execution plans. USE_STORED_OUTLINES is not

an initialization parameter.

■ TRUEcauses the optimizer to use outlines stored in the DEFAULTcategory when

compiling requests.

■ FALSE specifies that the optimizer should not use stored outlines. This is the

default.

■ category_name causes the optimizer to use outlines stored in the category_
name category when compiling requests.

USER_DUMP_DEST

USER_DUMP_DEST specifies the pathname for a directory where the server will

write debugging trace files on behalf of a user process.

Parameter type Boolean

Default value false

Parameter class Static

Range of values true | false

Parameter type String

Syntax USER_DUMP_DEST = {pathname | directory }

Default value Operating system-dependent

Parameter class Dynamic: ALTER SYSTEM

Range of values Any valid local path, directory, or disk

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-119

UTL_FILE_DIR

UTL_FILE_DIR lets you specify one or more directories that Oracle should use for

PL/SQL file I/O. If you are specifying multiple directories, you must repeat the

UTL_FILE_DIR parameter for each directory on separate lines of the initialization

parameter file.

WORKAREA_SIZE_POLICY

WORKAREA_SIZE_POLICY specifies the policy for sizing work areas. This

parameter controls the mode in which working areas are tuned.

Examples

Archiving Redo Logs Manually: Examples The following statement manually

archives the redo log file group with the log sequence number 4 in thread number 3:

ALTER SYSTEM ARCHIVE LOG THREAD 3 SEQUENCE 4;

The following statement manually archives the redo log file group containing the

redo log entry with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083;

Parameter type String

Syntax UTL_FILE_DIR = pathname

Default value There is no default value.

Parameter class Static

Range of values Any valid directory path

Parameter type String

Syntax WORKAREA_SIZE_POLICY = {AUTO | MANUAL}

Default value If PGA_AGGREGATE_TARGET is set, then AUTO

If PGA_AGGREGATE_TARGETis not set, then MANUAL

Parameter class Dynamic: ALTER SESSION, ALTER SYSTEM

Initialization Parameters and ALTER SYSTEM

10-120 Oracle9i SQL Reference

The following statement manually archives the redo log file group containing a

member named ’diskl:log6.log ’ to an archived redo log file in the location

’diska:[arch$]’:

ALTER SYSTEM ARCHIVE LOG
 LOGFILE ’diskl:log6.log’
 TO ’diska:[arch$]’;

Enabling Query Rewrite: Example This statement enables query rewrite in all

sessions for all materialized views that have not been explicitly disabled:

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE;

Restricting Session Logons: Example You may want to restrict logons if you are

performing application maintenance and you want only application developers

with RESTRICTED SESSION system privilege to log on. To restrict logons, issue the

following statement:

ALTER SYSTEM
 ENABLE RESTRICTED SESSION;

You can then terminate any existing sessions using the KILL SESSION clause of the

ALTER SYSTEM statement.

After performing maintenance on your application, issue the following statement to

allow any user with CREATE SESSION system privilege to log on:

ALTER SYSTEM
 DISABLE RESTRICTED SESSION;

Clearing the Shared Pool: Example You might want to clear the shared pool

before beginning performance analysis. To clear the shared pool, issue the following

statement:

ALTER SYSTEM FLUSH SHARED_POOL;

Forcing a Checkpoint: Example The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Enabling Resource Limits: Example This ALTER SYSTEM statement dynamically

enables resource limits:

ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-121

Changing Shared Server Settings: Examples The following statement changes

the minimum number of shared server processes to 25:

ALTER SYSTEM SET SHARED_SERVERS = 25;

If there are currently fewer than 25 shared server processes, then Oracle creates

more. If there are currently more than 25, then Oracle terminates some of them

when they are finished processing their current calls if the load could be managed

by the remaining 25.

The following statement dynamically changes the number of dispatcher processes

for the TCP/IP protocol to 5 and the number of dispatcher processes for the

DECNet protocol to 10:

ALTER SYSTEM
 SET DISPATCHERS =
 ’(INDEX=0)(PROTOCOL=TCP)(DISPATCHERS=5)’,
 ’(INDEX=1)(PROTOCOL=DECNet)(DISPATCHERS=10)’;

If there are currently fewer than 5 dispatcher processes for TCP, then Oracle creates

new ones. If there are currently more than 5, then Oracle terminates some of them

after the connected users disconnect.

If there are currently fewer than 10 dispatcher processes for DECNet, then Oracle

creates new ones. If there are currently more than 10, then Oracle terminates some

of them after the connected users disconnect.

If there are currently existing dispatchers for another protocol, then the preceding

statement does not affect the number of dispatchers for that protocol.

Changing Licensing Parameters: Examples The following statement dynamically

changes the limit on sessions for your instance to 64 and the warning threshold for

sessions on your instance to 54:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If the number of sessions reaches 54, then Oracle writes a warning message to the

ALERT file for each subsequent session. Also, users with RESTRICTED SESSION
system privilege receive warning messages when they begin subsequent sessions.

If the number of sessions reaches 64, then only users with RESTRICTED SESSION
system privilege can begin new sessions until the number of sessions falls below 64

again.

Initialization Parameters and ALTER SYSTEM

10-122 Oracle9i SQL Reference

The following statement dynamically disables the limit for sessions on your

instance. After you issue the preceding statement, Oracle no longer limits the

number of sessions on your instance.

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 0;

The following statement dynamically changes the limit on the number of users in

the database to 200. After you issue the preceding statement, Oracle prevents the

number of users in the database from exceeding 200.

ALTER SYSTEM SET LICENSE_MAX_USERS = 200;

Forcing a Log Switch: Example You may want to force a log switch to drop or

rename the current redo log file group or one of its members, because you cannot

drop or rename a file while Oracle is writing to it. The forced log switch affects only

your instance’s redo log thread. The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Enabling Distributed Recovery: Example The following statement enables

distributed recovery:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

You may want to disable distributed recovery for demonstration or testing

purposes.You can disable distributed recovery in both single-process and

multiprocess mode with the following statement:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

When your demonstration or testing is complete, you can then enable distributed

recovery again by issuing an ALTER SYSTEM statement with the ENABLE
DISTRIBUTED RECOVERY clause.

Killing a Session: Example You may want to kill the session of a user that is

holding resources needed by other users. The user receives an error message

indicating that the session has been killed. That user can no longer make calls to the

database without beginning a new session. Consider this data from the V$SESSION
dynamic performance table:

SELECT sid, serial#, username
 FROM v$session;

 SID SERIAL# USERNAME
----- --------- ----------------

ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-123

 1 1
 2 1
 3 1
 4 1
 5 1
 7 1
 8 28 OPS$BQUIGLEY
 10 211 OPS$SWIFT
 11 39 OPS$OBRIEN
 12 13 SYSTEM
 13 8 SCOTT

The following statement kills the session of the user scott using the SID and

SERIAL# values from V$SESSION:

ALTER SYSTEM KILL SESSION ’13, 8’;

Disconnecting a Session: Example The following statement disconnects user

scott ’s session, using the SID and SERIAL# values from V$SESSION:

ALTER SYSTEM DISCONNECT SESSION ’13, 8’ POST_TRANSACTION;

Initialization Parameters and ALTER SYSTEM

10-124 Oracle9i SQL Reference

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-1

11
SQL Statements: ALTER TABLE to

ALTER TABLESPACE

This chapter contains the following SQL statements:

■ ALTER TABLE

■ ALTER TABLESPACE

ALTER TABLE

11-2 Oracle9i SQL Reference

ALTER TABLE

Purpose
Use the ALTER TABLE statement to alter the definition of a nonpartitioned table, a

partitioned table, a table partition, or a table subpartition. For object tables or

relational tables with object columns, use ALTER TABLE to convert the table to the

latest definition of its referenced type after the type has been altered.

Prerequisites
The table must be in your own schema, or you must have ALTER privilege on the

table, or you must have ALTER ANY TABLE system privilege. For some operations

you may also need the CREATE ANY INDEX privilege.

Additional Prerequisites for Partitioning Operations If you are not the owner of

the table, then you need the DROP ANY TABLE privilege in order to use the drop_
table_partition or truncate_table_partition clause.

You must also have space quota in the tablespace in which space is to be acquired in

order to use the add_table_partition , modify_table_partition , move_
table_partition , and split_table_partition clauses.

Additional Prerequisites for Constraints and Triggers To enable a unique or

primary key constraint, you must have the privileges necessary to create an index

on the table. You need these privileges because Oracle creates an index on the

columns of the unique or primary key in the schema containing the table.

To enable or disable triggers, the triggers must be in your schema or you must have

the ALTER ANY TRIGGER system privilege.

Additional Prerequisites When Using Object Types To use an object type in a

column definition when modifying a table, either that object must belong to the

same schema as the table being altered, or you must have either the EXECUTE ANY
TYPE system privilege or the EXECUTE schema object privilege for the object type.

See Also:

■ CREATE TABLE on page 15-7 for information on creating

tables

■ Oracle Text Reference for information on ALTER TABLE
statements in conjunction with Oracle Text

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-3

Syntax

alter_table::=

Groups of ALTER TABLE syntax:

■ alter_table_properties::= on page 11-4

■ column_clauses::= on page 11-9

■ constraint_clauses::= on page 11-11

■ alter_table_partitioning::= on page 11-17

■ alter_external_table_clause::= on page 11-16

■ move_table_clause::= on page 11-29

■ enable_disable_clause::= on page 11-29

After each clause you will find links additional links to its component subclauses.

See Also: CREATE INDEX on page 13-65 for information on the

privileges needed to create indexes

Note: You must specify some clause after table . That is, none of

the clauses after table are required, but you must specify at least

one of them.

alter_table_properties

column_clauses

constraint_clauses

alter_table_partitioning

alter_external_table_clauses

move_table_clause

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS
;

ALTER TABLE
schema .

table

ALTER TABLE

11-4 Oracle9i SQL Reference

alter_table_properties ::=

(physical_attributes_clause::= on page 11-5, logging_clause::= on

page 7-46, data_segment_compression::= on page 11-5, supplemental_lg_
grp_clauses::= on page 11-5, allocate_extent_clause::= on

page 11-5,deallocate_unused_clause::= on page 11-6, upgrade_table_
clause::= on page 11-6, records_per_block_clause::= on page 11-6,

parallel_clause::= on page 11-6, row_movement_clause::= on page 11-6,

alter_iot_clauses::= on page 11-7)

physical_attributes_clause

logging_clause

data_segment_compression

supplemental_lg_grp_clauses

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

MONITORING

NOMONITORING

upgrade_table_clause

records_per_block_clause

parallel_clause

row_movement_clause

RENAME TO new_table_name

alter_iot_clauses

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-5

physical_attributes_clause ::=

(storage_clause on page 7-56)

logging_clause ::=

data_segment_compression ::=

supplemental_lg_grp_clauses ::=

allocate_extent_clause ::=

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

ADD SUPPLEMENTAL LOG GROUP log_group (column

,

)
ALWAYS

DROP SUPPLEMENTAL LOG GROUP log_group

ALLOCATE EXTENT

(

SIZE integer

K

M

DATAFILE ’ filename ’

INSTANCE integer

)

ALTER TABLE

11-6 Oracle9i SQL Reference

deallocate_unused_clause ::=

upgrade_table_clause ::=

(column_properties::= on page 11-11, modify_LOB_storage_clause::=
on page 11-14)

records_per_block_clause ::=

parallel_clause::=

row_movement_clause ::=

DEALLOCATE UNUSED
KEEP integer

K

M

UPGRADE

NOT
INCLUDING DATA column_properties

MINIMIZE

NOMINIMIZE
RECORDS_PER_BLOCK

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE
ROW MOVEMENT

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-7

alter_iot_clauses ::=

(alter_overflow_clause::= on page 11-8, alter_mapping_table_
clauses::= on page 11-8)

index_org_table_clause ::=

mapping_table_clause::=

key_compression::=

index_org_overflow_clause::=

(segment_attributes_clause::= on page 11-8)

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

MAPPING TABLE

NOMAPPING

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

ALTER TABLE

11-8 Oracle9i SQL Reference

segment_attributes_clause::=

(physical_attributes_clause::= on page 11-5, logging_clause on

page 7-45)

alter_overflow_clause ::=

(segment_attributes_clause::= on page 11-8, allocate_extent_
clause::= on page 11-5, deallocate_unused_clause::= on page 11-6)

add_overflow_clause ::=

(segment_attributes_clause::= on page 11-8)

alter_mapping_table_clauses ::=

(allocate_extent_clause::= on page 11-5, deallocate_unused_
clause::= on page 11-6)

physical_attributes_clause

TABLESPACE tablespace

logging_clause

OVERFLOW
allocate_extent_clause

deallocate_unused_clause

add_overflow_clause

ADD OVERFLOW
segment_attributes_clause

(PARTITION
segment_attributes_clause

,

)

MAPPING TABLE

UPDATE BLOCK REFERENCES

allocate_extent_clause

deallocate_unused_clause

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-9

column_clauses ::=

(add_column_clause::= on page 11-9, modify_column_clauses::= on

page 11-9, drop_column_clause::= on page 11-10, rename_column_
clause::= on page 11-10, modify_collection_retrieval::= on page 11-10,

modify_LOB_storage_clause::= on page 11-14, alter_varray_col_
properties::= on page 11-15)

add_column_clause ::=

(inline_constraint and inline_ref_constraint : constraints on

page 7-5, column_properties::= on page 11-11)

modify_column_clauses ::=

add_column_clauses

modify_column_clauses

drop_column_clause

rename_column_clause

modify_collection_retrieval

modify_LOB_storage_clause

alter_varray_col_properties

ADD (column datatype
DEFAULT expr

inline_constraint

inline_ref_constraint

,

)

column_properties

MODIFY
modify_col_properties

modify_col_substitutable

ALTER TABLE

11-10 Oracle9i SQL Reference

modify_col_properties ::=

(inline_constraint : constraints on page 7-5)

modify_col_substitutable ::=

drop_column_clause ::=

rename_column_clause ::=

modify_collection_retrieval ::=

(column
datatype DEFAULT expr inline_constraint

,

)

COLUMN column
NOT

SUBSTITUTABLE AT ALL LEVELS
FORCE

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

RENAME COLUMN old_name TO new_name

MODIFY NESTED TABLE collection_item RETURN AS
LOCATOR

VALUE

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-11

constraint_clauses ::=

(constraint_state : constraints on page 7-5)

drop_constraint_clause ::=

column_properties ::=

ADD
out_of_line_constraint

out_of_line_ref_constraint

MODIFY

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

constraint_state

RENAME CONSTRAINT old_name TO new_name

drop_constraint_clause

DROP

PRIMARY KEY

UNIQUE (column

,

)

CASCADE

KEEP

DROP
INDEX

CONSTRAINT constraint
CASCADE

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

LOB_partition_storage

XMLType_column_properties

ALTER TABLE

11-12 Oracle9i SQL Reference

object_type_col_properties ::=

substitutable_column_clause::=

nested_table_col_properties ::=

object_properties::=

(inline_constraint , inline_ref_constraint , out_of_line_
constraint , out_of_line_ref_constraint : constraints on page 7-5)

COLUMN column substitutable_column_clause

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

((object_properties)
physical_properties column_properties

)

RETURN AS
LOCATOR

VALUE

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-13

supplemental_logging_props::=

physical_properties::=

(segment_attributes_clause::= on page 11-8, index_org_table_
clause::= on page 11-7, external_data_properties::= on page 11-17)

varray_col_properties ::=

(substitutable_column_clause::= on page 11-12)

SUPPLEMENTAL LOG GROUP log_group (column

,

)
ALWAYS

segment_attributes_clause
data_segment_compression

ORGANIZATION

HEAP
segment_attributes_clause data_segment_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

VARRAY varray_item

substitutable_column_clause

STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

ALTER TABLE

11-14 Oracle9i SQL Reference

LOB_storage_clause ::=

LOB_parameters::=

(storage_clause::= on page 7-58, logging_clause::= on page 7-46)

modify_LOB_storage_clause ::=

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

MODIFY LOB (LOB_item) (modify_LOB_parameters)

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-15

modify_LOB_parameters::=

(storage_clause::= on page 7-58, logging_clause::= on page 7-46,

allocate_extent_clause::= on page 11-5, deallocate_unused_
clause::= on page 11-6)

alter_varray_col_properties ::=

LOB_partition_storage ::=

(LOB_storage_clause::= on page 11-14, varray_col_properties::= on

page 11-13)

storage_clause

PCTVERSION integer

RETENTION

FREEPOOLS integer

REBUILD FREEPOOLS

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

deallocate_unused_clause

MODIFY VARRAY varray_item (modify_LOB_parameters)

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

ALTER TABLE

11-16 Oracle9i SQL Reference

XMLType_column_properties ::=

XMLType_storage::=

XMLSchema_spec::=

alter_external_table_clause ::=

(add_column_clause::= on page 11-9, modify_column_clauses::= on

page 11-9, drop_column_clause::= on page 11-10, drop_constraint_
clause::= on page 11-11, parallel_clause::= on page 11-28)

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

STORE AS

OBJECT RELATIONAL

CLOB

LOB_segname
(LOB_parameters)

LOB_parameters

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

add_column_clause

modify_column_clauses

drop_column_clause

parallel_clause

external_data_properties

REJECT LIMIT
integer

UNLIMITED

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-17

external_data_properties::=

alter_table_partitioning ::=

(modify_table_default_attrs::= on page 11-18, set_subpartition_
template::= on page 11-18, modify_table_partition::= on page 11-19,

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

modify_table_default_attrs

set_subpartition_template

modify_table_partition

modify_table_subpartition

move_table_partition

move_table_subpartition

add_table_partition

coalesce_table_partition

drop_table_partition

drop_table_subpartition

rename_partition_subpart

truncate_partition_subpart

split_table_partition

split_table_subpartition

merge_table_partitions

merge_table_subpartitions

exchange_partition_subpart

ALTER TABLE

11-18 Oracle9i SQL Reference

modify_table_subpartition::= on page 11-20, move_table_
partition::= on page 11-20, move_table_subpartition::= on page 11-20,

add_table_partition::= on page 11-21, coalesce_table_partition::=
on page 11-21, drop_table_partition::= on page 11-22, drop_table_
subpartition::= on page 11-22, rename_partition_subpart::= on

page 11-22, truncate_partition_subpart::= on page 11-22, split_table_
partition::= on page 11-23, split_table_subpartition:: on page 11-23,

merge_table_partitions::= on page 11-23, merge_table_
subpartitions::= on page 11-24, exchange_partition_subpart::= on

page 11-24

modify_table_default_attrs ::=

(segment_attributes_clause::= on page 11-8, key_compression::= on
page 11-7 , LOB_parameters::= on page 11-14, alter_overflow_
clause::= on page 11-8)

set_subpartition_template ::=

(list_values_clause::= on page 11-24, partitioning_storage_
clause::= on page 11-25)

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

segment_attributes_clause data_segment_compression

PCTTHRESHOLD integer key_compression alter_overflow_clause

LOB (LOB_item)

VARRAY varray
(LOB_parameters)

SET SUBPARTITION TEMPLATE

(SUBPARTITION subpartition
list_values_clause partitioning_storage_clause

,

)

hash_subpartition_quantity

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-19

modify_table_partition ::=

(modify_range_partition::= on page 11-19, modify_hash_partition::=
on page 11-19, modify_list_partition::= on page 11-20)

modify_range_partition::=

(partition_attributes::= on page 11-25, alter_mapping_table_
clauses::= on page 11-8)

modify_hash_partition ::=

(partition_attributes::= on page 11-25, add_hash_subpartition::=
on page 11-26, update_global_index_clause::= on page 11-28, parallel_
clause::= on page 11-28, alter_mapping_table_clauses::= on page 11-8)

modify_range_partition

modify_hash_partition

modify_list_partition

MODIFY PARTITION partition

partition_attributes

add_hash_subpartition

add_list_subpartition

COALESCE SUBPARTITION
update_global_index_clause parallel_clause

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

MODIFY PARTITION partition

partition_attributes

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

ALTER TABLE

11-20 Oracle9i SQL Reference

modify_list_partition::=

(partition_attributes::= on page 11-25, add_list_subpartition::=
on page 11-26)

modify_table_subpartition::=

modify_hash_subpartition::= on page 11-26, modify_list_
subpartition::= on page 11-27)

move_table_partition ::=

(table_partition_description::= on page 11-27, update_global_index_
clause::= on page 11-28, parallel_clause::= on page 11-28)

move_table_subpartition ::=

(subpartition_spec::= on page 11-28, update_global_index_clause::=
on page 11-28, parallel_clause::= on page 11-28)

MODIFY PARTITION partition

partition_attributes

ADD

DROP
VALUES (partition_value

,

)

REBUILD
UNUSABLE LOCAL INDEXES

MODIFY SUBPARTITION subpartition
modify_hash_subpartition

modify_list_subpartition

MOVE PARTITION partition
MAPPING TABLE table_partition_description

update_global_index_clause parallel_clause

MOVE subpartition_spec
update_global_index_clause parallel_clause

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-21

add_table_partition::=

add_range_partition_clause ::=

(range_values_clause::= on page 11-25, table_partition_
description::= on page 11-27)

add_hash_partition_clause ::=

(partitioning_storage_clause::= on page 11-25, update_global_index_
clause::= on page 11-28, parallel_clause::= on page 11-28)

add_list_partition_clause ::=

(list_values_clause::= on page 11-24, table_partition_
description::= on page 11-27)

coalesce_table_partition ::=

(update_global_index_clause::= on page 11-28, parallel_clause::= on

page 11-28)

add_range_partition_clause

add_hash_partition_clause

add_list_partition_clause

ADD PARTITION
partition

range_values_clause
table_partition_description

ADD PARTITION
partition

partitioning_storage_clause
update_global_index_clause parallel_clause

ADD PARTITION
partition

list_values_clause
table_partition_description

COALESCE PARTITION
update_global_index_clause parallel_clause

ALTER TABLE

11-22 Oracle9i SQL Reference

drop_table_partition ::=

(update_global_index_clause::= on page 11-28, parallel_clause::= on

page 11-28)

drop_table_subpartition ::=

(update_global_index_clause::= on page 11-28, parallel_clause::= on

page 11-28)

rename_partition_subpart ::=

truncate_partition_subpart ::=

(update_global_index_clause::= on page 11-28, parallel_clause::= on

page 11-28)

DROP PARTITION partition
update_global_index_clause

parallel_clause

DROP SUBPARTITION subpartition
update_global_index_clause

parallel_clause

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

TRUNCATE
PARTITION partition

SUBPARTITION subpartition

DROP

REUSE
STORAGE

update_global_index_clause
parallel_clause

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-23

split_table_partition ::=

(partition_spec::= on page 11-28, update_global_index_clause::= on

page 11-28, parallel_clause::= on page 11-28)

split_table_subpartition ::

(subpartition_spec::= on page 11-28, update_global_index_clause::=
on page 11-28, parallel_clause::= on page 11-28)

merge_table_partitions ::=

(partition_spec::= on page 11-28, update_global_index_clause::= on

page 11-28, parallel_clause::= on page 11-28)

SPLIT PARTITION current_partition
AT

VALUES
(value

,

)

INTO (partition_spec , partition_spec)

update_global_index_clause parallel_clause

SPLIT SUBPARTITION subpartition VALUES (
value

NULL

,

)

INTO (subpartition_spec , subpartition_spec)

update_global_index_clause parallel_clause

MERGE PARTITIONS partition_1 , partition_2

INTO partition_spec update_global_index_clause parallel_clause

ALTER TABLE

11-24 Oracle9i SQL Reference

merge_table_subpartitions ::=

(subpartition_spec::= on page 11-28, update_global_index_clause::=
on page 11-28, parallel_clause::= on page 11-28)

exchange_partition_subpart ::=

(update_global_index_clause::= on page 11-28, parallel_clause::= on

page 11-28)

exceptions_clause ::=

list_values_clause::=

MERGE SUBPARTITIONS subpart_1 , subpart_2
INTO subpartition_spec

update_global_index_clause parallel_clause

EXCHANGE
PARTITION partition

SUBPARTITION subpartition
WITH TABLE table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

exceptions_clause update_global_index_clause
parallel_clause

EXCEPTIONS INTO
schema .

table

VALUES (

value

NULL

,

DEFAULT

)

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-25

range_values_clause::=

partitioning_storage_clause::=

partition_attributes::=

(physical_attributes_clause::= on page 11-5, logging_clause::= on

page 7-46, allocate_extent_clause::= on page 11-5, deallocate_unused_
clause::= on page 11-6, data_segment_compression::= on page 11-5,

modify_LOB_parameters::= on page 11-15)

VALUES LESS THAN (
value

MAXVALUE

,

)

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

LOB (LOB_item) STORE AS
LOB_segname

(TABLESPACE tablespace)

(TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB LOB_segname

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

OVERFLOW

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

data_segment_compression

LOB LOB_item

VARRAY varray
modify_LOB_parameters

ALTER TABLE

11-26 Oracle9i SQL Reference

add_hash_subpartition ::=

(subpartition_spec::= on page 11-28, update_global_index_clause::=
on page 11-28)

add_list_subpartition ::=

(subpartition_spec::= on page 11-28)

modify_hash_subpartition ::=

(allocate_extent_clause::= on page 11-5, deallocate_unused_
clause::= on page 11-6, modify_LOB_parameters::= on page 11-15)

ADD subpartition_spec
update_global_index_clause parallel_clause

ADD subpartition_spec

allocate_extent_clause

deallocate_unused_clause

LOB LOB_item

VARRAY varray
modify_LOB_parameters

REBUILD
UNUSABLE LOCAL INDEXES

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-27

modify_list_subpartition ::=

(allocate_extent_clause::= on page 11-5, deallocate_unused_
clause::= on page 11-6, modify_LOB_parameters::= on page 11-15)

table_partition_description::=

(segment_attributes_clause::= on page 11-8, key_compression::= on

page 11-7, LOB_storage_clause::= on page 11-14, varray_col_
properties::= on page 11-13)

allocate_extent_clause

deallocate_unused_clause

LOB LOB_item

VARRAY varray
modify_LOB_parameters

REBUILD
UNUSABLE LOCAL INDEXES

ADD

DROP
VALUES (value

,

)

segment_attributes_clause

data_segment_compression

key_compression

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties partition_level_subpartition

ALTER TABLE

11-28 Oracle9i SQL Reference

partition_level_subpartition ::=

(subpartition_spec::= on page 11-28)

partition_spec::=

(table_partition_description::= on page 11-27)

subpartition_spec::=

(list_values_clause::= on page 11-24, partitioning_storage_
clause::= on page 11-25)

update_global_index_clause ::=

parallel_clause ::=

SUBPARTITIONS hash_subpartition_quantity
STORE IN (tablespace

,

)

(subpartition_spec

,

)

PARTITION
partition table_partition_description

SUBPARTITION
subpartition list_values_clause partitioning_storage_clause

UPDATE

INVALIDATE
GLOBAL INDEXES

NOPARALLEL

PARALLEL
integer

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-29

move_table_clause ::=

(segment_attributes_clause::= on page 11-8, index_org_table_
clause::= on page 11-7, LOB_storage_clause::= on page 11-14, varray_
col_properties::= on page 11-13)

enable_disable_clause ::=

(using_index_clause::= on page 11-30, exceptions_clause::= on

page 11-24,)

MOVE
ONLINE segment_attributes_clause data_segment_compression

index_org_table_clause

LOB_storage_clause

varray_col_properties parallel_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

ALTER TABLE

11-30 Oracle9i SQL Reference

using_index_clause::=

(create_index::= on page 13-66, storage_clause on page 7-56, logging_
clause::= on page 7-46)

global_partitioned_index::=

index_partitioning_clause::=

Semantics
Many clauses of the ALTER TABLE statement have the same functionality they have

in a CREATE TABLE statement. For more information on such clauses, please see

CREATE TABLE on page 15-7.

USING INDEX

schema .
index

(create_index_statement)

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

SORT

NOSORT

logging_clause

LOCAL

global_partitioned_index

GLOBAL PARTITION BY RANGE (column_list) (index_partitioning_clause)

PARTITION
partition

VALUES LESS THAN (value

,

)
segment_attributes_clause

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-31

schema
Specify the schema containing the table. If you omit schema , then Oracle assumes

the table is in your own schema.

table
Specify the name of the table to be altered.

Restrictions on Temporary Tables

You can modify, drop columns from, or rename a temporary table. However, for a

temporary table you cannot:

■ Add columns of nested table or varray type. You can add columns of other

types.

■ Specify referential integrity (foreign key) constraints for an added or modified

column.

■ Specify the following clauses of the LOB_storage_clause for an added or

modified LOB column: TABLESPACE, storage_clause , logging_clause ,

or the LOB_index_clause .

■ Specify the physical_attributes_clause , nested_table_col_
properties , parallel_clause , allocate_extent_clause ,

deallocate_unused_clause , or any of the index organized table clauses.

■ Exchange partitions between a partition and a temporary table.

■ Specify the logging_clause .

■ Specify MOVE.

Restrictions on External Tables

You can add, drop, or modify the columns of an external table. However, for an

external table you cannot:

■ Add a LONG, LOB, or object type column or change the datatype of an external

table column to any of these datatypes.

Note: Operations performed by the ALTER TABLE statement can

cause Oracle to invalidate procedures and stored functions that

access the table. For information on how and when Oracle

invalidates such objects, see Oracle9i Database Concepts.

ALTER TABLE

11-32 Oracle9i SQL Reference

■ Add a constraint to an external table.

■ Modify the storage parameters of an external table.

■ Specify the logging_clause .

■ Specify MOVE.

alter_table_properties
Use the alter_table_clauses to modify a database table.

physical_attributes_clause
The physical_attributes_clause lets you change the value of PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters and storage characteristics.

Restrictions on Altering Table Physical Attributes

■ You cannot specify the PCTUSED parameter for the index segment of an index-

organized table.

■ If you attempt to alter the storage attributes of tables in locally managed

tablespaces, then Oracle raises an error. However, if some segments of a

partitioned table reside in a locally managed tablespace and other segments

reside in a dictionary-managed tablespace, then Oracle alters the storage

attributes of the segments in the dictionary-managed tablespace but does not

alter the attributes of the segments in the locally managed tablespace, and does

not raise an error.

■ For segments with automatic segment-space management, Oracle ignores

attempts to change the PCTUSED setting. If you alter the PCTFREE setting, then

you must subsequently run the DBMS_REPAIR.segment_fix_status

Note: If you alter a table that is a master table for one or more

materialized views, then Oracle marks the materialized views

INVALID . Invalid materialized views cannot be used by query

rewrite and cannot be refreshed. For information on revalidating a

materialized view, see ALTER MATERIALIZED VIEW on

page 9-90.

See Also: Oracle9i Data Warehousing Guide for more information

on materialized views in general

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-33

procedure to implement the new setting on blocks already allocated to the

segment.

data_segment_compression
The data_segment_compression clause is valid only for heap-organized tables.

Use this clause to instruct Oracle whether to compress data segments to reduce disk

and memory use. The COMPRESS keyword enables data segment compression. The

NOCOMPRESS keyword disables data segment compression.

Cautions:

■ For a nonpartitioned table, the values you specify override any

values specified for the table at create time.

■ For a range-, list-, or hash-partitioned table, the values you

specify are the default values for the table and the actual values

for every existing partition, overriding any values already set

for the partitions. To change default table attributes without

overriding existing partition values, use the modify_table_
default_attrs clause.

■ For a composite-partitioned table, the values you specify are

the default values for the table and all partitions of the table

and the actual values for all subpartitions of the table,

overriding any values already set for the subpartitions. To

change default partition attributes without overriding existing

subpartition values, use the modify_table_default_attrs
clause with the FOR PARTITION clause.

See Also:

■ physical_attributes_clause on page 7-52 for a full

description of the physical attribute parameters

■ storage_clause on page 7-56 for a description of storage

parameters

Note: The first time a table is altered in such a way that

compressed data will be added, all bitmap indexes and bitmap

index partitions on that table must be marked UNUSABLE.

ALTER TABLE

11-34 Oracle9i SQL Reference

logging_clause
Specify whether subsequent Direct Loader (SQL*Loader) and direct-path INSERT
operations against a nonpartitioned table, table partition, all partitions of a

partitioned table, or all subpartitions of a partition will be logged (LOGGING) or not

logged (NOLOGGING) in the redo log file.

When used with the modify_table_default_attrs clause, this clause affects

the logging attribute of a partitioned table.

The logging_clause also specifies whether ALTER TABLE ... MOVE and ALTER
TABLE ... SPLIT operations will be logged or not logged.

supplemental_lg_grp_clauses
The supplemental_lg_grp_clauses let you add and drop supplemental redo

log groups.

■ Use the ADD LOG GROUP clause to add a redo log group.

■ Use the DROP LOG GROUP clause to drop a redo log group when it is no longer

needed.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information on calculating the compression ratio and to

Oracle9i Data Warehousing Guide for information on data

compression usage scenarios

■ data_segment_compression clause of CREATE TABLE on

page 15-29 information on creating objects with data segment

compression

See Also:

■ logging_clause on page 7-45 for a full description of this

clause

■ Oracle9i Data Warehousing Guide for more information about the

logging_clause and parallel DML

See Also: Oracle Data Guard Concepts and Administration for

information on supplemental redo log groups

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-35

allocate_extent_clause
Use the allocate_extent_clause to explicitly allocate a new extent for the

table, the partition or subpartition, the overflow data segment, the LOB data

segment, or the LOB index.

Restriction on Allocating Table Extents You cannot allocate an extent for a

temporary table or for a range- or composite-partitioned table.

deallocate_unused_clause
Use the deallocate_unused_clause to explicitly deallocate unused space at the

end of the table, partition or subpartition, overflow data segment, LOB data

segment, or LOB index and make the space available for other segments in the

tablespace.

CACHE | NOCACHE
Use the CACHE clauses to indicate how Oracle should store blocks in the buffer

cache. If you specify neither CACHE nor NOCACHE:

■ In a CREATE TABLE statement, NOCACHE is the default

■ In an ALTER TABLE statement, the existing value is not changed.

CACHE Clause For data that is accessed frequently, this clause indicates that the

blocks retrieved for this table are placed at the most recently used end of the least

recently used (LRU) list in the buffer cache when a full table scan is performed. This

attribute is useful for small lookup tables.

As a parameter in the LOB_storage_clause , CACHE specifies that Oracle places

LOB data values in the buffer cache for faster access.

Restriction on CACHE You cannot specify CACHE for an index-organized table.

However, index-organized tables implicitly provide CACHE behavior.

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause and "Allocating Extents: Example" on

page 11-97

See Also: deallocate_unused_clause on page 7-37 for a full

description of this clause and "Deallocating Unused Space:

Example" on page 11-92

ALTER TABLE

11-36 Oracle9i SQL Reference

NOCACHE Clause For data that is not accessed frequently, this clause indicates

that the blocks retrieved for this table are placed at the least recently used end of the

LRU list in the buffer cache when a full table scan is performed.

As a parameter in the LOB_storage_clause , NOCACHE specifies that the LOB

value is either not brought into the buffer cache or brought into the buffer cache and

placed at the least recently used end of the LRU list. (The latter is the default

behavior.)

Restriction on NOCACHE You cannot specify NOCACHEfor index-organized

tables.

MONITORING | NOMONITORING

MONITORING Clause Specify MONITORING if you want Oracle to collect

modification statistics on table . These statistics are estimates of the number of

rows affected by DML statements over a particular period of time. They are

available for use by the optimizer or for analysis by the user.

NOMONITORING Clause Specify NOMONITORING if you do not want Oracle to

collect modification statistics on table .

Restriction on MONITORING You cannot specify MONITORINGor NOMONITORING
for a temporary table.

upgrade_table_clause
The upgrade_table_clause is relevant for object tables and for relational tables

with object columns. It lets you instruct Oracle to convert the metadata of the target

table to conform with the latest version of each referenced type. If table is already

valid, then the table metadata remains unchanged.

Restriction on Upgrading Object Tables and Columns Within this clause, you

cannot specify object_type_col_properties as a clause of column_
properties .

INCLUDING DATA Specify INCLUDING DATA if you want Oracle to convert the

data in the table to the latest type version format (if it was not converted when the

type was altered). You can define the storage for any new column while upgrading

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on using this clause

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-37

the table by using the column_properties and the LOB_partition_storage .

This is the default.

For information on whether a table contains data based on an older type version,

refer to the DATA_UPGRADED column of the USER_TAB_COLUMNS data dictionary

view.

NOT INCLUDING DATA Specify NOT INCLUDING DATA if you want Oracle to leave

column data unchanged.

Restriction on NOT INCLUDING DATA You cannot specify NOT INCLUDING DATA
if the table contains columns in Oracle8 release 8.0.x image format. To determine

whether the table contains such columns, refer to the V80_FMT_IMAGE column of

the USER_TAB_COLUMNS data dictionary view.

records_per_block_clause
The records_per_block_clause lets you specify whether Oracle restricts the

number of records that can be stored in a block. This clause ensures that any bitmap

indexes subsequently created on the table will be as small (compressed) as possible.

Restrictions on Restricting Records in a Block

■ You cannot specify either MINIMIZE or NOMINIMIZE if a bitmap index has

already been defined on table. You must first drop the bitmap index.

■ You cannot specify this clause for an index-organized table or nested table.

MINIMIZE Specify MINIMIZE to instruct Oracle to calculate the largest number of

records in any block in the table, and limit future inserts so that no block can

contain more than that number of records.

See Also:

■ Oracle9i Database Reference for information on the data

dictionary views

■ ALTER TYPE on page 12-6 for information on converting

dependent table data when modifying a type upon which the

table depends

■ Oracle9i Application Developer’s Guide - Object-Relational Features
for more information on the implications of not converting

table data to the latest type version format

ALTER TABLE

11-38 Oracle9i SQL Reference

Oracle Corporation recommends that a representative set of data already exist in

the table before you specify MINIMIZE . If you are using data segment compression

(see data_segment_compression on page 11-33), then a representative set of

compressed data should already exist in the table.

Restriction on MINIMIZE You cannot specify MINIMIZE for an empty table.

NOMINIMIZE Specify NOMINIMIZE to disable the MINIMIZE feature. This is the

default.

RENAME TO
Use the RENAME clause to rename table to new_table_name .

Restriction on Renaming a Table You cannot rename a materialized view.

row_movement_clause
The row_movement_clause lets you specify whether Oracle can move a table

row. It is possible for a row to move, for example, during data segment compression

or an update operation on partitioned data.

■ Specify ENABLE to allow Oracle to move a row, thus changing the rowid.

■ Specify DISABLE if you want to prevent Oracle from moving a row, thus

preventing a change of rowid.

Restriction on Row Movement You cannot specify this clause for a nonpartitioned

index-organized table.

Note: Using this clause invalidates any dependent materialized

views. For more information on materialized views, see CREATE

MATERIALIZED VIEW on page 14-5 and Oracle9i Data Warehousing
Guide.

Caution: If you need static rowids for data access, do not enable

row movement. For a normal (heap-organized) table, moving a row

changes that row’s rowid. For a moved row in an index-organized

table, the logical rowid remains valid, although the physical guess

component of the logical rowid becomes inaccurate.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-39

alter_iot_clauses

index_org_table_clause
See index_org_table_clause on page 15-30 in the context of CREATE TABLE.

alter_overflow_clause
The alter_overflow_clause lets you change the definition of an index-

organized table. Index-organized tables keep data sorted on the primary key and

are therefore best suited for primary-key-based access and manipulation.

PCTTHRESHOLD integer Specify the percentage of space reserved in the index

block for an index-organized table row. PCTTHRESHOLD must be large enough to

hold the primary key. All trailing columns of a row, starting with the column that

causes the specified threshold to be exceeded, are stored in the overflow segment.

PCTTHRESHOLD must be a value from 1 to 50. If you do not specify

PCTTHRESHOLD, the default is 50.

Restriction on PCTTHRESHOLD You cannot specify PCTTHRESHOLD for

individual partitions of an index-organized table.

INCLUDING column_name Specify a column at which to divide an index-

organized table row into index and overflow portions. The primary key columns

are always stored in the index. column_name can be either the last primary-key

column or any non-primary-key column. All non-primary-key columns that follow

column_name are stored in the overflow data segment.

See Also: "Modifying Index-Organized Tables: Examples" on

page 11-93

Note: When you add a column to an index-organized table,

Oracle evaluates the maximum size of each column to estimate the

largest possible row. If an overflow segment is needed but you have

not specified OVERFLOW, then Oracle raises an error and does not

execute the ALTER TABLE statement. This checking function

guarantees that subsequent DML operations on the index-

organized table will not fail because an overflow segment is

lacking.

ALTER TABLE

11-40 Oracle9i SQL Reference

Restriction on the INCLUDING Clause You cannot specify this clause for

individual partitions of an index-organized table.

overflow_attributes

The overflow_attributes let you specify the overflow data segment physical

storage and logging attributes to be modified for the index-organized table.

Parameters specified in this clause are applicable only to the overflow data segment.

add_overflow_clause The add_overflow_clause lets you add an overflow

data segment to the specified index-organized table. You can also use this clause to

explicitly allocate an extent to or deallocate unused space from an existing overflow

segment.

Use the STORE INtablespace clause to specify tablespace storage for the entire

overflow segment. Use the PARTITION clause to specify tablespace storage for the

segment by partition.

For a partitioned index-organized table:

■ If you do not specify PARTITION, then Oracle automatically allocates an

overflow segment for each partition. The physical attributes of these segments

are inherited from the table level.

■ If you wish to specify separate physical attributes for one or more partitions,

then you must specify such attributes for every partition in the table. You need

not specify the name of the partitions, but you must specify their attributes in

the order in which they were created.

You can find the order of the partitions by querying the PARTITION_NAME and

PARTITION_POSITION columns of the USER_IND_PARTITIONS view.

If you do not specify TABLESPACE for a particular partition, then Oracle uses the

tablespace specified for the table. If you do not specify TABLESPACE at the table

level, then Oracle uses the tablespace of the partition’s primary key index segment.

Note: If an attempt to divide a row at column_name causes the

size of the index portion of the row to exceed the PCTTHRESHOLD
value (either specified or default), Oracle breaks up the row based

on the PCTTHRESHOLD value.

See Also: CREATE TABLE on page 15-7

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-41

alter_mapping_table_clauses
The alter_mapping_table_clauses is valid only if table is index organized

and has a mapping table.

UPDATE BLOCK REFERENCES Specify UPDATE BLOCK REFERENCES to update

all stale "guess" data block addresses stored as part of the logical ROWID column in

the mapping table with the correct address for the corresponding block identified

by the primary key.

allocate_extent_clause Use the allocate_extent_clause to allocate a new

extent at the end of the mapping table for the index-organized table.

deallocate_unused_clause Specify the deallocate_unused_clause to

deallocate unused space at the end of the mapping table of the index-organized

table.

COALESCE
The keyword is relevant only if table is index organized. Specify COALESCE to
instruct Oracle to combine the primary key index blocks of the index-organized

table where possible to free blocks for reuse. You can specify this clause with the

parallel_clause .

column_clauses

add_column_clause
The add_column_clause lets you add a column to a table.

See Also: allocate_extent_clause on page 7-2 and

deallocate_unused_clause on page 7-37 for full descriptions

of these clauses of the add_overflow_clause

See Also: allocate_extent_clause on page 7-2 for a full

description of this clause

See Also: deallocate_unused_clause on page 7-37 for a full

description of this clause

See Also: CREATE TABLE on page 15-7 for a description of the

keywords and parameters of this clause and "Adding a Table

Column: Example" on page 11-97

ALTER TABLE

11-42 Oracle9i SQL Reference

If you add a column, then the initial value of each row for the new column is null

unless you specify the DEFAULT clause. In this case, Oracle updates each row in the

new column with the value you specify for DEFAULT. This update operation, in

turn, fires any AFTER UPDATE triggers defined on the table.

You can add an overflow data segment to each partition of a partitioned index-

organized table.

You can add LOB columns to nonpartitioned and partitioned tables. You can specify

LOB storage at the table and at the partition or subpartition level.

If you previously created a view with a query that used the "SELECT * " syntax to

select all columns from table, and you now add a column to table , then Oracle

does not automatically add the new column to the view. To add the new column to

the view, re-create the view using the CREATE VIEW statement with the OR
REPLACE clause.

Restrictions on Adding Columns

■ You cannot add a LOB column to a clustered table.

■ If you add a LOB column to a hash-partitioned table, then the only attribute

you can specify for the new partition is TABLESPACE.

■ You cannot add a column with a NOT NULL constraint if table has any rows

unless you also specify the DEFAULT clause.

■ If you specify this clause for an index-organized table, then you cannot specify

any other clauses in the same statement.

DEFAULT
Use the DEFAULT clause to specify a default for a new column or a new default for

an existing column. Oracle assigns this value to the column if a subsequent INSERT
statement omits a value for the column. If you are adding a new column to the table

Note: If a column has a default value, then you can use the

DEFAULT clause to change the default to NULL, but you cannot

remove the default value completely. That is, if a column has ever

had a default value assigned to it, then the DATA_DEFAULTcolumn

of the USER_TAB_COLUMNS data dictionary view will always

display either a default value or NULL.

See Also: CREATE VIEW on page 16-39

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-43

and specify the default value, then Oracle inserts the default column value into all

rows of the table.

The datatype of the default value must match the datatype specified for the column.

The column must also be long enough to hold the default value.

Restrictions on Default Column Values

■ A DEFAULT expression cannot contain references to other columns, the

pseudocolumns CURRVAL, NEXTVAL, LEVEL, and ROWNUM, or date constants

that are not fully specified.

■ The expression can be of any form except a scalar subquery expression.

inline_constraint
Use inline_constraint to add a constraint to the new column

inline_ref_constraint
This clause lets you describe a new column of type REF.

column_properties
The column_properties determine the storage characteristics of an object,

nested table, varray, or LOB column.

object_type_col_properties This clause is valid only when you are adding a new

object type column or attribute. To modify the properties of an existing object type

column, use the modify_column_clauses .

Use the object_type_col_properties to specify storage characteristics for a

new object column or attribute or an element of a collection column or attribute.

column For column , specify an object column or attribute.

substitutable_column_clause The substitutable_column_clause indicates

whether object columns or attributes in the same hierarchy are substitutable for

each other. You can specify that a column is of a particular type, or whether it can

contain instances of its subtypes, or both.

See Also: "Specifying Default Column Value: Examples" on

page 11-98

See Also: constraints on page 7-5 for syntax and description

of this type of constraint, including restrictions

ALTER TABLE

11-44 Oracle9i SQL Reference

■ If you specify ELEMENT, you constrain the element type of a collection column

or attribute to a subtype of its declared type.

■ The IS OF [TYPE] (ONLY type) clause constrains the type of the object

column to a subtype of its declared type.

■ NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object column cannot

hold instances corresponding to any of its subtypes. Also, substitution is

disabled for any embedded object attributes and elements of embedded nested

tables and varrays. The default is SUBSTITUTABLE AT ALL LEVELS.

Restrictions on the substitutable_column_clause

■ You cannot specify this clause for an attribute of an object column. However,

you can specify this clause for a object type column of a relational table, and for

an object column of an object table if the substitutability of the object table itself

has not been set.

■ For a collection type column, the only part of this clause you can specify is

[NOT] SUBSTITUTABLE AT ALL LEVELS.

nested_table_col_properties The nested_table_col_properties clause lets

you specify separate storage characteristics for a nested table, which in turn lets you

to define the nested table as an index-organized table. You must include this clause

when creating a table with columns or column attributes whose type is a nested

table. (Clauses within this clause that function the same way they function for

parent object tables are not repeated here.)

■ For nested_item , specify the name of a column (or a top-level attribute of the

table’s object type) whose type is a nested table.

If the nested table is a multilevel collection, then the inner nested table may not

have a name. In this case, specify COLUMN_VALUEin place of the nested_item
name.

■ For storage_table , specify the name of the table where the rows of nested_
item reside. The storage table is created in the same schema and the same

tablespace as the parent table.

Restrictions on Nested Table Column Properties

■ You cannot specify the parallel_clause .

■ You cannot specify TABLESPACE (as part of the segment_attributes_
clause) for a nested table. The tablespace is always that of the parent table.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-45

■ You cannot specify CLUSTER as part of the physical_properties clause.

varray_col_properties The varray_col_properties clause lets you specify

separate storage characteristics for the LOB in which a varray will be stored. If you

specify this clause, then Oracle will always store the varray in a LOB, even if it is

small enough to be stored inline. If varray_item is a multilevel collection, then

Oracle stores all collection items nested within varray_item in the same LOB in

which varray_item is stored.

Restriction on Varray Column Properties You cannot specify TABLESPACEas part

of LOB_parameters for a varray column. The LOB tablespace for a varray defaults

to the containing table’s tablespace.

LOB_storage_clause Use the LOB_storage_clause to specify the LOB storage

characteristics for a newly added LOB column, partition, or subpartition. You

cannot use this clause to modify an existing LOB. Instead, you must use the

modify_LOB_storage_clause .

CACHE READS Clause CACHE READS applies only to LOB storage. It indicates

that LOB values are brought into the buffer cache only during read operations, but

not during write operations.

■ For LOB_item , specify the LOB column name or LOB object attribute for which

you are explicitly defining tablespace and storage characteristics that are

different from those of the table.

■ For LOB_segname, specify the name of the LOB data segment. You cannot use

LOB_segname if more than one LOB_item is specified.

When you add a new LOB column, you can specify the logging attribute with

CACHE READS, as you can when defining a LOB column at create time.

When you modify a LOB column from CACHE or NOCACHE to CACHE READS, or

from CACHE READS to CACHE or NOCACHE, you can change the logging attribute. If

you do not specify LOGGING or NOLOGGING, then this attribute defaults to the

current logging attribute of the LOB column.

For existing LOBs, if you do not specify CACHE, NOCACHE, or CACHE READS, then

Oracle retains the existing values of the LOB attributes.

See Also: "Nested Tables: Examples" on page 11-99

ALTER TABLE

11-46 Oracle9i SQL Reference

Restrictions on LOB Parameters

■ The only parameter of LOB_parameters you can specify for a hash partition

or hash subpartition is TABLESPACE.

■ You cannot specify the LOB_index_clause if table is partitioned.

ENABLE | DISABLE STORAGE IN ROW Specify whether the LOB value is to be

stored in the row (inline) or outside of the row (out of line). (The LOB locator is

always stored inline regardless of where the LOB value is stored.)

■ ENABLE specifies that the LOB value is stored inline if its length is less than

approximately 4000 bytes minus system control information. This is the default.

■ DISABLE specifies that the LOB value is stored out of line regardless of the

length of the LOB value.

Restrictions on Enabling Storage in Row You cannot change STORAGE IN ROW
once it is set. Therefore, you cannot specify this clause as part of the modify_col_
properties clause. However, you can change this setting when adding a new

column (add_column_clause) or when moving the table (move_table_
clause).

CHUNK integer Specify the number of bytes to be allocated for LOB manipulation.

If integer is not a multiple of the database block size, then Oracle rounds up (in

bytes) to the next multiple. For example, if the database block size is 2048 and

integer is 2050, then Oracle allocates 4096 bytes (2 blocks).The maximum value is

32768 (32 K), which is the largest Oracle block size allowed. The default CHUNK size

is one Oracle database block.

Restrictions on CHUNK

■ You cannot change the value of CHUNK once it is set.

■ The value of CHUNK must be less than or equal to the value of NEXT (either the

default value or that specified in the storage clause). If CHUNKexceeds the value

of NEXT, then Oracle returns an error.

PCTVERSION integer Specify the maximum percentage of overall LOB storage

space to be used for maintaining old versions of the LOB. The default value is 10,

meaning that older versions of the LOB data are not overwritten until 10% of the

overall LOB storage space is used.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-47

RETENTION If the database is in automatic undo mode, then you can specify

RETENTION instead of PCTVERSION to instruct Oracle to retain old versions of this

LOB. This clause overrides any prior setting of PCTVERSION.

Restriction on RETENTION You cannot specify RETENTION if the database is

running in manual undo mode.

FREEPOOLS integer If the database is in automatic undo mode, then you can use

this clause to specify the number of freelist groups for this LOB. This clause

overrides any prior setting of FREELIST GROUPS.

Restriction on FREEPOOLS You cannot specify FREEPOOLS if the database is

running in manual undo mode.

LOB_index_clause This clause has been deprecated since Oracle8i. Oracle

generates an index for each LOB column. The LOB indexes are system named and

system managed, and they reside in the same tablespace as the LOB data segments.

It is still possible for you to specify this clause in some cases. However, Oracle

Corporation strongly recommends that you no longer do so. In any event, do not

put the LOB index in a different tablespace from the LOB data.

LOB_partition_storage
The LOB_partition_storage clause lets you specify a separate LOB_storage_
clause or varray_col_properties clause for each partition. You must specify

the partitions in the order of partition position. You can find the order of the

partitions by querying the PARTITION_NAME and PARTITION_POSITION
columns of the USER_IND_PARTITIONS view.

If you do not specify a LOB_storage_clause or varray_col_properties
clause for a particular partition, then the storage characteristics are those specified

for the LOB item at the table level. If you also did not specify any storage

See Also: LOB_parameters on page 15-37 for a full description

of the RETENTION parameter

See Also: LOB_parameters on page 15-37 for a full description

of the FREEPOOLS parameter

See Also: Oracle9i Database Migration Guide for information on

how Oracle manages LOB indexes in tables migrated from earlier

versions

ALTER TABLE

11-48 Oracle9i SQL Reference

characteristics for the LOB item at the table level, then Oracle stores the LOB data

partition in the same tablespace as the table partition to which it corresponds.

Restriction on LOB Partition Storage You can specify only one list of LOB_
partition_storage clause in a single ALTER TABLE statement, and all LOB_
storage_clauses and varray_col_properties clause must precede the list

of LOB_partition_storage clauses.

XMLType_column_properties The XMLType_column_properties let you

specify storage attributes for an XMLTYPE column.

XMLType_storage XMLType columns can be stored either in LOB or object-

relational columns.

■ Specify STORE AS OBJECT RELATIONAL if you want Oracle to store the

XMLType data in object-relational columns. Storing data object relationally lets

you define indexes on the relational columns and enhances query performance.

If you specify object-relational storage, you must also specify the XMLSchema_
spec clause.

■ Specify STORE AS CLOBif you want Oracle to store the XMLType data in a CLOB
column. Storing data in a CLOB column preserves the original content and

enhances retrieval time.

If you specify LOB storage, you can specify either LOB parameters or the

XMLSchema_spec clause, but not both. Specify the XMLSchema_spec clause if

you want to restrict the table or column to particular schema-based XML

instances.

XMLSchema_spec This clause lets you specify the URL of a registered

XMLSchema (in the XMLSCHEMA clause or as part of the ELEMENT clause) and an

XML element name. You must specify an element, although the XMLSchema URL is

optional. If you do specify an XMLSchema URL, you must already have registered

the XMLSchema using the DBMS_XMLSCHEMA package.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-49

modify_column_clauses
Use the modify_column_clauses to modify the properties of an existing column

or the substitutability of an existing object type column.

modify_col_properties
Use this clause to modify the properties of the column. Any of the optional parts of

the column definition (datatype, default value, or constraint) that you omit from

this clause remain unchanged.

datatype You can change any column’s datatype if all rows for the column contain

nulls. However, if you change the datatype of a column in a materialized view

container table, then the corresponding materialized view is invalidated.

You can omit the datatype only if the statement also designates the column as part

of the foreign key of a referential integrity constraint. Oracle automatically assigns

the column the same datatype as the corresponding column of the referenced key of

the referential integrity constraint.

You can always increase the size of a character or raw column or the precision of a

numeric column, whether or not all the columns contain nulls. You can reduce the

size of a column’s datatype as long as the change does not require data to be

modified. Oracle scans existing data and returns an error if data exists that exceeds

the new length limit.

You can modify a DATE column to TIMESTAMP or TIMESTAMP WITH LOCAL TIME
ZONE. You can modify any TIMESTAMP WITH LOCAL TIME ZONEto a DATEcolumn.

See Also:

■ LOB_storage_clause on page 11-45 for information on the

LOB_segname and LOB_parameters clauses

■ "XMLType Column Examples" on page 15-72 for an example of

XMLType columns in object-relational tables and "Using XML

in SQL Statements" on page D-11 for an example of creating an

XMLSchema

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB for

more information on XMLType columns and tables and on

creating XMLSchemas

See Also: "Modifying Table Columns: Examples" on page 11-97

ALTER TABLE

11-50 Oracle9i SQL Reference

If the table is empty, then you can increase or decrease the leading field or the

fractional second value of a datetime or interval column. If the table is not empty,

then you can only increase the leading field or fractional second of a datetime or

interval column.

You can change a LONG column to a CLOB or NCLOB column, and a LONG RAW
column to a BLOB column.

■ The modified LOB column inherits all constraints and triggers that were

defined on the original LONG column. If you wish to change any constraints,

then you must do so in a subsequent ALTER TABLE statement.

■ If any domain indexes are defined on the LONG column, then you must drop

them before modifying the column to a LOB.

■ After the modification, you will have to rebuild all other indexes on all columns

of the table.

Note: When you modify a TIMESTAMP WITH LOCAL TIME ZONE
column to a DATE column, the fractional seconds and time zone

adjustment data is lost.

■ If the TIMESTAMP WITH LOCAL TIME ZONE data has fractional

seconds, then Oracle updates the row data for the column by

rounding the fractional seconds.

■ If the TIMESTAMP WITH LOCAL TIME ZONEdata has the minute

field greater than equal to 60 (which can occur in a boundary

case when the daylight savings rule switches), then Oracle

updates the row data for the column by subtracting 60 from its

minute field.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on LONG and LOB columns

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

information on LONG to LOB migration

■ ALTER INDEX on page 9-62 for information on dropping and

rebuilding indexes

■ "Converting LONG Columns to LOB: Example" on page 11-97

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-51

For CHAR and VARCHAR2 columns, you can change the length semantics by

specifying CHAR (to indicate character semantics for a column that was originally

specified in bytes) or BYTE (to indicate byte semantics for a column that was

originally specified in characters). To learn the length semantics of existing columns,

query the CHAR_USED column of the ALL_, USER_, or DBA_TAB_COLUMNS data

dictionary view.

inline_constraint The only type of integrity constraint that you can add to an

existing column using the MODIFY clause is a NOT NULL constraint, and only if the

column contains no nulls. To define other types of integrity constraints (UNIQUE,
PRIMARY KEY, referential integrity, and CHECKconstraints) on existing columns, use

the add_column_clause . To modify existing constraints on existing columns, use

the constraint_clauses .

Restrictions on Modifying Column Properties

■ You cannot modify a column of a table if a domain index is defined on the

column. You must first drop the domain index and then modify the column.

■ You cannot specify a column of datatype ROWID for an index-organized table,

but you can specify a column of type UROWID.

■ You cannot change a column’s datatype to REF.

modify_col_substitutable
Use this clause to set or change the substitutability of an existing object type

column.

The FORCE keyword drops any hidden columns containing typeid information or

data for subtype attributes. You must specify FORCE if the column or any attributes

of its type are not FINAL .

See Also:

■ Oracle9i Database Globalization Support Guide for information on

byte and character semantics

■ Oracle9i Database Reference for information on the data

dictionary views

See Also: ALTER MATERIALIZED VIEW on page 9-90 for

information on revalidating a materialized view

ALTER TABLE

11-52 Oracle9i SQL Reference

Restrictions on Modifying Column Substitutability

■ You can specify this clause only once in any ALTER TABLE statement.

■ You cannot modify the substitutability of a column in an object table if the

substitutability of the table itself has been set.

■ You cannot specify this clause if the column was created or added using the IS
OF TYPE syntax (see substitutable_column_clause on page 11-43),

which limits the range of subtypes permitted in an object column or attribute to

a particular subtype.

■ You cannot change a varray column to NOT SUBSTITUTABLE if any of its

attributes of nested object types is not FINAL , even by specifying FORCE.

drop_column_clause
The drop_column_clause lets you free space in the database by dropping

columns you no longer need, or by marking them to be dropped at a future time

when the demand on system resources is less.

■ If you drop a nested table column, then its storage table is removed.

■ If you drop a LOB column, then the LOB data and its corresponding LOB index

segment are removed.

■ If you drop a BFILE column, then only the locators stored in that column are

removed, not the files referenced by the locators.

■ If you drop (or mark unused) a column defined as an INCLUDING column, then

the column stored immediately before this column will become the new

INCLUDING column.

SET UNUSED Clause
Specify SET UNUSEDto mark one or more columns as unused. Specifying this clause

does not actually remove the target columns from each row in the table (that is, it

does not restore the disk space used by these columns). Therefore, the response time

is faster than it would be if you execute the DROP clause.

You can view all tables with columns marked UNUSED in the data dictionary views

USER_UNUSED_COL_TABS, DBA_UNUSED_COL_TABS, and ALL_UNUSED_COL_
TABS.

See Also: Oracle9i Database Reference for information on the data

dictionary views

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-53

Unused columns are treated as if they were dropped, even though their column

data remains in the table’s rows. After a column has been marked UNUSED, you

have no access to that column. A "SELECT *" query will not retrieve data from

unused columns. In addition, the names and types of columns marked UNUSEDwill

not be displayed during a DESCRIBE, and you can add to the table a new column

with the same name as an unused column.

DROP Clause
Specify DROP to remove the column descriptor and the data associated with the

target column from each row in the table. If you explicitly drop a particular column,

then all columns currently marked UNUSED in the target table are dropped at the

same time.

When the column data is dropped:

■ All indexes defined on any of the target columns are also dropped.

■ All constraints that reference a target column are removed.

■ If any statistics types are associated with the target columns, then Oracle

disassociates the statistics from the column with the FORCE option and drops

any statistics collected using the statistics type.

Note: Until you actually drop these columns, they continue to

count toward the absolute limit of 1000 columns in a single table.

However, as with all DDL statements, you cannot roll back the

results of this clause. That is, you cannot issue SET USED
counterpart to retrieve a column that you have SET UNUSED.

Also, if you mark a column of datatype LONG as UNUSED, then you

cannot add another LONG column to the table until you actually

drop the unused LONG column.

See Also: CREATE TABLE on page 15-7 for more information on

the 1000-column limit

ALTER TABLE

11-54 Oracle9i SQL Reference

DROP UNUSED COLUMNS Clause
Specify DROP UNUSED COLUMNS to remove from the table all columns currently

marked as unused. Use this statement when you want to reclaim the extra disk

space from unused columns in the table. If the table contains no unused columns,

then the statement returns with no errors.

column Specify one or more columns to be set as unused or dropped. Use the

COLUMN keyword only if you are specifying only one column. If you specify a

column list, then it cannot contain duplicates.

CASCADE CONSTRAINTS Specify CASCADE CONSTRAINTS if you want to drop

all foreign key constraints that refer to the primary and unique keys defined on the

dropped columns, and drop all multicolumn constraints defined on the dropped

columns. If any constraint is referenced by columns from other tables or remaining

columns in the target table, then you must specify CASCADE CONSTRAINTS.

Otherwise, the statement aborts and an error is returned.

INVALIDATE The INVALIDATE keyword is optional. Oracle automatically

invalidates all dependent objects, such as views, triggers, and stored program units.

Object invalidation is a recursive process. Therefore, all directly dependent and

indirectly dependent objects are invalidated. However, only local dependencies are

invalidated, because Oracle manages remote dependencies differently from local

dependencies.

An object invalidated by this statement is automatically revalidated when next

referenced. You must then correct any errors that exist in that object before

referencing it.

Note: If the target column is a parent key of a nontarget column,

or if a check constraint references both the target and nontarget

columns, then Oracle returns an error and does not drop the

column unless you have specified the CASCADE CONSTRAINTS
clause. If you have specified that clause, then Oracle removes all

constraints that reference any of the target columns.

See Also: DISASSOCIATE STATISTICS on page 16-64 for more

information on disassociating statistics types

See Also: Oracle9i Database Concepts for more information on

dependencies

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-55

CHECKPOINT Specify CHECKPOINT if you want Oracle to apply a checkpoint for

the DROP COLUMN operation after processing integer rows; integer is optional

and must be greater than zero. If integer is greater than the number of rows in the

table, then Oracle applies a checkpoint after all the rows have been processed. If

you do not specify integer , then Oracle sets the default of 512. Checkpointing cuts

down the amount of undo logs accumulated during the DROP COLUMN operation to

avoid running out of rollback segment space. However, if this statement is

interrupted after a checkpoint has been applied, then the table remains in an

unusable state. While the table is unusable, the only operations allowed on it are

DROP TABLE, TRUNCATE TABLE, and ALTER TABLE DROP COLUMNS CONTINUE
(described in sections that follow).

You cannot use this clause with SET UNUSED, because that clause does not remove

column data.

DROP COLUMNS CONTINUE Clause
Specify DROP COLUMNS CONTINUE to continue the drop column operation from the

point at which it was interrupted. Submitting this statement while the table is in a

valid state results in an error.

Restrictions on Dropping Columns

■ Each of the parts of this clause can be specified only once in the statement and

cannot be mixed with any other ALTER TABLE clauses. For example, the

following statements are not allowed:

ALTER TABLE t1 DROP COLUMN f1 DROP (f2);
ALTER TABLE t1 DROP COLUMN f1 SET UNUSED (f2);
ALTER TABLE t1 DROP (f1) ADD (f2 NUMBER);
ALTER TABLE t1 SET UNUSED (f3)
 ADD (CONSTRAINT ck1 CHECK (f2 > 0));

■ You can drop an object type column only as an entity. To drop an attribute from

an object type column, use the ALTER TYPE ... DROP ATTRIBUTE statement

with the CASCADE INCLUDING TABLE DATA clause. Be aware that dropping an

attribute affects all dependent objects. See DROP ATTRIBUTE on page 12-16 for

more information.

■ You can drop a column from an index-organized table only if it is not a primary

key column. The primary key constraint of an index-organized table can never

be dropped, so you cannot drop a primary key column even if you have

specified CASCADE CONSTRAINTS.

ALTER TABLE

11-56 Oracle9i SQL Reference

■ You can export tables with dropped or unused columns. However, you can

import a table only if all the columns specified in the export files are present in

the table (that is, none of those columns has been dropped or marked unused).

Otherwise, Oracle returns an error.

■ You cannot drop a column on which a domain index has been built.

■ You cannot drop a SCOPE table constraint or a WITH ROWID constraint on a REF
column.

■ You cannot use this clause to drop:

■ A pseudocolumn, cluster column, or partitioning column. (You can drop

nonpartitioning columns from a partitioned table if all the tablespaces

where the partitions were created are online and in read/write mode.)

■ A column from: a nested table, an object table, or a table owned by SYS.

rename_column_clause
Use the rename_column_clause to rename a column of table . The new column

name must not be the same as any other column name in table .

When you rename a column, Oracle handles dependent objects as follows:

■ Function-based indexes and check constraints that depend on the renamed

column remain valid.

■ Dependent views, triggers, domain indexes, functions, procedures, and

packages are marked INVALID . Oracle attempts to revalidate them when they

are next accessed, but you may need to alter these objects with the new column

name if revalidation fails.

Restrictions on Renaming Columns

■ You cannot combine this clause with any of the other column_clauses in the

same statement.

■ You cannot rename a column that is used to define a join index. Instead you

must drop the index, rename the column, and re-create the index.

See Also: "Dropping a Column: Example" on page 11-92

See Also: "Renaming a Column: Example" on page 11-92

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-57

modify_collection_retrieval
Use the modify_collection_retrieval clause to change what Oracle returns

when a collection item is retrieved from the database.

collection_item Specify the name of a column-qualified attribute whose type is

nested table or varray.

RETURN AS Specify what Oracle should return as the result of a query:

■ LOCATOR specifies that a unique locator for the nested table is returned.

■ VALUE specifies that a copy of the nested table itself is returned.

modify_LOB_storage_clause
The modify_LOB_storage_clause lets you change the physical attributes of

LOB_item . You can specify only one LOB_item for each modify_LOB_storage_
clause .

The REBUILD FREEPOOLS clause removes all the old data from the LOB column.

This clause is useful only if you reverting to PCTVERSIONfor management of LOBs.

You might want to do this to manage older data blocks, and you must do this if you

are downgrading to a release of Oracle earlier than 9.2.0.

Restrictions on Modifying LOB Storage

■ You cannot modify the value of the INITIAL parameter in the storage_
clause when modifying the LOB storage attributes.

■ You cannot specify both the allocate_extent_clause and the

deallocate_unused_clause in the same statement.

■ You cannot specify both.

alter_varray_col_properties
The alter_varray_col_properties clause lets you change the storage

characteristics of an existing LOB in which a varray is stored.

See Also: "Collection Retrieval: Example" on page 11-90

See Also: LOB_storage_clause of CREATE TABLE on

page 15-36 for information on setting LOB parameters and "LOB

Columns: Examples" on page 11-99

ALTER TABLE

11-58 Oracle9i SQL Reference

Restriction on Altering Varray Column Properties You cannot specify the

TABLESPACE clause of LOB_parameters as part of this clause. The LOB

tablespace for a varray defaults to the tablespace of the containing table.

constraint_clauses
Use the constraint_clauses to add a new constraint using out-of-line

declaration, modify the state of an existing constraint, or to drop a constraint.

Adding a Constraint
The ADD clause lets you add a new out-of-line constraint or out-of-line REF
constraint to the table.

Modifying a Constraint
The MODIFY CONSTRAINT clause lets you change the state of an existing constraint.

Restrictions on Modifying Constraints

■ You cannot change the state of a NOT DEFERRABLE constraint to INITIALLY
DEFERRED.

■ You cannot modify the datatype or length of a column that is part of a table or

index partitioning or subpartitioning key.

■ You can change a CHAR column to VARCHAR2 (or VARCHAR) and a VARCHAR2
(or VARCHAR) to CHAR only if the column contains nulls in all rows or if you do

not attempt to change the column size.

■ You cannot change a LONG or LONG RAW column to a LOB if it is part of a

cluster. If you do change a LONG or LONG RAW column to a LOB, then the only

other clauses you can specify in this ALTER TABLE statement are the DEFAULT
clause and the LOB_storage_clause .

■ You can specify the LOB_storage_clause as part of modify_col_
properties only when you are changing a LONG or LONG RAW column to a

LOB.

See Also: constraints on page 7-5 for a description of all the

keywords and parameters of out-of-line constraints and

constraint_state

See Also: "Disabling a CHECK Constraint: Example" on

page 11-92, "Specifying Object Identifiers: Example" on page 11-96,

and "REF Columns: Examples" on page 11-101

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-59

■ If you specify this clause for an index-organized table, then you cannot specify

any other clauses in the same statement.

Renaming a Constraint
The RENAME CONSTRAINTclause lets you rename any existing constraint on table .

The new constraint name cannot be the same as any existing constraint on any

object in the same schema. All objects that are dependent on the constraint remain

valid.

drop_constraint_clause
The drop_constraint_clause lets you drop an integrity constraint from the

database. Oracle stops enforcing the constraint and removes it from the data

dictionary. You can specify only one constraint for each drop_constraint_
clause , but you can specify multiple drop_constraint_clauses in one

statement.

PRIMARY KEY Specify PRIMARY KEY to drop the table’s primary key constraint.

UNIQUE Specify UNIQUE to drop the unique constraint on the specified columns.

CONSTRAINT Specify CONSTRAINTconstraint to drop an integrity constraint

other than a primary key or unique constraint.

CASCADE Specify CASCADE if you want all other integrity constraints that

depend on the dropped integrity constraint to be dropped as well.

KEEP | DROP INDEX Specify KEEP or DROP INDEX to indicate whether Oracle

should preserve or drop the index it has been using to enforce the PRIMARY KEY or

UNIQUE constraint.

See Also: "Changing the State of a Constraint: Examples" on

page 11-90

See Also: "Renaming Constraints: Example" on page 11-99

Note: If you drop the primary key or unique constraint from a

column on which a bitmap join index is defined, then Oracle

invalidates the index. See CREATE INDEX on page 13-65 for

information on bitmap join indexes.

ALTER TABLE

11-60 Oracle9i SQL Reference

Restrictions on Dropping Constraints

■ You cannot drop a primary key or unique key constraint that is part of a

referential integrity constraint without also dropping the foreign key. To drop

the referenced key and the foreign key together, use the CASCADE clause. If you

omit CASCADE, then Oracle does not drop the primary key or unique constraint

if any foreign key references it.

■ You cannot drop a primary key constraint (even with the CASCADE clause) on a

table that uses the primary key as its object identifier (OID).

■ If you drop a referential integrity constraint on a REF column, then the REF
column remains scoped to the referenced table.

■ You cannot drop the scope of the column.

alter_external_table_clause
Use the alter_external_table_clause to change the characteristics of an

external table. This clause has no affect on the external data itself. The syntax and

semantics of the parallel_clause , enable_disable_clause , external_
data_properties , and REJECT LIMIT clause are the same as described for

CREATE TABLE. See the external_table_clause of CREATE TABLE on
page 15-33 .

Restrictions on Altering External Tables

■ You cannot modify an external table using any clause outside of this clause.

■ You cannot add a LONG, LOB, or object type column to an external table, nor can

you change the datatype of an external table column to any of these datatypes.

■ You cannot add a constraint to an external table.

■ You cannot modify the storage parameters of an external table.

alter_table_partitioning
The clauses in this section apply only to partitioned tables. You cannot combine

partition operations with other partition operations or with operations on the base

table in the same ALTER TABLE statement.

See Also: "Dropping Constraints: Examples" on page 11-99

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-61

Notes on Altering Table Partitioning

■ For additional information on partition operations on tables with an associated

CONTEXT domain index, please refer to Oracle Text Reference.

■ If you drop, exchange, truncate, move, modify, or split a partition on a table that

is a master table for one or more materialized views, then existing bulk load

information about the table will be deleted. Therefore, be sure to refresh all

dependent materialized views before performing any of these operations.

■ If a bitmap join index is defined on table , then any operation that alters a

partition of table causes Oracle to mark the index UNUSABLE.

modify_table_default_attrs
The modify_table_default_attrs clause lets you specify new default values

for the attributes of table . Partitions and LOB partitions you create subsequently

will inherit these values unless you override them explicitly when creating the

partition or LOB partition. Existing partitions and LOB partitions are not affected by

this clause.

Only attributes named in the statement are affected, and the default values specified

are overridden by any attributes specified at the individual partition level.

■ FOR PARTITION applies only to composite-partitioned tables. This clause

specifies new default values for the attributes of partition . Subpartitions and

LOB subpartitions of partition that you create subsequently will inherit

these values unless you override them explicitly when creating the subpartition

or LOB subpartition. Existing subpartitions are not affected by this clause.

■ PCTTHRESHOLD, key_compression , and the alter_overflow_clause are

valid only for partitioned index-organized tables. However, in the key_
compression clause, you cannot specify an integer after the COMPRESS
keyword. Key compression length can be specified only when you create the

table.

■ You cannot specify the PCTUSED parameter in segment_attributes for the

index segment of an index-organized table.

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

ALTER TABLE

11-62 Oracle9i SQL Reference

■ You can specify the key_compression_clause only if key compression is

already specified at the table level.

set_subpartition_template
Use the set_subpartition_template clause to create or replace existing

default list or hash subpartition definitions for each table partition. This clause is

valid only for composite-partitioned tables. It replaces the existing subpartition

template or creates a new template if you have not previously created one. Existing

subpartitions are not affected, nor are existing local and global indexes. However,

subsequent partitioning operations (such as add and merge operations) will use the

new template.

You can drop an existing subpartition template by specifying ALTER TABLEtable
SET SUBPARTITION TEMPLATE ().

Restrictions on Subpartition Templates

■ For a range-hash composite-partitioned table, you cannot specify the list_
values_clause .

■ For a range-list composite-partitioned table, you cannot specify the hash_
subpartition_quantity clause.

■ For both range-hash and range-list partitioned tables, the only clause of the

partitioning_storage_clause you can specify for subpartitions is the

TABLESPACE clause.

modify_table_partition
The modify_table_partition clause lets you change the real physical attributes

of a range, hash, or list partition. This clause optionally modifies the storage

attributes of one or more LOB items for the partition. You can specify new values

for physical attributes (with some restrictions, as noted in the sections that follow),

logging; and storage parameters.

You can also specify how Oracle should handle local indexes that become unusable

as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES

Clauses" on page 11-84.

For partitioned index-organized tables, you can also update the mapping table in

conjunction with partition changes. See the alter_mapping_table_clauses on

page 11-41.

See Also: "Modifying Table Partitions: Examples" on page 11-95

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-63

modify_range_partition
When modifying a range partition, if table is composite partitioned:

■ If you specify the allocate_extent_clause , then Oracle allocates an extent

for each subpartition of partition .

■ If you specify deallocate_unused_clause , then Oracle deallocates unused

storage from each subpartition of partition .

■ Any other attributes changed in this clause will be changed in subpartitions of

partition as well, overriding existing values. To avoid changing the

attributes of existing subpartitions, use the FOR PARTITION clause of modify_
table_default_attrs.

Restriction on Modifying Range Partitions If you specify UNUSABLE LOCAL
INDEXES, then you cannot specify any other clause of modify_range_
partition .

add_hash_subpartition This clause is valid only for range-hash composite

partitions. The add_hash_subpartition clause lets you add a hash subpartition

to partition . Oracle populates the new subpartition with rows rehashed from the

other subpartition(s) of partition as determined by the hash function. For

optimal load balancing, the total number of subpartitions should be a power of 2.

■ If you do not specify subpartition , then Oracle assigns a name in the form

SYS_SUBPn.

■ The list_values_clause is not valid for this operation.

■ In the partitioning_storage_clause , the only clause you can specify for

subpartitions is the TABLESPACE clause. If you do not specify TABLESPACE,
then the new subpartition will reside in the default tablespace of partition .

Oracle invalidates any global indexes on table . You can update these indexes

during this operation using the update_global_index_clause .

Oracle adds local index partitions corresponding to the selected partition. Oracle

marks UNUSABLE, and you must rebuild, the local index partitions corresponding to

the added partitions.

add_list_subpartition the add_list_subpartition clause lets you add a list

subpartition to partition. This clause is valid only for range-list composite

partitions, and only if you have not already created a DEFAULT subpartition.

ALTER TABLE

11-64 Oracle9i SQL Reference

■ If you do not specify subpartition , then Oracle assigns a name in the form

SYS_SUBPn.

■ The list_values_clause is required in this operation, and the values you

specify in the list_values_clause cannot exist in any other subpartition of

partition . However, these values can duplicate values found in subpartitions

of other partitions.

■ In the partitioning_storage_clause , the only clause you can specify for

subpartitions is the TABLESPACE clause. If you do not specify TABLESPACE,
then Oracle stores the new subpartition in the default tablespace of

partition . If partition has no default tablespace, then Oracle uses the default

tablespace of table. If table has no default tablespace, then Oracle uses the

default tablespace of the user.

Oracle also adds a subpartition with the same value list to all local index partitions

of the table. The status of existing local and global index partitions of table are not

affected.

Restriction on Adding list Subpartitions You cannot specify this clause if you

have already created a DEFAULT subpartition for this partition. Instead you must

split the DEFAULT partition using the split_list_subpartition clause.

modify_hash_partition
When modifying a hash partition, in the partition_attributes clause, you can

specify only the allocate_extent_clause and deallocate_unused_
clause . All other attributes of the partition are inherited from the table-level

defaults except TABLESPACE, which stays the same as it was at create time.

COALESCE SUBPARTITION COALESCE SUBPARTITION applies only to hash

subpartitions. Use the COALESCE SUBPARTITION clause if you want Oracle to

select the last hash subpartition, distribute its contents into one or more remaining

subpartitions (determined by the hash function), and then drop the last

subpartition.

Oracle invalidates any global indexes on table . You can update these indexes

during this operation using the update_global_index_clause .

Oracle drops local index partitions corresponding to the selected partition. Oracle

marks UNUSABLE, and you must rebuild, the local index partitions corresponding to

one or more absorbing partitions.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-65

Restriction on Modifying Hash Partitions If you specify UNUSABLE LOCAL
INDEXES, then you cannot specify any other clause of modify_hash_partition .

modify_list_partition
When modifying a list partition, the following additional clauses are available:

Restriction on Modifying List Partitions If you specify UNUSABLE LOCAL
INDEXES, then you cannot specify any other clause of modify_list_partition .

ADD | DROP VALUES Clauses These clauses are valid only when you are

modifying list partitions. Local and global indexes on the table are not affected by

either of these clauses.

■ Use the ADD VALUES clause to extend the partition_value list of

partition to include additional values. The added partition values must

comply with all rules and restrictions listed in the list_partitioning of

CREATE TABLE on page 15-48.

■ Use the DROP VALUES clause to reduce the partition_value list of

partition by eliminating one or more partition_value . When you specify

this clause, Oracle checks to ensure that no rows with this value exist. If such

rows do exist, then Oracle returns an error.

Restrictions on Adding and Dropping List Values

■ You cannot add values to a default list partition. If table contains a default

partition and you attempt to add values to a nondefault partition, then Oracle

will check that the values being added do not already exist in the default

partition. If the values do exist in the default partition, then Oracle returns an

error.

■ You cannot drop values from a default partition.

modify_table_subpartition
This clause applies only to composite-partitioned tables.

Note: An ADD VALUES operation on a table with a DEFAULT list

partition will be enhanced if you have defined a local prefixed

index on the table. A DROP VALUESoperation also will be enhanced

by such an index.

ALTER TABLE

11-66 Oracle9i SQL Reference

modify_hash_subpartition
The modify_hash_subpartition clause lets you allocate or deallocate storage

for an individual subpartition of table . This clause is valid only for range-hash

composite-partitioned tables.

You can also specify how Oracle should handle local indexes that become unusable

as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES

Clauses" on page 11-84.

Restriction on Modifying Hash Subpartitions The only modify_LOB_
parameters you can specify for subpartition are the allocate_extent_
clause and deallocate_unused_clause .

modify_list_subpartition
The modify_list_subpartition clause lets you make the same changes to a list

subpartition that you can make to a hash subpartition. In addition, it lets you add or

remove values from a list subpartition’s value list. This clause is valid only for

range-list composite-partitioned tables.

ADD VALUES Specify ADD VALUES to extend the value list of subpartition .

■ The values you specify cannot already exist in the value list of subpartition
or of any other subpartition of the same partition. However, the values can exist

in the value lists of subpartitions of other partitions.

■ If you have defined a DEFAULT subpartition, then Oracle verifies that none of

the values you are adding exist in rows of the DEFAULT subpartition. If the

added values do exist in the DEFAULT subpartition, then the statement will fail.

■ Oracle adds corresponding values to the value list of any local index

subpartitions. The status of local and global index partitions is not affected by

this operation.

DROP VALUES Specify DROP VALUES to remove one or more values from the

value list of subpartition .

■ The values you specify must be a subset of existing values in subpartition .

■ You cannot use this clause to drop all values in a subpartition. Instead you must

use an ALTER TABLE ... DROP SUBPARTITION statement.

■ If subpartition contains any rows containing one of the values being

dropped, then the operation fails and Oracle returns an error. You must first

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-67

delete any rows containing the values you wish to drop before reissuing the

statement.

■ Oracle updates the value list of any corresponding local index subpartition. The

status of local and global index partitions is not affected by this operation.

You can also specify how Oracle should handle local indexes that become unusable

as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES

Clauses" on page 11-84.

Restriction on Modifying List Subpartitions The only modify_LOB_parameters
you can specify for subpartition are the allocate_extent_clause and

deallocate_unused_clause .

move_table_partition
Use the move_table_partition clause to move partition to another segment.

You can move partition data to another tablespace, recluster data to reduce

fragmentation, or change create-time physical attributes.

If the table contains LOB columns, then you can use the LOB_storage_clause to

move the LOB data and LOB index segments associated with this partition. Only

the LOBs named are affected. If you do not specify the LOB_storage_clause for

a particular LOB column, then its LOB data and LOB index segments are not

moved.

Oracle invalidates any global indexes on heap-organized tables. You can update

these indexes during this operation using the update_global_index_clause .

Global indexes on index-organized tables are primary key based, so they do not

become unusable.

Oracle moves local index partitions corresponding to the specified partition. If the

moved partitions are not empty, then Oracle marks them UNUSABLE, and you must

rebuild them.

When you move a LOB data segment, Oracle drops the old data segment and

corresponding index segment and creates new segments even if you do not specify

a new tablespace.

The move operation obtains its parallel attribute from the parallel_clause , if

specified. If not specified, the default parallel attributes of the table, if any, are used.

If neither is specified, then Oracle performs the move without using parallelism.

Specifying the parallel_clause in MOVE PARTITION does not change the

default parallel attributes of table .

ALTER TABLE

11-68 Oracle9i SQL Reference

MAPPING TABLE The MAPPING TABLE clause is relevant only for an index-

organized table that already has a mapping table defined for it. Oracle moves the

mapping table along with the index partition and marks all corresponding bitmap

index partitions UNUSABLE.

Restrictions on Moving Table Partitions

■ If partition is a hash partition, then the only attribute you can specify in this

clause is TABLESPACE.

■ You cannot specify this clause for a partition containing subpartitions.

However, you can move subpartitions using the move_table_
subpartition_clause .

move_table_subpartition
Use the move_table_subpartition clause to move subpartition to another

segment. If you do not specify TABLESPACE, then the subpartition remains in the

same tablespace.

You can update global indexes on table during this operation using the update_
global_index_clause . If the subpartition is not empty, then Oracle marks

UNUSABLE, and you must rebuild, all local index subpartitions corresponding to the

subpartition being moved.

If the table contains LOB columns, then you can use the LOB_storage_clause to

move the LOB data and LOB index segments associated with this subpartition.

Note: For index-organized tables, Oracle uses the address of the

primary key, as well as its value, to construct logical rowids. The

logical rowids are stored in the secondary index of the table. If you

move a partition of an index-organized table, then the address

portion of the rowids will change, which can hamper performance.

To ensure optimal performance, rebuild the secondary index(es) on

the moved partition to update the rowids.

See Also: Oracle9i Database Concepts for more information on

logical rowids and "Moving Table Partitions: Example" on

page 11-96

See Also: mapping_table_clause of CREATE TABLE on
page 15-32

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-69

Only the LOBs specified are affected. If you do not specify the LOB_storage_
clause for a particular LOB column, then its LOB data and LOB index segments

are not moved.

When you move a LOB data segment, Oracle drops the old data segment and

corresponding index segment and creates new segments even if you do not specify

a new tablespace.

Restriction on Moving Table Subpartitions In subpartition_spec , the only

clause of the partitioning_storage_clause you can specify is the

TABLESPACE clause.

add_table_partition
Use the add_table_partition clause to add a hash, range, or list partition to

table .

Oracle adds to any local index defined on table a new partition with the same

name as that of the base table partition. If the index already has a partition with

such a name, then Oracle generates a partition name of the form SYS_Pn.

If table is index organized, then Oracle adds a partition to any mapping table and

overflow area defined on the table as well.

add_range_partition_clause
The add_range_partition_clause lets you add a new range partition to the

"high" end of a partitioned table (after the last existing partition). You can specify

any create-time physical attributes for the new partition. If the table contains LOB

columns, then you can also specify partition-level attributes for one or more LOB

items.

If you do not specify a new partition_name , then Oracle assigns a name of the

form SYS_Pn. If you add a range partition to a composite-partitioned table and do

not describe the subpartitions, then Oracle assigns subpartition names as described

in partition_level_subpartition on page 11-70.

If a domain index is defined on table , then the index must not be marked IN_
PROGRESS or FAILED .

A table can have up to 64K-1 partitions.

Restrictions on Adding Range Partitions

See Also: "Adding a Table Partition with a LOB: Examples" on

page 11-94

ALTER TABLE

11-70 Oracle9i SQL Reference

■ If the upper partition bound of each partitioning key in the existing high

partition is MAXVALUE, then you cannot add a partition to the table. Instead, use

the split_table_partition clause to add a partition at the beginning or

the middle of the table.

■ The key_compression and OVERFLOW clauses are valid only for a partitioned

index-organized table. You can specify OVERFLOW only if the partitioned table

already has an overflow segment. You can specify key compression only if key

compression is enabled at the table level.

■ You cannot specify the PCTUSED parameter for the index segment of an index-

organized table.

range_values_clause Specify the upper bound for the new partition. The value_
list is a comma-delimited, ordered list of literal values corresponding to column_
list . The value_list must collate greater than the partition bound for the

highest existing partition in the table.

partition_level_subpartition The partition_level_subpartition clause (in

table_partition_description) is valid only for a composite-partitioned

table. This clause lets you specify hash or list subpartitions for a new range-hash or

range-list composite partition. This clause overrides any subpartition descriptions

defined in subpartition_template at the table level.

For all composite partitions:

■ You can specify the number of subpartitions (and optionally one or more

tablespaces where they are to be stored). In this case, Oracle assigns

subpartition names of the form SYS_SUBPn. The number of tablespaces does

not have to equal the number of subpartitions. If the number of partitions is

greater than the number of tablespaces, Oracle cycles through the names of the

tablespaces.

■ Alternatively, you can use the subpartition_spec to specify individual

subpartitions by name, and optionally the tablespace where each should be

stored.

■ If you omit partition_level_subpartition and if you have created a

subpartition template, Oracle uses the template to create subpartitions. If you

have not created a subpartition template, Oracle creates one hash subpartition

or one DEFAULT list subpartition.

■ If you omit partition_level_subpartition entirely, Oracle assigns

subpartition names as follows:

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-71

■ If you have specified a subpartition template and you have specified

partition names, then Oracle generates subpartition names of the form

"partition_name underscore (_) subpartition_name " (for example,

P1_SUB1).

■ If you have not specified a subpartition template or if you have specified a

subpartition template but did not specify partition names, then Oracle

generates subpartition names of the form SYS_SUBPn.

■ In partition_spec , the only clause of the partitioning_storage_
clause you can specify is the TABLESPACE clause.

For range-hash composite partitions, the list_values_clause of

subpartition_spec is not relevant and is invalid.

For range-list composite partitions:

■ The hash_subpartition_quantity is not relevant, so you must use the

lower branch of partition_level_subpartition .

■ Within subpartition_spec , you must specify the list_values_clause
for each subpartition, and the values you specify for each subpartition cannot

exist in any other subpartition of the same partition.

Oracle will add a new index partition with the same subpartition descriptions to all

local indexes defined on table . Global indexes defined on table are not affected.

add_hash_partition_clause
The add_hash_partition_clause lets you add a new hash partition to the

"high" end of a partitioned table. Oracle will populate the new partition with rows

rehashed from other partitions of table as determined by the hash function. For

optimal load balancing, the total number of partitions should be a power of 2.

You can specify a name for the partition, and optionally a tablespace where it

should be stored. If you do not specify a name, then Oracle assigns a partition name

of the form SYS_Pn. If you do not specify TABLESPACE, then the new partition is

stored in the table’s default tablespace. Other attributes are always inherited from

table-level defaults.

You can update global indexes on table during this operation using the update_
global_index_clause . For a heap-organized table, if this operation causes data

to be rehashed among partitions, then Oracle marks UNUSABLE, and you must

See Also: CREATE TABLE on page 15-7

ALTER TABLE

11-72 Oracle9i SQL Reference

rebuild, any corresponding local index partitions. Indexes on index-organized

tables are primary key based, so they do not become unusable.

Use the parallel_clause to specify whether to parallelize the creation of the

new partition.

Restriction on Adding Hash Partitions In table_partition_description ,

you cannot specify partition_level_subpartition .

add_list_partition_clause
The add_list_partition_clause lets you add a new partition to table using

a new set of partition values. You can specify any create-time physical attributes for

the new partition. If the table contains LOB columns, then you can also specify

partition-level attributes for one or more LOB items.

When you add a list partition to a table, Oracle adds a corresponding index

partition with the same value list to all local indexes defined on the table. Global

indexes are not affected.

Restrictions on Adding List Partitions

■ In table_partition_description , you cannot specify partition_
level_subpartition .

■ You cannot add a list partition if you have already defined a DEFAULT partition

for the table. Instead you must use the split_table_partition clause to

split the DEFAULT partition.

coalesce_table_partition
COALESCE applies only to hash partitions. Use the coalesce_table_partition
clause to indicate that Oracle should select the last hash partition, distribute its

contents into one or more remaining partitions (determined by the hash function),

and then drop the last partition.

See Also: CREATE TABLE on page 15-7 and Oracle9i Database
Concepts for more information on hash partitioning

See Also:

■ list_partitioning of CREATE TABLE on page 15-48 for

more information and restrictions on list partitions

■ "Working with Default List Partitions: Example" on page 11-94

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-73

Oracle invalidates any global indexes on heap-organized tables. You can update

these indexes during this operation using the update_global_index_clause .

Global indexes on index-organized tables are primary key based, so they do not

become unusable.

Oracle drops local index partitions corresponding to the selected partition. Oracle

marks UNUSABLE, and you must rebuild, the local index partitions corresponding to

one or more absorbing partitions.

drop_table_partition
The drop_table_partition clause removes partition , and the data in that

partition, from a partitioned table. If you want to drop a partition but keep its data

in the table, then you must merge the partition into one of the adjacent partitions.

If the table has LOB columns, then Oracle also drops the LOB data and LOB index

partitions (and their subpartitions, if any) corresponding to partition .

If table is index organized and has a mapping table defined on it, then Oracle

drops the corresponding mapping table partition as well.

Oracle drops local index partitions and subpartitions corresponding to partition ,

even if they are marked UNUSABLE.

You can update global indexes on heap-organized tables during this operation

using the update_global_index_clause . If you specify the parallel_
clause with the update_global_index_clause , then Oracle parallelizes the

index update, not the drop operation.

If you drop a range partition and later insert a row that would have belonged to the

dropped partition, then Oracle stores the row in the next higher partition. However,

if that partition is the highest partition, then the insert will fail because the range of

values represented by the dropped partition is no longer valid for the table.

Restrictions on Dropping Table Partitions

■ You cannot drop a partition of a hash-partitioned table.

■ If table contains only one partition, then you cannot drop the partition. You

must drop the table.

See Also: merge_table_partitions on page 11-79

See Also: "Dropping a Table Partition: Example" on page 11-95

ALTER TABLE

11-74 Oracle9i SQL Reference

drop_table_subpartition
Use this clause to drop a list subpartition from a range-list composite-partitioned

table. Oracle deletes any rows in the dropped subpartition.

Oracle drops the corresponding subpartition of any local index. Other index

subpartitions are not affected. Any global indexes are marked UNUSABLE unless

you specify the update_global_index_clause .

Restrictions on Dropping Table Subpartitions

■ You cannot drop a hash subpartition. Instead use the MODIFY PARTITION ...

COALESCE SUBPARTITION syntax.

■ You cannot drop the last subpartition of a partition. Instead use the drop_
table_partition clause.

rename_partition_subpart
Use the rename_table_partition clause to rename a table partition or

subpartition current_name to new_name. For both partitions and subpartitions,

new_name must be different from all existing partitions and subpartitions of the

same table.

If table is index organized, then Oracle assigns the same name to the

corresponding primary key index partition as well as to any existing overflow

partitions and mapping table partitions.

truncate_partition_subpart
Specify TRUNCATE PARTITION to remove all rows from partition or, if the table

is composite partitioned, all rows from partition ’s subpartitions. Specify

TRUNCATE SUBPARTITION to remove all rows from subpartition . If table is

index organized, then Oracle also truncates any corresponding mapping table

partitions and overflow area partitions.

If the partition or subpartition to be truncated contains data, then you must first

disable any referential integrity constraints on the table. Alternatively, you can

delete the rows and then truncate the partition.

If the table contains any LOB columns, then the LOB data and LOB index segments

for this partition are also truncated. If table is composite partitioned, then the LOB

data and LOB index segments for this partition’s subpartitions are truncated.

See Also: "Renaming Table Partitions: Examples" on page 11-96

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-75

If a domain index is defined on table , then the index must not be marked IN_
PROGRESS or FAILED , and the index partition corresponding to the table partition

being truncated must not be marked IN_PROGRESS.

For each partition or subpartition truncated, Oracle also truncates corresponding

local index partitions and subpartitions. If those index partitions or subpartitions

are marked UNUSABLE, then Oracle truncates them and resets the UNUSABLE
marker to VALID .

You can update global indexes on table during this operation using the update_
global_index_clause . If you specify the parallel_clause with the update_
global_index_clause , then Oracle parallelizes the index update, not the

truncate operation.

DROP STORAGE Specify DROP STORAGE to deallocate space from the deleted

rows and make it available for use by other schema objects in the tablespace.

REUSE STORAGE Specify REUSE STORAGE to keep space from the deleted rows

allocated to the partition or subpartition. The space is subsequently available only

for inserts and updates to the same partition or subpartition.

split_table_partition
The split_table_partition clause lets you create, from current_
partition , two new partitions, each with a new segment and new physical

attributes, and new initial extents. The segment associated with current_
partition is discarded.

The new partitions inherit all unspecified physical attributes from current_
partition .

If you split a DEFAULT list partition, then the first of the resulting partitions will

have the split values, and the second resulting partition will have the DEFAULT
value.

See Also: "Truncating Table Partitions: Example" on page 11-96

Note: Oracle can optimize and speed up SPLIT PARTITION and

SPLIT SUBPARTITION operations if specific conditions are met.

Please refer to Oracle9i Database Administrator’s Guide for

information on optimizing these operations.

ALTER TABLE

11-76 Oracle9i SQL Reference

If table is index organized, then Oracle splits any corresponding mapping table

partition and places it in the same tablespace as the parent index-organized table

partition. Oracle also splits any corresponding overflow area, and you can specify

segment attributes for the new overflow areas using the OVERFLOW clause.

Oracle splits the corresponding local index partition, even if it is marked

UNUSABLE. Oracle marks UNUSABLE, and you must rebuild, the local index

partitions corresponding to the split partitions. The new index partitions inherit

their attributes from the partition being split. Oracle stores the new index partitions

in the default tablespace of the index partition being split. If that index partition has

no default tablespace, then Oracle uses the tablespace of the new underlying table

partitions.

If table contains LOB columns, then you can use the LOB_storage_clause to

specify separate LOB storage attributes for the LOB data segments resulting from

the split. Oracle drops the LOB data and LOB index segments of current_
partition and creates new segments for each LOB column, for each partition,

even if you do not specify a new tablespace.

AT Clause The AT clause applies only to range partitions. Specify the new

noninclusive upper bound for the first of the two new partitions. The value list

must compare less than the original partition bound for current_partition and

greater than the partition bound for the next lowest partition (if there is one).

VALUES Clause The VALUES clause applies only to list partitions. Specify the

partition values you want to include in the first of the two new partitions. Oracle

creates the first new partition using the partition value list you specify and creates

the second new partition using the remaining partition values from current_
partition . Therefore, the value list cannot contain all of the partition values of

current_partition , nor can it contain any partition values that do not already

exist for current_partition .

INTO Clause The INTO clause lets you describe the two partitions resulting from

the split. In function_spec , the keyword PARTITION is required even if you do

not specify the optional names and physical attributes of the two partitions

resulting from the split. If you do not specify new partition names, then Oracle

assigns names of the form SYS_Pn. Any attributes you do not specify are inherited

from current_partition .

For range-hash composite-partitioned tables, if you specify subpartitioning for the

new partitions, then you can specify only TABLESPACE for the subpartitions. All

other attributes are inherited from current_partition . If you do not specify

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-77

subpartitioning for the new partitions, then their tablespace is also inherited from

current_partition .

For range-list composite-partitioned tables, you cannot specify subpartitions for the

new partitions at all (using the partition_level_subpartition clause of

table_partition_description). The subpartitions of the split partition will

inherit all their attributes (number of subpartitions and value lists) from current_
partition .

For all range-list composite-partitioned tables, and for range-hash composite-

partitioned tables for which you do not specify subpartition names for the newly

created subpartitions, the newly created subpartitions inherit their names from the

parent partition as follows:

■ For those subpartitions in the parent partition with names of the form

"partition_name underscore (_) subpartition_name " (for example, P1_
SUBP1), Oracle generates corresponding names in the newly created

subpartitions using the new partition names (for example P1A_SUB1 and P1B_
SUB1).

■ For those subpartitions in the parent partition with names of any other form,

Oracle generates subpartition names of the form SYS_SUBPn.

Oracle splits the corresponding partition in each local index defined on table ,

even if the index is marked UNUSABLE.

Oracle invalidates any global indexes on heap-organized tables. You can update

these indexes during this operation using the update_global_index_clause .

Global indexes on index-organized tables are primary key based, so they do not

become unusable.

The parallel_clause lets you parallelize the split operation, but does not

change the default parallel attributes of the table.

Restrictions on Splitting Table Partitions

■ You cannot specify this clause for a hash-partitioned table.

■ In partition_spec , you can specify the key_compression clause and

OVERFLOWclause only for a partitioned index-organized table. Also, you cannot

specify the PCTUSED parameter for the index segment of an index-organized

table.

See Also: "Splitting Table Partitions: Examples" on page 11-93 and

"Working with Default List Partitions: Example" on page 11-94

ALTER TABLE

11-78 Oracle9i SQL Reference

split_table_subpartition
Use this clause to split a list subpartition into two separate subpartitions with

nonoverlapping value lists.

■ In the VALUESclause, specify the subpartition values you want to include in the

first of the two new subpartitions. You can specify NULL if you have not already

specified NULLfor another subpartition in the same partition. Oracle creates the

first new subpartition using the subpartition value list you specify and creates

the second new partition using the remaining partition values from the current

subpartition. Therefore, the value list cannot contain all of the partition values

of the current subpartition, nor can it contain any partition values that do not

already exist for the current subpartition.

■ The INTO clause lets you describe the two subpartitions resulting from the split.

In subpartition_spec , the keyword PARTITION is required even if you do

not specify the optional names and attributes of the two new subpartitions. If

you do not specify new subpartition names, or if you omit this clause entirely,

then Oracle assigns names of the form SYS_SUBPn. Any attributes you do not

specify are inherited from the current subpartition.

Oracle splits any corresponding local subpartition index, even if it is marked

UNUSABLE. The new index subpartitions will inherit the names of the new table

subpartitions unless those names are already held by index subpartitions. In that

case, Oracle assigns new index subpartition names of the form SYS_SUBPn. The

new index subpartitions inherit physical attributes from the parent subpartition.

However, if the parent subpartition does not have a default TABLESPACE attribute,

then the new subpartitions inherit the tablespace of the corresponding new table

subpartitions.

Oracle marks all global indexes on table UNUSABLE. If you also specify the

update_global_index_clause , then Oracle will attempt to rebuild these global

indexes.

Restrictions on Splitting Table Subpartitions

■ You cannot specify this clause for a hash subpartition.

Note: Oracle can optimize and speed up SPLIT PARTITION and

SPLIT SUBPARTITION operations if specific conditions are met.

Please refer to Oracle9i Database Administrator’s Guide for

information on optimizing these operations.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-79

■ In subpartition_spec , the only clause of partitioning_storage_
clause you can specify is the TABLESPACE clause.

merge_table_partitions
The merge_table_partitions clause lets you merge the contents of two

partitions of table into one new partition, and then drops the original two

partitions.

■ The two partitions to be merged must be adjacent if they are range partitions.

The new partition inherits the partition bound of the higher of the two original

partitions.

■ List partitions need not be adjacent in order to be merged. When you merge two

list partitions, the resulting partition value list is the union of the set of the two

partition values lists of the partitions being merged. If you merge a DEFAULT
list partition with another list partition, then the resulting partition will be the

DEFAULT partition and will have the DEFAULT value.

■ When you merge two range-list composite partitions, you cannot specify the

partition_level_subpartition . Oracle obtains the subpartitioning

information from any subpartition template. If you have not specified a

subpartition template, then Oracle creates exactly one DEFAULT subpartition.

Any attributes not specified in the segment_attributes_clause are inherited

from table-level defaults.

If you do not specify a new partition_name , then Oracle assigns a name of the

form SYS_Pn. If the new partition has subpartitions, then Oracle assigns

subpartition names as described in partition_level_subpartition on

page 11-70.

Oracle marks UNUSABLE any global indexes on heap-organized tables. You can

update these indexes during this operation using the update_global_index_
clause . Global indexes on index-organized tables are primary key based, so they

do not become unusable.

Oracle drops local index partitions corresponding to the selected partitions. Oracle

marks UNUSABLE, and you must rebuild, the local index partition corresponding to

merged partition.

Restriction on Merging Table Partitions You cannot specify this clause for a hash-

partitioned table. Instead, use the coalesce_table_partition clause.

ALTER TABLE

11-80 Oracle9i SQL Reference

partition_level_subpartition The partition_level_subpartition clause is

valid only when you are merging range-hash composite partitions. This clause lets

you specify subpartitioning attributes for the newly merged partition. Any

attributes not specified in this clause are inherited from table-level values. If you do

not specify this clause, then the new merged partition inherits subpartitioning

attributes from table-level defaults.

If you omit this clause, then the new partition inherits the subpartition descriptions

from any subpartition template you have defined. If you have not defined a

subpartition template, then Oracle creates one subpartition in the newly merged

partition.

Specify the parallel_clause to parallelize the merge operation.

Restriction on the partition_level_subpartition Clause You cannot specify this

clause for a range-list composite partition.

merge_table_subpartitions
The merge_table_subpartitions clause lets you merge the contents of two list

subpartitions of table into one new subpartition, and then drops the original two

subpartitions. The two subpartitions to be merged must belong to the same

partition, but they do not have to be adjacent. The data in the resulting subpartition

will consist of the combined data from the merged subpartitions.

■ If you do not specify a new subpartition name, or if you omit the INTO clause

entirely, then Oracle assigns a name of the form SYS_SUBPn.

■ If you do specify the INTO clause, then the keyword SUBPARTITION in

subpartition_spec is required, you cannot specify the list_values_
clause , and the only clause you can specify in the partitioning_storage_
clause is the TABLESPACE clause.

Any attributes you do not specify explicitly for the new subpartition are inherited

from partition-level values. If you reuse one of the subpartition names for the new

subpartition, then the new subpartition will inherit values from the subpartition

whose name is being reused rather than from partition-level default values.

Oracle merges corresponding local index subpartitions and marks the resulting

index subpartition UNUSABLE. Oracle also marks UNUSABLE both partitioned and

nonpartitioned global indexes on table .

See Also: "Merging Two Table Partitions: Example" on page 11-95

and "Working with Default List Partitions: Example" on page 11-94

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-81

Restriction on Merging Table Subpartitions You cannot specify this clause for a

hash subpartition.

exchange_partition_subpart
Use the EXCHANGE PARTITION or EXCHANGE SUBPARTITION clause to exchange

the data and index segments of:

■ One nonpartitioned table with one hash, list, or range partition (or one hash or

list subpartition)

■ One hash-partitioned table with the hash subpartitions of a range partition of a

range-hash composite-partitioned table

■ One list-partitioned table with the list subpartitions of a range partition of a

range-list composite-partitioned table.

In all cases, the structure of the table and the partition or subpartition being

exchanged, including their partitioning keys, must be identical. In the case of list

partitions and subpartitions, the corresponding value lists must also match.

This clause facilitates high-speed data loading when used with transportable

tablespaces.

If table contains LOB columns, then for each LOB column Oracle exchanges LOB

data and LOB index partition or subpartition segments with corresponding LOB

data and LOB index segments of table .

All of the segment attributes of the two objects (including tablespace and logging)

are also exchanged.

All statistics of the table and partition are exchanged, including table, column, index

statistics, and histograms. The aggregate statistics of the table receiving the new

partition are recalculated.

Oracle invalidates any global indexes on the objects being exchanged. If you specify

the update_global_index_clause with this clause, then Oracle updates the

global indexes on the table whose partition is being exchanged. Global indexes on

the table being exchanged remain invalidated. If you specify the parallel_
clause with the update_global_index_clause , then Oracle parallelizes the

index update, not the exchange operation.

See Also: Oracle9i Database Administrator’s Guide for information

on transportable tablespaces

ALTER TABLE

11-82 Oracle9i SQL Reference

WITH TABLE table Specify the table with which the partition or subpartition will

be exchanged.

INCLUDING INDEXES Specify INCLUDING INDEXES if you want local index

partitions or subpartitions to be exchanged with the corresponding table index (for

a nonpartitioned table) or local indexes (for a hash-partitioned table).

EXCLUDING INDEXES Specify EXCLUDING INDEXES if you want all index

partitions or subpartitions corresponding to the partition and all the regular indexes

and index partitions on the exchanged table to be marked UNUSABLE.

WITH VALIDATION Specify WITH VALIDATION if you want Oracle to return an

error if any rows in the exchanged table do not map into partitions or subpartitions

being exchanged.

WITHOUT VALIDATION Specify WITHOUT VALIDATION if you do not want Oracle

to check the proper mapping of rows in the exchanged table.

exceptions_clause Specify a table into which Oracle places the rowids of all rows

violating the constraint. If you omit schema , then Oracle assumes the exceptions

table is in your own schema. If you omit this clause altogether, then Oracle assumes

that the table is named EXCEPTIONS. The exceptions table must be on your local

database.

You can create the EXCEPTIONS table using one of these scripts:

■ UTLEXCPT.SQLuses physical rowids. Therefore it can accommodate rows from

conventional tables but not from index-organized tables. (See the Note that

follows.)

■ UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both

heap-organized and index-organized tables.

If you create your own exceptions table, then it must follow the format prescribed

by one of these two scripts.

See Also: "Restrictions on Exchanging Partitions or

Subpartitions" on page 11-83

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-83

Restrictions on Specifying an Exceptions Table

■ This clause is not valid with subpartitions.

■ The partitioned table must have been defined with a UNIQUE constraint, and

that constraint must be in DISABLE VALIDATE state.

If these conditions are not true, then Oracle ignores this clause.

Restrictions on Exchanging Partitions or Subpartitions

■ Both tables involved in the exchange must have the same primary key, and no

validated foreign keys can be referencing either of the tables unless the

referenced table is empty.

■ When exchanging between a partitioned table and the range partition of a

composite-partitioned table, the following restrictions apply:

■ The partitioning key of the partitioned table must be identical to the

subpartitioning key of the composite-partitioned table.

Note: If you are collecting exceptions from index-organized tables

based on primary keys (rather than universal rowids), then you

must create a separate exceptions table for each index-organized

table to accommodate its primary key storage. You create multiple

exceptions tables with different names by modifying and

resubmitting the script.

See Also:

■ The DBMS_IOT package in Oracle9i Supplied PL/SQL Packages
and Types Reference for information on the SQL scripts

■ Oracle9i Database Performance Tuning Guide and Reference for

information on eliminating migrated and chained rows

■ Oracle9i Database Migration Guide for compatibility issues

related to the use of these scripts

See Also: The constraints on page 7-5 for more information

on constraint checking and "Creating an Exceptions Table for Index-

Organized Tables: Example" on page 11-91

ALTER TABLE

11-84 Oracle9i SQL Reference

■ The number of partitions in the partitioned table must be identical to the

number of subpartitions in the range partition of the composite-partitioned

table.

■ If you are exchanging a list-partitioned table with a range-list partition of a

composite-partitioned table, then the values list of the list partitions must

exactly match the values list of the range-list subpartitions.

■ For partitioned index-organized tables, the following additional restrictions

apply:

■ The source and target table/partition must have their primary key set on

the same columns, in the same order.

■ If compression is enabled, then it must be enabled for both the source and

the target, and with the same prefix length.

■ Both the source and target must be index organized.

■ Both the source and target must have overflow segments, or neither can

have overflow segments. Also, both the source and target must have

mapping tables, or neither can have a mapping table.

■ Both the source and target must have identical storage attributes for any

LOB columns.

UNUSABLE LOCAL INDEXES Clauses
These two clauses modify the attributes of local index partitions and index
subpartitions corresponding to partition (depending on whether you are

modifying a partition or subpartition).

■ UNUSABLE LOCAL INDEXES marks UNUSABLE the local index partition or

subpartition associated with partition .

■ REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local index

partition or subpartition associated with partition .

Restrictions on the UNUSABLE LOCAL INDEXES Clause

■ You cannot specify this clause with any other clauses of the modify_table_
partition clause.

See Also: "Exchanging Table Partitions: Example" on page 11-95

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-85

■ You cannot specify this clause in the modify_table_partition clause for a

partition that has subpartitions. However, you can specify this clause in the

modify_hash_subpartition or modify_list_subpartition clause.

update_global_index_clause
When you perform DDL on a table partition, if a global index is defined on table ,

then Oracle invalidates the entire index, not just the partitions undergoing DDL.

This clause lets you update the global index partition you are changing during the

DDL operation, eliminating the need to rebuild the index after the DDL.

UPDATE GLOBAL INDEXES Specify UPDATE GLOBAL INDEXES to update the

global indexes defined on table .

INVALIDATE GLOBAL INDEXES Specify INVALIDATE GLOBAL INDEXES to
invalidate the global indexes defined on table .

If you specify neither, then Oracle invalidates the global indexes.

Restrictions on Invalidating Global Indexes This clause supports only global

indexes. Domain indexes and index-organized tables are not supported. In addition,

this clause updates only indexes that are USABLE and VALID . UNUSABLE indexes

are left unusable, and INVALID global indexes are ignored.

parallel_clause
The parallel_clause lets you change the default degree of parallelism for

queries and DML on the table.

See Also: "Updating Global Indexes: Example" on page 11-96

ALTER TABLE

11-86 Oracle9i SQL Reference

NOPARALLEL. Specify NOPARALLEL for serial execution. This is the default.

PARALLEL. Specify PARALLEL if you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer . Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

Restrictions on Altering Table Parallelization

■ If table contains any columns of LOB or user-defined object type, then

subsequent INSERT, UPDATE, and DELETE operations on table are executed

serially without notification. Subsequent queries, however, are executed in

parallel.

■ If you specify the parallel_clause in conjunction with the move_table_
clause , then the parallelism applies only to the move, not to subsequent DML

and query operations on the table.

move_table_clause
The move_table_clause lets you relocate data of a nonpartitioned table into a

new segment, optionally in a different tablespace, and optionally modify any of its

storage attributes.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54 and "Specifying Parallel Processing: Example" on

page 11-90

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-87

You can also move any LOB data segments associated with the table using the LOB_
storage_clause and varray_col_properties clause. LOB items not

specified in this clause are not moved.

index_org_table_clause
For an index-organized table, the index_org_table_clause of the syntax lets

you additionally specify overflow segment attributes. The move_table_clause
rebuilds the index-organized table’s primary key index. The overflow data segment

is not rebuilt unless the OVERFLOW keyword is explicitly stated, with two

exceptions:

■ If you alter the values of PCTTHRESHOLD or the INCLUDING column as part of

this ALTER TABLE statement, then the overflow data segment is rebuilt.

■ If you explicitly move any of out-of-line columns (LOBs, varrays, nested table

columns) in the index-organized table, then the overflow data segment is also

rebuilt.

The index and data segments of LOB columns are not rebuilt unless you specify the

LOB columns explicitly as part of this ALTER TABLE statement.

ONLINE Clause Specify ONLINE if you want DML operations on the index-

organized table to be allowed during rebuilding of the table’s primary key index.

Restrictions on the ONLINE Clause

■ You cannot combine this clause with any other clause in the same statement.

■ You can specify this clause only for a nonpartitioned index-organized table.

■ Parallel DML is not supported during online MOVE. If you specify ONLINE and

then issue parallel DML statements, then Oracle returns an error.

mapping_table_clause Specify MAPPING TABLE if you want Oracle to create a

mapping table if one does not already exist. If it does exist, then Oracle moves the

mapping table along with the index-organized table, and marks any bitmapped

indexes UNUSABLE. The new mapping table is created in the same tablespace as the

parent table.

Specify NOMAPPING to instruct Oracle to drop an existing mapping table.

Restriction on Mapping Tables You cannot specify NOMAPPING if any bitmapped

indexes have been defined on table.

ALTER TABLE

11-88 Oracle9i SQL Reference

key_compression Use the key_compression clause to enable or disable key

compression in an index-organized table.

■ COMPRESS enables key compression, which eliminates repeated occurrence of

primary key column values in index-organized tables. Use integer to specify

the prefix length (number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of primary key

columns minus 1. The default prefix length is the number of primary key

columns minus 1.

■ NOCOMPRESS disables key compression in index-organized tables. This is the

default.

TABLESPACE tablespace Specify the tablespace into which the rebuilt index-

organized table is stored.

Restrictions on Moving Tables

■ If you specify MOVE, then it must be the first clause, and the only clauses outside

this clause that are allowed are the physical_attributes_clause , the

parallel_clause , and the LOB_storage_clause .

■ You cannot move a table containing a LONG or LONG RAW column.

■ You cannot MOVE an entire partitioned table (either heap or index organized).

You must move individual partitions or subpartitions.

See Also: mapping_table_clause of CREATE TABLE on

page 15-32

See Also: move_table_partition on page 11-67 and move_
table_subpartition on page 11-68

Notes Regarding LOBs: For any LOB columns you specify in a

move_table_clause :

■ Oracle drops the old LOB data segment and corresponding

index segment and creates new segments, even if you do not

specify a new tablespace.

■ If the LOB index in table resided in a different tablespace

from the LOB data, then Oracle collocates the LOB index with

the LOB data in the LOB data’s tablespace after the move.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-89

enable_disable_clause

The enable_disable_clause lets you specify whether and how Oracle should

apply an integrity constraint. The DROP and KEEP clauses are valid only when you

are disabling a unique or primary key constraint.

TABLE LOCK
Oracle permits DDL operations on a table only if the table can be locked during the

operation. Such table locks are not required during DML operations.

ENABLE TABLE LOCK Specify ENABLE TABLE LOCKto enable table locks, thereby

allowing DDL operations on the table.

DISABLE TABLE LOCK Specify DISABLE TABLE LOCK to disable table locks,

thereby preventing DDL operations on the table.

ALL TRIGGERS
Use the ALL TRIGGERS clause to enable or disable all triggers associated with the

table.

ENABLE ALL TRIGGERS Specify ENABLE ALL TRIGGERS to enable all triggers

associated with the table. Oracle fires the triggers whenever their triggering

condition is satisfied.

To enable a single trigger, use the enable_clause of ALTER TRIGGER.

See Also:

■ The enable_disable_clause of CREATE TABLE on

page 15-55 for a complete description of this clause, including

notes and restrictions that relate to this statement

■ "Using Indexes to Enforce Constraints" on page 7-23 for

information on using indexes to enforce constraints

Note: Table locks are not acquired on temporary tables.

See Also: CREATE TRIGGER on page 15-95, ALTER TRIGGER on

page 12-2, and "Enabling Triggers: Example" on page 11-92

ALTER TABLE

11-90 Oracle9i SQL Reference

DISABLE ALL TRIGGERS Specify DISABLE ALL TRIGGERS to disable all triggers

associated with the table. Oracle will not fire a disabled trigger even if the triggering

condition is satisfied.

Examples

Collection Retrieval: Example The following statement modifies nested table

column ad_textdocs_ntab in the sample table sh.print_media so that when

queried it returns actual values instead of locators:

ALTER TABLE print_media MODIFY NESTED TABLE ad_textdocs_ntab
 RETURN AS VALUE;

Specifying Parallel Processing: Example The following statement specifies

parallel processing for queries to the sample table oe.customers :

ALTER TABLE customers
 PARALLEL;

Changing the State of a Constraint: Examples The following statement places in

ENABLE VALIDATE state an integrity constraint named emp_manager_fk in the

employees table:

ALTER TABLE employees
 ENABLE VALIDATE CONSTRAINT emp_manager_fk
 EXCEPTIONS INTO exceptions;

Each row of the employees table must satisfy the constraint for Oracle to enable

the constraint. If any row violates the constraint, then the constraint remains

disabled. Oracle lists any exceptions in the table exceptions . You can also identify

the exceptions in the employees table with the following statement:

SELECT employees.*
 FROM employees e, exceptions ex
 WHERE e.row_id = ex.row_id
 AND ex.table_name = ’EMPLOYEES’
 AND ex.constraint = ’EMP_MANAGER_FK’;

The following statement tries to place in ENABLE NOVALIDATEstate two constraints

on the employees table:

ALTER TABLE employees
 ENABLE NOVALIDATE PRIMARY KEY
 ENABLE NOVALIDATE CONSTRAINT emp_last_name_nn;

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-91

This statement has two ENABLE clauses:

■ The first places a primary key constraint on the table in ENABLE NOVALIDATE
state.

■ The second places the constraint named emp_last_name_nn in ENABLE
NOVALIDATE state.

In this case, Oracle enables the constraints only if both are satisfied by each row in

the table. If any row violates either constraint, then Oracle returns an error and both

constraints remain disabled.

Consider a referential integrity constraint involving a foreign key on the

combination of the areaco and phoneno columns of the phone_calls table. The

foreign key references a unique key on the combination of the areaco and

phoneno columns of the customers table. The following statement disables the

unique key on the combination of the areaco and phoneno columns of the

customers table:

ALTER TABLE customers
 DISABLE UNIQUE (areaco, phoneno) CASCADE;

The unique key in the customers table is referenced by the foreign key in the

phone_calls table, so you must use the CASCADE clause to disable the unique

key. This clause disables the foreign key as well.

Creating an Exceptions Table for Index-Organized Tables: Example The

following example creates the except_table table to hold rows from the index-

organized table hr.countries that violate the primary key constraint:

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE (’hr’, ’countries’, ’except_table’);

ALTER TABLE countries
 ENABLE PRIMARY KEY
 EXCEPTIONS INTO except_table;

To specify an exception table, you must have the privileges necessary to insert rows

into the table. To examine the identified exceptions, you must have the privileges

necessary to query the exceptions table.

See Also:

■ INSERT on page 17-53

■ SELECT on page 18-4 for information on the privileges necessary to

insert rows into tables

ALTER TABLE

11-92 Oracle9i SQL Reference

Disabling a CHECK Constraint: Example The following statement defines and

disables a CHECK constraint on the employees table:

ALTER TABLE employees ADD CONSTRAINT check_comp
 CHECK (salary + (commission_pct*salary) <= 5000)
 DISABLE;

The constraint check_comp ensures that no employee’s total compensation

exceeds $5000. The constraint is disabled, so you can increase an employee’s

compensation above this limit.

Enabling Triggers: Example The following statement enables all triggers

associated with the employees table:

ALTER TABLE employees
 ENABLE ALL TRIGGERS;

Deallocating Unused Space: Example The following statement frees all unused

space for reuse in table employees , where the high water mark is above

MINEXTENTS:

ALTER TABLE employees
 DEALLOCATE UNUSED;

Renaming a Column: Example The following example renames the credit_
limit column of the sample table oe.customers to credit_amount :

ALTER TABLE customers
 RENAME COLUMN credit_limit TO credit_amount;

Dropping a Column: Example This statement illustrates the drop_column_
clause with CASCADE CONSTRAINTS. Assume table t1 is created as follows:

CREATE TABLE t1 (
 pk NUMBER PRIMARY KEY,
 fk NUMBER,
 c1 NUMBER,
 c2 NUMBER,
 CONSTRAINT ri FOREIGN KEY (fk) REFERENCES t1,
 CONSTRAINT ck1 CHECK (pk > 0 and c1 > 0),
 CONSTRAINT ck2 CHECK (c2 > 0)
);

An error will be returned for the following statements:

/* The next two statements return errors:

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-93

ALTER TABLE t1 DROP (pk); -- pk is a parent key
ALTER TABLE t1 DROP (c1); -- c1 is referenced by multicolumn
 -- constraint ck1

Submitting the following statement drops column pk , the primary key constraint,

the foreign key constraint, ri , and the check constraint, ck1 :

ALTER TABLE t1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are

also dropped, then CASCADE CONSTRAINTSis not required. For example, assuming

that no other referential constraints from other tables refer to column pk , then it is

valid to submit the following statement without the CASCADE CONSTRAINTS
clause:

ALTER TABLE t1 DROP (pk, fk, c1);

Modifying Index-Organized Tables: Examples This statement modifies the

INITRANS parameter for the index segment of index-organized table

hr.countries :

ALTER TABLE countries INITRANS 4;

The following statement adds an overflow data segment to index-organized table

countries :

ALTER TABLE countries ADD OVERFLOW;

This statement modifies the INITRANS parameter for the overflow data segment of

index-organized table countries :

ALTER TABLE countries OVERFLOW INITRANS 4;

Splitting Table Partitions: Examples The following statement splits the old

partition sales_q4_2000 in the sample table sh.sales , creating two new

partitions, naming one sales_q4_2000b and reusing the name of the old partition

for the other:

ALTER TABLE sales SPLIT PARTITION SALES_Q4_2000
 AT (TO_DATE(’15-NOV-2000’,’DD-MON-YYYY’))
 INTO (PARTITION SALES_Q4_2000, PARTITION SALES_Q4_2000b);

Assume that the sample table pm.print_media was range partitioned into

partitions p1 and p2. (You would have to convert the LONG column in print_

ALTER TABLE

11-94 Oracle9i SQL Reference

media to LOB before partitioning the table.) The following statement splits

partition p2 of that table into partitions p2a and p2b :

ALTER TABLE print_media_part
 SPLIT PARTITION p2 AT (150) INTO
 (PARTITION p2a TABLESPACE omf_ts1
 LOB ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2),
 PARTITION p2b
 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2));

In both partitions p2a and p2b , Oracle creates the LOB segments for columns ad_
photo and ad_composite in tablespace omb_ts2 . The LOB segments for the

remaining columns in partition p2a are stored in tablespace omf_ts1. The LOB

segments for the remaining columns in partition p2b remain in the tablespaces in

which they resided prior to this ALTER statement. However, Oracle creates new

segments for all the LOB data and LOB index segments, even if they are not moved

to a new tablespace.

Adding a Table Partition with a LOB: Examples The following statement adds a

partition p3 to the print_media_part table (see preceding example) and

specifies storage characteristics for the table’s BLOB and CLOB columns:

ALTER TABLE print_media_part ADD PARTITION p3 VALUES LESS THAN
(MAXVALUE)
 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2)
 LOB (ad_sourcetext, ad_finaltext) STORE AS (TABLESPACE omf_ts1);

The LOB data and LOB index segments for columns ad_photo and ad_
composite in partition p3 will reside in tablespace omf_ts2 . The remaining

attributes for these LOB columns will be inherited first from the table-level defaults,

and then from the tablespace defaults.

The LOB data segments for columns ad_source_text and ad_finaltext will

reside in the omf_ts1 tablespace, and will inherit all other attributes from the

table-level defaults and then from the tablespace defaults.

Working with Default List Partitions: Example The following statements use the

list partitioned table created in "List Partitioning Example" on page 15-73. The first

statement splits the existing default partition into a new south partition and a

default partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES (’MEXICO’, ’COLOMBIA’)
 INTO (PARTITION south, PARTITION rest);

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-95

The next statement merges the resulting default partition with the asia partition:

ALTER TABLE list_customers
 MERGE PARTITIONS asia, rest INTO PARTITION rest;

The next statement re-creates the asia partition by splitting the default partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES (’CHINA’, ’THAILAND’)
 INTO (PARTITION east, partition rest);

Merging Two Table Partitions: Example The following statement merges back into

one partition the partitions created in "Splitting Table Partitions: Examples" on

page 11-93:

ALTER TABLE sales
 MERGE PARTITIONS sales_q4_2000, sales_q4_2000b
 INTO PARTITION sales_q4_2000;

Dropping a Table Partition: Example The following statement drops partition p3
created in "Adding a Table Partition with a LOB: Examples" on page 11-94:

ALTER TABLE print_media_part DROP PARTITION p3;

Exchanging Table Partitions: Example The following statement converts partition

feb97 to table sales_feb97 without exchanging local index partitions with

corresponding indexes on sales_feb97 and without verifying that data in

sales_feb97 falls within the bounds of partition feb97 :

ALTER TABLE sales
 EXCHANGE PARTITION feb97 WITH TABLE sales_feb97
 WITHOUT VALIDATION;

Modifying Table Partitions: Examples The following statement marks all the local

index partitions corresponding to the nov96 partition of the sales table

UNUSABLE:

ALTER TABLE sales MODIFY PARTITION nov96
 UNUSABLE LOCAL INDEXES;

The following statement rebuilds all the local index partitions that were marked

UNUSABLE:

ALTER TABLE sales MODIFY PARTITION jan97
 REBUILD UNUSABLE LOCAL INDEXES;

ALTER TABLE

11-96 Oracle9i SQL Reference

The following statement changes MAXEXTENTS and logging attribute for partition

branch_ny :

ALTER TABLE branch MODIFY PARTITION branch_ny
 STORAGE (MAXEXTENTS 75) LOGGING;

Moving Table Partitions: Example The following statement moves partition p2b
(from "Splitting Table Partitions: Examples" on page 11-93) to tablespace omf_ts1 :

ALTER TABLE print_media_part
 MOVE PARTITION p2b TABLESPACE omf_ts1;

Renaming Table Partitions: Examples The following statement renames a table:

ALTER TABLE employees RENAME TO employee;

In the following statement, partition emp3 is renamed:

ALTER TABLE employee RENAME PARTITION emp3 TO employee3;

Truncating Table Partitions: Example The following statement deletes all the data

in the sys_p017 partition and deallocates the freed space:

ALTER TABLE deliveries
 TRUNCATE PARTITION sys_p017 DROP STORAGE;

Updating Global Indexes: Example The following statement splits partition

sales_q1_2000 of the sample table sh.sales , and updates any global indexes

defined on it:

ALTER TABLE sales SPLIT PARTITION sales_q1_2000
 AT (TO_DATE(’16-FEB-2000’,’DD-MON-YYYY’))
 INTO (PARTITION q1a_2000, PARTITION q1b_2000)
 UPDATE GLOBAL INDEXES;

Specifying Object Identifiers: Example The following statements create an object

type, a corresponding object table with a primary-key-based object identifier, and a

table having a user-defined REF column:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));

CREATE TABLE emp OF emp_t (
 empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE dept (dno NUMBER, mgr_ref REF emp_t SCOPE is emp);

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-97

The next statements add a constraint and a user-defined REFcolumn, both of which

reference table emp:

ALTER TABLE dept ADD CONSTRAINT mgr_cons FOREIGN KEY (mgr_ref)
 REFERENCES emp;
ALTER TABLE dept ADD sr_mgr REF emp_t REFERENCES emp;

Adding a Table Column: Example The following statement adds a column named

duty_pct of datatype NUMBER and a column named visa_needed of datatype

VARCHAR2 with a size of 3 (to hold "yes" and "no" data) and a CHECK integrity

constraint:

ALTER TABLE countries
 ADD (duty_pct NUMBER(2,2) CHECK (duty_pct < 10.5),
 visa_needed VARCHAR2(3));

Modifying Table Columns: Examples The following statement increases the size of

the duty_pct column:

ALTER TABLE countries
 MODIFY (duty_pct NUMBER(3,2));

Because the MODIFY clause contains only one column definition, the parentheses

around the definition are optional.

The following statement changes the values of the PCTFREE and PCTUSED
parameters for the employees table to 30 and 60, respectively:

ALTER TABLE employees
 PCTFREE 30
 PCTUSED 60;

Converting LONG Columns to LOB: Example The following example modifies the

press_release column of the sample table pm.print_media from LONG to
CLOB datatype:

ALTER TABLE print_media MODIFY (press_release CLOB);

Allocating Extents: Example The following statement allocates an extent of 5

kilobytes for the employees table and makes it available to instance 4:

ALTER TABLE employees
 ALLOCATE EXTENT (SIZE 5K INSTANCE 4);

Because this statement omits the DATAFILE parameter, Oracle allocates the extent

in one of the datafiles belonging to the tablespace containing the table.

ALTER TABLE

11-98 Oracle9i SQL Reference

Specifying Default Column Value: Examples This statement modifies the min_
price column of the product_information table so that it has a default value

of 10:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT 10);

If you subsequently add a new row to the product_information table and do

not specify a value for the min_price column, then the value of the min_price
column is automatically 0:

INSERT INTO product_information (product_id, product_name,
 list_price)
 VALUES (300, ’left-handed mouse’, 40.50);

SELECT product_id, product_name, list_price, min_price
 FROM product_information
 WHERE product_id = 300;

PRODUCT_ID PRODUCT_NAME LIST_PRICE MIN_PRICE
---------- -------------------- ---------- ----------
 300 left-handed mouse 40.5 10

To discontinue previously specified default values, so that they are no longer

automatically inserted into newly added rows, replace the values with nulls, as

shown in this statement:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT NULL);

The MODIFYclause need only specify the column name and the modified part of the

definition, rather than the entire column definition. This statement has no effect on

any existing values in existing rows.

Adding a Constraint to an XMLType Table: Example The following example adds

a primary key constraint to the xwarehouses table, created in "XMLType Table

Examples" on page 15-71:

ALTER TABLE xwarehouses
 ADD (PRIMARY KEY(XMLDATA."WarehouseID"));

See Also: XMLDATA on page 2-89 for information about this

pseudocolumn

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-99

Renaming Constraints: Example The following statement renames the cust_
fname_nn constraint on the sample table oe.customers to cust_firstname_
nn :

ALTER TABLE customers RENAME CONSTRAINT cust_fname_nn
 TO cust_firstname_nn;

Dropping Constraints: Examples The following statement drops the primary key

of the departments table:

ALTER TABLE departments
 DROP PRIMARY KEY CASCADE;

If you know that the name of the PRIMARY KEY constraint is pk_dept , then you

could also drop it with the following statement:

ALTER TABLE departments
 DROP CONSTRAINT pk_dept CASCADE;

The CASCADE clause drops any foreign keys that reference the primary key.

The following statement drops the unique key on the email column of the

employees table:

ALTER TABLE employees
 DROP UNIQUE (email);

The DROP clause in this statement omits the CASCADE clause. Because of this

omission, Oracle does not drop the unique key if any foreign key references it.

LOB Columns: Examples The following statement adds CLOB column resume to

the employee table and specifies LOB storage characteristics for the new column:

ALTER TABLE employees ADD (resume CLOB)
 LOB (resume) STORE AS resume_seg (TABLESPACE example);

To modify the LOB column resume to use caching, enter the following statement:

ALTER TABLE employees MODIFY LOB (resume) (CACHE);

Nested Tables: Examples The following statement adds the nested table column

skills to the employee table:

ALTER TABLE employees ADD (skills skill_table_type)
 NESTED TABLE skills STORE AS nested_skill_table;

ALTER TABLE

11-100 Oracle9i SQL Reference

You can also modify a nested table’s storage characteristics. Use the name of the

storage table specified in the nested_table_col_properties to make the

modification. You cannot query or perform DML statements on the storage table.

Use the storage table only to modify the nested table column storage characteristics.

The following statement creates table vetservice with nested table column

client and storage table client_tab . Nested table vetservice is modified to

specify constraints:

CREATE TYPE pet_table AS OBJECT
 (pet_name VARCHAR2(10), pet_dob DATE);

CREATE TABLE vetservice (vet_name VARCHAR2(30),
 client pet_table)
 NESTED TABLE client STORE AS client_tab;

ALTER TABLE client_tab ADD UNIQUE (ssn);

The following statement adds a UNIQUE constraint to nested table nested_skill_
table :

ALTER TABLE nested_skill_table ADD UNIQUE (a);

The following statement alters the storage table for a nested table of REF values to

specify that the REF is scoped:

CREATE TYPE emp_t AS OBJECT (eno number, ename char(31));
CREATE TYPE emps_t AS TABLE OF REF emp_t;
CREATE TABLE emptab OF emp_t;
CREATE TABLE dept (dno NUMBER, employees emps_t)
 NESTED TABLE employees STORE AS deptemps;
ALTER TABLE deptemps ADD (SCOPE FOR (column_value) IS emptab);

Similarly, to specify storing the REF with rowid:

ALTER TABLE deptemps ADD (REF(column_value) WITH ROWID);

In order to execute these ALTER TABLE statements successfully, the storage table

deptemps must be empty. Also, because the nested table is defined as a table of

scalars (REFs), Oracle implicitly provides the column name COLUMN_VALUE for the

storage table.

ALTER TABLE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-101

REF Columns: Examples In the following statement an object type dept_t has

been previously defined. Now, create table staff as follows:

CREATE TABLE staff
 (name VARCHAR(100),
 salary NUMBER,
 dept REF dept_t);

An object table offices is created as:

CREATE TABLE offices OF dept_t;

The dept column can store references to objects of dept_t stored in any table. If

you would like to restrict the references to point only to objects stored in the

departments table, then you could do so by adding a scope constraint on the

dept column as follows:

ALTER TABLE staff
 ADD (SCOPE FOR (dept) IS offices);

The preceding ALTER TABLE statement will succeed only if the staff table is

empty.

If you want the REF values in the dept column of staff to also store the rowids,

issue the following statement:

ALTER TABLE staff
 ADD (REF(dept) WITH ROWID);

Additional Examples For examples of defining integrity constraints with the

ALTER TABLE statement, see the constraints on page 7-5.

For examples of changing the value of a table’s storage parameters, see the

storage_clause on page 7-56.

See Also:

■ CREATE TABLE on page 15-7 for more information about

nested table storage

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about nested tables

ALTER TABLESPACE

11-102 Oracle9i SQL Reference

ALTER TABLESPACE

Purpose
Use the ALTER TABLESPACE statement to alter an existing tablespace or one or

more of its datafiles or tempfiles.

You cannot use this statement to convert a dictionary-managed tablespace to a

locally managed tablespace. For that purpose, use the DBMS_SPACE_ADMIN
package, which is documented in Oracle9i Supplied PL/SQL Packages and Types
Reference.

Prerequisites
If you have ALTER TABLESPACEsystem privilege, then you can perform any of this

statement’s operations. If you have MANAGE TABLESPACE system privilege, then

you can only perform the following operations:

■ Take the tablespace online or offline

■ Begin or end a backup

■ Make the tablespace read only or read write

Before you can make a tablespace read only, the following conditions must be met:

■ The tablespace must be online.

■ The tablespace must not contain any active rollback segments. For this reason,

the SYSTEM tablespace can never be made read only, because it contains the

SYSTEM rollback segment. Additionally, because the rollback segments of a

read-only tablespace are not accessible, Oracle recommends that you drop the

rollback segments before you make a tablespace read only.

■ The tablespace must not be involved in an open backup, because the end of a

backup updates the header file of all datafiles in the tablespace.

Performing this function in restricted mode may help you meet these restrictions,

because only users with RESTRICTED SESSION system privilege can be logged on.

See Also: Oracle9i Database Administrator’s Guide and CREATE

TABLESPACE on page 15-80 for information on creating a

tablespace

ALTER TABLESPACE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-103

Syntax

alter_tablespace::=

(datafile_tempfile_clauses::= on page 11-104, data_segment_
compression::= on page 11-5—part of ALTER TABLE syntax, storage_
clause::= on page 7-58, logging_clause::= on page 7-46)

ALTER TABLESPACE tablespace

datafile_tempfile_clauses

DEFAULT
data_segment_compression

storage_clause

MINIMUM EXTENT integer

K

M

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

BEGIN

END
BACKUP

READ
ONLY

WRITE

PERMANENT

TEMPORARY

COALESCE

logging_clause

NO
FORCE LOGGING

;

ALTER TABLESPACE

11-104 Oracle9i SQL Reference

datafile_tempfile_clauses ::=

(datafile_tempfile_spec::= on page 7-39—part of file_specification).

Semantics

tablespace
Specify the name of the tablespace to be altered.

Restrictions on Altering Tablespaces

■ If tablespace is an undo tablespace, then the only other clauses you can

specify in this statement are ADD DATAFILE, RENAME DATAFILE, DATAFILE ...

ONLINE | OFFLINE, and BEGIN | END BACKUP.

■ For locally managed temporary tablespaces the only clause you can specify in

this statement is the ADD clause.

datafile_tempfile_clauses
The tablespace file clauses let you add or modify a datafile or tempfile.

ADD DATAFILE | TEMPFILE Clause
Specify ADD to add to the tablespace a datafile or tempfile specified by datafile_
tempfile_spec .

For locally managed temporary tablespaces, this is the only clause you can specify

at any time.

See Also: Oracle9i Database Administrator’s Guide for information

on Automatic Undo Management and undo tablespaces

ADD
DATAFILE

TEMPFILE

datafile_tempfile_spec

,

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

DATAFILE

TEMPFILE

ONLINE

OFFLINE

ALTER TABLESPACE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-105

If you omit datafile_tempfile_spec , then Oracle creates an Oracle-managed

file of 100M with AUTOEXTEND enabled.

You can add a datafile or tempfile to a locally managed tablespace that is online or

to a dictionary managed tablespace that is online or offline. Be sure the file is not in

use by another database.

RENAME DATAFILE Clause
Specify RENAME DATAFILE to rename one or more of the tablespace’s datafiles. The

database must be open, and you must take the tablespace offline before renaming it.

Each ’filename ’ must fully specify a datafile using the conventions for filenames

on your operating system.

This clause merely associates the tablespace with the new file rather than the old

one. This clause does not actually change the name of the operating system file. You

must change the name of the file through your operating system.

DATAFILE | TEMPFILE ONLINE | OFFLINE
Use this clause to take all datafiles or tempfiles in the tablespace offline or put them

online. This clause has no effect on the ONLINE/OFFLINE status of the tablespace.

The database must be mounted. If tablespace is SYSTEM, or an undo tablespace, or

the default temporary tablespace, then the database must not be open.

Note: On some operating systems, Oracle does not allocate space

for the tempfile until the tempfile blocks are actually accessed. This

delay in space allocation results in faster creation and resizing of

tempfiles, but it requires that sufficient disk space is available when

the tempfiles are later used. To avoid potential problems, before

you create or resize a tempfile, ensure that the available disk space

exceeds the size of the new tempfile or the increased size of a

resized tempfile. The excess space should allow for anticipated

increases in disk space use by unrelated operations as well. Then

proceed with the creation or resizing operation.

See Also: file_specification on page 7-39, "Adding a

Datafile: Example" on page 11-110, and "Adding an Oracle-

managed Datafile: Example" on page 11-111

See Also: "Moving and Renaming Tablespaces: Example" on

page 11-110

ALTER TABLESPACE

11-106 Oracle9i SQL Reference

DEFAULT storage_clause
DEFAULTstorage_clause lets you specify the new default storage parameters

for objects subsequently created in the tablespace. For a dictionary-managed

temporary table, Oracle considers only the NEXT parameter of the storage_
clause .

Restriction on Default Tablespace Storage You cannot specify this clause for a

locally managed tablespace.

MINIMUM EXTENT
The MINIMUM EXTENT clause lets you control free space fragmentation in the

tablespace by ensuring that every used or free extent in a tablespace is at least as

large as, and is a multiple of, integer . This clause is not relevant for a dictionary-

managed temporary tablespace.

Restriction on MINIMUM EXTENT You cannot specify this clause for a locally

managed tablespace.

ONLINE
Specify ONLINE to bring the tablespace online.

OFFLINE
Specify OFFLINE to take the tablespace offline and prevent further access to its

segments. When you take a tablespace offline, all of its datafiles are also offline.

See Also: storage_clause on page 7-56

See Also: Oracle9i Database Administrator’s Guide for more

information about using MINIMUM EXTENT to control space

fragmentation and "Changing Tablespace Extent Allocation:

Example" on page 11-111

Suggestion: Before taking a tablespace offline for a long time, you

may want to alter the tablespace allocation of any users who have

been assigned the tablespace as either a default or temporary

tablespace. When the tablespace is offline, these users cannot

allocate space for objects or sort areas in the tablespace. See ALTER
USER on page 12-22 for more information on allocating tablespace

quota to users.

ALTER TABLESPACE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-107

Restriction on Taking Tablespaces Offline You cannot take a temporary

tablespace offline.

NORMAL Specify NORMALto flush all blocks in all datafiles in the tablespace out of

the SGA. You need not perform media recovery on this tablespace before bringing it

back online. This is the default.

TEMPORARY If you specify TEMPORARY, then Oracle performs a checkpoint for all

online datafiles in the tablespace but does not ensure that all files can be written.

Any offline files may require media recovery before you bring the tablespace back

online.

IMMEDIATE If you specify IMMEDIATE, then Oracle does not ensure that

tablespace files are available and does not perform a checkpoint. You must perform

media recovery on the tablespace before bringing it back online.

BEGIN BACKUP
Specify BEGIN BACKUP to indicate that an open backup is to be performed on the

datafiles that make up this tablespace. This clause does not prevent users from

accessing the tablespace. You must use this clause before beginning an open

backup.

Restrictions on Beginning Tablespace Backup You cannot specify this clause for

a read-only tablespace or for a temporary locally managed tablespace.

Note: The FOR RECOVER setting for ALTER TABLESPACE ...
OFFLINE has been deprecated. The syntax is supported for

backward compatibility. However, users are encouraged to use the

transportable tablespaces feature for tablespace recovery.

See Also: Oracle9i User-Managed Backup and Recovery Guide for

information on using transportable tablespaces to perform media

recovery

Note: While the backup is in progress, you cannot take the

tablespace offline normally, shut down the instance, or begin

another backup of the tablespace.

ALTER TABLESPACE

11-108 Oracle9i SQL Reference

END BACKUP
Specify END BACKUPto indicate that an online backup of the tablespace is complete.

Use this clause as soon as possible after completing an online backup. Otherwise, if

an instance failure or SHUTDOWN ABORT occurs, then Oracle assumes that media

recovery (possibly requiring archived redo log) is necessary at the next instance

start up.

Restriction on Ending Tablespace Backup You cannot use this clause on a read-

only tablespace.

READ ONLY | READ WRITE
Specify READ ONLY to place the tablespace in transition read-only mode. In this

state, existing transactions can complete (commit or roll back), but no further write

operations (DML) are allowed to the tablespace except for rollback of existing

transactions that previously modified blocks in the tablespace.

Once a tablespace is read only, you can copy its files to read-only media. You must

then rename the datafiles in the control file to point to the new location by using the

SQL statement ALTER DATABASE ... RENAME.

Specify READ WRITE to indicate that write operations are allowed on a previously

read-only tablespace.

See Also: "Backing Up Tablespaces: Examples" on page 11-110

See Also:

■ Oracle9i Database Administrator’s Guide for information on

restarting the database without media recovery

■ ALTER DATABASE"END BACKUP Clause" on page 9-34 for

information on taking individual datafiles (or all datafiles in the

tablespace) out of online ("hot") backup mode

See Also:

■ Oracle9i Database Concepts for more information on read-only

tablespaces

■ ALTER DATABASE on page 9-11

ALTER TABLESPACE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-109

PERMANENT | TEMPORARY
Specify PERMANENT to indicate that the tablespace is to be converted from a

temporary to a permanent one. A permanent tablespace is one in which permanent

database objects can be stored. This is the default when a tablespace is created.

Specify TEMPORARY to indicate specifies that the tablespace is to be converted from

a permanent to a temporary one. A temporary tablespace is one in which no

permanent database objects can be stored. Objects in a temporary tablespace persist

only for the duration of the session.

Restrictions on Temporary Tablespaces

■ If tablespace was not created with a standard block size, then you cannot

change it from permanent to temporary.

■ You cannot specify TEMPORARY for a tablespace in FORCE LOGGING mode.

COALESCE
For each datafile in the tablespace, this clause combines all contiguous free extents

into larger contiguous extents.

logging_clause
Specify LOGGING if you want logging of all tables, indexes, and partitions within

the tablespace. The tablespace-level logging attribute can be overridden by logging

specifications at the table, index, and partition levels.

When an existing tablespace logging attribute is changed by an ALTER
TABLESPACE statement, all tables, indexes, and partitions created after the

statement will have the new default logging attribute (which you can still

subsequently override). The logging attributes of existing objects are not changed.

If the tablespace is in FORCE LOGGING mode, then you can specify NOLOGGING in
this statement to set the default logging mode of the tablespace to NOLOGGING, but

this will not take the tablespace out of FORCE LOGGING mode.

[NO] FORCE LOGGING
Use this clause to put the tablespace in force logging mode or take it out of force

logging mode. The database must be open and in READ WRITE mode. Neither of

these settings changes the default LOGGING or NOLOGGING mode of the tablespace.

Restriction on Force Logging Mode You cannot specify FORCE LOGGING for an

undo or a temporary tablespace.

ALTER TABLESPACE

11-110 Oracle9i SQL Reference

Examples

Backing Up Tablespaces: Examples The following statement signals to the

database that a backup is about to begin:

ALTER TABLESPACE tbs_01
 BEGIN BACKUP;

The following statement signals to the database that the backup is finished:

ALTER TABLESPACE tbs_01
 END BACKUP;

Moving and Renaming Tablespaces: Example This example moves and renames a

datafile associated with the tbs_01 tablespace from ’diskb:tbs_f5.dat ’ to

’diska:tbs_f5.dat ’:

1. Take the tablespace offline using an ALTER TABLESPACE statement with the

OFFLINE clause:

ALTER TABLESPACE tbs_01 OFFLINE NORMAL;

2. Copy the file from ’diskb:tbs_f5.dat ’ to ’diska:tbs_f5.dat ’ using your

operating system’s commands.

3. Rename the datafile using the ALTER TABLESPACE statement with the RENAME
DATAFILE clause:

ALTER TABLESPACE tbs_01
 RENAME DATAFILE ’diskb:tbs_f5.dat’
 TO ’diska:tbs_f5.dat’;

4. Bring the tablespace back online using an ALTER TABLESPACE statement with

the ONLINE clause:

ALTER TABLESPACE tbs_01 ONLINE;

Adding a Datafile: Example The following statement adds a datafile to the

tablespace. When more space is needed, new extents of size 10 kilobytes will be

added up to a maximum of 100 kilobytes:

ALTER TABLESPACE tbs_03

See Also: Oracle9i Database Administrator’s Guide for information

on when to use FORCE LOGGING mode and "Changing Tablespace

Logging Attributes: Example" on page 11-111

ALTER TABLESPACE

SQL Statements: ALTER TABLE to ALTER TABLESPACE 11-111

 ADD DATAFILE ’tbs_f04.dbf’
 SIZE 50K
 AUTOEXTEND ON
 NEXT 10K
 MAXSIZE 100K;

Adding an Oracle-managed Datafile: Example The following example adds an

Oracle-managed datafile to the omf_ts1 tablespace (see "Creating Oracle-managed

Files: Examples" on page 15-91 for the creation of this tablespace). The new datafile

is 100M and is autoextensible with unlimited maximum size:

ALTER TABLESPACE omf_ts1 ADD DATAFILE;

Changing Tablespace Logging Attributes: Example The following example

changes the default logging attribute of a tablespace to NOLOGGING:

ALTER TABLESPACE tbs_03 NOLOGGING;

Altering a tablespace logging attribute has no affect on the logging attributes of the

existing schema objects within the tablespace. The tablespace-level logging attribute

can be overridden by logging specifications at the table, index, and partition levels.

Changing Tablespace Extent Allocation: Example The following statement

changes the allocation of every extent of tbs_03 to a multiple of 128K:

ALTER TABLESPACE tbs_03 MINIMUM EXTENT 128K;

ALTER TABLESPACE

11-112 Oracle9i SQL Reference

SQL Statements: ALTER TRIGGER to COMMIT 12-1

12
SQL Statements: ALTER TRIGGER

to COMMIT

This chapter contains the following SQL statements:

■ ALTER TRIGGER

■ ALTER TYPE

■ ALTER USER

■ ALTER VIEW

■ ANALYZE

■ ASSOCIATE STATISTICS

■ AUDIT

■ CALL

■ COMMENT

■ COMMIT

ALTER TRIGGER

12-2 Oracle9i SQL Reference

ALTER TRIGGER

Purpose
Use the ALTER TRIGGERstatement to enable, disable, or compile a database trigger.

Prerequisites
The trigger must be in your own schema or you must have ALTER ANY TRIGGER
system privilege.

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER
DATABASE TRIGGER system privilege.

Syntax
alter_trigger::=

Note: This statement does not change the declaration or definition

of an existing trigger. To redeclare or redefine a trigger, use the

CREATE TRIGGER statement with the OR REPLACE keywords.

See Also:

■ CREATE TRIGGER on page 15-95 for information on creating a

trigger

■ DROP TRIGGER on page 17-13 for information on dropping a

trigger

■ Oracle9i Database Concepts for general information on triggers

See Also: CREATE TRIGGER on page 15-95 for more information

on triggers based on DATABASE triggers

ALTER TRIGGER
schema .

trigger

ENABLE

DISABLE

RENAME TO new_name

COMPILE
DEBUG REUSE SETTINGS

;

ALTER TRIGGER

SQL Statements: ALTER TRIGGER to COMMIT 12-3

Semantics

schema
Specify the schema containing the trigger. If you omit schema , then Oracle assumes

the trigger is in your own schema.

trigger
Specify the name of the trigger to be altered.

ENABLE Clause
Specify ENABLE to enable the trigger. You can also use the ENABLE ALL TRIGGERS
clause of ALTER TABLE to enable all triggers associated with a table.

DISABLE Clause
Specify DISABLE to disable the trigger. You can also use the DISABLE ALL
TRIGGERS clause of ALTER TABLE to disable all triggers associated with a table.

RENAME Clause
Specify RENAME TOnew_name to rename the trigger. Oracle renames the trigger

and leaves it in the same state it was in before being renamed.

COMPILE Clause
Specify COMPILE to explicitly compile the trigger, whether it is valid or invalid.

Explicit recompilation eliminates the need for implicit run-time recompilation and

prevents associated run-time compilation errors and performance overhead.

See Also: ALTER TABLE on page 11-2 and "Enabling Triggers:

Example" on page 12-5

See Also: ALTER TABLE on page 11-2 and "Disabling Triggers:

Example" on page 12-4

Note: When you rename a trigger, Oracle rebuilds the

remembered source of the trigger in the USER_SOURCE, ALL_
SOURCE, and DBA_SOURCE data dictionary views. As a result,

comments and formatting may change in the TEXTcolumn of those

views even though the trigger source did not change.

ALTER TRIGGER

12-4 Oracle9i SQL Reference

Oracle first recompiles objects upon which the trigger depends, if any of these

objects are invalid. If Oracle recompiles the trigger successfully, then the trigger

becomes valid.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves

them again from the session, and stores them at the end of compilation. To avoid

this process, specify the REUSE SETTINGS clause.

If recompiling the trigger results in compilation errors, then Oracle returns an error

and the trigger remains invalid. You can see the associated compiler error messages

with the SQL*Plus command SHOW ERRORS.

DEBUG Specify DEBUG to instruct the PL/SQL compiler to generate and store the

code for use by the PL/SQL debugger.

REUSE SETTINGS Specify REUSE SETTINGS to prevent Oracle from dropping

and reacquiring compiler switch settings. With this clause, Oracle preserves the

existing settings and uses them for the recompilation.

If you specify both DEBUGand REUSE SETTINGS, Oracle sets the persistently stored

value of the PLSQL_COMPILER_FLAGS parameter to INTERPRETED, DEBUG. No

other compiler switch values are changed.

Examples

Disabling Triggers: Example The sample schema hr has a trigger named

update_job_history created on the employees table. The trigger is fired

whenever an UPDATEstatement changes an employee’s job_id . The trigger inserts

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on debugging procedures

■ Oracle9i Database Concepts for information on how Oracle

maintains dependencies among schema objects, including

remote objects

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on

the interaction of the PLSQL_COMPILER_FLAGS parameter with

the COMPILE clause

ALTER TRIGGER

SQL Statements: ALTER TRIGGER to COMMIT 12-5

into the job_history table a row that contains the employee’s ID, begin and end

date of the last job, and the job ID and department.

When this trigger is created, Oracle enables it automatically. You can subsequently

disable the trigger with the following statement:

ALTER TRIGGER update_job_history DISABLE;

When the trigger is disabled, Oracle does not fire the trigger when an UPDATE
statement changes an employee’s job.

Enabling Triggers: Example After disabling the trigger, you can subsequently

enable it with the following statement:

ALTER TRIGGER update_job_history ENABLE;

After you reenable the trigger, Oracle fires the trigger whenever an employee’s job

changes as a result of an UPDATE statement. If an employee’s job is updated while

the trigger is disabled, then Oracle does not automatically fire the trigger for this

employee until another transaction changes the job_id again.

ALTER TYPE

12-6 Oracle9i SQL Reference

ALTER TYPE

Purpose
Use the ALTER TYPE statement to add or drop member attributes or methods. You

can change the existing properties (FINAL or INSTANTIABLE) of an object type,

and you can modify the scalar attributes of the type.

You can also use this statement to recompile the specification or body of the type or

to change the specification of an object type by adding new object member

subprogram specifications.

Prerequisites
The object type must be in your own schema and you must have CREATE TYPE or

CREATE ANY TYPE system privilege, or you must have ALTER ANY TYPE system

privileges.

Syntax
alter_type::=

(compile_type_clause::= on page 12-7, replace_type_clause::= on

page 12-7, alter_method_spec::= on page 12-9, alter_attribute_
definition::= on page 12-9, dependent_handling_clause::= on

page 12-10)

ALTER TYPE
schema .

type

compile_type_clause

replace_type_clause

alter_method_spec

alter_attribute_definition

NOT INSTANTIABLE

FINAL

dependent_handling_clause

;

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-7

compile_type_clause ::=

replace_type_clause ::=

invoker_rights_clause ::=

element_spec ::=

(inheritance_clauses::= on page 12-7, subprogram_spec::= on page 12-8,

constructor_spec::= on page 12-8, map_order_function_spec::= on

page 12-8, pragma_clause::= on page 12-9)

inheritance_clauses ::=

COMPILE
DEBUG

SPECIFICATION

BODY REUSE SETTINGS

REPLACE
invoker_rights_clause

AS OBJECT

(atttribute datatype

,
, element_spec

,

)

AUTHID
CURRENT_USER

DEFINER

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

NOT
OVERRIDING

FINAL

INSTANTIABLE

ALTER TYPE

12-8 Oracle9i SQL Reference

subprogram_spec ::=

(procedure_spec::= on page 12-8, function_spec::= on page 12-8)

procedure_spec::=

function_spec::=

constructor_spec::=

map_order_function_spec ::=

(function_spec::= on page 12-8)

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE name (parameter datatype

,

)

IS

AS
call_spec

FUNCTION name (parameter datatype

,

) return_clause

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

MAP

ORDER
MEMBER function_spec

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-9

pragma_clause ::=

alter_method_spec ::=

(map_order_function_spec::= on page 12-8, subprogram_spec::= on

page 12-8)

alter_attribute_definition ::=

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

ADD

DROP

map_order_function_spec

subprogram_spec

,

ADD

MODIFY
ATTRIBUTE

attribute
datatype

(attribute datatype

,

)

DROP ATTRIBUTE

attribute

(attribute

,

)

ALTER TYPE

12-10 Oracle9i SQL Reference

dependent_handling_clause ::=

exceptions_clause::=

Semantics

schema
Specify the schema that contains the type. If you omit schema , then Oracle assumes

the type is in your current schema.

type
Specify the name of an object type, a nested table type, or a rowid type.

compile_type_clause
Specify COMPILE to compile the object type specification and body. This is the

default if neither SPECIFICATION nor BODY is specified.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves

them again from the session, and stores them at the end of compilation. To avoid

this process, specify the REUSE SETTINGS clause.

If recompiling the type results in compilation errors, then Oracle returns an error

and the type remains invalid. You can see the associated compiler error messages

with the SQL*Plus command SHOW ERRORS.

DEBUG Specify DEBUG to instruct the PL/SQL compiler to generate and store the

code for use by the PL/SQL debugger.

See Also: "Recompiling a Type: Example" on page 12-20 and

"Recompiling a Type Specification: Example" on page 12-20

INVALIDATE

CASCADE

NOT
INCLUDING TABLE DATA

CONVERT TO SUBSTITUTABLE
FORCE

exceptions_clause

EXCEPTIONS INTO
schema .

table

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-11

SPECIFICATION Specify SPECIFICATION to compile only the object type

specification.

BODY Specify BODY to compile only the object type body.

REUSE SETTINGS Specify REUSE SETTINGS to prevent Oracle from dropping

and reacquiring compiler switch settings. With this clause, Oracle preserves the

existing settings and uses them for the recompilation.

If you specify both DEBUGand REUSE SETTINGS, Oracle sets the persistently stored

value of the PLSQL_COMPILER_FLAGS parameter to INTERPRETED, DEBUG. No

other compiler switch values are changed.

replace_type_clause
The REPLACE clause lets you add new member subprogram specifications. This

clause is valid only for object types, not for nested table or varray types.

attribute
Specify an object attribute name. Attributes are data items with a name and a type

specifier that form the structure of the object.

element_spec
Specify the elements of the redefined object.

inheritance_clauses As part of the element_spec , the inheritance_clauses
let you specify the relationship between super- and subtypes.

OVERRIDING This clause is valid only for MEMBERmethods. Specify OVERRIDING
to indicate that this method overrides a MEMBER method defined in the supertype.

This keyword is required if the method redefines a supertype method. NOT
OVERRIDING is the default.

Restriction on OVERRIDING The OVERRIDING clause is not valid for a STATIC
method or for a SQLJ object type.

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on

the interaction of the PLSQL_COMPILER_FLAGS parameter with

the COMPILE clause

ALTER TYPE

12-12 Oracle9i SQL Reference

FINAL Specify FINAL to indicate that this method cannot be overridden by any

subtype of this type. The default is NOT FINAL.

NOT INSTANTIABLE Specify NOT INSTANTIABLE if the type does not provide an

implementation for this method. By default all methods are INSTANTIABLE .

Restriction on NOT INSTANTIABLE : If you specify NOT INSTANTIABLE, you

cannot specify FINAL or STATIC.

subprogram_spec The MEMBER and STATIC clauses let you specify a function or

procedure subprogram associated with the object type which is referenced as an

attribute.

You must specify a corresponding method body in the object type body for each

procedure or function specification.

procedure_spec Enter the specification of a procedure subprogram.

function_spec Enter the specification of a function subprogram.

pragma_clause The pragma_clause is a complier directive that denies member

functions read/write access to database tables, packaged variables, or both, and

thereby helps to avoid side effects.

Oracle Corporation recommends that you avoid using this clause unless you must

do so for backward compatibility of your applications. This clause has been

deprecated, because beginning with Oracle9i, Oracle runs purity checks at run time.

If you must use this clause for backward compatibility of your applications, you can

find its description in pragma_clause on page 16-16 (under CREATE TYPE).

Restriction on Pragmas The pragma_clause is not valid when dropping a

method.

See Also:

■ CREATE TYPE on page 16-3 for a description of the difference

between member and static methods, and for examples

■ PL/SQL User’s Guide and Reference for information about

overloading subprogram names within a package

■ CREATE TYPE BODY on page 16-25

See Also: Oracle9i Application Developer’s Guide - Fundamentals

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-13

map_order_function_spec You can declare either one MAP method or one ORDER
method, regardless how many MEMBER or STATIC methods you declare. However,

a subtype can override a MAP method if the supertype defines a NOT FINAL MAP
method. If you declare either method, then you can compare object instances in

SQL.

If you do not declare either method, then you can compare object instances only for

equality or inequality. Instances of the same type definition are equal only if each

pair of their corresponding attributes is equal. No comparison method needs to be

specified to determine the equality of two object types.

■ For MAP, specify a member function (MAP method) that returns the relative

position of a given instance in the ordering of all instances of the object. A map

method is called implicitly and induces an ordering of object instances by

mapping them to values of a predefined scalar type. Oracle uses the ordering

for comparison conditions and ORDER BY clauses.

If the argument to the MAP method is null, then the MAP method returns null

and the method is not invoked.

An object specification can contain only one MAP method, which must be a

function. The result type must be a predefined SQL scalar type, and the MAP
function can have no arguments other than the implicit SELF argument.

A subtype cannot define a new MAP method. However, it can override an inherited

MAP method.

■ For ORDER, specify a member function (ORDER method) that takes an instance

of an object as an explicit argument and the implicit SELF argument and

returns either a negative, zero, or positive integer. The negative, zero, or

positive indicates that the implicit SELF argument is less than, equal to, or

greater than the explicit argument.

See Also: "Object Values" on page 2-48for more information about

object value comparisons

Note: If type will be referenced in queries involving sorts

(through ORDER BY, GROUP BY, DISTINCT , or UNION clauses) or

joins, and you want those queries to be parallelized, then you must

specify a MAP member function.

ALTER TYPE

12-14 Oracle9i SQL Reference

If either argument to the ORDERmethod is null, then the ORDERmethod returns

null and the method is not invoked.

When instances of the same object type definition are compared in an ORDER BY
clause, the ORDER method function is invoked.

An object specification can contain only one ORDER method, which must be a

function having the return type NUMBER.

A subtype cannot define an ORDER method, nor can it override an inherited

ORDER method.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the member functions

and procedures of the object type execute with the privileges and in the schema of

the user who owns the object type or with the privileges and in the schema of

CURRENT_USER. This specification applies to the corresponding type body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

Restriction on Invoker Rights You can specify this clause only for an object type,

not for a nested table or varray type.

AUTHID CURRENT_USER Clause Specify CURRENT_USER if you want the

member functions and procedures of the object type to execute with the privileges

of CURRENT_USER. This clause creates an invoker-rights type.

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External names

in all other statements resolve in the schema in which the type resides.

AUTHID DEFINER Clause Specify DEFINERif you want the member functions and

procedures of the object type to execute with the privileges of the owner of the

schema in which the functions and procedures reside, and that external names

resolve in the schema where the member functions and procedures reside. This is

the default.

Note: You must specify this clause to maintain invoker-rights

status for the type if you created it with this status. Otherwise the

status will revert to definer rights.

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-15

alter_method_spec
The alter_method_spec lets you add a method to or drop a method from type .

Oracle disables any function-based indexes that depend on the type.

In one ALTER TYPE statement you can add or drop multiple methods, but you can

reference each method only once.

ADD When you add a method, its name must not conflict with any existing

attributes in its type hierarchy.

DROP When you drop a method, Oracle removes the method from the target type.

Restriction on Dropping Methods You cannot drop from a subtype a method

inherited from its supertype. Instead you must drop the method from the

supertype.

subprogram_spec The MEMBER and STATIC clauses let you add a procedure

subprogram to or drop it from the object type.

Restriction on Subprograms You cannot define a STATIC method on a subtype

that redefines a MEMBER method in its supertype, or vice versa.

map_order_function_spec If you declare either a MAPor ORDERmethod, then you

can compare object instances in SQL.

Restriction on MAP and ORDER Methods You cannot add an ORDER method to a

subtype.

See Also:

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

■ PL/SQL User’s Guide and Reference

See Also: "Adding a Member Function: Example" on page 12-19

See Also: the description of the subprogram_spec in CREATE
TYPE on page 16-12

ALTER TYPE

12-16 Oracle9i SQL Reference

alter_attribute_definition
The alter_attribute_definition clause lets you add, drop, or modify an

attribute of an object type. In one ALTER TYPE statement, you can add, drop, or

modify multiple member attributes or methods, but you can reference each

attribute or method only once.

ADD ATTRIBUTE The name of the new attribute must not conflict with existing

attributes or methods in the type hierarchy. Oracle adds the new attribute to the end

of the locally defined attribute list.

DROP ATTRIBUTE When you drop an attribute from a type, Oracle drops the

column corresponding to the dropped attribute as well as any indexes, statistics,

and constraints referencing the dropped attribute.

You need not specify the datatype of the attribute you are dropping.

Restrictions on Dropping Attributes

■ You cannot drop an attribute inherited from a supertype. Instead you must

drop the attribute from the supertype.

■ You cannot drop an attribute that is part of a partitioning, subpartitioning, or

cluster key.

■ You cannot drop an attribute of a primary-key-based object identifier of an

object table or a primary key of an index-organized table.

■ You cannot drop all of the attributes of a root type. Instead you must drop the

type. However, you can drop all of the locally declared attributes of a subtype.

See Also: the description of constructor_spec in CREATE
TYPE on page 16-16

Note: If you add the attribute to a supertype, then it is inherited

by all of its subtypes. In subtypes, inherited attributes always

precede declared attributes. Therefore, you may need to update the

mappings of the implicitly altered subtypes after adding an

attribute to a supertype.

See Also: "Adding a Collection Attribute: Example" on

page 12-20

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-17

MODIFY ATTRIBUTE This clause lets you modify the datatype of an existing scalar

attribute. For example, you can increase the length of a VARCHAR2 or RAW attribute,

or you can increase the precision or scale of a numeric attribute.

Restriction on Modifying Attributes You cannot expand the size of an attribute

referenced in a function-based index, domain index, or cluster key.

[NOT] FINAL
Use the [NOT] FINAL clause to indicate whether any further subtypes can be created

for this type:

■ Specify FINAL if no further subtypes can be created for this type.

■ Specify NOT FINAL if further subtypes can be created under this type.

If you change the property between FINAL and NOT FINAL, then you must specify

the CASCADE clause of the dependent_handling_clause to convert data in

dependent columns and tables. You cannot defer data conversion with CASCADE
NOT INCLUDING TABLE DATA.

■ If you change a type from NOT FINAL to FINAL , then you must specify

CASCADE [INCLUDING TABLE DATA].

■ If you change a type from FINAL to NOT FINAL:

■ Specify CASCADE INCLUDING TABLE DATA if you want to create new

substitutable tables and columns of that type, but you are not concerned

about the substitutability of the existing dependent tables and columns.

Oracle marks all existing dependent columns and tables NOT
SUBSTITUTABLE AT ALL LEVELS, so you cannot insert the new subtype

instances of the altered type into these existing columns and tables.

■ Specify CASCADE CONVERT TO SUBSTITUTABLE if you want to create new

substitutable tables and columns of the type and also store new subtype

instances of the altered type in existing dependent tables and columns.

Oracle marks all existing dependent columns and tables SUBSTITUTABLE
AT ALL LEVELS except those that are explicitly marked NOT
SUBSTITUTABLE AT ALL LEVELS.

Restriction on FINAL You cannot change a user-defined type from NOT FINAL to

FINAL if the type has any subtypes.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for a full discussion of object type evolution

ALTER TYPE

12-18 Oracle9i SQL Reference

[NOT] INSTANTIABLE
Use the [NOT] INSTANTIABLE clause to indicate whether any object instances of

this type can be constructed:

■ Specify INSTANTIABLE if object instances of this type can be constructed.

■ Specify NOT INSTANTIABLE if no constructor (default or user-defined) exists

for this object type. You must specify these keywords for any type with

noninstantiable methods and for any type that has no attributes (either

inherited or specified in this statement).

Restriction on NOT INSTANTIABLE You cannot change a user-defined type from

INSTANTIABLE to NOT INSTANTIABLE if the type has any table dependents.

dependent_handling_clause
The dependent_handling_clause lets you instruct Oracle how to handle

objects that are dependent on the modified type. If this clause is not specified, then

the ALTER TYPE statement will abort if the target type has any dependent type or

table.

INVALIDATE Clause
Specify INVALIDATE to invalidate all dependent objects without any checking

mechanism.

CASCADE Clause
Specify the CASCADE clause if you want to propagate the type change to dependent

types and tables. Oracle aborts the statement if any errors are found in the

dependent types or tables unless you also specify FORCE.

INCLUDING TABLE DATA. Specify INCLUDING TABLE DATA to convert data stored

in all user-defined columns to the most recent version of the column’s type. This is

the default.

Note: Because Oracle does not validate the type change, you

should use this clause with caution. For example, if you drop an

attribute that is a partitioning or cluster key, then you will be

unable to write to the table.

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-19

■ For each attribute added to the column’s type, Oracle adds a new attribute to

the data and initializes it to NULL.

■ For each attribute dropped from the referenced type, Oracle removes the

corresponding attribute data from each row in the table.

When you specify INCLUDING TABLE DATA, all of the tablespaces containing the

table’s data must be in read/write mode.

If you specify NOT INCLUDING TABLE DATA, then Oracle upgrades the metadata of

the column to reflect the changes to the type, but does not scan the dependent

column and update the data as part of this ALTER TYPE statement. However, the

dependent column data remains accessible and the results of subsequent queries of

the data will reflect the type modifications.

FORCE. Specify FORCE if you want Oracle to ignore the errors from dependent

tables and indexes and log all errors in the specified exception table. The exception

table must already have been created by executing the DBMS_UTILITY.CREATE_
ALTER_TYPE_ERROR_TABLE procedure.

Examples

Adding a Member Function: Example. The following example uses the data_typ
object type, which was created in "Object Type Examples" on page 16-19. A method

is added to data_typ and its type body is modified to correspond. The date

formats are consistent with the order_date column of the oe.orders sample

table:

ALTER TYPE data_typ
 ADD MEMBER FUNCTION qtr(der_qtr DATE)
 RETURN CHAR CASCADE;

CREATE OR REPLACE TYPE BODY data_typ IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS

Note: You must specify this clause if your column data is in

Oracle8 release 8.0 image format. This clause is also required if the

type property is being changed between FINAL and NOT FINAL

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on the implications of not including

table data when modifying type attribute

ALTER TYPE

12-20 Oracle9i SQL Reference

 BEGIN
 RETURN (year + invent);
 END;
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR IS
 BEGIN
 IF (der_qtr < TO_DATE(’01-APR’, ’DD-MON’)) THEN
 RETURN ’FIRST’;
 ELSIF (der_qtr < TO_DATE(’01-JUL’, ’DD-MON’)) THEN
 RETURN ’SECOND’;
 ELSIF (der_qtr < TO_DATE(’01-OCT’, ’DD-MON’)) THEN
 RETURN ’THIRD’;
 ELSE
 RETURN ’FOURTH’;
 END IF;
 END;
 END ;
/

Adding a Collection Attribute: Example The following example adds the phone_
list_typ varray from the sample oe schema to the customer_address_typ
object column of the customers table:

ALTER TYPE cust_address_typ
 ADD ATTTRIBUTE (phone phone_list_typ) CASCADE;

Recompiling a Type: Example. The following example recompiles type customer_
address_typ :

ALTER TYPE customer_address_typ COMPILE;

Recompiling a Type Specification: Example. The following example compiles the

type specification of link2 .

CREATE TYPE link1 AS OBJECT
 (a NUMBER);
/
CREATE TYPE link2 AS OBJECT
 (a NUMBER,
 b link1,

MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER);
/

CREATE TYPE BODY link2 AS
 MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS
 BEGIN
 dbms_output.put_line(c1);

ALTER TYPE

SQL Statements: ALTER TRIGGER to COMMIT 12-21

 RETURN c1;
 END;
 END;
/

In the following example, both the specification and body of link2 are invalidated.

ALTER TYPE link1 ADD ATTRIBUTE (b NUMBER) INVALIDATE;

You must recompile the type by recompiling the specification and body in separate

statements:

ALTER TYPE link2 COMPILE SPECIFICATION;

ALTER TYPE link2 COMPILE BODY;

Alternatively, you can compile both specification and body at the same time:

ALTER TYPE link2 COMPILE;

ALTER USER

12-22 Oracle9i SQL Reference

ALTER USER

Purpose
Use the ALTER USER statement:

■ To change the authentication or database resource characteristics of a database

user.

■ To permit a proxy server to connect as a client without authentication.

Prerequisites
You must have the ALTER USER system privilege. However, you can change your

own password without this privilege.

ALTER USER

SQL Statements: ALTER TRIGGER to COMMIT 12-23

Syntax
alter_user::=

ALTER USER

user

IDENTIFIED

BY password
REPLACE old_password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

user

,

proxy_clause

;

ALTER USER

12-24 Oracle9i SQL Reference

proxy_clause ::=

Semantics
The keywords, parameters, and clauses described in this section are unique to

ALTER USER or have different semantics than they have in CREATE USER.
Keywords, parameters, and clauses that do not appear here have the same meaning

as in the CREATE USER statement.

IDENTIFIED Clause
■ Specify BYpassword to specify a new password for the user.

Note: Oracle Corporation recommends that user names and

passwords be encoded in ASCII or EBCDIC characters only,

depending on your platform. Please refer to Oracle9i Database
Administrator’s Guide for more information about this

recommendation.

See Also:

■ CREATE USER on page 16-32 for information on the keywords

and parameters

■ CREATE PROFILE on page 14-71 for information on assigning

limits on database resources to a user

GRANT

REVOKE
CONNECT THROUGH proxy

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NO ROLES

AUTHENTICATED USING

PASSWORD

DISTINGUISHED NAME

CERTIFICATE
TYPE ’ type ’ VERSION ’ version ’

ALTER USER

SQL Statements: ALTER TRIGGER to COMMIT 12-25

You can omit the REPLACE clause if you are setting your own password for the

first time or you have the ALTER USER system privilege and you are changing

another user’s password. However, unless you have the ALTER USER system

privilege, you must always specify the REPLACE clause if a password

complexity verification function has been enabled, either by running the

UTLPWDMG.SQL script or by specifying such a function in the PASSWORD_
VERIFY_FUNCTION parameter of a profile that has been assigned to the user.

■ Specify GLOBALLY AS ’external_name ’ to indicate that the user must be

authenticated by way of an LDAP V3 compliant directory service such as

Oracle Internet Directory.

You can change a user’s access verification method to IDENTIFIED GLOBALLY
AS ’external_name ’ only if all external roles granted directly to the user are

revoked.

You can change a user created as IDENTIFIED GLOBALLY AS ’external_
name’ to IDENTIFIED BY password or IDENTIFIED EXTERNALLY.

Note: Oracle expects a different timestamp for each resetting of a

particular password. If you reset one password multiple times

within one second (for example, by cycling through a set of

passwords using a script), then Oracle may return an error message

that the password cannot be reused. For this reason, Oracle

Corporation recommends that you avoid using scripts to reset

passwords.

Note: Oracle does not check the old password, even if you

provide it in the REPLACE clause, unless you are changing your

own existing password. If such a check is important in other cases

(for example, when a privileged user changes another user’s

password), then ensure that the password complexity verification

function prohibits password changes in which the old password is

null, or use the OCIPasswordChange() call instead of ALTER
USER. For more information, see Oracle Call Interface Programmer’s
Guide.

See Also: Oracle9i Database Administrator’s Guide for information

on the password complexity verification function

ALTER USER

12-26 Oracle9i SQL Reference

TEMPORARY TABLESPACE Clause
The tablespace you assign or reassign as the user’s temporary tablespace must be a

temporary tablespace and must have a standard block size.

DEFAULT ROLE Clause
Specify the roles granted by default to the user at logon. This clause can contain

only roles that have been granted directly to the user with a GRANT statement. You

cannot use the DEFAULT ROLE clause to enable:

■ Roles not granted to the user

■ Roles granted through other roles

■ Roles managed by an external service (such as the operating system), or by the

Oracle Internet Directory

Oracle enables default roles at logon without requiring the user to specify their

passwords.

proxy_clause
The proxy_clause lets you control the ability of a proxy (an application or

application server) to connect as the specified database or enterprise user and to

activate all, some, or none of the user’s roles.

See Also: CREATE USER on page 16-32, "Changing User

Identification: Example" on page 12-28, and "Changing User

Authentication: Examples" on page 12-28

See Also: CREATE ROLE on page 14-79

Note: The proxy_clause provides several varieties of proxy

authentication of database and enterprise users. For information on

proxy authentication of application users, see Oracle9i Application
Developer’s Guide - Fundamentals.

See Also: Oracle9i Database Concepts for more information on

proxies and their use of the database and "Proxy Users: Examples"

on page 12-29

ALTER USER

SQL Statements: ALTER TRIGGER to COMMIT 12-27

GRANT | REVOKE
Specify GRANT to allow the connection. Specify REVOKE to prohibit the connection.

CONNECT THROUGH Clause
Identify the proxy connecting to Oracle. Oracle expects the proxy to authenticate the

user unless you specify the AUTHENTICATED USING clause.

WITH ROLE WITH ROLErole_name permits the proxy to connect as the specified

user and to activate only the roles that are specified by role_name.

WITH ROLE ALL EXCEPT WITH ROLE ALL EXCEPTrole_name permits the proxy

to connect as the specified user and to activate all roles associated with that user

except those specified by role_name .

WITH NO ROLES WITH NO ROLES permits the proxy to connect as the specified

user, but prohibits the proxy from activating any of that user’s roles after

connecting.

If you do not specify any of these WITH clauses, then Oracle activates all roles

granted to the specified user automatically.

AUTHENTICATED USING
Specify the AUTHENTICATED USING clause if you want proxy authentication to be

handled by a source other than the proxy. This clause is relevant only as part of a

GRANT CONNECT THROUGHproxy clause.

PASSWORD Specify PASSWORD if you want the proxy to present the database

password of the user for authentication. The proxy relies on the database to

authenticate the user based on the password.

DISTINGUISHED NAME Specify DISTINGUISHED NAME to allow the proxy to act

as the globally identified user indicated by the distinguished name.

CERTIFICATE Specify CERTIFICATE to allow the proxy to act as the globally

identified user whose distinguished name is contained in the certificate.

In both the DISTINGUISHED NAME and CERTIFICATE cases, the proxy has already

authenticated and is acting on behalf of a global database user.

■ For type , specify the type of certificate to be presented. If you do not specify

type , then the default is ’X.509’.

ALTER USER

12-28 Oracle9i SQL Reference

■ For version , specify the version of the certificate that is to be presented. If you

do not specify version , then the default is ’3’.

Restriction on CERTIFICATE You cannot specify this clause as part of a REVOKE
CONNECT THROUGHproxy clause.

Examples

Changing User Identification: Example The following statement changes the

password of the user sidney (created in "Creating a Database User: Example" on

page 16-37) second_2nd_pwd and default tablespace to the tablespace example :

ALTER USER sidney
 IDENTIFIED BY second_2nd_pwd
 DEFAULT TABLESPACE example;

The following statement assigns the new_profile profile "Creating a Profile:

Example" on page 14-76) to the sample user sh :

ALTER USER sh
 PROFILE new_profile;

In subsequent sessions, sh is restricted by limits in the new_profile profile.

The following statement makes all roles granted directly to sh default roles, except

the dw_manager role:

ALTER USER sh
 DEFAULT ROLE ALL EXCEPT dw_manager;

At the beginning of sh ’s next session, Oracle enables all roles granted directly to sh
except the dw_manager role.

Changing User Authentication: Examples The following statement changes the

authentication mechanism of user app_user1 (created in "Creating a Database

User: Example" on page 16-37) :

See Also:

■ Oracle9i Security Overview for an overview of database security

■ Oracle9i Database Administrator’s Guide and Oracle9i Application
Developer’s Guide - Fundamentals for information on middle-tier

systems and proxy authentication

ALTER USER

SQL Statements: ALTER TRIGGER to COMMIT 12-29

ALTER USER app_user1 IDENTIFIED GLOBALLY AS ’CN=tom,O=oracle,C=US’;

The following statement causes user sidney ’s password to expire:

ALTER USER sidney PASSWORD EXPIRE;

If you cause a database user’s password to expire with PASSWORD EXPIRE, then the

user (or the DBA) must change the password before attempting to log in to the

database following the expiration. However, tools such as SQL*Plus allow the user

to change the password on the first attempted login following the expiration.

Proxy Users: Examples The following statement alters the user app_user . The

example permits the app_user to connect through the proxy user sh . The example

also allows app_user to enable its warehouse_user role (created in "Creating a

Role: Example" on page 14-81) when connected through the proxy sh :

ALTER USER app_user1
 GRANT CONNECT THROUGH sh
 WITH ROLE warehouse_user;

The following statement takes away the right of user app_user to connect through

the proxy user sh :

ALTER USER app_user1 REVOKE CONNECT THROUGH sh;

The following hypothetical examples show other methods of proxy authentication:

Note: To show basic syntax, this example uses the sample

database Sales History user (sh) as the proxy. Normally a proxy

user would be an application server or middle-tier entity. For

information on creating the interface between an application user

and a database by way of an application server, please refer to

Oracle Call Interface Programmer’s Guide.

See Also:

■ "Creating External Database Users: Examples" on page 16-38 to

see how to create the app_user user

■ "Creating a Role: Example" on page 14-81 to see how to create

the dw_user role

ALTER USER

12-30 Oracle9i SQL Reference

ALTER USER sully GRANT CONNECT THROUGH OAS1
 AUTHENTICATED USING PASSWORD;

ALTER USER green GRANT CONNECT THROUGH WebDB
 AUTHENTICATED USING DISTINGUISHED NAME;

ALTER USER brown GRANT CONNECT THROUGH WebDB
 AUTHENTICATED USING CERTIFICATE TYPE ’X.509’ VERSION ’3’;

ALTER VIEW

SQL Statements: ALTER TRIGGER to COMMIT 12-31

ALTER VIEW

Purpose
Use the ALTER VIEW statement to explicitly recompile a view that is invalid.

Explicit recompilation lets you locate recompilation errors before run time. You may

want to recompile a view explicitly after altering one of its base tables to ensure that

the alteration does not affect the view or other objects that depend on it.

You can also use ALTER VIEW to define, modify, or drop view constraints.

When you issue an ALTER VIEW statement, Oracle recompiles the view regardless

of whether it is valid or invalid. Oracle also invalidates any local objects that

depend on the view.

Notes:

■ This statement does not change the definition of an existing

view. To redefine a view, you must use CREATE VIEW with the

OR REPLACE keywords.

■ If you alter a view that is referenced by one or more

materialized views, then those materialized views are

invalidated. Invalid materialized views cannot be used by

query rewrite and cannot be refreshed.

See Also:

■ CREATE VIEW on page 16-39 for information on redefining a

view

■ ALTER MATERIALIZED VIEW on page 9-90 for information

on revalidating an invalid materialized view

■ Oracle9i Data Warehousing Guide for general information on data

warehouses

■ Oracle9i Database Concepts for more about dependencies among

schema objects

ALTER VIEW

12-32 Oracle9i SQL Reference

Prerequisites
The view must be in your own schema or you must have ALTER ANY TABLEsystem

privilege.

Syntax
alter_view::=

(out_of_line_constraint::= on page 7-7—part of constraints syntax)

Semantics

schema
Specify the schema containing the view. If you omit schema , then Oracle assumes

the view is in your own schema.

view
Specify the name of the view to be recompiled.

ADD Clause
Use the ADD clause to add a constraint to view .

See Also: constraints on page 7-5 for information on view

constraints and their restrictions

ALTER VIEW
schema .

view

ADD out_of_line_constraint

MODIFY CONSTRAINT constraint
RELY

NORELY

DROP

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

COMPILE

;

ALTER VIEW

SQL Statements: ALTER TRIGGER to COMMIT 12-33

MODIFY CONSTRAINT Clause
Use the MODIFY CONSTRAINT clause to change the RELY or NORELY setting of an

existing view constraint.

Restriction on Modifying Constraints You cannot change the setting of a unique

or primary key constraint if it is part of a referential integrity constraint without

dropping the foreign key or changing its setting to match that of view .

DROP Clause
Use the DROP clause to drop an existing view constraint.

Restriction on Dropping Constraints You cannot drop a unique or primary key

constraint if it is part of a referential integrity constraint on a view.

COMPILE
The COMPILE keyword is required. It directs Oracle to recompile the view.

Example

Altering a View: Example To recompile the view customer_ro (created in

"Creating a Read-Only View: Example" on page 16-52), issue the following

statement:

ALTER VIEW customer_ro
 COMPILE;

If Oracle encounters no compilation errors while recompiling customer_ro , then

customer_ro becomes valid. If recompiling results in compilation errors, then

Oracle returns an error and customer_ro remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,

functions, package bodies, and views that reference customer_ro . If you

subsequently reference one of these objects without first explicitly recompiling it,

then Oracle recompiles it implicitly at run time.

See Also: "RELY Clause" on page 7-22 for information on the uses

of the RELY and NORELY settings

ANALYZE

12-34 Oracle9i SQL Reference

ANALYZE

Purpose
Use the ANALYZE statement to collect non-optimizer statistics, for example, to:

■ Collect or delete statistics about an index or index partition, table or table

partition, index-organized table, cluster, or scalar object attribute.

■ Validate the structure of an index or index partition, table or table partition,

index-organized table, cluster, or object reference (REF).

■ Identify migrated and chained rows of a table or cluster.

Prerequisites
The schema object to be analyzed must be local, and it must be in your own schema

or you must have the ANALYZE ANY system privilege.

If you want to list chained rows of a table or cluster into a list table, then the list

table must be in your own schema, or you must have INSERT privilege on the list

table, or you must have INSERT ANY TABLE system privilege.

If you want to validate a partitioned table, then you must have INSERT privilege on

the table into which you list analyzed rowids, or you must have INSERT ANY
TABLE system privilege.

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer, which

depends upon statistics, will eventually use only statistics that have

been collected by DBMS_STATS. See Oracle9i Supplied PL/SQL
Packages and Types Reference for more information on this package.

However, you must use the ANALYZE statement (rather than DBMS_
STATS) for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-35

Syntax
analyze::=

compute_statistics_clause ::=

estimate_statistics_clause ::=

ANALYZE

TABLE
schema .

table

PARTITION (partition)

SUBPARTITION (subpartition)

INDEX
schema .

index

PARTITION (partition)

SUBPARTITION (subpartition)

CLUSTER
schema .

cluster

compute_statistics_clause

estimate_statistics_clause

validation_clauses

LIST CHAINED ROWS
into_clause

DELETE
SYSTEM

STATISTICS

;

COMPUTE
SYSTEM

STATISTICS
for_clause

ESTIMATE
SYSTEM

STATISTICS
for_clause

SAMPLE integer
ROWS

PERCENT

ANALYZE

12-36 Oracle9i SQL Reference

validation_clauses ::=

for_clause ::=

into_clause::=

Semantics

schema
Specify the schema containing the index, table, or cluster. If you omit schema , then

Oracle assumes the index, table, or cluster is in your own schema.

INDEX index
Specify an index to be analyzed (if no for_clause is used).

Oracle collects the following statistics for an index. Statistics marked with an

asterisk are always computed exactly. For conventional indexes, the statistics

appear in the data dictionary views USER_INDEXES, ALL_INDEXES, and DBA_
INDEXES in the columns in parentheses.

VALIDATE REF UPDATE
SET DANGLING TO NULL

VALIDATE STRUCTURE
CASCADE into_clause OFFLINE

ONLINE

FOR

TABLE

ALL
INDEXED

COLUMNS
SIZE integer

COLUMNS
SIZE integer column

attribute

SIZE integer

ALL
LOCAL

INDEXES

INTO
schema .

table

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-37

■ *Depth of the index from its root block to its leaf blocks (BLEVEL)

■ Number of leaf blocks (LEAF_BLOCKS)

■ Number of distinct index values (DISTINCT_KEYS)

■ Average number of leaf blocks for each index value (AVG_LEAF_BLOCKS_PER_
KEY)

■ Average number of data blocks for each index value (for an index on a table)

(AVG_DATA_BLOCKS_PER_KEY)

■ Clustering factor (how well ordered the rows are about the indexed values)

(CLUSTERING_FACTOR)

For domain indexes, this statement invokes the user-defined statistics collection

function specified in the statistics type associated with the index (see ASSOCIATE

STATISTICS on page 12-50). If no statistics type is associated with the domain

index, then the statistics type associated with its indextype is used. If no statistics

type exists for either the index or its indextype, then no user-defined statistics are

collected. User-defined index statistics appear in the STATISTICS column of the

data dictionary views USER_USTATS, ALL_USTATS, and DBA_USTATS.

Restriction on Analyzing Indexes You cannot analyze a domain index that is

marked IN_PROGRESS or FAILED .

TABLE table
Specify a table to be analyzed. When you collect statistics for a table, Oracle also

automatically collects the statistics for each of the table’s indexes and domain

indexes, as long as no for_clauses are used.

When you analyze a table, Oracle collects statistics about expressions occurring in

any function-based indexes as well. Therefore, be sure to create function-based

indexes on the table before analyzing the table.

See Also:

■ CREATE INDEX on page 13-65 for more information on

domain indexes

■ Oracle9i Database Reference for information on the data

dictionary views

■ "Analyzing an Index: Example" on page 12-48

ANALYZE

12-38 Oracle9i SQL Reference

When analyzing a table, Oracle skips all domain indexes marked LOADING or

FAILED .

For an index-organized table, Oracle also analyzes any mapping table and

calculates its PCT_ACCESSS_DIRECT statistics. These statistics estimate the

accuracy of "guess" data block addresses stored as part of the local rowids in the

mapping table.

Oracle collects the following statistics for a table. Statistics marked with an asterisk

are always computed exactly. Table statistics, including the status of domain

indexes, appear in the data dictionary views USER_TABLES, ALL_TABLES, and

DBA_TABLES in the columns shown in parentheses.

■ Number of rows (NUM_ROWS)

■ * Number of data blocks below the high water mark (that is, the number of data

blocks that have been formatted to receive data, regardless whether they

currently contain data or are empty) (BLOCKS)

■ * Number of data blocks allocated to the table that have never been used

(EMPTY_BLOCKS)

■ Average available free space in each data block in bytes (AVG_SPACE)

■ Number of chained rows (CHAIN_COUNT)

■ Average row length, including the row’s overhead, in bytes (AVG_ROW_LEN)

Restrictions on Analyzing Tables

■ You cannot use ANALYZE to collect statistics on data dictionary tables.

■ You cannot use ANALYZE to collect statistics on an external table. However, you

can use the DBMS_STATS package for this purpose.

■ You cannot use ANALYZE to collect default statistics on a temporary table.

However, if you have created an association between one or more columns of a

temporary table and a user-defined statistics type, then you can use ANALYZEto

collect the user-defined statistics on the temporary table. (The association must

already exist.)

■ You cannot compute or estimate statistics for the following column types: REFs,

varrays, nested tables, LOBs (LOBs are not analyzed, they are skipped), LONGs,

See Also: CREATE INDEX on page 13-65 for more information

about function-based indexes

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-39

or object types. However, if a statistics type is associated with such a column,

then user-defined statistics are collected.

PARTITION | SUBPARTITION
Specify the partition or subpartition on which you want statistics to be

gathered. You cannot use this clause when analyzing clusters.

If you specify PARTITION and table is composite-partitioned, then Oracle

analyzes all the subpartitions within the specified partition.

CLUSTER cluster
Specify a cluster to be analyzed. When you collect statistics for a cluster, Oracle also

automatically collects the statistics for all the cluster’s tables and all their indexes,

including the cluster index.

For both indexed and hash clusters, Oracle collects the average number of data

blocks taken up by a single cluster key (AVG_BLOCKS_PER_KEY). These statistics

appear in the data dictionary views ALL_CLUSTERS, USER_CLUSTERS and DBA_
CLUSTERS.

compute_statistics_clause
COMPUTE STATISTICS instructs Oracle to compute exact statistics about the

analyzed object and store them in the data dictionary. When you analyze a table,

both table and column statistics are collected.

Both computed and estimated statistics are used by the Oracle optimizer to choose

the execution plan for SQL statements that access analyzed objects. These statistics

may also be useful to application developers who write such statements.

Specify SYSTEM if you want Oracle to compute only system (not user-defined

statistics). If you omit SYSTEM, then Oracle collects both system-generated statistics

and statistics generated by the collection functions declared in a statistics type.

See Also:

■ ASSOCIATE STATISTICS on page 12-50

■ Oracle9i Database Reference for information on the data

dictionary views

See Also: Oracle9i Database Reference for information on the data

dictionary views and "Analyzing a Cluster: Example" on page 12-48

ANALYZE

12-40 Oracle9i SQL Reference

for_clause
The for_clause lets you specify whether an entire table or index, or just

particular columns, will be analyzed. The following clauses apply only to the

ANALYZE TABLE version of this statement.

FOR TABLE Specify FOR TABLE to restrict the statistics collected to only table

statistics rather than table and column statistics.

FOR COLUMNS Specify FOR COLUMNS to restrict the statistics collected to only

column statistics for the specified columns and scalar object attributes, rather than

for all columns and attributes; attribute specifies the qualified column name of

an item in an object.

FOR ALL COLUMNS Specify FOR ALL COLUMNS to collect column statistics for all

columns and scalar object attributes.

FOR ALL INDEXED COLUMNS Specify FOR ALL INDEXED COLUMNS to collect

column statistics for all indexed columns in the table.

Column statistics can be based on the entire column or can use a histogram by

specifying SIZE.

Oracle collects the following column statistics:

■ Number of distinct values in the column as a whole

■ Maximum and minimum values in each band

Column statistics appear in the data dictionary views USER_TAB_COLUMNS, ALL_
TAB_COLUMNS, and DBA_TAB_COLUMNS. Histograms appear in the data dictionary

See Also:

■ Oracle9i Data Cartridge Developer’s Guide for information on

creating statistics collection functions

■ Oracle9i Database Performance Tuning Guide and Reference for

information on how these statistics are used

■ "Computing Statistics: Examples" on page 12-47

See Also: Oracle9i Database Performance Tuning Guide and Reference
and "Creating Histograms: Examples" on page 12-47 for more

information on histograms

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-41

views USER_TAB_HISTOGRAMS, DBA_TAB_HISTOGRAMS, and ALL_TAB_
HISTOGRAMS; USER_PART_HISTOGRAMS, DBA_PART_HISTOGRAMS, and ALL_
PART_HISTOGRAMS; and USER_SUBPART_HISTOGRAMS, DBA_SUBPART_
HISTOGRAMS, and ALL_SUBPART_HISTOGRAMS.

If a user-defined statistics type has been associated with any columns, then the

for_clause collects user-defined statistics using that statistics type. If no statistics

type is associated with a column, then Oracle checks to see if any statistics type has

been associated with the type of the column, and uses that statistics type. If no

statistics type has been associated with either the column or its user-defined type,

then no user-defined statistics are collected. User-defined column statistics appear

in the STATISTICS column of the data dictionary views USER_USTATS, ALL_
USTATS, and DBA_USTATS.

If you want to collect statistics on both the table as a whole and on one or more

columns, then be sure to generate the statistics for the table first, and then for the

columns. Otherwise, the table-only ANALYZE will overwrite the histograms

generated by the column ANALYZE. For example, issue the following statements:

ANALYZE TABLE emp ESTIMATE STATISTICS;
ANALYZE TABLE emp ESTIMATE STATISTICS
 FOR ALL COLUMNS;

FOR ALL INDEXES Specify FOR ALL INDEXES if you want all indexes associated

with the table to be analyzed.

FOR ALL LOCAL INDEXES Specify FOR ALL LOCAL INDEXES if you want all

local index partitions to be analyzed. You must specify the keyword LOCAL if the

PARTITION clause and INDEX are specified.

SIZE Specify the maximum number of buckets in the histogram. The default value

is 75, minimum value is 1, and maximum value is 254.

Note: MAXVALUE and MINVALUE columns of USER_, DBA_, and

ALL_TAB_COLUMNS have a length of 32 bytes. If you analyze

columns with a length >32 bytes, and if the columns are padded

with leading blanks, then Oracle may take into account only the

leading blanks and return unexpected statistics.

ANALYZE

12-42 Oracle9i SQL Reference

estimate_statistics_clause
ESTIMATE STATISTICS instructs Oracle to estimate statistics about the analyzed

object and store them in the data dictionary.

Both computed and estimated statistics are used by the Oracle optimizer to choose

the execution plan for SQL statements that access analyzed objects. These statistics

may also be useful to application developers who write such statements.

Specify SYSTEM if you want Oracle to estimate only system (not user-defined

statistics). If you omit SYSTEM, then Oracle estimates both system-generated

statistics and statistics generated by the collection functions declared in a statistics

type.

for_clause See the description under compute_statistics_clause on

page 12-39

SAMPLE Specify the amount of data from the analyzed object Oracle should

sample to estimate statistics. If you omit this parameter, then Oracle samples 1064

rows.

The default sample value is adequate for tables up to a few thousand rows. If your

tables are larger, specify a higher value for SAMPLE. If you specify more than half of

the data, then Oracle reads all the data and computes the statistics.

■ ROWScauses Oracle to sample integer rows of the table or cluster or integer
entries from the index. The integer must be at least 1.

Note: Oracle does not create a histogram with more buckets than

the number of rows in the sample. Also, if the sample contains any

values that are very repetitious, then Oracle creates the specified

number of buckets, but the value indicated by the NUM_BUCKETS
column of the ALL_, DBA_, and USER_TAB_COLUMNS views may

be smaller because of an internal compression algorithm.

See Also: "Creating Histograms: Examples" on page 12-47

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on creating statistics collection functions and "Estimating Statistics:

Example" on page 12-47

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-43

■ PERCENT causes Oracle to sample integer percent of the rows from the table

or cluster or integer percent of the index entries. The integer can range from 1

to 99.

validation_clauses
The validation clauses let you validate REFs and the structure of the analyzed

object.

VALIDATE REF UPDATE Clause
Specify VALIDATE REF UPDATE to validate the REFs in the specified table, check

the rowid portion in each REF, compare it with the true rowid, and correct, if

necessary. You can use this clause only when analyzing a table.

SET DANGLING TO NULL SET DANGLING TO NULL sets to NULL any REFs
(whether or not scoped) in the specified table that are found to point to an invalid or

nonexistent object.

VALIDATE STRUCTURE
Specify VALIDATE STRUCTURE to validate the structure of the analyzed object. The

statistics collected by this clause are not used by the Oracle optimizer, as are

statistics collected by the COMPUTE STATISTICS and ESTIMATE STATISTICS
clauses.

■ For a table, Oracle verifies the integrity of each of the table’s data blocks and

rows. For an index-organized table, Oracle also generates compression statistics

(optimal prefix compression count) for the primary key index on the table.

■ For a cluster, Oracle automatically validates the structure of the cluster’s tables.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on how these statistics are used

Note: If the owner of the table does not have SELECT object

privilege on the referenced objects, then Oracle will consider them

invalid and set them to NULL. Subsequently these REFs will not be

available in a query, even if it is issued by a user with appropriate

privileges on the objects.

See Also: "Validating a Table: Example" on page 12-48

ANALYZE

12-44 Oracle9i SQL Reference

■ For a partitioned table, Oracle also verifies that each row belongs to the correct

partition. If a row does not collate correctly, then its rowid is inserted into the

INVALID_ROWS table.

■ For a temporary table, Oracle validates the structure of the table and its indexes

during the current session.

■ For an index, Oracle verifies the integrity of each data block in the index and

checks for block corruption. This clause does not confirm that each row in the

table has an index entry or that each index entry points to a row in the table.

You can perform these operations by validating the structure of the table with

the CASCADE clause.

Oracle also computes compression statistics (optimal prefix compression count)

for all normal indexes

Oracle stores statistics about the index in the data dictionary views INDEX_
STATS and INDEX_HISTOGRAM.

If Oracle encounters corruption in the structure of the object, then an error message

is returned to you. In this case, drop and re-create the object.

INTO The INTO clause of VALIDATE STRUCTURE is valid only for partitioned

tables. Specify a table into which Oracle lists the rowids of the partitions whose

rows do not collate correctly. If you omit schema , then Oracle assumes the list is in

your own schema. If you omit this clause altogether, then Oracle assumes that the

table is named INVALID_ROWS. The SQL script used to create this table is

UTLVALID.SQL .

CASCADE Specify CASCADE if you want Oracle to validate the structure of the

indexes associated with the table or cluster. If you use this clause when validating a

table, then Oracle also validates the table’s indexes. If you use this clause when

validating a cluster, then Oracle also validates all the clustered tables’ indexes,

including the cluster index.

If you use this clause to validate an enabled (but previously disabled)

function-based index, then validation errors may result. In this case, you must

rebuild the index.

See Also: Oracle9i Database Reference for information on these

views

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-45

ONLINE | OFFLINE Specify ONLINE to enable Oracle to run the validation while

DML operations are ongoing within the object. Oracle reduces the amount of

validation performed to allow for concurrency.

Specify OFFLINE, to maximize the amount of validation performed. This setting

prevents INSERT, UPDATE, and DELETEstatements from concurrently accessing the

object during validation but allows queries. This is the default.

Restriction on ONLINE You cannot specify ONLINE when analyzing a clustered

object.

LIST CHAINED ROWS
LIST CHAINED ROWS lets you identify migrated and chained rows of the analyzed

table or cluster. You cannot use this clause when analyzing an index.

In the INTO clause, specify a table into which Oracle lists the migrated and chained

rows. If you omit schema , then Oracle assumes the list table is in your own schema.

If you omit this clause altogether, then Oracle assumes that the table is named

CHAINED_ROWS. The list table must be on your local database.

You can create the CHAINED_ROWS table using one of these scripts:

■ UTLCHAIN.SQL uses physical rowids. Therefore it can accommodate rows from

conventional tables but not from index-organized tables. (See the Note that

follows.)

■ UTLCHN1.SQL uses universal rowids, so it can accommodate rows from both

conventional and index-organized tables.

If you create your own chained-rows table, then it must follow the format

prescribed by one of these two scripts.

Note: When you validate the structure of an object ONLINE,

Oracle does not collect any statistics, as it does when you validate

the structure of the object OFFLINE.

ANALYZE

12-46 Oracle9i SQL Reference

DELETE STATISTICS
Specify DELETE STATISTICS to delete any statistics about the analyzed object that

are currently stored in the data dictionary. Use this statement when you no longer

want Oracle to use the statistics.

When you use this clause on a table, Oracle also automatically removes statistics for

all the table’s indexes. When you use this clause on a cluster, Oracle also

automatically removes statistics for all the cluster’s tables and all their indexes,

including the cluster index.

Specify SYSTEM if you want Oracle to delete only system (not user-defined

statistics). If you omit SYSTEM, and if user-defined column or index statistics were

collected for an object, then Oracle also removes the user-defined statistics by

invoking the statistics deletion function specified in the statistics type that was used

to collect the statistics.

Note: If you are analyzing index-organized tables based on

primary keys (rather than universal rowids), then you must create a

separate chained-rows table for each index-organized table to

accommodate its primary-key storage. Use the SQL scripts

DBMSIOTC.SQL and PRVTIOTC.PLB to define the BUILD_CHAIN_
ROWS_TABLE procedure, and then execute this procedure to create

an IOT_CHAINED_ROWS table for each such index-organized table.

See Also:

■ Oracle9i Database Migration Guide for compatibility issues

related to the use of the UTL* scripts

■ The DBMS_IOT package in Oracle9i Supplied PL/SQL Packages
and Types Reference for information on the packaged SQL scripts

■ Oracle9i Database Administrator’s Guide for information on

eliminating migrated and chained rows

■ "Listing Chained Rows: Example" on page 12-48

See Also: "Deleting Statistics: Example" on page 12-47

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-47

Examples

Computing Statistics: Examples The following statement computes statistics for

the sample table oe.orders :

ANALYZE TABLE orders COMPUTE STATISTICS;

The following statement computes only system statistics on the sample table

oe.orders :

ANALYZE TABLE orders COMPUTE SYSTEM STATISTICS;

The following statement calculates statistics for a scalar object attribute: ANALYZE
TABLE customers COMPUTE STATISTICS
 FOR COLUMNS cust_address.postal_code;

Estimating Statistics: Example The following statement estimates statistics for the

sample table oe.orders and all of its indexes:

ANALYZE TABLE orders ESTIMATE STATISTICS;

Deleting Statistics: Example The following statement deletes statistics about the

sample table oe.orders and all its indexes from the data dictionary:

ANALYZE TABLE orders DELETE STATISTICS;

Creating Histograms: Examples The following statement creates a 10-band

histogram on the location_id column of the sample table hr.locations :

ANALYZE TABLE locations
 COMPUTE STATISTICS FOR COLUMNS country_id SIZE 10;

You can then query the USER_TAB_COLUMNS data dictionary view to retrieve

statistics:

SELECT NUM_DISTINCT, NUM_BUCKETS, SAMPLE_SIZE
 FROM USER_TAB_COLUMNS
 WHERE TABLE_NAME = ’LOCATIONS’ AND COLUMN_NAME = ’COUNTRY_ID’;

NUM_DISTINCT NUM_BUCKETS SAMPLE_SIZE
------------ ----------- -----------
 14 7 23

Depending on the size of your table, even though the ANALYZE statement specified

10 buckets, Oracle may create fewer buckets that you specify in the ANALYZE
statement. For an explanation, see the note on SIZE on page 12-41.

ANALYZE

12-48 Oracle9i SQL Reference

You can also collect histograms for a single partition of a table. The following

statement analyzes partition sales_q2_2000 of the sample table sh.sales :

ANALYZE TABLE sales PARTITION (sales_q2_2000) COMPUTE STATISTICS;

Analyzing an Index: Example The following statement validates the structure of

the sample index oe.inv_product_ix :

ANALYZE INDEX inv_product_ix VALIDATE STRUCTURE;

Validating a Table: Example The following statement analyzes the sample table

hr.employees and all of its indexes:

ANALYZE TABLE employees VALIDATE STRUCTURE CASCADE;

For a table, the VALIDATE REF UPDATE clause verifies the REFs in the specified

table, checks the rowid portion of each REF, and then compares it with the true

rowid. If the result is an incorrect rowid, then the REF is updated so that the rowid

portion is correct.

The following statement validates the REFs in the sample table oe.customers :

ANALYZE TABLE customers VALIDATE REF UPDATE;

The following statements validates the structure of the sample table

oe.customers while allowing simultaneous DML:

ANALYZE TABLE customers VALIDATE STRUCTURE ONLINE;

Analyzing a Cluster: Example The following statement analyzes the personnel
cluster (created in "Creating a Cluster: Example" on page 13-9), all of its tables, and

all of their indexes, including the cluster index:

ANALYZE CLUSTER personnel
 VALIDATE STRUCTURE CASCADE;

Listing Chained Rows: Example The following statement collects information

about all the chained rows of the table orders :

ANALYZE TABLE orders
 LIST CHAINED ROWS INTO chained_rows;

The preceding statement places the information into the table chained_rows . You

can then examine the rows with this query (no rows will be returned if the table

contains no chained rows):

ANALYZE

SQL Statements: ALTER TRIGGER to COMMIT 12-49

SELECT owner_name, table_name, head_rowid, analyze_timestamp
 FROM chained_rows;

OWNER_NAME TABLE_NAME HEAD_ROWID ANALYZE_TIMESTAMP
---------- ---------- ------------------ -----------------
OE ORDERS AAAAZzAABAAABrXAAA 25-SEP-2000

ASSOCIATE STATISTICS

12-50 Oracle9i SQL Reference

ASSOCIATE STATISTICS

Purpose
Use the ASSOCIATE STATISTICS statement to associate a statistics type (or default

statistics) containing functions relevant to statistics collection, selectivity, or cost

with one or more columns, standalone functions, packages, types, domain indexes,

or indextypes.

For a listing of all current statistics type associations, query the USER_
ASSOCIATIONS data dictionary view. If you analyze the object with which you are

associating statistics, then you can also query the associations in the USER_USTATS
view.

Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype). In addition,

unless you are associating only default statistics, you must have execute privilege

on the statistics type. The statistics type must already have been defined.

Syntax
associate_statistics::=

column_association ::=

See Also: ANALYZE on page 12-34 for information on the order

of precedence with which ANALYZE uses associations

See Also: CREATE TYPE on page 16-3 for information on

defining types

ASSOCIATE STATISTICS WITH
column_association

function_association
;

COLUMNS
schema .

table . column

,

using_statistics_type

ASSOCIATE STATISTICS

SQL Statements: ALTER TRIGGER to COMMIT 12-51

function_association ::=

using_statistics_type ::=

default_cost_clause ::=

default_selectivity_clause ::=

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

using_statistics_type

default_cost_clause
, default_selectivity_clause

default_selectivity_clause
, default_cost_clause

USING

schema .
statistics_type

NULL

DEFAULT COST (cpu_cost , io_cost , network_cost)

DEFAULT SELECTIVITY default_selectivity

ASSOCIATE STATISTICS

12-52 Oracle9i SQL Reference

Semantics

column_association
Specify one or more table columns. If you do not specify schema , then Oracle

assumes the table is in your own schema.

function_association
Specify one or more standalone functions, packages, user-defined datatypes,

domain indexes, or indextypes. If you do not specify schema , then Oracle assumes

the object is in your own schema.

■ FUNCTIONS refers only to standalone functions, not to method types or to

built-in functions.

■ TYPES refers only to user-defined types, not to built-in SQL datatypes.

Restriction on function_association You cannot specify an object for which you

have already defined an association. You must first disassociate the statistics from

this object.

using_statistics_type
Specify the statistics type (or a synonym for the type) being associated with column,

function, package, type, domain index, or indextype. The statistics_type must

already have been created.

The NULL keyword is valid only when you are associating statistics with a column

or an index. When you associate a statistics type with an object type, columns of

that object type inherit the statistics type. Likewise, when you associate a statistics

type with an indextype, index instances of the indextype inherit the statistics

type.You can override this inheritance by associating a different statistics type for

the column or index. Alternatively, if you do not want to associate any statistics

type for the column or index, then you can specify NULL in the using_
statistics_type clause.

Restriction on Specifying Statistics Type You cannot specify NULL for functions,

packages, types, or indextypes.

See Also: DISASSOCIATE STATISTICS on page 16-64

"Associating Statistics: Example" on page 12-53

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on creating statistics collection functions

ASSOCIATE STATISTICS

SQL Statements: ALTER TRIGGER to COMMIT 12-53

default_cost_clause
Specify default costs for standalone functions, packages, types, domain indexes, or

indextypes. If you specify this clause, then you must include one number each for

CPU cost, I/O cost, and network cost, in that order. Each cost is for a single

execution of the function or method or for a single domain index access. Accepted

values are integers of zero or greater.

default_selectivity_clause
Specify as a percent the default selectivity for predicates with standalone functions,

types, packages, or user-defined operators. The default_selectivity must be a

number between 0 and 100. Values outside this range are ignored.

Restriction on the default_selectivity_clause You cannot specify DEFAULT
SELECTIVITY for domain indexes or indextypes.

Examples

Associating Statistics: Example This statement creates an association for the

standalone package emp_mgmt (created in "Creating a Package: Example" on

page 14-55):

ASSOCIATE STATISTICS WITH PACKAGES emp_mgmt DEFAULT SELECTIVITY 10;

Specifying Default Cost: Example This statement specifies that using the domain

index t_a to implement a given predicate always has a CPU cost of 100, I/O of 5,

and network cost of 0.

ASSOCIATE STATISTICS WITH INDEXES t_a DEFAULT COST (100,5,0);

The optimizer will simply use these default costs instead of calling a cost function.

See Also: "Specifying Default Cost: Example" on page 12-53

AUDIT

12-54 Oracle9i SQL Reference

AUDIT

Purpose
Use the AUDIT statement to:

■ Track the occurrence of SQL statements in subsequent user sessions. You can

track the occurrence of a specific SQL statement or of all SQL statements

authorized by a particular system privilege. Auditing operations on SQL

statements apply only to subsequent sessions, not to current sessions.

■ Track operations on a specific schema object. Auditing operations on schema

objects apply to current sessions as well as to subsequent sessions.

Prerequisites
To audit occurrences of a SQL statement, you must have AUDIT SYSTEM system

privilege.

To audit operations on a schema object, the object you choose for auditing must be

in your own schema or you must have AUDIT ANY system privilege. In addition, if

the object you choose for auditing is a directory object, even if you created it, then

you must have AUDIT ANY system privilege.

To collect auditing results, you must set the initialization parameter AUDIT_TRAIL
to DB. You can specify auditing options regardless of whether auditing is enabled.

However, Oracle does not generate audit records until you enable auditing.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_FGA package, which lets you create

and administer value-based auditing policies

■ NOAUDIT on page 17-81 for information on disabling auditing

of SQL statement

See Also: Oracle9i Database Reference for information on the

AUDIT_TRAIL parameter

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-55

Syntax
audit::=

sql_statement_clause ::=

auditing_by_clause ::=

schema_object_clause ::=

AUDIT
sql_statement_clause

schema_object_clause

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

BY

proxy

, ON BEHALF OF
user

,

ANY

user

,

object_option

,

ALL
auditing_on_clause

AUDIT

12-56 Oracle9i SQL Reference

auditing_on_clause ::=

Semantics

sql_statement_clause
Use the sql_statement_clause to audit SQL statements.

statement_option
Specify a statement option to audit specific SQL statements.

For each audited operation, Oracle produces an audit record containing this

information:

■ The user performing the operation

■ The type of operation

■ The object involved in the operation

■ The date and time of the operation

Oracle writes audit records to the audit trail, which is a database table containing

audit records. You can review database activity by examining the audit trail through

data dictionary views.

See Also:

■ Table 12–1 on page 12-60 and Table 12–2 on page 12-62 for a list

of statement options and the SQL statements they audit

■ Oracle9i Database Administrator’s Guidefor a listing of the audit

trail data dictionary views

■ Oracle9i Database Reference for detailed descriptions of the data

dictionary views

■ "Auditing SQL Statements Relating to Roles: Example" on

page 12-64

ON

schema .
object

DIRECTORY directory_name

DEFAULT

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-57

system_privilege
Specify a system privilege to audit SQL statements that are authorized by the

specified system privilege.

Rather than specifying many individual system privileges, you can specify the roles

CONNECT, RESOURCE, and DBA. Doing so is equivalent to auditing all of the system

privileges granted to those roles.

Oracle also provides two shortcuts for specifying groups of system privileges and

statement options at once:

ALL Specify ALL to audit all statements options shown in Table 12–1 but not the

additional statement options shown in Table 12–2.

ALL PRIVILEGES Specify ALL PRIVILEGES to audit system privileges.

auditing_by_clause
Specify the auditing_by_clause to audit only those SQL statements issued by

particular users. If you omit this clause, then Oracle audits all users’ statements.

BY user Use this clause to restrict auditing to only SQL statements issued by the

specified users.

Note: Oracle Corporation recommends that you specify

individual system privileges and statement options for auditing

rather than roles or shortcuts. The specific system privileges and

statement options encompassed by roles and shortcuts change from

one release to the next and may not be supported in future versions

of Oracle.

See Also:

■ Table 17–1, " System Privileges" for a list of all system privileges

and the SQL statements that they authorize

■ GRANT on page 17-29 for more information on the CONNECT,
RESOURCE, and DBA roles

■ "Auditing Query and Update SQL Statements: Example" on

page 12-65, "Auditing Deletions: Example" on page 12-65,

"Auditing Statements Relating to Directories: Examples" on

page 12-65

AUDIT

12-58 Oracle9i SQL Reference

BY proxy Use this clause to restrict auditing to only SQL statements issued by the

specified proxies.

ON BEHALF OF Specify user to indicate auditing of statements executed on

behalf of a particular user. ANY indicates auditing of statements executed on behalf

of any user.

schema_object_clause
Use the schema_object_clause to audit operations on schema objects.

object_option
Specify the particular operation for auditing. Table 12–3 on page 12-64 shows each

object option and the types of objects to which it applies. The name of each object

option specifies a SQL statement to be audited. For example, if you choose to audit

a table with the ALTER option, then Oracle audits all ALTER TABLE statements

issued against the table. If you choose to audit a sequence with the SELECT option,

then Oracle audits all statements that use any of the sequence’s values.

ALL
Specify ALL as a shortcut equivalent to specifying all object options applicable for

the type of object.

auditing_on_clause
The auditing_on_clause lets you specify the particular schema object to be

audited.

schema Specify the schema containing the object chosen for auditing. If you omit

schema , then Oracle assumes the object is in your own schema.

object Specify the name of the object to be audited. The object must be a table,

view, sequence, stored procedure, function, package, materialized view, or library.

See Also: Oracle9i Database Concepts for more information on

proxies and their use of the database

See Also: "Auditing Queries on a Table: Example" on page 12-65,

"Auditing Inserts and Updates on a Table: Example" on page 12-66,

and "Auditing Operations on a Sequence: Example" on page 12-66

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-59

You can also specify a synonym for a table, view, sequence, procedure, stored

function, package materialized view, or user-defined type.

ON DEFAULT Specify ON DEFAULT to establish the specified object options as

default object options for subsequently created objects. Once you have established

these default auditing options, any subsequently created object is automatically

audited with those options. The default auditing options for a view are always the

union of the auditing options for the view’s base tables. You can see the current

default auditing options by querying the ALL_DEF_AUDIT_OPTS data dictionary

view.

If you change the default auditing options, then the auditing options for previously

created objects remain the same. You can change the auditing options for an existing

object only by specifying the object in the ON clause of the AUDIT statement.

ON DIRECTORY directory_name The ON DIRECTORY clause lets you specify the

name of a directory chosen for auditing.

BY SESSION
Specify BY SESSION if you want Oracle to write a single record for all SQL

statements of the same type issued and operations of the same type executed on the

same schema objects in the same session.

BY ACCESS
Specify BY ACCESS if you want Oracle to write one record for each audited

statement and operation.

See Also: "Setting Default Auditing Options: Example" on

page 12-66

Note: Oracle can write to an operating system audit file but

cannot read it to detect whether an entry has already been written

for a particular operation. Therefore, if you are using an operating

system file for the audit trail (that is, the AUDIT_FILE_DEST
initialization parameter is set to OS), then Oracle may write

multiple records to the audit trail file even if you specify BY
SESSION.

AUDIT

12-60 Oracle9i SQL Reference

If you specify statement options or system privileges that audit data definition

language (DDL) statements, then Oracle automatically audits by access regardless

of whether you specify the BY SESSION clause or BY ACCESS clause.

For statement options and system privileges that audit SQL statements other than

DDL, you can specify either BY SESSIONor BY ACCESS. BY SESSIONis the default.

WHENEVER [NOT] SUCCESSFUL
Specify WHENEVER SUCCESSFUL to audit only SQL statements and operations that

succeed.

Specify WHENEVER NOT SUCCESSFUL to audit only statements and operations that

fail or result in errors.

If you omit this clause, then Oracle performs the audit regardless of success or

failure.

Tables of Auditing Options

Table 12–1 Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations

CLUSTER CREATE CLUSTER

AUDIT CLUSTER

DROP CLUSTER

TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT

DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK

DROP DATABASE LINK

DIMENSION CREATE DIMENSION

ALTER DIMENSION

DROP DIMENSION

DIRECTORY CREATE DIRECTORY

DROP DIRECTORY

INDEX CREATE INDEX

ALTER INDEX

DROP INDEX

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-61

NOT EXISTS All SQL statements that fail because a specified object does not
exist.

PROCEDUREa CREATE FUNCTION

CREATE LIBRARY

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

DROP FUNCTION

DROP LIBRARY

DROP PACKAGE

DROP PROCEDURE

PROFILE CREATE PROFILE

ALTER PROFILE

DROP PROFILE

PUBLIC DATABASE
LINK

CREATE PUBLIC DATABASE LINK

DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM

DROP PUBLIC SYNONYM

ROLE CREATE ROLE

ALTER ROLE

DROP ROLE

SET ROLE

ROLLBACK SEGMENT CREATE ROLLBACK SEGMENT

ALTER ROLLBACK SEGMENT

DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE

DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM

DROP SYNONYM

SYSTEM AUDIT AUDIT sql_statements

NOAUDIT sql_statements

Table 12–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations

AUDIT

12-62 Oracle9i SQL Reference

SYSTEM GRANT GRANTsystem_privileges_and_roles

REVOKEsystem_privileges_and_roles

TABLE CREATE TABLE

DROP TABLE

TRUNCATE TABLE

TABLESPACE CREATE TABLESPACE

ALTER TABLESPACE

DROP TABLESPACE

TRIGGER CREATE TRIGGER

ALTER TRIGGER

with ENABLE and DISABLE clauses

DROP TRIGGER

ALTER TABLE

with ENABLE ALL TRIGGERS clause

and DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE

CREATE TYPE BODY

ALTER TYPE

DROP TYPE

DROP TYPE BODY

USER CREATE USER

ALTER USER

DROP USER

VIEW CREATE VIEW

DROP VIEW

aJava schema objects (sources, classes, and resources) are considered the same as procedures
for purposes of auditing SQL statements.

Table 12–2 Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations

ALTER SEQUENCE ALTER SEQUENCE

Table 12–1 (Cont.) Statement Auditing Options for Database Objects

Statement Option SQL Statements and Operations

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-63

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLEtable , view , materialized view

COMMENT ON COLUMNtable .column , view .column ,
materialized view .column

DELETE TABLE DELETE FROMtable , view

EXECUTE PROCEDURE CALL

Execution of any procedure or function or access to any
variable, library, or cursor inside a package.

GRANT DIRECTORY GRANT privilege ON directory

REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package

REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence

REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view.

REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE

REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL or
sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

Table 12–2 (Cont.) Additional Statement Auditing Options for SQL Statements

Statement Option SQL Statements and Operations

AUDIT

12-64 Oracle9i SQL Reference

Examples

Auditing SQL Statements Relating to Roles: Example To choose auditing for

every SQL statement that creates, alters, drops, or sets a role, regardless of whether

the statement completes successfully, issue the following statement:

AUDIT ROLE;

To choose auditing for every statement that successfully creates, alters, drops, or

sets a role, issue the following statement:

AUDIT ROLE
 WHENEVER SUCCESSFUL;

Table 12–3 Object Auditing Options

Object
Option Table View Sequence

Procedure,

Function,

Package a
Material-
ized View Directory Library

Object

Type Context

ALTER X — X — X — — X —

AUDIT X X X X X X — X X

COMMENT X X — — X — — — —

DELETE X X — — X — — — —

EXECUTE — — — X — — X — —

GRANT X X X X — X X X X

INDEX X — — — X — — — —

INSERT X X — — X — — — —

LOCK X X — — X — — — —

READ — — — — — X — — —

RENAME X X — X X — — — —

SELECT X X X — X — — — —

UPDATE X X — — X — — — —

a Java schema objects (sources, classes, and resources) are considered the same as procedures, functions, and
packages for purposes of auditing options.

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-65

To choose auditing for every CREATE ROLE, ALTER ROLE, DROP ROLE, or SET ROLE
statement that results in an Oracle error, issue the following statement:

AUDIT ROLE
 WHENEVER NOT SUCCESSFUL;

Auditing Query and Update SQL Statements: Example To choose auditing for any

statement that queries or updates any table, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE;

To choose auditing for statements issued by the users hr and oe that query or

update a table or view, issue the following statement:

AUDIT SELECT TABLE, UPDATE TABLE
 BY hr, oe;

Auditing Deletions: Example To choose auditing for statements issued using the

DELETE ANY TABLE system privilege, issue the following statement:

AUDIT DELETE ANY TABLE;

Auditing Statements Relating to Directories: Examples To choose auditing for

statements issued using the CREATE ANY DIRECTORY system privilege, issue the

following statement:

AUDIT CREATE ANY DIRECTORY;

To choose auditing for CREATE DIRECTORY (and DROP DIRECTORY) statements

that do not use the CREATE ANY DIRECTORY system privilege, issue the following

statement:

AUDIT DIRECTORY;

To choose auditing for every statement that reads files from the bfile_dir
directory, issue the following statement:

AUDIT READ ON DIRECTORY bfile_dir;

Auditing Queries on a Table: Example To choose auditing for every SQL

statement that queries the employees table in the schema hr , issue the following

statement:

AUDIT SELECT
 ON hr.employees;

AUDIT

12-66 Oracle9i SQL Reference

To choose auditing for every statement that successfully queries the employees
table in the schema hr , issue the following statement:

AUDIT SELECT
 ON hr.employees
 WHENEVER SUCCESSFUL;

To choose auditing for every statement that queries the employees table in the

schema hr and results in an Oracle error, issue the following statement:

AUDIT SELECT
 ON hr.employees
 WHENEVER NOT SUCCESSFUL;

Auditing Inserts and Updates on a Table: Example To choose auditing for every

statement that inserts or updates a row in the customers table in the schema oe ,

issue the following statement:

AUDIT INSERT, UPDATE
 ON oe.customers;

Auditing Operations on a Sequence: Example To choose auditing for every

statement that performs any operation on the employees_seq sequence in the

schema hr , issue the following statement:

AUDIT ALL
 ON hr.employees_seq;

The preceding statement uses the ALL shortcut to choose auditing for the following

statements that operate on the sequence:

■ ALTER SEQUENCE

■ AUDIT

■ GRANT

■ any statement that accesses the sequence’s values using the pseudocolumns

CURRVAL or NEXTVAL

Setting Default Auditing Options: Example The following statement specifies

default auditing options for objects created in the future:

AUDIT ALTER, GRANT, INSERT, UPDATE, DELETE
 ON DEFAULT;

AUDIT

SQL Statements: ALTER TRIGGER to COMMIT 12-67

Any objects created later are automatically audited with the specified options that

apply to them, if auditing has been enabled:

■ If you create a table, then Oracle automatically audits any ALTER, GRANT,
INSERT, UPDATE, or DELETE statements issued against the table.

■ If you create a view, then Oracle automatically audits any GRANT, INSERT,

UPDATE, or DELETE statements issued against the view.

■ If you create a sequence, then Oracle automatically audits any ALTER or GRANT
statements issued against the sequence.

■ If you create a procedure, package, or function, then Oracle automatically

audits any ALTER or GRANT statements issued against it.

CALL

12-68 Oracle9i SQL Reference

CALL

Purpose
Use the CALL statement to execute a routine (a standalone procedure or function, or

a procedure or function defined within a type or package) from within SQL.

Prerequisites
You must have EXECUTE privilege on the standalone routine or on the type or pack-

age in which the routine is defined.

Syntax
call::=

Semantics

schema
Specify the schema in which the standalone routine (or the package or type

containing the routine) resides. If you do not specify schema , then Oracle assumes

the routine is in your own schema.

type or package
Specify the type or package in which the routine is defined.

See Also: PL/SQL User’s Guide and Reference for information on

creating such routine

CALL

schema .

type .

package .
function

procedure

method

@ dblink_name

object_access_expression

(
expr

,

)
INTO : host_variable

INDICATOR
: indicator_variable

;

CALL

SQL Statements: ALTER TRIGGER to COMMIT 12-69

function | procedure | method
Specify the name of the function or procedure being called, or a synonym that

translates to a function or procedure.

When you call a type’s member function or procedure, if the first argument (SELF)

is a null IN OUT argument, then Oracle returns an error. If SELF is a null IN
argument, then Oracle returns null. In both cases, the function or procedure is not

invoked.

Restriction on Functions If the routine is a function, then the INTO clause is

mandatory.

@dblink
In a distributed database system, specify the name of the database containing the

standalone routine (or the package or function containing the routine). If you omit

dblink , then Oracle looks in your local database.

object_access_expression
If you have an expression of an object type, such as a type constructor or a bind

variable, you can use the object_access_expression syntax to call a routine

defined within the type.

The syntax permitted in this context is a subset of object access expressions (see

"Object Access Expressions" on page 4-12). Used within the CALL statement, you

can invoke only methods (not attributes), and object_expr must be a literal (not a

column name or other nonliteral expression). Therefore, the syntax allowed is:

expression.method

where expression is the literal expression of the object type and method is a

member method of the object type.

argument
Specify one or more arguments to the routine, if the routine takes arguments.

See Also: "Calling a Procedure: Example" on page 12-70 for an

example of calling a routine directly

See Also: "Calling a Procedure Using an Expression of an Object

Type: Example" on page 12-70 for an example of calling a routine

using an expression of an object type

CALL

12-70 Oracle9i SQL Reference

Restrictions on Arguments to the Routine

■ An argument cannot be a pseudocolumn or either of the object reference

functions VALUE or REF.

■ Any argument that is an IN OUT or OUT argument of the routine must

correspond to a host variable expression.

INTO :host_variable
The INTO clause applies only to calls to functions. Specify which host variable will

store the return value of the function.

:indicator_variable
Specify the value or condition of the host variable.

Example

Calling a Procedure: Example The following statement uses the remove_dept
procedure (created in "Creating a Package Body: Example" on page 14-59) to

remove the Entertainment department (created in "Inserting Sequence Values:

Example" on page 17-67):

CALL remove_dept(162);

Calling a Procedure Using an Expression of an Object Type: Example The

following examples show how call a procedure by using an expression of an object

type in the CALL statement. The example uses the warehouse_typ object type in

the order entry sample schema OE:

ALTER TYPE warehouse_typ
 ADD MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 CASCADE;

CREATE OR REPLACE TYPE BODY warehouse_typ
 AS MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 IS
 BEGIN
 RETURN self.warehouse_name;

See Also: Pro*C/C++ Precompiler Programmer’s Guide for more

information on host variables and indicator variables

CALL

SQL Statements: ALTER TRIGGER to COMMIT 12-71

 END;
 END;
/
VARIABLE x VARCHAR2(25);

CALL warehouse_typ(456, 'Warehouse 456', 2236).ret_name()
 INTO :x;

PRINT x;
X

Warehouse 456

The next example shows how to use an external function to achieve the same thing:

CREATE OR REPLACE FUNCTION ret_warehouse_typ(x warehouse_typ)
 RETURN warehouse_typ
 IS
 BEGIN
 RETURN x;
 END;
/
CALL ret_warehouse_typ(warehouse_typ(234, 'Warehouse 234',
 2235)).ret_name()
 INTO :x;

PRINT x;

X

Warehouse 234

COMMENT

12-72 Oracle9i SQL Reference

COMMENT

Purpose
Use the COMMENT statement to add a comment about a table, view, materialized

view, or column into the data dictionary.

You can view the comments on a particular table or column by querying the data

dictionary views USER_TAB_COMMENTS, DBA_TAB_COMMENTS, or ALL_TAB_
COMMENTS or USER_COL_COMMENTS, DBA_COL_COMMENTS, or ALL_COL_
COMMENTS.

To drop a comment from the database, set it to the empty string ’ ’.

Prerequisites
The object about which you are adding a comment must be in your own schema or:

■ You must have COMMENT ANY TABLE system privilege to add a comment to a

table, view, or materialized view.

■ You must have the COMMENT ANY INDEXTYPE system privilege to add a

comment to an indextype.

■ You must have the COMMENT ANY OPERATOR system privilege to add a

comment to an operator.

See Also:

■ "Comments" on page 2-90 for more information on associating

comments with SQL statements and schema objects

■ Oracle9i Database Reference for information on the data

dictionary views

COMMENT

SQL Statements: ALTER TRIGGER to COMMIT 12-73

Syntax
comment::=

Semantics

TABLE Clause
Specify the schema and name of the table, view, or materialized view to be

commented. If you omit schema , then Oracle assumes the table, view, or

materialized view is in your own schema.

COLUMN Clause
Specify the name of the column of a table, view, or materialized view to be

commented. If you omit schema , then Oracle assumes the table, view, or

materialized view is in your own schema.

IS ’text ’
Specify the text of the comment.

OPERATOR Clause
Specify the name of the operator to be commented. If you omit schema , then Oracle

assumes the operator is in your own schema.

See Also: "Text Literals" on page 2-54 for a syntax description of

’text’

C0MMENT ON

TABLE
schema .

table

view

materialized_view

COLUMN
schema .

table

view

materialized_view

. column

OPERATOR
schema .

operator

INDEXTYPE
schema .

indextype

IS ’ text ’ ;

COMMENT

12-74 Oracle9i SQL Reference

INDEXTYPE Clause
Specify the name of the indextype to be commented. If you omit schema , then

Oracle assumes the indextype is in your own schema.

Example

Creating Comments: Example To insert an explanatory remark on the job_id
column of the employees table, you might issue the following statement:

COMMENT ON COLUMN employees.job_id
 IS ’abbreviated job title’;

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN employees.job_id IS ’ ’;

COMMIT

SQL Statements: ALTER TRIGGER to COMMIT 12-75

COMMIT

Purpose
Use the COMMIT statement to end your current transaction and make permanent all

changes performed in the transaction. A transaction is a sequence of SQL

statements that Oracle treats as a single unit. This statement also erases all

savepoints in the transaction and releases the transaction’s locks.

You can also use this statement to

■ Commit an in-doubt distributed transaction manually

■ Terminate a read-only transaction begun by a SET TRANSACTION statement.

Oracle Corporation recommends that you explicitly end every transaction in your

application programs with a COMMIT or ROLLBACK statement, including the last

transaction, before disconnecting from Oracle. If you do not explicitly commit the

transaction and the program terminates abnormally, then the last uncommitted

transaction is automatically rolled back.

A normal exit from most Oracle utilities and tools causes the current transaction to

be committed. A normal exit from an Oracle precompiler program does not commit

the transaction and relies on Oracle to roll back the current transaction.

Prerequisites
You need no privileges to commit your current transaction.

To manually commit a distributed in-doubt transaction that you originally

committed, you must have FORCE TRANSACTION system privilege. To manually

commit a distributed in-doubt transaction that was originally committed by another

user, you must have FORCE ANY TRANSACTION system privilege.

Note: Oracle issues an implicit COMMIT before and after any data

definition language (DDL) statement.

See Also:

■ Oracle9i Database Concepts for more information on transactions

■ SET TRANSACTION on page 18-50 for more information on

specifying characteristics of a transaction

COMMIT

12-76 Oracle9i SQL Reference

Syntax
commit::=

Semantics

WORK
The WORKkeyword is supported for compliance with standard SQL. The statements

COMMIT and COMMIT WORK are equivalent.

COMMENT Clause
Specify a comment to be associated with the current transaction. The ’text ’ is a

quoted literal of up to 255 bytes that Oracle stores in the data dictionary view DBA_
2PC_PENDING along with the transaction ID if the transaction becomes in doubt.

FORCE Clause
In a distributed database system, the FORCE clause lets you manually commit an

in-doubt distributed transaction. The transaction is identified by the ’text ’

containing its local or global transaction ID. To find the IDs of such transactions,

query the data dictionary view DBA_2PC_PENDING. You can use integer to

specifically assign the transaction a system change number (SCN). If you omit

integer , then the transaction is committed using the current SCN.

Restriction on FORCE COMMIT statements using the FORCE clause are not

supported in PL/SQL.

See Also: COMMENT on page 12-72 for more information on

adding comments to SQL statements

Note: A COMMITstatement with a FORCEclause commits only the

specified transaction. Such a statement does not affect your current

transaction.

COMMIT
WORK

COMMENT ’ text ’

FORCE ’ text ’
, integer

;

COMMIT

SQL Statements: ALTER TRIGGER to COMMIT 12-77

Examples

Committing an Insert: Example This statement inserts a row into the

hr.regions table and commits this change:

INSERT INTO regions VALUES (5, ’Antarctica’);

COMMIT WORK;

Commenting on COMMIT: Example The following statement commits the current

transaction and associates a comment with it:

COMMIT
 COMMENT ’In-doubt transaction Code 36, Call (415) 555-2637’;

If a network or machine failure prevents this distributed transaction from

committing properly, then Oracle stores the comment in the data dictionary along

with the transaction ID. The comment indicates the part of the application in which

the failure occurred and provides information for contacting the administrator of

the database where the transaction was committed.

Forcing an In-Doubt Transaction: Example The following statement manually

commits an in-doubt distributed transaction:

COMMIT FORCE ’22.57.53’;

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information on these topics

COMMIT

12-78 Oracle9i SQL Reference

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-1

13
SQL Statements: CREATE CLUSTER to

CREATE JAVA

This chapter contains the following SQL statements:

■ CREATE CLUSTER

■ CREATE CONTEXT

■ CREATE CONTROLFILE

■ CREATE DATABASE

■ CREATE DATABASE LINK

■ CREATE DIMENSION

■ CREATE DIRECTORY

■ CREATE FUNCTION

■ CREATE INDEX

■ CREATE INDEXTYPE

■ CREATE JAVA

CREATE CLUSTER

13-2 Oracle9i SQL Reference

CREATE CLUSTER

Purpose
Use the CREATE CLUSTER statement to create a cluster. A cluster is a schema object

that contains data from one or more tables, all of which have one or more columns

in common. Oracle stores together all the rows (from all the tables) that share the

same cluster key.

For information on existing clusters, query the USER_CLUSTERS, ALL_CLUSTERS,
and DBA_CLUSTERS data dictionary views.

Prerequisites
To create a cluster in your own schema, you must have CREATE CLUSTER system

privilege. To create a cluster in another user’s schema, you must have CREATE ANY
CLUSTER system privilege. Also, the owner of the schema to contain the cluster

must have either space quota on the tablespace containing the cluster or the

UNLIMITED TABLESPACE system privilege.

Oracle does not automatically create an index for a cluster when the cluster is

initially created. Data manipulation language (DML) statements cannot be issued

against clustered tables until you create a cluster index.

See Also:

■ Oracle9i Database Concepts for general information on clusters

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on performance considerations of clusters

■ Oracle9i Database Performance Tuning Guide and Reference for

suggestions on when to use clusters

■ Oracle9i Database Reference for information on the data

dictionary views

CREATE CLUSTER

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-3

Syntax
create_cluster::=

(physical_attributes_clause::= on page 13-3)

physical_attributes_clause ::=

(storage_clause on page 7-56)

CREATE CLUSTER
schema .

cluster (column datatype

,

)

physical_attributes_clause

SIZE integer

K

M

TABLESPACE tablespace

INDEX

SINGLE TABLE
HASHKEYS integer

HASH IS expr

parallel_clause

N0ROWDEPENDENCIES

ROWDEPENDENCIES

CACHE

N0CACHE
;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

CREATE CLUSTER

13-4 Oracle9i SQL Reference

parallel_clause ::=

Semantics

schema
Specify the schema to contain the cluster. If you omit schema , Oracle creates the

cluster in your current schema.

cluster
Specify is the name of the cluster to be created.

After you create a cluster, you add tables to it. A cluster can contain a maximum of

32 tables. After you create a cluster and add tables to it, the cluster is transparent.

You can access clustered tables with SQL statements just as you can access

nonclustered tables.

column
Specify one or more names of columns in the cluster key. You can specify up to 16

cluster key columns. These columns must correspond in both datatype and size to

columns in each of the clustered tables, although they need not correspond in name.

You cannot specify integrity constraints as part of the definition of a cluster key

column. Instead, you can associate integrity constraints with the tables that belong

to the cluster.

datatype
Specify the datatype of each cluster key column.

See Also: CREATE TABLE on page 15-7 for information on

adding tables to a cluster, Creating a Cluster: Example on

page 13-9, and "Adding Tables to a Cluster: Example" on page 13-10

See Also: "Cluster Keys: Example" on page 13-10

NOPARALLEL

PARALLEL
integer

CREATE CLUSTER

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-5

Restrictions on Cluster Datatypes

■ You cannot specify a cluster key column of datatype LONG, LONG RAW, REF,
nested table, varray, BLOB, CLOB, BFILE , or user-defined object type.

■ You cannot use the HASH IS clause if any column datatype is not INTEGER or

NUMBER with scale 0.

■ You can specify a column of type ROWID, but Oracle does not guarantee that the

values in such columns are valid rowids.

physical_attributes_clause
The physical_attributes_clause lets you specify the storage characteristics

of the cluster. Each table in the cluster uses these storage characteristics as well. If

you do not specify values for these parameters, Oracle uses the following defaults:

■ PCTFREE: 10

■ PCTUSED: 40

■ INITRANS : 2 or the default value of the cluster’s tablespace, whichever is

greater

■ MAXTRANS: the default value for the cluster’s tablespace

SIZE
Specify the amount of space in bytes reserved to store all rows with the same cluster

key value or the same hash value. Use K or M to specify this space in kilobytes or

megabytes. This space determines the maximum number of cluster or hash values

stored in a data block. If SIZE is not a divisor of the data block size, Oracle uses the

next largest divisor. If SIZE is larger than the data block size, Oracle uses the

operating system block size, reserving at least one data block for each cluster or

hash value.

See Also: "Datatypes" on page 2-2 for information on datatypes

See Also:

■ physical_attributes_clause on page 7-52 for a complete

description of the parameters of the physical_attributes_
clause

■ storage_clause on page 7-56 for a complete description of

the storage_clause , including default values

CREATE CLUSTER

13-6 Oracle9i SQL Reference

Oracle also considers the length of the cluster key when determining how much

space to reserve for the rows having a cluster key value. Larger cluster keys require

larger sizes. To see the actual size, query the KEY_SIZE column of the USER_
CLUSTERSdata dictionary view. (This does not apply to hash clusters, because hash

values are not actually stored in the cluster.)

If you omit this parameter, Oracle reserves one data block for each cluster key value

or hash value.

TABLESPACE
Specify the tablespace in which the cluster is created.

INDEX Clause
Specify INDEX to create an indexed cluster. In an indexed cluster, Oracle stores

together rows having the same cluster key value. Each distinct cluster key value is

stored only once in each data block, regardless of the number of tables and rows in

which it occurs.

After you create an indexed cluster, you must create an index on the cluster key

before you can issue any data manipulation language (DML) statements against a

table in the cluster. This index is called the cluster index.

HASHKEYS Clause
Specify the HASHKEYS clause to create a hash cluster and specify the number of

hash values for a hash cluster. In a hash cluster, Oracle stores together rows that

have the same hash key value. The hash value for a row is the value returned by the

cluster’s hash function.

Oracle rounds up the HASHKEYS value to the nearest prime number to obtain the

actual number of hash values. The minimum value for this parameter is 2. If you

Note: You cannot create a cluster index for a hash cluster, and you

need not create an index on a hash cluster key. If you specify

neither INDEX nor HASHKEYS, Oracle creates an indexed cluster by

default.

See Also: CREATE INDEX on page 13-65 for information on

creating a cluster index and Oracle9i Database Concepts for general

information in indexed clusters

CREATE CLUSTER

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-7

omit both the INDEX clause and the HASHKEYS parameter, Oracle creates an

indexed cluster by default.

When you create a hash cluster, Oracle immediately allocates space for the cluster

based on the values of the SIZE and HASHKEYS parameters.

SINGLE TABLE SINGLE TABLE indicates that the cluster is a type of hash cluster

containing only one table. This clause can provide faster access to rows than would

result if the table were not part of a cluster.

Restriction on Single Table Clusters Only one table can be present in the cluster

at a time. However, you can drop the table and create a different table in the same

cluster.

HASH IS expr Specify an expression to be used as the hash function for the hash

cluster. The expression:

■ Must evaluate to a positive value

■ Must contain at least one column with referenced columns of any datatype as

long as the entire expression evaluates to a number of scale 0. For example:

NUM_COLUMN * length(VARCHAR2_COLUMN)

■ Cannot reference user-defined PL/SQL functions

■ Cannot reference the pseudocolumns LEVEL or ROWNUM

■ Cannot reference the user-related functions USERENV, UID , or USER or the

datetime functions CURRENT_DATE, CURRENT_TIMESTAMP, DBTIMEZONE,
EXTRACT (datetime), FROM_TZ, LOCALTIMESTAMP, NUMTODSINTERVAL,

NUMTOYMINTERVAL, SESSIONTIMEZONE, SYSDATE, SYSTIMESTAMP, TO_
DSINTERVAL, TO_TIMESTAMP, TO_DATE, TO_TIMESTAMP_TZ, TO_
YMINTERVAL, and TZ_OFFSET.

■ Cannot evaluate to a constant

■ Cannot be a scalar subquery expression

■ Cannot contain columns qualified with a schema or object name (other than the

cluster name)

See Also: Oracle9i Database Concepts for more information on how

Oracle allocates space for clusters and "Hash Clusters: Examples"

on page 13-10

See Also: "Single-Table Hash Clusters: Example" on page 13-11

CREATE CLUSTER

13-8 Oracle9i SQL Reference

If you omit the HASH IS clause, Oracle uses an internal hash function for the hash

cluster.

For information on existing hash functions, query the USER_, ALL_, and DBA_
CLUSTER_HASH_EXPRESSIONS data dictionary tables.

The cluster key of a hash column can have one or more columns of any datatype.

Hash clusters with composite cluster keys or cluster keys made up of noninteger

columns must use the internal hash function.

parallel_clause
The parallel_clause lets you parallelize the creation of the cluster.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

Restriction on Parallelizing Cluster Creation If the tables in cluster contain any

columns of LOB or user-defined object type, this statement as well as subsequent

INSERT, UPDATE, or DELETE operations on cluster are executed serially without

notification.

See Also: Oracle9i Database Reference for information on the data

dictionary views

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

CREATE CLUSTER

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-9

NOROWDEPENDENCIES | ROWDEPENDENCIES
This clause lets you specify whether cluster will use row-level dependency
tracking. With this feature, each row in the tables that make up the cluster has a

system change number (SCN) that represents a time greater than or equal to the

commit time of the last transaction that modified the row. You cannot change this

setting after cluster is created.

ROWDEPENDENCIES Specify ROWDEPENDENCIES if you want to enable row-

level dependency tracking. This setting is useful primarily to allow for parallel

propagation in replication environments. It increases the size of each row by 6

bytes.

NOROWDEPENDENCIES Specify NOROWDEPENDENCIESif you do not want to use

the row level dependency tracking feature. This is the default.

CACHE | NOCACHE

CACHE Specify CACHE if you want the blocks retrieved for this cluster to be

placed at the most recently used end of the least recently used (LRU) list in the buffer

cache when a full table scan is performed. This clause is useful for small lookup

tables.

NOCACHE Specify NOCACHE if you want the blocks retrieved for this cluster to be

placed at the least recently used end of the LRU list in the buffer cache when a full

table scan is performed. This is the default behavior.

Examples

Creating a Cluster: Example The following statement creates a cluster named

personnel with the cluster key column department , a cluster size of 512 bytes,

and storage parameter values:

CREATE CLUSTER personnel
 (department NUMBER(4))

See Also: Oracle9i Advanced Replication for information about the

use of row-level dependency tracking in replication environments

Note: NOCACHE has no effect on clusters for which you specify

KEEP in the storage_clause .

CREATE CLUSTER

13-10 Oracle9i SQL Reference

SIZE 512
STORAGE (initial 100K next 50K);

Cluster Keys: Example The following statement creates the cluster index on the

cluster key of personnel :

CREATE INDEX idx_personnel ON CLUSTER personnel;

After creating the cluster index, you can add tables to the index and perform DML

operations on those tables.

Adding Tables to a Cluster: Example The following statements create some

departmental tables from the sample hr.employees table and add them to the

personnel cluster created in the earlier example:

CREATE TABLE dept_10
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 10;

CREATE TABLE dept_20
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 20;

Hash Clusters: Examples The following statement creates a hash cluster named

language with the cluster key column cust_language , a maximum of 10 hash

key values, each of which is allocated 512 bytes, and storage parameter values:

CREATE CLUSTER language (cust_language VARCHAR2(3))
 SIZE 512 HASHKEYS 10
 STORAGE (INITIAL 100k next 50k);

Because the preceding statement omits the HASH IS clause, Oracle uses the internal

hash function for the cluster.

The following statement creates a hash cluster named address with the cluster key

made up of the columns postal_code and country_id , and uses a SQL

expression containing these columns for the hash function:

CREATE CLUSTER address
 (postal_code NUMBER, country_id CHAR(2))
 HASHKEYS 20
 HASH IS MOD(postal_code + country_id, 101);

CREATE CLUSTER

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-11

Single-Table Hash Clusters: Example The following statement creates a single-

table hash cluster named cust_orders with the cluster key customer_id and a

maximum of 100 hash key values, each of which is allocated 512 bytes:

CREATE CLUSTER cust_orders (customer_id NUMBER(6))
 SIZE 512 SINGLE TABLE HASHKEYS 100;

CREATE CONTEXT

13-12 Oracle9i SQL Reference

CREATE CONTEXT

Purpose
Use the CREATE CONTEXT statement to:

■ Create a namespace for a context (a set of application-defined attributes that

validates and secures an application) and

■ Associate the namespace with the externally created package that sets the

context.

You can use the DBMS_SESSION.set_context procedure in your designated

package to set or reset the attributes of the context.

Prerequisites
To create a context namespace, you must have CREATE ANY CONTEXT system

privilege.

Syntax
create_context::=

See Also:

■ Oracle9i Database Concepts for a definition and discussion of

contexts

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_SESSION.set_context procedure

CREATE
OR REPLACE

CONTEXT namespace USING
schema .

package

INITIALIZED
EXTERNALLY

GLOBALLY

ACCESSED GLOBALLY
;

CREATE CONTEXT

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-13

Semantics

OR REPLACE
Specify OR REPLACE to redefine an existing context namespace using a different

package.

namespace
Specify the name of the context namespace to create or modify. Context namespaces

are always stored in the schema SYS.

schema
Specify the schema owning package . If you omit schema , Oracle uses the current

schema.

package
Specify the PL/SQL package that sets or resets the context attributes under the

namespace for a user session.

INITIALIZED Clause
The INITIALIZED clause lets you specify an entity other than Oracle that can

initialize the context namespace.

EXTERNALLY EXTERNALLY indicates that the namespace can be initialized using

an OCI interface when establishing a session.

GLOBALLY GLOBALLY indicates that the namespace can be initialized by the

LDAP directory when a global user connects to the database.

Note: To provide some design flexibility, Oracle does not verify

the existence of the schema or the validity of the package at the

time you create the context.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on setting the package

See Also: Oracle Call Interface Programmer’s Guide for information

on using OCI to establish a session

CREATE CONTEXT

13-14 Oracle9i SQL Reference

After the session is established, only the designated PL/SQL package can issue

commands to write to any attributes inside the namespace.

ACCESSED GLOBALLY
This clause indicates that any application context set in namespace is accessible

throughout the entire instance. This setting lets multiple sessions share application

attributes.

Examples

Creating an Application Context: Example This example uses the PL/SQL

package emp_mgmt, created in "Creating a Package: Example" on page 14-55, which

validates and secures the hr application. The following statement creates the

context namespace hr_context and associates it with the package emp_mgmt:

CREATE CONTEXT hr_context USING emp_mgmt;

You can control data access based on this context using the SYS_CONTEXTfunction.

For example, suppose your emp_mgmt package has defined an attribute new_
empno as a particular employee identifier. You can secure the base table

employees by creating a view that restricts access based on the value of new_
empno, as follows:

CREATE VIEW hr_org_secure_view AS
 SELECT * FROM employees
 WHERE employee_id = SYS_CONTEXT(’hr_context’, ’new_empno’);

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on establishing globally initialized contexts

■ Oracle Internet Directory Administrator’s Guide for information

on the connecting to the database through the LDAP directory

See Also: SYS_CONTEXT on page 6-156

CREATE CONTROLFILE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-15

CREATE CONTROLFILE

Purpose
Use the CREATE CONTROLFILE statement to re-create a control file in one of the

following cases:

■ All copies of your existing control files have been lost through media failure.

■ You want to change the name of the database.

■ You want to change the maximum number of redo log file groups, redo log file

members, archived redo log files, datafiles, or instances that can concurrently

have the database mounted and open.

When you issue a CREATE CONTROLFILE statement, Oracle creates a new control

file based on the information you specify in the statement. If you omit any clauses,

Oracle uses the default values rather than the values for the previous control file.

After successfully creating the control file, Oracle mounts the database in the mode

Caution: Oracle recommends that you perform a full backup of all

files in the database before using this statement. For more

information, see Oracle9i User-Managed Backup and Recovery Guide.

Note: If it is necessary to use the CREATE CONTROLFILE
statement, do not include in the DATAFILE clause any datafiles in

temporary or read-only tablespaces. You can add these types of files

to the database later.

An alternative to the CREATE CONTROLFILE statement is ALTER
DATABASE BACKUP CONTROLFILE TO TRACE, which generates a

SQL script in the trace file to re-create the controlfile. If your

database contains any read-only or temporary tablespaces, that

SQL script will also contain all the necessary SQL statements to add

those files back into the database.

See Also: "BACKUP CONTROLFILE Clause" of ALTER
DATABASE on page 9-42 for information creating a script based on

an existing database controlfile

CREATE CONTROLFILE

13-16 Oracle9i SQL Reference

specified by the initialization parameter CLUSTER_DATABASE. You then must

perform media recovery before opening the database. It is recommended that you

then shut down the instance and take a full backup of all files in the database.

Prerequisites
To create a control file, you must have the SYSDBA system privilege.

The database must not be mounted by any instance. Oracle leaves the database

mounted in EXCLUSIVE state after successful creation of the control file. If you are

using Oracle with Real Application Clusters, the DBA must then shut down and

remount the database in SHARED mode (which is the default if the value of the

CLUSTER_DATABASE initialization parameter is TRUE) before other instances can

start up.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

EXCLUSIVE, Oracle returns an error when you attempt to re-create the control file.

To avoid this message, either set the parameter to SHARED, or re-create your

password file before re-creating the control file.

See Also: Oracle9i User-Managed Backup and Recovery Guide

See Also: Oracle9i Database Reference for more information about

the REMOTE_LOGIN_PASSWORDFILE parameter

CREATE CONTROLFILE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-17

Syntax
create_controlfile::=

(datafile_tempfile_spec::= on page 7-39—part of file_specification
syntax)

logfile_clause ::=

(redo_log_file_spec::= on page 7-40—part of file_specification
syntax)

character_set_clause ::=

CREATE CONTROLFILE
REUSE SET

DATABASE database

logfile_clause RESETL0GS

NORESETL0GS

DATAFILE datafile_tempfile_spec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING character_set_clause
;

LOGFILE
GROUP integer

redo_log_file_spec

,

CHARACTER SET character_set

CREATE CONTROLFILE

13-18 Oracle9i SQL Reference

Semantics

REUSE
Specify REUSE to indicate that existing control files identified by the initialization

parameter CONTROL_FILES can be reused, thus ignoring and overwriting any

information they may currently contain. If you omit this clause and any of these

control files already exists, Oracle returns an error.

DATABASE Clause
Specify the name of the database. The value of this parameter must be the existing

database name established by the previous CREATE DATABASE statement or

CREATE CONTROLFILE statement.

SET DATABASE Clause
Use SET DATABASE to change the name of the database. The name of a database

can be as long as eight bytes.

logfile_clause
Use the logfile_clause to specify the redo log files for your database. You must

list all members of all redo log file groups.

GROUP integer Specify the logfile group number. If you specify GROUP values,

Oracle verifies these values with the GROUP values when the database was last

open.

If you omit this clause, Oracle creates logfiles using system default values. In

addition, if either the DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_FILE_
DEST initialization parameter (or both) has been set, and if you have specified

RESETLOGS, then Oracle creates two logs in the default logfile destination specified

in the DB_CREATE_ONLINE_LOG_DEST_n parameter, and if it is not set, then in the

DB_CREATE_FILE_DEST parameter.

RESETLOGS Specify RESETLOGSif you want Oracle to ignore the contents of the

files listed in the LOGFILE clause. These files do not have to exist. Each redo_log_
file_spec in the LOGFILE clause must specify the SIZE parameter. Oracle

assigns all online redo log file groups to thread 1 and enables this thread for public

See Also: file_specification on page 7-39 for a full

description of this clause

CREATE CONTROLFILE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-19

use by any instance. After using this clause, you must open the database using the

RESETLOGS clause of the ALTER DATABASE statement.

NORESETLOGS Specify NORESETLOGS if you want Oracle to use all files in the

LOGFILE clause as they were when the database was last open. These files must

exist and must be the current online redo log files rather than restored backups.

Oracle reassigns the redo log file groups to the threads to which they were

previously assigned and reenables the threads as they were previously enabled.

DATAFILE Clause
Specify the datafiles of the database. You must list all datafiles. These files must all

exist, although they may be restored backups that require media recovery. See the

syntax description in file_specification on page 7-39.

Restriction on DATAFILE You cannot specify the autoextend_clause of data_
file_spec in this DATAFILE clause.

MAXLOGFILES Clause
Specify the maximum number of online redo log file groups that can ever be created

for the database. Oracle uses this value to determine how much space in the control

file to allocate for the names of redo log files. The default and maximum values

depend on your operating system. The value that you specify should not be less

than the greatest GROUP value for any redo log file group.

MAXLOGMEMBERS Clause
Specify the maximum number of members, or identical copies, for a redo log file

group. Oracle uses this value to determine how much space in the control file to

allocate for the names of redo log files. The minimum value is 1. The maximum and

default values depend on your operating system.

MAXLOGHISTORY Clause
This parameter is useful only if you are using Oracle in ARCHIVELOG mode with

Real Application Clusters. Specify the maximum number of archived redo log file

groups for automatic media recovery of Real Application Clusters. Oracle uses this

value to determine how much space in the control file to allocate for the names of

Note: You should list only datafiles in this clause, not temporary

datafiles (tempfiles). Please refer to Oracle9i User-Managed Backup
and Recovery Guide for more information on handling tempfiles.

CREATE CONTROLFILE

13-20 Oracle9i SQL Reference

archived redo log files. The minimum value is 0. The default value is a multiple of

the MAXINSTANCES value and depends on your operating system. The maximum

value is limited only by the maximum size of the control file.

MAXDATAFILES Clause
Specify the initial sizing of the datafiles section of the control file at CREATE
DATABASE or CREATE CONTROLFILE time. An attempt to add a file whose number

is greater than MAXDATAFILES, but less than or equal to DB_FILES , causes the

control file to expand automatically so that the datafiles section can accommodate

more files.

The number of datafiles accessible to your instance is also limited by the

initialization parameter DB_FILES .

MAXINSTANCES Clause
Specify the maximum number of instances that can simultaneously have the

database mounted and open. This value takes precedence over the value of the

initialization parameter INSTANCES. The minimum value is 1. The maximum and

default values depend on your operating system.

ARCHIVELOG | NOARCHIVELOG
Specify ARCHIVELOG to archive the contents of redo log files before reusing them.

This clause prepares for the possibility of media recovery as well as instance or

system failure recovery.

If you omit both the ARCHIVELOG clause and NOARCHIVELOG clause, Oracle

chooses NOARCHIVELOG mode by default. After creating the control file, you can

change between ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER
DATABASE statement.

FORCE LOGGING
Use this clause to put the database into FORCE LOGGING mode after control file

creation. When the database is in this mode, Oracle logs all changes in the database

except changes to temporary tablespaces and temporary segments. This setting

takes precedence over and is independent of any NOLOGGING or FORCE LOGGING
settings you specify for individual tablespaces and any NOLOGGING settings you

specify for individual database objects. If you omit this clause, the database will not

be in FORCE LOGGING mode after the controlfile is created.

CREATE CONTROLFILE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-21

character_set_clause
If you specify a character set, Oracle reconstructs character set information in the

control file. In case media recovery of the database is required, this information will

be available before the database is open, so that tablespace names can be correctly

interpreted during recovery. This clause is required only if you are using a character

set other than the default US7ASCII. Oracle prints the current database character set

to the "alert" log in $ORACLE_HOME/log during startup.

If you are re-creating your control file and you are using Recovery Manager for

tablespace recovery, and if you specify a different character set from the one stored

in the data dictionary, then tablespace recovery will not succeed. (However, at

database open, the control file character set will be updated with the correct

character set from the data dictionary.)

Example

Creating a Controlfile: Example This statement re-creates a control file. In this

statement, database demowas created with the WE8DEC character set. The example

uses the word path where you would normally insert the path on your system to

the appropriate Oracle directories.

STARTUP NOMOUNT

CREATE CONTROLFILE REUSE DATABASE "demo" NORESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1

Note: FORCE LOGGINGmode can have performance effects. Please

refer to Oracle9i Database Administrator’s Guide for information on

when to use this setting.

Note: You cannot modify the character set of the database with

this clause.

See Also: Oracle9i Recovery Manager User’s Guide for more

information on tablespace recovery

CREATE CONTROLFILE

13-22 Oracle9i SQL Reference

 MAXLOGHISTORY 449
LOGFILE
 GROUP 1 ’/ path /oracle/dbs/t_log1.f’ SIZE 500K,
 GROUP 2 ’/ path /oracle/dbs/t_log2.f’ SIZE 500K
STANDBY LOGFILE
DATAFILE
 ’/ path /oracle/dbs/t_db1.f’,
 ’/ path /oracle/dbs/dbu19i.dbf’,
 ’/ path /oracle/dbs/tbs_11.f’,
 ’/ path /oracle/dbs/smundo.dbf’,
 ’/ path /oracle/dbs/demo.dbf’
CHARACTER SET WE8DEC
;

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-23

CREATE DATABASE

Purpose
Use the CREATE DATABASE statement to create a database, making it available for

general use.

This statement erases all data in any specified datafiles that already exist in order to

prepare them for initial database use. If you use the statement on an existing

database, all data in the datafiles is lost.

After creating the database, this statement mounts it in either exclusive or parallel

mode (depending on the value of the CLUSTER_DATABASE initialization

parameter) and opens it, making it available for normal use. You can then create

tablespaces and rollback segments for the database.

Caution: This statement prepares a database for initial use and

erases any data currently in the specified files. Use this statement

only when you understand its ramifications.

Note Regarding Security Enhancements: In this release of Oracle

and in subsequent releases, several enhancements are being made

to ensure the security of default database user accounts.

To provide guidance for configuring Oracle9i in a secure manner,

Oracle Corporation provides a security checklist. Oracle

Corporation recommends that you read this checklist and configure

your database accordingly. The security checklist can be found at

the following URL:

http://otn.oracle.com/deploy/security/oracle9i/pdf/9iR2
_checklist.pdf

CREATE DATABASE

13-24 Oracle9i SQL Reference

Prerequisites
To create a database, you must have the SYSDBA system privilege.

If the REMOTE_LOGIN_PASSWORDFILE initialization parameter is set to

EXCLUSIVE, Oracle returns an error when you attempt to re-create the database. To

avoid this message, either set the parameter to SHARED, or re-create your password

file before re-creating the database.

See Also:

■ ALTER DATABASE on page 9-11 for information on modifying

a database

■ Oracle9i Java Developer’s Guide for information on creating an

Oracle9i Java virtual machine

■ CREATE ROLLBACK SEGMENT on page 14-82 and CREATE

TABLESPACE on page 15-80 for information on creating

rollback segments and tablespaces

See Also: Oracle9i Database Reference for more information about

the REMOTE_LOGIN_PASSWORDFILE parameter

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-25

Syntax
create_database::=

(redo_log_file_spec::= on page 7-40, datafile_tempfile_spec::= on

page 7-39, default_temp_tablespace::= on page 13-26, undo_tablespace_
clause::= on page 13-26, set_time_zone_clause::= on page 13-26)

CREATE DATABASE
database

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

CONTROLFILE REUSE

LOGFILE
GROUP integer

redo_log_file_spec

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

CHARACTER SET charset

NATIONAL CHARACTER SET charset

DATAFILE datafile_tempfile_spec

,

EXTENT MANAGEMENT LOCAL

default_temp_tablespace

undo_tablespace_clause

set_time_zone_clause

;

CREATE DATABASE

13-26 Oracle9i SQL Reference

default_temp_tablespace ::=

(datafile_tempfile_spec::= on page 7-39—part of file_specification)

temp_tablespace_extent::=

undo_tablespace_clause ::=

(datafile_tempfile_spec::= on page 7-39—part of file_specification)

set_time_zone_clause ::=

Keyword and Parameters

database
Specify the name of the database to be created. The name can be up to 8 bytes long.

The database name can contain only ASCII characters. Oracle writes this name into

the control file. If you subsequently issue an ALTER DATABASE statement that

explicitly specifies a database name, Oracle verifies that name with the name in the

control file.

DEFAULT TEMPORARY TABLESPACE tablespace
TEMPFILE datafile_tempfile_spec

temp_tablespace_extent_clause

EXTENT MANAGEMENT LOCAL UNIFORM
SIZE integer

K

M

UNDO TABLESPACE tablespace
DATAFILE datafile_tempfile_spec

,

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-27

If you omit the database name from a CREATE DATABASE statement, Oracle uses

the name specified by the initialization parameter DB_NAME. If the DB_NAME
initialization parameter has been set, and you specify a different name from the

value of that parameter, Oracle returns an error.

USER SYS ..., USER SYSTEM ...
Use these clauses to establish passwords for the SYS and SYSTEM users. These

clauses are not mandatory in this release of Oracle9i. However, if you specify either

clause, you must specify both clauses.

If you do not specify these clauses, Oracle creates default passwords "change_on_
install " for user SYS and "manager " for user SYSTEM. You can subsequently

change these passwords using the ALTER USER statement. You can also use ALTER
USER to add password management attributes after database creation.

CONTROLFILE REUSE Clause
Specify CONTROLFILE REUSE to reuse existing control files identified by the

initialization parameter CONTROL_FILES, thus ignoring and overwriting any

information they currently contain. Normally you use this clause only when you are

re-creating a database, rather than creating one for the first time. You cannot use this

clause if you also specify a parameter value that requires that the control file be

larger than the existing files. These parameters are MAXLOGFILES,
MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

If you omit this clause and any of the files specified by CONTROL_FILES already

exist, Oracle returns an error.

LOGFILE Clause
Specify one or more files to be used as redo log files. Each redo_log_file_spec
specifies a redo log file group containing one or more redo log file members

Note: You cannot use special characters from European or Asian

character sets in a database name. For example, characters with

umlauts are not allowed.

See Also: "Schema Object Naming Guidelines" on page 2-114 for

additional rules to which database names should adhere

See Also: ALTER USER on page 12-22

CREATE DATABASE

13-28 Oracle9i SQL Reference

(copies). All redo log files specified in a CREATE DATABASE statement are added to

redo log thread number 1.

GROUP integer Specify the number that identifies the redo log file group. The

value of integer can range from 1 to the value of the MAXLOGFILES parameter. A

database must have at least two redo log file groups. You cannot specify multiple

redo log file groups having the same GROUP value. If you omit this parameter,

Oracle generates its value automatically. You can examine the GROUP value for a

redo log file group through the dynamic performance view V$LOG.

If you omit the LOGFILE clause:

■ If either the DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_FILE_DEST
initialization parameter (or both) is set, then Oracle creates two Oracle-

managed logfiles with system-generated names, 100 MB in size, in the default

logfile directory specified in the DB_CREATE_ONLINE_LOG_DEST_n
parameter, and if it is not set, then in the DB_CREATE_FILE_DEST parameter.

■ If neither of these parameters is set, Oracle creates two redo log file groups. The

names and sizes of the default files depend on your operating system.

MAXLOGFILES Clause
Specify the maximum number of redo log file groups that can ever be created for

the database. Oracle uses this value to determine how much space in the control file

to allocate for the names of redo log files. The default, minimum, and maximum

values depend on your operating system.

MAXLOGMEMBERS Clause
Specify the maximum number of members, or copies, for a redo log file group.

Oracle uses this value to determine how much space in the control file to allocate

for the names of redo log files. The minimum value is 1. The maximum and default

values depend on your operating system.

MAXLOGHISTORY Clause
This parameter is useful only if you are using Oracle in ARCHIVELOG mode with

Real Application Clusters. Specify the maximum number of archived redo log files

for automatic media recovery Real Application Clusters. Oracle uses this value to

determine how much space in the control file to allocate for the names of archived

See Also: file_specification on page 7-39 for a full

description

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-29

redo log files. The minimum value is 0. The default value is a multiple of the

MAXINSTANCESvalue and depends on your operating system. The maximum value

is limited only by the maximum size of the control file.

MAXDATAFILES Clause
Specify the initial sizing of the datafiles section of the control file at CREATE
DATABASE or CREATE CONTROLFILE time. An attempt to add a file whose number

is greater than MAXDATAFILES, but less than or equal to DB_FILES , causes the

Oracle control file to expand automatically so that the datafiles section can

accommodate more files.

The number of datafiles accessible to your instance is also limited by the

initialization parameter DB_FILES .

MAXINSTANCES Clause
Specify the maximum number of instances that can simultaneously have this

database mounted and open. This value takes precedence over the value of

initialization parameter INSTANCES. The minimum value is 1. The maximum and

default values depend on your operating system.

ARCHIVELOG | NOARCHIVELOG

ARCHIVELOG Specify ARCHIVELOG if you want the contents of a redo log file

group to be archived before the group can be reused. This clause prepares for the

possibility of media recovery.

NOARCHIVELOG Specify NOARCHIVELOG if the contents of a redo log file group

need not be archived before the group can be reused. This clause does not allow for

the possibility of media recovery.

The default is NOARCHIVELOG mode. After creating the database, you can change

between ARCHIVELOGmode and NOARCHIVELOGmode with the ALTER DATABASE
statement.

FORCE LOGGING
Use this clause to put the database into FORCE LOGGING mode. Oracle will log all

changes in the database except for changes in temporary tablespaces and temporary

segments. This setting takes precedence over and is independent of any

NOLOGGING or FORCE LOGGING settings you specify for individual tablespaces and

any NOLOGGING settings you specify for individual database objects.

CREATE DATABASE

13-30 Oracle9i SQL Reference

FORCE LOGGING mode is persistent across instances of the database. That is, if you

shut down and restart the database, the database is still in FORCE LOGGING mode.

However, if you re-create the control file, Oracle will take the database out of FORCE
LOGGING mode unless you specify FORCE LOGGING in the CREATE CONTROLFILE
statement.

CHARACTER SET Clause
Specify the character set the database uses to store data. The supported character

sets and default value of this parameter depend on your operating system.

Restriction on CHARACTER SET You cannot specify the AL16UTF16 character set

as the database character set.

NATIONAL CHARACTER SET Clause
Specify the national character set used to store data in columns specifically defined

as NCHAR, NCLOB, or NVARCHAR2 (either AF16UTF16 or UTF8). The default is

’AL16UTF16’.

DATAFILE Clause
Specify one or more files to be used as datafiles. All these files become part of the

SYSTEM tablespace.

Note: FORCE LOGGINGmode can have performance effects. Please

refer to Oracle9i Database Administrator’s Guide for information on

when to use this setting.

See Also: CREATE CONTROLFILE on page 13-15

See Also: Oracle9i Database Globalization Support Guide for more

information about choosing a character set

See Also: Oracle9i Database Globalization Support Guide for

information on Unicode datatype support.

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-31

If you are running the database in automatic undo mode and you specify a datafile

name for the SYSTEM tablespace, then Oracle expects to generate datafiles for all

tablespaces. Oracle does this automatically if you are using Oracle-managed files

(that is, you have set values for the DB_CREATE_FILE_DEST or DB_CREATE_
ONLINE_LOG_DEST_n initialization parameter). However, if you are not using

Oracle-managed files and you specify this clause, then you must also specify the

undo_tablespace_clause and the default_temp_tablespace clause.

If you omit this clause:

■ If the DB_CREATE_FILE_DEST initialization parameter is set, Oracle creates a

100 MB Oracle-managed datafile with a system-generated name in the default

file destination specified in the parameter.

■ If the DB_CREATE_FILE_DEST initialization parameter is not set, Oracle

creates one datafile whose name and size depend on your operating system.

EXTENT MANAGEMENT LOCAL
Use this clause to create a locally managed SYSTEM tablespace. If you omit this

clause, the SYSTEM tablespace will be dictionary managed.

Caution: This clause is optional, as is the DATAFILE clause of the

undo_tablespace_clause . Therefore, to avoid ambiguity, if

your intention is to specify a datafile for the SYSTEM tablespace

with this clause, do not specify it immediately after an undo_
tablespace_clause that does not include the optional

DATAFILE clause. If you do so, Oracle will interpret the DATAFILE
clause to be part of the undo_tablespace_clause .

Note: Oracle recommends that the total initial space allocated for

the SYSTEM tablespace be a minimum of 5 megabytes.

See Also: file_specification on page 7-39 for syntax

Caution: Once you create a locally managed SYSTEM tablespace,

you cannot change it to be dictionary managed, nor can you create

any other dictionary-managed tablespaces in this database.

CREATE DATABASE

13-32 Oracle9i SQL Reference

If you specify this clause, the database must have a default temporary tablespace,

because a locally managed SYSTEM tablespace cannot store temporary segments.

■ If you specify EXTENT MANAGEMENT LOCAL but you do not specify the

DATAFILE clause, you can omit the default_temp_tablespace clause.

Oracle will create a default temporary tablespace called TEMP with one datafile

of size 10M with autoextend disabled.

■ If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause,

then you must also specify the default_temp_tablespace clause and

explicitly specify a datafile for that tablespace.

If you have opened the instance in Automatic Undo Management mode, similar

requirements exist for the database undo tablespace:

■ If you specify EXTENT MANAGEMENT LOCAL but you do not specify the

DATAFILE clause, you can omit the undo_tablespace_clause . Oracle will

create an undo tablespace named SYS_UNDOTBS.

■ If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause,

then you must also specify the undo_tablespace_clause and explicitly

specify a datafile for that tablespace.

default_temp_tablespace
Specify this clause to create a default temporary tablespace for the database. Oracle

will assign to this temporary tablespace any users for whom you do not specify a

different temporary tablespace. If you do not specify this clause, the SYSTEM
tablespace is the default temporary tablespace.

The TEMPFILE clause part of this clause is optional if you have enabled Oracle-

managed files by setting the DB_CREATE_FILE_DEST initialization parameter. If

you have not specified a value for this parameter, the TEMPFILE clause is required.

See Also: Oracle9i Database Administrator’s Guide for more

information on locally managed and dictionary-managed

tablespaces

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-33

Restrictions on Default Temporary Tablespaces

■ You cannot specify the SYSTEM tablespace in this clause.

■ The default temporary tablespace must have a standard block size.

The temp_tablespace_extent clause lets you specify how the tablespace is

managed.

EXTENT MANAGEMENT LOCAL This clause indicates that some part of the

tablespace is set aside for a bitmap. All temporary tablespaces have locally

managed extents, so this clause is optional.

UNIFORM integer Specify the size of the extents of the temporary tablespace in

bytes. All extents of temporary tablespaces are the same size (uniform). If you do

not specify this clause, Oracle uses uniform extents of 1M.

SIZE integer Specify in bytes the size of the tablespace extents. Use K or M to

specify the size in kilobytes or megabytes.

If you do not specify SIZE , Oracle uses the default extent size of 1M.

undo_tablespace_clause
If you have opened the instance in automatic undo mode (that is, the UNDO_
MANAGEMENT initialization parameter is set to AUTO), you can specify the undo_
tablespace_clause to create a tablespace to be used for undo data. If you want

undo space management to be handled by way of rollback segments, omit this

Note: On some operating systems, Oracle does not allocate space

for the tempfile until the tempfile blocks are actually accessed. This

delay in space allocation results in faster creation and resizing of

tempfiles, but it requires that sufficient disk space is available when

the tempfiles are later used. To avoid potential problems, before

you create or resize a tempfile, ensure that the available disk space

exceeds the size of the new tempfile or the increased size of a

resized tempfile. The excess space should allow for anticipated

increases in disk space use by unrelated operations as well. Then

proceed with the creation or resizing operation.

See Also: Oracle9i Database Concepts for a discussion of locally

managed tablespaces

CREATE DATABASE

13-34 Oracle9i SQL Reference

clause. You can also omit this clause if you have set a value for the UNDO_
TABLESPACE initialization parameter. If that parameter has been set, and if you

specify this clause, then tablespace must be the same as that parameter value.

The DATAFILE clause part of this clause is optional if you have enabled Oracle-

managed files by setting the DB_CREATE_FILE_DEST initialization parameter. If

you have not specified a value for this parameter, the DATAFILE clause is required.

■ If you specify this clause, Oracle creates an undo tablespace named

tablespace , creates the specified datafiles as part of the undo tablespace, and

assigns this tablespace as the undo tablespace of the instance. Oracle will

handle management of undo data using this undo tablespace. The DATAFILE
clause of this clause has the same behavior as described in "DATAFILE Clause"

on page 13-30.

■ If you omit this clause, Oracle creates a default database with a default undo

tablespace named SYS_UNDOTBS and assigns this default tablespace as the

undo tablespace of the instance. This undo tablespace allocates disk space from

the default files used by the CREATE DATABASE statement, and has an initial

extent of 10M. Oracle handles the system-generated datafile as described in

"DATAFILE Clause" on page 13-30. If Oracle is unable to create the undo

tablespace, the entire CREATE DATABASE operation fails.

Note: If you have specified a value for the UNDO_TABLESPACE
initialization parameter in your initialization parameter file before

mounting the database, be sure you specify the same name in this

clause. If these names differ, Oracle will return an error when you

open the database.

See Also:

■ Oracle9i Database Reference for information on opening a

database instance in Automatic Undo Management mode using

the UNDO_MANAGEMENT parameter

■ Oracle9i Database Administrator’s Guide for information on

Automatic Undo Management and undo tablespaces

■ CREATE TABLESPACE on page 15-80 for information on

creating an undo tablespace after database creation

CREATE DATABASE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-35

set_time_zone_clause
Use the SET TIME_ZONEclause to set the time zone of the database. You can specify

the time zone in two ways:

■ By specifying a displacement from UTC (Coordinated Universal

Time—formerly Greenwich Mean Time). The valid range of hh:mm is -12:00 to

+14:00.

■ By specifying a time zone region. To see a listing of valid region names, query

the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

Oracle normalizes all TIMESTAMP WITH LOCAL TIME ZONE data to the time zone of

the database when the data is stored on disk. If you do not specify the SET TIME_
ZONE clause, Oracle uses the operating system’s time zone of the server. If the

operating system time zone is not a valid Oracle time zone, the database time zone

defaults to UTC.

Examples

Creating a Database: Example The following statement creates a database and

fully specifies each argument:

CREATE DATABASE sample
 CONTROLFILE REUSE
 LOGFILE
 GROUP 1 (’diskx:log1.log’, ’disky:log1.log’) SIZE 50K,
 GROUP 2 (’diskx:log2.log’, ’disky:log2.log’) SIZE 50K
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16

Note: Oracle Corporation recommends that you set the database

time zone to UTC ("0:00"). Doing so can improve performance,

especially across databases, as no conversion of time zones will be

required.

See Also: Oracle9i Database Reference for information on the

dynamic performance views

CREATE DATABASE

13-36 Oracle9i SQL Reference

 DATAFILE
 ’disk1:df1.dbf’ AUTOEXTEND ON,
 ’disk2:df2.dbf’ AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE temp_ts
 UNDO TABLESPACE undo_ts
 SET TIME_ZONE = ’+02:00’;

This example assumes that you have enabled Oracle-managed files by specifying a

value for the DB_CREATE_FILE_DEST parameter in your initialization parameter

file. Therefore no file specification is needed for the DEFAULT TEMPORARY
TABLESPACE and UNDO TABLESPACE clauses.

CREATE DATABASE LINK

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-37

CREATE DATABASE LINK

Purpose
Use the CREATE DATABASE LINK statement to create a database link. A database
link is a schema object in one database that enables you to access objects on another

database. The other database need not be an Oracle system. However, to access non-

Oracle systems you must use Oracle Heterogeneous Services.

Once you have created a database link, you can use it to refer to tables and views on

the other database. In SQL statements, you can refer to a table or view on the other

database in by appending @dblink to the table or view name. You can query a

table or view on the other database with the SELECT statement. You can also access

remote tables and views using any INSERT, UPDATE, DELETE, or LOCK TABLE
statement.

Prerequisites
To create a private database link, you must have CREATE DATABASE LINK system

privilege. To create a public database link, you must have CREATE PUBLIC
DATABASE LINKsystem privilege. Also, you must have CREATE SESSIONprivilege

on the remote Oracle database.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for

information about accessing remote tables or views with

PL/SQL functions, procedures, packages, and datatypes

■ Oracle9i Database Administrator’s Guide for information on

distributed database systems

■ Oracle9i Database Reference for descriptions of existing database

links in the ALL_DB_LINKS, DBA_DB_LINKS, and USER_DB_
LINKS data dictionary views and to monitor the performance

of existing links through the V$DBLINK dynamic performance

view

■ DROP DATABASE LINK on page 16-70 for information on

dropping existing database links

■ INSERT on page 17-53, UPDATE on page 18-59, DELETE on

page 16-55, and LOCK TABLE on page 17-73 for using links in

DML operations

CREATE DATABASE LINK

13-38 Oracle9i SQL Reference

Oracle Net must be installed on both the local and remote Oracle databases.

Syntax
create_database_link::=

authenticated_clause ::=

Keyword and Parameters

SHARED
Specify SHARED to use a single network connection to create a public database link

that can be shared among multiple users.

PUBLIC
Specify PUBLIC to create a public database link available to all users. If you omit

this clause, the database link is private and is available only to you.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information about shared database links

See Also: "Defining a Public Database Link: Example" on

page 13-41

CREATE
SHARED PUBLIC

DATABASE LINK dblink

CONNECT TO

CURRENT_USER

user IDENTIFIED BY password
authenticated_clause

authenticated_clause

USING ’ connect_string ’
;

AUTHENTICATED BY user IDENTIFIED BY password

CREATE DATABASE LINK

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-39

dblink
Specify the complete or partial name of the database link. If you specify only the

database name, Oracle will implicitly append the database domain of the local

database.

If the value of the GLOBAL_NAMES initialization parameter is TRUE, then the

database link must have the same name as the database to which it connects. If the

value of GLOBAL_NAMES is FALSE, and if you have changed the global name of the

database, then you can specify the global name.

The maximum number of database links that can be open in one session or one

instance of a Real Application Clusters configuration depends on the value of the

OPEN_LINKS and OPEN_LINKS_PER_INSTANCE initialization parameters.

Restriction on Creating Database Links You cannot create a database link in

another user’s schema, and you cannot qualify dblink with the name of a schema.

(Periods are permitted in names of database links, so Oracle interprets the entire

name, such as ralph.linktosales , as the name of a database link in your

schema rather than as a database link named linktosales in the schema ralph .)

CONNECT TO Clause
The CONNECT TO clause lets you enable a connection to the remote database.

CURRENT_USER Clause
Specify CURRENT_USER to create a current user database link. The current user

must be a global user with a valid account on the remote database for the link to

succeed.

If the database link is used directly, that is, not from within a stored object, then the

current user is the same as the connected user.

See Also:

■ "Referring to Objects in Remote Databases" on page 2-118 for

guidelines for naming database links

■ Oracle9i Database Reference for information on the GLOBAL_
NAMES, OPEN_LINKS, and OPEN_LINKS_PER_INSTANCE
initialization parameters

■ "RENAME GLOBAL_NAME Clause" on page 9-51 (an ALTER
DATABASE clause) for information on changing the database

global name

CREATE DATABASE LINK

13-40 Oracle9i SQL Reference

When executing a stored object (such as a procedure, view, or trigger) that initiates a

database link, CURRENT_USER is the username that owns the stored object, and not

the username that called the object. For example, if the database link appears inside

procedure scott.p (created by scott), and user jane calls procedure scott.p ,

the current user is scott .

However, if the stored object is an invoker-rights function, procedure, or package,

the invoker’s authorization ID is used to connect as a remote user. For example, if

the privileged database link appears inside procedure scott.p (an invoker-rights

procedure created by scott), and user Jane calls procedure scott.p , then

CURRENT_USER is jane and the procedure executes with Jane’s privileges.

user IDENTIFIED BY password
Specify the username and password used to connect to the remote database using a

fixed user database link. If you omit this clause, the database link uses the

username and password of each user who is connected to the database. This is

called a connected user database link.

authenticated_clause
Specify the username and password on the target instance. This clause authenticates

the user to the remote server and is required for security. The specified username

and password must be a valid username and password on the remote instance. The

username and password are used only for authentication. No other operations are

performed on behalf of this user.

You must specify this clause when using the SHARED clause.

USING ’connect string ’
Specify the service name of a remote database. If you specify only the database

name, then Oracle implicitly appends the database domain to the connect string to

create a complete service name. Therefore, if the database domain of the remote

See Also:

■ CREATE FUNCTION on page 13-52 for more information on

invoker-rights functions

■ "FOR oe.employees@remote.us.oracle.com;" on page 13-42

See Also: "Defining a Fixed-User Database Link: Example" on

page 13-41

CREATE DATABASE LINK

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-41

database is different from that of the current database, you must specify the

complete service name.

Examples
The examples that follow assume two databases, one with the database name

"local " and the other with the database name "remote ". The examples use the

Oracle domain. Your database domain will be different.

Defining a Public Database Link: Example The following statement defines a

shared public database link named remote that refers to the database specified by

the service name ’sales ’:

CREATE PUBLIC DATABASE LINK remote
 USING ’remote’;

This database link allows user hr on the local database to update a table on the

remote database (assuming hr has appropriate privileges):

UPDATE employees@remote
 SET salary=salary*1.1
 WHERE last_name = ’Baer’;

Defining a Fixed-User Database Link: Example In the following statement, user

hr on the remote database defines a fixed-user database link named local to the

hr schema on the local database:

CREATE DATABASE LINK local
 CONNECT TO hr IDENTIFIED BY hr
 USING ’local’;

Once this database link is created, hr can query tables in the schema hr on the

local database in this manner:

SELECT * FROM employees@local;

User hr can also use DML statements to modify data on the local database:

INSERT INTO employees@local
 (employee_id, last_name, email, hire_date, job_id)
 VALUES (999, ’Claus’, ’sclaus@oracle.com’, SYSDATE, ’SH_CLERK’);

See Also: Oracle9i Database Administrator’s Guide for information

on specifying remote databases

CREATE DATABASE LINK

13-42 Oracle9i SQL Reference

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = ’SH_CLERK’;

DELETE FROM employees@local
 WHERE employee_id = 999;

Using this fixed database link, user hr on the remote database can also access

tables owned by other users on the same database. This statement assumes that user

hr has SELECT privileges on the oe.customers table. The statement connects to

the user hr on the local database and then queries oe ’s customers table. :

SELECT * FROM oe.customers@local;

Defining a CURRENT_USER Database Link: Example The following statement

defines a current-user database link using the to the remote database, using the

entire service name as the link name:

CREATE DATABASE LINK remote.us.oracle.com
 CONNECT TO CURRENT_USER
 USING ’remote’;

The user who issues this statement must be a global user registered with the LDAP

directory service.

You can create a synonym to hide the fact that a particular table is on the remote
database. The following statement causes all future references to emp_table to

access the employees table owned by hr on the remote database:

CREATE SYNONYM emp_table
 FOR oe.employees@remote.us.oracle.com;

CREATE DIMENSION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-43

CREATE DIMENSION

Purpose
Use the CREATE DIMENSION statement to create a dimension. A dimension defines

a parent-child relationship between pairs of column sets, where all the columns of a

column set must come from the same table. However, columns in one column set

(or "level") can come from a different table than columns in another set. The

optimizer uses these relationships with materialized views to perform query
rewrite. The Summary Advisor uses these relationships to recommend creation of

specific materialized views.

Prerequisites
To create a dimension in your own schema, you must have the CREATE DIMENSION
system privilege. To create a dimension in another user’s schema, you must have

the CREATE ANY DIMENSION system privilege. In either case, you must have the

SELECT object privilege on any objects referenced in the dimension.

Note: Oracle does not automatically validate the relationships you

declare when creating a dimension. To validate the relationships

specified in the hierarchy_clause and the join_clause of

CREATE DIMENSION, you must run the DBMS_OLAP.validate_
dimension procedure.

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 for more

information on materialized views

■ Oracle9i Data Warehousing Guide for more information on query

rewrite, the optimizer and the Summary Advisor

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_OLAP.validate_dimension
procedure

CREATE DIMENSION

13-44 Oracle9i SQL Reference

Syntax
create_dimension::=

level_clause ::=

hierarchy_clause ::=

join_clause ::=

attribute_clause ::=

CREATE DIMENSION
schema .

dimension

level_clause
hierarchy_clause

attribute_clause
;

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

HIERARCHY hierarchy (child_level CHILD OF parent_level
join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

CREATE DIMENSION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-45

Semantics

schema
Specify the schema in which the dimension will be created. If you do not specify

schema , Oracle creates the dimension in your own schema.

dimension
Specify the name of the dimension. The name must be unique within its schema.

level_clause
The level_clause defines a level in the dimension. A level defines dimension

hierarchies and attributes.

level Specify the name of the level

level_table . level_column Specify the columns in the level. You can specify up to

32 columns. The tables you specify in this clause must already exist.

Restrictions on Level Columns

■ All of the columns in a level must come from the same table.

■ If columns in different levels come from different tables, then you must specify

the join_clause .

■ The set of columns you specify must be unique to this level.

■ The columns you specify cannot be specified in any other dimension.

■ Each level_column must be non-null. (However, these columns need not

have NOT NULL constraints.)

hierarchy_clause
The hierarchy_clause defines a linear hierarchy of levels in the dimension. Each

hierarchy forms a chain of parent-child relationships among the levels in the

dimension. Hierarchies in a dimension are independent of each other. They may

(but need not) have columns in common.

Each level in the dimension should be specified at most once in this clause, and

each level must already have been named in the level_clause.

CREATE DIMENSION

13-46 Oracle9i SQL Reference

hierarchy Specify the name of the hierarchy. This name must be unique in the

dimension.

child_level Specify the name of a level that has an n:1 relationship with a parent

level: the level_columns of child_level cannot be null, and each child_
level value uniquely determines the value of the next named parent_level .

If the child level_table is different from the parent level_table , you must

specify a join relationship between them in the join_clause .

parent_level Specify the name of a level.

join_clause
The join_clause lets you specify an inner equijoin relationship for a dimension

whose columns are contained in multiple tables. This clause is required and

permitted only when the columns specified in the hierarchy are not all in the same

table.

child_key_column
Specify one or more columns that are join-compatible with columns in the parent

level.

If you do not specify the schema and table of each child_column , the schema and

table are inferred from the CHILD OF relationship in the hierarchy_clause . If

you do specify the schema and column of a child_key_column , the schema and

table must match the schema and table of columns in the child of parent_level
in the hierarchy_clause .

parent_level
Specify the name of a level.

Restrictions on Join Dimensions

■ You can specify only one join_clause for a given pair of levels in the same

hierarchy.

■ The child_key_columns must be non-null and the parent key must be

unique and non-null. You need not define constraints to enforce these

conditions, but queries may return incorrect results if these conditions are not

true.

■ Each child key must join with a key in the parent_level table.

CREATE DIMENSION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-47

■ Self-joins are not permitted. That is, the child_key_columns cannot be in the

same table as parent_level .

■ All of the child-key columns must come from the same table.

■ The number of child-key columns must match the number of columns in

parent_level , and the columns must be joinable.

■ Do not specify multiple child key columns unless the parent level consists of

multiple columns.

attribute_clause
The attribute_clause lets you specify the columns that are uniquely

determined by a hierarchy level. The columns in level must all come from the

same table as the dependent_columns . The dependent_columns need not have

been specified in the level_clause .

For example, if the hierarchy levels are city , state , and country , then city
might determine mayor , state might determine governor , and country might

determine president .

Examples

Creating a Dimension: Example This statement was used to create the

customers_dim dimension in the sample schema sh :

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,

CREATE DIMENSION

13-48 Oracle9i SQL Reference

 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name)
;

CREATE DIRECTORY

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-49

CREATE DIRECTORY

Purpose
Use the CREATE DIRECTORY statement to create a directory object. A directory

object specifies an alias for a directory on the server’s file system where external

binary file LOBs (BFILE s) and external table data are located. You can use directory

names when referring to BFILE s in your PL/SQL code and OCI calls, rather than

hard coding the operating system path name, thereby providing greater file

management flexibility.

All directories are created in a single namespace and are not owned by an

individual’s schema. You can secure access to the BFILE s stored within the

directory structure by granting object privileges on the directories to specific users.

Prerequisites
You must have CREATE ANY DIRECTORY system privileges to create directories.

When you create a directory, you are automatically granted the READ and WRITE
object privileges on the directory, and you can grant these privileges to other users

and roles. The DBA can also grant these privileges to other users and roles.

WRITE privileges on a directory are useful in connection with external tables. They

let the grantee determine whether the external table agent can write a log file or a

bad file to the directory.

You must also create a corresponding operating system directory for file storage.

Your system or database administrator must ensure that the operating system

directory has the correct read and write permissions for Oracle processes.

Privileges granted for the directory are created independently of the permissions

defined for the operating system directory. Therefore, the two may or may not

correspond exactly. For example, an error occurs if sample user hr is granted READ

See Also:

■ "Large Object (LOB) Datatypes" on page 2-28 for more

information on BFILE objects

■ GRANT on page 17-29 for more information on granting object

privileges

■ external_table_clause of CREATE TABLE on page 15-33

CREATE DIRECTORY

13-50 Oracle9i SQL Reference

privilege on the directory schema object but the corresponding operating system

directory does not have READ permission defined for Oracle processes.

Syntax
create_directory::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the directory database object if it already exists.

You can use this clause to change the definition of an existing directory without

dropping, re-creating, and regranting database object privileges previously granted

on the directory.

Users who had previously been granted privileges on a redefined directory can still

access the directory without being regranted the privileges.

directory
Specify the name of the directory object to be created. The maximum length of

directory is 30 bytes. You cannot qualify a directory object with a schema name.

’path_name’
Specify the full path name of the operating system directory on the server where the

files are located. The single quotes are required, with the result that the path name is

case sensitive.

See Also: DROP DIRECTORY on page 16-74 for information on

removing a directory from the database

Note: Oracle does not verify that the directory you specify

actually exists. Therefore, take care that you specify a valid

directory in your operating system. In addition, if your operating

system uses case-sensitive path names, be sure you specify the

directory in the correct format. (However, you need not include a

trailing slash at the end of the path name.)

CREATE
OR REPLACE

DIRECTORY directory AS ’ path_name ’ ;

CREATE DIRECTORY

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-51

Example

Creating a Directory: Examples The following statement creates a directory

database object that points to a directory on the server:

CREATE DIRECTORY admin AS ’oracle/admin’;

The following statement redefines directory database object bfile_dir to enable

access to BFILE s stored in the operating system directory

/private1/lob/files :

CREATE OR REPLACE DIRECTORY bfile_dir AS ’/private1/LOB/files’;

CREATE FUNCTION

13-52 Oracle9i SQL Reference

CREATE FUNCTION

Purpose
Use the CREATE FUNCTION statement to create a standalone stored function or a

call specification. (You can also create a function as part of a package using the

CREATE PACKAGE statement.)

A stored function (also called a user function) is a set of PL/SQL statements you

can call by name. Stored functions are very similar to procedures, except that a

function returns a value to the environment in which it is called. User functions can

be used as part of a SQL expression.

A call specification declares a Java method or a third-generation language (3GL)

routine so that it can be called from SQL and PL/SQL. The call specification tells

Oracle which Java method, or which named function in which shared library, to

invoke when a call is made. It also tells Oracle what type conversions to make for

the arguments and return value.

See Also:

■ CREATE PROCEDURE on page 14-64 for a general discussion

of procedures and functions

■ "Examples" on page 13-62 for examples of creating functions

■ CREATE PACKAGE on page 14-52 for information on creating

packages

■ ALTER FUNCTION on page 9-59 for information on modifying

a function

■ CREATE LIBRARY on page 14-2 for information on shared

libraries

■ DROP FUNCTION on page 16-75 for information on dropping

a standalone function

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about registering external functions

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-53

Prerequisites
Before a stored function can be created, the user SYS must run a SQL script that is

commonly called DBMSSTDX.SQL. The exact name and location of this script

depend on your operating system.

To create a function in your own schema, you must have the CREATE PROCEDURE
system privilege. To create a function in another user’s schema, you must have the

CREATE ANY PROCEDURE system privilege. To replace a function in another user’s

schema, you must have the ALTER ANY PROCEDURE system privilege.

To invoke a call specification, you may need additional privileges (for example,

EXECUTE privileges on C library for a C call specification).

To embed a CREATE FUNCTION statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

See Also: PL/SQL User’s Guide and Reference or Oracle9i Java Stored
Procedures Developer’s Guide for more information on such

prerequisites

CREATE FUNCTION

13-54 Oracle9i SQL Reference

Syntax
create_function::=

(invoker_rights_clause::= on page 13-54, parallel_enable_clause::=
on page 13-54)

invoker_rights_clause ::=

parallel_enable_clause ::=

CREATE
OR REPLACE

FUNCTION
schema .

function

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)
RETURN datatype

invoker_rights_clause

DETERMINISTIC

parallel_enable_clause

AGGREGATE

PIPELINED
USING

schema .
implementation_type

PIPELINED IS

AS

pl/sql_function_body

call_spec

;

AUTHID
CURRENT_USER

DEFINER

PARALLEL_ENABLE

(PARTITION argument BY

ANY

HASH

RANGE
(column

,

)

)
streaming_clause

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-55

streaming_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the function if it already exists. Use this clause to

change the definition of an existing function without dropping, re-creating, and

regranting object privileges previously granted on the function. If you redefine a

function, Oracle recompiles it.

Users who had previously been granted privileges on a redefined function can still

access the function without being regranted the privileges.

If any function-based indexes depend on the function, Oracle marks the indexes

DISABLED.

ORDER

CLUSTER
BY (column

,

)

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

CREATE FUNCTION

13-56 Oracle9i SQL Reference

schema
Specify the schema to contain the function. If you omit schema , Oracle creates the

function in your current schema.

function
Specify the name of the function to be created. If creating the function results in

compilation errors, Oracle returns an error. You can see the associated compiler

error messages with the SHOW ERRORS command.

Restrictions on User-defined Functions

User-defined functions cannot be used in situations that require an unchanging

definition. Thus, you cannot use user-defined functions:

■ In a CHECK constraint clause of a CREATE TABLE or ALTER TABLE statement

■ In a DEFAULT clause of a CREATE TABLE or ALTER TABLE statement

In addition, when a function is called from within a query or DML statement, the

function cannot:

■ Have OUT or IN OUT parameters

■ Commit or roll back the current transaction, create a savepoint or roll back to a

savepoint, or alter the session or the system. DDL statements implicitly commit

the current transaction, so a user-defined function cannot execute any DDL

statements.

■ Write to the database, if the function is being called from a SELECT statement.

However, a function called from a subquery in a DML statement can write to

the database.

■ Write to the same table that is being modified by the statement from which the

function is called, if the function is called from a DML statement.

Except for the restriction on OUT and IN OUT parameters, Oracle enforces these

restrictions not only for the function called directly from the SQL statement, but

also for any functions that function calls, and on any functions called from the SQL

statements executed by that function or any function it calls.

See Also: ALTER FUNCTION on page 9-59 for information on

recompiling functions

See Also: "Creating a Function: Examples" on page 13-62

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-57

argument
Specify the name of an argument to the function. If the function does not accept

arguments, you can omit the parentheses following the function name.

Restriction on Function Arguments If you are creating an aggregate function, you

can specify only one argument.

IN Specify IN to indicate that you must supply a value for the argument when

calling the function. This is the default.

OUT Specify OUT to indicate that the function will set the value of the argument.

IN OUT Specify IN OUT to indicate that a value for the argument can be supplied

by you and may be set by the function.

NOCOPY Specify NOCOPY to instruct Oracle to pass this argument as fast as

possible. This clause can significantly enhance performance when passing a large

value like a record, an index-by table, or a varray to an OUT or IN OUT parameter.

(IN parameter values are always passed NOCOPY.)

■ When you specify NOCOPY, assignments made to a package variable may show

immediately in this parameter (or assignments made to this parameter may

show immediately in a package variable) if the package variable is passed as

the actual assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may

be visible immediately through both names if the same variable is passed to

both.

■ If the procedure is exited with an unhandled exception, any assignment made

to this parameter may be visible in the caller’s variable.

These effects may or may not occur on any particular call. You should use NOCOPY
only when these effects would not matter.

RETURN Clause
For datatype, specify the datatype of the function’s return value. Because every

function must return a value, this clause is required. The return value can have any

datatype supported by PL/SQL.

CREATE FUNCTION

13-58 Oracle9i SQL Reference

The datatype cannot specify a length, precision, or scale. Oracle derives the length,

precision, or scale of the return value from the environment from which the

function is called.

If the return type is SYS.AnyDataSet and you intend to use the function in the

FROM clause of a query, then you must also specify the PIPELINED clause and

define a describe method (ODCITableDescribe) as part of the implementation

type of the function.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the function executes

with the privileges and in the schema of the user who owns it or with the privileges

and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the function.

AUTHID Clause
■ Specify CURRENT_USER if you want the function to execute with the privileges

of CURRENT_USER. This clause creates an invoker-rights function.

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External

names in all other statements resolve in the schema in which the function

resides.

■ Specify DEFINER if you want the function to execute with the privileges of the

owner of the schema in which the function resides, and that external names

Note: Oracle SQL does not support calling of functions with

boolean parameters or returns. Therefore, if your user-defined

functions will be called from SQL statements, you must design

them to return numbers (0 or 1) or character strings (’TRUE’ or

’FALSE’).

See Also:

■ PL/SQL User’s Guide and Reference for information on PL/SQL

datatypes

■ Oracle9i Data Cartridge Developer’s Guide for information on

defining the ODCITableDescribe function

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-59

resolve in the schema where the function resides. This is the default and creates

a defined-rights function.

DETERMINISTIC Clause
Specify DETERMINISTIC to indicate that the function returns the same result value

whenever it is called with the same values for its arguments.

 You must specify this keyword if you intend to call the function in the expression

of a function-based index or from the query of a materialized view that is marked

REFRESH FAST or ENABLE QUERY REWRITE. When Oracle encounters a

deterministic function in one of these contexts, it attempts to use previously

calculated results when possible rather than re-executing the function.

 Do not specify this clause to define a function that uses package variables or that

accesses the database in any way that might affect the function’s return result. The

results of doing so will not be captured if Oracle chooses not to reexecute the

function.

The following semantic rules govern the use of the DETERMINISTIC clause:

■ You can declare a top-level subprogram DETERMINISTIC.

■ You can declare a package-level subprogram DETERMINISTIC in the package

specification, but not in the package body.

■ You cannot declare DETERMINISTIC a private subprogram (declared inside

another subprogram or inside a package body).

■ A DETERMINISTIC subprogram can call another subprogram whether the

called program is declared DETERMINISTIC or not.

See Also:

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

■ PL/SQL User’s Guide and Reference

See Also:

■ Oracle9i Data Warehousing Guide for information on

materialized views

■ CREATE INDEX on page 13-65 for information on function-

based indexes

CREATE FUNCTION

13-60 Oracle9i SQL Reference

parallel_enable_clause
PARALLEL_ENABLE is an optimization hint indicating that the function can be

executed from a parallel execution server of a parallel query operation. The function

should not use session state, such as package variables, as those variables may not

be shared among the parallel execution servers.

■ The optional PARTITION argument BY clause is used only with functions that

have a REF CURSOR argument type. It lets you define the partitioning of the

inputs to the function from the REF CURSOR argument.

Partitioning the inputs to the function affects the way the query is parallelized

when the function is used as a table function (that is, in the FROM clause of the

query). ANY indicates that the data can be partitioned randomly among the

parallel execution servers. Alternatively, you can specify RANGE or HASH
partitioning on a specified column list.

■ The optional streaming_clause lets you order or cluster the parallel

processing by a specified column list.

■ ORDER BY indicates that the rows on a parallel execution server must be

locally ordered.

■ CLUSTER BY indicates that the rows on a parallel execution server must

have the same key values as specified by the column_list .

The columns specified in all of these optional clauses refer to columns that are

returned by the REF CURSOR argument of the function.

PIPELINED Clause
Use PIPELINED to instruct Oracle to return the results of a table function
iteratively. A table function returns a collection type (a nested table or varray). You

query table functions by using the TABLE keyword before the function name in the

FROM clause of the query. For example:

SELECT * FROM TABLE(function_name (...))

Oracle then returns rows as they are produced by the function.

■ If you specify the keyword PIPELINED alone (PIPELINED IS ...), the PL/SQL

function body should use the PIPE keyword. This keyword instructs Oracle to

See Also: Oracle9i Application Developer’s Guide - Fundamentals,
Oracle9i Data Cartridge Developer’s Guide, and PL/SQL User’s Guide
and Reference for more information on user-defined aggregate

functions

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-61

return single elements of the collection out of the function, instead of returning

the whole collection as a single value.

■ You can specify PIPELINED USING implementation_type clause if you

want to predefine an interface containing the start, fetch, and close operations.

The implementation type must implement the ODCITable interface, and must

exist at the time the table function is created. This clause is useful for table

functions that will be implemented in external languages such as C++ and Java.

If the return type of the function is SYS.AnyDataSet , then you must also

define a describe method (ODCITableDescribe) as part of the

implementation type of the function.

AGGREGATE USING Clause
Specify AGGREGATE USING to identify this function as an aggregate function, or

one that evaluates a group of rows and returns a single row. You can specify

aggregate functions in the SELECT list, HAVING clause, and ORDER BY clause.

In the USING clause, specify the name of the implementation type of the function.

The implementation type must be an object type containing the implementation of

the ODCIAggregate routines. If you do not specify schema , Oracle assumes that the

implementation type is in your own schema.

Restriction on Creating Aggregate Functions If you specify this clause, you can

specify only one input argument for the function.

See Also:

■ PL/SQL User’s Guide and Reference and Oracle9i Application
Developer’s Guide - Fundamentals for more information on table

functions

■ Oracle9i Data Cartridge Developer’s Guide for information on

ODCI routines

Note: When you specify a user-defined aggregate function in a

query, you can treat it as an analytic function (one that operates on

a query result set). To do so, use the OVERanalytic_clause
syntax available for built-in analytic functions. See "Analytic

Functions" on page 6-10 for syntax and semantics.

CREATE FUNCTION

13-62 Oracle9i SQL Reference

IS | AS Clause
Use the appropriate part of this clause to declare the body of the function.

pl/sql_subprogram_body Use the pl/sql_subprogram_body to declare the

function in a PL/SQL subprogram body.

call_spec Use the call_spec to map a Java or C method name, parameter types,

and return type to their SQL counterparts. In Java_declaration, ’string ’

identifies the Java implementation of the method.

AS EXTERNAL AS EXTERNAL is an alternative way of declaring a C method. This

clause has been deprecated and is supported for backward compatibility only.

Oracle Corporation recommends that you use the AS LANGUAGE C syntax.

Examples

Creating a Function: Examples The following statement creates the function get_
bal on the sample table oe.orders (the PL/SQL is in italics):

CREATE FUNCTION get_bal(acc_no IN NUMBER)
 RETURN NUMBER
 IS acc_bal NUMBER(11,2);
 BEGIN
 SELECT order_total
 INTO acc_bal
 FROM orders
 WHERE customer_id = acc_no;

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on ODCI routines and "Creating Aggregate Functions: Example" on

page 13-63

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on PL/SQL subprograms and "Using a Packaged

Procedure in a Function: Example" on page 13-64

See Also:

■ Oracle9i Java Stored Procedures Developer’s Guide

■ Oracle9i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

CREATE FUNCTION

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-63

 RETURN(acc_bal);
 END;
/

The get_bal function returns the balance of a specified account.

When you call the function, you must specify the argument acc_no , the number of

the account whose balance is sought. The datatype of acc_no is NUMBER.

The function returns the account balance. The RETURN clause of the CREATE
FUNCTION statement specifies the datatype of the return value to be NUMBER.

The function uses a SELECT statement to select the balance column from the row

identified by the argument acc_no in the orders table. The function uses a

RETURN statement to return this value to the environment in which the function is

called.

The function created in the preceding example can be used in a SQL statement. For

example:

SELECT get_bal(165) FROM DUAL;

GET_BAL(165)

 2519

The following statement creates PL/SQL standalone function get_val that

registers the C routine c_get_val as an external function. (The parameters have

been omitted from this example; the PL/SQL is in italics.)

CREATE FUNCTION get_val
 (x_val IN NUMBER,
 y_val IN NUMBER,
 image IN LONG RAW)
 RETURN BINARY_INTEGER AS LANGUAGE C

 NAME "c_get_val"
 LIBRARY c_utils
 PARAMETERS (...);

Creating Aggregate Functions: Example The next statement creates an aggregate

function called SecondMax to aggregate over number values. It assumes that the

object type SecondMaxImpl routines contains the implementations of the

ODCIAggregate routines:

CREATE FUNCTION SecondMax (input NUMBER) RETURN NUMBER
 PARALLEL_ENABLE AGGREGATE USING SecondMaxImpl;

CREATE FUNCTION

13-64 Oracle9i SQL Reference

You would use such an aggregate function in a query like the following statement,

which queries the sample table hr.employees :

SELECT SecondMax(salary), department_id
 FROM employees
 GROUP BY department_id
 HAVING SecondMax(salary) > 9000;

SECONDMAX(SALARY) DEPARTMENT_ID
----------------- -------------
 13500 80
 17000 90

Using a Packaged Procedure in a Function: Example The following statement

creates a function that uses a DBMS_LOB procedure to return the length of a CLOB
column:

CREATE OR REPLACE FUNCTION text_length(a CLOB)
 RETURN NUMBER DETERMINISTIC IS
BEGIN
 RETURN DBMS_LOB.GETLENGTH(a);
END;

See Also: Oracle9i Data Cartridge Developer’s Guide for the

complete implementation of type and type body for

SecondMaxImpl

See Also: "Creating a Function-Based Index on a LOB Column:

Example" on page 13-89 to see how to use this function to create a

function-based index

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-65

CREATE INDEX

Purpose
Use the CREATE INDEX statement to create an index on

■ One or more columns of a table, a partitioned table, an index-organized table, or

a cluster

■ One or more scalar typed object attributes of a table or a cluster

■ A nested table storage table for indexing a nested table column

An index is a schema object that contains an entry for each value that appears in the

indexed column(s) of the table or cluster and provides direct, fast access to rows.

Oracle supports several types of index:

■ Normal indexes (by default, Oracle creates B-tree indexes)

■ Bitmap indexes, which store rowids associated with a key value as a bitmap

■ Partitioned indexes, which consist of partitions containing an entry for each

value that appears in the indexed column(s) of the table

■ Function-based indexes, which are based on expressions. They enable you to

construct queries that evaluate the value returned by an expression, which in

turn may include functions (built-in or user-defined).

■ Domain indexes, which are instances of an application-specific index of type

indextype

Prerequisites
To create an index in your own schema, one of the following conditions must be

true:

■ The table or cluster to be indexed must be in your own schema.

■ You must have INDEX object privilege on the table to be indexed.

See Also:

■ Oracle9i Database Concepts for a discussion of indexes

■ ALTER INDEX on page 9-62

■ DROP INDEX on page 16-77

CREATE INDEX

13-66 Oracle9i SQL Reference

■ You must have CREATE ANY INDEX system privilege.

To create an index in another schema, you must have CREATE ANY INDEX system

privilege. Also, the owner of the schema to contain the index must have either the

UNLIMITED TABLESPACE system privilege or space quota on the tablespaces to

contain the index or index partitions.

To create a domain index in your own schema, in addition to the prerequisites for

creating a conventional index, you must also have EXECUTE privilege on the

indextype. If you are creating a domain index in another user’s schema, the index

owner also must have EXECUTE privilege on the indextype and its underlying

implementation type. Before creating a domain index, you should first define the

indextype.

To create a function-based index in your own schema on your own table, in

addition to the prerequisites for creating a conventional index, you must have the

QUERY REWRITE system privilege. To create the index in another schema or on

another schema's table, you must have the GLOBAL QUERY REWRITE privilege. In

both cases, the table owner must also have the EXECUTE object privilege on the

function(s) used in the function-based index. In addition, in order for Oracle to use

function-based indexes in queries, the QUERY_REWRITE_ENABLED parameter must

be set to TRUE, and the QUERY_REWRITE_INTEGRITY parameter must be set to

TRUSTED.

Syntax
create_index::=

cluster_index_clause ::=

(index_attributes::= on page 13-68)

See Also: CREATE INDEXTYPE on page 13-95

CREATE

UNIQUE

BITMAP
INDEX

schema .
index ON

cluster_index_clause

table_index_clause

bitmap_join_index_clause

;

CLUSTER
schema .

cluster index_attributes

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-67

table_index_clause ::=

(global_partitioned_index::= on page 13-69, local_partitioned_
index::= on page 13-69, index_attributes::= on page 13-68, domain_
index_clause::= on page 13-69)

bitmap_join_index_clause ::=

(local_partitioned_index::= on page 13-69, index_attributes::= on

page 13-68)

index_expr ::=

schema .
table

t_alias
(index_expr

ASC

DESC

,

)

global_partitioned_index

local_partitioned_index

index_attributes

domain_index_clause

schema .
table (

schema .
table .

t_alias .
column

ASC

DESC

,

)

FROM
schema .

table
t_alias

,

WHERE condition
local_partitioned_index

index_attributes

column

column_expression

CREATE INDEX

13-68 Oracle9i SQL Reference

index_attributes ::=

(physical_attributes_clause::= on page 13-68, logging_clause::= on

page 13-68, key_compression::= on page 13-69, parallel_clause::= on

page 13-71)

physical_attributes_clause::=

(storage_clause::= on page 7-58)

logging_clause::=

physical_attributes_clause

logging_clause

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

parallel_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

LOGGING

NOLOGGING

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-69

key_compression::=

domain_index_clause ::=

(parallel_clause::= on page 13-71)

global_partitioned_index ::=

(index_partitioning_clause::= on page 13-69)

index_partitioning_clause::=

(segment_attributes_clause::= on page 13-70)

local_partitioned_index ::=

(on_range_partitioned_table::= on page 13-70, on_list_partitioned_
table::= on page 13-70, on_hash_partitioned_table::= on page 13-70, on_
comp_partitioned_table::= on page 13-71)

COMPRESS
integer

NOCOMPRESS

INDEXTYPE IS indextype

parallel_clause PARAMETERS (’ ODCI_parameters ’)

GLOBAL PARTITION BY RANGE (column_list) (index_partitioning_clause)

PARTITION
partition

VALUES LESS THAN (value

,

)
segment_attributes_clause

LOCAL

on_range_partitioned_table

on_list_partitioned_table

on_hash_partitioned_table

on_comp_partitioned_table

CREATE INDEX

13-70 Oracle9i SQL Reference

on_range_partitioned_table ::=

(segment_attributes_clause::= on page 13-70)

on_list_partitioned_table::=

(segment_attributes_clause::= on page 13-70)

segment_attributes_clause::=

(physical_attributes_clause::= on page 13-68, logging_clause::= on

page 13-68

on_hash_partitioned_table ::=

(PARTITION
partition

segment_attributes_clause

,

)

(PARTITION
partition

segment_attributes_clause

,

)

physical_attributes_clause

TABLESPACE tablespace

logging_clause

STORE IN (tablespace

,

)

(PARTITION
partition

TABLESPACE tablespace

,

)

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-71

on_comp_partitioned_table ::=

(segment_attributes_clause::= on page 13-70, index_subpartition_
clause::= on page 13-71)

index_subpartition_clause::=

parallel_clause::=

(storage_clause on page 7-56)

Semantics

UNIQUE
Specify UNIQUE to indicate that the value of the column (or columns) upon which

the index is based must be unique. If the index is local nonprefixed (see local_
partitioned_index), then the index key must contain the partitioning key.

STORE IN (tablespace

,

)

(PARTITION
partition

segment_attribute_clause index_subpartition_clause

,

)

STORE IN (tablespace

,

)

(SUBPARTITION
subpartition

TABLESPACE tablespace

,

)

NOPARALLEL

PARALLEL
integer

CREATE INDEX

13-72 Oracle9i SQL Reference

Restrictions on Unique Indexes

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify UNIQUE for a domain index.

BITMAP
Specify BITMAP to indicate that index is to be created with a bitmap for each

distinct key, rather than indexing each row separately. Bitmap indexes store the

rowids associated with a key value as a bitmap. Each bit in the bitmap corresponds

to a possible rowid, and if the bit is set, it means that the row with the

corresponding rowid contains the key value. The internal representation of bitmaps

is best suited for applications with low levels of concurrent transactions, such as

data warehousing.

Restrictions on Bitmap Indexes

■ You cannot specify BITMAP when creating a global partitioned index.

■ You cannot create a bitmap secondary index on an index-organized table unless

the index-organized table has a mapping table associated with it.

■ You cannot specify both UNIQUE and BITMAP.

■ You cannot specify BITMAP for a domain index.

See Also: constraints on page 7-5 for information on integrity

constraints

Note: Oracle does not index table rows in which all key columns

are null except in the case of bitmap indexes. Therefore, if you want

an index on all rows of a table, you must either specify NOT NULL
constraints for the index key columns or create a bitmap index.

See Also:

■ Oracle9i Database Concepts and Oracle9i Database Performance
Tuning Guide and Reference for more information about using

bitmap indexes

■ CREATE TABLE on page 15-7 for information on mapping

tables

■ "Bitmap Index Example" on page 13-92

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-73

schema
Specify the schema to contain the index. If you omit schema , Oracle creates the

index in your own schema.

index
Specify the name of the index to be created.

cluster_index_clause
Use the cluster_index_clause to identify the cluster for which a cluster index

is to be created. If you do not qualify cluster with schema , Oracle assumes the

cluster is in your current schema. You cannot create a cluster index for a hash

cluster.

table_index_clause
Specify the table (and its attributes) on which you are defining the index. If you do

not qualify table with schema , Oracle assumes the table is contained in your own

schema.

You create an index on a nested table column by creating the index on the nested

table storage table. Include the NESTED_TABLE_ID pseudocolumn of the storage

table to create a UNIQUE index, which effectively ensures that the rows of a nested

table value are distinct.

Restrictions on the table_index_clause

■ If the index is locally partitioned, then table must be partitioned.

■ If the table is index-organized, this statement creates a secondary index. You

cannot specify REVERSE for this secondary index, and the combined size of the

index key and the logical rowid should be less than half the block size.

■ If table is a temporary table, the index will also be temporary with the same

scope (session or transaction) as table . The following restrictions apply to

indexes on temporary table:

See Also: "Creating an Index: Example" on page 13-87 and

"Create an Index on an XMLType Table: Example" on page 13-88

See Also: CREATE CLUSTER on page 13-2 and "Creating a

Cluster Index: Example" on page 13-88

See Also: "Indexes on Nested Tables: Example" on page 13-92

CREATE INDEX

13-74 Oracle9i SQL Reference

■ The index cannot be a partitioned index or a domain index.

■ You cannot specify the physical_attributes_clause or the

parallel_clause .

■ You cannot specify LOGGING, NOLOGGING, or TABLESPACE.

t_alias
Specify a correlation name (alias) for the table upon which you are building the

index.

index_expr
For index_expr , specify the column or column expression upon which the index is

based.

column Specify the name of a column in the table. A bitmap index can have a

maximum of 30 columns. Other indexes can have as many as 32 columns.

You can create an index on a scalar object attribute column or on the system-defined

NESTED_TABLE_ID column of the nested table storage table. If you specify an

object attribute column, the column name must be qualified with the table name. If

you specify a nested table column attribute, it must be qualified with the outermost

table name, the containing column name, and all intermediate attribute names

leading to the nested table column attribute.

Note: You can perform DDL operations (such as ALTER TABLE,
DROP TABLE, CREATE INDEX) on a temporary table only when no

session is bound to it. A session becomes bound to a temporary

table by performing an INSERT operation on the table. A session

becomes unbound to the temporary table by issuing a TRUNCATE
statement or at session termination, or, for a transaction-specific

temporary table, by issuing a COMMIT or ABORT statement.

See Also: CREATE TABLE on page 15-7 and Oracle9i Database
Concepts for more information on temporary tables

Note: This alias is required if the index_expr references any

object type attributes or object type methods. See "Creating a

Function-based Index on a Type Method: Example" on page 13-90

and "Indexing on Substitutable Columns: Examples" on page 13-93.

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-75

Restriction on Index Columns You cannot create an index on columns or

attributes whose type is user-defined, LONG, LONG RAW, LOB, or REF, except that

Oracle supports an index on REF type columns or attributes that have been defined

with a SCOPE clause.

column_expression Specify an expression built from columns of table ,

constants, SQL functions, and user-defined functions. When you specify column_
expression , you create a function-based index.

Name resolution of the function is based on the schema of the index creator. User-

defined functions used in column_expression are fully name resolved during

the CREATE INDEX operation.

After creating a function-based index, collect statistics on both the index and its

base table using the ANALYZE statement. Oracle cannot use the function-based

index until these statistics have been generated.

Notes on Function-Based Indexes

■ When you subsequently query a table that uses a function-based index, you

must ensure in the query that column_expression is not null. However,

Oracle will use a function-based index in a query even if the columns specified

in the WHERE clause are in a different order than their order in the column_
expression that defined the function-based index.

■ If the function on which the index is based becomes invalid or is dropped,

Oracle marks the index DISABLED. Queries on a DISABLED index fail if the

optimizer chooses to use the index. DML operations on a DISABLED index fail

unless the index is also marked UNUSABLEand the parameter SKIP_
UNUSABLE_INDEXES is set to true .

See Also: "Notes on Function-Based Indexes" on page 13-75,

"Restrictions on Function-based Indexes" on page 13-76, and

"Function-Based Index Examples" on page 13-89

See Also: ANALYZE on page 12-34

See Also: "Function-Based Index Examples" on page 13-89

See Also: ALTER SESSION on page 10-2 for more information on

this parameter

CREATE INDEX

13-76 Oracle9i SQL Reference

■ Oracle’s use of function-based indexes is also affected by the setting of the

QUERY_REWRITE_ENABLED session parameter.

■ If a public synonym for a function, package, or type is used in column_
expression , and later an actual object with the same name is created in the

table owner's schema, then Oracle will disable the function-based index. When

you subsequently enable the function-based index using ALTER INDEX ...

ENABLE or ALTER INDEX ... REBUILD, the function, package, or type used in

the column_expression will continue to resolve to the function, package, or

type to which the public synonym originally pointed. It will not resolve to the

new function, package, or type.

■ If the definition of a function-based index generates internal conversion to

character data, use caution when changing NLS parameter settings. Function-

based indexes use the current database settings for NLS parameters. If you reset

these parameters at the session level, queries using the function-based index

may return incorrect results. Two exceptions are the collation parameters (NLS_
SORT and NLS_COMP). Oracle handles the conversions correctly even if these

have been reset at the session level.

Restrictions on Function-based Indexes

■ Any user-defined function referenced in column_expression must be

DETERMINISTIC.

■ For a function-based globally partitioned index, the column_expression
cannot be the partitioning key.

■ column_expression can be any form of expression except a scalar subquery

expression

■ All functions must be specified with parentheses, even if they have no

parameters. Otherwise Oracle interprets them as column names.

■ Any function you specify in column_expression must return a repeatable

value. For example, you cannot specify the SYSDATE or USER function or the

ROWNUM pseudocolumn.

■ The column_expression cannot contain any aggregate functions.

■ You cannot create a function-based index on a nested table.

See Also: ALTER SESSION on page 10-2

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-77

ASC | DESC
Use ASC or DESC to indicate whether the index should be created in ascending or

descending order. Indexes on character data are created in ascending or descending

order of the character values in the database character set.

Oracle treats descending indexes as if they were function-based indexes. You do not

need the QUERY REWRITE or GLOBAL QUERY REWRITE privileges to create them, as

you do with other function-based indexes. However, as with other function-based

indexes, Oracle does not use descending indexes until you first analyze the index

and the table on which the index is defined. See the column_expression clause

of this statement.

Restriction on Ascending and Descending Indexes You cannot specify either of

these clauses for a domain index. You cannot specify DESC for a reverse index.

Oracle ignores DESC if index is bitmapped or if the COMPATIBLE initialization

parameter is set to a value less than 8.1.0.

index_attributes
Specify the index attributes using the clauses of index_attributes .

physical_attributes_clause Use the physical_attributes_clause to

establish values for physical and storage characteristics for the index.

If you omit this clause, Oracle uses the following default values:

■ PCTFREE: 10

■ INITRANS : 2

■ MAXTRANS: Depends on data block size

Restriction on Index Physical Attributes You cannot specify the PCTUSED
parameter for an index.

See Also: CREATE FUNCTION on page 13-52 and PL/SQL User’s
Guide and Reference

See Also:

■ physical_attributes_clause on page 7-52 for a complete

description of the parameters of this clause

■ storage_clause on page 7-56 for a complete description of

storage parameters, including default values

CREATE INDEX

13-78 Oracle9i SQL Reference

TABLESPACE For tablespace , specify the name of the tablespace to hold the

index, index partition, or index subpartition. If you omit this clause, Oracle creates

the index in the default tablespace of the owner of the schema containing the index.

For a local index, you can specify the keyword DEFAULT in place of tablespace .

New partitions or subpartitions added to the local index will be created in the same

tablespace(s) as the corresponding partitions or subpartitions of the underlying

table.

COMPRESS Specify COMPRESS to enable key compression, which eliminates

repeated occurrence of key column values and may substantially reduce storage.

Use integer to specify the prefix length (number of prefix columns to compress).

■ For unique indexes, the valid range of prefix length values is from 1 to the

number of key columns minus 1. The default prefix length is the number of key

columns minus 1.

■ For nonunique indexes, the valid range of prefix length values is from 1 to the

number of key columns. The default prefix length is the number of key

columns.

Oracle compresses only nonpartitioned indexes that are nonunique or unique

indexes of at least two columns.

Restriction on Key Compression You cannot specify COMPRESS for a bitmap

index.

NOCOMPRESS Specify NOCOMPRESS to disable key compression. This is the

default.

SORT | NOSORT By default, Oracle sorts indexes in ascending order when it

creates the index. You can specify NOSORT to indicate to Oracle that the rows are

already stored in the database in ascending order, so that Oracle does not have to

sort the rows when creating the index. If the rows of the indexed column or

columns are not stored in ascending order, Oracle returns an error. For greatest

savings of sort time and space, use this clause immediately after the initial load of

rows into a table. If you specify neither of these keywords, SORT is the default.

Restrictions on NOSORT

■ You cannot specify REVERSE with this clause.

See Also: "Compressing an Index: Example" on page 13-87

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-79

■ You cannot use this clause to create a cluster, partitioned, or bitmap index.

■ You cannot specify this clause for a secondary index on an index-organized

table.

REVERSE Specify REVERSE to store the bytes of the index block in reverse order,

excluding the rowid.

Restrictions on Reverse Indexes

■ You cannot specify NOSORT with this clause.

■ You cannot reverse a bitmap index or an index-organized table.

logging_clause Specify whether the creation of the index will be logged

(LOGGING) or not logged (NOLOGGING) in the redo log file. This setting also

determines whether subsequent Direct Loader (SQL*Loader) and direct-path

INSERT operations against the index are logged or not logged. LOGGING is the

default.

If index is nonpartitioned, this clause specifies the logging attribute of the index.

If index is partitioned, this clause determines:

■ The default value of all partitions specified in the CREATE statement (unless

you specify the logging_clause in the PARTITION description clause)

■ The default value for the segments associated with the index partitions

■ The default value for local index partitions or subpartitions added implicitly

during subsequent ALTER TABLE ... ADD PARTITION operations

The logging attribute of the index is independent of that of its base table.

If you omit this clause, the logging attribute is that of the tablespace in which it

resides.

See Also:

■ logging_clause on page 7-45 for a full description of this

clause

■ Oracle9i Database Concepts and Oracle9i Data Warehousing Guide
for more information about logging and parallel DML

■ "Creating an Index in NOLOGGING Mode: Example" on

page 13-88

CREATE INDEX

13-80 Oracle9i SQL Reference

ONLINE Specify ONLINE to indicate that DML operations on the table will be

allowed during creation of the index.

Restrictions on Online Index Building

■ Parallel DML is not supported during online index building. If you specify

ONLINE and then issue parallel DML statements, Oracle returns an error.

■ You cannot specify ONLINE for a bitmap index or a cluster index.

■ You cannot specify ONLINE for a conventional index on a UROWID column.

■ For a unique index on an index-organized table, the number of index key

columns plus the number of primary key columns in the index-organized table

cannot exceed 32.

COMPUTE STATISTICS Specify COMPUTE STATISTICS to collect statistics at

relatively little cost during the creation of an index. These statistics are stored in the

data dictionary for ongoing use by the optimizer in choosing a plan of execution for

SQL statements.

The types of statistics collected depend on the type of index you are creating.

Additional methods of collecting statistics are available in PL/SQL packages and

procedures.

parallel_clause
Specify the parallel_clause if you want creation of the index to be parallelized.

See Also: Oracle9i Database Concepts for a description of online

index building and rebuilding

Note: If you create an index using another index (instead of a

table), the original index might not provide adequate statistical

information. Therefore, Oracle generally uses the base table to

compute the statistics, which will improve the statistics but may

negatively affect performance.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
and "Computing Index Statistics: Example" on page 13-87

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-81

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

Index Partitioning Clauses
Use the global_partitioned_index clause and the local_partitioned_
index clauses to partition index .

global_partitioned_index The global_partitioned_index clause lets you

specify that the partitioning of the index is user defined and is not equipartitioned

with the underlying table. By default, nonpartitioned indexes are global indexes.

Oracle will partition the global index on the ranges of values from the table

columns you specify in column_list . You cannot specify this clause for a local

index.

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

See Also: "Partitioned Index Examples" on page 13-90

CREATE INDEX

13-82 Oracle9i SQL Reference

The column_list must specify a left prefix of the index column list. That is, if the

index is defined on columns a, b, and c , then for column_list you can specify (a ,

b, c) , or (a, b) , or (a, c) , but you cannot specify (b, c) or (c) or (b, a).

Restrictions on the Global Partitioned Index Key

■ You cannot specify more than 32 columns in column_list .

■ The columns cannot contain the ROWID pseudocolumn or a column of type

ROWID.

index_partitioning_clause Use this clause to describe the individual index

partitions. The number of repetitions of this clause determines the number of

partitions. If you omit partition , Oracle generates a name with the form SYS_Pn.

For VALUES LESS THAN(value_list), specify the (noninclusive) upper bound for

the current partition in a global index. The value list is a comma-delimited, ordered

list of literal values corresponding to the column list in the global_
partitioned_index clause. Always specify MAXVALUE as the value of the last

partition.

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns.

The sort sequence of characters is not identical in all character sets.

See Also: Oracle9i Database Globalization Support Guide for more

information on character set support

Note: If the index is partitioned on a DATEcolumn, and if the date

format does not specify the first two digits of the year, you must

use the TO_DATE function with a 4-character format mask for the

year. The date format is determined implicitly by NLS_TERRITORY
or explicitly by NLS_DATE_FORMAT.

See Also:

■ Oracle9i Database Globalization Support Guide for more

information on these initialization parameters

■ "Range Partitioning Example" on page 15-73

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-83

local_partitioned_index
The local_partitioned_index clauses let you specify that the index is

partitioned on the same columns, with the same number of partitions and the same

partition bounds as table . Oracle automatically maintains LOCAL index

partitioning as the underlying table is repartitioned.

on_range_partitioned_table This clause lets you specify the names and attributes

of index partitions on a range-partitioned table. If you specify this clause, then the

number of PARTITION clauses must be equal to the number of table partitions, and

in the same order. If you omit partition , then Oracle generates a name that is

consistent with the corresponding table partition. If the name conflicts with an

existing index partition name, then Oracle uses the form SYS_Pn.

on_list_partitioned_table The on_list_partitioned_table clause is identical

to on_range_partitioned_table on page 13-83.

on_hash_partitioned_table This clause lets you specify names and tablespace

storage for index partitions on a hash-partitioned table.

If you specify any PARTITION clauses, then the number of these clauses must be

equal to the number of table partitions. If you omit partition , then Oracle

generates a name that is consistent with the corresponding table partition. If the

name conflicts with an existing index partition name, then Oracle uses the form

SYS_Pn. You can optionally specify tablespace storage for one or more individual

partitions. If you do not specify tablespace storage either here or in the STORE IN
clause, then Oracle stores each index partition in the same tablespace as the

corresponding table partition.

The STORE IN clause lets you specify one or more tablespaces across which Oracle

will distribute all the index hash partitions. The number of tablespaces does not

have to equal the number of index partitions. If the number of index partitions is

greater than the number of tablespaces, Oracle cycles through the names of the

tablespaces.

on_comp_partitioned_table This clause lets you specify the name and tablespace

storage of index partitions on a composite-partitioned table.

The STORE IN clause is valid only for range-hash composite-partitioned tables. It

lets you specify one or more default tablespaces across which Oracle will distribute

all index hash subpartitions. You can override this storage by specifying different

tablespace storage for the subpartitions of an individual partition in the second

STORE IN clause in the index_subpartition_clause .

CREATE INDEX

13-84 Oracle9i SQL Reference

For range-list composite-partitioned tables, you can specify default tablespace

storage for the list subpartitions in the PARTITION clause. You can override this

storage by specifying different tablespace storage for the list subpartitions of an

individual partition in the SUBPARTITION clause of the index_subpartition_
clause

index_subpartition_clause This clause lets you specify names and tablespace

storage for index hash subpartitions in a composite-partitioned table.

The STORE IN clause is valid only for hash subpartitions of a range-hash

composite-partitioned table. It lets you specify one or more tablespaces across

which Oracle will distribute all the index hash subpartitions. The SUBPARTITION
clause is valid for subpartitions of both range-hash and range-list composite-

partitioned tables.

If you specify any SUBPARTITION clauses, then the number of those clauses must

be equal to the number of table subpartitions. If you omit subpartition , then

Oracle generates a name that is consistent with the corresponding table

subpartition. If the name conflicts with an existing index subpartition name, then

Oracle uses the form SYS_SUBPn.

The number of tablespaces does not have to equal the number of index

subpartitions. If the number of index subpartitions is greater than the number of

tablespaces, Oracle cycles through the names of the tablespaces.

If you do not specify tablespace storage for subpartitions either in the on_comp_
partitioned_table clause or in the index_subpartition_clause , then

Oracle uses the tablespace specified for index . If you also do not specify tablespace

storage for index , then Oracle stores the subpartition in the same tablespace as the

corresponding table subpartition.

domain_index_clause
Use the domain_index_clause to indicate that index is a domain index, which

is an instance of an application-specific index of type indextype .

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-85

In the index_expr (in table_index_clause), specify the table columns or

object attributes on which the index is defined. You can define multiple domain

indexes on a single column only if the underlying indextypes are different and the

indextypes support a disjoint set of user-defined operators.

Restrictions on Domain Indexes

■ The index_expr (in table_index_clause) can specify only a single

column, and the column cannot be of datatype REF, varray, nested table, LONG,
or LONG RAW.

■ You cannot specify a bitmap or unique domain index.

indextype For indextype , specify the name of the indextype. This name should

be a valid schema object that you have already defined.

parallel_clause Use the parallel_clause to parallelize creation of the domain

index. For a nonpartitioned domain index, Oracle passes the explicit or default

degree of parallelism to the ODCIIndexCreate cartridge routine, which in turn

establishes parallelism for the index.

Note: Creating a domain index requires a number of preceding

operations. You must first create an implementation type for an

indextype. You must also create a functional implementation and

then create an operator that uses the function. Next you create an

indextype, which associates the implementation type with the

operator. Finally, you create the domain index using this clause.

Appendix D, "Examples", contains an example of a simple domain

index, including all of these operations. The examples are collected

in one appendix because they would be difficult to follow if

scattered throughout this reference under their appropriate SQL

statements.

Note: If you have installed Oracle Text, you can use various built-

in indextypes to create Oracle Text domain indexes. For more

information on Oracle Text and the indexes it uses, please refer to

Oracle Text Reference.

See Also: CREATE INDEXTYPE on page 13-95

CREATE INDEX

13-86 Oracle9i SQL Reference

PARAMETERS In the PARAMETERS clause, specify the parameter string that is

passed uninterpreted to the appropriate ODCI indextype routine. The maximum

length of the parameter string is 1000 characters.

When you specify this clause at the top level of the syntax, the parameters become

the default parameters for the index partitions. If you specify this clause as part of

the LOCAL [PARTITION] clause, you override any default parameters with

parameters for the individual partition.

Once the domain index is created, Oracle invokes the appropriate ODCI routine. If

the routine does not return successfully, the domain index is marked FAILED . The

only operations supported on an failed domain index are DROP INDEX and (for

non-local indexes) REBUILD INDEX.

bitmap_join_index_clause
Use the bitmap_join_index_clause to define a bitmap join index. A bitmap

join index is defined on a single table. For an index key made up of dimension table

columns, it stores the fact table rowids corresponding to that key. In a data

warehousing environment, the table on which the index is defined is commonly

referred to as a fact table, and the tables with which this table is joined are

commonly referred to as dimension tables. However, a star schema is not a

requirement for creating a join index.

ON In the ON clause, first specify the fact table, and then inside the parentheses

specify the columns of the dimension tables on which the index is defined.

FROM In the FROM clause, specify the joined tables.

WHERE In the WHERE clause, specify the join condition.

If the underlying fact table is partitioned, you must also specify one of the local_
partitioned_index clauses (see local_partitioned_index on page 13-83).

Restrictions on Bitmap Join Indexes In addition to the restrictions on bitmap

indexes in general (see BITMAP on page 13-72), the following restrictions apply to

bitmap join indexes:

See Also: Oracle9i Data Cartridge Developer’s Guide for complete

information on the ODCI routines

See Also: Oracle9i Data Cartridge Developer’s Guide for information

on these routines

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-87

■ You cannot create a bitmap join index on an index-organized table or a

temporary table.

■ No table may appear twice in the FROM clause.

■ You cannot create a function-based join index.

■ The dimension table columns must be either primary key columns or have

unique constraints.

■ If a dimension table has a composite primary key, each column in the primary

key must be part of the join.

■ You cannot specify the local_index_clauses unless the fact table is

partitioned.

Examples

General Index Examples

Creating an Index: Example The following statement shows how the sample

index ord_customer_ix on the customer_id column of the sample table

oe.orders was created:

CREATE INDEX ord_customer_ix
 ON orders (customer_id);

Compressing an Index: Example To create the ord_customer_ix index with the

COMPRESS clause, you might issue the following statement:

CREATE INDEX ord_customer_ix_demo
 ON orders (customer_id, sales_rep_id)
 COMPRESS 1;

The index will compress repeated occurrences of customer_id column values.

Computing Index Statistics: Example The following statement collects statistics

on the ord_customer_ix_demo index during its creation:

CREATE INDEX ord_customer_ix_demo
 ON orders(customer_id, sales_rep_id)
 COMPUTE STATISTICS;

See Also: Oracle9i Data Warehousing Guide for information on fact

and dimension tables and on using bitmap indexes in a data

warehousing environment

CREATE INDEX

13-88 Oracle9i SQL Reference

The type of statistics collected depends on the type of index you are creating.

Creating an Index in NOLOGGING Mode: Example If the sample table orders
had been created using a fast parallel load (so all rows were already sorted), you

could issue the following statement to quickly create an index.

/* Unless you first sort the table oe.orders, this example fails
 because you cannot specify NOSORT unless the base table is
 already sorted.
*/
CREATE INDEX ord_customer_ix_demo
 ON orders (order_mode)
 NOSORT
 NOLOGGING;

Creating a Cluster Index: Example To create an index for the personnel cluster,

which was created in "Creating a Cluster: Example" on page 13-9, issue the

following statement:

CREATE INDEX idx_personnel ON CLUSTER personnel;

No index columns are specified, because the index is automatically built on all the

columns of the cluster key. For cluster indexes, all rows are indexed.

Create an Index on an XMLType Table: Example The following example creates an

index on the area element of the xwarehouses table (created in "XMLType Table

Examples" on page 15-71):

CREATE INDEX area_index ON xwarehouses e
 (EXTRACTVALUE(VALUE(e),’/Warehouse/Area’));

Such an index would greatly improve the performance of queries that select from

the table based on, for example, the square footage of a warehouse, as shown in this

statement:

SELECT e.getClobVal() AS warehouse
 FROM xwarehouses e
 WHERE EXISTSNODE(VALUE(e),’/Warehouse[Area>50000]’) = 1;

See Also: EXISTSNODE on page 6-61 and VALUE on page 6-202

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-89

Function-Based Index Examples

Creating a Function-Based Index: Example The following statement creates a

function-based index on the employees table based on an uppercase evaluation of

the last_name column:

CREATE INDEX upper_ix ON employees (UPPER(last_name));

See the "Prerequisites" on page 13-65 for the privileges and parameter settings

required when creating function-based indexes.

To ensure that Oracle will use the index rather than performing a full table scan, be

sure that the value of the function is not null in subsequent queries. For example,

this statement is guaranteed to use the index:

SELECT first_name, last_name
 FROM employees WHERE UPPER(last_name) IS NOT NULL
 ORDER BY UPPER(last_name);

However, without the WHERE clause, Oracle may perform a full table scan.

In the next statements showing index creation and subsequent query, Oracle will

use index income_ix even though the columns are in reverse order in the query:

CREATE INDEX income_ix
 ON employees(salary + (salary*commission_pct));

SELECT first_name||’ ’||last_name "Name"
 FROM employees
 WHERE (salary*commission_pct) + salary > 15000;

Creating a Function-Based Index on a LOB Column: Example The following

statement uses the function created in "Using a Packaged Procedure in a Function:

Example" on page 13-64 to create a function-based index on a LOB column in the

sample pm schema. The example then collects statistics on the function-based index

and selects rows from the sample table print_media where that CLOB column has

fewer than 1000 characters.

CREATE INDEX src_idx ON print_media(text_length(ad_sourcetext));

ANALYZE INDEX src_idx COMPUTE STATISTICS;

SELECT product_id FROM print_media
 WHERE text_length(ad_sourcetext) < 1000;

CREATE INDEX

13-90 Oracle9i SQL Reference

PRODUCT_ID

 3060
 2056
 3106
 2268

Creating a Function-based Index on a Type Method: Example

This example entails an object type rectangle containing two number attributes:

length and width . The area() method computes the area of the rectangle.

CREATE TYPE rectangle AS OBJECT
(length NUMBER,
 width NUMBER,
 MEMBER FUNCTION area RETURN NUMBER DETERMINISTIC
);

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION area RETURN NUMBER IS

BEGIN
 RETURN (length*width);
 END;
END;

Now, if you create a table rect_tab of type rectangle , you can create a function-

based index on the area() method as follows:

CREATE TABLE rect_tab OF rectangle;
CREATE INDEX area_idx ON rect_tab x (x.area());

You can use this index efficiently to evaluate a query of the form:

SELECT * FROM rect_tab x WHERE x.area() > 100;

Partitioned Index Examples

Creating a Global Partitioned Index: Example The following statement creates a

global prefixed index amount_sold on the sample table sh.sales with three

partitions that divide the range of costs into three groups:

CREATE INDEX cost_ix ON sales (amount_sold)
 GLOBAL PARTITION BY RANGE (amount_sold)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-91

Creating an Index on a Hash-Partitioned Table: Example. The following statement

creates a local index on the product_id column of the product_information_
part partitioned table (which was created in"Hash Partitioning Example" on

page 15-75) . The STORE IN clause immediately following LOCAL indicates that

product_information_part is hash partitioned. Oracle will distribute the hash

partitions between the tbs1 and tbs2 tablespaces:

CREATE INDEX prod_idx ON product_information_part(product_id) LOCAL
 STORE IN (tbs_1, tbs_2);

Creating an Index on a Composite-Partitioned Table: Example. The following

statement creates a local index on the composite_sales table, which was created

in "Composite-Partitioned Table Examples" on page 15-75. The STORAGE clause

specifies default storage attributes for the index. However, this default is

overridden for the five subpartitions of partitions q3_2000 and q4_2000 , because

separate TABLESPACE storage is specified.

CREATE INDEX sales_ix ON composite_sales(time_id, prod_id)
 STORAGE (INITIAL 1M MAXEXTENTS UNLIMITED)
 LOCAL
 (PARTITION q1_1998,
 PARTITION q2_1998,
 PARTITION q3_1998,
 PARTITION q4_1998,
 PARTITION q1_1999,
 PARTITION q2_1999,
 PARTITION q3_1999,
 PARTITION q4_1999,
 PARTITION q1_2000,
 PARTITION q2_2000
 (SUBPARTITION pq2001, SUBPARTITION pq2002,
 SUBPARTITION pq2003, SUBPARTITION pq2004,
 SUBPARTITION pq2005, SUBPARTITION pq2006,

Note: The creator of the index needs quote on the tablespaces

specified. See CREATE TABLESPACE on page 15-80 for the

examples that created these tablespaces.

Note: The creator of the index must have quota on the tablespaces

specified. See CREATE TABLESPACE on page 15-80 for the creation

of tablespaces tbs_1 and tbs_2 .

CREATE INDEX

13-92 Oracle9i SQL Reference

 SUBPARTITION pq2007, SUBPARTITION pq2008),
 PARTITION q3_2000
 (SUBPARTITION c1 TABLESPACE tbs_1,
 SUBPARTITION c2 TABLESPACE tbs_1,
 SUBPARTITION c3 TABLESPACE tbs_1,
 SUBPARTITION c4 TABLESPACE tbs_1,
 SUBPARTITION c5 TABLESPACE tbs_1),
 PARTITION q4_2000
 (SUBPARTITION pq4001 TABLESPACE tbs_2,
 SUBPARTITION pq4002 TABLESPACE tbs_2,
 SUBPARTITION pq4003 TABLESPACE tbs_2,
 SUBPARTITION pq4004 TABLESPACE tbs_2)
);

Bitmap Index Example
The following creates a bitmap join index on the table oe.product_
information_part , which was created in "Hash Partitioning Example" on

page 15-75:

CREATE BITMAP INDEX product_bm_ix
 ON product_information_part(list_price)
 TABLESPACE tbs_1
 LOCAL(PARTITION ix_p1 TABLESPACE tbs_2,
 PARTITION ix_p2,
 PARTITION ix_p3 TABLESPACE tbs_3,
 PARTITION ix_p4,
 PARTITION ix_p5 TABLESPACE tbs_4);

Because product_information_part is a partitioned table, the bitmap join

index must be locally partitioned.

Indexes on Nested Tables: Example
The sample table pm.print_media contains a nested table column ad_
textdocs_ntab , which is stored in storage table textdocs_nestedtab . The

following example creates a unique index on storage table textdocs_nestedtab :

CREATE UNIQUE INDEX nested_tab_ix
 ON textdocs_nestedtab(NESTED_TABLE_ID, document_typ);

Note: In this example, the user must have quota on tablespaces

specified. See CREATE TABLESPACE on page 15-80 for examples

that create tablespaces tbs_2 , tbs_3 , and tbs_4 .

CREATE INDEX

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-93

Including pseudocolumn NESTED_TABLE_ID ensures distinct rows in nested table

column ad_textdocs_ntab .

Indexing on Substitutable Columns: Examples
You can build an index on attributes of the declared type of a substitutable column.

In addition, you can reference the subtype attributes by using the appropriate

TREAT function. The following example uses the table books , which is created in

"Substitutable Table and Column Examples" on page 15-67. The statement creates

an index on the salary attribute of all employee authors in the books table:

CREATE INDEX salary_i
 ON books (TREAT(author AS employee_t).salary);

The target type in the argument of the TREAT function must be the type that added

the attribute being referenced. In the example, the target of TREAT is employee_t ,

which is the type that added the salary attribute.

If this condition is not satisfied, Oracle interprets the TREAT function as any

functional expression and creates the index as a function-based index. For example,

the following statement creates a function-based index on the salary attribute of

part-time employees, assigning nulls to instances of all other types in the type

hierarchy.

CREATE INDEX salary_func_i ON persons p
 (TREAT(VALUE(P) AS part_time_emp_t).salary);

You can also build an index on the type-discriminant column underlying a

substitutable column by using the SYS_TYPEID function.

The following statement creates a bitmap index on the typeid of the author column

of the books table:

CREATE BITMAP INDEX typeid_i ON books (SYS_TYPEID(author));

Note: Oracle uses the type-discriminant column to evaluate

queries that involve the IS OF type condition. The cardinality of

the typeid column is normally low, so Oracle Corporation

recommends that you build a bitmap index in this situation.

CREATE INDEX

13-94 Oracle9i SQL Reference

See Also:

■ "Type Hierarchy Example" on page 16-22 to see the creation of

the type hierarchy underlying the books table

■ TREAT on page 6-191

■ SYS_TYPEID on page 6-164

■ "IS OF type Conditions" on page 5-19

CREATE INDEXTYPE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-95

CREATE INDEXTYPE

Purpose

Use the CREATE INDEXTYPE statement to create an indextype, which is an object

that specifies the routines that manage a domain (application-specific) index.

Indextypes reside in the same namespace as tables, views, and other schema objects.

This statement binds the indextype name to an implementation type, which in turn

specifies and refers to user-defined index functions and procedures that implement

the indextype.

Prerequisites
To create an indextype in your own schema, you must have the CREATE
INDEXTYPE system privilege. To create an indextype in another schema, you must

have CREATE ANY INDEXTYPE system privilege. In either case, you must have the

EXECUTE object privilege on the implementation type and the supported operators.

An indextype supports one or more operators, so before creating an indextype, you

should first design the operator or operators to be supported and provide

functional implementation for those operators.

See Also: Oracle9i Data Cartridge Developer’s Guide and Oracle9i
Database Concepts for more information on implementing

indextypes

See Also: CREATE OPERATOR on page 14-44

CREATE INDEXTYPE

13-96 Oracle9i SQL Reference

Syntax
create_indextype::=

Semantics

schema
Specify the name of the schema in which the indextype resides. If you omit schema ,

Oracle creates the indextype in your own schema.

indextype
Specify the name of the indextype to be created.

FOR Clause
Use the FOR clause to specify the list of operators supported by the indextype.

■ For schema , specify the schema containing the operator. If you omit schema ,

Oracle assumes the operator is in your own schema.

■ For operator , specify the name of the operator supported by the indextype.

All the operators listed in this clause should be valid operators.

■ For parameter_type , list the types of parameters to the operator.

USING Clause
The USINGclause lets you specify the type that provides the implementation for the

new indextype.

For implementation_type , specify the name of the type that implements the

appropriate Oracle Data Cartridge interface (ODCI).

CREATE
OR REPLACE

INDEXTYPE
schema .

indextype

FOR
schema .

operator (paramater_type

,

)

,

USING
schema .

implementation_type ;

CREATE INDEXTYPE

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-97

■ You must specify a valid type that implements the routines in the ODCI

interface.

■ The implementation type must reside in the same schema as the indextype.

Example

Creating an Indextype: Example The following statement creates an indextype

named position_indextype and specifies the position_between operator

that is supported by the indextype and the position_im type that implements the

index interface. Please refer to "Using Extensible Indexing" on page D-2 for an

extensible indexing scenario that uses this indextype:

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

See Also: Oracle9i Data Cartridge Developer’s Guide for additional

information on this interface

CREATE JAVA

13-98 Oracle9i SQL Reference

CREATE JAVA

Purpose
Use the CREATE JAVA statement to create a schema object containing a Java source,

class, or resource.

Prerequisites
To create or replace a schema object containing a Java source, class, or resource in

your own schema, you must have CREATE PROCEDURE system privilege. To create

such a schema object in another user’s schema, you must have CREATE ANY
PROCEDURE system privilege. To replace such a schema object in another user’s

schema, you must also have ALTER ANY PROCEDURE system privilege.

See Also:

■ Oracle9i Java Developer’s Guide for Java concepts

■ Oracle9i Java Stored Procedures Developer’s Guide for Java stored

procedures

■ Oracle9i SQLJ Developer’s Guide and Reference for SQLJ

■ Oracle9i JDBC Developer’s Guide and Reference for JDBC

■ Oracle9iAS Containers for J2EE User’s Guide for iAS Java support

CREATE JAVA

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-99

Syntax
create_java::=

invoker_rights_clause ::=

Semantics

OR REPLACE
Specify OR REPLACEto re-create the schema object containing the Java class, source,

or resource if it already exists. Use this clause to change the definition of an existing

CREATE
OR REPLACE

AND
RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .
primary_name

CLASS
SCHEMA schema

invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_text

;

AUTHID
CURRENT_USER

DEFINER

CREATE JAVA

13-100 Oracle9i SQL Reference

object without dropping, re-creating, and regranting object privileges previously

granted.

If you redefine a Java schema object and specify RESOLVE or COMPILE, Oracle

recompiles or resolves the object. Whether or not the resolution or compilation is

successful, Oracle invalidates classes that reference the Java schema object.

Users who had previously been granted privileges on a redefined function can still

access the function without being regranted the privileges.

RESOLVE | COMPILE
RESOLVE and COMPILE are synonymous keywords. They specify that Oracle

should attempt to resolve the Java schema object that is created if this statement

succeeds.

■ When applied to a class, resolution of referenced names to other class schema

objects occurs.

■ When applied to a source, source compilation occurs.

Restriction on RESOLVE and COMPILE You cannot specify this clause for a Java

resource.

NOFORCE
Specify NOFORCE to roll back the results of this CREATE command if you have

specified either RESOLVE or COMPILE, and the resolution or compilation fails. If

you do not specify this option, Oracle takes no action if the resolution or

compilation fails (that is, the created schema object remains).

JAVA SOURCE Clause
Specify JAVA SOURCE to load a Java source file.

JAVA CLASS Clause
Specify JAVA CLASS to load a Java class file.

JAVA RESOURCE Clause
Specify JAVA RESOURCE to load a Java resource file.

See Also: ALTER JAVA on page 9-87 for additional information

CREATE JAVA

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-101

NAMED Clause
The NAMED clause is required for a Java source or resource. The primary_name
must be enclosed in double quotation marks.

■ For a Java source, this clause specifies the name of the schema object in which

the source code is held. A successful CREATE JAVA SOURCE statement will also

create additional schema objects to hold each of the Java classes defined by the

source.

■ For a Java resource, this clause specifies the name of the schema object to hold

the Java resource.

Use double quotation marks to preserve a lower- or mixed-case primary_name .

If you do not specify schema , Oracle creates the object in your own schema.

Restrictions on NAMED

■ You cannot specify NAMED for a Java class.

■ The primary_name cannot contain a database link.

SCHEMA Clause
The SCHEMA clause applies only to a Java class. This optional clause specifies the

schema in which the object containing the Java file will reside. If you do not specify

this clause, Oracle creates the object in your own schema.

invoker_rights_clause
Use the invoker_rights_clause to indicate whether the methods of the class

execute with the privileges and in the schema of the user who owns the class or

with the privileges and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

AUTHID CURRENT_USER
CURRENT_USER indicates that the methods of the class execute with the privileges

of CURRENT_USER. This clause is the default and creates an invoker-rights class.

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External names

in all other statements resolve in the schema in which the methods reside.

CREATE JAVA

13-102 Oracle9i SQL Reference

AUTHID DEFINER
DEFINER indicates that the methods of the class execute with the privileges of the

owner of the schema in which the class resides, and that external names resolve in

the schema where the class resides. This clause creates a definer-rights class.

RESOLVER Clause
The RESOLVERclause lets you specify a mapping of the fully qualified Java name to

a Java schema object, where

■ match_string is either a fully qualified Java name, a wildcard that can match

such a Java name, or a wildcard that can match any name.

■ schema_name designates a schema to be searched for the corresponding Java

schema object.

■ A dash (-) as an alternative to schema_name indicates that if match_string
matches a valid Java name, Oracle can leave the name unresolved. The

resolution succeeds, but the name cannot be used at run time by the class.

This mapping is stored with the definition of the schema objects created in this

command for use in later resolutions (either implicit or in explicit ALTER ...

RESOLVE statements).

USING Clause
The USING clause determines a sequence of character (CLOB or BFILE) or binary

(BLOB or BFILE) data for the Java class or resource. Oracle uses the sequence of

characters to define one file for a Java class or resource, or one source file and one or

more derived classes for a Java source.

BFILE Clause
Specify the directory and filename of a previously created file on the operating

system (directory_object_name) and server file (server_file_name)

containing the sequence. BFILE is usually interpreted as a character sequence by

CREATE JAVA SOURCE and as a binary sequence by CREATE JAVA CLASS or

CREATE JAVA RESOURCE.

See Also:

■ Oracle9i Java Stored Procedures Developer’s Guide

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

CREATE JAVA

SQL Statements: CREATE CLUSTER to CREATE JAVA 13-103

CLOB | BLOB | BFILE subquery
Specify a query that selects a single row and column of the type specified (CLOB,
BLOB, or BFILE). The value of the column makes up the sequence of characters.

key_for_BLOB
The key_for_BLOB clause supplies the following implicit query:

SELECT LOB FROM CREATE$JAVA$LOB$TABLE
 WHERE NAME = ’key_for_BLOB’;

Restriction on the key_for_BLOB Clause To use this case, the table

CREATE$JAVA$LOB$TABLE must exist in the current schema and must have a

column LOB of type BLOB and a column NAME of type VARCHAR2.

AS source_text
Specify a sequence of characters for a Java or SQLJ source.

Examples

Creating a Java Class Object: Example The following statement creates a schema

object containing a Java class using the name found in a Java binary file:

CREATE JAVA CLASS USING BFILE (bfile_dir, ’Agent.class’);

This example assumes the directory object bfile_dir , which points to the

operating system directory containing the Java class Agent.class, already exists. In

this example, the name of the class determines the name of the Java class schema

object.

Creating a Java Source Object: Example The following statement creates a Java

source schema object:

Note: In earlier releases, the USING clause implicitly supplied the

keyword SELECT. This is no longer the case. However, the

subquery without the keyword SELECT is still supported for

backward compatibility.

CREATE JAVA

13-104 Oracle9i SQL Reference

CREATE JAVA SOURCE NAMED "Hello" AS
 public class Hello {
 public static String hello() {
 return "Hello World"; } } ;

Creating a Java Resource Object: Example The following statement creates a Java

resource schema object named apptext from a bfile :

CREATE JAVA RESOURCE NAMED "appText"
 USING BFILE (bfile_dir, ’textBundle.dat’);

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-1

14
 SQL Statements: CREATE LIBRARY to

CREATE SPFILE

This chapter contains the following SQL statements:

■ CREATE LIBRARY

■ CREATE MATERIALIZED VIEW

■ CREATE MATERIALIZED VIEW LOG

■ CREATE OPERATOR

■ CREATE OUTLINE

■ CREATE PACKAGE

■ CREATE PACKAGE BODY

■ CREATE PFILE

■ CREATE PROCEDURE

■ CREATE PROFILE

■ CREATE ROLE

■ CREATE ROLLBACK SEGMENT

■ CREATE SCHEMA

■ CREATE SEQUENCE

■ CREATE SPFILE

CREATE LIBRARY

14-2 Oracle9i SQL Reference

CREATE LIBRARY

Purpose
Use the CREATE LIBRARY statement to create a schema object associated with an

operating-system shared library. The name of this schema object can then be used in

the call_spec of CREATE FUNCTION or CREATE PROCEDURE statements, or when

declaring a function or procedure in a package or type, so that SQL and PL/SQL

can call to third-generation-language (3GL) functions and procedures.

Prerequisites
To create a library in your own schema, you must have the CREATE LIBRARY
system privilege. To create a library in another user’s schema, you must have the

CREATE ANY LIBRARYsystem privilege. To use the procedures and functions stored

in the library, you must have EXECUTE object privileges on the library.

The CREATE LIBRARY statement is valid only on platforms that support shared

libraries and dynamic linking.

Syntax
create_library::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the library if it already exists. Use this clause to

change the definition of an existing library without dropping, re-creating, and

regranting schema object privileges granted on it.

See Also: CREATE FUNCTION on page 13-52 and PL/SQL User’s
Guide and Reference for more information on functions and

procedures

CREATE
OR REPLACE

LIBRARY
schema .

libname

IS

AS
’ filename ’

AGENT ’ agent_dblink ’
;

CREATE LIBRARY

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-3

Users who had previously been granted privileges on a redefined library can still

access the library without being regranted the privileges.

libname
Specify the name you wish to represent this library when declaring a function or

procedure with a call_spec .

’filename ’
Specify a string literal, enclosed in single quotes. This string should be the path or

filename your operating system recognizes as naming the shared library.

The ’filename ’ is not interpreted during execution of the CREATE LIBRARY
statement. The existence of the library file is not checked until an attempt is made to

execute a routine from it.

AGENT Clause
Specify the AGENT clause if you want external procedures to be run from a database

link other than the server. Oracle will use the database link specified by agent_
dblink to run external procedures. If you omit this clause, the default agent on the

server (extproc) will run external procedures.

Examples

Creating a Library: Examples The following statement creates library ext_lib :

CREATE LIBRARY ext_lib AS ’/OR/lib/ext_lib.so’;
/

The following statement re-creates library ext_lib :

CREATE OR REPLACE LIBRARY ext_lib IS ’/OR/newlib/ext_lib.so’;
/

Specifying an External Procedure Agent: Example The following example creates

a library app_lib and specifies that external procedures will be run from the

public database sales.hq.acme.com :

CREATE LIBRARY app_lib as ’${ORACLE_HOME}/lib/app_lib.so’
 AGENT ’sales.hq.acme.com’;
/

CREATE LIBRARY

14-4 Oracle9i SQL Reference

See Also: "Defining a Public Database Link: Example" on

page 13-41 for information on creating database links

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-5

CREATE MATERIALIZED VIEW

Purpose
Use the CREATE MATERIALIZED VIEW statement to create a materialized view. A

materialized view is a database object that contains the results of a query. The FROM
clause of the query can name tables, views, and other materialized views.

Collectively these are called master tables (a replication term) or detail tables (a

data warehouse term). This reference uses "master tables" for consistency. The

databases containing the master tables are called the master databases.

For replication purposes, materialized views allow you to maintain copies of remote

data on your local node. The copies can be updatable with the Advanced

Replication feature and are read-only without this feature. You can select data from

a materialized view as you would from a table or view. In replication environments,

the materialized views commonly created are primary key, rowid, object, and

subquery materialized views.

For data warehousing purposes, the materialized views commonly created are

materialized aggregate views, single-table materialized aggregate views, and

materialized join views. All three types of materialized views can be used by query

rewrite, an optimization technique that transforms a user request written in terms

of master tables into a semantically equivalent request that includes one or more

materialized views.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also: Oracle9i Advanced Replication for information on the

types of materialized views used to support replication

See Also:

■ ALTER MATERIALIZED VIEW on page 9-90

■ Oracle9i Data Warehousing Guide for information on the types of

materialized views used to support data warehousing

CREATE MATERIALIZED VIEW

14-6 Oracle9i SQL Reference

Prerequisites
The privileges required to create a materialized view should be granted directly

rather than through a role.

To create a materialized view in your own schema:

■ You must have been granted the CREATE MATERIALIZED VIEW system

privilege and either the CREATE TABLE or CREATE ANY TABLE system

privilege.

■ You must also have access to any master tables of the materialized view that

you do not own, either through a SELECT object privilege on each of the tables

or through the SELECT ANY TABLE system privilege.

To create a materialized view in another user’s schema:

■ You must have the CREATE ANY MATERIALIZED VIEW system privilege.

■ The owner of the materialized view must have the CREATE TABLE system

privilege. The owner must also have access to any master tables of the

materialized view that the schema owner does not own (for example, if the

master tables are on a remote database), and to any materialized view logs

defined on those master tables, either through a SELECT object privilege on

each of the tables or through the SELECT ANY TABLE system privilege.

To create a refresh-on-commit materialized view (ON COMMIT REFRESH clause), in

addition to the preceding privileges, you must have the ON COMMIT REFRESHobject

privilege on any master tables that you do not own or you must have the ON
COMMIT REFRESH system privilege.

To create the materialized view with query rewrite enabled, in addition to the

preceding privileges:

■ The owner of the master tables must have the QUERY REWRITE system

privilege.

■ If you are not the owner of the master tables, you must have the GLOBAL QUERY
REWRITEsystem privilege or the QUERY REWRITEobject privilege on each table

outside your schema.

■ If the schema owner does not own the master tables, then the schema owner

must have the GLOBAL QUERY REWRITEprivilege or the QUERY REWRITEobject

privilege on each table outside the schema.

■ If you are defining the materialized view on a prebuilt container (ON PREBUILT
TABLE), you must have the SELECT privilege WITH GRANT OPTION on the

container table.

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-7

The user whose schema contains the materialized view must have sufficient quota

in the target tablespace to store the materialized view’s master table and index or

must have the UNLIMITED TABLESPACE system privilege.

When you create a materialized view, Oracle creates one internal table and at least

one index, and may create one view, all in the schema of the materialized view.

Oracle uses these objects to maintain the materialized view’s data. You must have

the privileges necessary to create these objects.

See Also:

■ CREATE TABLE on page 15-7, CREATE VIEW on page 16-39, and

CREATE INDEX on page 13-65 for information on these privileges

■ Oracle9i Advanced Replication for information about the prerequisites

that apply to creating replication materialized views

■ Oracle9i Data Warehousing Guide for information about the prerequisites

that apply to creating data warehousing materialized views

CREATE MATERIALIZED VIEW

14-8 Oracle9i SQL Reference

Syntax
create_materialized_view::=

(scoped_table_ref_constraint::= on page 14-9, index_org_table_
clause::= on page 14-10, materialized_view_props::= on page 14-9,

physical_attributes_clause::= on page 14-12, create_mv_refresh::=
on page 14-11, subquery::= on page 18-5)

CREATE MATERIALIZED VIEW
schema .

materialized_view

OF
schema .

object_type (scoped_table_ref_constraint)

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

physical_properties materialized_view_props

USING INDEX

physical_attributes_clause

TABLESPACE tablespace

USING NO INDEX create_mv_refresh

FOR UPDATE

DISABLE

ENABLE
QUERY REWRITE

AS subquery ;

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-9

physical_properties::=

(segment_attributes_clause::= on page 14-11, data_segment_
compression::= on page 14-12)

materialized_view_props ::=

(column_properties::= on page 14-12, table_partitioning_clauses on

page 15-44—part of CREATE TABLE syntax, parallel_clause::= on page 14-15,

build_clause::= on page 14-15)

scoped_table_ref_constraint ::=

segment_attributes_clause
data_segment_compression

ORGANIZATION

HEAP
segment_attributes_clause data_segment_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

column_properties table_partitioning_clauses

CACHE

NOCACHE parallel_clause

build_clause

SCOPE FOR (
ref_column

ref_attribute
) IS

schema .
scope_table_name

,

CREATE MATERIALIZED VIEW

14-10 Oracle9i SQL Reference

index_org_table_clause ::=

(mapping_table_clause : not supported with materialized views, key_
compression::= on page 14-10, index_org_overflow_clause::= on

page 14-10)

key_compression::=

index_org_overflow_clause::=

(segment_attributes_clause::= on page 14-11)

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-11

create_mv_refresh ::=

segment_attributes_clause ::=

(physical_attributes_clause::= on page 14-12, logging_clause::= on

page 14-12)

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL
ROLLBACK SEGMENT

MASTER

LOCAL
ROLLBACK SEGMENT rollback_segment

NEVER REFRESH

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CREATE MATERIALIZED VIEW

14-12 Oracle9i SQL Reference

physical_attributes_clause::=

(logging_clause::= on page 7-46)

logging_clause::=

data_segment_compression ::=

column_properties ::=

(object_type_col_properties::= on page 14-13, nested_table_col_
properties::= on page 14-13, varray_col_properties::= on page 14-13,

LOB_partition_storage::= on page 14-15, LOB_storage_clause::= on

page 14-14, XMLType_column_properties : not supported for materialized

views)

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

LOB_partition_storage

XMLType_column_properties

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-13

object_type_col_properties::=

(substitutable_column_clause::= on page 14-13)

substitutable_column_clause::=

nested_table_col_properties::=

(substitutable_column_clause::= on page 14-13, object_properties::=
on page 15-10, physical_properties::= on page 15-11—part of CREATE TABLE
syntax, column_properties::= on page 14-12)

varray_col_properties::=

(substitutable_column_clause::= on page 14-13, LOB_parameters::= on

page 14-14)

COLUMN column substitutable_column_clause

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

((object_properties)
physical_properties column_properties

)

RETURN AS
LOCATOR

VALUE

VARRAY varray_item

substitutable_column_clause

STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

CREATE MATERIALIZED VIEW

14-14 Oracle9i SQL Reference

LOB_storage_clause::=

(LOB_parameters::= on page 14-14)

LOB_parameters::=

(storage_clause::= on page 7-58 , logging_clause::= on page 14-12)

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-15

LOB_partition_storage::=

(LOB_storage_clause::= on page 14-14, varray_col_properties::= on

page 14-13)

parallel_clause ::=

build_clause ::=

Semantics

schema
Specify the schema to contain the materialized view. If you omit schema , Oracle

creates the materialized view in your schema.

materialized_view
Specify the name of the materialized view to be created. Oracle generates names for

the table and indexes used to maintain the materialized view by adding a prefix or

suffix to the materialized view name.

OF object_type
The OFtype_name clause lets you explicitly create an object materialized view of

type object_type .

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

NOPARALLEL

PARALLEL
integer

BUILD
IMMEDIATE

DEFERRED

CREATE MATERIALIZED VIEW

14-16 Oracle9i SQL Reference

scoped_table_ref_constraint
Use the SCOPE FOR clause to restrict the scope of references to a single table,

scope_table_name . The values in the REF column or attribute point to objects in

scope_table_name , in which object instances (of the same type as the REF
column) are stored.

ON PREBUILT TABLE Clause
The ON PREBUILT TABLE clause lets you register an existing table as a

preinitialized materialized view. This is particularly useful for registering large

materialized views in a data warehousing environment. The table must have the

same name and be in the same schema as the resulting materialized view.

If the materialized view is dropped, the preexisting table reverts to its identity as a

table.

WITH REDUCED PRECISION Specify WITH REDUCED PRECISIONto authorize the

loss of precision that will result if the precision of the table or materialized view

columns do not exactly match the precision returned by subquery .

WITHOUT REDUCED PRECISION Specify WITHOUT REDUCED PRECISION to

require that the precision of the table or materialized view columns match exactly

the precision returned by subquery , or the create operation will fail. This is the

default.

Restrictions on prebuilt_table_clause

■ Each column alias in subquery must correspond to a column in table_name ,

and corresponding columns must have matching datatypes.

See Also: See the object_table clause of CREATE TABLE on
page 15-63 for more information on the OFtype_name clause

See Also: "SCOPE REF Constraints" on page 7-17 for more

information

Caution: This clause assumes that the table object reflects the

materialization of a subquery. Oracle Corporation strongly

recommends that you ensure that this assumption is true in order

to ensure that the materialized view correctly reflects the data in its

master tables.

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-17

■ If you specify this clause, you cannot specify a NOT NULL constraint for any

column that is unmanaged (that is, not referenced in subquery) unless you

also specify a default value for that column.

physical_properties_clause
The components of the physical_properties_clause have the same semantics

for materialized views that they have for tables, with exceptions and additions

described in the sections that follow.

Restriction on the physical_properties_clause You cannot specify

ORGANIZATION EXTERNAL for a materialized view.

segment_attributes_clause
Use the segment_attributes_clause to establish values for the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters (or, when used in the USING
INDEX clause, for the INITRANS and MAXTRANS parameters only), the storage

characteristics for the materialized view, to assign a tablespace, and to specify

whether logging is to occur.

TABLESPACE Clause Specify the tablespace in which the materialized view is to

be created. If you omit this clause, Oracle creates the materialized view in the

default tablespace of the schema containing the materialized view.

logging_clause Specify LOGGING or NOLOGGING to establish the logging

characteristics for the materialized view. The default is the logging characteristic of

the tablespace in which the materialized view resides.

See Also: "Creating Prebuilt Materialized Views: Example" on

page 14-29

See Also:

■ physical_attributes_clause on page 7-52 for a complete

description of the parameters of the physical_attributes_
clause , including default values

■ storage_clause on page 7-56 for a complete description of

the storage_clause , including default values

See Also: logging_clause on page 7-45 for a full description of

this clause

CREATE MATERIALIZED VIEW

14-18 Oracle9i SQL Reference

data_segment_compression
Use the data_segment_compression clause to instruct Oracle whether to

compress data segments to reduce disk and memory use. The COMPRESS keyword

enables data segment compression. The NOCOMPRESS keyword disables data

segment compression.

index_org_table_clause
The ORGANIZATION INDEX clause lets you create an index-organized materialized

view. In such a materialized view, data rows are stored in an index defined on the

primary key of the materialized view. You can specify index organization for the

following types of materialized views:

■ Read-only and updatable object materialized views. You must ensure that the

master table has a primary key.

■ Read-only and updatable primary key based materialized views

■ Read-only rowid materialized views.

The keywords and parameters of the index_org_table_clause have the same

semantics as described in CREATE TABLE, with the restrictions that follow.

Restrictions on Index-organized Materialized Views

■ You cannot specify the following CREATE MATERIALIZED VIEWclauses: CACHE
or NOCACHE, CLUSTER, or ON PREBUILT TABLE.

■ In the index_org_table_clause :

■ You cannot specify the mapping_table_clause .

■ You can specify COMPRESS only for a materialized view based on a

composite primary key. You can specify NOCOMPRESS for a materialized

view based on either a simple or composite primary key.

CLUSTER Clause
The ORGANIZATION CLUSTER clause lets you create the materialized view as part

of the specified cluster. A clustered materialized view uses the cluster’s space

See Also: data_segment_compression clause of CREATE
TABLE on page 15-29 for more information on data segment

compression

See Also: the index_org_table_clause of CREATE TABLE on

page 15-30

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-19

allocation. Therefore, you do not specify physical attributes or the TABLESPACE
clause with the CLUSTER clause.

Restriction on clustered materialized views If you specify ORGANIZATION
CLUSTER, you cannot specify the table_partitioning_clauses (in

materialized_view_props).

materialized_view_props
Use these property clauses to describe a materialized view that is not based on an

existing table. To create a materialized view that is based on an existing table, use

the ON PREBUILT TABLE clause.

column_properties
The column_properties clause lets you specify the storage characteristics of a

LOB, nested table, varray, or XMLType column.

Restriction on Materialized View Columns The object_type_col_
properties are not relevant for a materialized view.

table_partitioning_clauses
The table_partitioning_clauses let you specify that the materialized view is

partitioned on specified ranges of values or on a hash function. Partitioning of

materialized views is the same as partitioning of tables.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this table are placed at the most recently used end of the least recently used (LRU)

list in the buffer cache when a full table scan is performed. This attribute is useful

for small lookup tables. NOCACHE specifies that the blocks are placed at the least
recently used end of the LRU list.

See Also: CREATE TABLE on page 15-7 for detailed information

about specifying the parameters of this clause

See Also: table_partitioning_clauses of CREATE TABLE
on page 15-44

Note: NOCACHEhas no effect on materialized views for which you

specify KEEP in the storage_clause .

CREATE MATERIALIZED VIEW

14-20 Oracle9i SQL Reference

parallel_clause
The parallel_clause lets you indicate whether parallel operations will be

supported for the materialized view and sets the default degree of parallelism for

queries and DML on the materialized view after creation.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

build_clause
The build_clause lets you specify when to populate the materialized view.

IMMEDIATE Specify IMMEDIATE to indicate that the materialized view is

populated immediately. This is the default.

DEFERRED Specify DEFERRED to indicate that the materialized view will be

populated by the next REFRESH operation. The first (deferred) refresh must always

be a complete refresh. Until then, the materialized view has a staleness value of

UNUSABLE, so it cannot be used for query rewrite.

See Also: CREATE TABLE on page 15-7 for information about

specifying CACHE or NOCACHE

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-21

USING INDEX Clause
The USING INDEXclause lets you establish the value of INITRANS , MAXTRANS, and

STORAGE parameters for the default index Oracle uses to maintain the materialized

view’s data. If USING INDEX is not specified, then default values are used for the

index. Oracle uses the default index to speed up incremental ("fast") refresh of the

materialized view.

Restriction on USING INDEX clause You cannot specify the PCTUSED parameter

in this clause.

USING NO INDEX Clause
Specify USING NO INDEX to suppress the creation of the default index. You can

create an alternative index explicitly by using the CREATE INDEX statement. You

should create such an index if you specify USING NO INDEX and you are creating

the materialized view with the incremental refresh method (REFRESH FAST).

create_mv_refresh
Use the create_mv_refresh to specify the default methods, modes, and times

for Oracle to refresh the materialized view. If the master tables of a materialized

view are modified, the data in the materialized view must be updated to make the

materialized view accurately reflect the data currently in its master tables. This

clause lets you schedule the times and specify the method and mode for Oracle to

refresh the materialized view.

FAST Clause
Specify FAST to indicate the incremental refresh method, which performs the

refresh according to the changes that have occurred to the master tables. The

changes are stored either in the materialized view log associated with the master

table (for conventional DML changes) or in the direct loader log (for direct-path

INSERT operations).

Note: This clause only sets the default refresh options. For

instructions on actually implementing the refresh, refer to Oracle9i
Advanced Replication and Oracle9i Data Warehousing Guide.

See Also: "Periodic Refresh of Materialized Views: Example" on

page 14-30 and "Automatic Refresh Times for Materialized Views:

Example" on page 14-31

CREATE MATERIALIZED VIEW

14-22 Oracle9i SQL Reference

If you specify REFRESH FAST, the CREATE statement will fail unless materialized

view logs already exist for the materialized view’s master tables. (Oracle creates the

direct loader log automatically when a direct-path INSERT takes place. No user

intervention is needed.)

For both conventional DML changes and for direct-path INSERT operations, other

conditions may restrict the eligibility of a materialized view for fast refresh.

Materialized views are not eligible for fast refresh if the defining subquery contains

an analytic function.

COMPLETE Clause
Specify COMPLETE to indicate the complete refresh method, which is implemented

by executing the materialized view’s defining subquery. If you request a complete

refresh, Oracle performs a complete refresh even if a fast refresh is possible.

FORCE Clause
Specify FORCE to indicate that when a refresh occurs, Oracle will perform a fast

refresh if one is possible or a complete refresh otherwise. If you do not specify a

refresh method (FAST, COMPLETE, or FORCE), FORCE is the default.

ON COMMIT Clause
Specify ON COMMIT to indicate that a fast refresh is to occur whenever Oracle

commits a transaction that operates on a master table of the materialized view. This

clause may increase the time taken to complete the commit, because Oracle

performs the refresh operation as part of the commit process.

Restriction on Refreshing ON COMMIT This clause is not supported for

materialized views containing object types.

See Also:

■ Oracle9i Advanced Replication for restrictions on fast refresh in

replication environments

■ Oracle9i Data Warehousing Guide for restrictions on fast refresh

in data warehouse environments

■ "Analytic Functions" on page 6-10

■ "Creating a Fast Refreshable Materialized View: Example" on

page 14-32

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-23

ON DEMAND Clause
Specify ON DEMAND to indicate that the materialized view will be refreshed on

demand by calling one of the three DBMS_MVIEW refresh procedures. If you omit

both ON COMMIT and ON DEMAND, ON DEMAND is the default.

If you specify ON COMMIT or ON DEMAND, you cannot also specify START WITH or

NEXT.

START WITH Clause
Specify a date expression for the first automatic refresh time.

NEXT Clause
Specify a date expression for calculating the interval between automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you

omit the START WITH value, Oracle determines the first automatic refresh time by

evaluating the NEXTexpression with respect to the creation time of the materialized

view. If you specify a START WITH value but omit the NEXT value, Oracle refreshes

the materialized view only once. If you omit both the START WITH and NEXT
values, or if you omit the create_mv_refresh entirely, Oracle does not

automatically refresh the materialized view.

WITH PRIMARY KEY Clause
Specify WITH PRIMARY KEY to create a primary key materialized view. This is the

default, and should be used in all cases except those described for WITH ROWID.
Primary key materialized views allow materialized view master tables to be

reorganized without affecting the eligibility of the materialized view for fast refresh.

The master table must contain an enabled primary key constraint.

See Also: Oracle9i Advanced Replication and Oracle9i Data
Warehousing Guide

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on these procedures

■ Oracle9i Data Warehousing Guide on the types of materialized

views you can create by specifying REFRESH ON DEMAND

CREATE MATERIALIZED VIEW

14-24 Oracle9i SQL Reference

Restriction on Primary Key Materialized Views You cannot specify this clause for

an object materialized view. Oracle implicitly refreshes object materialized WITH
OBJECT ID.

WITH ROWID Clause
Specify WITH ROWIDto create a rowid materialized view. Rowid materialized views

provide compatibility with master tables in releases of Oracle prior to 8.0.

You can also use rowid materialized views if the materialized view does not include

all primary key columns of the master tables. Rowid materialized views must be

based on a single table and cannot contain any of the following:

■ Distinct or aggregate functions

■ GROUP BY or CONNECT BY clauses

■ Subqueries

■ Joins

■ Set operations

Rowid materialized views are not eligible for fast refreshed after a master table

reorganization until a complete refresh has been performed.

Restriction on Rowid Materialized Views You cannot specify this clause for an

object materialized view. Oracle implicitly refreshes object materialized WITH
OBJECT ID.

USING ROLLBACK SEGMENT Clause
Specify the remote rollback segment to be used during materialized view refresh,

where rollback_segment is the name of the rollback segment to be used.

This clause is invalid if your database is in Automatic Undo Mode, because in that

mode Oracle uses undo tablespaces instead of rollback segments.

See Also: Oracle9i Advanced Replication for detailed information

about primary key materialized views and "Creating Primary Key

Materialized Views: Example" on page 14-30

See Also: "Creating Materialized Aggregate Views: Example" on

page 14-28 and "Creating Rowid Materialized Views: Example" on

page 14-30

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-25

DEFAULT DEFAULT specifies that Oracle will choose automatically which rollback

segment to use. If you specify DEFAULT, you cannot specify rollback_segment.

DEFAULT is most useful when modifying (rather than creating) a materialized view.

MASTER MASTER specifies the remote rollback segment to be used at the remote

master site for the individual materialized view.

LOCAL LOCAL specifies the remote rollback segment to be used for the local

refresh group that contains the materialized view.

If you do not specify MASTER or LOCAL, Oracle uses LOCAL by default. If you do

not specify rollback_segment , Oracle automatically chooses the rollback

segment to be used.

One master rollback segment is stored for each materialized view and is validated

during materialized view creation and refresh. If the materialized view is complex,

the master rollback segment, if specified, is ignored.

NEVER REFRESH Clause
Specify NEVER REFRESH to prevent the materialized view from being refreshed

with any Oracle refresh mechanism or packaged procedure. Oracle will ignore any

REFRESH statement on the materialized view issued from such a procedure. To

reverse this clause, you must issue an ALTER MATERIALIZED VIEW ... REFRESH
statement.

FOR UPDATE Clause
Specify FOR UPDATEto allow a subquery, primary key, object, or rowid materialized

view to be updated. When used in conjunction with Advanced Replication, these

updates will be propagated to the master.

See Also: ALTER MATERIALIZED VIEW on page 9-90

See Also: Oracle9i Advanced Replication for information on

specifying the local materialized view rollback segment using the

DBMS_REFRESH package

See Also: "Specifying Rollback Segments for Materialized Views:

Example" on page 14-31

See Also: Oracle9i Advanced Replication

CREATE MATERIALIZED VIEW

14-26 Oracle9i SQL Reference

QUERY REWRITE Clause
The QUERY REWRITE clause lets you specify whether the materialized view is

eligible to be used for query rewrite.

ENABLE Clause Specify ENABLE to enable the materialized view for query

rewrite.

Restrictions on Enabling Query Rewrite

■ You can enable query rewrite only if all user-defined functions in the

materialized view are DETERMINISTIC.

■ You can enable query rewrite only if expressions in the statement are

repeatable. For example, you cannot include CURRENT_TIME or USER,
sequence values (such as the CURRVAL or NEXTVAL pseudocolumns), or the

SAMPLE clause (which may sample different rows as the contents of the

materialized view change).

DISABLE Clause Specify DISABLE to indicate that the materialized view is not

eligible for use by query rewrite. However, a disabled materialized view can be

refreshed.

AS subquery
Specify the defining subquery of the materialized view. When you create the

materialized view, Oracle executes this subquery and places the results in the

Notes:

■ Query rewrite is disabled by default, so you must specify this

clause to make materialized views eligible for query rewrite.

■ Be sure to analyze the materialized view after you create it.

Oracle needs the statistics generated by the ANALYZEoperation

to optimize query rewrite.

See Also:

■ Oracle9i Data Warehousing Guide for more information on query

rewrite

■ CREATE FUNCTION on page 13-52

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-27

materialized view. This subquery is any valid SQL subquery. However, not all

queries are fast refreshable, nor are all subqueries eligible for query rewrite.

Notes on the Defining Query of a Materialized View

■ Oracle does not execute the defining subquery immediately if you specify

BUILD DEFERRED.

■ Oracle recommends that you qualify each table and view in the FROM clause of

the defining subquery of the materialized view with the schema containing it.

Restrictions on the Defining Subquery of a Materialized View

■ The defining subquery of a materialized view can select from tables, views, or

materialized views owned by the user SYS, but you cannot enable QUERY
REWRITE on such a materialized view.

■ Materialized join views and materialized aggregate views with a GROUP BY
clause cannot select from an index-organized table.

■ Materialized views cannot contain columns of datatype LONG.

■ You cannot create a materialized view log on a temporary table. Therefore, if

the defining subquery references a temporary table, this materialized view will

not be eligible for FASTrefresh, nor can you specify the QUERY REWRITEclause

in this statement.

■ If the FROM clause of the defining subquery references another materialized

view, then you must always refresh the materialized view referenced in the

defining subquery before refreshing the materialized view you are creating in

this statement.

If you are creating a materialized view enabled for query rewrite:

■ The defining subquery cannot contain (either directly or through a view)

references to ROWNUM, USER, SYSDATE, remote tables, sequences, or PL/SQL

functions that write or read database or package state.

■ Neither the materialized view nor the master tables of the materialized view

can be remote.

If you want the materialized view to be eligible for fast refresh using a materialized

view log, some additional restrictions may apply.

See Also: "AS subquery" clause of CREATE TABLE on page 15-61

for some additional caveats

CREATE MATERIALIZED VIEW

14-28 Oracle9i SQL Reference

Examples
The following examples require the materialized logs that are created in the

"Examples" section of CREATE MATERIALIZED VIEW on page 14-5.

Creating Materialized Aggregate Views: Example The following statement creates

and populates a materialized aggregate view on the sample sh.sales table and

specifies the default refresh method, mode, and time. It uses the materialized view

log created in "Creating a Materialized View Log: Examples" on page 14-41, as well

as the two additional logs shown here:

CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID, SEQUENCE (time_id, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON products
 WITH ROWID, SEQUENCE (prod_id)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sales_mv
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS SELECT t.calendar_year, p.prod_id,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

Creating Materialized Join Views: Example The following statement creates and

populates the materialized aggregate view sales_by_month_by_state using

tables in the sample sh schema. The materialized view will be populated with data

See Also:

■ Oracle9i Data Warehousing Guide for more information on

restrictions relating to data warehousing

■ Oracle9i Advanced Replication for more information on

restrictions relating to replication

■ "Creating Materialized Join Views: Example" on page 14-28,

"Creating Subquery Materialized Views: Example" on

page 14-29 and "Creating a Nested Materialized View:

Example" on page 14-32

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-29

as soon as the statement executes successfully. By default, subsequent refreshes will

be accomplished by reexecuting the materialized view’s query:

CREATE MATERIALIZED VIEW sales_by_month_by_state
 TABLESPACE example
 PARALLEL 4
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc, c.cust_state_province,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, sales s, customers c
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

Creating Prebuilt Materialized Views: Example The following statement creates a

materialized aggregate view for the preexisting summary table, sales_sum_
table :

CREATE TABLE sales_sum_table
 (month VARCHAR2(8), state VARCHAR2(40), sales NUMBER(10,2));

CREATE MATERIALIZED VIEW sales_sum_table
 ON PREBUILT TABLE WITH REDUCED PRECISION
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc AS month,
 c.cust_state_province AS state,
 SUM(s.amount_sold) AS sales
 FROM times t, customers c, sales s
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

In this example, the materialized view has the same name as the prebuilt table and

also has the same number of columns with the same datatypes as the prebuilt table.

The WITH REDUCED PRECISION clause allows for between the precision of the

materialized view columns and the precision of the values returned by the

subquery.

Creating Subquery Materialized Views: Example The following statement creates

a subquery materialized view based on the customers and countries tables in

the sh schema at the remote database:

CREATE MATERIALIZED VIEW foreign_customers FOR UPDATE
 AS SELECT * FROM sh.customers@remote cu
 WHERE EXISTS

CREATE MATERIALIZED VIEW

14-30 Oracle9i SQL Reference

 (SELECT * FROM sh.countries@remote co
 WHERE co.country_id = cu.country_id);

Creating Primary Key Materialized Views: Example The following statement

creates the primary-key materialized view catalog on the sample table

oe.product_information :

CREATE MATERIALIZED VIEW catalog
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 1/4096
 WITH PRIMARY KEY
 AS SELECT * FROM product_information;

Creating Rowid Materialized Views: Example The following statement creates a

rowid materialized view on the sample table oe.orders :

CREATE MATERIALIZED VIEW order_data REFRESH WITH ROWID
 AS SELECT * FROM orders;

Periodic Refresh of Materialized Views: Example The following statement creates

the primary key materialized view emp_data and populates it with data from the

sample table hr.employees :

CREATE MATERIALIZED VIEW LOG ON employees
 WITH PRIMARY KEY
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW emp_data
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K NEXT 50K)
 REFRESH FAST NEXT sysdate + 7
 AS SELECT * FROM employees;

The statement does not include a START WITH parameter, so Oracle determines the

first automatic refresh time by evaluating the NEXT value using the current

SYSDATE. A materialized view log was created for the employee table, so Oracle

performs a fast refresh of the materialized view every 7 days, beginning 7 days after

the materialized view is created.

Because the materialized view conforms to the conditions for fast refresh, Oracle

will perform a fast refresh. The preceding statement also establishes storage

characteristics that Oracle uses to maintain the materialized view.

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-31

Automatic Refresh Times for Materialized Views: Example The following

statement creates the complex materialized view all_customers that queries the

employee tables on the remote and local databases:

CREATE MATERIALIZED VIEW all_customers
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K NEXT 50K)
 USING INDEX STORAGE (INITIAL 25K NEXT 25K)
 REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
 NEXT NEXT_DAY(TRUNC(SYSDATE), ’MONDAY’) + 15/24
 AS SELECT * FROM sh.customers@remote
 UNION
 SELECT * FROM sh.customers@local;

Oracle automatically refreshes this materialized view tomorrow at 11:00 a.m. and

subsequently every Monday at 3:00 p.m.. The default refresh method is FORCE.
all_emps contains a UNION operator, which is not supported for fast refresh, so

Oracle will automatically perform a complete refresh.

The preceding statement also establishes storage characteristics for both the

materialized view and the index that Oracle uses to maintain it:

■ The first establishes the sizes of the first and second extents of the materialized

view as 50 kilobytes each.

■ The second (appearing with the USING INDEX clause) establishes the sizes of

the first and second extents of the index as 25 kilobytes each.

Specifying Rollback Segments for Materialized Views: Example The following

statement creates the primary key materialized view sales_emp with rollback

segment master_seg at the remote master and rollback segment snap_seg for

the local refresh group that contains the materialized view.

CREATE MATERIALIZED VIEW sales_emp
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
 USING MASTER ROLLBACK SEGMENT master_seg
 LOCAL ROLLBACK SEGMENT snap_seg
 AS SELECT * FROM bar;

Note: This example is not relevant if your database is in

Automatic Undo Mode, because in that mode Oracle uses undo

tablespaces instead of rollback segments.

CREATE MATERIALIZED VIEW

14-32 Oracle9i SQL Reference

The following statement is incorrect and generates an error because it specifies a

segment name with a DEFAULT rollback segment:

/* The following statement is invalid. */
CREATE MATERIALIZED VIEW order_mv
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 7
 USING DEFAULT ROLLBACK SEGMENT mv_seg
 AS SELECT * FROM orders;

Creating a Fast Refreshable Materialized View: Example The following statement

creates a fast-refreshable materialized view that selects columns from the order_
items table in the sample oe schema, using the UNION set operator to restrict the

rows returned from the product_information and inventories tables using

WHERE conditions. The materialized view logs for order_items and product_
information were created in the "Examples" section of CREATE MATERIALIZED
VIEW LOG on page 14-41. This example requires a materialized view log on

oe.inventories .

CREATE MATERIALIZED VIEW LOG ON inventories
 WITH (quantity_on_hand);

CREATE MATERIALIZED VIEW warranty_orders REFRESH FAST AS
 SELECT order_id, line_item_id, product_id FROM order_items o
 WHERE EXISTS
 (SELECT * FROM inventories i WHERE o.product_id = i.product_id
 AND i.quantity_on_hand IS NOT NULL)
 UNION
 SELECT order_id, line_item_id, product_id FROM order_items
 WHERE quantity > 5;

This materialized view requires that materialized view logs be defined on order_
items (with product_id as a join column) and on inventories (with quantity_
on_hand as a filter column). See "Specifying Filter Columns for Materialized View

Logs: Example" and "Specifying Join Columns for Materialized View Logs:

Example" on page 14-42.

Creating a Nested Materialized View: Example The following example uses the

materialized view from the preceding example as a master table to create a

materialized view tailored for a particular sales representative in the sample oe
schema:

CREATE MATERIALIZED VIEW my_warranty_orders
 AS SELECT w.order_id, w.line_item_id, o.order_date

CREATE MATERIALIZED VIEW

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-33

 FROM warranty_orders w, orders o
 WHERE o.order_id = o.order_id
 AND o.sales_rep_id = 165;

CREATE MATERIALIZED VIEW LOG

14-34 Oracle9i SQL Reference

CREATE MATERIALIZED VIEW LOG

Purpose
Use the CREATE MATERIALIZED VIEW LOGstatement to create a materialized view
log, which is a table associated with the master table of a materialized view.

When DML changes are made to the master table’s data, Oracle stores rows

describing those changes in the materialized view log and then uses the

materialized view log to refresh materialized views based on the master table. This

process is called an incremental or fast refresh. Without a materialized view log,

Oracle must reexecute the materialized view query to refresh the materialized view.

This process is called a complete refresh. Usually, a fast refresh takes less time than

a complete refresh.

A materialized view log is located in the master database in the same schema as the

master table. A master table can have only one materialized view log defined on it.

Oracle can use this materialized view log to perform fast refreshes for all

fast-refreshable materialized views based on the master table.

To fast refresh a materialized join view (a materialized view containing a join), you

must create a materialized view log for each of the tables referenced by the

materialized view.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

CREATE MATERIALIZED VIEW LOG

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-35

Prerequisites
The privileges required to create a materialized view log directly relate to the

privileges necessary to create the underlying objects associated with a materialized

view log.

■ If you own the master table, you can create an associated materialized view log

if you have the CREATE TABLE privilege.

■ If you are creating a materialized view log for a table in another user’s schema,

you must have the CREATE ANY TABLE and COMMENT ANY TABLE privileges, as

well as either the SELECT privilege for the master table or SELECT ANY TABLE.

In either case, the owner of the materialized view log must have sufficient quota in

the tablespace intended to hold the materialized view log or must have the

UNLIMITED TABLESPACE system privilege.

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5, ALTER

MATERIALIZED VIEW on page 9-90, Oracle9i Database
Concepts, Oracle9i Data Warehousing Guide, and Oracle9i
Advanced Replication for information on materialized views in

general

■ ALTER MATERIALIZED VIEW LOG on page 9-110 for

information on modifying a materialized view log

■ DROP MATERIALIZED VIEW LOG on page 16-86 for

information on dropping a materialized view log

■ Oracle9i Database Concepts and Oracle9i Database Utilities for

information on using direct loader logs

See Also: Oracle9i Data Warehousing Guide for more information

about the prerequisites for creating a materialized view log

CREATE MATERIALIZED VIEW LOG

14-36 Oracle9i SQL Reference

Syntax
create_materialized_vw_log::=

(physical_attributes_clause::= on page 14-12, logging_clause::= on

page 14-37, parallel_clause::= on page 14-37, table_partitioning_
clauses on page 15-44 (in CREATE TABLE), new_values_clause::= on

page 14-37)

physical_attributes_clause ::=

CREATE MATERIALIZED VIEW LOG ON
schema .

table

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CACHE

NOCACHE parallel_clause table_partitioning_clauses

WITH

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

,

new_values_clause

;

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

CREATE MATERIALIZED VIEW LOG

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-37

(storage_clause on page 7-56)

logging_clause::=

parallel_clause ::=

new_values_clause::=

Semantics

schema
Specify the schema containing the materialized view log’s master table. If you omit

schema , Oracle assumes the master table is contained in your own schema. Oracle

creates the materialized view log in the schema of its master table. You cannot

create a materialized view log for a table in the schema of the user SYS.

table
Specify the name of the master table for which the materialized view log is to be

created.

Restriction on Master Tables of Materialized View Logs You cannot create a

materialized view log for a temporary table or for a view.

physical_attributes_clause
Use the physical_attributes_clause to establish values for physical and

storage characteristics for the materialized view log.

See Also: "Creating a Materialized View Log: Examples" on

page 14-41

LOGGING

NOLOGGING

NOPARALLEL

PARALLEL
integer

INCLUDING

EXCLUDING
NEW VALUES

CREATE MATERIALIZED VIEW LOG

14-38 Oracle9i SQL Reference

TABLESPACE Clause
Specify the tablespace in which the materialized view log is to be created. If you

omit this clause, Oracle creates the materialized view log in the default tablespace

of the schema of the materialized view log.

logging_clause
Specify either LOGGING or NOLOGGING to establish the logging characteristics for

the materialized view log. The default is the logging characteristic of the tablespace

in which the materialized view log resides.

CACHE | NOCACHE
For data that will be accessed frequently, CACHE specifies that the blocks retrieved

for this log are placed at the most recently used end of the least recently used (LRU)

list in the buffer cache when a full table scan is performed. This attribute is useful

for small lookup tables.

NOCACHEspecifies that the blocks are placed at the least recently used end of the LRU

list. The default is NOCACHE.

parallel_clause
The parallel_clause lets you indicate whether parallel operations will be

supported for the materialized view log.

See Also:

■ physical_attributes_clause on page 7-52 for a complete

description of the parameters of the physical_attributes_
clause

■ storage_clause on page 7-56 for a complete description of

the storage_clause , including default values

See Also: logging_clause on page 7-45 for a full description of

this clause

Note: NOCACHE has no effect on materialized view logs for which

you specify KEEP in the storage_clause .

See Also: CREATE TABLE on page 15-7 for information about

specifying CACHE or NOCACHE

CREATE MATERIALIZED VIEW LOG

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-39

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

table_partitioning_clauses
Use the table_partitioning_clauses to indicate that the materialized view

log is partitioned on specified ranges of values or on a hash function. Partitioning of

materialized view logs is the same as partitioning of tables.

WITH Clause
Use the WITH clause to indicate whether the materialized view log should record

the primary key, the rowid, object ID, or a combination of these row identifiers

when rows in the master are changed. You can also use this clause to add a

sequence to the materialized view log to provide additional ordering information

for its records.

This clause also specifies whether the materialized view log records additional

columns that might be referenced as filter columns (non-primary-key columns

referenced by subquery materialized views) or join columns (non-primary-key

columns that define a join in the subquery WHERE clause).

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

See Also: "Notes on the parallel_clause" for CREATE TABLE on

page 15-54

See Also: table_partitioning_clauses of CREATE TABLE
on page 15-44

CREATE MATERIALIZED VIEW LOG

14-40 Oracle9i SQL Reference

If you omit this clause, or if you specify the clause without PRIMARY KEY, ROWID, or

OBJECT ID, then Oracle stores primary key values by default. However, Oracle

does not store primary key values implicitly if you specify only OBJECT ID or

ROWID at create time. A primary key log, created either explicitly or by default,

performs additional checking on the primary key constraint.

OBJECT ID Specify OBJECT ID to indicate that the system-generated or

user-defined object identifier of every modified row should be recorded in the

materialized view log.

Restriction on OBJECT ID You can specify OBJECT ID only when creating a log

on an object table, and you cannot specify it for storage tables.

PRIMARY KEY Specify PRIMARY KEY to indicate that the primary key of all rows

changed should be recorded in the materialized view log.

ROWID Specify ROWID to indicate that the rowid of all rows changed should be

recorded in the materialized view log.

SEQUENCE Specify SEQUENCE to indicate that a sequence value providing

additional ordering information should be recorded in the materialized view log.

Sequence numbers are necessary to support fast refresh after some update

scenarios.

column Specify the columns whose values you want to be recorded in the

materialized view log for all rows that are changed. Typically these columns are

filter columns (non-primary-key columns referenced by materialized views) and

join columns (non-primary-key columns that define a join in the WHERE clause of

the subquery).

Restrictions on the WITH Clause

■ You can specify only one PRIMARY KEY, one ROWID, one OBJECT ID, and one

column list for each materialized view log.

■ Primary key columns are implicitly recorded in the materialized view log.

Therefore, you cannot specify either of the following combinations if column
contains one of the primary key columns:

See Also: Oracle9i Data Warehousing Guide for more information

on the use of sequence numbers in materialized view logs and for

examples that use this clause

CREATE MATERIALIZED VIEW LOG

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-41

WITH ... PRIMARY KEY ... (column)
WITH ... (column) ... PRIMARY KEY
WITH (column)

NEW VALUES Clause
The NEW VALUES clause lets you indicate whether Oracle saves both old and new

values in the materialized view log.

INCLUDING Specify INCLUDING to save both new and old values in the log. If this

log is for a table on which you have a single-table materialized aggregate view, and

if you want the materialized view to be eligible for fast refresh, you must specify

INCLUDING.

EXCLUDING Specify EXCLUDINGto disable the recording of new values in the log.

This is the default. You can use this clause to avoid the overhead of recording new

values. However, do not use this clause if you have a fast-refreshable single-table

materialized aggregate view defined on this table.

Examples

Creating a Materialized View Log: Examples The following statement creates a

materialized view log on the oe.customers table that specifies physical and

storage characteristics:

CREATE MATERIALIZED VIEW LOG ON customers
 PCTFREE 5

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 for information

on explicit and implicit inclusion of materialized view log

values

■ Oracle9i Advanced Replication for more information about filter

columns and join columns

■ "Specifying Filter Columns for Materialized View Logs:

Example" on page 14-42 and "Specifying Join Columns for

Materialized View Logs: Example" on page 14-42

See Also: "Including New Values in Materialized View Logs:

Example" on page 14-42

CREATE MATERIALIZED VIEW LOG

14-42 Oracle9i SQL Reference

 TABLESPACE example
 STORAGE (INITIAL 10K NEXT 10K);

This materialized view log supports fast refresh for primary key materialized views
only. The following statement creates another version of the materialized view log
with the ROWID clause, which enables fast refresh for more types of materialized
views:

CREATE MATERIALIZED VIEW LOG ON customers WITH PRIMARY KEY, ROWID;

This materialized view log makes fast refresh possible for rowid materialized views

and for materialized join views. To provide for fast refresh of materialized

aggregate views, you must also specify the SEQUENCE and INCLUDING NEW
VALUES clauses, as shown in the next statement.

Specifying Filter Columns for Materialized View Logs: Example The following

statement creates a materialized view log on the sh.sales table, and is used in

"Creating Materialized Aggregate Views: Example" on page 14-28. It specifies as

filter columns all of the columns of the table referenced in that materialized view.

CREATE MATERIALIZED VIEW LOG ON sales
 WITH ROWID, SEQUENCE(amount_sold, time_id, prod_id)
 INCLUDNG NEW VALUES;

Specifying Join Columns for Materialized View Logs: Example The following

statement creates a materialized view log on the order_items table of the sample

oe schema. The log records primary keys and product_id , which is used as a join

column in "Creating a Fast Refreshable Materialized View: Example" on page 14-32.

CREATE MATERIALIZED VIEW LOG ON order_items WITH (product_id);

Including New Values in Materialized View Logs: Example The following example

creates a materialized view log on the oe.product_information table that

specifies INCLUDING NEW VALUES:

CREATE MATERIALIZED VIEW LOG ON product_information
 WITH ROWID, (list_price, min_price, category_id)
 INCLUDING NEW VALUES;

You could create the following materialized aggregate view to use the product_
information log:

CREATE MATERIALIZED VIEW products_mv
 REFRESH FAST ON COMMIT
 AS SELECT SUM(list_price - min_price), category_id

CREATE MATERIALIZED VIEW LOG

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-43

 FROM product_information
 GROUP BY category_id;

This materialized view is eligible for fast refresh because the log it uses includes

both old and new values.

CREATE OPERATOR

14-44 Oracle9i SQL Reference

CREATE OPERATOR

Purpose
Use the CREATE OPERATOR statement to create a new operator and define its

bindings.

Operators can be referenced by indextypes and by DML and query SQL statements.

The operators, in turn, reference functions, packages, types, and other user-defined

objects.

Prerequisites
To create an operator in your own schema, you must have CREATE OPERATOR
system privilege. To create an operator in another schema, you must have the

CREATE ANY OPERATOR system privilege. In either case, you must also have

EXECUTE privilege on the functions and operators referenced.

Syntax
create_operator::=

binding_clause ::=

See Also: Oracle9i Data Cartridge Developer’s Guide and Oracle9i
Database Concepts for a discussion of these dependencies and of

operators in general

CREATE
OR REPLACE

OPERAT0R
schema .

operator binding_clause ;

BINDING (parameter_type

,

) RETURN return_type implementation_clause

,

CREATE OPERATOR

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-45

implementation_clause ::=

context_clause ::=

using_function_clause ::=

Semantics

OR REPLACE
Specify OR REPLACE to replace the definition of the operator schema object.

Restriction on Replacing an Operator You can replace the definition only if the

operator has no dependent objects (for example, indextypes supporting the

operator).

schema
Specify the schema containing the operator. If you omit schema , Oracle creates the

operator in your own schema.

operator
Specify the name of the operator to be created.

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause
COMPUTE ANCILLARY DATA

using_function_clause

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

USING
schema .

package .

type .
function_name

CREATE OPERATOR

14-46 Oracle9i SQL Reference

binding_clause
Use the binding_clause to specify one or more parameter datatypes

(parameter_type) for binding the operator to a function. The signature of each

binding (that is, the sequence of the datatypes of the arguments to the

corresponding function) must be unique according to the rules of overloading.

The parameter_type can itself be an object type. If it is, you can optionally

qualify it with its schema.

Restriction on Binding Operators You cannot specify a parameter_type of REF,
LONG, or LONG RAW.

RETURN Clause
Specify the return datatype for the binding.

The return_type can itself be an object type. If so, you can optionally qualify it

with its schema.

Restriction on Binding Return Datatype You cannot specify a return_type of

REF, LONG, or LONG RAW.

implementation_clause

ANCILLARY TO Clause
Use the ANCILLARY TO clause to indicate that the operator binding is ancillary to

the specified primary operator binding (primary_operator). If you specify this

clause, do not specify a previous binding with just one number parameter.

context_clause
Use the context_clause to specify the name of the implementation type used by

the functional implementation of the operator as a scan context.

COMPUTE ANCILLARY DATA Specify COMPUTE ANCILLARY DATAto indicate that

the operator binding computes ancillary data.

See Also: PL/SQL User’s Guide and Reference for more information

about overloading

CREATE OPERATOR

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-47

using_function_clause
The using_function_clause lets you specify the function that provides the

implementation for the binding. function_name can be a standalone function,

packaged function, type method, or a synonym for any of these.

Example

Creating User-Defined Operators: Example This example creates a very simple

functional implementation of equality and then creates an operator that uses the

function:

CREATE FUNCTION eq_f(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a = b THEN RETURN 1;
 ELSE RETURN 0;
 END IF;
END;
/

CREATE OPERATOR eq_op
 BINDING (VARCHAR2, VARCHAR2)
 RETURN NUMBER
 USING eq_f;

CREATE OUTLINE

14-48 Oracle9i SQL Reference

CREATE OUTLINE

Purpose
Use the CREATE OUTLINE statement to create a stored outline, which is a set of

attributes used by the optimizer to generate an execution plan. You can then

instruct the optimizer to use a set of outlines to influence the generation of

execution plans whenever a particular SQL statement is issued, regardless of

changes in factors that can affect optimization. You can also modify an outline so

that it takes into account changes in these factors.

Prerequisites
To create a public or private outline, you must have the CREATE ANY OUTLINE
system privilege.

If you are creating a clone outline from a source outline, you must also have the

SELECT_CATALOG_ROLE role.

To create a private outline, you must provide an outline editing table to hold the

outline data in your schema by executing the DBMS_OUTLN_EDIT.CREATE_EDIT_
TABLES procedure. You must have the EXECUTE privilege on the DBMS_OUTLN_
EDIT package to execute this procedure.

You enable or disable the use of stored outlines dynamically for an individual

session or for the system:

■ Enable the USE_STORED_OUTLINES parameter to use public outlines

Note: The SQL statement issued subsequently must be an exact

string match of the statement specified when creating the outline.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information on execution plans

■ ALTER OUTLINE on page 9-118 for information on modifying

an outline

■ ALTER SESSION on page 10-2 and ALTER SYSTEM on

page 10-20 for information on the USE_STORED_OUTLINES
and USE_PRIVATE_OUTLINES parameters

CREATE OUTLINE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-49

■ Enable the USE_PRIVATE_OUTLINES parameter to use private stored outlines.

Syntax
create_outline::=

Semantics

OR REPLACE
Specify OR REPLACE to replace an existing outline with a new outline of the same

name.

PUBLIC | PRIVATE
Specify PUBLIC if you are creating an outline for use by PUBLIC. This is the default.

Specify PRIVATE to create an outline for private use by the current session only.

The data of this outline is stored in the current schema.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information on using outlines for performance tuning

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_OUTLN_EDIT package

Note: Before first creating a private outline, you must run the

OUTLN_PKG.CREATE_EDIT_TABLES procedure to create the

required outline tables and indexes in your schema.

CREATE
OR REPLACE

PUBLIC

PRIVATE
OUTLINE

outline

FROM

PUBLIC

PRIVATE
source_outline

FOR CATEGORY category ON statement
;

CREATE OUTLINE

14-50 Oracle9i SQL Reference

outline
Specify the unique name to be assigned to the stored outline. If you do not specify

outline , the system generates an outline name.

FROM ... source_outline Clause
Use the FROM clause to create a new outline by copying an existing one. By default,

Oracle looks for source_category in the public area. If you specify PRIVATE,

Oracle will look for the outline in the current schema.

Restriction on Copying an Outline If you specify the FROM clause, you cannot

specify the ON clause.

FOR CATEGORY Clause
Specify an optional name used to group stored outlines. For example, you could

specify a category of outlines for end-of-week use and another for end-of-quarter

use. If you do not specify category , the outline is stored in the DEFAULT category.

ON Clause
Specify the SQL statement for which Oracle will create an outline when the

statement is compiled. This clause is optional only if you are creating a copy of an

existing outline using the FROM clause.

You can specify any one of the following statements:

■ SELECT

■ DELETE

■ UPDATE

■ INSERT ... SELECT

■ CREATE TABLE ... AS SELECT

Restrictions on the Outline SQL Statement

■ If you specify the ON clause, you cannot specify the FROM clause.

See Also: "Creating an Outline: Example" on page 14-51

See Also: "Creating a Private Clone Outline: Example" on

page 14-51 and "Publicizing a Private Outline to the Public Area:

Example" on page 14-51

CREATE OUTLINE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-51

■ You cannot create an outline on a multitable INSERT statement.

Example

Creating an Outline: Example The following statement creates a stored outline by

compiling the ON statement. The outline is called salaries and is stored in the

category special .

CREATE OUTLINE salaries FOR CATEGORY special
 ON SELECT last_name, salary FROM employees;

When this same SELECT statement is subsequently compiled, if the USE_STORED_
OUTLINES parameter is set to special , Oracle generates the same execution plan

as was generated when the outline salaries was created.

Creating a Private Clone Outline: Example The following statement creates a

stored private outline my_salaries based on the public category salaries
created in the preceding example. In order to create a private outline, the user

creating the private outline must have the EXECUTE privilege on the DBMS_OUTLN_
EDIT package, and must execute the CREATE_EDIT_TABLES procedure of that

package.

EXECUTE DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES;

CREATE OR REPLACE PRIVATE OUTLINE my_salaries
 FROM salaries;

Publicizing a Private Outline to the Public Area: Example The following

statement copies back (or publicizes) a private outline to the public area after

private editing:

CREATE OR REPLACE OUTLINE public_salaries
 FROM PRIVATE my_salaries;

Note: You can specify multiple outlines for a single statement, but

each outline for the same statement must be in a different category.

CREATE PACKAGE

14-52 Oracle9i SQL Reference

CREATE PACKAGE

Purpose
Use the CREATE PACKAGEstatement to create the specification for a stored package,

which is an encapsulated collection of related procedures, functions, and other

program objects stored together in the database. The specification declares these

objects.

Prerequisites
Before a package can be created, the user SYS must run a SQL script commonly

called DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have the CREATE PROCEDURE
system privilege. To create a package in another user’s schema, you must have the

CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

See Also:

■ CREATE PACKAGE BODY on page 14-57 for information on

specifying the implementation of the package

■ CREATE FUNCTION on page 13-52 and CREATE

PROCEDURE on page 14-64 for information on creating

standalone functions and procedures

■ ALTER PACKAGE on page 9-120 for information on modifying

a package

■ DROP PACKAGE on page 16-91 for information on dropping a

package

■ Oracle9i Application Developer’s Guide - Fundamentals and

Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed discussions of packages and how to use them

See Also: PL/SQL User’s Guide and Reference

CREATE PACKAGE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-53

Syntax
create_package::=

invoker_rights_clause ::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the package specification if it already exists. Use

this clause to change the specification of an existing package without dropping,

re-creating, and regranting object privileges previously granted on the package. If

you change a package specification, Oracle recompiles it.

Users who had previously been granted privileges on a redefined package can still

access the package without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the package. If you omit schema , Oracle creates the

package in your own schema.

package
Specify the name of the package to be created.

See Also: ALTER PACKAGE on page 9-120 for information on

recompiling package specifications

CREATE
OR REPLACE

PACKAGE
schema .

package

invoker_rights_clause IS

AS
pl/sql_package_spec ;

AUTHID
CURRENT_USER

DEFINER

CREATE PACKAGE

14-54 Oracle9i SQL Reference

If creating the package results in compilation errors, Oracle returns an error. You

can see the associated compiler error messages with the SQL*PLUS command SHOW
ERRORS.

invoker_rights_clause
The invoker_rights_clause lets you specify whether the functions and

procedures in the package execute with the privileges and in the schema of the user

who owns it or with the privileges and in the schema of CURRENT_USER. This

specification applies to the corresponding package body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the package.

AUTHID CURRENT_USER
Specify CURRENT_USER to indicate that the package executes with the privileges of

CURRENT_USER. This clause creates an invoker-rights package.

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External names

in all other statements resolve in the schema in which the package resides.

AUTHID DEFINER
Specify DEFINER to indicate that the package executes with the privileges of the

owner of the schema in which the package resides and that external names resolve

in the schema where the package resides. This is the default and creates a

definer-rights package.

pl/sql_package_spec
Specify the package specification, which can contain type definitions, cursor

declarations, variable declarations, constant declarations, exception declarations,

PL/SQL subprogram specifications, and call specifications (declarations of a C or

Java routine expressed in PL/SQL).

See Also:

■ PL/SQL User’s Guide and Reference

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

CREATE PACKAGE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-55

Example

Creating a Package: Example The following SQL statement creates the

specification of the emp_mgmt package (PL/SQL is show in italics):

CREATE OR REPLACE PACKAGE emp_mgmt AS
 FUNCTION hire (last_name VARCHAR2, job_id VARCHAR2,

 manager_id NUMBER, salary NUMBER,
 commission_pct NUMBER, department_id NUMBER)
 RETURN NUMBER;
 FUNCTION create_dept(department_id NUMBER, location_id NUMBER)
 RETURN NUMBER;
 PROCEDURE remove_emp(employee_id NUMBER);
 PROCEDURE remove_dept(department_id NUMBER);
 PROCEDURE increase_sal(employee_id NUMBER, salary_incr NUMBER);
 PROCEDURE increase_comm(employee_id NUMBER, comm_incr NUMBER);
 no_comm EXCEPTION;
 no_sal EXCEPTION;
END emp_mgmt;
/

The specification for the emp_mgmt package declares the following public program

objects:

■ The functions hire and create_dept

■ The procedures remove_emp , remove_dept , increase_sal , and

increase_comm

■ The exceptions no_comm and no_sal

All of these objects are available to users who have access to the package. After

creating the package, you can develop applications that call any of the package’s

public procedures or functions or raise any of the package’s public exceptions.

See Also:

■ PL/SQL User’s Guide and Reference for more information on

PL/SQL package program units

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on Oracle supplied packages

■ "Restrictions on User-defined Functions" on page 13-56 for a list

of restrictions on user-defined functions in a package

CREATE PACKAGE

14-56 Oracle9i SQL Reference

Before you can call this package’s procedures and functions, you must define these

procedures and functions in the package body. For an example of a CREATE
PACKAGE BODY statement that creates the body of the emp_mgmt package, see

CREATE PACKAGE BODY on page 14-57.

CREATE PACKAGE BODY

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-57

CREATE PACKAGE BODY

Purpose
Use the CREATE PACKAGE BODY statement to create the body of a stored package,

which is an encapsulated collection of related procedures, stored functions, and

other program objects stored together in the database. The body defines these

objects.

Packages are an alternative to creating procedures and functions as standalone

schema objects.

Prerequisites
Before a package can be created, the user SYS must run a SQL script commonly

called DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

To create a package in your own schema, you must have CREATE PROCEDURE
system privilege. To create a package in another user’s schema, you must have

CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE BODY statement inside an Oracle precompiler

program, you must terminate the statement with the keyword END-EXEC followed

by the embedded SQL statement terminator for the specific language.

See Also:

■ CREATE FUNCTION on page 13-52 and CREATE

PROCEDURE on page 14-64 for information on creating

standalone functions and procedures

■ CREATE PACKAGE on page 14-52 for a discussion of

packages, including how to create packages

■ "Examples" on page 14-59 for some illustrations

■ ALTER PACKAGE on page 9-120 for information on modifying

a package

■ DROP PACKAGE on page 16-91 for information on removing a

package from the database

See Also: PL/SQL User’s Guide and Reference

CREATE PACKAGE BODY

14-58 Oracle9i SQL Reference

Syntax
create_package_body::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the package body if it already exists. Use this

clause to change the body of an existing package without dropping, re-creating, and

regranting object privileges previously granted on it. If you change a package body,

Oracle recompiles it.

Users who had previously been granted privileges on a redefined package can still

access the package without being regranted the privileges.

schema
Specify the schema to contain the package. If you omit schema , Oracle creates the

package in your current schema.

package
Specify the name of the package to be created.

pl/sql_package_body
Specify the package body, which can contain PL/SQL subprogram bodies or call

specifications (declarations of a C or Java routine expressed in PL/SQL).

See Also: ALTER PACKAGE on page 9-120 for information on

recompiling package bodies

CREATE
OR REPLACE

PACKAGE BODY
schema .

package

IS

AS
pl/sql_package_body ;

CREATE PACKAGE BODY

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-59

Examples

Creating a Package Body: Example This SQL statement creates the body of the

emp_mgmt package created in "Creating a Package: Example" on page 14-55

(PL/SQL is shown in italics):

CREATE OR REPLACE PACKAGE BODY emp_mgmt AS
tot_emps NUMBER;

 tot_depts NUMBER;
FUNCTION hire
 (last_name VARCHAR2, job_id VARCHAR2,
 manager_id NUMBER, salary NUMBER,
 commission_pct NUMBER, department_id NUMBER)
 RETURN NUMBER IS new_empno NUMBER;
BEGIN
 SELECT employees_seq.NEXTVAL
 INTO new_empno
 FROM DUAL;
 INSERT INTO employees
 VALUES (new_empno, ’First’, ’Last’,’first.last@oracle.com’,
 ’(123)123-1234’,’18-JUN-02’,’IT_PROG’,90000000,00,
 100,110);
 tot_emps := tot_emps + 1;
 RETURN(new_empno);
END;
FUNCTION create_dept(department_id NUMBER, location_id NUMBER)
 RETURN NUMBER IS
 new_deptno NUMBER;
 BEGIN
 SELECT departments_seq.NEXTVAL
 INTO new_deptno
 FROM dual;
 INSERT INTO departments
 VALUES (new_deptno, ’department name’, 100, 1700);

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information on writing PL/SQL or C package program units

■ Oracle9i Java Stored Procedures Developer’s Guide for information

on Java package program units

■ "Restrictions on User-defined Functions" on page 13-56 for a list

of restrictions on user-defined functions in a package

CREATE PACKAGE BODY

14-60 Oracle9i SQL Reference

 tot_depts := tot_depts + 1;
 RETURN(new_deptno);
 END;
PROCEDURE remove_emp (employee_id NUMBER) IS
 BEGIN
 DELETE FROM employees
 WHERE employees.employee_id = remove_emp.employee_id;
 tot_emps := tot_emps - 1;
 END;
PROCEDURE remove_dept(department_id NUMBER) IS
 BEGIN
 DELETE FROM departments
 WHERE departments.department_id = remove_dept.department_id;
 tot_depts := tot_depts - 1;
 SELECT COUNT(*) INTO tot_emps FROM employees;
 END;
PROCEDURE increase_sal(employee_id NUMBER, salary_incr NUMBER) IS
 curr_sal NUMBER;
 BEGIN
 SELECT salary INTO curr_sal FROM employees
 WHERE employees.employee_id = increase_sal.employee_id;
 IF curr_sal IS NULL
 THEN RAISE no_sal;
 ELSE
 UPDATE employees
 SET salary = salary + salary_incr
 WHERE employee_id = employee_id;
 END IF;
 END;
PROCEDURE increase_comm(employee_id NUMBER, comm_incr NUMBER) IS
 curr_comm NUMBER;
 BEGIN
 SELECT commission_pct
 INTO curr_comm
 FROM employees
 WHERE employees.employee_id = increase_comm.employee_id;
 IF curr_comm IS NULL
 THEN RAISE no_comm;
 ELSE
 UPDATE employees
 SET commission_pct = commission_pct + comm_incr;
 END IF;
 END;
END emp_mgmt;
/

CREATE PACKAGE BODY

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-61

The package body defines the public program objects declared in the package

specification:

■ The functions hire and create_dept

■ The procedures remove_emp , remove_dept , increase_sal , and

increase_comm

These objects are declared in the package specification, so they can be called by

application programs, procedures, and functions outside the package. For example,

if you have access to the package, you can create a procedure increase_all_
comms separate from the emp_mgmt package that calls the increase_comm
procedure.

These objects are defined in the package body, so you can change their definitions

without causing Oracle to invalidate dependent schema objects. For example, if you

subsequently change the definition of hire , Oracle need not recompile increase_
all_comms before executing it.

The package body in this example also declares private program objects, the

variables tot_emps and tot_depts . These objects are declared in the package

body rather than the package specification, so they are accessible to other objects in

the package, but they are not accessible outside the package. For example, you

cannot develop an application that explicitly changes the value of the variable tot_
depts . However, the function create_dept is part of the package, so create_
dept can change the value of tot_depts .

CREATE PFILE

14-62 Oracle9i SQL Reference

CREATE PFILE

Purpose
Use the CREATE PFILEstatement to export a binary server parameter file into a text

initialization parameter file. Creating a text parameter file is a convenient way to get

a listing of the current parameter settings being used by the database, and it lets

you edit the file easily in a text editor and then convert it back into a server

parameter file using the CREATE SPFILE statement.

Upon successful execution of this statement, Oracle creates a text parameter file on

the server. In a Real Application Clusters environment, it will contain all parameter

settings of all instances. It will also contain any comments that appeared on the

same line with a parameter setting in the server parameter file.

Prerequisites
You must have the SYSDBA or the SYSOPER role to execute this statement. You can

execute this statement either before or after instance startup.

Syntax
create_pfile::=

See Also:

■ CREATE SPFILE on page 14-94 for information on server

parameter files

■ Oracle9i Database Administrator’s Guide for information on

pre-Oracle9i text initialization parameter files and Oracle9i
binary server parameter files

■ Oracle9i Real Application Clusters Administration for information

on using server parameter files in a Real Application Clusters

environment

CREATE PFILE
= ’ pfile_name ’

FROM SPFILE
= ’ spfile_name ’

;

CREATE PFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-63

Semantics

pfile_name
Specify the name of the text parameter file you want to create. If you do not specify

pfile_name , Oracle uses the platform-specific default initialization parameter file

name.

spfile_name
Specify the name of the binary server parameter from which you want to create a

text file.

■ If you specify spfile_name , the file must exist on the server. If the file does

not reside in the default directory for server parameter files on your operating

system, you must specify the full path.

■ If you do not specify spfile_name , Oracle looks in the default directory for

server parameter files on your operating system, for the platform-specific

default server parameter file name, and uses that file. If that file does not exist

in the expected directory, Oracle returns an error.

Examples

Creating a Parameter File: Example The following example creates a text

parameter file my_init.ora from a binary server parameter file

production.ora :

CREATE PFILE = ’my_init.ora’ FROM SPFILE = ’s_params.ora’;

See Also: Oracle9i Database Administrator’s Guide for Windows (or

other appropriate operating system specific documentation) for

default parameter file names

Note: Typically you will need to specify the full path and filename

for parameter files on your operating system. Please refer to your

Oracle operating system documentation for path information.

CREATE PROCEDURE

14-64 Oracle9i SQL Reference

CREATE PROCEDURE

Purpose
Use the CREATE PROCEDURE statement to create a standalone stored procedure or a

call specification.

A procedure is a group of PL/SQL statements that you can call by name. A call
specification ("call spec") declares a Java method or a third-generation language

(3GL) routine so that it can be called from SQL and PL/SQL. The call spec tells

Oracle which Java method to invoke when a call is made. It also tells Oracle what

type conversions to make for the arguments and return value.

Stored procedures offer advantages in the areas of development, integrity, security,

performance, and memory allocation.

Prerequisites
Before creating a procedure, the user SYS must run a SQL script commonly called

DBMSSTDX.SQL. The exact name and location of this script depends on your

operating system.

To create a procedure in your own schema, you must have the CREATE PROCEDURE
system privilege. To create a procedure in another user’s schema, you must have

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information on stored procedures, including how to call stored

procedures and for information about registering external procedures

■ CREATE FUNCTION on page 13-52 for information specific to

functions, which are similar to procedures in many ways

■ CREATE PACKAGE on page 14-52 for information on creating

packages. (The CREATE PROCEDURE statement creates a procedure as a

standalone schema object. You can also create a procedure as part of a

package.)

■ ALTER PROCEDURE on page 9-124 and DROP PROCEDURE on

page 16-93 for information on modifying and dropping a standalone

procedure

■ CREATE LIBRARY on page 14-2 for more information about shared

libraries

CREATE PROCEDURE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-65

CREATE ANY PROCEDURE system privilege. To replace a procedure in another

schema, you must have the ALTER ANY PROCEDURE system privilege.

To invoke a call spec, you may need additional privileges (for example, EXECUTE
privileges on the C library for a C call spec).

To embed a CREATE PROCEDURE statement inside an Oracle precompiler program,

you must terminate the statement with the keyword END-EXEC followed by the

embedded SQL statement terminator for the specific language.

Syntax
create_procedure::=

invoker_rights_clause ::=

call_spec ::=

See Also: PL/SQL User’s Guide and Reference or Oracle9i Java Stored
Procedures Developer’s Guide for more information

CREATE
OR REPLACE

PROCEDURE
schema .

procedure

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

invoker_rights_clause IS

AS

pl/sql_subprogram_body

call_spec
;

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

CREATE PROCEDURE

14-66 Oracle9i SQL Reference

Java_declaration::=

C_declaration::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the procedure if it already exists. Use this clause to

change the definition of an existing procedure without dropping, re-creating, and

regranting object privileges previously granted on it. If you redefine a procedure,

Oracle recompiles it.

Users who had previously been granted privileges on a redefined procedure can

still access the procedure without being regranted the privileges.

If any function-based indexes depend on the package, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the procedure. If you omit schema , Oracle creates the

procedure in your current schema.

procedure
Specify the name of the procedure to be created.

If creating the procedure results in compilation errors, Oracle returns an error. You

can see the associated compiler error messages with the SQL*Plus command SHOW
ERRORS.

See Also: ALTER PROCEDURE on page 9-124 for information on

recompiling procedures

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

CREATE PROCEDURE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-67

argument
Specify the name of an argument to the procedure. If the procedure does not accept

arguments, you can omit the parentheses following the procedure name.

IN Specify IN to indicate that you must specify a value for the argument when

calling the procedure.

OUT Specify OUT to indicate that the procedure passes a value for this argument

back to its calling environment after execution.

IN OUT Specify IN OUT to indicate that you must specify a value for the argument

when calling the procedure and that the procedure passes a value back to its calling

environment after execution.

If you omit IN , OUT, and IN OUT, the argument defaults to IN .

NOCOPY Specify NOCOPY to instruct Oracle to pass this argument as fast as

possible. This clause can significantly enhance performance when passing a large

value like a record, an index-by table, or a varray to an OUT or IN OUT parameter.

(IN parameter values are always passed NOCOPY.)

■ When you specify NOCOPY, assignments made to a package variable may show

immediately in this parameter (or assignments made to this parameter may

show immediately in a package variable) if the package variable is passed as

the actual assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may

be visible immediately through both names if the same variable is passed to

both.

■ If the procedure is exited with an unhandled exception, any assignment made

to this parameter may be visible in the caller’s variable.

These effects may or may not occur on any particular call. You should use NOCOPY
only when these effects would not matter.

datatype Specify the datatype of the argument. An argument can have any

datatype supported by PL/SQL.

Datatypes cannot specify length, precision, or scale. For example, VARCHAR2(10) is

not valid, but VARCHAR2 is valid. Oracle derives the length, precision, and scale of

an argument from the environment from which the procedure is called.

CREATE PROCEDURE

14-68 Oracle9i SQL Reference

invoker_rights_clause
The invoker_rights_clause lets you specify whether the procedure executes

with the privileges and in the schema of the user who owns it or with the privileges

and in the schema of CURRENT_USER.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the procedure.

AUTHID CURRENT_USER
Specify CURRENT_USER to indicate that the procedure executes with the privileges

of CURRENT_USER. This clause creates an invoker-rights procedure.

This clause also specifies that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External names

in all other statements resolve in the schema in which the procedure resides.

AUTHID DEFINER
Specify DEFINER to indicate that the procedure executes with the privileges of the

owner of the schema in which the procedure resides, and that external names

resolve in the schema where the procedure resides. This is the default and creates a

definer-rights procedure.

IS | AS Clause

pl/sql_subprogram_body
Declare the procedure in a PL/SQL subprogram body.

call_spec
Use the call_spec to map a Java or C method name, parameter types, and return

type to their SQL counterparts.

See Also:

■ PL/SQL User’s Guide and Reference

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on PL/SQL subprograms

CREATE PROCEDURE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-69

In Java_declaration , ’string ’ identifies the Java implementation of the

method.

AS EXTERNAL The AS EXTERNAL clause is an alternative way of declaring a C

method. This clause has been deprecated and is supported for backward

compatibility only. Oracle Corporation recommends that you use the AS LANGUAGE
C syntax.

Examples

Creating a Procedure: Example The following statement creates the procedure

remove_emp in the schema hr (PL/SQL is shown in italics):

CREATE PROCEDURE remove_emp (employee_id NUMBER) AS
tot_emps NUMBER;

 BEGIN
 DELETE FROM employees
 WHERE employees.employee_id = remove_emp.employee_id;
 tot_emps := tot_emps - 1;
 END ;
/

The remove_emp procedure removes a specified employee. When you call the

procedure, you must specify the employee_id of the employee to be removed. The

argument’s datatype is NUMBER.

The procedure uses a DELETE statement to remove from the employee s table the

row of employee_id .

See Also:

■ Oracle9i Java Stored Procedures Developer’s Guide for an

explanation of the parameters and semantics of the Java_
declaration

■ Oracle9i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

See Also: "Creating a Package Body: Example" on page 14-59 to

see how to incorporate this procedure into a package

CREATE PROCEDURE

14-70 Oracle9i SQL Reference

In the following example, external procedure c_find_root expects a pointer as a

parameter. Procedure find_root passes the parameter by reference using the BY
REFERENCE phrase (PL/SQL is shown in italics):

CREATE PROCEDURE find_root
 (x IN REAL)
 IS LANGUAGE C
 NAME c_find_root
 LIBRARY c_utils
 PARAMETERS (x BY REFERENCE) ;

CREATE PROFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-71

CREATE PROFILE

Purpose
Use the CREATE PROFILE statement to create a profile, which is a set of limits on

database resources. If you assign the profile to a user, that user cannot exceed these

limits.

Prerequisites
To create a profile, you must have CREATE PROFILE system privilege.

To specify resource limits for a user, you must:

■ Enable resource limits dynamically with the ALTER SYSTEM statement or with

the initialization parameter RESOURCE_LIMIT. (This parameter does not apply

to password resources. Password resources are always enabled.)

■ Create a profile that defines the limits using the CREATE PROFILE statement

■ Assign the profile to the user using the CREATE USER or ALTER USER statement

Syntax
create_profile::=

See Also: Oracle9i Database Administrator’s Guide for a detailed

description and explanation of how to use password management

and protection

See Also:

■ ALTER SYSTEM on page 10-20 for information on enabling

resource limits dynamically

■ Oracle9i Database Reference for information on the RESOURCE_
LIMIT parameter

■ CREATE USER on page 16-32 and ALTER USER on page 12-22

for information on profiles

CREATE PROFILE profile LIMIT
resource_parameters

password_parameters
;

CREATE PROFILE

14-72 Oracle9i SQL Reference

resource_parameters ::=

password_parameters ::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

CREATE PROFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-73

Semantics

profile
Specify the name of the profile to be created. Use profiles to limit the database

resources available to a user for a single call or a single session.

Oracle enforces resource limits in the following ways:

■ If a user exceeds the CONNECT_TIME or IDLE_TIME session resource limit,

Oracle rolls back the current transaction and ends the session. When the user

process next issues a call, Oracle returns an error.

■ If a user attempts to perform an operation that exceeds the limit for other

session resources, Oracle aborts the operation, rolls back the current statement,

and immediately returns an error. The user can then commit or roll back the

current transaction, and must then end the session.

■ If a user attempts to perform an operation that exceeds the limit for a single call,

Oracle aborts the operation, rolls back the current statement, and returns an

error, leaving the current transaction intact.

UNLIMITED
When specified with a resource parameter, UNLIMITED indicates that a user

assigned this profile can use an unlimited amount of this resource. When specified

with a password parameter, UNLIMITED indicates that no limit has been set for the

parameter.

Notes:

■ You can use fractions of days for all parameters that limit time,

with days as units. For example, 1 hour is 1/24 and 1 minute is

1/1440.

■ You can specify resource limits for users regardless of whether

the resource limits are enabled. However, Oracle does not

enforce the limits until you enable them.

See Also: "Creating a Profile: Example" on page 14-76

CREATE PROFILE

14-74 Oracle9i SQL Reference

DEFAULT
Specify DEFAULT if you want to omit a limit for this resource in this profile. A user

assigned this profile is subject to the limit for this resource specified in the DEFAULT
profile. The DEFAULT profile initially defines unlimited resources. You can change

those limits with the ALTER PROFILE statement.

Any user who is not explicitly assigned a profile is subject to the limits defined in

the DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits

limits for some resources or specifies DEFAULTfor some limits, the user is subject to

the limits on those resources defined by the DEFAULT profile.

resource_parameters

SESSIONS_PER_USER Specify the number of concurrent sessions to which you

want to limit the user.

CPU_PER_SESSION Specify the CPU time limit for a session, expressed in

hundredth of seconds.

CPU_PER_CALL Specify the CPU time limit for a call (a parse, execute, or fetch),

expressed in hundredths of seconds.

CONNECT_TIME Specify the total elapsed time limit for a session, expressed in

minutes.

IDLE_TIME Specify the permitted periods of continuous inactive time during a

session, expressed in minutes. Long-running queries and other operations are not

subject to this limit.

LOGICAL_READS_PER_SESSION Specify the permitted number of data blocks

read in a session, including blocks read from memory and disk.

LOGICAL_READS_PER_CALL Specify the permitted the number of data blocks

read for a call to process a SQL statement (a parse, execute, or fetch).

PRIVATE_SGA Specify the amount of private space a session can allocate in the

shared pool of the system global area (SGA), expressed in bytes. Use K or M to

specify this limit in kilobytes or megabytes.

CREATE PROFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-75

COMPOSITE_LIMIT Specify the total resource cost for a session, expressed in

service units. Oracle calculates the total service units as a weighted sum of CPU_
PER_SESSION, CONNECT_TIME, LOGICAL_READS_PER_SESSION, and PRIVATE_
SGA.

If you specify expr for any of these parameters, the expression can be of any form

except scalar subquery expression.

password_parameters

FAILED_LOGIN_ATTEMPTS Specify the number of failed attempts to log in to the

user account before the account is locked.

PASSWORD_LIFE_TIME Specify the number of days the same password can be

used for authentication. The password expires if it is not changed within this

period, and further connections are rejected.

PASSWORD_REUSE_TIME Specify the number of days before which a password

cannot be reused. If you set PASSWORD_REUSE_TIME to an integer value, then you

must set PASSWORD_REUSE_MAX to UNLIMITED.

PASSWORD_REUSE_MAX Specify the number of password changes required

before the current password can be reused. If you set PASSWORD_REUSE_MAX to an

integer value, then you must set PASSWORD_REUSE_TIME to UNLIMITED.

PASSWORD_LOCK_TIME Specify the number of days an account will be locked

after the specified number of consecutive failed login attempts.

Note: This limit applies only if you are using Shared Server

architecture. The private space for a session in the SGA includes

private SQL and PL/SQL areas, but not shared SQL and PL/SQL

areas.

See Also: ALTER RESOURCE COST on page 9-131 for

information on how to specify the weight for each session resource

See Also: "Setting Profile Resource Limits: Example" on

page 14-77

CREATE PROFILE

14-76 Oracle9i SQL Reference

PASSWORD_GRACE_TIME Specify the number of days after the grace period

begins during which a warning is issued and login is allowed. If the password is

not changed during the grace period, the password expires.

PASSWORD_VERIFY_FUNCTION The PASSWORD_VERIFY_FUNCTIONclause lets

a PL/SQL password complexity verification script be passed as an argument to the

CREATE PROFILE statement. Oracle provides a default script, but you can create

your own routine or use third-party software instead.

■ For function , specify the name of the password complexity verification

routine.

■ Specify NULL to indicate that no password verification is performed.

Restrictions on Password Parameters

■ If PASSWORD_REUSE_TIME is set to an integer value, PASSWORD_REUSE_MAX
must be set to UNLIMITED. If PASSWORD_REUSE_MAX is set to an integer

value, PASSWORD_REUSE_TIME must be set to UNLIMITED.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to

UNLIMITED, then Oracle uses neither of these password resources.

■ If PASSWORD_REUSE_MAX is set to DEFAULT and PASSWORD_REUSE_TIME is

set to UNLIMITED, then Oracle uses the PASSWORD_REUSE_MAX value defined

in the DEFAULT profile.

■ If PASSWORD_REUSE_TIME is set to DEFAULT and PASSWORD_REUSE_MAX is

set to UNLIMITED, then Oracle uses the PASSWORD_REUSE_TIMEvalue defined

in the DEFAULT profile.

■ If both PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX are set to

DEFAULT, then Oracle uses whichever value is defined in the DEFAULT profile.

Examples

Creating a Profile: Example The following statement creates the profile new_
profile :

CREATE PROFILE new_profile
 LIMIT PASSWORD_REUSE_MAX DEFAULT
 PASSWORD_REUSE_TIME UNLIMITED;

See Also: "Setting Profile Password Limits: Example" on

page 14-77

CREATE PROFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-77

Setting Profile Resource Limits: Example The following statement creates the

profile app_user :

CREATE PROFILE app_user LIMIT
 SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3000
 CONNECT_TIME 45
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1000
 PRIVATE_SGA 15K
 COMPOSITE_LIMIT 5000000;

If you then assign the app_user profile to a user, the user is subject to the

following limits in subsequent sessions:

■ The user can have any number of concurrent sessions.

■ In a single session, the user can consume an unlimited amount of CPU time.

■ A single call made by the user cannot consume more than 30 seconds of CPU

time.

■ A single session cannot last for more than 45 minutes.

■ In a single session, the number of data blocks read from memory and disk is

subject to the limit specified in the DEFAULT profile.

■ A single call made by the user cannot read more than 1000 data blocks from

memory and disk.

■ A single session cannot allocate more than 15 kilobytes of memory in the SGA.

■ In a single session, the total resource cost cannot exceed 5 million service units.

The formula for calculating the total resource cost is specified by the ALTER
RESOURCE COST statement.

■ Since the system_manager profile omits a limit for IDLE_TIME and for

password limits, the user is subject to the limits on these resources specified in

the DEFAULT profile.

Setting Profile Password Limits: Example The following statement creates the

same app_user2 profile with password limits values set:

CREATE PROFILE app_user2 LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60

CREATE PROFILE

14-78 Oracle9i SQL Reference

 PASSWORD_REUSE_MAX UNLIMITED
 PASSWORD_VERIFY_FUNCTION verify_function
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10;

This example uses Oracle’s password verification function, verify_function .

Please refer to Oracle9i Database Administrator’s Guide for information on using this

verification function provided by Oracle or designing your own verification

function.

CREATE ROLE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-79

CREATE ROLE

Purpose
Use the CREATE ROLEstatement to create a role, which is a set of privileges that can

be granted to users or to other roles. You can use roles to administer database

privileges. You can add privileges to a role and then grant the role to a user. The

user can then enable the role and exercise the privileges granted by the role.

A role contains all privileges granted to the role and all privileges of other roles

granted to it. A new role is initially empty. You add privileges to a role with the

GRANT statement.

When you create a role that is NOT IDENTIFIED or is IDENTIFIED EXTERNALLY
or BYpassword , Oracle grants you the role with ADMIN OPTION. However, when

you create a role IDENTIFIED GLOBALLY, Oracle does not grant you the role.

Prerequisites
You must have CREATE ROLE system privilege.

See Also:

■ GRANT on page 17-29 for information on granting roles

■ ALTER USER on page 12-22 for information on enabling roles

■ ALTER ROLE on page 9-134 for information on modifying a

role

■ DROP ROLE on page 16-97 for information on removing a role

from the database

■ SET ROLE on page 18-47 for information on enabling and

disabling roles for the current session

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide for a

detailed description and explanation of using global roles

CREATE ROLE

14-80 Oracle9i SQL Reference

Syntax
create_role::=

Semantics

role
Specify the name of the role to be created. Oracle recommends that the role contain

at least one single-byte character regardless of whether the database character set

also contains multibyte characters.

Some roles are defined by SQL scripts provided on your distribution media.

NOT IDENTIFIED Clause
Specify NOT IDENTIFIED to indicate that this role is authorized by the database

and that no password is required to enable the role.

IDENTIFIED Clause
Use the IDENTIFIED clause to indicate that a user must be authorized by the

specified method before the role is enabled with the SET ROLE statement.

BY password The BYpassword clause lets you create a local role and indicates

that the user must specify the password to Oracle when enabling the role. The

password can contain only single-byte characters from your database character set

regardless of whether this character set also contains multibyte characters.

USING package The USINGpackage clause lets you create an application role,

which is a role that can be enabled only by applications using an authorized

See Also: GRANT on page 17-29 for a list of these predefined

roles

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING
schema .

package

EXTERNALLY

GLOBALLY
;

CREATE ROLE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-81

package. If you do not specify schema , Oracle assumes the package is in your own

schema.

EXTERNALLY Specify EXTERNALLY to create an external role. An external user

must be authorized by an external service (such as an operating system or

third-party service) before enabling the role.

Depending on the operating system, the user may have to specify a password to the

operating system before the role is enabled.

GLOBALLY Specify GLOBALLY to create a global role. A global user must be

authorized to use the role by the enterprise directory service before the role is

enabled with the SET ROLE statement, or at login.

If you omit both the NOT IDENTIFIED clause and the IDENTIFIED clause, the role

defaults to NOT IDENTIFIED .

Examples

Creating a Role: Example The following statement creates the role dw_manager :

CREATE ROLE dw_manager;

Users who are subsequently granted the dw_manager will inherit all of the

privileges that have been granted to this role.

You can add a layer of security to roles by specifying a password, as in the

following example:

CREATE ROLE dw_manager
 IDENTIFIED BY warehouse;

Users who are subsequently granted the dw_manager role must specify the

password warehouse to enable the role with the SET ROLE statement.

The following statement creates global role warehouse_user :

CREATE ROLE warehouse_user IDENTIFIED GLOBALLY;

The following statement creates the same role as an external role:

CREATE ROLE warehouse_user IDENTIFIED EXTERNALLY;

CREATE ROLLBACK SEGMENT

14-82 Oracle9i SQL Reference

CREATE ROLLBACK SEGMENT

Purpose
Use the CREATE ROLLBACK SEGMENT statement to create a rollback segment,
which is an object that Oracle uses to store data necessary to reverse, or undo,

changes made by transactions.

The information in this section assumes that your database is running in rollback

undo mode (the UNDO_MANAGEMENT initialization parameter is set to MANUAL or

not set at all).

If your database is running in Automatic Undo Management mode (the UNDO_
MANAGEMENT initialization parameter is set to AUTO), then user-created rollback

segments are irrelevant. In this case, Oracle returns an error in response to any

CREATE ROLLBACK SEGMENT or ALTER ROLLBACK SEGMENT statement. To

suppress these errors, set the UNDO_SUPPRESS_ERRORS parameter to TRUE.

Further, if your database has a locally managed SYSTEM tablespace, then you

cannot create rollback segments in any dictionary-managed tablespace. Instead, you

must

■ Use the Automatic Undo Management feature, which uses undo tablespaces

instead of rollback segments to hold undo data, or

■ Create locally managed tablespaces to hold the rollback segments.

Oracle Corporation recommends that you use Automatic Undo Management.

Notes:

■ A tablespace can have multiple rollback segments. Generally,

multiple rollback segments improve performance.

■ The tablespace must be online for you to add a rollback

segment to it.

■ When you create a rollback segment, it is initially offline. To

make it available for transactions by your Oracle instance,

bring it online using the ALTER ROLLBACK SEGMENTstatement.

To bring it online automatically whenever you start up the

database, add the segment’s name to the value of the

ROLLBACK_SEGMENTS initialization parameter.

CREATE ROLLBACK SEGMENT

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-83

To use objects in a tablespace other than the SYSTEM tablespace:

■ If you are running the database in rollback undo mode, at least one rollback

segment (other than the SYSTEM rollback segment) must be online.

■ If you are running the database in Automatic Undo Management mode, at least

one UNDO tablespace must be online.

Prerequisites
To create a rollback segment, you must have CREATE ROLLBACK SEGMENT system

privilege.

Syntax
create_rollback_segment::=

(storage_clause::= on page 7-58)

Keyword and Parameters

PUBLIC
Specify PUBLIC to indicate that the rollback segment is public and is available to

any instance. If you omit this clause, the rollback segment is private and is available

only to the instance naming it in its initialization parameter ROLLBACK_SEGMENTS.

See Also:

■ ALTER ROLLBACK SEGMENT on page 9-136 for information

on altering a rollback segment

■ DROP ROLLBACK SEGMENT on page 16-98 for information

on removing a rollback segment

■ Oracle9i Database Reference for information on the UNDO_
MANAGEMENT and UNDO_SUPPRESS_ERRORS parameters

■ Oracle9i Database Administrator’s Guide for information on

Automatic Undo Management mode

CREATE
PUBLIC

ROLLBACK SEGMENT rollback_segment

TABLESPACE tablespace

storage_clause
;

CREATE ROLLBACK SEGMENT

14-84 Oracle9i SQL Reference

rollback_segment
Specify the name of the rollback segment to be created.

TABLESPACE
Use the TABLESPACE clause to identify the tablespace in which the rollback

segment is created. If you omit this clause, Oracle creates the rollback segment in

the SYSTEM tablespace.

storage_clause
The storage_clause lets you specify storage characteristics for the rollback

segment.

Note: Oracle must access rollback segments frequently. Therefore,

Oracle Corporation strongly recommends that you do not create

rollback segments in the SYSTEM tablespace, either explicitly or

implicitly (by omitting this clause). In addition, to avoid high

contention for the tablespace containing the rollback segment, it

should not contain other objects such as tables and indexes, and it

should require minimal extent allocation and deallocation.

To achieve these goals, create rollback segments in locally managed

tablespaces with autoallocation disabled—that is, in tablespaces

created with the EXTENT MANAGEMENT LOCAL clause with the

UNIFORM setting. (The AUTOALLOCATE setting is not supported.)

See Also:

■ CREATE TABLESPACE on page 15-80

■ Oracle9i Database Administrator’s Guide for more information on

creating rollback segments and making them available

Notes:

■ The OPTIMAL parameter of the storage_clause is of

particular interest, because it applies only to rollback segments.

■ You cannot specify the PCTINCREASE parameter of the

storage_clause with CREATE ROLLBACK SEGMENT.

CREATE ROLLBACK SEGMENT

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-85

Examples

Creating a Rollback Segment: Example The following statement creates a rollback

segment with default storage values in an appropriately configured tablespace:

CREATE TABLESPACE rbs_ts
 DATAFILE ’rbs01.dbf’ SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 100K;

/* This example and the next will fail if your database is in
 Automatic Undo Mode.
*/
CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts;

The preceding statement is equivalent to the following:

CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts
 STORAGE
 (INITIAL 10K
 NEXT 10K
 MAXEXTENTS UNLIMITED);

See Also: storage_clause on page 7-56

CREATE SCHEMA

14-86 Oracle9i SQL Reference

CREATE SCHEMA

Purpose
Use the CREATE SCHEMA to create multiple tables and views and perform multiple

grants in a single transaction.

To execute a CREATE SCHEMA statement, Oracle executes each included statement.

If all statements execute successfully, Oracle commits the transaction. If any

statement results in an error, Oracle rolls back all the statements.

Prerequisites
The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW, and

GRANT statements. To issue a CREATE SCHEMA statement, you must have the

privileges necessary to issue the included statements.

Syntax
create_schema::=

Keyword and Parameters

schema
Specify the name of the schema. The schema name must be the same as your Oracle

username.

Note: This statement does not actually create a schema. Oracle

automatically creates a schema when you create a user (see

CREATE USER on page 16-32). This statement lets you populate

your schema with tables and views and grant privileges on those

objects without having to issue multiple SQL statements in

multiple transactions.

CREATE SCHEMA AUTHORIZATION schema

create_table_statement

create_view_statement

grant_statement

;

CREATE SCHEMA

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-87

create_table_statement
Specify a CREATE TABLE statement to be issued as part of this CREATE SCHEMA
statement. Do not end this statement with a semicolon (or other terminator

character).

create_view_statement
Specify a CREATE VIEW statement to be issued as part of this CREATE SCHEMA
statement. Do not end this statement with a semicolon (or other terminator

character).

grant_statement
Specify a GRANTobject_privileges statement to be issued as part of this

CREATE SCHEMA statement. Do not end this statement with a semicolon (or other

terminator character).

The CREATE SCHEMA statement supports the syntax of these statements only as

defined by standard SQL, rather than the complete syntax supported by Oracle.

The order in which you list the CREATE TABLE, CREATE VIEW, and GRANT
statements is unimportant. The statements within a CREATE SCHEMA statement can

reference existing objects or objects you create in other statements within the same

CREATE SCHEMA statement.

Restriction on Granting Privileges to a Schema The syntax of the parallel_
clause is allowed for a CREATE TABLE statement in CREATE SCHEMA, but

parallelism is not used when creating the objects.

Example

Creating a Schema: Example The following statement creates a schema named oe
for the sample order-entry user oe , creates the table new_product , creates the

See Also: CREATE TABLE on page 15-7

See Also: CREATE VIEW on page 16-39

See Also: GRANT on page 17-29

See Also: the parallel_clause of CREATE TABLE on

page 15-53

CREATE SCHEMA

14-88 Oracle9i SQL Reference

view new_product_view , and grants SELECT privilege on new_product_view
to the sample human resources user hr .

CREATE SCHEMA AUTHORIZATION oe
 CREATE TABLE new_product
 (color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
 CREATE VIEW new_product_view

AS SELECT color, quantity FROM new_product WHERE color = ’RED’
 GRANT select ON new_product_view TO hr;

CREATE SEQUENCE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-89

CREATE SEQUENCE

Purpose
Use the CREATE SEQUENCE statement to create a sequence, which is a database

object from which multiple users may generate unique integers. You can use

sequences to automatically generate primary key values.

When a sequence number is generated, the sequence is incremented, independent

of the transaction committing or rolling back. If two users concurrently increment

the same sequence, the sequence numbers each user acquires may have gaps

because sequence numbers are being generated by the other user. One user can

never acquire the sequence number generated by another user. Once a sequence

value is generated by one user, that user can continue to access that value regardless

of whether the sequence is incremented by another user.

Sequence numbers are generated independently of tables, so the same sequence can

be used for one or for multiple tables. It is possible that individual sequence

numbers will appear to be skipped, because they were generated and used in a

transaction that ultimately rolled back. Additionally, a single user may not realize

that other users are drawing from the same sequence.

Once a sequence is created, you can access its values in SQL statements with the

CURRVAL pseudocolumn (which returns the current value of the sequence) or the

NEXTVAL pseudocolumn (which increments the sequence and returns the new

value).

Prerequisites
To create a sequence in your own schema, you must have CREATE SEQUENCE
privilege.

See Also:

■ "Pseudocolumns" on page 2-82 for more information on using

the CURRVAL and NEXTVAL

■ "How to Use Sequence Values" on page 2-84 for information on

using sequences

■ ALTER SEQUENCE on page 9-140 or DROP SEQUENCE on

page 17-2 for information on modifying or dropping a

sequence

CREATE SEQUENCE

14-90 Oracle9i SQL Reference

To create a sequence in another user’s schema, you must have CREATE ANY
SEQUENCE privilege.

Syntax
create_sequence::=

Semantics

schema
Specify the schema to contain the sequence. If you omit schema , Oracle creates the

sequence in your own schema.

sequence
Specify the name of the sequence to be created.

If you specify none of the following clauses, you create an ascending sequence that

starts with 1 and increases by 1 with no upper limit. Specifying only INCREMENT BY
-1 creates a descending sequence that starts with -1 and decreases with no lower

limit.

CREATE SEQUENCE
schema .

sequence

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER
;

CREATE SEQUENCE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-91

■ To create a sequence that increments without bound, for ascending sequences,

omit the MAXVALUE parameter or specify NOMAXVALUE. For descending

sequences, omit the MINVALUE parameter or specify the NOMINVALUE.

■ To create a sequence that stops at a predefined limit, for an ascending

sequence, specify a value for the MAXVALUE parameter. For a descending

sequence, specify a value for the MINVALUE parameter. Also specify the

NOCYCLE. Any attempt to generate a sequence number once the sequence has

reached its limit results in an error.

■ To create a sequence that restarts after reaching a predefined limit, specify

values for both the MAXVALUE and MINVALUE parameters. Also specify the

CYCLE. If you do not specify MINVALUE, then it defaults to NOMINVALUE (that

is, the value 1).

Sequence Parameters

INCREMENT BY Specify the interval between sequence numbers. This integer

value can be any positive or negative integer, but it cannot be 0. This value can have

28 or fewer digits. The absolute of this value must be less than the difference of

MAXVALUE and MINVALUE. If this value is negative, then the sequence descends. If

the increment is positive, then the sequence ascends. If you omit this clause, the

interval defaults to 1.

START WITH Specify the first sequence number to be generated. Use this clause to

start an ascending sequence at a value greater than its minimum or to start a

descending sequence at a value less than its maximum. For ascending sequences,

the default value is the minimum value of the sequence. For descending sequences,

the default value is the maximum value of the sequence. This integer value can

have 28 or fewer digits.

MAXVALUE Specify the maximum value the sequence can generate. This integer

value can have 28 or fewer digits. MAXVALUE must be equal to or greater than

START WITH and must be greater than MINVALUE.

NOMAXVALUE Specify NOMAXVALUE to indicate a maximum value of 1027 for an

ascending sequence or -1 for a descending sequence. This is the default.

Note: This value is not necessarily the value to which an

ascending cycling sequence cycles after reaching its maximum or

minimum value.

CREATE SEQUENCE

14-92 Oracle9i SQL Reference

MINVALUE Specify the minimum value of the sequence. This integer value can

have 28 or fewer digits. MINVALUE must be less than or equal to START WITH and

must be less than MAXVALUE.

NOMINVALUE Specify NOMINVALUE to indicate a minimum value of 1 for an

ascending sequence or -1026 for a descending sequence. This is the default.

CYCLE Specify CYCLE to indicate that the sequence continues to generate values

after reaching either its maximum or minimum value. After an ascending sequence

reaches its maximum value, it generates its minimum value. After a descending

sequence reaches its minimum, it generates its maximum.

NOCYCLE Specify NOCYCLE to indicate that the sequence cannot generate more

values after reaching its maximum or minimum value. This is the default.

CACHE Specify how many values of the sequence Oracle preallocates and keeps in

memory for faster access. This integer value can have 28 or fewer digits. The

minimum value for this parameter is 2. For sequences that cycle, this value must be

less than the number of values in the cycle. You cannot cache more values than will

fit in a given cycle of sequence numbers. Therefore, the maximum value allowed for

CACHE must be less than the value determined by the following formula:

(CEIL (MAXVALUE - MINVALUE)) / ABS (INCREMENT)

If a system failure occurs, all cached sequence values that have not been used in

committed DML statements are lost. The potential number of lost values is equal to

the value of the CACHE parameter.

NOCACHE Specify NOCACHE to indicate that values of the sequence are not

preallocated.

If you omit both CACHE and NOCACHE, Oracle caches 20 sequence numbers by

default.

ORDER Specify ORDERto guarantee that sequence numbers are generated in order

of request. You may want to use this clause if you are using the sequence numbers

Note: Oracle Corporation recommends using the CACHEsetting to

enhance performance if you are using sequences in a Real

Application Clusters environment.

CREATE SEQUENCE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-93

as timestamps. Guaranteeing order is usually not important for sequences used to

generate primary keys.

ORDER is necessary only to guarantee ordered generation if you are using Oracle

with Real Application Clusters. If you are using exclusive mode, sequence numbers

are always generated in order.

NOORDER Specify NOORDER if you do not want to guarantee sequence numbers

are generated in order of request. This is the default.

Example

Creating a Sequence: Example The following statement creates the sequence

customers_seq in the sample schema oe . This sequence could be used to provide

customer ID numbers when rows are added to the customers table.

CREATE SEQUENCE customers_seq
 START WITH 1000
 INCREMENT BY 1
 NOCACHE
 NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns

1001. Each subsequent reference will return a value 1 greater than the previous

reference.

CREATE SPFILE

14-94 Oracle9i SQL Reference

CREATE SPFILE

Purpose
Use the CREATE SPFILE statement to create a server parameter file from a

client-side initialization parameter file. Server parameter files are binary files that

exist only on the server and are called from client locations to start up the database.

Server parameter files let you make persistent changes to individual parameters.

When you use a server parameter file, you can specify in an ALTER SYSTEM SET
parameter statement that the new parameter value should be persistent. This

means that the new value applies not only in the current instance, but also to any

instances that are started up subsequently. Traditional client-side parameter files do

not let you make persistent changes to parameter values. Because they are located

on the server, these files allow for automatic database tuning by Oracle and for

backup by Recovery Manager (RMAN).

To use a server parameter file when starting up the database, you must create it

from a traditional text initialization parameter file using the CREATE SPFILE
statement.

All instances in an Real Application Clusters environment must use the same server

parameter file. However, when otherwise permitted, individual instances can have

different settings of the same parameter within this one file. Instance-specific

parameter definitions are specified as SID.parameter = value , where SID is

the instance identifier.

The method of starting up the database with a server parameter file depends on

whether you create a default or nondefault server parameter file. Please refer to

"Creating a Server Parameter File: Examples" on page 14-96 for examples of how to

use server parameter files.

See Also:

■ CREATE PFILE on page 14-62 for information on creating a

regular text parameter file from a binary server parameter file

■ Oracle9i Database Administrator’s Guide for information on

pre-Oracle9i initialization parameter files and Oracle9i server

parameter files

■ Oracle9i Real Application Clusters Administration for information

on using server parameter files in a Real Application Clusters

environment

CREATE SPFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-95

Prerequisites
You must have the SYSDBA or the SYSOPER system privilege to execute this

statement. You can execute this statement before or after instance startup. However,

if you have already started an instance using spfile_name , you cannot specify the

same spfile_name in this statement.

Syntax
create_spfile::=

Semantics

spfile_name
This clause lets you specify a name for the server parameter file you are creating.

■ If you do not specify spfile_name , Oracle uses the platform-specific default

server parameter filename. If spfile_name already exists on the server, this

statement will overwrite it. When using a default server parameter file, you

start up the database without referring to the file by name.

■ If you do specify spfile_name , you are creating a nondefault server

parameter file. In this case, to start up the database, you must first create a

single-line traditional parameter file that points to the server parameter file, and

then name the single-line file in your STARTUP command.

pfile_name
Specify the traditional initialization parameter file from which you want to create a

server parameter file.

See Also:

■ "Creating a Server Parameter File: Examples" on page 14-96 for

information on starting up the database with default and

nondefault server parameter files

■ Oracle9i Database Administrator’s Guide for Windows (or other

appropriate operating system specific documentation) for

default parameter file names

CREATE SPFILE
= ’ spfile_name ’

FROM PFILE
= ’ pfile_name ’

;

CREATE SPFILE

14-96 Oracle9i SQL Reference

■ If you specify pfile_name , the parameter file must reside on the server. If it

does not reside in the default directory for parameter files on your operating

system, you must specify the full path.

■ If you do not specify pfile_name , Oracle looks in the default directory for

parameter files on your operating system for the default parameter filename,

and uses that file. If that file does not exist in the expected directory, Oracle

returns an error.

Examples

Creating a Server Parameter File: Examples The following example creates a

default server parameter file from a client initialization parameter file named t_
init1.ora :

CREATE SPFILE
 FROM PFILE = ’$ORACLE_HOME/work/t_init1.ora’;

When you create a default server parameter file, you subsequently start up the

database using that server parameter file by using the SQL*Plus command

STARTUP without the PFILE parameter, as follows:

STARTUP

The following example creates a nondefault server parameter file s_params.ora
from a client initialization file named t_init1.ora :

CREATE SPFILE = ’s_params.ora’
 FROM PFILE = ’$ORACLE_HOME/work/t_init1.ora’;

Note: In a Real Application Clusters environment, you must first

combine all instance parameter files into one file before specifying

it in this statement to create a server parameter file. For information

on accomplishing this step, see Oracle9i Real Application Clusters
Setup and Configuration.

Note: Typically you will need to specify the full path and filename

for parameter files on your operating system. Please refer to your

Oracle operating system documentation for path information.

CREATE SPFILE

SQL Statements: CREATE LIBRARY to CREATE SPFILE 14-97

When you create a nondefault server parameter file, you subsequently start up the

database by first creating a traditional parameter file containing the following single

line:

spfile = ’s_params.ora’

The name of this parameter file must comply with the naming conventions of your

operating system. You then use the single-line parameter file in the STARTUP
command. The following example shows how to start up the database, assuming

that the single-line parameter file is named new_param.ora :

STARTUP PFILE=new_param.ora

CREATE SPFILE

14-98 Oracle9i SQL Reference

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-1

15
SQL Statements: CREATE SYNONYM to

CREATE TRIGGER

This chapter contains the following SQL statements:

■ CREATE SYNONYM

■ CREATE TABLE

■ CREATE TABLESPACE

■ CREATE TEMPORARY TABLESPACE

■ CREATE TRIGGER

CREATE SYNONYM

15-2 Oracle9i SQL Reference

CREATE SYNONYM

Purpose
Use the CREATE SYNONYM statement to create a synonym, which is an alternative

name for a table, view, sequence, procedure, stored function, package, materialized

view, Java class schema object, user-defined object type, or another synonym.

Synonyms provide both data independence and location transparency. Synonyms

permit applications to function without modification regardless of which user owns

the table or view and regardless of which database holds the table or view.

However, synonyms are not a substitute for privileges on database objects. Such

privileges must be granted to a user before the user can use the synonym.

You can refer to synonyms in the following DML statements: SELECT, INSERT,

UPDATE, DELETE, EXPLAIN PLAN, and LOCK TABLE.

You can refer to synonyms in the following DDL statements: AUDIT, NOAUDIT,
GRANT, REVOKE, and COMMENT.

Prerequisites
To create a private synonym in your own schema, you must have CREATE SYNONYM
system privilege.

To create a private synonym in another user’s schema, you must have CREATE ANY
SYNONYM system privilege.

To create a PUBLIC synonym, you must have CREATE PUBLIC SYNONYM system

privilege.

Syntax

create_synonym::=

See Also: Oracle9i Database Concepts for general information on

synonyms

CREATE
OR REPLACE PUBLIC

SYNONYM
schema .

synonym

FOR
schema .

object
@ dblink

;

CREATE SYNONYM

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-3

Semantics

OR REPLACE
Specify OR REPLACE to re-create the synonym if it already exists. Use this clause to

change the definition of an existing synonym without first dropping it.

Restriction on Replacing a Synonym You cannot use the OR REPLACEclause for a

type synonym that has any dependent tables or valid user-defined object types.

PUBLIC
Specify PUBLIC to create a public synonym. Public synonyms are accessible to all

users. However each user must have appropriate privileges on the underlying

object in order to use the synonym.

Oracle uses a public synonym only when resolving references to an object if the

object is not prefaced by a schema and the object is not followed by a database link.

If you omit this clause, then the synonym is private and is accessible only within its

schema. A private synonym name must be unique in its schema.

Notes on Creating Public Synonyms

■ If you create a public synonym and it subsequently has dependent tables or

dependent valid user-defined object types, then you cannot subsequently create

another database object of the same name as the synonym in the same schema

as the dependent objects.

■ Take care not to create a public synonym with the same name as an existing

schema. If you do so, then all PL/SQL units that use that name will be

invalidated.

schema
Specify the schema to contain the synonym. If you omit schema , then Oracle

creates the synonym in your own schema. You cannot specify a schema for the

synonym if you have specified PUBLIC.

synonym
Specify the name of the synonym to be created.

CREATE SYNONYM

15-4 Oracle9i SQL Reference

FOR Clause
Specify the object for which the synonym is created. The schema object for which

you are creating the synonym can be of the following types:

■ Table or object table

■ View or object view

■ Sequence

■ Stored procedure, function, or package

■ Materialized view

■ Java class schema object

■ User-defined object type

■ Synonym

The schema object need not currently exist and you need not have privileges to

access the object.

Restriction on the FOR Clause The schema object cannot be contained in a

package.

schema Specify the schema in which the object resides. If you do not qualify

object with schema , then Oracle assumes that the schema object is in your own

schema.

Caution: The functional maximum length of the synonym name is

32 bytes. Names longer than 30 bytes are permitted for Java

functionality only. If you specify a name longer than 30 bytes, then

Oracle encrypts the name and places a representation of the

encryption in the data dictionary. The actual encryption is not

accessible, and you cannot use either your original specification or

the data dictionary representation as the synonym name.

See Also: "CREATE SYNONYM Examples" on page 15-5 and

"Resolution of Synonyms Example" on page 15-6

CREATE SYNONYM

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-5

dblink You can specify a complete or partial database link to create a synonym for

a schema object on a remote database where the object is located. If you specify

dblink and omit schema , then the synonym refers to an object in the schema

specified by the database link. Oracle Corporation recommends that you specify the

schema containing the object in the remote database.

If you omit dblink , then Oracle assumes the object is located on the local database.

Restriction on Database Links You cannot specify dblink for a Java class

synonym.

Examples

CREATE SYNONYM Examples To define the synonym offices for the table

locations in the schema hr , issue the following statement:

CREATE SYNONYM offices
 FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the

remote database, you could issue the following statement:

CREATE PUBLIC SYNONYM emp_table
 FOR oe.employees@remote.us.oracle.com;

A synonym may have the same name as the base table, provided the base table is

contained in another schema.

Note: If you are creating a synonym for a procedure or function

on a remote database, then you must specify schema in this

CREATE statement. Alternatively, you can create a local public

synonym on the database where the object resides. However, the

database link must then be included in all subsequent calls to the

procedure or function.

See Also:

■ "Referring to Objects in Remote Databases" on page 2-118 for

more information on referring to database links

■ CREATE DATABASE LINK on page 13-37 for more information

on creating database links

CREATE SYNONYM

15-6 Oracle9i SQL Reference

Resolution of Synonyms Example Oracle attempts to resolve references to objects

at the schema level before resolving them at the PUBLIC synonym level. For

example, the schemas oe and sh both contain tables named customers . In the next

example, user SYSTEM creates a PUBLIC synonym named customers for

oe.customers :

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then Oracle returns the count of

rows from sh.customers :

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe.customers , the user sh must preface

customers with the schema name. (The user sh must have select permission on

oe.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr ’s schema does not contain an object named customers , and if hr has

select permission on oe.customers , then hr can access the customers table in

oe ’s schema by using the public synonym customers :

SELECT COUNT(*) FROM customers;

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-7

CREATE TABLE

Purpose
Use the CREATE TABLE statement to create one of the following types of tables:

■ A relational table is the basic structure to hold user data.

■ An object table is a table that uses an object type for a column definition. An

object table is explicitly defined to hold object instances of a particular type.

You can also create an object type and then use it in a column when creating a

relational table.

Tables are created with no data unless a query is specified. You can add rows to a

table with the INSERT statement. After creating a table, you can define additional

columns, partitions, and integrity constraints with the ADD clause of the ALTER
TABLE statement. You can change the definition of an existing column or partition

with the MODIFY clause of the ALTER TABLE statement.

Prerequisites
To create a relational table in your own schema, you must have the CREATE TABLE
system privilege. To create a table in another user’s schema, you must have CREATE
ANY TABLE system privilege. Also, the owner of the schema to contain the table

must have either space quota on the tablespace to contain the table or UNLIMITED
TABLESPACE system privilege.

In addition to these table privileges, to create an object table (or a relational table

with an object type column), the owner of the table must have the EXECUTE object

privilege in order to access all types referenced by the table, or you must have the

EXECUTE ANY TYPE system privilege. These privileges must be granted explicitly

and not acquired through a role.

Additionally, if the table owner intends to grant access to the table to other users,

then the owner must have been granted the EXECUTE privileges on the referenced

types with the GRANT OPTION, or have the EXECUTE ANY TYPE system privilege

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals, Oracle9i
Database Administrator’s Guide, and CREATE TYPE on page 16-3

for more information about creating objects

■ ALTER TABLE on page 11-2

CREATE TABLE

15-8 Oracle9i SQL Reference

with the ADMIN OPTION. Without these privileges, the table owner has insufficient

privileges to grant access to the table to other users.

To enable a unique or primary key constraint, you must have the privileges

necessary to create an index on the table. You need these privileges because Oracle

creates an index on the columns of the unique or primary key in the schema

containing the table.

To create an external table, you must have the READobject privilege on the directory

in which the external data resides.

Syntax

create_table::=

(relational_table::= on page 15-8, object_table::= on page 15-9,

XMLType_table::= on page 15-9)

relational_table::=

(relational_properties::= on page 15-9, physical_properties::= on

page 15-11, table_properties::= on page 15-12)

See Also:

■ CREATE INDEX on page 13-65

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about the privileges required to create tables using

types

relational_table

object_table

XMLtype_table

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

(relational_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

physical_properties table_properties ;

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-9

object_table ::=

(object_table_substitution::= on page 15-10, object_properties::=
on page 15-10, OID_clause::= on page 15-10, OID_index_clause::= on

page 15-10, physical_properties::= on page 15-11, table_properties::=
on page 15-12)

XMLType_table ::=

(XMLType_storage::= on page 15-15, XMLSchema_spec::= on page 15-15)

relational_properties ::=

(constraints::= on page 7-6)

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

(object_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

OF
schema .

object_type
object_table_substitution

OID_clause OID_index_clause physical_properties table_properties
;

CREATE TABLE
schema .

table OF XMLTYPE

XMLTYPE XMLType_storage XMLSchema_spec

column datatype
DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

,

CREATE TABLE

15-10 Oracle9i SQL Reference

object_table_substitution ::=

object_properties ::=

(constraints::= on page 7-6, supplemental_logging_props::= on

page 15-16)

OID_clause ::=

OID_index_clause ::=

(physical_attributes_clause::= on page 15-11)

NOT
SUBSTITUTABLE AT ALL LEVELS

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

OBJECT IDENTIFIER IS
SYSTEM GENERATED

PRIMARY KEY

OIDINDEX
index

(
physical_attributes_clause

TABLESPACE tablespace
)

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-11

physical_properties ::=

(segment_attributes_clause::= on page 15-11, data_segment_
compression::= on page 15-12, index_org_table_clause::= on page 15-16,

external_table_clause::= on page 15-17)

segment_attributes_clause ::=

(physical_attributes_clause::= on page 15-11, logging_clause::= on

page 15-14)

physical_attributes_clause ::=

(storage_clause on page 7-56)

segment_attributes_clause
data_segment_compression

ORGANIZATION

HEAP
segment_attributes_clause data_segment_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

physical_attributes_clause

TABLESPACE tablespace

logging_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

CREATE TABLE

15-12 Oracle9i SQL Reference

data_segment_compression ::=

table_properties ::=

(table_partitioning_clauses::= on page 15-17, parallel_clause::= on

page 15-21, enable_disable_clause::= on page 15-22, subquery::= on

page 18-5)

column_properties ::=

(object_type_col_properties::= on page 15-12, nested_table_col_
properties::= on page 15-13, varray_col_properties::= on page 15-13,

LOB_storage_clause::= on page 15-14, LOB_partition_storage::= on

page 15-15, XMLType_column_properties::= on page 15-15)

object_type_col_properties ::=

COMPRESS

NOCOMPRESS

column_properties table_partitioning_clauses

CACHE

NOCACHE

parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES

MONITORING

NOMONITORING

enable_disable_clause row_movement_clause AS subquery

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

LOB_partition_storage

XMLType_column_properties

COLUMN column substitutable_column_clause

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-13

substitutable_column_clause::=

nested_table_col_properties ::=

(substitutable_column_clause::= on page 15-13, object_properties::=
on page 15-10, physical_properties::= on page 15-11, column_
properties::= on page 15-12)

varray_col_properties ::=

(substitutable_column_clause::= on page 15-13, LOB_parameters::= on

page 15-14)

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

((object_properties)
physical_properties column_properties

)

RETURN AS
LOCATOR

VALUE

VARRAY varray_item

substitutable_column_clause

STORE AS LOB

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

CREATE TABLE

15-14 Oracle9i SQL Reference

LOB_storage_clause ::=

(LOB_parameters::= on page 15-14)

LOB_parameters ::=

(storage_clause::= on page 7-58)

logging_clause::=

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

LOGGING

NOLOGGING

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-15

LOB_partition_storage::=

(LOB_storage_clause::= on page 15-14, varray_col_properties::= on
page 15-13)

XMLType_column_properties ::=

(XMLType_storage::= on page 15-15, XMLSchema_spec::= on page 15-15)

XMLType_storage::=

(LOB_parameters::= on page 15-14)

XMLSchema_spec::=

row_movement_clause ::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

STORE AS

OBJECT RELATIONAL

CLOB

LOB_segname
(LOB_parameters)

LOB_parameters

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

ENABLE

DISABLE
ROW MOVEMENT

CREATE TABLE

15-16 Oracle9i SQL Reference

index_org_table_clause ::=

(mapping_table_clause::= on page 15-16, key_compression::= on

page 15-16, index_org_overflow_clause::= on page 15-16)

mapping_table_clause ::=

key_compression ::=

index_org_overflow_clause ::=

(segment_attributes_clause::= on page 15-11)

supplemental_logging_props ::=

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

MAPPING TABLE

NOMAPPING

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

SUPPLEMENTAL LOG GROUP log_group (column

,

)
ALWAYS

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-17

external_table_clause ::=

(external_data_properties::= on page 15-17)

external_data_properties::=

(opaque_format_spec : See Oracle9i Database Utilities for information on how to

specify values for the opaque_format_spec .)

table_partitioning_clauses ::=

(range_partitioning::= on page 15-18, hash_partitioning::= on

page 15-18, list_partitioning::= on page 15-18, composite_
partitioning::= on page 15-18)

(
TYPE access_driver_type

external_data_properties)

REJECT LIMIT
integer

UNLIMITED

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

range_partitioning

hash_partitioning

list_partitioning

composite_partitioning

CREATE TABLE

15-18 Oracle9i SQL Reference

range_partitioning ::=

(range_values_clause::= on page 15-20, table_partition_
description::= on page 15-20)

hash_partitioning ::=

(individual_hash_partitions::= on page 15-19, hash_partitions_by_
quantity::= on page 15-19)

list_partitioning ::=

(list_values_clause::= on page 15-20, table_partition_
description::= on page 15-20)

composite_partitioning ::=

PARTITION BY RANGE (column

,

)

(PARTITION
partition

range_values_clause table_partition_description

,

)

PARTITION BY HASH (column

,

)
individual_hash_partitions

hash_partitions_by_quantity

PARTITION BY LIST (column)

(PARTITION
partition

list_values_clause table_partition_description

,

)

PARTITION BY RANGE (column_list)
subpartition_by_list

subpartition_by_hash

(PARTITION
partition

range_values_clause table_partition_description

,

)

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-19

(subpartition_by_list::= on page 15-19, subpartition_by_hash::= on

page 15-19, range_values_clause::= on page 15-20, table_partition_
description::= on page 15-20)

subpartition_by_hash ::=

(subpartition_template::= on page 15-20)

individual_hash_partitions::=

(partitioning_storage_clause::= on page 15-21)

hash_partitions_by_quantity::=

subpartition_by_list::=

(subpartition_template::= on page 15-20)

SUBPARTITION BY HASH (column

,

)

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

subpartition_template

(PARTITION
partition partitioning_storage_clause

,

)

PARTITIONS hash_partition_quantity
STORE IN (tablespace

,

)

OVERFLOW STORE IN (tablespace

,

)

SUBPARTITION BY LIST (column)
subpartition_template

CREATE TABLE

15-20 Oracle9i SQL Reference

subpartition_template ::=

(list_values_clause::= on page 15-20, partitioning_storage_
clause::= on page 15-21)

range_values_clause::=

list_values_clause::=

table_partition_description ::=

SUBPARTITION TEMPLATE

(SUBPARTITION subpartition
list_values_clause partitioning_storage_clause

,

)

hash_subpartition_quantity

VALUES LESS THAN (
value

MAXVALUE

,

)

VALUES (

value

NULL

,

DEFAULT

)

segment_attributes_clause

data_segment_compression

key_compression

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties partition_level_subpartition

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-21

(segment_attributes_clause::= on page 15-11, data_segment_
compression::= on page 15-12, LOB_storage_clause::= on page 15-14,

varray_col_properties::= on page 15-13, partition_level_
subpartition::= on page 15-21)

partition_level_subpartition ::=

(subpartition_spec::= on page 15-21)

subpartition_spec::=

(list_values_clause::= on page 15-20, partitioning_storage_
clause::= on page 15-21)

partitioning_storage_clause::=

parallel_clause ::=

SUBPARTITIONS hash_subpartition_quantity
STORE IN (tablespace

,

)

(subpartition_spec

,

)

SUBPARTITION
subpartition list_values_clause partitioning_storage_clause

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

LOB (LOB_item) STORE AS
LOB_segname

(TABLESPACE tablespace)

(TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB LOB_segname

NOPARALLEL

PARALLEL
integer

CREATE TABLE

15-22 Oracle9i SQL Reference

enable_disable_clause ::=

(using_index_clause::= on page 15-22, exceptions_clause not supported

in CREATE TABLE statements)

using_index_clause ::=

(create_index::= on page 13-66, logging_clause::= on page 7-46, global_
partitioned_index::= on page 15-23)

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

USING INDEX

schema .
index

(create_index_statement)

PCTFREE integer

INITRANS integer

MAXTRANS integer

TABLESPACE tablespace

storage_clause

SORT

NOSORT

logging_clause

LOCAL

global_partitioned_index

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-23

global_partitioned_index::=

(index_partitioning_clause::= on page 15-23)

index_partitioning_clause::=

(segment_attributes_clause::= on page 15-11)

Semantics

relational_table

GLOBAL TEMPORARY
Specify GLOBAL TEMPORARY to indicate that the table is temporary and that its

definition is visible to all sessions. The data in a temporary table is visible only to

the session that inserts the data into the table.

A temporary table has a definition that persists the same as the definitions of

regular tables, but it contains either session-specific or transaction-specific data.

You specify whether the data is session- or transaction-specific with the ON

COMMIT keywords.

Note: You can perform DDL operations (such as ALTER TABLE,
DROP TABLE, CREATE INDEX) on a temporary table only when no

session is bound to it. A session becomes bound to a temporary

table by performing an INSERT operation on the table. A session

becomes unbound to the temporary table by issuing a TRUNCATE
statement or at session termination, or, for a transaction-specific

temporary table, by issuing a COMMIT or ABORT statement.

See Also: Oracle9i Database Concepts for information on temporary

tables and "Temporary Table Example" on page 15-67

GLOBAL PARTITION BY RANGE (column_list) (index_partitioning_clause)

PARTITION
partition

VALUES LESS THAN (value

,

)
segment_attributes_clause

CREATE TABLE

15-24 Oracle9i SQL Reference

Restrictions on Temporary Tables

■ Temporary tables cannot be partitioned, clustered, or index organized.

■ You cannot specify any foreign key constraints on temporary tables.

■ Temporary tables cannot contain columns of nested table or varray type.

■ You cannot specify the following clauses of the LOB_storage_clause :

TABLESPACE, storage_clause , logging_clause , MONITORING or

NOMONITORING, or LOB_index_clause .

■ Parallel DML and parallel queries are not supported for temporary tables.

(Parallel hints are ignored. Specification of the parallel_clause returns an

error.)

■ You cannot specify the segment_attributes_clause , nested_table_
col_properties , or parallel_clause .

■ Distributed transactions are not supported for temporary tables.

schema
Specify the schema to contain the table. If you omit schema , then Oracle creates the

table in your own schema.

table
Specify the name of the table (or object table) to be created.

relational_properties
The relational properties describe the components of a relational table.

column
Specify the name of a column of the table.

If you also specify ASsubquery , then you can omit column and datatype unless

you are creating an index-organized table. If you specify ASsubquery when

creating an index-organized table, then you must specify column , and you must

omit datatype .

The absolute maximum number of columns in a table is 1000. However, when you

create an object table (or a relational table with columns of object, nested table,

varray, or REF type), Oracle maps the columns of the user-defined types to

See Also: "General Examples" on page 15-65

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-25

relational columns, creating in effect "hidden columns" that count toward the

1000-column limit.

datatype
Specify the datatype of a column.

Restriction on Table Column Datatypes You can specify a column of type ROWID,
but Oracle does not guarantee that the values in such columns are valid rowids.

DEFAULT
The DEFAULT clause lets you specify a value to be assigned to the column if a

subsequent INSERT statement omits a value for the column. The datatype of the

expression must match the datatype of the column. The column must also be long

enough to hold this expression.

The DEFAULT expression can include any SQL function as long as the function does

not return a literal argument, a column reference, or a nested function invocation.

Restriction on Default Column Values A DEFAULT expression cannot contain

references to PL/SQL functions or to other columns, the pseudocolumns LEVEL,

PRIOR, and ROWNUM, or date constants that are not fully specified.

Note: You can omit datatype under these conditions:

■ If you also specify ASsubquery . (If you are creating an

index-organized table and you specify ASsubquery , you must
omit the datatype.)

■ If the statement also designates the column as part of a foreign

key in a referential integrity constraint. (Oracle automatically

assigns to the column the datatype of the corresponding

column of the referenced key of the referential integrity

constraint.)

See Also: "Datatypes" on page 2-2 for information on

Oracle-supplied datatypes

See Also: "About SQL Expressions" on page 4-2 for the syntax of

expr

CREATE TABLE

15-26 Oracle9i SQL Reference

inline_ref_constraint and out_of_line_ref_constraint
These clauses let you describe a column of type REF. The only difference between

these clauses is that you specify out_of_line_ref_constraint from the table

level, so you must identify the REF column or attribute you are defining. You

specify inline_ref_constraint after you have already identified the REF
column or attribute.

inline_constraint
Use the inline_constraint to define an integrity constraint as part of the

column definition.

You can create UNIQUE, PRIMARY KEY, and REFERENCES constraints on scalar

attributes of object type columns. You can also create NOT NULL constraints on

object type columns, and CHECK constraints that reference object type columns or

any attribute of an object type column.

out_of_line_constraint
Use the out_of_line_constraint syntax to define an integrity constraint as

part of the table definition.

supplemental_logging_props
The supplemental_logging_props clause lets you instruct Oracle to put

additional data into the log stream to support log-based tools.

See Also: constraints on page 7-5 for syntax and description

of these constraints, as well as examples

See Also: constraints on page 7-5 for syntax and description

of these constraints, as well as examples

Note: You must specify a PRIMARY KEY constraint for an

index-organized table, and it cannot be DEFERRABLE.

See Also: the syntax description of out_of_line_constraint
in the constraints on page 7-5

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-27

ON COMMIT
The ON COMMIT clause is relevant only if you are creating a temporary table. This

clause specifies whether the data in the temporary table persists for the duration of

a transaction or a session.

DELETE ROWS Specify DELETE ROWS for a transaction-specific temporary table

(this is the default). Oracle will truncate the table (delete all its rows) after each

commit.

PRESERVE ROWS Specify PRESERVE ROWSfor a session-specific temporary table.

Oracle will truncate the table (delete all its rows) when you terminate the session.

physical_properties
The physical properties relate to the treatment of extents and segments and to the

storage characteristics of the table.

segment_attributes_clause

physical_attributes_clause
The physical_attributes_clause lets you specify the value of the PCTFREE,
PCTUSED, INITRANS , and MAXTRANS parameters and the storage characteristics of

the table.

■ For a nonpartitioned table, each parameter and storage characteristic you

specify determines the actual physical attribute of the segment associated with

the table.

■ For partitioned tables, the value you specify for the parameter or storage

characteristic is the default physical attribute of the segments associated with

all partitions specified in this CREATE statement (and in subsequent ALTER
TABLE... ADD PARTITIONstatements), unless you explicitly override that value

in the PARTITION clause of the statement that creates the partition.

If you omit this clause, then Oracle uses the following default values:

■ PCTFREE: 10

■ PCTUSED: 40

■ INITRANS : 1

■ MAXTRANS: Depends on data block size

CREATE TABLE

15-28 Oracle9i SQL Reference

TABLESPACE
Specify the tablespace in which Oracle creates the table, object table OID index,

partition, LOB data segment, LOB index segment, or index-organized table

overflow data segment. If you omit TABLESPACE, then Oracle creates that item in

the default tablespace of the owner of the schema containing the table.

For heap-organized tables with one or more LOB columns, if you omit the

TABLESPACE clause for LOB storage, then Oracle creates the LOB data and index

segments in the tablespace where the table is created.

However, for an index-organized table with one or more LOB columns, if you omit

TABLESPACE, then the LOB data and index segments are created in the tablespace

in which the primary key index segment of the index-organized table is created.

For nonpartitioned tables, the value specified for TABLESPACE is the actual

physical attribute of the segment associated with the table. For partitioned tables,

the value specified for TABLESPACEis the default physical attribute of the segments

associated with all partitions specified in the CREATEstatement (and on subsequent

ALTER TABLE ... ADD PARTITION statements), unless you specify TABLESPACE in
the PARTITION description.

logging_clause
Specify whether the creation of the table (and any indexes required because of

constraints), partition, or LOB storage characteristics will be logged in the redo log

file (LOGGING) or not (NOLOGGING).The logging attribute of the table is

independent of that of its indexes.

This attribute also specifies whether subsequent Direct Loader (SQL*Loader) and

direct-path INSERT operations against the table, partition, or LOB storage are

logged (LOGGING) or not logged (NOLOGGING).

See Also:

■ physical_attributes_clause on page 7-52 for a full

description of the physical attribute parameters

■ storage_clause on page 7-56 for a description of storage

parameters

■ "Storage Example" on page 15-66

See Also: CREATE TABLESPACE on page 15-80 for more

information on tablespaces

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-29

data_segment_compression
The data_segment_compression clause is valid only for heap-organized tables.

Use this clause to instruct Oracle whether to compress data segments to reduce disk

use. The COMPRESS keyword enables data segment compression. The NOCOMPRESS
keyword disables data segment compression. NOCOMPRESS is the default.

When you enable data segment compression, Oracle attempts to compress data

when it is productive to do so. LOB data segments are not compressed. This clause

is especially useful in environments such as data warehouses, where the amount of

insert and update operations is small. You can specify data segment compression

for the following portions of a heap-organized table:

■ For an entire table (in the physical_properties clause of relational_
table or object_table)

■ For a range partition (in the table_partition_description of the range_
partitioning clause)

■ For a list partition (in the table_partition_description of the list_
partitioning clause)

■ For the storage table of a nested table (in the nested_table_col_
properties clause)

Restrictions on Data Segment Compression

■ You cannot specify data segment compression for an index-organized table, for

any overflow segment or partition of an overflow segment, or for any mapping

table segment of an index-organized table.

■ You cannot specify data segment compression for hash partitions or for either

hash or list subpartitions.

■ You cannot specify data segment compression for an external table.

See Also: logging_clause on page 7-45 for a full description of

this clause

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on calculating the compression ratio and to Oracle9i
Data Warehousing Guide for information on data compression usage

scenarios

CREATE TABLE

15-30 Oracle9i SQL Reference

RECOVERABLE | UNRECOVERABLE
These keywords are deprecated and have been replaced with LOGGING and

NOLOGGING, respectively. Although RECOVERABLE and UNRECOVERABLE are

supported for backward compatibility, Oracle Corporation strongly recommends

that you use the LOGGING and NOLOGGING keywords.

Restrictions on [UN]RECOVERABLE

■ You cannot specify RECOVERABLE for partitioned tables or LOB storage

characteristics.

■ You cannot specify UNRECOVERABLE for a partitioned or index-organized

tables.

■ You can specify UNRECOVERABLE only with ASsubquery .

ORGANIZATION
The ORGANIZATION clause lets you specify the order in which the data rows of the

table are stored.

HEAP HEAP indicates that the data rows of table are stored in no particular

order. This is the default.

INDEX INDEX indicates that table is created as an index-organized table. In an

index-organized table, the data rows are held in an index defined on the primary

key for the table.

EXTERNAL EXTERNAL indicates that table is a read-only table located outside the

database.

index_org_table_clause
Use the index_org_table_clause to create an index-organized table. Oracle

maintains the table rows (both primary key column values and nonkey column

values) in an index built on the primary key. Index-organized tables are therefore

best suited for primary key-based access and manipulation. An index-organized

table is an alternative to:

■ A nonclustered table indexed on the primary key by using the CREATE INDEX
statement

See Also: "External Table Example" on page 15-70

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-31

■ A clustered table stored in an indexed cluster that has been created using the

CREATE CLUSTER statement that maps the primary key for the table to the

cluster key

You must specify a primary key for an index-organized table, because the primary

key uniquely identifies a row. The primary key cannot be DEFERRABLE. Use the

primary key instead of the rowid for directly accessing index-organized rows.

If an index-organized table is partitioned and contains LOB columns, then you

should specify the index_org_table_clause first, then the LOB_storage_
clause , and then the appropriate table_partitioning_clauses .

Restrictions on Index-organized Tables

■ You cannot specify a column of type ROWID for an index-organized table.

■ You cannot specify the composite_partitioning_clause for an

index-organized table.

PCTTHRESHOLD integer Specify the percentage of space reserved in the index

block for an index-organized table row. PCTTHRESHOLD must be large enough to

hold the primary key. All trailing columns of a row, starting with the column that

causes the specified threshold to be exceeded, are stored in the overflow segment.

PCTTHRESHOLD must be a value from 1 to 50. If you do not specify

PCTTHRESHOLD, the default is 50.

Restriction on PCTTHRESHOLD You cannot specify PCTTHRESHOLD for

individual partitions of an index-organized table.

See Also: "Index-Organized Table Example" on page 15-70

Note: You cannot use the TO_LOB function to convert a LONG
column to a LOB column in the subquery of a CREATE TABLE ...AS
SELECT statement if you are creating an index-organized table.

Instead, create the index-organized table without the LONGcolumn,

and then use the TO_LOB function in an INSERT ... AS SELECT
statement.

CREATE TABLE

15-32 Oracle9i SQL Reference

mapping_table_clause Specify MAPPING TABLE to instruct Oracle to create a

mapping of local to physical ROWIDs and store them in a heap-organized table. This

mapping is needed in order to create a bitmap index on the index-organized table.

Oracle creates the mapping table in the same tablespace as its parent

index-organized table. You cannot query, perform DML operations on, or modify

the storage characteristics of the mapping table.

Restriction on Mapping Tables You cannot specify the mapping_table_clause
for a partitioned index-organized table.

key_compression The key_compression clauses let you enable or disable key

compression for index-organized tables.

■ Specify COMPRESS to enable key compression, which eliminates repeated

occurrence of primary key column values in index-organized tables. Use

integer to specify the prefix length (number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of primary key

columns minus 1. The default prefix length is the number of primary key

columns minus 1.

■ Specify NOCOMPRESS to disable key compression in index-organized tables.

This is the default.

Restriction on Key Compression of Index-organized Tables At the partition level,

you can specify COMPRESS, but you cannot specify the prefix length with integer .

index_org_overflow_clause The index_org_overflow_clause lets you

instruct Oracle that index-organized table data rows exceeding the specified

threshold are placed in the data segment specified in this clause.

■ When you create an index-organized table, Oracle evaluates the maximum size

of each column to estimate the largest possible row. If an overflow segment is

needed but you have not specified OVERFLOW, then Oracle raises an error and

does not execute the CREATE TABLE statement. This checking function

guarantees that subsequent DML operations on the index-organized table will

not fail because an overflow segment is lacking.

■ All physical attributes and storage characteristics you specify in this clause after

the OVERFLOW keyword apply only to the overflow segment of the table.

Physical attributes and storage characteristics for the index-organized table

itself, default values for all its partitions, and values for individual partitions

must be specified before this keyword.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-33

■ If the index-organized table contains one or more LOB columns, then the LOBs

will be stored out-of-line unless you specify OVERFLOW, even if they would

otherwise be small enough be to stored inline.

■ If table is partitioned, then Oracle equipartitions the overflow data segments

with the primary key index segments.

INCLUDING column_name Specify a column at which to divide an

index-organized table row into index and overflow portions. The primary key

columns are always stored in the index. column_name can be either the last

primary-key column or any non-primary-key column. All non-primary-key

columns that follow column_name are stored in the overflow data segment.

Restriction on the INCLUDING Clause You cannot specify this clause for

individual partitions of an index-organized table.

external_table_clause
Use the external_table_clause to create an external table, which is a read-only

table whose metadata is stored in the database but whose data in stored outside

database. External tables let you query data without first loading it into the

database, among other capabilities.

Because external tables have no data in the database, you define them with a small

subset of the clauses normally available when creating tables.

■ Within the relational_properties clause, you can specify only column ,

datatype , and inline_constraint .

■ Within the physical_properties_clause , you can specify only the

organization of the table (ORGANIZATION EXTERNALexternal_table_
clause).

Note: If an attempt to divide a row at column_name causes the

size of the index portion of the row to exceed the PCTTHRESHOLD
value (either specified or default), Oracle breaks up the row based

on the PCTTHRESHOLD value.

See Also: Oracle9i Data Warehousing Guide, Oracle9i Database
Administrator’s Guide, and Oracle9i Database Utilities for information

on the uses for external tables

CREATE TABLE

15-34 Oracle9i SQL Reference

■ Within the table_properties clause, you can specify only the parallel_
clause . The parallel_clause lets you parallelize subsequent queries on the

external data.

Restrictions on External Tables

■ No other clauses are permitted in the same CREATE TABLE statement if you

specify the external_table_clause .

■ An external table cannot be a temporary table.

■ You cannot specify constraints on an external table.

■ An external table cannot have object type columns, LOB columns, or LONG
columns.

TYPE
TYPEaccess_driver_type indicates the access driver of the external table. The

access driver is the API that interprets the external data for the database. If you do

not specify TYPE, then Oracle uses the default access driver, ORACLE_LOADER.

DEFAULT DIRECTORY
DEFAULT DIRECTORY lets you specify a default directory object corresponding to a

directory on the file system where the external data sources may reside. The default

directory can also be used by the access driver to store auxiliary files such as error

logs.

ACCESS PARAMETERS
The optional ACCESS PARAMETERS clause lets you assign values to the parameters

of the specific access driver for this external table:

■ The opaque_format_spec lets you list the parameters and their values.

Please refer to Oracle9i Database Utilities for information on how to specify

values for the opaque_format_spec .

Field names specified in the opaque_format_spec must match columns in

the table definition. Oracle ignores any field in the opaque_format_spec that

is not matched by a column in the table definition.

See Also: "External Table Example" on page 15-70

See Also: Oracle9i Database Utilities for information about the

ORACLE_LOADER access driver

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-35

■ USING CLOBsubquery lets you derive the parameters and their values

through a subquery. The subquery cannot contain any set operators or an

ORDER BY clause. It must return one row containing a single item of datatype

CLOB.

Whether you specify the parameters in an opaque_format_spec or derive them

using a subquery, Oracle does not interpret anything in this clause. It is up to the

access driver to interpret this information in the context of the external data.

LOCATION
The LOCATION clause lets you specify one or more external data sources. Usually

the location_specifier is a file, but it need not be. Oracle does not interpret

this clause. It is up to the access driver to interpret this information in the context of

the external data.

REJECT LIMIT
The REJECT LIMIT clause lets you specify how many conversion errors can occur

during a query of the external data before an Oracle error is returned and the query

is aborted. The default value is 0.

CLUSTER Clause
The CLUSTER clause indicates that the table is to be part of cluster . The columns

listed in this clause are the table columns that correspond to the cluster’s columns.

Generally, the cluster columns of a table are the column or columns that make up its

primary key or a portion of its primary key.

Specify one column from the table for each column in the cluster key. The columns

are matched by position, not by name.

A clustered table uses the cluster’s space allocation. Therefore, do not use the

PCTFREE, PCTUSED, INITRANS , or MAXTRANS parameters, the TABLESPACE
clause, or the storage_clause with the CLUSTER clause.

Restrictions on Clustered Tables

■ Object tables and tables containing LOB columns cannot be part of a cluster.

■ You cannot specify CLUSTER with either ROWDEPENDENCIES or

NOROWDEPENDENCIES unless the cluster has been created with the same

ROWDEPENDENCIES or NOROWDEPENDENCIES setting.

See Also: CREATE CLUSTER on page 13-2

CREATE TABLE

15-36 Oracle9i SQL Reference

table_properties

column_properties
Use the column_properties clauses to specify the storage attributes of a column.

object_type_col_properties
The object_type_col_properties determine storage characteristics of an

object column or attribute or an element of a collection column or attribute.

column For column , specify an object column or attribute.

substitutable_column_clause The substitutable_column_clause indicates

whether object columns or attributes in the same hierarchy are substitutable for

each other. You can specify that a column is of a particular type, or whether it can

contain instances of its subtypes, or both.

■ If you specify ELEMENT, you constrain the element type of a collection column

or attribute to a subtype of its declared type.

■ The IS OF [TYPE] (ONLY type) clause constrains the type of the object

column to a subtype of its declared type.

■ NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object column cannot

hold instances corresponding to any of its subtypes. Also, substitution is

disabled for any embedded object attributes and elements of embedded nested

tables and varrays. The default is SUBSTITUTABLE AT ALL LEVELS.

Restrictions on the substitutable_column_clause

■ You cannot specify this clause for an attribute of an object column. However,

you can specify this clause for a object type column of a relational table, and for

an object column of an object table if the substitutability of the object table itself

has not been set.

■ For a collection type column, the only part of this clause you can specify is

[NOT] SUBSTITUTABLE AT ALL LEVELS.

LOB_storage_clause
The LOB_storage_clause lets you specify the storage attributes of LOB data

segments.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-37

For a nonpartitioned table (that is, when specified in the physical_properties
clause without any of the partitioning clauses), this clause specifies the table’s

storage attributes of LOB data segments.

For a partitioned table, Oracle implements this clause depending on where it is

specified:

■ For a partitioned table specified at the table level (that is, when specified in the

physical_properties clause along with one of the partitioning clauses),

this clause specifies the default storage attributes for LOB data segments

associated with each partition or subpartition. These storage attributes apply to

all partitions or subpartitions unless overridden by a LOB_storage_clause
at the partition or subpartition level.

■ For an individual partition of a partitioned table (that is, when specified as part

of a table_partition_description), this clause specifies the storage

attributes of the data segments of the partition or the default storage attributes

of any subpartitions of the partition. A partition-level LOB_storage_clause
overrides a table-level LOB_storage_clause .

■ For an individual subpartition of a partitioned table (that is, when specified as

part of subpartition_by_hash or subpartition_by_list), this clause

specifies the storage attributes of the data segments of the subpartition. A

subpartition-level LOB_storage_clause overrides both partition-level and

table-level LOB_storage_clauses .

Restriction on LOB Storage in Partitioned Tables You cannot specify the LOB_
index_clause if table is partitioned.

LOB_item
Specify the LOB column name or LOB object attribute for which you are explicitly

defining tablespace and storage characteristics that are different from those of the

table. Oracle automatically creates a system-managed index for each LOB_item you

create.

LOB_segname
Specify the name of the LOB data segment. You cannot use LOB_segname if you

specify more than one LOB_item .

LOB_parameters
The LOB_parameters clause lets you specify various elements of LOB storage.

CREATE TABLE

15-38 Oracle9i SQL Reference

ENABLE STORAGE IN ROW If you enable storage in row, then the LOB value is

stored in the row (inline) if its length is less than approximately 4000 bytes minus

system control information. This is the default.

Restriction on Enabling Storage in Row For an index-organized table, you cannot

specify this parameter unless you have specified an OVERFLOW segment in the

index_org_table_clause .

DISABLE STORAGE IN ROW If you disable storage in row, then the LOB value is

stored out of line (outside of the row) regardless of the length of the LOB value.

CHUNK integer Specify the number of bytes to be allocated for LOB manipulation.

If integer is not a multiple of the database block size, then Oracle rounds up (in

bytes) to the next multiple. For example, if the database block size is 2048 and

integer is 2050, then Oracle allocates 4096 bytes (2 blocks). The maximum value is

32768 (32K), which is the largest Oracle block size allowed. The default CHUNK size

is one Oracle database block.

You cannot change the value of CHUNK once it is set.

PCTVERSION integer Specify the maximum percentage of overall LOB storage

space used for maintaining old versions of the LOB. The default value is 10,

meaning that older versions of the LOB data are not overwritten until they consume

10% of the overall LOB storage space.

You can specify the PCTVERSION parameter whether the database is running in

manual or automatic undo mode. PCTVERSION is the default in manual undo

mode. RETENTION is the default in automatic undo mode.

Note: The LOB locator is always stored inline (inside the row)

regardless of where the LOB value is stored. You cannot change the

value of STORAGE IN ROW once it is set except by moving the table.

See the move_table_clause of ALTER TABLE on page 11-86.

Note: The value of CHUNK must be less than or equal to the value

of NEXT (either the default value or that specified in the storage_
clause). If CHUNK exceeds the value of NEXT, then Oracle returns

an error.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-39

Restriction on PCTVERSION You cannot specify both PCTVERSION and

RETENTION.

RETENTION Use this clause to indicate that Oracle should retain old versions of

this LOB column. Oracle uses the value of the UNDO_RETENTION initialization

parameter to determine the amount (in time) of committed undo data to retain in

the database.

You can specify the RETENTION parameter only if the database is running in

automatic undo mode. In this mode, RETENTION is the default value unless you

specify PCTVERSION.

Restriction on RETENTION You cannot specify both PCTVERSION and

RETENTION.

FREEPOOLS integer Specify the number of groups of free lists for the LOB

segment. Normally integer will be the number of instances in a Real Application

Clusters environment or 1 for a single-instance database.

You can specify this parameter only if the database is running in automatic undo

mode. In this mode, FREEPOOLS is the default unless you specify the FREELIST
GROUPSparameter of the storage_clause . If you specify neither FREEPOOLSnor

FREELIST GROUPS, then Oracle uses a default of FREEPOOLS 1if the database is in

automatic undo management mode and a default of FREELIST GROUPS 1 if the

database is in manual undo management mode.

Restriction on FREEPOOLS You cannot specify both FREEPOOLS and the

FREELIST GROUPS parameter of the storage_clause .

LOB_index_clause
This clause has been deprecated. If you specify this clause, then Oracle ignores it.

Oracle automatically generates an index for each LOB column and names and

manages the LOB indexes internally.

CREATE TABLE

15-40 Oracle9i SQL Reference

varray_col_properties
The varray_col_properties let you specify separate storage characteristics for

the LOB in which a varray will be stored. If varray_item is a multilevel collection,

then Oracle stores all collection items nested within varray_item in the same LOB

in which varray_item is stored.

■ For a nonpartitioned table (that is, when specified in the physical_
properties clause without any of the partitioning clauses), this clause

specifies the storage attributes of the LOB data segments of the varray.

■ For a partitioned table specified at the table level (that is, when specified in the

physical_properties clause along with one of the partitioning clauses),

this clause specifies the default storage attributes for the varray’s LOB data

segments associated with each partition (or its subpartitions, if any).

■ For an individual partition of a partitioned table (that is, when specified as part

of a table_partition_description), this clause specifies the storage

attributes of the varray’s LOB data segments of that partition or the default

storage attributes of the varray’s LOB data segments of any subpartitions of this

partition. A partition-level varray_col_properties overrides a table-level

varray_col_properties .

■ For an individual subpartition of a partitioned table (that is, when specified as

part of subpartition_by_hash or subpartition_by_list), this clause

specifies the storage attributes of the varray’s data segments of this

subpartition. A subpartition-level varray_col_properties overrides both

partition-level and table-level varray_col_properties .

STORE AS LOB Clause If you specify STORE AS LOB,

■ If the maximum varray size is less than 4000 bytes and you have not disabled

storage in row, then Oracle stores the varray inline.

See Also:

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) for

detailed information about LOBs, including guidelines for

creating gigabyte LOBs

■ "LOB Column Example" on page 15-69

■ Oracle9i Database Migration Guide for information on how

Oracle manages LOB indexes in tables migrated from earlier

versions

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-41

■ If the maximum varray size is greater than 4000 bytes or if you have disabled

storage in row, then Oracle stores in the varray out of line.

If you do not specify STORE AS LOB, then Oracle handles varray storage differently

from other LOBs. Storage is based on the maximum possible size of the varray (that

is the number of elements times the element size, plus a small amount for system

control information) rather than on the actual size of a varray column.

■ If you do not specify this clause, and the maximum size of the varray is less

than 4000 bytes, then Oracle does not store the varray as a LOB at all, but as

inline raw data.

■ If you do not specify this clause, and the maximum size is greater than 4000

bytes, then Oracle always stores the varray as a LOB. If the actual size is less

than 4000 bytes, then it will be stored as an inline LOB, and if the actual size is

greater than 4000 bytes, then it will be stored as an out-of-line LOB, as is true

for other LOB columns.

Restriction on Storing Varrays as LOBs You cannot specify the TABLESPACE
parameter of LOB_parameters as part of this clause. The LOB tablespace for a

varray defaults to the containing table’s tablespace.

substitutable_column_clause The substitutable_column_clause has the

same behavior as described for object_type_col_properties on page 15-36.

nested_table_col_properties
The nested_table_col_properties let you specify separate storage

characteristics for a nested table, which in turn enables you to define the nested

table as an index-organized table. The storage table is created in the same tablespace

as its parent table (using the default storage characteristics) and stores the nested

table values of the column for which it was created.

You must include this clause when creating a table with columns or column

attributes whose type is a nested table. Clauses within nested_table_col_
properties that function the same way they function for parent object tables are

not repeated here.

nested_item Specify the name of a column (or a top-level attribute of the table’s

object type) whose type is a nested table.

See Also: "Substitutable Table and Column Examples" on

page 15-67

CREATE TABLE

15-42 Oracle9i SQL Reference

COLUMN_VALUE If the nested table is a multilevel collection, then the inner

nested table or varray may not have a name. In this case, specify COLUMN_VALUEin
place of the nested_item name.

storage_table Specify the name of the table where the rows of nested_item
reside. For a nonpartitioned table, the storage table is created in the same schema

and the same tablespace as the parent table. For a partitioned table, the storage table

is created in the default tablespace of the schema.

Restrictions on the Storage Table

■ You cannot partition the storage table of a nested table.

■ You cannot query or perform DML statements on storage_table directly, but

you can modify its storage characteristics by specifying its name in an ALTER
TABLE statement.

RETURN AS Specify what Oracle returns as the result of a query.

■ VALUE returns a copy of the nested table itself.

■ LOCATOR returns a collection locator to the copy of the nested table.

If you do not specify the segment_attributes_clause or the LOB_storage_
clause , then the nested table is heap organized and is created with default storage

characteristics.

Restrictions on Nested Table Column Properties

■ You cannot specify this clause for a temporary table.

■ You cannot specify the OID_clause .

See Also: "Multi-level Collection Example" on page 15-69 for

examples using nested_item and COLUMN_VALUE

See Also: ALTER TABLE on page 11-2 for information about

modifying nested table column storage characteristics

Note: The locator is scoped to the session and cannot be used

across sessions. Unlike a LOB locator, the collection locator cannot

be used to modify the collection instance.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-43

■ You cannot specify TABLESPACE (as part of the segment_attributes_
clause) for a nested table. The tablespace is always that of the parent table.

■ At create time, you cannot specify (as part of object_properties) an out_
of_line_ref_constraint , inline_ref_constraint , or foreign key

constraint for the attributes of a nested table. However, you can modify a nested

table to add such constraints using ALTER TABLE.

■ You cannot query or perform DML statements on the storage table directly, but

you can modify the nested table column storage characteristics by using the

name of storage table in an ALTER TABLE statement.

XMLType_column_properties
The XMLType_column_properties let you specify storage attributes for an

XMLTYPE column.

XMLType_storage XMLType columns can be stored either in LOB or

object-relational columns.

■ Specify STORE AS OBJECT RELATIONAL if you want Oracle to store the

XMLType data in object-relational columns. Storing data object relationally lets

you define indexes on the relational columns and enhances query performance.

If you specify object-relational storage, you must also specify the XMLSchema_
spec clause.

■ Specify STORE AS CLOBif you want Oracle to store the XMLType data in a CLOB
column. Storing data in a CLOB column preserves the original content and

enhances retrieval time.

If you specify LOB storage, you can specify either LOB parameters or the

XMLSchema_spec clause, but not both. Specify the XMLSchema_spec clause if

you want to restrict the table or column to particular schema-based XML

instances.

XMLSchema_spec This clause lets you specify the URL of a registered

XMLSchema (in the XMLSCHEMA clause or as part of the ELEMENT clause) and an

See Also: ■

■ ALTER TABLE on page 11-2 for information about modifying

nested table column storage characteristics

■ "Nested Table Example" on page 15-68 and "Multi-level

Collection Example" on page 15-69

CREATE TABLE

15-44 Oracle9i SQL Reference

XML element name. You must specify an element, although the XMLSchema URL is

optional. If you do specify an XMLSchema URL, you must already have registered

the XMLSchema using the DBMS_XMLSCHEMA package.

table_partitioning_clauses
Use the table_partitioning_clauses to create a partitioned table.

Restrictions on Partitioning in General

■ You cannot partition a table that is part of a cluster.

■ You cannot partition a table containing any LONG or LONG RAW columns.

range_partitioning
Use the range_partitioning clause to partition the table on ranges of values

from the column list. For an index-organized table, the column list must be a subset

of the primary key columns of the table.

See Also:

■ LOB_storage_clause on page 11-45 for information on the

LOB_segname and LOB_parameters clauses

■ "XMLType Column Examples" on page 15-72 for examples of

XMLType columns in object-relational tables and "Using XML

in SQL Statements" on page D-11 for an example of creating an

XMLSchema

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB for

more information on XMLType columns and tables and on

creating XMLSchemas

Note: The storage of partitioned database entities in tablespaces of

different block sizes is subject to several restrictions. Please refer to

Oracle9i Database Administrator’s Guide for a discussion of these

restrictions.

See Also: "Partitioning Examples" on page 15-73

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-45

column
Specify an ordered list of columns used to determine into which partition a row

belongs (the partitioning key).

Restriction on Partitioning Key Columns The columns in the column list can be of

any built-in datatype except ROWID, LONG, LOB, or TIMESTAMP WITH TIME ZONE.

PARTITION partition
The name partition must conform to the rules for naming schema objects and

their part as described in "Schema Object Naming Rules" on page 2-110. If you omit

partition , then Oracle generates a name with the form SYS_Pn.

range_values_clause
Specify the noninclusive upper bound for the current partition. The value list is an

ordered list of literal values corresponding to the column list in the range_
partitioning clause. You can substitute the keyword MAXVALUEfor any literal in

in the value list. MAXVALUE specifies a maximum value that will always sort higher

than any other value, including NULL.

Specifying a value other than MAXVALUEfor the highest partition bound imposes an

implicit integrity constraint on the table.

Notes:

■ You can specify up to 64K-1 partitions and 64K-1 subpartitions.

For a discussion of factors that might impose practical limits

less than this number, please refer to Oracle9i Database
Administrator’s Guide.

■ You can create a partitioned table with just one partition.

However, this is different from a nonpartitioned table. For

instance, you cannot add a partition to a nonpartitioned table.

Note: If table is partitioned on a DATE column, and if the date

format does not specify the first two digits of the year, then you

must use the TO_DATE function with the YYYY 4-character format

mask for the year. (The RRRR format mask is not supported.) The

date format is determined implicitly by NLS_TERRITORY or

explicitly by NLS_DATE_FORMAT.

CREATE TABLE

15-46 Oracle9i SQL Reference

table_partition_description
Use the table_partition_description to define the physical and storage

characteristics of the table.

The segment_attributes_clause and data_segment_compression clause

have the same function as described for the table_properties of the table as a

whole.

The key_compression clause and OVERFLOW clause have the same function as

described for the index_org_table_clause .

LOB_storage_clause The LOB_storage_clause lets you specify LOB storage

characteristics for one or more LOB items in this partition or in any list

subpartitions of this partition. If you do not specify the LOB_storage_clause for

a LOB item, then Oracle generates a name for each LOB data partition. The

system-generated names for LOB data and LOB index partitions take the form SYS_
LOB_Pn and SYS_IL_P n, respectively, where P stands for "partition" and n is a

system-generated number. The corresponding system-generated names for LOB

subpartitions are SYS_LOB_SUBPn and SYS_IL_SUBPn.

varray_col_properties The varray_col_properties lets you specify storage

characteristics for one or more varray items in this partition or in any list

subpartitions of this partition.

Restriction on table_partition_description The partition_level_
subpartition clause is valid only for composite-partitioned tables. See

partition_level_subpartition on page 15-51.

hash_partitioning
Use the hash_partitioning clause to specify that the table is to be partitioned

using the hash method.

See Also:

■ Oracle9i Database Concepts for more information about partition

bounds

■ Oracle9i Database Globalization Support Guide for more

information on these initialization parameters

■ "Range Partitioning Example" on page 15-73

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-47

column Specify an ordered list of columns used to determine into which partition

a row belongs (the partitioning key).

Oracle assigns rows to partitions using a hash function on values found in columns

designated as the partitioning key. You can specify hash partitioning in one of two

ways:

■ individual_hash_partitions : Use this clause to specify individual partitions by

name. If you omit the partition name, then Oracle assigns partition names of the

form SYS_Pn.

Restriction on Specifying Individual Hash Partitions The only clause you can

specify in the partitioning_storage_clause is the TABLESPACE clause.

■ hash_partitions_by_quantity : Alternatively, you can specify the number of

partitions. In this case, Oracle assigns partition names of the form SYS_Pn. The

STORE IN clause specifies one or more tablespaces where the hash partitions

are to be stored. The number of tablespaces does not have to equal the number

of partitions. If the number of partitions is greater than the number of

tablespaces, then Oracle cycles through the names of the tablespaces.

For both methods of hash partitioning, for optimal load balancing you should

specify a number of partitions that is a power of 2. Also for both methods of hash

partitioning, the only attribute you can specify for hash partitions is TABLESPACE.
Hash partitions inherit all other attributes from table-level defaults.

Tablespace storage specified at the table level is overridden by tablespace storage

specified at the partition level, which in turn is overridden by tablespace storage

specified at the subpartition level.

If you specify tablespace storage in both the STORE IN clause of the hash_
partitions_by_quantity clause and the TABLESPACE clause of the

partitioning_storage_clause , then the STORE IN clause determines

placement of partitions as the table is being created. The TABLESPACE clause

determines the default tablespace at the table level for subsequent operations.

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns.

The sort sequence of characters is not identical in all character sets.

See Also: Oracle9i Database Concepts for more information on hash

partitioning

CREATE TABLE

15-48 Oracle9i SQL Reference

Restrictions on Hash Partitioning

■ You cannot specify more than 16 columns in column_list .

■ The column list cannot contain the ROWID or UROWID pseudocolumns.

■ The column list can be of any built-in datatype except ROWID, LONG, or LOB.

list_partitioning
Use the list_partitioning clause to partition the table on lists of literal values

from column . List partitioning is useful for controlling how individual rows map to

specific partitions.

If you omit the partition name, then Oracle assigns partition names of the form

SYS_Pn.

list_values_clause The list_values_clause of each partition must have at

least one value. No value (including NULL) can appear in more than one partition.

List partitions are not ordered.

The DEFAULTkeyword creates a partition into which Oracle will insert any row that

does not map to another partition. Therefore, you can specify DEFAULTfor only one

partition, and you cannot specify any other values for that partition. Further, the

default partition must be the last partition you define (similar to the use of

MAXVALUE for range partitions).

The string comprising the list of values for each partition can be up to 4K bytes. The

total number of values for all partitions cannot exceed 64K-1.

Restrictions on List Partitioning

■ You cannot subpartition a list partition.

■ You can specify only one partitioning key in column_list , and it cannot be a

LOB column.

See Also: Oracle9i Database Globalization Support Guide for more

information on character set support

Note: If you specify the literal NULL for a partition value in the

VALUES clause, then to access data in that partition in subsequent

queries, you must use an IS NULL condition in the WHERE clause,

rather than a comparison condition.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-49

■ If the partitioning key is an object type column, then you can partition on only

one attribute of the column type.

■ Each value in the list_values_clause must be unique among all partitions

of table .

■ You cannot list partition an index-organized table.

composite_partitioning
Use the composite_partitioning clause to first partition table by range, and

then partition the partitions further into hash or list subpartitions. This combination

of range partitioning and hash or list subpartitioning is called composite
partitioning.

After establishing the type of subpartitioning you want for each composite partition

(using the subpartition_by_hash or subpartition_by_list clause), you

must define each of the range partitions.

■ You must specify the range_values_clause , which has the same

requirements as for noncomposite range partitions.

■ Use the table_partition_description to define the physical and storage

characteristics of the each partition. Within the table_partition_
description , you can use the partition_level_subpartition clause to

define the properties of individual subpartitions.

■ If you omit the partition name, then Oracle generates a name with the form

SYS_Pn.

■ The only characteristic you can specify for a hash or list subpartition or a LOB

subpartition is TABLESPACE.

Restriction on Composite Partitioning You cannot specify composite partitioning

for an index-organized table. Therefore, the OVERFLOW clause of the table_
partition_description is not valid for composite-partitioned tables.

subpartition_template The subpartition_template is a common optional

element of both range-hash and range-list composite partitioning. The template lets

you define default subpartitions for each table partition. Oracle will create these

default subpartitions in any partition for which you do not explicitly define

subpartitions. This clause is useful for creating symmetric partitions. You can

override this clause by explicitly defining subpartitions at the partition level (in the

partition_level_subpartition clause).

CREATE TABLE

15-50 Oracle9i SQL Reference

When defining subpartitions with a template, you must specify a name for each

subpartition.

Restrictions on the Subpartition Template

■ The only clause of partitioning_storage_clause you can specify is the

TABLESPACE clause.

■ If you specify TABLESPACE for one LOB subpartition, then you must specify

TABLESPACE for all of the LOB subpartitions of that LOB column. You can

specify the same tablespace for more than one subpartition.

■ If you specify separate LOB storage for list subpartitions using the

partitioning_storage_clause , either in the subpartition_template
or when defining individual subpartitions, then you must specify LOB_
segname (for both LOB and varray columns).

subpartition_by_hash
Use the subpartition_by_hash clause to indicate that Oracle should

subpartition by hash each partition in table . The subpartitioning column list is

unrelated to the partitioning key, but is subject to the same restrictions (see column
on page 15-45).

You can define the subpartitions using the subpartition_template or the

SUBPARTITIONSquantity clause. See subpartition_template on

page 15-49. In either case, for optimal load balancing you should specify a number

of partitions that is a power of 2.

SUBPARTITIONS quantity Specify the default number of subpartitions in each

partition of table , and optionally one or more tablespaces in which they are to be

stored.

The default value is 1. If you omit both this clause and subpartition_template ,

then Oracle will create each partition with one hash subpartition unless you

subsequently specify the partition_level_subpartition clause.

Restriction on Hash Subpartitioning In addition to the restrictions for composite

partitioning in general (see composite_partitioning on page 15-49), for hash

subpartitioning in subpartition_template , you cannot specify the list_
values_clause .

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-51

subpartition_by_list
Use the subpartition_by_list clause to indicate that Oracle should

subpartition each partition in table by literal values from column .

If you omit subpartition_template , then you can define list subpartitions

individually for each partition using the partition_level_subpartition
clause of table_partition_description . If you omit both subpartition_
template and partition_level_subpartition , then Oracle creates a single

DEFAULT subpartition.

Restrictions on List Subpartitioning In addition to the restrictions for composite

partitioning in general (see composite_partitioning on page 15-49), for list

subpartitioning:

■ You can specify only one subpartitioning key column.

■ You must specify the list_values_clause , which is subject to the same

requirements as at the table level.

■ In the subpartition_template , you cannot specify the hash_
subpartition_quantity clause.

partition_level_subpartition
This clause of the table_partition_description is valid only for

composite-partitioned tables. This clause lets you specify hash or list subpartitions

for partition . This clause overrides the default settings established in the

subpartition_by_hash clause (for range-hash composite partitions) or in the

subpartition_template (for range-hash or range-list composite partitions).

For all composite partitions:

■ You can specify the number of subpartitions (and optionally one or more

tablespaces where they are to be stored). In this case, Oracle assigns

subpartition names of the form SYS_SUBPn. The number of tablespaces does

not have to equal the number of subpartitions. If the number of partitions is

greater than the number of tablespaces, Oracle cycles through the names of the

tablespaces.

■ Alternatively, you can use the subpartition_spec to specify individual

subpartitions by name, and optionally the tablespace where each should be

stored.

■ If you omit partition_level_subpartition and if you have created a

subpartition template, Oracle uses the template to create subpartitions. If you

CREATE TABLE

15-52 Oracle9i SQL Reference

have not created a subpartition template, Oracle creates one hash subpartition

or one DEFAULT list subpartition.

■ If you omit partition_level_subpartition entirely, Oracle assigns

subpartition names as follows:

■ If you have specified a subpartition template and you have specified

partition names, then Oracle generates subpartition names of the form

"partition_name underscore (_) subpartition_name " (for example,

P1_SUB1).

■ If you have not specified a subpartition template or if you have specified a

subpartition template but did not specify partition names, then Oracle

generates subpartition names of the form SYS_SUBPn.

■ In partition_spec , the only clause of the partitioning_storage_
clause you can specify is the TABLESPACE clause.

For range-hash composite partitions, the list_values_clause of

subpartition_spec is not relevant and is invalid.

For range-list composite partitions:

■ The hash_subpartition_quantity is not relevant, so you must use the

lower branch of partition_level_subpartition .

■ Within subpartition_spec , you must specify the list_values_clause
for each subpartition, and the values you specify for each subpartition cannot

exist in any other subpartition of the same partition.

CACHE | NOCACHE | CACHE READS
Use the CACHE clauses to indicate how Oracle should store blocks in the buffer

cache. If you specify neither CACHE nor NOCACHE:

■ In a CREATE TABLE statement, NOCACHE is the default

■ In an ALTER TABLE statement, the existing value is not changed.

CACHE Clause For data that is accessed frequently, this clause indicates that the

blocks retrieved for this table are placed at the most recently used end of the least

recently used (LRU) list in the buffer cache when a full table scan is performed. This

attribute is useful for small lookup tables.

As a parameter in the LOB_storage_clause , CACHE specifies that Oracle places

LOB data values in the buffer cache for faster access.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-53

Restriction on CACHE You cannot specify CACHE for an index-organized table.

However, index-organized tables implicitly provide CACHE behavior.

NOCACHE Clause For data that is not accessed frequently, this clause indicates

that the blocks retrieved for this table are placed at the least recently used end of the

LRU list in the buffer cache when a full table scan is performed.

As a parameter in the LOB_storage_clause , NOCACHE specifies that the LOB

value is either not brought into the buffer cache or brought into the buffer cache and

placed at the least recently used end of the LRU list. (The latter is the default

behavior.)

Restriction on NOCACHE You cannot specify NOCACHEfor index-organized

tables.

CACHE READS CACHE READS applies only to LOB storage. It specifies that LOB

values are brought into the buffer cache only during read operations, but not during

write operations.

parallel_clause
The parallel_clause lets you parallelize creation of the table and set the default

degree of parallelism for queries and DML (INSERT, UPDATE, DELETE, and MERGE)
operations on the table after creation.

NOPARALLEL Specify NOPARALLEL for serial execution. This is the default.

PARALLEL Specify PARALLELif you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value

of the PARALLEL_THREADS_PER_CPU initialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,

which is the number of parallel threads used in the parallel operation. Each parallel

See Also: logging_clause on page 7-45 for a description of the

logging_clause when specified as part of LOB_parameters

Note: The syntax of the parallel_clause supersedes syntax

appearing in earlier releases of Oracle. Superseded syntax is still

supported for backward compatibility, but may result in slightly

different behavior than that documented.

CREATE TABLE

15-54 Oracle9i SQL Reference

thread may use one or two parallel execution servers. Normally Oracle calculates

the optimum degree of parallelism, so it is not necessary for you to specify

integer .

Notes on the parallel_clause

■ Parallelism is disabled for tables on which you have defined a trigger or

referential integrity constraint.

■ If you define a bitmap index on table:

■ If table is nonpartitioned, then subsequent DML operations are executed

serially.

■ If table is partitioned, then Oracle limits the degree of parallelism to the

number of partitions accessed in the DML operation.

■ If table contains any columns of LOB or user-defined object type, then

subsequent INSERT, UPDATE, or DELETE operations that modify the LOB or

object type column are executed serially without notification. Subsequent

queries, however, will be executed in parallel.

■ A parallel hint overrides the effect of the parallel_clause .

■ DML statements and CREATE TABLE ... AS SELECT statements that reference

remote objects can run in parallel. However, the "remote object" must really be

on a remote database. The reference cannot loop back to an object on the local

database (for example, by way of a synonym on the remote database pointing

back to an object on the local database).

■ DML operations on tables with LOB columns can be parallelized. However,

intra-partition parallelism is not supported.

NOROWDEPENDENCIES | ROWDEPENDENCIES
This clause lets you specify whether table will use row-level dependency
tracking. With this feature, each row in the table has a system change number

(SCN) that represents a time greater than or equal to the commit time of the last

transaction that modified the row. You cannot change this setting after table is

created.

See Also: Oracle9i Database Performance Tuning Guide and Reference,
Oracle9i Database Concepts, Oracle9i Data Warehousing Guide for more

information on parallelized operations, and "PARALLEL Example"

on page 15-67

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-55

ROWDEPENDENCIES Specify ROWDEPENDENCIES if you want to enable

row-level dependency tracking. This setting is useful primarily to allow for parallel

propagation in replication environments. It increases the size of each row by 6

bytes.

NOROWDEPENDENCIES Specify NOROWDEPENDENCIES if you do not want

table to use the row level dependency tracking feature. This is the default.

MONITORING | NOMONITORING

MONITORING Specify MONITORING if you want modification statistics to be

collected on this table. These statistics are estimates of the number of rows affected

by DML statements over a particular period of time. They are available for use by

the optimizer or for analysis by the user.

Restriction on MONITORING You cannot specify MONITORING for a temporary

table.

NOMONITORING Specify NOMONITORING if you do not want Oracle to collect

modification statistics on the table. This is the default.

Restriction on NOMONITORING You cannot specify NOMONITORING for a

temporary table.

enable_disable_clause
The enable_disable_clause lets you specify whether Oracle should apply a

constraint. By default, constraints are created in ENABLE VALIDATE state.

Restrictions on Enabling and Disabling Constraints

■ To enable or disable any integrity constraint, you must have defined the

constraint in this or a previous statement.

■ You cannot enable a foreign key constraint unless the referenced unique or

primary key constraint is already enabled.

See Also: Oracle9i Advanced Replication for information about the

use of row-level dependency tracking in replication environments

See Also: constraints on page 7-5 for more information on

constraints, "ENABLE VALIDATE Example" on page 15-68, and

"DISABLE Example" on page 15-68

CREATE TABLE

15-56 Oracle9i SQL Reference

ENABLE Clause Specify ENABLE if you want the constraint to be applied to the

data in the table.

■ ENABLE VALIDATE specifies that all old and new data also complies with the

constraint. An enabled validated constraint guarantees that all data is and will

continue to be valid.

If any row in the table violates the integrity constraint, the constraint remains

disabled and Oracle returns an error. If all rows comply with the constraint,

Oracle enables the constraint. Subsequently, if new data violates the constraint,

Oracle does not execute the statement and returns an error indicating the

integrity constraint violation.

■ ENABLE NOVALIDATE ensures that all new DML operations on the constrained

data comply with the constraint. This clause does not ensure that existing data

in the table complies with the constraint and therefore does not require a table

lock.

If you specify neither VALIDATE nor NOVALIDATE, the default is VALIDATE.

If you change the state of any single constraint from ENABLE NOVALIDATE to
ENABLE VALIDATE, the operation can be performed in parallel, and does not block

reads, writes, or other DDL operations.

Note: If you enable a unique or primary key constraint, and if no

index exists on the key, Oracle creates a unique index. This index is

dropped if the constraint is subsequently disabled, and Oracle

rebuilds the index every time the constraint is enabled.

To avoid rebuilding the index and eliminate redundant indexes,

create new primary key and unique constraints initially disabled.

Then create (or use existing) nonunique indexes to enforce the

constraint. Oracle does not drop a nonunique index when the

constraint is disabled, so subsequent ENABLE operations are

facilitated.

Note: If you place a primary key constraint in ENABLE VALIDATE
mode, the validation process will verify that the primary key

columns contain no nulls. To avoid this overhead, mark each

column in the primary key NOT NULL before entering data into the

column and before enabling the table’s primary key constraint.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-57

Restriction on the ENABLE Clause You cannot enable a foreign key that

references a disabled unique or primary key.

DISABLE Clause Specify DISABLE to disable the integrity constraint. Disabled

integrity constraints appear in the data dictionary along with enabled constraints. If

you do not specify this clause when creating a constraint, Oracle automatically

enables the constraint.

■ DISABLE VALIDATE disables the constraint and drops the index on the

constraint, but keeps the constraint valid. This feature is most useful in data

warehousing situations, because it lets you load large amounts of data while

also saving space by not having an index. This setting lets you load data from a

nonpartitioned table into a partitioned table using the exchange_partition_
clause of the ALTER TABLE statement or using SQL*Loader. All other

modifications to the table (inserts, updates, and deletes) by other SQL

statements are disallowed.

■ DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the

constraint (because it is disabled) and cannot guarantee that the constraint is

true (because it is not being validated).

You cannot drop a table whose primary key is being referenced by a foreign key

even if the foreign key constraint is in DISABLE NOVALIDATEstate. Further, the

optimizer can use constraints in DISABLE NOVALIDATE state.

If you specify neither VALIDATE nor NOVALIDATE, the default is NOVALIDATE.

If you disable a unique or primary key constraint that is using a unique index,

Oracle drops the unique index.

UNIQUE The UNIQUE clause lets you enable or disable the unique constraint

defined on the specified column or combination of columns.

PRIMARY KEY The PRIMARY KEY clause lets you enable or disable the table’s

primary key constraint.

See Also: Oracle9i Data Warehousing Guide for more information

on using this setting

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on when to use this setting

CREATE TABLE

15-58 Oracle9i SQL Reference

CONSTRAINT The CONSTRAINT clause lets you enable or disable the integrity

constraint named constraint .

KEEP | DROP INDEX This clause lets you either preserve or drop the index Oracle

has been using to enforce a unique or primary key constraint.

Restriction on Preserving and Dropping Indexes You can specify this clause only

when disabling a unique or primary key constraint.

using_index_clause The using_index_clause lets you specify an index for

Oracle to use to enforce a unique or primary key constraint, or lets you instruct

Oracle to create the index used to enforce the constraint.

You can specify the using_index_clause only when enabling unique or primary

key constraints. You can specify the clauses of the using_index_clause in any

order, but you can specify each clause only once.

■ If you specify schema .index , Oracle attempts to enforce the constraint using

the specified index. If Oracle cannot find the index or cannot use the index to

enforce the constraint, Oracle returns an error.

■ If you specify the create_index_statement , Oracle attempts to create the

index and use it to enforce the constraint. If Oracle cannot create the index or

cannot use the index to enforce the constraint, Oracle returns an error.

■ If you neither specify an existing index nor create a new index, Oracle creates

the index. In this case:

■ The index receives the same name as the constraint.

■ You can choose the values of the INITRANS , MAXTRANS, TABLESPACE,
PCTFREE, and STORAGE parameters for the index. You cannot specify

PCTUSED or the logging_clause for the index.

■ If table is partitioned, you can specify a locally or globally partitioned

index for the unique or primary key constraint.

Restrictions on the using_index_clause

■ You cannot specify this clause for a view constraint.

■ You cannot specify this clause for a NOT NULL, foreign key, or check constraint.

■ You cannot specify an index (schema.index) or create an index (create_
index_statement) when enabling the primary key of an index-organized

table.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-59

global_partitioned_index The global_partitioned_index clause lets you

specify that the partitioning of the index is user defined and is not equipartitioned

with the underlying table. By default, nonpartitioned indexes are global indexes.

Oracle will partition the global index on the ranges of values from the table

columns you specify in column_list . You cannot specify this clause for a local

index.

The column_list must specify a left prefix of the index column list. That is, if the

index is defined on columns a, b, and c , then for column_list you can specify (a ,

b, c) , or (a, b) , or (a, c) , but you cannot specify (b, c) or (c) or (b, a).

Restrictions on the Global Partitioned Index Key

■ You cannot specify more than 32 columns in column_list .

■ The columns cannot contain the ROWID pseudocolumn or a column of type

ROWID.

See Also:

■ index_attributes on page 13-77 for more information on

specifying index attributes in this clause.

■ constraints on page 7-5 for additional information on the

using_index_clause and on PRIMARY KEY and UNIQUE
constraints

■ CREATE INDEX on page 13-65 for a description of LOCAL and

the global_index_clause , and for a description of NOSORT
and the logging_clause in relation to indexes

■ segment_attributes_clause on page 15-27 for

information on the INITRANS , MAXTRANS, TABLESPACE,
STORAGE, and PCTFREE parameters

■ "Explicit Index Control Example" on page 7-35 for an example

of how you can create an index for Oracle to use in enforcing a

constraint

Note: If your enterprise has or will have databases using different

character sets, use caution when partitioning on character columns.

The sort sequence of characters is not identical in all character sets.

CREATE TABLE

15-60 Oracle9i SQL Reference

index_partitioning_clause Use this clause to describe the individual index

partitions. The number of repetitions of this clause determines the number of

partitions. If you omit partition , Oracle generates a name with the form SYS_Pn.

For VALUES LESS THAN(value_list), specify the (noninclusive) upper bound for

the current partition in a global index. The value list is a comma-delimited, ordered

list of literal values corresponding to the column list in the global_
partitioned_index clause. Always specify MAXVALUE as the value of the last

partition.

CASCADE Specify CASCADE to disable any integrity constraints that depend on

the specified integrity constraint. To disable a primary or unique key that is part of a

referential integrity constraint, you must specify this clause.

Restriction on CASCADE You can specify CASCADE only if you have specified

DISABLE.

row_movement_clause
The row_movement_clause lets you specify whether Oracle can move a table

row. It is possible for a row to move, for example, during data segment compression

or an update operation on partitioned data.

■ Specify ENABLE to allow Oracle to move a row, thus changing the rowid.

See Also: Oracle9i Database Globalization Support Guide for more

information on character set support

Note: If the index is partitioned on a DATEcolumn, and if the date

format does not specify the first two digits of the year, you must

use the TO_DATE function with a 4-character format mask for the

year. The date format is determined implicitly by NLS_TERRITORY
or explicitly by NLS_DATE_FORMAT.

Caution: If you need static rowids for data access, do not enable

row movement. For a normal (heap-organized) table, moving a row

changes that row’s rowid. For a moved row in an index-organized

table, the logical rowid remains valid, although the physical guess

component of the logical rowid becomes inaccurate.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-61

■ Specify DISABLE if you want to prevent Oracle from moving a row, thus

preventing a change of rowid.

Restriction on Row Movement You cannot specify this clause for a nonpartitioned

index-organized table.

If you omit this clause, then Oracle disables row movement.

AS subquery
Specify a subquery to determine the contents of the table. The rows returned by the

subquery are inserted into the table upon its creation.

For object tables, subquery can contain either one expression corresponding to the

table type, or the number of top-level attributes of the table type.

If subquery returns (in part or totally) the equivalent of an existing materialized

view, then Oracle may use the materialized view (for query rewrite) in place of one

or more tables specified in subquery .

Oracle derives datatypes and lengths from the subquery. Oracle follows the

following rules for integrity constraints and other column and table attributes:

■ Oracle automatically defines any NOT NULL constraints on columns in the new

table that were explicitly created on the corresponding columns of the selected

table if the subquery selects the column rather than an expression containing

the column. If any rows violate the constraint, then Oracle does not create the

table and returns an error.

■ NOT NULL constraints that were implicitly created by Oracle on columns of the

selected table (for example, for primary keys) are not carried over to the new

table.

■ In addition, primary keys, unique keys, foreign keys, check constraints,

partitioning criteria, indexes, and column default values are not carried over to

the new table.

If all expressions in subquery are columns, rather than expressions, then you can

omit the columns from the table definition entirely. In this case, the names of the

columns of table are the same as the columns in subquery .

See Also: SELECT on page 18-4

See Also: Oracle9i Data Warehousing Guide for more information

on materialized views and query rewrite

CREATE TABLE

15-62 Oracle9i SQL Reference

You can use subquery in combination with the TO_LOB function to convert the

values in a LONG column in another table to LOB values in a column of the table

you are creating.

parallel_clause If you specify the parallel_clause in this statement, then

Oracle will ignore any value you specify for the INITIAL storage parameter, and

will instead use the value of the NEXT parameter.

ORDER BY The ORDER BY clause lets you order rows returned by the subquery.

Restrictions on the Defining Subquery of a Table

■ The number of columns in the table must equal the number of expressions in

the subquery.

■ The column definitions can specify only column names, default values, and

integrity constraints, not datatypes.

■ You cannot define a foreign key constraint in a CREATE TABLE statement that

contains ASsubquery . Instead, you must create the table without the

constraint and then add it later with an ALTER TABLE statement.

See Also:

■ Oracle9i Database Migration Guide for a discussion of why and

when to copy LONGs to LOBs

■ "Conversion Functions" on page 6-6 for a description of how to

use the TO_LOB function

■ SELECT on page 18-4 for more information on the order_by_
clause

See Also: storage_clause on page 7-56 for information on

these parameters

Note: When specified with CREATE TABLE, this clause does not

necessarily order data cross the entire table. (For example, it does

not order across partitions.) Specify this clause if you intend to

create an index on the same key as the ORDER BY key column.

Oracle will cluster data on the ORDER BY key so that it corresponds

to the index key.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-63

object_table
The OF clause lets you explicitly create an object table of type object_type . The

columns of an object table correspond to the top-level attributes of type object_
type . Each row will contain an object instance, and each instance will be assigned a

unique, system-generated object identifier (OID) when a row is inserted. If you omit

schema , then Oracle creates the object table in your own schema.

Object tables (as well as XMLType tables, object views, and XMLType views) do not

have any column names specified for them. Therefore, Oracle defines a

system-generated column SYS_NC_ROWINFO$. You can use this column name in

queries and to create object views with the WITH OBJECT IDENTIFIER clause.

object_table_substitution
Use the object_table_substitution clause to specify whether row objects

corresponding to subtypes can be inserted into this object table.

NOT SUBSTITUTABLE AT ALL LEVELS NOT SUBSTITUTABLE AT ALL LEVELS
indicates that the object table being created is not substitutable. In addition,

substitution is disabled for all embedded object attributes and elements of

embedded nested tables and arrays. The default is SUBSTITUTABLE AT ALL
LEVELS.

object_properties
The properties of object tables are essentially the same as those of relational tables.

However, instead of specifying columns, you specify attributes of the object.

For attribute , specify the qualified column name of an item in an object.

OID_clause
The OID_clause lets you specify whether the object identifier (OID) of the object

table should be system generated or should be based on the primary key of the

table. The default is SYSTEM GENERATED.

Restrictions on the OID_clause

■ You cannot specify OBJECT IDENTIFIER IS PRIMARY KEY unless you have

already specified a PRIMARY KEY constraint for the table.

■ You cannot specify this clause for a nested table.

See Also: "Object Column and Table Examples" on page 15-77

CREATE TABLE

15-64 Oracle9i SQL Reference

OID_index_clause
This clause is relevant only if you have specified the OID_clause as SYSTEM
GENERATED. It specifies an index, and optionally its storage characteristics, on the

hidden object identifier column.

For index , specify the name of the index on the hidden system-generated object

identifier column. If you omit index , then Oracle generates a name.

physical_properties and table_properties
The semantics of these clauses are documented in the corresponding sections under

relational tables. See physical_properties on page 15-27 and table_
properties on page 15-36.

XMLType_table
Use the XMLType_table syntax to create a table of datatype XMLType.

Object tables (as well as XMLType tables, object views, and XMLType views) do not

have any column names specified for them. Therefore, Oracle defines a

system-generated column SYS_NC_ROWINFO$. You can use this column name in

queries and to create object views with the WITH OBJECT IDENTIFIER clause.

XMLType_storage
This clause lets you determine how Oracle manages the storage of the underlying

columns.

OBJECT RELATIONAL Specify OBJECT RELATIONAL if you want Oracle to store

the XMLType data in object relational columns. If you specify OBJECT
RELATIONAL, then you must also specify an XMLSchema in the XMLSchema_
storage_clause , and you must already have registered the schema (using the

DBMS_XMLSCHEMA package). Oracle will create the table conforming to the

registered schema.

Note: A primary key OID is locally (but not necessarily globally)

unique. If you require a globally unique identifier, then you must

ensure that the primary key is globally unique.

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-65

CLOB Specify CLOBif you want Oracle to store the XML data in a CLOBcolumn. If

you specify CLOB, then you may also specify either a LOB segment name, or the

LOB_parameters clause, or both.

XMLSchema_spec
This clause lets you specify the URL of a registered XMLSchema (in the XMLSCHEMA
clause or as part of the ELEMENT clause) and an XML element name. You must

specify an element, although the XMLSchema URL is optional. If you do specify an

XMLSchema URL, you must already have registered the XMLSchema using the

DBMS_XMLSCHEMA package.

Examples

General Examples
To statement shows how the employees table owned by the sample Human

Resources (hr) schema was created:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL
 , salary NUMBER(8,2)
 CONSTRAINT emp_salary_nn NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for

information on the DBMS_XMLSCHEMA package

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB for

information on creating and working with XML data

■ "XMLType Table Examples" on page 15-71

CREATE TABLE

15-66 Oracle9i SQL Reference

 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk
 UNIQUE (email)
) ;

This table contains twelve columns. The employee_id column is of datatype

NUMBER. The hire_date column is of datatype DATE and has a default value of

SYSDATE. The last_name column is of type VARCHAR2 and has a NOT NULL
constraint, and so on.

Storage Example To define the same employees_demo table in the example
tablespace with a small storage capacity and limited allocation potential, issue the

following statement:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL
 , salary NUMBER(8,2)
 CONSTRAINT emp_salary_nn NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk
 UNIQUE (email)
)
 TABLESPACE example
 STORAGE (INITIAL 6144
 NEXT 6144
 MINEXTENTS 1
 MAXEXTENTS 5);

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-67

Temporary Table Example The following statement creates a temporary table

today_sales for use by sales representatives in the sample database. Each sales

representative session can store its own sales data for the day in the table. The

temporary data is deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE today_sales
 ON COMMIT PRESERVE ROWS
 AS SELECT * FROM orders WHERE order_date = SYSDATE;

Substitutable Table and Column Examples The following statement creates a

substitutable table from the person_t type, which was created in "Type Hierarchy

Example" on page 16-22:

CREATE TABLE persons OF person_t;

The following statement creates a table with a substitutable column of type

person_t :

CREATE TABLE books (title VARCHAR2(100), author person_t);

When you insert into persons or books , you can specify values for the attributes

of person_t or any of its subtypes. Example insert statements appear in "Inserting

into a Substitutable Tables and Columns: Examples" on page 17-67.

You can extract data from such tables using built-in functions and conditions. For

examples, see the functions TREAT on page 6-191 and SYS_TYPEID on page 6-164,

and "IS OF type Conditions" on page 5-19.

PARALLEL Example The following statement creates a table using an optimum

number of parallel execution servers to scan employees and to populate dept_80 :

CREATE TABLE dept_80
 PARALLEL
 AS SELECT * FROM employees
 WHERE department_id = 80;

Using parallelism speeds up the creation of the table because Oracle uses parallel

execution servers to create the table. After the table is created, querying the table is

also faster, because the same degree of parallelism is used to access the table.

NOPARALLEL Example The following statement creates the same table serially.

Subsequent DML and queries on the table will also be serially executed.

CREATE TABLE

15-68 Oracle9i SQL Reference

CREATE TABLE dept_80
 AS SELECT * FROM employees
 WHERE department_id = 80;

ENABLE VALIDATE Example The following statement shows how the sample

table departments was created. The example defines a NOT NULL constraint, and

places it in ENABLE VALIDATE state:

CREATE TABLE departments_demo
 (department_id NUMBER(4)
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

DISABLE Example The following statement creates the same departments_
demo table but also defines a disabled primary key constraint:

CREATE TABLE departments_demo
 (department_id NUMBER(4) PRIMARY KEY DISABLE
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

Nested Table Example The following statement shows how the sample table

pm.print_media was created with a nested table column ad_textdocs_ntab :

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
 , press_release LONG
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-69

Multi-level Collection Example The following example shows how an account

manager might create a table of customers using two levels of nested tables:

CREATE TYPE phone AS OBJECT (telephone NUMBER);
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TYPE my_customer AS OBJECT (
 cust_name VARCHAR2(25),
 phones phone_list);
/
CREATE TYPE customer_list AS TABLE OF my_customer;
/
CREATE TABLE business_contacts (
 company_name VARCHAR2(25),
 company_reps customer_list)
 NESTED TABLE company_reps STORE AS outer_ntab
 (NESTED TABLE phones STORE AS inner_ntab);

The following variation of this example shows how to use the COLUMN_VALUE
keyword if the inner nested table has no column or attribute name:

CREATE TYPE phone AS TABLE OF NUMBER;
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TABLE my_customers (
 name VARCHAR2(25),
 phone_numbers phone_list)
 NESTED TABLE phone_numbers STORE AS outer_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

LOB Column Example The following statement is a variation of the statement that

created the pm.print_media table with some added LOB storage characteristics:

CREATE TABLE print_media_new
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ

CREATE TABLE

15-70 Oracle9i SQL Reference

 , press_release LONG
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_new
 LOB (ad_sourcetext, ad_finaltext) STORE AS
 (TABLESPACE example
 STORAGE (INITIAL 6144 NEXT 6144)
 CHUNK 4000
 NOCACHE LOGGING);

In the example, Oracle rounds the value of CHUNK up to 4096 (the nearest multiple

of the block size of 2048).

Index-Organized Table Example The following statement shows how the sample

table hr.countries , which is index organized, was created:

CREATE TABLE countries
 (country_id CHAR(2)
 CONSTRAINT country_id_nn NOT NULL
 , country_name VARCHAR2(40)
 , currency_name VARCHAR2(25)
 , currency_symbol VARCHAR2(3)
 , region VARCHAR2(15)
 , CONSTRAINT country_c_id_pk
 PRIMARY KEY (country_id)
 ORGANIZATION INDEX
 INCLUDING country_name
 PCTTHRESHOLD 2
 STORAGE
 (INITIAL 4K
 NEXT 2K
 PCTINCREASE 0
 MINEXTENTS 1
 MAXEXTENTS 1)
 OVERFLOW
 STORAGE
 (INITIAL 4K
 NEXT 2K
 PCTINCREASE 0
 MINEXTENTS 1
 MAXEXTENTS 1);

External Table Example The following statement creates an external table that

represents a subset of the sample table hr.departments . The opaque_format_
spec is shown in italics. Please refer to Oracle9i Database Utilities for information on

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-71

the ORACLE_LOADER access driver and how to specify values for the opaque_
format_spec .

CREATE TABLE dept_external (
 deptno NUMBER(6),
 dname VARCHAR2(20),
 loc VARCHAR2(25)
)
ORGANIZATION EXTERNAL
(TYPE oracle_loader
 DEFAULT DIRECTORY admin
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY newline
 BADFILE ’ulcase1.bad’
 DISCARDFILE ’ulcase1.dis’
 LOGFILE ’ulcase1.log’
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY ’"’
 (
 deptno INTEGER EXTERNAL(6),
 dname CHAR(20),
 loc CHAR(25)
)
)
 LOCATION (’ulcase1.ctl’)
)
REJECT LIMIT UNLIMITED;

XMLType Examples
This section contains brief examples of creating an XMLType table or XMLType
column. For a more expanded version of these examples, please refer to "Using

XML in SQL Statements" on page D-11.

XMLType Table Examples The following example creates a very simple XMLType
table with one implicit CLOB column:

CREATE TABLE xwarehouses OF XMLTYPE;

Because Oracle implicitly stores the data in a CLOB column, it is subject to all of the

restrictions on LOB columns. To avoid these restrictions, you can create an

See Also: "Creating a Directory: Examples" on page 13-51 to see

how the admin directory was created

CREATE TABLE

15-72 Oracle9i SQL Reference

XMLSchema-based table, as shown in the following example. The XMLSchema

must already have been created (see "Using XML in SQL Statements" on page D-11

for more information):

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

You can define constraints on an XMLSchema-based table, and you can also create

indexes on XMLSchema-based tables, which greatly enhance subsequent queries.

You can create object-relational views on XMLType tables, and you can create

XMLType views on object-relational tables.

XMLType Column Examples The following example creates a table with an

XMLType column stored as a CLOB. This table does not require an XMLSchema, so

the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144 NEXT 6144)
 CHUNK 4000
 NOCACHE LOGGING);

The following example creates a similar table, but stores XMLType data in an object

relational XMLType column whose structure is determined by the specified schema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.oracle.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

See Also:

■ "Using XML in SQL Statements" on page D-11 for an example

of adding a constraint

■ "Create an Index on an XMLType Table: Example" on

page 13-88 for an example of creating an index

■ "Creating an XMLType View: Example" on page 16-53 for an

example of creating an XMLType view

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-73

Partitioning Examples

Range Partitioning Example The sales table in the sample schema sh is

partitioned by range. The following example shows an abbreviated variation of the

sales table (constraints and storage elements have been omitted from the

example):

CREATE TABLE range_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE(’01-APR-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE(’01-JUL-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE(’01-OCT-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE(’01-JAN-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE(’01-APR-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE(’01-JUL-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE(’01-OCT-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE(’01-JAN-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE(’01-APR-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE(’01-JUL-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE(’01-OCT-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE))
;

For information about partitioned table maintenance operations, see the Oracle9i
Database Administrator’s Guide.

List Partitioning Example The following statement shows how the sample table

oe.customers might have been created as a list-partitioned table (some columns

and all constraints of the sample table have been omitted in this example):

CREATE TABLE list_customers
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20)
 , cust_last_name VARCHAR2(20)
 , cust_address CUST_ADDRESS_TYP
 , nls_territory VARCHAR2(30)
 , cust_email VARCHAR2(30))
 PARTITION BY LIST (nls_territory) (

CREATE TABLE

15-74 Oracle9i SQL Reference

 PARTITION asia VALUES (’CHINA’, ’THAILAND’),
 PARTITION europe VALUES (’GERMANY’, ’ITALY’, ’SWITZERLAND’),
 PARTITION west VALUES (’AMERICA’),
 PARTITION east VALUES (’INDIA’),
 PARTITION rest VALUES (DEFAULT));

Partitioned Table with LOB Columns Example This statement creates a

partitioned table part_tab with two partitions p1 and p2 , and three LOB columns,

b, c , and d. The statement uses the sample table pm.print_media , but the LONG
column press_release is omitted because LONG columns are not supported in

partitioning.

CREATE TABLE print_media_demo
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_demo
 LOB (ad_composite, ad_photo, ad_finaltext)
 STORE AS(STORAGE (NEXT 20M))
 PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (3000) TABLESPACE tbs_1
 LOB (ad_composite, ad_photo)
 STORE AS (TABLESPACE tbs_2 STORAGE (INITIAL 10M)),
 PARTITION P2 VALUES LESS THAN (MAXVALUE)
 LOB (ad_composite, ad_finaltext)
 STORE AS (TABLESPACE tbs_3)
)
 TABLESPACE tbs_4;

Partition p1 will be in tablespace tbs_1 . The LOB data partitions for ad_
composite and ad_finaltext will be in tablespace tbs_2 . The LOB data

partition for ad_photo will be in tablespace tbs_1 . The storage attribute INITIAL
is specified for LOB columns ad_composite and ad_finaltext . Other attributes

will be inherited from the default table-level specification. The default LOB storage

attributes not specified at the table level will be inherited from the tablespace tbs_
2 for columns ad_composite and ad_finaltext and tablespace tbs_1 for

column ad_photo . LOB index partitions will be in the same tablespaces as the

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-75

corresponding LOB data partitions. Other storage attributes will be based on values

of the corresponding attributes of the LOB data partitions and default attributes of

the tablespace where the index partitions reside.

Partition p2 will be in the default tablespace tbs_4 . The LOB data for ad_
composite and ad_photo will be in tablespace tbs_3 . The LOB data for ad_
finaltext will be in tablespace tbs_4 . The LOB index for columns ad_
composite and ad_photo will be in tablespace tbs_3 . The LOB index for column

ad_finaltext will be in tablespace tbs_4 .

Hash Partitioning Example The sample table oe.product_information is not

partitioned. However, you might want to partition such a large table by hash for

performance reasons, as shown in this example. (The tablespace names are

hypothetical in this example.)

CREATE TABLE hash_products
 (product_id NUMBER(6)
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , weight_class NUMBER(1)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
 , min_price NUMBER(8,2)
 , catalog_url VARCHAR2(50)
 , CONSTRAINT product_status_lov
 CHECK (product_status in (’orderable’
 ,’planned’
 ,’under development’
 ,’obsolete’)
))
 PARTITION BY HASH (product_id)
 PARTITIONS 5
 STORE IN (tbs_1, tbs_2, tbs_3, tbs_4);

Composite-Partitioned Table Examples The table created in the "Range

Partitioning Example" on page 15-73 divides data by time of sale. If you plan to

access recent data according to distribution channel as well as time, then composite

partitioning might be more appropriate. The following example creates a copy of

that range_sales table, but with range-hash composite partitioning. The

partitions with the most recent data are subpartitioned with both Oracle-defined

CREATE TABLE

15-76 Oracle9i SQL Reference

and user-defined subpartition names. (Constraints and storage attributes have been

omitted from the example).

CREATE TABLE composite_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
SUBPARTITION BY HASH (channel_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE(’01-APR-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE(’01-JUL-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE(’01-OCT-1998’,’DD-MON-YYYY’)),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE(’01-JAN-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE(’01-APR-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE(’01-JUL-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE(’01-OCT-1999’,’DD-MON-YYYY’)),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE(’01-JAN-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE(’01-APR-2000’,’DD-MON-YYYY’)),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE(’01-JUL-2000’,’DD-MON-YYYY’))
 SUBPARTITIONS 8,
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE(’01-OCT-2000’,’DD-MON-YYYY’))
 (SUBPARTITION ch_c,
 SUBPARTITION ch_i,
 SUBPARTITION ch_p,
 SUBPARTITION ch_s,
 SUBPARTITION ch_t),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE)
 SUBPARTITIONS 4)
;

The following examples creates a partitioned table of customers based on the

sample table oe.customers . In this example, the table is partitioned on the

credit_limit column and list subpartitioned on the nls_territory column.

The subpartition template determines the subpartitioning of any subsequently

added partitions (unless you override the template by defining individual

subpartitions). This composite partitioning makes it possible to query the table

based on a credit limit range within a specified region:

CREATE TABLE customers_part (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-77

 cust_last_name VARCHAR2(20),
 nls_territory VARCHAR2(30),
 credit_limit NUMBER(9,2))
 PARTITION BY RANGE (credit_limit)
 SUBPARTITION BY LIST (nls_territory)
 SUBPARTITION TEMPLATE
 (SUBPARTITION east VALUES
 (’CHINA’, ’JAPAN’, ’INDIA’, ’THAILAND’),
 SUBPARTITION west VALUES
 (’AMERICA’, ’GERMANY’, ’ITALY’, ’SWITZERLAND’),
 SUBPARTITION other VALUES (DEFAULT))
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Object Column and Table Examples

Creating Object Tables: Examples Consider object type department_typ :

CREATE TYPE department_typ AS OBJECT
 (d_name VARCHAR2(100),
 d_address VARCHAR2(200));
/
Object table departments_obj_t holds department objects of type

department_typ :

CREATE TABLE departments_obj_t OF department_typ;

The following statement creates object table salesreps with a user-defined object

type, salesrep_typ :

CREATE OR REPLACE TYPE salesrep_typ AS OBJECT
 (repId NUMBER,
 repName VARCHAR2(64));

CREATE TABLE salesreps OF salesrep_typ;

Creating Tables with a Scoped REF: Example The following example uses the

type department_typ and the table departments_obj_t (created in "Creating

Object Tables: Examples" on page 15-77). A table with a scoped REF is then created.

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ SCOPE IS departments_obj_t);

CREATE TABLE

15-78 Oracle9i SQL Reference

The following statement creates a table with a REF column which has a referential

integrity constraint defined on it:

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ REFERENCES departments_obj_t);

Creating a Table with a User-Defined OID: Example This example creates an object

type and a corresponding object table whose OID is primary key based:

CREATE TYPE employees_typ AS OBJECT
 (e_no NUMBER, e_address CHAR(30));

CREATE TABLE employees_obj_t OF employees_typ (e_no PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

You can subsequently reference the emp object table in either of the following two

ways:

CREATE TABLE departments_t
 (d_no NUMBER,
 mgr_ref REF employees_typ SCOPE IS employees_obj_t);

CREATE TABLE departments_t (
 d_no NUMBER,
 mgr_ref REF employees_typ
 CONSTRAINT mgr_in_emp REFERENCES employees_obj_t);

Specifying Constraints on Type Columns: Example

CREATE TYPE address_t AS OBJECT
 (hno NUMBER,
 street VARCHAR2(40),
 city VARCHAR2(20),
 zip VARCHAR2(5),
 phone VARCHAR2(10));

CREATE TYPE person AS OBJECT
 (name VARCHAR2(40),
 dateofbirth DATE,
 homeaddress address,
 manager REF person);

CREATE TABLE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-79

CREATE TABLE persons OF person
 (homeaddress NOT NULL,
 UNIQUE (homeaddress.phone),
 CHECK (homeaddress.zip IS NOT NULL),
 CHECK (homeaddress.city <> ’San Francisco’));

CREATE TABLESPACE

15-80 Oracle9i SQL Reference

CREATE TABLESPACE

Purpose
Use the CREATE TABLESPACE statement to create a tablespace, which is an

allocation of space in the database that can contain persistent schema objects.

When you create a tablespace, it is initially a read/write tablespace. You can

subsequently use the ALTER TABLESPACE statement to take the tablespace offline

or online, add datafiles to it, or make it a read-only tablespace.

You can also drop a tablespace from the database with the DROP TABLESPACE
statement.

You can use the CREATE TEMPORARY TABLESPACE statement to create tablespaces

that contain schema objects only for the duration of a session.

Prerequisites
You must have CREATE TABLESPACE system privilege.

Before you can create a tablespace, you must create a database to contain it, and the

database must be open.

To use objects in a tablespace other than the SYSTEM tablespace:

■ If you are running the database in rollback undo mode, at least one rollback

segment (other than the SYSTEM rollback segment) must be online.

■ If you are running the database in Automatic Undo Management mode, at least

one UNDO tablespace must be online.

See Also:

■ Oracle9i Database Concepts for information on tablespaces

■ ALTER TABLESPACE on page 11-102 for information on

modifying tablespaces

■ DROP TABLESPACE on page 17-10 for information on

dropping tablespaces

■ CREATE TEMPORARY TABLESPACE on page 15-92

See Also: CREATE DATABASE on page 13-23

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-81

Syntax

create_tablespace::=

(datafile_tempfile_spec::= on page 7-39—part of file_specification ,

logging_clause::= on page 15-82, data_segment_compression::= on

page 15-82, storage_clause::= on page 7-58, extent_management_
clause::= on page 15-82, segment_management_clause::= on page 15-82)

See Also: CREATE ROLLBACK SEGMENT on page 14-82

CREATE
UNDO

TABLESPACE tablespace
DATAFILE datafile_tempfile_spec

,

MINIMUM EXTENT integer

K

M

BLOCKSIZE integer
K

logging_clause

FORCE LOGGING

DEFAULT
data_segment_compression

storage_clause

ONLINE

OFFLINE

PERMANENT

TEMPORARY

extent_management_clause

segment_management_clause
;

CREATE TABLESPACE

15-82 Oracle9i SQL Reference

logging_clause::=

data_segment_compression::=

(storage_clause on page 7-56)

extent_management_clause ::=

segment_management_clause ::=

Semantics

UNDO
Specify UNDO to create an undo tablespace. When you run the database in

Automatic Undo Management mode, Oracle manages undo space using the undo

tablespace instead of rollback segments. This clause is useful if you are now

running in Automatic Undo Management mode but your database was not created

in Automatic Undo Management mode.

Oracle always assigns an undo tablespace when you start up the database in

Automatic Undo Management mode. If no undo tablespace has been assigned to

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

EXTENT MANAGEMENT

DICTIONARY

LOCAL

AUTOALLOCATE

UNIFORM
SIZE integer

K

M

SEGMENT SPACE MANAGEMENT
MANUAL

AUTO

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-83

this instance, then Oracle will use the SYSTEM rollback segment. You can avoid this

by creating an undo tablespace, which Oracle will implicitly assign to the instance if

no other undo tablespace is currently assigned.

Restrictions on Undo Tablespaces

■ You cannot create database objects in this tablespace. It is reserved for

system-managed undo data.

■ The only clauses you can specify for an undo tablespace are the DATAFILE
clause and the extent_management_clause to specify local extent

management. (You cannot specify dictionary extent management using the

extent_management_clause .) All undo tablespaces are created permanent,

read/write, and in logging mode. Values for MINIMUM EXTENT and DEFAULT
STORAGE are system generated.

tablespace
Specify the name of the tablespace to be created.

DATAFILE datafile_tempfile_spec
Specify the datafile or files to make up the tablespace.

See Also:

■ Oracle9i Database Administrator’s Guide for information on

Automatic Undo Management and undo tablespaces

■ CREATE DATABASE on page 13-23 for information on creating

an undo tablespace implicitly or explicitly during database

creation

■ ALTER TABLESPACE for information about altering undo

tablespaces

■ DROP TABLESPACE for information about dropping undo

tablespaces

■ Oracle9i Database Reference for information on opening a

database instance in Automatic Undo Management mode using

the UNDO_MANAGEMENT parameter

■ "Creating an Undo Tablespace: Example" on page 15-89

CREATE TABLESPACE

15-84 Oracle9i SQL Reference

The DATAFILE clause is optional only if the DB_CREATE_FILE_DEST initialization

parameter is set. In this case, Oracle creates a system-named 100MB file in the

default file destination specified in the parameter. The file has AUTOEXTEND
enabled and an unlimited maximum size.

MINIMUM EXTENT Clause
Specify the minimum size of an extent in the tablespace. This clause lets you control

free space fragmentation in the tablespace by ensuring that every used or free extent

size in a tablespace is at least as large as, and is a multiple of, integer .

BLOCKSIZE Clause
Use the BLOCKSIZEclause to specify a nonstandard block size for the tablespace. In

order to specify this clause, you must have the DB_CACHE_SIZE and at least one

DB_nK_CACHE_SIZE parameter set, and the integer you specify in this clause must

correspond with the setting of one DB_nK_CACHE_SIZE parameter setting.

Note: For operating systems that support raw devices, the REUSE
keyword of datafile_tempfile_spec has no meaning when

specifying a raw device as a datafile. Such a CREATE TABLESPACE
statement will succeed whether or not you specify REUSE.

See Also:

■ file_specification on page 7-39 for a full description,

including the AUTOEXTEND parameter

■ "Enabling Autoextend for a Tablespace: Example" on

page 15-90 and "Creating Oracle-managed Files: Examples" on

page 15-91

Note: This clause is not relevant for a dictionary-managed

temporary tablespace.

See Also: Oracle9i Database Concepts for more information about

using MINIMUM EXTENT to control fragmentation and "Specifying

Minimum Extent Size: Example" on page 15-90

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-85

Restriction on BLOCKSIZE You cannot specify nonstandard block sizes for a

temporary tablespace (that is, if you also specify TEMPORARY) or if you intend to

assign this tablespace as the temporary tablespace for any users.

logging_clause
Specify the default logging attributes of all tables, indexes, materialized views,

materialized view logs, and partitions within the tablespace. LOGGING is the

default.

The tablespace-level logging attribute can be overridden by logging specifications at

the table, index, materialized view, materialized view log, and partition levels.

FORCE LOGGING
Use this clause to put the tablespace into FORCE LOGGING mode. Oracle will log all

changes to all objects in the tablespace except changes to temporary segments,

overriding any NOLOGGING setting for individual objects. The database must be

open and in READ WRITE mode.

This setting does not exclude the NOLOGGING attribute. That is, you can specify

both FORCE LOGGING and NOLOGGING. In this case, NOLOGGING is the default

logging mode for objects subsequently created in the tablespace, but Oracle ignores

this default as long as the tablespace (or the database) is in FORCE LOGGING mode.

If you subsequently take the tablespace out of FORCE LOGGING mode, then the

NOLOGGING default is once again enforced.

Restriction on Forced Logging You cannot specify FORCE LOGGING for an undo

or temporary tablespace.

See Also: Oracle9i Database Administrator’s Guide for information

on allowing multiple block sizes in the buffer cache, and for

restrictions on using multiple block sizes in partitioned objects

See Also: logging_clause on page 7-45 for a full description of

this clause

Note: FORCE LOGGINGmode can have performance effects. Please

refer to Oracle9i Database Administrator’s Guide for information on

when to use this setting.

CREATE TABLESPACE

15-86 Oracle9i SQL Reference

DEFAULT storage_clause
Specify the default storage parameters for all objects created in the tablespace.

For a dictionary-managed temporary tablespace, Oracle considers only the NEXT
parameter of the storage_clause .

ONLINE | OFFLINE Clauses

ONLINE Specify ONLINE to make the tablespace available immediately after

creation to users who have been granted access to the tablespace. This is the default.

OFFLINE Specify OFFLINE to make the tablespace unavailable immediately after

creation.

The data dictionary view DBA_TABLESPACES indicates whether each tablespace is

online or offline.

PERMANENT | TEMPORARY Clauses

PERMANENT Specify PERMANENT if the tablespace will be used to hold

permanent objects. This is the default.

TEMPORARY Specify TEMPORARY if the tablespace will be used only to hold

temporary objects, for example, segments used by implicit sorts to handle ORDER
BY clauses.

Temporary tablespaces created with this clause are always dictionary managed, so

you cannot specify the EXTENT MANAGEMENT LOCAL clause. To create a locally

managed temporary tablespace, use the CREATE TEMPORARY TABLESPACE
statement.

See Also: storage_clause on page 7-56 for information on

storage parameters and "Creating a Tablespace with Default

Storage: Example" on page 15-90

Note: Oracle Corporation strongly recommends that you create

locally managed temporary tablespaces containing tempfiles by

using the CREATE TEMPORARY TABLESPACE statement. The

creation of new dictionary-managed tablespaces is scheduled for

desupport.

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-87

Restriction on Temporary Tablespaces If you specify TEMPORARY, then you

cannot specify the BLOCKSIZE clause.

extent_management_clause
The extent_management_clause lets you specify how the extents of the

tablespace will be managed.

■ Specify LOCAL if you want the tablespace to be locally managed. Locally

managed tablespaces have some part of the tablespace set aside for a bitmap.

This is the default.

■ AUTOALLOCATE specifies that the tablespace is system managed. Users

cannot specify an extent size. This is the default if the COMPATIBLE
initialization parameter is set to 9.0.0 or higher.

■ UNIFORM specifies that the tablespace is managed with uniform extents of

SIZE bytes. Use K or M to specify the extent size in kilobytes or megabytes.

The default SIZE is 1 megabyte.

■ Specify DICTIONARY if you want the tablespace to be managed using

dictionary tables. This is the default if the COMPATIBLEinitialization parameter

is set less than 9.0.0.

Restriction on Dictionary-managed Tablespaces You cannot specify

DICTIONARY if the SYSTEM tablespace of the database is locally managed.

If you do not specify the extent_management_clause , then Oracle interprets the

COMPATIBLE setting, the MINIMUM EXTENT clause and the DEFAULTstorage_
clause to determine extent management. If the COMPATIBLE initialization

Note: Once you have specified extent management with this

clause, you can change extent management only by migrating the

tablespace.

Note: Oracle Corporation strongly recommends that you create

only locally managed tablespaces. Locally managed tablespaces are

much more efficiently managed than dictionary-managed

tablespaces. The creation of new dictionary-managed tablespaces is

scheduled for desupport.

CREATE TABLESPACE

15-88 Oracle9i SQL Reference

parameter is less than 9.0.0, then Oracle creates a dictionary managed tablespace. If

COMPATIBLE = 9.0.0 or higher:

■ If you do not specify the DEFAULTstorage_clause , then Oracle creates a

locally managed autoallocated tablespace.

■ If you did specify the DEFAULTstorage_clause :

■ If you specified the MINIMUM EXTENT clause, then Oracle evaluates

whether the values of MINIMUM EXTENT, INITIAL , and NEXTare equal and

the value of PCTINCREASE is 0. If so, Oracle creates a locally managed

uniform tablespace with extent size = INITIAL . If the MINIMUM EXTENT,
INITIAL , and NEXT parameters are not equal, or if PCTINCREASE is not 0,

Oracle ignores any extent storage parameters you may specify and creates a

locally managed, autoallocated tablespace.

■ If you did not specify MINIMUM EXTENT clause, then Oracle evaluates only

whether the storage values of INITIAL and NEXT are equal and

PCTINCREASE is 0. If so, the tablespace is locally managed and uniform.

Otherwise, the tablespace is locally managed and autoallocated.

Restrictions on Extent Management

■ A permanent locally managed tablespace can contain only permanent objects. If

you need a locally managed tablespace to store temporary objects (for example,

if you will assign it as a user’s temporary tablespace, use the CREATE
TEMPORARY TABLESPACE statement.

■ If you specify LOCAL, then you cannot specify DEFAULTstorage_clause,
MINIMUM EXTENT, or TEMPORARY.

segment_management_clause
The segment_management_clause is relevant only for permanent, locally

managed tablespaces. It lets you specify whether Oracle should track the used and

free space in the segments in the tablespace using free lists or bitmaps.

See Also: Oracle9i Database Concepts for a discussion of locally

managed tablespaces

See Also: Oracle9i Database Migration Guide for information on

changing extent management by migrating tablespaces and

"Creating a Locally Managed Tablespace: Example" on page 15-90

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-89

MANUAL Specify MANUAL if you want Oracle to manage the free space of

segments in the tablespace using free lists.

AUTO Specify AUTO if you want Oracle to manage the free space of segments in

the tablespace using a bitmap. If you specify AUTO, then Oracle ignores any

specification for PCTUSED, FREELIST, and FREELIST GROUPS in subsequent

storage specifications for objects in this tablespace. This setting is called automatic
segment-space management.

To determine the segment management of an existing tablespace, query the

SEGMENT_SPACE_MANAGEMENT column of the DBA_TABLESPACES or USER_
TABLESPACES data dictionary view.

Restrictions on Automatic Segment-space Management

■ You can specify this clause only for permanent, locally managed tablespace.

■ You cannot specify this clause for the SYSTEM tablespace.

Examples

Creating an Undo Tablespace: Example The following example creates a 10 MB

undo tablespace undots1 with datafile undotbs_1a.f :

Notes: If you specify AUTO, then:

■ If you set extent management to LOCAL UNIFORM, then you

must ensure that each extent contains at least 5 database blocks,

given the database block size.

■ If you set extent management to LOCAL AUTOALLOCATE, and if

the database block size is 16K or greater, then Oracle manages

segment space by creating extents with a minimum size of 1M.

See Also:

■ Oracle9i Database Administrator’s Guide for information on

automatic segment-space management and when to use it

■ Oracle9i Database Reference for information on the data

dictionary views

■ "Specifying Segment Space Management for a Tablespace:

Example" on page 15-90

CREATE TABLESPACE

15-90 Oracle9i SQL Reference

CREATE UNDO TABLESPACE undots1
 DATAFILE ’undotbs_1a.f’
 SIZE 10M AUTOEXTEND ON;

Creating a Tablespace with Default Storage: Example This statement creates a

tablespace named tbs_01 with one datafile:

CREATE TABLESPACE tbs_01
 DATAFILE ’tbs_f2.dat’ SIZE 40M
 DEFAULT STORAGE (INITIAL 128K NEXT 128K
 MINEXTENTS 1 MAXEXTENTS 999)
 ONLINE;

Enabling Autoextend for a Tablespace: Example This statement creates a

tablespace named tbs_02 with one datafile. When more space is required, 500

kilobyte extents will be added up to a maximum size of 10 megabytes:

CREATE TABLESPACE tbs_02
 DATAFILE ’diskb:tbs_f5.dat’ SIZE 500K REUSE
 AUTOEXTEND ON NEXT 500K MAXSIZE 100M;

Specifying Minimum Extent Size: Example This statement creates tablespace

tbs_03 with one datafile and allocates every extent as a multiple of 500K:

CREATE TABLESPACE tbs_03
 DATAFILE ’tbs_f03.dbf’ SIZE 20M
 MINIMUM EXTENT 500K
 DEFAULT STORAGE (INITIAL 128K NEXT 128K)
 LOGGING;

Creating a Locally Managed Tablespace: Example In the following statement, we

assume that the database block size is 2K.

CREATE TABLESPACE tbs_04 DATAFILE ’file_1.f’ SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

This statement creates a locally managed tablespace in which every extent is 128K

and each bit in the bit map describes 64 blocks.

Specifying Segment Space Management for a Tablespace: Example The

following example creates a tablespace with automatic segment-space management:

CREATE TABLESPACE auto_seg_ts DATAFILE ’file_2.f’ SIZE 1M
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

CREATE TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-91

Creating Oracle-managed Files: Examples The following example sets the default

location for datafile creation and creates a tablespace with a datafile in the default

location. The datafile is 100M and is autoextensible with an unlimited maximum

size:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = ’$ORACLE_HOME/rdbms/log’;

CREATE TABLESPACE omf_ts1;

The following example creates a tablespace with an Oracle managed datafile of

100M that is not autoextensible:

CREATE TABLESPACE omf_ts2 DATAFILE AUTOEXTEND OFF;

CREATE TEMPORARY TABLESPACE

15-92 Oracle9i SQL Reference

CREATE TEMPORARY TABLESPACE

Purpose
Use the CREATE TEMPORARY TABLESPACE statement to create a locally managed

temporary tablespace, which is an allocation of space in the database that can

contain schema objects for the duration of a session. If you subsequently assign this

temporary tablespace to a particular user, then Oracle will also use this tablespace

for sorting operations in transactions initiated by that user.

To create a tablespace to contain persistent schema objects, use the CREATE
TABLESPACE statement.

To create a temporary tablespace that is dictionary managed, use the CREATE
TABLESPACE statement with the TEMPORARY clause.

Prerequisites
You must have the CREATE TABLESPACE system privilege.

Syntax

create_temporary_tablespace::=

(datafile_tempfile_spec::= on page 7-39, temp_tablespace_extent::=
on page 15-93)

Note: Media recovery does not recognize tempfiles.

See Also:

■ CREATE TABLESPACE on page 15-80 for information on

creating tablespaces to store persistent schema objects and

dictionary-managed temporary tablespaces

■ CREATE USER on page 16-32 for information on assigning a

temporary tablespace to a user

CREATE TEMPORARY TABLESPACE tablespace

TEMPFILE datafile_tempfile_spec
temp_tablespace_extent ;

CREATE TEMPORARY TABLESPACE

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-93

temp_tablespace_extent ::=

Semantics

tablespace
Specify the name of the temporary tablespace.

TEMPFILE datafile_tempfile_spec
Specify the tempfiles that make up the tablespace.

You can omit the TEMPFILE clause only if the DB_CREATE_FILE_DEST
initialization parameter has been set. In this case, Oracle creates a 100 MB

Oracle-managed tempfile in the default file destination specified in the parameter.

The file has AUTOEXTEND enabled and an unlimited maximum size. If the DB_
CREATE_FILE_DEST parameter is not set, then you must specify the TEMPFILE
clause.

Note: On some operating systems, Oracle does not allocate space

for the tempfile until the tempfile blocks are actually accessed. This

delay in space allocation results in faster creation and resizing of

tempfiles, but it requires that sufficient disk space is available when

the tempfiles are later used. To avoid potential problems, before

you create or resize a tempfile, ensure that the available disk space

exceeds the size of the new tempfile or the increased size of a

resized tempfile. The excess space should allow for anticipated

increases in disk space use by unrelated operations as well. Then

proceed with the creation or resizing operation.

See Also: file_specification on page 7-39 for a full

description, including the AUTOEXTEND parameter

EXTENT MANAGEMENT LOCAL UNIFORM
SIZE integer

K

M

CREATE TEMPORARY TABLESPACE

15-94 Oracle9i SQL Reference

temp_tablespace_extent
The temp_tablespace_extent clause lets you specify how the tablespace is

managed.

EXTENT MANAGEMENT LOCAL This clause indicates that some part of the

tablespace is set aside for a bitmap. All temporary tablespaces created with the

CREATE TEMPORARY TABLESPACE statement have locally managed extents, so this

clause is optional. To create a dictionary-managed temporary tablespace, use the

CREATE TABLESPACE statement with the TEMPORARY clause.

UNIFORM All extents of temporary tablespaces are the same size (uniform), so this

keyword is optional. However, you must specify UNIFORM in order to specify SIZE .

SIZE integer Specify in bytes the size of the tablespace extents. Use K or M to

specify the size in kilobytes or megabytes.

If you do not specify SIZE , then Oracle uses the default extent size of 1M.

Example

Creating a Temporary Tablespace: Example This statement shows how the

temporary tablespace that serves as the default temporary tablespace for database

users in the sample database was created:

CREATE TEMPORARY TABLESPACE temp_demo
 TEMPFILE ’temp01.dbf’ SIZE 5M AUTOEXTEND ON;

If we assume the default database block size of 2K, and that each bit in the map

represents one extent, then each bit maps 2,500 blocks.

The following example sets the default location for datafile creation and then

creates a tablespace with an Oracle-managed tempfile in the default location. The

tempfile is 100 M and is autoextensible with unlimited maximum size (the default

values for Oracle-managed files):

ALTER SYSTEM SET DB_CREATE_FILE_DEST = ’$ORACLE_HOME/rdbms/log’;

CREATE TEMPORARY TABLESPACE tbs_05;

See Also: Oracle9i Database Concepts for a discussion of locally

managed tablespaces

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-95

CREATE TRIGGER

Purpose
Use the CREATE TRIGGER statement to create and enable a database trigger, which

is

■ A stored PL/SQL block associated with a table, a schema, or the database or

■ An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL

or Java

Oracle automatically executes a trigger when specified conditions occur.

When you create a trigger, Oracle enables it automatically. You can subsequently

disable and enable a trigger with the DISABLE and ENABLE clause of the ALTER
TRIGGER or ALTER TABLE statement.

Prerequisites
Before a trigger can be created, the user SYS must run a SQL script commonly

called DBMSSTDX.SQL. The exact name and location of this script depend on your

operating system.

■ To create a trigger in your own schema on a table in your own schema or on

your own schema (SCHEMA), you must have the CREATE TRIGGER privilege.

■ To create a trigger in any schema on a table in any schema, or on another user’s

schema (schema .SCHEMA), you must have the CREATE ANY TRIGGERprivilege.

See Also:

■ Oracle9i Database Concepts for a description of the various types

of triggers

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information on how to design triggers

■ ALTER TRIGGER on page 12-2 and ALTER TABLE on

page 11-2 for information on enabling, disabling, and

compiling triggers

■ DROP TRIGGER on page 17-13 for information on dropping a

trigger

CREATE TRIGGER

15-96 Oracle9i SQL Reference

■ In addition to the preceding privileges, to create a trigger on DATABASE, you

must have the ADMINISTER DATABASE TRIGGER system privilege.

If the trigger issues SQL statements or calls procedures or functions, then the owner

of the trigger must have the privileges necessary to perform these operations. These

privileges must be granted directly to the owner rather than acquired through roles.

Syntax

create_trigger::=

CREATE
OR REPLACE

TRIGGER
schema .

trigger

BEFORE

AFTER

INSTEAD OF

dml_event_clause

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

WHEN (condition) pl/sql_block

call_procedure_statement

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-97

dml_event_clause ::=

referencing_clause ::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the trigger if it already exists. Use this clause to

change the definition of an existing trigger without first dropping it.

schema
Specify the schema to contain the trigger. If you omit schema , then Oracle creates

the trigger in your own schema.

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view

referencing_clause FOR EACH ROW

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent

CREATE TRIGGER

15-98 Oracle9i SQL Reference

trigger
Specify the name of the trigger to be created.

If a trigger produces compilation errors, then it is still created, but it fails on

execution. This means it effectively blocks all triggering DML statements until it is

disabled, replaced by a version without compilation errors, or dropped. You can see

the associated compiler error messages with the SQL*Plus command SHOW ERRORS.

BEFORE
Specify BEFORE to cause Oracle to fire the trigger before executing the triggering

event. For row triggers, the trigger is fired before each affected row is changed.

Restrictions on BEFORE Triggers

■ You cannot specify a BEFORE trigger on a view or an object view.

■ You can write to the :NEW value but not to the :OLD value.

AFTER
Specify AFTER to cause Oracle to fire the trigger after executing the triggering

event. For row triggers, the trigger is fired after each affected row is changed.

Restrictions on AFTER Triggers

■ You cannot specify an AFTER trigger on a view or an object view.

■ You cannot write either the :OLD or the :NEW value.

Note: If you create a trigger on a base table of a materialized view,

then you must ensure that the trigger does not fire during a refresh

of the materialized view. (During refresh, the DBMS_MVIEW
procedure I_AM_A_REFRESH returns TRUE.)

Note: When you create a materialized view log for a table, Oracle

implicitly creates an AFTER ROW trigger on the table. This trigger

inserts a row into the materialized view log whenever an INSERT,

UPDATE, or DELETEstatement modifies the table’s data. You cannot

control the order in which multiple row triggers fire. Therefore, you

should not write triggers intended to affect the content of the

materialized view.

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-99

INSTEAD OF
Specify INSTEAD OF to cause Oracle to fire the trigger instead of executing the

triggering event. INSTEAD OF triggers are valid for DML events on views. They are

not valid for DDL or database events.

If a view is inherently updatable and has INSTEAD OF triggers, then the triggers

take preference. In other words, Oracle fires the triggers instead of performing DML

on the view.

If the view belongs to a hierarchy, then the trigger is not inherited by subviews.

Restrictions on INSTEAD OF Triggers

■ INSTEAD OF triggers are valid only for views. You cannot specify an INSTEAD
OF trigger on a table.

■ You can read both the :OLD and the :NEW value, but you cannot write either the

:OLD or the :NEW value.

See Also: CREATE MATERIALIZED VIEW LOG on page 14-34

for more information on materialized view logs

Note: Oracle fine-grained access control lets you define row-level

security policies on views. These policies enforce specified rules in

response to DML operations. If an INSTEAD OF trigger is also

defined on the view, then Oracle will not enforce the row-level

security policies, because Oracle fires the INSTEAD OF trigger

instead of executing the DML on the view.

Note: You can create multiple triggers of the same type (BEFORE,
AFTER, or INSTEAD OF) that fire for the same statement on the

same table. The order in which Oracle fires these triggers is

indeterminate. If your application requires that one trigger be fired

before another of the same type for the same statement, combine

these triggers into a single trigger whose trigger action performs

the trigger actions of the original triggers in the appropriate order.

See Also: "Creating an INSTEAD OF Trigger: Example" on

page 15-108

CREATE TRIGGER

15-100 Oracle9i SQL Reference

dml_event_clause
The dml_event_clause lets you specify one of three DML statements that can

cause the trigger to fire. Oracle fires the trigger in the existing user transaction.

DELETE
Specify DELETEif you want Oracle to fire the trigger whenever a DELETEstatement

removes a row from the table or removes an element from a nested table.

INSERT
Specify INSERT if you want Oracle to fire the trigger whenever an INSERT
statement adds a row to table or adds an element to a nested table.

UPDATE
Specify UPDATE if you want Oracle to fire the trigger whenever an UPDATE
statement changes a value in one of the columns specified after OF. If you omit OF,
then Oracle fires the trigger whenever an UPDATE statement changes a value in any

column of the table or nested table.

For an UPDATE trigger, you can specify object type, varray, and REF columns after

OF to indicate that the trigger should be fired whenever an UPDATE statement

changes a value in one of the columns. However, you cannot change the values of

these columns in the body of the trigger itself.

Restrictions on Triggers on UPDATE Operations

■ You cannot specify UPDATE OF for an INSTEAD OF trigger. Oracle fires

INSTEAD OF triggers whenever an UPDATE changes a value in any column of

the view.

■ You cannot specify a nested table or LOB column in the UPDATE OF clause.

See Also: "Creating a DML Trigger: Examples" on page 15-107

Note: Using OCI functions or the DBMS_LOB package to update

LOB values or LOB attributes of object columns does not cause

Oracle to fire triggers defined on the table containing the columns

or the attributes.

See Also: ASsubquery of CREATE VIEW on page 16-39 for a list

of constructs that prevent inserts, updates, or deletes on a view

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-101

Performing DML operations directly on nested table columns does not cause Oracle

to fire triggers defined on the table containing the nested table column.

ddl_event
Specify one or more types of DDL statements that can cause the trigger to fire. You

can create triggers for these events on DATABASE or SCHEMA unless otherwise

noted. You can create BEFORE and AFTER triggers for these events. Oracle fires the

trigger in the existing user transaction.

Restriction on Triggers on DDL Events You cannot specify as a triggering event

any DDL operation performed through a PL/SQL procedure.

The following ddl_event values are valid:

ALTER Specify ALTER to fire the trigger whenever an ALTER statement modifies a

database object in the data dictionary.

Restriction on Triggers on ALTER Operations The trigger will not be fired by an

ALTER DATABASE statement.

ANALYZE Specify ANALYZE to fire the trigger whenever Oracle collects or deletes

statistics or validates the structure of a database object.

ASSOCIATE STATISTICS Specify ASSOCIATE STATISTICS to fire the trigger

whenever Oracle associates a statistics type with a database object.

AUDIT Specify AUDIT to fire the trigger whenever Oracle tracks the occurrence of

a SQL statement or tracks operations on a schema object.

COMMENT Specify COMMENT to fire the trigger whenever a comment on a

database object is added to the data dictionary.

CREATE Specify CREATE to fire the trigger whenever a CREATE statement adds a

new database object to the data dictionary.

Restriction on Triggers on CREATE Operations The trigger will not be fired by a

CREATE DATABASE or CREATE CONTROLFILE statement.

See Also: "Creating a DDL Trigger: Example" on page 15-107

CREATE TRIGGER

15-102 Oracle9i SQL Reference

DISASSOCIATE STATISTICS Specify DISASSOCIATE STATISTICS to fire the

trigger whenever Oracle disassociates a statistics type from a database object.

DROP Specify DROP to fire the trigger whenever a DROP statement removes a

database object from the data dictionary.

GRANT Specify GRANTto fire the trigger whenever a user grants system privileges

or roles or object privileges to another user or to a role.

NOAUDIT Specify NOAUDIT to fire the trigger whenever a NOAUDIT statement

instructs Oracle to stop tracking a SQL statement or operations on a schema object.

RENAME Specify RENAME to fire the trigger whenever a RENAME statement

changes the name of a database object.

REVOKE Specify REVOKE to fire the trigger whenever a REVOKE statement

removes system privileges or roles or object privileges from a user or role.

TRUNCATE Specify TRUNCATEto fire the trigger whenever a TRUNCATEstatement

removes the rows from a table or cluster and resets its storage characteristics.

DDL Specify DDL to fire the trigger whenever any of the preceding DDL

statements is issued.

database_event
Specify one or more particular states of the database that can cause the trigger to

fire. You can create triggers for these events on DATABASE or SCHEMA unless

otherwise noted. For each of these triggering events, Oracle opens an autonomous

transaction scope, fires the trigger, and commits any separate transaction

(regardless of any existing user transaction).

SERVERERROR Specify SERVERERRORto fire the trigger whenever a server error

message is logged.

The following errors do not cause a SERVERERROR trigger to fire:

■ ORA-01403 : data not found

■ ORA-01422 : exact fetch returns more than requested number of rows

See Also: "Creating a Database Event Trigger: Example" on

page 15-108

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-103

■ ORA-01423 : error encountered while checking for extra rows in exact fetch

■ ORA-01034 : ORACLE not available

■ ORA-04030 : out of process memory

LOGON Specify LOGON to fire the trigger whenever a client application logs onto

the database.

LOGOFF Specify LOGOFFto fire the trigger whenever a client applications logs off

the database.

STARTUP Specify STARTUP to fire the trigger whenever the database is opened.

SHUTDOWN Specify SHUTDOWN to fire the trigger whenever an instance of the

database is shut down.

SUSPEND Specify SUSPEND to fire the trigger whenever a server error causes a

transaction to be suspended.

ON table | view
The ON clause lets you determine the database object on which the trigger is to be

created.

table | view
Specify the schema and table or view name of one of the following on which the

trigger is to be created:

■ Table or view

Notes:

■ Only AFTER triggers are relevant for LOGON, STARTUP,
SERVERERROR, and SUSPEND.

■ Only BEFORE triggers are relevant for LOGOFF and SHUTDOWN.

■ AFTER STARTUPand BEFORE SHUTDOWNtriggers apply only to

DATABASE.

See Also: PL/SQL User’s Guide and Reference for more information

on autonomous transaction scope

CREATE TRIGGER

15-104 Oracle9i SQL Reference

■ Object table or object view

■ A column of nested-table type

If you omit schema , then Oracle assumes the table is in your own schema. You can

create triggers on index-organized tables.

Restriction on Schema You cannot create a trigger on a table in the schema SYS.

NESTED TABLE Clause
Specify the nested_table_column of a view upon which the trigger is being

defined. Such a trigger will fire only if the DML operates on the elements of the

nested table.

Restriction on Triggers on Nested Tables You can specify NESTED TABLEonly for

INSTEAD OF triggers.

DATABASE
Specify DATABASE to define the trigger on the entire database. The trigger fires

whenever any database user initiates the triggering event.

SCHEMA
Specify SCHEMA to define the trigger on the current schema. The trigger fires

whenever any user connected as schema initiates the triggering event.

referencing_clause
The referencing_clause lets you specify correlation names. You can use

correlation names in the PL/SQL block and WHEN condition of a row trigger to refer

specifically to old and new values of the current row. The default correlation names

are OLD and NEW. If your row trigger is associated with a table named OLD or NEW,
use this clause to specify different correlation names to avoid confusion between the

table name and the correlation name.

■ If the trigger is defined on a nested table, then OLD and NEW refer to the row of

the nested table, and PARENT refers to the current row of the parent table.

■ If the trigger is defined on an object table or view, then OLD and NEW refer to

object instances.

See Also: "Creating a SCHEMA Trigger: Example" on page 15-109

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-105

Restriction on the referencing_clause The referencing_clause is not valid

with INSTEAD OF triggers on CREATE DDL events.

FOR EACH ROW
Specify FOR EACH ROW to designate the trigger as a row trigger. Oracle fires a row

trigger once for each row that is affected by the triggering statement and meets the

optional trigger constraint defined in the WHEN condition.

Except for INSTEAD OF triggers, if you omit this clause, then the trigger is a

statement trigger. Oracle fires a statement trigger only once when the triggering

statement is issued if the optional trigger constraint is met.

INSTEAD OF trigger statements are implicitly activated for each row.

Restriction on Row Triggers This clause is valid only for DML event triggers (not

DDL or database event triggers).

WHEN Clause
Specify the trigger restriction, which is a SQL condition that must be satisfied for

Oracle to fire the trigger. See the syntax description of condition in Chapter 5,

"Conditions". This condition must contain correlation names and cannot contain a

query.

The NEW and OLD keywords, when specified in the WHEN clause, are not considered

bind variables, so are not preceded by a colon (:). However, you must precede NEW
and OLD with a colon in all references other than the WHEN clause.

Restrictions on Trigger Conditions

■ If you specify this clause for a DML event trigger, then you must also specify

FOR EACH ROW. Oracle evaluates this condition for each row affected by the

triggering statement.

■ You cannot specify trigger restrictions for INSTEAD OF trigger statements.

■ You can reference object columns or their attributes, or varray, nested table, or

LOB columns. You cannot invoke PL/SQL functions or methods in the trigger

restriction.

See Also: "Calling a Procedure in a Trigger Body: Example" on

page 15-108

CREATE TRIGGER

15-106 Oracle9i SQL Reference

pl/sql_block
Specify the PL/SQL block that Oracle executes to fire the trigger.

The PL/SQL block of a database trigger can contain one of a series of built-in

functions in the SYS schema designed solely to extract system event attributes.

These functions can be used only in the PL/SQL block of a database trigger.

Restrictions on Trigger Implementation

■ The PL/SQL block of a trigger cannot contain transaction control SQL

statements (COMMIT, ROLLBACK, SAVEPOINT, and SET CONSTRAINT) if the

block is executed within the same transaction.

■ You can reference and use LOB columns in the trigger action inside the PL/SQL

block. You can modify the :NEW values but not the :OLD values of LOB columns

within the trigger action.

call_procedure_statement
The call_procedure_statement lets you call a stored procedure, rather than

specifying the trigger code inline as a PL/SQL block. The syntax of this statement is

the same as that for CALL on page 12-68, with the following exceptions:

■ You cannot specify the INTO clause of CALL, because it applies only to

functions.

■ You cannot specify bind variables in expr .

■ To reference columns of tables on which the trigger is being defined, you must

specify :NEW and :OLD.

See Also:

■ PL/SQL User’s Guide and Reference for information on PL/SQL,

including how to write PL/SQL blocks

■ Oracle9i Application Developer’s Guide - Fundamentals for

information on these functions

■ "Calling a Procedure in a Trigger Body: Example" on

page 15-108

See Also: "Calling a Procedure in a Trigger Body: Example" on

page 15-108

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-107

Examples

Creating a DML Trigger: Examples This example shows the basic syntax for a

BEFORE statement trigger named . You would write such a trigger to place

restrictions on DML statements issued on a table (such as when such statements

could be issued).

CREATE TRIGGER schema.trigger_name
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON schema.table_name

pl/sql_block

Oracle fires such a trigger whenever a DELETE, INSERT, or UPDATE statement

affects the table. This trigger is a BEFORE statement trigger, so Oracle fires it once

before executing the triggering statement.

The next example shows a partial BEFORE row trigger. The PL/SQL block might

specify, for example, that an employee’s salary must fall within the established

salary range for the employee’s job:

CREATE TRIGGER hr.salary_check
 BEFORE INSERT OR UPDATE OF salary, job_id ON hr.employees
 FOR EACH ROW
 WHEN (new.job_id <> ’AD_VP’)

pl/sql_block

Oracle fires this trigger whenever one of the following statements is issued:

■ An INSERT statement that adds rows to the employees table

■ An UPDATE statement that changes values of the salary or job_id columns

of the employees table

salary_check is a BEFORErow trigger, so Oracle fires it before changing each row

that is updated by the UPDATE statement or before adding each row that is inserted

by the INSERT statement.

salary_check has a trigger restriction that prevents it from checking the salary of

the administrative vice president (AD_VP).

Creating a DDL Trigger: Example This example creates an AFTER statement

trigger on any DDL statement CREATE. Such a trigger can be used to audit the

creation of new data dictionary objects in your schema.

CREATE TRIGGER audit_db_object AFTER CREATE

CREATE TRIGGER

15-108 Oracle9i SQL Reference

 ON SCHEMA
pl/sql_block

Calling a Procedure in a Trigger Body: Example You could create the salary_
check trigger described in the preceding example by calling a procedure instead of

providing the trigger body in a PL/SQL block. Assume you have defined a

procedure hr.salary_check , which verifies that an employee’s salary is in an

appropriate range. Then you could create the trigger salary_check as follows:

CREATE TRIGGER hr.salary_check
 BEFORE INSERT OR UPDATE OF salary, job_id ON hr.employees
 FOR EACH ROW
 WHEN (new.job_id <> ’AD_VP’)
 CALL check_sal(:new.job_id, :new.salary, :new.last_name);

The procedure check_sal could be implemented in PL/SQL, C, or Java. Also, you

can specify :OLD values in the CALL clause instead of :NEW values.

Creating a Database Event Trigger: Example This example shows the basic syntax

for a trigger to log all errors. The hypothetical PL/SQL block does some special

processing for a particular error (invalid logon, error number 1017). This trigger is

an AFTER statement trigger, so it is fired after an unsuccessful statement execution

(such as unsuccessful logon).

CREATE TRIGGER log_errors AFTER SERVERERROR ON DATABASE
 BEGIN
 IF (IS_SERVERERROR (1017)) THEN
 <special processing of logon error>
 ELSE
 <log error number>
 END IF;
 END;

Creating an INSTEAD OF Trigger: Example In this example, an oe.order_info
view is created to display information about customers and their orders:

CREATE VIEW order_info AS
 SELECT c.customer_id, c.cust_last_name, c.cust_first_name,
 o.order_id, o.order_date, o.order_status
 FROM customers c, orders o
 WHERE c.customer_id = o.customer_id;

Normally this view would not be updatable, because the primary key of the

orders table (order_id) is not unique in the result set of the join view. To make

this view updatable, create an INSTEAD OF trigger on the view to process INSERT

CREATE TRIGGER

SQL Statements: CREATE SYNONYM to CREATE TRIGGER 15-109

statements directed to the view (the PL/SQL trigger implementation is shown in

italics):

CREATE OR REPLACE TRIGGER order_info_insert
 INSTEAD OF INSERT ON order_info

 DECLARE
 duplicate_info EXCEPTION;
 PRAGMA EXCEPTION_INIT (duplicate_info, -00001);
 BEGIN
 INSERT INTO customers
 (customer_id, cust_last_name, cust_first_name)
 VALUES (
 :new.customer_id,
 :new.cust_last_name,
 :new.cust_first_name);
 INSERT INTO orders (order_id, order_date, customer_id)
 VALUES (
 :new.order_id,
 :new.order_date,
 :new.customer_id);
 EXCEPTION
 WHEN duplicate_info THEN
 RAISE_APPLICATION_ERROR (
 num=> -20107,
 msg=> ’Duplicate customer or order ID’);
 END order_info_insert;
/
You can now insert into both base tables through the view (as long as all NOT NULL
columns receive values):

INSERT INTO order_info VALUES
 (999, ’Smith’, ’John’, 2500, ’13-MAR-2001’, 0);

Creating a SCHEMA Trigger: Example The following example creates a BEFORE
statement trigger on the sample schema hr . When a user connected as hr attempts

to drop a database object, Oracle fires the trigger before dropping the object:

CREATE OR REPLACE TRIGGER drop_trigger
 BEFORE DROP ON hr.SCHEMA
 BEGIN
 RAISE_APPLICATION_ERROR (
 num => -20000,
 msg => ’Cannot drop object’);
 END;
/

CREATE TRIGGER

15-110 Oracle9i SQL Reference

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-1

16
SQL Statements: CREATE TYPE to

DROP ROLLBACK SEGMENT

This chapter contains the following SQL statements:

■ CREATE TYPE

■ CREATE TYPE BODY

■ CREATE USER

■ CREATE VIEW

■ DELETE

■ DISASSOCIATE STATISTICS

■ DROP CLUSTER

■ DROP CONTEXT

■ DROP DATABASE LINK

■ DROP DIMENSION

■ DROP DIRECTORY

■ DROP FUNCTION

■ DROP INDEX

■ DROP INDEXTYPE

■ DROP JAVA

■ DROP LIBRARY

■ DROP MATERIALIZED VIEW

16-2 Oracle9i SQL Reference

■ DROP MATERIALIZED VIEW LOG

■ DROP OPERATOR

■ DROP OUTLINE

■ DROP PACKAGE

■ DROP PROCEDURE

■ DROP PROFILE

■ DROP ROLE

■ DROP ROLLBACK SEGMENT

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-3

CREATE TYPE

Purpose
Use the CREATE TYPE statement to create the specification of an object type, a

SQLJ object type (which is a kind of object type), a named varying array (varray), a

nested table type, or an incomplete object type. You create object types with the

CREATE TYPE and the CREATE TYPE BODY statements. The CREATE TYPE
statement specifies the name of the object type, its attributes, methods, and other

properties. The CREATE TYPE BODY statement contains the code for the methods in

the type.

Oracle implicitly defines a constructor method for each user-defined type that you

create. A constructor is a system-supplied procedure that is used in SQL statements

or in PL/SQL code to construct an instance of the type value. The name of the

constructor method is the same as the name of the user-defined type. You can also

create a user-defined constructor using the constructor_spec syntax.

The parameters of the object type constructor method are the data attributes of the

object type. They occur in the same order as the attribute definition order for the

object type. The parameters of a nested table or varray constructor are the elements

of the nested table or the varray.

An incomplete type is a type created by a forward type definition. It is called

"incomplete" because it has a name but no attributes or methods. It can be

referenced by other types, and so can be used to define types that refer to each

other. However, you must fully specify the type before you can use it to create a

table or an object column or a column of a nested table type.

Notes:

■ If you create an object type for which the type specification

declares only attributes but no methods, you need not specify a

type body.

■ If you create a SQLJ object type, you cannot specify a type

body. The implementation of the type is specified as a Java

class.

CREATE TYPE

16-4 Oracle9i SQL Reference

Prerequisites
To create a type in your own schema, you must have the CREATE TYPE system

privilege. To create a type in another user’s schema, you must have the CREATE
ANY TYPEsystem privilege. You can acquire these privileges explicitly or be granted

them through a role.

To create a subtype, you must have the UNDER ANY TYPE system privilege or the

UNDER object privilege on the supertype.

The owner of the type must either be explicitly granted the EXECUTE object

privilege in order to access all other types referenced within the definition of the

type, or the type owner must be granted the EXECUTE ANY TYPE system privilege.

The owner cannot obtain these privileges through roles.

If the type owner intends to grant other users access to the type, the owner must be

granted the EXECUTE object privilege to the referenced types with the GRANT
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION.
Otherwise, the type owner has insufficient privileges to grant access on the type to

other users.

Syntax
create_type::=

(create_incomplete_type::= on page 16-5, create_object_type::= on

page 16-5, create_varray_type::= on page 16-8, create_nested_table_
type::= on page 16-9)

See Also:

■ CREATE TYPE BODY on page 16-25 for information on

creating the member methods of a type

■ PL/SQL User’s Guide and Reference, Oracle9i Application
Developer’s Guide - Object-Relational Features, and Oracle9i
Database Concepts for more information about objects,

incomplete types, varrays, and nested tables

create_incomplete_type

create_object_type

create_varray_type

create_nested_table_type

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-5

create_incomplete_type::=

create_object_type ::=

(invoker_rights_clause::= on page 16-5, element_spec::= on page 16-6)

invoker_rights_clause ::=

sqlj_object_type ::=

sqlj_object_type_attr ::=

CREATE
OR REPLACE

TYPE
schema .

type_name ;

CREATE
OR REPLACE

TYPE
schema .

type_name
invoker_rights_clause

IS

AS
OBJECT

UNDER
schema .

supertype

sqlj_object_type

(attribute datatype
sqlj_object_type_attr

,

, element_spec

,

)

NOT
FINAL

NOT
INSTANTIABLE

;

AUTHID
CURRENT_USER

DEFINER

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING

SQLData

CustomDatum

OraData

EXTERNAL NAME ’ field_name ’

CREATE TYPE

16-6 Oracle9i SQL Reference

element_spec::=

(inheritance_clauses::= on page 16-6, subprogram_spec::= on page 16-6,

constructor_spec::= on page 16-7, map_order_function_spec::= on

page 16-7, pragma_clause::= on page 16-8)

inheritance_clauses::=

subprogram_spec::=

(procedure_spec::= on page 16-6, function_spec::= on page 16-6)

procedure_spec::=

(call_spec::= on page 16-8)

function_spec::=

(return_clause::= on page 16-7)

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

NOT
OVERRIDING

FINAL

INSTANTIABLE

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE name (parameter datatype

,

)

IS

AS
call_spec

FUNCTION name (parameter datatype

,

) return_clause

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-7

constructor_spec ::=

(call_spec::= on page 16-8)

map_order_function_spec::=

(function_spec::= on page 16-6)

return_clause ::=

(call_spec::= on page 16-8, sqlj_object_type_sig::= on page 16-7)

sqlj_object_type_sig ::=

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

MAP

ORDER
MEMBER function_spec

RETURN datatype

IS

AS
call_spec

sqlj_object_type_sig

RETURN
datatype

SELF AS RESULT
EXTERNAL

VARIABLE NAME ’ java_static_field_name ’

NAME ’ java_method_sig ’

CREATE TYPE

16-8 Oracle9i SQL Reference

pragma_clause ::=

call_spec ::=

Java_declaration::=

C_declaration::=

create_varray_type ::=

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS

VARRAY

VARYING ARRAY
(limit) OF datatype ;

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-9

create_nested_table_type ::=

Semantics

OR REPLACE
Specify OR REPLACE to re-create the type if it already exists. Use this clause to

change the definition of an existing type without first dropping it.

Users previously granted privileges on the re-created object type can use and

reference the object type without being granted privileges again.

If any function-based indexes depend on the type, Oracle marks the indexes

DISABLED.

schema
Specify the schema to contain the type. If you omit schema , Oracle creates the type

in your current schema.

type_name
Specify the name of an object type, a nested table type, or a varray type.

If creating the type results in compilation errors, Oracle returns an error. You can

see the associated compiler error messages with the SQL*Plus command SHOW
ERRORS.

create_object_type
Use the create_object_type clause to create a user-defined object type (rather

than an incomplete type). The variables that form the data structure are called

attributes. The member subprograms that define the object’s behavior are called

methods. The keywords AS OBJECT are required when creating an object type.

See Also: "Object Type Examples" on page 16-19

CREATE
OR REPLACE

TYPE
schema. .

type_name

IS

AS
TABLE OF datatype ;

CREATE TYPE

16-10 Oracle9i SQL Reference

invoker_rights_clause
The invoker_rights_clause lets you specify whether the member functions

and procedures of the object type execute with the privileges and in the schema of

the user who owns the object type or with the privileges and in the schema of

CURRENT_USER. This specification applies to the corresponding type body as well.

This clause also determines how Oracle resolves external names in queries, DML

operations, and dynamic SQL statements in the member functions and procedures

of the type.

■ Specify AUTHID CURRENT_USER if you want the member functions and

procedures of the object type to execute with the privileges of CURRENT_USER.
This clause creates an invoker-rights type.

This clause also indicates that external names in queries, DML operations, and

dynamic SQL statements resolve in the schema of CURRENT_USER. External

names in all other statements resolve in the schema in which the type resides.

■ Specify AUTHID DEFINER if you want the member functions and procedures of

the object type to execute with the privileges of the owner of the schema in

which the functions and procedures reside, and that external names resolve in

the schema where the member functions and procedures reside. This is the

default and creates a definer-rights type.

Restrictions on Invoker Rights

■ You can specify this clause only for an object type, not for a nested table or

varray type.

■ You can specify this clause for clarity if you are creating a subtype. However,

subtypes inherit the rights model of their supertypes, so you cannot specify a

different value than was specified for the supertype.

■ If the supertype was created with definer’s rights, you must create the subtype

in the same schema as the supertype.

See Also:

■ Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USERis
determined

■ PL/SQL User’s Guide and Reference

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-11

AS OBJECT Clause
Specify AS OBJECT to create a top-level (root) object type.

UNDER Clause
Specify UNDERsupertype to create a subtype of an existing type. The existing

supertype must be an object type. The subtype you create in this statement inherits

the properties of its supertype, and must either override some of those properties or

add new properties to distinguish it from the supertype.

sqlj_object_type
Specify the this clause to create a SQLJ object type. In a SQLJ object type, you map

a Java class to a SQL user-defined type. You can then define tables or columns on

SQLJ object type as you would with any other user-defined type.

You can map one Java class to multiple SQLJ object types. If there exists a subtype

or supertype of a SQLJ object type, it must be a SQLJ object type. That is, all types

in the hierarchy must be SQLJ object types.

java_ext_name Specify the name of the Java class. If the class exists, it must be

public. The Java external name, including the schema, will be validated.

Multiple SQLJ object types can be mapped to the same class. However:

■ A subtype must be mapped to a class that is an immediate subclass of the class

to which its supertype is mapped.

■ Two subtypes of a common supertype cannot be mapped to the same class.

SQLData | CustomDatum | OraData Choose the mechanism for creating the Java

instance of the type. SQLData , CustomDatum , and OraData are the interfaces that

determine which mechanism will be used.

element_spec
The element_spec lets you specify each attribute of the object type.

See Also: "Subtype Example" on page 16-20 and "Type Hierarchy

Example" on page 16-22

See Also: Oracle9i JDBC Developer’s Guide and Reference for

information on these three interfaces and "SQLJ Object Type

Example" on page 16-20

CREATE TYPE

16-12 Oracle9i SQL Reference

attribute
For attribute , specify the name of an object attribute. Attributes are data items

with a name and a type specifier that form the structure of the object. You must

specify at least one attribute for each object type.

If you are creating a subtype, the attribute name cannot be the same as any attribute

or method name declared in the supertype chain.

datatype
For datatype , specify the Oracle built-in datatype or user-defined type of the

attribute.

Restrictions on Attribute Datatype

■ You cannot specify attributes of type ROWID, LONG, or LONG ROW.

■ You cannot specify a datatype of UROWID for a user-defined object type.

■ If you specify an object of type REF, then the target object must have an object

identifier.

■ If you are creating a collection type for use as a nested table or varray column of

a table, then you cannot specify attributes of type AnyType , AnyData , or

AnyDataSet .

sqlj_object_type_attr
This clause is valid only if you have specified the sqlj_object_type clause (that

is, you are mapping a Java class to a SQLJ object type). Specify the external name of

the Java field that corresponds to the attribute of the SQLJ object type. The Java

field_name must already exist in the class. You cannot map a Java field_name
to more than one SQLJ object type attribute in the same type hierarchy.

This clause is optional when you create a SQLJ object type.

subprogram_spec
The subprogram_spec let you associate a procedure subprogram with the object

type.

MEMBER Clause
Specify a function or procedure subprogram associated with the object type that is

referenced as an attribute. Typically, you invoke MEMBER methods in a "selfish"

See Also: "Datatypes" on page 2-2 for a list of valid datatypes

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-13

style, such as object_expression.method() . This class of method has an

implicit first argument referenced as SELF in the method’s body, which represents

the object on which the method has been invoked.

Restriction on Member Methods You cannot specify a MEMBER method if you are

mapping a Java class to a SQLJ object type.

STATIC Clause
Specify a function or procedure subprogram associated with the object type. Unlike

MEMBER methods, STATIC methods do not have any implicit parameters (that is,

you cannot reference SELF in their body). They are typically invoked as type_
name.method() .

Restrictions on Static Methods

■ You cannot map a MEMBER method in a Java class to a STATIC method in a

SQLJ object type.

■ For both MEMBER and STATIC methods, you must specify a corresponding

method body in the object type body for each procedure or function

specification.

[NOT] FINAL, [NOT] INSTANTIABLE
At the top level of the syntax, these clauses specify the inheritance attributes of the

type.

Use the [NOT] FINAL clause to indicate whether any further subtypes can be created

for this type:

■ Specify FINAL if no further subtypes can be created for this type. This is the

default.

■ Specify NOT FINAL if further subtypes can be created under this type.

Use the [NOT] INSTANTIABLE clause to indicate whether any object instances of

this type can be constructed:

■ Specify INSTANTIABLE if object instances of this type can be constructed. This

is the default.

See Also: "Creating a Member Method: Example" on page 16-23

See Also: "Creating a Static Method: Example" on page 16-24

CREATE TYPE

16-14 Oracle9i SQL Reference

■ Specify NOT INSTANTIABLE if no constructor (default or user-defined) exists

for this object type. You must specify these keywords for any type with

noninstantiable methods and for any type that has no attributes (either

inherited or specified in this statement). You must specify these keywords for

any type with noninstantiable methods and for any type that has no attributes

(either inherited or specified in this statement).

inheritance_clauses
As part of the element_spec , the inheritance_clauses let you specify the

relationship between super- and subtypes.

OVERRIDING This clause is valid only for MEMBERmethods. Specify OVERRIDING
to indicate that this method overrides a MEMBER method defined in the supertype.

This keyword is required if the method redefines a supertype method. NOT
OVERRIDING is the default.

Restriction on OVERRIDING The OVERRIDING clause is not valid for a STATIC
method or for a SQLJ object type.

FINAL Specify FINAL to indicate that this method cannot be overridden by any

subtype of this type. The default is NOT FINAL.

NOT INSTANTIABLE Specify NOT INSTANTIABLE if the type does not provide an

implementation for this method. By default all methods are INSTANTIABLE .

Restriction on NOT INSTANTIABLE : If you specify NOT INSTANTIABLE, you

cannot specify FINAL or STATIC.

procedure_spec or function_spec
Use these clauses to specify the parameters and datatypes of the procedure or

function. If this subprogram does not include the declaration of the procedure or

function, you must issue a corresponding CREATE TYPE BODY statement.

Restriction on Procedure and Function Specification If you are creating a

subtype, the name of the procedure or function cannot be the same as the name of

any attribute, whether inherited or not, declared in the supertype chain.

return_clause The first form of the return_clause is valid only for a function.

The syntax shown is an abbreviated form.

See Also: constructor_spec on page 16-16

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-15

sqlj_object_type_sig Use this form of the return_clause if you intend to create

SQLJ object type functions or procedures.

■ If you are mapping a Java class to a SQLJ object type and you specify

EXTERNAL NAME, the value of the Java method returned must be compatible

with the SQL returned value, and the Java method must be public. Also, the

method signature (method name plus parameter types) must be unique within

the type hierarchy.

■ If you specify EXTERNAL VARIABLE NAME, the type of the Java static field must

be compatible with the return type.

call_spec
Specify the call specification ("call spec") that maps a Java or C method name,

parameter types, and return type to their SQL counterparts. If all the member

methods in the type have been defined in this clause, you need not issue a

corresponding CREATE TYPE BODY statement.

The Java_declaration, ’string ’ identifies the Java implementation of the

method.

See Also:

■ PL/SQL User’s Guide and Reference for information about

method invocation and methods

■ CREATE PROCEDURE on page 14-64 and CREATE

FUNCTION on page 13-52 for the full syntax with all possible

clauses

■ CREATE TYPE BODY on page 16-25

■ "Restrictions on User-defined Functions" on page 13-56 for a list

of restrictions on user-defined functions

See Also:

■ Oracle9i Java Stored Procedures Developer’s Guide.

■ Oracle9i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

CREATE TYPE

16-16 Oracle9i SQL Reference

pragma_clause
The pragma_clause lets you specify a compiler directive. The PRAGMA
RESTRICT_REFERENCES compiler directive denies member functions read/write

access to database tables, packaged variables, or both, and thereby helps to avoid

side effects.

method Specify the name of the MEMBER function or procedure to which the

pragma is being applied.

DEFAULT Specify DEFAULTif you want Oracle to apply the pragma to all methods

in the type for which a pragma has not been explicitly specified.

WNDS Specify WNDS to enforce the constraint writes no database state (does not

modify database tables).

WNPS Specify WNPS to enforce the constraint writes no package state (does not

modify packaged variables).

RNDS Specify RNDS to enforce the constraint reads no database state (does not

query database tables).

RNPS Specify RNPS to enforce the constraint reads no package state (does not

reference package variables).

TRUST Specify TRUST to indicate that the restrictions listed in the pragma are not

actually to be enforced, but are simply trusted to be true.

constructor_spec
Use this clause to create a user-defined constructor, which is a function that returns

an initialized instance of a user-defined object type. You can declare multiple

constructors for a single object type, as long as the parameters of each constructor

differ in number, order, or datatype.

Note: Oracle Corporation recommends that you avoid using this

clause unless you must do so for backward compatibility of your

applications. This clause has been deprecated, because beginning

with Oracle9i, Oracle runs purity checks at run time.

See Also: Oracle9i Application Developer’s Guide - Fundamentals

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-17

■ User-defined constructor functions are always FINAL and INSTANTIABLE , so

these keywords are optional.

■ The parameter-passing mode of user-defined constructors is always SELF IN
OUT. Therefore you need not specify this clause unless you wish to do so

explicitly for clarity.

■ RETURN SELF AS RESULT specifies that the runtime type of the value returned

by the constructor is the same as the runtime type of the SELF argument.

map_order_function_spec
You can define either one MAPmethod or one ORDERmethod in a type specification,

regardless how many MEMBER or STATIC methods you define. Also, you cannot

define either MAPor ORDERmethods for subtypes. However, a subtype can override

a MAP method if the supertype defines a nonfinal MAP method. (A subtype cannot

override an ORDER method at all.) If you declare either method, you can compare

object instances in SQL.

You can specify either MAP or ORDER when mapping a Java class to a SQL type.

However, the MAP or ORDER methods must map to MEMBER functions in the Java

class.

If neither a MAPnor an ORDERmethod is specified, only comparisons for equality or

inequality can be performed. Therefore object instances cannot be ordered.

Instances of the same type definition are equal only if each pair of their

corresponding attributes is equal. No comparison method needs to be specified to

determine the equality of two object types.

Use MAP if you are performing extensive sorting or hash join operations on object

instances. MAP is applied once to map the objects to scalar values and then the

scalars are used during sorting and merging. A MAP method is more efficient than

an ORDER method, which must invoke the method for each object comparison. You

must use a MAP method for hash joins. You cannot use an ORDER method because

the hash mechanism hashes on the object value.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on and examples of user-defined

constructors and "Constructor Example" on page 16-23

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about object value comparisons

CREATE TYPE

16-18 Oracle9i SQL Reference

MAP MEMBER This clause lets you specify a member function (MAP method) that

returns the relative position of a given instance in the ordering of all instances of the

object. A MAP method is called implicitly and induces an ordering of object

instances by mapping them to values of a predefined scalar type. PL/SQL uses the

ordering to evaluate Boolean expressions and to perform comparisons.

If the argument to the MAP method is null, the MAP method returns null and the

method is not invoked.

An object specification can contain only one MAPmethod, which must be a function.

The result type must be a predefined SQL scalar type, and the MAPmethod can have

no arguments other than the implicit SELF argument.

A subtype cannot define a new MAP method. However it can override an inherited

MAP method.

ORDER MEMBER This clause lets you specify a member function (ORDERmethod)

that takes an instance of an object as an explicit argument and the implicit SELF
argument and returns either a negative, zero, or positive integer. The negative,

positive, or zero indicates that the implicit SELF argument is less than, equal to, or

greater than the explicit argument.

If either argument to the ORDER method is null, the ORDER method returns null and

the method is not invoked.

When instances of the same object type definition are compared in an ORDER BY
clause, the ORDER method map_order_function_spec is invoked.

An object specification can contain only one ORDER method, which must be a

function having the return type NUMBER.

A subtype can neither define nor override an ORDER method.

create_varray_type
The create_varray_type lets you create the type as an ordered set of elements,

each of which has the same datatype. You must specify a name and a maximum

limit of zero or more. The array limit must be an integer literal. Oracle does not

support anonymous varrays.

Note: If type_name will be referenced in queries involving sorts

(through an ORDER BY, GROUP BY, DISTINCT , or UNION clause) or

joins, and you want those queries to be parallelized, you must

specify a MAP member function.

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-19

The type name for the objects contained in the varray must be one of the following:

■ A built-in datatype,

■ A REF, or

■ An object type.

Restrictions on Varray Types You can create a VARRAY type of XMLType or of a

LOB type for procedural purposes (for example, in PL/SQL or in view queries).

However, database storage of such a varray is not supported, so you cannot create

an object table or an object type column of such a varray type.

create_nested_table_type
The create_nested_table_type lets you create a named nested table of type

datatype .

■ When datatype is an object type, the nested table type describes a table whose

columns match the name and attributes of the object type.

■ When datatype is a scalar type, then the nested table type describes a table

with a single, scalar type column called "column_value ".

Restriction on Nested Table Types You cannot specify NCLOB for datatype .

However, you can specify CLOB or BLOB.

Examples

Object Type Examples The following example shows how the sample type

customer_typ was created for the sample Order Entry (oe) schema:

CREATE TYPE customer_typ_demo AS OBJECT
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20)
 , cust_last_name VARCHAR2(20)
 , cust_address CUST_ADDRESS_TYP
 , phone_numbers PHONE_LIST_TYP
 , nls_language VARCHAR2(3)
 , nls_territory VARCHAR2(30)

See Also: "Varray Type Example" on page 16-22

See Also: "Named Table Type Example" on page 16-22 and

"Nested Table Type Containing a Varray" on page 16-22

CREATE TYPE

16-20 Oracle9i SQL Reference

 , credit_limit NUMBER(9,2)
 , cust_email VARCHAR2(30)
 , cust_orders ORDER_LIST_TYP
) ;

In the following example, the data_typ object type is created with one member

function prod , which is implemented in the CREATE TYPE BODY statement:

CREATE TYPE data_typ AS OBJECT
 (year NUMBER,
 MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER
);

CREATE TYPE BODY data_typ IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN (year + invent);
 END;
 END;

Subtype Example The following statement shows how the subtype corporate_
customer_typ in the sample oe schema was created. It is based on the

customer_typ supertype created in the preceding example and adds the

account_mgr_id attribute:

CREATE TYPE corporate_customer_typ_demo UNDER customer_typ
 (account_mgr_id NUMBER(6)
);

SQLJ Object Type Example The following examples create a SQLJ object type and

subtype. The address_t type maps to the Java class Examples.Address . The

subtype long_address_t maps to the Java class Examples.LongAddress . The

examples specify SQLData as the mechanism used to create the Java instance of

these types. Each of the functions in these type specifications have corresponding

implementations in the Java class.

CREATE TYPE address_t AS OBJECT
 EXTERNAL NAME ’Examples.Address’ LANGUAGE JAVA
 USING SQLData(
 street_attr varchar(250) EXTERNAL NAME ’street’,

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for the Java implementation of the functions in these type

specifications

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-21

 city_attr varchar(50) EXTERNAL NAME ’city’,
 state varchar(50) EXTERNAL NAME ’state’,
 zip_code_attr number EXTERNAL NAME ’zipCode’,
 STATIC FUNCTION recom_width RETURN NUMBER
 EXTERNAL VARIABLE NAME ’recommendedWidth’,
 STATIC FUNCTION create_address RETURN address_t
 EXTERNAL NAME ’create() return Examples.Address’,
 STATIC FUNCTION construct RETURN address_t
 EXTERNAL NAME ’create() return Examples.Address’,
 STATIC FUNCTION create_address (street VARCHAR, city VARCHAR,
 state VARCHAR, zip NUMBER) RETURN address_t
 EXTERNAL NAME ’create (java.lang.String, java.lang.String,
java.lang.String, int) return Examples.Address’,
 STATIC FUNCTION construct (street VARCHAR, city VARCHAR,
 state VARCHAR, zip NUMBER) RETURN address_t
 EXTERNAL NAME
 ’create (java.lang.String, java.lang.String,
java.lang.String, int) return Examples.Address’,
 MEMBER FUNCTION to_string RETURN VARCHAR
 EXTERNAL NAME ’tojava.lang.String() return java.lang.String’,
 MEMBER FUNCTION strip RETURN SELF AS RESULT
 EXTERNAL NAME ’removeLeadingBlanks () return Examples.Address’
) NOT FINAL;

CREATE OR REPLACE TYPE long_address_t
UNDER address_t
EXTERNAL NAME ’Examples.LongAddress’ LANGUAGE JAVA
USING SQLData(
 street2_attr VARCHAR(250) EXTERNAL NAME ’street2’,
 country_attr VARCHAR (200) EXTERNAL NAME ’country’,
 address_code_attr VARCHAR (50) EXTERNAL NAME ’addrCode’,
 STATIC FUNCTION create_address RETURN long_address_t
 EXTERNAL NAME ’create() return Examples.LongAddress’,
 STATIC FUNCTION construct (street VARCHAR, city VARCHAR,
 state VARCHAR, country VARCHAR, addrs_cd VARCHAR)
 RETURN long_address_t
 EXTERNAL NAME
 ’create(java.lang.String, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String)
 return Examples.LongAddress’,
 STATIC FUNCTION construct RETURN long_address_t
 EXTERNAL NAME ’Examples.LongAddress()
 return Examples.LongAddress’,
 STATIC FUNCTION create_longaddress (
 street VARCHAR, city VARCHAR, state VARCHAR, country VARCHAR,

CREATE TYPE

16-22 Oracle9i SQL Reference

 addrs_cd VARCHAR) return long_address_t
 EXTERNAL NAME
 ’Examples.LongAddress (java.lang.String, java.lang.String,
 java.lang.String, java.lang.String, java.lang.String)
 return Examples.LongAddress’,
 MEMBER FUNCTION get_country RETURN VARCHAR
 EXTERNAL NAME ’country_with_code () return java.lang.String’
);

Type Hierarchy Example The following statements creates a type hierarchy. Type

employee_t inherits the name and ssn attributes from type person_t , and in

addition has department_id and salary attributes. Type part_time_emp_t
inherits all of the attributes from employee_t and, through employee_t , those of

person_t , and in addition has a num_hrs attribute. Type part_time_emp_t is

final by default, so no further subtypes can be created under it.:

CREATE TYPE person_t AS OBJECT (name VARCHAR2(100), ssn NUMBER)
 NOT FINAL;

CREATE TYPE employee_t UNDER person_t
 (department_id NUMBER, salary NUMBER) NOT FINAL;

CREATE TYPE part_time_emp_t UNDER employee_t (num_hrs NUMBER);

You can use type hierarchies to create substitutable tables and tables with

substitutable columns. For examples, see "Substitutable Table and Column

Examples" on page 15-67.

Varray Type Example The following statement shows how the phone_list_typ
varray type with 5 elements in the sample oe schema was created:

CREATE TYPE phone_list_typ_demo AS VARRAY(5) OF VARCHAR2(25);

Named Table Type Example The following example from the sample schema pm
creates the named table type textdoc_tab of object type textdoc_typ :

CREATE TYPE textdoc_typ AS OBJECT
 (document_typ VARCHAR2(32)
 , formatted_doc BLOB
) ;

CREATE TYPE textdoc_tab AS TABLE OF textdoc_typ;

Nested Table Type Containing a Varray The following example of multilevel

collections is a variation of the sample table oe.customers . In this example, the

CREATE TYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-23

cust_address object column becomes a nested table column with the phone_
list_typ varray column embedded in it:

CREATE TYPE phone_list_typ AS VARRAY(5) OF VARCHAR2(25);

CREATE TYPE cust_address_typ2 AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)
 , phone phone_list_typ
);

CREATE TYPE cust_nt_address_typ
 AS TABLE OF cust_address_typ;

Constructor Example This example invokes the system-defined constructor to

construct the demo_typ object and insert it into the demo_tab table:

CREATE TYPE demo_typ1 AS OBJECT (a1 NUMBER, a2 NUMBER);

CREATE TABLE demo_tab1 (b1 NUMBER, b2 demo_typ1);

INSERT INTO demo_tab1 VALUES (1, demo_typ1(2,3));

Creating a Member Method: Example The following example invokes method

constructor col.getbar() . (The example assumes the getbar method already

exists.)

CREATE TYPE demo_typ2 AS OBJECT (a1 NUMBER,
 MEMBER FUNCTION getbar RETURN NUMBER);

CREATE TABLE demo_tab2(col demo_typ2);

SELECT col.getbar() FROM demo_tab2;

Unlike function invocations, method invocations require parentheses, even when

the methods do not have additional arguments.

See Also: Oracle9i Application Developer’s Guide - Fundamentals and

PL/SQL User’s Guide and Reference for more information about

constructors

CREATE TYPE

16-24 Oracle9i SQL Reference

Creating a Static Method: Example The following example changes the definition

of the employee_t type to associate it with the construct_emp function. The

example first creates an object type department_t and then an object type

employee_t containing an attribute of type department_t :

CREATE OR REPLACE TYPE department_t AS OBJECT (
 deptno number(10),
 dname CHAR(30));

CREATE OR REPLACE TYPE employee_t AS OBJECT(
 empid RAW(16),
 ename CHAR(31),
 dept REF department_t,
 STATIC function construct_emp
 (name VARCHAR2, dept REF department_t)
 RETURN employee_t
);

This statement requires the following type body statement (PL/SQL is shown in

italics):

CREATE OR REPLACE TYPE BODY employee_t IS
 STATIC FUNCTION construct_emp
 (name varchar2, dept REF department_t)
 RETURN employee_t IS
 BEGIN
 return employee_t(SYS_GUID(),name,dept);
 END;
END;

Next create an object table and insert into the table:

CREATE TABLE emptab OF employee_t;
INSERT INTO emptab
 VALUES (employee_t.construct_emp(’John Smith’, NULL));

CREATE TYPE BODY

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-25

CREATE TYPE BODY

Purpose
Use the CREATE TYPE BODY to define or implement the member methods defined

in the object type specification. You create object types with the CREATE TYPE and

the CREATE TYPE BODYstatements. The CREATE TYPEstatement specifies the name

of the object type, its attributes, methods, and other properties. The CREATE TYPE
BODY statement contains the code for the methods in the type.

For each method specified in an object type specification for which you did not

specify the call_spec, you must specify a corresponding method body in the

object type body.

Prerequisites
Every member declaration in the CREATE TYPE specification for object types must

have a corresponding construct in the CREATE TYPE or CREATE TYPE BODY
statement.

To create or replace a type body in your own schema, you must have the CREATE
TYPE or the CREATE ANY TYPE system privilege. To create an object type in another

user’s schema, you must have the CREATE ANY TYPE system privileges. To replace

an object type in another user’s schema, you must have the DROP ANY TYPE system

privileges.

Note: If you create a SQLJ object type, you cannot specify a type

body. The implementation of the type is specified as a Java class.

See Also: CREATE TYPE on page 16-3 and ALTER TYPE on

page 12-6 for information on creating and modifying a type

specification

CREATE TYPE BODY

16-26 Oracle9i SQL Reference

Syntax
create_type_body::=

(procedure_declaration::= on page 16-26, function_declaration::= on

page 16-26, constructor_declaration::= on page 16-27)

subprogram_declaration::=

procedure_declaration::=

(call_spec::= on page 16-8)

function_declaration::=

(call_spec::= on page 16-8)

IS

AS

subprogram_declaration

map_order_func_declaration

;

END ;

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

MEMBER

STATIC

procedure_declaration

function_declaration

constructor_declaration

PROCEDURE name (parameter datatype

,

)
IS

AS

pl/sql_block

call_spec

FUNCTION name (parameter datatype

,

) RETURN datatype
IS

AS

pl/sql_block

call_spec

CREATE TYPE BODY

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-27

constructor_declaration::=

map_order_func_declaration::=

call_spec ::=

Java_declaration::=

C_declaration::=

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT
IS

AS

pl/sql_block

call_spec

MAP

ORDER
MEMBER function_declaration

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

CREATE TYPE BODY

16-28 Oracle9i SQL Reference

Semantics

OR REPLACE
Specify OR REPLACE to re-create the type body if it already exists. Use this clause to

change the definition of an existing type body without first dropping it.

Users previously granted privileges on the re-created object type body can use and

reference the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to

specifications added with the ALTER TYPE ... REPLACE statement.

schema
Specify the schema to contain the type body. If you omit schema , Oracle creates the

type body in your current schema.

type_name
Specify the name of an object type.

IS | AS

MEMBER | STATIC
Specify the type of function or procedure subprogram associated with the object

type specification.

You must define a corresponding method name, optional parameter list, and (for

functions) a return type in the object type specification for each procedure or

function declaration.

procedure_declaration, function_declaration, Declare a procedure or function

subprogram.

constructor_declaration Declare a user-defined constructor subprogram. The

RETURN clause of a constructor function must be RETURN SELF AS RESULT. This

setting indicates that the most specific type of the value returned by the constructor

function is the same as the most specific type of the SELF argument that was passed

in to the constructor function.

CREATE TYPE BODY

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-29

pl/sql_block Declare the procedure or function.

call_spec Specify the call specification ("call spec") that maps a Java or C method

name, parameter types, and return type to their SQL counterparts.

The Java_declaration, ’string ’ identifies the Java implementation of the

method.

map_order_func_declaration
You can declare either one MAP method or one ORDER method, regardless how

many MEMBER or STATIC methods you declare. If you declare either a MAP or

ORDER method, you can compare object instances in SQL.

If you do not declare either method, you can compare object instances only for

equality or inequality. Instances of the same type definition are equal only if each

pair of their corresponding attributes is equal.

See Also:

■ CREATE TYPE on page 16-3 for a list of restrictions on

user-defined functions

■ PL/SQL User’s Guide and Reference for information about

overloading subprogram names within a package

■ CREATE PROCEDURE on page 14-64, CREATE FUNCTION

on page 13-52, and Oracle9i Application Developer’s Guide -
Fundamentals for information on the components of type body

■ Oracle9i Application Developer’s Guide - Object-Relational Features
for information on and examples of user-defined constructors

See Also: PL/SQL User’s Guide and Reference

See Also:

■ Oracle9i Java Stored Procedures Developer’s Guide

■ Oracle9i Application Developer’s Guide - Fundamentals for an

explanation of the parameters and semantics of the C_
declaration

CREATE TYPE BODY

16-30 Oracle9i SQL Reference

MAP MEMBER Clause
Specify MAP MEMBER to declare or implement a member function (MAP method) that

returns the relative position of a given instance in the ordering of all instances of the

object. A MAP method is called implicitly and specifies an ordering of object

instances by mapping them to values of a predefined scalar type. PL/SQL uses the

ordering to evaluate Boolean expressions and to perform comparisons.

If the argument to the MAP method is null, the MAP method returns null and the

method is not invoked.

An object type body can contain only one MAP method, which must be a function.

The MAP function can have no arguments other than the implicit SELF argument.

ORDER MEMBER Clause
Specify ORDER MEMBER to specify a member function (ORDER method) that takes an

instance of an object as an explicit argument and the implicit SELF argument and

returns either a negative, zero, or positive integer. The negative, positive, or zero

indicates that the implicit SELF argument is less than, equal to, or greater than the

explicit argument.

If either argument to the ORDER method is null, the ORDER method returns null and

the method is not invoked.

When instances of the same object type definition are compared in an ORDER BY
clause, Oracle invokes the ORDER MEMBERfunction_declaration .

An object specification can contain only one ORDER method, which must be a

function having the return type NUMBER.

function_declaration Declare a function subprogram.

AS EXTERNAL AS EXTERNAL is an alternative way of declaring a C method. This

clause has been deprecated and is supported for backward compatibility only.

Oracle Corporation recommends that you use the call_spec syntax with the C_
declaration .

Examples
Several examples of creating type bodies appear in the "Examples" section of

CREATE TYPE on page 16-19.

See Also: CREATE PROCEDURE on page 14-64 and CREATE

FUNCTION on page 13-52 for the full syntax with all possible

clauses

CREATE TYPE BODY

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-31

Updating a Type Body: Example The following example shows how the type

body of the data_typ object type (see "Object Type Examples" on page 16-19) must

be modified when an attribute is added to the type (the PL/SQL is shown in italics):

ALTER TYPE data_typ
 ADD MEMBER FUNCTION qtr(der_qtr DATE)
 RETURN CHAR CASCADE;

CREATE OR REPLACE TYPE BODY data_typ IS
 MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN (year + invent);
 END;
 MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR IS
 BEGIN
 IF (der_qtr < TO_DATE(’01-APR’, ’DD-MON’)) THEN
 RETURN ’FIRST’;
 ELSIF (der_qtr < TO_DATE(’01-JUL’, ’DD-MON’)) THEN
 RETURN ’SECOND’;
 ELSIF (der_qtr < TO_DATE(’01-OCT’, ’DD-MON’)) THEN
 RETURN ’THIRD’;
 ELSE
 RETURN ’FOURTH’;
 END IF;
 END;
 END ;
/
 END;

CREATE USER

16-32 Oracle9i SQL Reference

CREATE USER

Purpose
Use the CREATE USER statement to create and configure a database user, or an

account through which you can log in to the database and establish the means by

which Oracle permits access by the user.

Prerequisites
You must have CREATE USER system privilege. When you create a user with the

CREATE USER statement, the user’s privilege domain is empty. To log on to Oracle,

a user must have CREATE SESSION system privilege. Therefore, after creating a

user, you should grant the user at least the CREATE SESSION privilege.

Note: You can enable a user to connect to Oracle through a proxy

(that is, an application or application server). For syntax and

discussion, refer to ALTER USER on page 12-22.

See Also: GRANT on page 17-29

CREATE USER

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-33

Syntax
create_user::=

Semantics

user
Specify the name of the user to be created. This name can contain only characters

from your database character set and must follow the rules described in the section

"Schema Object Naming Rules" on page 2-110. Oracle recommends that the user

name contain at least one single-byte character regardless of whether the database

character set also contains multibyte characters.

CREATE USER user IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE tablespace

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK
;

CREATE USER

16-34 Oracle9i SQL Reference

IDENTIFIED Clause
The IDENTIFIED clause lets you indicate how Oracle authenticates the user.

BY password
The BYpassword clause lets you creates a local user and indicates that the user

must specify password to log on. Passwords can contain only single-byte

characters from your database character set regardless of whether this character set

also contains multibyte characters.

Passwords must follow the rules described in the section "Schema Object Naming

Rules" on page 2-110, unless you are using Oracle’s password complexity

verification routine. That routine requires a more complex combination of

characters than the normal naming rules permit. You implement this routine with

the UTLPWDMG.SQL script, which is further described in Oracle9i Database
Administrator’s Guide.

EXTERNALLY Clause
Specify EXTERNALLY to create an external user. Such a user must be authenticated

by an external service (such as an operating system or a third-party service). In this

Note: Oracle Corporation recommends that user names and

passwords be encoded in ASCII or EBCDIC characters only,

depending on your platform. Please refer to Oracle9i Database
Administrator’s Guide for more information about this

recommendation.

See Also: "Creating a Database User: Example" on page 16-37

Note: Oracle Corporation recommends that user names and

passwords be encoded in ASCII or EBCDIC characters only,

depending on your platform. Please refer to Oracle9i Database
Administrator’s Guide for more information about this

recommendation.

See Also: Oracle9i Database Administrator’s Guide to for a detailed

description and explanation of how to use password management

and protection

CREATE USER

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-35

case, Oracle to relies on the login authentication of the operating system to ensure

that a specific operating system user has access to a specific database user.

GLOBALLY Clause
The GLOBALLY clause lets you create a global user. Such a user must be

authenticated by the enterprise directory service. The ’external_name ’ string can

take one of two forms:

■ The X.509 name at the enterprise directory service that identifies this user. It

should be of the form ’CN=username,other_attributes’ , where other_
attributes is the rest of the user’s distinguished name (DN) in the directory.

■ A null string (’ ’) indicating that the enterprise directory service will map

authenticated global users to the appropriate database schema with the

appropriate roles.

Caution: Oracle Corporation strongly recommends that you do

not use IDENTIFIED EXTERNALLY with operating systems that

have inherently weak login security. For more information, see

Oracle9i Database Administrator’s Guide.

See Also: "Creating External Database Users: Examples" on

page 16-38

Note: You can control the ability of an application server to

connect as the specified user and to activate that user’s roles using

the ALTER USER statement.

See Also:

■ Oracle Advanced Security Administrator’s Guide for more

information on global users

■ ALTER USER on page 12-22

■ Oracle9i Application Developer’s Guide - Fundamentals and your

operating system specific documentation for more information

■ "Creating a Global Database User: Example" on page 16-38

CREATE USER

16-36 Oracle9i SQL Reference

DEFAULT TABLESPACE Clause
Specify the default tablespace for objects that the user creates. If you omit this

clause, objects default to the SYSTEM tablespace.

Restriction on Default Temporary Tablespaces You cannot specify a locally

managed tablespace (including an undo tablespace) or a dictionary-managed

temporary tablespace as a user’s default tablespace.

TEMPORARY TABLESPACE Clause
Specify the tablespace for the user’s temporary segments. If you omit this clause,

temporary segments default to the SYSTEM tablespace.

Restrictions on a User’s Temporary Tablespace

■ The tablespace must be a temporary tablespace and must have a standard block

size.

■ The tablespace cannot be an undo tablespace or a tablespace with automatic

segment-space management.

QUOTA Clause
Use the QUOTA clause to allow the user to allocate up to integer bytes of space in

the tablespace. Use K or Mto specify the quota in kilobytes or megabytes. This quota

is the maximum space in the tablespace the user can allocate.

A CREATE USER statement can have multiple QUOTA clauses for multiple

tablespaces.

UNLIMITED lets the user allocate space in the tablespace without bound.

PROFILE Clause
Specify the profile you want to assign to the user. The profile limits the amount of

database resources the user can use. If you omit this clause, Oracle assigns the

DEFAULT profile to the user.

See Also: CREATE TABLESPACE on page 15-80 for more

information on tablespaces in general and undo tablespaces in

particular

See Also: CREATE TABLESPACE on page 15-80 for more

information on undo tablespaces and segment management

CREATE USER

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-37

PASSWORD EXPIRE Clause
Specify PASSWORD EXPIRE if you want the user’s password to expire. This setting

forces the user (or the DBA) to change the password before the user can log in to the

database.

ACCOUNT Clause
Specify ACCOUNT LOCK to lock the user’s account and disable access. Specify

ACCOUNT UNLOCK to unlock the user’s account and enable access to the account.

Examples

Creating a Database User: Example If you create a new user with PASSWORD
EXPIRE, the user’s password must be changed before attempting to log in to the

database. You can create the user sidney by issuing the following statement:

CREATE USER sidney
 IDENTIFIED BY out_standing1
 DEFAULT TABLESPACE example
 QUOTA 10M ON example
 TEMPORARY TABLESPACE temp
 QUOTA 5M ON system
 PROFILE app_user
 PASSWORD EXPIRE;

The user sidney has the following characteristics:

■ The password welcome

■ Default tablespace example , with a quota of 10 megabytes

■ Temporary tablespace temp

■ Access to the tablespace SYSTEM, with a quota of 5 megabytes

See Also: GRANT on page 17-29 and CREATE PROFILE on

page 14-71

Note: All of the following examples use the example tablespace

because it which exists in the seed database and is accessible to the

sample schemas.

CREATE USER

16-38 Oracle9i SQL Reference

■ Limits on database resources defined by the profile app_user (which was

created in "Creating a Profile: Example" on page 14-76)

■ An expired password, which must be changed before sidney can log in to the

database

Creating External Database Users: Examples The following example creates an

external user, who must be identified by an external source before accessing the

database:

CREATE USER app_user1
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

The user app_user1 has the following additional characteristics:

■ Default tablespace example

■ Default temporary tablespace example

■ 5M of space on the tablespace example and unlimited quota on the temporary

tablespace of the database

■ Limits on database resources defined by the app_user profile

To create another user accessible only by the operating system account app_user2 ,

prefix app_user2 by the value of the initialization parameter OS_AUTHENT_
PREFIX. For example, if this value is "ops$ ", you can create the user ops$app_
user 2 with the following statement:

CREATE USER ops$external_user
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

Creating a Global Database User: Example The following example creates a

global user. When you create a global user, you can specify the X.509 name that

identifies this user at the enterprise directory server:

CREATE USER global_user
 IDENTIFIED GLOBALLY AS ’CN=analyst, OU=division1, O=oracle, C=US’
 DEFAULT TABLESPACE example
 QUOTA 5M ON example;

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-39

CREATE VIEW

Purpose
Use the CREATE VIEW statement to define a view, which is a logical table based on

one or more tables or views. A view contains no data itself. The tables upon which a

view is based are called base tables.

You can also create an object view or a relational view that supports LOB and object

datatypes (object types, REFs, nested table, or varray types) on top of the existing

view mechanism. An object view is a view of a user-defined type, where each row

contains objects, each object with a unique object identifier.

You can also create XMLType views, which are similar to an object views but

display data from XMLSchema-based tables of XMLType.

Prerequisites
To create a view in your own schema, you must have CREATE VIEW system

privilege. To create a view in another user’s schema, you must have CREATE ANY
VIEW system privilege.

To create a subview, you must have UNDER ANY VIEW system privilege or the

UNDER object privilege on the superview.

The owner of the schema containing the view must have the privileges necessary to

either select, insert, update, or delete rows from all the tables or views on which the

view is based. The owner must be granted these privileges directly, rather than

through a role.

See Also:

■ Oracle9i Database Concepts, Oracle9i Application Developer’s Guide
- Fundamentals, and Oracle9i Database Administrator’s Guide for

information on various types of views and their uses

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB for

information on XMLType views

■ ALTER VIEW on page 12-31 for information on modifying a

view

■ DROP VIEW on page 17-22 for information on removing a

view from the database

CREATE VIEW

16-40 Oracle9i SQL Reference

To use the basic constructor method of an object type when creating an object view,

one of the following must be true:

■ The object type must belong to the same schema as the view to be created.

■ You must have EXECUTE ANY TYPE system privileges.

■ You must have the EXECUTE object privilege on that object type.

Partition Views
Partition views were introduced in Oracle Release 7.3 to provide partitioning

capabilities for applications requiring them. Partition views are supported in

Oracle9i so that you can upgrade applications from Release 7.3 without any

modification. In most cases, subsequent to upgrading to Oracle9i you will want to

migrate partition views into partitions.

In Oracle9i, you can use the CREATE TABLE statement to create partitioned tables

easily. Partitioned tables offer the same advantages as partition views, while also

addressing their shortcomings. Oracle recommends that you use partitioned tables

rather than partition views in most operational environments.

See Also: SELECT on page 18-4, INSERT on page 17-53, UPDATE

on page 18-59, and DELETE on page 16-55 for information on the

privileges required by the owner of a view on the base tables or

views of the view being created

See Also:

■ Oracle9i Database Concepts for more information on the

shortcomings of partition views

■ Oracle9i Database Administrator’s Guide for information on

migrating partition views into partitions

■ CREATE TABLE on page 15-7 for more information about

partitioned tables

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-41

Syntax
create_view::=

(inline_constraint::= on page 7-7 and out_of_line_constraint::= on

page 7-7—part of constraints syntax, object_view_clause::= on

page 16-41, XMLType_view_clause::= on page 16-42, subquery::= on

page 18-5—part of SELECT syntax, subquery_restriction_clause::= on
page 16-42)

object_view_clause::=

(inline_constraint::= on page 7-7 and out_of_line_constraint::= on

page 7-7—part of constraints syntax)

CREATE
OR REPLACE

NO
FORCE

VIEW
schema .

view

(
alias

inline_constraint

out_of_line_constraint

,

)

object_view_clause

XMLType_view_clause
AS subquery

subquery_restriction_clause
;

OF
schema .

type_name

WITH OBJECT IDENTIFIER

DEFAULT

(attribute

,

)

UNDER
schema .

superview

(
out_of_line_constraint

attribute inline_constraint

,

)

CREATE VIEW

16-42 Oracle9i SQL Reference

XMLType_view_clause ::=

XMLSchema_spec::=

subquery_restriction_clause ::=

Semantics

OR REPLACE
Specify OR REPLACEto re-create the view if it already exists. You can use this clause

to change the definition of an existing view without dropping, re-creating, and

regranting object privileges previously granted on it.

INSTEAD OF triggers defined in the view are dropped when a view is re-created.

If any materialized views are dependent on view , those materialized views will be

marked UNUSABLE and will require a full refresh to restore them to a usable state.

Invalid materialized views cannot be used by query rewrite and cannot be refreshed

until they are recompiled.

OF XMLTYPE
XMLSchema_spec

WITH OBJECT IDENTIFIER

DEFAULT

(expr

,

)

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-43

FORCE
Specify FORCE if you want to create the view regardless of whether the view’s base

tables or the referenced object types exist or the owner of the schema containing the

view has privileges on them. These conditions must be true before any SELECT,
INSERT, UPDATE, or DELETE statements can be issued against the view.

If the view definition contains any constraints, CREATE VIEW ... FORCE will fail if

the base table does not exist or the referenced object type does not exist. CREATE
VIEW ... FORCE will also fail if the view definition references a constraint that does

not exist.

NO FORCE
Specify NOFORCE if you want to create the view only if the base tables exist and the

owner of the schema containing the view has privileges on them. This is the default.

schema
Specify the schema to contain the view. If you omit schema , Oracle creates the view

in your own schema.

view
Specify the name of the view or the object view.

Restriction on Views If a view has INSTEAD OF triggers, any views created on it

must have INSTEAD OF triggers, even if the views are inherently updatable.

alias
Specify names for the expressions selected by the view’s query. The number of

aliases must match the number of expressions selected by the view. Aliases must

See Also:

■ ALTER MATERIALIZED VIEW on page 9-90 for information

on refreshing invalid materialized views

■ Oracle9i Database Concepts for information on materialized

views in general

■ CREATE TRIGGER on page 15-95 for more information about

the INSTEAD OF clause

See Also: "Creating a View: Example" on page 16-50

CREATE VIEW

16-44 Oracle9i SQL Reference

follow the rules for naming Oracle schema objects. Aliases must be unique within

the view.

If you omit the aliases, Oracle derives them from the columns or column aliases in

the view’s query. For this reason, you must use aliases if the view’s query contains

expressions rather than only column names. Also, you must specify aliases if the

view definition includes constraints.

Restriction on View Aliases You cannot specify an alias when creating an object

view.

inline_constraint and out_of_line_constraint
You can specify constraints on views and object views. You define the constraint at

the view level using the out_of_line_constraint clause. You define the

constraint as part of column or attribute specification using the inline_
constraint clause after the appropriate alias.

Oracle does not enforce view constraints. However, operations on views are subject

to the integrity constraints defined on the underlying base tables. This means that

you can enforce constraints on views through constraints on base tables.

Restrictions on View Constraints View constraints are a subset of table

constraints and are subject to the following restrictions:

■ You can specify only unique, primary key, and foreign key constraints on views.

However, you can define the view using the WITH CHECK OPTION clause,

which is equivalent to specifying a check constraint for the view.

■ Because view constraints are not enforced directly, you cannot specify

INITIALLY DEFERRED or DEFERRABLE.

■ View constraints are supported only in DISABLE NOVALIDATEmode. You must

specify the keywords DISABLE NOVALIDATE when you declare the view

constraint, and you cannot specify any other mode.

■ You cannot specify the using_index_clause , the exceptions_clause
clause, or the ON DELETE clause of the references_clause .

■ You cannot define view constraints on attributes of an object column.

See Also: "Syntax for Schema Objects and Parts in SQL

Statements" on page 2-115

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-45

object_view_clause
The object_view_clause lets you define a view on an object type.

OF type_name Clause
Use this clause to explicitly create an object view of type type_name . The columns

of an object view correspond to the top-level attributes of type type_name . Each

row will contain an object instance and each instance will be associated with an

object identifier (OID) as specified in the WITH OBJECT IDENTIFIER clause. If you

omit schema , Oracle creates the object view in your own schema.

Object tables (as well as XMLType tables, object views, and XMLType views) do not

have any column names specified for them. Therefore, Oracle defines a

system-generated column SYS_NC_ROWINFO$. You can use this column name in

queries and to create object views with the WITH OBJECT IDENTIFIER clause.

WITH OBJECT IDENTIFIER Clause
Use the WITH OBJECT IDENTIFIER clause to specify a top-level (root) object view.

This clause lets you specify the attributes of the object type that will be used as a

key to identify each row in the object view. In most cases these attributes

correspond to the primary key columns of the base table. You must ensure that the

attribute list is unique and identifies exactly one row in the view.

Restrictions on Object Views

■ If you try to dereference or pin a primary key REF that resolves to more than

one instance in the object view, Oracle returns an error.

■ You cannot specify this clause if you are creating a subview, because subviews

inherit object identifiers from superviews.

See Also: constraints on page 7-5 for more information on

constraints in general and on restrictions on view constraints and

on page 16-50"Creating a View with Constraints: Example"

See Also: "Creating an Object View: Example" on page 16-53

Note: The Oracle8i, Release 8.0 syntax WITH OBJECT OID is
replaced with this syntax for clarity. The keywords WITH OBJECT
OID are supported for backward compatibility, but Oracle

Corporation recommends that you use the new syntax WITH
OBJECT IDENTIFIER .

CREATE VIEW

16-46 Oracle9i SQL Reference

If the object view is defined on an object table or an object view, you can omit this

clause or specify DEFAULT.

DEFAULT Specify DEFAULT if you want Oracle to use the intrinsic object identifier

of the underlying object table or object view to uniquely identify each row.

attribute For attribute , specify an attribute of the object type from which

Oracle should create the object identifier for the object view.

UNDER Clause
Use the UNDER clause to specify a subview based on an object superview.

To learn whether a view is a superview or a subview, query the SUPERVIEW_NAME
column of the USER_, ALL_, or DBA_VIEWS data dictionary views.

Restrictions on Subviews

■ You must create a subview in the same schema as the superview.

■ The object type type_name must be the immediate subtype of superview .

■ You can create only one subview of a particular type under the same superview.

AS subquery
Specify a subquery that identifies columns and rows of the table(s) that the view is

based on. The select list of the subquery can contain up to 1000 expressions.

If you create views that refer to remote tables and views, the database links you

specify must have been created using the CONNECT TO clause of the CREATE
DATABASE LINK statement, and you must qualify them with schema name in the

view subquery.

If you create a view with the flashback_clause in the defining subquery, Oracle

does not interpret the AS OF expression at create time but rather each time a user

subsequently queries the view.

See Also:

■ CREATE TYPE on page 16-3 for information about creating

objects

■ Oracle9i Database Reference for information on data dictionary

views

See Also: "Creating a Join View: Example" on page 16-51

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-47

Restrictions on the Defining Subquery of a View

■ The view subquery cannot select the CURRVAL or NEXTVAL pseudocolumns.

■ If the view subquery selects the ROWID, ROWNUM, or LEVEL pseudocolumns,

those columns must have aliases in the view subquery.

■ If the view subquery uses an asterisk (*) to select all columns of a table, and you

later add new columns to the table, the view will not contain those columns

until you re-create the view by issuing a CREATE OR REPLACE VIEW statement.

■ For object views, the number of elements in the view subquery select list must

be the same as the number of top-level attributes for the object type. The

datatype of each of the selecting elements must be the same as the

corresponding top-level attribute.

■ You cannot specify the SAMPLE clause.

The preceding restrictions apply to materialized views as well.

Notes on Creating Updatable Views

An updatable view is one you can use to insert, update, or delete base table rows.

You can create a view to be inherently updatable, or you can create an INSTEAD OF
trigger on any view to make it updatable.

To learn whether and in what ways the columns of an inherently updatable view

can be modified, query the USER_UPDATABLE_COLUMNSdata dictionary view. (The

information displayed by this view is meaningful only for inherently updatable

views.)

■ If you want the view to be inherently updatable, it must not contain any of the

following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on flashback queries

CREATE VIEW

16-48 Oracle9i SQL Reference

■ Joins (with some exceptions as described in the paragraphs that follow).

■ In addition, if an inherently updatable view contains pseudocolumns or

expressions, you cannot update base table rows with an UPDATE statement that

refers to any of these pseudocolumns or expressions.

■ If you want a join view to be updatable, all of the following conditions must be

true:

■ The DML statement must affect only one table underlying the join.

■ For an INSERT statement, the view must not be created WITH CHECK
OPTION, and all columns into which values are inserted must come from a

key-preserved table. A key-preserved table in one for which every primary

key or unique key value in the base table is also unique in the join view.

■ For an UPDATE statement, all columns updated must be extracted from a

key-preserved table. If the view was created WITH CHECK OPTION, join

columns and columns taken from tables that are referenced more than once

in the view must be shielded from UPDATE.

■ For a DELETE statement, if the join results in more than one key-preserved

table, then Oracle deletes from the first table named in the FROM clause,

whether or not the view was created WITH CHECK OPTION.

XMLType_view_clause
Use this clause to create an XMLType view, which displays data from an

XMLSchema-based table of type XMLType. The XMLSchema_spec indicates the

See Also:

■ Oracle9i Database Administrator’s Guide for more information on

updatable views

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information about updating object views or relational views

that support object types

■ "Creating an Updatable View: Example" on page 16-50

■ "Creating a Join View: Example" on page 16-51 for an example

of updatable join views and key-preserved tables

■ "Creating an INSTEAD OF Trigger: Example" on page 15-108

for an example of an INSTEAD OF trigger on a view that is not

inherently updatable

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-49

XMLSchema to be used to map the XML data to its object-relational equivalents.

The XMLSchema must already have been created before you can create an XMLType
view.

Object tables (as well as XMLType tables, object views, and XMLType views) do not

have any column names specified for them. Therefore, Oracle defines a

system-generated column SYS_NC_ROWINFO$. You can use this column name in

queries and to create object views with the WITH OBJECT IDENTIFIER clause.

subquery_restriction_clause
Use the subquery_restriction_clause to restrict the defining subquery of the

view in one of the following ways:

WITH READ ONLY Specify WITH READ ONLY to indicate that the table or view

cannot be updated.

WITH CHECK OPTION Specify WITH CHECK OPTION to indicate that Oracle

prohibits any changes to the table or view that would produce rows that are not

included in the subquery.

CONSTRAINT constraint Specify the name of the CHECK OPTION constraint. If

you omit this identifier, Oracle automatically assigns the constraint a name of the

form SYS_Cn, where n is an integer that makes the constraint name unique within

the database.

See Also:

■ Oracle9i XML Database Developer’s Guide - Oracle XML DB for

information on XMLType views and XMLSchemas

■ "Creating an XMLType View: Example" on page 16-53 and

"Creating a View on an XMLType Table: Example" on

page 16-53

CREATE VIEW

16-50 Oracle9i SQL Reference

Examples

Creating a View: Example The following statement creates a view of the sample

table employees named emp_view . The view shows the employees in department

20 and their annual salary:

CREATE VIEW emp_view AS
 SELECT last_name, salary*12 annual_salary
 FROM employees
 WHERE department_id = 20;

The view declaration need not define a name for the column based on the

expression salary*12 , because the subquery uses a column alias (annual_
salary) for this expression.

Creating a View with Constraints: Example The following statement creates a

restricted view of the sample table hr.employees and defines a unique constraint

on the email view column and a primary key constraint for the view on the emp_
id view column:

CREATE VIEW emp_sal (emp_id, last_name,
 email UNIQUE RELY DISABLE NOVALIDATE,
 CONSTRAINT id_pk PRIMARY KEY (emp_id) RELY DISABLE NOVALIDATE)
 AS SELECT employee_id, last_name, email FROM employees;

Creating an Updatable View: Example The following statement creates an

updatable view named clerk of all sales and purchasing clerks in the employees
table. Only the employees’ IDs, last names, department numbers, and jobs are

Note on WITH CHECK OPTION: For tables, WITH CHECK OPTION
guarantees that inserts and updates result in tables that the

defining table subquery can select. For views, WITH CHECK OPTION
cannot make this guarantee if:

■ There is a subquery within the defining subquery of this view

or any view on which this view is based or

■ INSERT, UPDATE, or DELETE operations are performed using

INSTEAD OF triggers.

See Also: "Creating a Read-Only View: Example" on page 16-52

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-51

visible in this view, and these columns can be updated only in rows where the

employee is a king of clerk:

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = ’PU_CLERK’
 or job_id = ’SH_CLERK’
 or job_id = ’ST_CLERK’;

This view lets you change the job_id of a purchasing clerk to purchasing manager

(PU_MAN):

UPDATE clerk SET job_id = ’PU_MAN’ WHERE employee_id = 118;

The next example creates the same view WITH CHECK OPTION. You cannot

subsequently insert a new row into clerk if the new employee is not a clerk. You

can update an employee’s job_id from one type of clerk to another type of clerk,

but the update in the preceding statement would fail, because the view cannot

access employees with non-clerk job_id.

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = ’PU_CLERK’
 or job_id = ’SH_CLERK’
 or job_id = ’ST_CLERK’
 WITH CHECK OPTION;

Creating a Join View: Example A join view is one whose view subquery contains

a join. If at least one column in the join has a unique index, then it may be possible

to modify one base table in a join view. You can query USER_UPDATABLE_COLUMNS
to see whether the columns in a join view are updatable. For example:

CREATE VIEW locations_view AS
 SELECT d.department_id, d.department_name, l.location_id, l.city
 FROM departments d, locations l
 WHERE d.location_id = l.location_id;

SELECT column_name, updatable
 FROM user_updatable_columns
 WHERE table_name = ’LOCATIONS_VIEW’;

COLUMN_NAME UPD
------------------------------ ---

CREATE VIEW

16-52 Oracle9i SQL Reference

DEPARTMENT_ID YES
DEPARTMENT_NAME YES
LOCATION_ID NO
CITY NO

In the preceding example, the primary key index on the location_id column of

the locations table is not unique in the locations_view view. Therefore,

locations is not a key-preserved table and columns from that base table are not

updatable.

INSERT INTO locations_view VALUES
 (999, ’Entertainment’, 87, ’Roma’);
INSERT INTO locations_view VALUES
*
ERROR at line 1:
ORA-01776: cannot modify more than one base table through a join
view

You can insert, update, or delete a row from the departments base table, because

all the columns in the view mapping to the departments table are marked as

updatable and because the primary key of departments is retained in the view.

INSERT INTO locations_view (department_id, department_name)
 VALUES (999, ’Entertainment’);

1 row created.

Creating a Read-Only View: Example The following statement creates a read-only

view named customer_ro of the oe.customers table. Only the customers’ last

names, language, and credit limit are visible in this view:

CREATE VIEW customer_ro (name, language, credit)
 AS SELECT cust_last_name, nls_language, credit_limit
 FROM customers
 WITH READ ONLY;

Note: You cannot insert into the table using the view unless the

view contains all NOT NULL columns of all tables in the join, unless

you have specified DEFAULT values for the NOT NULL columns.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on updating join views

CREATE VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-53

Creating an Object View: Example The following example shows the creation of

the type inventory_typ in the oc schema, and the oc_inventories view that

is based on that type:

CREATE TYPE inventory_typ AS OBJECT
 (product_id number(6)
 , warehouse warehouse_typ
 , quantity_on_hand number(8)
) ;

CREATE OR REPLACE VIEW oc_inventories OF inventory_typ
 WITH OBJECT IDENTIFIER (product_id)
 AS SELECT i.product_id,
 warehouse_typ(w.warehouse_id, w.warehouse_name, w.location_id),
 i.quantity_on_hand
 FROM inventories i, warehouses w
 WHERE i.warehouse_id=w.warehouse_id;

Creating a View on an XMLType Table: Example The following example builds a

regular view on the XMLType table xwarehouses , which was created in "XMLType

Table Examples" on page 15-71:

CREATE VIEW warehouse_view AS
 SELECT VALUE(p) AS warehouse_xml
 FROM xwarehouses p;

You select from such a view as follows:

SELECT e.warehouse_xml.getclobval()
 FROM warehouse_view e
 WHERE EXISTSNODE(warehouse_xml, ’//Docks’) =1;

Creating an XMLType View: Example In some cases you may have an

object-relational table upon which you would like to build an XMLType view. The

following example creates an object-relational table (resembling the XMLType
column warehouse_spec in the sample table oe.warehouses), and then creates

an XMLType view of that table:

CREATE TABLE warehouse_table
(
 WarehouseID NUMBER,
 Area NUMBER,
 Docks NUMBER,
 DockType VARCHAR2(100),
 WaterAccess VARCHAR2(10),

CREATE VIEW

16-54 Oracle9i SQL Reference

 RailAccess VARCHAR2(10),
 Parking VARCHAR2(20),
 VClearance NUMBER
);

INSERT INTO warehouse_table
 VALUES(5, 103000,3,’Side Load’,’false’,’true’,’Lot’,15);

CREATE VIEW warehouse_view OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/xwarehouses.xsd"
 ELEMENT "Warehouse"
 WITH OBJECT ID
 (extract(sys_nc_rowinfo$,
’/Warehouse/Area/text()’).getnumberval())
 AS SELECT XMLELEMENT("Warehouse",
 XMLFOREST(WarehouseID as "Building",
 area as "Area",
 docks as "Docks",
 docktype as "DockType",
 wateraccess as "WaterAccess",
 railaccess as "RailAccess",
 parking as "Parking",
 VClearance as "VClearance"))
 FROM warehouse_table;

You would query this view as follows:

SELECT VALUE(e) FROM warehouse_view e;

DELETE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-55

DELETE

Purpose
Use the DELETEstatement to remove rows from a table, a partitioned table, a view’s

base table, or a view’s partitioned base table.

Prerequisites
For you to delete rows from a table, the table must be in your own schema or you

must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the schema

containing the view must have DELETEprivilege on the base table. Also, if the view

is in a schema other than your own, you must be granted DELETE privilege on the

view.

The DELETE ANY TABLE system privilege also allows you to delete rows from any

table or table partition, or any view’s base table.

You must also have the SELECT privilege on the object from which you want to

delete if:

■ The object is on a remote database or

■ The SQL92_SECURITY initialization parameter is set to TRUE and the DELETE
operation references table columns (such as the columns in a where_clause).

Syntax
delete::=

(DML_table_expression_clause::= on page 16-56, where_clause::= on

page 16-56, returning_clause::= on page 16-56)

DELETE
hint FROM dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

where_clause returning_clause
;

DELETE

16-56 Oracle9i SQL Reference

DML_table_expression_clause ::=

(subquery::= on page 18-5, subquery_restriction_clause::= on

page 16-56, table_collection_expression::= on page 16-56)

subquery_restriction_clause ::=

table_collection_expression ::=

where_clause ::=

returning_clause ::=

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

WHERE condition

RETURNING expr

,

INTO data_item

,

DELETE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-57

Semantics

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

from_clause
Use the FROM clause to specify the database objects from which you are deleting

rows.

The ONLY syntax is only relevant for views. Use the ONLY clause if the view in the

FROM clause belongs to a view hierarchy and you do not want to delete rows from

any of its subviews.

DML_table_expression_clause

schema
Specify the schema containing the table or view. If you omit schema , Oracle

assumes the table or view is in your own schema.

table | view | materialized view | subquery
Specify the name of a table or view, or the column or columns resulting from a

subquery, from which the rows are to be deleted. If you specify view , Oracle deletes

rows from the view’s base table.

If table (or the base table of view) contains one or more domain index columns, this

statements executes the appropriate indextype delete routine.

Issuing a DELETEstatement against a table fires any DELETEtriggers defined on the

table.

All table or index space released by the deleted rows is retained by the table and

index.

See Also: "Hints" on page 2-91 and Oracle9i Database Performance
Tuning Guide and Reference for the syntax and description of hints

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information on these routines

DELETE

16-58 Oracle9i SQL Reference

PARTITION (partition_name) and SUBPARTITION (subpartition_name)
Specify the name of the partition or subpartition within table targeted for deletes.

You need not specify the partition name when deleting values from a partitioned

table. However, in some cases, specifying the partition name is more efficient than a

complicated where_clause .

dblink
Specify the complete or partial name of a database link to a remote database where

the table or view is located. You can delete rows from a remote table or view only if

you are using Oracle’s distributed functionality.

If you omit dblink , Oracle assumes that the table or view is located on the local

database.

subquery_restriction_clause
The subquery_restriction_clause lets you restrict the subquery in one of the

following ways:

WITH READ ONLY Specify WITH READ ONLY to indicate that the table or view

cannot be updated.

WITH CHECK OPTION Specify WITH CHECK OPTION to indicate that Oracle

prohibits any changes to the table or view that would produce rows that are not

included in the subquery.

CONSTRAINT constraint Specify the name of the CHECK OPTION constraint. If

you omit this identifier, Oracle automatically assigns the constraint a name of the

form SYS_Cn, where n is an integer that makes the constraint name unique within

the database.

See Also: "Deleting Rows from a Partition: Example" on

page 16-63

See Also: "Referring to Objects in Remote Databases" on

page 2-118 for information on referring to database links and

"Deleting Rows from a Remote Database: Example" on page 16-62

See Also: "Using the WITH CHECK OPTION Clause: Example"

on page 18-34

DELETE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-59

table_collection_expression
The table_collection_expression lets you inform Oracle that the value of

collection_expression should be treated as a table for purposes of query and

DML operations. The collection_expression can be a subquery, a column, a

function, or a collection constructor. Regardless of its form, it must return a

collection value (that is, a value whose type is nested table or varray). This process

of extracting the elements of a collection is called collection unnesting.

You can use a table_collection_expression in a correlated subquery to

delete rows with values that also exist in another table.

collection_expression Specify a subquery that selects a nested table column from

table or view .

Restrictions on the dml_table_expression_clause

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked IN_PROGRESS or FAILED.

■ You cannot insert into a partition if any affected index partitions are marked

UNUSABLE.

■ You cannot specify the ORDER BY clause in the subquery of the dml_table_
expression_clause .

■ You cannot delete from a view except through INSTEAD OF triggers if the

view’s defining query contains one of the following constructs:

■ A set operator

■ A DISTINCT operator

Note: In earlier releases of Oracle, when collection_
expression was a subquery, table_collection_expression
was expressed as "THE subquery". That usage is now deprecated.

See Also: "Table Collections: Examples" on page 18-38

Note: In earlier releases of Oracle, table_collection_
expression was expressed as "THEsubquery ". That usage is

now deprecated.

DELETE

16-60 Oracle9i SQL Reference

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions). See Oracle9i Database Administrator’s Guide for

details.

If you specify an index, index partition, or index subpartition that has been marked

UNUSABLE, the DELETE statement will fail unless the SKIP_UNUSABLE_INDEXES
parameter has been set to true .

table_collection_expression

where_clause
Use the where_clause to delete only rows that satisfy the condition. The

condition can reference the table and can contain a subquery. You can delete rows

from a remote table or view only if you are using Oracle’s distributed functionality.

If you omit dblink , Oracle assumes that the table or view is located on the local

database.

If you omit the where_clause , Oracle deletes all rows of the table or view.

t_alias Provide a correlation name for the table, view, subquery, or collection

value to be referenced elsewhere in the statement. Table aliases are generally used

in DELETE statements with correlated queries.

See Also: ALTER SESSION on page 10-2

See Also: Chapter 5, "Conditions" for the syntax of condition

Note: If this clause contains a subquery that refers to remote

objects, the DELETE operation can run in parallel as long as the

reference does not loop back to an object on the local database.

However, if the subquery in the dml_table_expression_
clause refers to any remote objects, the UPDATEoperation will run

serially without notification. Please refer to the parallel_clause
for CREATE TABLE on page 15-53 for additional information.

DELETE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-61

returning_clause
The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and materialized views,

and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can

retrieve column expressions using the affected row, rowid, and REFs to the affected

row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause
stores values from expressions, rowids, and REFs involving the affected rows in

bind arrays.

expr Each item in the expr list must be a valid expression syntax. All forms are

valid except scalar subquery expressions.

INTO The INTO clause indicates that the values of the changed rows are to be

stored in the variable(s) specified in data_item list.

data_item Each data_item is a host variable or PL/SQL variable that stores the

retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding

type-compatible PL/SQL variable or host variable in the INTO list.

Restrictions on the RETURNING Clause You cannot:

■ Specify the returning_clause for a multitable insert.

■ Use this clause with parallel DML or with remote objects.

■ Retrieve LONG types with this clause.

■ Specify this clause for a view on which an INSTEAD OF trigger has been

defined.

Note: This alias is required if the dml_table_expression_
clause references any object type attributes or object type

methods.

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables

DELETE

16-62 Oracle9i SQL Reference

Examples

Deleting Rows: Examples The following statement deletes all rows from the

sample table oe.product_descriptions :

DELETE FROM product_descriptions
 WHERE language_id = ’AR’;

The following statement deletes from the sample table hr.employees purchasing

clerks whose commission rate is less than 10%:

DELETE FROM employees
 WHERE job_id = ’PU_CLERK’
 AND commission_pct < .1;

The following statement has the same effect as the preceding example, but uses a

subquery:

DELETE FROM (SELECT * FROM employees)
 WHERE job_id = ’PU_CLERK’
 AND commission_pct < .1;

Deleting Rows from a Remote Database: Example The following statement

deletes specified rows from the locations table owned by the user hr on a

database accessible by the database link remote :

DELETE FROM hr.locations@remote
 WHERE location_id > 3000;

Deleting Nested Table Rows: Example The following example deletes rows of

nested table projs where the department number is either 123 or 456, or the

department’s budget is greater than 456.78:

DELETE TABLE(SELECT projs FROM dept d WHERE d.dno = 123) p
 WHERE p.pno IN (123, 456) OR p.budgets > 456.78;

Note: This clause lets you return values from deleted columns,

and thereby eliminate the need to issue a SELECT statement

following the DELETE statement.

See Also: "Using the RETURNING Clause: Example" on

page 16-63

DELETE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-63

Deleting Rows from a Partition: Example The following example removes rows

from partition sales_q1_1998 of the sh.sales table:

DELETE FROM sales PARTITION (sales_q1_1998)
 WHERE amount_sold > 10000;

Using the RETURNING Clause: Example The following example returns column

salary from the deleted rows and stores the result in bind variable :bnd1. (The

bind variable must already have been declared.)

DELETE FROM employees
 WHERE job_id = ’SA_REP’
 AND hire_date + TO_YMINTERVAL(’01-00’) < SYSDATE;
 RETURNING salary INTO :bnd1;

DISASSOCIATE STATISTICS

16-64 Oracle9i SQL Reference

DISASSOCIATE STATISTICS

Purpose
Use the DISASSOCIATE STATISTICS statement to disassociate a statistics type (or

default statistics) from columns, standalone functions, packages, types, domain

indexes, or indextypes.

Prerequisites
To issue this statement, you must have the appropriate privileges to alter the base

object (table, function, package, type, domain index, or indextype).

See Also: ASSOCIATE STATISTICS on page 12-50 for more

information on statistics type associations

DISASSOCIATE STATISTICS

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-65

Syntax
disassociate_statistics::=

Semantics

FROM COLUMNS | FUNCTIONS | PACKAGES | TYPES | INDEXES |
INDEXTYPES
Specify one or more columns, standalone functions, packages, types, domain

indexes, or indextypes from which you are disassociating statistics.

If you do not specify schema , Oracle assumes the object is in your own schema.

If you have collected user-defined statistics on the object, the statement fails unless

you specify FORCE.

DISASSOCIATE STATISTICS FROM

COLUMNS
schema .

table . column

,

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

FORCE
;

DISASSOCIATE STATISTICS

16-66 Oracle9i SQL Reference

FORCE
Specify FORCE to remove the association regardless of whether any statistics exist

for the object using the statistics type. If statistics do exist, the statistics are deleted

before the association is deleted.

Example

Disassociating Statistics: Example This statement disassociates statistics from the

pack package in the hr schema:

DISASSOCIATE STATISTICS FROM PACKAGES oe.emp_mgmt;

Note: When you drop an object with which a statistics type has

been associated, Oracle automatically disassociates the statistics

type with the FORCE option and drops all statistics that have been

collected with the statistics type.

DROP CLUSTER

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-67

DROP CLUSTER

Purpose
Use the DROP CLUSTER clause to remove a cluster from the database.

You cannot uncluster an individual table. Instead you must perform these steps:

1. Create a new table with the same structure and contents as the old one, but with

no CLUSTER clause.

2. Drop the old table.

3. Use the RENAME statement to give the new table the name of the old one.

4. Grant privileges on the new unclustered table, as grants on the old clustered

table do not apply.

Prerequisites
The cluster must be in your own schema or you must have the DROP ANY CLUSTER
system privilege.

Syntax
drop_cluster::=

Semantics

schema
Specify the schema containing the cluster. If you omit schema , Oracle assumes the

cluster is in your own schema.

See Also: CREATE TABLE on page 15-7, DROP TABLE on

page 17-6, RENAME on page 17-86, GRANT on page 17-29 for

information on these steps

DROP CLUSTER
schema .

cluster
INCLUDING TABLES

CASCADE CONSTRAINTS

;

DROP CLUSTER

16-68 Oracle9i SQL Reference

cluster
Specify the name of the cluster to be dropped. Dropping a cluster also drops the

cluster index and returns all cluster space, including data blocks for the index, to

the appropriate tablespace(s).

INCLUDING TABLES
Specify INCLUDING TABLES to drop all tables that belong to the cluster.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from

tables outside the cluster that refer to primary and unique keys in tables of the

cluster. If you omit this clause and such referential integrity constraints exist, Oracle

returns an error and does not drop the cluster.

Example

Dropping a Cluster: Examples The following examples drop the clusters created

in the "Examples" section of CREATE CLUSTER on on page 13-9.

The following statements drops the language cluster:

DROP CLUSTER language;

This statement drops the personnel cluster as well as tables dept_10 and dept_
20 and any referential integrity constraints that refer to primary or unique keys in

those tables:

DROP CLUSTER personnel
 INCLUDING TABLES
 CASCADE CONSTRAINTS;

DROP CONTEXT

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-69

DROP CONTEXT

Purpose
Use the DROP CONTEXT statement to remove a context namespace from the

database.

Prerequisites
You must have the DROP ANY CONTEXT system privilege.

Syntax
drop_context::=

Semantics

namespace
Specify the name of the context namespace to drop. You cannot drop the built-in

namespace USERENV.

Example

Dropping an Application Context: Example The following statement drops the

context created in CREATE CONTEXT on page 13-12:

DROP CONTEXT hr_context;

Note: Removing a context namespace does not invalidate any

context under that namespace that has been set for a user session.

However, the context will be invalid when the user next attempts to

set that context.

See Also: CREATE CONTEXT on page 13-12 and Oracle9i
Database Concepts for more information on contexts

See Also: SYS_CONTEXT on page 6-156 for information on the

USERENV namespace

DROP CONTEXT namespace ;

DROP DATABASE LINK

16-70 Oracle9i SQL Reference

DROP DATABASE LINK

Purpose
Use the DROP DATABASE LINK statement to remove a database link from the

database.

Prerequisites
A private database link must be in your own schema. To drop a PUBLIC database

link, you must have the DROP PUBLIC DATABASE LINK system privilege.

Syntax
drop_database_link::=

Semantics

PUBLIC
You must specify PUBLIC to drop a PUBLIC database link.

dblink
Specify the name of the database link to be dropped.

Restriction on Dropping Database Links You cannot drop a database link in

another user’s schema, and you cannot qualify dblink with the name of a schema,

because periods are permitted in names of database links. Therefore, Oracle

interprets the entire name, such as ralph.linktosales , as the name of a

database link in your schema rather than as a database link named linktosales
in the schema ralph .

See Also: CREATE DATABASE LINK on page 13-37 for

information on creating database links

DROP
PUBLIC

DATABASE LINK dblink ;

DROP DATABASE LINK

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-71

Example

Dropping a Database Link: Example The following statement drops the public

database link named remote (created in "Defining a Public Database Link:

Example" on page 13-41):

DROP PUBLIC DATABASE LINK remote;

DROP DIMENSION

16-72 Oracle9i SQL Reference

DROP DIMENSION

Purpose
Use the DROP DIMENSION statement to remove the named dimension.

Prerequisites
The dimension must be in your own schema or you must have the DROP ANY
DIMENSION system privilege to use this statement.

Syntax
drop_dimension::=

Semantics

schema
Specify the name of the schema in which the dimension is located. If you omit

schema , Oracle assumes the dimension is in your own schema.

Note: This statement does not invalidate materialized views that

use relationships specified in dimensions. However, requests that

have been rewritten by query rewrite may be invalidated, and

subsequent operations on such views may execute more slowly.

See Also:

■ CREATE DIMENSION on page 13-43 for information on

creating a dimension

■ ALTER DIMENSION on page 9-56 for information on

modifying a dimension

■ Oracle9i Database Concepts

DROP DIMENSION
schema .

dimension ;

DROP DIMENSION

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-73

dimension
Specify the name of the dimension you want to drop. The dimension must already

exist.

Example

Dropping a Dimension: Example This example drops the sh.customers_dim
dimension:

DROP DIMENSION customers_dim;

See Also: "Creating a Dimension: Example" on page 13-47 and

"Modifying a Dimension: Examples" on page 9-58 for examples of

creating and modifying this dimension

DROP DIRECTORY

16-74 Oracle9i SQL Reference

DROP DIRECTORY

Purpose
Use the DROP DIRECTORYstatement to remove a directory object from the database.

Prerequisites
To drop a directory, you must have the DROP ANY DIRECTORY system privilege.

Syntax
drop_directory::=

Semantics

directory_name
Specify the name of the directory database object to be dropped.

Oracle removes the directory object but does not delete the associated operating

system directory on the server’s file system.

Example

Dropping a Directory: Example The following statement drops the directory object

bfile_dir :

DROP DIRECTORY bfile_dir;

See Also: CREATE DIRECTORY on page 13-49 for information on

creating a directory

Caution: Do not drop a directory when files in the associated file

system are being accessed by PL/SQL or OCI programs.

See Also: "Creating a Directory: Examples" on page 13-51

DROP DIRECTORY directory_name ;

DROP FUNCTION

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-75

DROP FUNCTION

Purpose
Use the DROP FUNCTIONstatement to remove a standalone stored function from the

database.

Prerequisites
The function must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax
drop_function::=

Semantics

schema
Specify the schema containing the function. If you omit schema , Oracle assumes

the function is in your own schema.

Note: Do not use this statement to remove a function that is part

of a package. Instead, either drop the entire package using the

DROP PACKAGE statement or redefine the package without the

function using the CREATE PACKAGE statement with the OR
REPLACE clause.

See Also:

■ CREATE FUNCTION on page 13-52 for information on creating

a function

■ ALTER FUNCTION on page 9-59 for information on modifying

a function

DROP FUNCTION
schema .

function_name ;

DROP FUNCTION

16-76 Oracle9i SQL Reference

function_name
Specify the name of the function to be dropped.

Oracle invalidates any local objects that depend on, or call, the dropped function. If

you subsequently reference one of these objects, Oracle tries to recompile the object

and returns an error if you have not re-created the dropped function.

If any statistics types are associated with the function, Oracle disassociates the

statistics types with the FORCE option and drops any user-defined statistics

collected with the statistics type.

Example

Dropping a Function: Example The following statement drops the function

SecondMax in the sample schema oe and invalidates all objects that depend upon

SecondMax :

DROP FUNCTION oe.SecondMax;

See Also:

■ Oracle9i Database Concepts for more information on how Oracle

maintains dependencies among schema objects, including

remote objects

■ ASSOCIATE STATISTICS on page 12-50 and DISASSOCIATE

STATISTICS on page 16-64 for more information on statistics

type associations

See Also: "Creating a Function: Examples" on page 13-62 for

information on creating the SecondMax function

DROP INDEX

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-77

DROP INDEX

Purpose
Use the DROP INDEX statement to remove an index or domain index from the

database.

When you drop an index, Oracle invalidates all objects that depend on the

underlying table, including views, packages, package bodies, functions, and

procedures.

When you drop a global partitioned index, a range-partitioned index, or a

hash-partitioned index, all the index partitions are also dropped. If you drop a

composite-partitioned index, all the index partitions and subpartitions are also

dropped.

In addition, when you drop a domain index:

■ Oracle invokes the appropriate routine. For information on these routines, see

Oracle9i Data Cartridge Developer’s Guide.

■ If any statistics are associated with the domain index, Oracle disassociates the

statistics types with the FORCE clause and removes the user-defined statistics

collected with the statistics type.

Prerequisites
The index must be in your own schema or you must have the DROP ANY INDEX
system privilege.

See Also:

■ CREATE INDEX on page 13-65 for information on creating an

index

■ ALTER INDEX on page 9-62 for information on modifying an

index

■ The domain_index_clause of CREATE INDEX on

page 13-65 for more information on domain indexes

■ ASSOCIATE STATISTICS on page 12-50 and DISASSOCIATE

STATISTICS on page 16-64 for more information on statistics

type associations

DROP INDEX

16-78 Oracle9i SQL Reference

Syntax
drop_index::=

Semantics

schema
Specify the schema containing the index. If you omit schema , Oracle assumes the

index is in your own schema.

index
Specify the name of the index to be dropped. When the index is dropped, all data

blocks allocated to the index are returned to the index’s tablespace.

Restriction on Dropping Indexes You cannot drop a domain index if the index or

any of its index partitions is marked IN_PROGRESS.

FORCE
FORCE applies only to domain indexes. This clause drops the domain index even if

the indextype routine invocation returns an error or the index is marked IN
PROGRESS. Without FORCE, you cannot drop a domain index if its indextype

routine invocation returns an error or the index is marked IN PROGRESS.

Example

Dropping an Index: Example This statement drops an index named ord_
customer_ix_demo (created in "General Index Examples" on page 13-87):

DROP INDEX ord_customer_ix_demo;

DROP INDEX
schema .

index
FORCE

;

DROP INDEXTYPE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-79

DROP INDEXTYPE

Purpose
Use the DROP INDEXTYPE statement to drop an indextype, as well as any

association with a statistics type.

Prerequisites
The indextype must be in your own schema or you must have the DROP ANY
INDEXTYPE system privilege.

Syntax
drop_indextype::=

Semantics

schema
Specify the schema containing the indextype. If you omit schema , Oracle assumes

the indextype is in your own schema.

indextype
Specify the name of the indextype to be dropped.

If any statistics types have been associated with indextype, Oracle disassociates the

statistics type from the indextype and drops any statistics that have been collected

using the statistics type.

See Also: CREATE INDEXTYPE on page 13-95 for more

information on indextypes

See Also: ASSOCIATE STATISTICS on page 12-50 and

DISASSOCIATE STATISTICS on page 16-64 for more information

on statistics associations

DROP INDEXTYPE
schema .

indextype
FORCE

;

DROP INDEXTYPE

16-80 Oracle9i SQL Reference

FORCE
Specify FORCE to drop the indextype even if the indextype is currently being

referenced by one or more domain indexes. Oracle marks those domain indexes

INVALID . Without FORCE, you cannot drop an indextype if any domain indexes

reference the indextype.

Example

Dropping an Indextype: Example The following statement drops the indextype

textindextype and marks INVALID any domain indexes defined on this

indextype:

DROP INDEXTYPE textindextype FORCE;

DROP JAVA

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-81

DROP JAVA

Purpose
Use the DROP JAVA statement to drop a Java source, class, or resource schema

object.

Prerequisites
The Java source, class, or resource must be in your own schema or you must have

the DROP ANY PROCEDURE system privilege. You also must have the EXECUTE
object privilege on Java classes to use this command.

Syntax
drop_java::=

Semantics

JAVA SOURCE
Specify SOURCE to drop a Java source schema object and all Java class schema

objects derived from it.

JAVA CLASS
Specify CLASS to drop a Java class schema object.

See Also:

■ CREATE JAVA on page 13-98 for information on creating Java

objects

■ Oracle9i Java Stored Procedures Developer’s Guide for more

information on resolving Java sources, classes, and resources

DR0P JAVA

SOURCE

CLASS

RESOURCE

schema .
object_name ;

DROP JAVA

16-82 Oracle9i SQL Reference

JAVA RESOURCE
Specify RESOURCE to drop a Java resource schema object.

object_name
Specify the name of an existing Java class, source, or resource schema object.

Enclose the object_name in double quotation marks to preserve lower- or

mixed-case names.

Example

Dropping a Java Class Object: Example The following statement drops the Java

class MyClass :

DROP JAVA CLASS "MyClass";

DROP LIBRARY

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-83

DROP LIBRARY

Purpose
Use the DROP LIBRARY statement to remove an external procedure library from the

database.

Prerequisites
You must have the DROP ANY LIBRARY system privilege.

Syntax
drop_library::=

Semantics

library_name
Specify the name of the external procedure library being dropped.

Example

Dropping a Library: Example The following statement drops the ext_lib library

(created in "Creating a Library: Examples" on page 14-3):

DROP LIBRARY ext_lib;

See Also: CREATE LIBRARY on page 14-2 for information on

creating a library

DROP LIBRARY library_name ;

DROP MATERIALIZED VIEW

16-84 Oracle9i SQL Reference

DROP MATERIALIZED VIEW

Purpose
Use the DROP MATERIALIZED VIEW statement to remove an existing materialized

view from the database.

Prerequisites
The materialized view must be in your own schema or you must have the DROP
ANY MATERIALIZED VIEW system privilege. You must also have the privileges to

drop the internal table, views, and index that Oracle uses to maintain the

materialized view’s data.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 for more

information on materialized views, including a description of

the various types of materialized views

■ ALTER MATERIALIZED VIEW on page 9-90 for information

on modifying a materialized view

■ Oracle9i Advanced Replication for information on materialized

views in a replication environment

■ Oracle9i Data Warehousing Guide for information on

materialized views in a data warehousing environment

See Also: DROP TABLE on page 17-6, DROP VIEW on

page 17-22, and DROP INDEX on page 16-77 for information on

privileges required to drop objects that Oracle uses to maintain the

materialized view

DROP MATERIALIZED VIEW

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-85

Syntax
drop_materialized_view::=

Semantics

schema
Specify the schema containing the materialized view. If you omit schema , Oracle

assumes the materialized view is in your own schema.

materialized_view
Specify the name of the existing materialized view to be dropped.

■ If you drop a simple materialized view that is the least recently refreshed

materialized view of a master table, Oracle automatically purges from the

master table’s materialized view log only the rows needed to refresh the

dropped materialized view.

■ If you drop a master table, Oracle does not automatically drop materialized

views based on the table. However, Oracle returns an error when it tries to

refresh a materialized view based on a master table that has been dropped.

■ If you drop a materialized view, any compiled requests that were rewritten to

use the materialized view will be invalidated and recompiled automatically. If

the materialized view was prebuilt on a table, the table is not dropped, but it

can no longer be maintained by the materialized view refresh mechanism.

Examples

Dropping a Materialized View: Examples The following statement drops the

materialized view emp_data in the sample schema hr :

DROP MATERIALIZED VIEW emp_data;

The following statement drops the sales_by_month_by_state materialized

view and the underlying table of the materialized view (unless the underlying table

was registered in the CREATE MATERIALIZED VIEW statement with the ON
PREBUILT TABLE clause):

DROP MATERIALIZED VIEW sales_by_month_by_state;

DROP MATERIALIZED VIEW
schema .

materialized_view ;

DROP MATERIALIZED VIEW LOG

16-86 Oracle9i SQL Reference

DROP MATERIALIZED VIEW LOG

Purpose
Use the DROP MATERIALIZED VIEW LOG statement to remove a materialized view

log from the database.

Prerequisites
To drop a materialized view log, you must have the privileges needed to drop a

table.

Syntax
drop_materialized_view_log::=

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

See Also:

■ CREATE MATERIALIZED VIEW on page 14-5 and ALTER

MATERIALIZED VIEW on page 9-90 for more information on

materialized views

■ CREATE MATERIALIZED VIEW LOG on page 14-34 for

information on materialized view logs

■ Oracle9i Advanced Replication for information on materialized

views in a replication environment

■ Oracle9i Data Warehousing Guide for information on

materialized views in a data warehousing environment

See Also: DROP TABLE on page 17-6

DROP MATERIALIZED VIEW LOG ON
schema .

table ;

DROP MATERIALIZED VIEW LOG

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-87

Semantics

schema
Specify the schema containing the materialized view log and its master table. If you

omit schema , Oracle assumes the materialized view log and master table are in

your own schema.

table
Specify the name of the master table associated with the materialized view log to be

dropped.

After you drop a materialized view log, some materialized views based on the

materialized view log’s master table can no longer be fast refreshed. These

materialized views include rowid materialized views, primary key materialized

views, and subquery materialized views.

Example

Dropping a Materialized View Log: Example The following statement drops the

materialized view log on the oe.customers master table:

DROP MATERIALIZED VIEW LOG ON customers;

See Also: Oracle9i Data Warehousing Guide for a description of

these types of materialized views

DROP OPERATOR

16-88 Oracle9i SQL Reference

DROP OPERATOR

Purpose
Use the DROP OPERATOR statement to drop a user-defined operator.

Prerequisites
The operator must be in your schema or you must have the DROP ANY OPERATOR
system privilege.

Syntax
drop_operator::=

Semantics

schema
Specify the schema containing the operator. If you omit schema , Oracle assumes

the operator is in your own schema.

operator
Specify the name of the operator to be dropped.

See Also:

■ CREATE OPERATOR on page 14-44 for information on creating

operators

■ "User-Defined Operators" on page 3-6 and Oracle9i Data
Cartridge Developer’s Guide for more information on operators in

general

■ ALTER INDEXTYPE on page 9-85 for information on dropping

an operator of a user-defined indextype

DROP OPERATOR
schema .

operator
FORCE

;

DROP OPERATOR

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-89

FORCE
Specify FORCEto drop the operator even if it is currently being referenced by one or

more schema objects (indextypes, packages, functions, procedures, and so on), and

marks those dependent objects INVALID . Without FORCE, you cannot drop an

operator if any schema objects reference it.

Example

Dropping a User-Defined Operator: Example The following statement drops the

operator eq_op :

DROP OPERATOR eq_op;

Because the FORCE clause is not specified, this operation will fail if any of the

bindings of this operator are referenced by an indextype.

DROP OUTLINE

16-90 Oracle9i SQL Reference

DROP OUTLINE

Purpose
Use the DROP OUTLINE statement to drop a stored outline.

Prerequisites
To drop an outline, you must have the DROP ANY OUTLINE system privilege.

Syntax
drop_outline::=

Semantics

outline
Specify the name of the outline to be dropped.

After the outline is dropped, if the SQL statement for which the stored outline was

created is compiled, the optimizer generates a new execution plan without the

influence of the outline.

Example

Dropping an Outline: Example The following statement drops the stored outline

called salaries .

DROP OUTLINE salaries;

See Also:

■ CREATE OUTLINE on page 14-48 for information on creating

an outline

■ Oracle9i Database Performance Tuning Guide and Reference for

more information on outlines in general

DROP OUTLINE outline ;

DROP PACKAGE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-91

DROP PACKAGE

Purpose
Use the DROP PACKAGE statement to remove a stored package from the database.

This statement drops the body and specification of a package.

Prerequisites
The package must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax
drop_package::=

Semantics

BODY
Specify BODY to drop only the body of the package. If you omit this clause, Oracle

drops both the body and specification of the package.

When you drop only the body of a package but not its specification, Oracle does not

invalidate dependent objects. However, you cannot call one of the procedures or

stored functions declared in the package specification until you re-create the

package body.

Note: Do not use this statement to remove a single object from a

package. Instead, re-create the package without the object using the

CREATE PACKAGEand CREATE PACKAGE BODYstatements with the

OR REPLACE clause.

See Also: CREATE PACKAGE on page 14-52

DROP PACKAGE
BODY schema .

package ;

DROP PACKAGE

16-92 Oracle9i SQL Reference

schema
Specify the schema containing the package. If you omit schema , Oracle assumes the

package is in your own schema.

package
Specify the name of the package to be dropped.

Oracle invalidates any local objects that depend on the package specification. If you

subsequently reference one of these objects, Oracle tries to recompile the object and

returns an error if you have not re-created the dropped package.

If any statistics types are associated with the package, Oracle disassociates the

statistics types with the FORCE clause and drops any user-defined statistics

collected with the statistics types.

Example

Dropping a Package: Example The following statement drops the specification

and body of the emp_mgmt package (created in "Creating a Package: Example" on

page 14-55), invalidating all objects that depend on the specification:

DROP PACKAGE emp_mgmt;

See Also:

■ Oracle9i Database Concepts for information on how Oracle

maintains dependencies among schema objects, including

remote objects

■ ASSOCIATE STATISTICS on page 12-50 and DISASSOCIATE

STATISTICS on page 16-64

DROP PROCEDURE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-93

DROP PROCEDURE

Purpose
Use the DROP PROCEDURE statement to remove a standalone stored procedure from

the database. Do not use this statement to remove a procedure that is part of a

package. Instead, either drop the entire package using the DROP PACKAGE
statement, or redefine the package without the procedure using the CREATE
PACKAGE statement with the OR REPLACE clause.

Prerequisites
The procedure must be in your own schema or you must have the DROP ANY
PROCEDURE system privilege.

Syntax
drop_procedure::=

Semantics

schema
Specify the schema containing the procedure. If you omit schema , Oracle assumes

the procedure is in your own schema.

procedure
Specify the name of the procedure to be dropped.

When you drop a procedure, Oracle invalidates any local objects that depend upon

the dropped procedure. If you subsequently reference one of these objects, Oracle

See Also:

■ CREATE PROCEDURE on page 14-64 for information on

creating a procedure

■ ALTER PROCEDURE on page 9-124 for information on

modifying a procedure

DROP PR0CEDURE
schema .

procedure ;

DROP PROCEDURE

16-94 Oracle9i SQL Reference

tries to recompile the object and returns an error message if you have not re-created

the dropped procedure.

Example

Dropping a Procedure: Example The following statement drops the procedure

remove_emp owned by the user hr and invalidates all objects that depend upon

remove_emp :

DROP PROCEDURE hr.remove_emp;

See Also: Oracle9i Database Concepts for information on how

Oracle maintains dependencies among schema objects, including

remote objects

DROP PROFILE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-95

DROP PROFILE

Purpose
Use the DROP PROFILE statement to remove a profile from the database.

Prerequisites
You must have the DROP PROFILE system privilege.

Syntax
drop_profile::=

Semantics

profile
Specify the name of the profile to be dropped.

Restriction on Dropping Profiles You cannot drop the DEFAULT profile.

CASCADE
Specify CASCADE to deassign the profile from any users to whom it is assigned.

Oracle automatically assigns the DEFAULT profile to such users. You must specify

this clause to drop a profile that is currently assigned to users.

Example

Dropping a Profile: Example The following statement drops the profile app_user
(created in "Creating a Profile: Example" on page 14-76):

DROP PROFILE app_user CASCADE;

See Also:

■ CREATE PROFILE on page 14-71 on creating a profile

■ ALTER PROFILE on page 9-127 on modifying a profile

DROP PROFILE profile
CASCADE

;

DROP PROFILE

16-96 Oracle9i SQL Reference

Oracle drops the profile app_user and assigns the DEFAULT profile to any users

currently assigned the app_user profile.

DROP ROLE

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-97

DROP ROLE

Purpose
Use the DROP ROLEstatement to remove a role from the database. When you drop a

role, Oracle revokes it from all users and roles to whom it has been granted and

removes it from the database. User sessions in which the role is already enabled are

not affected. However, no new user session can enable the role after it is dropped.

Prerequisites
You must have been granted the role with the ADMIN OPTION or you must have the

DROP ANY ROLE system privilege.

Syntax
drop_role::=

Semantics

role
Specify the name of the role to be dropped.

Example

Dropping a Role: Example To drop the role dw_manager (created in "Creating a

Role: Example" on page 14-81), issue the following statement:

DROP ROLE dw_manager;

See Also:

■ CREATE ROLE on page 14-79 for information on creating roles

■ ALTER ROLE on page 9-134 for information on changing the

authorization needed to enable a role

■ SET ROLE on page 18-47 for information on disabling roles for

the current session

DROP ROLE role ;

DROP ROLLBACK SEGMENT

16-98 Oracle9i SQL Reference

DROP ROLLBACK SEGMENT

Purpose
Use the DROP ROLLBACK SEGMENTto remove a rollback segment from the database.

When you drop a rollback segment, all space allocated to the rollback segment

returns to the tablespace.

Prerequisites
You must have the DROP ROLLBACK SEGMENT system privilege.

Syntax
drop_rollback_segment::=

Semantics

rollback_segment
Specify the name the rollback segment to be dropped.

Note: If your database is running in Automatic Undo

Management mode, this is the only valid operation on rollback

segments. In that mode, you cannot create or alter a rollback

segment.

See Also:

■ CREATE ROLLBACK SEGMENT on page 14-82 for

information on creating a rollback segment

■ ALTER ROLLBACK SEGMENT on page 9-136 for information

on modifying a rollback segment

■ CREATE TABLESPACE on page 15-80

DROP ROLLBACK SEGMENT rollback_segment ;

DROP ROLLBACK SEGMENT

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT 16-99

Restrictions on Dropping Rollback Segments

■ You can drop a rollback segment only if it is offline. To determine whether a

rollback segment is offline, query the data dictionary view DBA_ROLLBACK_
SEGS. Offline rollback segments have the value AVAILABLE in the STATUS
column. You can take a rollback segment offline with the OFFLINE clause of the

ALTER ROLLBACK SEGMENT statement.

■ You cannot drop the SYSTEM rollback segment.

Example

Dropping a Rollback Segment: Example The following statement drops the

rollback segment rbs_ts :

DROP ROLLBACK SEGMENT rbs_ts;

DROP ROLLBACK SEGMENT

16-100 Oracle9i SQL Reference

SQL Statements: DROP SEQUENCE to ROLLBACK 17-1

17
SQL Statements: DROP SEQUENCE to

ROLLBACK

This chapter contains the following SQL statements:

■ DROP SEQUENCE

■ DROP SYNONYM

■ DROP TABLE

■ DROP TABLESPACE

■ DROP TRIGGER

■ DROP TYPE

■ DROP TYPE BODY

■ DROP USER

■ DROP VIEW

■ EXPLAIN PLAN

■ GRANT

■ INSERT

■ LOCK TABLE

■ MERGE

■ NOAUDIT

■ RENAME

■ REVOKE

■ ROLLBACK

DROP SEQUENCE

17-2 Oracle9i SQL Reference

DROP SEQUENCE
Purpose

Use the DROP SEQUENCE statement to remove a sequence from the database.

You can also use this statement to restart a sequence by dropping and then re-

creating it. For example, if you have a sequence with a current value of 150 and you

would like to restart the sequence with a value of 27, then you can drop the

sequence and then re-create it with the same name and a START WITH value of 27.

Prerequisites
The sequence must be in your own schema or you must have the DROP ANY
SEQUENCE system privilege.

Syntax
drop_sequence::=

Semantics

schema
Specify the schema containing the sequence. If you omit schema , then Oracle

assumes the sequence is in your own schema.

sequence_name
Specify the name of the sequence to be dropped.

See Also:

■ CREATE SEQUENCE on page 14-89 for information on

creating a sequence

■ ALTER SEQUENCE on page 9-140 for more information on

modifying a sequence

DROP SEQUENCE
schema .

sequence_name ;

DROP SEQUENCE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-3

Example

Dropping a Sequence: Example The following statement drops the sequence

customers_seq owned by the user oe (created in "Creating a Sequence: Example"

on page 14-93). To issue this statement, you must either be connected as user oe or

have DROP ANY SEQUENCE system privilege:

DROP SEQUENCE oe.customers_seq;

DROP SYNONYM

17-4 Oracle9i SQL Reference

DROP SYNONYM

Purpose
Use the DROP SYNONYM statement to remove a synonym from the database or to

change the definition of a synonym by dropping and re-creating it.

Prerequisites
To drop a private synonym, either the synonym must be in your own schema or

you must have the DROP ANY SYNONYM system privilege.

To drop a PUBLIC synonym, you must have the DROP PUBLIC SYNONYM system

privilege.

Syntax
drop_synonym::=

Semantics

PUBLIC
You must specify PUBLIC to drop a public synonym. You cannot specify schema if

you have specified PUBLIC.

schema
Specify the schema containing the synonym. If you omit schema , then Oracle

assumes the synonym is in your own schema.

synonym
Specify the name of the synonym to be dropped.

If you drop a synonym for a materialized view, or its containing table or

materialized view, or any of its dependent tables, then Oracle invalidates the

materialized view.

See Also: CREATE SYNONYM on page 15-2 for more

information on synonyms

DROP
PUBLIC

SYNONYM
schema .

synonym
FORCE

;

DROP SYNONYM

SQL Statements: DROP SEQUENCE to ROLLBACK 17-5

Restriction on Dropping Synonyms You cannot drop a type synonym that has any

dependent tables or user-defined types unless you also specify FORCE.

FORCE
Specify FORCE to drop the synonym even if it has dependent tables or user-defined

types.

Example

Dropping a Synonym: Example To drop the public synonym named customers
(created in "Resolution of Synonyms Example" on page 15-6), issue the following

statement:

DROP PUBLIC SYNONYM customers;

Caution: Oracle does not recommend that you specify FORCE to
drop object synonyms with dependencies. This operation can result

in invalidation of other user-defined types or marking UNUSED the

table columns that depend on the synonym. For information about

type dependencies, see Oracle9i Application Developer’s Guide -
Object-Relational Features.

DROP TABLE

17-6 Oracle9i SQL Reference

DROP TABLE

Purpose
Use the DROP TABLE statement to remove a table or an object table and all its data

from the database.

Dropping a table invalidates the table’s dependent objects and removes object

privileges on the table. If you want to re-create the table, then you must regrant

object privileges on the table, re-create the table’s indexes, integrity constraints, and

triggers, and respecify its storage parameters. Truncating has none of these effects.

Therefore, removing rows with the TRUNCATE statement can be more efficient than

dropping and re-creating a table.

Caution: You cannot roll back a DROP TABLE statement.

Note: For an external table, this statement removes only the table

metadata in the database. It has no affect on the actual data, which

resides outside of the database.

Note: You can perform DDL operations (such as ALTER TABLE,
DROP TABLE, CREATE INDEX) on a temporary table only when no

session is bound to it. A session becomes bound to a temporary

table by performing an INSERT operation on the table. A session

becomes unbound to the temporary table by issuing a TRUNCATE
statement or at session termination, or, for a transaction-specific

temporary table, by issuing a COMMIT or ABORT statement.

DROP TABLE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-7

Prerequisites
The table must be in your own schema or you must have the DROP ANY TABLE
system privilege.

Syntax
drop_table::=

Semantics

schema
Specify the schema containing the table. If you omit schema , then Oracle assumes

the table is in your own schema.

table
Specify the name of the table, object table, or index-organized table to be dropped.

Oracle automatically performs the following operations:

■ Removes all rows from the table.

■ Drops all the table’s indexes and domain indexes, as well as any triggers

defined on the table, regardless of who created them or whose schema contains

them. If table is partitioned, then any corresponding local index partitions are

also dropped.

■ Drops all the storage tables of table ’s nested tables and LOBs.

See Also:

■ CREATE TABLE on page 15-7 for information on creating

tables

■ ALTER TABLE on page 11-2 for information on modifying

tables

■ TRUNCATE on page 18-54 and DELETE on page 16-55 for

information on how to remove data from a table without

dropping the table

DROP TABLE
schema .

table
CASCADE CONSTRAINTS

;

DROP TABLE

17-8 Oracle9i SQL Reference

■ If you drop a range-partitioned or hash-partitioned table, then Oracle drops all

the table partitions. If you drop a composite-partitioned table, then all the

partitions and subpartitions are also dropped.

■ For an index-organized table, drops any mapping tables defined on the index-

organized table.

■ For a domain index, this statement invokes the appropriate drop routines.

■ If any statistic types are associated with the table, then Oracle disassociates the

statistics types with the FORCE clause and removes any user-defined statistics

collected with the statistics type.

■ If the table is not part of a cluster, then Oracle returns all data blocks allocated

to the table and its indexes to the tablespaces containing the table and its

indexes.

■ If the table is a base table for a view, a container or master table of a

materialized view, or if it is referenced in a stored procedure, function, or

package, then Oracle invalidates these dependent objects but does not drop

them. You cannot use these objects unless you re-create the table or drop and re-

create the objects so that they no longer depend on the table.

■ If you choose to re-create the table, then it must contain all the columns selected

by the subqueries originally used to define the materialized views and all the

columns referenced in the stored procedures, functions, or packages. Any users

previously granted object privileges on the views, stored procedures, functions,

or packages need not be regranted these privileges.

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information on these routines

See Also: ASSOCIATE STATISTICS on page 12-50 and

DISASSOCIATE STATISTICS on page 16-64 for more information

on statistics type associations

Note: To drop a cluster and all its the tables, use the DROP
CLUSTER statement with the INCLUDING TABLES clause to avoid

dropping each table individually. See DROP CLUSTER on

page 16-67.

DROP TABLE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-9

■ If the table is a master table for a materialized view, then the materialized view

can still be queried, but it cannot be refreshed unless the table is re-created so

that it contains all the columns selected by the materialized view’s subquery.

■ If the table has a materialized view log, then Oracle drops this log and any

other direct-path INSERT refresh information associated with the table.

Restriction on Dropping Tables You cannot directly drop the storage table of a

nested table. Instead, you must drop the nested table column using the ALTER
TABLE ... DROP COLUMN clause.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that

refer to primary and unique keys in the dropped table. If you omit this clause, and

such referential integrity constraints exist, then Oracle returns an error and does not

drop the table.

Example

Dropping a Table: Example The following statement drops the oe.list_
customers table created in "List Partitioning Example" on page 15-73.

DROP TABLE list_customers;

DROP TABLESPACE

17-10 Oracle9i SQL Reference

DROP TABLESPACE

Purpose
Use the DROP TABLESPACE statement to remove a tablespace from the database.

Prerequisites
You must have the DROP TABLESPACE system privilege. You cannot drop a

tablespace if it contains any rollback segments holding active transactions.

Syntax
drop_tablespace::=

Semantics

tablespace
Specify the name of the tablespace to be dropped.

You can drop a tablespace regardless of whether it is online or offline. Oracle

recommends that you take the tablespace offline before dropping it to ensure that

no SQL statements in currently running transactions access any of the objects in the

tablespace.

You may want to alert any users who have been assigned the tablespace as either a

default or temporary tablespace. After the tablespace has been dropped, these users

cannot allocate space for objects or sort areas in the tablespace. You can reassign

users new default and temporary tablespaces with the ALTER USER statement.

See Also:

■ CREATE TABLESPACE on page 15-80 for information on

creating a tablespace

■ ALTER TABLESPACE on page 11-102 for information on

modifying a tablespace

DROP TABLESPACE tablespace

INCLUDING CONTENTS
AND DATAFILES CASCADE CONSTRAINTS

;

DROP TABLESPACE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-11

Oracle removes from the data dictionary all metadata about the tablespace and all

datafiles and tempfiles in the tablespace. Oracle also automatically drops from the

operating system any Oracle-managed datafiles and tempfiles in the tablespace.

Other datafiles and tempfiles are not removed from the operating system unless

you specify INCLUDING CONTENTS AND DATAFILES.

Restrictions on Dropping Tablespaces

■ You cannot drop the SYSTEM tablespace.

■ You cannot drop a tablespace that contains a domain index or any objects

created by a domain index.

■ You cannot drop an undo tablespace if it is being used by any instance or if it

contains any undo data needed to roll back uncommitted transactions.

INCLUDING CONTENTS
Specify INCLUDING CONTENTS to drop all the contents of the tablespace. You must

specify this clause to drop a tablespace that contains any database objects. If you

omit this clause, and the tablespace is not empty, then Oracle returns an error and

does not drop the tablespace.

For partitioned tables, DROP TABLESPACE will fail even if you specify INCLUDING
CONTENTS, if the tablespace contains some, but not all:

■ Partitions of a range- or hash-partitioned table, or

■ Subpartitions of a composite-partitioned table.

For a partitioned index-organized table, if all the primary key index segments are in

this tablespace, then this clause will also drop any overflow segments that exist in

other tablespaces, as well as any associated mapping table in other tablespaces. If

some of the primary key index segments are not in this tablespace, then the

statement will fail. In that case, before you can drop the tablespace, you must use

See Also: Oracle9i Data Cartridge Developer’s Guide and Oracle9i
Database Concepts for more information on domain indexes

Note: If all the partitions of a partitioned table reside in

tablespace , then DROP TABLESPACE ... INCLUDING CONTENTS
will drop tablespace , as well as any associated index segments,

LOB data segments, and LOB index segments in the other

tablespace(s).

DROP TABLESPACE

17-12 Oracle9i SQL Reference

ALTER TABLE ... MOVE PARTITION to move those primary key index segments into

this tablespace, drop the partitions whose overflow data segments are not in this

tablespace, and drop the partitioned index-organized table.

If the tablespace contains a master table of a materialized view, then Oracle

invalidates the materialized view.

If the tablespace contains a materialized view log, then Oracle drops this log and

any other direct-path INSERT refresh information associated with the table.

AND DATAFILES
When you specify INCLUDING CONTENTS, the AND DATAFILES clause lets you

instruct Oracle to delete the associated operating system files as well. Oracle writes

a message to the alert log for each operating system file deleted. This clause is not

needed for Oracle-managed files.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from

tables outside tablespace that refer to primary and unique keys of tables inside

tablespace . If you omit this clause and such referential integrity constraints exist,

then Oracle returns an error and does not drop the tablespace.

Example

Dropping a Tablespace: Example The following statement drops the tbs_01
tablespace and drops all referential integrity constraints that refer to primary and

unique keys inside tbs_01 :

DROP TABLESPACE tbs_01
 INCLUDING CONTENTS
 CASCADE CONSTRAINTS;

Deleting Operating System Files: Example The following example drops the

tbs_02 tablespace and deletes all associated operating system datafiles:

DROP TABLESPACE tbs_02
 INCLUDING CONTENTS AND DATAFILES;

DROP TRIGGER

SQL Statements: DROP SEQUENCE to ROLLBACK 17-13

DROP TRIGGER

Purpose
Use the DROP TRIGGER statement to remove a database trigger from the database.

Prerequisites
The trigger must be in your own schema or you must have the DROP ANY TRIGGER
system privilege.

In addition, to drop a trigger on DATABASE in another user’s schema, you must

have the ADMINISTER DATABASE TRIGGER system privilege.

Syntax
drop_trigger::=

Semantics

schema
Specify the schema containing the trigger. If you omit schema , then Oracle assumes

the trigger is in your own schema.

trigger
Specify the name of the trigger to be dropped. Oracle removes it from the database

and does not fire it again.

See Also:

■ CREATE TRIGGER on page 15-95 for information on creating

triggers

■ ALTER TRIGGER on page 12-2 for information on enabling,

disabling, and compiling triggers

See Also: CREATE TRIGGER on page 15-95 for information on

these privileges

DROP TRIGGER
schema .

trigger ;

DROP TRIGGER

17-14 Oracle9i SQL Reference

Example

Dropping a Trigger: Example The following statement drops the order trigger in

the schema oe :

DROP TRIGGER hr.salary_check;

DROP TYPE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-15

DROP TYPE

Purpose
Use the DROP TYPEstatement to drop the specification and body of an object type, a

varray, or nested table type.

Prerequisites
The object type, varray, or nested table type must be in your own schema or you

must have the DROP ANY TYPE system privilege.

Syntax
drop_type::=

Semantics

schema
Specify the schema containing the type. If you omit schema , then Oracle assumes

the type is in your own schema.

type_name
Specify the name of the object, varray, or nested table type to be dropped. You can

drop only types with no type or table dependencies.

If type_name is a supertype, then this statement will fail unless you also specify

FORCE. If you specify FORCE, then Oracle invalidates all subtypes depending on

this supertype.

See Also:

■ DROP TYPE BODY on page 17-18 for information on dropping

just the body of an object type

■ CREATE TYPE on page 16-3 for information on creating types

DROP TYPE
schema .

type_name

FORCE

VALIDATE
;

DROP TYPE

17-16 Oracle9i SQL Reference

If type_name is a statistics type, then this statement will fail unless you also

specify FORCE. If you specify FORCE, then Oracle first disassociates all objects that

are associated with type_name , and then drops type_name .

If type_name is an object type that has been associated with a statistics type, then

Oracle first attempts to disassociate type_name from the statistics type and then

drop type_name . However, if statistics have been collected using the statistics

type, then Oracle will be unable to disassociate type_name from the statistics type,

and this statement will fail.

If type_name is an implementation type for an indextype, then the indextype will

be marked INVALID .

If type_name has a public synonym defined on it, then Oracle will also drop the

synonym.

Unless you specify FORCE, you can drop only object types, nested tables, or varray

types that are standalone schema objects with no dependencies. This is the default

behavior.

FORCE
Specify FORCE to drop the type even if it has dependent database objects. Oracle

marks UNUSED all columns dependent on the type to be dropped, and those

columns become inaccessible.

VALIDATE
If you specify VALIDATE when dropping a type, then Oracle checks for stored

instances of this type within substitutable columns of any of its supertypes. If no

such instances are found, then Oracle completes the drop operation.

See Also: ASSOCIATE STATISTICS on page 12-50 and

DISASSOCIATE STATISTICS on page 16-64 for more information

on statistics types

See Also: CREATE INDEXTYPE on page 13-95

Caution: Oracle does not recommend that you specify FORCE to
drop types with dependencies. This operation is not recoverable

and could cause the data in the dependent tables or columns to

become inaccessible. For information about type dependencies, see

Oracle9i Application Developer’s Guide - Fundamentals.

DROP TYPE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-17

This clause is meaningful only for subtypes. Oracle Corporation recommends the

use of this option to safely drop subtypes that do not have any "explicit" type or

table dependencies.

Example

Dropping an Object Type: Example The following statement removes object type

person_t (created in "Type Hierarchy Example" on page 16-22):

DROP TYPE person_t;

DROP TYPE BODY

17-18 Oracle9i SQL Reference

DROP TYPE BODY

Purpose
Use the DROP TYPE BODY statement to drop the body of an object type, varray, or

nested table type. When you drop a type body, the object type specification still

exists, and you can re-create the type body. Prior to re-creating the body, you can

still use the object type, although you cannot call the member functions.

Prerequisites
The object type body must be in your own schema, and you must have

■ The CREATE TYPE or CREATE ANY TYPE system privilege, or

■ The DROP ANY TYPE system privilege

Syntax
drop_type_body::=

Semantics

schema
Specify the schema containing the object type. If you omit schema , then Oracle

assumes the object type is in your own schema.

type_name
Specify the name of the object type body to be dropped.

Restriction on Dropping Type Bodies You can drop a type body only if it has no

type or table dependencies.

See Also:

■ DROP TYPE on page 17-15 for information on dropping the

specification of an object along with the body

■ CREATE TYPE BODY on page 16-25 for more information on

type bodies

DROP TYPE BODY
schema .

type_name ;

DROP TYPE BODY

SQL Statements: DROP SEQUENCE to ROLLBACK 17-19

Example

Dropping an Object Type Body: Example The following statement removes object

type body data_typ (created in "Updating a Type Body: Example" on page 16-31):

DROP TYPE BODY data_typ;

DROP USER

17-20 Oracle9i SQL Reference

DROP USER

Purpose
Use the DROP USER statement to remove a database user and optionally remove the

user’s objects.

Prerequisites
You must have the DROP USER system privilege.

Syntax
drop_user::=

Semantics

user
Specify the user to be dropped. Oracle does not drop users whose schemas contain

objects unless you specify CASCADE or unless you first explicitly drop the user’s

objects.

CASCADE
Specify CASCADE to drop all objects in the user’s schema before dropping the user.

You must specify this clause to drop a user whose schema contains any objects.

■ If the user’s schema contains tables, then Oracle drops the tables and

automatically drops any referential integrity constraints on tables in other

schemas that refer to primary and unique keys on these tables.

See Also:

■ CREATE USER on page 16-32 for information on creating a

user

■ ALTER USER on page 12-22 for information on modifying the

definition of a user

DROP USER user
CASCADE

;

DROP USER

SQL Statements: DROP SEQUENCE to ROLLBACK 17-21

■ If this clause results in tables being dropped, then Oracle also drops all domain

indexes created on columns of those tables and invokes appropriate drop

routines.

■ Oracle invalidates, but does not drop, the following objects in other schemas:

views or synonyms for objects in the dropped user’s schema; and stored

procedures, functions, or packages that query objects in the dropped user’s

schema.

■ Oracle does not drop materialized views in other schemas that are based on

tables in the dropped user’s schema. However, because the base tables no

longer exist, the materialized views in the other schemas can no longer be

refreshed.

■ Oracle drops all triggers in the user’s schema.

■ Oracle does not drop roles created by the user.

Examples

Dropping a Database User: Example If user Sidney’s schema contains no objects,

then you can drop sidney by issuing the statement:

DROP USER sidney;

If Sidney’s schema contains objects, then you must use the CASCADE clause to drop

sidney and the objects:

DROP USER sidney CASCADE;

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information on these routines

Caution: Oracle also drops with FORCE all types owned by the

user. See the FORCE keyword of DROP TYPE on page 17-16.

DROP VIEW

17-22 Oracle9i SQL Reference

DROP VIEW

Purpose
Use the DROP VIEW statement to remove a view or an object view from the

database. You can change the definition of a view by dropping and re-creating it.

Prerequisites
The view must be in your own schema or you must have the DROP ANY VIEW
system privilege.

Syntax
drop_view::=

Semantics

schema
Specify the schema containing the view. If you omit schema , then Oracle assumes

the view is in your own schema.

view
Specify the name of the view to be dropped.

Oracle does not drop views, materialized views, and synonyms that refer to the

view but marks them INVALID . You can drop them or redefine views and

synonyms, or you can define other views in such a way that the invalid views and

synonyms become valid again.

See Also:

■ CREATE VIEW on page 16-39 for information on creating a

view

■ ALTER VIEW on page 12-31 for information on modifying a

view

DROP VIEW
schema .

view
CASCADE CONSTRAINTS

;

DROP VIEW

SQL Statements: DROP SEQUENCE to ROLLBACK 17-23

If any subviews have been defined on view, then Oracle invalidates the subviews as

well. To learn if the view has any subviews, query the SUPERVIEW_NAMEcolumn of

the USER_, ALL_, or DBA_VIEWS data dictionary views.

CASCADE CONSTRAINTS
Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that

refer to primary and unique keys in the view to be dropped. If you omit this clause,

and such constraints exist, then the DROP statement will fail.

Example

Dropping a View: Example The following statement drops the emp_view view

"Creating a View: Example" on page 16-50):

DROP VIEW emp_view;

See Also:

■ CREATE TABLE on page 15-7 and CREATE SYNONYM on

page 15-2

■ ALTER MATERIALIZED VIEW on page 9-90 for information

on revalidating invalid materialized views

EXPLAIN PLAN

17-24 Oracle9i SQL Reference

EXPLAIN PLAN

Purpose
Use the EXPLAIN PLANstatement to determine the execution plan Oracle follows to

execute a specified SQL statement. This statement inserts a row describing each step

of the execution plan into a specified table. You can also issue the EXPLAIN PLAN
statement as part of the SQL trace facility.

If you are using cost-based optimization, then this statement also determines the

cost of executing the statement. If any domain indexes are defined on the table, then

user-defined CPU and I/O costs will also be inserted.

The definition of a sample output table PLAN_TABLE is available in a SQL script on

your distribution media. Your output table must have the same column names and

datatypes as this table. The common name of this script is UTLXPLAN.SQL. The

exact name and location depend on your operating system.

Note: Oracle provides information on cached cursors through

several dynamic performance views:

■ For information on the work areas used by SQL cursors, query

V$SQL_WORKAREA.

■ For information on the execution plan for a cached cursor,

query V$SQL_PLAN.

■ For execution statistics at each step or operation of an execution

plan of cached cursors (for example, number of produced rows,

number of blocks read), query V$SQL_PLAN_STATISTICS
view.

■ For a selective precomputed join of the preceding three views,

query V$SQL_PLAN_STATISTICS_ALL.

EXPLAIN PLAN

SQL Statements: DROP SEQUENCE to ROLLBACK 17-25

Prerequisites
To issue an EXPLAIN PLAN statement, you must have the privileges necessary to

insert rows into an existing output table that you specify to hold the execution plan.

You must also have the privileges necessary to execute the SQL statement for which

you are determining the execution plan. If the SQL statement accesses a view, then

you must have privileges to access any tables and views on which the view is

based. If the view is based on another view that is based on a table, then you must

have privileges to access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLANstatement, you must

have the privileges necessary to query the output table.

The EXPLAIN PLAN statement is a data manipulation language (DML) statement,

rather than a data definition language (DDL) statement. Therefore, Oracle does not

implicitly commit the changes made by an EXPLAIN PLANstatement. If you want to

keep the rows generated by an EXPLAIN PLAN statement in the output table, then

you must commit the transaction containing the statement.

Syntax
explain_plan::=

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference for

information on the output of EXPLAIN PLAN, how to use the

SQL trace facility, and how to generate and interpret execution

plans

■ Oracle9i Database Reference for information on dynamic

performance views

See Also: INSERT on page 17-53 and SELECT on page 18-4 for

information on the privileges you need to populate and query the

plan table

EXPLAIN PLAN
SET STATEMENT_ID = ’ text ’

INTO
schema .

table
@ dblink

FOR statement ;

EXPLAIN PLAN

17-26 Oracle9i SQL Reference

Semantics

SET STATEMENT_ID Clause
Specify the value of the STATEMENT_ID column for the rows of the execution plan

in the output table. You can then use this value to identify these rows among others

in the output table. Be sure to specify a STATEMENT_ID value if your output table

contains rows from many execution plans. If you omit this clause, then the

STATEMENT_ID value defaults to null.

INTO table Clause
Specify the name of the output table, and optionally its schema and database. This

table must exist before you use the EXPLAIN PLAN statement.

If you omit schema , then Oracle assumes the table is in your own schema.

The dblink can be a complete or partial name of a database link to a remote Oracle

database where the output table is located. You can specify a remote output table

only if you are using Oracle’s distributed functionality. If you omit dblink , then

Oracle assumes the table is on your local database.

If you omit INTO altogether, then Oracle assumes an output table named PLAN_
TABLE in your own schema on your local database.

FOR statement Clause
Specify a SELECT, INSERT, UPDATE, DELETE, CREATE TABLE, CREATE INDEX, or

ALTER INDEX ... REBUILD statement for which the execution plan is generated.

Notes on Using EXPLAIN PLAN

■ If statement includes the parallel_clause , then the resulting execution

plan will indicate parallel execution. However, EXPLAIN PLAN actually inserts

the statement into the plan table, so that the parallel DML statement you submit

is no longer the first DML statement in the transaction. This violates the Oracle

restriction of one parallel DML statement in a single transaction, and the

statement will be executed serially. To maintain parallel execution of the

statements, you must commit or roll back the EXPLAIN PLAN statement, and

then submit the parallel DML statement.

See Also: "Referring to Objects in Remote Databases" on

page 2-118 for information on referring to database links

EXPLAIN PLAN

SQL Statements: DROP SEQUENCE to ROLLBACK 17-27

■ To determine the execution plan for an operation on a temporary table,

EXPLAIN PLAN must be run from the same session, because the data in

temporary tables is session specific.

Examples

EXPLAIN PLAN Examples The following statement determines the execution plan

and cost for an UPDATE statement and inserts rows describing the execution plan

into the specified plan_table table with the STATEMENT_ID value of ’Raise in

Tokyo’:

EXPLAIN PLAN
 SET STATEMENT_ID = ’Raise in Tokyo’
 INTO plan_table
 FOR UPDATE employees
 SET salary = salary * 1.10
 WHERE department_id =
 (SELECT department_id FROM departments
 WHERE location_id = 1200);

The following SELECT statement queries the plan_table table and returns the

execution plan and the cost:

SELECT LPAD(’ ’,2*(LEVEL-1))||operation operation, options,
object_name, position
 FROM plan_table
 START WITH id = 0 AND statement_id = ’Raise in Tokyo’
 CONNECT BY PRIOR id = parent_id AND
 statement_id = ’Raise in Tokyo’;

The query returns this execution plan:

OPERATION OPTIONS OBJECT_NAME POSITION
-------------------- --------------- --------------- ----------
UPDATE STATEMENT 2
 UPDATE EMPLOYEES 1
 TABLE ACCESS FULL EMPLOYEES 1
 VIEW index$_join$_00 1
 2
 HASH JOIN 1
 INDEX RANGE SCAN DEPT_LOCATION_I 1
 X
 INDEX FAST FULL SCAN DEPT_ID_PK 2

EXPLAIN PLAN

17-28 Oracle9i SQL Reference

The value in the POSITION column of the first row shows that the statement has a

cost of 1.

EXPLAIN PLAN: Partitioned Example The sample table sh.sales is partitioned

on the time_id column. Partition sales_q3_2000 contains time values less than

Oct. 1, 2000, and there is a local index sales_time_bix on the time_id column.

Consider the query:

EXPLAIN PLAN FOR
 SELECT * FROM sales
 WHERE time_id BETWEEN :h AND ’01-OCT-2000’;

where :h represents an already declared bind variable. EXPLAIN PLAN executes

this query with PLAN_TABLE as the output table. The basic execution plan,

including partitioning information, is obtained with the following query:

SELECT operation, options, partition_start, partition_stop,
 partition_id FROM plan_table;

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-29

GRANT

Purpose
Use the GRANT statement to grant:

■ System privileges to users and roles

■ Roles to users and roles. Both privileges and roles are either local, global, or

external. Table 17–1 lists the system privileges (organized by the database object

operated upon). Table 17–2 lists Oracle predefined roles.

■ Object privileges for a particular object to users, roles, and PUBLIC. Table 17–3

summarizes the object privileges that you can grant on each type of object.

Table 17–4 lists object privileges and the operations that they authorize.

Prerequisites
To grant a system privilege, you must either have been granted the system privilege

with the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system

privilege.

Note: You can authorize database users to use roles through

means other than the database and the GRANT statement. For

example, some operating systems have facilities that let you grant

roles to Oracle users with the initialization parameter OS_ROLES. If

you choose to grant roles to users through operating system

facilities, then you cannot also grant roles to users with the GRANT
statement, although you can use the GRANT statement to grant

system privileges to users and system privileges and roles to other

roles.

See Also:

■ CREATE USER on page 16-32 and CREATE ROLE on

page 14-79 for definitions of local, global, and external

privileges

■ Oracle9i Database Administrator’s Guide for information about

other authorization methods

■ REVOKE on page 17-88 for information on revoking grants

GRANT

17-30 Oracle9i SQL Reference

To grant a role, you must either have been granted the role with the ADMIN OPTION
or have been granted the GRANT ANY ROLE system privilege, or you must have

created the role.

To grant an object privilege, you must own the object, or the owner of the object

must have granted you the object privileges with the GRANT OPTION, or you must

have been granted the GRANT ANY OBJECT PRIVILEGE system privilege.

Syntax
grant::=

(grant_system_privileges::= on page 17-30, grant_object_
privileges::= on page 17-30)

grant_system_privileges ::=

(grantee_clause::= on page 17-31)

grant_object_privileges ::=

GRANT
grant_system_privileges

grant_object_privileges
;

system_privilege

role

ALL PRIVILEGES

,

TO grantee_clause

IDENTIFIED BY password WITH ADMIN OPTION

object_privilege

ALL
PRIVILEGES

(column

,

)

,

on_object_clause

TO grantee_clause
WITH GRANT OPTION WITH HIERARCHY OPTION

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-31

(on_object_clause::= on page 17-31, grantee_clause::= on page 17-31)

on_object_clause ::=

grantee_clause ::=

Semantics

grant_system_privileges

system_privilege
Specify the system privilege you want to grant. Table 17–1 lists the system

privileges (organized by the database object operated upon).

■ If you grant a privilege to a user, then Oracle adds the privilege to the user’s

privilege domain. The user can immediately exercise the privilege.

■ If you grant a privilege to a role, then Oracle adds the privilege to the role’s

privilege domain. Users who have been granted and have enabled the role can

immediately exercise the privilege. Other users who have been granted the role

can enable the role and exercise the privilege.

See Also: Granting a System Privilege to a User: Example on

page 17-49

See Also: "Granting System Privileges to a Role: Example" on

page 17-50

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

user

role

PUBLIC

,

GRANT

17-32 Oracle9i SQL Reference

■ If you grant a privilege to PUBLIC, then Oracle adds the privilege to the

privilege domains of each user. All users can immediately perform operations

authorized by the privilege.

Oracle provides a shortcut for specifying all system privileges at once:

■ ALL PRIVILEGES: Specify ALL PRIVILEGES to grant all the system privileges

listed in Table 17–1, " System Privileges" on page 17-36, except the SELECT ANY
DICTIONARY privilege.

role
Specify the role you want to grant. You can grant an Oracle predefined role or a

user-defined role. Table 17–2 lists the predefined roles.

■ If you grant a role to a user, then Oracle makes the role available to the user.

The user can immediately enable the role and exercise the privileges in the

role’s privilege domain.

■ If you grant a role to another role, then Oracle adds the granted role’s privilege

domain to the grantee role’s privilege domain. Users who have been granted

the grantee role can enable it and exercise the privileges in the granted role’s

privilege domain.

■ If you grant a role to PUBLIC, then Oracle makes the role available to all users.

All users can immediately enable the role and exercise the privileges in the roles

privilege domain.

IDENTIFIED BY Clause
Use the IDENTIFIED BY clause to specifically identify an existing user by password

or to create a nonexistent user. This clause is not valid if the grantee is a role or

PUBLIC. If the user specified in the grantee_clause does not exist, then Oracle

creates the user with the password and with the privileges and roles specified in

this clause.

See Also: "Granting a Role to a Role: Example" on page 17-50

See Also: CREATE ROLE on page 14-79 for information on

creating a user-defined role

See Also: CREATE USER on page 16-32 for restrictions on

usernames and passwords

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-33

WITH ADMIN OPTION
Specify WITH ADMIN OPTION to enable the grantee to:

■ Grant the role to another user or role, unless the role is a GLOBAL role

■ Revoke the role from another user or role

■ Alter the role to change the authorization needed to access it

■ Drop the role

If you grant a system privilege or role to a user without specifying WITH ADMIN
OPTION, and then subsequently grant the privilege or role to the user WITH ADMIN
OPTION, then the user has the ADMIN OPTION on the privilege or role.

To revoke the ADMIN OPTION on a system privilege or role from a user, you must

revoke the privilege or role from the user altogether and then grant the privilege or

role to the user without the ADMIN OPTION.

grantee_clause
TOgrantee_clause identifies users or roles to which the system privilege, role,

or object privilege is granted.

Restriction on Grantees A user, role, or PUBLIC cannot appear more than once in

TOgrantee_clause.

PUBLIC Specify PUBLIC to grant the privileges to all users.

Restrictions on Granting System Privileges and Roles

■ A privilege or role cannot appear more than once in the list of privileges and

roles to be granted.

■ You cannot grant a role to itself.

■ You cannot grant a role IDENTIFIED GLOBALLY to anything.

■ You cannot grant a role IDENTIFIED EXTERNALLY to a global user or global

role.

■ You cannot grant roles circularly. For example, if you grant the role banker to

the role teller , then you cannot subsequently grant teller to banker .

See Also: "Granting a Role with the Admin Option: Example" on

page 17-50

GRANT

17-34 Oracle9i SQL Reference

grant_object_privileges

object_privilege
Specify the object privilege you want to grant. You can specify any of the values

shown in Table 17–3. See also Table 17–4.

Restriction on Object Privileges A privilege cannot appear more than once in the

list of privileges to be granted.

ALL [PRIVILEGES]
Specify ALL to grant all the privileges for the object that you have been granted

with the GRANT OPTION. The user who owns the schema containing an object

automatically has all privileges on the object with the GRANT OPTION. (The

keyword PRIVILEGES is provided for semantic clarity and is optional.)

column
Specify the table or view column on which privileges are to be granted. You can

specify columns only when granting the INSERT, REFERENCES, or UPDATE
privilege. If you do not list columns, then the grantee has the specified privilege on

all columns in the table or view.

For information on existing column object grants, query the USER_,ALL_, and DBA_
COL_PRIVS data dictionary view.

on_object_clause
The on_object_clause identifies the object on which the privileges are granted.

Directory schema objects and Java source and resource schema objects are identified

separately because they reside in separate namespaces.

If you can make this grant only because you have the GRANT ANY OBJECT
PRIVILEGE system privilege—that is, you are not the owner of object , nor do

you have object_privilege on object WITH GRANT OPTION—then the effect

of this grant is that you are acting on behalf of the object owner. The *_TAB_PRIVS
data dictionary views will reflect that this grant was made by the owner of object .

See Also: Oracle9i Database Reference for information on the data

dictionary views and "Granting Multiple Object Privileges on

Individual Columns: Example" on page 17-52

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-35

WITH GRANT OPTION
Specify WITH GRANT OPTION to enable the grantee to grant the object privileges to

other users and roles.

Restriction on Granting WITH GRANT OPTION You can specify WITH GRANT
OPTION only when granting to a user or to PUBLIC, not when granting to a role.

WITH HIERARCHY OPTION
Specify WITH HIERARCHY OPTION to grant the specified object privilege on all

subobjects of object , including subobjects created subsequent to this statement

(such as subviews created under a view).

object Specify the schema object on which the privileges are to be granted. If you

do not qualify object with schema , then Oracle assumes the object is in your own

schema. The object can be one of the following types:

■ Table, view, or materialized view

■ Sequence

■ Procedure, function, or package

■ User-defined type

■ Synonym for any of the preceding items

■ Directory, library, operator, or indextype

■ Java source, class, or resource

See Also:

■ "Granting Object Privileges to a Role" Example" on page 17-50

■ "Revoke Operations that Use GRANT ANY OBJECT

PRIVILEGE: Example" on page 17-98 for more information on

using the GRANT ANY OBJECT PRIVILEGEsystem privilege for

revoke operations

Note: This clause is meaningful only in combination with the

SELECT object privilege.

GRANT

17-36 Oracle9i SQL Reference

DIRECTORY directory_name Specify a directory schema object on which

privileges are to be granted. You cannot qualify directory_name with a schema

name.

JAVA SOURCE | RESOURCE The JAVA clause lets you specify a Java source or

resource schema object on which privileges are to be granted.

Listings of System and Object Privileges

Note: You cannot grant privileges directly to a single partition of a

partitioned table.

See Also: "Granting Object Privileges on a Table to a User:

Example" on page 17-51, "Granting Object Privileges on a View:

Example" on page 17-51, and "Granting Object Privileges to a

Sequence in Another Schema: Example" on page 17-51

See Also: CREATE DIRECTORY on page 13-49 and "Granting an

Object Privilege on a Directory: Example" on page 17-51

See Also: CREATE JAVA on page 13-98

Table 17–1 System Privileges

System Privilege Name Operations Authorized

CLUSTERS:

CREATE CLUSTER Create clusters in grantee’s schema

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to CREATE ANY
TABLE.

ALTER ANY CLUSTER Alter clusters in any schema

DROP ANY CLUSTER Drop clusters in any schema

CONTEXTS:

CREATE ANY CONTEXT Create any context namespace

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-37

DROP ANY CONTEXT Drop any context namespace

DATABASE:

ALTER DATABASE Alter the database

ALTER SYSTEM Issue ALTER SYSTEM statements

AUDIT SYSTEM Issue AUDIT sql_statements statements

DATABASE LINKS:

CREATE DATABASE LINK Create private database links in grantee’s schema

CREATE PUBLIC DATABASE LINK Create public database links

DROP PUBLIC DATABASE LINK Drop public database links

DEBUGGING:

DEBUG CONNECT SESSION Connect the current session to a debugger that uses the Java
Debug Wire Protocol (JDWP).

DEBUG ANY PROCEDURE Debug all PL/SQL and Java code in any database object; display
information on all SQL statements executed by the application

Note: Granting this privilege is equivalent to granting the DEBUG
object privilege on all applicable objects in the database.

DIMENSIONS:

CREATE DIMENSION Create dimensions in the grantee’s schema

CREATE ANY DIMENSION Create dimensions in any schema

ALTER ANY DIMENSION Alter dimensions in any schema

DROP ANY DIMENSION Drop dimensions in any schema

DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects

DROP ANY DIRECTORY Drop directory database objects

INDEXTYPES:

CREATE INDEXTYPE Create an indextype in the grantee’s schema

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

17-38 Oracle9i SQL Reference

CREATE ANY INDEXTYPE Create an indextype in any schema

ALTER ANY INDEXTYPE Modify indextypes in any schema

DROP ANY INDEXTYPE Drop an indextype in any schema

EXECUTE ANY INDEXTYPE Reference an indextype in any schema

INDEXES:

CREATE ANY INDEX Create in any schema a domain index or an index on any table in
any schema

ALTER ANY INDEX Alter indexes in any schema

DROP ANY INDEX Drop indexes in any schema

QUERY REWRITE Enable rewrite using a materialized view, or create a function-
based index, when that materialized view or index references
tables and views that are in the grantee’s own schema

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a function-
based index, when that materialized view or index references
tables or views in any schema

LIBRARIES:

CREATE LIBRARY Create external procedure/function libraries in grantee’s schema

CREATE ANY LIBRARY Create external procedure/function libraries in any schema

DROP ANY LIBRARY Drop external procedure/function libraries in any schema

MATERIALIZED VIEWS:

CREATE MATERIALIZED VIEW Create a materialized view in the grantee’s schema

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema

QUERY REWRITE Enable rewrite using a materialized view, or create a function-
based index, when that materialized view or index references
tables and views that are in the grantee’s own schema

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-39

GLOBAL QUERY REWRITE Enable rewrite using a materialized view, or create a function-
based index, when that materialized view or index references
tables or views in any schema

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the
database

Alter a refresh-on-demand materialized on any table in the
database to refresh-on-commit

FLASHBACK ANY TABLE Issue a SQL flashback query on any table, view, or materialized
view in any schema. (This privilege is not needed to execute the
DBMS_FLASHBACK procedures.)

OPERATORS:

CREATE OPERATOR Create an operator and its bindings in the grantee’s schema

CREATE ANY OPERATOR Create an operator and its bindings in any schema

DROP ANY OPERATOR Drop an operator in any schema

EXECUTE ANY OPERATOR Reference an operator in any schema

OUTLINES:

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses
outlines

ALTER ANY OUTLINE Modify outlines

DROP ANY OUTLINE Drop outlines

PROCEDURES:

CREATE PROCEDURE Create stored procedures, functions, and packages in grantee’s
schema

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in any schema

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema

EXECUTE ANY PROCEDURE Execute procedures or functions (standalone or packaged)

Reference public package variables in any schema

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

17-40 Oracle9i SQL Reference

PROFILES:

CREATE PROFILE Create profiles

ALTER PROFILE Alter profiles

DROP PROFILE Drop profiles

ROLES:

CREATE ROLE Create roles

ALTER ANY ROLE Alter any role in the database

DROP ANY ROLE Drop roles

GRANT ANY ROLE Grant any role in the database

ROLLBACK SEGMENTS:

CREATE ROLLBACK SEGMENT Create rollback segments

ALTER ROLLBACK SEGMENT Alter rollback segments

DROP ROLLBACK SEGMENT Drop rollback segments

SEQUENCES:

CREATE SEQUENCE Create sequences in grantee’s schema

CREATE ANY SEQUENCE Create sequences in any schema

ALTER ANY SEQUENCE Alter any sequence in the database

DROP ANY SEQUENCE Drop sequences in any schema

SELECT ANY SEQUENCE Reference sequences in any schema

SESSIONS:

CREATE SESSION Connect to the database

ALTER RESOURCE COST Set costs for session resources

ALTER SESSION Issue ALTER SESSION statements

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus STARTUP
RESTRICT statement

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-41

SNAPSHOTS: See MATERIALIZED VIEWS

SYNONYMS:

CREATE SYNONYM Create synonyms in grantee’s schema

CREATE ANY SYNONYM Create private synonyms in any schema

CREATE PUBLIC SYNONYM Create public synonyms

DROP ANY SYNONYM Drop private synonyms in any schema

DROP PUBLIC SYNONYM Drop public synonyms

TABLES:

Note: For external tables, the only valid privileges are CREATE ANY TABLE, ALTER ANY TABLE, DROP ANY
TABLE, and SELECT ANY TABLE.

CREATE TABLE Create tables in grantee’s schema

CREATE ANY TABLE Create tables in any schema. The owner of the schema containing
the table must have space quota on the tablespace to contain the
table.

ALTER ANY TABLE Alter any table or view in any schema

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the
schema of other users

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema

DROP ANY TABLE Drop or truncate tables or table partitions in any schema

INSERT ANY TABLE Insert rows into tables and views in any schema

LOCK ANY TABLE Lock tables and views in any schema

SELECT ANY TABLE Query tables, views, or materialized views in any schema

FLASHBACK ANY TABLE Issue a SQL flashback query on any table, view, or materialized
view in any schema. (This privilege is not needed to execute the
DBMS_FLASHBACK procedures.)

UPDATE ANY TABLE Update rows in tables and views in any schema

TABLESPACES:

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

17-42 Oracle9i SQL Reference

CREATE TABLESPACE Create tablespaces

ALTER TABLESPACE Alter tablespaces

DROP TABLESPACE Drop tablespaces

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace
backups

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege
overrides any specific quotas assigned. If you revoke this
privilege from a user, then the user’s schema objects remain but
further tablespace allocation is denied unless authorized by
specific tablespace quotas. You cannot grant this system privilege
to roles.

TRIGGERS:

CREATE TRIGGER Create a database trigger in grantee’s schema

CREATE ANY TRIGGER Create database triggers in any schema

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema

DROP ANY TRIGGER Drop database triggers in any schema

ADMINISTER DATABASE TRIGGER Create a trigger on DATABASE. (You must also have the CREATE
TRIGGER or CREATE ANY TRIGGER privilege.)

TYPES:

CREATE TYPE Create object types and object type bodies in grantee’s schema

CREATE ANY TYPE Create object types and object type bodies in any schema

ALTER ANY TYPE Alter object types in any schema

DROP ANY TYPE Drop object types and object type bodies in any schema

EXECUTE ANY TYPE Use and reference object types and collection types in any schema,
and invoke methods of an object type in any schema if you make
the grant to a specific user. If you grant EXECUTE ANY TYPE to a
role, then users holding the enabled role will not be able to invoke
methods of an object type in any schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-43

USERS:

CREATE USER Create users. This privilege also allows the creator to:

■ Assign quotas on any tablespace

■ Set default and temporary tablespaces

■ Assign a profile as part of a CREATE USER statement

ALTER USER Alter any user. This privilege authorizes the grantee to:

■ Change another user’s password or authentication method

■ Assign quotas on any tablespace

■ Set default and temporary tablespaces

■ Assign a profile and default roles

BECOME USER Become another user. (Required by any user performing a full
database import.)

DROP USER Drop users

VIEWS:

CREATE VIEW Create views in grantee’s schema

CREATE ANY VIEW Create views in any schema

DROP ANY VIEW Drop views in any schema

UNDER ANY VIEW Create subviews under any object views

FLASHBACK ANY TABLE Issue a SQL flashback query on any table, view, or materialized
view in any schema. (This privilege is not needed to execute the
DBMS_FLASHBACK procedures.)

MISCELLANEOUS:

ANALYZE ANY Analyze any table, cluster, or index in any schema

AUDIT ANY Audit any object in any schema using AUDIT schema_objects
statements

COMMENT ANY TABLE Comment on any table, view, or column in any schema

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

17-44 Oracle9i SQL Reference

EXEMPT ACCESS POLICY Bypass fine-grained access control

Caution: This is a very powerful system privilege, as it lets the
grantee bypass application-driven security policies. Database
administrators should use caution when granting this privilege.

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed
transaction in the local database

Induce the failure of a distributed transaction

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt distributed
transactions in the local database

GRANT ANY OBJECT PRIVILEGE Grant any object privilege

Revoke any object privilege that was granted by the object owner
or by some other user with the GRANT ANY OBJECT PRIVILEGE
privilege

GRANT ANY PRIVILEGE Grant any system privilege

RESUMABLE Enable resumable space allocation

SELECT ANY DICTIONARY Query any data dictionary object in the SYS schema. This
privilege lets you selectively override the default FALSEsetting of
the O7_DICTIONARY_ACCESSIBILITY initialization parameter.

SYSDBA Perform STARTUP and SHUTDOWN operations

ALTER DATABASE: open, mount, back up, or change character set

CREATE DATABASE

ARCHIVELOG and RECOVERY

CREATE SPFILE

Includes the RESTRICTED SESSION privilege

SYSOPER Perform STARTUP and SHUTDOWN operations

ALTER DATABASE OPEN | MOUNT | BACKUP

ARCHIVELOG and RECOVERY

CREATE SPFILE

Includes the RESTRICTED SESSION privilege

Table 17–1 (Cont.) System Privileges

System Privilege Name Operations Authorized

Note: When you grant a privilege on "ANY" object (for example, CREATE ANY CLUSTER), you give the user
access to that type of object in all schemas, including the SYS schema. If you want to prohibit access to objects
in the SYS schema, set the initialization parameter O7_DICTIONARY_ACCESSIBILITY to FALSE. Then
privileges granted on "ANY" object will allow access to any schema except SYS.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-45

Table 17–2 Oracle Predefined Roles

Predefined Role Purpose

CONNECT, RESOURCE, and
DBA

These roles are provided for compatibility with previous versions of
Oracle. You can determine the privileges encompassed by these roles by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle Corporation recommends that you design your own roles for
database security rather than relying on these roles. These roles may not be
created automatically by future versions of Oracle.

See Also: Oracle9i Database Reference for a description of this view

DELETE_CATALOG_ROLE
EXECUTE_CATALOG_ROLE
SELECT_CATALOG_ROLE

These roles are provided for accessing data dictionary views and packages.

See Also: Oracle9i Database Administrator’s Guide for more information on
these roles

EXP_FULL_DATABASE IMP_
FULL_DATABASE

These roles are provided for convenience in using the Import and Export
utilities.

See Also: Oracle9i Database Utilities for more information on these roles

AQ_USER_ROLE

AQ_ADMINISTRATOR_ROLE

You need these roles to use Oracle’s Advanced Queuing functionality.

See Also: Oracle9i Application Developer’s Guide - Advanced Queuing for
more information on these roles

SNMPAGENT This role is used by Enterprise Manager/Intelligent Agent.

See Also: Oracle Enterprise Manager Administrator’s Guide

RECOVERY_CATALOG_OWNER You need this role to create a user who owns a recovery catalog.

See Also: Oracle9i User-Managed Backup and Recovery Guide for more
information on recovery catalogs

HS_ADMIN_ROLE A DBA using Oracle’s heterogeneous services feature needs this role to
access appropriate tables in the data dictionary.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide and
Oracle9i Supplied PL/SQL Packages and Types Reference for more information

GRANT

17-46 Oracle9i SQL Reference

Table 17–3 Object Privileges Available for Particular Objects

Object
Privilege Table View

Se-
quence

Proce-
dures,
Func-
tions,
Pack-
agesa

Materi-
alized
View

Direc-
tory Library

User-
defined

Type
Opera-

tor
Index-
type

ALTER X — X — — — — — — —

DELETE X X — — Xb — — — — —

EXECUTE — — — X — — X X X X

DEBUG X X — X — — — X — —

FLASHBACK X X — — X — — — — —

INDEX X — — — — — — — — —

INSERT X X — — Xb — — — — —

ON COMMIT
REFRESH

X — — — — — — — — —

QUERY
REWRITE

X — — — — — — — — —

READ — — — — — X — — — —

REFERENCES X X — — — — — — — —

SELECT X X X — X — — — — —

UNDER — X — — — — — X — —

UPDATE X X — — Xb — — — — —

WRITE — — — — — X — — — —

aOracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
bThe DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-47

Table 17–4 Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized

The following table privileges authorize operations on a table. Any one of following object privileges allows
the grantee to lock the table in any lock mode with the LOCK TABLE statement.

Note: For external tables, the only valid object privileges are ALTER and SELECT.

ALTER Change the table definition with the ALTER TABLE statement.

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECT privilege on the table along with the
DELETE privilege if the table is on a remote database.

DEBUG Access, through a debugger:

■ PL/SQL code in the body of any triggers defined on the table

■ Information on SQL statements that reference the table directly

INDEX Create an index on the table with the CREATE INDEX statement.

INSERT Add new rows to the table with the INSERT statement.

REFERENCES Create a constraint that refers to the table. You cannot grant this privilege
to a role.

SELECT Query the table with the SELECT statement.

UPDATE Change data in the table with the UPDATE statement.

Note: You must grant the SELECT privilege on the table along with the
UPDATE privilege if the table is on a remote database.

The following view privileges authorize operations on a view. Any one of the following object privileges
allows the grantee to lock the view in any lock mode with the LOCK TABLE statement.

To grant a privilege on a view, you must have that privilege with the GRANT OPTION on all of the view’s base
tables.

DEBUG Access, through a debugger:

■ PL/SQL code in the body of any triggers defined on the view

■ Information on SQL statements that reference the view directly

DELETE Remove rows from the view with the DELETE statement.

INSERT Add new rows to the view with the INSERT statement.

REFERENCES Define foreign key constraints on the view.

SELECT Query the view with the SELECT statement.

GRANT

17-48 Oracle9i SQL Reference

UNDER Create a subview under this view. You can grant this object privilege only
if you have the UNDER ANY VIEW privilege WITH GRANT OPTION on the
immediate superview of this view.

UPDATE Change data in the view with the UPDATE statement.

The following sequence privileges authorize operations on a sequence.

ALTER Change the sequence definition with the ALTER SEQUENCE statement.

SELECT Examine and increment values of the sequence with the CURRVAL and
NEXTVAL pseudocolumns.

The following procedure, function, and package privilege authorizes operations on procedures, functions, and
packages. This privilege also applies to Java sources, classes, and resources, which Oracle treats as though they
were procedures for purposes of granting object privileges.

DEBUG Access, through a debugger, all public and nonpublic variables, methods,
and types defined on the procedure, function, or package.

Place a breakpoint or stop at a line or instruction boundary within the
procedure, function, or package. This privilege grants access to the
declarations in the method or package specification and body.

EXECUTE Compile the procedure or function or execute it directly, or access any
program object declared in the specification of a package.

Access, through a debugger, public variables, types, and methods defined
on the procedure, function, or package. This privilege grants access to the
declarations in the method or package specification only.

Note: Users do not need this privilege to execute a procedure, function, or
package indirectly.

See Also: Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals

The following materialized view privileges authorize operations on a materialized view.

ON COMMIT REFRESH Create a refresh-on-commit materialized on the specified table.

QUERY REWRITE Create a materialized view for query rewrite using the specified table.

SELECT Query the materialized view with the SELECT statement.

Synonym privileges are the same as the privileges for the base object. Granting a privilege on a synonym is
equivalent to granting the privilege on the base object. Similarly, granting a privilege on a base object is
equivalent to granting the privilege on all synonyms for the object. If you grant to a user a privilege on a
synonym, then the user can use either the synonym name or the base object name in the SQL statement that
exercises the privilege.

Table 17–4 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-49

Examples

Granting a System Privilege to a User: Example To grant the CREATE SESSION
system privilege to the sample user hr , allowing hr to log on to Oracle, issue the

following statement:

The following directory privileges provide secured access to the files stored in the operating system directory
to which the directory object serves as a pointer. The directory object contains the full path name of the
operating system directory where the files reside. Because the files are actually stored outside the database,
Oracle server processes also need to have appropriate file permissions on the file system server. Granting object
privileges on the directory database object to individual database users, rather than on the operating system,

allows Oracle to enforce security during file operations.

READ Read files in the directory.

WRITE Write files in the directory. This privilege is useful only in connection with
external tables. It allows the grantee to determine whether the external
table agent can write a log file, or a bad file to the directory.

Restriction: This privilege does not allow the grantee to write to a BFILE .

The following library privileges authorize operations on a library

EXECUTE Use and reference the specified object and to invoke its methods.

The following object type privilege authorizes operations on a database object type

DEBUG Access, through a debugger, all public and nonpublic variables, methods,
and types defined on the object type.

Place a breakpoint or stop at a line or instruction boundary within the type
body.

EXECUTE Use and reference the specified object and to invoke its methods.

Access, through a debugger, public variables, types, and methods defined
on the object type.

UNDER Create a subtype under this type. You can grant this object privilege only if
you have the UNDER ANY TYPE privilege WITH GRANT OPTION on the
immediate supertype of this type.

The following indextype privilege authorizes operations on indextypes.

EXECUTE Reference an indextype.

The following operator privilege authorizes operations on user-defined operators.

EXECUTE Reference an operator.

Table 17–4 (Cont.) Object Privileges and the Operations They Authorize

Object Privilege Operations Authorized

GRANT

17-50 Oracle9i SQL Reference

GRANT CREATE SESSION
 TO hr;

Granting System Privileges to a Role: Example To grant appropriate system

privileges to a data warehouse manager role (which was created in the "Creating a

Role: Example" on page 14-81) :

GRANT
 CREATE ANY MATERIALIZED VIEW
 , ALTER ANY MATERIALIZED VIEW
 , DROP ANY MATERIALIZED VIEW
 , QUERY REWRITE
 , GLOBAL QUERY REWRITE
 TO dw_manager
 WITH ADMIN OPTION;

dw_manager ’s privilege domain now contains the system privileges related to

materialized views.

Granting a Role with the Admin Option: Example To grant the dw_manager role

with the ADMIN OPTION to the sample user sh , issue the following statement:

GRANT dw_manager
 TO sh
 WITH ADMIN OPTION;

User sh can now perform the following operations with the dw_manager role:

■ Enable the role and exercise any privileges in the role’s privilege domain,

including the CREATE MATERIALIZED VIEW system privilege

■ Grant and revoke the role to and from other users

■ Drop the role

Granting Object Privileges to a Role" Example To grant the SELECT object

privileges to a data warehouse user role (which was created in the "Creating a Role:

Example" on page 14-81) :

GRANT SELECT ON sh.sales TO warehouse_user;

Granting a Role to a Role: Example The following statement grants the

warehouse_user role to the dw_manager role (both roles were created in the

"Creating a Role: Example" on page 14-81):

GRANT warehouse_user TO dw_manager;

GRANT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-51

The dw_manager role now contains all of the privileges in the domain of the

warehouse_user role.

Granting an Object Privilege on a Directory: Example To grant READ on directory

bfile_dir to user hr , with the GRANT OPTION, issue the following statement:

GRANT READ ON DIRECTORY bfile_dir TO hr
 WITH GRANT OPTION;

Granting Object Privileges on a Table to a User: Example To grant all privileges

on the table oe.bonuses (created in "Merging into a Table: Example" on

page 17-79) to the user hr with the GRANT OPTION, issue the following statement:

GRANT ALL ON bonuses TO hr
 WITH GRANT OPTION;

hr can subsequently perform the following operations:

■ Exercise any privilege on the bonuses table

■ Grant any privilege on the bonuses table to another user or role

Granting Object Privileges on a View: Example To grant SELECT and UPDATE
privileges on the view emp_view (created in "Creating a View: Example" on

page 16-50) to all users, issue the following statement:

GRANT SELECT, UPDATE
 ON emp_view TO PUBLIC;

All users can subsequently query and update the view of employee details.

Granting Object Privileges to a Sequence in Another Schema: Example To grant

SELECT privilege on the customers_seq sequence in the schema oe to the user

hr , issue the following statement:

GRANT SELECT
 ON oe.customers_seq TO hr;

hr can subsequently generate the next value of the sequence with the following

statement:

SELECT oe.customers_seq.NEXTVAL
 FROM DUAL;

GRANT

17-52 Oracle9i SQL Reference

Granting Multiple Object Privileges on Individual Columns: Example To grant to

user oe the REFERENCES privilege on the employee_id column and the UPDATE
privilege on the employee_id , salary , and commission_pct columns of the

employees table in the schema hr , issue the following statement:

GRANT REFERENCES (employee_id),
 UPDATE (employee_id, salary, commission_pct)
 ON hr.employees
 TO oe;

oe can subsequently update values of the employee_id , salary , and

commission_pct columns. oe can also define referential integrity constraints that

refer to the employee_id column. However, because the GRANT statement lists

only these columns, oe cannot perform operations on any of the other columns of

the employees table.

For example, oe can create a table with a constraint:

CREATE TABLE dependent
 (dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

The constraint in_emp ensures that all dependents in the dependent table

correspond to an employee in the employees table in the schema hr .

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-53

INSERT

Purpose
Use the INSERT statement to add rows to a table, a view’s base table, a partition of

a partitioned table or a subpartition of a composite-partitioned table, or an object

table or an object view’s base table.

Prerequisites
For you to insert rows into a table, the table must be in your own schema or you

must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema

containing the view must have INSERT privilege on the base table. Also, if the view

is in a schema other than your own, then you must have INSERT privilege on the

view.

If you have the INSERT ANY TABLE system privilege, then you can also insert rows

into any table or any view’s base table.

Conventional and Direct-Path INSERT
You can use the INSERT statement to insert data into a table, partition, or view in

two ways: conventional INSERT and direct-path INSERT. When you issue a

conventional INSERT statement, Oracle reuses free space in the table into which

you are inserting and maintains referential integrity constraints. With direct-path

INSERT, Oracle appends the inserted data after existing data in the table. Data is

written directly into datafiles, bypassing the buffer cache. Free space in the existing

data is not reused. This alternative enhances performance during insert operations

and is similar to the functionality of Oracle’s direct-path loader utility, SQL*Loader.

Direct-path INSERT is subject to a number of restrictions. If any of these restrictions

is violated, then Oracle executes conventional INSERT serially without returning

any message (unless otherwise noted):

■ You can have multiple direct-path INSERT statements in a single transaction,

with or without other DML statements. However, after one DML statement

alters a particular table, partition, or index, no other DML statement in the

transaction can access that table, partition, or index.

■ Queries that access the same table, partition, or index are allowed before the

direct-path INSERT statement, but not after it.

INSERT

17-54 Oracle9i SQL Reference

■ If any serial or parallel statement attempts to access a table that has already

been modified by a direct-path INSERT in the same transaction, then Oracle

returns an error and rejects the statement.

■ The ROW_LOCKING initialization parameter cannot be set to INTENT.

■ The target table cannot be index organized or clustered.

■ The target table cannot contain object type or LOB columns.

■ The target table cannot have any triggers or referential integrity constraints

defined on it.

■ The target table cannot be replicated.

■ A transaction containing a direct-path INSERT statement cannot be or become

distributed.

Syntax
insert::=

(single_table_insert::= on page 17-54, multi_table_insert::= on

page 17-55)

single_table_insert ::=

(insert_into_clause::= on page 17-55, values_clause::= on page 17-55,

returning_clause::= on page 17-55, subquery::= on page 18-5)

See Also:

■ Oracle9i Database Concepts for a more complete description of

direct-path INSERT

■ Oracle9i Database Utilities for information on SQL*Loader

■ Oracle9i Database Performance Tuning Guide and Reference for

information on how to tune parallel direct-path INSERT

INSERT
hint single_table_insert

multi_table_insert
;

insert_into_clause
values_clause

returning_clause

subquery

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-55

insert_into_clause ::=

(DML_table_expression_clause::= on page 17-56)

values_clause ::=

returning_clause ::=

multi_table_insert ::=

(insert_into_clause::= on page 17-55, values_clause::= on page 17-55,

conditional_insert_clause::= on page 17-55, subquery::= on page 18-5)

conditional_insert_clause ::=

(insert_into_clause::= on page 17-55, values_clause::= on page 17-55)

INTO dml_table_expression_clause
t_alias (column

,

)

VALUES (
expr

DEFAULT

,

)

RETURNING expr

,

INTO data_item

,

ALL insert_into_clause
values_clause

conditional_insert_clause
subquery

ALL

FIRST
WHEN condition THEN insert_into_clause

values_clause

ELSE insert_into_clause
values_clause

INSERT

17-56 Oracle9i SQL Reference

DML_table_expression_clause ::=

(subquery::= on page 18-5—part of SELECT syntax, subquery_restriction_
clause::= on page 17-56, table_collection_expression::= on page 17-56)

subquery_restriction_clause ::=

table_collection_expression ::=

Semantics

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

For a multitable insert, if you specify the PARALLEL hint for any target table, then

the entire multitable insert statement is parallelized even if the target tables have

not been created or altered with PARALLEL specified. If you do not specify the

PARALLEL hint, then the insert operation will not be parallelized unless all target

tables were created or altered with PARALLEL specified.

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-57

single_table_insert
In a single-table insert, you insert values into one row of a table, view, or

materialized view by specifying values explicitly or by retrieving the values

through a subquery.

You can use the flashback_clause in subquery to insert past data into table .

Restriction on Single-table Inserts If you retrieve values through a subquery, then

the select list of the subquery must have the same number of columns as the column

list of the INSERT statement. If you omit the column list, then the subquery must

provide values for every column in the table.

insert_into_clause
Use the INSERT INTO clause to specify the target object or objects into which Oracle

is to insert data.

DML_table_expression_clause
Use the INTO dml_table_expression_clause to specify the objects into which

data is being inserted.

Restrictions on the dml_table_expression_clause

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked IN_PROGRESS or FAILED .

■ You cannot insert into a partition if any affected index partitions are marked

UNUSABLE.

■ With regard to the ORDER BY clause of the subquery in the dml_table_
expression_clause , ordering is guaranteed only for the rows being inserted,

See Also:

■ "Hints" on page 2-91 and Oracle9i Database Performance Tuning
Guide and Reference for the syntax and description of hints

■ "Restrictions on Multitable Inserts" on page 17-64

See Also: the flashback_clause of SELECT on page 18-14 for

more information on this clause

See Also: "Inserting Values into Tables: Examples" on page 17-65

INSERT

17-58 Oracle9i SQL Reference

and only within each extent of the table. Ordering of new rows with respect to

existing rows is not guaranteed.

■ If a view was created using the WITH CHECK OPTION, then you can insert into

the view only rows that satisfy the view’s defining query.

■ If a view was created using a single base table, then you can insert rows into the

view and then retrieve those values using the returning_clause .

■ You cannot insert rows into a view except with INSTEAD OF triggers if the

view’s defining query contains one of the following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions--see Oracle9i Database Administrator’s Guide for

more information)

■ If you specify an index, index partition, or index subpartition that has been

marked UNUSABLE, then the INSERT statement will fail unless the SKIP_
UNUSABLE_INDEXES session parameter has been set to TRUE.

schema Specify the schema containing the table, view, or materialized view. If you

omit schema , then Oracle assumes the object is in your own schema.

table | view | subquery Specify the name of the table or object table, view or object

view, materialized view, or the column or columns returned by a subquery, into

which rows are to be inserted. If you specify a view or object view, then Oracle

inserts rows into the view’s base table.

If any value to be inserted is a REF to an object table, and if the object table has a

primary key object identifier, then the column into which you insert the REF must

be a REF column with a referential integrity or SCOPE constraint to the object table.

If table (or the base table of view) contains one or more domain index columns,

then this statement executes the appropriate indextype insert routine.

See Also: ALTER SESSION on page 10-2 for information on the

SKIP_UNUSABLE_INDEXES session parameter

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-59

Issuing an INSERT statement against a table fires any INSERT triggers defined on

the table.

PARTITION (partition_name) | SUBPARTITION (subpartition_name) Specify the

name of the partition or subpartition within table (or the base table of view)

targeted for inserts.

If a row to be inserted does not map into a specified partition or subpartition, then

then Oracle returns an error.

Restriction on Target Partitions and Subpartitions This clause is not valid for

object tables or object views.

dblink Specify a complete or partial name of a database link to a remote database

where the table or view is located. You can insert rows into a remote table or view

only if you are using Oracle’s distributed functionality.

If you omit dblink , then Oracle assumes that the table or view is on the local

database.

subquery_restriction_clause Use the subquery_restriction_clause to

restrict the subquery in one of the following ways:

WITH READ ONLY Specify WITH READ ONLY to indicate that the table or view

cannot be updated.

WITH CHECK OPTION Specify WITH CHECK OPTION to indicate that Oracle

prohibits any changes to the table or view that would produce rows that are not

included in the subquery.

CONSTRAINT constraint Specify the name of the CHECK OPTION constraint. If

you omit this identifier, Oracle automatically assigns the constraint a name of the

form SYS_Cn, where n is an integer that makes the constraint name unique within

the database.

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information on these routines

See Also: "Syntax for Schema Objects and Parts in SQL

Statements" on page 2-115 for information on referring to database

links and "Inserting into a Remote Database: Example" on

page 17-66

INSERT

17-60 Oracle9i SQL Reference

table_collection_expression The table_collection_expression lets you

inform Oracle that the value of collection_expression should be treated as a

table for purposes of query and DML operations. The collection_expression
can be a subquery, a column, a function, or a collection constructor. Regardless of its

form, it must return a collection value (that is, a value whose type is nested table or

varray). This process of extracting the elements of a collection is called collection
unnesting.

t_alias
Specify a correlation name (alias) for the table, view, or subquery to be referenced

elsewhere in the statement.

Restriction on Table Aliases You cannot specify t_alias during a multitable

insert.

column
Specify a column of the table or view. In the inserted row, each column in this list is

assigned a value from the values_clause or the subquery.

If you omit one or more of the table’s columns from this list, then the column’s

value for the inserted row is the column’s default value as specified when the table

was created or last altered. If any omitted column has a NOT NULLconstraint and no

default value, then Oracle returns an error indicating that the constraint has been

violated and rolls back the INSERT statement.

If you omit the column list altogether, then the values_clause or query must

specify values for all columns in the table.

See Also: "Using the WITH CHECK OPTION Clause: Example"

on page 18-34

Note: In earlier releases of Oracle, when collection_
expression was a subquery, table_collection_expression
was expressed as "THE subquery". That usage is now deprecated.

See Also: "Table Collections: Examples" on page 18-38

See Also: CREATE TABLE on page 15-7 for more information on

default column values

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-61

values_clause
For a single-table insert operation, specify a row of values to be inserted into the

table or view. You must specify a value in the values_clause for each column in

the column list. If you omit the column list, then the values_clause must provide

values for every column in the table.

For a multitable insert operation, each expression in the values_clause must

refer to columns returned by the select list of the subquery. If you omit the values_
clause , then the select list of the subquery determines the values to be inserted, so

it must have the same number of columns as the column list of the corresponding

insert_into_clause . If you do not specify a column list in the insert_into_
clause , then the computed row must provide values for all columns in the target

table.

For both types of insert operations, if you specify a column list in the insert_
into_clause , then Oracle assigns to each column in the list a corresponding value

from the values clause or the subquery. You can specify DEFAULT for any value in

the values_clause . If you have specified a default value for the corresponding

column of the table or view, then that value is inserted. If no default value for the

corresponding column has been specified, then Oracle inserts null.

Restrictions on Inserted Values

■ You cannot initialize an internal LOB attribute in an object with a value other

than empty or null. That is, you cannot use a literal.

■ You cannot insert a BFILE value until you have initialized the BFILE locator to

null or to a directory alias and filename.

■ When inserting into a list-partitioned table, you cannot insert a value into the

partitioning key column that does not already exist in the partition_value
list of one of the partitions.

■ You cannot specify DEFAULT when inserting into a view.

Note: Parallel direct-path INSERT supports only the subquery

syntax of the INSERT statement, not the values_clause . Please

refer to Oracle9i Database Concepts for information on serial and

parallel direct-path INSERT.

INSERT

17-62 Oracle9i SQL Reference

returning_clause
The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and materialized views,

and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can

retrieve column expressions using the affected row, rowid, and REFs to the affected

row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause
stores values from expressions, rowids, and REFs involving the affected rows in

bind arrays.

expr Each item in the expr list must be a valid expression syntax. All forms are

valid except scalar subquery expressions.

INTO The INTO clause indicates that the values of the changed rows are to be

stored in the variable(s) specified in data_item list.

Note: If you insert string literals into a RAW column, then during

subsequent queries Oracle will perform a full table scan rather than

using any index that might exist on the RAW column.

See Also:

■ Oracle Call Interface Programmer’s Guide and Oracle9i Application
Developer’s Guide - Fundamentals for information on initializing

BFILE locators

■ "About SQL Expressions" on page 4-2 and SELECT on

page 18-4 for syntax of valid expressions

■ "Using XML in SQL Statements" on page D-11 for information

on inserting values into an XMLType table

■ "Inserting into a BFILE: Example" on page 17-68, "Inserting into

a Substitutable Tables and Columns: Examples", "Inserting

Using the TO_LOB Function: Example" on page 17-68,

"Inserting Sequence Values: Example" on page 17-67 and

"Inserting Using Bind Variables: Example" on page 17-67

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-63

data_item Each data_item is a host variable or PL/SQL variable that stores the

retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding type-

compatible PL/SQL variable or host variable in the INTO list.

Restrictions on the RETURNING Clause You cannot:

■ Specify the returning_clause for a multitable insert.

■ Use this clause with parallel DML or with remote objects.

■ Retrieve LONG types with this clause.

■ Specify this clause for a view on which an INSTEAD OF trigger has been

defined.

multi_table_insert
In a multitable insert, you insert computed rows derived from the rows returned

from the evaluation of a subquery into one or more tables.

ALL into_clause
Specify ALL followed by multiple insert_into_clauses to perform an

unconditional multitable insert. Oracle executes each insert_into_clause
once for each row returned by the subquery.

conditional_insert_clause
Specify the conditional_insert_clause to perform a conditional multitable
insert. Oracle filters each insert_into_clause through the corresponding WHEN
condition, which determines whether that insert_into_clause is executed.

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables

Note: Table aliases are not defined by the select list of the

subquery. Therefore, they are not visible in the clauses dependent

on the select list. For example, this can happen when trying to refer

to an object column in an expression. To use an expression with a

table alias, you must put the expression into the select list with a

column alias, and then refer to the column alias in the VALUES
clause or WHEN condition of the multitable insert

INSERT

17-64 Oracle9i SQL Reference

Each expression in the WHEN condition must refer to columns returned by the select

list of the subquery. A single multitable insert statement can contain up to 127 WHEN
clauses.

ALL If you specify ALL, then Oracle evaluates each WHEN clause regardless of the

results of the evaluation of any other WHEN clause. For each WHEN clause whose

condition evaluates to true, Oracle executes the corresponding INTO clause list.

FIRST If you specify FIRST, then Oracle evaluates each WHEN clause in the order

in which it appears in the statement. For the first WHEN clause that evaluates to true,

Oracle executes the corresponding INTO clause and skips subsequent WHEN clauses

for the given row.

ELSE clause For a given row, if no WHEN clause evaluates to true:

■ If you have specified an ELSE clause, then Oracle executes the INTO clause list

associated with the ELSE clause.

■ If you did not specify an else clause, then Oracle takes no action for that row.

Restrictions on Multitable Inserts

■ You can perform multitable inserts only on tables, not on views or materialized

views.

■ You cannot perform a multitable insert into a remote table.

■ You cannot specify a table collection expression when performing a multitable

insert.

■ In a multitable insert, all of the insert_into_clause s cannot combine to

specify more than 999 target columns.

■ Multitable inserts are not parallelized in a Real Application Clusters

environment, or if any target table is index organized, or if any target table has

a bitmap index defined on it.

■ Plan stability is not supported for multitable insert statements.

■ The subquery of the multitable insert statement cannot use a sequence.

See Also: "Multitable Inserts: Examples" on page 17-68

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-65

subquery
Specify a subquery that returns rows that are inserted into the table. The subquery

can refer to any table, view, or materialized view, including the target tables of the

INSERT statement. If the subquery selects no rows, then Oracle inserts no rows into

the table.

You can use subquery in combination with the TO_LOB function to convert the

values in a LONG column to LOB values in another column in the same or another

table. To migrate LONGs to LOBs in a view, you must perform the migration on the

base table, and then add the LOB to the view.

Notes on Inserts Using a Subquery

■ If subquery returns (in part or totally) the equivalent of an existing

materialized view, then Oracle may use the materialized view (for query

rewrite) in place of one or more tables specified in subquery .

■ If subquery refers to remote objects, then the INSERT operation can run in

parallel as long as the reference does not loop back to an object on the local

database. However, if the subquery in the dml_table_expression_
clause refers to any remote objects, then the INSERT operation will run

serially without notification. See parallel_clause on page 15-53 (in CREATE
TABLE) for more information

Examples

Inserting Values into Tables: Examples The following statement inserts a row into

the sample table departments :

See Also: Oracle9i Data Warehousing Guide for more information

on materialized views and query rewrite

See Also:

■ "Inserting Values with a Subquery: Example" on page 17-66

■ "Inserting into a BFILE: Example" on page 17-68

■ Oracle Call Interface Programmer’s Guide and Oracle9i Application
Developer’s Guide - Fundamentals for information on initializing

BFILEs

■ "About SQL Expressions" on page 4-2 and SELECT on

page 18-4 for syntax of valid expressions

INSERT

17-66 Oracle9i SQL Reference

INSERT INTO departments
 VALUES (280, ’Recreation’, 121, 1700);

If the departments table had been created with a default value of 121 for the

manager_id column, then you could issue the same statement as follows:

INSERT INTO departments
 VALUES (280, ’Recreation’, DEFAULT, 1700);

The following statement inserts a row with six columns into the employees table.

One of these columns is assigned NULL and another is assigned a number in

scientific notation:

INSERT INTO employees (employee_id, last_name, email,
 hire_date, job_id, salary, commission_pct)
 VALUES (207, ’Gregory’, ’pgregory@oracle.com’,
 sysdate, ’PU_CLERK’, 1.2E3, NULL);

The following statement has the same effect as the preceding example, but uses a

subquery in the dml_table_expression_clause :

INSERT INTO
 (SELECT employee_id, last_name, email, hire_date, job_id,
 salary, commission_pct FROM employees)
 VALUES (207, ’Gregory’, ’pgregory@oracle.com’,
 sysdate, ’PU_CLERK’, 1.2E3, NULL);

Inserting Values with a Subquery: Example The following statement copies

employees whose commission exceeds 25% of their salary into the bonuses table

(which is created in "Merging into a Table: Example" on page 17-79):

INSERT INTO bonuses
 SELECT employee_id, salary*1.1
 FROM employees
 WHERE commission_pct > 0.25 * salary;

Inserting into a Remote Database: Example The following statement inserts a row

into the employees table owned by the user hr on the database accessible by the

database link remote :

INSERT INTO employees@remote
 VALUES (8002, ’Juan’, ’Fernandez’, ’juanf@hr.com’, NULL,
 TO_DATE(’04-OCT-1992’, ’DD-MON-YYYY’), ’SH_CLERK’, 3000,
 NULL, 121, 20);

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-67

Inserting Sequence Values: Example The following statement inserts a new row

containing the next value of the departments sequence into the departments
table:

INSERT INTO departments
 VALUES (departments_seq.nextval, ’Entertainment’, 162, 1400);

Inserting Using Bind Variables: Example The following example returns the

values of the inserted rows into output bind variables :bnd1 and :bnd2 . (The bind

variables must first be declared.)

INSERT INTO employees
 (employee_id, last_name, email, hire_date, job_id, salary)
 VALUES
 (employees_seq.nextval, ’Doe’, ’john.doe@oracle.com’,
 SYSDATE, ’SH_CLERK’, 2400)
 RETURNING salary*12, job_id INTO :bnd1, :bnd2;

Inserting into a Substitutable Tables and Columns: Examples The following

example inserts into the persons table, which is created in "Substitutable Table and

Column Examples" on page 15-67. The first statement uses the root type person_t .

The second insert uses the employee_t subtype person_t , and the third insert

uses the part_time_emp_t subtype of employee_t :

INSERT INTO persons VALUES (person_t(’Bob’, 1234));
INSERT INTO persons VALUES (employee_t(’Joe’, 32456, 12, 100000));
INSERT INTO persons VALUES (
 part_time_emp_t(’Tim’, 5678, 13, 1000, 20));

The following example inserts into the books table, which was created in

"Substitutable Table and Column Examples" on page 15-67. Notice that specification

of the attribute values is identical to that for the substitutable table example:

INSERT INTO books VALUES (
 ’An Autobiography’, person_t(’Bob’, 1234));
INSERT INTO books VALUES (
 ’Business Rules’, employee_t(’Joe’, 3456, 12, 10000));
INSERT INTO books VALUES (
 ’Mixing School and Work’,
 part_time_emp_t(’Tim’, 5678, 13, 1000, 20));

You can extract data from substitutable tables and columns using built-in functions

and conditions. For examples, see the functions TREAT on page 6-191 and SYS_

TYPEID on page 6-164, and "IS OF type Conditions" on page 5-19.

INSERT

17-68 Oracle9i SQL Reference

Inserting Using the TO_LOB Function: Example The following example copies

LONG data to a LOB column in the following long_tab table:

CREATE TABLE long_tab (pic_id NUMBER, long_pics LONG RAW);

First you must create a table with a LOB.

CREATE TABLE lob_tab (pic_id NUMBER, lob_pics BLOB);

Next, use an INSERT ... SELECT statement to copy the data in all rows for the LONG
column into the newly created LOB column:

INSERT INTO lob_tab
 SELECT pic_id, TO_LOB(long_pics) FROM long_tab;

Once you are confident that the migration has been successful, you can drop the

long_pics table. Alternatively, if the table contains other columns, then you can

simply drop the LONG column from the table as follows:

ALTER TABLE long_tab DROP COLUMN long_pics;

Inserting into a BFILE: Example The following example inserts a row into the

sample table pm.print_media . The example uses the BFILENAME function to

identify a binary file on the server’s file system:

CREATE DIRECTORY media_dir AS ’/demo/schema/product_media’;

INSERT INTO print_media (product_id, ad_id, ad_graphic)
 VALUES (3000, 31001,
 bfilename(’MEDIA_DIR’, ’modem_comp_ad.gif’));

Multitable Inserts: Examples The following example uses the multitable insert

syntax to insert into the sample table sh.sales some data from an input table with

a different structure.

The input table looks like this:

SELECT * FROM sales_input_table;

Note: A number of constraints on the sales table have been

disabled for purposes of this example, because the example ignores

a number of table columns for the sake of brevity.

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-69

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

The multitable insert statement looks like this:

INSERT ALL
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
 SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
 FROM sales_input_table;

Assuming these are the only rows in the sales table, the contents now look like

this:

SELECT * FROM sales;

 PROD_ID CUST_ID TIME_ID C PROMO_ID QUANTITY_SOLD AMOUNT COST
---------- ---------- --------- - ---------- ------------- ---------- ----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600

INSERT

17-70 Oracle9i SQL Reference

 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

The next examples insert into multiple tables. Suppose you want to provide to sales

representatives some information on orders of various sizes. The following example

creates tables for small, medium, large, and "special" (very large) orders and

populates those tables with data from the sample table oe.orders :

CREATE TABLE small_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6)
);

CREATE TABLE medium_orders AS SELECT * FROM small_orders;

CREATE TABLE large_orders AS SELECT * FROM small_orders;

CREATE TABLE special_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 credit_limit NUMBER(9,2),
 cust_email VARCHAR2(30)
);

The first multitable insert populates only the tables for small, medium, and large

orders:

INSERT ALL
 WHEN order_total < 1000000 THEN
 INTO small_orders
 WHEN order_total > 1000000 AND order_total < 2000000 THEN
 INTO medium_orders
 WHEN order_total > 2000000 THEN
 INTO large_orders

INSERT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-71

 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

You can accomplish the same thing using the ELSE clause in place of the insert into

the large_orders table:

INSERT ALL
 WHEN order_total < 100000 THEN
 INTO small_orders
 WHEN order_total > 100000 AND order_total < 200000 THEN
 INTO medium_orders
 ELSE
 INTO large_orders
 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

The next example inserts into the small, medium, and large tables, as in the

preceding example, and also puts orders greater than 2,900,000 into the special_
orders table. This table also shows how to use column aliases to simplify the

statement:

INSERT ALL
 WHEN ottl < 100000 THEN
 INTO small_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl < 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 200000 THEN
 into large_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

Finally, the next example uses the FIRST clause to put orders greater than 2,900,000

into the special_orders table and exclude those orders from the large_orders
table:

INSERT FIRST
 WHEN ottl < 100000 THEN
 INTO small_orders

INSERT

17-72 Oracle9i SQL Reference

 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl < 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 WHEN ottl > 200000 THEN
 INTO large_orders
 VALUES(oid, ottl, sid, cid)
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

LOCK TABLE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-73

LOCK TABLE

Purpose
Use the LOCK TABLE statement to lock one or more tables (or table partitions or

subpartitions) in a specified mode. This lock manually overrides automatic locking

and permits or denies access to a table or view by other users for the duration of

your operation.

Some forms of locks can be placed on the same table at the same time. Other locks

allow only one lock for a table.

A locked table remains locked until you either commit your transaction or roll it

back, either entirely or to a savepoint before you locked the table.

A lock never prevents other users from querying the table. A query never places a

lock on a table. Readers never block writers and writers never block readers.

Prerequisites
The table or view must be in your own schema or you must have the LOCK ANY
TABLE system privilege, or you must have any object privilege on the table or view.

See Also:

■ Oracle9i Database Concepts for a complete description of the

interaction of lock modes

■ COMMIT on page 12-75

■ ROLLBACK on page 17-99

■ SAVEPOINT on page 18-2

LOCK TABLE

17-74 Oracle9i SQL Reference

Syntax
lock_table::=

Semantics

schema
Specify the schema containing the table or view. If you omit schema , then Oracle

assumes the table or view is in your own schema.

table / view
Specify the name of the table to be locked.

If you specify view , then Oracle locks the view’s base tables.

If you specify PARTITION (partition) or SUBPARTITION(subpartition), then

Oracle first acquires an implicit lock on the table. The table lock is the same as the

lock you specify for partition or subpartition , with two exceptions:

■ If you specify a SHARE lock for the subpartition, then Oracle acquires an

implicit ROW SHARE lock on the table.

■ If you specify an EXCLUSIVE lock for the subpartition, then Oracle acquires an

implicit ROW EXCLUSIVE lock on the table.

If you specify PARTITION and table is composite-partitioned, then Oracle

acquires locks on all the subpartitions of partition .

Restriction on Locking Tables If table is part of a hierarchy, then it must be the

root of the hierarchy.

LOCK TABLE

schema . table

view

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

,

IN lockmode MODE
NOWAIT

;

LOCK TABLE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-75

dblink
Specify a database link to a remote Oracle database where the table or view is

located. You can lock tables and views on a remote database only if you are using

Oracle’s distributed functionality. All tables locked by a LOCK TABLE statement

must be on the same database.

If you omit dblink , then Oracle assumes the table or view is on the local database.

lockmode Clause
Specify one of the following modes:

ROW SHARE ROW SHARE permits concurrent access to the locked table, but

prohibits users from locking the entire table for exclusive access. ROW SHARE is

synonymous with SHARE UPDATE, which is included for compatibility with earlier

versions of Oracle.

ROW EXCLUSIVE ROW EXCLUSIVE is the same as ROW SHARE, but also prohibits

locking in SHARE mode. ROW EXCLUSIVE locks are automatically obtained when

updating, inserting, or deleting.

SHARE UPDATE See ROW SHARE.

SHARE SHARE permits concurrent queries but prohibits updates to the locked

table.

SHARE ROW EXCLUSIVE SHARE ROW EXCLUSIVEis used to look at a whole table

and to allow others to look at rows in the table but to prohibit others from locking

the table in SHARE mode or updating rows.

EXCLUSIVE EXCLUSIVE permits queries on the locked table but prohibits any

other activity on it.

NOWAIT
Specify NOWAIT if you want Oracle to return control to you immediately if the

specified table (or specified partition or subpartition) is already locked by another

user. In this case, Oracle returns a message indicating that the table, partition, or

subpartition is already locked by another user.

See Also: "Referring to Objects in Remote Databases" on

page 2-118 for information on specifying database links

LOCK TABLE

17-76 Oracle9i SQL Reference

If you omit this clause, then Oracle waits until the table is available, locks it, and

returns control to you.

Examples

Locking a Table: Example The following statement locks the employees table in

exclusive mode, but does not wait if another user already has locked the table:

LOCK TABLE employees
 IN EXCLUSIVE MODE
 NOWAIT;

The following statement locks the remote employees table that is accessible

through the database link remote :

LOCK TABLE employees@remote
 IN SHARE MODE;

MERGE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-77

MERGE

Purpose
Use the MERGE statement to select rows from one table for update or insertion into

another table. The decision whether to update or insert into the target table is based

on a condition in the ON clause.

This statement is a convenient way to combine at least two operations. It lets you

avoid multiple INSERT and UPDATE DML statements.

MERGE is a deterministic statement. That is, you cannot update the same row of the

target table multiple times in the same MERGE statement.

Prerequisites
You must have INSERT and UPDATE object privileges on the target table and

SELECT privilege on the source table.

Syntax
merge::=

merge_update_clause ::=

MERGE
hint

INTO
schema .

table
t_alias

USING
schema .

table

view

subquery

t_alias
ON (condition)

WHEN MATCHED THEN merge_update_clause

WHEN NOT MATCHED THEN merge_insert_clause ;

UPDATE SET column =
expr

DEFAULT

,

MERGE

17-78 Oracle9i SQL Reference

merge_insert_clause ::=

Semantics

INTO Clause
Use the INTO clause to specify the target table you are updating or inserting into.

USING Clause
Use the USING clause to specify the source of the data to be updated or inserted.

The source can be a table, view, or the result of a subquery.

ON Clause
Use the ON clause to specify the condition upon which the MERGE operation either

updates or inserts. For each row in the target table for which the search condition is

true, Oracle updates the row based with corresponding data from the source table.

If the condition is not true for any rows, then Oracle inserts into the target table

based on the corresponding source table row.

WHEN MATCHED | NOT MATCHED
Use these clauses to instruct Oracle how to respond to the results of the join

condition in the ON clause. You can specify these two clauses in either order.

merge_update_clause
The merge_update_clause specifies the new column values of the target table.

Oracle performs this update if the condition of the ON clause is true. If the update

clause is executed, then all update triggers defined on the target table are activated.

Restrictions on Updating a View

■ You cannot specify DEFAULT when updating a view.

■ You cannot update a column that is referenced in the ONcondition clause.

INSERT (column

,

) VALUES (
expr

,

DEFAULT
)

MERGE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-79

merge_insert_clause
The merge_insert_clause specifies values to insert into the column of the target

table if the condition of the ONclause is false. If the insert clause is executed, then all

insert triggers defined on the target table are activated.

Restriction on Merging into a View You cannot specify DEFAULTwhen updating a

view.

Examples

Merging into a Table: Example The following example creates a bonuses table in

the sample schema oe with a default bonus of 100. It then inserts into the bonuses
table all employees who made sales (based on the sales_rep_id column of the

oe.orders table). Finally, the Human Resources manager decides that all
employees should receive a bonus. Those who have not made sales get a bonus of

1% of their salary. Those who already made sales get an increase in their bonus

equal to 1% of their salary. The MERGE statement implements these changes in one

step:

CREATE TABLE bonuses (employee_id NUMBER, bonus NUMBER DEFAULT 100);

INSERT INTO bonuses(employee_id)
 (SELECT e.employee_id FROM employees e, orders o
 WHERE e.employee_id = o.sales_rep_id
 GROUP BY e.employee_id);

SELECT * FROM bonuses;

EMPLOYEE_ID BONUS
----------- ----------
 153 100
 154 100
 155 100
 156 100
 158 100
 159 100
 160 100
 161 100
 163 100

MERGE INTO bonuses D
 USING (SELECT employee_id, salary, department_id FROM employees
 WHERE department_id = 80) S

MERGE

17-80 Oracle9i SQL Reference

 ON (D.employee_id = S.employee_id)
 WHEN MATCHED THEN UPDATE SET D.bonus = D.bonus + S.salary*.01
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.bonus)
 VALUES (S.employee_id, S.salary*0.1);

EMPLOYEE_ID BONUS
----------- ----------
 153 180
 154 175
 155 170
 156 200
 158 190
 159 180
 160 175
 161 170
 163 195
 157 950
 145 1400
 170 960
 179 620
 152 900
 169 1000
.
.
.

NOAUDIT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-81

NOAUDIT

Purpose
Use the NOAUDIT statement to stop auditing previously enabled by the AUDIT
statement.

The NOAUDIT statement must have the same syntax as the previous AUDIT
statement. Further, it reverses the effects only of that particular statement. For

example, suppose one AUDIT statement (statement A) enables auditing for a

specific user. A second (statement B) enables auditing for all users. A NOAUDIT
statement to disable auditing for all users (statement C) reverses statement B.

However, statement C leaves statement A in effect and continues to audit the user

that statement A specified.

Prerequisites
To stop auditing of SQL statements, you must have the AUDIT SYSTEM system

privilege.

To stop auditing of schema objects, you must be the owner of the object on which

you stop auditing or you must have the AUDIT ANY system privilege. In addition, if

the object you chose for auditing is a directory, then even if you created it, you must

have the AUDIT ANY system privilege.

Syntax
noaudit::=

(sql_statement_clause::= on page 17-82, schema_object_clause::= on

page 17-82)

See Also: AUDIT on page 12-54 for more information on auditing

NOAUDIT

sql_statement_clause

,

schema_object_clause

,
WHENEVER

NOT
SUCCESSFUL

;

NOAUDIT

17-82 Oracle9i SQL Reference

sql_statement_clause ::=

auditing_by_clause::=

schema_object_clause ::=

auditing_on_clause::=

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

BY

proxy

, ON BEHALF OF
user

,

ANY

user

,

object_option

,

ALL
auditing_on_clause

ON

schema .
object

DIRECTORY directory_name

DEFAULT

NOAUDIT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-83

Semantics

sql_statement_clause
Use the sql_statement_clause to stop auditing of a particular SQL statement.

statement_option For statement_option , specify the statement option for

which auditing is to be stopped.

ALL Specify ALL to stop auditing of all statement options currently being audited.

system_privilege For system_privilege , specify the system privilege for

which auditing is to be stopped.

ALL PRIVILEGES Specify ALL PRIVILEGES to stop auditing of all system

privileges currently being audited.

auditing_by_clause Use the auditing_by_clause to stop auditing only those

SQL statements issued by particular users. If you omit this clause, then Oracle stops

auditing all users’ statements.

■ Specify BYuser to stop auditing only for SQL statements issued by the

specified users in their subsequent sessions. If you omit this clause, then Oracle

stops auditing for all users’ statements, except for the situation described for

WHENEVER SUCCESSFUL.

■ Specify BYproxy to stop auditing only for the SQL statements issued by the

specified proxy, on behalf of a specific user or any user.

schema_object_clause
Use the schema_object_clause to stop auditing of a particular database object.

object_option For object_option , specify the type of operation for which

auditing is to be stopped on the object specified in the ON clause.

See Also: Table 12–1 on page 12-60 and Table 12–2 on page 12-62

for a list of the statement options and the SQL statements they

audit

See Also: Table 17–1 on page 17-36 for a list of the system

privileges and the statements they authorize

NOAUDIT

17-84 Oracle9i SQL Reference

ALL Specify ALL as a shortcut equivalent to specifying all object options

applicable for the type of object.

auditing_on_clause The auditing_on_clause lets you specify the particular

schema object for which auditing is to be stopped.

■ For object, specify the object name of a table, view, sequence, stored procedure,

function, or package, materialized view, or library. If you do not qualify

object with schema , then Oracle assumes the object is in your own schema.

■ The DIRECTORY clause lets you specify the name of the directory on which

auditing is to be stopped.

■ Specify DEFAULT to remove the specified object options as default object

options for subsequently created objects.

WHENEVER [NOT] SUCCESSFUL Specify WHENEVER SUCCESSFUL to stop

auditing only for SQL statements and operations on schema objects that complete

successfully.

Specify WHENEVER NOT SUCCESSFUL to stop auditing only for statements and

operations that result in Oracle errors.

If you omit this clause, then Oracle stops auditing for all statements or operations,

regardless of success or failure.

Examples

Stop Auditing of SQL Statements Related to Roles: Example If you have chosen

auditing for every SQL statement that creates or drops a role, then you can stop

auditing of such statements by issuing the following statement:

NOAUDIT ROLE;

Stop Auditing of Updates or Queries on Objects Owned by a Particular User:
Example If you have chosen auditing for any statement that queries or updates

any table issued by the users hr and oe , then you can stop auditing for queries by

hr by issuing the following statement:

See Also: Table 12–3 on page 12-64 for a list of these options

See Also: AUDIT on page 12-54 for information on auditing

specific schema objects

NOAUDIT

SQL Statements: DROP SEQUENCE to ROLLBACK 17-85

NOAUDIT SELECT TABLE BY hr;

The preceding statement stops auditing only queries by hr , so Oracle continues to

audit queries and updates by oe as well as updates by hr .

Stop Auditing of Statements Authorized by a Particular Object Privilege:
Example To stop auditing on all statements that are authorized by DELETE ANY
TABLE system privilege, issue the following statement:

NOAUDIT DELETE ANY TABLE;

Stop Auditing of Queries on a Particular Object: Example If you have chosen

auditing for every SQL statement that queries the employees table in the schema

hr , then you can stop auditing for such queries by issuing the following statement:

NOAUDIT SELECT
 ON hr.employees;

Stop Auditing of Queries that Complete Successfully: Example You can stop

auditing for queries that complete successfully by issuing the following statement:

NOAUDIT SELECT
 ON hr.employees
 WHENEVER SUCCESSFUL;

This statement stops auditing only for successful queries. Oracle continues to audit

queries resulting in Oracle errors.

RENAME

17-86 Oracle9i SQL Reference

RENAME

Purpose

Use the RENAME statement to rename a table, view, sequence, or private synonym.

■ Oracle automatically transfers integrity constraints, indexes, and grants on the

old object to the new object.

■ Oracle invalidates all objects that depend on the renamed object, such as views,

synonyms, and stored procedures and functions that refer to a renamed table.

Prerequisites
The object must be in your own schema.

Syntax
rename::=

Semantics

old_name
Specify the name of an existing table, view, sequence, or private synonym.

new_name
Specify the new name to be given to the existing object. The new name must not

already be used by another schema object in the same namespace and must follow

the rules for naming schema objects.

Caution: You cannot roll back a RENAME statement.

See Also: CREATE SYNONYM on page 15-2 and DROP

SYNONYM on page 17-4

RENAME old_name TO new_name ;

RENAME

SQL Statements: DROP SEQUENCE to ROLLBACK 17-87

Restrictions on Renaming Objects

■ You cannot rename a public synonym. Instead, drop the public synonym and

then re-create the public synonym with the new name.

■ You cannot rename a type synonym that has any dependent tables or

dependent valid user-defined object types.

Example

Renaming a Database Object: Example The following example uses a copy of the

sample table hr.departments . To change the name of table departments_new
to emp_departments , issue the following statement:

RENAME departments_new TO emp_departments;

You cannot use this statement directly to rename columns. However, you can

rename a column using the ALTER TABLE ... rename_column_clause .

Another way to rename a column is to use the RENAME statement together with the

CREATE TABLE statement with ASsubquery . This method is useful is you are

changing the structure of a table rather than only renaming a column. The following

statements re-create the sample table hr.job_history , renaming a column from

department_id to dept_id :

CREATE TABLE temporary
 (employee_id, start_date, end_date, job_id, dept_id)
AS SELECT
 employee_id, start_date, end_date, job_id, department_id
FROM job_history;

DROP TABLE job_history;

RENAME temporary TO job_history;

See Also: "Schema Object Naming Rules" on page 2-110

See Also: rename_column_clause on page 11-56

Note: Any integrity constraints defined on table job_history
will be lost in the preceding example. You will have to redefine

them on the new job_history table using an ALTER TABLE
statement.

REVOKE

17-88 Oracle9i SQL Reference

REVOKE

Purpose
Use the REVOKE statement to:

■ Revoke system privileges from users and roles

■ Revoke roles from users and roles

■ Revoke object privileges for a particular object from users and roles

Prerequisites
To revoke a system privilege or role, you must have been granted the privilege

with the ADMIN OPTION.

To revoke a role, you must have been granted the role with the ADMIN OPTION. You

can revoke any role if you have the GRANT ANY ROLE system privilege.

To revoke an object privilege, you must previously have granted the object

privilege to the user and role or you must have the GRANT ANY OBJECT PRIVILEGE
system privilege. In the latter case, you can revoke any object privilege that was

granted by the object owner or on behalf of the owner (that is, by a user with the

GRANT ANY OBJECT PRIVILEGE). However, you cannot revoke an object privilege

that was granted by way of a WITH GRANT OPTION grant.

The REVOKE statement can revoke only privileges and roles that were previously

granted directly with a GRANT statement. You cannot use this statement to revoke:

■ Privileges or roles not granted to the revokee

■ Roles or object privileges granted through the operating system

■ Privileges or roles granted to the revokee through roles

See Also:

■ GRANT on page 17-29 for information on granting system

privileges and roles

■ Table 17–3 on page 17-46 for a summary of the object privileges

for each type of object

See Also: "Revoke Operations that Use GRANT ANY OBJECT

PRIVILEGE: Example" on page 17-98

REVOKE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-89

Syntax
revoke::=

(revoke_system_privileges::= on page 17-89, revoke_object_
privileges::= on page 17-89)

revoke_system_privileges ::=

(grantee_clause::= on page 17-90)

revoke_object_privileges ::=

(on_object_clause::= on page 17-90, grantee_clause::= on page 17-90)

REVOKE
revoke_system_privilege

revoke_object_privileges

,

;

system_privilege

role

ALL PRIVILEGES

,

FROM grantee_clause

object_privilege

ALL
PRIVILEGES

(column

,

)

,

on_object_clause

FROM grantee_clause
CASCADE CONSTRAINTS FORCE

REVOKE

17-90 Oracle9i SQL Reference

grantee_clause ::=

on_object_clause ::=

Semantics

revoke_system_privileges

system_privilege
Specify the system privilege to be revoked.

■ If you revoke a privilege from a user, then Oracle removes the privilege from

the user’s privilege domain. Effective immediately, the user cannot exercise the

privilege.

■ If you revoke a privilege from a role, then Oracle removes the privilege from

the role’s privilege domain. Effective immediately, users with the role enabled

cannot exercise the privilege. Also, other users who have been granted the role

and subsequently enable the role cannot exercise the privilege.

See Also: Table 17–1 on page 17-36 for a list of the system

privileges

See Also: "Revoking a System Privilege from a User: Example" on

page 17-95

user

role

PUBLIC

,

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

REVOKE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-91

■ If you revoke a privilege from PUBLIC, then Oracle removes the privilege from

the privilege domain of each user who has been granted the privilege through

PUBLIC. Effective immediately, such users can no longer exercise the privilege.

However, the privilege is not revoked from users who have been granted the

privilege directly or through roles.

Restriction on Revoking System Privileges A system privilege cannot appear

more than once in the list of privileges to be revoked.

Oracle provides a shortcut for specifying all system privileges at once:

■ ALL PRIVILEGES: Specify ALL PRIVILEGES to revoke all the system privileges

listed in Table 17–1 on page 17-36.

role
Specify the role to be revoked.

■ If you revoke a role from a user, then Oracle makes the role unavailable to the

user. If the role is currently enabled for the user, the user can continue to

exercise the privileges in the role’s privilege domain as long as it remains

enabled. However, the user cannot subsequently enable the role.

■ If you revoke a role from another role, then Oracle removes the revoked role’s

privilege domain from the revokee role’s privilege domain. Users who have

been granted and have enabled the revokee role can continue to exercise the

privileges in the revoked role’s privilege domain as long as the revokee role

remains enabled. However, other users who have been granted the revokee role

and subsequently enable it cannot exercise the privileges in the privilege

domain of the revoked role.

■ If you revoke a role from PUBLIC, then Oracle makes the role unavailable to all

users who have been granted the role through PUBLIC. Any user who has

enabled the role can continue to exercise the privileges in its privilege domain

as long as it remains enabled. However, users cannot subsequently enable the

See Also: "Revoking a System Privilege from a Role: Example" on

page 17-95

See Also: "Revoking a Role from a User: Example" on page 17-95

See Also: "Revoking a Role from a Role: Example" on page 17-96

REVOKE

17-92 Oracle9i SQL Reference

role. The role is not revoked from users who have been granted the role directly

or through other roles.

Restriction on Revoking System Roles A system role cannot appear more than

once in the list of roles to be revoked.

grantee_clause
FROMgrantee_clause identifies users or roles from which the system privilege,

role, or object privilege is to be revoked.

PUBLIC Specify PUBLIC to revoke the privileges or roles from all users.

revoke_object_privileges

object_privilege
Specify the object privilege to be revoked. You can substitute any of the following

values: ALTER, DELETE, EXECUTE, INDEX, INSERT, READ, REFERENCES, SELECT,
UPDATE.

If you revoke a privilege from a user, then Oracle removes the privilege from the

user’s privilege domain. Effective immediately, the user cannot exercise the

privilege.

■ If that user has granted that privilege to other users or roles, then Oracle also

revokes the privilege from those other users or roles.

■ If that user’s schema contains a procedure, function, or package that contains

SQL statements that exercise the privilege, then the procedure, function, or

package can no longer be executed.

See Also: Table 17–2 on page 17-45 for a list of the roles

predefined by Oracle

Note: Each privilege authorizes some operation. By revoking a

privilege, you prevent the revokee from performing that operation.

However, multiple users may grant the same privilege to the same

user, role, or PUBLIC. To remove the privilege from the grantee’s

privilege domain, all grantors must revoke the privilege. If even

one grantor does not revoke the privilege, then the grantee can still

exercise the privilege by virtue of that grant.

REVOKE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-93

■ If that user’s schema contains a view on that object, then Oracle invalidates the

view.

■ If you revoke the REFERENCES privilege from a user who has exercised the

privilege to define referential integrity constraints, then you must specify the

CASCADE CONSTRAINTS clause.

If you revoke a privilege from a role, then Oracle removes the privilege from the

role’s privilege domain. Effective immediately, users with the role enabled cannot

exercise the privilege. Other users who have been granted the role cannot exercise

the privilege after enabling the role.

If you revoke a privilege from PUBLIC, then Oracle removes the privilege from the

privilege domain of each user who has been granted the privilege through PUBLIC.

Effective immediately, all such users are restricted from exercising the privilege.

However, the privilege is not revoked from users who have been granted the

privilege directly or through roles.

Restriction on Revoking Object Privileges A privilege cannot appear more than

once in the list of privileges to be revoked. A user, a role, or PUBLIC cannot appear

more than once in the FROM clause.

ALL [PRIVILEGES]
Specify ALL to revoke all object privileges that you have granted to the revokee.

(The keyword PRIVILEGES is provided for semantic clarity and is optional.)

See Also: "Revoking an Object Privilege from a User: Example"

on page 17-96

See Also: "Revoking Object Privileges from PUBLIC: Example"

on page 17-96

Note: If no privileges have been granted on the object, then Oracle

takes no action and does not return an error.

See Also: "Revoking All Object Privileges from a User: Example"

on page 17-96

REVOKE

17-94 Oracle9i SQL Reference

CASCADE CONSTRAINTS
This clause is relevant only if you revoke the REFERENCES privilege or ALL
[PRIVILEGES]. It drops any referential integrity constraints that the revokee has

defined using the REFERENCES privilege (which might have been granted either

explicitly or implicitly through a grant of ALL [PRIVILEGES]).

FORCE
Specify FORCE to revoke the EXECUTE object privilege on user-defined type objects

with table or type dependencies. You must use FORCEto revoke the EXECUTEobject

privilege on user-defined type objects with table dependencies.

If you specify FORCE, then all privileges will be revoked, but all dependent objects

are marked INVALID , data in dependent tables becomes inaccessible, and all

dependent function-based indexes are marked UNUSABLE. (Regranting the

necessary type privilege will revalidate the table.)

on_object_clause
The on_object_clause identifies the objects on which privileges are to be

revoked.

object Specify the object on which the object privileges are to be revoked. This

object can be:

■ A table, view, sequence, procedure, stored function, or package, materialized

view

■ A synonym for a table, view, sequence, procedure, stored function, package,

materialized view, or user-defined type

■ A library, indextype, or user-defined operator

If you do not qualify object with schema , then Oracle assumes the object is in your

own schema.

See Also: "Revoking an Object Privilege with CASCADE

CONSTRAINTS: Example" on page 17-97

See Also: Oracle9i Database Concepts for detailed information

about type dependencies and user-defined object privileges

See Also: "Revoking an Object Privilege on a Sequence from a

User: Example" on page 17-97

REVOKE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-95

If you revoke the SELECT object privilege (with or without the GRANT OPTION) on

the containing table or materialized view of a materialized view, then Oracle

invalidates the materialized view.

If you revoke the SELECT object privilege (with or without the GRANT OPTION) on

any of the master tables of a materialized view, then Oracle invalidates both the

materialized view and its containing table or materialized view.

DIRECTORY directory_name Specify the directory object on which privileges are

to be revoked. You cannot qualify directory_name with schema . The object must

be a directory.

JAVA SOURCE | RESOURCE The JAVA clause lets you specify a Java source or

resource schema object on which privileges are to be revoked.

Examples

Revoking a System Privilege from a User: Example The following statement

revokes the DROP ANY TABLE system privilege from the users hr and oe :

REVOKE DROP ANY TABLE
 FROM hr, oe;

The users hr and oe can no longer drop tables in schemas other than their own.

Revoking a Role from a User: Example The following statement revokes the role

dw_manager from the user sh :

REVOKE dw_manager
 FROM sh;

sh can no longer enable the dw_manager role.

Revoking a System Privilege from a Role: Example The following statement

revokes the CREATE TABLESPACE system privilege from the dw_manager role:

REVOKE CREATE TABLESPACE
 FROM dw_manager;

See Also: CREATE DIRECTORY on page 13-49 and "Revoking an

Object Privilege on a Directory from a User: Example" on

page 17-98

REVOKE

17-96 Oracle9i SQL Reference

Enabling the dw_manager role no longer allows users to create tablespaces.

Revoking a Role from a Role: Example To revoke the role dw_user from the role

dw_manager , issue the following statement:

REVOKE dw_user
 FROM dw_manager;

dw_user privileges are no longer granted to dw_manager

Revoking an Object Privilege from a User: Example You can grant DELETE,
INSERT, SELECT, and UPDATE privileges on the table orders to the user hr with

the following statement:

GRANT ALL
 ON orders TO hr;

To revoke the DELETE privilege on orders from hr , issue the following statement:

REVOKE DELETE
 ON orders FROM hr;

Revoking All Object Privileges from a User: Example To revoke the remaining

privileges on orders that you granted to hr , issue the following statement:

REVOKE ALL
 ON orders FROM hr;

Revoking Object Privileges from PUBLIC: Example You can grant SELECT and

UPDATE privileges on the view emp_details_view to all users by granting the

privileges to the role PUBLIC:

GRANT SELECT, UPDATE
 ON emp_details_view TO public;

The following statement revokes UPDATE privilege on emp_details_view from

all users:

REVOKE UPDATE
 ON emp_details_view FROM public;

Users can no longer update the emp_details_view view, although users can still

query it. However, if you have also granted the UPDATE privilege on emp_
details_view to any users, either directly or through roles, then these users

retain the privilege.

REVOKE

SQL Statements: DROP SEQUENCE to ROLLBACK 17-97

Revoking an Object Privilege on a Sequence from a User: Example You can grant

the user oe the SELECT privilege on the departments_seq sequence in the

schema hr with the following statement:

GRANT SELECT
 ON hr.departments_seq TO oe;

To revoke the SELECT privilege on departments_seq from oe , issue the

following statement:

REVOKE SELECT
 ON hr.departments_seq FROM oe;

However, if the user hr has also granted SELECTprivilege on departments to sh ,

then sh can still use departments by virtue of hr ’s grant.

Revoking an Object Privilege with CASCADE CONSTRAINTS: Example You can

grant oe the privileges REFERENCES and UPDATE on the employees table in the

schema hr with the following statement:

GRANT REFERENCES, UPDATE
 ON hr.employees TO oe;

oe can exercise the REFERENCES privilege to define a constraint in his own

dependent table that refers to the employees table in the schema hr :

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

You can revoke the REFERENCES privilege on hr.employees from oe by issuing

the following statement that contains the CASCADE CONSTRAINTS clause:

REVOKE REFERENCES
 ON hr.employees
 FROM oe
 CASCADE CONSTRAINTS;

Revoking oe ’s REFERENCESprivilege on hr.employees causes Oracle to drop the

in_emp constraint, because oe required the privilege to define the constraint.

However, if oe has also been granted the REFERENCES privilege on

hr.employees by a user other than you, then Oracle does not drop the constraint.

REVOKE

17-98 Oracle9i SQL Reference

oe still has the privilege necessary for the constraint by virtue of the other user’s

grant.

Revoking an Object Privilege on a Directory from a User: Example You can

revoke READ privilege on directory bfile_dir from hr , by issuing the following

statement:

REVOKE READ ON DIRECTORY bfile_dir FROM hr;

Revoke Operations that Use GRANT ANY OBJECT PRIVILEGE: Example
Suppose that the database administrator has granted GRANT ANY OBJECT
PRIVILEGE to user sh . Now suppose that user hr grants the update privilege on

the employees table to oe :

CONNECT hr/hr
GRANT UPDATE ON employees TO oe WITH GRANT OPTION;

This grant gives user oe the right to pass the object privilege along to another user:

CONNECT oe/oe
GRANT UPDATE ON hr.employees TO pm;

User sh , who has the GRANT ANY OBJECT PRIVILEGE, can now act on behalf of

user hr and revoke the update privilege from user oe , because oe was granted the

privilege by hr :

CONNECT sh/sh
REVOKE UPDATE ON hr.employees FROM oe;

User sh cannot revoke the update privilege from user pm explicitly, because pm
received the grant neither from the object owner (hr), nor from sh , nor from

another user with GRANT ANY OBJECT PRIVILEGE, but from user oe . However, the

preceding statement cascades, removing all privileges that depend on the one

revoked. Therefore the object privilege is implicitly revoked from pm as well.

ROLLBACK

SQL Statements: DROP SEQUENCE to ROLLBACK 17-99

ROLLBACK

Purpose
Use the ROLLBACK statement to undo work done in the current transaction, or to

manually undo the work done by an in-doubt distributed transaction.

Prerequisites
To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally

committed, you must have the FORCE TRANSACTIONsystem privilege. To manually

roll back an in-doubt distributed transaction originally committed by another user,

you must have the FORCE ANY TRANSACTION system privilege.

Note: Oracle recommends that you explicitly end transactions in

application programs using either a COMMIT or ROLLBACK
statement. If you do not explicitly commit the transaction and the

program terminates abnormally, then Oracle rolls back the last

uncommitted transaction.

See Also:

■ Oracle9i Database Concepts for information on transactions

■ Oracle9i Heterogeneous Connectivity Administrator’s Guide for

information on distributed transactions

■ SET TRANSACTION on page 18-50 for information on setting

characteristics of the current transaction

■ COMMIT on page 12-75

■ SAVEPOINT on page 18-2

ROLLBACK

17-100 Oracle9i SQL Reference

Syntax
rollback::=

Semantics

WORK
The keyword WORK is optional and is provided for ANSI compatibility.

TO SAVEPOINT Clause
Specify the savepoint to which you want to roll back the current transaction. If you

omit this clause, then the ROLLBACK statement rolls back the entire transaction.

Using ROLLBACK without the TO SAVEPOINT clause performs the following

operations:

■ Ends the transaction

■ Undoes all changes in the current transaction

■ Erases all savepoints in the transaction

■ Releases the transaction’s locks

Using ROLLBACK with the TO SAVEPOINT clause performs the following

operations:

■ Rolls back just the portion of the transaction after the savepoint.

■ Erases all savepoints created after that savepoint. The named savepoint is

retained, so you can roll back to the same savepoint multiple times. Prior

savepoints are also retained.

■ Releases all table and row locks acquired since the savepoint. Other transactions

that have requested access to rows locked after the savepoint must continue to

wait until the transaction is committed or rolled back. Other transactions that

See Also: SAVEPOINT on page 18-2

ROLLBACK
WORK

TO
SAVEPOINT

savepoint

FORCE ’ text ’
;

ROLLBACK

SQL Statements: DROP SEQUENCE to ROLLBACK 17-101

have not already requested the rows can request and access the rows

immediately.

Restrictions on In-doubt Transactions You cannot manually roll back an in-doubt

transaction to a savepoint.

FORCE Clause
Specify FORCE to manually roll back an in-doubt distributed transaction. The

transaction is identified by the ’text ’ containing its local or global transaction ID.

To find the IDs of such transactions, query the data dictionary view DBA_2PC_
PENDING.

A ROLLBACK statement with a FORCE clause rolls back only the specified

transaction. Such a statement does not affect your current transaction.

Restriction on Forcing Rollback ROLLBACK statements with the FORCE clause are

not supported in PL/SQL.

Examples

Rolling Back Transactions: Examples The following statement rolls back your

entire current transaction:

ROLLBACK;

The following statement rolls back your current transaction to savepoint banda_
sal :

ROLLBACK TO SAVEPOINT banda_sal;

The following statement manually rolls back an in-doubt distributed transaction:

ROLLBACK WORK
 FORCE ’25.32.87’;

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information on distributed transactions and rolling back

in-doubt transactions

See Also: "Creating Savepoints: Example" on page 18-2 for a full

version of this example

ROLLBACK

17-102 Oracle9i SQL Reference

SQL Statements: SAVEPOINT to UPDATE 18-1

18
SQL Statements: SAVEPOINT to UPDATE

This chapter contains the following SQL statements:

■ SAVEPOINT

■ SELECT

■ SET CONSTRAINT[S]

■ SET ROLE

■ SET TRANSACTION

■ TRUNCATE

■ UPDATE

SAVEPOINT

18-2 Oracle9i SQL Reference

SAVEPOINT

Purpose
Use the SAVEPOINT statement to identify a point in a transaction to which you can

later roll back.

Prerequisites
None.

Syntax
savepoint::=

Semantics

savepoint
Specify the name of the savepoint to be created.

Savepoint names must be distinct within a given transaction. If you create a second

savepoint with the same identifier as an earlier savepoint, then the earlier savepoint

is erased. After a savepoint has been created, you can either continue processing,

commit your work, roll back the entire transaction, or roll back to the savepoint.

Example

Creating Savepoints: Example To update Banda ’s and Greene’s salary in the

sample table hr.employees , check that the total department salary does not

exceed 314,000, then reenter Greene’s salary, enter:

See Also:

■ Oracle9i Database Concepts for information on savepoints.

■ ROLLBACK on page 17-99 for information on rolling back

transactions

■ SET TRANSACTION on page 18-50 for information on setting

characteristics of the current transaction

SAVEPOINT savepoint ;

SAVEPOINT

SQL Statements: SAVEPOINT to UPDATE 18-3

UPDATE employees
 SET salary = 7000
 WHERE last_name = ’Banda’;
SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 12000
 WHERE last_name = ’Greene’;
SAVEPOINT greene_sal;

SELECT SUM(salary) FROM employees;

ROLLBACK TO SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 11000
 WHERE last_name = ’Greene’;

COMMIT;

SELECT

18-4 Oracle9i SQL Reference

SELECT

Purpose
Use a SELECT statement or subquery to retrieve data from one or more tables,

object tables, views, object views, or materialized views.

Prerequisites
For you to select data from a table or materialized view, the table or materialized

view must be in your own schema or you must have the SELECT privilege on the

table or materialized view.

For you to select rows from the base tables of a view,

■ You must have the SELECT privilege on the view, and

■ Whoever owns the schema containing the view must have the SELECT
privilege on the base tables.

The SELECT ANY TABLE system privilege also allows you to select data from any

table or any materialized view or any view’s base table.

Note: If the result (or part of the result) of a SELECT statement is

equivalent to an existing materialized view, then Oracle may use

the materialized view in place of one or more tables specified in the

SELECT statement. This substitution is called query rewrite, and

takes place only if cost optimization is enabled and the QUERY_
REWRITE_ENABLED parameter is set to TRUE. To determine

whether query write has occurred, use the EXPLAIN PLAN
statement.

See Also:

■ Chapter 8, "SQL Queries and Subqueries" for general

information on queries and subqueries

■ Oracle9i Data Warehousing Guide for more information on

materialized views and query rewrite

■ EXPLAIN PLAN on page 17-24

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-5

To issue a flashback query (using the flashback_clause), either you must have

FLASHBACK object privilege on the objects in the select list, or you must have

FLASHBACK ANY TABLE system privilege.

Syntax
select::=

(for_update_clause::= on page 18-10)

subquery::=

(subquery_factoring_clause::= on page 18-5, select_list::= on

page 18-6, table_reference::= on page 18-6, hierarchical_query_
clause::= on page 18-8, group_by_clause::= on page 18-9, order_by_
clause::= on page 18-10)

subquery_factoring_clause ::=

subquery
for_update_clause

;

subquery_factoring_clause
SELECT

hint

DISTINCT

UNIQUE

ALL
select_list

FROM table_reference

,
where_clause hierarchical_query_clause group_by_clause

HAVING condition

UNION
ALL

INTERSECT

MINUS

(subquery)

order_by_clause

WITH query_name AS (subquery)

,

SELECT

18-6 Oracle9i SQL Reference

select_list ::=

table_reference::=

(query_table_expression::= on page 18-7, flashback_clause::= on

page 18-6)

flashback_clause ::=

*

query_name

schema .
table

view

materialized view

.*

expr

AS
c_alias

,

ONLY (query_table_expression)
flashback_clause t_alias

query_table_expression
flashback_clause t_alias

(joined_table)

joined_table

AS OF
SCN

TIMESTAMP
expr

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-7

query_table_expression ::=

(subquery_restriction_clause::= on page 18-7, table_collection_
expression::= on page 18-7)

sample_clause ::=

subquery_restriction_clause ::=

table_collection_expression ::=

query_name

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

sample_clause

sample_clause

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

SAMPLE
BLOCK

(sample_percent)

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

SELECT

18-8 Oracle9i SQL Reference

joined_table ::=

(table_reference::= on page 18-6)

join_type ::=

where_clause ::=

hierarchical_query_clause ::=

table_reference

join_type
JOIN table_reference

ON condition

USING (column

,

)

CROSS JOIN

NATURAL
join_type

JOIN

table_reference

INNER

LEFT

RIGHT

FULL

OUTER

WHERE condition

START WITH condition
CONNECT BY condition

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-9

group_by_clause ::=

(rollup_cube_clause::= on page 18-9, grouping_sets_clause::= on

page 18-9)

rollup_cube_clause::=

(grouping_expression_list::= on page 18-9)

grouping_sets_clause::=

(rollup_cube_clause::= on page 18-9, grouping_expression_list::= on

page 18-9)

grouping_expression_list::=

expression_list::=

GROUP BY

expr

rollup_cube_clause

grouping_sets_clause

,

HAVING condition

ROLLUP

CUBE
(grouping_expression_list)

GROUPING SETS (
rollup_cube_clause

grouping_expression_list
)

expression_list

,

expr

,

(expr

,

)

SELECT

18-10 Oracle9i SQL Reference

order_by_clause ::=

for_update_clause ::=

Semantics

subquery_factoring_clause
The subquery_factoring_clause (WITHquery_name) lets you assign names

to subquery blocks. You can then reference the subquery block multiple places in

the query by specifying the query name. Oracle optimizes the query by treating the

query name as either an inline view or as a temporary table.

You can specify this clause in any top-level SELECT statement and in most types of

subqueries. The query name is visible to all subsequent subqueries (except the

subquery that defines the query name itself) and to the main query.

Restrictions on Subquery Factoring

■ You cannot nest this clause. That is, you cannot specify the subquery_
factoring_clause as a subquery within another subquery_factoring_
clause .

ORDER
SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

FOR UPDATE
OF

schema . table

view
.

column

,

NOWAIT

WAIT integer

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-11

■ In a query with set operators, the set operator subquery cannot contain the

subquery_factoring_clause , but the FROM subquery can contain the

subquery_factoring_clause .

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

DISTINCT | UNIQUE
Specify DISTINCT or UNIQUE if you want Oracle to return only one copy of each

set of duplicate rows selected (these two keywords are synonymous). Duplicate

rows are those with matching values for each expression in the select list.

Restrictions on DISTINCT and UNIQUE Queries

■ When you specify DISTINCT or UNIQUE, the total number of bytes in all select

list expressions is limited to the size of a data block minus some overhead. This

size is specified by the initialization parameter DB_BLOCK_SIZE.

■ You cannot specify DISTINCT if the select_list contains LOB columns.

ALL
Specify ALL if you want Oracle to return all rows selected, including all copies of

duplicates. The default is ALL.

* (asterisk)
Specify the asterisk to select all columns from all tables, views, or materialized

views listed in the FROM clause.

See Also:

■ Oracle9i Database Concepts for information about inline views

■ Oracle9i Data Warehousing Guide and Oracle9i Application
Developer’s Guide - Fundamentals for information on using the

subquery factoring feature

■ "Subquery Factoring: Example" on page 18-27

See Also: "Hints" on page 2-91 and Oracle9i Database Performance
Tuning Guide and Reference for the syntax and description of hints

SELECT

18-12 Oracle9i SQL Reference

select_list
The select_list lets you specify the columns you want to retrieve from the

database.

query_name
For query_name , specify a name already specified in the subquery_factoring_
clause . You must have specified the subquery_factoring_clause in order to

specify query_name in the select_list . If you specify query_name in the

select_list , then you also must specify query_name in the query_table_
expression (FROM clause).

table.* | view.* | materialized view.*
Specify the object name followed by a period and the asterisk to select all columns

from the specified table, view, or materialized view. A query that selects rows from

two or more tables, views, or materialized views is a join.

You can use the schema qualifier to select from a table, view, or materialized view in

a schema other than your own. If you omit schema , then Oracle assumes the table,

view, or materialized view is in your own schema.

expr
Specify an expression representing the information you want to select. A column

name in this list can be qualified with schema only if the table, view, or

materialized view containing the column is qualified with schema in the FROM
clause. If you specify a member method of an object type, then you must follow the

method name with parentheses even if the method takes no arguments.

Note: If you are selecting from a table (that is, you specify a table

in the FROM clause rather than a view or a materialized view), then

then columns that have been marked as UNUSED by the ALTER
TABLE SET UNUSED statement are not selected.

See Also: ALTER TABLE on page 11-2, "Simple Query Examples"

on page 18-28, and "Selecting from the DUAL Table: Example" on

page 18-44

See Also: "Joins" on page 8-10

See Also: "Selecting Sequence Values: Examples" on page 18-44

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-13

c_alias Specify a different name (alias) for the column expression. Oracle will use

this alias in the column heading. The AS keyword is optional. The alias effectively

renames the select list item for the duration of the query. The alias can be used in

the order_by_clause , but not other clauses in the query.

Restrictions on the Select List

■ If you also specify a group_by_clause in this statement, then this select list

can contain only the following types of expressions:

■ Constants

■ Aggregate functions and the functions USER, UID , and SYSDATE

■ Expressions identical to those in the group_by_clause

■ Expressions involving the preceding expressions that evaluate to the same

value for all rows in a group

■ You can select a rowid from a join view only if the join has one and only one

key-preserved table. The rowid of that table becomes the rowid of the view.

■ If two or more tables have some column names in common, then you must

qualify column names with names of tables.

FROM Clause
The FROM clause lets you specify the objects from which data is selected.

query_table_expression
Use the query_table_expression clause to identify a table, view, materialized

view, or partition, or to specify a subquery that identifies the objects.

See Also:

■ Oracle9i Data Warehousing Guide for information on using the

expr ASc_alias syntax with the UNION ALL operator in

queries of multiple materialized views

■ "About SQL Expressions" on page 4-2 for the syntax of expr

See Also: Oracle9i Database Administrator’s Guide for information

on key-preserved tables

See Also: "Using Subqueries: Examples" on page 18-35

SELECT

18-14 Oracle9i SQL Reference

ONLY The ONLYclause applies only to views. Specify ONLYif the view in the FROM
clause is a view belonging to a hierarchy and you do not want to include rows from

any of its subviews.

flashback_clause
Use the flashback_clause to query past data from a table, view, or materialized

view. If you specify SCN, then expr must evaluate to a number. If you specify

TIMESTAMP, then expr must evaluate to a timestamp value. Oracle returns rows as

they existed at the specified system change number or time.

Restrictions on Flashback Queries

■ You cannot apply the flashback_clause to a remote database object.

However, you can include remote objects in a join with local objects to which

you apply the flashback_clause .

■ You cannot specify this clause if you have specify query_name in the query_
table_expression .

PARTITION | SUBPARTITION For PARTITION or SUBPARTITION, specify the

name of the partition or subpartition within table from which you want to retrieve

data.

For range- and list-partitioned data, as an alternative to this clause, you can specify

a condition in the WHERE clause that restricts the retrieval to one or more partitions

of table . Oracle will interpret the condition and fetch data from only those

Note: This clause implements SQL-driven flashback, which lets

you specify a different system change number or timestamp for

each object in the select list. You can also implement session-level

flashback using the DBMS_FLASHBACKpackage. For information on

session-level flashback, please refer to Oracle9i Application
Developer’s Guide - Fundamentals and Oracle9i Supplied PL/SQL
Packages and Types Reference.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information on flashback queries

■ "Using Flashback Queries: Example" on page 18-29

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-15

partitions. (It is not possible to formulate such a WHERE condition for

hash-partitioned data.)

dblink For dblink , specify the complete or partial name for a database link to a

remote database where the table, view, or materialized view is located. This

database need not be an Oracle database.

If you omit dblink , then Oracle assumes that the table, view, or materialized view

is on the local database.

Restrictions on Database Links

■ You cannot query a user-defined type or an object REF on a remote table.

■ You cannot query columns of type AnyType , AnyData , or AnyDataSet from

remote tables.

table | view | materialized view For table , view , or materialized view ,

specify the name of a table, view, or materialized view from which data is selected.

sample_clause
The sample_clause lets you instruct Oracle to select from a random sample of

rows from the table, rather than from the entire table.

BLOCK BLOCK instructs Oracle to perform random block sampling instead of

random row sampling.

See Also: "Selecting from a Partition: Example" on page 18-28

See Also:

■ "Referring to Objects in Remote Databases" on page 2-118 for

more information on referring to database links

■ "Distributed Queries" on page 8-16 for more information about

distributed queries and "Using Distributed Queries: Example"

on page 18-42

See Also: "Selecting a Sample: Examples" on page 18-29

See Also: Oracle9i Database Concepts for a discussion of the

difference

SELECT

18-16 Oracle9i SQL Reference

sample_percent sample_percent is a number specifying the percentage of the

total row or block count to be included in the sample. The value must be in the

range .000001 to (but not including) 100.

Restrictions on Sampling During Queries

■ You can specify SAMPLE only in a query that selects from a single table. Joins

are not supported. However, you can achieve the same results by using a

CREATE TABLE ... AS SELECT query to materialize a sample of an underlying

table and then rewrite the original query to refer to the newly created table

sample. If you wish, you can write additional queries to materialize samples for

other tables.

■ When you specify SAMPLE, Oracle automatically uses cost-based optimization.

Rule-based optimization is not supported with this clause.

subquery_restriction_clause The subquery_restriction_clause lets you

restrict the subquery in one of the following ways:

WITH READ ONLY Specify WITH READ ONLY to indicate that the table or view

cannot be updated.

WITH CHECK OPTION Specify WITH CHECK OPTION to indicate that Oracle

prohibits any changes to the table or view that would produce rows that are not

included in the subquery.

CONSTRAINT constraint Specify the name of the CHECK OPTION constraint. If

you omit this identifier, Oracle automatically assigns the constraint a name of the

form SYS_Cn, where n is an integer that makes the constraint name unique within

the database.

See Also: "Selecting a Sample: Examples" on page 18-29

Caution: The use of statistically incorrect assumptions when

using this feature can lead to incorrect or undesirable results.

See Also: "Using the WITH CHECK OPTION Clause: Example"

on page 18-34

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-17

table_collection_expression
The table_collection_expression lets you inform Oracle that the value of

collection_expression should be treated as a table for purposes of query and

DML operations. The collection_expression can be a subquery, a column, a

function, or a collection constructor. Regardless of its form, it must return a

collection value (that is, a value whose type is nested table or varray). This process

of extracting the elements of a collection is called collection unnesting.

The collection_expression can reference columns of tables defined to its left

in the FROM clause. This is called left correlation. Left correlation can occur only in

table_collection_expression . Other subqueries cannot contains references

to columns defined outside the subquery.

The optional "(+)" lets you specify that table_collection_expression should

return a row with all fields set to NULL if the collection is null or empty. The "(+)" is

valid only if collection_expression uses left correlation. The result is similar

to that of an outer join.

t_alias
Specify a correlation name (alias) for the table, view, materialized view, or

subquery for evaluating the query. Correlation names are most often used in a

correlated query. Other references to the table, view, or materialized view

throughout the query must refer to this alias.

Note: In earlier releases of Oracle, when collection_
expression was a subquery, table_collection_expression
was expressed as "THE subquery". That usage is now deprecated.

Note: When you use the "(+)" syntax in the WHERE clause of a

subquery in an UPDATE or DELETE operation, you must specify

two tables in the FROM clause of the subquery. Oracle ignores the

outer join syntax unless there is a join in the subquery itself.

See Also:

■ "Outer Joins" on page 8-12

■ "Table Collections: Examples" on page 18-38 and "Collection

Unnesting: Examples" on page 18-40

SELECT

18-18 Oracle9i SQL Reference

joined_table
Use the joined_table syntax to identify tables that are part of a join from which

to select data.

join_type The join_type indicates the kind of join being performed:

■ Specify INNER to indicate explicitly that an inner join is being performed. This

is the default.

■ Specify RIGHT to indicate a right outer join.

■ Specify LEFT to indicate a left outer join.

■ Specify FULL to indicate a full or two-sided outer join. In addition to the inner

join, rows from both tables that have not been returned in the result of the inner

join will be preserved and extended with nulls.

■ You can specify the optional OUTER keyword following RIGHT, LEFT, or FULL
to explicitly clarify that an outer join is being performed.

JOIN The JOIN keyword explicitly states that a join is being performed. You can

use this syntax to replace the comma-delimited table expressions used in WHERE
clause joins with FROM clause join syntax.

ON condition Use the ON clause to specify a join condition. Doing so lets you

specify join conditions separate from any search or filter conditions in the WHERE
clause.

USING column When you are specifying an equijoin of columns that have the

same name in both tables, the USING column clause indicates the columns to be

used. You can use this clause only if the join columns in both tables have the same

name. Do not qualify the column name with a table name or table alias.

Note: This alias is required if the query_table_expr_clause
references any object type attributes or object type methods.

See Also: "Using Correlated Subqueries: Examples" on page 18-43

See Also: "Joins" on page 8-10 for more information on joins,

"Using Join Queries: Examples" on page 18-34, "Using Self Joins:

Example" on page 18-36, and "Using Outer Joins: Examples" on

page 18-36

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-19

In an outer join with the USINGclause, the query returns a single column which is a

coalesce of the two matching columns in the join. The coalesce functions as follows:

COALESCE (a, b) = a if a NOT NULL, else b.

Therefore:

■ A left outer join returns all the common column values from the left table in the

FROM clause.

■ A right outer join returns all the common column values from the right table in

the FROM clause.

■ A full outer join returns all the common column values from both joined tables.

Restriction on Columns Used in Joins You cannot specify a LOB column or a

collection column in the USINGcolumn clause.

CROSS JOIN The CROSSkeyword indicates that a cross join is being performed. A

cross join produces the cross-product of two relations and is essentially the same as

the comma-delimited Oracle notation.

NATURAL JOIN The NATURAL keyword indicates that a natural join is being

performed. A natural join is based on all columns in the two tables that have the

same name. It selects rows from the two tables that have equal values in the

relevant columns. When specifying columns that are involved in the natural join, do

not qualify the column name with a table name or table alias.

See Also: "Using Outer Joins: Examples" on page 18-36

Note: On occasion, the table pairings in natural or cross joins may

be ambiguous. For example:

 a NATURAL LEFT JOIN b LEFT JOIN c ON b.c1 = c.c1

can be interpreted in either of the following ways:

 a NATURAL LEFT JOIN (b LEFT JOIN c ON b.c1 = c.c1)
 (a NATURAL LEFT JOIN b) LEFT JOIN c ON b.c1 = c.c1

To avoid this ambiguity, you can use parentheses to specify the

pairings of joined tables. In the absence of such parentheses, Oracle

uses left associativity, pairing the tables from left to right.

SELECT

18-20 Oracle9i SQL Reference

Restriction on Natural Joins You cannot specify a LOB column, columns of

AnyType , AnyData , or AnyDataSet , or a collection column as part of a natural

join.

where_clause
The WHERE condition lets you restrict the rows selected to those that satisfy one or

more conditions. For condition , specify any valid SQL condition.

If you omit this clause, then Oracle returns all rows from the tables, views, or

materialized views in the FROM clause.

hierarchical_query_clause
The hierarchical_query_clause lets you select rows in a hierarchical order.

SELECT statements that contain hierarchical queries can contain the LEVEL
pseudocolumn in the select list. LEVEL returns the value 1 for a root node, 2 for a

child node of a root node, 3 for a grandchild, and so on. The number of levels

returned by a hierarchical query may be limited by available user memory.

If you specify this clause, do not specify either ORDER BY or GROUP BY, as they will

destroy the hierarchical order of the CONNECT BY results. If you want to order rows

of siblings of the same parent, use the ORDER SIBLINGS BY clause.

Note: If this clause refers to a DATE column of a partitioned table

or index, then Oracle performs partition pruning only if (1) you

created the table or index partitions by fully specifying the year

using the TO_DATEfunction with a 4-digit format mask, and (2) you

specify the date in the query’s where_clause using the TO_DATE
function and either a 2- or 4-digit format mask.

See Also:

■ Chapter 5, "Conditions" for the syntax description of

condition

■ "Selecting from a Partition: Example" on page 18-28

See Also: "Hierarchical Queries" on page 8-3 for a discussion of

hierarchical queries and "Using the LEVEL Pseudocolumn:

Examples" on page 18-40

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-21

START WITH Clause
Specify a condition that identifies the row(s) to be used as the root(s) of a

hierarchical query. Oracle uses as root(s) all rows that satisfy this condition. If you

omit this clause, then Oracle uses all rows in the table as root rows. The START
WITH condition can contain a subquery, but it cannot contain a scalar subquery

expression.

CONNECT BY Clause
Specify a condition that identifies the relationship between parent rows and child

rows of the hierarchy. The connect_by_condition can be any condition as

described in Chapter 5, "Conditions". However, it must use the PRIOR operator to

refer to the parent row.

Restriction on the CONNECT BY Clause The connect_by_condition cannot

contain a regular subquery or a scalar subquery expression.

Notes on Hierarchical Queries

If you specify a hierarchical query and also specify the ORDER BY clause, then the

ORDER BY clause takes precedence over any ordering specified by the hierarchical

query, unless you specify the SIBLINGS keyword in the ORDER BY clause.

The manner in which Oracle processes a WHERE clause (if any) in a hierarchical

query depends on whether the WHERE clause contains a join:

■ If the WHERE predicate contains a join, Oracle applies the join predicates before
doing the CONNECT BY processing.

■ If the WHERE clause does not contain a join, Oracle applies all predicates other

than the CONNECT BYpredicates after doing the CONNECT BY processing

without affecting the other rows of the hierarchy.

group_by_clause
Specify the GROUP BYclause if you want Oracle to group the selected rows based on

the value of expr (s) for each row and return a single row of summary information

See Also:

■ "Pseudocolumns" on page 2-82 for more information on LEVEL

■ "Hierarchical Queries" on page 8-3 for general information on

hierarchical queries

■ "Hierarchical Query Examples" on page 18-32

SELECT

18-22 Oracle9i SQL Reference

for each group. If this clause contains CUBE or ROLLUP extensions, then Oracle

produces superaggregate groupings in addition to the regular groupings.

Expressions in the GROUP BYclause can contain any columns of the tables, views, or

materialized views in the FROMclause, regardless of whether the columns appear in

the select list.

The GROUP BYclause groups rows but does not guarantee the order of the result set.

To order the groupings, use the ORDER BY clause.

ROLLUP The ROLLUP operation in the simple_grouping_clause groups the

selected rows based on the values of the first n, n-1, n-2, ... 0 expressions in the

GROUP BY specification, and returns a single row of summary for each group. You

can use the ROLLUP operation to produce subtotal values by using it with the SUM
function. When used with SUM, ROLLUP generates subtotals from the most detailed

level to the grand total. Aggregate functions such as COUNT can be used to produce

other kinds of superaggregates.

For example, given three expressions (n=3) in the ROLLUP clause of the simple_
grouping_clause , the operation results in n+1 = 3+1 = 4 groupings.

Rows grouped on the values of the first ’n’ expressions are called regular rows, and

the others are called superaggregate rows.

CUBE The CUBE operation in the simple_grouping_clause groups the

selected rows based on the values of all possible combinations of expressions in the

specification, and returns a single row of summary information for each group. You

can use the CUBE operation to produce cross-tabulation values.

For example, given three expressions (n=3) in the CUBE clause of the simple_
grouping_clause , the operation results in 2n = 23 = 8 groupings. Rows grouped

See Also:

■ Oracle9i Data Warehousing Guide for an expanded discussion

and examples of using SQL grouping syntax for data

aggregation

■ the GROUP_ID, GROUPING, and GROUPING_ID functions

on page 6-72 for examples

■ "Using the GROUP BY Clause: Examples" on page 18-30

See Also: Oracle9i Data Warehousing Guide for information on

using ROLLUP with materialized views

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-23

on the values of ’n’ expressions are called regular rows, and the rest are called

superaggregate rows.

GROUPING SETS GROUPING SETSare a further extension of the GROUP BYclause

that let you specify multiple groupings of data. Doing so facilitates efficient

aggregation by pruning the aggregates you do not need. You specify just the desired

groups, and Oracle does not need to perform the full set of aggregations generated

by CUBE or ROLLUP. Oracle computes all groupings specified in the GROUPING
SETS clause and combines the results of individual groupings with a UNION ALL
operation. The UNION ALL means that the result set can include duplicate rows.

Within the GROUP BY clause, you can combine expressions in various ways:

■ To specify composite columns, you group columns within parentheses so that

Oracle treats them as a unit while computing ROLLUP or CUBE operations.

■ To specify concatenated grouping sets, you separate multiple grouping sets,

ROLLUP, and CUBE operations with commas so that Oracle combines them into

a single GROUP BY clause. The result is a cross-product of groupings from each

grouping set.

HAVING Clause
Use the HAVING clause to restrict the groups of returned rows to those groups for

which the specified condition is TRUE. If you omit this clause, then Oracle returns

summary rows for all groups.

Specify GROUP BY and HAVING after the where_clause and hierarchical_
query_clause . If you specify both GROUP BY and HAVING, then they can appear

in either order.

Restriction on the HAVING Clause The HAVING condition cannot contain a scalar

subquery expression.

See Also:

■ Oracle9i Data Warehousing Guide for information on using CUBE
with materialized views

■ "Using the GROUP BY CUBE Clause: Example" on page 18-30

See Also: "Using the GROUPING SETS Clause: Example" on

page 18-31

SELECT

18-24 Oracle9i SQL Reference

Restrictions on the GROUP BY Clause: The expressions can be of any form

except scalar subquery expressions.

■ You cannot specify LOB columns, nested tables, or varrays as part of expr .

■ If the group_by_clause references any object type columns, then the query

will not be parallelized.

Set Operators: UNION, UNION ALL, INTERSECT, MINUS
These set operators combine the rows returned by two SELECT statements into a

single result. The number and datatypes of the columns selected by each

component query must be the same, but the column lengths can be different. The

names of the columns in the result set are the names of the expressions in the select

list preceding the set operator.

If you combine more than two queries with set operators, then Oracle evaluates

adjacent queries from left to right. You can use parentheses to specify a different

order of evaluation.

Restrictions on Set Operators

■ The set operators are not valid on columns of type BLOB, CLOB, BFILE ,

VARRAY, or nested table.

■ The UNION, INTERSECT, and MINUS operators are not valid on LONG columns.

■ If the select list preceding the set operator contains an expression, then you

must provide a column alias for the expression in order to refer to it in the

order_by_clause .

■ You cannot also specify the for_update_clause with these set operators.

■ You cannot specify the order_by_clause in the subquery of these

operators.

See Also: "Using the HAVING Condition: Example" on

page 18-33

See Also: the syntax description of expr in "About SQL

Expressions" on page 4-2 and the syntax description of condition
in Chapter 5, "Conditions"

See Also: "The UNION [ALL], INTERSECT, MINUS Operators"

on page 8-7 for information on these operators

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-25

■ You cannot use these operators in SELECT statements containing TABLE
collection expressions.

order_by_clause
Use the ORDER BY clause to order rows returned by the statement. Without an

order_by_clause , no guarantee exists that the same query executed more than

once will retrieve rows in the same order.

SIBLINGS The SIBLINGS keyword is valid only if you also specify the

hierarchical_query_clause (CONNECT BY). ORDER SIBLINGS BY preserves

any ordering specified in the hierarchical query clause and then applies the order_
by_clause to the siblings of the hierarchy.

expr expr orders rows based on their value for expr . The expression is based on

columns in the select list or columns in the tables, views, or materialized views in

the FROM clause.

position Specify position to order rows based on their value for the expression

in this position of the select list; position must be an integer.

You can specify multiple expressions in the order_by_clause . Oracle first sorts

rows based on their values for the first expression. Rows with the same value for

the first expression are then sorted based on their values for the second expression,

and so on. Oracle sorts nulls following all others in ascending order and preceding

all others in descending order.

ASC | DESC Specify whether the ordering sequence is ascending or descending.

ASC is the default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing null

values should appear first or last in the ordering sequence.

Note: To comply with emerging SQL standards, a future release of

Oracle will give the INTERSECT operator greater precedence than

the other set operators. Therefore, you should use parentheses to

specify order of evaluation in queries that use the INTERSECT
operator with other set operators.

See Also: "Sorting Query Results" on page 8-10 for a discussion of

ordering query results

SELECT

18-26 Oracle9i SQL Reference

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for

descending order.

Restrictions on the ORDER BY Clause

■ If you have specified the DISTINCT operator in this statement, then this clause

cannot refer to columns unless they appear in the select list.

■ An order_by_clause can contain no more than 255 expressions.

■ You cannot order by a LOB column, nested table, or varray.

■ If you specify a group_by_clause in the same statement, then this order_
by_clause is restricted to the following expressions:

■ Constants

■ Aggregate functions

■ Analytic functions

■ The functions USER, UID , and SYSDATE

■ Expressions identical to those in the group_by_clause

■ Expressions comprising the preceding expressions that evaluate to the same

value for all rows in a group.

for_update_clause
The FOR UPDATE clause lets you lock the selected rows so that other users cannot

lock or update the rows until you end your transaction. You can specify this clause

only in a top-level SELECT statement (not in subqueries).

Nested table rows are not locked as a result of locking the parent table rows. If you

want the nested table rows to be locked, then you must lock them explicitly.

See Also: "Using the ORDER BY Clause: Examples" on page 18-33

Note: Prior to updating a LOB value, you must lock the row

containing the LOB. One way to lock the row is with an embedded

SELECT ... FOR UPDATE statement. You can do this using one of the

programmatic languages or DBMS_LOB package. For more

information on lock rows before writing to a LOB, see Oracle9i
Application Developer’s Guide - Large Objects (LOBs).

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-27

Restrictions on the FOR UPDATE Clause

■ You cannot specify this clause with the following other constructs: the

DISTINCT operator, CURSOR expression, set operators, group_by_clause , or

aggregate functions.

■ The tables locked by this clause must all be located on the same database, and

on the same database as any LONG columns and sequences referenced in the

same statement.

OF ... column
Use the OF ... column clause to lock the select rows only for a particular table or

view in a join. The columns in the OF clause only indicate which table or view rows

are locked. The specific columns that you specify are not significant. However, you

must specify an actual column name, not a column alias. If you omit this clause,

then Oracle locks the selected rows from all the tables in the query.

NOWAIT | WAIT
The NOWAIT and WAIT clauses let you tell Oracle how to proceed if the SELECT
statement attempts to lock a row that is locked by another user.

NOWAIT Specify NOWAIT to return control to you immediately if a lock exists.

WAIT Specify WAIT to instruct Oracle to wait integer seconds for the row to

become available, and then return control to you.

If you specify neither WAIT nor NOWAIT, then Oracle waits until the row is available

and then returns the results of the SELECT statement.

Examples

Subquery Factoring: Example The following statement creates the query names

dept_costs and avg_cost for the initial query block containing a join, and then

uses the query names in the body of the main query.

WITH
 dept_costs AS (
 SELECT department_name, SUM(salary) dept_total
 FROM employees e, departments d
 WHERE e.department_id = d.department_id

See Also: "Using the FOR UPDATE Clause: Examples" on

page 18-33

SELECT

18-28 Oracle9i SQL Reference

 GROUP BY department_name),
 avg_cost AS (
 SELECT SUM(dept_total)/COUNT(*) avg
 FROM dept_costs)
SELECT * FROM dept_costs
 WHERE dept_total >
 (SELECT avg FROM avg_cost)
 ORDER BY department_name;

DEPARTMENT_NAME DEPT_TOTAL
------------------------------ ----------
Sales 313800
Shipping 156400

Simple Query Examples The following statement selects rows from the

employees table with the department number of 30:

SELECT *
 FROM employees
 WHERE department_id = 30;

The following statement selects the name, job, salary and department number of all

employees except purchase clerks from department number 30:

SELECT last_name, job_id, salary, department_id
 FROM employees
 WHERE NOT (job_id = ’PU_CLERK’ AND department_id = 30);

The following statement selects from subqueries in the FROM clause and gives

departments’ total employees and salaries as a decimal value of all the departments:

SELECT a.department_id "Department",
 a.num_emp/b.total_count "%_Employees",
 a.sal_sum/b.total_sal "%_Salary"
FROM
(SELECT department_id, COUNT(*) num_emp, SUM(salary) sal_sum
 FROM employees
 GROUP BY department_id) a,
(SELECT COUNT(*) total_count, SUM(salary) total_sal
 FROM employees) b;

Selecting from a Partition: Example You can select rows from a single partition of

a partitioned table by specifying the keyword PARTITION in the FROM clause. This

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-29

SQL statement assigns an alias for and retrieves rows from the sales_q2_2000
partition of the sample table sh.sales :

SELECT * FROM sales PARTITION (sales_q2_2000) s
 WHERE s.amount_sold > 10000;

The following example selects rows from the oe.orders table for orders earlier
than a specified date: SELECT * FROM orders
 WHERE order_date < TO_DATE(’2000-06-15’, ’YYYY-MM-DD’);

Selecting a Sample: Examples The following query estimates the number of

orders in the oe.orders table:

SELECT COUNT(*) * 100 FROM orders SAMPLE (1);

The following example creates a sampled subset of the sample table

hr.employees table and then joins the resulting sampled table with

departments . This operation circumvents the restriction that you cannot specify

the sample_clause in join queries:

CREATE TABLE sample_emp AS
 SELECT employee_id, department_id FROM employees SAMPLE(10);

SELECT e.employee_id FROM sample_emp e, departments d
 WHERE e.department_id = d.department_id
 AND d.department_name = ’Sales’;

Using Flashback Queries: Example The following statements show a current

value from the sample table hr.employees and then changes the value:

SELECT salary FROM employees
 WHERE last_name = ’Chung’;

 SALARY

 3800

UPDATE employees SET salary = 4000
 WHERE last_name = ’Chung’;
1 row updated.

SELECT salary FROM employees
 WHERE last_name = ’Chung’;

 SALARY

 4000

SELECT

18-30 Oracle9i SQL Reference

To learn what the value was before the update, you can use the following flashback

query:

SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL ’1’ DAY)
 WHERE last_name = ’Chung’;

 SALARY

 3800

To revert to the earlier value, use the flashback query as the subquery of another

UPDATE statement:

UPDATE employees SET salary =
 (SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL ’1’ DAY)
 WHERE last_name = ’Chung’)
 WHERE last_name = ’Chung’;
1 row updated.

SELECT salary FROM employees
 WHERE last_name = ’Chung’;

 SALARY

 3800

Using the GROUP BY Clause: Examples To return the minimum and maximum

salaries for each department in the employees table, issue the following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id;

To return the minimum and maximum salaries for the clerks in each department,

issue the following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 WHERE job_id = 'PU_CLERK'
 GROUP BY department_id;

Using the GROUP BY CUBE Clause: Example To return the number of employees

and their average yearly salary across all possible combinations of department and

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-31

job category, issue the following query on the sample tables hr.employees and

hr.departments :

SELECT DECODE(GROUPING(department_name), 1, 'All Departments',
 department_name) AS department_name,
 DECODE(GROUPING(job_id), 1, 'All Jobs', job_id) AS job_id,
 COUNT(*) "Total Empl", AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY CUBE (department_name, job_id);

DEPARTMENT_NAME JOB_ID Total Empl Average Sal
------------------------------ ---------- ---------- -----------
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800
.
.
.
All Departments ST_MAN 5 87360
All Departments All Jobs 107 77798.1308

Using the GROUPING SETS Clause: Example The following example finds the

sum of sales aggregated for three precisely specified groups:

■ (channel_desc, calendar_month_desc, country_id)

■ (channel_desc, country_id)

■ (calendar_month_desc, country_id)

Without the GROUPING SETS syntax, you would have to write less efficient queries

with more complicated SQL. For example, you could run three separate queries and

UNION them, or run a query with a CUBE(channel_desc, calendar_month_
desc, country_id) operation and filter out 5 of the 8 groups it would generate.

SELECT channel_desc, calendar_month_desc, co.country_id,
 TO_CHAR(sum(amount_sold) , ’9,999,999,999’) SALES$
 FROM sales, customers, times, channels, countries co
 WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND sales.channel_id= channels.channel_id
 AND customers.country_id = co.country_id
 AND channels.channel_desc IN (’Direct Sales’, ’Internet’)
 AND times.calendar_month_desc IN (’2000-09’, ’2000-10’)

SELECT

18-32 Oracle9i SQL Reference

 AND co.country_id IN (’UK’, ’US’)
 GROUP BY GROUPING SETS(
 (channel_desc, calendar_month_desc, co.country_id),
 (channel_desc, co.country_id),
 (calendar_month_desc, co.country_id));

CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-10 US 2,908,706
Internet 2000-09 UK 911,739
Internet 2000-10 UK 876,571
Internet 2000-09 US 1,732,240
Internet 2000-10 US 1,893,753
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Internet UK 1,788,310
Internet US 3,625,993
 2000-09 UK 2,289,865
 2000-09 US 4,567,797
 2000-10 UK 2,264,622
 2000-10 US 4,802,459

Hierarchical Query Examples The following query with a CONNECT BY clause

defines a hierarchical relationship in which the employee_id value of the parent

row is equal to the manager_id value of the child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY employee_id = manager_id;

In the following CONNECT BY clause, the PRIOR operator applies only to the

employee_id value. To evaluate this condition, Oracle evaluates employee_id
values for the parent row and manager_id , salary , and commission_pct
values for the child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY PRIOR employee_id = manager_id
 AND salary > commission_pct;

See Also: the functions GROUP_ID, GROUPING, and

GROUPING_ID on page 6-72 for more information on those

functions

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-33

To qualify as a child row, a row must have a manager_id value equal to the

employee_id value of the parent row and it must have a salary value greater

than its commission_pct value.

Using the HAVING Condition: Example To return the minimum and maximum

salaries for the employees in each department whose lowest salary is less than

$5,000, issue the next statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id
 HAVING MIN(salary) < 5000;

DEPARTMENT_ID MIN(SALARY) MAX(SALARY)
------------- ----------- -----------
 10 4400 4400
 30 2500 11000
 50 2100 8200
 60 4200 9000

Using the ORDER BY Clause: Examples To select all salesmen’s records from

employees , and order the results by commission in descending order, issue the

following statement:

SELECT *
 FROM employees
 WHERE job_id = ’PU_CLERK’
 ORDER BY commission_pct DESC;

To select information from employees ordered first by ascending department

number and then by descending salary, issue the following statement:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY department_id ASC, salary DESC;

To select the same information as the previous SELECT and use the positional

ORDER BY notation, issue the following statement:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY 2 ASC, 3 DESC;

Using the FOR UPDATE Clause: Examples The following statement locks rows in

the employees table with purchasing clerks located in Oxford (location_id

SELECT

18-34 Oracle9i SQL Reference

2500) and locks rows in the departments table with departments in Oxford that

have purchasing clerks:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e, departments d
 WHERE job_id = ’SA_REP’
 AND e.department_id = d.department_id
 AND location_id = 2500
 FOR UPDATE;

The following statement locks only those rows in the employees table with

purchasing clerks located in Oxford (location_id 2500). No rows are locked in

the departments table:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e, departments d
 WHERE job_id = ’SA_REP’
 AND e.department_id = d.department_id
 AND location_id = 2500
 FOR UPDATE OF e.salary;

Using the WITH CHECK OPTION Clause: Example The following statement is

legal even though the third value inserted violates the condition of the subquery

where_clause :

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000)
 VALUES (9999, ’Entertainment’, 2500);

However, the following statement is illegal because it contains the WITH CHECK
OPTION clause:

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000 WITH CHECK OPTION)
 VALUES (9999, ’Entertainment’, 2500);
 *
ERROR at line 2:
ORA-01402: view WITH CHECK OPTION where-clause violation

Using Join Queries: Examples The following examples show various ways of

joining tables in a query. In the first example, an equijoin returns the name and job

of each employee and the number and name of the department in which the

employee works:

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-35

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id;

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- ----------------------
...
Sciarra FI_ACCOUNT 100 Finance
Urman FI_ACCOUNT 100 Finance
Popp FI_ACCOUNT 100 Finance
...

You must use a join to return this data because employee names and jobs are stored

in a different table than department names. Oracle combines rows of the two tables

according to this join condition:

employees.department_id = departments.department_id

The following equijoin returns the name, job, department number, and department

name of all sales managers:

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 AND job_id = 'SA_MAN';

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- -----------------------
Russell SA_MAN 80 Sales
Partners SA_MAN 80 Sales
Errazuriz SA_MAN 80 Sales
Cambrault SA_MAN 80 Sales
Zlotkey SA_MAN 80 Sales

This query is identical to the preceding example, except that it uses an additional

where_clause condition to return only rows with a job value of ’SA_MAN’.

Using Subqueries: Examples To determine who works in the same department as

employee ’Lorentz ’, issue the following statement:

SELECT last_name, department_id FROM employees
 WHERE department_id =
 (SELECT department_id FROM employees
 WHERE last_name = ’Lorentz’);

SELECT

18-36 Oracle9i SQL Reference

To give all employees in the employees table a 10% raise if they have changed jobs

(that is, if they appear in the job_history table), issue the following statement:

UPDATE employees
 SET salary = salary * 1.1
 WHERE employee_id IN (SELECT employee_id FROM job_history);

To create a second version of the departments table new_departments , with

only three of the columns of the original table, issue the following statement:

CREATE TABLE new_departments
 (department_id, department_name, location_id)
 AS SELECT department_id, department_name, location_id
 FROM departments;

Using Self Joins: Example The following query uses a self join to return the

name of each employee along with the name of the employee’s manager. (A WHERE
clause is added to shorten the output.)

SELECT e1.last_name||’ works for ’||e2.last_name
 "Employees and Their Managers"
 FROM employees e1, employees e2
 WHERE e1.manager_id = e2.employee_id
 AND e1.last_name LIKE ’R%’;

Employees and Their Managers

Rajs works for Mourgos
Raphaely works for King
Rogers works for Kaufling
Russell works for King

The join condition for this query uses the aliases e1 and e2 for the sample table

employees :

e1.manager_id = e2.employee_id

Using Outer Joins: Examples The following example uses a left outer join to

return the names of all departments in the sample schema hr , even if no employees

have been assigned to the departments:

SELECT d.department_id, e.last_name
 FROM departments d LEFT OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id;

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-37

DEPARTMENT_ID LAST_NAME
------------- -------------------------
 10 Whalen
 20 Hartstein
 20 Fay
 30 Raphaely
...
 250
 260
 270

Users familiar with the traditional Oracle outer joins syntax will recognize the same

query in this form:

SELECT d.department_id, e.last_name
 FROM departments d, employees e
 WHERE d.department_id = e.department_id(+)
 ORDER BY d.department_id;

Oracle Corporation strongly recommends that you use the more flexible Oracle9i
FROM clause join syntax shown in the former example.

The left outer join returns all departments, including those without any employees.

The same statement with a right outer join returns all employees, including those

not yet assigned to a department:

SELECT d.department_id, e.last_name
 FROM departments d RIGHT OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id;

DEPARTMENT_ID LAST_NAME
------------- -------------------------
...
 110 Higgins
 110 Gietz
 Grant
 Zeuss

Note: The employee Zeuss was added to the employees table for

these examples, and is not part of the sample data.

SELECT

18-38 Oracle9i SQL Reference

It is not clear from this result whether employees Grant and Zeuss have

department_id NULL , or whether their department_id is not in the

departments table. To determine this requires a full outer join:

SELECT d.department_id as d_dept_id, e.department_id as e_dept_id,
 e.last_name
 FROM departments d FULL OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id;

 D_DEPT_ID E_DEPT_ID LAST_NAME
---------- ---------- -------------------------
 ...
 110 110 Gietz
 110 110 Higgins
 ...
 260
 270
 999 Zeuss
 Grant

Because the column names in this example are the same in both tables in the join,

you can also use the common column feature (the USING clause) of the join syntax,

which coalesces the two matching columns department_id . The output is the

same as for the preceding example:

SELECT department_id AS d_e_dept_id, e.last_name
 FROM departments d FULL OUTER JOIN employees e
 USING (department_id)
 ORDER BY department_id;

D_E_DEPT_ID LAST_NAME
----------- -------------------------
 ...
 110 Higgins
 110 Gietz
 ...
 260
 270
 Grant
 Zeuss

Table Collections: Examples You can perform DML operations on nested tables

only if they are defined as columns of a table. Therefore, when the query_table_
expr_clause of an INSERT, DELETE, or UPDATE statement is a table_

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-39

collection_expression , the collection expression must be a subquery that uses

the TABLE function to select the table's nested table column. The examples that

follow are based on the following scenario:

Suppose the database contains a table hr_info with columns department_id ,

location , and manager_id , and a column of nested table type people which

has last_name , department_id , and salary columns for all the employees of

each respective manager:

CREATE TYPE people_typ AS OBJECT (
 last_name VARCHAR2(25),
 department_id NUMBER(4),
 salary NUMBER(8,2));
/
CREATE TYPE people_tab_typ AS TABLE OF people_typ;
/
CREATE TABLE hr_info (
 department_id NUMBER(4),
 location_id NUMBER(4),
 manager_id NUMBER(6),
 people people_tab_typ)
 NESTED TABLE people STORE AS people_stor_tab;

INSERT INTO hr_info VALUES (280, 1800, 999, people_tab_typ());

The following example inserts into the people nested table column of hr_info table’s

department numbered 280:

INSERT INTO TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280)
 VALUES (’Smith’, 280, 1750);

The next example updates Department 280’s people nested table:

UPDATE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 SET p.salary = p.salary + 100;

The next example deletes from Department 280’s people nested table:

DELETE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 WHERE p.salary > 1700;

SELECT

18-40 Oracle9i SQL Reference

Collection Unnesting: Examples To select data from a nested table column you

again use the TABLE function to treat the nested table as columns of a table. This

process is called "collection unnesting.

You could get all the rows from hr_info (created in the preceding example) and all

the rows from the people nested table column of hr_info using the following

statement:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(t1.people) t2
 WHERE t2.department_id = t1.department_id;

Now suppose that people is not a nested table column of hr_info , but is instead

a separate table with columns last_name , department_id , address ,

hiredate , and salary . You can extract the same rows as in the preceding example

with this statement:

SELECT t1.department_id, t2.*
 FROM hr_info t1, TABLE(CAST(MULTISET(
 SELECT t3.last_name, t3.department_id, t3.salary
 FROM people t3
 WHERE t3.department_id = t1.department_id)
 AS people_tab_typ)) t2;

Finally, suppose that people is neither a nested table column of table hr_info nor

a table itself. Instead, you have created a function people_func that extracts from

various sources the name, department, and salary of all employees. You can get the

same information as in the preceding examples with the following query:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(CAST
 (people_func(...) AS people_tab_typ)) t2;

Using the LEVEL Pseudocolumn: Examples The following statement returns all

employees in hierarchical order. The root row is defined to be the employee whose

job is ’AD_VP’. The child rows of a parent row are defined to be those who have the

employee number of the parent row as their manager number.

SELECT LPAD(’ ’,2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = ’AD_VP’
 CONNECT BY PRIOR employee_id = manager_id;

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more examples of collection unnesting.

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-41

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP
 Greenberg 108 101 FI_MGR
 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP
 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP
 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

The following statement is similar to the previous one, except that it does not select

employees with the job ’FI_MAN’.

SELECT LPAD(’ ’,2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 WHERE job_id != ’FI_MGR’
 START WITH job_id = ’AD_VP’
 CONNECT BY PRIOR employee_id = manager_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP
 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP
 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP

SELECT

18-42 Oracle9i SQL Reference

 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

Oracle does not return the manager greenberg , although it does return employees

who are managed by greenberg .

The following statement is similar to the first one, except that it uses the LEVEL
pseudocolumn to select only the first two levels of the management hierarchy:

SELECT LPAD(’ ’,2*(LEVEL-1)) || last_name org_chart,
employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = ’AD_PRES’
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 2;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
King 100 AD_PRES
 Kochhar 101 100 AD_VP
 De Haan 102 100 AD_VP
 Raphaely 114 100 PU_MAN
 Weiss 120 100 ST_MAN
 Fripp 121 100 ST_MAN
 Kaufling 122 100 ST_MAN
 Vollman 123 100 ST_MAN
 Mourgos 124 100 ST_MAN
 Russell 145 100 SA_MAN
 Partners 146 100 SA_MAN
 Errazuriz 147 100 SA_MAN
 Cambrault 148 100 SA_MAN
 Zlotkey 149 100 SA_MAN
 Hartstein 201 100 MK_MAN

Using Distributed Queries: Example This example shows a query that joins the

departments table on the local database with the employees table on the

remote database:

SELECT last_name, department_name
 FROM employees@remote, departments
 WHERE employees.department_id = departments.department_id;

SELECT

SQL Statements: SAVEPOINT to UPDATE 18-43

Using Correlated Subqueries: Examples The following examples show the

general syntax of a correlated subquery:

SELECT select_list
 FROM table1 t_alias1
 WHERE expr operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.column
 operator t_alias2.column);

UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

DELETE FROM table1 t_alias1
 WHERE column operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

The following statement returns data about employees whose salaries exceed their

department average. The following statement assigns an alias to employees , the

table containing the salary information, and then uses the alias in a correlated

subquery:

SELECT department_id, last_name, salary
 FROM employees x
 WHERE salary > (SELECT AVG(salary)
 FROM employees
 WHERE x.department_id = department_id)
 ORDER BY department_id;

For each row of the employees table, the parent query uses the correlated

subquery to compute the average salary for members of the same department. The

correlated subquery performs the following steps for each row of the employees
table:

1. The department_id of the row is determined.

2. The department_id is then used to evaluate the parent query.

3. If that row’s salary is greater than the average salary for that row’s department,

then the row is returned.

SELECT

18-44 Oracle9i SQL Reference

The subquery is evaluated once for each row of the employees table.

Selecting from the DUAL Table: Example The following statement returns the

current date:

SELECT SYSDATE FROM DUAL;

You could select SYSDATE from the employees table, but Oracle would return 14

rows of the same SYSDATE, one for every row of the employees table. Selecting

from DUAL is more convenient.

Selecting Sequence Values: Examples The following statement increments the

employees_seq sequence and returns the new value:

SELECT employees_seq.nextval
 FROM dual;

The following statement selects the current value of employees_seq :

SELECT employees_seq.currval
 FROM dual;

SET CONSTRAINT[S]

SQL Statements: SAVEPOINT to UPDATE 18-45

SET CONSTRAINT[S]

Purpose
Use the SET CONSTRAINTS statement to specify, for a particular transaction,

whether a deferrable constraint is checked following each DML statement or when

the transaction is committed.

Prerequisites
To specify when a deferrable constraint is checked, you must have SELECT
privilege on the table to which the constraint is applied unless the table is in your

schema.

Syntax
set_constraints::=

Semantics

constraint
Specify the name of one or more integrity constraints.

ALL
Specify ALL to set all deferrable constraints for this transaction.

IMMEDIATE
Specify IMMEDIATE to indicate that the conditions specified by the deferrable

constraint are checked immediately after each DML statement.

DEFERRED
Specify DEFERRED to indicate that the conditions specified by the deferrable

constraint are checked when the transaction is committed.

SET
CONSTRAINT

CONSTRAINTS

constraint

,

ALL

IMMEDIATE

DEFERRED
;

SET CONSTRAINT[S]

18-46 Oracle9i SQL Reference

Examples

Setting Constraints: Examples The following statement sets all deferrable

constraints in this transaction to be checked immediately following each DML

statement:

SET CONSTRAINTS ALL IMMEDIATE;

The following statement checks three deferred constraints when the transaction is

committed. This example fails if the constraints were specified to be NOT
DEFERRABLE.

SET CONSTRAINTS emp_job_nn, emp_salary_min ,
 hr.jhist_dept_fk@remote DEFERRED;

Note: You can verify the success of deferrable constraints prior to

committing them by issuing a SET CONSTRAINTS ALL IMMEDIATE
statement.

SET ROLE

SQL Statements: SAVEPOINT to UPDATE 18-47

SET ROLE

Purpose
Use the SET ROLE statement to enable and disable roles for your current session.

When a user logs on, Oracle enables all privileges granted explicitly to the user and

all privileges in the user’s default roles. During the session, the user or an

application can use the SET ROLE statement any number of times to change the

roles currently enabled for the session. The number of roles that can be concurrently

enabled is limited by the initialization parameter MAX_ENABLED_ROLES.

You can see which roles are currently enabled by examining the SESSION_ROLES
data dictionary view.

Prerequisites
You must already have been granted the roles that you name in the SET ROLE
statement.

Syntax
set_role::=

See Also:

■ CREATE ROLE on page 14-79 for information on creating roles

■ ALTER USER on page 12-22 for information on changing a

user’s default roles

■ Oracle9i Database Reference for information on the SESSION_
ROLES session parameter

SET ROLE

role
IDENTIFIED BY password

,

ALL
EXCEPT role

,

NONE

;

SET ROLE

18-48 Oracle9i SQL Reference

Semantics

role
Specify a role to be enabled for the current session. Any roles not listed and not

already enabled are disabled for the current session.

In the IDENTIFIED BY password clause, specify the password for a role. If the role

has a password, then you must specify the password to enable the role.

Restriction on Setting Roles You cannot specify a role unless it was granted to

you either directly or through other roles.

ALL Clause
Specify ALL to enable all roles granted to you for the current session except those

optionally listed in the EXCEPT clause.

Roles listed in the EXCEPTclause must be roles granted directly to you. They cannot

be roles granted to you through other roles.

If you list a role in the EXCEPTclause that has been granted to you both directly and

through another role, then the role remains enabled by virtue of the role to which it

has been granted.

Restriction on the ALL Clause You cannot use this clause to enable roles with

passwords that have been granted directly to you.

NONE
Specify NONEto disable all roles for the current session, including the DEFAULTrole.

Examples

Setting Roles: Examples To enable the role dw_manager identified by the

password warehouse for your current session, issue the following statement:

SET ROLE dw_manager IDENTIFIED BY warehouse;

To enable all roles granted to you for the current session, issue the following

statement:

SET ROLE ALL;

SET ROLE

SQL Statements: SAVEPOINT to UPDATE 18-49

To enable all roles granted to you except dw_manager , issue the following

statement:

SET ROLE ALL EXCEPT dw_manager;

To disable all roles granted to you for the current session, issue the following

statement:

SET ROLE NONE;

SET TRANSACTION

18-50 Oracle9i SQL Reference

SET TRANSACTION

Purpose
Use the SET TRANSACTION statement to establish the current transaction as read

only or read write, establish its isolation level, or assign it to a specified rollback

segment.

The operations performed by a SET TRANSACTION statement affect only your

current transaction, not other users or other transactions. Your transaction ends

whenever you issue a COMMIT or ROLLBACK statement. Oracle implicitly commits

the current transaction before and after executing a data definition language (DDL)

statement.

Prerequisites
If you use a SET TRANSACTION statement, then it must be the first statement in

your transaction. However, a transaction need not have a SET TRANSACTION
statement.

Syntax
set_transaction::=

See Also: COMMIT on page 12-75 and ROLLBACK on

page 17-99

SET TRANSACTION

READ
ONLY

WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

NAME ’ test ’

NAME ’ test ’

;

SET TRANSACTION

SQL Statements: SAVEPOINT to UPDATE 18-51

Semantics

READ ONLY
The READ ONLYclause establishes the current transaction as a read-only transaction.

This clause established transaction-level read consistency.

All subsequent queries in that transaction only see changes committed before the

transaction began. Read-only transactions are useful for reports that run multiple

queries against one or more tables while other users update these same tables.

Restriction on Read-only Transactions Only the following statements are

permitted in a read-only transaction:

■ Subqueries (that is, SELECT statements without the for_update_clause)

■ LOCK TABLE

■ SET ROLE

■ ALTER SESSION

■ ALTER SYSTEM

READ WRITE
Specify READ WRITEto establish the current transaction as a read/write transaction.

This clause establishes statement-level read consistency, which is the default.

Restriction on Read/Write Transactions You cannot toggle between

transaction-level and statement-level read consistency in the same transaction.

ISOLATION LEVEL Clause
Use the ISOLATION LEVEL clause to specify how transactions containing database

modifications are handled.

■ The SERIALIAZBLE setting specifies serializable transaction isolation mode as

defined in the SQL92 standard. If a serializable transaction contains data

Note: This clause is not supported for the user SYS. That is,

queries by SYS will return changes made during the transaction

even if SYS has set the transaction to be READ ONLY.

See Also: Oracle9i Database Concepts

SET TRANSACTION

18-52 Oracle9i SQL Reference

manipulation language (DML) that attempts to update any resource that may

have been updated in a transaction uncommitted at the start of the serializable

transaction, then the DML statement fails.

■ The READ COMMITTED setting is the default Oracle transaction behavior. If the

transaction contains DML that requires row locks held by another transaction,

then the DML statement waits until the row locks are released.

USE ROLLBACK SEGMENT Clause
Specify USE ROLLBACK SEGMENT to assign the current transaction to the specified

rollback segment. This clause also implicitly establishes the transaction as a

read/write transaction.

This clause lets you to assign transactions of different types to rollback segments of

different sizes. For example:

■ If no long-running queries are concurrently reading the same tables, then you

can assign small transactions to small rollback segments, which are more likely

to remain in memory.

■ You can assign transactions that modify tables that are concurrently being read

by long-running queries to large rollback segments, so that the rollback

information needed for the read-consistent queries is not overwritten.

■ You can assign transactions that insert, update, or delete large amounts of data

to rollback segments large enough to hold the rollback information for the

transaction.

You cannot use the READ ONLY clause and the USE ROLLBACK SEGMENT clause in a

single SET TRANSACTION statement or in different statements in the same

transaction. Read-only transactions do not generate rollback information and

therefore are not assigned rollback segments.

NAME Clause
Use the NAME clause to assign a name to the current transaction. This clause is

especially useful in distributed database environments when you must identify and

resolve in-doubt transactions. The text string is limited to 255 bytes.

Note: The COMPATIBLE initialization parameter must be set to

7.3.0 or higher for SERIALIZABLE mode to work.

SET TRANSACTION

SQL Statements: SAVEPOINT to UPDATE 18-53

If you specify a name for a distributed transaction, then when the transaction

commits, the name becomes the commit comment, overriding any comment

specified explicitly in the COMMIT statement.

Examples

Setting Transactions: Examples The following statements could be run at

midnight of the last day of every month to count the products and quantities on

hand in the Toronto warehouse in the sample Order Entry (oe) schema. This report

would not be affected by any other user who might be adding or removing

inventory to a different warehouse.

COMMIT;

SET TRANSACTION READ ONLY NAME ’Toronto’;

SELECT product_id, quantity_on_hand FROM inventories
 WHERE warehouse_id = 5;

COMMIT;

The first COMMIT statement ensures that SET TRANSACTION is the first statement in

the transaction. The last COMMIT statement does not actually make permanent any

changes to the database. It simply ends the read-only transaction.

The following statement assigns your current transaction to the rollback segment

rs_one :

SET TRANSACTION USE ROLLBACK SEGMENT rs_one;

TRUNCATE

18-54 Oracle9i SQL Reference

TRUNCATE

Purpose
Use the TRUNCATE statement to remove all rows from a table or cluster. By default,

Oracle also deallocates all space used by the removed rows except that specified by

the MINEXTENTSstorage parameter and sets the NEXTstorage parameter to the size

of the last extent removed from the segment by the truncation process.

Removing rows with the TRUNCATE statement can be more efficient than dropping

and re-creating a table. Dropping and re-creating a table invalidates the table’s

dependent objects, requires you to regrant object privileges on the table, and

requires you to re-create the table’s indexes, integrity constraints, and triggers and

respecify its storage parameters. Truncating has none of these effects.

Prerequisites
To truncate a table or cluster, the table or cluster must be in your schema or you

must have DROP ANY TABLE system privilege.

Caution: You cannot roll back a TRUNCATE statement.

See Also:

■ DELETE on page 16-55 and DROP TABLE on page 17-6 for

information on other ways to drop table data from the database

■ DROP CLUSTER on page 16-67 for information on dropping

cluster tables

TRUNCATE

SQL Statements: SAVEPOINT to UPDATE 18-55

Syntax
truncate::=

Semantics

TABLE Clause
Specify the schema and name of the table to be truncated. This table cannot be part

of a cluster. If you omit schema , then Oracle assumes the table is in your own

cluster.

■ You can truncate index-organized tables and temporary tables. When you

truncate a temporary table, only the rows created during the current session are

removed.

■ Oracle changes the NEXT storage parameter of table to be the size of the last

extent deleted from the segment in the process of truncation.

■ Oracle also automatically truncates and resets any existing UNUSABLE
indicators for the following indexes on table : range and hash partitions of

local indexes and subpartitions of local indexes.

■ If table is not empty, then Oracle marks UNUSABLE all nonpartitioned indexes

and all partitions of global partitioned indexes on the table.

■ For a domain index, this statement invokes the appropriate truncate routine to

truncate the domain index data.

See Also: Oracle9i Data Cartridge Developer’s Guide for more

information on domain indexes

TRUNCATE

TABLE
schema .

table

PRESERVE

PURGE
MATERIALIZED VIEW LOG

CLUSTER
schema .

cluster

DROP

REUSE
STORAGE

;

TRUNCATE

18-56 Oracle9i SQL Reference

■ If table (whether it is a regular or index-organized table) contains LOB

columns, then all LOB data and LOB index segments are truncated.

■ If table is partitioned, then all partitions or subpartitions, as well as the LOB

data and LOB index segments for each partition or subpartition, are truncated.

Restrictions on Truncating Tables

■ You cannot individually truncate a table that is part of a cluster. You must either

truncate the cluster, delete all rows from the table, or drop and re-create the

table.

■ You cannot truncate the parent table of an enabled referential integrity

constraint. You must disable the constraint before truncating the table. (An

exception is that you may truncate the table if the integrity constraint is

self-referential.)

■ If table belongs to a hierarchy, then it must be the root of the hierarchy.

■ If a domain index is defined on table , then neither the index nor any index

partitions can be marked IN_PROGRESS.

MATERIALIZED VIEW LOG Clause
The MATERIALIZED VIEW LOG clause lets you specify whether a materialized view

log defined on the table is to be preserved or purged when the table is truncated.

This clause permits materialized view master tables to be reorganized through

export/import without affecting the ability of primary-key materialized views

defined on the master to be fast refreshed. To support continued fast refresh of

primary-key materialized views, the materialized view log must record

primary-key information.

Note: When you truncate a table, Oracle automatically removes

all data in the table’s indexes and any materialized view direct-path

INSERT information held in association with the table. (This

information is independent of any materialized view log.) If this

direct-path INSERT information is removed, then an incremental

refresh of the materialized view may lose data.

Note: The keyword SNAPSHOT is supported in place of

MATERIALIZED VIEW for backward compatibility.

TRUNCATE

SQL Statements: SAVEPOINT to UPDATE 18-57

PRESERVE Specify PRESERVE if any materialized view log should be preserved

when the master table is truncated. This is the default.

PURGE Specify PURGE if any materialized view log should be purged when the

master table is truncated.

CLUSTER Clause
Specify the schema and name of the cluster to be truncated. You can truncate only

an indexed cluster, not a hash cluster. If you omit schema , then Oracle assumes the

cluster is in your own schema.

When you truncate a cluster, Oracle also automatically deletes all data in the

indexes of the cluster tables.

STORAGE Clauses
The STORAGE clauses let you determine what happens to the space freed by the

truncated rows. The DROP STORAGE clause and REUSE STORAGE clause also apply

to the space freed by the data deleted from associated indexes.

DROP STORAGE Specify DROP STORAGE to deallocate all space from the deleted

rows from the table or cluster except the space allocated by the MINEXTENTS
parameter of the table or cluster. This space can subsequently be used by other

objects in the tablespace. Oracle also sets the NEXT storage parameter to the size of

the last extent removed from the segment in the truncation process. This is the

default.

REUSE STORAGE Specify REUSE STORAGE to retain the space from the deleted

rows allocated to the table or cluster. Storage values are not reset to the values when

the table or cluster was created. This space can subsequently be used only by new

data in the table or cluster resulting from insert or update operations. This clause

leaves storage parameters at their current settings.

See Also: Oracle9i Advanced Replication for more information

about materialized view logs and the TRUNCATE statement

Note: If you have specified more than one free list for the object

you are truncating, then the REUSE STORAGE clause also removes

any mapping of free lists to instances and resets the high-water

mark to the beginning of the first extent.

TRUNCATE

18-58 Oracle9i SQL Reference

Examples

Truncating a Table: Example The following statement removes all rows from a

copy of the sample table hr.employees and returns the freed space to the

tablespace containing employees :

TRUNCATE TABLE employees_demo;

The preceding statement also removes all data from all indexes on employees and

returns the freed space to the tablespaces containing them.

Retaining Free Space After Truncate: Example The following statement removes

all rows from all tables in the personnel cluster, but leaves the freed space

allocated to the tables:

TRUNCATE CLUSTER personnel REUSE STORAGE;

The preceding statement also removes all data from all indexes on the tables in the

personnel cluster.

Preserving Materialized View Logs After Truncate: Example The following

statements are examples of truncate statements that preserve materialized view

logs:

TRUNCATE TABLE sales_demo PRESERVE MATERIALIZED VIEW LOG;

TRUNCATE TABLE orders_demo;

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-59

UPDATE

Purpose
Use the UPDATE statement to change existing values in a table or in a view’s base

table.

Prerequisites
For you to update values in a table, the table must be in your own schema or you

must have UPDATE privilege on the table.

For you to update values in the base table of a view:

■ You must have UPDATE privilege on the view, and

■ Whoever owns the schema containing the view must have UPDATEprivilege on

the base table.

The UPDATE ANY TABLE system privilege also allows you to update values in any

table or any view’s base table.

You must also have the SELECT privilege on the object you want to update if:

■ The object is on a remote database or

■ The SQL92_SECURITY initialization parameter is set to TRUE and the UPDATE
operation references table columns (such as the columns in a where_clause).

Syntax
update::=

(DML_table_expression_clause::= on page 18-60, update_set_clause::=
on page 18-61, where_clause::= on page 18-61, returning_clause::= on

page 18-61)

UPDATE
hint dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

update_set_clause
where_clause returning_clause

;

UPDATE

18-60 Oracle9i SQL Reference

DML_table_expression_clause ::=

(subquery::= on page 18-5—part of SELECT syntax, subquery_restriction_
clause::= on page 18-60, table_collection_expression::= on page 18-60)

subquery_restriction_clause ::=

table_collection_expression ::=

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-61

update_set_clause ::=

where_clause ::=

returning_clause ::=

Semantics

hint
Specify a comment that passes instructions to the optimizer on choosing an

execution plan for the statement.

You can place a parallel hint immediately after the UPDATE keyword to parallelize

both the underlying scan and UPDATE operations.

See Also:

■ Oracle9i Database Performance Tuning Guide and Reference and

"Hints" on page 2-91 for the syntax and description of hints

■ Oracle9i Database Performance Tuning Guide and Reference and

Oracle9i Database Concepts for detailed information about

parallel DML

SET

(column

,

) = (subquery)

column =

expr

(subquery)

DEFAULT

,

VALUE (t_alias) =
expr

(subquery)

WHERE condition

RETURNING expr

,

INTO data_item

,

UPDATE

18-62 Oracle9i SQL Reference

DML_table_expression_clause
The ONLY clause applies only to views. Specify ONLY syntax if the view in the

UPDATE clause is a view that belongs to a hierarchy and you do not want to update

rows from any of its subviews.

schema
Specify the schema containing the table or view. If you omit schema , then Oracle

assumes the table or view is in your own schema.

table | view | subquery
Specify the name of the table, view, materialized view, or the columns returned by a

subquery, to be updated. Issuing an UPDATE statement against a table fires any

UPDATE triggers associated with the table.

If you specify view , then Oracle updates the view’s base table. You cannot update a

view except with INSTEAD OF triggers if the view’s defining query contains one of

the following constructs:

■ A set operator

■ A DISTINCT operator

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ Joins (with some exceptions--see Oracle9i Database Administrator’s Guide for

more information)

In addition, if the view was created with the WITH CHECK OPTION, then you can

update the view only if the resulting data satisfies the view’s defining query.

If table (or the base table of view) contains one or more domain index columns,

then this statement executes the appropriate indextype update routine.

If you specify materialized view , then Oracle updates the data in the

materialized view if it using the FOR UPDATE clause.

See Also: "Restrictions on the dml_table_expression_clause" on

page 18-64 and "Updating a Table: Examples" on page 18-68

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-63

PARTITION (partition) | SUBPARTITION (subpartition)
Specify the name of the partition or subpartition within table targeted for updates.

You need not specify the partition name when updating values in a partitioned

table. However in some cases specifying the partition name can be more efficient

than a complicated where_clause .

dblink
Specify a complete or partial name of a database link to a remote database where

the table or view is located. You can use a database link to update a remote table or

view only if you are using Oracle’s distributed functionality.

If you omit dblink, then Oracle assumes the table or view is on the local database.

subquery_restriction_clause
Use the subquery_restriction_clause to restrict the subquery in one of the

following ways:

WITH READ ONLY Specify WITH READ ONLY to indicate that the table or view

cannot be updated.

WITH CHECK OPTION Specify WITH CHECK OPTION to indicate that Oracle

prohibits any changes to the table or view that would produce rows that are not

included in the subquery.

CONSTRAINT constraint Specify the name of the CHECK OPTION constraint. If

you omit this identifier, Oracle automatically assigns the constraint a name of the

form SYS_Cn, where n is an integer that makes the constraint name unique within

the database.

See Also:

■ Oracle9i Data Cartridge Developer’s Guide for more information

on the indextype update routines

■ CREATE MATERIALIZED VIEW on page 14-5 for information

on creating updatable materialized views

See Also: "Updating a Partition: Example" on page 18-69

See Also: "Referring to Objects in Remote Databases" on

page 2-118 for information on referring to database links

UPDATE

18-64 Oracle9i SQL Reference

t able_collection_expression
The table_collection_expression lets you inform Oracle that the value of

collection_expression should be treated as a table for purposes of query and

DML operations. The collection_expression can be a subquery, a column, a

function, or a collection constructor. Regardless of its form, it must return a

collection value (that is, a value whose type is nested table or varray). This process

of extracting the elements of a collection is called collection unnesting.

You can use a table_collection_expression to update rows in one table

based on rows from another table. For example, you could roll up four quarterly

sales tables into a yearly sales table.

t_alias
Specify a correlation name (alias) for the table, view, or subquery to be referenced

elsewhere in the statement.

Restrictions on the dml_table_expression_clause

■ You cannot execute this statement if table (or the base table of view) contains

any domain indexes marked IN_PROGRESS or FAILED .

■ You cannot insert into a partition if any affected index partitions are marked

UNUSABLE.

■ You cannot specify the order_by_clause in the subquery of the dml_
table_expression_clause .

See Also: "Using the WITH CHECK OPTION Clause: Example"

on page 18-34

Note: In earlier releases of Oracle, when collection_
expression was a subquery, table_collection_expression
was expressed as "THE subquery". That usage is now deprecated.

Note: This alias is required if the dml_table_expression_
clause references any object type attributes or object type

methods.

See Also: "Correlated Update: Example" on page 18-70

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-65

■ If you specify an index, index partition, or index subpartition that has been

marked UNUSABLE, then the UPDATE statement will fail unless the SKIP_
UNUSABLE_INDEXES session parameter has been set to TRUE.

update_set_clause
The update_set_clause lets you set column values.

column
Specify the name of a column of the table or view that is to be updated. If you omit

a column of the table from the update_set_clause , then that column’s value

remains unchanged.

If column refers to a LOB object attribute, then you must first initialize it with a

value of empty or null. You cannot update it with a literal. Also, if you are updating

a LOB value using some method other than a direct UPDATE SQL statement, then

you must first lock the row containing the LOB.

If column is part of the partitioning key of a partitioned table, then UPDATEwill fail

if you change a value in the column that would move the row to a different

partition or subpartition, unless you enable row movement.

In addition, if column is part of the partitioning key of a list-partitioned table, then

UPDATE will fail if you specify a value for the column that does not already exist in

the partition_value list of one of the partitions.

subquery
Specify a subquery that returns exactly one row for each row updated.

■ If you specify only one column in the update_set_clause , then the

subquery can return only one value.

■ If you specify multiple columns in the update_set_clause , then the

subquery must return as many values as you have specified columns.

See Also: ALTER SESSION on page 10-2 for information on the

SKIP_UNUSABLE_INDEXES session parameter

See Also: for_update_clause on page 18-26

See Also: the row_movement_clause of CREATE TABLE on

page 15-7 or ALTER TABLE on page 11-2

UPDATE

18-66 Oracle9i SQL Reference

You can use the flashback_clause of within the subquery to update table with

past data.

If the subquery returns no rows, then the column is assigned a null.

expr
Specify an expression that resolves to the new value assigned to the corresponding

column.

DEFAULT Specify DEFAULT to set the column to the value previously specified as

the default value for the column. If no default value for the corresponding column

has been specified, then Oracle sets the column to null.

Restriction on Updating to Default Values You cannot specify DEFAULT if you are

updating a view.

VALUE Clause
The VALUE clause lets you specify the entire row of an object table.

See Also: the flashback_clause of SELECT on page 18-14 for

more information on this clause

Note: If this subquery refers to remote objects, then the UPDATE
operation can run in parallel as long as the reference does not loop

back to an object on the local database. However, if the subquery
in the dml_table_expression_clause refers to any remote

objects, then the UPDATE operation will run serially without

notification.

See Also:

■ SELECT on page 18-4 and "Using Subqueries" on page 8-13

■ parallel_clause of CREATE TABLE on page 15-53

See Also: Chapter 4, "Expressions" for the syntax of expr and

"Updating an Object Table: Example" on page 18-69

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-67

Restriction on the VALUE clause You can specify this clause only for an object

table.

where_clause
The where_clause lets you restrict the rows updated to those for which the

specified condition is true. If you omit this clause, then Oracle updates all rows in

the table or view.

The where_clause determines the rows in which values are updated. If you do

not specify the where_clause , then all rows are updated. For each row that

satisfies the where_clause , the columns to the left of the equals (=) operator in the

update_set_clause are set to the values of the corresponding expressions on the

right. The expressions are evaluated as the row is updated.

returning_clause
The returning clause retrieves the rows affected by a DML (INSERT, UPDATE, or

DELETE) statement. You can specify this clause for tables and materialized views,

and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can

retrieve column expressions using the affected row, rowid, and REFs to the affected

row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause
stores values from expressions, rowids, and REFs involving the affected rows in

bind arrays.

expr Each item in the expr list must be a valid expression syntax. All forms are

valid except scalar subquery expressions.

INTO The INTO clause indicates that the values of the changed rows are to be

stored in the variable(s) specified in data_item list.

Note: If you insert string literals into a RAW column, during

subsequent queries, then Oracle will perform a full table scan

rather than using any index that might exist on the RAW column.

See Also: "Updating an Object Table: Example" on page 18-69

See Also: Chapter 5, "Conditions" for the syntax of condition

UPDATE

18-68 Oracle9i SQL Reference

data_item Each data_item is a host variable or PL/SQL variable that stores the

retrieved expr value.

For each expression in the RETURNING list, you must specify a corresponding

type-compatible PL/SQL variable or host variable in the INTO list.

Restrictions on the RETURNING Clause You cannot:

■ Specify the returning_clause for a multitable insert.

■ Use this clause with parallel DML or with remote objects.

■ Retrieve LONG types with this clause.

■ Specify this clause for a view on which an INSTEAD OF trigger has been

defined.

Examples

Updating a Table: Examples The following statement gives null commissions to

all employees with the job SH_CLERK:

UPDATE employees
 SET commission_pct = NULL
 WHERE job_id = ’SH_CLERK’;

The following statement promotes Douglas Grant to manager of Department 20

with a $1,000 raise:

UPDATE employees SET
 job_id = ’SA_MAN’, salary = salary + 1000, department_id = 120
 WHERE first_name||’ ’||last_name = ’Douglas Grant’;

The following statement increases the salary of an employee in the employees
table on the remote database:

UPDATE employees@remote
 SET salary = salary*1.1
 WHERE last_name = ’Baer’;

The next example shows the following syntactic constructs of the UPDATE
statement:

See Also: PL/SQL User’s Guide and Reference for information on

using the BULK COLLECT clause to return multiple values to

collection variables

UPDATE

SQL Statements: SAVEPOINT to UPDATE 18-69

■ Both forms of the update_set_clause together in a single statement

■ A correlated subquery

■ A where_clause to limit the updated rows

UPDATE employees a
 SET department_id =
 (SELECT department_id
 FROM departments
 WHERE location_id = ’2100’),
 (salary, commission_pct) =
 (SELECT 1.1*AVG(salary), 1.5*AVG(commission_pct)
 FROM employees b
 WHERE a.department_id = b.department_id)
 WHERE department_id IN
 (SELECT department_id
 FROM departments
 WHERE location_id = 2900
 OR location_id = 2700);

The preceding UPDATE statement performs the following operations:

■ Updates only those employees who work in Geneva or Munich (locations 2900

and 2700)

■ Sets department_id for these employees to the department_id
corresponding to Bombay (location_id 2100)

■ Sets each employee’s salary to 1.1 times the average salary of their department

■ Sets each employee’s commission to 1.5 times the average commission of their

department

Updating a Partition: Example The following example updates values in a single

partition of the sales table:

UPDATE sales PARTITION (sales_q1_1999) s
 SET s.promo_id = 494
 WHERE amount_sold > 9000;

Updating an Object Table: Example The following statement updates a row of

object table table1 by selecting a row from another object table table2 :

UPDATE table1 p SET VALUE(p) =
 (SELECT VALUE(q) FROM table2 q WHERE p.id = q.id)
 WHERE p.id = 10;

UPDATE

18-70 Oracle9i SQL Reference

The example uses the VALUE object reference function in both the SET clause and

the subquery..

Correlated Update: Example The following example updates particular rows of

the projs nested table corresponding to the department whose department equals

123:

UPDATE TABLE(SELECT projs
 FROM dept d WHERE d.dno = 123) p
 SET p.budgets = p.budgets + 1
 WHERE p.pno IN (123, 456);

Using the RETURNING Clause During UPDATE: Example The following example

returns values from the updated row and stores the result in PL/SQL variables

bnd1 , bnd2 , bnd3 :

UPDATE employees
 SET job_id =’SA_MAN’, salary = salary + 1000, department_id = 140
 WHERE last_name = ’Jones’
 RETURNING salary*0.25, last_name, department_id
 INTO :bnd1, :bnd2, :bnd3;

How to Read Syntax Diagrams A-1

A
How to Read Syntax Diagrams

Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram,

trace it from left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPERCASE inside rectangles. Type

them exactly as shown in the rectangles. Parameters appear in lowercase inside

ovals. Variables are used for the parameters. Punctuation, operators, delimiters, and

terminators appear inside circles.

If the syntax diagram has more than one path, you can choose any path to travel.

For example, in the following syntax you can specify either NOPARALLEL or

PARALLEL:

parallel_clause::=

If you have the choice of more than one keyword, operator, or parameter, your

options appear in a vertical list. For example, in the following syntax diagram, you

can specify one or more of the five parameters in the stack:

NOPARALLEL

PARALLEL
integer

A-2 Oracle9i SQL Reference

physical_attributes_clause::=

The following table shows parameters that appear in the syntax diagrams and

provides examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the name of an
object of the type specified by the parameter.
For a list of all types of objects, see the section,
"Schema Objects" on page 2-106.

employees

c The substitution value must be a single
character from your database character set.

T

s

’text’ The substitution value must be a text string in
single quotes. See the syntax description of
’text ’ in "Text Literals" on page 2-54.

’Employee records’

char The substitution value must be an expression of
datatype CHAR or VARCHAR2 or a character
literal in single quotes.

last_name

’Smith’

condition The substitution value must be a condition that
evaluates to TRUE or FALSE. See the syntax
description of condition in Chapter 5,
"Conditions".

last_name >’A’

date

d

The substitution value must be a date constant
or an expression of DATE datatype.

TO_DATE(

’01-Jan-2002’,

’DD-MON-YYYY’)

expr The substitution value can be an expression of
any datatype as defined in the syntax
description of expr in "About SQL
Expressions" on page 4-2.

salary + 1000

PCTFREE integer

PCTUSED integer

INITRANS integer

MAXTRANS integer

storage_clause

How to Read Syntax Diagrams A-3

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of

alternatives. Single required keywords and parameters appear on the main path ,

that is, on the horizontal line you are currently traveling. In the following example,

library_name is a required parameter:

drop_library::=

If there is a library named HQ_LIB, then, according to the diagram, the following

statement is valid:

DROP LIBRARY hq_lib;

If multiple keywords or parameters appear in a vertical list that intersects the main

path, one of them is required. That is, you must choose one of the keywords or

integer The substitution value must be an integer as
defined by the syntax description of integer in
"Integer Literals" on page 2-55.

72

number

m

n

The substitution value must be an expression of
NUMBER datatype or a number constant as
defined in the syntax description of number in
"Number Literals" on page 2-56.

AVG(salary)

15 * 7

raw The substitution value must be an expression of
datatype RAW.

HEXTORAW(’7D’)

subquery The substitution value must be a SELECT
statement that will be used in another SQL
statement. See SELECT on page 18-4.

SELECT last_name

FROM employees

db_name The substitution value must be the name of a
nondefault database in an embedded SQL
program.

sales_db

db_string The substitution value must be the database
identification string for an Oracle Net database
connection. For details, see the user’s guide for
your specific Oracle Net protocol.

—

Parameter Description Examples

DROP LIBRARY library_name ;

A-4 Oracle9i SQL Reference

parameters, but not necessarily the one that appears on the main path. In the

following example, you must choose one of the two settings:

key_compression::=

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are

optional. In the following example, instead of traveling down a vertical line, you

can continue along the main path:

deallocate_unused_clause::=

According to the diagram, all of the following statements are valid:

DEALLOCATE UNUSED;
DEALLOCATE UNUSED KEEP 1000;
DEALLOCATE UNUSED KEEP 10M;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the

following example, after choosing one value expression, you can go back repeatedly

to choose another, separated by commas.

query_partition_clause::=

COMPRESS
integer

NOCOMPRESS

DEALLOCATE UNUSED
KEEP integer

K

M

PARTITION BY value_expr

,

How to Read Syntax Diagrams A-5

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The

following example is a two-part diagram:

alter_java::=

According to the diagram, the following statement is valid:

ALTER JAVA SOURCE jsource_1 COMPILE;

Database Objects
The names of Oracle identifiers, such as tables and columns, must not exceed 30

characters in length. The first character must be a letter, but the rest can be any

combination of letters, numerals, dollar signs ($), pound signs (#), and underscores

(_).

However, if an Oracle identifier is enclosed by double quotation marks ("), it can

contain any combination of legal characters, including spaces but excluding

quotation marks.

Oracle identifiers are not case sensitive except when enclosed by double quotation

marks.

For more information, see "Schema Object Naming Rules" on page 2-110.

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
)) COMPILE

RESOLVE

invoker_rights_clause

;

A-6 Oracle9i SQL Reference

Oracle and Standard SQL B-1

B
Oracle and Standard SQL

This appendix discusses Oracle’s conformance with the SQL:1999 standards. The

mandatory portion of SQL:1999 is known as Core SQL:1999 and is found in

SQL:1999 Part 2 (Foundation) and Part 5 (Bindings). The Foundation features are

analyzed in Annex F of Part 2 in the table "SQL/Foundation feature taxonomy and

definition for Core SQL". The Bindings features are analyzed in Annex F of Part 5 in

the table "SQL/Bindings feature taxonomy and definition for Core SQL".

This appendix declares Oracle’s conformance to the SQL standards established by

the American National Standards Institute (ANSI) and the International Standards

Organization (ISO). (The ANSI and ISO SQL standards are identical.) It contains the

following sections:

■ ANSI Standards

■ ISO Standards

■ Oracle Compliance

■ FIPS Compliance

B-2 Oracle9i SQL Reference

ANSI Standards
The following documents of the American National Standards Institute (ANSI)

relate to SQL:

■ ANSI/ISO/IEC 9075-1:1999, Information technology—Database

languages—SQL—Part 1: Framework (SQL/Framework)

■ ANSI/ISO/IEC 9075-1:1999/Amd.1:2000

■ ANSI/ISO/IEC 9075-2:1999, Information technology—Database

languages—SQL—Part 2: Foundation (SQL/Foundation)

■ ANSI/ISO/IEC 9075-5:1999, Information technology—Database

languages—SQL—Part 5: Host Language Bindings (SQL/Bindings)

You can obtain a copy of ANSI standards from this address:

American National Standards Institute

11 West 42nd Street

New York, NY 10036 USA

Telephone: +1.212.642.4900

Fax: +1.212.398.0023

or from their Web site:

http://webstore.ansi.org/ansidocstore/default.asp

A subset of ANSI standards, including the SQL standard, are X3 or NCITS

standards. You can obtain these from the National Committee for Information

Technology Standards (NCITS) at:

http://www.cssinfo.com/ncitsgate.html

ISO Standards
The following documents of the International Organization for Standardization

(ISO) relate to SQL:

■ ISO/IEC 9075-1:1999, Information technology—Database

languages—SQL—Part 1: Framework (SQL/Framework)

■ ISO/IEC 9075-1:1999/Amd.1:2000

■ ISO/IEC 9075-2:1999, Information technology—Database

languages—SQL—Part 2: Foundation (SQL/Foundation)

Oracle and Standard SQL B-3

■ ISO/IEC 9075-5:1999, Information technology—Database

languages—SQL—Part 5: Host Language Bindings (SQL/Bindings)

You can obtain a copy of ISO standards from this address:

International Organization for Standardization

1 Rue de Varembé

Case postale 56

CH-1211, Geneva 20, Switzerland

Phone: +41.22.749.0111

Fax: +41.22.733.3430

Web site: http://www.iso.ch/

or from their web store:

http://www.iso.ch/cate/cat.html

Oracle Compliance
The ANSI and ISO SQL standards require conformance claims to state the type of

conformance and the implemented facilities. The following products provide full or

partial conformance with the ANSI and ISO standards as described in the tables

that follow:

■ Oracle9i database server

■ Pro*C/C++, release 9.2.0

■ Pro*COBOL, release 9.2.0

■ Pro*Fortran, release 1.8.77

■ SQL Module for Ada (Mod*Ada), release 9.2.0

■ Pro*COBOL 1.8, release 1.8.77

■ Pro*PL/I, release 1.6.28

■ OTT, release 9.2.0.

■ OTT8, release 8.1.8

The Core SQL:1999 features that Oracle fully supports are listed in Table B–1:

Table B–1 Fully Supported Core SQL:1999 Features

Feature ID Feature

E011 Numeric data types

B-4 Oracle9i SQL Reference

E031 Identifiers

E061 Basic predicates and search conditions

E081 Basic privileges

E091 Set functions

E101 Basic data manipulation

E111 Single row SELECT statement

E131 Null value support (nulls in lieu of values)

E141 Basic integrity constraints

E151 Transaction support

E152 Basic SET TRANSACTION statement

E153 Updatable queries with subqueries

E161 SQL comments using leading double minus

E171 SQLSTATE support

F041 Basic joined table

F051 Basic date and time

F081 UNION and EXCEPT in views

F131 Grouped operations

F181 Multiple module support

F201 CAST function

F221 Explicit defaults

F261 CASE expressions

F311 Schema definition statement

F471 Scalar subquery values

F481 Expanded NULL predicate

B011 Embedded Ada

B012 Embedded C

B013 Embedded COBOL

Table B–1 (Cont.) Fully Supported Core SQL:1999 Features

Feature ID Feature

Oracle and Standard SQL B-5

The Core SQL:1999 features that Oracle partially supports are listed in Table B–2:

B014 Embedded Fortran

T431 Extended grouping capabilities

T611 Elementary OLAP operators

T621 Enhanced numeric functions

Table B–2 Partially Supported Core SQL:1999 Features

Feature ID, Feature Partial Support

E021, Character data types Oracle fully supports these subfeatures:

■ E021-01, CHARACTER data type

■ E021-07, Character concatenation

■ E021-08, UPPER and LOWER functions

■ E021-09, TRIM function

■ E021-10, Implicit casting among character data types

■ E021-11, Character comparison

Oracle partially supports these subfeatures:

■ E021-02, CHARACTER VARYING data type (Oracle does not
distinguish a zero-length VARCHAR string from NULL)

■ E021-03, Character literals (Oracle regards the zero-length
literal ’’ as being null)

Oracle has equivalent functionality for these subfeatures:

■ E021-04, CHARACTER_LENGTH function: use LENGTH
function instead

■ E021-05, OCTET_LENGTH function: use LENGTHB function
instead

■ E021-06, SUBSTRING function: use SUBSTR function
instead

■ E021-11, POSITION function: use INSTR function instead

Table B–1 (Cont.) Fully Supported Core SQL:1999 Features

Feature ID Feature

B-6 Oracle9i SQL Reference

F031, Basic schema
manipulation

Oracle fully supports these subfeatures:

■ F031-01, CREATE TABLE statement to create persistent
base tables

■ F031-02, CREATE VIEW statement

■ F031-03, GRANT statement

Oracle partially supports this subfeature:

■ F031-04, ALTER TABLE statement: ADD COLUMN clause
(Oracle does not support the optional keyword COLUMN in
this syntax)

Oracle does not support these subfeatures (because Oracle
does not support the keyword RESTRICT):

■ F031-13, DROP TABLE statement: RESTRICT clause

■ F031-16, DROP VIEW statement: RESTRICT clause

■ F031-19, REVOKE statement: RESTRICT clause

E051, Basic query
specification

Oracle fully supports the following subfeatures:

■ E051-01, SELECT DISTINCT

■ E051-02, GROUP BY clause

■ E051-04, GROUP BY can contain columns not in <select
list>

■ E051-05, Select list items can be renamed

■ E051-06, HAVING clause

■ E051-07, Qualified * in select list

Oracle partially supports the following subfeatures:

■ E051-08, Correlation names in FROM clause (Oracle
supports correlation names, but not the optional AS
keyword)

Oracle does not support the following subfeature:

■ E051-09, Rename columns in the FROM clause

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID, Feature Partial Support

Oracle and Standard SQL B-7

E071, Basic query
expressions

Oracle fully supports the following subfeatures:

■ E071-01, UNION DISTINCT table operator

■ E071-02, UNION ALL able operator

■ E071-05, Columns combined by table operators need not
have exactly the same type

■ E071-06, table operators in subqueries

Oracle has equivalent functionality for the following
subfeature:

■ E071-03, EXCEPT DISTINCT table operator: Use MINUS
instead of EXCEPT DISTINCT

E121, Basic cursor support Oracle fully supports the following subfeatures:

■ E121-01, DECLARE CURSOR

■ E121-02, ORDER BY columns need not be in select list

■ E121-03, Value expressions in ORDER BY clause

■ E121-04, OPEN statement

■ E121-06, Positioned UPDATE statement

■ E121-07, Positioned DELETE statement

■ E121-08, CLOSE statement

■ E121-10, FETCH statement, implicit NEXT

Oracle does not support the following subfeatures:

■ E121-17, WITH HOLD cursors (in the standard, a cursor is
not held through a ROLLBACK, but Oracle does hold
through ROLLBACK)

F812, Basic flagging Oracle has a flagger, but it flags SQL-92 compliance rather than
SQL:1999 compliance

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID, Feature Partial Support

B-8 Oracle9i SQL Reference

Oracle has equivalent functionality for the features listed in Table B–3:

T321, Basic SQL-invoked
routines

Oracle fully supports these subfeatures:

■ T321-03, function invocation

■ T321-04, CALL statement

Oracle supports these subfeatures with syntactic differences:

■ T321-01, user-defined functions with no overloading

■ T321-02, user-defined procedures with no overloading

The Oracle syntax for CREATE FUNCTION and CREATE
PROCEDURE differs from the standard as follows:

■ In the standard, the mode of a parameter (IN , OUT or
INOUT) comes before the parameter name, whereas in
Oracle it comes after the parameter name.

■ The standard uses INOUT, whereas Oracle uses IN OUT.

■ Oracle requires either IS or AS after the return type and
before the definition of the routine body, while the
standard lacks these keywords.

■ If the routine body is in C (for example), then the standard
uses the keywords LANGUAGE C EXTERNAL NAME to name
the routine, whereas Oracle uses LANGUAGE C NAME.

■ If the routine body is in SQL, then Oracle uses its
proprietary procedural extension called PL/SQL.

Oracle supports the following subfeatures in PL/SQL but not
in Oracle SQL:

■ T321-05, RETURN statement

Table B–2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID, Feature Partial Support

Oracle and Standard SQL B-9

The Core SQL:1999 features that Oracle does not support are listed in Table B–4:

Table B–3 Equivalent Functionality for Core SQL:1999 Features

Feature ID, Feature Equivalent Functionality

F021, Basic information
schema

Oracle does not have any of the views in this feature. However,
Oracle makes the same information available in other metadata
views:

■ Instead of TABLES, use ALL_TABLES.

■ Instead of COLUMNS, use ALL_TAB_COLUMNS.

■ Instead of VIEWS, use ALL_VIEWS.

However, Oracle’s ALL_VIEWS does not display whether
a user view was defined WITH CHECK OPTION or if it is
updatable. To see whether a view has WITH CHECK
OPTION, use ALL_CONSTRAINTS, with TABLE_NAME
equal to the view name and look for CONSTRAINT_TYPE
equal to ’V’ .

■ Instead of TABLE_CONSTRAINTS, REFERENTIAL_
CONSTRAINTS and CHECK_CONSTRAINTS, use ALL_
CONSTRAINTS.

However, Oracle’s ALL_CONSTRAINTS does not display
whether a constraint is deferrable or initially deferred.

Table B–4 Unsupported Core SQL:1999 Features

Feature ID Feature

F501 Features and conformance views

S011 Distinct data types

Note: Oracle does not support E182, Module language. Although

this feature is listed in Table 31 in the standard, it merely indicates

that Core consists of a choice between Module language and

embedded language. Module language and embedded language

are completely equivalent in capability, differing only in the

manner in which SQL statements are associated with the host

programming language. Oracle supports embedded language.

B-10 Oracle9i SQL Reference

FIPS Compliance
Oracle complied fully with last Federal Information Processing Standard (FIPS),

which was FIPS PUB 127-2. That standard is no longer published. However, for

users whose applications depend on information about the sizes of some database

constructs that were defined in FIPS 127-2, we list the details of our compliance in

Table B–5.

Table B–5 Sizing for Database Constructs

Database Constructs FIPS Oracle9 i

Length of an identifier (in bytes) 18 30

Length of CHARACTER datatype (in bytes) 240 2000

Decimal precision of NUMERIC datatype 15 38

Decimal precision of DECIMAL datatype 15 38

Decimal precision of INTEGER datatype 9 38

Decimal precision of SMALLINT datatype 4 38

Binary precision of FLOAT datatype 20 126

Binary precision of REAL datatype 20 63

Binary precision of DOUBLE PRECISION datatype 30 126

Columns in a table 100 1000

Values in an INSERT statement 100 1000

SET clauses in an UPDATE statement(a) 20 1000

Length of a row(b,c) 2,000 2,000,000

Columns in a UNIQUE constraint 6 32

Length of a UNIQUE constraint(b) 120 (d)

Length of foreign key column list(b) 120 (d)

Columns in a GROUP BY clause 6 255(e)

Length of GROUP BYcolumn list 120 (e)

Sort specifications in ORDER BY clause 6 255(e)

Length of ORDER BY column list 120 (e)

Columns in a referential integrity constraint 6 32

Oracle and Standard SQL B-11

Notes to Table B–5:

(a) The number of SET clauses in an UPDATE statement refers to the number items

separated by commas following the SET keyword.

(b) The FIPS PUB defines the length of a collection of columns to be the sum of:

twice the number of columns, the length of each character column in bytes, decimal

precision plus 1 of each exact numeric column, binary precision divided by 4 plus 1

of each approximate numeric column.

(c) The Oracle limit for the maximum row length is based on the maximum length

of a row containing a LONG value of length 2 gigabytes and 999 VARCHAR2 values,

each of length 4000 bytes: 2(254) + 231 + (999(4000)).

(d) The Oracle limit for a UNIQUE key is half the size of an Oracle data block

(specified by the initialization parameter DB_BLOCK_SIZE) minus some overhead.

(e) Oracle places no limit on the number of columns in a GROUP BY clause or the

number of sort specifications in an ORDER BYclause. However, the sum of the sizes

of all the expressions in either a GROUP BY clause or an ORDER BY clause is limited

to the size of an Oracle data block (specified by the initialization parameter DB_
BLOCK_SIZE) minus some overhead.

(f) The Oracle limit for the number of cursors simultaneously opened is specified by

the initialization parameter OPEN_CURSORS. The maximum value of this parameter

depends on the memory available on your operating system and exceeds 100 in all

cases.

Oracle Extensions to Standard SQL
Oracle supports numerous features that extend beyond standard SQL. In your

Oracle applications, you can use these extensions just as you can use Core

SQL:1999.

Tables referenced in a SQL statement 15 No limit

Cursors simultaneously open 10 (f)

Items in a SELECT list 100 1000

Table B–5 (Cont.) Sizing for Database Constructs

Database Constructs FIPS Oracle9 i

B-12 Oracle9i SQL Reference

If you are concerned with the portability of your applications to other

implementations of SQL, use Oracle’s FIPS Flagger to help identify the use of

Oracle extensions to Entry SQL92 in your embedded SQL programs. The FIPS

Flagger is part of the Oracle precompilers and the SQL*Module compiler.

Character Set Support
Oracle supports most national, international, and vendor-specific encoded character

set standards. A complete list of character sets supported by Oracle Appears in

Appendix A, "Locale Data", in Oracle9i Database Globalization Support Guide.

Unicode is a universal encoded character set that lets you store information from

any language using a single character set. Unicode is required by modern standards

such as XML, Java, JavaScript, and LDAP. Unicode is compliant with ISO/IEC

standard 10646. You can obtain a copy of ISO/IEC standard 10646 from this

address:

International Organization for Standardization

1 Rue de Varembé

Case postale 56

CH-1211, Geneva 20, Switzerland

Phone: +41.22.749.0111

Fax: +41.22.733.3430

Web site: http://www.iso.ch/

Oracle9i complies fully with Unicode 3.0, the third and most recent version of the

Unicode standard. For up-to-date information on this standard, visit the Web site of

the Unicode Consortium:

http://www.unicode.org

Oracle uses UTF-8 (8-bit) encoding by way of three database character sets, two for

ASCII-based platforms (UTF8 and AL32UTF8) and one for EBCDIC platforms

(UTFE). If you prefer to implement Unicode support incrementally, you can store

Unicode data in either the UTF-16 or UTF-8 encoding form, in the national character

set, for the SQL NCHAR datatypes (NCHAR, NVARCHAR2, and NCLOB).

See Also: Pro*COBOL Precompiler Programmer’s Guide and

Pro*C/C++ Precompiler Programmer’s Guide for information on how

to use the FIPS Flagger.

See Also: Oracle9i Database Globalization Support Guide for details

on Oracle character set support.

Oracle Reserved Words C-1

C
Oracle Reserved Words

This appendix lists Oracle reserved words. Words followed by an asterisk (*) are

also ANSI reserved words.

ACCESS
ADD *
ALL *
ALTER *
AND *
ANY *
AS *
ASC *
AUDIT
BETWEEN *
BY *
CHAR *
CHECK *
CLUSTER
COLUMN
COMMENT
COMPRESS
CONNECT *
CREATE *
CURRENT *

Note: In addition to the following reserved words, Oracle uses system-

generated names beginning with "SYS_" for implicitly generated schema

objects and subobjects. Oracle discourages you from using this prefix in the

names you explicitly provide to your schema objects and subobjects to

avoid possible conflict in name resolution.

C-2 Oracle9i SQL Reference

DATE *
DECIMAL *
DEFAULT *
DELETE *
DESC *
DISTINCT *
DROP *
ELSE *
EXCLUSIVE
EXISTS
FILE
FLOAT *
FOR *
FROM *
GRANT *
GROUP *
HAVING *
IDENTIFIED
IMMEDIATE *
IN *
INCREMENT
INDEX
INITIAL
INSERT *
INTEGER *
INTERSECT *
INTO *
IS *
LEVEL *
LIKE *
LOCK
LONG
MAXEXTENTS
MINUS
MLSLABEL
MODE
MODIFY
NOAUDIT
NOCOMPRESS
NOT *
NOWAIT

Oracle Reserved Words C-3

NULL *
NUMBER
OF *
OFFLINE
ON *
ONLINE
OPTION *
OR *
ORDER *
PCTFREE
PRIOR *
PRIVILEGES *
PUBLIC *
RAW
RENAME
RESOURCE
REVOKE *
ROW
ROWID
ROWNUM
ROWS *
SELECT *
SESSION *
SET *
SHARE
SIZE *
SMALLINT *
START
SUCCESSFUL
SYNONYM
SYSDATE
TABLE *
THEN *
TO *
TRIGGER
UID
UNION *
UNIQUE *
UPDATE *
USER *
VALIDATE

C-4 Oracle9i SQL Reference

VALUES *
VARCHAR *
VARCHAR2
VIEW *
WHENEVER *
WHERE
WITH *

Examples D-1

D
Examples

The body of the SQL Reference contains examples for almost every reference topic.

This appendix contains lengthy examples that are appropriate in the context of a

single SQL statement. These examples are intended to provide uninterrupted the

series of steps that you would use to take advantage of particular Oracle

functionality. They do not replace the syntax diagrams and semantics found for

each individual SQL statement in the body of the reference. Please use the cross-

reference provided to access additional information, such as privileges required and

restrictions, as well as syntax.

This appendix contains the following sections:

■ Using Extensible Indexing

■ Using XML in SQL Statements

Using Extensible Indexing

D-2 Oracle9i SQL Reference

Using Extensible Indexing
This section provides examples of the steps entailed in a simple but realistic

extensible indexing scenario.

Suppose you want to rank the salaries in the HR.employees table and then find

those that rank between 10 and 20. You could use the DENSE_RANK function, as

follows:

SELECT last_name, salary FROM
 (SELECT last_name, DENSE_RANK() OVER
 (ORDER BY salary DESC) rank_val, salary FROM employees)
 WHERE rank_val BETWEEN 10 AND 20;

This nested query is somewhat complex, and it requires a full scan of the

employees table as well as a sort. An alternative would be to use extensible

indexing to achieve the same goal. The resulting query will be simpler. The query

will require only an index scan and a table access by rowid, and will therefore

perform much more efficiently.

The first step is to create the implementation type position_im , including method

headers for index definition, maintenance, and creation. (Most of the type body uses

PL/SQL, which is shown in italics.)

CREATE OR REPLACE TYPE position_im AS OBJECT
(
 curnum NUMBER,
 howmany NUMBER,
 lower_bound NUMBER, --lower_bound and upper_bound are used for the
 upper_bound NUMBER, --index-based functional implementation.
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXCREATE
 (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXTRUNCATE (ia SYS.ODCIINDEXINFO,

See Also: DENSE_RANK on page 6-55

See Also:

■ CREATE TYPE on page 16-3 and CREATE TYPE BODY on

page 16-25

■ Oracle9i Data Cartridge Developer’s Guide for complete

information on the ODCI routines in this statement

■ PL/SQL User’s Guide and Reference

Using Extensible Indexing

Examples D-3

 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER
);
/

CREATE OR REPLACE TYPE BODY position_im
IS
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST)
 RETURN NUMBER IS
 BEGIN
 ifclist := SYS.ODCIOBJECTLIST(SYS.ODCIOBJECT(’SYS’,’ODCIINDEX2’));
 RETURN ODCICONST.SUCCESS;
 END ODCIGETINTERFACES;

 STATIC FUNCTION ODCIINDEXCREATE (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN
NUMBER
 IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’Create Table ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB’ || ’(col_val, base_rowid, constraint pk PRIMARY KEY ’ ||
 ’(col_val, base_rowid)) ORGANIZATION INDEX AS SELECT ’ ||
 ia.INDEXCOLS(1).COLNAME || ’, ROWID FROM ’ ||
 ia.INDEXCOLS(1).TABLESCHEMA || ’.’ || ia.INDEXCOLS(1).TABLENAME;

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;

Using Extensible Indexing

D-4 Oracle9i SQL Reference

 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’DROP TABLE ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB’;

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXTRUNCATE(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’TRUNCATE TABLE ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME || ’_STORAGE_TAB’;

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’INSERT INTO ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB VALUES (’’’ || newval || ’’’ , ’’’ || rid || ’’’)’;

 -- execute the statement
 EXECUTE IMMEDIATE stmt;

 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv)
 RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’DELETE FROM ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB WHERE col_val = ’’’ || oldval || ’’’ AND base_rowid = ’’’ || rid ||
’’’’;

Using Extensible Indexing

Examples D-5

 -- execute the statement
 EXECUTE IMMEDIATE stmt;

 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
 -- construct the sql statement
 stmt := ’UPDATE ’ || ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB SET col_val = ’’’ || newval || ’’’ WHERE f2 = ’’’|| rid ||’’’’;

 -- execute the statement
 EXECUTE IMMEDIATE stmt;

 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS

 rid VARCHAR2(5072);
 storage_tab_name VARCHAR2(65);
 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);
 range_query_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 cnum INTEGER;
 nrows INTEGER;

 BEGIN
 -- Take care of some error cases.
 -- The only predicates in which position operator can appear are
 -- op() = 1 OR
 -- op() = 0 OR
 -- op() between 0 and 1
 IF (((strt != 1) AND (strt != 0)) OR
 ((stop != 1) AND (stop != 0)) OR
 ((strt = 1) AND (stop = 0))) THEN
 RAISE_APPLICATION_ERROR(-20101,

Using Extensible Indexing

D-6 Oracle9i SQL Reference

 ’incorrect predicate for position_between operator’);
 END IF;

 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101, ’Upper Position must be greater than or
 equal to Lower Position’);
 END IF;

 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101, ’Both Positions must be greater than zero’);
 END IF;

 storage_tab_name := ia.INDEXSCHEMA || ’.’ || ia.INDEXNAME ||
 ’_STORAGE_TAB’;
 upper_bound_stmt := ’Select MIN(col_val) FROM (Select /*+ INDEX_DESC(’ ||
 storage_tab_name || ’) */ DISTINCT ’ ||
 ’col_val FROM ’ || storage_tab_name || ’ ORDER BY ’ ||
 ’col_val DESC) WHERE rownum <= ’ || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;

 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := ’Select MIN(col_val) FROM (Select /*+ INDEX_DESC(’ ||
 storage_tab_name || ’) */ DISTINCT ’ ||
 ’col_val FROM ’ || storage_tab_name ||
 ’ WHERE col_val < ’ || upper_bound || ’ ORDER BY ’ ||
 ’col_val DESC) WHERE rownum <= ’ ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;

 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;

 range_query_stmt := ’Select base_rowid FROM ’ || storage_tab_name ||
 ’ WHERE col_val BETWEEN ’ || lower_bound || ’ AND ’ ||
 upper_bound;

 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, range_query_stmt, DBMS_SQL.NATIVE);

 -- set context as the cursor number
 SCTX := position_im(cnum, 0, 0, 0);

Using Extensible Indexing

Examples D-7

 -- return success
 RETURN ODCICONST.SUCCESS;
 END;

 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 rid_tab DBMS_SQL.Varchar2_table;
 rlist SYS.ODCIRIDLIST := SYS.ODCIRIDLIST();
 i INTEGER;
 d INTEGER;
 BEGIN
 cnum := SELF.curnum;

 IF self.howmany = 0 THEN
 dbms_sql.define_array(cnum, 1, rid_tab, nrows, 1);
 d := DBMS_SQL.EXECUTE(cnum);
 END IF;

 d := DBMS_SQL.FETCH_ROWS(cnum);

 IF d = nrows THEN
 rlist.extend(d);
 ELSE
 rlist.extend(d+1);
 END IF;

 DBMS_SQL.COLUMN_VALUE(cnum, 1, rid_tab);

 for i in 1..d loop
 rlist(i) := rid_tab(i+SELF.howmany);
 end loop;

 SELF.howmany := SELF.howmany + d;
 rids := rlist;

 RETURN ODCICONST.SUCCESS;
 END;

 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 BEGIN
 cnum := SELF.curnum;

Using Extensible Indexing

D-8 Oracle9i SQL Reference

 DBMS_SQL.CLOSE_CURSOR(cnum);
 RETURN ODCICONST.SUCCESS;
 END;

END;
/

The next step is to create the functional implementation function_for_
position_between for the operator that will be associated with the indextype.

(The PL/SQL blocks are shown in parentheses.)

This function is for use with an index-based function evaluation. Therefore, it takes

an index context and scan context as parameters.

CREATE OR REPLACE FUNCTION function_for_position_between
 (col NUMBER, lower_pos NUMBER, upper_pos NUMBER,
 indexctx IN SYS.ODCIIndexCtx,
 scanctx IN OUT position_im,
 scanflg IN NUMBER)
RETURN NUMBER AS
 rid ROWID;
 storage_tab_name VARCHAR2(65);
 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);
 col_val_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 column_value NUMBER;
BEGIN
 IF (indexctx.IndexInfo IS NOT NULL) THEN
 storage_tab_name := indexctx.IndexInfo.INDEXSCHEMA || ’.’ ||
 indexctx.IndexInfo.INDEXNAME || ’_STORAGE_TAB’;
 IF (scanctx IS NULL) THEN
 --This is the first call. Open a cursor for future calls.
 --First, do some error checking
 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101,
 ’Upper Position must be greater than or equal to Lower Position’);

See Also:

■ Oracle9i Data Cartridge Developer’s Guide for information on

creating index-based functional implementation

■ CREATE FUNCTION on page 13-52 and PL/SQL User’s Guide
and Reference

Using Extensible Indexing

Examples D-9

 END IF;
 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101,
 ’Both Positions must be greater than zero’);
 END IF;
 --Obtain the upper and lower value bounds for the range we’re interested
 --in.
 upper_bound_stmt := ’Select MIN(col_val) FROM (Select /*+ INDEX_DESC(’ ||
 storage_tab_name || ’) */ DISTINCT ’ ||
 ’col_val FROM ’ || storage_tab_name || ’ ORDER BY ’ ||
 ’col_val DESC) WHERE rownum <= ’ || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;
 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := ’Select MIN(col_val) FROM (Select /*+ INDEX_DESC(’ ||
 storage_tab_name || ’) */ DISTINCT ’ ||
 ’col_val FROM ’ || storage_tab_name ||
 ’ WHERE col_val < ’ || upper_bound || ’ ORDER BY ’ ||
 ’col_val DESC) WHERE rownum <= ’ ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;
 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;
 --Store the lower and upper bounds for future function invocations for
 --the positions.
 scanctx := position_im(0, 0, lower_bound, upper_bound);
 END IF;
 --Fetch the column value corresponding to the rowid, and see if it falls
 --within the determined range.
 col_val_stmt := ’Select col_val FROM ’ || storage_tab_name ||
 ’ WHERE base_rowid = ’’’ || indexctx.Rid || ’’’’;
 EXECUTE IMMEDIATE col_val_stmt INTO column_value;
 IF (column_value <= scanctx.upper_bound AND
 column_value >= scanctx.lower_bound AND
 scanflg = ODCICONST.RegularCall) THEN
 RETURN 1;
 ELSE
 RETURN 0;
 END IF;
 ELSE
 RAISE_APPLICATION_ERROR(-20101, ’A column that has a domain index of’ ||
 ’Position indextype must be the first argument’);

Using Extensible Indexing

D-10 Oracle9i SQL Reference

 END IF;
END;
/

Next, create the position_between operator, which uses the function_for_
position_between function. The operator takes an indexed NUMBER column as

the first argument, followed by a NUMBER lower and upper bound as the second

and third arguments.

CREATE OR REPLACE OPERATOR position_between
 BINDING (NUMBER, NUMBER, NUMBER) RETURN NUMBER
 WITH INDEX CONTEXT, SCAN CONTEXT position_im
 USING function_for_position_between;

In this CREATE OPERATOR statement, the WITH INDEX CONTEXT, SCAN CONTEXT
position_im clause is included so that the index context and scan context are

passed in to the functional evaluation, which is index based.

Now create the position_indextype indextype for the position_operator :

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

The operator position_between uses an index-based functional implementation.

Therefore, a domain index must be defined on the referenced column so that the

index information can be passed into the functional evaluation. So the final step is

to create the domain index salary_index using the position_indextype
indextype:

CREATE INDEX salary_index ON employees(salary)
 INDEXTYPE IS position_indextype;

Now you can use the position_between operator function to rewrite the original

query as follows:

SELECT last_name, salary FROM employees
 WHERE position_between(salary, 10, 20)=1

See Also: CREATE OPERATOR on page 14-44

See Also: CREATE INDEXTYPE on page 13-95

See Also: CREATE INDEX on page 13-65

Using XML in SQL Statements

Examples D-11

 ORDER BY salary DESC;

LAST_NAME SALARY
------------------------- ----------
Tucker 10000
King 10000
Baer 10000
Bloom 10000
Fox 9600
Bernstein 9500
Sully 9500
Greene 9500
Hunold 9000
Faviet 9000
McEwen 9000
Hall 9000
Hutton 8800
Taylor 8600
Livingston 8400
Gietz 8300
Chen 8200
Fripp 8200
Weiss 8000
Olsen 8000
Smith 8000
Kaufling 7900

Using XML in SQL Statements
This section describes some of the ways you can use XMLType data in the database.

XMLType Tables
The sample schema oe contains a table warehouses , which contains an XMLType
column warehouse_spec . Suppose you want to create a separate table with the

warehouse_spec information. The following example creates a very simple

XMLType table with one implicit CLOB column:

CREATE TABLE xwarehouses OF XMLTYPE;

You can insert into such a table using XMLType syntax, as shown in the next

statement. (The data inserted in this example corresponds to the data in the

warehouse_spec column of the sample table oe.warehouses where

warehouse_id = 1.)

Using XML in SQL Statements

D-12 Oracle9i SQL Reference

INSERT INTO xwarehouses VALUES
 (xmltype(’<?xml version="1.0"?>
 <Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </Warehouse>’));

You can query this table with the following statement:

SELECT e.getClobVal() FROM xwarehouses e;

Because Oracle implicitly stores the data in a CLOB column, it is subject to all of the

restrictions on LOB columns. To avoid these restrictions, create an XMLSchema-

based table. The XMLSchema maps the XML elements to their object-relational

equivalents. The following example registers an XMLSchema locally. The

XMLSchema (xwarhouses.xsd) reflects the same structure as the xwarehouses
table. (XMLSchema declarations use PL/SQL and the DBMS_XMLSCHEMA package,

so the example is shown in italics.)

begin
 dbms_xmlschema.registerSchema(
 ’http://www.oracle.com/xwarehouses.xsd’,
 ’<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/xwarehouses.xsd"
 xmlns:who="http://www.oracle.com/xwarehouses.xsd"
 version="1.0">

 <simpleType name="RentalType">
 <restriction base="string">
 <enumeration value="Rented"/>

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for information on XMLType and its member methods

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for information on creating XMLSchemas

Using XML in SQL Statements

Examples D-13

 <enumeration value="Owned"/>
 </restriction>
 </simpleType>

 <simpleType name="ParkingType">
 <restriction base="string">
 <enumeration value="Street"/>
 <enumeration value="Lot"/>
 </restriction>
 </simpleType>

 <element name = "Warehouse">
 <complexType>
 <sequence>
 <element name = "WarehouseId" type = "positiveInteger"/>
 <element name = "WarehouseName" type = "string"/>
 <element name = "Building" type = "who:RentalType"/>
 <element name = "Area" type = "positiveInteger"/>
 <element name = "Docks" type = "positiveInteger"/>
 <element name = "DockType" type = "string"/>
 <element name = "WaterAccess" type = "boolean"/>
 <element name = "RailAccess" type = "boolean"/>
 <element name = "Parking" type = "who:ParkingType"/>
 <element name = "VClearance" type = "positiveInteger"/>
 </sequence>
 </complexType>
 </element>
</schema>’,
 TRUE, TRUE, FALSE, FALSE);
end;
/
Now you can create an XMLSchema-based table, as shown in the following

example:

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.oracle.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

By default, Oracle stores this as an object-relational table. Therefore, you can insert

into it as shown in the example that follows. (The data inserted in this example

corresponds to the data in the warehouse_spec column of the sample table

oe.warehouses where warehouse_id = 1.)

INSERT INTO xwarehouses VALUES(
 xmltype.createxml(’<?xml version="1.0"?>

Using XML in SQL Statements

D-14 Oracle9i SQL Reference

 <who:Warehouse xmlns:who="http://www.oracle.com/xwarehouse.xsd"
 xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/xwarehouse.xsd
 http://www.oracle.com/xwarehouse.xsd">
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>false</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </who:Warehouse>’));
...
You can define constraints on an XMLSchema-based table. To do so, you use the

XMLDATA pseudocolumn to refer to the appropriate attribute within the

Warehouse XML element:

ALTER TABLE xwarehouses ADD (PRIMARY KEY(XMLDATA."WarehouseId"));

Because the data in xwarehouses is stored object relationally, Oracle rewrites

queries to this XMLType table to go to the underlying storage when possible.

Therefore the following queries would use the index created by the primary key

constraint in the preceding example:

SELECT * FROM xwarehouses x
 WHERE EXISTSNODE(VALUE(x), ’/Warehouse[WarehouseId="1"]’) = 1;

SELECT * FROM xwarehouses x
 WHERE EXTRACTVALUE(VALUE(x), ’/Warehouse/WarehouseId’) = 1;

You can also explicitly create indexes on XMLSchema-based tables, which greatly

enhance the performance of subsequent queries. You can create object-relational

views on XMLType tables, and you can create XMLType views on object-relational

tables.

Using XML in SQL Statements

Examples D-15

XMLType Columns
The sample table oe.warehouses was created with a warehouse_spec column

of type XMLType. No storage was specified, so the XMLType column was implicitly

stored as a CLOB. The examples in this section create a shortened form of the

oe.warehouses table, using two different types of storage.

The first example creates a table with an XMLType table stored as a CLOB. This table

does not require an XMLSchema, so the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144 NEXT 6144)
 CHUNK 4000
 NOCACHE LOGGING);

The following example creates a similar table, but stores the XMLType data in an

object-relational XMLType column whose structure is determined by the specified

XMLSchema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.oracle.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

See Also:

■ "XMLDATA" on page 2-89 for information on the XMLDATA
pseudocolumn

■ "Creating an XMLType View: Example" on page 16-53

■ "Create an Index on an XMLType Table: Example" on

page 13-88

Using XML in SQL Statements

D-16 Oracle9i SQL Reference

Index-1

Index
Symbols
- (dash)

datetime format element, 2-69

$ (dollar sign)

number format element, 2-64

% (percent) used with LIKE operator, 5-16

, (comma)

datetime format element, 2-69

number format element, 2-64

: (colon)

datetime format element, 2-69

. (period)

datetime format element, 2-69

number format element, 2-64

; (semicolon)

datetime format element, 2-69

/ (slash)

datetime format element, 2-69

Numerics
0 (zero)

number format element, 2-64

20th century, 2-73

21st century, 2-73

7.3.4 release

upgrading to Oracle9i release 2, 9-24

9 (nine)

number format element, 2-64

A
ABORT LOGICAL STANDBY clause

of ALTER DATABASE, 9-47

ABS function, 6-17

ACCESSED GLOBALLY clause

of CREATE CONTEXT, 13-13

ACCOUNT LOCK clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-37

ACCOUNT UNLOCK clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-37

ACOS function, 6-17

ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 9-43

ACTIVE_INSTANCE_COUNT initialization

parameter

setting with ALTER SYSTEM, 10-33

A.D. datetime format element, 2-69, 2-73

AD datetime format element, 2-69, 2-73

ADD clause

of ALTER DIMENSION, 9-58

of ALTER INDEXTYPE, 9-86

of ALTER TABLE, 11-41

of ALTER VIEW, 12-32

ADD DATAFILE clause

of ALTER TABLESPACE, 11-104

ADD LOG GROUP clause

of ALTER TABLE, 11-34

ADD LOGFILE clause

of ALTER DATABASE, 9-19

ADD LOGFILE GROUP clause

of ALTER DATABASE, 9-39

ADD LOGFILE MEMBER clause

of ALTER DATABASE, 9-19, 9-39

ADD LOGFILE THREAD clause

Index-2

of ALTER DATABASE, 9-38

ADD OVERFLOW clause

of ALTER TABLE, 11-40

ADD PARTITION clause

of ALTER TABLE, 11-69, 11-71, 11-72

ADD PRIMARY KEY clause

of ALTER MATERIALIZED VIEW LOG, 9-114

ADD ROWID clause

of ALTER MATERIALIZED VIEW, 9-114

of ALTER MATERIALIZED VIEW LOG, 9-114

ADD SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 9-40

ADD TEMPFILE clause

of ALTER TABLESPACE, 11-104

ADD VALUES clause

of ALTER TABLE ... MODIFY

PARTITION, 11-65

ADD_MONTHS function, 6-18

adding a constraint, 11-58

ADMINISTER DATABASE TRIGGER system

privilege, 17-42

ADVISE clause

of ALTER SESSION, 10-3

AFTER clause

of CREATE TRIGGER, 15-98

AFTER triggers, 15-98

AGENT clause

of CREATE LIBRARY, 14-3

aggregate functions, 6-8

user-defined, creating, 13-61

alias

for a column, 8-3

for an expressions in a view query, 16-43

specifying in queries and subqueries, 18-17

ALL clause

of SELECT, 18-11

of SET CONSTRAINTS, 18-45

of SET ROLE, 18-48

ALL EXCEPT clause

of SET ROLE, 18-48

ALL operator, 5-5

ALL PRIVILEGES clause

of GRANT, 17-34

of REVOKE, 17-93

ALL PRIVILEGES shortcut

of AUDIT, 12-57

ALL shortcut

of AUDIT, 12-57

ALL_COL_COMMENTS data dictionary

view, 12-72

ALL_ROWS hint, 2-94

ALL_TAB_COMMENTS data dictionary

view, 12-72

ALLOCATE EXTENT clause

of ALTER CLUSTER, 9-7, 9-8

of ALTER INDEX, 9-64, 9-70

of ALTER MATERIALIZED VIEW, 9-96

of ALTER TABLE, 11-35

ALLOW CORRUPTION clause

of ALTER DATABASE ... RECOVER, 9-28

ALTER ANY CLUSTER system privilege, 17-36

ALTER ANY DIMENSION system privilege, 17-37

ALTER ANY INDEX system privilege, 17-38

ALTER ANY INDEXTYPE system privilege, 17-38

ALTER ANY MATERIALIZED VIEW system

privilege, 17-38

ALTER ANY OUTLINE system privilege, 17-39

ALTER ANY PROCEDURE system

privilege, 17-39

ALTER ANY ROLE system privilege, 17-40

ALTER ANY SEQUENCE system privilege, 17-40

ALTER ANY TABLE system privilege, 17-41

ALTER ANY TRIGGER system privilege, 17-42

ALTER ANY TYPE system privilege, 17-42

ALTER CLUSTER statement, 9-6

ALTER DATABASE statement, 9-11

ALTER DATABASE system privilege, 17-37

ALTER DIMENSION statement, 9-56

ALTER FUNCTION statement, 9-59

ALTER INDEX statement, 9-62

ALTER INDEXTYPE statement, 9-85

ALTER JAVA CLASS statement, 9-87

ALTER JAVA SOURCE statement, 9-87

ALTER MATERIALIZED VIEW LOG

statement, 9-110

ALTER MATERIALIZED VIEW statement, 9-90

ALTER object privilege, 17-46

on a sequence, 17-48

on a table, 17-47

ALTER OPERATOR statement, 9-117

Index-3

ALTER OUTLINE statement, 9-118

ALTER PACKAGE statement, 9-120

ALTER PROCEDURE statement, 9-124

ALTER PROFILE statement, 9-127

ALTER PROFILE system privilege, 17-40

ALTER RESOURCE COST statement, 9-131

ALTER RESOURCE COST system privilege, 17-40

ALTER ROLE statement, 9-134

ALTER ROLLBACK SEGMENT statement, 9-136

ALTER ROLLBACK SEGMENT system

privilege, 17-40

ALTER SEQUENCE statement, 9-140

ALTER SESSION statement, 10-2

ALTER SESSION system privilege, 17-40

ALTER SNAPSHOT LOG. See ALTER

MATERIALIZED VIEW LOG

ALTER SNAPSHOT. See ALTER MATERIALIZED

VIEW

ALTER statements

triggers on, 15-101

ALTER SYSTEM statement, 10-20

ALTER SYSTEM system privilege, 17-37

ALTER TABLE statement, 11-2

ALTER TABLESPACE statement, 11-102

ALTER TABLESPACE system privilege, 17-42

ALTER TRIGGER statement, 12-2

ALTER TYPE statement, 12-6

ALTER USER statement, 12-22

ALTER USER system privilege, 17-43

ALTER VIEW statement, 12-31

alter_external_table_clause

of ALTER TABLE, 11-16

A.M. datetime format element, 2-69, 2-73

AM datetime format element, 2-69, 2-73

American National Standards Institute (ANSI), B-1

datatypes, 2-36

conversion to Oracle datatypes, 2-36

datatypes, implicit conversion, 2-36

standards, xvii, 1-2, B-2

supported datatypes, 2-5

analytic functions, 6-10

AVG, 6-22

CORR, 6-37

COUNT, 6-40

COVAR_POP, 6-42

COVAR_SAMP, 6-44

CUME_DIST, 6-47

DENSE_RANK, 6-55

FIRST, 6-67

FIRST_VALUE, 6-69

inverse distribution, 6-118, 6-121

LAG, 6-80

LAST, 6-81

LAST_VALUE, 6-84

LEAD, 6-86

linear regression, 6-129

MAX, 6-95

MIN, 6-97

NTILE, 6-109

OVER clause, 6-10, 6-12

PERCENT_CONT, 6-118

PERCENT_DISC, 6-121

PERCENT_RANK, 6-116

RANK, 6-123

RATIO_TO_REPORT, 6-125

ROW_NUMBER, 6-139

STDDEV, 6-148

STDDEV_POP, 6-149

STDDEV_SAMP, 6-151

SUM, 6-154

syntax, 6-10

user-defined, 6-12, 13-61

VAR_POP, 6-202

VAR_SAMP, 6-204

VARIANCE, 6-206

ANALYZE ANY system privilege, 17-43

ANALYZE CLUSTER statement, 12-34

ANALYZE INDEX statement, 12-34

ANALYZE TABLE statement, 12-34

ANCILLARY TO clause

of CREATE OPERATOR, 14-46

AND condition, 5-8

AND DATAFILES clause

of DROP TABLESPACE, 17-12

AND_EQUAL hint, 2-94

ANSI. See American National Standards Institute

(ANSI)

ANY operator, 5-5

APPEND hint, 2-94

application servers

Index-4

allowing connection as user, 12-26

applications

allowing connection as user, 12-26

securing, 13-12

validating, 13-12

AQ_ADMINISTRATOR_ROLE role, 17-45

AQ_TM_PROCESSES initialization parameter

setting with ALTER SYSTEM, 10-34

AQ_USER_ROLE role, 17-45

ARCHIVE LOG clause

of ALTER SYSTEM, 10-23

archive logs

applying to standby database, 9-31

archive mode

specifying, 13-29

ARCHIVE_LAG_TARGET initialization parameter

setting with ALTER SYSTEM, 10-34

archived redo logs

location, 9-26

storage locations, 10-69

ARCHIVELOG clause

of ALTER DATABASE, 9-19, 9-37

of CREATE CONTROLFILE, 13-20

of CREATE DATABASE, 13-29

arguments

of operators, 3-1

arithmetic

operators, 3-3

with DATE values, 2-20

AS clause

of CREATE JAVA, 13-103

AS EXTERNAL clause

of CREATE FUNCTION, 14-69

of CREATE TYPE BODY, 16-30

AS OBJECT clause

of CREATE TYPE, 16-9

AS subquery clause

of CREATE MATERIALIZED VIEW, 14-26

of CREATE TABLE, 15-61

of CREATE VIEW, 16-46

AS TABLE clause

of CREATE TYPE, 16-19

AS VARRAY clause

of CREATE TYPE, 16-18

ASC clause

of CREATE INDEX, 13-77

ASCII

character set, 2-46

ASCII function, 6-18

ASCIISTR function, 6-19

ASIN function, 6-20

ASSOCIATE STATISTICS statement, 12-50

ATAN function, 6-21

ATAN2 function, 6-21

ATTRIBUTE clause

of ALTER DIMENSION, 9-57

of CREATE DIMENSION, 13-44, 13-47

attributes

adding to a dimension, 9-58

dropping from a dimension, 9-58

maximum number of in object type, 15-24

of dimensions, defining, 13-47

of user-defined types

mapping to Java fields, 16-12

AUDIT ANY system privilege, 17-43

AUDIT SYSTEM system privilege, 17-37

AUDIT_FILE_DEST initialization parameter

setting with ALTER SYSTEM, 10-35

AUDIT_SYS_OPERATIONS initialization parameter

setting with ALTER SYSTEM, 10-35

AUDIT_TRAIL initialization parameter

setting with ALTER SYSTEM, 10-35

auditing

options

for database objects, 12-60

for SQL statements, 12-62

policies

value-based, 12-54

SQL statements, 12-55, 12-60

by a proxy, 12-55

by a user, 12-55

SQL statements, on a directory, 12-56

SQL statements, on a schema, 12-56

SQL statements, stopping, 17-81

system privileges, 12-55

users connected to SYS schema, 10-35

AUTHENTICATED BY clause

of CREATE DATABASE LINK, 13-40

AUTHENTICATED clause

of ALTER USER, 12-27

Index-5

AUTHID CURRENT_USER clause

of ALTER JAVA, 9-88

of CREATE FUNCTION, 13-58

of CREATE JAVA, 13-99, 13-101

of CREATE PACKAGE, 14-54

of CREATE PROCEDURE, 14-68

of CREATE TYPE, 12-14, 16-10

AUTHID DEFINER clause

of ALTER JAVA, 9-88

of CREATE FUNCTION, 13-58

of CREATE JAVA, 13-99, 13-101

of CREATE PACKAGE, 14-54

of CREATE PROCEDURE, 14-68

of CREATE TYPE, 12-14, 16-10

AUTOALLOCATE clause

of CREATE TABLESPACE, 15-87

AUTOEXTEND clause

of ALTER DATABASE, 9-18

of CREATE DATABASE, 13-26

of CREATE TEMPORARY TABLESPACE, 15-93

automatic segment-space management, 2-16, 15-89

Automatic Undo Management mode, 9-136, 13-33

AVG function, 6-22

B
B

number format element, 2-64

BACKGROUND_CORE_DUMP initialization

parameter

setting with ALTER SYSTEM, 10-35

BACKGROUND_DUMP_DEST initialization

parameter

setting with ALTER SYSTEM, 10-36

BACKUP ANY TABLE system privilege, 17-41

BACKUP CONTROLFILE clause

of ALTER DATABASE, 9-20, 9-42

BACKUP_TAPE_IO_SLAVES initialization

parameter

setting with ALTER SYSTEM, 10-36

B.C. datetime format element, 2-69, 2-73

BC datetime format element, 2-69, 2-73

BECOME USER system privilege, 17-43

BEFORE clause

of CREATE TRIGGER, 15-98

BEFORE triggers, 15-98

BEGIN BACKUP clause

of ALTER TABLESPACE, 11-107

BFILE

datatype, 2-32

locators, 2-32

BFILENAME function, 6-23

BIN_TO_NUM function, 6-25

binary large objects. See BLOB

binary operators, 3-2

BINDING clause

of CREATE OPERATOR, 14-44, 14-46

bit vectors

converting to numbers, 6-25

BITAND function, 6-25

BITMAP clause

of CREATE INDEX, 13-72

bitmap indexes, 13-72

creating join indexes, 13-67

BITMAP_MERGE_AREA_SIZE initialization

parameter

setting with ALTER SYSTEM, 10-36

blank padding

specifying in format models, 2-75

suppressing, 2-76

BLANK_TRIMMING initialization parameter

setting with ALTER SYSTEM, 10-37

blank-padded comparison semantics, 2-46

BLOB datatype, 2-33

transactional support, 2-33

BLOCKSIZE clause

of CREATE TABLESPACE, 15-84

BODY clause

of ALTER PACKAGE, 9-121

BUFFER_POOL parameter

of STORAGE clause, 7-63

BUFFER_POOL_KEEP initialization parameter

setting with ALTER SYSTEM, 10-37

BUFFER_POOL_RECYCLE initialization parameter

setting with ALTER SYSTEM, 10-38

BUILD DEFERRED clause

of CREATE MATERIALIZED VIEW, 14-20

BUILD IMMEDIATE clause

of CREATE MATERIALIZED VIEW, 14-20

BY ACCESS clause

Index-6

of AUDIT, 12-59

BY proxy clause

of AUDIT, 12-58

BY SESSION clause

of AUDIT, 12-59

BY user clause

of AUDIT, 12-57

BYTE character semantics, 2-10, 2-11

BYTE length semantics, 11-51

C
C

number format element, 2-64

C clause

of CREATE TYPE, 16-15

of CREATE TYPE BODY, 16-29

C method

mapping to an object type, 16-15

CACHE clause

of ALTER MATERIALIZED VIEW, 9-101

of ALTER MATERIALIZED VIEW LOG, 9-114

of ALTER TABLE, 11-35, 15-52

of CREATE CLUSTER, 13-9

of CREATE MATERIALIZED VIEW, 14-19

of CREATE MATERIALIZED VIEW

LOG, 14-38

CACHE hint, 2-94

CACHE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE, 9-140

of CREATE SEQUENCE, 14-92

CACHE READS clause

of ALTER TABLE, 11-45

of CREATE TABLE, 15-53

cached cursors

execution plan for, 17-24

CALL clause

of CREATE TRIGGER, 15-106

CALL procedure statement

of CREATE TRIGGER, 15-106

call spec. See call specifications

call specifications

in procedures, 14-64

of CREATE PROCEDURE, 14-68

of CREATE TYPE, 16-15

of CREATE TYPE BODY, 16-29

CALL statement, 12-68

calls

limiting CPU time for, 14-74

limiting data blocks read, 14-74

Cartesian products, 8-11

CASCADE clause

of CREATE TABLE, 15-60

of DROP PROFILE, 16-95

of DROP USER, 17-20

CASCADE CONSTRAINTS clause

of DROP CLUSTER, 16-68

of DROP TABLE, 17-9

of DROP TABLESPACE, 17-12

of DROP VIEW, 17-23

of REVOKE, 17-94

CASE expressions, 4-6

searched, 4-6

simple, 4-6

CAST function, 6-27

MULTISET parameter, 6-27

CATSEARCH condition, 5-2

CC datetime format element, 2-69

CEIL function, 6-30

chained rows

listing, 12-45

of clusters, 12-39

CHANGE CATEGORY clause

of ALTER OUTLINE, 9-119

CHAR character semantics, 2-10, 2-11

CHAR datatype, 2-10

ANSI, 2-36

converting to VARCHAR2, 2-63

CHAR length semantics, 11-51

CHAR VARYING datatype, ANSI, 2-36

CHARACTER datatype

ANSI, 2-36

DB2, 2-37

SQL/DS, 2-37

character functions, 6-4, 6-5

character large objects. See CLOB

character length semantics, 11-51

character literal. See text

CHARACTER SET parameter

Index-7

of ALTER DATABASE, 9-47

of CREATE CONTROLFILE, 13-21

of CREATE DATABASE, 13-30

character sets

changing, 9-47

common, 2-46

database, specifying, 13-30

multibyte characters, 2-112

specifying for database, 13-30

character strings

comparison rules, 2-45

exact matching, 2-76

fixed-length, 2-10

national character set, 2-10

variable length, 2-11

variable-length, 2-14

zero-length, 2-10

CHARACTER VARYING datatype

ANSI, 2-36

characters

single, comparison rules, 2-46

CHARTOROWID function, 6-30

CHECK clause

of constraints, 7-15

of CREATE TABLE, 15-26

check constraints, 7-15

CHECK DATAFILES clause

of ALTER SYSTEM, 10-26

CHECKPOINT clause

of ALTER SYSTEM, 10-25

checkpoints

forcing, 10-25

CHOOSE hint, 2-94

CHR function, 6-31

CHUNK clause

of ALTER TABLE, 11-46

of CREATE TABLE, 15-38

CIRCUITS initialization parameter

setting with ALTER SYSTEM, 10-39

CLEAR LOGFILE clause

of ALTER DATABASE, 9-19, 9-41

CLOB datatype, 2-33

transactional support, 2-33

clone databases

mounting, 9-23

CLOSE DATABASE LINK clause

of ALTER SESSION, 10-3

CLUSTER clause

of ANALYZE, 12-39

of CREATE INDEX, 13-73

of CREATE TABLE, 15-35

of TRUNCATE, 18-57

CLUSTER hint, 2-95

CLUSTER_DATABASE initialization parameter

setting with ALTER SYSTEM, 10-39

CLUSTER_DATABASE_INSTANCES initialization

parameter

setting with ALTER SYSTEM, 10-39

CLUSTER_INTERCONNECTS initialization

parameter

setting with ALTER SYSTEM, 10-40

clusters

assigning tables to, 15-35

caching retrieved blocks, 13-9

cluster indexes, 13-73

collecting statistics on, 12-39

creating, 13-2

deallocating unused extents, 9-7

degree of parallelism

changing, 9-7, 9-9

when creating, 13-8

dropping tables, 16-68

extents, allocating, 9-7, 9-8

granting system privileges on, 17-36

hash, 13-6

single-table, 13-7

indexed, 13-6

key values

allocating space for, 13-5

modifying space for, 9-8

migrated and chained rows in, 12-39, 12-45

modifying, 9-6

physical attributes

changing, 9-7

specifying, 13-5

releasing unused space, 9-9

removing from the database, 16-67

SQL examples, 16-68

storage attributes

changing, 9-7

Index-8

storage characteristics, changing, 9-8

tablespace in which created, 13-6

validating structure, 12-43

COALESCE clause

for partitions, 11-72

of ALTER INDEX, 9-78

of ALTER TABLE, 11-41, 11-64

of ALTER TABLESPACE, 11-109

COALESCE function, 6-33

as a variety of CASE expression, 6-33

COALESCE SUBPARTITION clause

of ALTER TABLE, 11-64

collection types

multilevel, 15-42

collections

inserting rows into, 17-60

modifying, 11-57

modifying retrieval method, 11-10

nested tables, 2-39

treating as a table, 16-60, 17-60, 18-17, 18-62,

18-64

unnesting, 18-17

examples, 18-40

varrays, 2-39

collection-typed values

converting to datatypes, 6-27

column constraints

restrictions on, 11-51

column REF constraints, 7-16

of CREATE TABLE, 15-26

columns

adding, 11-41

aliases for, 8-3

altering storage, 11-43

associating statistics with, 12-52

basing an index on, 13-74

collecting statistics on, 12-40

comments on, 12-73

creating comments about, 12-72

defining, 15-7

dropping from a table, 11-52

LOB

storage attributes, 11-45

maximum number of, 15-24

modifying existing, 11-49

parent-child relationships between, 13-43

properties, altering, 11-11, 11-43

qualifying names of, 8-2

REF

describing, 7-16

renaming, 11-56

restricting values for, 7-5

specifying as primary key, 7-13

specifying constraints on, 15-26

specifying default values, 15-25

storage properties, 15-36

substitutable, identifying type, 6-164

COLUMNS clause

of ASSOCIATE STATISTICS, 12-50, 12-52

COMMENT ANY TABLE system privilege, 17-43

COMMENT clause

of COMMIT, 12-76

COMMENT statement, 12-72

comments, 2-90

adding to objects, 12-72

associating with a transaction, 12-76

dropping from objects, 12-72

in SQL statements, 2-90

on indextypes, 12-74

on operators, 12-73

on schema objects, 2-91

on table columns, 12-73

on tables, 12-73

removing from the data dictionary, 12-72

specifying, 2-90

viewing, 12-72

commit

automatic, 12-75

COMMIT IN PROCEDURE clause

of ALTER SESSION, 10-3

COMMIT statement, 12-75

COMMIT TO SWITCHOVER clause

of ALTER DATABASE, 9-45

COMMIT_POINT_STRENGTH initialization

parameter

setting with ALTER SYSTEM, 10-40

comparison conditions, 5-4

comparison functions

MAP, 16-30

ORDER, 16-30

Index-9

comparison semantics

blank-padded, 2-46

nonpadded, 2-45

of character strings, 2-45

COMPATIBLE initialization parameter

setting with ALTER SYSTEM, 10-40

COMPILE clause

of ALTER DIMENSION, 9-58

of ALTER FUNCTION, 9-60

of ALTER JAVA SOURCE, 9-88

of ALTER MATERIALIZED VIEW, 9-106

of ALTER PACKAGE, 9-121

of ALTER PROCEDURE, 9-125

of ALTER TRIGGER, 12-3

of ALTER TYPE, 12-10

of ALTER VIEW, 12-33

of CREATE JAVA, 13-100

compiler switches

dropping and preserving, 9-60, 9-122, 9-125,

12-4, 12-11

COMPOSE function, 6-34

composite foreign keys, 7-14

composite partitioning

range-list, 11-63, 15-51

when creating a table, 15-19, 15-49

composite primary keys, 7-13

COMPOSITE_LIMIT parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

compound conditions, 5-21

compound expressions, 4-5

COMPRESS clause

of ALTER INDEX ... REBUILD, 9-75

of CREATE TABLE, 15-32

compression

of index keys, 9-65

COMPUTE STATISTICS clause

of ALTER INDEX... REBUILD, 9-75

of ANALYZE, 12-39

of CREATE INDEX, 13-80

CONCAT function, 6-35

concatenation operator, 3-4

conditions

comparison, 5-4

compound, 5-21

EXISTS, 5-13, 5-14

group comparison, 5-7

in SQL syntax, 5-1

IS OF type, 5-19

LIKE, 5-15

logical, 5-8

membership, 5-9

null, 5-13

range, 5-12

simple comparison, 5-5

UNDER_PATH, 5-20

CONNECT BY clause

of queries and subqueries, 18-21

of SELECT, 8-5, 18-20

CONNECT clause

of SELECT and subqueries, 18-8

CONNECT role, 17-45

CONNECT THROUGH clause

of ALTER USER, 12-27

CONNECT TO clause

of CREATE DATABASE LINK, 13-39

CONNECT_TIME parameter

of ALTER PROFILE, 9-128

of ALTER RESOURCE COST, 9-132

CONSIDER FRESH clause

of ALTER MATERIALIZED VIEW, 9-106

constant values. See literals

CONSTRAINT(S) session parameter, 10-10

constraints

adding to a table, 11-58

altering, 11-11

check, 7-15

checking

at end of transaction, 7-19

at start of transaction, 7-20

at the end of each DML statement, 7-19

column REF, 7-16

deferrable, 7-19, 18-45

enforcing, 10-10

defining, 7-5, 15-7

for a table, 15-26

on a column, 15-26

disabling, 15-55

cascading, 15-60

disabling after table creation, 11-89

Index-10

disabling during table creation, 15-22

dropping, 11-11, 11-59, 17-12

enabling, 15-55, 15-58

enabling after table creation, 11-89

enabling during table creation, 15-22

foreign key, 7-14

modifying existing, 11-58

on views

dropping, 12-33, 17-23

modifying, 12-33

primary key, 7-13

attributes of index, 7-23

enabling, 15-57

referential integrity, 7-14

renaming, 11-59

restrictions, 7-11

setting state for a transaction, 18-45

storing rows in violation, 11-82

table REF, 7-16

unique

attributes of index, 7-23

enabling, 15-57

constructor methods

and object types, 16-3

constructors

defining for an object type, 16-16

user-defined, 16-16

CONTAINS condition, 5-2

context namespaces

accessible to instance, 13-14

associating with package, 13-12

initializing using OCI, 13-13

initializing using the LDAP directory, 13-13

removing from the database, 16-69

contexts

creating namespaces for, 13-12

granting system privileges on, 17-36

control files

allowing reuse, 13-18, 13-27

backing up, 9-42

force logging mode, 13-20

re-creating, 13-15

CONTROL_FILE_RECORD_KEEP_TIME

initialization parameter

setting with ALTER SYSTEM, 10-41

CONTROL_FILES initialization parameter

setting with ALTER SYSTEM, 10-41

controlfile clauses

of ALTER DATABASE, 9-20

CONTROLFILE REUSE clause

of CREATE DATABASE, 13-27

controlfiles

standby, creating, 9-42

conversion

functions, 6-6

rules, string to date, 2-78

CONVERT clause

of ALTER DATABASE, 9-50

CONVERT function, 6-36

CORE_DUMP_DEST initialization parameter

setting with ALTER SYSTEM, 10-42

CORR function, 6-37

correlated subqueries, 8-14

correlation names

for base tables of indexes, 13-74

in DELETE, 16-60

in SELECT, 18-17

COS function, 6-39

COSH function, 6-40

COUNT function, 6-40

COVAR_POP function, 6-42

COVAR_SAMP function, 6-44

CPU_COUNT initialization parameter

setting with ALTER SYSTEM, 10-42

CPU_PER_CALL parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-74

CPU_PER_SESSION parameter

of ALTER PROFILE, 9-128

of ALTER RESOURCE COST, 9-131

of CREATE PROFILE, 14-74

CREATE ANY CLUSTER system privilege, 17-36

CREATE ANY CONTEXT system privilege, 17-36

CREATE ANY DIMENSION system

privilege, 17-37

CREATE ANY DIRECTORY system

privilege, 17-37

CREATE ANY INDEX system privilege, 17-38

CREATE ANY INDEXTYPE system

privilege, 17-38

Index-11

CREATE ANY LIBRARY system privilege, 17-38

CREATE ANY MATERIALIZED VIEW system

privilege, 17-38

CREATE ANY OPERATOR system

privilege, 17-39

CREATE ANY OUTLINE system privilege, 17-39

CREATE ANY PROCEDURE system

privilege, 17-39

CREATE ANY SEQUENCE system

privilege, 17-40

CREATE ANY SYNONYM system privilege, 17-41

CREATE ANY TABLE system privilege, 17-41

CREATE ANY TRIGGER system privilege, 17-42

CREATE ANY TYPE system privilege, 17-42

CREATE ANY VIEW system privilege, 17-43

CREATE CLUSTER statement, 13-2

CREATE CLUSTER system privilege, 17-36

CREATE CONTEXT statement, 13-12

CREATE CONTROLFILE statement, 13-15

CREATE DATABASE LINK statement, 13-37

CREATE DATABASE LINK system

privilege, 17-37

CREATE DATABASE statement, 13-23

CREATE DATAFILE clause

of ALTER DATABASE, 9-17, 9-34

CREATE DIMENSION

system privilege, 17-37

CREATE DIMENSION statement, 13-43

CREATE DIRECTORY statement, 13-49

CREATE FUNCTION statement, 13-52

CREATE INDEX

statement, 13-65

CREATE INDEXTYPE

statement, 13-95

CREATE INDEXTYPE system privilege, 17-37

CREATE JAVA statement, 13-98

CREATE LIBRARY statement, 14-2

CREATE LIBRARY system privilege, 17-38

CREATE MATERIALIZED VIEW LOG

statement, 14-34

CREATE MATERIALIZED VIEW statement, 14-5

CREATE MATERIALIZED VIEW system

privilege, 17-38

CREATE OPERATOR statement, 14-44

CREATE OPERATOR system privilege, 17-39

CREATE OUTLINE statement, 14-48

CREATE PACKAGE BODY statement, 14-57

CREATE PACKAGE statement, 14-52

CREATE PFILE statement, 14-62

CREATE PROCEDURE statement, 14-64

CREATE PROCEDURE system privilege, 17-39

CREATE PROFILE statement, 14-71

CREATE PROFILE system privilege, 17-40

CREATE PUBLIC DATABASE LINK system

privilege, 17-37

CREATE PUBLIC SYNONYM system

privilege, 17-41

CREATE ROLE statement, 14-79

CREATE ROLE system privilege, 17-40

CREATE ROLLBACK SEGMENT statement, 14-82

CREATE ROLLBACK SEGMENT system

privilege, 17-40

CREATE SCHEMA statement, 14-86

CREATE SEQUENCE statement, 14-89

CREATE SEQUENCE system privilege, 17-40

CREATE SESSION system privilege, 17-40

CREATE SPFILE statement, 14-94

CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 9-20, 9-42

CREATE statements

triggers on, 15-101

CREATE SYNONYM statement, 15-2

CREATE SYNONYM system privilege, 17-41

CREATE TABLE statement, 15-7

CREATE TABLE system privilege, 17-41

CREATE TABLESPACE statement, 15-80

CREATE TABLESPACE system privilege, 17-42

CREATE TEMPORARY TABLESPACE

statement, 15-92

CREATE TRIGGER statement, 15-95

CREATE TRIGGER system privilege, 17-42

CREATE TYPE BODY statement, 16-25

CREATE TYPE statement, 16-3

CREATE TYPE system privilege, 17-42

CREATE USER statement, 16-32

CREATE USER system privilege, 17-43

CREATE VIEW statement, 16-39

CREATE VIEW system privilege, 17-43

CREATE_BITMAP_AREA_SIZE initialization

parameter

Index-12

setting with ALTER SYSTEM, 10-42

CREATE_STORED_OUTLINES initialization

parameter

setting with ALTER SYSTEM, 10-43

CREATE_STORED_OUTLINES session

parameter, 10-11

cross joins, 18-19

CUBE clause

of SELECT statements, 18-22

CUME_DIST function, 6-47

cumulative distributions, 6-47

currency symbol

ISO, 2-65

local, 2-65

setting for a session, 10-8

union, 2-66

CURRENT_DATE function, 6-49

CURRENT_SCHEMA session parameter, 10-11

CURRENT_TIMESTAMP function, 6-50

CURRENT_USER clause

of CREATE DATABASE LINKI, 13-39

CURRVAL pseudocolumn, 2-82, 14-89

CURSOR expressions, 4-7

CURSOR_SHARING initialization parameter

setting with ALTER SESSION, 10-7, 10-43

CURSOR_SPACE_FOR_TIME initialization

parameter

setting with ALTER SYSTEM, 10-44

cursors

cached, 17-24

CustomDatum Java storage format, 16-11

CYCLE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE, 9-140

of CREATE SEQUENCE, 14-92

D
D

number format element, 2-64

data

aggregation

composite columns of GROUP BY, 18-23

concatenated grouping sets of GROUP

BY, 18-23

grouping sets, 18-23

caching frequently used, 11-35, 15-52

independence, 15-2

integrity checking on input, 2-13

retrieving, 8-2

specifying as temporary, 15-23

undo

storing, 14-82

data conversion, 2-48

between character datatypes, 2-51

implicit

disadvantages, 2-49

implicit versus explicit, 2-49

when performed implicitly, 2-49, 2-51

when specified explicitly, 2-52

data definition language (DDL)

events and triggers, 15-101

statements, 9-2

and implicit commit, 9-2

causing recompilation, 9-2

PL/SQL support, 9-2

statements requiring exclusive access, 9-2

data dictionary

adding comments to, 12-72

data manipulation language (DML)

allowing during indexing, 9-72

operations

and triggers, 15-100

during index creation, 13-80

during index rebuild, 11-87

parallelizing, 15-53

restricting operations, 10-29

retrieving affected rows, 16-61, 17-62, 18-67

retrieving rows affected by, 16-61, 17-62, 18-67

statements, 9-3

PL/SQL support, 9-3

triggers

and LOB columns and attributes, 2-31

data object number

in extended rowids, 2-34

data segment compression, 9-99, 11-33, 14-18,

15-29

database links, 8-16

closing, 10-3

creating, 2-118, 13-37

Index-13

creating synonyms with, 15-5

current user, 13-39

granting system privileges on, 17-37

naming, 2-118

public, 13-38

dropping, 16-70

referring to, 2-119

removing from the database, 16-70

shared, 13-38

syntax, 2-118

username and password, 2-119

database objects

dropping, 17-20

nonschema, 2-107

schema, 2-106

database triggers. See triggers

databases

accounts

creating, 16-32

allowing generation of redo logs, 9-23

allowing reuse of control files, 13-27

allowing unlimited resources to users, 14-73

archive mode

specifying, 13-29

blocks

specifying size, 15-84

cache

buffers in, 10-44

cancel-based recovery, 9-27

terminating, 9-29

change-based recovery, 9-27

changing character set, 9-47

changing characteristics, 13-15

changing global name, 9-51

changing name, 13-15, 13-18

character set, specifying, 13-30

character sets

changing, 9-47

specifying, 13-30

committing to standby status, 9-45

connect strings, 2-119

controlling, 9-51

controlling use, 9-52

converting from Oracle7 data dictionary, 9-50

create script for, 9-42

creating, 13-23

datafiles

modifying, 9-34

specifying, 13-30

designing media recovery, 9-25

ending backup of, 9-34

erasing all data from, 13-23

events

and triggers, 15-102

auditing, 15-102

transparent logging of, 15-102

granting system privileges on, 17-37

in FORCE LOGGING mode, 9-38, 13-20, 13-29

instances of, 13-29

limiting resources for users, 14-71

log files

modifying, 9-37

specifying, 13-27

managed recovery, 9-15

modifying, 9-11

mounting, 9-23, 13-23

moving a subset to a different database, 11-81

naming, 9-23

national character set

specifying, 13-30

no-data-loss mode, 9-44

online

adding log files, 9-38

opening, 9-23, 13-23

after media recovery, 9-24

prepare to re-create, 9-42

preventing changes to, 9-51

protection mode of, 9-44

quiesced state, 10-29

read-only, 9-23

read/write, 9-23

reconstructing damaged, 9-25

recovering, 9-25, 9-26

recovery

allowing corrupt blocks, 9-28

testing, 9-28

with backup control file, 9-27

re-creating control file for, 13-15

remote

accessing, 8-16

Index-14

authenticating users to, 13-40

connecting to, 13-39

inserting into, 17-59

service name of, 13-40

table locks on, 17-75

resetting

current log sequence, 9-24

to an earlier version, 9-50

restricting users to read-only transactions, 9-24

resuming activity, 10-29

standby

adding log files, 9-38

suspending activity, 10-29

system user passwords, 13-27

tempfiles

modifying, 9-34

time zone

determining, 6-51

setting, valid values for, 9-48, 13-35

time-based recovery, 9-27

upgrading, 9-50

DATAFILE clause

of CREATE DATABASE, 13-30

DATAFILE clauses

of ALTER DATABASE, 9-17, 9-35

DATAFILE END BACKUP clause

of ALTER DATABASE, 9-34

DATAFILE OFFLINE clause

of ALTER DATABASE, 9-35

DATAFILE ONLINE clause

of ALTER DATABASE, 9-35

DATAFILE RESIZE clause

of ALTER DATABASE, 9-36

datafiles

bringing online, 9-35

changing size of, 9-35

creating new, 9-34

defining for a tablespace, 15-81

defining for a temporary tablespace, 15-92

defining for the database, 13-26

designing media recovery, 9-25

dropping, 17-12

enabling autoextend, 7-42

end online backup of, 9-35, 11-107

extending automatically, 7-42

mapping to logical volumes and physical

devices, 10-58

online backup of, 11-107

online, updating information on, 10-26

putting online, 9-35

recover damaged, 9-25

recovering, 9-27

re-creating lost or damaged, 9-34

renaming, 9-37

resizing, 9-36

reusing, 7-41

size of, 7-41

specifying, 7-39

for a tablespace, 15-83

specifying for database, 13-30

system generated, 9-34

taking offline, 9-35

datatypes, 2-2

"Any" types, 2-40

ANSI-supported, 2-5

associating statistics with, 12-51, 12-52

BFILE, 2-9, 2-32

BLOB, 2-9, 2-33

built-in, 2-7

CHAR, 2-8, 2-10

character, 2-9

CLOB, 2-9, 2-33

comparison rules, 2-45

converting to collection-typed values, 6-27

converting to other datatypes, 6-27

DATE, 2-7, 2-18

datetime, 2-16

interval, 2-16

INTERVAL DAY TO SECOND, 2-24

INTERVAL YEAR TO MONTH, 2-24

length semantics, 2-10, 2-11

LONG, 2-7, 2-14

LONG RAW, 2-8, 2-27

media types, 2-44

NCHAR, 2-8, 2-10

NCLOB, 2-9, 2-33

NUMBER, 2-12

NUMER, 2-7

NVARCHAR2, 2-7, 2-11

Oracle-supplied types, 2-40

Index-15

RAW, 2-8, 2-27

ROWID, 2-8, 2-33

spatial type, 2-44

TIMESTAMP, 2-21

TIMESTAMP WITH LOCAL TIME ZONE, 2-23

TIMESTAMP WITH TIME ZONE, 2-21

UROWID, 2-8, 2-35

user-defined, 2-38

VARCHAR, 2-12

VARCHAR2, 2-7, 2-11

XML types, 2-41

DATE columns

converting to datetime columns, 11-49

DATE datatype, 2-18

julian, 2-20

date format models, 2-68

punctuation in, 2-69

text in, 2-69

date functions, 6-5

dates

arithmetic, 2-20

comparison rules, 2-45

datetime arithmetic

boundary cases, 10-12

calculating daylight savings time, 2-26

datetime columns

creating from DATE columns, 11-49

datetime datatypes, 2-16

daylight savings time, 2-26

datetime expressions, 4-9

datetime field

extracting from a datetime or interval

value, 6-63

datetime format elements, 2-68

and Globalization Support, 2-73

capitalization, 2-68

ISO standard, 2-73

RR, 2-73

suffixes, 2-75

datetime functions, 6-5

DAY datetime format element, 2-73

daylight savings time, 2-26

boundary cases, 2-26

going into or coming out of effect, 2-26

DB_BLOCK_BUFFERS initialization parameter

setting with ALTER SYSTEM, 10-44

DB_BLOCK_CHECKING initialization parameter

setting with ALTER SESSION, 10-7

setting with ALTER SYSTEM, 10-45

DB_BLOCK_CHECKSUM initialization parameter

setting with ALTER SYSTEM, 10-45

DB_BLOCK_SIZE initialization parameter

setting with ALTER SYSTEM, 10-46

DB_CACHE_ADVICE initialization parameter

setting with ALTER SYSTEM, 10-46

DB_CACHE_SIZE initialization parameter

setting with ALTER SYSTEM, 10-47, 10-72,

10-87

DB_CACHE_SIZE parameter

of ALTER SYSTEM, 10-72, 10-87

DB_CREATE_FILE_DEST initialization parameter

setting with ALTER SESSION, 10-7

setting with ALTER SYSTEM, 10-47

DB_CREATE_ONLINE_LOG_DEST_n initialization

parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-47

DB_DOMAIN initialization parameter

setting with ALTER SYSTEM, 10-47

DB_FILE_MULTIBLOCK_READ_COUNT

initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-48

DB_FILE_NAME_CONVERT initialization

parameter

setting with ALTER SYSTEM, 10-48

DB_FILES initialization parameter

setting with ALTER SYSTEM, 10-49

DB_KEEP_CACHE_SIZE initialization parameter

setting with ALTER SYSTEM, 10-50

DB_NAME initialization parameter

setting with ALTER SYSTEM, 10-50

DB_nK_CACHE_SIZE initialization parameter

setting with ALTER SYSTEM, 10-44

DB_RECYCLE_CACHE_SIZE initialization

parameter

setting with ALTER SYSTEM, 10-51

DB_WRITER_PROCESSES initialization parameter

setting with ALTER SYSTEM, 10-51

DB2 datatypes, 2-36

Index-16

conversion to Oracle datatypes, 2-37

implicit conversion, 2-37

restrictions on, 2-37

DBA role, 17-45

DBA_2PC_PENDING data dictionary view, 10-3

DBA_COL_COMMENTS data dictionary

view, 12-72

DBA_ROLLBACK_SEGS data dictionary

view, 16-98

DBA_TAB_COMMENTS data dictionary

view, 12-72

DBLINK_ENCRYPT_LOGIN initialization

parameter

setting with ALTER SYSTEM, 10-51

DBMS_OUTPUT package, 12-3

DBMS_ROWID package

and extended rowids, 2-34

DBMSSTDX.SQL script, 13-53, 14-52, 14-57, 14-64

and triggers, 15-95

DBTIMEZONE function, 6-51

DBWR_IO_SLAVES initialization parameter

setting with ALTER SYSTEM, 10-52

DD datetime format element, 2-69

DDAY datetime format element, 2-69

DDD datetime format element, 2-69

DDL. See data definition language (DDL)

DEALLOCATE UNUSED clause

of ALTER CLUSTER, 9-7, 9-9

of ALTER INDEX, 9-64

of ALTER TABLE, 11-35

DEBUG ANY PROCEDURE system

privilege, 17-37

DEBUG clause

of ALTER FUNCTION, 9-60

of ALTER PACKAGE, 9-122

of ALTER PROCEDURE, 9-125

of ALTER TRIGGER, 12-4

of ALTER TYPE, 12-10

DEBUG object privilege, 17-46

on a function, procedure, or package, 17-48

on a table, 17-47

on a view, 17-47

on an object type, 17-49

debugging

granting system privileges for, 17-37

decimal characters, 2-56

reset for session, 10-9

specifying, 2-65

DECIMAL datatype

ANSI, 2-36

DB2, 2-37

SQL/DS, 2-37

DECODE function, 6-52

DECOMPOSE function, 6-53

DEFAULT clause

of ALTER TABLE, 11-42

of CREATE TABLE, 15-25

DEFAULT COST clause

of ASSOCIATE STATISTICS, 12-51, 12-53

default index, suppressing, 14-21

DEFAULT profile

assigning to users, 16-95

DEFAULT ROLE clause

of ALTER USER, 12-26

DEFAULT SELECTIVITY clause

of ASSOCIATE STATISTICS, 12-51, 12-53

DEFAULT storage clause

of ALTER TABLESPACE, 11-106

of CREATE TABLESPACE, 15-86

DEFAULT TABLESPACE clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-36

DEFAULT TEMPORARY TABLESPACE clause

of ALTER DATABASE, 9-49

of CREATE DATABASE, 13-26

DEFERRABLE clause

of constraints, 7-19

deferrable constraints, 18-45

DEFERRED clause

of SET CONSTRAINTS, 18-45

definer-rights functions, 13-58

DELETE ANY TABLE system privilege, 17-41

DELETE object privilege, 17-46

on a table, 17-47

on a view, 17-47

DELETE statement, 16-55

triggers on, 15-100

DELETE STATISTICS clause

of ANALYZE, 12-46

DELETE_CATALOG_ROLE role, 17-45

Index-17

DENSE_RANK function, 6-55

DEREF function, 6-58

DESC clause

of CREATE INDEX, 13-77

DETERMINISTIC clause

of CREATE FUNCTION, 13-59

DG_BROKER_CONFIG_FILEn initialization

parameter

setting with ALTER SYSTEM, 10-52

DG_BROKER_START initialization parameter

setting with ALTER SYSTEM, 10-52

dimensions

attributes

adding, 9-58

changing, 9-56

defining, 13-47

dropping, 9-58

compiling invalidated, 9-58

creating, 13-43

defining levels, 13-44

examples, 13-47

granting system privileges on, 17-37

hierarchies

adding, 9-58

changing, 9-56

defining, 13-45

dropping, 9-58

levels

adding, 9-58

defining, 13-45

dropping, 9-58

removing from the database, 16-72

directories. See directory objects

directory objects

as aliases for operating system directories, 13-49

auditing, 12-59

creating, 13-49

granting system privileges on, 17-37

redefining, 13-50

removing from the database, 16-74

direct-path INSERT, 17-53

DISABLE ALL TRIGGERS clause

of ALTER TABLE, 11-90

DISABLE clause

of ALTER INDEX, 9-77

of ALTER TRIGGER, 12-3

of CREATE TABLE, 15-55

DISABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 10-27

DISABLE NOVALIDATE constraint state, 7-22,

15-57

DISABLE PARALLEL DML clause

of ALTER SESSION, 10-4

DISABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 9-105

of CREATE MATERIALIZED VIEW, 14-26

DISABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 10-28

DISABLE RESUMABLE clause

of ALTER SESSION, 10-6

DISABLE ROW MOVEMENT clause

of ALTER TABLE, 11-6, 11-38

of CREATE TABLE, 15-15, 15-60

DISABLE STORAGE IN ROW clause

of ALTER TABLE, 11-46

of CREATE TABLE, 15-38

DISABLE TABLE LOCK clause

of ALTER TABLE, 11-89

DISABLE THREAD clause

of ALTER DATABASE, 9-51

DISABLE VALIDATE constraint state, 7-22, 15-57

DISASSOCIATE STATISTICS statement, 16-64

DISCONNECT SESSION clause

of ALTER SYSTEM, 10-26

DISK_ASYNCH_IO initialization parameter

setting with ALTER SYSTEM, 10-53

dispatcher processes

creating additional, 10-108

terminating, 10-108

DISPATCHERS initialization parameter

setting with ALTER SYSTEM, 10-53

DISTINCT clause

of SELECT, 18-11

distinct queries, 18-11

distributed queries, 8-16

restrictions on, 8-16

distribution

hints for, 2-103

DML. See data manipulation language (DML)

DML_LOCKS initialization parameter

Index-18

setting with ALTER SYSTEM, 10-55

domain indexes, 13-65, 13-84, 13-95

and LONG columns, 11-50

associating statistics with, 12-51, 12-52

creating, prerequisites, 13-85

determining user-defined CPU and I/O

costs, 17-24

example, D-2

invoking drop routines for, 17-7

modifying, 9-76

parallelizing creation of, 13-85

rebuilding, 9-72

removing from the database, 16-77

specifying alter string for, 9-76

domain_index_clause

of CREATE INDEX, 13-69

DOUBLE PRECISION datatype (ANSI), 2-36

DRIVING_SITE hint, 2-95

DROP ANY CLUSTER system privilege, 17-36

DROP ANY CONTEXT system privilege, 17-37

DROP ANY DIMENSION system privilege, 17-37

DROP ANY DIRECTORY system privilege, 17-37

DROP ANY INDEX system privilege, 17-38

DROP ANY INDEXTYPE system privilege, 17-38

DROP ANY LIBRARY system privilege, 17-38

DROP ANY MATERIALIZED VIEW system

privilege, 17-38

DROP ANY OPERATOR system privilege, 17-39

DROP ANY OUTLINE system privilege, 17-39

DROP ANY PROCEDURE system privilege, 17-39

DROP ANY ROLE system privilege, 17-40

DROP ANY SEQUENCE system privilege, 17-40

DROP ANY SYNONYM system privilege, 17-41

DROP ANY TABLE system privilege, 17-41

DROP ANY TRIGGER system privilege, 17-42

DROP ANY TYPE system privilege, 17-42

DROP ANY VIEW system privilege, 17-43

DROP clause

of ALTER DIMENSION, 9-58

of ALTER INDEXTYPE, 9-86

DROP CLUSTER statement, 16-67

DROP COLUMN clause

of ALTER TABLE, 11-52

DROP CONSTRAINT clause

of ALTER TABLE, 11-59

DROP constraint clause

of ALTER VIEW, 12-33

DROP CONTEXT statement, 16-69

DROP DATABASE LINK statement, 16-70

DROP DIMENSION statement, 16-72

DROP DIRECTORY statement, 16-74

DROP FUNCTION statement, 16-75

DROP INDEX statement, 16-77

DROP INDEXTYPE statement, 16-79

DROP JAVA statement, 16-81

DROP LIBRARY statement, 16-83

DROP LOG GROUP clause

of ALTER TABLE, 11-34

DROP LOGFILE clause

of ALTER DATABASE, 9-19, 9-39

DROP LOGFILE MEMBER clause

of ALTER DATABASE, 9-19, 9-40

DROP MATERIALIZED VIEW LOG

statement, 16-86

DROP MATERIALIZED VIEW statement, 16-84

DROP OPERATOR statement, 16-88

DROP OUTLINE statement, 16-90

DROP PACKAGE BODY statement, 16-91

DROP PACKAGE statement, 16-91

DROP PARTITION clause

of ALTER INDEX, 9-67, 9-81

of ALTER TABLE, 11-73

DROP PRIMARY constraint clause

of ALTER TABLE, 11-59

DROP PROCEDURE statement, 16-93

DROP PROFILE statement, 16-95

DROP PROFILE system privilege, 17-40

DROP PUBLIC DATABASE LINK system

privilege, 17-37

DROP PUBLIC SYNONYM system

privilege, 17-41

DROP ROLE statement, 16-97

DROP ROLLBACK SEGMENT statement, 16-98

DROP ROLLBACK SEGMENT system

privilege, 17-40

DROP SEQUENCE statement, 17-2

DROP statements

triggers on, 15-101

DROP SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 9-41

Index-19

DROP SYNONYM statement, 17-4

DROP TABLE statement, 17-6

DROP TABLESPACE statement, 17-10

DROP TABLESPACE system privilege, 17-42

DROP TRIGGER statement, 17-13

DROP TYPE BODY statement, 17-18

DROP TYPE statement, 17-15

DROP UNIQUE constraint clause

of ALTER TABLE, 11-59

DROP USER statement, 17-20

DROP USER system privilege, 17-43

DROP VALUES clause

of ALTER TABLE ... MODIFY

PARTITION, 11-65

DROP VIEW statement, 17-22

DRS_START initialization parameter

setting with ALTER SYSTEM, 10-55

DUAL dummy table, 2-111, 8-16

dump file

limiting size of, 10-8

DUMP function, 6-59

DY datetime format element, 2-69, 2-73

DYNAMIC_SAMPLING hint, 2-95

E
E

number format element, 2-64

E datetime format element, 2-69

EBCDIC character set, 2-46

EE datetime format element, 2-69

embedded SQL, 1-4, 9-4

precompiler support, 9-4

EMPTY_BLOB function, 6-61

EMPTY_CLOB function, 6-61

ENABLE ALL TRIGGERS clause

of ALTER TABLE, 11-89

ENABLE clause

of ALTER INDEX, 9-77

of ALTER TRIGGER, 12-3

of CREATE TABLE, 15-55

ENABLE DISTRIBUTED RECOVERY clause

of ALTER SYSTEM, 10-27

ENABLE NOVALIDATE constraint state, 7-21,

15-56

ENABLE PARALLEL DML clause

of ALTER SESSION, 10-4

ENABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 9-105

of CREATE MATERIALIZED VIEW, 14-26

ENABLE RESTRICTED SESSION clause

of ALTER SYSTEM, 10-28

ENABLE RESUMABLE clause

of ALTER SESSION, 10-6

ENABLE ROW MOVEMENT clause

of ALTER TABLE, 11-6, 11-38

of CREATE TABLE, 15-15, 15-60

ENABLE STORAGE IN ROW clause

of ALTER TABLE, 11-46

of CREATE TABLE, 15-38

ENABLE TABLE LOCK clause

of ALTER TABLE, 11-89

ENABLE THREAD clause

of ALTER DATABASE, 9-50

ENABLE VALIDATE constraint state, 7-21, 15-56

END BACKUP clause

of ALTER DATABASE ... DATAFILE, 9-36

of ALTER TABLESPACE, 11-107, 11-108

ENQUEUE_RESOURCES initialization parameter

setting with ALTER SYSTEM, 10-56

equality test, 5-4

equijoins, 8-11

defining for a dimension, 13-46

equivalency tests, 5-11

error messages

setting language of, 10-9

ERROR_ON_OVERLAP_TIME session

parameter, 10-12

ESTIMATE STATISTICS clause

of ANALYZE, 12-42

EVENTS initialization parameter

setting with ALTER SYSTEM, 10-56

EXCEPTIONS INTO clause

of ALTER TABLE, 11-82

restrictions, 11-83

EXCHANGE PARTITION clause

of ALTER TABLE, 11-24, 11-81

EXCHANGE SUBPARTITION clause

of ALTER TABLE, 11-24, 11-81

exchanging partitions

Index-20

restrictions on, 11-83

EXCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 9-116

of CREATE MATERIALIZED VIEW

LOG, 14-41

EXCLUSIVE lock mode, 17-75

EXECUTE ANY INDEXTYPE system

privilege, 17-38

EXECUTE ANY OPERATOR system

privilege, 17-39

EXECUTE ANY PROCEDURE system

privilege, 17-39

EXECUTE ANY TYPE system privilege, 17-42

EXECUTE object privilege, 17-46

on a function, procedure, or package, 17-48

on a library, 17-49

on an indextype, 17-49

on an object type, 17-49

on an operator, 17-49

EXECUTE_CATALOG_ROLE role, 17-45

execution plans

determining, 17-24

dropping outlines for, 16-90

saving, 14-48

EXEMPT ACCESS POLICY system privilege, 17-44

EXISTS condition, 5-14, 5-15

EXISTS conditions, 5-13

EXISTSNODE function, 6-61

EXP function, 6-62

EXP_FULL_DATABASE role, 17-45

EXPLAIN PLAN statement, 17-24

explicit data conversion, 2-49, 2-52

expressions

CASE, 4-6

changing declared type of, 6-191

comparing, 6-52

compound, 4-5

computing with the DUAL table, 8-16

CURSOR, 4-7

datetime, 4-9

in SQL syntax, 4-2

interval, 4-11

lists of, 4-16

object access, 4-12

scalar subqueries as, 4-13

simple, 4-3

type constructor, 4-13

variable, 4-15

extended rowids, 2-34

base 64, 2-34

not directly available, 2-34

extensible indexing

example, D-2

EXTENT MANAGEMENT clause

for temporary tablespaces, 15-94

of CREATE DATABASE, 13-26

of CREATE TABLESPACE, 15-82, 15-87

of CREATE TEMPORARY TABLESPACE, 15-93

EXTENT MANAGEMENT DICTIONARY clause

of CREATE TABLESPACE, 15-87

EXTENT MANAGEMENT LOCAL clause

of CREATE DATABASE, 13-31

of CREATE TABLESPACE, 15-87

of CREATE TEMPORARY TABLESPACE, 15-94

extents

allocating for partitions, 11-35

allocating for subpartitions, 11-35

allocating for tables, 11-35

restricting access by instances, 9-70

specifying maximum number for an object, 7-61

specifying number allocated upon object

creation, 7-61

specifying the first for an object, 7-59

specifying the percentage of size increase, 7-60

specifying the second for an object, 7-60

external functions, 13-52, 14-64

external LOBs, 2-28

external procedures, 14-62, 14-64

running from remote database, 14-3

external tables, 15-30

altering, 11-60

creating, 15-33

restrictions on, 15-34

external users, 14-80, 16-34

EXTRACT (datetime) function, 6-63

EXTRACT (XML) function, 6-65

EXTRACTVALUE function, 6-66

Index-21

F
FAILED_LOGIN_ATTEMPTS parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

FAL_CLIENT initialization parameter

setting with ALTER SYSTEM, 10-56

FAL_SERVER initialization parameter

setting with ALTER SYSTEM, 10-57

FAST_START_IO_TARGET initialization parameter

setting with ALTER SESSION, 10-57

FAST_START_MTTR_TARGET initialization

parameter

setting with ALTER SYSTEM, 10-58

FAST_START_PARALLEL_ROLLBACK

initialization parameter

setting with ALTER SYSTEM, 10-58

FF datetime format element, 2-69

FILE_MAPPING initialization parameter

setting with ALTER SYSTEM, 10-58

files

specifying as a redo log file group, 7-39

specifying as datafiles, 7-39

specifying as tempfiles, 7-39

FILESYSTEMIO_OPTIONS initialization parameter

using with ALTER SYSTEM, 10-59

FINAL clause

of CREATE TYPE, 16-13, 16-14

FIPS

compliance, B-10

flagging, 10-12

FIRST function, 6-67

FIRST_ROWS(n) hint, 2-96

FIRST_VALUE function, 6-69

FIXED_DATE initialization parameter

setting with ALTER SYSTEM, 10-59

FLAGGER session parameter, 10-12

FLASHBACK ANY TABLE system

privilege, 17-39, 17-41, 17-43

FLASHBACK object privilege, 17-46

flashback queries, 18-14

using with inserts, 17-57, 18-66

FLOAT datatype, 2-14

DB2, 2-37

SQL/DS, 2-37

FLOAT datatype (ANSI), 2-36

floating-point numbers, 2-12, 2-14

FLOOR function, 6-71

FLUSH SHARED POOL clause

of ALTER SYSTEM, 10-28

FM format model modifier, 2-76

FM number format element, 2-64

FOR clause

of ANALYZE ... COMPUTE STATISTICS, 12-40

of ANALYZE ... ESTIMATE STATISTICS, 12-40

of CREATE INDEXTYPE, 13-96

of EXPLAIN PLAN, 17-26

FOR EACH ROW clause

of CREATE TRIGGER, 15-105

FOR UPDATE clause

of CREATE MATERIALIZED VIEW, 14-25

of SELECT, 18-10, 18-26

FORCE ANY TRANSACTION system

privilege, 17-44

FORCE clause

of COMMIT, 12-76

of CREATE VIEW, 16-43

of DISASSOCIATE STATISTICS, 16-66

of DROP INDEX, 16-78

of DROP INDEXTYPE, 16-80

of DROP OPERATOR, 16-89

of DROP TYPE, 17-16

of REVOKE, 17-94

of ROLLBACK, 17-101

FORCE LOGGING clause

of ALTER DATABASE, 9-38

of ALTER TABLESPACE, 11-109

of CREATE CONTROLFILE, 13-20

of CREATE DATABASE, 13-29

of CREATE TABLESPACE, 15-85

FORCE PARALLEL DML clause

of ALTER SESSION, 10-4

FORCE TRANSACTION system privilege, 17-44

FORCE_UNION_REWRITE hint, 2-95

foreign key constraints, 7-14

foreign tables

rowids of, 2-35

format models, 2-61

changing the return format, 2-62

date, 2-68

Index-22

changing, 2-68

default format, 2-68

format elements, 2-68

maximum length, 2-68

modifiers, 2-75

number, 2-63

number, elements of, 2-64

specifying, 2-63

XML, 2-79

formats

for dates and numbers. See format models

of return values from the database, 2-61

of values stored in the database, 2-61

free lists

specifying for a table, partition, cluster, or

index, 7-62

specifying for LOBs, 15-39

FREELIST GROUPS parameter

of STORAGE clause, 7-62

FREELISTS parameter

of STORAGE clause, 7-62

FREEPOOLS parameter

of LOB storage, 15-39

FROM clause

of queries, 8-11

FROM COLUMNS clause

of DISASSOCIATE STATISTICS, 16-65

FROM FUNCTIONS clause

of DISASSOCIATE STATISTICS, 16-65

FROM INDEXES clause

of DISASSOCIATE STATISTICS, 16-65

FROM INDEXTYPES clause

of DISASSOCIATE STATISTICS, 16-65

FROM PACKAGES clause

of DISASSOCIATE STATISTICS, 16-65

FROM TYPES clause

of DISASSOCIATE STATISTICS, 16-65

FROM_TZ function, 6-71

FULL hint, 2-96

full outer joins, 18-18

function expressions

built-in, 4-11

user-defined, 4-11

function-based indexes, 13-65

and query rewrite, 10-10

creating, 13-75

disabling, 10-99

enabling, 9-72, 9-77, 10-99

enabling and disabling, 9-72

refreshing, 9-47

functions

See also SQL functions

3GL, calling, 14-2

analytic

user-defined, 13-61

associating statistics with, 12-51, 12-52

avoiding run-time compilation, 9-59

built_in

as expressions, 4-11

calling, 12-68

changing the declaration of, 13-55

changing the definition of, 13-55

datatype of return value, 13-57

datetime, 6-5

DECODE, 6-52

defining an index on, 13-75

examples, 13-62

executing, 12-68

from parallel query processes, 13-60

external, 13-52, 14-64

inverse distribution, 6-118, 6-121

issuing COMMIT or ROLLBACK

statements, 10-3

linear regression, 6-129

naming rules, 2-114

partitioning

among parallel query processes, 13-60

privileges executed with, 12-14, 16-10

recompiling explicitly, 9-60

recompiling invalid, 9-59

re-creating, 13-55, 13-99

removing from the database, 16-75

returning collections, 13-60

returning results iteratively, 13-60

schema executed in, 12-14, 16-10

specifying schema and user privileges for, 13-58

statistics, assigning default cost, 12-51

statistics, defining default selectivity, 12-51

stored, 13-52

storing return value of, 12-70

Index-23

synonyms for, 15-2

table, 13-60

user_defined

as expressions, 4-11

user-defined, 6-222

aggregate, 13-61

using a saved copy, 13-59

FX format model modifier, 2-76

G
G number format element, 2-64

GC_FILES_TO_LOCKS initialization parameter

setting with ALTER SYSTEM, 10-59

general recovery clause

of ALTER DATABASE, 9-13, 9-25

global database names

enforcing resolution, 10-60

global indexes. See indexes, globally partitioned

GLOBAL PARTITION BY RANGE clause

of CREATE INDEX, 7-24, 13-69, 13-81, 15-59

GLOBAL QUERY REWRITE system

privilege, 17-38, 17-39

GLOBAL TEMPORARY clause

of CREATE TABLE, 15-23

global users, 14-80, 16-35

GLOBAL_CONTEXT_POOL_SIZE initialization

parameter

setting with ALTER SYSTEM, 10-60

GLOBAL_NAMES initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-60

Globalization Support

change session settings, 10-8

globally partitioned indexes, 7-24, 13-81, 13-83,

15-59

GRANT ANY OBJECT PRIVILEGE system

privilege, 17-44

GRANT ANY PRIVILEGE system privilege, 17-44

GRANT ANY ROLE system privilege, 17-40

GRANT clause

of ALTER USER, 12-27

GRANT CONNECT THROUGH clause

of ALTER USER, 12-24, 12-26

GRAPHIC datatype

DB2, 2-37

SQL/DS, 2-37

greater than or equal to tests, 5-5

greater than tests, 5-5

GREATEST function, 6-72

GROUP BY clause

CUBE extension, 18-22

identifying duplicate groupings, 6-72

of SELECT and subqueries, 18-9, 18-21

ROLLUP extension of, 18-22

group comparison conditions, 5-7

GROUP_ID function, 6-72

GROUPING function, 6-74

grouping sets, 18-23

GROUPING SETS clause

of SELECT and subqueries, 18-23

GROUPING_ID function, 6-75

groupings

filtering out duplicate, 6-72

GUARD ALL clause

of ALTER DATABASE, 9-51

GUARD clause

of ALTER DATABASE, 9-51

GUARD NONE clause

of ALTER DATABASE, 9-52

GUARD STANDBY clause

of ALTER DATABASE, 9-51

H
hash clusters

creating, 13-6

single-table, creating, 13-7

specifying hash function for, 13-7

HASH hint, 2-96

HASH IS clause

of CREATE CLUSTER, 13-7

hash joins

allocating memory for, 10-8

enabling and disabling, 10-8

hash partitioning clause

of CREATE TABLE, 15-21, 15-46

hash partitions

adding, 11-71

coalescing, 11-64

Index-24

HASH_AJ hint, 2-96, 2-97

HASH_AREA_SIZE initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-60

HASH_JOIN_ENABLED initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-61

HASHKEYS clause

of CREATE CLUSTER, 13-6

HAVING condition

of GROUP BY clause, 18-23

heap-organized tables

creating, 15-7

hexadecimal value

returning, 2-66

HEXTORAW function, 6-77

HH datetime format element, 2-69

HH12 datetime format element, 2-69

HH24 datetime format element, 2-69

HI_SHARED_MEMORY_ADDRESS initialization

parameter

setting with ALTER SYSTEM, 10-61

hierarchical queries, 2-86, 8-3, 18-20

child rows, 2-86, 8-4

illustrated, 2-86

leaf rows, 2-86

ordering, 18-25

parent rows, 2-86, 8-4

retrieving root and node values, 6-155

hierarchical query clause

of SELECT and subqueries, 18-8

hierarchies

adding to a dimension, 9-58

dropping from a dimension, 9-58

of dimensions, defining, 13-45

HIERARCHY clause

of CREATE DIMENSION, 13-44, 13-45

high water mark

of clusters, 9-9

of indexes, 9-69

of tables, 11-35, 12-38

hints, 8-3

ALL_ROWS hint, 2-94

AND_EQUAL hint, 2-94

CACHE hint, 2-94

CLUSTER hint, 2-95

FIRST_ROWS hint, 2-96

FULL hint, 2-96

HASH hint, 2-96

in SQL statements, 2-91

INDEX hint, 2-97

INDEX_ASC hint, 2-97

INDEX_DESC hint, 2-97, 2-98

NO_EXPAND hint, 2-100

NO_MERGE hint, 2-100

NO_PUSH_PRED hint, 2-101

NO_PUSH_SUBQ hint, 2-101

NOCACHE hint, 2-99

NOPARALLEL hint, 2-100

NOREWRITE hint, 2-101

ORDERED hint, 2-101

PARALLEL hint, 2-103

passing to the optimizer, 18-59

PQ_DISTRIBUTE hint, 2-103

PUSH_PRED hint, 2-104

PUSH_SUBQ hint, 2-104

REWRITE hint, 2-104

ROWID hint, 2-104

RULE hint, 2-105

syntax, 2-92

USE_CONCAT hint, 2-106

USE_MERGE hint, 2-106

USE_NL hint, 2-106

histograms

creating equiwidth, 6-208

HS_ADMIN_ROLE role, 17-45

HS_AUTOREGISTER initialization parameter

setting with ALTER SYSTEM, 10-62

I
I datetime format element, 2-69

IDENTIFIED BY clause

of ALTER ROLE. See CREATE ROLE

of CREATE DATABASE LINK, 13-40

of SET ROLE, 18-48

IDENTIFIED EXTERNALLY clause

of ALTER ROLE. See CREATE ROLE

of ALTER USER. See CREATE USER

of CREATE ROLE, 14-80

Index-25

of CREATE USER, 16-34

IDENTIFIED GLOBALLY clause

of ALTER ROLE. See CREATE ROLE

of ALTER USER, 12-25

of CREATE ROLE, 14-80

of CREATE USER, 16-35

IDLE_TIME parameter

of ALTER PROFILE, 9-128

IFILE initialization parameter

setting with ALTER SYSTEM, 10-62

IMMEDIATE clause

of SET CONSTRAINTS, 18-45

IMP_FULL_DATABASE role, 17-45

implicit data conversion, 2-49, 2-51

IN OUT parameter

of CREATE FUNCTION, 13-57

of CREATE PROCEDURE, 14-67

IN parameter

of CREATE function, 13-57

of CREATE PROCEDURE, 14-67

INCLUDING CONTENTS clause

of DROP TABLESPACE, 17-11

INCLUDING DATAFILES clause

of ALTER DATABASE TEMPFILE DROP

clause, 9-37

INCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 9-116

of CREATE MATERIALIZED VIEW

LOG, 14-41

INCLUDING TABLES clause

of DROP CLUSTER, 16-68

incomplete object types, 16-3

creating, 16-3, 16-5

INCREMENT BY clause

of ALTER SEQUENCE. See CREATE SEQUENCE

INCREMENT BY parameter

of CREATE SEQUENCE, 14-91

INDEX clause

of ANALYZE, 12-36

of CREATE CLUSTER, 13-6

INDEX hint, 2-97

index keys

compression, 9-65

INDEX object privilege, 17-46

on a table, 17-47

index partitions

creating subpartitions, 13-71

dropping, 9-67

index subpartitions, 13-71

INDEX_ASC hint, 2-97

INDEX_DESC hint, 2-97, 2-98

indexed clusters

creating, 13-6

indexes, 9-71

access path, optimizing for, 10-9

allocating new extents for, 9-70

application-specific, 13-95

ascending, 13-77

based on indextypes, 13-84

bitmap, 13-72

bitmap join, 13-86

B-tree, 13-65

changing attributes, 9-71

changing parallelism of, 9-70

collecting statistics on, 12-36

on composite-partitioned tables, 13-83

creating, 13-65

creating on a cluster, 13-66

creating on a table, 13-67

deallocating unused space from, 9-69

descending, 13-77

and query rewrite, 13-77

as function-based indexes, 13-77

direct-path inserts, logging, 9-71

disassociating statistics types from, 16-78

domain, 13-65, 13-84, 13-95

domain, example, D-2

dropping index partitions, 16-78

examples, 13-87

function-based, 13-65

creating, 13-75

global partitioned, creating, 13-69

globally partitioned, 7-24, 13-81, 13-83, 15-59

updating, 11-85

granting system privileges on, 17-38

on hash-partitioned tables, 13-83

join, bitmap, 13-86

key compression of, 9-75

key compression, enabling, 9-72

keys, eliminating repetition, 9-72

Index-26

locally partitioned, 13-83

logging rebuild operations, 9-72

logging rebuild operations on, 9-76

marking as UNUSABLE, 9-77

merging block contents, 9-72

merging contents of index blocks, 9-78

modifying attributes, 9-72

moving, 9-72

on clusters, 13-73

on composite-partitioned tables, creating, 13-71

on hash-partitioned tables

creating, 13-70

on index-organized tables, 13-73

on list-partitioned tables

creating, 13-70

on nested table storage tables, 13-73

on partitioned tables, 13-73

on range-partitioned tables, creating, 13-70

on scalar typed object attributes, 13-73

on table columns, 13-73

on XMLType tables, 13-88

online, 13-80

parallelizing creation of, 13-80

partitioned, 2-108, 13-65

user-defined, 7-24, 13-81, 15-59

partitioning, 13-81

partitions, 13-81

adding new, 9-81

changing default attributes, 9-79

changing physical attributes, 9-71

changing storage characteristics, 9-79

deallocating unused space from, 9-69

dropping, 9-81

marking UNUSABLE, 9-81, 11-84

modifying the real characteristics, 9-80

preventing use of, 9-77

rebuilding, 9-72

rebuilding unusable, 11-84

re-creating, 9-72

removing, 9-79

renaming, 9-81

specifying tablespace, 9-72

specifying tablespace for, 9-74

splitting, 9-79, 9-81

physical attributes, 13-77

preventing use of, 9-77

on range-partitioned tables, 13-83

rebuilding, 9-72

rebuilding while online, 9-75

re-creating, 9-72

removing from the database, 16-77

renaming, 9-72, 9-78

reverse, 9-72, 9-74, 13-79

specifying tablespace for, 9-72, 9-74

statistics on, 13-80

statistics on rebuild, 9-75

statistics on usage, 9-78

storage attributes, 13-77

subpartitions

allocating extents for, 9-82

changing default attributes, 9-79

changing physical attributes, 9-71

changing storage characteristics, 9-79

deallocating unused space from, 9-69, 9-82

marking UNUSABLE, 9-82

modifying, 9-72

moving, 9-72

preventing use of, 9-77

rebuilding, 9-72

re-creating, 9-72

renaming, 9-81

specifying tablespace, 9-72

specifying tablespace for, 9-74

tablespace containing, 13-78

unique, 13-71

unsorted, 13-78

used to enforce constraints, 11-59, 15-58

validating structure, 12-43

index-organized tables

bitmap indexes on, creating, 15-32

creating, 15-7

mapping tables, 11-87

moving, 11-68

mapping tables, creating, 15-32

modifying, 11-39

moving, 11-87

overflow segments

specifying storage, 11-40, 15-47

partitioned, updating secondary indexes, 9-80

PCT_ACCESS_DIRECT statistics, 12-38

Index-27

primary key indexes

coalescing, 11-41

updating, 11-41

rebuilding, 11-86

rowids of, 2-35

secondary indexes, updating, 9-79

INDEXTYPE clause

of CREATE INDEX, 13-69, 13-84

indextypes

adding operators, 9-85

altering, 9-85

associating statistics with, 12-51, 12-52

changing implementation type, 9-85

comments on, 12-74

creating, 13-95

disassociating from statistics types, 16-79

drop routines, invoking, 16-78

granting system privileges on, 17-37

indexes based on, 13-84

instances, 13-65

removing from the database, 16-79

in-doubt transactions

forcing, 12-76

forcing commit of, 12-76

forcing rollback, 17-101

rolling back, 17-99

inequality test, 5-4

INITCAP function, 6-77

INITIAL parameter

of STORAGE clause, 7-59

initialization parameters

changing session settings, 10-6

CIRCUITS, 10-39

INITIALIZED EXTERNALLY clause

of CREATE CONTEXT, 13-13

INITIALIZED GLOBALLY clause

of CREATE CONTEXT, 13-13

INITIALLY DEFERRED clause

of constraints, 7-20

INITIALLY IMMEDIATE clause

of constraints, 7-20

INITRANS parameter

of ALTER CLUSTER, 9-8

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER TABLE, 11-32

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG. See
CREATE TABLE

of CREATE MATERIALIZED VIEW. See
CREATE TABLE

of CREATE TABLE, 7-54

inline constraints

of ALTER TABLE, 11-43

of CREATE TABLE, 15-26

inline views, 8-13

IN-lists, 2-106

inner joins, 8-12, 18-18

INSERT ANY TABLE system privilege, 17-41

INSERT clause

of MERGE, 17-78

INSERT object privilege, 17-46

on a table, 17-47

on a view, 17-47

INSERT statement, 17-53

append, 2-94

triggers on, 15-100

inserts

and simultaneous update, 17-77

conditional, 17-63

conventional, 17-53

direct-path, 17-53

multitable, 17-63

multitable, examples, 17-68

single-table, 17-57

using MERGE, 17-78

instance recovery

continue after interruption, 9-25

INSTANCE session parameter, 10-12

INSTANCE_GROUPS initialization parameter

setting with ALTER SYSTEM, 10-62

INSTANCE_NAME initialization parameter

setting with ALTER SYSTEM, 10-63

INSTANCE_NUMBER initialization parameter

setting with ALTER SYSTEM, 10-63

instances

global name resolution for, 10-60

making index extents available to, 9-70

memory requirements of, 10-44

setting parameters for, 10-31

Index-28

INSTANTIABLE clause

of CREATE TYPE, 16-13

INSTEAD OF clause

of CREATE TRIGGER, 15-99

INSTEAD OF triggers, 15-99

INSTR function, 6-78

INSTR2 function, 6-78

INSTR4 function, 6-78

INSTRB function, 6-78

INSTRC function, 6-78

INT datatype (ANSI), 2-36

INTEGER datatype

ANSI, 2-36

DB2, 2-37

SQL/DS, 2-37

integers

generating unique, 14-89

in SQL syntax, 2-55

precision of, 2-55

specifying, 2-12

syntax of, 2-55

integrity constraints. See constraints

internal LOBs, 2-28

International Standards Organization (ISO), B-1

standards, xvii, 1-2, B-2

INTERSECT set operator, 3-6, 18-24

interval datatypes, 2-16

INTERVAL DAY TO SECOND datatype, 2-24

INTERVAL expressions, 4-11

INTERVAL YEAR TO MONTH datatype, 2-24

INTO clause

of EXPLAIN PLAN, 17-26

of INSERT, 17-57

INVALIDATE GLOBAL INDEXES clause

of ALTER TABLE, 11-85

inverse distribution functions, 6-118, 6-121

invoker rights

altering for a Java class, 9-88

altering for an object type, 12-14

defining for a function, 13-58

defining for a Java class, 13-99, 13-101

defining for a package, 14-53

defining for a procedure, 14-65

defining for an object type, 16-10

invoker-rights functions

defining, 13-58

IS NOT NULL operator, 5-13

IS NULL operator, 5-13

IS OF type condition, 5-19

ISO. See International Standards Organization (ISO)

ISOLATION_LEVEL session parameter, 10-13

IW datetime format element, 2-69

IY datetime format element, 2-69

IYY datetime format element, 2-69

IYYY datetime format element, 2-69

J
J datetime format element, 2-69

Java

class

creating, 13-98, 13-100

dropping, 16-81

resolving, 9-87, 13-100

Java source schema object

creating, 13-100

methods

return type of, 16-14

resource

creating, 13-98, 13-100

dropping, 16-81

schema object

name resolution of, 13-102

source

compiling, 9-87, 13-100

creating, 13-98

dropping, 16-81

storage formats

CustomDatum, 16-11

SQLData, 16-11

JAVA clause

of CREATE TYPE, 16-15

of CREATE TYPE BODY, 16-29

Java methods

mapping to an object type, 16-15

JAVA_MAX_SESSIONSPACE_LIMIT initialization

parameter

setting with ALTER SYSTEM, 10-64

JAVA_MAX_SESSIONSPACE_SIZE initialization

parameter

Index-29

setting with ALTER SYSTEM, 10-64

JAVA_POOL_SIZE initialization parameter

setting with ALTER SYSTEM, 10-64

JOB_QUEUE_PROCESSES initialization parameter

setting with ALTER SYSTEM, 10-65

JOIN clause

of CREATE DIMENSION, 13-44

JOIN KEY clause

of ALTER DIMENSION, 9-57

of CREATE DIMENSION, 13-46

join views

example, 16-51

making updatable, 16-48

modifying, 16-59, 17-58, 18-62

joins, 8-10

conditions

defining, 8-10

cross, 18-19

equijoins, 8-11

full outer, 18-18

inner, 8-12, 18-18

left outer, 18-18

natural, 18-19

nested loop, optimizing for, 10-9

outer, 8-12

restrictions, 8-12

parallel, and PQ_DISTRIBUTE hint, 2-103

right outer, 18-18

self, 8-11

without join conditions, 8-11

Julian dates, 2-20

K
key compression, 15-32

definition, 9-75

disabling, 9-75, 13-78

enabling, 9-72

of index rebuild, 11-88

of indexes

disabling, 9-75

of index-organized tables, 15-32

key-preserved tables, 16-48

keywords, 2-111

in object names, 2-111

optional, A-4

required, A-3

KILL SESSION clause

of ALTER SYSTEM, 10-27

L
L number format element, 2-64

LAG function, 6-80

LANGUAGE clause

of CREATE PROCEDURE, 14-68

of CREATE TYPE, 16-15

of CREATE TYPE BODY, 16-29

large objects. See LOB datatypes

LARGE_POOL_SIZE initialization parameter

setting with ALTER SYSTEM, 10-65

LAST function, 6-81

LAST_DAY function, 6-83

LAST_VALUE function, 6-84

LEAD function, 6-86

LEAST function, 6-87

left outer joins, 18-18

LENGTH function, 6-88

LENGTH2 function, 6-88

LENGTH4 function, 6-88

LENGTHB function, 6-88

LENGTHC function, 6-88

less than tests, 5-5

LEVEL clause

of ALTER DIMENSION, 9-57

of CREATE DIMENSION, 13-44, 13-45

LEVEL pseudocolumn, 2-86, 18-20

and hierarchical queries, 2-86

levels

adding to a dimension, 9-58

dropping from a dimension, 9-58

of dimensions, defining, 13-45

libraries

creating, 14-2

granting system privileges on, 17-38

re-creating, 14-2

removing from the database, 16-83

library units. See Java schema objects

LICENSE_MAX_SESSIONS initialization parameter

setting with ALTER SYSTEM, 10-66

Index-30

LICENSE_MAX_USERS initialization parameter

setting with ALTER SYSTEM, 10-66

LICENSE_SESSIONS_WARNING initialization

parameter

setting with ALTER SYSTEM, 10-67

licenses

changing limits, 10-66, 10-67

licensing

changing limits, 10-66

LIKE conditions, 5-15

linear regression functions, 6-129

LIST CHAINED ROWS clause

of ANALYZE, 12-45

list partitioning

adding default partition, 11-72

adding partitions, 11-65, 11-72

adding values, 11-65

creating a default partition, 15-48

creating partitions, 15-48

default partition

adding, 11-65

dropping, 11-65

dropping values, 11-65

merging default with nondefault

partitions, 11-79

splitting default partition, 11-75

list subpartitions

adding, 11-63

listeners

registering, 10-31

literals

in SQL statements and functions, 2-54

in SQL syntax, 2-53

LN function, 6-89

LOB columns

adding, 11-41

creating from LONG columns, 2-15, 11-50

defining properties

for materialized views, 14-12

modifying, 11-49

modifying storage, 11-45

restricted in joins, 8-11

restrictions on, 2-29

storage characteristics of materialized

views, 9-99

LOB datatypes, 2-28

LOB index clause

of ALTER TABLE, 11-47

of CREATE TABLE, 15-39

LOB storage clause

for partitions, 11-47

of ALTER MATERIALIZED VIEW, 9-99

of ALTER TABLE, 11-14, 11-45

of CREATE MATERIALIZED VIEW, 14-12,

14-14, 14-19

of CREATE TABLE, 15-14, 15-36

LOB_storage_clause

of ALTER MATERIALIZED VIEW, 9-93

LOBs

attributes, initializing, 2-29

CACHE READS setting, 2-31

columns

difference from LONG and LONG

RAW, 2-28

populating, 2-29

external, 2-28

indexes for, 15-39

internal, 2-28

locators, 2-28

logging attribute, 15-28

modifying physical attributes, 11-57

number of bytes manipulated in, 15-38

saving old versions, 15-38, 15-39

saving values in a cache, 11-45, 15-53

specifying directories for, 13-49

storage

attributes, 15-36

characteristics, 7-55

in-line, 15-37

tablespace for

defining, 15-28

LOCAL clause

of CREATE INDEX, 13-69, 13-83

local users, 14-80, 16-34

LOCAL_LISTENER initialization parameter

setting with ALTER SYSTEM, 10-67

locally managed tablespaces

altering, 11-104

storage attributes, 7-59

locally partitioned indexes, 13-83

Index-31

LOCALTIMESTAMP function, 6-90

location transparency, 15-2

LOCK ANY TABLE system privilege, 17-41

LOCK TABLE statement, 17-73

LOCK_NAME_SPACE initialization parameter

setting with ALTER SYSTEM, 10-68

LOCK_SGA initialization parameter

setting with ALTER SYSTEM, 10-68

locking

automatic

overriding, 17-73

locks. See table locks

log data

collection during update operations, 9-40

log file clauses

of ALTER DATABASE, 9-19

log files

adding, 9-37

dropping, 9-37

modifying, 9-37

registering, 9-45

renaming, 9-37

setting session path for, 10-8

specifying for the database, 13-27

LOG function, 6-91

log groups

dropping, 11-34

LOG_ARCHIVE_DEST initialization parameter

setting with ALTER SYSTEM, 10-68

LOG_ARCHIVE_DEST_n initialization parameter

overriding DELAY setting, 9-31

setting with ALTER SESSION, 10-8, 10-69

LOG_ARCHIVE_DEST_STATE_n initialization

parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-70

LOG_ARCHIVE_DUPLEX_DEST initialization

parameter

setting with ALTER SYSTEM, 10-71

LOG_ARCHIVE_FORMAT initialization parameter

setting with ALTER SYSTEM, 10-71

LOG_ARCHIVE_MAX_PROCESSES initialization

parameter

setting with ALTER SYSTEM, 10-72

LOG_ARCHIVE_MIN_SUCCEED_DEST

initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-72

LOG_ARCHIVE_START parameter

of ALTER SYSTEM, 10-72

LOG_ARCHIVE_TRACE initialization parameter

setting with ALTER SYSTEM, 10-73

LOG_BUFFER initialization parameter

setting with ALTER SYSTEM, 10-73

LOG_CHECKPOINT_INTERVAL initialization

parameter

setting with ALTER SYSTEM, 10-73

LOG_CHECKPOINT_TIMEOUT initialization

parameter

setting with ALTER SYSTEM, 10-74

LOG_CHECKPOINTS_TO_ALERT initialization

parameter

setting with ALTER SYSTEM, 10-74

LOG_FILE_NAME_CONVERT initialization

parameter

setting with ALTER SYSTEM, 10-74

LOG_PARALLELISM initialization parameter

setting with ALTER SYSTEM, 10-75

LOGFILE clause

OF CREATE DATABASE, 13-27

LOGFILE GROUP clause

of CREATE CONTROLFILE, 13-18

logging, 9-71, 15-85

and redo log size, 7-46

specifying minimal, 7-46

supplemental

dropping, 9-41

supplemental, adding log groups, 11-34

supplemental, dropping log groups, 11-34

LOGGING clause

of ALTER INDEX, 9-71

of ALTER INDEX ... REBUILD, 9-76

of ALTER MATERIALIZED VIEW, 9-100

of ALTER MATERIALIZED VIEW LOG, 9-114

of ALTER TABLE, 11-34

of ALTER TABLESPACE, 11-109

of CREATE MATERIALIZED VIEW, 14-17

of CREATE MATERIALIZED VIEW

LOG, 14-38

of CREATE TABLE, 15-28

Index-32

of CREATE TABLESPACE, 15-85

logical conditions, 5-8

logical standby database

aborting, 9-47

activating, 9-43

stopping, 9-47

LOGICAL_READS_PER_CALL parameter

of ALTER PROFILE, 9-128

LOGICAL_READS_PER_SESSION parameter

of ALTER PROFILE, 9-128

of ALTER RESOURCE COST, 9-132

LOGMNR_MAX_PERSISTENT_SESSIONS

initialization parameter

setting with ALTER SYSTEM, 10-75

LOGOFF database event

triggers on, 15-103

LOGON database event

triggers on, 15-103

LONG columns

and domain indexes, 11-50

converting to LOB, 2-15, 11-50

restrictions on, 2-15

to store text strings, 2-14

to store view definitions, 2-14

where referenced from, 2-15

LONG datatype, 2-14

in triggers, 2-16

LONG RAW datatype, 2-27

converting from CHAR data, 2-28

LONG VARCHAR datatype

DB2, 2-37

SQL/DS, 2-37

LONG VARGRAPHIC datatype

DB2, 2-37

SQL/DS, 2-37

LOWER function, 6-91

LPAD function, 6-92

LTRIM function, 6-93

M
MAKE_REF function, 6-94

MANAGE TABLESPACE system privilege, 17-42

managed recovery

of database, 9-15

wait period of, 9-30

managed standby recovery

as background process, 9-30

overriding delays, 9-30

returning control during, 9-33

terminating automatically, 9-31

terminating existing, 9-32

MANAGED STANDBY RECOVERY clause

of ALTER DATABASE, 9-29

MAP MEMBER clause

of ALTER TYPE, 12-13

of CREATE TYPE, 16-30

MAP methods

defining for a type, 16-17

specifying, 12-13

MAPPING TABLE clause

of ALTER TABLE, 11-68, 11-87

mapping tables

of index-organized tables, 11-87, 15-32

modifying, 11-41

master databases, 14-5

master tables, 14-5

MATCHES condition, 5-2

materialized join views, 14-34

materialized view logs, 14-34

adding columns, 9-114

creating, 14-34

excluding new values from, 9-116

logging changes to, 9-114

object ID based, 9-115

parallelizing creation, 14-38

partition attributes, changing, 9-113

partitioned, 14-39

physical attributes

specifying, 14-37

physical attributes, changing, 9-113

removing from the database, 16-86

required for fast refresh, 14-34

rowid based, 9-115

saving new values in, 9-116

saving old values in, 14-41

storage attributes

specifying, 14-37

materialized view partition segments

compression of, 9-99, 14-18

Index-33

materialized view segments

data compression of, 9-99, 14-18

materialized views, 9-102, 14-21

allowing update of, 14-25

changing from rowid-based to

primary-key-based, 9-104

changing to primary-key-based, 9-115

complete refresh, 9-103, 14-22

constraints on, 7-22

creating, 14-5

creating comments about, 12-72

for data warehousing, 14-5

degree of parallelism, 9-100, 9-113

during creation, 14-20

enabling and disabling query rewrite, 14-26

examples, 14-28, 14-41

fast refresh, 9-102, 14-21, 14-22

forced refresh, 9-103

index characteristics

changing, 9-100

indexes that maintain, 14-21

join, 14-34

LOB storage attributes, 9-99

logging changes to, 9-100

master table, dropping, 16-85

object type, creating, 14-15

partitions, 9-99

physical attributes, 14-17

changing, 9-98

primary key, 14-23

recording values in master table, 9-114

query rewrite

eligibility for, 7-22

enabling and disabling, 9-105

re-creating during refresh, 9-103

refresh mode

changing, 9-102

refresh time

changing, 9-102

refreshing, 9-47

refreshing after DML on master table, 9-104,

14-23

refreshing on next COMMIT, 9-103, 14-22

removing from the database, 16-84

for replication, 14-5

restricting scope of, 14-16

retrieving data from, 18-4

revalidating, 9-106

rowid, 14-24

rowid values

recording in master table, 9-114

saving blocks in a cache, 9-101

storage attributes, 14-17

changing, 9-98

subquery, 14-26

suppressing creation of default index, 14-21

synonyms for, 15-2

when to populate, 14-20

MAX function, 6-95

MAX_COMMIT_PROPAGATION_DELAY

initialization parameter

setting with ALTER SYSTEM, 10-76

MAX_DISPATCHERS initialization parameter

setting with ALTER SYSTEM, 10-76

MAX_DUMP_FILE_SIZE initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-77

MAX_ENABLED_ROLES initialization parameter

setting with ALTER SYSTEM, 10-77

MAX_ROLLBACK_SEGMENTS initialization

parameter

setting with ALTER SYSTEM, 10-77

MAX_SHARED_SERVERS initialization parameter

setting with ALTER SYSTEM, 10-78

MAXDATAFILES parameter

of CREATE CONTROLFILE, 13-20

of CREATE DATABASE, 13-29

MAXEXTENTS parameter

of STORAGE clause, 7-61

MAXINSTANCES parameter

of CREATE CONTROLFILE, 13-20

OF CREATE DATABASE, 13-29

MAXLOGFILES parameter

of CREATE CONTROLFILE, 13-19

of CREATE DATABASE, 13-28

MAXLOGHISTORY parameter

of CREATE CONTROLFILE, 13-19

of CREATE DATABASE, 13-28

MAXLOGMEMBERS parameter

of CREATE CONTROLFILE, 13-19

Index-34

of CREATE DATABASE, 13-28

MAXSIZE clause

of ALTER DATABASE, 9-18

MAXTRANS parameter

of ALTER CLUSTER, 9-8

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER TABLE, 11-32

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG. See
CREATE TABLE

of CREATE MATERIALIZED VIEW. See
CREATE TABLE

of CREATE TABLE, 7-55

MAXVALUE parameter

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 14-91

media recovery

avoid on startup, 9-35

designing, 9-25

disabling, 9-34

from specified redo logs, 9-25

of database, 9-25

of datafiles, 9-25

of standby database, 9-25

of tablespaces, 9-25

parallelizing, 9-28

performing ongoing, 9-29

preparing for, 9-37, 9-38

restrictions, 9-25

sustained standby recovery, 9-29

media types

ORDSYS.ORDAudio, 2-44

ORDSYS.ORDDoc, 2-44

ORDSYS.ORDImage, 2-44

ORDSYS.ORDVideo, 2-44

median values, 6-121

MEMBER clause

of ALTER TYPE, 12-12

of CREATE TYPE, 16-12

of CREATE TYPE BODY, 16-28

membership conditions, 5-9

MERGE hint, 2-98

MERGE PARTITIONS clause

of ALTER TABLE, 11-79

MERGE statement, 17-77

MERGE_AJ hint, 2-96, 2-97

merge_insert_clause

of MERGE, 17-79

methods

overriding a method a supertype, 16-14

preventing overriding in subtypes, 16-14

static, 16-13

without implementation, 16-14

MI datetime format element, 2-69

MI number format element, 2-64

MIGRATE clause

of ALTER DATABASE, 9-24

migrated rows

listing, 12-45

of clusters, 12-39

MIN function, 6-97

MINEXTENTS parameter

of STORAGE clause, 7-61

MINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 11-37

MINIMUM EXTENT clause

of ALTER TABLESPACE, 11-106

of CREATE TABLESPACE, 15-84

MINUS set operator, 3-6, 18-24

MINVALUE parameter

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 14-92

MM datetime format element, 2-69

MOD function, 6-98

MODE clause

of LOCK TABLE, 17-75

MODIFY clause

of ALTER TABLE, 11-49

MODIFY CONSTRAINT clause

of ALTER TABLE, 11-11, 11-58

of ALTER VIEW, 12-33

MODIFY DEFAULT ATTRIBUTES clause

of ALTER INDEX, 9-66, 9-79

of ALTER TABLE, 11-61

MODIFY LOB clause

of ALTER TABLE, 11-57

MODIFY LOB storage clause

of ALTER MATERIALIZED VIEW, 9-94, 9-99

of ALTER TABLE, 11-57

Index-35

MODIFY NESTED TABLE clause

of ALTER TABLE, 11-10, 11-57

MODIFY PARTITION clause

of ALTER INDEX, 9-67, 9-80

of ALTER MATERIALIZED VIEW, 9-100

of ALTER TABLE, 11-62

MODIFY scoped_table_ref_constraint clause

of ALTER MATERIALIZED VIEW, 9-102

MODIFY SUBPARTITION clause

of ALTER INDEX, 9-68, 9-82

of ALTER TABLE, 11-66

MODIFY VARRAY clause

of ALTER TABLE, 11-15, 11-57

MON datetime format element, 2-69, 2-73

MONITORING clause

of ALTER TABLE, 11-36

of CREATE TABLE, 15-55

MONITORING USAGE clause

of ALTER INDEX, 9-78

MONTH datetime format element, 2-69, 2-73

MONTHS_BETWEEN function, 6-99

MOUNT clause

of ALTER DATABASE, 9-23

MOVE clause

of ALTER TABLE, 11-29, 11-86

MOVE ONLINE clause

of ALTER TABLE, 11-87

MOVE PARTITION clause

of ALTER TABLE, 11-67

MOVE SUBPARTITION clause

of ALTER TABLE, 11-68

MTS. See shared server

multilevel collections, 15-42

MULTISET parameter

of CAST function, 6-27

multitable inserts, 17-63

conditional, 17-63

examples, 17-68

unconditional, 17-63

multi-threaded server. See shared server

N
NAME clause

of SET TRANSACTION, 18-52

NAMED clause

of CREATE JAVA, 13-101

namespaces

and object naming rules, 2-112

for nonschema objects, 2-113

for schema objects, 2-112

NATIONAL CHAR datatype (ANSI), 2-36

NATIONAL CHAR VARYING datatype

(ANSI), 2-36

NATIONAL CHARACTER datatype (ANSI), 2-36

national character set

fixed versus variable width, 2-11

multibyte character data, 2-33

multibyte character sets, 2-10, 2-11

variable-length strings, 2-11

NATIONAL CHARACTER SET parameter

of ALTER DATABASE, 9-47

of CREATE DATABASE, 13-30

national character sets

changing, 9-47

NATIONAL CHARACTER VARYING datatype

(ANSI), 2-36

natural joins, 18-19

NCHAR datatype, 2-10

ANSI, 2-36

NCHAR VARYING datatype (ANSI), 2-36

NCHR function, 6-100

NCLOB datatype, 2-33

transactional support of, 2-33

negative scale, 2-13

nested loop joins

optimizing for, 10-9

nested subqueries, 8-13

NESTED TABLE clause

of ALTER TABLE, 11-12, 11-44

of CREATE TABLE, 15-13, 15-41

of CREATE TRIGGER, 15-104

nested tables, 2-39

changing returned value, 11-57

compared with varrays, 2-48

comparison rules, 2-48

creating, 16-3, 16-9

defining as index-organized tables, 11-44

dropping the body of, 17-18

dropping the specification of, 17-15

Index-36

in materialized views, 14-12, 14-13

indexing columns of, 13-74

modifying, 11-57

modifying column properties, 11-12

multilevel, 15-42

storage characteristics of, 11-44, 15-41

update in a view, 15-99

NEW_TIME function, 6-100

NEXT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 9-104

NEXT parameter

of STORAGE clause, 7-60

NEXT_DAY function, 6-102

NEXTVAL pseudocolumn, 2-82, 14-89

NL_SJ hint, 2-96, 2-97

NLS_CALENDAR initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-78

NLS_CHARSET_DECL_LEN function, 6-102

NLS_CHARSET_ID function, 6-103

NLS_CHARSET_NAME function, 6-104

NLS_COMP initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-79

NLS_CURRENCY initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-79

NLS_DATE_FORMAT initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-79

NLS_DATE_LANGUAGE initialization

parameter, 2-73

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-80

NLS_DUAL_CURRENCY initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-80

NLS_INITCAP function, 6-104

NLS_ISO_CURRENCY initialization parameter

setting with ALTER SESSION, 10-8

setting with ALTER SYSTEM, 10-80

NLS_LANGUAGE initialization parameter, 2-73,

8-10

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-81

NLS_LENGTH_SEMANTICS initialization

parameter

overriding, 2-10

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-81

NLS_LOWER function, 6-106

NLS_NCHAR_CONV_EXCP initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-81

NLS_NUMERIC_CHARACTERS initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-82

NLS_SORT initialization parameter, 8-10

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-82

NLS_TERRITORY initialization parameter, 2-73

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-82

NLS_TIMESTAMP_FORMAT initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-83

NLS_TIMESTAMP_TZ_FORMAT initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-83

NLS_UPPER function, 6-108

NLSSORT function, 6-107

NO FORCE LOGGING clause

of ALTER DATABASE, 9-38

of ALTER TABLESPACE, 11-109

NO_EXPAND hint, 2-100

NO_INDEX hint, 2-100

NO_MERGE hint, 2-100

NO_PUSH_PRED hint, 2-101

NOAPPEND hint, 2-99

NOARCHIVELOG clause

of ALTER DATABASE, 9-19, 9-37

of CREATE CONTROLFILE, 13-20

OF CREATE DATABASE, 9-25, 13-29

NOAUDIT statement, 17-81

NOCACHE clause

Index-37

of ALTER CLUSTER, 9-9

of ALTER MATERIALIZED VIEW, 9-101

of ALTER MATERIALIZED VIEW LOG, 9-114

of ALTER SEQUENCE. See CREATE SEQUENCE

of ALTER TABLE, 11-36, 15-53

of CREATE CLUSTER, 13-9

of CREATE MATERIALIZED VIEW, 14-19

of CREATE MATERIALIZED VIEW

LOG, 14-38

of CREATE SEQUENCE, 14-92

NOCACHE hint, 2-99

NOCOMPRESS clause

of ALTER INDEX ... REBUILD, 9-75

of CREATE INDEX, 13-78

of CREATE TABLE, 15-32

NOCOPY clause

of CREATE FUNCTION, 13-57

of CREATE PROCEDURE, 14-67

NOCYCLE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE, 9-140

of CREATE SEQUENCE, 14-92

NOFORCE clause

of CREATE JAVA, 13-100

of CREATE VIEW, 16-43

NOLOGGING mode

and force logging mode, 7-46

for nonpartitioned objects, 7-46

for partitioned objects, 7-46

NOMAXVALUE parameter

of ALTER SEQUENCE. See CREATE SEQUENCE

of CREATE SEQUENCE, 14-91

NOMINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 11-37

NOMINVALUE parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE, 9-140

of CREATE SEQUENCE, 14-92

NOMONITORING clause

of ALTER TABLE, 11-36

of CREATE TABLE, 15-55

NOMONITORING USAGE clause

of ALTER INDEX, 9-78

NONE clause

of SET ROLE, 18-48

nonequivalency tests, 5-11

nonpadded comparison semantics, 2-45

nonschema objects

list of, 2-107

namespaces, 2-113

NOORDER parameter

of ALTER SEQUENCE. See CREATE

SEQUENCE, 9-140

of CREATE SEQUENCE, 14-93

NOPARALLEL clause

of CREATE INDEX, 7-50, 9-10, 9-29, 9-70, 9-100,

9-113, 11-86, 13-8, 13-81, 14-20, 14-39, 15-53

NOPARALLEL hint, 2-100

NOPARALLEL_INDEX hint, 2-100

NORELY clause

of constraints, 7-22

NORESETLOGS clause

of CREATE CONTROLFILE, 13-19

NOREVERSE parameter

of ALTER INDEX ... REBUILD, 9-74

NOREWRITE hint, 2-101

NOROWDEPENDENCIES clause

of CREATE CLUSTER, 13-9

of CREATE TABLE, 15-54

NOSORT clause

of ALTER INDEX, 13-78

NOT condition, 5-8

NOT DEFERRABLE clause

of constraints, 7-19

NOT FINAL clause

of CREATE TYPE, 16-13

NOT IDENTIFIED clause

of ALTER ROLE. See CREATE ROLE

of CREATE ROLE, 14-80

NOT INSTANTIABLE clause

of CREATE TYPE, 16-13, 16-14

NOT NULL clause

of CREATE TABLE, 15-26

NOWAIT clause

of LOCK TABLE, 17-75

NTILE function, 6-109

null, 2-80

difference from zero, 2-80

in conditions, 2-81

table of, 2-82

Index-38

in functions, 2-80

with comparison conditions, 2-81

null conditions, 5-13

NULLIF function, 6-110

as a form of CASE expression, 6-110

NUMBER datatype, 2-12

converting to VARCHAR2, 2-63

precision, 2-12

scale, 2-12

number format models, 2-63

number functions, 6-3

numbers

comparison rules, 2-45

floating-point, 2-12, 2-14

in SQL syntax, 2-56

precision of, 2-56

rounding, 2-13

spelling out, 2-75

syntax of, 2-56

NUMERIC datatype (ANSI), 2-36

NUMTODSINTERVAL function, 6-111

NUMTOYMINTERVAL function, 6-112

NVARCHAR2 datatype, 2-11

NVL function, 6-113

NVL2 function, 6-114

O
O7_DICTIONARY_ACCESSIBILITY initialization

parameter

setting with ALTER SYSTEM, 10-83

object access expressions, 4-12

object cache, 10-9, 10-84

OBJECT IDENTIFIER clause

of CREATE TABLE, 15-63

object identifiers

contained in REFs, 2-38

of object views, 16-45

primary key, 15-63

specifying, 15-63

specifying an index on, 15-64

system-generated, 15-63

object instances

types of, 5-19

object privileges

DEBUG, 17-46

FLASHBACK, 17-46

granting, 14-79

multiple, 14-86

on specific columns, 17-34

on a database object

revoking, 17-94

ON COMMIT REFRESH, 17-46

QUERY REWRITE, 17-46

revoking, 17-90

from a role, 17-88, 17-93

from a user, 17-88, 17-92

from PUBLIC, 17-93

UNDER, 17-46

object reference functions, 6-16

object tables

adding rows to, 17-53

as part of hierarchy, 15-63

creating, 15-9, 15-63

querying, 15-63

system-generated column name, 15-63, 15-64,

16-45, 16-49

updating to latest version, 11-36

upgrading, 11-36

object type columns

defining properties

for materialized views, 14-12, 14-13

in a type hierarchy, 15-36

membership in hierarchy, 11-43

modifying properties

for tables, 11-12, 11-43

substitutability, 11-43

object type materialized views

creating, 14-15

object types, 2-38

adding methods to, 12-15

adding new member subprograms, 12-11

allowing object instances of, 16-13

allowing subtypes, 16-13

and subtypes, 12-11

and supertypes, 12-11

attributes, 2-120

in a type hierarchy, 15-36

membership in hierarchy, 11-43

substitutability, 11-43

Index-39

bodies

creating, 16-25

re-creating, 16-28

SQL examples, 16-30

comparison rules, 2-48

MAP function, 2-48

ORDER function, 2-48

compiling the specification and body, 12-10

components of, 2-38

creating, 16-3, 16-5

defining member methods of, 16-25

disassociating statistics types from, 17-15

dropping methods from, 12-15

dropping the body of, 17-18

dropping the specification of, 17-15

evolved, rebuilding references to, 9-102

function subprogram

declaring, 16-30

function subprograms, 12-12, 16-12, 16-28

granting system privileges on, 17-42

handling dependent types, 12-18

incomplete, 16-3, 16-5

inheritance, 16-14

invalidating dependent types, 12-18

MAP methods, 16-17

methods, 2-120

nested table, 16-9

ORDER methods, 16-17

privileges on subtypes, 17-35

procedure subprogram

declaring, 16-30

procedure subprograms, 12-12, 16-12, 16-28

references to. See REFs

root, specifying, 16-11

SQL examples, 16-19

static methods of, 16-13

statistics types, 12-50

subtypes, specifying, 16-11

top-level, 16-11

user-defined

creating, 16-9

values

comparing, 16-30

varrays, 16-8

object views, 16-45

base tables

adding rows, 17-53

creating, 16-45

creating subviews, 16-46

defining, 16-39

querying, 16-45

OBJECT_CACHE_MAX_SIZE_PERCENT

initialization parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-84

OBJECT_CACHE_OPTIMAL_SIZE initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-84

objects. See object types or database objects

OF clause

of CREATE VIEW, 16-45

OFFLINE clause

of ALTER ROLLBACK SEGMENT, 9-137

of ALTER TABLESPACE, 11-106

of CREATE TABLESPACE, 15-86

OIDINDEX clause

of CREATE TABLE, 15-64

OIDs. See object identifiers

OLAP_PAGE_POOL_SIZE initialization parameter

setting with ALTER SYSTEM, 10-84

ON clause

of CREATE OUTLINE, 14-50

ON COMMIT clause

of CREATE TABLE, 15-27

ON COMMIT REFRESH object privilege, 17-46

on a materialized view, 17-48

ON COMMIT REFRESH system privilege, 17-39

ON DATABASE clause

of CREATE TRIGGER, 15-103

ON DEFAULT clause

of AUDIT, 12-59

of NOAUDIT, 17-84

ON DELETE CASCADE clause

of constraints, 7-15

ON DELETE SET NULL clause

of constraints, 7-15

ON DIRECTORY clause

of AUDIT, 12-59

of NOAUDIT, 17-84

Index-40

ON NESTED TABLE clause

of CREATE TRIGGER, 15-103

ON object clause

of NOAUDIT, 17-84

of REVOKE, 17-94

ON PREBUILT TABLE clause

of CREATE MATERIALIZED VIEW, 14-16

ON SCHEMA clause

of CREATE TRIGGER, 15-103

online backup

of tablespaces, ending, 11-108

ONLINE clause

of ALTER ROLLBACK SEGMENT, 9-137

of ALTER TABLESPACE, 11-106

of CREATE INDEX, 13-80

of CREATE TABLESPACE, 15-86

online indexes, 13-80

rebuilding, 11-87

ONLINE parameter

of ALTER INDEX ... REBUILD, 9-75

online redo logs

reinitializing, 9-41

OPEN clause

of ALTER DATABASE, 9-23

OPEN NORESETLOGS clause

of ALTER DATABASE, 9-24

OPEN READ ONLY clause

of ALTER DATABASE, 9-24

OPEN READ WRITE clause

of ALTER DATABASE, 9-23

OPEN RESETLOGS clause

of ALTER DATABASE, 9-24

OPEN_CURSORS initialization parameter

setting with ALTER SYSTEM, 10-85

OPEN_LINKS initialization parameter

setting with ALTER SYSTEM, 10-85

OPEN_LINKS_PER_INSTANCE initialization

parameter

setting with ALTER SYSTEM, 10-85

operands, 3-1

operating system files

dropping, 17-12

removing, 9-37

operators, 3-1

adding to indextypes, 9-86

altering, 9-117

arithmetic, 3-3

binary, 3-2

comments on, 12-73

concatenation, 3-4

dropping from indextypes, 9-86

granting

system privileges on, 17-39

precedence, 3-2

set, 3-6, 18-24

specifying implementation of, 14-45

unary, 3-2

user-defined, 3-6

binding to a function, 14-46

creating, 14-44

dropping, 16-88

function providing implementation, 14-47

how bindings are implemented, 14-46

implementation type, 14-46

return type of binding, 14-46

user-defined, compiling, 9-117

OPTIMAL parameter

of STORAGE clause, 7-63

OPTIMIZER_DYNAMIC_SAMPLING initialization

parameter

setting with ALTER SYSTEM, 10-86

OPTIMIZER_FEATURES_ENABLE initialization

parameter

setting with ALTER SYSTEM, 10-86

OPTIMIZER_INDEX_CACCHING initialization

parameter

setting with ALTER SYSTEM, 10-87

OPTIMIZER_INDEX_CACHING initialization

parameter

setting with ALTER SESSION, 10-9

OPTIMIZER_INDEX_COST_ADJ initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-87

OPTIMIZER_MAX_PERMUTATIONS initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-87

OPTIMIZER_MODE initialization parameter

setting with ALTER SESSION, 10-9

Index-41

setting with ALTER SYSTEM, 10-88

OR condition, 5-8, 5-9

OR REPLACE clause

of CREATE CONTEXT, 13-13

of CREATE DIRECTORY, 13-50

of CREATE FUNCTION, 13-55, 13-99

of CREATE LIBRARY, 14-2

of CREATE OUTLINE, 14-49

of CREATE PACKAGE, 14-53

of CREATE PACKAGE BODY, 14-58

of CREATE PROCEDURE, 14-66

of CREATE TRIGGER, 15-97

of CREATE TYPE, 16-9

of CREATE TYPE BODY, 16-28

of CREATE VIEW, 16-42

Oracle reserved words, C-1

Oracle Tools

support of SQL, 1-5

ORACLE_TRACE_COLLECTION_NAME

initialization parameter

setting with ALTER SYSTEM, 10-88

ORACLE_TRACE_COLLECTION_PATH

initialization parameter

setting with ALTER SYSTEM, 10-88

ORACLE_TRACE_COLLECTION_SIZE

initialization parameter

setting with ALTER SYSTEM, 10-89

ORACLE_TRACE_ENABLE initialization parameter

setting with ALTER SYSTEM, 10-89

ORACLE_TRACE_FACILITY_NAME initialization

parameter

setting with ALTER SYSTEM, 10-89

ORACLE_TRACE_FACILITY_PATH initialization

parameter

setting with ALTER SYSTEM, 10-90

Oracle9i Text

built-in conditions, 5-2

CATSEARCH, 5-2

CONTAINS, 5-2

MATCHES, 5-2

Oracle9i Text

CATSEARCH, 5-2

creating domain indexes, 13-85

SCORE operator, 3-2

ORDER BY clause

of queries, 8-10

of SELECT, 8-10, 18-10, 18-25

with ROWNUM, 2-88

ORDER clause

of ALTER SEQUENCE. See CREATE SEQUENCE

ORDER MEMBER clause

of ALTER TYPE, 12-13

of CREATE TYPE BODY, 16-30

ORDER methods

defining for a type, 16-17

specifying, 12-13

ORDER parameter

of CREATE SEQUENCE, 14-92

ORDER SIBLINGS BY clause

of SELECT, 18-25

ORDERED hint, 2-101

ORDERED_PREDICATES hint, 2-102

ordinal numbers

specifying, 2-75

spelling out, 2-75

ORDSYS.ORDAudio media type, 2-44

ORDSYS.ORDDoc media type, 2-44

ORDSYS.ORDImage media type, 2-44

ORDSYS.ORDVideo media type, 2-44

ORGANIZATION EXTERNAL clause

of CREATE TABLE, 15-30, 15-33

ORGANIZATION HEAP clause

of CREATE TABLE, 15-30

ORGANIZATION INDEX clause

of CREATE TABLE, 15-30

OS_AUTHENT_PREFIX initialization parameter

setting with ALTER SYSTEM, 10-90

OS_ROLES initialization parameter

setting with ALTER SYSTEM, 10-90

OUT parameter

of CREATE FUNCTION, 13-57

of CREATE PROCEDURE, 14-67

outer joins, 8-12

restrictions, 8-12

outlines

assign to a different category, 9-119

assigning to a different category, 9-118, 9-120

automatically creating and storing, 10-43

copying, 14-50

creating, 14-48

Index-42

creating on statements, 14-50

dropping from the database, 16-90

enabling and disabling dynamically, 14-48

for use by current session, 14-49

for use by PUBLIC, 14-49

granting

system privileges on, 17-39

private, use by the optimizer, 10-15

rebuilding, 9-118, 9-120

recompiling, 9-118

renaming, 9-118, 9-119, 9-120

replacing, 14-49

storing during the session, 10-11

storing groups of, 14-50

use by the optimizer, 10-118

use to generate execution plans, 10-16

used to generate execution plans, 14-48

out-of-line constraints

of CREATE TABLE, 15-26

OVER clause

of analytic functions, 6-10, 6-12

OVERFLOW clause

of ALTER INDEX, 9-68

of ALTER TABLE, 11-40

of CREATE TABLE, 15-32

OVERRIDING clause

of ALTER TYPE, 12-11

of CREATE TYPE, 16-14

P
package bodies

creating, 14-57

re-creating, 14-58

removing from the database, 16-91

packaged procedures

dropping, 16-93

packages

associating statistics with, 12-51, 12-52

avoiding run-time compilation, 9-121

creating, 14-52

disassociating statistics types from, 16-92

invoker rights, 14-54

recompiling explicitly, 9-121

redefining, 14-53

removing from the database, 16-91

specifying schema and privileges of, 14-54

synonyms for, 15-2

PARALLEL clause

of ALTER CLUSTER, 9-7, 9-9

of ALTER DATABASE, 9-28

of ALTER INDEX, 9-64, 9-70

of ALTER MATERIALIZED VIEW, 9-95, 9-100

of ALTER MATERIALIZED VIEW LOG, 9-112,

9-113

of ALTER TABLE, 11-85

of CREATE CLUSTER, 13-8

of CREATE INDEX, 13-80

of CREATE MATERIALIZED VIEW, 14-15,

14-20

of CREATE MATERIALIZED VIEW

LOG, 14-37, 14-38

of CREATE TABLE, 15-21, 15-53

parallel execution

hints, 2-103

of DDL statements, 10-4

of DML statements, 10-4

PARALLEL hint, 2-103

parallel joins

and PQ_DISTRIBUTE hint, 2-103

PARALLEL_ADAPTIVE_MULTI_USER

initialization parameter

setting with ALTER SYSTEM, 10-91

PARALLEL_AUTOMATIC_TUNING initialization

parameter

setting with ALTER SYSTEM, 10-91

PARALLEL_ENABLE clause

of CREATE FUNCTION, 13-60

PARALLEL_EXECUTION_MESSAGE_SIZE

initialization parameter

setting with ALTER SYSTEM, 10-92

PARALLEL_INSTANCE_GROUP initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-92

PARALLEL_MAX_SERVERS initialization

parameter

setting with ALTER SYSTEM, 10-92

PARALLEL_MIN_PERCENT initialization

parameter

Index-43

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-93

PARALLEL_MIN_SERVERS initialization

parameter

setting with ALTER SYSTEM, 10-93

PARALLEL_THREADS_PER_CPU initialization

parameter

setting with ALTER SYSTEM, 10-94

parameter files

creating, 14-62

parameters

in syntax

optional, A-4

required, A-3

PARAMETERS clause

of ALTER INDEX ... REBUILD, 9-76

of CREATE INDEX, 13-86

PARTITION ... LOB storage clause

of ALTER TABLE, 11-47

PARTITION BY HASH clause

of CREATE TABLE, 15-46

PARTITION BY LIST clause

of CREATE TABLE, 15-48

PARTITION BY RANGE clause

of CREATE TABLE, 15-18, 15-44

PARTITION clause

of ANALYZE, 12-39

of CREATE INDEX, 7-25, 13-82, 15-60

of CREATE TABLE, 15-45

of DELETE, 16-58

of INSERT, 17-59

of LOCK TABLE, 17-74

of UPDATE, 18-63

partition_storage_clause

of ALTER TABLE, 11-14

PARTITION_VIEW_ENABLED initialization

parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-94

partitioned indexes, 2-108, 13-65, 13-83

local, creating, 13-69

user-defined, 7-24, 13-81, 15-59

partitioned index-organized tables

secondary indexes, updating, 9-80

partitioned tables, 2-108

partition-extended table names, 2-108

in DML statements, 2-109

restrictions on, 2-109

syntax, 2-109

partitioning

by range, 15-18

clauses

of ALTER INDEX, 9-66

of ALTER TABLE, 11-60

of materialized view logs, 9-113, 14-39

of materialized views, 9-99, 14-9, 14-19

partitions

adding, 11-60

adding rows to, 17-53

allocating extents for, 11-35

based on literal values, 15-48

composite, 2-108

specifying, 15-49

converting into nonpartitioned tables, 11-81

deallocating unused space from, 11-35

dropping, 11-73

exchanging with tables, 11-24

extents

allocating for an index, 9-70

hash, 2-108

adding, 11-71

coalescing, 11-72

specifying, 15-46

index, 13-81

inserting rows into, 17-59

list, adding, 11-72

LOB storage characteristics of, 11-47

locking, 17-73

logging attribute, 15-28

logging insert operations, 11-34

merging, 11-79

modifying, 11-60, 11-62

moving to a different segment, 11-67

physical attributes

changing, 11-32

range, 2-108

adding, 11-69

specifying, 15-44

removing rows from, 11-74, 16-58

renaming, 11-74

Index-44

revising values in, 18-63

splitting, 11-75

storage characteristics, 7-55

tablespace for

defining, 15-28

PASSWORD EXPIRE clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-37

PASSWORD_GRACE_TIME parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-76

PASSWORD_LIFE_TIME parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

PASSWORD_LOCK_TIME parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

PASSWORD_REUSE_MAX parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

PASSWORD_REUSE_TIME parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-75

PASSWORD_VERIFY_FUNCTION parameter

of ALTER PROFILE, 9-128

of CREATE PROFILE, 14-76

passwords

expiration of, 16-37

grace period, 14-75

guaranteeing complexity, 14-75

limiting use and reuse, 14-75

locking, 14-75

making unavailable, 14-75

parameters

of ALTER PROFILE, 14-76

of CREATE PROFILE, 14-72

special characters in, 14-76

PATH_VIEW, 5-13, 5-20

PCT_ACCESS_DIRECT statistics

for index-organized tables, 12-38

PCTFREE parameter

of ALTER CLUSTER, 9-8

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER TABLE, 11-32

of CREATE MATERIALIZED VIEW LOG. See
CREATE TABLE.

of CREATE MATERIALIZED VIEW. See
CREATE TABLE.

of CREATE TABLE, 7-53

PCTINCREASE parameter

of STORAGE clause, 7-60

PCTTHRESHOLD parameter

of CREATE TABLE, 11-39, 15-31

PCTUSED parameter

of ALTER CLUSTER, 9-8

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER TABLE, 11-32

of CREATE INDEX. See CREATE TABLE

of CREATE MATERIALIZED VIEW LOG. See
CREATE TABLE.

of CREATE MATERIALIZED VIEW. See
CREATE TABLE.

of CREATE TABLE, 7-54

PCTVERSION parameter

of LOB storage, 15-38

of LOB storage clause, 11-46

PERCENT_RANK function, 6-116

PERCENTILE_CONT function, 6-118

PERCENTILE_DISC function, 6-121

performance

optimize for nested loop joins, 10-9

optimizing for index access path, 10-9

session optimizer approach, 10-9

PERMANENT clause

of ALTER TABLESPACE, 11-109

of CREATE TABLESPACE, 15-86

PGA_AGGREGATE_TARGET initialization

parameter

setting with ALTER SYSTEM, 10-95

physical attributes clause

of ALTER CLUSTER, 9-7

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER TABLE, 11-32

of CREATE CLUSTER, 13-3

of CREATE MATERIALIZED VIEW, 14-11

of CREATE TABLE, 15-16, 15-27

physical standby database

Index-45

activating, 9-43

PIPELINED clause

of CREATE FUNCTION, 13-60

plan stability, 14-48

PLAN_TABLE sample table, 17-24

PL/SQL

compatibility with earlier releases, 10-98

program body

of CREATE FUNCTION, 13-62

PLSQL_COMPILER_FLAGS initialization parameter

setting with ALTER SESSION, 10-9

setting with ALTER SYSTEM, 10-95

PLSQL_DEBUG session parameter, 10-13

PLSQL_NATIVE_C_COMPILER initialization

parameter

setting with ALTER SYSTEM, 10-96

PLSQL_NATIVE_LIBRARY_DIR initialization

parameter

setting with ALTER SYSTEM, 10-96

PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT

initialization parameter

setting with ALTER SYSTEM, 10-96

PLSQL_NATIVE_LINKER initialization parameter

setting with ALTER SYSTEM, 10-97

PLSQL_NATIVE_MAKE_FILE_NAME initialization

parameter

setting with ALTER SYSTEM, 10-97

PLSQL_NATIVE_MAKE_UTILITY initialization

parameter

setting with ALTER SYSTEM, 10-97

PLSQL_V2_COMPATIBILITY initialization

parameter

setting with ALTER SYSTEM, 10-98

P.M. datetime format element, 2-69, 2-73

PM datetime format element, 2-69, 2-73

POWER function, 6-122

PQ_DISTRIBUTE hint, 2-103

PR number format element, 2-64

PRAGMA clause

of ALTER TYPE, 12-12

of CREATE TYPE, 16-8, 16-16

PRAGMA RESTRICT_REFERENCES, 12-12

PRE_PAGE_SGA initialization parameter

setting with ALTER SYSTEM, 10-98

precedence

of conditions, 5-3

of operators, 3-2

precision

number of digits of, 2-56

of NUMBER datatype, 2-12

precompilers

Oracle, 1-4

PRIMARY KEY clause

of constraints, 7-13

of CREATE TABLE, 15-26

primary key constraints, 7-13

enabling, 15-57

index on, 15-58

primary keys

generating values for, 14-89

PRIOR clause

of hierarchical queries, 8-3

PRIVATE clause

of CREATE OUTLINE, 14-49

private outlines

use by the optimizer, 10-15

PRIVATE_SGA parameter

of ALTER PROFILE, 9-128

of ALTER RESOURCE COST, 9-132

privileges

on subtypes of object types, 17-35

revoking from a grantee, 17-90

See also system privileges or object privileges

procedures

3GL, calling, 14-2

avoid run-time compilation, 9-125

calling, 12-68

compile explicitly, 9-125

creating, 14-62, 14-64

declaring

as a Java method, 14-68

as C functions, 14-68

executing, 12-68

external, 14-62, 14-64

running from remote database, 14-3

granting

system privileges on, 17-39

invalidating local objects dependent on, 16-93

issuing COMMIT or ROLLBACK

statements, 10-3

Index-46

naming rules, 2-114

privileges executed with, 12-14, 16-10

recompiling, 9-124

re-creating, 14-66

removing from the database, 16-93

schema executed in, 12-14, 16-10

specifying schema and privileges for, 14-68

synonyms for, 15-2

PROCESSES initialization parameter

setting with ALTER SYSTEM, 10-98

PROFILE clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-36

profiles

adding resource limits, 9-127

assigning to a user, 16-36

changing resource limits, 9-127

creating, 14-71

examples, 14-76

deassigning from users, 16-95

dropping resource limits, 9-127

granting

system privileges on, 17-40

modifying, examples, 9-129

removing from the database, 16-95

proxy clause

of ALTER USER, 12-24, 12-26

pseudocolumns, 2-82

CURRVAL, 2-82

LEVEL, 2-86

NEXTVAL, 2-82

ROWID, 2-87

ROWNUM, 2-88

uses for, 2-89

SYS_NC_ROWINFO$, 15-63, 15-64, 16-45, 16-49

XMLDATA, 2-89

PUBLIC clause

of CREATE OUTLINE, 14-49

of CREATE ROLLBACK SEGMENT, 14-83

of CREATE SYNONYM, 15-3

of DROP DATABASE LINK, 16-70

public database links

dropping, 16-70

public rollback segments, 14-83

public synonyms, 15-3

dropping, 17-4

PUSH_PRED hint, 2-104

Q
Q datetime format element, 2-69

queries, 8-2, 18-4

comments in, 8-3

compound, 8-10

correlated

left correlation, 18-17

defined, 8-2

distributed, 8-16

grouping returned rows on a value, 18-21

hierarchical. See hierarchical queries

hierarchical, ordering, 18-25

hints in, 8-3

join, 8-10, 18-18

locking rows during, 18-26

of past data, 18-14

ordering returned rows, 18-25

outer joins in, 18-17

referencing multiple tables, 8-10

select lists of, 8-2

selecting from a random sample of rows, 18-15

sorting results, 8-10

syntax, 8-2

top-level, 8-2

top-N, 2-88

query rewrite

and dimensions, 13-43

and function-based indexes, 10-10

and rule-based optimization, 10-10

defined, 18-4

disabling, 10-99

enabling, 10-99

enabling and disabling, 10-10

QUERY REWRITE object privilege, 17-46

on a materialized view, 17-48

QUERY REWRITE system privilege, 17-38

QUERY_REWRITE_ENABLED initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-99

QUERY_REWRITE_INTEGRITY initialization

Index-47

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-99

QUIESCE RESTRICTED clause

of ALTER SYSTEM, 10-29

QUOTA clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-36

R
range conditions, 5-12

range partitions

adding, 11-69

creating, 15-44

values of, 15-45

RANK function, 6-123

RATIO_TO_REPORT function, 6-125

RAW datatype, 2-27

converting from CHAR data, 2-28

RAWTOHEX function, 6-126

RAWTONHEX function, 6-126

RDBMS_SERVER_DN initialization parameter

setting with ALTER SYSTEM, 10-99

READ object privilege, 17-46

on a materialized directory, 17-49

READ ONLY clause

of ALTER TABLESPACE, 11-108

READ WRITE clause

of ALTER TABLESPACE, 11-108

READ_ONLY_OPEN_DELAYED initialization

parameter

setting with ALTER SYSTEM, 10-100

REAL datatype (ANSI), 2-36

REBUILD clause

of ALTER INDEX, 9-65, 9-72

of ALTER MATERIALIZED VIEW, 9-102

of ALTER OUTLINE, 9-118

REBUILD PARTITION clause

of ALTER INDEX, 9-73

REBUILD SUBPARTITION clause

of ALTER INDEX, 9-73

REBUILD UNUSABLE LOCAL INDEXES clause

of ALTER TABLE, 11-84

rebuilding, 9-102

RECOVER AUTOMATIC clause

of ALTER DATABASE, 9-26

RECOVER CANCEL clause

of ALTER DATABASE, 9-13, 9-29

RECOVER clause

of ALTER DATABASE, 9-25

RECOVER CONTINUE clause

of ALTER DATABASE, 9-13, 9-29

RECOVER DATABASE clause

of ALTER DATABASE, 9-13, 9-26

RECOVER DATAFILE clause

of ALTER DATABASE, 9-13, 9-27

RECOVER LOGFILE clause

of ALTER DATABASE, 9-13, 9-28

RECOVER MANAGED STANDBY DATABASE

clause

of ALTER DATABASE, 9-15

RECOVER STANDBY DATAFILE clause

of ALTER DATABASE, 9-27

RECOVER STANDBY TABLESPACE clause

of ALTER DATABASE, 9-27

RECOVER TABLESPACE clause

of ALTER DATABASE, 9-13, 9-27

RECOVERABLE, 9-72, 15-30

See also LOGGING clause

recovery

discarding data, 9-23

distributed, enabling, 10-27

instance, continue after interruption, 9-25

media, designing, 9-25

media, performing ongoing, 9-29

of database, 9-13

parallelizing, 9-28

recovery clauses

of ALTER DATABASE, 9-13

RECOVERY_CATALOG_OWNER role, 17-45

RECOVERY_PARALLELISM initialization

parameter

setting with ALTER SYSTEM, 10-100

redo allocation latch

avoiding high contention, 10-75

redo log files

specifying, 7-39

specifying for a controlfile, 13-17

redo logs, 9-23

Index-48

adding, 9-37, 9-38

applying to logical standby database, 9-46

archive location, 10-25

automatic archiving, 10-23

starting, 10-25

stopping, 10-25

automatic name generation, 9-25, 9-26

clearing, 9-37

disabling specified threads in a cluster

database, 9-51

dropping, 9-37, 9-39

enabling and disabling thread, 9-37

enabling specified threads in a cluster

database, 9-50

manual archiving, 10-23

all, 10-25

by group number, 10-24

by SCN, 10-23

current, 10-24

next, 10-25

with sequence numbers, 10-23

members

adding to existing groups, 9-39

dropping, 9-40

renaming, 9-37

remove changes from, 9-23

reusing, 7-41

size of, 7-41

specifying, 7-39, 13-27

for media recovery, 9-28

specifying archive mode, 13-29

switching groups, 10-29

threads, 10-23

REF columns

rescoping, 9-102

specifying, 15-26

specifying from table or column level, 15-26

REF constraints

defining scope, for materialized views, 9-97

of ALTER TABLE, 11-43

REF function, 6-127

REFERENCES clause

of CREATE TABLE, 15-26

REFERENCES object privilege, 17-46

on a table, 17-47

on a view, 17-47

REFERENCING clause

of CREATE TRIGGER, 15-97, 15-104

referential integrity constraints, 7-14

REFRESH clause

of ALTER MATERIALIZED VIEW, 9-98, 9-102

of CREATE MATERIALIZED VIEW, 14-11

REFRESH COMPLETE clause

of ALTER MATERIALIZED VIEW, 9-103

of CREATE MATERIALIZED VIEW, 14-21

REFRESH FAST clause

of ALTER MATERIALIZED VIEW, 9-102

of CREATE MATERIALIZED VIEW, 14-21

REFRESH FORCE clause

of ALTER MATERIALIZED VIEW, 9-103

of CREATE MATERIALIZED VIEW, 14-21

REFRESH ON COMMIT clause

of ALTER MATERIALIZED VIEW, 9-103

of CREATE MATERIALIZED VIEW, 14-21

REFRESH ON DEMAND clause

of ALTER MATERIALIZED VIEW, 9-104

of CREATE MATERIALIZED VIEW, 14-21

REFs, 2-38, 7-16

as containers for OIDs, 2-38

dangling, 12-43

updating, 12-43

validating, 12-43

REFTOHEX function, 6-128

REGISTER clause

of ALTER SYSTEM, 10-31

REGISTER LOGFILE clause

of ALTER DATABASE, 9-45

REGR_AVGX function, 6-129

REGR_AVGY function, 6-129

REGR_COUNT function, 6-129

REGR_INTERCEPT function, 6-129

REGR_R2 function, 6-129

REGR_SLOPE function, 6-129

REGR_SXX function, 6-129

REGR_SXY function, 6-129

REGR_SYY function, 6-129

relational tables

creating, 15-8, 15-23

RELY clause

of constraints, 7-22

Index-49

REMOTE_ARCHIVE_ENABLE initialization

parameter

setting with ALTER SYSTEM, 10-100

REMOTE_DEPENDENCIES_MODE initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-101

REMOTE_LISTENER initialization parameter

setting with ALTER SYSTEM, 10-101

REMOTE_LOGIN_PASSWORDFILE initialization

parameter

and control files, 13-16

and databases, 13-24

setting with ALTER SYSTEM, 10-101

REMOTE_OS_AUTHENT initialization parameter

setting with ALTER SYSTEM, 10-102

REMOTE_OS_ROLES initialization parameter

setting with ALTER SYSTEM, 10-102

RENAME clause

of ALTER INDEX, 9-78

of ALTER OUTLINE, 9-119

of ALTER TABLE, 11-38

of ALTER TRIGGER, 12-3

RENAME CONSTRAINT clause

of ALTER TABLE, 11-59

RENAME DATAFILE clause

of ALTER TABLESPACE, 11-104

RENAME FILE clause

of ALTER DATABASE, 9-12, 9-37

RENAME GLOBAL_NAME clause

of ALTER DATABASE, 9-51

RENAME PARTITION clause

of ALTER INDEX, 9-67, 9-81

of ALTER TABLE, 11-74

RENAME statement, 17-86

RENAME SUBPARTITION clause

of ALTER INDEX, 9-67, 9-81

of ALTER TABLE, 11-74

REPLACE AS OBJECT clause

of ALTER TYPE, 12-11

REPLACE function, 6-137

replication

row-level dependency tracking, 13-9, 15-54

REPLICATION_DEPENDENCY_TRACKING

initialization parameter

setting with ALTER SYSTEM, 10-102

reserved words, 2-111, C-1

RESET COMPATIBILITY clause

of ALTER DATABASE, 9-50

reset sequence of, 9-23

RESETLOGS parameter

of CREATE CONTROLFILE, 13-18

RESOLVE clause

of ALTER JAVA CLASS, 9-88

of CREATE JAVA, 13-100

RESOLVER clause

of ALTER JAVA CLASS, 9-88

of ALTER JAVA SOURCE, 9-88

of CREATE JAVA, 13-102

Resource Manager, 10-29

resource parameters

of CREATE PROFILE, 14-72

RESOURCE role, 17-45

RESOURCE_LIMIT initialization parameter

setting with ALTER SYSTEM, 10-102

RESOURCE_MANAGER_PLAN initialization

parameter

setting with ALTER SYSTEM, 10-103

RESOURCE_VIEW, 5-13, 5-20

response time

optimizing, 2-96

RESTRICT_REFERENCES pragma

of ALTER TYPE, 12-12

restricted rowids, 2-34

compatibility and migration of, 2-35

RESTRICTED SESSION system privilege, 17-37,

17-40

resumable space allocation, 10-6

RESUMABLE system privilege, 17-44

RESUME clause

of ALTER SYSTEM, 10-29

RETENTION parameter

of LOB storage, 15-39

RETURN clause

of CREATE FUNCTION, 13-57

of CREATE OPERATOR, 14-46

of CREATE TYPE, 16-14

of CREATE TYPE BODY, 16-30

RETURNING clause

of DELETE, 16-61

Index-50

of INSERT, 17-55, 17-62

of UPDATE, 18-61, 18-67

REUSE clause

of CREATE CONTROLFILE, 13-18

of file specifications, 7-41

REUSE SETTINGS clause

of ALTER FUNCTION, 9-60

of ALTER PACKAGE, 9-122

of ALTER PROCEDURE, 9-125

of ALTER TRIGGER, 12-4

of ALTER TYPE, 12-11

REVERSE clause

of CREATE INDEX, 13-79

reverse indexes, 13-79

REVERSE parameter

of ALTER INDEX ... REBUILD, 9-74

REVOKE clause

of ALTER USER, 12-27

REVOKE CONNECT THROUGH clause

of ALTER USER, 12-24, 12-26

REVOKE statement, 17-88

REWRITE hint, 2-104

right outer joins, 18-18

RM datetime format element, 2-69

RN number format element, 2-64

RNDS attribute

of PRAGMA RESTRICT_REFERENCES, 16-16

RNPS attribute

of PRAGMA RESTRICT_REFERENCES, 16-16

roles

application, 9-135

AQ_ADMINISTRATOR_ROLE, 17-45

AQ_USER_ROLE, 17-45

authorization

by a password, 14-80

by an external service, 14-80

by the database, 14-80

by the enterprise directory service, 14-80

changing, 9-134

CONNECT, 17-45

creating, 14-79

DBA, 17-45

DELETE_CATALOG_ROLE, 17-45

disabling

for the current session, 18-47, 18-48

effect on user sessions, 9-135

enabling

for the current session, 18-47, 18-48

EXECUTE_CATALOG_ROLE, 17-45

EXP_FULL_DATABASE, 17-45

granting, 17-29

system privileges on, 17-40

to a user, 17-32

to another role, 17-32

to PUBLIC, 17-32

HS_ADMIN_ROLE, 17-45

identifying by password, 14-80

identifying externally, 14-80

identifying through enterprise directory

service, 14-80

identifying using a package, 14-80

IMP_FULL_DATABASE, 17-45

RECOVERY_CATALOG_OWNER, 17-45

removing from the database, 16-97

RESOURCE, 17-45

revoking, 17-88

from another role, 16-97, 17-91

from PUBLIC, 17-91

from users, 16-97, 17-91

SELECT_CATALOG_ROLE, 17-45

SNMPAGENT, 17-45

rollback segments

bringing online, 9-136, 9-137

changing storage characteristics, 9-136, 9-137

creating, 14-82

granting

system privileges on, 17-40

public, 14-83

reducing size, 9-136, 9-138

removing from the database, 16-98

specifying optimal size of, 7-63

specifying tablespaces for, 14-84

SQL examples, 14-85

storage characteristics, 14-84

system-generated, 14-82

taking offline, 9-136, 9-137

ROLLBACK statement, 17-99

rollback undo, 9-136, 13-33

ROLLBACK_SEGMENTS initialization parameter

setting with ALTER SYSTEM, 10-103

Index-51

ROLLUP clause

of SELECT statements, 18-22

ROUND function

date function, 6-139

format models, 6-221

number function, 6-138

routines

calling, 12-68

executing, 12-68

ROW EXCLUSIVE lock mode, 17-75

ROW SHARE lock mode, 17-75

ROW_LOCKING initialization parameter

setting with ALTER SYSTEM, 10-104

ROW_NUMBER function, 6-139

ROWDEPENDENCIES clause

of CREATE CLUSTER, 13-9

of CREATE TABLE, 15-54

ROWID datatype, 2-33

ROWID hint, 2-104

ROWID pseudocolumn, 2-33, 2-35, 2-87

rowids

block portion of, 2-34

description of, 2-33

extended, 2-34

base 64, 2-34

not directly available, 2-34

file portion of, 2-34

nonphysical, 2-35

of foreign tables, 2-35

of index-organized tables, 2-35

restricted, 2-34

compatibility and migration of, 2-35

row portion of, 2-34

uses for, 2-87

ROWIDTOCHAR function, 6-141

ROWIDTONCHAR function, 6-141

row-level dependency tracking, 13-9, 15-54

ROWNUM pseudocolumn, 2-88

uses for, 2-89

rows

adding to a table, 17-53

allowing movement of between

partitions, 15-15

inserting

into partitions, 17-59

into remote databases, 17-59

into subpartitions, 17-59

movement between partitions, 15-60

removing

from a cluster, 18-54

from a table, 18-54

from partitions and subpartitions, 16-58

from tables and views, 16-55

selecting in hierarchical order, 8-3

specifying constraints on, 7-15

storing if in violation of constraints, 11-82

RPAD function, 6-142

RR datetime format element, 2-69, 2-73

RRRR datetime format element, 2-69

RTRIM function, 6-143

RULE hint, 2-105

run-time compilation

avoiding, 9-124, 12-31

S
S number format element, 2-64

SAMPLE clause

of SELECT, 18-15

of SELECT and subqueries, 18-7

SAVEPOINT statement, 18-2

savepoints

erasing, 12-75

rolling back to, 17-100

specifying, 18-2

scalar subqueries, 4-13

scalar subquery expressions, 4-13

scale

greater than precision, 2-13

negative, 2-13

of NUMBER datatype, 2-12

SCC datetime format element, 2-69

SCHEMA clause

of CREATE JAVA, 13-101

schema objects, 2-106

auditing

options, 12-64

defining default buffer pool for, 7-63

dropping, 17-20

in other schemas, 2-117

Index-52

list of, 2-106

name resolution, 2-116

namespaces, 2-112

naming

examples, 2-114

guidelines, 2-114

rules, 2-110

object types, 2-38

on remote databases, 2-118

partitioned indexes, 2-108

partitioned tables, 2-108

parts of, 2-108

protecting location, 15-2

protecting owner, 15-2

providing alternate names for, 15-2

reauthorizing, 9-2

recompiling, 9-2

referring to, 2-115, 10-11

remote, accessing, 13-37

validating structure, 12-43

schemas

changing for a session, 10-11

creating, 14-86

definition of, 2-106

scientific notation, 2-65

SCOPE FOR clause

of ALTER MATERIALIZED VIEW, 9-97

of CREATE MATERIALIZED VIEW, 14-16

SCORE operator, 3-2

security

enforcing, 15-95

segment attributes clause

of CREATE TABLE, 15-15

SEGMENT MANAGEMENT FREELISTS clause

of CREATE TABLESPACE, 15-88

SEGMENT MANAGEMENT PAGETABLE clause

of CREATE TABLESPACE, 15-88

segments

space management

automatic, 15-88

manual, 15-88

using bitmaps, 15-88

using free lists, 15-88

SELECT ANY DICTIONARY system

privilege, 17-44

SELECT ANY SEQUENCE system privilege, 17-40

SELECT ANY TABLE system privilege, 17-41

select lists, 8-2

ordering, 8-10

SELECT object privilege, 17-46

on a materialized view, 17-48

on a sequence, 17-48

on a table, 17-47

on a view, 17-47

SELECT statement, 8-2, 18-4

SELECT_CATALOG_ROLE role, 17-45

self joins, 8-11

sequences, 2-82, 14-89

accessing values of, 14-89

changing

the increment value, 9-140

creating, 14-89

creating without limit, 14-91

granting

system privileges on, 17-40

guarantee consecutive values, 14-92

how to use, 2-84

increment value, setting, 14-91

incrementing, 14-89

initial value, setting, 14-91

maximum value

eliminating, 9-140

setting, 14-91

setting or changing, 9-140

minimum value

eliminating, 9-140

setting, 14-92

setting or changing, 9-140

number of cached values, changing, 9-140

ordering values, 9-140

preallocating values, 14-92

recycling values, 9-140

removing from the database, 17-2

renaming, 17-86

restarting, 17-2

at a different number, 9-141

at a predefined limit, 14-91

values, 14-92

reusing, 14-89

stopping at a predefined limit, 14-91

Index-53

synonyms for, 15-2

where to use, 2-83

SERIAL_REUSE initialization parameter

setting with ALTER SYSTEM, 10-104

server parameter files

creating, 14-94

SERVERERROR event

triggers on, 15-102

service name

of remote database, 13-40

SERVICE_NAMES initialization parameter

setting with ALTER SYSTEM, 10-104

session control statements, 9-4

PL/SQL support of, 9-4

session locks

releasing, 10-27

session parameters

changing settings, 10-10

INSTANCE, 10-12

PLSQL_DEBUG, 10-13

SESSION_CACHED_CURSORS initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-105

SESSION_MAX_OPEN_FILES initialization

parameter

setting with ALTER SYSTEM, 10-105

SESSION_ROLES view, 18-47

sessions

affecting with roles, 9-135

calculating resource cost limits, 9-131

changing resource cost limits, 9-131

disconnecting, 10-26

global name resolution for, 10-8

limiting CPU time, 9-131

limiting data block reads, 9-132

limiting inactive periods, 9-127

limiting private SGA space, 9-132

limiting resource costs, 9-131

limiting total elapsed time, 9-132

limiting total resources, 9-127

modifying characteristics of, 10-6

number of concurrent, 10-66

object cache, 10-9

restricting, 10-29

restricting to privileged users, 10-28

switching to a different instance, 10-12

terminating, 10-27

time zone setting, 10-14

SESSIONS initialization parameter

setting with ALTER SYSTEM, 10-106

SESSIONS_PER_USER parameter

of ALTER PROFILE, 9-128

SESSIONTIMEZONE function, 6-143

SET clause

of ALTER SESSION, 10-6

of ALTER SYSTEM, 10-31

of UPDATE, 18-65

SET CONSTRAINT(S) statement, 18-45

SET DANGLING TO NULL clause

of ANALYZE, 12-43

SET DATABASE clause

of CREATE CONTROLFILE, 13-18

set operators, 3-6, 18-24

INTERSECT, 3-6

MINUS, 3-6

UNION, 3-6

UNION ALL, 3-6

SET ROLE statement, 18-47

SET STANDBY DATABASE clause

of ALTER DATABASE, 9-44

SET STATEMENT_ID clause

of EXPLAIN PLAN, 17-26

SET TIME_ZONE clause

of ALTER DATABASE, 9-22, 9-48

of ALTER SESSION, 10-14

of CREATE DATABASE, 13-26

SET TRANSACTION statement, 18-50

SET UNUSED clause

of ALTER TABLE, 11-52

SGA. See system global area (SGA)

SGA_MAX_SIZE initialization parameter

setting with ALTER SYSTEM, 10-106

SHADOW_CORE_DUMP initialization parameter

setting with ALTER SYSTEM, 10-106

SHARE ROW EXCLUSIVE lock mode, 17-75

SHARE UPDATE lock mode, 17-75

SHARED clause

of CREATE DATABASE LINK, 13-38

shared pool

Index-54

flushing, 10-28

shared server

parameters

DISPATCHERS, 10-53

processes

creating additional, 10-108

terminating, 10-108

system parameters, 10-108

SHARED_MEMORY_ADDRESS initialization

parameter

setting with ALTER SYSTEM, 10-107

SHARED_POOL_RESERVED_SIZE initialization

parameter

setting with ALTER SYSTEM, 10-107

SHARED_POOL_SIZE initialization parameter

setting with ALTER SYSTEM, 10-107

SHARED_SERVER_SESSIONS initialization

parameter

setting with ALTER SYSTEM, 10-109

SHARED_SERVERS initialization parameter

setting with ALTER SYSTEM, 10-108

SHRINK clause

of ALTER ROLLBACK SEGMENT, 9-138

SHUTDOWN clause

of ALTER SYSTEM, 10-30

SHUTDOWN event

triggers on, 15-102

siblings

ordering in a hierarchical query, 18-25

SIGN function, 6-144

simple comparison conditions, 5-5

simple expressions, 4-3

SIN function, 6-145

SINGLE TABLE clause

of CREATE CLUSTER, 13-7

single-row functions, 6-3

miscellaneous, 6-7

single-table insert, 17-57

SINH function, 6-145

SIZE clause

of ALTER CLUSTER, 9-8

of CREATE CLUSTER, 13-5

of file specifications, 7-41

SKIP_UNUSABLE_INDEXES session

parameter, 10-13

SMALLINT datatype

ANSI, 2-36

DB2, 2-37

SQL/DS, 2-37

SNMPAGENT role, 17-45

SOME operator, 5-5

sort operations

changing linguistic sequence, 10-9

SORT_AREA_RETAINED_SIZE initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-109

SORT_AREA_SIZE initialization parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-110

SOUNDEX function, 6-146

SP datetime format element suffix, 2-75

special characters

in passwords, 14-76

SPECIFICATION clause

of ALTER PACKAGE, 9-121

spelled numbers

specifying, 2-75

SPFILE initialization parameter

setting with ALTER SYSTEM, 10-110

SPLIT PARTITION clause

of ALTER INDEX, 9-67, 9-81

of ALTER TABLE, 11-75

SPTH datetime format element suffix, 2-75

SQL functions

ABS, 6-17

ACOS, 6-17

ADD_MONTHS, 6-18

aggregate, 6-8

analytic, 6-10

applied to LOB columns, 6-2

ASCII, 6-18

ASCIISTR, 6-19

ASIN, 6-20

ATAN, 6-21

ATAN2, 6-21

AVG, 6-22

BFILENAME, 6-23

BIN_TO_NUM, 6-25

BITAND, 6-25

Index-55

CAST, 6-27

CEIL, 6-30

character

returning character values, 6-4

returning number values, 6-5

CHARTOROWID, 6-30

CHR, 6-31

COALESCE, 6-33

COMPOSE, 6-34

CONCAT, 6-35

conversion, 6-6

CONVERT, 6-36

CORR, 6-37

COS, 6-39

COSH, 6-40

COUNT, 6-40

COVAR_POP, 6-42

COVAR_SAMP, 6-44

CUME_DIST, 6-47

CURRRENT_DATE, 6-49

CURRRENT_TIMESTAMP, 6-50

date, 6-5

DBTIMEZONE, 6-51

DECOMPOSE, 6-53

DENSE_RANK, 6-55

DEREF, 6-58

DUMP, 6-59

EMPTY_BLOB, 6-61

EMPTY_CLOB, 6-61

EXISTSNODE, 6-61

EXP, 6-62

EXTRACT (datetime), 6-63

EXTRACT (XML), 6-65

EXTRACTXML, 6-66

FIRST, 6-67

FIRST_VALUE, 6-69

FLOOR, 6-71

FROM_TZ, 6-71

GREATEST, 6-72

GROUP_ID, 6-72

GROUPING, 6-74

GROUPING_ID, 6-75

HEXTORAW, 6-77

INITCAP, 6-77

INSTR, 6-78

INSTR2, 6-78

INSTR4, 6-78

INSTRB, 6-78

INSTRC, 6-78

LAG, 6-80

LAST, 6-81

LAST_DAY, 6-83

LAST_VALUE, 6-84

LEAD, 6-86

LEAST, 6-87

LENGTH, 6-88

LENGTH2, 6-88

LENGTH4, 6-88

LENGTHB, 6-88

LENGTHC, 6-88

linear regression, 6-129

LN, 6-89

LOCALTIMESTAMP, 6-90

LOG, 6-91

LOWER, 6-91

LPAD, 6-92

LTRIM, 6-93

MAKE_REF, 6-94

MAX, 6-95

MIN, 6-97

MOD, 6-98

MONTHS_BETWEEN, 6-99

NCHR, 6-100

NEW_TIME, 6-100

NEXT_DAY, 6-102

NLS_CHARSET_DECL_LEN, 6-102

NLS_CHARSET_ID, 6-103

NLS_CHARSET_NAME, 6-104

NLS_INITCAP, 6-104

NLS_LOWER, 6-106

NLS_UPPER, 6-108

NLSSORT, 6-107

NLV2, 6-114

NTILE, 6-109

NULLIF, 6-110

number, 6-3

NUMTODSINTERVAL, 6-111

NUMTOYMINTERVAL, 6-112

NVL, 6-113

object reference, 6-16

Index-56

PERCENT_RANK, 6-116

PERCENTILE_CONT, 6-118

PERCENTILE_DISC, 6-121

POWER, 6-122

RANK, 6-123

RATIO_TO_REPORT, 6-125

RAWTOHEX, 6-126

RAWTONHEX, 6-126

REF, 6-127

REFTOHEX, 6-128

REGR_AVGX, 6-129

REGR_AVGY, 6-129

REGR_COUNT, 6-129

REGR_INTERCEPT, 6-129

REGR_R2, 6-129

REGR_SLOPE, 6-129

REGR_SXX, 6-129

REGR_SXY, 6-129

REGR_SYY, 6-129

REPLACE, 6-137

ROUND (date), 6-139

ROUND (number), 6-138

ROW_NUMBER, 6-139

ROWIDTOCHAR, 6-141

ROWIDTONCHAR, 6-141

RPAD, 6-142

RTRIM, 6-143

SESSIONTIMEZONE, 6-143

SIGN, 6-144

SIN, 6-145

single-row, 6-3

miscellaneous, 6-7

SINH, 6-145

SOUNDEX, 6-146

SQRT, 6-147

STDDEV, 6-148

STDDEV_POP, 6-149

STDDEV_SAMP, 6-151

SUBSTR, 6-152

SUBSTR2, 6-152

SUBSTR4, 6-152

SUBSTRB, 6-152

SUBSTRC, 6-152

SUM, 6-154

SYS_CONNECT_BY_PATH, 6-155

SYS_CONTEXT, 6-156

SYS_DBURIGEN, 6-161

SYS_EXTRACT_UTC, 6-162

SYS_GUID, 6-163

SYS_TYPEID, 6-164

SYS_XMLAGG, 6-165

SYS_XMLGEN, 6-166

SYSDATE, 6-167

SYSTIMESTAMP, 6-168

TAN, 6-169

TANH, 6-169

TO_CHAR (character), 6-170

TO_CHAR (datetime), 6-171

TO_CHAR (number), 6-173

TO_CLOB, 6-175

TO_DATE, 6-175

TO_DSINTERVAL, 6-177

TO_LOB, 6-178

TO_MULTI_BYTE, 6-179

TO_NCHAR (character), 6-180

TO_NCHAR (datetime), 6-181

TO_NCHAR (number), 6-182

TO_NCLOB, 6-182

TO_NUMBER, 6-183

TO_SINGLE_BYTE, 6-184

TO_TIMESTAMP, 6-185

TO_YMINTERVAL, 6-187

TRANSLATE, 6-188

TRANSLATE...USING, 6-189

TREAT, 6-191

TRIM, 6-192

TRUNC (date), 6-194

TRUNC (number), 6-194

TZ_OFFSET, 6-195

UID, 6-196

UNISTR, 6-196

UPDATEXML, 6-197

UPPER, 6-199

USER, 6-199

USERENV, 6-200

VALUE, 6-202

VAR_POP, 6-202

VAR_SAMP, 6-204

VARIANCE, 6-206

VSIZE, 6-207

Index-57

WIDTH_BUCKET, 6-208

SQL statements

auditing

by access, 12-59

by proxy, 12-58

by session, 12-59

by user, 12-57

stopping, 17-81

successful, 12-60

DDL, 9-2

determining the execution plan for, 17-24

DML, 9-3

organization of, 9-4

rolling back, 17-99

session control, 9-4

space allocation, resumable, 10-6

suspending and completing, 10-6

system control, 9-4

tracking the occurrence in a session, 12-54

transaction control, 9-3

type of, 9-2

undoing, 17-99

SQL*Loader inserts, logging, 9-71

SQL:99 standards, 1-2

SQL_TRACE initialization parameter

setting with ALTER SYSTEM, 10-111

SQL_TRACE session parameter, 10-14

SQL92_SECURITY initialization parameter

setting with ALTER SYSTEM, 10-111

SQLData Java storage format, 16-11

SQL/DS datatypes, 2-36

conversion to Oracle datatypes, 2-37

implicit conversion, 2-37

restrictions on, 2-37

SQLJ object types

creating, 16-11

mapping a Java class to, 16-12

SQRT function, 6-147

SS datetime format element, 2-69

SSSSS datetime format element, 2-69

standalone procedures

dropping, 16-93

standard SQL, B-1

Oracle extensions to, B-11

standby database

recovering, 9-27

standby databases

activating, 9-43

applying archive logs, 9-31

committing to primary status, 9-45

controlling use, 9-51

designing media recovery, 9-25

mounting, 9-23

recovering, 9-26, 9-27

STANDBY_ARCHIVE_DEST initialization

parameter

setting with ALTER SYSTEM, 10-111

STANDBY_FILE_MANAGEMENT initialization

parameter

setting with ALTER SYSTEM, 10-112

star transformation, 2-105

STAR_TRANSFORMATION hint, 2-105

STAR_TRANSFORMATION_ENABLED

initialization parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-112

START LOGICAL STANDBY APPLY clause

of ALTER DATABASE, 9-46

START WITH clause

of ALTER MATERIALIZED

VIEW...REFRESH, 9-104

of queries and subqueries, 18-21

of SELECT and subqueries, 18-8

START WITH parameter

of CREATE SEQUENCE, 14-91

STARTUP event

triggers on, 15-102

startup_clauses

of ALTER DATABASE, 9-13

STATIC clause

of ALTER TYPE, 12-12

of CREATE TYPE, 16-13

of CREATE TYPE BODY, 16-28

statistics

collection during index rebuild, 9-72

computing exactly, 12-39

deleting from the data dictionary, 12-46

estimating, 12-42

forcing disassociation, 16-66

on index usage, 9-78

Index-58

on indexes, 13-80

on scalar object attributes

collecting, 12-34

on schema objects

collecting, 12-34

deleting, 12-34

user-defined

dropping, 16-78, 16-79, 16-92, 17-7, 17-15

statistics types

associating

with columns, 12-52

associating with datatypes, 12-51, 12-52

associating with domain indexes, 12-51, 12-52

associating with functions, 12-51, 12-52

associating with indextypes, 12-51, 12-52

associating with packages, 12-51, 12-52

disassociating

from columns, 16-64

from domain indexes, 16-64

from functions, 16-64

from indextypes, 16-64

from packages, 16-64

from types, 16-64

STATISTICS_LEVEL initialization parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-112

STDDEV function, 6-148

STDDEV_POP function, 6-149

STDDEV_SAMP function, 6-151

STOP LOGICAL STANDBY clause

of ALTER DATABASE, 9-47

STORAGE clause

of ALTER CLUSTER, 9-8

of ALTER INDEX, 9-64, 9-71

of ALTER MATERIALIZED VIEW LOG, 9-112

of ALTER ROLLBACK SEGMENT, 9-136, 9-137

of CREATE MATERIALIZED VIEW

LOG, 14-37

of CREATE MATERIALIZED VIEW LOG. See
CREATE TABLE

of CREATE MATERIALIZED VIEW. See
CREATE TABLE.

of CREATE ROLLBACK SEGMENTS, 14-84

of CREATE TABLE, 7-55, 15-11

of CREATE TABLESPACE, 15-82

STORAGE IN ROW clause

of ALTER TABLE, 11-46

storage parameters

default, changing, 11-106

resetting, 18-54

STORE IN clause

of ALTER TABLE, 11-40, 15-47

stored functions, 13-52

strings

converting to ASCII values, 6-19

converting to unicode, 6-34

Structured Query Language (SQL)

description, 1-2

embedded, 1-4

functions, 6-2

keywords, A-3

Oracle Tools support of, 1-5

parameters, A-3

standards, 1-2, B-1

statements

auditing, 12-60

determining the cost of, 17-24

syntax, 9-4, A-1

SUBPARTITION BY HASH clause

of CREATE TABLE, 15-19, 15-50

SUBPARTITION BY LIST clause

of CREATE TABLE, 15-51

SUBPARTITION clause

of ANALYZE, 12-39

of DELETE, 16-58

of INSERT, 17-59

of LOCK TABLE, 17-74

of UPDATE, 18-63

subpartition template

creating, 11-62

replacing, 11-62

subpartition-extended table names, 2-108

in DML statements, 2-109

restrictions on, 2-109

syntax, 2-109

subpartitions

adding, 11-63

adding rows to, 17-53

allocating extents for, 11-35, 11-66

coalescing, 11-64

Index-59

converting into nonpartitioned tables, 11-81

creating, 15-19

creating a template for, 11-62, 15-49

deallocating unused space from, 11-35, 11-66

exchanging with tables, 11-24

hash, 15-50

inserting rows into, 17-59

list, 15-51

list, adding, 11-63

locking, 17-73

logging insert operations, 11-34

moving to a different segment, 11-68

physical attributes

changing, 11-32

removing rows from, 11-74, 16-58

renaming, 11-74

revising values in, 18-63

specifying, 15-49

template, creating, 15-49

template, dropping, 11-62

template, replacing, 11-62

subqueries, 8-2, 8-13, 18-4

assigning names to, 18-10

containing subqueries, 8-14

correlated, 8-14

defined, 8-2

extended subquery unnesting, 8-15

factoring of, 18-10

inline views, 8-13

nested, 8-13

of past data, 18-14

scalar, 4-13

used as expressions, 4-13

to insert table data, 15-61

unnesting, 8-15

using in place of expressions, 4-13

SUBSTR function, 6-152

SUBSTR2 function, 6-152

SUBSTR4 function, 6-152

SUBSTRB function, 6-152

SUBSTRC function, 6-152

subtotal values

deriving, 18-22

subtypes, 12-11

dropping safely, 17-16

SUM function, 6-154

supertypes, 12-11

supplemental logging

identification key (full), 9-40

minimal, 9-40

SUSPEND clause

of ALTER SYSTEM, 10-29

sustained standby recovery mode, 9-29

SWITCH LOGFILE clause

of ALTER SYSTEM, 10-29

SYEAR datetime format element, 2-69

synonyms

changing the definition of, 17-4

creating, 15-2

granting

system privileges on, 17-41

local, 15-5

private, dropping, 17-4

public, 15-3

dropping, 17-4

remote, 15-5

removing from the database, 17-4

renaming, 17-86, 17-87

synonyms for, 15-2

syntax diagrams, A-1

loops, A-4

multipart diagrams, A-5

SYS schema

auditing, 10-35

database triggers stored in, 15-106

functions stored in, 15-106

SYS user

assigning password for, 13-27

SYS_CONNECT_BY_PATH function, 6-155

SYS_CONTEXT function, 6-156

SYS_DBURIGEN function, 6-161

SYS_EXTRACT_UTC function, 6-162

SYS_GUID function, 6-163

SYS_NC_ROWINFO$ column, 15-63, 15-64, 16-45,

16-48

SYS_NC_ROWINFO$ pseudocolumn, 15-63, 15-64,

16-45, 16-49

SYS_TYPEID function, 6-164

SYS_XMLAGG function, 6-165

SYS_XMLGEN function, 6-166

Index-60

SYSDATE function, 6-167

SYSDBA system privilege, 17-44

SYSOPER system privilege, 17-44

system control statements, 9-4

PL/SQL support of, 9-4

system date

altering, 10-59

system events

attributes of, 15-106

triggers on, 15-102

system global area

flushing, 10-28

updating, 10-26

system privileges

ADMINISTER DATABASE TRIGGER, 17-42

ALTER ANY CLUSTER, 17-36

ALTER ANY DIMENSION, 17-37

ALTER ANY INDEX, 17-38

ALTER ANY INDEXTYPE, 17-38

ALTER ANY MATERIALIZED VIEW, 17-38

ALTER ANY OUTLINE, 17-39

ALTER ANY PROCEDURE, 17-39

ALTER ANY ROLE, 17-40

ALTER ANY SEQUENCE, 17-40

ALTER ANY TABLE, 17-41

ALTER ANY TRIGGER, 17-42

ALTER ANY TYPE, 17-42

ALTER DATABASE, 17-37

ALTER PROFILE, 17-40

ALTER RESOURCE COST, 17-40

ALTER ROLLBACK SEGMENT, 17-40

ALTER SESSION, 17-40

ALTER SYSTEM, 17-37

ALTER TABLESPACE, 17-42

ALTER USER, 17-43

ANALYZE ANY, 17-43

AUDIT ANY, 17-43

AUDIT SYSTEM, 17-37

BACKUP ANY TABLE, 17-41

BECOME USER, 17-43

COMMENT ANY TABLE, 17-43

CREATE ANY CLUSTER, 17-36

CREATE ANY CONTEXT, 17-36

CREATE ANY DIMENSION, 17-37

CREATE ANY DIRECTORY, 17-37

CREATE ANY INDEX, 17-38

CREATE ANY INDEXTYPE, 17-38

CREATE ANY LIBRARY, 17-38

CREATE ANY MATERIALIZED VIEW, 17-38

CREATE ANY OPERATOR, 17-39

CREATE ANY OUTLINE, 17-39

CREATE ANY PROCEDURE, 17-39

CREATE ANY SEQUENCE, 17-40

CREATE ANY SYNONYM, 17-41

CREATE ANY TABLE, 17-41

CREATE ANY TRIGGER, 17-42

CREATE ANY TYPE, 17-42

CREATE ANY VIEW, 17-43

CREATE CLUSTER, 17-36

CREATE DATABASE LINK, 17-37

CREATE DIMENSION, 17-37

CREATE INDEXTYPE, 17-37

CREATE LIBRARY, 17-38

CREATE MATERIALIZED VIEW, 17-38

CREATE OPERATOR, 17-39

CREATE PROCEDURE, 17-39

CREATE PROFILE, 17-40

CREATE PUBLIC DATABASE LINK, 17-37

CREATE PUBLIC SYNONYM, 17-41

CREATE ROLE, 17-40

CREATE ROLLBACK SEGMENT, 17-40

CREATE SEQUENCE, 17-40

CREATE SESSION, 17-40

CREATE SYNONYM, 17-41

CREATE TABLE, 17-41

CREATE TABLESPACE, 17-42

CREATE TRIGGER, 17-42

CREATE TYPE, 17-42

CREATE USER, 17-43

CREATE VIEW, 17-43

DEBUG ANY PROCEDURE, 17-37

DELETE ANY TABLE, 17-41

DROP ANY CLUSTER, 17-36

DROP ANY CONTEXT, 17-37

DROP ANY DIMENSION, 17-37

DROP ANY DIRECTORY, 17-37

DROP ANY INDEX, 17-38

DROP ANY INDEXTYPE, 17-38

DROP ANY LIBRARY, 17-38

DROP ANY MATERIALIZED VEIW, 17-38

Index-61

DROP ANY OPERATOR, 17-39

DROP ANY OUTLINE, 17-39

DROP ANY PROCEDURE, 17-39

DROP ANY ROLE, 17-40

DROP ANY SEQUENCE, 17-40

DROP ANY SYNONYM, 17-41

DROP ANY TABLE, 17-41

DROP ANY TRIGGER, 17-42

DROP ANY TYPE, 17-42

DROP ANY VIEW, 17-43

DROP PROFILE, 17-40

DROP PUBLIC DATABASE LINK, 17-37

DROP PUBLIC SYNONYM, 17-41

DROP ROLLBACK SEGMENT, 17-40

DROP TABLESPACE, 17-42

DROP USER, 17-43

EXECUTE ANY INDEXTYPE, 17-38

EXECUTE ANY OPERATOR, 17-39

EXECUTE ANY PROCEDURE, 17-39

EXECUTE ANY TYPE, 17-42

EXEMPT ACCESS POLICY, 17-44

FLASHBACK ANY TABLE, 17-39, 17-41, 17-43

FORCE ANY TRANSACTION, 17-44

FORCE TRANSACTION, 17-44

GLOBAL QUERY REWRITE, 17-38, 17-39

GRANT ANY OBJECT PRIVILEGE, 17-44

GRANT ANY PRIVILEGE, 17-44

GRANT ANY ROLE, 17-40

granting, 14-79, 17-29

to a role, 17-31

to a user, 17-31

to PUBLIC, 17-32

INSERT ANY TABLE, 17-41

list of, 17-36

LOCK ANY TABLE, 17-41

MANAGE TABLESPACE, 17-42

ON COMMIT REFRESH, 17-39

QUERY REWRITE, 17-38

RESTRICTED SESSION, 17-37, 17-40

RESUMABLE, 17-44

revoking, 17-88

from a role, 17-90

from a user, 17-90

from PUBLIC, 17-91

SELECT ANY DICTIONARY, 17-44

SELECT ANY SEQUENCE, 17-40

SELECT ANY TABLE, 17-41

SYSDBA, 17-44

SYSOPER, 17-44

UNDER ANY TYPE, 17-42

UNDER ANY VIEW, 17-43

UNLIMITED TABLESPACE, 17-42

UPDATE ANY TABLE, 17-41

system resources

enabling and disabling, 10-102

SYSTEM tablespace

locally managed, 13-31

SYSTEM user

assigning password for, 13-27

SYSTIMESTAMP function, 6-168

SYYYY datetime format element, 2-69

T
table

XMLType, querying, 15-64

TABLE clause

of ANALYZE, 12-37

of DELETE, 16-60

of INSERT, 17-60

of SELECT, 18-17

of TRUNCATE, 18-55

of UPDATE, 18-62, 18-64, 18-65

table functions

creating, 13-60

table locks

disabling, 11-89

duration of, 17-73

enabling, 11-89

EXCLUSIVE, 17-74, 17-75

modes of, 17-75

on partitions, 17-74

on remote database, 17-75

on subpartitions, 17-74

and queries, 17-73

ROW EXCLUSIVE, 17-74, 17-75

ROW SHARE, 17-74, 17-75

SHARE, 17-74

SHARE ROW EXCLUSIVE, 17-75

SHARE UPDATE, 17-75

Index-62

table partition segments

compression of, 11-33, 15-29

table REF constraints, 7-16

of CREATE TABLE, 15-26

table segments

data compression of, 11-33, 15-29

tables

adding rows to, 17-53

aliases, 2-120

in CREATE INDEX, 13-74

in DELETE, 16-60

allocating extents for, 11-35

assigning to a cluster, 15-35

changing degree of parallelism on, 11-85

changing existing values in, 18-59

collecting statistics on, 11-36, 12-37

comments on, 12-73

creating, 15-7

multiple, 14-86

creating comments about, 12-72

data stored outside database, 15-33

deallocating unused space from, 11-35

default physical attributes

changing, 11-32

degree of parallelism

specifying, 15-7

disassociating statistics types from, 17-7

dropping

along with cluster, 16-68

along with owner, 17-20

indexes of, 17-7

partitions of, 17-7

external, 15-30

creating, 15-33

restrictions on, 15-34

externally organized, 15-30

granting

system privileges on, 17-41

heap organized, 15-30

index-organized, 15-30

overflow segment for, 15-32

space in index block, 11-39, 15-31

inserting rows with a subquery, 15-61

inserting using the direct-path method, 17-53

joining in a query, 18-18

LOB storage of, 7-55

locking, 17-73

logging

insert operations, 11-34

table creation, 15-28

migrated and chained rows in, 12-45

moving, 11-29

moving to a new segment, 11-86

moving, index-organized, 11-87

nested

creating, 16-19

storage characteristics, 15-41

object

creating, 15-9

object, querying, 15-63

of XMLType, creating, 15-64

organization, defining, 15-30

parallel creation of, 15-53

parallelism

setting default degree, 15-53

partition attributes of, 11-61

partitioning, 2-108, 15-7, 15-44

allowing rows to move between

partitions, 11-38

default attributes of, 11-61

physical attributes

changing, 11-32

relational

creating, 15-8

remote, accessing, 13-37

removing from the database, 17-6

removing rows from, 16-55

renaming, 11-38, 17-86

restricting

records in a block, 11-37

retrieving data from, 18-4

saving blocks in a cache, 11-35, 15-52

SQL examples, 15-65

storage attributes

defining, 15-7

storage characteristics

defining, 7-55

storage properties, 15-36

storage properties of, 15-27

subpartition attributes of, 11-61

Index-63

synonyms for, 15-2

tablespace for

defining, 15-7, 15-28

temporary

duration of data, 15-27

session-specific, 15-23

transaction specific, 15-23

unclustering, 16-67

updating through views, 16-47

validating structure, 12-43

with unusable indexes, 10-13

TABLESPACE clause

of ALTER INDEX ... REBUILD, 9-74

of CREATE CLUSTER, 13-6

of CREATE INDEX, 13-78

of CREATE MATERIALIZED VIEW, 14-17

of CREATE MATERIALIZED VIEW

LOG, 14-38

of CREATE ROLLBACK SEGMENTS, 14-84

of CREATE TABLE, 15-28

tablespaces, 11-106

allocating space for users, 16-36

allowing write operations on, 11-108

automatic segment-space management, 2-16,

15-89

backing up datafiles, 11-107

bringing online, 11-106, 15-86

coalescing free extents, 11-109

converting

from permanent to temporary, 11-109

from temporary to permanent, 11-109

creating, 15-80

datafiles

adding, 11-104

renaming, 11-104

default temporary, 9-49

learning name of, 9-49

designing media recovery, 9-25

dropping contents, 17-11

ending online backup, 11-108

extent management, 15-94

extent size, 15-84

granting system privileges on, 17-41

in FORCE LOGGING mode, 11-109, 15-85

locally managed, 7-59

altering, 11-104

temporary, 15-94

logging attribute, 11-109, 15-85

managing extents of, 15-87

of session duration, 15-92

permanent objects in, 15-86

read only, 11-108

reconstructing lost or damaged, 9-25, 9-34

recovering, 9-25, 9-27

removing from the database, 17-10

size of free extents in, 11-106

specifying

datafiles for, 15-83

for a table, 15-27

for a user, 16-36

for index rebuild, 11-88

taking offline, 11-106, 15-86

tempfiles

adding, 11-104

temporary

creating, 15-92

specifying for a user, 16-36

temporary objects in, 15-86

temporary, defining for the database, 13-26

undo

altering, 11-104

creating, 13-33, 15-82

dropping, 17-11

TAN function, 6-169

TANH function, 6-169

TAPE_ASYNCH_IO initialization parameter

setting with ALTER SYSTEM, 10-113

TEMPFILE clause

of ALTER DATABASE, 9-17, 9-36

of CREATE TEMPORARY TABLESPACE, 15-93

tempfiles

bringing online, 9-36

defining for a tablespace, 15-81

defining for a temporary tablespace, 15-92

defining for the database, 13-26

disabling autoextend, 9-36

dropping, 9-36

enabling autoextend, 7-42, 9-36

extending automatically, 7-42

renaming, 9-37

Index-64

resizing, 9-36

reusing, 7-41

size of, 7-41

specifying, 7-39, 15-93

taking offline, 9-36

TEMPORARY clause

of ALTER TABLESPACE, 11-109

of CREATE TABLESPACE, 15-86

temporary tables

creating, 15-7, 15-23

session-specific, 15-23

transaction-specific, 15-23

TEMPORARY TABLESPACE clause

of ALTER USER. See CREATE USER

of CREATE USER, 16-36

temporary tablespaces

creating, 15-92

default, 9-49

specifying extent management during database

creation, 13-26

specifying extent management

individually, 15-93

specifying for a user, 16-36

SQL examples, 15-94

TEST clause

of ALTER DATABASE ... RECOVER, 9-28

text

date and number formats, 2-61

in SQL syntax, 2-54

properties of CHAR and VARCHAR2

datatypes, 2-54

syntax of, 2-54

TH datetime format element suffix, 2-75

THREAD initialization parameter

setting with ALTER SYSTEM, 10-113

throughput

optimizing, 2-94

THSP datetime format element suffix, 2-75

TIME datatype

DB2, 2-37

SQL/DS, 2-37

time zone

determining for session, 6-143

formatting, 2-71

setting for the database, 13-35

time zones

converting data to particular, 4-9

TIME_ZONE session parameter, 10-14

TIMED_OS_STATISTICS initialization parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-113

TIMED_STATISTICS initialization parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-114

timestamp

converting to local time zone, 4-9

TIMESTAMP datatype, 2-21

DB2, 2-37

SQL/DS, 2-37

TIMESTAMP WITH LOCAL TIME ZONE

datatype, 2-23

TIMESTAMP WITH TIME ZONE datatype, 2-21

TM number format element, 2-64

TO SAVEPOINT clause

of ROLLBACK, 17-100

TO_CHAR

datetime conversion function, 6-171

number conversion function, 6-173

TO_CHAR (character) function, 6-170

TO_CHAR function, 2-63, 2-68, 2-76

TO_CLOB function, 6-175

TO_DATE function, 2-68, 2-73, 2-76, 6-175

TO_DSINTERVAL function, 6-177

TO_LOB function, 6-178

TO_MULTI_BYTE function, 6-179

TO_NCHAR (character) function, 6-180

TO_NCHAR (datetime) function, 6-181

TO_NCHAR (number) function, 6-182

TO_NCLOB function, 6-182

TO_NUMBER function, 2-63, 6-183

TO_SINGLE_BYTE function, 6-184

TO_TIMESTAMP function, 6-185

TO_TIMESTAMP_TZ function

SQL functions

TO_TIMESTAMP_TZ, 6-186

TO_YMINTERVAL function, 6-187

top-N queries, 2-88

TRACE_ENABLED initialization parameter

setting with ALTER SYSTEM, 10-114

TRACEFILE_IDENTIFIER initialization parameter

Index-65

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-114

transaction control statements, 9-3

PL/SQL support of, 9-4

TRANSACTION_AUDITING initialization

parameter

setting with ALTER SYSTEM, 10-115

transactions

allowing to complete, 10-26

assigning

rollback segment to, 18-50

automatically committing, 12-75

changes, making permanent, 12-75

commenting on, 12-76

distributed, forcing, 10-3

ending, 12-75

implicit commit of, 9-2, 9-3, 9-4

in-doubt

committing, 12-75

forcing, 12-76

resolving, 18-52

isolation level, 18-50

locks, releasing, 12-75

naming, 18-52

read-only, 18-50

read/write, 18-50

rolling back, 10-27, 14-82, 17-99

to a savepoint, 17-100

savepoints for, 18-2

TRANSACTIONS initialization parameter

setting with ALTER SYSTEM, 10-115

TRANSACTIONS_PER_ROLLBACK_SEGMENT

initialization parameter

setting with ALTER SYSTEM, 10-116

TRANSLATE ... USING function, 6-189

TRANSLATE function, 6-188

TREAT function, 6-191

triggers

AFTER, 15-98

BEFORE, 15-98

compiling, 12-2, 12-3

creating, 15-95

multiple, 15-99

database

altering, 12-3

dropping, 17-13, 17-20

disabling, 11-90, 12-2, 12-3

enabling, 11-89, 12-2, 12-3, 15-95

executing

with a PL/SQL block, 15-106

with an external procedure, 15-106

granting

system privileges on, 17-42

INSTEAD OF, 15-99

dropping, 16-42

on database events, 15-102

on DDL events, 15-101

on DML operations, 15-97, 15-100

on views, 15-99

order of firing, 15-99

re-creating, 15-97

removing from the database, 17-13

renaming, 12-3

restrictions on, 15-105

row values

old and new, 15-104

row, specifying, 15-105

SQL examples, 15-107

statement, 15-105

TRIM function, 6-192

TRUNC function

date function, 6-194

format models, 6-221

number function, 6-194

TRUNCATE PARTITION clause

of ALTER TABLE, 11-74

TRUNCATE statement, 18-54

TRUNCATE SUBPARTITION clause

of ALTER TABLE, 11-74

TRUST attribute

of PRAGMA RESTRICT_REFERENCES, 16-16

type constructor expressions, 4-13

type methods

return type of, 16-14

types. See object types or datatypes

TZ_OFFSET function, 6-195

TZD datetime format element, 2-69

TZH datetime format element, 2-69

TZM datetime format element, 2-69

TZR datetime format element, 2-69

Index-66

U
U number format element, 2-64

UID function, 6-196

unary operators, 3-2

UNDER ANY TABLE system privilege, 17-42

UNDER ANY VIEW system privilege, 17-43

UNDER clause

of CREATE VIEW, 16-46

UNDER object privilege, 17-46

on a type, 17-49

on a view, 17-48

UNDER_PATH condition, 5-20

undo

rollback, 9-136, 13-33

system managed, 9-136, 13-33

UNDO tablespace clause

of CREATE DATABASE, 13-33

of CREATE TABLESPACE, 15-82

undo tablespaces

creating, 13-33, 15-82

dropping, 17-11

modifying, 11-104

UNDO_MANAGEMENT initialization parameter

setting with ALTER SYSTEM, 10-116

UNDO_RETENTION initialization parameter

setting with ALTER SYSTEM, 10-116

UNDO_SUPPRESS_ERRORS initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-117

UNDO_TABLESPACE initialization parameter

setting with ALTER SYSTEM, 10-117

UNIFORM clause

of CREATE TABLESPACE, 15-87

UNION ALL set operator, 3-6, 18-24

UNION set operator, 3-6, 18-24

UNIQUE clause

of CREATE INDEX, 13-71

of CREATE TABLE, 15-26

of SELECT, 18-11

unique constraints

enabling, 15-57

index on, 15-58

unique indexes, 13-71

unique queries, 18-11

UNISTR function, 6-196

universal rowids. See urowids

UNLIMITED TABLESPACE system

privilege, 17-42

unnesting collections, 18-17

examples, 18-40

unnesting subqueries, 8-15

UNQUIESCE clause

of ALTER SYSTEM, 10-29

UNRECOVERABLE, 9-72, 15-30

See also NOLOGGING clause

unsorted indexes, 13-78

UNUSABLE clause

of ALTER INDEX, 9-77

UNUSABLE LOCAL INDEXES clause

of ALTER MATERIALIZED VIEW, 9-100

of ALTER TABLE, 11-84

UPDATE ANY TABLE system privilege, 17-41

UPDATE BLOCK REFERENCES clause

of ALTER INDEX, 9-79, 9-80

of ALTER TABLE, 11-41

UPDATE GLOBAL INDEXES clause

of ALTER TABLE, 11-85

UPDATE object privilege, 17-46

on a table, 17-47

on a view, 17-48

update operations

collecting supplemental log data for, 9-40

UPDATE SET clause

of MERGE, 17-77

UPDATE statement, 18-59

triggers on, 15-100

updates

and simultaneous insert, 17-77

using MERGE, 17-77, 17-78

UPDATEXML function, 6-197

UPGRADE clause

of ALTER TABLE, 11-36

upgrading

from release 7.3.4 to Oracle9i release 2, 9-24

UPPER function, 6-199

URLs

generating, 6-161

UROWID datatype, 2-35

Index-67

urowids

and foreign tables, 2-35

and index-organized tables, 2-35

description of, 2-35

USE_CONCAT hint, 2-106

USE_INDIRECT_DATA_BUFFERS initialization

parameter

setting with ALTER SYSTEM, 10-118

USE_MERGE hint, 2-106

USE_NL hint, 2-106

USE_PRIVATE_OUTLINES session

parameter, 10-15

USE_STORED_OUTLINES initialization parameter

setting with ALTER SESSION, 10-118

USE_STORED_OUTLINES session

parameter, 10-16, 10-118

USER function, 6-199

USER SYS clause

of CREATE DATABASE, 13-27

USER SYSTEM clause

of CREATE DATABASE, 13-27

USER_COL_COMMENTS data dictionary

view, 12-72

USER_DUMP_DEST initialization parameter

setting with ALTER SYSTEM, 10-118

USER_TAB_COMMENTS data dictionary

view, 12-72

user-defined aggregate functions, 13-61

user-defined functions, 6-222

name precedence of, 6-224

naming conventions, 6-224

restrictions on, 13-56

user-defined operators, 3-6

user-defined statistics

dropping, 16-78, 16-79, 16-92, 17-7, 17-15

user-defined types, 2-38

defining, 16-9

mapping to Java classes, 16-11

USERENV function, 6-200

users

allocating space for, 16-36

and database links, 13-39

assigning

default roles, 12-26

profiles, 16-36

authenticating to a remote server, 13-40

changing authentication, 12-27

changing global authentication, 12-25

creating, 16-32

default tablespaces, 16-36

denying access to tables and views, 17-73

external, 14-80, 16-34

global, 14-80, 16-35

granting

system privileges on, 17-43

local, 14-80, 16-34

locking accounts, 16-37

maximum concurrent, 10-66

password expiration of, 16-37

removing from the database, 17-20

SQL examples, 16-37

temporary tablespaces for, 16-36

USING BFILE clause

of CREATE JAVA, 13-102

USING BLOB clause

of CREATE JAVA, 13-102

USING clause

of ALTER INDEXTYPE, 9-86

of ASSOCIATE STATISTICS, 12-51, 12-52

of CREATE DATABASE LINK, 13-40

of CREATE INDEXTYPE, 13-96

of CREATE OPERATOR, 14-47

USING CLOB clause

of CREATE JAVA, 13-102

USING INDEX clause

of ALTER MATERIALIZED VIEW, 9-101

of ALTER TABLE, 11-30

of constraints, 7-23

of CREATE MATERIALIZED VIEW, 14-21

of CREATE TABLE, 15-58

USING NO INDEX clause

of CREATE MATERIALIZED VIEW, 14-21

USING ROLLBACK SEGMENT clause

of ALTER MATERIALIZED

VIEW...REFRESH, 9-105

of CREATE MATERIALIZED VIEW, 14-24

UTC

extracting from a datetime value, 6-162

UTC offset

replacing with time zone region, 2-22

Index-68

UTL_FILE_DIR initialization parameter

setting with ALTER SYSTEM, 10-119

UTLCHN.SQL script, 12-45

UTLEXPT1.SQL script, 11-82

UTLXPLAN.SQL script, 17-24

V
V number format element, 2-64

VALIDATE clause

of DROP TYPE, 17-16

VALIDATE REF UPDATE clause

of ANALYZE, 12-43

VALIDATE STRUCTURE clause

of ANALYZE, 12-43

validation

of clusters, 12-43

of database objects

offline, 12-45

of database objects, online, 12-45

of indexes, 12-43

of tables, 12-43

VALUE function, 6-202

VALUES clause

of CREATE INDEX, 7-25, 13-82, 15-60

of INSERT, 17-61

VALUES LESS THAN clause

of CREATE TABLE, 15-45

VAR_POP function, 6-202

VAR_SAMP function, 6-204

VARCHAR datatype, 2-12

DB2, 2-37

SQL/DS, 2-37

VARCHAR2 datatype, 2-11

converting to NUMBER, 2-63

VARGRAPHIC datatype

DB2, 2-37

SQL/DS, 2-37

variable expressions, 4-15

VARIANCE function, 6-206

VARRAY clause

of ALTER TABLE, 11-13

VARRAY column properties

of ALTER TABLE, 11-13, 11-45

of CREATE MATERIALIZED VIEW, 14-13

of CREATE TABLE, 15-13, 15-40

varrays, 2-39

changing returned value, 11-57

compared with nested tables, 2-48

comparison rules, 2-48

creating, 16-3, 16-8, 16-18

dropping the body of, 17-18

dropping the specification of, 17-15

modifying column properties, 11-15

storage characteristics, 11-45, 11-57, 15-40

storing out of line, 2-39

varying arrays. See varrays

view constraints

dropping, 17-23

views

base tables

adding rows, 17-53

changing

definition, 17-22

values in base tables, 18-59

creating

before base tables, 16-43

comments about, 12-72

multiple, 14-86

creating object subviews, 16-46

defining, 16-39

dropping constraints on, 12-33

granting

system privileges on, 17-43

modifying constraints on, 12-33

object, creating, 16-45

recompiling, 12-31

re-creating, 16-42

remote, accessing, 13-37

removing

from the database, 17-22

rows from the base table of, 16-55

renaming, 17-86

retrieving data from, 18-4

subquery of, 16-46

restricting, 16-49

synonyms for, 15-2

updatable, 16-47

with joins

and key-preserved tables, 16-48

Index-69

with joins, making updatable, 16-48

XMLType, 16-48

XMLType, creating, 16-53

XMLType, querying, 16-48

VSIZE function, 6-207

W
W datetime format element, 2-69

WHEN clause

of CREATE TRIGGER, 15-105

WHEN MATCHED clause

of MERGE, 17-78

WHEN NOT MATCHED clause

of MERGE, 17-78

WHENEVER NOT SUCCESSFUL clause

of NOAUDIT, 17-84

WHENEVER SUCCESSFUL clause

of AUDIT sql_statements, 12-60

of NOAUDIT, 17-84

WHERE clause

of DELETE, 16-60

of queries and subqueries, 18-20

of SELECT, 8-4

of UPDATE, 18-67

WIDTH_BUCKET function, 6-208

WITH ADMIN OPTION clause

of GRANT, 17-33

WITH CHECK OPTION clause

of CREATE VIEW, 16-42, 16-49

of DELETE, 16-58

of INSERT, 17-60

of SELECT, 18-7

of UPDATE, 18-63

WITH GRANT OPTION clause

of GRANT, 17-35

WITH HIERARCHY OPTION

of GRANT, 17-35

WITH INDEX CONTEXT clause

of CREATE OPERATOR, 14-46

WITH OBJECT ID clause

of CREATE MATERIALIZED VIEW

LOG, 14-39

WITH OBJECT IDENTIFIER clause

of CREATE VIEW, 16-45

WITH OBJECT OID. See WITH OBJECT

IDENTIFIER.

WITH PRIMARY KEY clause

of ALTER MATERIALIZED VIEW, 9-104

of CREATE MATERIALIZED VIEW

LOG, 14-39

of CREATE MATERIALIZED

VIEW...REFRESH, 14-21

WITH query_name clause

of SELECT, 18-10

WITH READ ONLY clause

of CREATE VIEW, 16-42, 16-49

of DELETE, 16-58

of INSERT, 17-60

of SELECT, 18-7

of UPDATE, 18-63

WITH ROWID clause

of column ref constraints, 7-18

of CREATE MATERIALIZED VIEW

LOG, 14-39

of CREATE MATERIALIZED

VIEW...REFRESH, 14-21

WITH SEQUENCE clause

of CREATE MATERIALIZED VIEW

LOG, 14-39

WNDS attribute

of PRAGMA RESTRICT_REFERENCES, 16-16

WNPS attribute

of PRAGMA RESTRICT_REFERENCES, 16-16

WORKAREA_SIZE_POLICY initialization

parameter

setting with ALTER SESSION, 10-10

setting with ALTER SYSTEM, 10-119

WRITE object privilege

on a directory, 17-49

WW datetime format element, 2-69

X
X datetime format element, 2-69

X number format element, 2-64

XML data

storage of, 15-43

XML database repository

SQL access to, 5-13, 5-20

Index-70

XML documents

producing from XML fragments, 6-165

retrieving from the database, 6-161

XML format models, 2-79

XML fragments, 6-65

XMLDATA pseudocolumn, 2-89

XMLGenFormatType object, 2-79

XMLType columns

properties of, 11-48, 15-43

storage of, 11-48, 15-43

XMLType storage clause

of CREATE TABLE, 15-43

XMLType tables

creating, 15-64, 15-71

creating index on, 13-88

XMLType views, 16-48

querying, 16-48

Y
Y datetime format element, 2-69

Y,YYY datetime format element, 2-69

YEAR datetime format element, 2-69

YY datetime format element, 2-69

YYY datetime format element, 2-69

YYYY datetime format element, 2-69

	Contents
	Send Us Your Comments
	Preface
	What’s New in SQL Reference?
	1 Introduction to Oracle SQL
	History of SQL
	SQL Standards
	Embedded SQL
	Lexical Conventions
	Tools Support

	2 Basic Elements of Oracle SQL
	Datatypes
	Oracle Built-in Datatypes
	ANSI, DB2, and SQL/DS Datatypes
	User-Defined Types
	Oracle-Supplied Types
	"Any" Types
	XML Types
	Spatial Type
	Media Types
	Datatype Comparison Rules
	Data Conversion

	Literals
	Text Literals
	Integer Literals
	Number Literals
	Interval Literals

	Format Models
	Number Format Models
	Date Format Models
	Format Model Modifiers
	String-to-Date Conversion Rules
	XML Format Model

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Conditions
	Nulls in Conditions

	Pseudocolumns
	CURRVAL and NEXTVAL
	LEVEL
	ROWID
	ROWNUM
	XMLDATA

	Comments
	Comments Within SQL Statements
	Comments on Schema Objects
	Hints

	Database Objects
	Schema Objects
	Nonschema Objects
	Parts of Schema Objects

	Schema Object Names and Qualifiers
	Schema Object Naming Rules
	Schema Object Naming Examples
	Schema Object Naming Guidelines

	Syntax for Schema Objects and Parts in SQL Statements
	How Oracle Resolves Schema Object References
	Referring to Objects in Other Schemas
	Referring to Objects in Remote Databases
	Referencing Object Type Attributes and Methods

	3 Operators
	About SQL Operators
	Unary and Binary Operators
	Operator Precedence

	Arithmetic Operators
	Concatenation Operator
	Set Operators
	User-Defined Operators

	4 Expressions
	About SQL Expressions
	Simple Expressions
	Compound Expressions
	CASE Expressions
	CURSOR Expressions
	Datetime Expressions
	Function Expressions
	INTERVAL Expressions
	Object Access Expressions
	Scalar Subquery Expressions
	Type Constructor Expressions
	Variable Expressions
	Expression Lists

	5 Conditions
	About SQL Conditions
	Condition Precedence

	Comparison Conditions
	Simple Comparison Conditions
	Group Comparison Conditions

	Logical Conditions
	Membership Conditions
	Range Conditions
	Null Conditions
	EQUALS_PATH
	EXISTS Conditions
	LIKE Conditions
	IS OF type Conditions
	UNDER_PATH
	Compound Conditions

	6 Functions
	SQL Functions
	Single-Row Functions
	Aggregate Functions
	Analytic Functions
	Object Reference Functions
	Alphabetical Listing of SQL Functions

	ABS
	ACOS
	ADD_MONTHS
	ASCII
	ASCIISTR
	ASIN
	ATAN
	ATAN2
	AVG
	BFILENAME
	BIN_TO_NUM
	BITAND
	CAST
	CEIL
	CHARTOROWID
	CHR
	COALESCE
	COMPOSE
	CONCAT
	CONVERT
	CORR
	COS
	COSH
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUME_DIST
	CURRENT_DATE
	CURRENT_TIMESTAMP
	DBTIMEZONE
	DECODE
	DECOMPOSE
	DENSE_RANK
	DEPTH
	DEREF
	DUMP
	EMPTY_BLOB, EMPTY_CLOB
	EXISTSNODE
	EXP
	EXTRACT (datetime)
	EXTRACT (XML)
	EXTRACTVALUE
	FIRST
	FIRST_VALUE
	FLOOR
	FROM_TZ
	GREATEST
	GROUP_ID
	GROUPING
	GROUPING_ID
	HEXTORAW
	INITCAP
	INSTR
	LAG
	LAST
	LAST_DAY
	LAST_VALUE
	LEAD
	LEAST
	LENGTH
	LN
	LOCALTIMESTAMP
	LOG
	LOWER
	LPAD
	LTRIM
	MAKE_REF
	MAX
	MIN
	MOD
	MONTHS_BETWEEN
	NCHR
	NEW_TIME
	NEXT_DAY
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NLS_INITCAP
	NLS_LOWER
	NLSSORT
	NLS_UPPER
	NTILE
	NULLIF
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	NVL2
	PATH
	PERCENT_RANK
	PERCENTILE_CONT
	PERCENTILE_DISC
	POWER
	RANK
	RATIO_TO_REPORT
	RAWTOHEX
	RAWTONHEX
	REF
	REFTOHEX
	REGR_ (Linear Regression) Functions
	REPLACE
	ROUND (number)
	ROUND (date)
	ROW_NUMBER
	ROWIDTOCHAR
	ROWIDTONCHAR
	RPAD
	RTRIM
	SESSIONTIMEZONE
	SIGN
	SIN
	SINH
	SOUNDEX
	SQRT
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUBSTR
	SUM
	SYS_CONNECT_BY_PATH
	SYS_CONTEXT
	SYS_DBURIGEN
	SYS_EXTRACT_UTC
	SYS_GUID
	SYS_TYPEID
	SYS_XMLAGG
	SYS_XMLGEN
	SYSDATE
	SYSTIMESTAMP
	TAN
	TANH
	TO_CHAR (character)
	TO_CHAR (datetime)
	TO_CHAR (number)
	TO_CLOB
	TO_DATE
	TO_DSINTERVAL
	TO_LOB
	TO_MULTI_BYTE
	TO_NCHAR (character)
	TO_NCHAR (datetime)
	TO_NCHAR (number)
	TO_NCLOB
	TO_NUMBER
	TO_SINGLE_BYTE
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_YMINTERVAL
	TRANSLATE
	TRANSLATE ... USING
	TREAT
	TRIM
	TRUNC (number)
	TRUNC (date)
	TZ_OFFSET
	UID
	UNISTR
	UPDATEXML
	UPPER
	USER
	USERENV
	VALUE
	VAR_POP
	VAR_SAMP
	VARIANCE
	VSIZE
	WIDTH_BUCKET
	XMLAGG
	XMLCOLATTVAL
	XMLCONCAT
	XMLELEMENT
	XMLFOREST
	XMLSEQUENCE
	XMLTRANSFORM
	ROUND and TRUNC Date Functions
	User-Defined Functions
	Prerequisites
	Name Precedence

	7 Common SQL DDL Clauses
	allocate_extent_clause
	constraints
	deallocate_unused_clause
	file_specification
	logging_clause
	parallel_clause
	physical_attributes_clause
	storage_clause

	8 SQL Queries and Subqueries
	About Queries and Subqueries
	Creating Simple Queries
	Hierarchical Queries
	The UNION [ALL], INTERSECT, MINUS Operators
	Sorting Query Results
	Joins
	Using Subqueries
	Unnesting of Nested Subqueries
	Selecting from the DUAL Table
	Distributed Queries

	9 SQL Statements: ALTER CLUSTER to ALTER SEQUENCE
	Types of SQL Statements
	Organization of SQL Statements
	ALTER CLUSTER
	ALTER DATABASE
	ALTER DIMENSION
	ALTER FUNCTION
	ALTER INDEX
	ALTER INDEXTYPE
	ALTER JAVA
	ALTER MATERIALIZED VIEW
	ALTER MATERIALIZED VIEW LOG
	ALTER OPERATOR
	ALTER OUTLINE
	ALTER PACKAGE
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER RESOURCE COST
	ALTER ROLE
	ALTER ROLLBACK SEGMENT
	ALTER SEQUENCE

	10 SQL Statements: ALTER SESSION to ALTER SYSTEM
	ALTER SESSION
	ALTER SYSTEM

	11 SQL Statements: ALTER TABLE to ALTER�TABLESPACE
	ALTER TABLE
	ALTER TABLESPACE

	12 SQL Statements: ALTER TRIGGER to�COMMIT
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ALTER VIEW
	ANALYZE
	ASSOCIATE STATISTICS
	AUDIT
	CALL
	COMMENT
	COMMIT

	13 SQL Statements: CREATE CLUSTER to CREATE JAVA
	CREATE CLUSTER
	CREATE CONTEXT
	CREATE CONTROLFILE
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE DIMENSION
	CREATE DIRECTORY
	CREATE FUNCTION
	CREATE INDEX
	CREATE INDEXTYPE
	CREATE JAVA

	14 SQL Statements: CREATE LIBRARY to CREATE SPFILE
	CREATE LIBRARY
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE OPERATOR
	CREATE OUTLINE
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PFILE
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE ROLE
	CREATE ROLLBACK SEGMENT
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE SPFILE

	15 SQL Statements: CREATE SYNONYM to CREATE TRIGGER
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TEMPORARY TABLESPACE
	CREATE TRIGGER

	16 SQL Statements: CREATE TYPE to DROP�ROLLBACK SEGMENT
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE VIEW
	DELETE
	DISASSOCIATE STATISTICS
	DROP CLUSTER
	DROP CONTEXT
	DROP DATABASE LINK
	DROP DIMENSION
	DROP DIRECTORY
	DROP FUNCTION
	DROP INDEX
	DROP INDEXTYPE
	DROP JAVA
	DROP LIBRARY
	DROP MATERIALIZED VIEW
	DROP MATERIALIZED VIEW LOG
	DROP OPERATOR
	DROP OUTLINE
	DROP PACKAGE
	DROP PROCEDURE
	DROP PROFILE
	DROP ROLE
	DROP ROLLBACK SEGMENT

	17 SQL Statements: DROP SEQUENCE to ROLLBACK
	DROP SEQUENCE
	DROP SYNONYM
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP TYPE
	DROP TYPE BODY
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	GRANT
	INSERT
	LOCK TABLE
	MERGE
	NOAUDIT
	RENAME
	REVOKE
	ROLLBACK

	18 SQL Statements: SAVEPOINT to UPDATE
	SAVEPOINT
	SELECT
	SET CONSTRAINT[S]
	SET ROLE
	SET TRANSACTION
	TRUNCATE
	UPDATE

	A How to Read Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams
	Database Objects

	B Oracle and Standard SQL
	ANSI Standards
	ISO Standards
	Oracle Compliance
	FIPS Compliance
	Oracle Extensions to Standard SQL
	Character Set Support

	C Oracle Reserved Words
	D Examples
	Using Extensible Indexing
	Using XML in SQL Statements

	Index

