Oracle9

SQL Reference

Release 2 (9.2)

October 2002
Part No. A96540-02

ORACLE

Oracle9i SQL Reference, Release 2 (9.2)

Part No. A96540-02

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.
Primary Author: Diana Lorentz

Contributing Author: Joan Gregoire

Contributors: Sundeep Abraham, Nipun Agarwal, Dave Alpern, Angela Amor, Patrick Amor, Rick
Anderson, Vikas Arora, Lance Ashdown, Hermann Baer, Subhransu Basu, Ruth Baylis, Paula Bingham,
Rae Burns, Yujie Cao, Larry Carpenter, Sivasankaran Chandrasekar, Thomas Chang, Tim Chorma, Lex de
Haan, Norbert Debes, George Eadon, Bill Gietz, Ray Guzman, John Haydu, Lilian Hobbs, Jiansheng
Huang, Ken Jacobs, Archna Johnson, Vishy Karra, Thomas Keefe, Susan Kotsovolos, Muralidhar
Krishnaprasad, Goutam Kulkarni, Paul Lane, Shilpa Lawande, Geoff Lee, Yunrui Li, Lenore Luscher,
Kevin MacDowell, Anand Manikutty, Vineet Marwah, Steve McGee, Bill McGuirk, Bill McKenna,
Meghna Mehta, Tony Morales, Sujatha Muthulingam, Michael Orlowski, Jennifer Polk, Dmitry Potapoy,
Rebecca Reitmeyer, Kathy Rich, John Russell, Vivian Schupmann, Shrikanth Shankar, Vikram Shukla,
Mike Stewart, Sankar Subramanian, Seema Sundara, Hal Takahara, Ashish Thusoo, Anh-Tuan Tran,
Randy Urbano, Guhan Viswanathan, David Wang, Jim Warner, Andy Witkowski, Daniel Wong, Jianping
Yang, Adiel Yoaz, Qin Yu, Tim Yu, Mohamed Zait, Fred Zemke

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle7, Oracle8, Oracle8i, Oracle9i, Oracle Store, PL/SQL,
Pro*Ada, Pro*C, Pro*C/C++, Pro*COBOL, Pro*FORTRAN, Pro*Pascal, Pro*PL/1, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send US YOUIr COMMENTS ...t XV

PIEIAICE ... XVii

What's New in SQL REFEIENCET ... XXVii

1 Introduction to Oracle SQL

2 Basic Elements of Oracle SQL
DT L =11/ 0= 1 ST OPPTPUPROPRTPN 2-2
] =] =1 LSOO OSSPSR 2-53
[0 0 T 1Y/ (oo [£ PSS 2-61
INULTS ettt ettt sttt b e bt b e s b et e bt ket ket e b et et e e be st e s et nnne 2-80
PSEUAOCOIUIMINS ...ttt bbbt bbb bbbt e e b e e b e eaeebe b e 2-82
LOT0] 0 01 0 0 1=T o | 1SRRI 2-90
DAatabase ODJECLSccviiiiiiie ettt e et e re e areeres 2-106
Schema Object Names and QUATITIENScoo i e 2-110
Syntax for Schema Objects and Parts in SQL Statements........cccccocvvevvevieneiencnerieseee e 2-115

3 Operators
ADOUL SQL OPEIALOLS ..otttk b et b e 3-2
ATTTNMELIC OPEIALOISeiitiiiiiiiitiite ettt ettt b e bt ee st et et et e st e s e e s e e st abeebesbesbesbesbesaens 3-3
CoNCALENALION OPEIALONieiiiieiiieirte ettt bbbt bbbt b et sttt et 3-4
TS @] 01T - | (o] = T TP SRR UPPRRTI 3-6
USEr-DefiNed OPEIALOISocuiiiiieiieieieeee ettt ettt et ettt be et e e bt ebesbe b sbe e 3-6

Expressions

ADOUL SQL EXPIESSIONS ...eviiiiiiiiiitiiiiteiet ettt bbb bbbt b et b ettt 4-2
S 1] o] [=T o1 =TT o] i £SO 4-3
COMPOUNG EXPIESSIONScviiiiitiieitiitiite ittt bbb bbbt et e bt e bt ebesbenbe b 4-5
CASE EXPIESSIONS ...viiiieiiiteiiiteietee ettt ettt sttt b bbbt b et b et eb et eb etk n b e bt nb bt nb bbb e st abe e ene e 4-6
CURSOR EXPIESSIONSoocviiieiieitiitestesiesiestestesteaesaeseesessessessessessessessesaessessessessensessesssssesensesessessessessens 4-7
DAtetime EXPIESSTONSc.eiiiiiiiiiiiiteatiete ettt ettt ettt b ettt b b b s bbb et e e b e e e e bt ebesbesbeabennes 4-9
FUNCEION EXPIESSTONS ...ttt bbbt bbbttt 4-11
INTERWVAL EXPIESSIONS ...veviiiiuieeieteieetestesestes e stestes e saesaessesaesasssasessessessessessessessesesssessessssessessessenns 4-11
ODJECT ACCESS EXPIESSIONS ...eiitiiiitiitiite ittt ettt sttt b b e ettt e e b e ebe b b 4-12
Scalar SUDQUENY EXPIESSIONSccviuiiiiiiiieiieieiieie ettt ettt ettt 4-13
LY/ o LI @] g 5] 1 g0 103 (ol gl =btq o =171 T i 1SS 4-13
Variable EXPIESSIONScviiiiiiiiiiii ittt ettt b ettt b e b bbbt e et et e bt st e be b 4-15
EXPIESSTON LISTS ..ieiiieitiitiiiit ettt bbbt bbbttt 4-16
Conditions

AN o T 10} SS{ @ T @fo] g (o 1) £ o] o 1 PSSRSO 5-2
CompPariSON CONAITIONSoiuiiiiiiriiee bbbttt be b besbe b 5-4
LOGICAI CONAITIONS......iiiiiiiiiiciit ettt b et b ettt 5-8
Membership CONAITIONScvoiviiece e e eresresresrenes 5-9
(Rt a Lo [T 0] g To [1o 1TSS 5-12
N T8] | I @o] g Ve [1 To] o I USRS URPRRRPRRN 5-13
EQUALS_PATH ..ottt n et 5-13
EXISTS CONITIONS ..ottt bbb bbb et e et e bt be bt ebe e 5-14
[1 = @do] Lo [1 o] o 1= USROS UR PRSP 5-15
IS @ o 1] o - O0 [11 4 T] o S 5-19
UNDER _PATH .ottt bbbt b bbbttt 5-20
ComPOoUNd CONAITIONS ...cvciiiiiiiiiee bbbttt b e 5-21
Functions

1@ T I U [To1 £ 1] o LSOO PR PRR TSP 6-2
A B S bbb bbb bbbttt ben e 6-17
AACOS bbb A bR £ b bR £ £ R R £ £ bkt e bbbt bbb Rt et b b ne e 6-17
ADD_MONTHS ..ottt n e 6-18
ASCH bbb bbb bbbttt 6-18

AASIN oo eeseeesee e ettt 6-20
ATAN oo eeeeeeeeeee e ee s e e sttt ettt 6-21
F N N oo 6-21
VG ooeoeeoeeeeoeeee e e ettt ettt 6-22
BFILENAME oo eeeeeeeeseeeese s eseseeesseeeess s esssseseseee s sss s seeeeseeessessseee s eeeeseeeesenees 6-23
BIN_TO_NUM oooooooreeeeeeeeeeeeeeeoseeeessseessesessessseseesssessssssssesssseesssssessssssessseesessessssessseeeseeesssssessenees 6-25
BITAND oo eoeeeeeeeoeeeee e seeseeessesee s sssseesses e e es e e e e et e s e s e seenes 6-25
(07X OO 6-27
o= | OO 6-30
CHARTOROWID oo eeeseseeesseeessesesssesesessseeessesesssssssessseessssssssesseesssesesesesssssssennns 6-30
CHR oot ettt 6-31
(10 NI =T =S 6-33
(070 1T 1] =30 6-34
(70 N[0 Lo 6-35
(1] LY/ =1 = OO 6-36
CORR e eeeeeeo e eeeseese e s e e st e e st eee e 6-37
COS ooeeeeeeeeeeeeeee ettt 6-39
(70 1S] = OO 6-40
COUNIT e eeeeeeeee e eeesesses e sesseses e s e e st e e s e s sssseennen 6-40
010/ =30 =T)= T oo 6-42
COVAR _SAMP ..o eee e e eeeseess s sseseeess e s sss e s ssseeeseseessssesssesenn 6-44
[oTU TV =I o Y 13 SO 6-47
(oL U1 121 N sl 0 - 1 =SS 6-49
CURRENT_TIMESTAMP ...ooireeoeeeeeeeoeesessseeseeeseeossesesssesssssssseessssesssssssssssseeessesssssssssssesenns 6-50
DBTIMEZONE .ovovvoooooee e eeeeeeeeosseesesseesssssseesssseessesesssssseessseeseesesssssssseseseessesesssssseensseeseseesesseeees 6-51
) =010 o)=Y 6-52
DECOMPOSE ...oovovveooooeeeeeeeeeeveeeeseeeseeseesssseseesssseeesse s sssseeeseeesee e sssseeseeesseseesessseeeneseesesesseeees 6-53
DENSE_RANK .ooovvocoooteeeeeeeeeeseesessseesesseesssssseesssseesssesessssssesssseessssessssssseesessessesesssssseesssesessesesseeees 6-55
DEPTH oot eeeeeeeeoeeeese e eeseseeeeseese e eseseeese e sss e eee e e st s ees e ese s eeeesesesseeee 6-57
DEREF .ooooooeeeeeeeeeeeeeeesseeeesee e eeseseessseeees s eeeseessss e s e ses e e e e e st ee s se s eeeeee e 6-58
DUMP oo eeeeeesseee e sesseses e e s s e e st e e st e et eenes 6-59
EMPTY_BLOB, EMPTY_CLOB. .eeoeoovveeeeeoeeeseseeeeeeeeeeeeeessseseesssssseeessessssesesssssseeeesessssssessenee 6-61
EXISTSNODE ...oovcooooteeeeeeeeeeeeeeoseeessseeseesessessseseeessses s essssesssseeessssessssssessseeeessesesseseseeeneeesssesesseeees 6-61
EXP covvooeeeoreeeeeeeeeeessesesseee e eee et s ettt ettt e eree 6-62

vi

o) I R ¥ AN O I (o P21 =3 1 1 1) SRS 6-63

EXTRACT (XIVIL) eeeevvvvveeoreoeesesseeeeeseseessssesesessessssssssssseesesssessssssssssssssessssesssssssessssssesessssssssseseens 6-65
EXTRACTVALUE . ooooveeeooeeeeeeeeeeeeeeeeeeeeee s sesseeeseseess s esesseesssseses e sessseeeesesseesessssseeesn 6-66
=TS OO 6-67
FIRST WALUE ..o oeoeveeeoseeee e eeessseessseeee s ssssssssesesse s s sssssessssesessesessessssessesssesesesssssseenens 6-69
=TT o] = oSO 6-71
=YY I 7Aoo 6-71
GREATEST oo eeeeeeeeeesseeseeseessesssssseseesess e sssessssseses s ssss et e e s ssse e eesesssses s 6-72
[e1=Y0 1= 1 o TP 6-72
Le1=Y0 =11 N T 6-74
GROUPING _ID oovvvveeeooeeeeeeeeeeeeeeeeseseesesseessssssessssssesesssssessssssssesesessssssssssseesseessssssssssssseensesssseee 6-75
HEXTORAW ...coooooeeeeeeeeeeeeeeoeseseeeeeeeeseseeesseeees e sseseeesees s ssssseeseeeess e esesseeesesesesessssseeenn 6-77
INTTCAP oo seeeeeesse e e seseese e s s s e et es e eeee e senees 6-77
INSTR cooooroeeeeeeeeeeeeeseseeeeeeeeeeseesesesseseee s seseees e 22 e st 8 e et e s e seeees 6-78
LAAG ..o eeeeeeeeeo e eeeeeese e ettt et 6-80
LAAST oo eeeeeesseeeese e eeseeesses e e e e e sttt eee e 6-81
LAST DAY ooovveoooreeeeeeeeeeeeeeeessesesesseesssssssessssesssssssssssssesssseesssessssssssesssseeesssessssssseesssesssesesssssssennes 6-83
LAST VALUE ..ooooeeoeeeeeeeeeeoeees s eeeeseseeeeeese s sseseeess s s sessseesseees s esssseeeesesssesessseseeeen 6-84
LEAD oo eeveeeeeeooeeeee e eeseeesse e s ee s sttt ere e 6-86
LEAST oo eeeeeesoseeeseeeeesessesesseseee s seseeses e e s e e st e s e e 6-87
LENGTH ooovvveeeeeoeeeee e eeeeeeesseeesee e eseseessse e s sssseesss e s s essseses s eees e sesseeeseseeeseesssseeeen 6-88
LN ceoeoeoeeee e eeeeeesseeeee e e ettt et re e 6-89
LOCALTIMESTAMP ..o eeeeeeseseeeseeeessssseeessseeessesessssssssssseeesssessssssseesssesesssesssssssenens 6-90
LOG oteeeeeeeeeeeeeo e eeseeese e et 6-91
100 Y/ = = oo OO 6-91
= o J OO0 OO 6-92
LTRIM oo eeeeeeeese e seseesss e eeseeese e s s s ee e sesseeeseseee e seseeeen 6-93
IMIAKE_REF .ovcocooooeeeeseeeeeeeeeeoseeeses e esseseessseeeessesessseseesssseees s s ssssessseeesessssssssseessesesssssssssseennn 6-94
IVIAAX .o eveeeeesose e sseesses e s et e e see e 6-95
IVIIN oo e st 6-97
YT o T OO 6-98
MONTHS_BETWEEN .oovvcoovorteeereeeeeeeeeeseseesesseesssssseeessssesssesssssssssssssesesssesssssssesssssesssssessssssseseens 6-99
NCHR oo eeeeeeess e es e e e st sese e eee e sseeee s 6-100
NEW_TIIVIE oovoooooooeeeeeeeeeeeeeosseeeseseeesessseesseseees e sssseesesesesses s sssseessseeesssssssseseeesseseessesessesseeenes 6-100
NEXT DAY ovvvoooorreeeeeeseesseeessseessssessssssssesssseesssessssssssesssesessesssessssesssssseessesssssssssessseesssssesssssseenenns 6-102

NLS_CHARSET_DECL_LEN ..ot s 6-102

NLS CHARSET _ID oottt ettt bbbttt bt b ans 6-103
NLS_CHARSET_NAME ..ottt bbb 6-104
NLS_INTTCAP .ttt bbb sttt ettt et be b e be st e tenbenenbene 6-104
NLS _LOWER ..ottt bbbt s bbbttt bt et s e b nesbns 6-106
INLSSORT .ottt bbb bbbt bbb bt b st b etk et bbbt bbb 6-107
INLS_UPPER ...ttt ettt bbbttt bbbt st nenbns 6-108
INTILE oottt ettt et bR bRt e Rt s et s e e R et b ettt Re bt b nenbens 6-109
INULLIF ettt bbbt b ekttt bbb 6-110
NUMTODSINTERWVAL ..ottt sttt be e snns 6-111
NUMTOYMINTERVAL .ooiitiieet sttt sttt b et b b 6-112
I AV OOV 6-113
I AV OSSOSO 6-114
oA N o OSSR 6-115
PERCENT _RANK ..ttt sttt ettt bbbt bbb 6-116
PERCENTILE _CONT oottt sttt sttt sttt sttt bbb b nnns 6-118
PERCENTILE _DISC ...ttt st sttt sttt st b e 6-121
POWER ...ttt b e bbbtk ekt b etk et b e bbb 6-122
L AN N1 SO 6-123
RATIO _TO _REPORT ..ottt st sttt sttt sttt b et b s b enenbens 6-125
RAWTOHEX ..ot b et b et ettt et bbb b e s bbb ne b 6-126
RAWTONHEX ...ttt sttt sttt ettt ettt et st ese s b esenbenenbene 6-126
] RSOSSN 6-127
REFTOHEX ..ottt e b bbb ekttt ettt bbb bt b ne b 6-128
REGR_ (Linear Regression) FUNCLIONScccccviiiiiiiiesicicse e st 6-129
[o I N O OSSOSO 6-137
ROUND (NUMDBET) ittt s be ettt e e e e e eneeneeneanenns 6-138
(R @18 N1 R (o F- 1) ISR 6-139
ROW _NUMBER ..ottt sttt et sttt ettt st be s b se st sesbenenbens 6-139
ROWIDTOGCHAR ..ottt ettt ettt bbb bbb 6-141
ROWIDTONCHAR .ottt ettt sttt sttt st re b ne st rennens 6-141
[N 5 OSSOSO 6-142
RTRIM Lt b bbbtk ek ekt ek et b et bbbt bbb 6-143
SESSIONTIMEZONE ...ttt ettt sttt bt e et e bt seebeseene e 6-143
SIGN ittt h Lo b et bt E et Ee e e R e b e R et e R e ea e R e e b e e e be e ebe e ete e ete e ete e 6-144

Vii

viii

RS 1 N IS 6-145
SOUNDEX ...ttt ettt bbb bbbt bbb Rt b et e bbb e b et bbb b e b 6-146
LS] OSSPSR 6-147
STDDEV ettt R bRt E ARt R ettt bR b e 6-148
STDDEV _POP ...ttt bbbttt bbbt bbbt 6-149
STDDEV _SAMP ..ottt bbbt b et bbbttt bt 6-151
SUBSTR sttt ettt bbb R bR bR Rt et Re bRttt b re b ne e 6-152
SUM bR bR R Rt bbbt b bbb 6-154
SYS_CONNECT_BY_PATH ..ottt bbb 6-155
SYS _CONTEXT oottt b e bbbt s bt b et et et e b et et be b esesbenestens 6-156
SYS_DBURIGEN ...ttt bbbt bbb 6-161
SYS_EXTRACT _UTC ittt ettt bbbt 6-162
R ST €10 1 0 RS STS TS 6-163
SYS_TYPEID ..ottt bbb bbbttt bbb et 6-164
SYS_XIMLAGG ..ottt ettt Rttt bbbttt 6-165
SYS_XIMLGEN ...ttt ettt s bttt et st e bt e bbb e ne st et 6-166
SYSDATE ..ottt bbb bbb R Rt bbbt bbb ne e 6-167
SYSTIMESTAIMP ..ottt bbbttt ettt e bbb ne b nenrens 6-168
72N) SO SPSS 6-169
TANH e bbb bbb e b e bbb bbb 6-169
IO I O VAN (= = U1 (= OSSR 6-170
TO_CHAR (AEELIME) ..ottt ettt bbbt bt nn s 6-171
TO_CHAR (NUMDBEE) ittt sttt e e e neeneenenns 6-173
TO _CLOB .. et b et bttt bt Rt Ee bbb be e bt 6-175
LI T 5 7 N I SRS 6-175
TO_DSINTERWVALL ..ottt ettt sttt bbbt bbb 6-177
LI T O] PSSO 6-178
TO _MULTI BYTE oottt sttt sttt sttt sttt ettt e b s b e e b ne st 6-179
TO_NCHAR (CRAIACLEI) ..oveieiciceeect ettt sttt sn e e e e e eneerennes 6-180
TO_NCHAR (AELIME) ..oiiiiciiicesee ettt sb e b be et 6-181
TO_NCHAR (NUMDBDET) .o e 6-182
TO _INCLOB ...ttt e bbbt bt b etk ekt b ettt bbb bbb 6-182
TO_NUMBER ..ottt ettt sttt b et st et e s b b e st resbenestens 6-183
TO _SINGLE_BYTE .ottt sttt sttt sttt ettt sttt e b s b ne b ne et 6-184

TO_TIMESTAMP .o e 6-185

TO TIMESTAMP_TZ ..ottt ettt ettt s b ettt e st e s te st et et e e ensersereaaeatens 6-186
TO_YMINTERWVAL .ottt ettt st ettt e e e e e e s en e eneaneenenres 6-187
TRAINSLATE .ottt et e st e et e e be et e s besbe s b e s besbe st et e ste st entesseseensessareasearens 6-188
TRANSLATE ... USINGcoooiiicc ettt ettt sttt st sttt e nseraeraaaeerea 6-189
N ISP 6-191
TRIM ettt et et et e e et e st et e e Reeaeeteebeebe e b e s besbe st e beste b et e st e e eneeteereateareas 6-192
TRUNC (NUIMDEE) ettt b bbbttt bbbttt 6-194
B N L (o - 1) ISP 6-194
TZ OFFSET .ottt sttt e st teebe et e s besbe e b e s besbe st e st e ste st enbesse e eneeneereaaeareas 6-195
UID oottt b et b e et e et ettt et et ettt heeheebeebeebeebeebeebeeb e bebe b enteteereeaeareatas 6-196
L1 N S PSS 6-196
UPDATEXML ottt sttt sttt et et e e e et e st e s be s b et e b e st et e b et ensesseneeneereers 6-197
UPPER ..ottt et ettt ettt et re e he b e b e b e beebe et et et et et et ereeteeaeeteatas 6-199
L0 1 PSS 6-199
USERENY ..ottt sttt sttt e b et e e b e b e et e s be s b e st e bese et e te st enseseereeneatears 6-200
WALUE ...ttt ettt ettt e et et ettt e teebe et e e beebe et e sbesbesbeebeste b et et et eneereateateatea 6-202
B/ = 1 RSP SSTSSSN 6-202
VAR _SAMP ..o ettt b bbb e b b sh et et r et et et et ene et e reeaeerenrs 6-204
VARIANCE ...ttt ettt ettt et eteebe et e e beebe et e sbesbesbesbesbe st enteste s ensersereateateas 6-206
R] 4 RSOSSN 6-207
WIDTH_BUCKET ..ottt ettt st ettt e st sttt et e e et ensesaeneeneatenrs 6-208
KXIMILAGG ..ottt ettt ettt ettt ettt ettt e ae bt et e e beebe e b e e besbe et e s beste st et et et ensereeteateatea 6-210
XML COLATTVAL ettt ettt r e e s e e se et e s be et e s be s be st e st et ese et enteneeneaneerenrens 6-212
XIMILCONCAT ettt sttt et s e et e e teeae et e s besbe et e s beste st e besbe st enbesteseenseneereaneareas 6-213
XIMLELEMENT oottt sttt et ae et e e besbeebesbesbe st e sbeste st et este s ensensereaneatens 6-214
XIMLFOREST ..ottt sttt se s s e e Re et e st e b e st e s be st et e e e e e e nteneeneeneerenreans 6-217
XMLSEQUENG Eciiieect ettt ettt te st b e besbe st et e te st et e st e e eneensereaneereas 6-218
XMLTRANSFORM......oootit ettt ettt ettt ettt e st et e e be st st e st e s te st et et e e ensersereaaeatens 6-219
ROUND and TRUNC Date FUNCLIONS......ccccciiviiiiriere e e e sne e 6-221
User-Defined FUNCLIONSccooiiiiie ettt st ae st e nne e 6-222

Common SQL DDL Clauses

Al1OCALE _EXTENT CIAUSEecieeiiceieee ettt sttt s e b b sbe b st neas 7-2
CONSEIAINTS .ttt bRkt b bbb bbbt b st bttt ettt et 7-5

deallocate _UNUSEA CIAUSE..........cov ittt sttt te et esra e e e nne e 7-37

FIlE_SPECITICATION ...oiiiiiiiicct bbbt sb et b et r e eb e ene e 7-39
oTo o 11T TR =T £ TSSO 7-45
PAFAIIEL_CTAUSE ... bbb bbbttt b et ebe e 7-49
Physical_attribDULES_CIAUSE.cooiiiic e 7-52
LSy o] = Vo T=T o] - T 1] S 7-56

SQL Queries and Subqueries

About QUENIES aNd SUDQUETTESooiiiiiiiieieeee ettt sbe e 8-2
Creating SIMPIE QUEIIES ..ottt ettt ere e 8-2
HiIerarChiCal QUETIEScccviiuiieicee ettt ettt et s be et e st e e s besteesbeets et e eatesbeenbesbeenns 8-3
The UNION [ALL], INTERSECT, MINUS OPEratorsccceoeiirriereiririieeesisieiee s 8-7
SOrting QUETY RESUITS ..o 8-10
JOUNIS R n e 8-10
USING SUDQUETTES ...ttt b b bbb e et et et b bt be b e 8-13
Unnesting of Nested SUDQUETTESccooiiiiiiiii e 8-15
Selecting from the DUAL Tablecooiiiieece e 8-16
DiStribULed QUETIESooeiiiiie ettt e s te e e s te et e e seebeensenreeneesreannes 8-16

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE

TYPES OF SQL STALEMENTSeiiiiiiiiieiiire ettt bbbt b bt e 9-2
Organization Of SQL StateMENTSccccceieieiiicicese e srennen 9-4
ALTER CLUSTER ..ottt ekttt sttt ettt 9-6
ALTER DATABASE ...ttt ettt et s bbbt e b et b et s et n et e nentenes 9-11
ALTER DIMENSION ..ottt sttt sttt bbb b ettt 9-56
ALTER FUNGCTION ..ottt sttt ettt ebe st sesten et s e ntenentenes 9-59
ALTER INDEX ..ottt ettt s st e s et et b et b et b et b et e b et n et nentenes 9-62
ALTER INDEXTYPE ..ottt sttt ettt sb e bbbt e et et e 9-85
ALTER JAVA ettt b bttt ettt R bRt bRt bbbt b bR bR bRttt s 9-87
ALTER MATERIALIZED VIEWovitiiiiictet ettt 9-90
ALTER MATERIALIZED VIEW LOGocoiiiitiitetiese e 9-110
ALTER OPERATOR ...ttt sttt ettt st sa ettt sbe e abe e ebe e ebe e ebeseeteneete e 9-117
ALTER QUTLINE ..ottt sttt ettt sb et bt s a et sb e a s b e e et e ebe st ebesaetennene e 9-118
ALTER PACKAGE ..ottt sttt bbbt bbbt 9-120

ALTER PROCEDURE ... e 9-124

10

11

12

13

ALTER PROFILE ..ottt st 9-127
ALTER RESOURCE COST ..coviiicteietetcte ettt sttt sttt 9-131
ALTER ROLE ...ttt 9-134
ALTER ROLLBACK SEGMENT ..ottt 9-136
ALTER SEQUENCEoooiieteeteeete ettt sttt ettt an et 9-140
SQL Statements: ALTER SESSION to ALTER SYSTEM
ALTER SESSION ..ottt sttt 10-2
ALTER SYSTEM oottt st nens 10-20
SQL Statements: ALTER TABLE to ALTER TABLESPACE
ALTER TABLE ..ottt sttt sttt ane st sansanens 11-2
ALTER TABLESPACE ..ottt sttt 11-102
SQL Statements: ALTER TRIGGER to COMMIT
ALTER TRIGGER ..ottt sttt s et 12-2
ALTER TYPE ..ottt sttt s et st a et en st ense et 12-6
ALTER USER ..ottt st 12-22
ALTER VIEW ..ottt st nans 12-31
ANALYZE ..ottt sttt ettt ettt 12-34
ASSOCIATE STATISTICS ..ottt sttt 12-50
AUDIT oottt ettt a ettt 12-54
CALL ettt ettt ettt a ettt e ettt en et n e 12-68
COMMENT oottt 12-72
(0761, 11 1 I OO OO UR TR 12-75
SQL Statements: CREATE CLUSTER to CREATE JAVA
CREATE CLUSTER ..ottt sttt n st s s 13-2
CREATE CONTEXT oottt sttt 13-12
CREATE CONTROLFILE ..ottt 13-15
CREATE DATABASE ..ottt ettt sttt sttt en s aen e s 13-23
CREATE DATABASE LINK ..ottt 13-37
CREATE DIMENSIONoooiiiiieiceeeeete ettt es ettt 13-43
CREATE DIRECTORY ..ottt sttt sttt an st n s 13-49
CREATE FUNCTION ...ooiiicice ettt 13-52

Xi

14

15

16

Xii

CREATE INDEX ... e e 13-65

CREATE INDEXTYPE ...ooooooeoeeoeoeveeeeesseeesoooseeeeeesessssoossseeeeseessssossssseessssesssonrosseeeeee, 13-95
CREATE JAVAcoooooooovvveeessesessssososseeessssssssssssssssesssssssssssssssssessssssssssssssssseesssssssssosssssseesso 13-98
SQL Statements: CREATE LIBRARY to CREATE SPFILE
CREATE LIBRARYooooooooooeeeeseeooseeeeesssssssssosssoseeessssssssosssssesesssssssssssssseesssssssssoosssseeeesoo 14-2
CREATE MATERIALIZED VIEW ..oooooooooecicoooeeeeeeesesesseooseeseess s osseeeesesssessesoneseeeson 14-5
CREATE MATERIALIZED VIEW LOGvvooovvvvevosssssssssosseeeeessssssssssssssseessssssssssssssseeenes 14-34
CREATE OPERATOR ..oooooooeieoooovveeeesssessssoososseeeesssssssosssssseesessssssosssssseessssssssossosseeeseo 14-44
CREATE OUTLINE ...ooooooeooeeeeeeoooeeeeeeeeesesesooosseeeeesesssseossseseesesssssseossssseesessesssonsoseeeeese 14-48
CREATE PACKAGE ..ooooooooeeeeeososveeeesssessssossssseessssssssssssssssesssssssssisssssseessssssssssossossseesno 14-52
CREATE PACKAGE BODYocoovvoooorooossssccooseeeeesssssssssssssseeeessssssssossssseessssssssssoososseeeeon 14-57
CREATE PFILE ...oooooooooeeeeeeeseeeeeoooseeeees e eoosseeeesseessosssseseesesssssseossssseesessesssonroseeeeeee, 14-62
CREATE PROCEDURE ..oooooooeeccccvvvveeeesssessssossssssesssssssssssssssssesssssssssisssssseesssssssssosssssseesso 14-64
CREATE PROFILE ...oovvoooooeoeeseooosseeeesesesssseosssseeessssssssoosssssseesesssssssssssseesssssssssoososseeesso 14-71
CREATE ROLEooooooovooeeeoeseeeeeooooeeeeessseessseoosseeeessessssosssssseesesssssoosssseeeessssssoososeeeeeee 14-79
CREATE ROLLBACK SEGMENT ..oooosiooieicovsveeeessssssssssssssssessssssssssssssseessssssssosssssseeseo 14-82
CREATE SCHEMA ...oooooooooeoteeooooeeeeesssessssoooseeeeesssssssosssssseesesssssossssseessssssssonsosseeeeee 14-86
CREATE SEQUENCEoooooooeeeooeeoeeeeeeeseeeeooosseeeeessesssoossseeeesessssseossssseesessssssonsosseeeeee, 14-89
CREATE SPFILE ...ovvvovvvvveeeossesseooosssseeeesssssssssssssssesssssssssssssssssessssssssssisssssseessssssssssosssssseeesos 14-94
SQL Statements: CREATE SYNONYM to CREATE TRIGGER
CREATE SYNONYM ...ooooooooeeieeoooeeeeesssesssssosseseeeesssssssoosssseseessssssssossssseesssssssssoosssseeeesen 15-2
CREATE TABLE ..ooooooovoooeeeeeeeeseeoseseeeesessssssoooseseeeesssssssesssssesessssesssssossssessssesesseesseseeeesen 15-7
CREATE TABLESPACE ..ooooooocecccvovveeeesesesesossssseeesssssssssssssssseesssssssssisssssseesssssssssosssssseesns 15-80
CREATE TEMPORARY TABLESPACEooovvoeeorooessssecoseeeeeesesssssssssssseesssssssssonsosseeesee 15-92
CREATE TRIGGERoooooooooeeieecooeoveeeesesessssoooseeeeesssssssossssesee s ossssseeeessesssonooseeeesee, 15-95
SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT
CREATE TYPE ..cooovovovvvvoeeesesseesesoossssseesssssssssssssssseessssssssssosssssssessssssssssssssssessssssssssosssssseeesons 16-3
CREATE TYPE BODY ..oooooooeoeecoovveeeesssesessoossseeessssesssossssseeesessssssoosssssseessssssssonsosseeeene 16-25
CREATE USERooooooooooeeeeeoesesseooeseeeeess e eoosseesesssssssosssssseesesssssossssseesessesssoososeeeesee 16-32
CREATE VIEW ..ooooovcooveeeessssesseoososseeesssssssssssssssesssssssssssssssssesssssssssssisssssseessssssssssssssssseesso 16-39
DELETE ooooeeeoocooseeeeeseseeeseososeseee s sessoosssseees s essssossssseee s sesssossssseeee s 16-55
DISASSOCIATE STATISTICS ..ooooooooeecoeeveeeeeeeeesseooeeeeesssessssoossseeees st 16-64

17

DROP CLUSTER ..o s 16-67

DROP CONTEXT oottt sttt 16-69
DROP DATABASE LINK ...ttt sssssesss st ssssesssasssssssssssesssssssssssasssnnees 16-70
DROP DIMENSION ..ottt sttt 16-72
DROP DIRECTORY ...ttt sttt 16-74
DROP FUNCTION ..ottt esesessss sttt sttt ssssssssssssssasssenees 16-75
DROP INDEX ..ottt sttt 16-77
DROP INDEXTYPE ...ttt sttt 16-79
DIROP JAVA ..ottt 16-81
DROP LIBRARY ...ttt sttt 16-83
DROP MATERIALIZED VIEW ...t 16-84
DROP MATERIALIZED VIEW LOGvvuiiiriineineesnseississssesssssssssssssssssssssssssssssssssasssnsses 16-86
DROP OPERATOR ...ttt sttt 16-88
DROP OUTLINE .ottt 16-90
DROP PACKAGE ..ottt sttt 16-91
DROP PROCEDUREovviiiiiiieiesies sttt 16-93
DROP PROFILE ..ottt 16-95
DIROP ROLE ..ottt 16-97
DROP ROLLBACK SEGMENToviiiiiiiieiisiississ st sssnsns 16-98
SQL Statements: DROP SEQUENCE to ROLLBACK
DROP SEQUENCE ...ttt 17-2
DROP SYNONYM ..ottt ss sttt 17-4
DROP TABLE ..ottt 17-6
DROP TABLESPACEoiiiiiieieie sttt 17-10
DROP TRIGGER ...ttt 17-13
DIROP TYPE ..ottt 17-15
DROP TYPE BODY ..ottt 17-18
DIROP USER ..ottt sttt 17-20
DROP VIEW ..ottt 17-22
EXPLAIN PLAN ..ottt 17-24
GRANT oottt 17-29
INSERT oottt 17-53
LOCK TABLE ...ttt 17-73
IMIERGE ..ottt 17-77

Xiii

Xiv

NOAUDIT bbb s 17-81

RENAME ..ottt 17-86
REVOKE ..ottt s 17-88
ROLLBACK ...ttt 17-99
18 SQL Statements: SAVEPOINT to UPDATE
SAVEPOINT ..ottt s 18-2
SELECT oottt s 18-4
SET CONSTRAINTIS] ..ottt 18-45
SET ROLE ..ottt 18-47
SET TRANSACTION ..ottt 18-50
TRUNGCATE ..ottt 18-54
UPDATE ..ottt e 18-59
A How to Read Syntax Diagrams
B Oracle and Standard SQL
C Oracle Reserved Words
D Examples
Using EXIENSIDIE INAEXING ..o D-2
Using XML in SQL StatemMeNtScoccv it D-11
Index

Send Us Your Comments

Oracle9/ SQL Reference, Release 2 (9.2)
Part No. A96540-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11l

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle database. Oracle SQL is a superset
of the American National Standards Institute (ANSI) and the International
Standards Organization (ISO) SQL99 standard.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

Xvii

Audience

Organization

xViii

The Oracle9i SQL Reference is intended for all users of Oracle SQL.

This reference is divided into the following parts:
Volume 1

Chapter 1, "Introduction to Oracle SQL"

This chapter discusses the history of SQL and describes the advantages of using it
to access relational databases.

Chapter 2, "Basic Elements of Oracle SQL"

This chapter describes the basic building blocks of an Oracle database and of
Oracle SQL.

Chapter 3, "Operators"
This chapter describes SQL operators.

Chapter 4, "Expressions"
This chapter describes SQL expressions.

Chapter 5, "Conditions"
This chapter describes SQL conditions.

Chapter 6, "Functions”
This chapter describes how to use SQL functions.

Chapter 7, "Common SQL DDL Clauses"

This chapter describes a number of DDL clauses that are frequently used in
multiple top-level SQL statements.

Chapter 8, "SQL Queries and Subqueries"

This chapter describes the different types of SQL queries and lists the various types
of SQL statements.

Volume 2

Chapter 9, "SQL Statements: ALTER CLUSTER to ALTER SEQUENCE"

Chapter 10, "SQL Statements:
Chapter 11, "SQL Statements:
Chapter 12, "SQL Statements:
Chapter 13, "SQL Statements:
Chapter 14, "SQL Statements:
Chapter 15, "SQL Statements:
Chapter 16, "SQL Statements:

SEGMENT"

Chapter 17, "SQL Statements:
Chapter 18, "SQL Statements:

ALTER SESSION to ALTER SYSTEM"
ALTER TABLE to ALTER TABLESPACE"
ALTER TRIGGER to COMMIT"

CREATE CLUSTER to CREATE JAVA"
CREATE LIBRARY to CREATE SPFILE"
CREATE SYNONYM to CREATE TRIGGER"
CREATE TYPE to DROP ROLLBACK

DROP SEQUENCE to ROLLBACK"
SAVEPOINT to UPDATE"

Chapters 9 through 18 list and describe all Oracle SQL statements in alphabetical

order.

Appendix A, "How to Read Syntax Diagrams"
This appendix describes how to read the syntax diagrams in this reference.

Appendix B, "Oracle and Standard SQL"
This appendix describes Oracle compliance with ANSI and 1SO standards.

Appendix C, "Oracle Reserved Words"
This appendix lists words that are reserved for internal use by Oracle.

Appendix D, "Examples”

This appendix provides extended examples that use multiple SQL statements and

are therefore not appropriate for any single section of the reference.

Structural Changes in the SQL Reference in Oracle9 i Release 2 (9.2)

The following frequently used DDL clauses have been separated into their own
chapter, Chapter 7, "Common SQL DDL Clauses": allocate_extent_clause

page 7-2, constraints on page 7-5, deallocate _unused _clause

file _specification on page 7-39, logging_clause on page 7-45,

parallel_clause on page 7-49, physical_attributes clause

storage_clause on page 7-56.

on
on page 7-37,

on page 7-52,

Xix

In earlier releases, the autoextend_clause appeared in a number of SQL

statements. It now is documented as part of the datafile_tempfile_spec form
of file_specification , to clarify that this attribute relates to datafiles and
tempfiles.

Structural Changes in the SQL Reference in Oracle9 i Release 1 (9.0.1)

The chapter that formerly described expressions, conditions, and queries has been
divided. Conditions and expressions are now two separate chapters, and queries
are described in Chapter 8, "SQL Queries and Subqueries".

CAST DECODEand EXTRACT(datetime), which were formerly documented as
forms of expression, are now documented as SQL built-in functions.

LIKE and the elements formerly called "comparison operators” and "logical
operators" are now documented as SQL conditions.

The chapters containing all SQL statements (formerly Chapters 7 through 10) have
been divided into ten chapters for printing purposes.

Related Documentation

XX

For more information, see these Oracle resources:

« PL/SQL User’s Guide and Reference for information on PL/SQL, Oracle’s
procedural language extension to SQL

« Pro*C/C++ Precompiler Programmer’s Guide, SQL*Module for Ada Programmer’s
Guide, and the Pro*COBOL Precompiler Programmer’s Guide for detailed
descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountmembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/otn.oracle.comv/docs/index.htm

To access the database documentation search engine directly, please visit
http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:
« Conventions in Text
= Conventions in Code Examples
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis.

Ensure that the recovery catalog and target
database do not reside on the same disk.

XXi

Convention

Meaning

Example

UPPERCASE
monospace
(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER_
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

XXii

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}
which is required. Do not enter the braces.

| A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

[COMPRESS | NOCOMPRESS]

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery ;
code that are not directly related to
the example
SELECT col1 , col2 , ..., coln FROM

« That you can repeat a portion of the employees;

code

Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFILE;
have omitted several lines of code not NAME
directly related to the example.

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf

[fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than acctbal NUMBER(11,2);
brackets, braces, vertical bars, and ellipsis .
points as shown. acct CONSTANT NUMBER(4) :=3;

Italics Italicized text indicates placeholders or CONNECT SYSTEMystem_password

variables for which you must supply DB NAME = database hame
particular values. — = -

XXili

Convention

Meaning Example

UPPERCASE

lowercase

Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;

terms in uppercase in order to distinguish . .

them from terms you define. Unless terms SELECT * FROM USER_TABLES;
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.

However, because these terms are not

case sensitive, you can enter them in

lowercase.

Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names
of tables, columns, or files. salplus hr/hr
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty3MU9;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

XXiV

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web
sites.

XXV

XXVi

What's New in SQL Reference?

This section describes new features of Oracle9i release 2 and provides pointers to
additional information. New features information from previous releases is also
retained to help those users upgrading to the current release.

The following sections describe the new features in the Oracle9i SQL Reference:
« Oracle9i Release 2 (9.2) New Features in the SQL Reference
« Oracle9i Release 1 (9.0.1) New Features in the SQL Reference

« Oracle8i New Features in SQL Reference

XXVil

Oracle9j Release 2 (9.2) New Features in the SQL Reference
The following built-in conditions are new to this release:
« EQUALS _PATH on page 5-13
. UNDER_PATH on page 5-20
The following built-in expression is enhanced in this release:

« The syntax for type constructor expressions now allows creation of new
user-defined constructors (see "Type Constructor Expressions” on page 4-13).

The following built-in functions are new to this release:

« DEPTH on page 6-57

« EXTRACTVALUE on page 6-66

« PATH on page 6-115

« UPDATEXML on page 6-197

« XMLAGG on page 6-210

« XMLCONCAT on page 6-213

« XMLCOLATTVAL on page 6-212

« XMLELEMENT on page 6-214

« XMLFOREST on page 6-217

« XMLSEQUENCE on page 6-218

« XMLTRANSFORM on page 6-219

The following privileges are new or enhanced in this release:

« DEBUG CONNECT SESSIOBystem privilege on page 17-37 (new)
« DEBUG ANY PROCEDURystem privilege on page 17-37 (new)
« DEBU®bject privilege on page 17-46 (new)

« EXECUTHBbbject privilege on procedures, packages, libraries, and object types
(enhanced)

« GRANT ANY OBJECT PRIVILEGE system privilege on page 17-44

The following top-level SQL statements are new or enhanced in this release:

XXViii

« ALTER DATABASE on page 9-11 has new syntax for managing standby
databases, for managed standby recovery, and for logical standby.

« ALTER OPERATOR on page 9-117 lets you recompile an existing user-defined
operator.

« ALTER TABLE on page 11-2 contains new clauses that let you rename a column
or a constraint.

« CREATE DATABASE on page 13-23:

« Contains two new clauses for assigning passwords to the SYSand SYSTEM
users

« Lets you create a locally managed SYSTEMablespace

« CREATE SYNONYM on page 15-2 now allows creation of synonyms for object
types.

« CREATE TABLE on page 15-7:

« Allows creation of a default list partition to capture rows that do not fall
within any of the other list partitions

« Allows creation of range-list composite-partitioned tables

« Contains syntax for creating a table of type XMLType and for creating
range-list composite-partitioned tables

« Allows data compression of data in table and partition segments

« CREATE TYPE on page 16-3 allows creation of object types with of NCHAR
NVARCHARZNd NCLOBattributes.

« CREATE VIEW on page 16-39 now contains syntax for creating an XML view
by transforming a table of type XMLType.

« SELECT on page 18-4 provides syntax for "flashback queries”, which let you
guery data at a specified system change number or time in the past.

Oracle9j Release 1 (9.0.1) New Features in the SQL Reference
The following built-in datatypes were new or modified in this release:

« Oracle provides SQL-based interfaces for defining new types when the built-in
or ANSI-supported types are not sufficient. See "Oracle-Supplied Types" on
page 2-40.

XXiX

XXX

"CHAR Datatype" on page 2-10 can take the CHARor BYTEparameter to
indicate character or byte semantics, respectively.

"INTERVAL YEAR TO MONTH Datatype" on page 2-24 and "INTERVAL DAY
TO SECOND Datatype" on page 2-24 are provided for additional datetime
functionality

"TIMESTAMP Datatype" on page 2-21 is provided for additional datetime
functionality.

"VARCHAR?2 Datatype" on page 2-11 can take the CHARor BYTEparameter to
indicate character or byte semantics, respectively.

The following expression forms were new or enhanced in this release:

"CASE Expressions" on page 4-6 (enhanced with searched case expression)

"CURSOR Expressions" on page 4-7 (enhanced; they can be passed as REF
CURSORrguments to functions)

"Datetime Expressions” on page 4-9 (new)
"INTERVAL Expressions” on page 4-11 (new)

"Scalar Subquery Expressions” on page 4-13 (new)

The following condition was new in this release:

IS OF type Conditions on page 5-19

The following built-in functions were new to this release:

ASCIISTR on page 6-19
BIN_TO_NUMon page 6-25
COALESCHBN page 6-33
COMPOSEN page 6-34
CURRENT_DATE&nN page 6-49
CURRENT_TIMESTAMSO page 6-50
DBTIMEZONEbN page 6-51
DECOMPOStEh page 6-53
EXISTSNODEon page 6-61
EXTRACT (datetime) on page 6-63
EXTRACT (XML) on page 6-65

FIRST on page 6-67

FROM_T2n page 6-71

GROUP_IDon page 6-72
GROUPING_IDon page 6-75

LAST on page 6-81
LOCALTIMESTAMMPN page 6-90
NULLIF on page 6-110
PERCENTILE_CONDN page 6-118
PERCENTILE_DISCon page 6-121
RAWTONHEDH page 6-126
ROWIDTONCHAdN page 6-141
SESSIONTIMEZONEN page 6-143
SYS_CONNECT_BY_PATdt page 6-155
SYS_DBURIGEMN page 6-161
SYS_EXTRACT_UT®n page 6-162
SYS_XMLAG®GN page 6-165
SYS_XMLGEMNN page 6-166
SYSTIMESTAMMPN page 6-168
TO_CHAR (character) on page 6-170
TO_CLOBon page 6-175
TO_DSINTERVALon page 6-177
TO_NCHAR (character) on page 6-180
TO_NCHAR (datetime) on page 6-181
TO_NCHAR (number) on page 6-182
TO_NCLOBN page 6-182
TO_TIMESTAMPoN page 6-185
TO_TIMESTAMP_Tan page 6-186
TO_YMINTERVAIon page 6-187

XXX

« TREAToN page 6-191

« TZ_OFFSETon page 6-195

« UNISTRon page 6-196

« WIDTH_BUCKE®N page 6-208

The following functions were enhanced for this release:

« INSTR on page 6-78

« LENGTHon page 6-88

« SUBSTRon page 6-152

The following privileges were new to this release:

« EXEMPT ACCESS POLICYsystem privilege on page 17-44
« RESUMABLREystem privilege on page 17-44

« SELECT ANY DICTIONARY system privilege on page 17-44
« UNDER ANY TYPEsystem privilege on page 17-42

« UNDER ANY VIEWSsystem privilege on page 17-43

« UNDERDbject privilege on page 17-46

The following top-level SQL statements were new to this release:
« CREATE PFILE on page 14-62

« CREATE SPFILE on page 14-94

« MERGEnN page 17-77

The following SQL statements had new syntax:

« ALTER DATABASEON page 9-11 has new syntax that lets you end a "hot
backup” procedure while the database is mounted. It also has new syntax
related to standby databases.

« ALTER INDEX on page 9-62 lets you gather statistics on index usage.

« ALTER OUTLINE on page 9-118 allows modification of both public and private
outlines.

« ALTER ROLEonN page 9-134 lets you identify a role using an
application-specified package.

ALTER SESSIONon page 10-2 lets you specify whether statements issued
during the session can be suspended under some conditions.

ALTER SYSTEMN page 10-20 has extended SET clause and new RESETclause;
lets you put the database in quiesed state.

ALTER TABLE on page 11-2 allows partitioning by a list of specified values.

ALTER TYPEon page 12-6 lets you modify the attribute or method definition of
an object type.

ALTER VIEW on page 12-31 lets you add constraints to views.

ANALYZEon page 12-34 now has ONLINE and OFFLINE clauses as part of the
VALIDATE STRUCTUREyntax. In addition, you can now choose whether to
collect standard statistics, user-defined statistics, or both.

constraints on page 7-5 has been enhanced to facilitate index handling
when dropping or disabling constraints.

CREATE CONTEX®n page 13-12 has added syntax to let you initialize the
context from the LDAP directory or from an OCI interface and to make the
context accessible throughout an instance.

CREATE CONTROLFILEON page 13-15 allows creation of Oracle-managed files.

CREATE DATABASIBN page 13-23 lets you create default temporary
tablespaces when you create the database; lets you create undo tablespaces.

CREATE FUNCTIONbN page 13-52 lets you create pipelined and parallel table
functions and user-defined aggregate functions.

CREATE OUTLINEonN page 14-48 allows creation of both public and private
outlines.

CREATE ROLEon page 14-79 lets you identify a role using an
application-specified package.

CREATE TABLEon page 15-7 allows creation of external tables (tables whose
data is outside the database); allows creation of Oracle-managed files; allows
partitioning by a list of specified values.

CREATE TABLESPAC#&N page 15-80 allows for segment space management by
bitmaps as well as by free lists; allows creation of Oracle-managed files; lets you
create undo tablespaces.

CREATE TEMPORARY TABLESPA®Q@A page 15-92 allows creation of
Oracle-managed files.

Xxxiii

CREATE TYPEon page 16-3 lets you create subtypes.

CREATE VIEWon page 16-39 lets you create subviews of object views; lets you
define constraints on views.

DROP TABLESPACIBN page 17-10 has added syntax that lets you drop
operating system files when you drop the contents from a dropped tablespace.

file _specification on page 7-39 allows creation of Oracle-managed files.

INSERT on page 17-53 has added syntax that lets you insert default column
values.

SELECTon page 18-4 lets you specify multiple groupings in the GROUP BY
clause, for selective analysis across multiple dimensions; lets you assign names
to subquery blocks; has new ANSI-compliant join syntax.

SET TRANSACTIONon page 18-50 lets you specify a name for a transaction.

UPDATEoN page 18-59 has added syntax that lets you update to default column
values.

Oracle8/ New Features in SQL Reference

The following SQL functions were new to this version;

XXXIV

BITAND on page 6-25

CORPoN page 6-37
COVAR_POBN page 6-42
COVAR_SAM®N page 6-44
CUME_DISTon page 6-47
DENSE_RANIEN page 6-55
FIRST_VALUE on page 6-69
LAGonN page 6-80
LAST_VALUEon page 6-84
LEADoN page 6-86

NTILE on page 6-109
NUMTOYMINTERVAIN page 6-112
NUMTODSINTERVA&N page 6-111

« NVL2o0n page 6-114

« PERCENT_RANSN page 6-116

« RANKon page 6-123

. RATIO_TO_REPOR®N page 6-125

« REGR_ (Linear Regression) Functions on page 6-129
« STDDEV_PORN page 6-149

« STDDEV_SAMBnN page 6-151

« VAR_POPRN page 6-202

« VAR_SAMPBN page 6-204

The following top-level SQL statements were new to Release 8.1.5:
« ALTER DIMENSIONoON page 9-56

« ALTER JAVA on page 9-87

« ALTER OUTLINE on page 9-118

« ASSOCIATE STATISTICS on page 12-50

« CALLon page 12-68

« CREATE CONTEX®n page 13-12

« CREATE DIMENSIONon page 13-43

« CREATE INDEXTYPEON page 13-95

« CREATE JAVAoN page 13-98

« CREATE OPERATOBN page 14-44

« CREATE OUTLINEoON page 14-48

« CREATE TEMPORARY TABLESPAQ@E page 15-92
« DISASSOCIATE STATISTICS on page 16-64

« DROP CONTEX®n page 16-69

« DROP DIMENSIONon page 16-72

« DROP INDEXTYPEON page 16-79

« DROP JAVAoN page 16-81

« DROP OPERATOBNM page 16-88

XXXV

XXXVI

DROP OUTLINEon page 16-90

In addition, the following features were enhanced:

The aggregate functions have expanded functionality. See "Aggregate
Functions" on page 6-8.

When specifying LOB storage parameters, you can now specify caching of
LOBs for read-only purposes. See CREATE TABLEon page 15-7.

The section on Expressions now contains a new expression. See "CASE
Expressions” on page 4-6.

Subqueries can now be unnested. See "Unnesting of Nested Subqueries” on
page 8-15.

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user’s request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
« History of SQL

« SQL Standards

« Embedded SQL

« Lexical Conventions

« Tools Support

Introduction to Oracle SQL 1-1

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared
Data Banks", in June 1970 in the Association of Computer Machinery (ACM)
journal, Communications of the ACM. Codd’s model is now accepted as the definitive
model for relational database management systems (RDBMS). The language,
Structured English Query Language ("SEQUEL") was developed by IBM
Corporation, Inc., to use Codd’s model. SEQUEL later became SQL (still
pronounced "sequel™). In 1979, Relational Software, Inc. (now Oracle Corporation)
introduced the first commercially available implementation of SQL. Today, SQL is
accepted as the standard RDBMS language.

SQL Standards

Oracle Corporation strives to comply with industry-accepted standards and
participates actively in SQL standards committees. Industry-accepted committees
are the American National Standards Institute (ANSI) and the International
Standards Organization (ISO), which is affiliated with the International
Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have accepted SQL
as the standard language for relational databases. When a new SQL standard is
simultaneously published by these organizations, the names of the standards
conform to conventions used by the organization, but the standards are technically
identical.

The latest SQL standard was adopted in July 1999 and is often called SQL:99. The
formal names of this standard are:

« ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation™), and 5 ("Bindings")

« ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation™), and 5 ("Bindings")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle’s conformance to the SQL:99 standards

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle, and all SQL statements are instructions to
the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

1-2 Oracle9/ SQL Reference

« It processes sets of data as groups rather than as individual units.
« It provides automatic navigation to the data.

« It uses statements that are complex and powerful individually, and that
therefore stand alone. Flow-control statements were not part of SQL originally,
but they are found in the recently accepted optional part of SQL, ISO/IEC
9075-5: 1996. Flow-control statements are commonly known as "persistent
stored modules" (PSM), and Oracle’s PL/SQL extension to SQL is similar to
PSM.

Essentially, SQL lets you work with data at the logical level. You need to be
concerned with the implementation details only when you want to manipulate the
data. For example, to retrieve a set of rows from a table, you define a condition used
to filter the rows. All rows satisfying the condition are retrieved in a single step and
can be passed as a unit to the user, to another SQL statement, or to an application.
You need not deal with the rows one by one, nor do you have to worry about how
they are physically stored or retrieved. All SQL statements use the optimizer, a part
of Oracle that determines the most efficient means of accessing the specified data.
Oracle also provides techniques that you can use to make the optimizer perform its
job better.

SQL provides statements for a variety of tasks, including:
« Querying data

« Inserting, updating, and deleting rows in a table

« Creating, replacing, altering, and dropping objects

« Controlling access to the database and its objects

« Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can
transfer all skills you have gained with SQL from one database to another. In
addition, all programs written in SQL are portable. They can often be moved from
one database to another with very little modification.

Introduction to Oracle SQL 1-3

Embedded SQL

Embedded SQL refers to the use of standard SQL statements embedded within a
procedural programming language. The embedded SQL statements are
documented in the Oracle precompiler books.

Embedded SQL is a collection of these statements:

« All SQL commands, such as SELECTand INSERT, available with SQL with
interactive tools

« Dynamic SQL execution commands, such as PREPARENnd OPENwhich
integrate the standard SQL statements with a procedural programming
language

Embedded SQL also includes extensions to some standard SQL statements.
Embedded SQL is supported by the Oracle precompilers. The Oracle precompilers
interpret embedded SQL statements and translate them into statements that can be
understood by procedural language compilers.

Each of these Oracle precompilers translates embedded SQL programs into a
different procedural language:

« Pro*C/C++ precompiler
« Pro*COBOL precompiler
See Also: Pro*C/C++ Precompiler Programmer’s Guide and

Pro*COBOL Precompiler Programmer’s Guide for a definition of the
Oracle precompilers and embedded SQL statements

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to
Oracle’s implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage
returns, spaces, or comments anywhere a space occurs within the definition of the
statement. Thus, Oracle evaluates the following two statements in the same manner:

SELECT last_name,salary*12, MONTHS_BETWEEN(hire_date, SYSDATE)
FROM employees;

1-4 Oracle9/ SQL Reference

SELECT last_name,
salary * 12,
MONTHS_BETWEEN(hire_date, SYSDATE)
FROM employees;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names.

See Also: "Text Literals" on page 2-54 for a syntax description

Tools Support

Most (but not all) Oracle tools support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using
does not support this complete functionality, you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

Introduction to Oracle SQL 1-5

1-6 Oracle9/ SQL Reference

2

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore,
before using the statements described in Chapter 9 through Chapter 18, you should
familiarize yourself with the concepts covered in this chapter, as well as in

Chapter 3, "Operators", Chapter 4, "Expressions”, Chapter 6, "Functions”, and
Chapter 8, "SQL Queries and Subqueries".

This chapter contains these sections:

Datatypes

Literals

Format Models

Nulls

Pseudocolumns

Comments

Database Objects

Schema Object Names and Qualifiers

Syntax for Schema Objects and Parts in SQL Statements

Basic Elements of Oracle SQL 2-1

Datatypes

Datatypes

Each value manipulated by Oracle has a datatype. A value’s datatype associates a
fixed set of properties with the value. These properties cause Oracle to treat values
of one datatype differently from values of another. For example, you can add values
of NUMBERIatatype, but not values of RAWHatatype.

When you create a table or cluster, you must specify a datatype for each of its
columns. When you create a procedure or stored function, you must specify a
datatype for each of its arguments. These datatypes define the domain of values
that each column can contain or each argument can have. For example, DATE
columns cannot accept the value February 29 (except for a leap year) or the values 2
or 'SHOE’. Each value subsequently placed in a column assumes the column’s
datatype. For example, if you insert '01-JAN-98' into a DATEcolumn, then Oracle
treats the '01-JAN-98’ character string as a DATEvalue after verifying that it
translates to a valid date.

Oracle provides a number of built-in datatypes as well as several categories for
user-defined types that can be used as datatypes. The syntax of Oracle datatypes
appears in the diagrams that follow. The text of this section is divided into the
following sections:

« Oracle Built-in Datatypes

« ANSI, DB2, and SQL/DS Datatypes
« User-Defined Types

« Oracle-Supplied Types

Note: The Oracle precompilers recognize other datatypes in embedded
SQL programs. These datatypes are called external datatypes and are
associated with host variables. Do not confuse built-in datatypes and
user-defined types with external datatypes. For information on external
datatypes, including how Oracle converts between them and built-in
datatypes or user-defined types, see Pro*COBOL Precompiler Programmer’s
Guide, and Pro*C/C++ Precompiler Programmer’s Guide.

2-2 Oracle9/ SQL Reference

Datatypes

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes
user_defined_types
' Oracle_supplied_types -

Oracle_built_in_datatypes::=

character_datatypes

I

number_datatypes

—(Iong_and_raw_datatypes)—

datetime_datatypes

large_object_datatypes

rowid_datatypes

ll

character_datatypes::=

jady
CHAR
o@=2 L

BYTE

|CHARI
O @ L
[H(OAED)

number_datatypes::=

~

NUMBER

Basic Elements of Oracle SQL 2-3

Datatypes

long_and_raw_datatypes::=

(el
FO@O

datetime_datatypes::=

f| DATE
LOCAL
ﬁ@{fractionaI_seconds_precisionm WITH H TIME (5| ZONE
—| TIMESTAMP

|
—| INTERVAL |->| YEAR | 4 T0 |->| MONTH

o o fe®—><fractional_seconds_precisionm
INTERVAL DAY TO H SECOND

large_object_datatypes::=

rowid_datatypes::=

ROWID

D@0 [

UROWID

The ANSI-supported datatypes appear in the figure that follows. Table 2-6 on
page 2-36 shows the mapping of ANSI-supported datatypes to Oracle built-in
datatypes.

2-4 Oracle9/ SQL Reference

Datatypes

ANSI_supported_datatypes::=

[VARYING |
,| CHARACTER ﬁ-_\

scale
DECIMAL

DEC

INT
(O(sze) (D)
—| FLOAT

—| DOUBLE |—>| PRECISION }
\| REAL

Oracle_supplied_types::=

i

Basic Elements of Oracle SQL 2-5

Datatypes

any_types::=

| SYS.AnyData .
SYS.AnyType
' SYS.AnyDataSet '

XML_types::=
(D)
spatial_type::=

{MDSYS.SDO_Geometry)»

media_types::=

ORDSYS.OrdlmageSignature)/

Oracle Built-in Datatypes

Table 2-1 summarizes Oracle built-in datatypes.

2-6 Oracle9/ SQL Reference

Datatypes

Table 2-1 Built-In Datatype Summary

Code? Built-In Datatype Description

1 VARCHAR26ize) Variable-length character string having maximum
[BYTE | CHAR] length size bytes or characters. Maximum size is

4000 bytes, and minimum is 1 byte or 1 character.
You must specify size for VARCHAR2
BYTEindicates that the column will have byte
length semantics; CHARiIndicates that the column
will have character semantics.

1 NVARCHARZ2¢ize) Variable-length character string having maximum
length size characters. Maximum size is
determined by the national character set definition,
with an upper limit of 4000 bytes. You must specify
size for NVARCHAR2

2 NUMBERg,s) Number having precision p and scale s. The
precision p can range from 1 to 38. The scale s can
range from -84 to 127.

8 LONG Character data of variable length up to 2 gigabytes,
or 2% -1 bytes.

12 DATE Valid date range from January 1, 4712 BC to
December 31, 9999 AD.

180 TIMESTAMP Year, month, and day values of date, as well as hour,
(fractional _ minute, and second values of time, where
seconds_precision) fractional_seconds_precision is the number

of digits in the fractional part of the SECOND
datetime field. Accepted values of fractional
seconds_precision are 0to 9. The default is 6.

181 TIMESTAMP All values of TIMESTAMPas well as time zone
(fractional _ displacement value, where fractional
seconds_precision) seconds_precision is the number of digits in the
WITH TIME ZONE fractional part of the SECONDDlatetime field.

Accepted values are 0 to 9. The default is 6.

231 TIMESTAMP All values of TIMESTAMP WITH TIME ZONHRvith
(fractional _ the following exceptions:
seconds_precision)

WITH LOCAL TIME
ZONE

. Data is normalized to the database time zone
when it is stored in the database.

« When the data is retrieved, users see the data in
the session time zone.

2 The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMRunction.

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-In Datatype Summary

Code? Built-In Datatype Description
182 INTERVAL YEAR Stores a period of time in years and months, where
(vear_precision)TO year_precision is the number of digits in the
MONTH YEARdatetime field. Accepted values are 0 to 9. The
default is 2.
183 INTERVAL DAY(day Stores a period of time in days, hours, minutes, and
precision) TO seconds, where
3&%%7‘72/ « day precision is the maximum number of
seconds precision) digits in the DAYdatetime field. Accepted
P values are 0 to 9. The default is 2.
« fractional_seconds_precision is the
number of digits in the fractional part of the
SECONDield. Accepted values are 0 to 9. The
default is 6.

23 RAWSGize) Raw binary data of length size bytes. Maximum
size is 2000 bytes. You must specify size for a
RAWalue.

24 LONG RAW Raw binary data of variable length up to 2
gigabytes.

69 ROWID Base 64 string representing the unique address of a
row in its table. This datatype is primarily for values
returned by the ROWIDpseudocolumn.

208 UROWID [(size)] Base 64 string representing the logical address of a
row of an index-organized table. The optional size
is the size of a column of type UROWIDThe
maximum size and default is 4000 bytes.

96 CHAR(size)[BYTE | Fixed-length character data of length size bytes.

CHAR] Maximum size is 2000 bytes. Default and
minimum size is 1 byte.
BYTEand CHARhave the same semantics as for
VARCHAR2
96 NCHARGize) Fixed-length character data of length size

characters. Maximum size is determined by the
national character set definition, with an upper limit
of 2000 bytes. Default and minimum size is1
character.

@ The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMRunction.

2-8 Oracle9/ SQL Reference

Datatypes

Table 2-1 (Cont.) Built-In Datatype Summary

Code? Built-In Datatype Description

112 CLOB A character large object containing single-byte
characters. Both fixed-width and variable-width
character sets are supported, both using the CHAR
database character set. Maximum size is 4 gigabytes.

112 NCLOB A character large object containing Unicode
characters. Both fixed-width and variable-width
character sets are supported, both using the NCHAR
database character set. Maximum size is 4 gigabytes.
Stores national character set data.

113 BLOB A binary large object. Maximum size is 4 gigabytes.

114 BFILE Contains a locator to a large binary file stored
outside the database. Enables byte stream 170
access to external LOBs residing on the database
server. Maximum size is 4 gigabytes.

2 The codes listed for the datatypes are used internally by Oracle. The datatype code of a column
or object attribute is returned by the DUMRunction.

Character Datatypes

Character datatypes store character (alphanumeric) data, which are words and
free-form text, in the database character set or national character set. They are less
restrictive than other datatypes and consequently have fewer properties. For
example, character columns can store all alphanumeric values, but NUMBER
columns can store only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle supports both single-byte and multibyte character sets.

These datatypes are used for character data:
« CHAR Datatype

« NCHAR Datatype

« NVARCHAR?2 Datatype

« VARCHAR?2 Datatype

Basic Elements of Oracle SQL 2-9

Datatypes

CHAR Datatype

The CHARdatatype specifies a fixed-length character string. Oracle subsequently
ensures that all values stored in that column have the length specified by size . If
you insert a value that is shorter than the column length, then Oracle blank-pads
the value to column length. If you try to insert a value that is too long for the
column, then Oracle returns an error.

The default length for a CHARcolumn is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR(10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHARcolumn, by default you supply the column
length in bytes. The BYTEqualifier is the same as the default. If you use the CHAR
qualifier, for example CHAR10 CHAR, then you supply the column length in
characters. A character is technically a codepoint of the database character set. Its
size can range from 1 byte to 4 bytes, depending on the database character set. The
BYTEand CHARqualifiers override the semantics specified by the NLS LENGTH_
SEMANTICSparameter, which has a default of byte semantics.

Note: To ensure proper data conversion between databases with
different character sets, you must ensure that CHARdata consists of
well-formed strings. See Oracle9i Database Globalization Support
Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-45 for
information on comparison semantics

NCHAR Datatype

Beginning with Oracle9i, the NCHARJatatype is redefined to be a Unicode-only
datatype. When you create a table with an NCHARolumn, you define the column
length in characters. You define the national character set when you create your
database.

The column’s maximum length is determined by the national character set
definition. Width specifications of character datatype NCHARefer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads
the value to column length. You cannot insert a CHARvalue into an NCHARolumn,
nor can you insert an NCHARralue into a CHARcolumn.

2-10 Oracle9i SQL Reference

Datatypes

The following example compares the coll column of tabl with national character
set string 'NCHAR literal’;

SELECT translated_description from product_descriptions
WHERE translated_name = N'LCD Monitor 11/PM’;

See Also: Oracle9i Database Globalization Support Guide for
information on Unicode datatype support

NVARCHAR?2 Datatype

Beginning with Oracle9i, the NVARCHAR®atatype is redefined to be a
Unicode-only datatype. When you create a table with an NVARCHAR2olumn, you
supply the maximum number of characters it can hold. Oracle subsequently stores
each value in the column exactly as you specify it, provided the value does not
exceed the column’s maximum length.

The column’s maximum length is determined by the national character set
definition. Width specifications of character datatype NVARCHAREefer to the
number of characters. The maximum column size allowed is 4000 bytes.

See Also: Oracle9i Database Globalization Support Guide for
information on Unicode datatype support

VARCHAR?2 Datatype

The VARCHARZ2latatype specifies a variable-length character string. When you
create a VARCHARZ2olumn, you supply the maximum number of bytes or
characters of data that it can hold. Oracle subsequently stores each value in the
column exactly as you specify it, provided the value does not exceed the column’s
maximum length. If you try to insert a value that exceeds the specified length, then
Oracle returns an error.

You must specify a maximum length for a VARCHAR2olumn. This maximum must
be at least 1 byte, although the actual string stored is permitted to be a zero-length
string ("). You can use the CHARqualifier, for example VARCHAR@0 CHAR, to
give the maximum length in characters instead of bytes. A character is technically a
codepoint of the database character set. CHARand BYTEqualifiers override the
setting of the NLS_LENGTH_SEMANTICBarameter, which has a default of bytes.
The maximum length of VARCHARZ2lata is 4000 bytes. Oracle compares VARCHAR2
values using nonpadded comparison semantics.

Basic Elements of Oracle SQL 2-11

Datatypes

Note: To ensure proper data conversion between databases with
different character sets, you must ensure that VARCHAR2lata
consists of well-formed strings. See Oracle9i Database Globalization
Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-45 for
information on comparison semantics

VARCHAR Datatype

The VARCHARIatatype is currently synonymous with the VARCHAR2latatype.
Oracle recommends that you use VARCHARZ2ather than VARCHARIN the future,
VARCHARnight be defined as a separate datatype used for variable-length character
strings compared with different comparison semantics.

NUMBER Datatype

The NUMBERIatatype stores zero, positive, and negative fixed and floating-point
numbers with magnitudes between 1.0 x 10 and 9.9...9 x 10'?° (38 nines followed
by 88 zeroes) with 38 digits of precision. If you specify an arithmetic expression
whose value has a magnitude greater than or equal to 1.0 x 10'%6, then Oracle
returns an error.

Specify a fixed-point number using the following form:
NUMBER(p,s)

where:

« pisthe precision, or the total number of digits. Oracle guarantees the
portability of numbers with precision ranging from 1 to 38.

« Sisthe scale, or the number of digits to the right of the decimal point. The scale
can range from -84 to 127.

Specify an integer using the following form:
NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent
to NUMBER(p,0) .

Specify a floating-point number using the following form:
NUMBER

2-12 Oracle9i SQL Reference

Datatypes

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-14

Scale and Precision

Specify the scale and precision of a fixed-point number column for extra integrity
checking on input. Specifying scale and precision does not force all values to a fixed
length. If a value exceeds the precision, then Oracle returns an error. If a value
exceeds the scale, then Oracle rounds it.

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As
7456123.89 NUMBER 7456123.89
7456123.89 NUMBER(9) 7456124
7456123.89 NUMBER(9,2) 7456123.89
7456123.89 NUMBER(9,1) 7456123.9
7456123.89 NUMBER(6) exceeds precision
7456123.89 NUMBER(7,-2) 7456100
7456123.89 NUMBER(7,2) exceeds precision

Negative Scale

If the scale is negative, then the actual data is rounded to the specified number of
places to the left of the decimal point. For example, a specification of (10,-2) means
to round to hundreds.

Scale Greater than Precision

You can specify a scale that is greater than precision, although it is uncommon. In
this case, the precision specifies the maximum number of digits to the right of the
decimal point. As with all number datatypes, if the value exceeds the precision,
then Oracle returns an error message. If the value exceeds the scale, then Oracle
rounds the value. For example, a column defined as NUMBER(4,5) requires a zero
for the first digit after the decimal point and rounds all values past the fifth digit
after the decimal point. Table 2-3 show the effects of a scale greater than precision:

Basic Elements of Oracle SQL 2-13

Datatypes

Table 2-3 Scale Greater Than Precision

Actual Data Specified As Stored As
.01234 NUMBER(4,5) .01234
.00012 NUMBER(4,5) .00012
.000127 NUMBER(4,5) .00013
.0000012 NUMBER(2,7) .0000012
.00000123 NUMBER(2,7) .0000012

Floating-Point Numbers

Oracle lets you specify floating-point numbers, which can have a decimal point
anywhere from the first to the last digit or can have no decimal point at all. An
exponent may optionally be used following the number to increase the range (for
example, 1.777). A scale value is not applicable to floating-point numbers,
because the number of digits that can appear after the decimal point is not
restricted.

You can specify floating-point numbers with the range of values discussed in
"NUMBER Datatype" on page 2-12. The format is defined in "Number Literals" on
page 2-56. Oracle also supports the ANSI datatype FLOAT You can specify this
datatype using one of these syntactic forms:

« FLOATSspecifies a floating-point number with decimal precision 38 or binary
precision 126.

« FLOAT(b) specifies a floating-point number with binary precision b. The
precision b can range from 1 to 126. To convert from binary to decimal
precision, multiply b by 0.30103. To convert from decimal to binary precision,
multiply the decimal precision by 3.32193. The maximum of 126 digits of binary
precision is roughly equivalent to 38 digits of decimal precision.

LONG Datatype

LONGCcolumns store variable-length character strings containing up to 2 gigabytes,
or 231-1 bytes. LONGcolumns have many of the characteristics of VARCHAR?2
columns. You can use LONCGcolumns to store long text strings. The length of LONG
values may be limited by the memory available on your computer.

2-14 Oracle9i SQL Reference

Datatypes

Note: Oracle Corporation strongly recommends that you convert
LONGcolumns to LOB columns as soon as possible. Creation of new
LONGcolumns is scheduled for desupport.

LOB columns are subject to far fewer restrictions than LONG
columns. Further, LOB functionality is enhanced in every release,
whereas LONGfunctionality has been static for several releases. See
the modify_col _properties clause of ALTER TABLE on

page 11-2 and TO_LOB on page 6-178 for more information on
converting LONGcolumns to LOB.

You can reference LONCGcolumns in SQL statements in these places:
« SELECTIists

« SETclauses of UPDATEstatements

« VALUESclauses of INSERT statements

The use of LONGvalues is subject to some restrictions:

« Atable can contain only one LONGcolumn.

=« You cannot create an object type with a LONGattribute.

» LONGcolumns cannot appear in WHEREIlauses or in integrity constraints
(except that they can appear in NULLand NOT NULLconstraints).

« LONCcolumns cannot be indexed.
« A stored function cannot return a LONGvalue.

« You can declare a variable or argument of a PL/SQL program unit using the
LONGdatatype. However, you cannot then call the program unit from SQL.

« Within a single SQL statement, all LONGcolumns, updated tables, and locked
tables must be located on the same database.

« LONGand LONG RAMWbIumns cannot be used in distributed SQL statements and
cannot be replicated.

« If atable has both LONGand LOB columns, you cannot bind more than 4000
bytes of data to both the LONGand LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONGor the
LOB column.

Basic Elements of Oracle SQL 2-15

Datatypes

A table with LONCGcolumns cannot be stored in a tablespace with automatic
segment-space management.

LONGcolumns cannot appear in certain parts of SQL statements:

GROUP B¥lauses, ORDER B¥lauses, or CONNECT B¥lauses or with the
DISTINCT operator in SELECTstatements

The UNIQUEoperator of a SELECTstatement

The column list of a CREATE CLUSTERatement

The CLUSTERclause of a CREATE MATERIALIZED VIEVgtatement
SQL built-in functions, expressions, or conditions

SELECTIists of queries containing GROUP B¥lauses

SELECTIists of subqueries or queries combined by the UNION INTERSECT or
MINUSset operators

SELECTIists of CREATE TABLE.. AS SELECTstatements
ALTER TABLE.. MOVEtatements
SELECTIists in subqueries in INSERT statements

Triggers can use the LONGdatatype in the following manner:

A SQL statement within a trigger can insert data into a LONCGcolumn.

If data from a LONGcolumn can be converted to a constrained datatype (such as
CHARand VARCHARR a LONGcolumn can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONGdatatype.
:NEWAnd :OLDcannot be used with LONGcolumns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONGvalue
from the database.

See Also: Oracle Call Interface Programmer’s Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE TIMESTAMPTIMESTAMP WITH TIME ZONé&nd
TIMESTAMP WITH LOCAL TIME ZON®alues of datetime datatypes are sometimes
called "datetimes". The interval datatypes are INTERVAL YEAR TO MONTd
INTERVAL DAY TO SECONWMalues of interval datatypes are sometimes called
intervals.

2-16

Oracle9/ SQL Reference

Datatypes

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2—4 lists the datetime fields and their

possible values for datetimes and intervals.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime

Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer
MONTH 01lto 12 Oto11
DAY 01 to 31 (limited by the values Any positive or negative
of MONTHInd YEAR according integer
to the rules of the current NLS
calendar parameter)
HOUR 00 to 23 0to 23
MINUTE 00 to 59 0to 59
SECOND 00 t0 59.9(n), where "9(n)" is the 0 to 59.9(n), where “9(n)” is the

precision of time fractional
seconds The "9(n)" portion is
not applicable for DATE

precision of interval fractional
seconds

TIMEZONE_HOUR
(See Note that follows.)

-12 to 14 (This range
accommodates daylight
savings time changes.) Not
applicable for DATE

Not applicable

TIMEZONE_MINUTE
(See Note that follows.)

00 to 59. Not applicable for
DATE

Not applicable

Note: TIMEZONE_HOURNd TIMEZONE_MINUTEare specified together and interpreted as an
entity in the format +|- hh:mm , with values ranging from -12:59 to +14:00.

TIMEZONE_REGION Query the TZNAMEcolumn of
the VSTIMEZONE_NAMES8ata
dictionary view. Not applicable

for DATE

Not applicable

TIMEZONE_ABBR Query the TZABBRE\Wtolumn
of the VSTIMEZONE_NAMES
data dictionary view. Not

applicable for DATE

Not applicable

Basic Elements of Oracle SQL 2-17

Datatypes

Note: To avoid unexpected results in your DML operations on
datetime data, you can verify the database and session time zones
by querying the built-in SQL functions DBTIMEZONEand
SESSIONTIMEZONEIf the time zones have not been set manually,
Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle
uses UTC as the default value.

DATE Datatype

The DATEdatatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATEvalue, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a date value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATHEunction. To specify a date as a literal, you
must use the Gregorian calendar. You can specify an ANSI date literal, as shown in
this example:

DATE '1998-12-25

The ANSI date literal contains no time portion, and must be specified in exactly this
format CYYYY-MM-DD). Alternatively you can specify an Oracle date literal, as in
the following example:

TO_DATE('98-DEC-25:17:30",'"YY-MON-DD:HH24:MI")

The default date format for an Oracle date literal is specified by the initialization
parameter NLS_DATE_FORMAThis example date format includes a two-digit
number for the day of the month, an abbreviation of the month name, the last two
digits of the year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format
into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
12:00:00 AM (midnight). If you specify a date value without a date, then the default
date is the first day of the current month.

Oracle DATEcolumns always contain both the date and time fields. If your queries
use a date format without a time portion, then you must ensure that the time fields
in the DATEcolumn are set to zero (that is, midnight). Otherwise, Oracle may not

2-18 Oracle9i SQL Reference

Datatypes

return the query results you expect. Here are some examples that assume a table
my_table with a number column row_num and a DATEcolumn datecol

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC(SYSDATE));

SELECT * FROM my_table;

ROW_NUM DATECOL

1 04-OCT-00
2 04-OCT-00

SELECT * FROM my_table
WHERE datecol = TO_DATE('04-OCT-00’, DD-MON-YY’);

ROW_NUM DATECOL

2 04-OCT-00

If you know that the time fields of your DATEcolumn are set to zero, then you can
guery your DATEcolumn as shown in the immediately preceding example, or by
using the DATEliteral:

SELECT * FROM my_table WHERE datecol = DATE '2000-10-04’;

However, if the DATEcolumn contains nonzero time fields, then you must filter out
the time fields in the query to get the correct result. For example:

SELECT * FROM my_table WHERE TRUNC(datecol) = DATE '2000-10-04";

Oracle applies the TRUNCfunction to each row in the query, so performance is better

if you ensure the zero value of the time fields in your data. To ensure that the time
fields are set to zero, use one of the following methods during inserts and updates:

« Use the TO_DATEunction to mask out the time fields:
INSERT INTO my_table VALUES
(3, TO_DATE('4-APR-2000",'DD-MON-YYYY");
« Use the DATElIiteral:
INSERT INTO my_table VALUES (4, '04-OCT-00");

= Use the TRUNCFfunction:
INSERT INTO my_table VALUES (5, TRUNC(SYSDATE));

Basic Elements of Oracle SQL 2-19

Datatypes

The date function SYSDATGEeturns the current system date and time. The function
CURRENT _DATEeturns the current session date. For information on SYSDATEthe
TO_* datetime functions, and the default date format, see Chapter 6, "Functions".

Date Arithmetic You can add and subtract number constants as well as other dates
from dates. Oracle interprets number constants in arithmetic date expressions as
numbers of days. For example, SYSDATE* 1 is tomorrow. SYSDATE 7 is one week
ago. SYSDATE+ (10/1440) is ten minutes from now. Subtracting the hiredate
column of the sample table employees from SYSDATHEeturns the number of days
since each employee was hired. You cannot multiply or divide DATEvalues.

Oracle provides functions for many common date operations. For example, the
ADD_MONTHfainction lets you add or subtract months from a date. The MONTHS _
BETWEENunction returns the number of months between two dates. The fractional
portion of the result represents that portion of a 31-day month.

Because each date contains a time component, most results of date operations
include a fraction. This fraction means a portion of one day. For example, 1.5 days is
36 hours.

See Also:

« "Datetime Functions" on page 6-5 for more information on date
functions

« "Datetime/Interval Arithmetic" on page 2-25 for information on
arithmetic involving other datetime and interval datatypes

Using Julian Dates A Julian date is the number of days since January 1, 4712 BC.
Julian dates allow continuous dating from a common reference. You can use the
date format model “J” with date functions TO_DATEand TO_CHARo convert
between Oracle DATEvalues and their Julian equivalents.

Example This statement returns the Julian equivalent of January 1, 1997:
SELECT TO_CHAR(TO_DATE('01-01-1997’, 'MM-DD-YYYY’),'J’)
FROM DUAL;

TO_CHAR

2450450

2-20 Oracle9i SQL Reference

Datatypes

See Also: "Selecting from the DUAL Table" on page 8-16 for a
description of the DUALtable

TIMESTAMP Datatype

The TIMESTAMPdatatype is an extension of the DATEdatatype. It stores the year,
month, and day of the DATEdatatype, plus hour, minute, and second values. This
datatype is useful for storing precise time values. Specify the TIMESTAMPdatatype
as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds_precision optionally specifies the number of
digits Oracle stores in the fractional part of the SECONIDlatetime field. When you
create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6. When you specify TIMESTAMPas a literal, the fractional
seconds_precision value can be any number of digits up to 9, as follows:

TIMESTAMP’1997-01-31 09:26:50.124’

See Also: TO_TIMESTAMP on page 6-185 for information on
converting character data to TIMESTAMPdata

TIMESTAMP WITH TIME ZONE Datatype

TIMESTAMP WITH TIME ZONE a variant of TIMESTAMPthat includes a time zone
displacement in its value. The time zone displacement is the difference (in hours
and minutes) between local time and UTC (Coordinated Universal Time—formerly
Greenwich Mean Time). This datatype is useful for collecting and evaluating date
information across geographic regions.

Specify the TIMESTAMP WITH TIME ZON#atatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of
digits Oracle stores in the fractional part of the SECONIlatetime field. When you
create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6. When you specify TIMESTAMP WITH TIME ZON&s a literal, the

fractional _seconds_precision value can be any number of digits up to 9.
For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00

Basic Elements of Oracle SQL 2-21

Datatypes

Two TIMESTAMP WITH TIME ZONfzalues are considered identical if they represent
the same instant in UTC, regardless of the TIME ZONEoffsets stored in the data. For
example,

TIMESTAMP '1999-04-15 8:00:00 -8:00°

is the same as
TIMESTAMP '1999-04-15 11:00:00 -5:00’

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard
Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP *1999-04-15 8:00:00 US/Pacific’

To eliminate the ambiguity of boundary cases when the daylight savings time
switches, use both the TZRand a corresponding TZD format element. The following
example ensures that the preceding example will return a daylight savings time
value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT’

If you do not add the TZD format element, and the datetime value is ambiguous,
then Oracle returns an error if you have the ERROR_ON_OVERLAP_TIMEssion
parameter set to TRUE If that parameter is set to FALSE, then Oracle interprets the
ambiguous datetime as standard time.

Note: Oracle’s time zone data is derived from the public domain
information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time
zone data may not reflect the most recent data available at this site.
Please refer to Oracle9i Database Globalization Support Guide for more
information on Oracle time zone data.

2-22 Oracle9i SQL Reference

Datatypes

See Also:

« "Support for Daylight Savings Times" on page 2-26 and
Table 2-15, " Datetime Format Elements” on page 2-69 for
information on daylight savings support

« TO_TIMESTAMP_TZ on page 6-186 for information on
converting character data to TIMESTAMP WITH TIME ZON#ata

« ALTER SESSION on page 10-2 for information on the ERROR_
ON_OVERLAP_TIMBession parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TIMESTAMP WITH LOCAL TIME ZONg&another variant of TIMESTAMPthat
includes a time zone displacement in its value. It differs from TIMESTAMP WITH
TIME ZONEin that data stored in the database is normalized to the database time
zone, and the time zone displacement is not stored as part of the column data.
When users retrieve the data, Oracle returns it in the users’ local session time zone.
The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time).
This datatype is useful for displaying date information in the time zone of the client
system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONtfatatype as follows:
TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of
digits Oracle stores in the fractional part of the SECONIDlatetime field. When you

create a column of this datatype, the value can be a number in the range 0 to 9. The
default is 6.

There is no literal for TIMESTAMP WITH LOCAL TIME ZONE

Note: Oracle’s time zone data is derived from the public domain
information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time
zone data may not reflect the most recent data available at this site.
Please refer to Oracle9i Database Globalization Support Guide for more
information on Oracle time zone data.

Basic Elements of Oracle SQL 2-23

Datatypes

See Also:

« Oracle9i Application Developer’s Guide - Fundamentals for
examples of using this datatype

« CAST on page 6-27 for information on converting character
data to TIMESTAMP WITH LOCAL TIME ZONE

INTERVAL YEAR TO MONTH Datatype

INTERVAL YEAR TO MONHtbres a period of time using the YEARand MONTH
datetime fields. This datatype is useful for representing the precise difference
between two datetime values.

Specify INTERVAL YEAR TO MONTad follows:
INTERVAL YEAR [(year_precision)] TO MONTH

where year precision is the number of digits in the YEARdatetime field. The
default value of year precision is 2.

Note: You have a great deal of flexibility when specifying interval
values as literals. Please refer to "Interval Literals" on page 2-57 for
detailed information on specify interval values as literals.

INTERVAL DAY TO SECOND Datatype

INTERVAL DAY TO SECONiores a period of time in terms of days, hours, minutes,
and seconds. This datatype is useful for representing the difference between two
datetime values when only the year and month values are significant.

Specify this datatype as follows:

INTERVAL DAY [(day_precision)]
TO SECOND ([(fractional_seconds_precision)]

where

« day precision is the number of digits in the DAYdatetime field. Accepted
values are 0 to 9. The default is 2.

« fractional_seconds_precision is the number of digits in the fractional
part of the SECONDIatetime field. Accepted values are 0 to 9. The default is 6.

2-24 Oracle9i SQL Reference

Datatypes

Note: You have a great deal of flexibility when specifying interval
values as literals. Please refer to "Interval Literals" on page 2-57 for
detailed information on specify interval values as literals.

Datetime/Interval Arithmetic

Oracle lets you derive datetime and interval value expressions. Datetime value
expressions yield values of datetime datatype. Interval value expressions yield
values of interval datatype. Table 2-5 lists the operators that you can use in these
expressions.

Table 2-5 Operators in Datetime/Interval Value Expressions

Operand 1 Operator Operand 2 Result Type
Datetime + Interval Datetime
Datetime - Interval Datetime
Interval + Datetime Datetime
Datetime - Datetime Interval®
Interval + Interval Interval
Interval - Interval Interval
Interval * Numeric Interval
Numeric * Interval Interval
Interval / Numeric Interval

2 This operation is not valid for DATEvalues.

For example, you can add an interval value expression to a start time. Consider the
sample table oe.orders with a column order_date . The following statement
adds 30 days to the value of the order_date column:

SELECT order_id, order_date + INTERVAL '30' DAY FROM orders;

Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH
LOCAL TIME ZONEOracle converts the datetime value from the database time zone
to UTC and converts back to the database time zone after performing the
arithmetic. For TIMESTAMP WITH TIME ZONEhe datetime value is always in UTC,
SO NO conversion is necessary.

Basic Elements of Oracle SQL 2-25

Datatypes

Support for Daylight Savings Times

Oracle automatically determines, for any given time zone region, whether daylight
savings is in effect and returns local time values based accordingly. The datetime
value is sufficient for Oracle to determine whether daylight savings time is in effect
for a given region in all cases except boundary cases. A boundary case occurs
during the period when daylight savings goes into or comes out of effect. For
example, in the US-Pacific region, when daylight savings goes into effect, the time
changes from 2:00 a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does
not exist. When daylight savings goes out of effect, the time changes from 2:00 a.m.
back to 1:00 a.m., and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZRand TZD format elements, as
described in Table 2-15 on page 2-69. TZRrepresents the time zone region in
datetime input strings. Examples are ’Australia/North ’,’UTC, and

'Singapore . TZDrepresents an abbreviated form of the time zone region with
daylight savings information. Examples are 'PST for US/Pacific standard time and
'PDT for US/Pacific daylight time. To see a listing of valid values for the TZRand
TZD format elements, query the TZNAMEand TZABBRE\Wtolumns of the
V$TIMEZONE_NAMES8ynamic performance view.

Note: Timezone region names are needed by the daylight savings
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight savings
support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable. Please refer to
Oracle9i Database Administrator’s Guide for more information about
setting the ORA_TZFILE environment variable.

Note: Oracle’s time zone data is derived from the public domain
information available at ftp://elsie.nci.nih.gov/pub/. Oracle’s time
zone data may not reflect the most recent data available at this site.
Please refer to Oracle9i Database Globalization Support Guide for more
information on Oracle time zone data.

2-26 Oracle9i SQL Reference

Datatypes

See Also:

« "Date Format Models" on page 2-68 for information on the
format elements

« Oracle9i Database Reference for information on the dynamic
performance views

Datetime and Interval Example
The following example shows how to declare some datetime and interval datatypes.

CREATE TABLE time_table (
start_time TIMESTAMP,
duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMPThe implicit fractional seconds
precision of TIMESTAMRPs 6.

The duration_1 column is of type INTERVAL DAY TO SECONDhe maximum
number of digits in field DAYis 6 and the maximum number of digits in the
fractional second is 5. The maximum number of digits in all other datetime fields is
2.

The duration_2 column is of type INTERVAL YEAR TO MONTFhe maximum
number of digits of the value in each field (YEARand MONTHMis 2.

RAW and LONG RAW Datatypes

The RAWANd LONG RAWWatatypes store data that is not to be interpreted (not
explicitly converted when moving data between different systems) by Oracle. These
datatypes are intended for binary data or byte strings. For example, you can use
LONG RAW store graphics, sound, documents, or arrays of binary data, for which
the interpretation is dependent on the use.

Note: Oracle Corporation strongly recommends that you convert
LONG RAWbIumns to binary LOB (BLOB columns. LOB columns
are subject to far fewer restrictions than LONGcolumns. See TO _
LOB on page 6-178 for more information.

RAWis a variable-length datatype like VARCHARZexcept that Oracle Net (which
connects user sessions to the instance) and the Import and Export utilities do not
perform character conversion when transmitting RAWor LONG RAWata. In contrast,

Basic Elements of Oracle SQL 2-27

Datatypes

Oracle Net and Import/Export automatically convert CHARVARCHARZand LONG
data from the database character set to the user session character set (which you can
set with the NLS_LANGUAGRarameter of the ALTER SESSIONstatement), if the
two character sets are different.

When Oracle automatically converts RAWbr LONG RAWata to and from CHARdata,
the binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAWHata. For example, one byte of RAWlata with
bits 11001011 is displayed and entered as 'CB’.

Large Object (LOB) Datatypes

The built-in LOB datatypes BLOB CLOB and NCLOB(stored internally) and BFILE
(stored externally), can store large and unstructured data such as text, image, video,
and spatial data up to 4 gigabytes in size.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

LOB columns contain LOB locators that can refer to out-of-line or in-line LOB
values. Selecting a LOB from a table actually returns the LOB’s locator and not the
entire LOB value. The DBMS_LOBackage and Oracle Call Interface (OCI)
operations on LOBs are performed through these locators.

LOBs are similar to LONGand LONG RAWypes, but differ in the following ways:
=« LOBs can be attributes of a user-defined datatype (object).

« The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB NCLOBand CLOBvalues can be stored in separate
tablespaces. BFILE data is stored in an external file on the server.

« When you access a LOB column, the locator is returned.

« A LOB can be up to 4 gigabytes in size. BFILE maximum size is operating
system dependent, but cannot exceed 4 gigabytes.

« LOBs permit efficient, random, piece-wise access to and manipulation of data.
= You can define more than one LOB column in a table.

« With the exception of NCLOByou can define one or more LOB attributes in an
object.

« You can declare LOB bind variables.

« You can select LOB columns and LOB attributes.

2-28 Oracle9i SQL Reference

Datatypes

You can insert a new row or update an existing row that contains one or more
LOB columns or an object with one or more LOB attributes. (You can set the
internal LOB value to NULL, empty, or replace the entire LOB with data. You
can set the BFILE to NULLor make it point to a different file.)

You can update a LOB row/column intersection or a LOB attribute with
another LOB row/column intersection or LOB attribute.

You can delete a row containing a LOB column or LOB attribute and thereby
also delete the LOB value. Note that for BFILESs, the actual operating system file
is not deleted.

You can access and populate rows of an internal LOB column (a LOB column stored
in the database) simply by issuing an INSERT or UPDATEstatement. However, to
access and populate a LOB attribute that is part of an object type, you must first
initialize the LOB attribute using the EMPTY_CLOBr EMPTY_BLOBunction. You
can then select the empty LOB attribute and populate it using the DBMS_LOB
package or some other appropriate interface.

Restrictions on LOB Columns LOB columns are subject to the following
restrictions:

Distributed LOBs are not supported. Therefore, you cannot use a remote locator
in SELECTor WHEREIlauses of queries or in functions of the DBMS_LOB
package.

The following syntax is not supported for LOBs:

SELECT lobcol FROM tablel@remote_site;

INSERT INTO lobtable SELECT typel.lobattr FROM tablel@remote_
site;

SELECT DBMS_LOB.getlength(lobcol) FROM tablel@remote_site;

However, you can use a remote locator in others parts of queries that reference
LOBs. The following syntax is supported on remote LOB columns:

CREATE TABLE t AS SELECT * FROM tablel@remote_site;
INSERT INTO t SELECT * FROM tablel@remote_site;

UPDATE t SET lobcol = (SELECT lobcol FROM tablel@remote_site);
INSERT INTO tablel@remote_site ...

UPDATE tablel@remote_site ...

DELETE tablel@remote_site ...

For the first three types of statement, which contain subqueries, only standalone

LOB columns are allowed in the select list. SQL functions or DBMS_LOBAPIs on
LOBs are not supported. For example, the following statement is supported:

Basic Elements of Oracle SQL 2-29

Datatypes

CREATE TABLE AS SELECT clob_col FROM tab@dbs2;

However, the following statement is not supported:
CREATE TABLE AS SELECT dbms_lob.substr(clob_col) from tab@dbs2;

Clusters cannot contain LOBs, either as key or nonkey columns.
You cannot create a varray of LOBs.

You cannot specify LOB columns in the ORDER B¥lause of a query, or in the
GROUP BYlause of a query or in an aggregate function.

You cannot specify a LOB column in a SELECT... DISTINCT or SELECT...
UNIQUEstatement or in a join. However, you can specify a LOB attribute of an
object type column in a SELECT... DISTINCT statement or in a query that uses
the UNIONor MINUSset operator if the column’s object type has a MAPor
ORDERunction defined on it.

You cannot specify LOB columns in ANALYZE... COMPUTEEr ANALYZE...
ESTIMATEstatements.

The first (INITIAL) extent of a LOB segment must contain at least three
database blocks.

When creating an UPDATEDML trigger, you cannot specify a LOB column in
the UPDATE OElause.

You cannot specify a LOB as a primary key column.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the function of a function-based index or in the
indextype specification of a domain index. In addition, Oracle Text lets you
define an index on a CLOB column.

In an INSERT or UPDATEoperation, you can bind data of any size to a LOB
column, but you cannot bind data to a LOB attribute of an object type. In an
INSERT ... AS SELECToperation, you can bind up to 4000 bytes of data to LOB
columns.

See Also: "Keywords and Parameters" section of individual SQL
statements in Oracle9i SQL Reference for additional semantics for the
use of LOBs

If a table has both LONGand LOB columns, you cannot bind more than 4000
bytes of data to both the LONGand LOB columns in the same SQL statement.

2-30 Oracle9i SQL Reference

Datatypes

However, you can bind more than 4000 bytes of data to either the LONGor the
LOB column.

Notes:

« Oracle8i Release 2 (8.1.6) and higher support the CACHE READS
setting for LOBs. If you have such LOBs and you downgrade to
an earlier release, Oracle generates a warning and converts the
LOBs from CACHE READ&® CACHE LOGGING/ou can
subsequently alter the LOBs to either NOCACHE LOGGINgB
NOCACHE NOLOGGING

« For atable on which you have defined a DML trigger, if you
use OCI functions or DBMS_LOBoutines to change the value of
a LOB column or the LOB attribute of an object type column,
Oracle does not fire the DML trigger.

See Also:

« Oracle9i Application Developer’s Guide - Large Objects (LOBs) for
more information about LOBs, including details about
migrating from LONGto LOB and about the CACHE READS
setting

« EMPTY_BLOB, EMPTY_CLOB on page 6-61

« "Oracle-Supplied Types" on page 2-40 for alternative ways of
storing image, audio, video, and spatial data

The following example shows how the sample table pm.print_media was
created. (This example assumes the existence of the textdoc_tab object table,
which is nested table in the print_media table.)

CREATE TABLE print_media
('product_id NUMBER(6)
,ad_id NUMBER(6)

, ad_composite BLOB

, ad_sourcetext CLOB
,ad_finaltext CLOB

, ad_fltextn NCLOB

, ad_textdocs_ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFILE

Basic Elements of Oracle SQL 2-31

Datatypes

, ad_header adheader_typ
, press_release LONG
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

See Also:

« Oracle9i Supplied PL/SQL Packages and Types Reference and Oracle
Call Interface Programmer’s Guide for more information about
these interfaces and LOBs

« the modify_col properties clause of ALTER TABLE on
page 11-2 and TO_LOB on page 6-178 for more information on
converting LONGcolumns to LOB columns

BFILE Datatype

The BFILE datatype enables access to binary file LOBs that are stored in file
systems outside the Oracle database. A BFILE column or attribute stores a BFILE
locator, which serves as a pointer to a binary file on the server’s file system. The
locator maintains the directory alias and the filename.

You can change the filename and path of a BFILE without affecting the base table
by using the BFILENAMEfunction.

See Also: BFILENAME on page 6-23 for more information on this
built-in SQL function

Binary file LOBs do not participate in transactions and are not recoverable. Rather,
the underlying operating system provides file integrity and durability. The
maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype enables read-only support of large binary files. You cannot

modify or replicate such a file. Oracle provides APIs to access file data. The primary

interfaces that you use to access file data are the DBMS_LORpackage and the OCI.
See Also:

« Oracle9i Application Developer’s Guide - Large Objects (LOBs) and
Oracle Call Interface Programmer’s Guide for more information
about LOBs.

. CREATE DIRECTORY on page 13-49

2-32 Oracle9i SQL Reference

Datatypes

BLOB Datatype

The BLOBdatatype stores unstructured binary large objects. BLOBscan be thought
of as bitstreams with no character set semantics. BLOBscan store up to 4 gigabytes
of binary data.

BLOBshave full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. BLOBvalue manipulations
can be committed and rolled back. However, you cannot save a BLOBIocator in a
PL/SQL or OCI variable in one transaction and then use it in another transaction or
session.

CLOB Datatype

The CLOBdatatype stores single-byte and multibyte character data. Both
fixed-width and variable-width character sets are supported, and both use the CHAR
database character set. CLOBscan store up to 4 gigabytes of character data.

CLOBshave full transactional support. Changes made through SQL, the DBMS_LOB
package, or the OCI participate fully in the transaction. CLOBvalue manipulations
can be committed and rolled back. However, you cannot save a CLOBIocator in a
PL/SQL or OCI variable in one transaction and then use it in another transaction or
session.

NCLOB Datatype

The NCLOBdatatype stores Unicode data using the national character set. Both
fixed-width and variable-width character sets are supported. NCLOBscan store up
to 4 gigabytes of character text data.

NCLOBshave full transactional support. Changes made through SQL, the DBMS _
LOBpackage, or the OCI participate fully in the transaction. NCLOBvalue
manipulations can be committed and rolled back. However, you cannot save an
NCLOBocator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

See Also: Oracle9i Database Globalization Support Guide for
information on Unicode datatype support

ROWID Datatype
Each row in the database has an address. You can examine a row’s address by
guerying the pseudocolumn ROWIDValues of this pseudocolumn are strings
representing the address of each row. These strings have the datatype ROWID You
can also create tables and clusters that contain actual columns having the ROWID

Basic Elements of Oracle SQL 2-33

Datatypes

datatype. Oracle does not guarantee that the values of such columns are valid
rowids.

See Also: "Pseudocolumns” on page 2-82 for more information on
the ROWIDpseudocolumn

Restricted Rowids

Beginning with Oracle8, Oracle SQL incorporated an extended format for rowids to
efficiently support partitioned tables and indexes and tablespace-relative data block
addresses (DBAs) without ambiguity.

Character values representing rowids in Oracle7 and earlier releases are called
restricted rowids. Their format is as follows:

block.row.file

where:

« block is ahexadecimal string identifying the data block of the datafile
containing the row. The length of this string depends on your operating system.

« row is a four-digit hexadecimal string identifying the row in the data block. The
first row of the block has a digit of 0.

« file isahexadecimal string identifying the database file containing the row.
The first datafile has the number 1. The length of this string depends on your
operating system.

Extended Rowids

The extended ROWIDdatatype stored in a user column includes the data in the
restricted rowid plus a data object number. The data object number is an
identification number assigned to every database segment. You can retrieve the data
object number from the data dictionary views USER_OBJECTIBA_ OBJECTSand
ALL_OBJECTS Objects that share the same segment (clustered tables in the same
cluster, for example) have the same object number.

Extended rowids are stored as base 64 values that can contain the characters A-Z,
a-z, 0-9, as well as the plus sign (+) and forward slash (/). Extended rowids are not
available directly. You can use a supplied package, DBMS_ROW!IRo interpret
extended rowid contents. The package functions extract and provide information
that would be available directly from a restricted rowid as well as information
specific to extended rowids.

2-34 Oracle9i SQL Reference

Datatypes

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
information on the functions available with the DBMS_ROWID
package and how to use them

Compatibility and Migration
The restricted form of a rowid is still supported in Oracle9i for backward
compatibility, but all tables return rowids in the extended format.

See Also: Oracle9i Database Migration Guide for information
regarding compatibility and migration issues

UROWID Datatype

Each row in a database has an address. However, the rows of some tables have
addresses that are not physical or permanent or were not generated by Oracle. For
example, the row addresses of index-organized tables are stored in index leaves,
which can move. Rowids of foreign tables (such as DB2 tables accessed through a
gateway) are not standard Oracle rowids.

Oracle uses "universal rowids" (urowids) to store the addresses of index-organized
and foreign tables. Index-organized tables have logical urowids and foreign tables
have foreign urowids. Both types of urowid are stored in the ROWIDpseudocolumn
(as are the physical rowids of heap-organized tables).

Oracle creates logical rowids based on a table’s primary key. The logical rowids do
not change as long as the primary key does not change. The ROWIDpseudocolumn
of an index-organized table has a datatype of UROWIDYou can access this
pseudocolumn as you would the ROWIDpseudocolumn of a heap-organized table
(that is, using the SELECT ROWIBtatement). If you wish to store the rowids of an
index-organized table, then you can define a column of type UROWIOor the table
and retrieve the value of the ROWIDpseudocolumn into that column.

Note: Heap-organized tables have physical rowids. Oracle
Corporation does not recommend that you specify a column of
datatype UROWIor a heap-organized table.

Basic Elements of Oracle SQL 2-35

Datatypes

See Also:

« Oracle9i Database Concepts for more information on universal
rowids

« "ROWID Datatype" on page 2-33 for a discussion of the address
of database rows

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from IBM’s products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle datatype name, records it as the
name of the datatype of the column, and then stores the column’s data in an Oracle
datatype based on the conversions shown in Table 2-6 and Table 2-7.

Table 2-6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER(n) CHAR(N)
CHAR(n)

CHARACTER VARYING(n) VARCHAR(n)
CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)
NATIONAL CHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n) NVARCHAR2(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NUMERIC(p,s) NUMBER(p,s)
DECIMAL(p,s) 2

2The NUMERICand DECIMALdatatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

PThe FLOATdatatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

‘The DOUBLE PRECISIONlatatype is a floating-point number with binary precision 126.
9The REALdatatype is a floating-point number with a binary precision of 63, or 18 decimal.

2-36 Oracle9i SQL Reference

Datatypes

Table 2-6 (Cont.) ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
INTEGER NUMBER(38)
INT

SMALLINT

FLOAT(b) ° NUMBER
DOUBLE PRECISION
REALY

2The NUMERICand DECIMALdatatypes can specify only fixed-point numbers. For these
datatypes, s defaults to 0.

PThe FLOATdatatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

‘The DOUBLE PRECISIONlatatype is a floating-point number with binary precision 126.
9The REALdatatype is a floating-point number with a binary precision of 63, or 18 decimal.

Table 2—-7 SQL/DS and DBZ2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR(n) LONG
DECIMAL(p,s) 2 NUMBER(p,s)
INTEGER NUMBER(38)
SMALLINT

FLOAT(b)b NUMBER

aThe DECIMALdatatype can specify only fixed-point numbers. For this datatype, s defaults to
0.

bThe FLOATdatatype is a floating-point number with a binary precision b. The default
precision for this datatype is 126 binary, or 38 decimal.

Do not define columns with the following SQL/DS and DB2 datatypes, because
they have no corresponding Oracle datatype:

« GRAPHIC
« LONG VARGRAPHIC

Basic Elements of Oracle SQL 2-37

Datatypes

« VARGRAPHIC
« TIME
Note that data of type TIME can also be expressed as Oracle DATEdata.

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined
datatypes as the building blocks of types that model the structure and behavior of
data in applications.

The sections that follow describe the various categories of user-defined types.

See Also:

« Oracle9i Database Concepts for information about Oracle built-in
datatypes

« CREATE TYPE on page 16-3 and the CREATE TYPE BODY on
page 16-25 for information about creating user-defined types

« Oracle9i Application Developer’s Guide - Fundamentals for
information about using user-defined types

Object Types

Obiject types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds
of components:

« A name, which identifies the object type uniquely within that schema

« Attributes, which are built-in types or other user-defined types. Attributes
model the structure of the real-world entity.

« Methods, which are functions or procedures written in PL/SQL and stored in
the database, or written in a language like C or Java and stored externally.
Methods implement operations the application can perform on the real-world
entity.

REFs

An object identifier (OID) uniquely identifies an object and enables you to
reference the object from other objects or from relational tables. A datatype category
called REFrepresents such references. A REFis a container for an object identifier.
REFs are pointers to objects.

2-38 Oracle9i SQL Reference

Datatypes

When a REFvalue points to a nonexistent object, the REFis said to be "dangling". A
dangling REFis different from a null REF. To determine whether a REFis dangling
or not, use the predicate IS [NOT DANGLING For example, given object view oc_
orders in the sample schema oe, the column customer_ref s of type REFto
type customer_typ , which has an attribute cust_email

SELECT o.customer_ref.cust_email
FROM oc_orders o
WHERE o.customer_ref IS NOT DANGLING;

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
element’s position in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum
size when you declare the array.

When you declare a varray, it does not allocate space. It defines a type, which you
can use as:

« The datatype of a column of a relational table
« An object type attribute
« APL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (that is, as part of the row data)
or out of line (in a LOB), depending on its size. However, if you specify separate
storage characteristics for a varray, then Oracle will store it out of line, regardless of
its size.

See Also: the varray col properties of CREATE TABLE on
page 15-40

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column
for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can
use to declare:

Basic Elements of Oracle SQL 2-39

Datatypes

« Columns of a relational table
« Obiject type attributes
« PL/SQL variables, parameters, and function return values

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the
nested table data in a single table, which it associates with the enclosing relational
or object table.

Oracle-Supplied Types

"Any" Types

Oracle Corporation provides SQL-based interfaces for defining new types when the
built-in or ANSI-supported types are not sufficient. The behavior for these types can
be implemented in C/C++, Java, or PL/ SQL. Oracle automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new datatypes, and optimizations for data transfers between the
application and the database.

These interfaces can be used to build user-defined (or object) types, and are also
used by Oracle to create some commonly useful datatypes. Several such datatypes
are supplied with the server, and they serve both broad horizontal application areas
(for example, the "Any" types) and specific vertical ones (for example, the spatial
type).

The Oracle-supplied types, along with cross-references to the documentation of
their implementation and use, are described in the following sections:

« "Any" Types
« XML Types

« Spatial Type
« Media Types

The "Any" types provide highly flexible modeling of procedure parameters and
table columns where the actual type is not known. These datatypes let you
dynamically encapsulate and access type descriptions, data instances, and sets of
data instances of any other SQL type. These types have OCI and PL/SQL interfaces
for construction and access.

2-40 Oracle9i SQL Reference

Datatypes

XML Types

SYS.ANYTYPE

This type can contain a type description of any nhamed SQL type or unnamed
transient type.

SYS.ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATAan be used as a table column datatype and lets you store
heterogeneous values in a single column. The values can be of SQL built-in types as
well as user-defined types.

SYS.ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASETan be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

See Also: Oracle Call Interface Programmer’s Guide, PL/SQL User’s
Guide and Reference, and Oracle9i Application Developer’s Guide -
Fundamentals for the implementation of these types and guidelines
for using them

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the Web. Universal Resource Identifiers (URIs) identify resources such as Web pages
anywhere on the Web. Oracle provides types to handle XML and URI data, as well
as a class of URIs called DBURIRefs to access data stored within the database itself.
It also provides a new set of types to store and access both external and internal
URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XMLType has member functions you can use to access, extract, and query the XML
data using XPath expressions. XPath is another standard developed by the W3C
committee to traverse XML documents. Oracle XMLType functions support many
W3C XPath expressions. Oracle also provides a set of SQL functions and PL/SQL
packages to create XMLType values from existing relational or object-relational data.

Basic Elements of Oracle SQL 2-41

Datatypes

XMLType is a system-defined type, so you can use it as an argument of a function or
as the datatype of a table or view column. You can also create tables and views of
XMLType. When you create an XMLType column in a table, you can choose to store
the XML data in a CLOBcolumn or object relationally.

You can also register the schema (using the DBMS_XMLSCHENbAckage) and create
a table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify
storage in a CLOBcolumn even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

URI Datatypes

Oracle supplies a family of URI types—URIType , DBURIType, XDBURIType, and
HTTPURIType—which are related by an inheritance hierarchy. URIType is an
object type and the others are subtypes of URIType . Since URIType is the
supertype, you can create columns of this type and store DBURIType or
HTTPURIType type instances in this column.

HTTPURIType You can use HTTPURIType to store URLSs to external Web pages or
to files. Oracle accesses these files using the HTTP (Hypertext Transfer Protocol)
protocol.

XDBURIType You can use XDBURIType to expose documents in the XML database
hierarchy as URIs that can be embedded in any URIType column in a table. The
XDBURIType consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath
syntax. The fragment is separated from the URL part by a pound sign (#). The
following lines are examples of XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

DBURIType DBURIType can be used to store DBURIRefs, which reference data
inside the database. Storing DBURIRefs lets you reference data stored inside or
outside the database and access the data consistently.

DBURIRefs use an XPath-like representation to reference data inside the database.
If you imagine the database as an XML tree, then you would see the tables, rows,
and columns as elements in the XML document. For instance, the sample human
resources user hr would see the following XML tree:

2-42 Oracle9i SQL Reference

Datatypes

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_|D>
<LAST_NAME>Higgins</LAST_NAME>
<SALARY>12000</SALARY>
.. <I-- other columns -->
</ROW>
... <I-- other rows -->
</[EMPLOYEES>
<l-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIREef is simply an XPath expression over this virtual XML document. So
to reference the SALARYvalue in the EMPLOYEE®ble for the employee with
employee number 205, we can write a DBURIRef as,

/HR/IEMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOBcolumns or other columns
and expose them as URLSs to the external world.

URIFactory Package

Oracle also provides the URIFactory package, which can create and return
instances of the various subtypes of the URITypes . The package analyzes the URL
string, identifies the type of URL (HTTP, DBURI, and so on), and creates an instance
of the subtype. To create a DBURI instance, the URL must start with the prefix
Joradb . For example, URIFactory.getURI('/oradb/HR/EMPLOYEES’)

would create a DBURIType instance and

URIFactory.getUri('/sys/schema’) would create an XDBURIType instance.

See Also:

« Oracle9i Application Developer’s Guide - Object-Relational Features
for general information on object types and type inheritance

« Oracle9i XML Developer’s Kits Guide - XDK for more information
about these supplied types and their implementation

« Oracle9i Application Developer’s Guide - Advanced Queuing for
information about using XMLType with Oracle Advanced
Queuing

Basic Elements of Oracle SQL 2-43

Datatypes

Spatial Type

Media Types

The object-relational implementation of Oracle Spatial consists of a set of object data
types, an index method type, and operators on these types.

MDSYS.SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRI a user-defined table. Any table that has a
column of type SDO_GEOMETRNust have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes
referred to as geometry tables.

See Also: Oracle Spatial User’s Guide and Reference for information
on the implementation of this type and guidelines for using it

Oracle interMedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The Oracle interMedia types are:

ORDSYS.ORDAudio
The ORDAUDIMbject type supports the storage and management of audio data.

ORDSYS.ORDImage
The ORDIMAG©Dbject type supports the storage and management of image data.

ORDSYS.ORDImageSignature

The ORDSYS.ORDImageSignature type supports a compact representation of the
color, texture, and shape information of image data.

ORDSYS.ORDVideo
The ORDVIDEODbject type supports the storage and management of video data.

ORDSYS.ORDDoc

The ORDDOGbiject type supports storage and management of any type of media
data, including audio, image and video data. Use this type when you want all
media to be stored in a single column.

2-44 Oracle9i SQL Reference

Datatypes

See Also: Oracle interMedia User’s Guide and Reference for
information on the implementation of these types and guidelines
for using them

Datatype Comparison Rules
This section describes how Oracle compares values of each datatype.

Number Values

A larger value is considered greater than a smaller one. All negative numbers are
less than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

Date Values

A later date is considered greater than an earlier one. For example, the date
equivalent of '29-MAR-1997’ is less than that of "05-JAN-1998’ and '05-JAN-1998
1:35pm’ is greater than '05-JAN-1998 10:09am’.

Character String Values
Character values are compared using one of these comparison rules:

« Blank-padded comparison semantics
« Nonpadded comparison semantics

The following sections explain these comparison semantics.

Blank-Padded Comparison Semantics If the two values have different lengths,
then Oracle first adds blanks to the end of the shorter one so their lengths are equal.
Oracle then compares the values character by character up to the first character that
differs. The value with the greater character in the first differing position is
considered greater. If two values have no differing characters, then they are
considered equal. This rule means that two values are equal if they differ only in the
number of trailing blanks. Oracle uses blank-padded comparison semantics only
when both values in the comparison are either expressions of datatype CHAR
NCHARtext literals, or values returned by the USERfunction.

Nonpadded Comparison Semantics ~ Oracle compares two values character by character
up to the first character that differs. The value with the greater character in that
position is considered greater. If two values of different length are identical up to
the end of the shorter one, then the longer value is considered greater. If two values
of equal length have no differing characters, then the values are considered equal.

Basic Elements of Oracle SQL 2-45

Datatypes

Oracle uses nonpadded comparison semantics whenever one or both values in the
comparison have the datatype VARCHAR®r NVARCHAR2

The results of comparing two character values using different comparison
semantics may vary. The table that follows shows the results of comparing five pairs
of character values using each comparison semantic. Usually, the results of
blank-padded and nonpadded comparisons are the same. The last comparison in
the table illustrates the differences between the blank-padded and nonpadded
comparison semantics.

Blank-Padded Nonpadded
‘ac’ >’ab’ ‘ac’ >ab’

ab’ >'a ‘ab’>"a
‘ab’ >'a’ ‘ab’ >'a’

‘ab’ ="ab’ ‘ab’ ="ab’

a '='@ a '>'a

Single Characters

Oracle compares single characters according to their numeric values in the database
character set. One character is greater than another if it has a greater numeric value
than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

« 7-bit ASCII (American Standard Code for Information Interchange)
« EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
« 1SO 885971 (International Standards Organization)

« JEUC Japan Extended UNIX

Portions of the ASCII and EBCDIC character sets appear in Table 2-8 and Table 2-9.
Note that uppercase and lowercase letters are not equivalent. Also, note that the
numeric values for the characters of a character set may not match the linguistic
sequence for a particular language.

2-46 Oracle9i SQL Reference

Datatypes

Table 2-8 ASCII Character Set

Symbol Decimal value Symbol Decimal value
blank 32 ; 59
! 33 < 60
34 = 61
35 > 62
$ 36 ? 63
% 37 @ 64
& 38 A-Z 65-90
’ 39 [91
(40 \ 92
) 41] 93
* 42 n 94
+ 43 _ 95
; 44 ‘ 96
- 45 a-z 97-122
46 { 123
/ 47 | 124
0-9 48-57 } 125
58 ~ 126
Table 2-9 EBCDIC Character Set
Symbol Decimal value Symbol Decimal value
blank 64 % 108
¢ 74 B 109
75 > 110
< 76 ? 111
(77 122

Basic Elements of Oracle SQL 2-47

Datatypes

Table 2-9 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value
+ 78 # 123
| 79 @ 124
& 80 ’ 125
! 90 = 126
$ 91 " 127
* 92 a-i 129-137
) 93 j-r 145-153
94 s-z 162-169
y 95 A-l 193-201
- 96 J-R 209-217
/ 97 S-Z 226-233
Object Values

Object values are compared using one of two comparison functions: MAPand
ORDERBoth functions compare object type instances, but they are quite different
from one another. These functions must be specified as part of the object type.

See Also: CREATE TYPE on page 16-3 and Oracle9i Application
Developer’s Guide - Fundamentals for a description of MAPand ORDER
methods and the values they return

Varrays and Nested Tables
You cannot compare varrays and nested tables in Oracle9i.

Data Conversion

Generally an expression cannot contain values of different datatypes. For example,
an expression cannot multiply 5 by 10 and then add "JAMES’. However, Oracle
supports both implicit and explicit conversion of values from one datatype to
another.

2-48 Oracle9i SQL Reference

Datatypes

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions rather than rely on
implicit or automatic conversions, for these reasons:

SQL statements are easier to understand when you use explicit datatype
conversion functions.

Automatic datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

Implicit conversion depends on the context in which it occurs and may not
work the same way in every case. For example, implicit conversion from a date
value to a VARCHARZalue may return an unexpected year depending on the
value of the NLS_DATE_FORMAparameter.

Algorithms for implicit conversion are subject to change across software
releases and among Oracle products. Behavior of explicit conversions is more
predictable.

Implicit Data Conversion

Oracle automatically converts a value from one datatype to another when such a
conversion makes sense. Table 2-10 is a matrix of Oracle implicit conversions. The
table shows all possible conversions, without regard to the direction of the
conversion or the context in which it is made. The rules governing these details
follow the table.

Table 2-10 Implicit Type Conversion Matrix
(V] ~ 0:
w
% = <>(5) 24 % m
T & wiEfE 2 2 3 5 8 8 % ¢ 9
T < T 5B 5 S = o 9 Q o s 0
O > A 4o £ | 4 04 x O s} pd pd pd
CHAR — X X X X X — X — X X
VARCHAR2 X — X X X X — X X
DATE X X — — — — — — — — X
DATETIME/ X — — X — — — — — X X
INTERVAL
LONG X — X — — X — X — X X
NUMBER — — — — — — — — X X

Basic Elements of Oracle SQL 2-49

Datatypes

Table 2-10 (Cont.) Implicit Type Conversion Matrix

8 oo x
% = § 5 &) a4 5 m
1 O w E % o 1] = m m < x o)
£ & g5E£ 3 3 %2 3 S 9 & £ 3
O < da 4 2 3 z 04 & O) b4 z b4
RAW X X — — X — — — — X X X
ROWID X X — — — — — — — — X X
CLOB X X — — X — — — — — — _
BLOB — — — — — — X — — — _ _
NCHAR X — — _ X
NVARCHAR?2 X X — _ X _
NCLOB — — — — X — — — — — X X

The following rules govern the direction in which Oracle makes implicit datatype
conversions:

« During INSERT and UPDATEoperations, Oracle converts the value to the
datatype of the affected column.

« During SELECT FROMperations, Oracle converts the data from the column to
the type of the target variable.

« When comparing a character value with a NUMBERalue, Oracle converts the
character data to NUMBER

« When comparing a character value with a DATEvalue, Oracle converts the
character data to DATE

« When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

« When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

« During concatenation operations, Oracle converts from noncharacter datatypes
to CHARor NCHAR

« During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a
number, date, or rowid, as appropriate. In arithmetic operations between
CHAR'VARCHAR2nd NCHARNVARCHARracle converts to a number.

2-50 Oracle9i SQL Reference

Datatypes

« Comparisons between CHARFVARCHAR2nd NCHARNVARCHAR®/pes may
entail different character sets. The default direction of conversion in such cases
is from the database character set to the national character set. Table 2-11 shows
the direction of implicit conversions between different character types.

« Most SQL character functions are enabled to accept CLOB as parameters, and
Oracle performs implicit conversions between CLOBand CHARtypes. Therefore,
functions that are not yet enabled for CLOB can accept CLOB through implicit
conversion. In such cases, Oracle converts the CLOB to CHARor VARCHAR?2
before the function is invoked. If the CLOBIs larger than 4000 bytes, then Oracle
converts only the first 4000 bytes to CHAR

Table 2-11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR - VARCHAR2 NCHAR NVARCHAR2
from VARCHAR2 ~ VARCHAR2 - NVARCHAR?2 NVARCHAR?2
from NCHAR NCHAR NCHAR - NVARCHAR2

from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR?2 --

Implicit Data Conversion Examples

Text Literal Example The text literal "10’ has datatype CHAROracle implicitly
converts it to the NUMBERIatatype if it appears in a numeric expression as in the
following statement:

SELECT salary +'10’
FROM employees;

Character and Number Values Example When a condition compares a character
value and a NUMBERalue, Oracle implicitly converts the character value to a
NUMBERalue, rather than converting the NUMBERalue to a character value. In the
following statement, Oracle implicitly converts 200’ to 200:

SELECT last_name
FROM employees
WHERE employee_id = '200’;

Date Example In the following statement, Oracle implicitly converts '03-MAR-97 °
to a DATEvalue using the default date format 'DD-MON-YY:

SELECT last_name

Basic Elements of Oracle SQL 2-51

Datatypes

FROM employees
WHERE hire_date = '03-MAR-97’;

Rowid Example In the following statement, Oracle implicitly converts the text
literal '’AAAFYmMAAFAAAAFGAALD a rowid value. (Rowids are unique within a
database, so to use this example you must know an actual rowid in your database.)

SELECT last_name
FROM employees
WHERE ROWID ='AAAFd1AAFAAAABSAAH';

Explicit Data Conversion

You can also explicitly specify datatype conversions using SQL conversion
functions. The following table shows SQL functions that explicitly convert a value
from one datatype to another.

Table 2-12 Explicit Type Conversion

o
9
AN
T x ~ O
-(E,:\:l < % £ a) Z <
[a g > = =
<5E8 = 1ok 2 = or 8
TOSC) G > Z © o9 prffee]
oxrs5s P Qg o x 3 % 09
2$z2 2 o E IS 2 29 em
from CHAR, TO_CHAR TO_ TO_DATE HEX- CHARTO- — TO_CLOB
VARCHAR2, (character) NUMBER TO_TIMESTAMP TORAW ROWID TO_NCLOB
NCHAR, TO_NCHAR
NVARCHAR?2 — TO _TIMESTAMP _TZ
(character) - -
TO_YMINTERVAL
TO_DSINTERVAL
fromNUMBER TO_CHAR — TO_DATE — — — —
(number) NUMTOYMINTERVAL
TO_NCHAR
(number) NUMTODSINTERVAL
from Datetime/ TO_CHAR — — — — — —
Interval (date)
TO_NCHAR
(datetime)

2-52 Oracle9i SQL Reference

Literals

Table 2-12 (Cont.) Explicit Type Conversion

)
9
N
- o - O
—% < % £ o) -E =
© > = =
<TTO = o P = o o)
TOS) < 2 < 0 o9 oo
ox s <>E zZ 0g 04 4 2 % @) 9
oSzZ IS o E IS 2 29 om
from RAW RAWTOHEX — — — — — TO_BLOB
RAWTONHEX
from ROWID ROWIDTOCHAR — — — — —
from LONG / — — — — — — TO_LOB
LONG RAW
from CLOB, TO_CHAR — — — — — TO_CLOB
NCLOB, BLOB TO_NCHAR TO_NCLOB
Note: You cannot specify LONGand LONG RAWalues in cases in
which Oracle can perform implicit datatype conversion. For
example, LONGand LONG RAWalues cannot appear in expressions
with functions or operators. For information on the limitations on
LONGand LONG RAWatatypes, see "LONG Datatype" on page 2-14.
See Also: "Conversion Functions" on page 6-6 of the SQL
Reference for details on all of the explicit conversion functions
Literals

The terms literal and constant value are synonymous and refer to a fixed data
value. For example, 'JACK’, 'BLUE ISLAND?’, and ’101’ are all character literals;
5001 is a numeric literal. Character literals are enclosed in single quotation marks,
which enable Oracle to distinguish them from schema object names.

This section contains these topics:
« Text Literals

« Integer Literals

Basic Elements of Oracle SQL 2-53

Literals

Text Literals

« Number Literals
« Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the "text ’ notation, national character literals
with the N'text” notation, and numeric literals with the integer or number
notation, depending on the context of the literal. The syntactic forms of these
notations appear in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account
any optional precisions included in the datatypes. Examples of specifying datetime
and interval datatypes as literals are provided in the relevant sections of
"Datatypes"” on page 2-2.

Text specifies a text or character literal. You must use this notation to specify values
whenever ‘text’ or char appear in expressions, conditions, SQL functions, and
SQL statements in other parts of this reference.

The syntax of text is as follows:

text:=
M 0.0

where

« Nspecifies representation of the literal using the national character set. Text
entered using this notation is translated into the national character set by Oracle
when used.

« ¢ isany member of the user’s character set, except a single quotation mark (’).

« '’ aretwo single quotation marks that begin and end text literals. To represent
one single quotation mark within a literal, enter two single quotation marks.

A text literal must be enclosed in single quotation marks. This reference uses the
terms text literal and character literal interchangeably.

Text literals have properties of both the CHARand VARCHAR2latatypes:

2-54 Oracle9i SQL Reference

Literals

« Within expressions and conditions, Oracle treats text literals as though they

have the datatype CHARby comparing them using blank-padded comparison
semantics.

« Atext literal can have a maximum length of 4000 bytes.

Here are some valid text literals:

'Hello’
'"ORACLE.dbs’
"Jackie”s raincoat’
'09-MAR-98’
N'nchar literal’
See Also:

« "About SQL Expressions" on page 4-2 for the syntax description
of expr

« "Blank-Padded Comparison Semantics" on page 2-45

Integer Literals

You must use the integer notation to specify an integer whenever integer appears

in expressions, conditions, SQL functions, and SQL statements described in other
parts of this reference.

The syntax of integer is as follows:

integer::=

where digit isoneof0,1,2,3,4,56,7,8,9.

An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

Basic Elements of Oracle SQL 2-55

Literals

See Also: "About SQL Expressions” on page 4-2 for the syntax
description of expr

Number Literals

You must use the number notation to specify values whenever number appears in
expressions, conditions, SQL functions, and SQL statements in other parts of this
reference.

The syntax of number is as follows:

number::=

500 (@)
= S—

N ———

where

« +or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

« digit isoneof0,1,2,3,45,6,7,80r9.

« eor E indicates that the number is specified in scientific notation. The digits
after the E specify the exponent. The exponent can range from -130 to 125.

A number can store a maximum of 38 digits of precision.

If you have established a decimal character other than a period (.) with the
initialization parameter NLS_NUMERIC_CHARACTERSen you must specify
numeric literals with text’ notation. In such cases, Oracle automatically converts
the text literal to a numeric value.

For example, if the NLS_NUMERIC_CHARACTERSrameter specifies a decimal
character of comma, specify the number 5.123 as follows:

'5,123'

2-56 Oracle9i SQL Reference

Literals

See Also: ALTER SESSION on page 10-2 and Oracle9i Database
Reference

Here are some valid representations of nhumber:

25
+6.34
0.5
25e-03
-1

See Also: "About SQL Expressions" on page 4-2 for the syntax
description of expr

Interval Literals

An interval literal specifies a period of time. You can specify these differences in
terms of years and months, or in terms of days, hours, minutes, and seconds. Oracle
supports two types of interval literals, YEAR TO MONTdthd DAY TO SECONBach
type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO
MONTHinterval considers an interval of years to the nearest month. A DAY TO
MINUTEinterval considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAdr
NUMTODSINTERVAtonversion function to convert the numeric data into interval
literals.

Interval literals are used primarily with analytic functions.

See Also:

« "Analytic Functions" on page 6-10 and Oracle9i Data
Warehousing Guide

« NUMTODSINTERVAL on page 6-111 and
NUMTOYMINTERVAL on page 6-112

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTIiHterval literals using the following syntax:

Basic Elements of Oracle SQL 2-57

Literals

interval_year_to_month::=

O

—{ INTERVAL |a©—>(integer)

OlC=DT0

where

« integer [-integer]’ specifies integer values for the leading and optional
trailing field of the literal. If the leading field is YEARand the trailing field is
MONTHthen the range of integer values for the month field is 0 to 11.

« precision isthe maximum number of digits in the leading field. The valid

range of the leading field precision is 0 to 9 and its default value is 2.
Restriction on the Leading Field The leading field must be more significant than
the trailing field. For example, INTERVAL’0-1 * MONTH TO YEARNot valid.

The following INTERVAL YEAR TO MONTHeral indicates an interval of 123 years, 2
months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated
versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL 123’ YEAR(3) An interval of 123 years 0 months.

INTERVAL 300" MONTH(3) An interval of 300 months.

INTERVAL "4’ YEAR Maps to INTERVAL '4-0' YEAR TO
MONTHnNd indicates 4 years.

INTERVAL '50° MONTH Maps to INTERVAL '4-2' YEAR TO
MONTHnNd indicates 50 months or 4 years 2
months.

2-58 Oracle9i SQL Reference

Literals

Form of Interval Literal Interpretation

INTERVAL '123’ YEAR Returns an error, because the default
precision is 2, and 123’ has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTHeral to or from another to
yield another INTERVAL YEAR TO MONTHeral. For example:

INTERVAL ’5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11’' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECONiDterval literals using the following syntax:

interval_day _to_second::=

i=Yam)
olCIm=DT0

f@{fractionaI_seconds_precisionh
Y }(leading_precision) %

SECOND

MINUTE

ﬁ@—)(fractional_seconds_precisionm

SECOND

where

« Integer specifies the number of days. If this value contains more digits than
the number specified by the leading precision, then Oracle returns an error.

Basic Elements of Oracle SQL 2-59

Literals

« time_expr specifies a time in the format HH[:MI[:SS[.n]]]Jor MI[:SS[.n]] or
SS[.n], where n specifies the fractional part of a second. If n contains more digits
than the number specified by fractional _seconds_precision ,then nis
rounded to the number of digits specified by the fractional_seconds
precision value. You can specify time_expr following an integer and a
space only if the leading field is DAY

« leading precision is the number of digits in the leading field. Accepted
values are 0 to 9. The default is 2.

« fractional_seconds_precision is the number of digits in the fractional
part of the SECONDlatetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field: The leading field must be more significant than
the trailing field. For example, INTERVAL MINUTE TO DAY not valid. As a result
of this restriction, if SECONDs the leading field, the interval literal cannot have any
trailing field.

The valid range of values for the trailing field are as follows:
« HOUROto 23

« MINUTE 0to 59

« SECONDO to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECONARerals follow,
including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL 4 5:12:10.222’ DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND(3) 222 thousandths of a second.
INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.
INTERVAL '400 5’ DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400’ DAY (3) 400 days.

INTERVAL ’'11:12:10.2222222' HOUR 11 hours, 12 minutes, and 10.2222222
TO SECOND(7) seconds.

INTERVAL '11:20° HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10° HOUR 10 hours.

INTERVAL '10:22’ MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10° MINUTE 10 minutes.

2-60 Oracle9i SQL Reference

Format Models

Form of Interval Literal Interpretation

INTERVAL "4’ DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours

INTERVAL '30.12345’ SECOND(2,4) 30.1235 seconds. The fractional second
’12345’ is rounded to "1235’ because the
precision is 4.

You can add or subtract one DAY TO SECONiDterval literal from another DAY TO
SECONDiteral. For example.

INTERVAL'20’ DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models

A format model is a character literal that describes the format of DATEor NUMBER
data stored in a character string. When you convert a character string into a date or
number, a format model tells Oracle how to interpret the string. In SQL statements,
you can use a format model as an argument of the TO_CHARind TO_DATE
functions:

« To specify the format for Oracle to use to return a value from the database

« To specify the format for a value you have specified for Oracle to store in the
database

Note: A format model does not change the internal representation
of the value in the database.

For example,

« The date format model for the string '17:45:29 ’is '"HH24:MI:SS .

« The date format model for the string 11-Nov-1999 ’is’'DD-Mon-YYYY'.
« The number format model for the string '$2,304.25 ’is'$9,999.99 .

Basic Elements of Oracle SQL 2-61

Format Models

For lists of date and number format model elements, see Table 2-13, " Number
Format Elements” on page 2-64 and Table 2-15, " Datetime Format Elements” on
page 2-69.

The values of some formats are determined by the value of initialization
parameters. For such formats, you can specify the characters returned by these
format elements implicitly using the initialization parameter NLS_TERRITORYYou
can change the default date format for your session with the ALTER SESSION
statement.

See Also:

« Oracle9i Database Reference and Oracle9i Database Globalization
Support Guide for information on these parameters

« ALTER SESSION on page 10-2 for information on changing the
values of these parameters

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHARunction to convert these salaries into character values with the
format specified by the number format model ’$9,990.99

SELECT last_name employee, TO_CHAR(salary, '$99,990.99")
FROM employees
WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

The following statement selects the date on which each employee from Department
20 was hired and uses the TO_CHARunction to convert these dates to character
strings with the format specified by the date format model 'fmMonth DD, YYYY

SELECT last_name employee,
TO_CHAR(hire_date,'fmMonth DD, YYYY’) hiredate
FROM employees
WHERE department_id = 20;

With this format model, Oracle returns the hire dates (as specified by "fm") without
blank padding, two digits for the day, and the century included in the year.

2-62 Oracle9i SQL Reference

Format Models

See Also: "Format Model Modifiers” on page 2-75 for a
description of the fm format element

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column’s datatype. You can use format models to specify the format of a value that
you are converting from one datatype to another datatype required for a column.

For example, a value that you insert into a DATEcolumn must be a value of the
DATEdatatype or a character string in the default date format (Oracle implicitly
converts character strings in the default date format to the DATEdatatype). If the
value is in another format, then you must use the TO_DATEunction to convert the
value to the DATEdatatype. You must also use a format model to specify the format
of the character string.

The following statement updates Hunold’s hire date using the TO_DATEfunction
with the format mask 'YYYY MM DD’ to convert the character string "1998 05 20’ to
a DATEvalue:

UPDATE employees
SET hire_date = TO_DATE('1998 05 20',’YYYY MM DD’)
WHERE last_name = 'Hunold’;

This remainder of this section describes how to use:
= Number Format Models
« Date Format Models

« Format Model Modifiers

See Also: TO_CHAR (datetime) on page 6-171, TO_CHAR
(number) on page 6-173, and TO_DATE on page 6-175

Number Format Models
You can use number format models:

« Inthe TO_CHARunction to translate a value of NUMBERlatatype to VARCHAR2
datatype

« Inthe TO_NUMBERuNction to translate a value of CHARor VARCHAR2latatype
to NUMBERIatatype

All number format models cause the number to be rounded to the specified number
of significant digits. If a value has more significant digits to the left of the decimal

Basic Elements of Oracle SQL 2-63

Format Models

place than are specified in the format, then pound signs (#) replace the value. If a
positive value is extremely large and cannot be represented in the specified format,
then the infinity sign (~) replaces the value. Likewise, if a negative value is
extremely small and cannot be represented by the specified format, then the
negative infinity sign replaces the value (-~). This event typically occurs when you
are using TO_CHARwith a restrictive number format string, causing a rounding
operation.

Number Format Elements

A number format model is composed of one or more number format elements.
Table 2-13 lists the elements of a number format model. Examples are shown in
Table 2-14.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the
MI, S, or PRformat element.

Table 2-13 Number Format Elements

Element Example Description

,(comma) 9,999 Returns a comma in the specified position. You can specify
multiple commas in a number format model.

Restrictions:
« Acomma element cannot begin a number format model.

« A comma cannot appear to the right of a decimal character
or period in a number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified
position.
Restriction: You can specify only one period in a number format
model.

$ $9999 Returns value with a leading dollar sign.

0 0999 Returns leading zeros.

9990 Returns trailing zeros.
9 9999 Returns value with the specified number of digits with a leading

space if positive or with a leading minus if negative.

Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.

2-64 Oracle9i SQL Reference

Format Models

Table 2-13 (Cont.) Number Format Elements

Element Example Description

B B9999 Returns blanks for the integer part of a fixed-point number
when the integer part is zero (regardless of "0"s in the format
model).

C C999 Returns in the specified position the ISO currency symbol (the

current value of the NLS_ISO_CURRENCarameter).

D 99D99 Returns in the specified position the decimal character, which is
the current value of the NLS_NUMERIC_CHARACTHERrameter.
The default is a period (.).

Restriction: You can specify only one decimal character in a
number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.
FM FM90.9 Returns a value with no leading or trailing blanks.
G 9G999 Returns in the specified position the group separator (the

current value of the NLS_NUMERIC_CHARACTHKRrameter).
You can specify multiple group separators in a number format
model.

Restriction: A group separator cannot appear to the right of a
decimal character or period in a number format model.

L L999 Returns in the specified position the local currency symbol (the
current value of the NLS_ CURRENCarameter).

Ml 9999MI Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last
position of a number format model.

PR 9999PR Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last
position of a number format model.

RN RN Returns a value as Roman numerals in uppercase.
m m Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

Basic Elements of Oracle SQL 2-65

Format Models

Table 2-13 (Cont.) Number Format Elements

Element Example

Description

S S9999

9999S

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or
last position of a number format model.

™ ™

"Text minimum". Returns (in decimal output) the smallest
number of characters possible. This element is case-insensitive.

The default is TM9, which returns the number in fixed notation
unless the output exceeds 64 characters. If output exceeds 64
characters, then Oracle automatically returns the number in
scientific notation.

Restrictions:
= You cannot precede this element with any other element.

=« You can follow this element only with 9 or E (only one) or e
(only one).

U u9999

Returns in the specified position the "Euro” (or other) dual
currency symbol (the current value of the NLS_DUAL _
CURRENCarameter).

\Y 999Vv99

Returns a value multiplied by 10" (and if necessary, round it up),
where n is the number of 9’s after the "V".

X XXXX
XXXX

Returns the hexadecimal value of the specified number of digits.
If the specified number is not an integer, then Oracle rounds it to
an integer.

Restrictions:

« This element accepts only positive values or 0. Negative
values return an error.

« You can precede this element only with 0 (which returns
leading zeroes) or FM. Any other elements return an error.
If you specify neither 0 nor FM with X, then the return
always has 1 leading blank.

Table 2-14 shows the results of the following query for different values of number

and fmt’

2-66 Oracle9i SQL Reference

Format Models

SELECT TO_CHAR(number, 'fmt’)

FROM DUAL;

Table 2-14 Results of Example Number Conversions

number fmt’
-1234567890 9999999999S '1234567890-'
0 99.99
+0.1 99.99
-0.2 99.99
0 90.99
+0.1 90.99
-0.2 90.99
0 9999
1 9999
0 B9999
1 B9999
0 B90.99
+123.456 999.999
-123.456 999.999
+123.456 FM999.009
+123.456 9.9EEEE
+1E+123 9.9EEEE
+123.456 FM9.9EEEE
+123.45 FM999.009
+123.0 FM999.009
+123.45 L999.99
+123.45 FML999.99
+1234567890 9999999999S '1234567890+'

Basic Elements of Oracle SQL 2-67

Format Models

Date Format Models

You can use date format models:

« Inthe TO_* datetime function to translate a character value that is in a format
other than the default date format into a DATEvalue. (The TO_* datetime
functions are TO_CHARTO_DATETO_TIMESTAMPTO_TIMESTAMP_TZTO_
YMINTERVAL.and TO_DSINTERVAL)

« Inthe TO_CHARunNction to translate a DATEvalue that is in a format other than
the default date format into a string (for example, to print the date from an
application)

The total length of a date format model cannot exceed 22 characters.

The default date format is specified either explicitly with the initialization
parameter NLS_DATE_FORMAGr implicitly with the initialization parameter NLS_
TERRITORY You can change the default date format for your session with the
ALTER SESSIONstatement.

See Also:

= Oracle9i Database Reference for information on the NLS
parameters

« ALTER SESSION on page 10-2

Date Format Elements

A date format model is composed of one or more datetime format elements as listed
in Table 2-15 on page 2-69.

« For input format models, format items cannot appear twice, and format items
that represent similar information cannot be combined. For example, you
cannot use 'SYYYY’ and 'BC’ in the same format string.

« Some of the datetime format elements cannot be used in the TO_* datetime
functions, as noted in Table 2-15.

« The following datetime format elements can be used in interval and timestamp
format models, but not in the original DATEformat model: FF, TZD, TZH, TZM,
and TZR

Capitalization of Date Format Elements ~ Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model ‘DAY’ produces capitalized words like
"MONDAY’; 'Day’ produces 'Monday’; and 'day’ produces 'monday’.

2-68 Oracle9i SQL Reference

Format Models

Punctuation and Character Literals in Date Format Models You can also include these
characters in a date format model:

« Punctuation such as hyphens, slashes, commas, periods, and colons

« Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in
the format model.

Table 2-15 Datetime Format Elements

Specify inTO_*
datetime
Element functions? @ Meaning

- Yes Punctuation and quoted text is reproduced in

/ the result.

"text"

AD Yes AD indicator with or without periods.

A.D

AM Yes Meridian indicator with or without periods.

AM.

BC Yes BC indicator with or without periods.

B.C.

cC No Century.

sccC « Ifthe last 2 digits of a 4-digit year are
between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits
of that year.

« Ifthe last 2 digits of a 4-digit year are 00,
then the century is the same as the first 2
digits of that year.
For example, 2002 returns 21; 2000 returns 20.
D Yes Day of week (1-7).

8 The TO_* datetime functions are TO_CHARTO _DATETO_TIMESTAMPTO _
TIMESTAMP_TZTO_YMINTERVALand TO_DSINTERVAL

Basic Elements of Oracle SQL 2-69

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify inTO_*
datetime
Element functions? @ Meaning

DAY Yes Name of day, padded with blanks to length of 9
characters.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DY Yes Abbreviated name of day.

E No Abbreviated era name (Japanese Imperial, ROC
Official, and Thai Buddha calendars).

EE No Full era name (Japanese Imperial, ROC Official,
and Thai Buddha calendars).

FF[1..9] Yes Fractional seconds; no radix character is printed
(use the X format element to add the radix
character). Use the numbers 1 to 9 after FF to
specify the number of digits in the fractional
second portion of the datetime value returned.
If you do not specify a digit, then Oracle uses
the precision specified for the datetime datatype
or the datatype’s default precision.

Examples: '"HH:MI:SS.FF’
SELECT TO_CHAR(SYSTIMESTAMP,
'SS.FF3’) from dual;

HH Yes Hour of day (1-12).

HH12 No Hour of day (1-12).

HH24 Yes Hour of day (0-23).

W No Week of year (1-52 or 1-53) based on the ISO
standard.

IYY No Last 3, 2, or 1 digit(s) of ISO year.

Y

|

IYYyY No 4-digit year based on the ISO standard.

8 The TO_* datetime functions are TO_CHARTO_DATETO_TIMESTAMPTO_
TIMESTAMP_TZTO_YMINTERVALand TO_DSINTERVAL

2-70 Oracle9i SQL Reference

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify in TO_*
datetime
Element functions? @ Meaning

J Yes Julian day; the number of days since January 1,
4712 BC. Number specified with ’J’ must be
integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; JAN = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month, padded with blanks to length
of 9 characters.

PM No Meridian indicator with or without periods.

P.M.

Q No Quarter of year (1, 2, 3, 4, JAN-MAR =1).

RM Yes Roman numeral month (I-XII; JAN = 1).

RR Yes Lets you store 20th century dates in the 21st
century using only two digits. See "The RR Date
Format Element” on page 2-73 for detailed
information.

RRRR Yes Round year. Accepts either 4-digit or 2-digit
input. If 2-digit, provides the same return as RR.
If you don’t want this functionality, then simply
enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TZD Yes Daylight savings information. The TZD value is
an abbreviated time zone string with daylight
savings information. It must correspond with
the region specified in TZR
Example: PST (for US/Pacific standard time);
PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZMformat element.)

Example: 'HH:MI:SS.FFTZH:TZM’

8 The TO_* datetime functions are TO_CHARTO_DATETO_TIMESTAMPTO _
TIMESTAMP_TZTO_YMINTERVALand TO_DSINTERVAL

Basic Elements of Oracle SQL 2-71

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Specify inTO_*
datetime
Element functions? @ Meaning

TZM Yes Time zone minute. (See TZHformat element.)
Example: 'HH:MI:SS.FFTZH:TZM’

TZR Yes Time zone region information. The value must
be one of the time zone regions supported in
the database.

Example: US/Pacific

ww No Week of year (1-53) where week 1 starts on the
first day of the year and continues to the
seventh day of the year.

W No Week of month (1-5) where week 1 starts on the
first day of the month and ends on the seventh.

X Yes Local radix character.

Example: 'HH:MI:SSXFF’

Y,YYY Yes Year with comma in this position.

YEAR No Year, spelled out; “S” prefixes BC dates with “-”.

SYEAR

YYYY Yes 4-digit year; “S” prefixes BC dates with “-”.

SYYYY

YYY Yes Last 3, 2, or 1 digit(s) of year.

YY

Y

2 The TO_* datetime functions are TO_CHARTO_DATETO_TIMESTAMPTO _
TIMESTAMP_TZTO_YMINTERVALand TO_DSINTERVAL

Oracle returns an error if an alphanumeric character is found in the date string
where punctuation character is found in the format string. For example:

TO_CHAR (TO_DATE(0297''MM/YY"), ' MM/YY")

returns an error.

2-72 Oracle9i SQL Reference

Format Models

Date Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle. For example, these datetime format
elements return spelled values:

« MONTH
« MON

« DAY

« DY

« BCorADorB.C.or AD.
« AMorPMor AMorPM.

The language in which these values are returned is specified either explicitly with
the initialization parameter NLS_DATE_LANGUAGE implicitly with the
initialization parameter NLS_LANGUAGH he values returned by the YEARand
SYEARdatetime format elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NLS_TERRITORY

See Also: Oracle9i Database Reference and Oracle9i Database
Globalization Support Guide for information on Globalization
Support initialization parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, 1Y,
I, and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of Globalization Support in Oracle9i Database
Globalization Support Guide.

The RR Date Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

Basic Elements of Oracle SQL 2-73

Format Models

If you use the TO_DATEunction with the YY datetime format element, then the
year returned always has the same first 2 digits as the current year. If you use the
RR datetime format element instead, then the century of the return value varies
according to the specified two-digit year and the last two digits of the current year.
Table 2-16 summarizes the behavior of the RR datetime format element.

Table 2-16 The RR Date Element Format

If the specified two-digit year is

— 00-49 50-99

00-49 The returned year has the same The first 2 digits of the returned
first 2 digits as the current year. year are 1 less than the first 2

It the fast two digits of the current year.

digits of the
current year 50-99 The first 2 digits of the returned The returned year has the same
are year are 1 greater than the first2 first 2 digits as the current year.

digits of the current year.

The following examples demonstrate the behavior of the RR datetime format
element.

RR Date Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE(27-OCT-98’, 'DD-MON-RR’) ,'YYYY’) "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE(27-OCT-17’, 'DD-MON-RR’) ,'YYYY’) "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE('27-OCT-98’, 'DD-MON-RR’) ,'YYYY’) "Year"
FROM DUAL,;

2-74 Oracle9i SQL Reference

Format Models

Year

1998

SELECT TO_CHAR(TO_DATE(27-OCT-17’, 'DD-MON-RR’) ,’YYYY’) "Year"
FROM DUAL,;

Year

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL
statements that will return the same values from years whose first two digits are
different.

Date Format Element Suffixes
Table 2-17 lists suffixes that can be added to datetime format elements:

Table 2-17 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR
SPTH or THSP Spelled, ordinal number DDSPTH FOURTH
Notes:

. When you add one of these suffixes to a datetime format element, the return value
is always in English.

« Date suffixes are valid only to format output. You cannot use them to insert a date
into the database.

Format Model Modifiers

The FM and FX modifiers, used in format models in the TO_CHARunction, control
blank padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for
the portion of the model following its first occurrence, and then disabled for the
portion following its second, and then reenabled for the portion following its third,
and so on.

Basic Elements of Oracle SQL 2-75

Format Models

FM "Fill mode". This modifier suppresses blank padding in the return value of the
TO_CHARunction:

« Inadatetime format element of a TO_CHARunction, this modifier suppresses
blanks in subsequent character elements (such as MONTIHand suppresses
leading zeroes for subsequent number elements (such as Ml) in a date format
model. Without FM, the result of a character element is always right padded
with blanks to a fixed length, and leading zeroes are always returned for a
number element. With FM, because there is no blank padding, the length of the
return value may vary.

« Inanumber format element of a TO_CHAHRunction, this modifier suppresses
blanks added to the left of the number, so that the result is left-justified in the
output buffer. Without FM, the result is always right-justified in the buffer,
resulting in blank-padding to the left of the number.

FX "Format exact". This modifier specifies exact matching for the character
argument and date format model of a TO_DATEunction:

« Punctuation and quoted text in the character argument must exactly match
(except for case) the corresponding parts of the format model.

« The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

« Numeric data in the character argument must have the same number of digits
as the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the
FM modifier as well.

If any portion of the character argument violates any of these conditions, then
Oracle returns an error message.

Format Modifier Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, 'fmDDTH)||’ of '||ITO_CHAR
(SYSDATE, 'fmMonth)||', '||TO_CHAR(SYSDATE, 'YYYY’) "Ides"
FROM DUAL;

3RD of April, 1998

2-76 Oracle9i SQL Reference

Format Models

The preceding statement also uses the FM modifier. If FM is omitted, then the
month is blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH’)|| of ’||
TO_CHAR(SYSDATE, "Month’)|[", |
TO_CHAR(SYSDATE, 'YYYY’) "Ides"

FROM DUAL;

03RD of April , 1998
The following statement places a single quotation mark in the return value by using
a date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR(SYSDATE, *fmDay’)||"’s Special’ "Menu"
FROM DUAL;

Tuesday’s Special
Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-18 shows whether the following statement meets the matching conditions
for different values of char and 'fmt’ using FX (the table named table hasa
column date_column of datatype DATB:

UPDATE table
SET date_column = TO_DATE(char, 'fmt’);

Basic Elements of Oracle SQL 2-77

Format Models

Table 2-18 Matching Character Data and Format Models with the FX Format Model

Modifier
char fmt’ Match or Error?
'15/ JAN /1998’ 'DD-MON-YYYY’ Match
" 15! JAN % /1998’ 'DD-MON-YYYY’ Error
"15/JAN/1998’ 'FXDD-MON-YYYY’ Error
'15-JAN-1998’ 'FXDD-MON-YYYY’ Match
'1-JAN-1998 'FXDD-MON-YYYY’ Error
'01-JAN-1998’ 'FXDD-MON-YYYY’ Match
'1-JAN-1998’ 'FXFMDD-MON-YYYY’ Match

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to
date values (unless you have used the FX or FXFM modifiers in the format model to
control exact format checking):

« You can omit punctuation included in the format string from the date string if
all the digits of the numerical format elements, including leading zeros, are
specified. In other words, specify 02 and not 2 for two-digit format elements
such as MM, DD, and YY.

« You can omit time fields found at the end of a format string from the date
string.

« Ifamatch fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements,
as shown in Table 2-19.

Table 2-19 Oracle Format Matching

Additional Format
Elements to Try in Place of

Original Format Element the Original

‘MM’ 'MON’ and 'MONTH’
'MON 'MONTH’

'MONTH’ 'MON’

2-78 Oracle9i SQL Reference

Format Models

Table 2-19 (Cont.) Oracle Format Matching

Additional Format
Elements to Try in Place of

Original Format Element the Original

YY’ YYYY’

'RR’ 'RRRR’
XML Format Model

The SYS_XMLGEHKunction returns an instance of type XMLType containing an XML
document. Oracle provides the XMLFormat object, which lets you format the
output of the SYS_XMLGEMNunction.

Table 2-20 lists and describes the attributes of the XMLFormat object. The function
that implements this type follows the table.
See Also:

« SYS_XMLGEN on page 6-166 for information on the SYS_
XMLGENunction

« Oracle9i XML API Reference - XDK and Oracle XML DB and
Oracle9i XML Developer’s Kits Guide - XDK for more information
on the implementation of the XMLFormat object and its use

Table 2-20 Attributes of the XMLFormat Object

Attribute

Datatype Purpose

enclTag

VARCHAR2(100) The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, the default
is the column name. Otherwise the default is ROWWhen
schemaType is set to USE_GIVEN_SCHEMAhis attribute also
gives the name of the XMLSchema element.

schemaType

VARCHAR2(100) The type of schema generation for the output document. Valid
values are 'NO_SCHEMANd 'USE_GIVEN_SCHEMAThe default
is'NO_SCHEMA

schemaName

VARCHARZ2(4000) The name of the target schema Oracle uses if the value of the
schemaType is 'USE_GIVEN_SCHEMATf you specify
schemaName then Oracle uses the enclosing tag as the element
name.

processingins

VARCHAR2(4000) User-provided processing instructions, which are appended to the
top of the function output before the element.

Basic Elements of Oracle SQL 2-79

Nulls

Nulls

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat(

enclTag IN varchar2 :='ROWSET’,

schemaType IN varchar2 :='NO_SCHEMA',

schemaName IN varchar2 := null,

targetNameSpace IN varchar2 := null,

dburlPrefix IN varchar2 := null,

processingins IN varchar2 := null) RETURN XMLGenFormatType,
MEMBER PROCEDURE genSchema (spec IN varchar2),
MEMBER PROCEDURE setSchemaName(schemaName IN varchar2),
MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
MEMBER PROCEDURE setProcessinglIns(pi IN varchar?2),
CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar2 :='ROWSET’,

schemaType IN varchar2 :='NO_SCHEMA',

schemaName IN varchar2 := null,

targetNameSpace IN varchar2 := null,

dbUrlPrefix IN varchar2 := null,

processingins IN varchar2 := null) RETURN SELF AS RESULT

If a column in a row has no value, then the column is said to be null, or to contain
null. Nulls can appear in columns of any datatype that are not restricted by NOT
NULLor PRIMARY KEMntegrity constraints. Use a null when the actual value is not
known or when a value would not be meaningful.

Do not use null to represent a value of zero, because they are not equivalent. (Oracle
currently treats a character value with a length of zero as null. However, this may
not continue to be true in future releases, and Oracle recommends that you do not
treat empty strings the same as nulls.) Any arithmetic expression containing a null
always evaluates to null. For example, null added to 10 is null. In fact, all operators
(except concatenation) return null when given a null operand.

Nulls in SQL Functions

All scalar functions (except REPLACENVL and CONCAJreturn null when given a
null argument. You can use the NVL function to return a value when a null occurs.
For example, the expression NVL(COMM,0) returns 0 if COMN& null or the value of
COMNf it is not null.

2-80 Oracle9i SQL Reference

Nulls

Most aggregate functions ignore nulls. For example, consider a query that averages
the five values 1000, null, null, null, and 2000. Such a query ignores the nulls and
calculates the average to be (1000+2000)/2 = 1500.

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL If
you use any other condition with nulls and the result depends on the value of the
null, then the result is UNKNOWBecause null represents a lack of data, a null
cannot be equal or unequal to any value or to another null. However, Oracle
considers two nulls to be equal when evaluating a DECODEunction.

See Also: DECODE on page 6-52 for syntax and additional
information

Oracle also considers two nulls to be equal if they appear in compound keys. That
is, Oracle considers identical two compound keys containing nulls if all the
non-null components of the keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOWa&¢ts almost like FALSE For example, a
SELECTstatement with a condition in the WHER[Elause that evaluates to UNKNOWN
returns no rows. However, a condition evaluating to UNKNOWG@iffers from FALSE

in that further operations on an UNKNOW®bndition evaluation will evaluate to
UNKNOWNhus, NOT FALSEevaluates to TRUE but NOT UNKNOVé¢Maluates to
UNKNOWN

Table 2-21 shows examples of various evaluations involving nulls in conditions. If
the conditions evaluating to UNKNOWWNere used in a WHERElause of a SELECT
statement, then no rows would be returned for that query.

Basic Elements of Oracle SQL 2-81

Pseudocolumns

Table 2-21 Conditions Containing Nulls

If Ais: Condition Evaluates to:
10 alS NULL FALSE

10 alS NOT NULL TRUE

NULL alS NULL TRUE
NULL alS NOT NULL FALSE

10 a = NULL UNKNOWN
10 a != NULL UNKNOWN
NULL a =NULL UNKNOWN
NULL a != NULL UNKNOWN
NULL a=10 UNKNOWN
NULL al=10 UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see
Table 5-4 on page 5-8, Table 5-5 on page 5-9, and Table 5-6 on page 5-9.

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table.
You can select from pseudocolumns, but you cannot insert, update, or delete their
values. This section describes these pseudocolumns:

» CURRVAL and NEXTVAL

« LEVEL
« ROWID
« ROWNUM

« XMLDATA

CURRVAL and NEXTVAL

A sequence is a schema object that can generate unique sequential values. These
values are often used for primary and unique keys. You can refer to sequence values
in SQL statements with these pseudocolumns:

» CURRVALreturns the current value of a sequence

2-82 Oracle9i SQL Reference

Pseudocolumns

« NEXTVAL increments the sequence and returns the next value
You must qualify CURRVAIland NEXTVALwith the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you
must have been granted either SELECTobject privilege on the sequence or SELECT
ANY SEQUENCHystem privilege, and you must qualify the sequence with the
schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the
sequence with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

See Also: "Referring to Objects in Remote Databases” on
page 2-118 for more information on referring to database links

Where to Use Sequence Values
You can use CURRVAIland NEXTVALIin:

« The SELECTIist of a SELECTstatement that is not contained in a subquery;,
materialized view, or view

« The SELECTIist of a subquery in an INSERT statement

« The VALUESclause of an INSERT statement

« The SETclause of an UPDATEstatement

Restrictions on Sequence Values You cannot use CURRVAland NEXTVALIn the
following constructs:

« Asubquery in a DELETE SELECT or UPDATEstatement

« A query of a view or of a materialized view

« A SELECTstatement with the DISTINCT operator

=« A SELECTstatement with a GROUP BY¥lause or ORDER B¥lause

Basic Elements of Oracle SQL 2-83

Pseudocolumns

« A SELECTstatement that is combined with another SELECTstatement with the
UNION INTERSECT or MINUSset operator

« The WHERIElause of a SELECTstatement
« DEFAULTvalue of a column in a CREATE TABLBr ALTER TABLEstatement
« The condition of a CHECKeconstraint

Also, within a single SQL statement that uses CURRVAlor NEXTVAL. all referenced
LONGcolumns, updated tables, and locked tables must be located on the same
database.

How to Use Sequence Values

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVALreturns the sequence’s initial
value. Subsequent references to NEXTVALincrement the sequence value by the
defined increment and return the new value. Any reference to CURRVAlalways
returns the sequence’s current value, which is the value returned by the last
reference to NEXTVAL Note that before you use CURRVAIfor a sequence in your
session, you must first initialize the sequence with NEXTVAL

Within a single SQL statement containing a reference to NEXTVAL Oracle
increments the sequence only once:

« For each row returned by the outer query block of a SELECTstatement. Such a
guery block can appear in the following places:

« Atop-level SELECTstatement

« AnINSERT ... SELECTstatement (either single-table or multi-table). For a
multi-table insert, the reference to NEXTVALmust appear in the VALUES
clause, and the sequence is updated once for each row returned by the
subquery, even though NEXTVALmay be referenced in multiple branches of
the multi-table insert.

« A CREATE TABLE. AS SELECTstatement

« A CREATE MATERIALIZED VIEW. AS SELECTstatement
« For each row updated in an UPDATEstatement
« For each INSERT statement containing a VALUESclause

« For row "merged"” (either inserted or updated) in a MERGEtatement. The
reference to NEXTVALcan appear in the merge_insert_clause or the
merge_update clause

2-84 Oracle9i SQL Reference

Pseudocolumns

If any of these locations contains more than one reference to NEXTVAL then Oracle
increments the sequence once and returns the same value for all occurrences of
NEXTVAL

If any of these locations contains references to both CURRVAland NEXTVAL then
Oracle increments the sequence and returns the same value for both CURRVAIland
NEXTVAL

A sequence can be accessed by many users concurrently with no waiting or locking.

See Also: CREATE SEQUENCE on page 14-89 for information on
sequences

Finding the current value of a sequence: Example This example selects the next
value of the employee sequence in the sample schema hr :

SELECT employees_seq.nextval
FROM DUAL;

Inserting sequence values into a table: Example This example increments the
employee sequence and uses its value for a new employee inserted into the sample
table hr.employees

INSERT INTO employees
VALUES (employees_seq.nextval, 'John’, 'Doe’, 'jdoe’,
'’5655-1212', TO_DATE(SYSDATE), 'PU_CLERK’, 2500, null, null,
30);

Reusing the current value of a sequence: Example This example adds a new
order with the next order number to the master order table. It then adds suborders
with this number to the detail order table:

INSERT INTO orders (order_id, order_date, customer_id)
VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
VALUES (orders_seq.currval, 3, 2381);

Basic Elements of Oracle SQL 2-85

Pseudocolumns

LEVEL

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1
for a root row, 2 for a child of a root, and so on. A root row is the highest row within
an inverted tree. A child row is any nonroot row. A parent row is any row that has
children. A leaf row is any row without children. Figure 2-1 shows the nodes of an
inverted tree with their LEVEL values.

Figure 2—1 Hierarchical Tree

Level 1 prgr(()et{]t

Level 2 parent/ parent

vtz | e | [e | oy

Level 4 child/ child/ child/
leaf leaf leaf

To define a hierarchical relationship in a query, you must use the START WITHand
CONNECT Bw¥lauses.

Restriction on LEVEL in WHERE Clauses Ina [NOT IN condition in a WHERE
clause, if the right-hand side of the condition is a subquery, you cannot use LEVEL
on the left-hand side of the condition. However, you can specify LEVEL in a
subquery of the FROMIlause to achieve the same result. For example, the following
statement is not valid:

SELECT employee_id, last_name FROM employees
WHERE (employee_id, LEVEL)
IN (SELECT employee_id, 2 FROM employees)
START WITH employee_id =2
CONNECT BY PRIOR employee_id = manager _id;

But the following statement is valid because it encapsulates the query containing
the LEVEL information in the FROMIlause:

2-86 Oracle9i SQL Reference

Pseudocolumns

ROWID

SELECT v.employee_id, v.last_name, v.lev
FROM
(SELECT employee_id, last_name, LEVEL lev
FROM employees v
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id) v
WHERE (v.employee_id, v.lev) IN
(SELECT employee_id, 2 FROM employees);

See Also: "Hierarchical Queries” on page 8-3 for information on
hierarchical queries in general

For each row in the database, the ROWIDpseudocolumn returns a row’s address.
Oracle9i rowid values contain information necessary to locate a row:

« The data object number of the object

= Which data block in the datafile

« Which row in the data block (first row is 0)

« Which datafile (first file is 1). The file number is relative to the tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in
different tables that are stored together in the same cluster can have the same rowid.

Values of the ROWIDpseudocolumn have the datatype ROWIDor UROWID
See Also: "ROWID Datatype" on page 2-33 and "UROWID
Datatype" on page 2-35

Rowid values have several important uses:

« They are the fastest way to access a single row.

« They can show you how a table’s rows are stored.

« They are unique identifiers for rows in a table.

You should not use ROWIDas a table’s primary key. If you delete and reinsert a row
with the Import and Export utilities, for example, then its rowid may change. If you
delete a row, then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWIDpseudocolumn in the SELECTand WHERIElause
of a query, these pseudocolumn values are not actually stored in the database. You
cannot insert, update, or delete a value of the ROWIDpseudocolumn.

Basic Elements of Oracle SQL 2-87

Pseudocolumns

ROWNUM

Example This statement selects the address of all rows that contain data for
employees in department 20:

SELECT ROWID, last_name
FROM employees
WHERE department_id = 20;

For each row returned by a query, the ROWNUpseudocolumn returns a number
indicating the order in which Oracle selects the row from a table or set of joined
rows. The first row selected has a ROWNUM 1, the second has 2, and so on.

You can use ROWNU1Md limit the number of rows returned by a query, as in this
example:

SELECT * FROM employees WHERE ROWNUM < 10;

If an ORDER B¥lause follows ROWNUM the same query, then the rows will be
reordered by the ORDER B¥lause. The results can vary depending on the way the
rows are accessed. For example, if the ORDER B¥lause causes Oracle to use an
index to access the data, then Oracle may retrieve the rows in a different order than
without the index. Therefore, the following statement will not have the same effect
as the preceding example:

SELECT * FROM employees WHERE ROWNUM < 11 ORDER BY last_name;

If you embed the ORDER B¥lause in a subquery and place the ROWNUbbndition in
the top-level query, then you can force the ROWNU8dndition to be applied after the
ordering of the rows. For example, the following query returns the 10 smallest
employee numbers. This is sometimes referred to as a "top-N query":

SELECT * FROM
(SELECT * FROM employees ORDER BY employee_id)
WHERE ROWNUM < 11,

In the preceding example, the ROWNUWalues are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee_id in the subquery.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
more information about top-N queries

Conditions testing for ROWNUWalues greater than a positive integer are always
false. For example, this query returns no rows:

2-88 Oracle9i SQL Reference

Pseudocolumns

XMLDATA

SELECT * FROM employees
WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUWF 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUbMf 1
and makes the condition false. All rows subsequently fail to satisfy the condition, so
no rows are returned.

You can also use ROWNUM assign unique values to each row of a table, as in this
example:

UPDATE my_table
SET columnl = ROWNUM;

Note: Using ROWNUM a query can affect view optimization. For
more information, see Oracle9i Database Concepts.

Oracle stores XMLType data either in LOB or object-relational columns, based on

XMLSchema information and how you specify the storage clause. The XMLDATA
pseudocolumn lets you access the underlying LOB or object relational column to

specify additional storage clause parameters, constraints, indexes, and so forth.

Example The following statements illustrate the use of this pseudocolumn.
Suppose you create a simple table of XMLType:

CREATE TABLE xml_lob_tab of XMLTYPE;
The default storage is in a CLOBcolumn. To change the storage characteristics of the
underlying LOB column, you can use the following statement:
ALTER TABLE xml_lob_tab MODIFY LOB (XMLDATA)
(STORAGE (BUFFER_POOL DEFAULT) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses
table created in "Using XML in SQL Statements" on page D-11. You could then use
the XMLDATAolumn to set the properties of the underlying columns, as shown in
the following statement:

ALTER TABLE xwarehouses ADD (UNIQUE(XMLDATA."Warehouseld"));

Basic Elements of Oracle SQL 2-89

Comments

Comments

You can associate comments with SQL statements and schema objects.

Comments Within SQL Statements

Comments within SQL statements do not affect the statement execution, but they
may make your application easier for you to read and maintain. You may want to
include a comment in a statement that describes the statement’s purpose within
your application.

A comment can appear between any keywords, parameters, or punctuation marks
in a statement. You can include a comment in a statement using either of these
means:

« Begin the comment with a slash and an asterisk (/*). Proceed with the text of
the comment. This text can span multiple lines. End the comment with an
asterisk and a slash (*/). The opening and terminating characters need not be
separated from the text by a space or a line break.

« Begin the comment with -- (two hyphens). Proceed with the text of the
comment. This text cannot extend to a new line. End the comment with a line
break.

A SQL statement can contain multiple comments of both styles. The text of a
comment can contain any printable characters in your database character set.

Example These statements contain many comments;

SELECT last_name, salary + NVL(commission_pct, 0),
job_id, e.department_id
/* Select all employees whose compensation is
greater than that of Pataballa.*/
FROM employees e, departments d
/*The DEPARTMENTS table is used to get the department name.*/
WHERE e.department_id = d.department_id
AND salary + NVL(commission_pct,0) > /* Subquery: *
(SELECT salary + NVL(commission_pct,0)
[* total compensation is salar + commission_pct */
FROM employees
WHERE last_name ='Pataballa’);

SELECT last_name, -- select the name
salary + NVL(commission_pct, 0),-- total compensation
job_id, -- job

2-90 Oracle9i SQL Reference

Comments

e.department_id -- and department
FROM employees e, -- of all employees
departments d
WHERE e.department_id = d.department_id
AND salary + NVL(commission_pct, 0) > -- whose compensation
-- is greater than
(SELECT salary + NVL(commission_pct,0) -- the compensation
FROM employees
WHERE last_name = 'Pataballa’) -- of Pataballa.

Comments on Schema Objects

Hints

You can associate a comment with a table, view, materialized view, or column using
the COMMENdommand. Comments associated with schema objects are stored in the
data dictionary.

See Also: COMMENT on page 12-72 for a description of comments

You can use comments in a SQL statement to pass instructions, or hints, to the
Oracle optimizer. The optimizer uses these hints as suggestions for choosing an
execution plan for the statement.

A statement block can have only one comment containing hints, and that comment
must follow the SELECTUPDATEINSERT, or DELETEkeyword. The following
syntax shows hints contained in both styles of comments that Oracle supports
within a statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or
{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]...

where:

« DELETE INSERT, SELECT or UPDATESs a DELETE INSERT, SELECTor
UPDATEkeyword that begins a statement block. Comments containing hints
can appear only after these keywords.

« +isaplussign that causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter (no space is
permitted).

Basic Elements of Oracle SQL 2-91

Comments

« hint is one of the hints discussed in this section. The space between the plus
sign and the hint is optional. If the comment contains multiple hints, then
separate the hints by at least one space.

« ltext isother commenting text that can be interspersed with the hints.

Table 2-22 lists the hints by functional category. An alphabetical listing of the hints,
including the syntax and a brief description of each hint, follow the table.

Note: Oracle treats misspelled hints as regular comments and
does not return an error.

See Also: Oracle9i Database Performance Tuning Guide and Reference
and Oracle9i Database Concepts for more information on hints

Table 2-22 Hints by Functional Category

Category Hint

Optimization Goals and Approaches ALL_ROWSnd FIRST_ROWS
CHOOSE
RULE

Access Method Hints AND_EQUAL
CLUSTER
FULL
HASH
INDEX and NO_INDEX
INDEX_ASCand INDEX_DESC
INDEX_COMBINE
INDEX_FFS
ROWID

Join Order Hints ORDERED
STAR

2-92 Oracle9i SQL Reference

Comments

Table 2-22 (Cont.) Hints by Functional Category

Category

Hint

Join Operation Hints

DRIVING_SITE
HASH_SJMERGE_SJ, and NL_SJ
LEADING

USE_HASHInd USE_MERGE
USE_NL

Parallel Execution Hints

PARALLELand NOPARALLEL
PARALLEL_INDEX
PQ_DISTRIBUTE
NOPARALLEL_INDEX

Query Transformation Hints

EXPAND_GSET_TO_UNION
FACTand NOFACT

MERGE

NO_EXPAND

NO_MERGE

REWRITEand NOREWRITE
STAR_TRANSFORMATION
USE_CONCAT

Other Hints

APPENDind NOAPPEND
CACHEand NOCACHE
CURSOR_SHARING_EXACT
DYNAMIC_SAMPLING
NESTED_TABLE_GET REFS
UNNESTand NO_UNNEST
ORDERED_PREDICATES
PUSH_PRERNd NO_PUSH_PRED
PUSH_SUBQ and NO_PUSH_SUBQ

all_rows_hint::=

(AW (D)

Basic Elements of Oracle SQL 2-93

Comments

The ALL_ROWSint explicitly chooses the cost-based approach to optimize a
statement block with a goal of best throughput (that is, minimum total resource
consumption).

and_equal_hint::=

(index) ﬁ.% ﬁ.j@
O EEEO @@ N O

The AND_EQUALint explicitly chooses an execution plan that uses an access path
that merges the scans on several single-column indexes.

append_hint::=

=0

The APPENLhint lets you enable direct-path INSERT if your database is running in
serial mode. Your database is in serial mode if you are not using Enterprise Edition.
Conventional INSERT is the default in serial mode, and direct-path INSERT is the
default in parallel mode.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can
be considerably faster than conventional INSERT.

cache_hint:;:=

FH T DA @D

The CACHHint specifies that the blocks retrieved for the table are placed at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This option is useful for small lookup tables.

choose_hint::=

({055 (D

The CHOOSHint causes the optimizer to choose between the rule-based and
cost-based approaches for a SQL statement. The optimizer bases its selection on the
presence of statistics for the tables accessed by the statement. If the data dictionary
has statistics for at least one of these tables, then the optimizer uses the cost-based
approach and optimizes with the goal of best throughput. If the data dictionary
does not have statistics for these tables, then it uses the rule-based approach.

2-94 Oracle9i SQL Reference

Comments

cluster_hint;:=

(ST HOAEDHD

The CLUSTERhint explicitly chooses a cluster scan to access the specified table. It
applies only to clustered objects.

cursor_sharing_exact_hint::=

@ CURSOR_SHARING_EXACT @

Oracle can replace literals in SQL statements with bind variables, if it is safe to do
so. This is controlled with the CURSOR_SHARINS&artup parameter. The CURSOR _
SHARING_EXACHint causes this behavior to be switched off. In other words,
Oracle executes the SQL statement without any attempt to replace literals by bind
variables.

driving_site_hint::=
) O 00,

The DRIVING_SITE hint forces query execution to be done at a different site than
that selected by Oracle. This hint can be used with either rule-based or cost-based
optimization.

dynamic_sampling_hint::=

.table
—>®->| DYNAMIC_SAMPLING |5(() [— O

The DYNAMIC_SAMPLINGint lets you control dynamic sampling to improve
server performance by determining more accurate selectivity and cardinality
estimates. You can set the value of DYNAMIC_SAMPLINGo a value from 0 to 10. The
higher the level, the more effort the compiler puts into dynamic sampling and the
more broadly it is applied. Sampling defaults to cursor level unless you specify a
table.

expand_gset_to_union_hint::=

—>®->| EXPAND_GSET_TO_UNION |->@»

The EXPAND_GSET_TO_UNIOMNNt is used for queries containing grouping sets
(such as queries with GROUP BY GROUPING S&TGROUP BY ROLLYPAhe hint

Basic Elements of Oracle SQL 2-95

Comments

forces a query to be transformed into a corresponding query with UNION ALL of
individual groupings.

fact_hint::=
DLEEOICDI0:O

The FACThint is used in the context of the star transformation to indicate to the
transformation that the hinted table should be considered as a fact table.

first_rows_hint::=
() (D

The hints FIRST_ROW) (where n is any positive integer) or FIRST_ROWS
instruct Oracle to optimize an individual SQL statement for fast response. FIRST _
ROWSE) affords greater precision, because it instructs Oracle to choose the plan that
returns the first n rows most efficiently. The FIRST_ROWShint, which optimizes for
the best plan to return the first single row, is retained for backward compatibility
and plan stability.

full_hint::=
@EN0CDI00

The FULL hint explicitly chooses a full table scan for the specified table.
hash_hint::=

(o ast p(Op(lable)50

The HASHhint explicitly chooses a hash scan to access the specified table. It applies
only to tables stored in a cluster.

hash_aj_hint::=

For a specific query, place the HASH_SJMERGE_SJor NL_SJ hint into the EXISTS
subquery. HASH_SJuses a hash semi-join, MERGE_S.ises a sort merge semi-join,
and NL_SJ uses a nested loop semi-join.

2-96 Oracle9i SQL Reference

Comments

hash_sj_hint::=

(FH{Fss 1D

For a specific query, place the HASH_SJ MERGE_SJor NL_SJ hint into the EXISTS
subquery. HASH_SJuses a hash semi-join, MERGE_Sdises a sort merge semi-join,
and NL_SJ uses a nested loop semi-join.

index_hint::=

' index .
(P {FoB (D (e 1002

The INDEX hint explicitly chooses an index scan for the specified table. You can use
the INDEX hint for domain, B-tree, bitmap, and bitmap join indexes. However,
Oracle recommends using INDEX_COMBINEather than INDEX for bitmap indexes,
because it is a more versatile hint.

index_asc_hint::=

' index .
™ (O O

The INDEX_ASChint explicitly chooses an index scan for the specified table. If the
statement uses an index range scan, then Oracle scans the index entries in ascending
order of their indexed values.

index_combine_hint::=

D)
@ olc: O

The INDEX_COMBINEint explicitly chooses a bitmap access path for the table. If
no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer
uses whatever Boolean combination of bitmap indexes has the best cost estimate for
the table. If certain indexes are given as arguments, then the optimizer tries to use
some Boolean combination of those particular bitmap indexes.

Basic Elements of Oracle SQL 2-97

Comments

index_desc_hint::=

T
@ olC 010}

The INDEX_DESChint explicitly chooses an index scan for the specified table. If the
statement uses an index range scan, then Oracle scans the index entries in
descending order of their indexed values. In a partitioned index, the results are in
descending order within each partition.

index_ffs_hint::=

)
@ olc: O

The INDEX_FFS hint causes a fast full index scan to be performed rather than a full
table scan.

leading_hint::=

DIEIII0ICD0L0

The LEADINGhint causes Oracle to use the specified table as the first table in the
join order.

If you specify two or more LEADING hints on different tables, then all of them are
ignored. If you specify the ORDERENRint, then it overrides all LEADING hints.

merge_hint::=
@ O @D

The MERGHint lets you merge a view for each query.

If a view’s query contains a GROUP BY¥lause or DISTINCT operator in the SELECT
list, then the optimizer can merge the view’s query into the accessing statement
only if complex view merging is enabled. Complex merging can also be used to
merge an IN subquery into the accessing statement if the subquery is uncorrelated.

Complex merging is not cost-based; that is, the accessing query block must include
the MERGHint. Without this hint, the optimizer uses another approach.

2-98 Oracle9i SQL Reference

Comments

merge_aj_hint::=

See HASH_AJhint.

merge_sj_hint::=

See HASH_SJhint.

See HASH_AJhint.

See HASH_SJhint.

noappend_hint::=

The NOAPPENRint enables conventional INSERT by disabling parallel mode for
the duration of the INSERT statement. (Conventional INSERT is the default in serial
mode, and direct-path INSERT is the default in parallel mode).

nocache_hint::=

(F{FOEHRE HDADHD

The NOCACHRint specifies that the blocks retrieved for the table are placed at the
least recently used end of the LRU list in the buffer cache when a full table scan is
performed. This is the normal behavior of blocks in the buffer cache.

no_expand_hint::=

Basic Elements of Oracle SQL 2-99

Comments

The NO_EXPANDint prevents the cost-based optimizer from considering
ORexpansion for queries having ORconditions or IN -lists in the WHERI[Elause.
Usually, the optimizer considers using ORexpansion and uses this method if it
decides that the cost is lower than not using it.

no_fact_hint::=
™ (D@D

The NO_FACThint is used in the context of the star transformation to indicate to the
transformation that the hinted table should not be considered as a fact table.

no_index_hint::=

)
@ olC 0108

The NO_INDEXhint explicitly disallows a set of indexes for the specified table.

no_merge_hint::=

(P FoiERGE {OABH DD

The NO_MERGEint causes Oracle not to merge mergeable views.

noparallel_hint::=

(P FOPARALEL DA (DAD

The NOPARALLELhint overrides a PARALLELspecification in the table clause. In
general, hints take precedence over table clauses.

Restriction on NOPARALLEL You cannot parallelize a query involving a nested
table.

noparallel_index_hint::=

. index .
—>@->| NOPARALLEL_INDEX P@»@ @@

The NOPARALLEL_INDEXint overrides a PARALLELattribute setting on an index
to avoid a parallel index scan operation.

2-100 Oracle9/ SQL Reference

Comments

no_push_pred_hint::=
™ O@HDD

The NO_PUSH_PREDiInt prevents pushing of a join predicate into the view.
no_push_subg_hint::=

IO

The NO_PUSH_SUBRInt causes non-merged subqgueries to be evaluated as the last
step in the execution plan. If the subquery is relatively expensive or does not reduce
the number of rows significantly, then it improves performance to evaluate the
subquery last.

norewrite_hint;:=
(+)| NOREWRITE |(*1)

The NOREWRITHInt disables query rewrite for the query block, overriding the

setting of the parameter QUERY_REWRITE_ENABLEDse the NOREWRITHiInt on
any query block of a request.

Note: The NOREWRITHint disables the use of function-based
indexes.

no_unnest_hint::=
@ NO_UNNEST 0

Use of the NO_UNNESTint turns off unnesting for specific subquery blocks.
ordered_hint::=

(PR J:(7)

The ORDERENint causes Oracle to join tables in the order in which they appear in
the FROMlause.

If you omit the ORDEREInt from a SQL statement performing a join, then the
optimizer chooses the order in which to join the tables. You might want to use the
ORDERENDiInNt to specify a join order if you know something about the number of

Basic Elements of Oracle SQL 2-101

Comments

rows selected from each table that the optimizer does not. Such information lets you
choose an inner and outer table better than the optimizer could.

ordered_predicates_hint::=

—(+)+{ ORDERED_PREDICATES |(*/)>

The ORDERED_PREDICATHSnNt forces the optimizer to preserve the order of
predicate evaluation, except for predicates used as index keys. Use this hint in the
WHEREIlause of SELECTstatements.

If you do not use the ORDERED_PREDICATHSNt, then Oracle evaluates all
predicates in the following order:

1. Predicates without user-defined functions, type methods, or subqueries are
evaluated first, in the order specified in the WHERElause.

2. Predicates with user-defined functions and type methods that have
user-computed costs are evaluated next, in increasing order of their cost.

3. Predicates with user-defined functions and type methods without
user-computed costs are evaluated next, in the order specified in the WHERE
clause.

4. Predicates not specified in the WHEREIlause (for example, predicates
transitively generated by the optimizer) are evaluated next.

5. Predicates with subqueries are evaluated last, in the order specified in the
WHERElause.

Note: Remember, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

parallel_hint::=

O
Oy

@ olC:

2-102 Oracle9/ SQL Reference

Comments

The PARALLELDhint lets you specify the desired number of concurrent servers that
can be used for a parallel operation. The hint applies to the SELECT INSERT,
UPDATEand DELETEportions of a statement, as well as to the table scan portion.

Note: The number of servers that can be used is twice the value in
the PARALLELDhint, if sorting or grouping operations also take
place.

If any parallel restrictions are violated, then the hint is ignored.

Note: Oracle ignores parallel hints on a temporary table.

See Also: CREATE TABLE on page 15-7 and Oracle9i Database
Concepts

parallel_index_hint::=

| O
Oy

(99

(PO PARALE o D ‘@»@»

The PARALLEL_INDEXhint specifies the desired number of concurrent servers that
can be used to parallelize index range scans for partitioned indexes.

pq_distribute_hint;:=

@ o u outer_distribution}a@e(inner_distribution)»@»@»

The PQ_DISTRIBUTE hint improves the performance of parallel join operations. Do
this by specifying how rows of joined tables should be distributed among producer
and consumer query servers. Using this hint overrides decisions the optimizer
would normally make.

Use the EXPLAIN PLANstatement to identify the distribution chosen by the
optimizer. The optimizer ignores the distribution hint, if both tables are serial.

Basic Elements of Oracle SQL 2-103

Comments

See Also: Oracle9i Database Performance Tuning Guide and Reference
for the permitted combinations of distributions for the outer and
inner join tables

push_pred_hint::=

F{FIRED MO @D

The PUSH_PREDDint forces pushing of a join predicate into the view.
push_subg_hint::=

OIEEEO

The PUSH_SUBQint causes non-merged subqueries to be evaluated at the earliest
possible step in the execution plan. Generally, subqueries that are not merged are
executed as the last step in the execution plan. If the subquery is relatively
inexpensive and reduces the number of rows significantly, then it improves
performance to evaluate the subquery earlier.

This hint has no effect if the subquery is applied to a remote table or one that is
joined using a merge join.

rewrite_hint::=

(e
@ L g,

The REWRITEhint forces the cost-based optimizer to rewrite a query in terms of
materialized views, when possible, without cost consideration. Use the REWRITE
hint with or without a view list. If you use REWRITEwith a view list and the list
contains an eligible materialized view, then Oracle uses that view regardless of its
cost.

Oracle does not consider views outside of the list. If you do not specify a view list,
then Oracle searches for an eligible materialized view and always uses it regardless
of its cost.

rowid_hint;:=
™ O@HDD

The ROWIDnint explicitly chooses a table scan by rowid for the specified table.

2-104 Oracle9/ SQL Reference

Comments

rule_hint:;=
EHRERD)

The RULEhint explicitly chooses rule-based optimization for a statement block. It
also makes the optimizer ignore other hints specified for the statement block.

star_hint::=
@ D

The STARNhint forces a star query plan to be used, if possible. A star plan has the
largest table in the query last in the join order and joins it with a nested loops join
on a concatenated index. The STARhint applies when there are at least three tables,
the large table’s concatenated index has at least three columns, and there are no
conflicting access or join method hints. The optimizer also considers different
permutations of the small tables.

star_transformation_hint::=

—>®->| STAR_TRANSFORMATION |->@->

The STAR_TRANSFORMATIONNt makes the optimizer use the best plan in which
the transformation has been used. Without the hint, the optimizer could make a
cost-based decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query.

Even if the hint is given, there is no guarantee that the transformation will take
place. The optimizer only generates the subqueries if it seems reasonable to do so. If
no subqueries are generated, then there is no transformed query, and the best plan
for the untransformed query is used, regardless of the hint.

unnest_hint::=

(FH{OWEST (D

The UNNESThint tells Oracle to check the subquery block for validity only. If the
subquery block is valid, then subquery unnesting is enabled without Oracle’s
checking the heuristics.

use_concat_hint::=

(P TeEconeRT ()

Basic Elements of Oracle SQL 2-105

Database Objects

The USE_CONCATint forces combined ORconditions in the WHERElause of a
guery to be transformed into a compound query using the UNION ALLset operator.
Generally, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them.

The USE_CONCATiInt turns off IN -list processing and ORexpands all disjunctions,
including IN -lists.

use_hash_hint::=

TR MO @0 DD

The USE_HASHint causes Oracle to join each specified table with another row
source, using a hash join.

use_merge_hint::=

FH{sEERE (D> (@ DD

The USE_MERGAiInt causes Oracle to join each specified table with another row
source, using a sort-merge join.

use_nl_hint;:=

EHTE O L@ DD

The USE_NLhint causes Oracle to join each specified table to another row source
with a nested loops join, using the specified table as the inner table.

Database Objects

Oracle recognizes objects that are associated with a particular schema and objects
that are not associated with a particular schema, as described in the sections that
follow.

Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects:

2-106 Oracle9/ SQL Reference

Database Objects

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Index-organized tables
Indexes

Indextypes

Java classes, Java resources, Java sources
Materialized views
Materialized view logs
Obiject tables

Object types

Object views

Operators

Packages

Sequences

Stored functions, stored procedures
Synonyms

Tables

Views

Nonschema Objects

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

Contexts

Directories

Parameter files (PFILE s) and server parameter files (SPFILEs)
Profiles

Roles

Rollback segments

Tablespaces

Users

In this reference, each type of object is briefly defined in Chapter 9 through
Chapter 18, in the section describing the statement that creates the database object.
These statements begin with the keyword CREATEFor example, for the definition
of a cluster, see CREATE CLUSTER on page 13-2.

Basic Elements of Oracle SQL 2-107

Database Objects

See Also: Oracle9i Database Concepts for an overview of database
objects

You must provide names for most types of database objects when you create them.
These names must follow the rules listed in the following sections.

Parts of Schema Objects
Some schema objects are made up of parts that you can or must name, such as:

« Columnsin atable or view
« Index and table partitions and subpartitions
« Integrity constraints on a table

« Packaged procedures, packaged stored functions, and other objects stored
within a package

Partitioned Tables and Indexes

Tables and indexes can be partitioned. When partitioned, these schema objects
consist of a number of parts called partitions, all of which have the same logical
attributes. For example, all partitions in a table share the same column and
constraint definitions, and all partitions in an index share the same index columns.

When you partition a table or index using the range method, you specify a
maximum value for the partitioning key column(s) for each partition. When you
partition a table or index using the list method, you specify actual values for the
partitioning key column(s) for each partition. When you partition a table or index
using the hash method, you instruct Oracle to distribute the rows of the table into
partitions based on a system-defined hash function on the partitioning key
column(s). When you partition a table or index using the composite-partitioning
method, you specify ranges for the partitions, and Oracle distributes the rows in
each partition into one or more hash subpartitions based on a hash function. Each
subpartition of a table or index partitioned using the composite method has the
same logical attributes.

Partition-Extended and Subpartition-Extended Names

Partition-extended and subpartition-extended names let you perform some
partition-level and subpartition-level operations, such as deleting all rows from a
partition or subpartition, on only one partition or subpartition. Without extended
names, such operations would require that you specify a predicate (WHERElause).

2-108 Oracle9/ SQL Reference

Database Objects

For range- and list-partitioned tables, trying to phrase a partition-level operation
with a predicate can be cumbersome, especially when the range partitioning key
uses more than one column. For hash partitions and subpartitions, using a predicate
is more difficult still, because these partitions and subpartitions are based on a
system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage
of this method, which is most useful for range-partitioned tables, is that you can
build partition-level access control mechanisms by granting (or revoking) privileges
on these views to (or from) other users or roles.To use a partition as a table, create a
view by selecting data from a single partition, and then use the view as a table.

You can specify partition-extended or subpartition-extended table names for the
following DML statements:

DELETE
INSERT
LOCK TABLE
SELECT
UPDATE

Note: For application portability and ANSI syntax compliance,
Oracle strongly recommends that you use views to insulate
applications from this Oracle proprietary extension.

Syntax The basic syntax for using partition-extended and subpartition-extended
table names is:

partition_extended_name::=

PARTITION (()>(partiion

SUBPARTITION subpartition

@O @),

view

Restrictions on Extended Names Currently, the use of partition-extended and
subpartition-extended table names has the following restrictions:

Basic Elements of Oracle SQL 2-109

Schema Object Names and Qualifiers

« No remote tables: A partition-extended or subpartition-extended table name
cannot contain a database link (dblink) or a synonym that translates to a table
with a dblink. To use remote partitions and subpartitions, create a view at the
remote site that uses the extended table name syntax and then refer to the
remote view.

« No synonyms: A partition or subpartition extension must be specified with a
base table. You cannot use synonyms, views, or any other objects.

Example In the following statement, sales is a partitioned table with partition
sales_gl 2000 . You can create a view of the single partition sales_ql1 2000
and then use it as if it were a table. This example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
SELECT * FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales WHERE amount_sold < 0;

Schema Object Names and Qualifiers
This section provides:
« Rules for naming schema objects and schema object location qualifiers

« Guidelines for naming schema objects and qualifiers

Schema Object Naming Rules
Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

« A quoted identifier begins and ends with double quotation marks (*). If you
name a schema object using a quoted identifier, then you must use the double
guotation marks whenever you refer to that object.

« A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object,
with one exception: database links must be named with nonquoted identifiers. In
addition, Oracle Corporation strongly recommends that you not use quotation
marks to make usernames and passwords case sensitive.

See Also: CREATE USER on page 16-32 for additional rules for
naming users and passwords

2-110 Oracle9/ SQL Reference

Schema Object Names and Qualifiers

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1.

Names must be from 1 to 30 bytes long with these exceptions:
« Names of databases are limited to 8 bytes.
« Names of database links can be as long as 128 bytes.

Nonquoted identifiers cannot be Oracle reserved words. Quoted identifiers can
be reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object,
names might be further restricted by other product-specific reserved words.

Note: The reserved word ROWIDis an exception to this rule. You
cannot use the uppercase word ROWIDas a name, even in double
guotation marks. However, you can use the word with one or more
lower case letters (for example, "Rowid " or "rowid ").

See Also:

« Appendix C, "Oracle Reserved Words" for a listing of all Oracle
reserved words

« The manual for the specific product, such as PL/SQL User’s
Guide and Reference, for a list of the product’s reserved words

The Oracle SQL language contains other words that have special meanings.
These words include datatypes, function names, the dummy system table DUAL,
and keywords (the uppercase words in SQL statements, such as DIMENSION
SEGMENTRALLOCATEDISABLE, and so forth). These words are not reserved.
However, Oracle uses them internally in specific ways. Therefore, if you use
these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with "SYS " as schema object names,
and do not use the names of SQL built-in functions for the names of schema
objects or user-defined functions.

See Also:
« "Datatypes" on page 2-2 and "SQL Functions" on page 6-2
« "Selecting from the DUAL Table" on page 8-16

Basic Elements of Oracle SQL 2-111

Schema Object Names and Qualifiers

4. You should use ASCII characters in database names, global database names,
and database link names, because ASCII characters provide optimal
compatibility across different platforms and operating systems.

Note: Oracle Corporation recommends that user names and
passwords be encoded in ASCII or EBCDIC characters only,
depending on your platform. Please refer to Oracle9i Database
Administrator’s Guide for more information about this
recommendation.

5. Nonguoted identifiers must begin with an alphabetic character from your
database character set. Quoted identifiers can begin with any character.

6. Nonguoted identifiers can contain only alphanumeric characters from your
database character set and the underscore (), dollar sign ($), and pound sign
(#). Database links can also contain periods (.) and "at" signs (@). Oracle
Corporation strongly discourages you from using $ and #.

Quoted identifiers can contain any characters and punctuations marks as well
as spaces. However, neither quoted nor nonquoted identifiers can contain
double quotation marks.

7. Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:
« Tables
« Views
« Sequences
« Private synonyms
« Stand-alone procedures
« Stand-alone stored functions
« Packages
« Materialized views
« User-defined types
Each of the following schema objects has its own namespace:

« Indexes

2-112 Oracle9/ SQL Reference

Schema Object Names and Qualifiers

« Constraints

« Clusters

« Database triggers

« Private database links
« Dimensions

Because tables and views are in the same namespace, a table and a view in the
same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can
have the same name.

Each schema in the database has its own namespaces for the objects it contains.
This means, for example, that two tables in different schemas are in different
namespaces and can have the same name.

Each of the following nonschema objects also has its own namespace:
= Userroles

« Public synonyms

= Public database links

« Tablespaces

« Rollback segments

« Profiles

« Parameter files (PFILE s) and server parameter files (SPFILEs)

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

Nonquoted identifiers are not case sensitive. Oracle interprets them as
uppercase. Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following
names to different objects in the same namespace:

employees
"employees”
"Employees"
"EMPLOYEES"

Basic Elements of Oracle SQL 2-113

Schema Object Names and Qualifiers

Note that Oracle interprets the following names the same, so they cannot be
used for different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

9. If you name a user or a password with a quoted identifier, then the name
cannot contain lowercase letters.

10. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

11. Procedures or functions contained in the same package can have the same
name, if their arguments are not of the same number and datatypes. Creating
multiple procedures or functions with the same name in the same package with
different arguments is called overloading the procedure or function.

Schema Object Naming Examples
The following examples are valid schema object names:

last_name

horse

hr.hire_date

"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in "Schema Object Naming Rules" on
page 2-110. The following example is not valid, because it exceeds 30 characters:

a_very_very_long_and_valid_name

Although column aliases, table aliases, usernames, and passwords are not objects or
parts of objects, they must also follow these naming rules unless otherwise specified
in the rules themselves.

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

« Use full, descriptive, pronounceable names (or well-known abbreviations).
« Use consistent naming rules.

« Use the same name to describe the same entity or attribute across tables.

2-114 Oracle9/ SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt,
choose the more descriptive name, because the objects in the database may be used
by many people over a period of time. Your counterpart ten years from now may
have difficulty understanding a table column with a name like pmdd instead of
payment_due_date

Using consistent naming rules helps users understand the part that each table plays
in your application. One such rule might be to begin the names of all tables
belonging to the FINANCEapplication with fin_ .

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables
are both named deptno .

Syntax for Schema Objects and Parts in SQL Statements

This section tells you how to refer to schema objects and their parts in the context of
a SQL statement. This section shows you:

« The general syntax for referring to an object

« How Oracle resolves a reference to an object

= How to refer to objects in schemas other than your own
« How to refer to objects in remote databases

The following diagram shows the general syntax for referring to an object or a part:

object_part::=
.
(object)
where:

« object isthe name of the object.

« Schema is the schema containing the object. The schema qualifier lets you refer
to an object in a schema other than your own. You must be granted privileges to
refer to objects in other schemas. If you omit schema, then Oracle assumes that
you are referring to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown
with list item 7 on page 2-112. Nonschema objects, also shown with list item 7

Basic Elements of Oracle SQL 2-115

Syntax for Schema Objects and Parts in SQL Statements

on page 2-112, cannot be qualified with schema because they are not schema
objects. (An exception is public synonyms, which can optionally be qualified
with "PUBLIC". The quotation marks are required.)

« part isa partof the object. This identifier lets you refer to a part of a schema
object, such as a column or a partition of a table. Not all types of objects have
parts.

« dblink applies only when you are using Oracle’s distributed functionality.
This is the name of the database containing the object. The dblink qualifier lets
you refer to an object in a database other than your local database. If you omit
dblink , then Oracle assumes that you are referring to an object in your local
database. Not all SQL statements allow you to access objects on remote
databases.

You can include spaces around the periods separating the components of the
reference to the object, but it is conventional to omit them.

How Oracle Resolves Schema Object References

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating
the object, Oracle performs the statement’s operation on the object. If the named
object cannot be found in the appropriate namespace, then Oracle returns an error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name departments

INSERT INTO departments VALUES (
280, 'ENTERTAINMENT_CLERK’, 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:
« Atable in your own schema

« Aview in your own schema

« A private synonym for a table or view

« A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name dept as follows:

2-116 Oracle9/ SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private
synonym, then Oracle locates the object for which the synonym stands. This
object could be in your own schema, another schema, or on another database.
The object could also be another synonym, in which case Oracle locates the
object for which this synonym stands.

2. Ifthe object is in the namespace, then Oracle attempts to perform the statement
on the object. In this example, Oracle attempts to add the row of data to dept . If
the object is not of the correct type for the statement, then Oracle returns an
error. In this example, dept must be a table, view, or a private synonym
resolving to a table or view. If dept is a sequence, then Oracle returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches
the namespace containing public synonyms. If the object is in that namespace,
then Oracle attempts to perform the statement on it. If the object is not of the
correct type for the statement, then Oracle returns an error. In this example, if
dept is a public synonym for a sequence, then Oracle returns an error.

Note: If a public object type synonym has any dependent tables or
user-defined types, then you cannot create an object with the same
name as the synonym in the same schema as the dependent objects.

If the public object type synonym does not have any dependent
tables or user-defined types, then you can create an object with the
same name in the same schema as the dependent objects. Oracle
invalidates any dependent objects and attempts to revalidate them
when they are next accessed.

Referring to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the
schema name:

schema.object

For example, this statement drops the employees table in the sample schema hr :

DROP TABLE hr.employees

Basic Elements of Oracle SQL 2-117

Syntax for Schema Objects and Parts in SQL Statements

Referring to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object
name with the name of the database link to that database. A database link is a
schema object that causes Oracle to connect to a remote database to access an object
there. This section tells you:

« How to create database links

« How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK on
page 13-37. The statement lets you specify this information about the database link:

« The name of the database link

« The database connect string to access the remote database

« The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names When you create a database link, you must specify its name.

Database link names are different from names of other types of objects. They can be
as long as 128 bytes and can contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the
database to which the database link refers and the location of that database in the
hierarchy of database names. The following syntax diagram shows the form of the
name of a database link:

dblink::=

| .] @ connect_descriptor
—(database)

where:

« database should specify the nameportion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database; you can see this name in the GLOBAL _
NAMEBview.

« domain should specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the

2-118 Oracle9/ SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

name of a database link, then Oracle qualifies the database link name with the
domain of your local database as it currently exists in the data dictionary.

« connect_descriptor lets you further qualify a database link. Using connect
descriptors, you can create multiple database links to the same database. For
example, you can use connect descriptors to create multiple database links to
different instances of the Real Application Clusters that access the same
database.

The combination database.domain is sometimes called the "service name".

See Also: Oracle9i Net Services Administrator’s Guide

Username and Password Oracle uses the username and password to connect to the
remote database. The username and password for a database link are optional.

Database Connect String The database connect string is the specification used by
Oracle Net to access the remote database. For information on writing database
connect strings, see the Oracle Net documentation for your specific network
protocol. The database string for a database link is optional.

Referring to Database Links

Database links are available only if you are using Oracle’s distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

« complete isthe complete database link name as stored in the data dictionary;,
including the database , domain , and optional connect_descriptor
components.

« partial is the database and optional connect _descriptor components,
but not the domain component.

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle
expands the name to contain the domain of the local database as found in the
global database name stored in the data dictionary. (You can see the current
global database name in the GLOBAL_NAMHata dictionary view.)

2. Oracle first searches for a private database link in your own schema with the
same name as the database link in the statement. Then, if necessary, it searches
for a public database link with the same name.

Basic Elements of Oracle SQL 2-119

Syntax for Schema Objects and Parts in SQL Statements

« Oracle always determines the username and password from the first
matching database link (either private or public). If the first matching
database link has an associated username and password, then Oracle uses
it. If it does not have an associated username and password, then Oracle
uses your current username and password.

« If the first matching database link has an associated database string, then
Oracle uses it. Otherwise Oracle searches for the next matching (public)
database link. If no matching database link is found, or if no matching link
has an associated database string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing
the remote database, if the value of the GLOBAL_NAMEBarameter is true ,
then Oracle verifies that the database.domain portion of the database link
name matches the complete global name of the remote database. If this
condition is true, then Oracle proceeds with the connection, using the username
and password chosen in Step 2. If not, Oracle returns an error.

4. If the connection using the database string, username, and password is
successful, then Oracle attempts to access the specified object on the remote
database using the rules for resolving object references and referring to objects
in other schemas discussed earlier in this section.

You can disable the requirement that the database.domain portion of the
database link name must match the complete global name of the remote database
by setting to false the initialization parameter GLOBAL_NAMESr the GLOBAL _
NAMES$arameter of the ALTER SYSTEMr ALTER SESSIONstatement.

See Also: Oracle9i Database Administrator’s Guide for more
information on remote name resolution

Referencing Object Type Attributes and Methods

To reference object type attributes or methods in a SQL statement, you must fully
gualify the reference with a table alias. Consider the following example from the
sample schema oe, which contains a type cust_address_typ and a table
customers with a cust_address column based on the cust_address_typ

CREATE TYPE cust_address_typ AS OBJECT
(street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
, City VARCHAR2(30)
, State_province VARCHAR2(10)
, country_id CHAR(2)

2-120 Oracle9/ SQL Reference

Syntax for Schema Objects and Parts in SQL Statements

);
/

CREATE TABLE customers
(customer_id NUMBER(6)
, cust_first_name VARCHAR2(20) CONSTRAINT cust_fname_nn NOT NULL
, cust_last name VARCHAR2(20) CONSTRAINT cust_Iname_nn NOT NULL
, cust_address cust_address_typ

In a SQL statement, reference to the postal_code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code FROM customers c;

UPDATE customers ¢ SET c.cust_address.postal_code ='GU13 BE5’
WHERE c.cust_address.city = 'Fleet’;

To reference an object type’s member method that does not accept arguments, you
must provide "empty" parentheses. For example, the sample schema oe contains an
object table categories_tab , based on catalog_typ , which contains the
member function getCatalogName . In order to call this method in a SQL
statement, you must provide empty parentheses as shown in this example:

SELECT c.getCatalogName() FROM categories_tab c
WHERE category_id = 90;

See Also: Oracle9i Database Concepts for more information on
user-defined datatypes

Basic Elements of Oracle SQL 2-121

Syntax for Schema Objects and Parts in SQL Statements

2-122 Oracle9/ SQL Reference

3

Operators

An operator manipulates individual data items and returns a result.

This chapter contains these sections:

About SQL Operators
Arithmetic Operators
Concatenation Operator
Set Operators

User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot
by themselves serve as the condition of a WHERBr HAVINGclause in queries or
subqueries. For information on logical operators, which serve as conditions, please
refer to Chapter 5, "Conditions".

Operators 3-1

About SQL Operators

About SQL Operators

Operators manipulate individual data items called operands or arguments.
Operators are represented by special characters or by keywords. For example, the
multiplication operator is represented by an asterisk (*).

Note: If you have installed Oracle Text, you can use the SCORE
operator, which is part of that product, in Oracle Text queries. For
more information on this operator, please refer to Oracle Text
Reference.

Unary and Binary Operators
The two general classes of operators are:

= unary: A unary operator operates on only one operand. A unary operator
typically appears with its operand in this format:

operator operand
« binary: A binary operator operates on two operands. A binary operator appears
with its operands in this format:

operandl operator operand2

Other operators with special formats accept more than two operands. If an operator
is given a null operand, the result is always null. The only operator that does not
follow this rule is concatenation (] |).

Operator Precedence

Precedence is the order in which Oracle evaluates different operators in the same
expression. When evaluating an expression containing multiple operators, Oracle
evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right
within an expression.

Table 3-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

3-2 Oracle9/ SQL Reference

Arithmetic Operators

Table 3-1 SQL Operator Precedence

Operator Operation

+, - (as unary operators), PRIOR identity, negation, location in hierarchy
* multiplication, division

+, - (as binary operators), || addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence" on page 5-3
operators

Precedence Example In the following expression, multiplication has a higher
precedence than addition, so Oracle first multiplies 2 by 3 and then adds the result
to 1.

1+2*3
You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION UNION ALL INTERSECT and MINUS),
which combine sets of rows returned by queries, rather than individual data items.
All set operators have equal precedence.

See Also:

« "Set Operators" on page 3-6

« "Hierarchical Queries" on page 8-3 for information on the
PRIOR operator, which is used only in hierarchical queries

Arithmetic Operators

You can use an arithmetic operator in an expression to negate, add, subtract,
multiply, and divide numeric values. The result of the operation is also a numeric
value. Some of these operators are also used in date arithmetic. Table 3-2 lists
arithmetic operators.

Operators 3-3

Concatenation Operator

Table 3-2 Arithmetic Operators

Operator Purpose Example
+ - When these denote a positive ~ SELECT * FROM order_items
or negative expression, they are WHERE quantity = -1;
unary operators. SELECT * FROM employees
WHERE -salary < 0;
When they add or subtract, SELECT hire_date
they are binary operators. FROM employees
WHERE SYSDATE - hire_date
> 365;
*/ Multiply, divide. These are UPDATE employees
binary operators. SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate
double negation or the subtraction of a negative value. The characters -- are used to
begin comments within SQL statements. You should separate consecutive minus
signs with a space or a parenthesis.

See Also: "Comments" on page 2-90 for more information on
comments within SQL statements

Concatenation Operator

The concatenation operator manipulates character strings and CLOBdata. Table 3-3
describes the concatenation operator.

Table 3-3 Concatenation Operator

Operator Purpose Example
11 Concatenates SELECT 'Name is’ || last_name
character strings FROM employees;

and CLOBdata.

The result of concatenating two character strings is another character string. If both
character strings are of datatype CHARthe result has datatype CHARand is limited
to 2000 characters. If either string is of datatype VARCHARZ2the result has datatype
VARCHAR2nNd is limited to 4000 characters. If either argument is a CLOB the result
is a temporary CLOB Trailing blanks in character strings are preserved by
concatenation, regardless of the datatypes of the string or CLOB

3-4 Oracle9i SQL Reference

Concatenation Operator

On most platforms, the concatenation operator is two solid vertical bars, as shown
in Table 3-3. However, some IBM platforms use broken vertical bars for this
operator. When moving SQL script files between systems having different character
sets, such as between ASCII and EBCDIC, vertical bars might not be translated into
the vertical bar required by the target Oracle environment. Oracle provides the
CONCATharacter function as an alternative to the vertical bar operator for cases
when it is difficult or impossible to control translation performed by operating
system or network utilities. Use this function in applications that will be moved
between environments with differing character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a
zero-length character string with another operand always results in the other
operand, so null can result only from the concatenation of two null strings.
However, this may not continue to be true in future versions of Oracle. To
concatenate an expression that might be null, use the NVLfunction to explicitly
convert the expression to a zero-length string.

See Also:

» "Character Datatypes" on page 2-9 for more information on the
differences between the CHARand VARCHAR2latatypes

« Oracle9i Application Developer’s Guide - Large Objects (LOBs) for
more information about CLOB

« The functions CONCAT on page 6-35 and NVL on page 6-113

Example This example creates a table with both CHARand VARCHARZ2olumns,
inserts values both with and without trailing blanks, and then selects these values
and concatenates them. Note that for both CHARand VARCHARZ2o0lumns, the
trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHAR2(6), col2 CHAR(6),
col3 VARCHARZ2(6), col4 CHAR(6));

INSERT INTO tab1l (coll, col2, col3, col4)
VALUES (abc’, 'def ’,’ghi 7, 'jkI);

SELECT coll||col2||col3||col4 "Concatenation”
FROM tabl;

Concatenation

abcdef ghi jkl

Operators 3-5

Set Operators

Set Operators

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 3—4 lists SQL
set operators. They are fully described, including restrictions on these operators, in
"The UNION [ALL], INTERSECT, MINUS Operators" on page 8-7.

Table 3-4 Set Operators

Operator Returns

UNION All rows selected by either query

UNION ALL All rows selected by either query, including all duplicates
INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query but not the second

User-Defined Operators

Like built-in operators, user-defined operators take a set of operands as input and
return a result. However, you create them with the CREATE OPERATGRatement,
and they are identified by names. They reside in the same namespace as tables,
views, types, and standalone functions.

Once you have defined a new operator, you can use it in SQL statements like any
other built-in operator. For example, you can use user-defined operators in the
select list of a SELECTstatement, the condition of a WHEREIlause, or in ORDER BY
clauses and GROUP B¥lauses. However, you must have EXECUTHBprivilege on the
operator to do so, because it is a user-defined object.

For example, if you define an operator includes , which takes as input a text
column and a keyword and returns 1 if the row contains the specified keyword, you
can then write the following SQL query:

SELECT * FROM product_descriptions
WHERE includes (translated_description, 'Oracle and UNIX") = 1;

See Also: CREATE OPERATOR on page 14-44 and Oracle9i Data
Cartridge Developer’s Guide for more information on user-defined operators

3-6 Oracle9/ SQL Reference

A

EXxpressions

This chapter describes how to combine values, operators, and functions into
expressions.

This chapter includes these sections:

About SQL Expressions
Simple Expressions
Compound Expressions
CASE Expressions

CURSOR Expressions
Datetime Expressions
Function Expressions
INTERVAL Expressions
Object Access Expressions
Scalar Subquery Expressions
Type Constructor Expressions
Variable Expressions

Expression Lists

Expressions 4-1

About SQL Expressions

About SQL Expressions

An expression is a combination of one or more values, operators, and SQL
functions that evaluate to a value. An expression generally assumes the datatype of
its components.

This simple expression evaluates to 4 and has datatype NUMBERthe same datatype
as its components):

2%2
The following expression is an example of a more complex expression that uses
both functions and operators. The expression adds seven days to the current date,

removes the time component from the sum, and converts the result to CHAR
datatype:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

« The select list of the SELECTstatement

= A condition of the WHEREIlause and HAVINGclause

« The CONNECT BBTART WITHand ORDER B¥Xlauses
« The VALUESclause of the INSERT statement

= The SETclause of the UPDATEstatement

For example, you could use an expression in place of the quoted string "smith’ in
this UPDATEstatement SET clause:

SET last_name =’'Smith’;

This SET clause has the expression INITCAP (last_name) instead of the quoted
string 'Smith :

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

4-2 Oracle9i SQL Reference

Simple Expressions

expr::=

simple_expression
compound_expression
case_expression
Ccursor_expression

datetime_expression

——{ function_expression >

bt

interval_expression

—Cscalar_subquery_expression)—

—(type_constructor_expression)—

o
k=3
@D
Q
e
QD
(@]
(=]
D
w
wm
@
>
el
3
D
w
0,
o
\T)

l

variable_expression

Oracle does not accept all forms of expressions in all parts of all SQL statements.
You must use appropriate expression notation whenever expr appears in
conditions, SQL functions, or SQL statements in other parts of this reference. The
sections that follow describe and provide examples of the various forms of

expressions.

See Also: The individual SQL statements in Chapter 9 through
Chapter 18 for information on restrictions on the expressions in that

statement

Simple Expressions

A simple expression specifies column, pseudocolumn, constant, sequence number,

or null.

Expressions 4-3

Simple Expressions

simple_expression::=

guery_name

(&
view

materialized view
ROWID

J

|[

ROWNUM

text

number

sequence .

NULL

3] 9]

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation
marks required), in which case it must qualify a public synonym for a table, view, or
materialized view. Qualifying a public synonym with "PUBLIC" is supported only
in data manipulation language (DML) statements, not data definition language
(DDL) statements.

The pseudocolumn can be either LEVEL, ROWIDor ROWNUMou can use a
pseudocolumn only with a table, not with a view or materialized view. NCHARind
NVARCHARZ2re not valid pseudocolumn datatypes.

See Also:

« "Pseudocolumns” on page 2-82 for more information on
pseudocolumns

« Subquery factoring clause on page 18-10 for
information on query_name

Some valid simple expressions are:

employees.last_name
‘this is a text string’

10

N’this is an NCHAR string’

4-4 Oracle9i SQL Reference

Compound Expressions

Compound Expressions
A compound expression specifies a combination of other expressions.

compound_expression::=

Note: You can use any built-in function as an expression
("Function Expressions"” on page 4-11). However, in a compound
expression, some combinations of functions are inappropriate and
are rejected. For example, the LENGTHunction is inappropriate
within an aggregate function.

The PRIOR operator is used in CONNECT B#lauses of hierarchical queries.

See Also: "Operator Precedence" on page 3-2 and "Hierarchical
Queries" on page 8-3

Some valid compound expressions are:

(CLARK’ || 'SMITH’)

LENGTH(MOOSE') * 57

SQRT(144) + 72
my_fun(TO_CHAR(sysdate,' DD-MMM-YY"))

Expressions 4-5

CASE Expressions

CASE Expressions

CASEexpressions let you use IF ... THEN... ELSElogic in SQL statements without
having to invoke procedures. The syntax is:

case_expression::=

simple_case_expressionh
CASE EN:ID

searched_case_expression

simple_case_expression::=

WHEN |—>(comparison_expr>a| THEN |—>(return_expr>)—>

searched_case_expression::=

ﬂii WHEN |e(condition>9| THEN |e(return_expr>)—>

else_clause::=

In a simple CASEexpression, Oracle searches for the first WHEN. THENpair for
which expr is equal to comparison_expr and returns return_expr . If none of
the WHEN.. THENpairs meet this condition, and an ELSE clause exists, then Oracle
returns else_expr . Otherwise, Oracle returns null. You cannot specify the literal
NULLfor all the return_expr s and the else_expr

All of the expressions (expr , comparison_expr , and return_expr) must be of
the same datatype, which can be CHARVARCHARNCHARor NVARCHAR?2

In a searched CASEexpression, Oracle searches from left to right until it finds an
occurrence of condition that is true, and then returns return_expr . If no
condition is found to be true, and an ELSEclause exists, Oracle returns else_
expr . Otherwise, Oracle returns null.

Note: The maximum number of arguments in a CASEexpression
is 255, and each WHEN.. THENpair counts as two arguments. To
avoid exceeding the limit of 128 choices, you can nest CASE
expressions. That is return_expr can itself be a CASEexpression.

4-6 Oracle9i SQL Reference

CURSOR Expressions

See Also:

« COALESCE on page 6-33 and NULLIF on page 6-110 for
alternative forms of CASElogic

« Oracle9i Data Warehousing Guide for examples using various
forms of the CASEexpression

Simple CASE Example For each customer in the sample oe.customers table, the
following statement lists the credit limit as "Low" if it equals $100, "High" if it
equals $5000, and "Medium" if it equals anything else.

SELECT cust_last_name,
CASE credit_limit WHEN 100 THEN 'Low’
WHEN 5000 THEN 'High’
ELSE 'Medium’ END
FROM customers;

CUST_LAST_NAME CASECR

Bogart Medium
Nolte Medium
Loren Medium
Gueney Medium

Searched CASE Example The following statement finds the average salary of the
employees in the sample table oe.employees , using $2000 as the lowest salary
possible:

SELECT AVG(CASE WHEN e.salary > 2000 THEN e.salary
ELSE 2000 END) "Average Salary" from employees €;

Average Salary

6461.68224

CURSOR Expressions

A CURSORXxpression returns a nested cursor. This form of expression is equivalent
to the PL/SQL REF CURSORBNd can be passed as a REF CURSORrgument to a
function.

Expressions 4-7

CURSOR Expressions

CUI‘SOF_EprESSiOﬂZZ:

—>| CURSOR P@{subquery)s@—)

A nested cursor is implicitly opened when the cursor expression is evaluated. For
example, if the cursor expression appears in a SELECTIist, a nested cursor will be
opened for each row fetched by the query. The nested cursor is closed only when:

« The nested cursor is explicitly closed by the user

« The parent cursor is reexecuted

« The parent cursor is closed

« The parent cursor is cancelled

« An error arises during fetch on one of its parent cursors (it is closed as part of
the clean-up)

Restrictions on CURSOR Expressions

« If the enclosing statement is not a SELECTstatement, nested cursors can appear
only as REF CURSORrguments of a procedure.

« Ifthe enclosing statement is a SELECTstatement, nested cursors can also
appear in the outermost SELECTIist of the query specification, or in the
outermost SELECTIist of another nested cursor.

« Nested cursors cannot appear in views.

« You cannot perform BIND and EXECUTHEbperations on nested cursors.

Examples The following example shows the use of a CURSORXxpression in the
select list of a query:

SELECT department_name, CURSOR(SELECT salary, commission_pct
FROM employees e
WHERE e.department_id = d.department_id)
FROM departments d;

The next example shows the use of a CURSORXpression as a function argument.
The example begins by creating a function in the sample OEschema that can accept
the REF CURSORrgument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTION f(cur SYS_REFCURSOR, mgr_hiredate DATE)
RETURN NUMBER IS
emp_hiredate DATE;

4-8 Oracle9i SQL Reference

Datetime Expressions

before number :=0;
after number:=0;
begin
loop
fetch cur into emp_hiredate;
exit when cur®%NOTFOUND;
if emp_hiredate > mgr_hiredate then
after:=after+1;
else
before:=before+1;
end if;
end loop;
close cur;
if before > after then
return 1;
else
return O;
end if;
end;
/

The function accepts a cursor and a date. The function expects the cursor to be a
query returning a set of dates. The following query uses the function to find those
managers in the sample employees table, most of whose employees were hired
before the manager.

SELECT el.last_name FROM employees el
WHERE f(
CURSOR(SELECT e2.hire_date FROM employees e2
WHERE el.employee_id = e2.manager_id),
el.hire_date) = 1;

LAST_NAME

De Haan
Mourgos
Cambrault
Zlotkey
Higgens

Datetime Expressions

A datetime expression yields a value of one of the datetime datatypes.

Expressions 4-9

Datetime Expressions

datetime_expression::=

/| LOCAL

—><datetime_value_expr>e| AT |+

DBTIMEZONE

\| TIME |->| ZONE SESSIONTIMEZONE }

time_zone_name

A datetime_value_expr can be a datetime column or a compound expression
that yields a datetime value. Datetimes and intervals can be combined according to
the rules defined in Table 2-5 on page 2-25. The three combinations that yield
datetime values are valid in a datetime expression.

If you specify AT LOCAL Oracle uses the current session time zone.
The settings for AT TIME ZONEare interpreted as follows:
« Thestring '(+|-)HH:MM’ specifies a time zone as an offset from UTC.

« DBTIMEZONEOTracle uses the database time zone established (explicitly or by
default) during database creation.

« SESSIONTIMEZONEOracle uses the session time zone established by default or
in the most recent ALTER SESSIONstatement.

« time_zone _name : Oracle returns the datetime_value _expr in the time
zone indicated by time_zone _name . For a listing of valid time zone names,
query the V$TIMEZONE_NAME8&ynamic performance view.

See Also: Oracle9i Database Reference for information on the
dynamic performance views

« expr :If expr returns a character string with a valid time zone format, Oracle
returns the input in that time zone. Otherwise, Oracle returns an error.

Example The following example converts the datetime value of one time zone to
another time zone:

SELECT FROM_TZ(CAST(TO_DATE('1999-12-01 11:00:00’,

4-10 Oracle9i SQL Reference

INTERVAL Expressions

'YYYY-MM-DD HH:MI:SS’) AS TIMESTAMP), 'America/New_York’)
AT TIME ZONE 'America/Los_Angeles’ "West Coast Time"
FROM DUAL;

West Coast Time

01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

Function Expressions

You can use any built-in SQL function or user-defined function as an expression.
Some valid built-in function expressions are:

LENGTH(BLAKE’)
ROUND(1234.567*43)
SYSDATE

See Also: "SQL Functions" on page 6-2 and "Aggregate
Functions" on page 6-8 for information on built-in functions

A user-defined function expression specifies a call to:

« A function in an Oracle-supplied package (see Oracle9i Supplied PL/SQL
Packages and Types Reference)

« A function in a user-defined package or type or in a standalone user-defined
function (see "User-Defined Functions" on page 6-222)

« A user-defined function or operator (see CREATE OPERATOR on page 14-44,
CREATE FUNCTION on page 13-52, and Oracle9i Data Cartridge Developer’s
Guide)

Some valid user-defined function expressions are:

circle_area(radius)

payroll.tax_rate(empno)
hr.employees.comm_pct(dependents, empno)@remote
DBMS_LOB.getlength(column_name)
my_function(DISTINCT a_column)

INTERVAL Expressions

An interval expression yields a value of INTERVAL YEAR TO MONTi INTERVAL
DAY TO SECOND

Expressions 4-11

Object Access Expressions

Object Acces

table alias column
' object_table_alias .‘

interval_expression::=

DAY |->| TO |->| SECOND
interval_value_expr
YEAR |->| TO |->| MONTH

The interval_value expr can be the value of an INTERVAL column or a
compound expression that yields an interval value. Datetimes and intervals can be
combined according to the rules defined in Table 2-5 on page 2-25. The six
combinations that yield interval values are valid in an interval expression.

For example, the following statement subtracts the value of the order_date
column in the sample table orders (a datetime value) from the system timestamp
(another datetime value) to yield an interval value expression:

SELECT (SYSTIMESTAMP - order_date) DAY TO SECOND from orders;

s Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

argument
e g

The column parameter can be an object or REFcolumn. If you specify expr , it must
resolve to an object type.

attribute

method

When a type’s member function is invoked in the context of a SQL statement, if the
SELFargument is null, Oracle returns null and the function is not invoked.

Examples The following example creates a table based on the sample oe.order_
item_typ object type, and then shows how you would update and select from the
object column attributes.

4-12 Oracle9i SQL Reference

Type Constructor Expressions

CREATE TABLE short_orders (
sales_rep VARCHARZ2(25), item order_item_typ);

UPDATE short_orders s SET sales_rep = 'Unassigned’;

SELECT o.item.line_item_id, o.item.quantity FROM short_orders o;

Scalar Subquery Expressions

A scalar subquery expression is a subquery that returns exactly one column value
from one row. The value of the scalar subquery expression is the value of the select
list item of the subquery. If the subquery returns 0 rows, then the value of the scalar
subquery expression is NULL If the subquery returns more than one row, then
Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression
(expr). However, scalar subqueries are not valid expressions in the following
places:

« Asdefault values for columns

« As hash expressions for clusters

« Inthe RETURNINGIlause of DML statements

« As the basis of a function-based index

« In CHECKonstraints

« In WHENonditions of CASEexpressions

« In GROUP B¥nd HAVINGclauses

« In START WITHand CONNECT Bw¥lauses

« Instatements that are unrelated to queries, such as CREATE PROFILE

Type Constructor Expressions

A type constructor expression specifies a call to a type constructor. The argument to
the type constructor is any expression.

Expressions 4-13

Type Constructor Expressions

type_constructor_expression::=

X type_name ¥ () @-)

The NEWkeyword applies to constructors for object types but not for collection
types. It instructs Oracle to construct a new object by invoking an appropriate
constructor. The use of the NEWkeyword is optional, but it is good practice to
specify it.

If type_name is an object type, then the expressions must be an ordered list, where
the first argument is a value whose type matches the first attribute of the object
type, the second argument is a value whose type matches the second attribute of the
object type, and so on. The total number of arguments to the constructor must
match the total number of attributes of the object type.

If type_name is a varray or nested table type, then the expression list can contain
zero or more arguments. Zero arguments implies construction of an empty
collection. Otherwise, each argument corresponds to an element value whose type
is the element type of the collection type.

Type constructors can be invoked anywhere functions are invoked. They also have
similar restrictions, such as a limit on the maximum number of arguments.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for additional information on type constructors

Expression Example This example uses the cust_address_typ type in the
sample oe schema to show the use of an expression in the call to a type constructor
(the PL/SQL is shown in italics):

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
DECLARE
myaddr cust_address _typ := cust_address_typ(
’500 Oracle Parkway’, 94065, 'Redwood Shores’, 'CA’,’USA’);
alladdr address_book _t := address_book_t();
BEGIN
INSERT INTO customers VALUES (
666999, 'Smith’, 'Joe’, myaddr, NULL, NULL, NULL, NULL,
NULL, NULL, NULL);
END;
/

4-14 Oracle9i SQL Reference

Variable Expressions

Subquery Example This example uses the warehouse_typ type in the sample
schema oe to illustrate the use of a subquery in the call to the type constructor.

CREATE TABLE warehouse_tab OF warehouse_typ;

INSERT INTO warehouse_tab
VALUES (warehouse_typ(101, 'new_wh’, 201));

CREATE TYPE facility_typ AS OBJECT (
facility_id NUMBER,
warehouse_ref REF warehouse_typ);
CREATE TABLE buildings (b_id NUMBER, building facility _typ);
INSERT INTO buildings VALUES (10, facility_typ(102,
(SELECT REF(w) FROM warehouse_tab w
WHERE warehouse_name ='new_wh’)));

SELECT b.b_id, b.building.facility_id "FAC_ID",
DEREF(b.building.warehouse_ref) "WH" FROM buildings b;

B ID FAC_ID WH(WAREHOUSE_ID, WAREHOUSE_NAME, LOCATION_ID)

10 102 WAREHOUSE_TYP(101, 'new_wh’, 201)

Variable Expressions

A variable expression specifies a host variable with an optional indicator variable.
This form of expression can appear only in embedded SQL statements or SQL
statements processed in an Oracle Call Interface (OCI) program.

variable_expression::=

INDICATOR
: indicator_variable

Some valid variable expressions are;

:employee_name INDICATOR :employee_name_indicator_var
:department_location

Expressions 4-15

Expression Lists

Expression Lists
An expression list is a combination of other expressions.

expression_list::=

Expression lists can appear in comparison and membership conditions and in
GROUP BYlauses of queries and subqueries.

Comparison and membership conditions appear in the conditions of WHEREIlauses.
They can contain either one or more comma-delimited expressions, or one or more
sets of expressions where each set contains one or more comma-delimited
expressions. In the latter case (multiple sets of expressions):

« Each set is bounded by parentheses
« Each set must contain the same number of expressions

« The number of expressions in each set must match the number of expressions
before the operator in the comparison condition or before the IN keyword in the
membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions.
A comma-delimited list of sets of expressions can contain any number of sets, but
each set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
(SCOTT’, 'BLAKE’, 'TAYLOR’)
((Guy’, 'Himuro’, 'GHIMUROQ"),('Karen’, 'Colmenares’, 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number
of expressions in the first part of the condition. For example:

SELECT * FROM employees
WHERE (first_name, last_name, emalil) IN
((’Guy’, 'Himuro’, 'GHIMURO’),('Karen’, 'Colmenares’, ' KCOLMENA'’)

4-16 Oracle9/ SQL Reference

Expression Lists

See Also: "Comparison Conditions” on page 5-4 and
"Membership Conditions" on page 5-9

In a simple GROUP B¥lause, you can use either the upper or lower form of
expression list:

SELECT department_id, MIN(salary), MAX(salary)
FROM employees
GROUP BY department_id, salary;

SELECT department_id, MIN(salary), MAX(salary)
FROM employees
GROUP BY (department_id, salary);

In ROLLUPCUBE and GROUPING SET8auses of GROUP B¥lauses, you can
combine individual expressions with sets of expressions in the same expression list.
The following example shows several valid grouping sets expression lists in one
SQL statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
FROM products, sales, customers
WHERE sales.prod_id = products.prod_id
AND sales.cust_id=customers.cust_id
AND sales.time_id = '01-oct-00’
AND customers.cust_year_of_birth BETWEEN 1960 and 1970
GROUP BY GROUPING SETS

(

(prod_category, prod_subcategory, country_id, cust_city),
(prod_category, prod_subcategory, country_id),

(prod_category, prod_subcategory),

country_id

See Also: SELECT on page 18-4

Expressions 4-17

Expression Lists

4-18 Oracle9i SQL Reference

D

Conditions

A condition specifies a combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE FALSE, or unknown

This chapter contains the following sections:

About SQL Conditions
Comparison Conditions
Logical Conditions
Membership Conditions
Range Conditions

Null Conditions
EQUALS_PATH
EXISTS Conditions
LIKE Conditions

IS OF type Conditions
UNDER_PATH

Compound Conditions

Conditions 5-1

About SQL Conditions

About SQL Conditions

Conditions can have several forms, as shown in the following syntax.
condition::=
comparison_condition
logical_condition
membership_condition
range_condition
null_condition

——{ equals_path —
exists_condition
like_condition

is_of type_condition

under_path

it

compound_condition

Note: If you have installed Oracle Text, then you can use the
built-in conditions that are part of that product, including
CONTAINS CATSEARCHind MATCHESFor more information on
these Oracle Text elements, please refer to Oracle Text Reference.

The sections that follow describe the various forms of conditions. You must use
appropriate condition syntax whenever condition appears in SQL statements.

You can use a condition in the WHERI[Elause of these statements:

» DELETE
« SELECT
« UPDATE

You can use a condition in any of these clauses of the SELECTstatement:
« WHERE

5-2 Oracle9/ SQL Reference

About SQL Conditions

« STARTWITH
« CONNECT BY
« HAVING

A condition could be said to be of the "logical” datatype, although Oracle does not
formally support such a datatype.

The following simple condition always evaluates to TRUE
1=1

The following more complex condition adds the sal value to the commvalue
(substituting the value 0 for null) and determines whether the sum is greater than
the number constant 2500:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For
example, you can use the ANDcondition to combine two conditions:

(1=1)AND (5<7)

Here are some valid conditions:

name = 'SMITH’

employees.department_id = departments.department_id
hire_date >'01-JAN-88’

job_id IN ('SA_MAN’, 'SA_REP’)

salary BETWEEN 5000 AND 10000

commission_pct IS NULL AND salary = 2100

See Also: The description of each statement in Chapter 9 through
Chapter 18 for the restrictions on the conditions in that statement

Condition Precedence

Precedence is the order in which Oracle evaluates different conditions in the same
expression. When evaluating an expression containing multiple conditions, Oracle
evaluates conditions with higher precedence before evaluating those with lower
precedence. Oracle evaluates conditions with equal precedence from left to right
within an expression.

Table 5-1 lists the levels of precedence among SQL condition from high to low.
Conditions listed on the same line have the same precedence. As the table indicates,
Oracle evaluates operators before conditions.

Conditions 5-3

Comparison Conditions

Table 5-1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL See "Operator Precedence" on page 3-2
conditions

=, 1=, <, >, <=, >, comparison

IS [NOT] NULL, LIKE, [NOT] comparison

BETWEEN, [NOT] IN, EXISTS, IS OF

type

NOT exponentiation, logical negation

AND conjunction

OR disjunction

Comparison Conditions

Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE FALSE, or UNKNOWN

Note: Large objects (LOBs) are not supported in comparison
conditions. However, you can use PL/SQL programs for
comparisons on CLOBdata.

Table 5-2 lists comparison conditions.

Table 5-2 Comparison Conditions

Type of

Condition Purpose Example

= Equality test. SELECT *
FROM employees
WHERE salary = 2500;

1= Inequality test. Some forms of the SELECT *

A= inequality condition may be FROM employees

<> unavailable on some platforms. WHERE salary != 2500;

=

5-4 Oracle9/ SQL Reference

Comparison Conditions

Table 5-2 (Cont.) Comparison Conditions

Type of
Condition Purpose Example
> "Greater than" and "less than" SELECT * FROM employees
tests. WHERE salary > 2500;
< SELECT * FROM employees
WHERE salary < 2500;
>= "Greater than or equal to" and SELECT * FROM employees
"less than or equal to" tests. WHERE salary >= 2500;
<= SELECT * FROM employees
WHERE salary <= 2500;
ANY Compares a value to each value in SELECT * FROM employees
SOME alist or returned by a query. Must ~ WHERE salary = ANY
be preceded by =, !=, >, <, <=,>=. (SELECT salary
Evaluates to FALSEif the query FROM employees
returns no rows. WHERE department_id = 30);
ALL Compares a value to every value SELECT * FROM employees
in a list or returned by a query. WHERE salary >=
Must be preceded by =, I=, >, <, ALL (1400, 3000);
<=, >=,

Evaluates to TRUEIf the query
returns no rows.

Simple Comparison Conditions

A simple comparison condition specifies a comparison with expressions or
subquery results.

Conditions 5-5

Comparison Conditions

simple_comparison_condition::=

O
(oA
(1
(o
®
®
-
(&Y

expression_list::=
()
(e0)
)
© D

If you use the lower form of this condition (with multiple expressions to the left of
the operator), then you must use the lower form of the expression_list , and the
values returned by the subquery must match in number and datatype the
expressions in expression_list

See Also:

« "Expression Lists" on page 4-16 for more information about
combining expressions

« SELECT on page 18-4 for information about subqueries

5-6 Oracle9/ SQL Reference

Comparison Conditions

Group Comparison Conditions

A group comparison condition specifies a comparison with any or all members in a
list or subquery.

group_comparison_condition::=

ofolelRlolelele

l expression_list '

expression_list::=
()
(o)
)
© O

If you use the upper form of this condition (with a single expression to the left of
the operator), then you must use the upper form of expression_list . If you use
the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of expression_list , and the
expressions in each expression_list must match in number and datatype the
expressions to the left of the operator.

Conditions 5-7

Logical Conditions

See Also:
« "Expression Lists" on page 4-16
« SELECT on page 18-4

Logical Conditions

A logical condition combines the results of two component conditions to produce a
single result based on them or to invert the result of a single condition. Table 5-3
lists logical conditions.

Table 5-3 Logical Conditions

Type of
Condition Operation Examples
NOT Returns TRUEiIf the following SELECT *
condition is FALSE Returns FROM employees
FALSEIifitis TRUE Ifitis WHERE NOT (job_id IS NULL);
UNKNOWIhen it remains SELECT * -
UNKNOWN FROM employees
WHERE NOT
(salary BETWEEN 1000 AND 2000);
AND Returns TRUEIf both SELECT *
component conditions are FROM employees
TRUEReturns FALSEifeither \WHERE job_id = 'PU_CLERK’
is FALSE Otherwise returns AND department_id = 30;
UNKNOWN -
OR Returns TRUEIf either SELECT *
component conditionis TRUE FROM employees
Returns FALSE f both are WHERE job_id = 'PU_CLERK’
FALSE Otherwise returns OR departm_ent id = 1_0;
UNKNOWN -

Table 5-4 shows the result of applying the NOTcondition to an expression.

Table 5-4 NOT Truth Table
— TRUE FALSE UNKNOWN
NOT FALSE TRUE UNKNOWN

Table 5-5 shows the results of combining the ANDcondition to two expressions.

5-8 Oracle9/ SQL Reference

Membership Conditions

Table 5-5 AND Truth Table

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

For example, in the WHERI[Elause of the following SELECTstatement, the AND
logical condition is used to ensure that only those hired before 1984 and earning
more than $1000 a month are returned:

SELECT * FROM employees

WHERE hire_date < TO_DATE('01-JAN-1989’, 'DD-MON-YYYY’)
AND salary > 2500;

Table 5-6 shows the results of applying ORto two expressions.

Table 5-6 OR Truth Table

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns employees who have a 40% commission
rate or a salary greater than $20,000:

SELECT employee_id FROM employees
WHERE commission_pct = .4 OR salary > 20000;

Membership Conditions

A membership condition tests for membership in a list or subquery.

Conditions 5-9

Membership Conditions

membership_condition::=

=)
ol

expression_list::=

9
o'@‘o

If you use the upper form of this condition (with a single expression to the left of
the operator), then you must use the upper form of expression_list . If you use
the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of expression_list , and the
expressions in each expression_list must match in number and datatype the
expressions to the left of the operator.

See Also: "Expression Lists" on page 4-16

Table 5-7 lists the membership conditions.

5-10 Oracle9i SQL Reference

Membership Conditions

Table 5-7 Membership Conditions

Type of
Condition Operation Example
IN "Equal to any member of" SELECT * FROM employees
test. Equivalent to "= ANY". WHERE job_id IN
(PU_CLERK',/SH_CLERK);
SELECT * FROM employees
WHERE salary IN
(SELECT salary
FROM employees
WHERE department_id =30);
NOT IN Equivalent to "I=ALL". SELECT * FROM employees
Evaluates to FALSEif any WHERE salary NOT IN
member of the set is NULL (SELECT salary

FROM employees

WHERE department_id = 30);
SELECT * FROM employees

WHERE job_id NOT IN

(PU_CLERK’, 'SH_CLERK’);

If any item in the list following a NOT IN operation evaluates to null, then all rows
evaluate to FALSEor UNKNOWIENd no rows are returned. For example, the
following statement returns the string "TRUE for each row:

SELECT 'True’ FROM employees
WHERE department_id NOT IN (10, 20);
However, the following statement returns no rows:
SELECT 'True’ FROM employees
WHERE department_id NOT IN (10, 20, NULL);
The preceding example returns no rows because the WHEREIlause condition
evaluates to:
department_id !'= 10 AND department_id != 20 AND department _id != null
Because the third condition compares department_id with a null, it results in an
UNKNOWIBDO the entire expression results in FALSE (for rows with department_

id equal to 10 or 20). This behavior can easily be overlooked, especially when the
NOT IN operator references a subquery:.

Conditions 5-11

Range Conditions

Moreover, if a NOT IN condition references a subquery that returns no rows at all,
then all rows will be returned, as shown in the following example:

SELECT 'True’ FROM employees
WHERE department_id NOT IN (SELECT 0 FROM dual WHERE 1=2);

Restriction on LEVEL in WHERE Clauses Ina [NOT IN condition in a WHERE
clause, if the right-hand side of the condition is a subquery, you cannot use LEVEL
on the left-hand side of the condition. However, you can specify LEVEL in a
subquery of the FROMIlause to achieve the same result. For example, the following
statement is not valid:

SELECT employee_id, last_name FROM employees
WHERE (employee_id, LEVEL)
IN (SELECT employee_id, 2 FROM employees)
START WITH employee_id = 2
CONNECT BY PRIOR employee_id = manager _id;

But the following statement is valid because it encapsulates the query containing
the LEVEL information in the FROMIlause:

SELECT v.employee_id, v.last_name, v.lev
FROM
(SELECT employee_id, last_name, LEVEL lev
FROM employees v
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id) v
WHERE (v.employee_id, v.lev) IN
(SELECT employee_id, 2 FROM employees);

Range Conditions

A range condition tests for inclusion in a range.

range_condition::=

(exr) [T—\ BETWEEN AND

Table 5-8 describes the range conditions.

5-12 Oracle9i SQL Reference

EQUALS_PATH

Table 5-8 Range Conditions

Type of

Condition Operation Example

[NOT] [Not] greater than or equal to SELECT * FROM employees
BETWEEN x x and less than or equal to y. WHERE salary

ANDy BETWEEN 2000 AND 3000;

Null Conditions
A NULL condition tests for nulls.

null_condition::=

G p =]

Table 5-9 lists the null conditions.

Table 5-9 Null Conditions

Type of
Condition Operation Example
IS [NOT] Tests for nulls. This is the SELECT last_name
NULL only condition that you FROM employees
should use to test for nulls. WHERE Commission_pct
See Also: "Nulls" on IS NULL;
page 2-80

EQUALS_PATH

The EQUALS PATHondition determines whether a resource in the Oracle XML
database can be found in the database at a specified path.

Use this condition in queries to RESOURCE_VIE\Ahd PATH_VIEWThese public
views provide a mechanism for SQL access to data stored in the XML database
repository. RESOURCE_VIEWbntains one row for each resource in the repository,
and PATH_VIEWcontains one row for each unique path in the repository.

equals_path::=

O
—J| EQUALS_PATH F@—)(column)»@»(path_string) @

Conditions 5-13

EXISTS Conditions

This condition applies only to the path as specified. It is similar to but more
restrictive than UNDER_PATH

The optional correlation_number argument correlates the EQUALS_PATH
condition with its ancillary functions PATHand DEPTH

See Also: UNDER_PATH on page 5-20, DEPTH on page 6-57, and
PATH on page 6-115

Example

The view RESOURCE_VIEWWbmputes the paths (in the any_path column) that
lead to all XML resources (in the res column) in the database repository. The
following example queries the RESOURCE_VIEWiew to find the paths to the
resources in the sample schema oe. The EQUALS_PATHondition causes the query
to return only the specified path:

SELECT ANY_PATH FROM RESOURCE_VIEW
WHERE EQUALS_PATH(res, '/sys/schemas/OE/www.oracle.com’)=1;

ANY_PATH

/sys/schemas/OE/www.oracle.com

Compare this example with that for UNDER_PATH on page 5-20.

EXISTS Conditions

An EXISTS condition tests for existence of rows in a subquery.

exists_condition::=

—>| EXISTS @{subquery)@

Table 5-10 shows the EXISTS condition.

5-14 Oracle9i SQL Reference

LIKE Conditions

Table 5-10 EXISTS Condition

Type of
Condition Operation Example
EXISTS TRUEIf a subquery returns at SELECT department_id
least one row. FROM departments d
WHERE EXISTS
(SELECT * FROM employees e
WHERE d.department_id
= e.department_id);
LIKE Conditions

The LIKE conditions specify a test involving pattern matching. Whereas the
equality operator (=) exactly matches one character value to another, the LIKE
conditions match a portion of one character value to another by searching the first
value for the pattern specified by the second. LIKE calculates strings using
characters as defined by the input character set. LIKEC uses Unicode complete
characters. LIKE2 uses UCS2 codepoints. LIKE4 uses USC4 codepoints.

like_condition::=

[—>| ESCAPE Kesc_chah

In this syntax:

« charl isacharacter expression, such as a character column, called the search
value.

« char2 isacharacter expression, usually a literal, called the pattern.

« esc_char isacharacter expression, usually a literal, called the escape
character.

If esc_char is not specified, then there is no default escape character. If any of
charl , char2 ,or esc_char is null, then the result is unknown. Otherwise, the
escape character, if specified, must be a character string of length 1.

Conditions 5-15

LIKE Conditions

All of the character expressions (charl , char2 ,and esc_char) can be of any of
the datatypes CHARVARCHARZNCHARor NVARCHARAT they differ, then Oracle
converts all of them to the datatype of charl .

The pattern can contain the special pattern-matching characters:
« % matches any string of any length (including length 0)
« _ matches any single character.

To search for the characters % and _, precede them by the escape character. For
example, if the escape character is @, then you can use @% to search for %, and @_
to search for _.

To search for the escape character, repeat it. For example, if @ is the escape
character, then you can use @@ to search for @.

In the pattern, the escape character should be followed by one of %, _, or the escape
character itself.

Table 5-11 describes the LIKE conditions.

Table 5-11 LIKE Conditions

Type of
Condition Operation Example
x [NOT] TRUEIf x does [not] match SELECT last_name
LIKE y the pattern y. Within y, the FROM employees
character "%" matches any WHERE last_name LIKE '%A_B%’
[ESCAPE string of zero or more ESCAPE '\;
7] characters except null. The

character "_" matches any
single character. Any
character can follow ESCAPE
except percent (%) and
underbar (). A wildcard
character is treated as a literal
if preceded by the character
designated as the escape
character.

To process the LIKE conditions, Oracle divides the pattern into subpatterns
consisting of one or two characters each. The two-character subpatterns begin with
the escape character and the other character is %, or _, or the escape character.

5-16 Oracle9i SQL Reference

LIKE Conditions

Let Py, P,, ..., P, be these subpatterns. The like condition is true if there is a way to
partition the search value into substrings S, S, ..., S, so that for all i between 1 and
n:

« IfP;is_, then S;is asingle character.
« IfP;is %, then S; is any string.

« If P, is two characters beginning with an escape character, then S; is the second
character of P;.

« Otherwise, P; =S;.

With the LIKE conditions, you can compare a value to a pattern rather than to a
constant. The pattern must appear after the LIKE keyword. For example, you can
issue the following query to find the salaries of all employees with names beginning
with 'R’;

SELECT salary

FROM employees
WHERE last_name LIKE 'R%’;

The following query uses the = operator, rather than the LIKE condition, to find the
salaries of all employees with the name 'R%’:

SELECT salary
FROM employees
WHERE last_name = 'R%’;

The following query finds the salaries of all employees with the name 'SM%’.
Oracle interprets 'SM%’ as a text literal, rather than as a pattern, because it precedes
the LIKE keyword:

SELECT salary
FROM employees
WHERE 'SM%’ LIKE last_name;

Patterns typically use special characters that Oracle matches with different
characters in the value:

« Anunderscore () in the pattern matches exactly one character (as opposed to
one byte in a multibyte character set) in the value.

« A percentsign (%) in the pattern can match zero or more characters (as opposed
to bytes in a multibyte character set) in the value. The pattern "%’ cannot match
anull.

Conditions 5-17

LIKE Conditions

Case Sensitivity

Case is significant in all conditions comparing character expressions including the
LIKE condition and the equality (=) operators. You can use the UPPERfunction to
perform a case-insensitive match, as in this condition:

UPPER(last_name) LIKE 'SM%’

Pattern Matching on Indexed Columns

When you use LIKE to search an indexed column for a pattern, Oracle can use the
index to improve the statement’s performance if the leading character in the pattern
is not "%" or "_". In this case, Oracle can scan the index by this leading character. If
the first character in the pattern is "%" or "_", then the index cannot improve the
guery’s performance because Oracle cannot scan the index.

General Examples
This condition is true for all last_name values beginning with "Ma":

last_name LIKE 'Ma%’

All of these last_ name values make the condition true:

Mallin, Markle, Marlow, Marvins, Marvis, Matos

Case is significant, so last name values beginning with "MA", "ma", and "mA"
make the condition false.

Consider this condition:

last_name LIKE 'SMITH_’

This condition is true for these last_ name values:
SMITHE, SMITHY, SMITHS

This condition is false for 'SMITH’, since the special character "_" must match

exactly one character of the lasthname value.

ESCAPE Clause Example

You can include the actual characters "%" or "_" in the pattern by using the ESCAPE
clause, which identifies the escape character. If the escape character appears in the
pattern before the character "%" or "_" then Oracle interprets this character literally
in the pattern, rather than as a special pattern matching character.

To search for employees with the pattern ’A_B’ in their name:

5-18 Oracle9i SQL Reference

IS OF type Conditions

SELECT last_name
FROM employees
WHERE last_name LIKE '%A\ B%’ ESCAPE '\

The ESCAPEclause identifies the backslash (\) as the escape character. In the
pattern, the escape character precedes the underscore (). This causes Oracle to
interpret the underscore literally, rather than as a special pattern matching
character.

Patterns Without % Example

If a pattern does not contain the "%" character, then the condition can be true only if
both operands have the same length. Consider the definition of this table and the
values inserted into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));
INSERT INTO ducks VALUES ('DUCK’, 'DUCK");
SELECT ™||f||™* "char",

||v|I'" "varchar"

FROM ducks;

char varchar

*DUCK **DUCK*

Because Oracle blank-pads CHARvalues, the value of f is blank-padded to 6 bytes.
v is not blank-padded and has length 4.

IS OF type Conditions

Use the IS OF type condition to test object instances based on their specific type
information.

is_of_type_condition::=

()
)
o N i N PR e N G O
ca 0 O o

You must have EXECUTHBprivilege on all types referenced by type , and all type s
must belong to the same type family.

Conditions 5-19

UNDER_PATH

This condition evaluates to null if expr is null. If expr is not null, then the
condition evaluates to true (or false if you specify the NOTkeyword) under either of
these circumstances:

« The most specific type of expr is the subtype of one of the types specified in the
type list and you have not specified ONLYfor the type, or

« The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUEfunction with a correlation
variable.

The following example uses the sample table oe.persons , which is built on a type
hierarchy in "Substitutable Table and Column Examples" on page 15-67. The
example uses the IS OF type condition to restrict the query to specific subtypes:

SELECT * FROM persons p
WHERE VALUE(p) IS OF TYPE (employee_t);

NAME SSN
Joe 32456
Tim 5678

SELECT * FROM persons p
WHERE VALUE(p) IS OF (ONLY part_time_emp_t);

NAME SSN
Tim 5678
UNDER_PATH

The UNDER_PATIdondition determines whether resources specified in a column
can be found under a particular path specified by path_string in the Oracle XML
database repository. The path information is computed by the RESOURCE_VIEW
view, which you query to use this condition.

Use this condition in queries to RESOURCE_VIE\Ahd PATH_VIEWThese public
views provide a mechanism for SQL access to data stored in the XML database
repository. RESOURCE_VIEWbntains one row for each resource in the repository,
and PATH_VIEWcontains one row for each unique path in the repository.

5-20 Oracle9i SQL Reference

Compound Conditions

under_path::=

‘ ’ correlation_integer
UNDER_PATH 0 column (. }>(path_string) @-)

The optional levels argument indicates the number of levels down from path_
string Oracle should search. Oracle treats values less than 0 as 0.

The optional correlation_integer argument correlates the UNDER_PATH
condition with its ancillary functions PATHand DEPTH

See Also:
« The related condition EQUALS_PATH on page 5-13

« The ancillary functions DEPTH on page 6-57 and PATH on
page 6-115

Example

The view RESOURCE_VIEWbmMputes the paths (in the any_path column) that
lead to all XML resources (in the res column) in the database repository. The
following example queries the RESOURCE_VIEWiew to find the paths to the
resources in the sample schema oe. The query returns the path of the XML schema
that was created in "XMLType Table Examples" on page 15-71:

SELECT ANY_PATH FROM RESOURCE_VIEW
WHERE UNDER_PATH(res, '/sys/schemas/OE/www.oracle.com’)=1;

ANY_PATH

/sys/schemas/OE/www.oracle.com/xwarehouses.xsd

Compound Conditions
A compound condition specifies a combination of other conditions.

compound_condition::=

AND
H —

Conditions 5-21

Compound Conditions

See Also: "Logical Conditions" on page 5-8 for more information
about NOT AND and ORconditions

5-22 Oracle9i SQL Reference

6

Functions

Functions are similar to operators in that they manipulate data items and return a
result. Functions differ from operators in the format of their arguments. This format
enables them to operate on zero, one, two, or more arguments:

function(argument, argument, ...)

This chapter contains these sections;
« SQL Functions

« User-Defined Functions

Functions 6-1

SQL Functions

SQL Functions

SQL functions are built into Oracle and are available for use in various appropriate
SQL statements. Do not confuse SQL functions with user functions written in
PL/SQL.

If you call a SQL function with an argument of a datatype other than the datatype
expected by the SQL function, then Oracle implicitly converts the argument to the
expected datatype before performing the SQL function. If you call a SQL function
with a null argument, then the SQL function automatically returns null. The only
SQL functions that do not necessarily follow this behavior are CONCATNVL, and
REPLACE

In the syntax diagrams for SQL functions, arguments are indicated by their
datatypes. When the parameter "function" appears in SQL syntax, replace it with
one of the functions described in this section. Functions are grouped by the
datatypes of their arguments and their return values.

Note: When you apply SQL functions to LOB columns, Oracle
creates temporary LOBs during SQL and PL/SQL processing. You
should ensure that temporary tablespace quota is sufficient for
storing these temporary LOBs for your application.

See Also:

« "User-Defined Functions" on page 6-222 for information on user
functions

« Oracle Text Reference for information on functions used with
Oracle Text

« "Data Conversion" on page 2-48 for implicit conversion of
datatypes

The syntax showing the categories of functions follows:

6-2 Oracle9/ SQL Reference

SQL Functions

function::=

single_row_function

aggregate_function

analytic_function

object_reference_function)—

user_defined_function

single_row_function::=

number_function

character_function

datetime_function

conversion_function

miscelIaneous_single_row_function}

The sections that follow list the built-in SQL functions in each of the groups
illustrated in the preceding diagrams except user-defined functions. All of the
built-in SQL functions are then described in alphabetical order. User-defined
functions are described at the end of this chapter.

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or
view. These functions can appear in select lists, WHERElauses, START WITHand
CONNECT B#auses, and HAVINGclauses.

Number Functions

Number functions accept numeric input and return numeric values. Most of these
functions return values that are accurate to 38 decimal digits. The transcendental
functions COS COSHEXR LN, LOG SIN, SINH, SQRTTAN and TANHare accurate to
36 decimal digits. The transcendental functions ACOSASIN, ATAN and ATAN2are
accurate to 30 decimal digits. The number functions are:

ABS
ACOS
ASIN

Functions 6-3

SQL Functions

ATAN

ATAN2

BITAND

CEIL

COSs

COSH

EXP

FLOOR

LN

LOG

MOD

POWER

ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

Character Functions Returning Character Values

Character functions that return character values return values of the same datatype
as the input argument.

« Functions that return CHARvalues are limited in length to 2000 bytes.
« Functions that return VARCHAR®alues are limited in length to 4000 bytes.

For both of these types of functions, if the length of the return value exceeds the
limit, then Oracle truncates it and returns the result without an error message.

« Functions that return CLOBvalues are limited to 4 GB.

For CLOBfunctions, if the length of the return values exceeds the limit, then
Oracle raises an error and returns no data.

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER

6-4 Oracle9/ SQL Reference

SQL Functions

LPAD

LTRIM
NLS_INITCAP
NLS_LOWER
NLSSORT
NLS_UPPER
REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TREAT
TRIM
UPPER

Character Functions Returning Number Values

Character functions that return number values can take as their argument any
character datatype.

The character functions that return number values are:

ASCII
INSTR
LENGTH

Datetime Functions

Datetime functions operate on values of the DATEdatatype. All datetime functions
return a datetime or interval value of DATEdatatype, except the MONTHS_BETWEEN
function, which returns a number. The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ

LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME

Functions 6-5

SQL Functions

NEXT_DAY
NUMTODSINTERVAL
NUMTOYMINTERVAL
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the
form of the function names follows the convention datatype TOdatatype . The
first datatype is the input datatype. The second datatype is the output datatype. The
SQL conversion functions are:

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE
CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB

TO_DATE
TO_DSINTERVAL

6-6 Oracle9/ SQL Reference

SQL Functions

TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_SINGLE_BYTE
TO_YMINTERVAL
TRANSLATE ... USING
UNISTR

Miscellaneous Single-Row Functions

The following single-row functions do not fall into any of the other single-row

function categories:

BFILENAME
COALESCE
DECODE
DEPTH
DUMP

EMPTY_BLOB, EMPTY_CLOB

EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
GREATEST
LEAST

NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID
NLS_CHARSET_NAME
NULLIF

NVL

NVL2

PATH

SYS_CONNECT_BY_PATH

SYS_CONTEXT
SYS_DBURIGEN
SYS_EXTRACT_UTC
SYS_GUID
SYS_TYPEID
SYS_XMLAGG

Functions 6-7

SQL Functions

SYS_XMLGEN
uib
UPDATEXML
USER
USERENV
VSIZE

XMLAGG
XMLCOLATTVAL
XMLCONCAT
XMLFOREST
XMLSEQUENCE
XMLTRANSFORM

Aggregate Functions

Aggregate functions return a single result row based on groups of rows, rather than
on single rows. Aggregate functions can appear in select lists and in ORDER B¥nd
HAVINGclauses. They are commonly used with the GROUP B¥lause in a SELECT
statement, where Oracle divides the rows of a queried table or view into groups. In
a query containing a GROUP BYlause, the elements of the select list can be
aggregate functions, GROUP B¥xpressions, constants, or expressions involving one
of these. Oracle applies the aggregate functions to each group of rows and returns a
single result row for each group.

If you omit the GROUP B¥lause, then Oracle applies aggregate functions in the
select list to all the rows in the queried table or view. You use aggregate functions in
the HAVINGclause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also: "Using the GROUP BY Clause: Examples” on

page 18-30 and the "HAVING Clause" on page 18-23 for more
information on the GROUP B¥lause and HAVINGclauses in queries
and subqueries

Many (but not all) aggregate functions that take a single argument accept these
clauses:

« DISTINCT causes an aggregate function to consider only distinct values of the
argument expression.

« ALL causes an aggregate function to consider all values, including all
duplicates.

6-8 Oracle9/ SQL Reference

SQL Functions

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If
you specify neither, then the default is ALL.

All aggregate functions except COUNT*) and GROUPINGgnore nulls. You can use
the NVLfunction in the argument to an aggregate function to substitute a value for a
null. COUNThever returns null, but returns either a number or zero. For all the
remaining aggregate functions, if the data set contains no rows, or contains only
rows with nulls as arguments to the aggregate function, then the function returns
null.

You can nest aggregate functions. For example, the following example calculates the
average of the maximum salaries of all the departments in the sample schema hr :

SELECT AVG(MAX(salary)) FROM employees GROUP BY department_id;

AVG(MAX(SALARY))

This calculation evaluates the inner aggregate (MAXsalary)) for each group
defined by the GROUP B¥lause (department_id), and aggregates the results
again.

The aggregate functions are:

AVG

CORR
COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST
GROUP_ID
GROUPING
GROUPING_ID
LAST

MAX

MIN

PERCENTILE_CONT
PERCENTILE_DISC
PERCENT_RANK

RANK

REGR_ (Linear Regression) Functions

Functions 6-9

SQL Functions

STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP
VARIANCE

Analytic Functions

Analytic functions compute an aggregate value based on a group of rows. They
differ from aggregate functions in that they return multiple rows for each group.
The group of rows is called a window and is defined by the analytic clause. For
each row, a "sliding" window of rows is defined. The window determines the range
of rows used to perform the calculations for the "current row". Window sizes can be
based on either a physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY¥lause. All joins and all WHEREGROUP B¥Yind HAVINGclauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER B¥lause.

Analytic functions are commonly used to compute cumulative, moving, centered,
and reporting aggregates.

analytic_function::=

D
< O HO-iesm - (D)

analytic_clause::=

query_partition_clause —(order_by_clause) 1

query_partition_clause ::=

—>| PARTITION |—>| BY F‘@‘S’EL

6-10 Oracle9i SQL Reference

SQL Functions

order_hy clause ::=

)

ASC
=

ORDER g BY { position }

windowing_clause ::=

Ic

UNBOUNDED |->| PRECEDING |ﬁ UNBOUNDED |->| FOLLOWING |ﬂ

CURRENT |—>| ROW }

PRECEDING
e
FOLLOWING

CURRENT |—>| ROW }
PRECEDING

FOLLOWING

UNBOUNDED |—>| PRECEDING h

|
CURRENT |->| ROW |
value_expr}>| PRECEDING

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions
following this discussion of semantics).

arguments
Analytic functions take 0 to 3 arguments.

analytic_clause

Use OVERanalytic_clause to indicate that the function operates on a query
result set. That is, it is computed after the FROMWHEREGROUP B¥Yind HAVING
clauses. You can specify analytic functions with this clause in the select list or
ORDER BY¥lause. To filter the results of a query based on an analytic function, nest
these functions within the parent query, and then filter the results of the nested
subquery.

Functions 6-11

SQL Functions

Notes:

= You cannot specify any analytic function in any part of the
analytic_clause . That is, you cannot nest analytic
functions. However, you can specify an analytic function in a
subquery and compute another analytic function over it.

= You can specify OVERanalytic _clause with user-defined
analytic functions as well as built-in analytic functions. See
CREATE FUNCTION on page 13-52.

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on
one or more value_expr . If you omit this clause, then the function treats all rows
of the query result set as a single group.

You can specify multiple analytic functions in the same query, each with the same or
different PARTITION BY keys.

Note: If the objects being queried have the parallel attribute, and
if you specify an analytic function with the query_partition_
clause , then the function computations are parallelized as well.

Valid values of value_expr are constants, columns, nonanalytic functions,
function expressions, or expressions involving any of these.

order_by clause

Use the order_by clause to specify how data is ordered within a partition. For
all analytic functions except PERCENTILE_CONEnd PERCENTILE_DISC(which
take only a single key), you can order the values in a partition on multiple keys,
each defined by a value_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is
especially useful when using functions that rank values, because the second
expression can resolve ties between identical values for the first expression.

6-12 Oracle9i SQL Reference

SQL Functions

Note: Whenever the order_by clause results in identical
values for multiple rows, the function returns the same result for
each of those rows. Please refer to the analytic example for SUM on
page 6-154 for an illustration of this behavior.

Restriction on the ORDER BY Clause When used in an analytic function, the
order_by clause must take an expression (expr). The SIBLINGS keyword is
not valid (it is relevant only in hierarchical queries). Position (position) and
column aliases (c_alias) are invalid. Otherwise this order_by clause is the
same as that used to order the overall query or subquery.

ASC | DESC Specify the ordering sequence (ascending or descending). ASCis the
default.

NULLS FIRST | NULLS LAST Specify whether returned rows containing nulls
should appear first or last in the ordering sequence.

NULLS LASTis the default for ascending order, and NULLS FIRST is the default for
descending order.

Note: Analytic functions always operate on rows in the order
specified in the order_by clause of the function. However, the
order_by clause of the function does not guarantee the order of
the result. Use the order by clause of the query to guarantee
the final result ordering.

See Also: order_by clause of SELECT on page 18-25 for more
information on this clause

windowing_clause

Some analytic functions allow the windowing _clause . In the listing of analytic
functions at the end of this section, the functions that allow the windowing
clause are followed by an asterisk (*).

ROWS | RANGE These keywords define for each row a "window" (a physical or
logical set of rows) used for calculating the function result. The function is then
applied to all the rows in the window. The window "slides" through the query result
set or partition from top to bottom.

Functions 6-13

SQL Functions

« ROWSpecifies the window in physical units (rows).
« RANGKEpecifies the window as a logical offset.

You cannot specify this clause unless you have specified the order_by clause

Note: The value returned by an analytic function with a logical
offset is always deterministic. However, the value returned by an
analytic function with a physical offset may produce
nondeterministic results unless the ordering expression results in a
unique ordering. You may have to specify multiple columns in the
order_by clause to achieve this unique ordering.

BETWEEN ... AND Use the BETWEEN. ANDclause to specify a start point and end
point for the window. The first expression (before AND defines the start point and
the second expression (after AND defines the end point.

If you omit BETWEEINNd specify only one end point, then Oracle considers it the
start point, and the end point defaults to the current row.

UNBOUNDED PRECEDING Specify UNBOUNDED PRECEDIRGndicate that the
window starts at the first row of the partition. This is the start point specification
and cannot be used as an end point specification.

UNBOUNDED FOLLOWING Specify UNBOUNDED FOLLOWIkGNdicate that the
window ends at the last row of the partition. This is the end point specification and
cannot be used as a start point specification.

CURRENT ROW As a start point, CURRENT RQ&pecifies that the window begins
at the current row or value (depending on whether you have specified ROVér
RANGErespectively). In this case the end point cannot be value_expr
PRECEDING

As an end point, CURRENT RQ3&pkecifies that the window ends at the current row or
value (depending on whether you have specified ROVor RANGErespectively). In
this case the start point cannot be value_expr FOLLOWING

value_expr PRECEDING or value_expr FOLLOWING For RANGEBr ROW

« Ifvalue_expr FOLLOWINGES the start point, then the end point must be
value_expr FOLLOWING

6-14 Oracle9i SQL Reference

SQL Functions

« Ifvalue_expr PRECEDINGSs the end point, then the start point must be
value_expr PRECEDING

If you are defining a logical window defined by an interval of time in numeric
format, then you may need to use conversion functions.

See Also: NUMTOYMINTERVAL on page 6-112 and
NUMTODSINTERVAL on page 6-111 for information on converting
numeric times into intervals

If you specified ROWS

« value_expr is a physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

« Ifvalue _expr is part of the start point, then it must evaluate to a row before
the end point.

If you specified RANGE

« value _expr is alogical offset. It must be a constant or expression that
evaluates to a positive numeric value or an interval literal.

See Also: "Literals" on page 2-53 for information on interval
literals

= You can specify only one expression in the order_by clause

« Ifvalue _expr evaluates to a numeric value, then the ORDER B¥xpr must be
a NUMBERTr DATEdatatype.

« Ifvalue _expr evaluates to an interval value, then the ORDER B¥xpr must be
a DATEdatatype.

If you omit the windowing_clause entirely, then the default is RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW

Analytic functions are commonly used in data warehousing environments. The
analytic functions follow. Functions followed by an asterisk (*) allow the full syntax,
including the windowing_clause

AVG*

CORR
COVAR_POP
COVAR_SAMP
COUNT

Functions 6-15

SQL Functions

CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE*

LAG

LAST

LAST_VALUE*

LEAD

MAX*

MIN *

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEW
STDDEV_POP
STDDEV_SAMP
SUM*

VAR_POF
VAR_SAMP
VARIANCE*

See Also: Oracle9i Data Warehousing Guide for more information
on these functions, and for scenarios illustrating their use

Object Reference Functions

Object reference functions manipulate REFs, which are references to objects of
specified object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also: Oracle9i Database Concepts and Oracle9i Application
Developer’s Guide - Fundamentals for more information about REFs

6-16 Oracle9i SQL Reference

ACOS

Alphabetical Listing of SQL Functions

ABS
Syntax
abs::=
0,00
Purpose
ABSreturns the absolute value of n.
Examples
The following example returns the absolute value of -15:
SELECT ABS(-15) "Absolute” FROM DUAL;
Absolute
15
ACOS
Syntax
acos::=
0:0:0
Purpose

ACOSreturns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns values in the range of 0 to 1, expressed in radians.

Examples
The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine" FROM DUAL;

Functions 6-17

ADD_MONTHS

Arc_Cosine

1.26610367

ADD_MONTHS

Syntax
add_months::=

| A0 MONTHS B O(A H)(0)

Purpose

ADD_MONTH®turns the date d plus n months. The argument n can be any integer.
If d is the last day of the month or if the resulting month has fewer days than the
day component of d, then the result is the last day of the resulting month.
Otherwise, the result has the same day component as d.

Examples
The following example returns the month after the hire_date in the sample table
employees :

SELECT TO_CHAR(
ADD_MONTHS(hire_date,1),
'DD-MON-YYYY’) "Next month"
FROM employees
WHERE last_name = 'Baer’;

Next Month

07-JUL-1994

ASCI|

Syntax
ascii::=

E=10leDl0

6-18 Oracle9i SQL Reference

ASCIISTR

ASCIISTR

Purpose

ASCII returns the decimal representation in the database character set of the first
character of char .

char can be of datatype CHARVARCHAR2NCHARor NVARCHARZ he value
returned is of datatype NUMBER your database character set is 7-bit ASCII, then
this function returns an ASCII value. If your database character set is EBCDIC
Code, then this function returns an EBCDIC value. There is no corresponding
EBCDIC character function.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples
The following example returns the ASCII decimal equivalent of the letter Q:

SELECT ASCII(Q’) FROM DUAL,;

ASCII(Q)

Syntax
asciistr::=

E=ED 010 CDIe0

Purpose

ASCIISTR takes as its argument a string in any character set and returns an ASCI|I
string in the database character set. The value returned contains only characters that
appear in SQL, plus the forward slash (/). Non-ASCII characters are converted to
their Unicode (UTF-16) binary code value.

Functions 6-19

ASIN

See Also: Oracle9i Database Globalization Support Guide for
information on Unicode character sets and character semantics

Examples

The following example returns the ASCII string equivalent of the text string
"ABACDE

SELECT ASCIISTR('ABACDE’) FROM DUAL;

ASCIIS

ABDCDE

ASIN

Syntax
asin::=

s O

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and
the function returns values in the range of -T/2 to /2 and are expressed in radians.

Examples
The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine" FROM DUAL;
Arc_Sine

.304692654

6-20 Oracle9i SQL Reference

ATAN2

ATAN

ATAN2

Syntax
atan::=

Ay (O

Purpose

ATANTreturns the arc tangent of n. The argument n can be in an unbounded range,
and the function returns values in the range of -T2 to /2 and are expressed in
radians.

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

Syntax
atan2::=

GEa%0%0 034 @0

Purpose

ATANZ2returns the arc tangent of n and m The argument n can be in an unbounded
range, and the function returns values in the range of -1tto 1, depending on the
signs of n and m and are expressed in radians. ATANZn,m) is the same as

ATANZ n/m)

Examples
The following example returns the arc tangent of .3 and .2:

Functions 6-21

AVG

AVG

SELECT ATANZ2(.3, .2) "Arc_Tangent2" FROM DUAL;
Arc_Tangent2

.982793723

Syntax
avg:=

| DISTINCT I
ALL

Ie| OVER F@»Canalytic_clause)%
expr)

AVG ([

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

AVGreturns average value of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, then you can specify only the query_partition_
clause of the analytic_clause . The order_by clause and windowing
clause are not allowed.

See Also:

« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example

The following example calculates the average salary of all employees in the
hr.employees table:

SELECT AVG(salary) "Average" FROM employees;

6-22 Oracle9i SQL Reference

BFILENAME

BFILENAME

Average

Analytic Example

The following example calculates, for each employee in the employees table, the
average salary of the employees reporting to the same manager who were hired in
the range just before through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG

100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333
100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-OCT-96 14000 11833.3333
Syntax
bfilename::=
050 OO0 00
Purpose

BFILENAMEreturns a BFILE locator that is associated with a physical LOB binary
file on the server’s file system.

« ’directory ' is a database object that serves as an alias for a full path name on
the server’s file system where the files are actually located

« ’filename ’is the name of the file in the server’s file system

Functions 6-23

BFILENAME

You must create the directory object and associate a BFILE value with a physical
file before you can use them as arguments to BFILENAMEin a SQL or PL/SQL
statement, DBMS_L OBackage, or OCI operation.

You can use this function in two ways:
« In a DML statement to initialize a BFILE column

« Inaprogrammatic interface to access BFILE data by assigning a value to the
BFILE locator.

The directory argument is case sensitive. That is, you must ensure that you specify
the directory object name exactly as it exists in the data dictionary. For example, if
an "Admin" directory object was created using mixed case and a quoted identifier in
the CREATE DIRECTORMatement, then when using the BFILENAMEfunction you
must refer to the directory object as ’Admin’. You must specify the filename
argument according to the case and punctuation conventions for your operating
system.

See Also:

« Oracle9i Application Developer’s Guide - Large Objects (LOBs) and
Oracle Call Interface Programmer’s Guide for more information on
LOBs and for examples of retrieving BFILE data

. CREATE DIRECTORY on page 13-49

Examples

The following example inserts a row into the sample table pm.print_media . The
example uses the BFILENAMEfunction to identify a binary file on the server’s file
system:

CREATE DIRECTORY media_dir AS '/demo/schema/product_media’;
INSERT INTO print_media (product_id, ad_id, ad_graphic)

VALUES (3000, 31001,
bfilename('MEDIA_DIR’, 'modem_comp_ad.qgif’));

6-24 Oracle9i SQL Reference

BITAND

BIN_TO_NUM

BITAND

Syntax
bin_to_num::=

(N
EEINIOSICDEO

Purpose

BIN_TO_NUMconverts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. Each expr must evaluate to 0 or 1. This
function returns Oracle NUMBER

BIN_TO_NUMs useful in data warehousing applications for selecting groups of
interest from a materialized view using grouping sets.
See Also:

« group_by clause on page 18-21 for information on
GROUPING SETSyntax

« Oracle9i Data Warehousing Guide for information on data
aggregation in general

Examples
The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0) FROM DUAL;

BIN_TO_NUM(1,0,1,0)

Syntax
bitand::=

Functions 6-25

BITAND

Purpose

BITAND computes an ANDoperation on the bits of argumentl and argument2
both of which must resolve to nonnegative integers, and returns an integer. This
function is commonly used with the DECODEHEunction, as illustrated in the example
that follows.

Note: This function does not determine the datatype of the value
returned. Therefore, in SQL*Plus, you must specify BITAND in a
wrapper, such as TO_NUMBERvhich returns a datatype.

Examples

The following represents each order_status in the sample table oe.orders by
individual bits. (The example specifies options that can total only 7, so rows with
order_status greater than 7 are eliminated.)

SELECT order_id, customer_id,
DECODE(BITAND(order_status, 1), 1, 'Warehouse', 'PostOffice’)
Location,
DECODE(BITAND(order_status, 2), 2, ‘Ground', 'Air') Method,
DECODE(BITAND(order_status, 4), 4, 'Insured’, 'Certified’) Receipt
FROM orders
WHERE order_status < 8;

ORDER_ID CUSTOMER_ID LOCATION MET RECEIPT

2458 101 Postoffice Air Certified
2397 102 Warehouse Air Certified
2454 103 Warehouse Air Certified
2354 104 Postoffice Air Certified
2358 105 Postoffice G Certified
2381 106 Warehouse G Certified
2440 107 Warehouse G Certified
2357 108 Warehouse Air Insured
2394 109 Warehouse Air Insured
2435 144 Postoffice G Insured
2455 145 Warehouse G Insured

6-26 Oracle9i SQL Reference

CAST

CAST

Purpose

CASTconverts one built-in datatype or collection-typed value into another built-in
datatype or collection-typed value.

CASTIets you convert built-in datatypes or collection-typed values of one type into
another built-in datatype or collection type. You can cast an unnamed operand
(such as a date or the result set of a subquery) or a named collection (such as a
varray or a nested table) into a type-compatible datatype or named collection. The
type_name must be the name of a built-in datatype or collection type and the
operand must be a built-in datatype or must evaluate to a collection value.

For the operand, expr can be either a built-in datatype or a collection type, and
subquery must return a single value of collection type or built-in type. MULTISET
informs Oracle to take the result set of the subquery and return a collection value.
Table 6-1 shows which built-in datatypes can be cast into which other built-in
datatypes. (CASTdoes not support LONGLONG RAVEny of the LOB datatypes, or
the Oracle-supplied types.)

Table 6-1 Casting Built-In Datatypes

from from from from
CHAR, from DATETIME / from ROWID, NCHAR,
VARCHAR2 NUMBER INTERVALP RAW UROWID NVARCHAR2
to CHAR, X X X X X —
VARCHAR?2
to NUMBER X X — — — —

2 You cannot cast a UROWIOo a ROWIDif the UROWIzontains the value of a ROWIDof an
index-organized table.

b Datetime/Interval includes DATE TIMESTAMPTIMESTAMP WITH TIMEZONENTERVAL DAY TO
SECONDPand INTERVAL YEAR TO MONTH

Functions 6-27

CAST

Table 6-1 (Cont.) Casting Built-In Datatypes

from from from from
CHAR, from DATETIME / from ROWID, NCHAR,
VARCHAR2 NUMBER INTERVAL® RAW UROWID NVARCHAR2

to DATE, X — X — — —
TIMESTAMP,
INTERVAL
to RAW X — — X — —
to ROWID, X — — — ax —
UROWID
to NCHAR, — X X X X X
NVARCHAR2

2 You cannot cast a UROWIOo a ROWIDIf the UROWIzontains the value of a ROWIDof an
index-organized table.

b Datetime/Interval includes DATE TIMESTAMPTIMESTAMP WITH TIMEZONENTERVAL DAY TO
SECONPand INTERVAL YEAR TO MONTH

If you want to cast a named collection type into another named collection type, then
the elements of both collections must be of the same type.

If the result set of subquery can evaluate to multiple rows, then you must specify
the MULTISET keyword. The rows resulting from the subquery form the elements
of the collection value into which they are cast. Without the MULTISET keyword,
the subquery is treated as a scalar subquery.

Built-In Datatype Examples
The following examples use the CASTfunction with scalar datatypes:

SELECT CAST('22-OCT-1997" AS TIMESTAMP WITH LOCAL TIME ZONE)
FROM dual;

SELECT product_id,
CAST(ad_sourcetext AS VARCHAR2(30))
FROM print_media;

Collection Examples

The CASTexamples that follow build on the cust_address_typ found in the
sample order entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;

/

CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/

6-28 Oracle9i SQL Reference

CAST

CREATE TABLE cust_address (
custno NUMBER,
street_address VARCHAR2(40),
postal_code VARCHAR2(10),
city VARCHAR2(30),
state_province VARCHAR2(10),
country_id CHAR(2));

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2(31));
CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custho, s.name,
CAST(MULTISET(SELECT ca.street_address,
ca.postal_code,
ca.city,
ca.state_province,
ca.country_id
FROM cust_address ca
WHERE s.custno = ca.custno)
AS address_book t)
FROM cust_short s;

CASTconverts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
FROM states s
WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
(employee_id NUMBER, project_name VARCHAR2(10));

CREATE TABLE emps_short
(employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
/
The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
CAST(MULTISET(SELECT p.project_name
FROM projects p

Functions 6-29

CEIL

WHERE p.employee_id = e.employee_id
ORDER BY p.project_name)
AS project_table_typ)

FROM emps_short €;

CEIL

Syntax
ceil:=

EN 000

Purpose
CEIL returns smallest integer greater than or equal to n.

Examples
The following example returns the smallest integer greater than or equal to 15.7:

SELECT CEIL(15.7) "Ceiling" FROM DUAL;

Ceiling

CHARTOROWID

Syntax
chartorowid::=

(cramioromd { DEa)-()

Purpose

CHARTOROWIgnverts a value from CHARVARCHAR2NCHARor NVARCHAR?2
datatype to ROWIDdatatype.

6-30 Oracle9i SQL Reference

CHR

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

The following example converts a character rowid representation to a rowid. (The
function will return a different rowid on different databases).

SELECT last_name FROM employees
WHERE ROWID = CHARTOROWID('AAAFd1AAFAAAABSAA/Y;

LAST_NAME

Greene

CHR

Syntax
chr:;=

USING |—>| NCHAR_CS

SEaloloth Lo
Purpose

CHRreturns the character having the binary equivalent to n in either the database
character set or the national character set.

If USING NCHAR_C8 not specified, then this function returns the character having
the binary equivalent to n as a VARCHAR®alue in the database character set.

If USING NCHAR_CS8 specified, then this function returns the character having the
binary equivalent to n as a NVARCHAR®alue in the national character set.

For single-byte character sets, if n > 256, then Oracle returns the binary equivalent
of n mod 256. For multibyte character sets, n must resolve to one entire codepoint.
Invalid codepoints are not validated, and the result of specifying invalid codepoints
is indeterminate.

Functions 6-31

CHR

Note: Use of the CHRfunction (either with or without the optional
USING NCHAR_CH8lause) results in code that is not portable
between ASCII- and EBCDIC-based machine architectures.

See Also: NCHR on page 6-100

Examples

The following example is run on an ASCII-based machine with the database
character set defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the
WESBEBCDIC1047 character set, the preceding example would have to be modified
as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For
example, given a multibyte character whose hexadecimal value is ala2 (al
representing the first byte and a2 the second byte), you must specify for n the
decimal equivalent of 'ala2’, or 41378. That is, you must specify:

SELECT CHR(41378) FROM DUAL;

You cannot specify the decimal equivalent of al concatenated with the decimal
equivalent of a2, as in the following example:

SELECT CHR(161)||CHR(162) FROM DUAL;

However, you can concatenate whole multibyte codepoints, as in the following

example, which concatenates the multibyte characters whose hexadecimal values
are ala? and ala3:

6-32 Oracle9i SQL Reference

COALESCE

SELECT CHR(41378)||CHR(41379) FROM DUAL;

The following example uses the UTF8 character set:
SELECT CHR (50052 USING NCHAR_CS) FROM DUAL;

CH

A

COALESCE

Syntax
coalesce::=

O
O @0

Purpose

COALESCEeturns the first non-null expr in the expression list. At least one expr
must not be the literal NULL If all occurrences of expr evaluate to null, then the
function returns null.

This function is a generalization of the NVL function.
You can also use COALESCIEs a variety of the CASEexpression. For example,
COALESCE (exprl, expr2)

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl ELSE expr2 END

Similarly,
COALESCE (exprl, expr2, ..., expr n), for n>=3

is equivalent to:

CASE WHEN exprl IS NOT NULL THEN exprl
ELSE COALESCE (expr2, ..., expr n) END

Functions 6-33

COMPOSE

COMPOSE

See Also: NVL on page 6-113 and "CASE Expressions” on
page 4-6

Examples

The following example uses the sample oe.product_information table to
organize a "clearance sale" of products. It gives a 10% discount to all products with
a list price. If there is no list price, then the sale price is the minimum price. If there
is no minimum price, then the sale price is "5™

SELECT product_id, list_price, min_price,
COALESCE(0.9*list_price, min_price, 5) "Sale"
FROM product_information
WHERE supplier_id = 102050;

PRODUCT_ID LIST_PRICE MIN_PRICE Sale

2382 850 731 765

3355 5
1770 73 73
2378 305 247 2745
1769 48 43.2
Syntax
compose::=
OO CEOO
Purpose

COMPOSEKkes as its argument a string in any datatype, and returns a Unicode
string in its fully normalized form in the same character set as the input. string
can be any of the datatypes CHARVARCHARXNCHARNVARCHARZCLOB or
NCLOBFor example, an "o" codepoint qualified by an umlaut codepoint will be
returned as the o-umlaut codepoint.

See Also: Oracle9i Database Concepts for information on Unicode
character sets and character semantics

6-34 Oracle9i SQL Reference

CONCAT

CONCAT

Examples
The following example returns the o-umlaut codepoint:

SELECT COMPOSE (0’ || UNISTR(\0308)) FROM DUAL;

Co

5
See Also: UNISTR on page 6-196

Syntax
concat::=

(SR (D@D OHEHD

Purpose

CONCATeturns charl concatenated with char2 . Both charl and char2 can be
any of the datatypes CHARVARCHAR2NCHARNVARCHARZLOB or NCLOBThe
string returned is in the same character set as charl . Its datatype depends on the
datatypes of the arguments.

In concatenations of two different datatypes, Oracle returns the datatype that
results in a lossless conversion. Therefore, if one of the arguments is a LOB, then the
returned value is a LOB. If one of the arguments is a national datatype, then the
returned value is a national datatype. For example:

« CONCA[CLOB NCLOB returns NCLOB
« CONCANCLOBNCHARreturns NCLOB
« CONCAINCLOBCHAR returns NCLOB
« CONCAINCHARCLOB returns NCLOB

This function is equivalent to the concatenation operator (| |).

See Also: "Concatenation Operator" on page 3-4 for information
on the CONCADperator

Functions 6-35

CONVERT

Examples
This example uses nesting to concatenate three character strings:
SELECT CONCAT(CONCAT(last_name, "'s job category is '),
job_id) "Job"
FROM employees
WHERE employee_id = 152;

Job

Hall's job category is SA_REP

CONVERT
Syntax
convert::=
o ‘ dest_char_set @—)
Purpose

CONVERTonverts a character string from one character set to another. The datatype
of the returned value is VARCHAR2

« The char argument is the value to be converted. It can be any of the datatypes
CHARVARCHAR2NCHARNVARCHARZCLOB or NCLOB

« The dest char_set argument is the name of the character set to which char
is converted.

« The source char_set argument is the name of the character set in which
char is stored in the database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set.

For complete correspondence in character conversion, it is essential that the
destination character set contains a representation of all the characters defined in
the source character set. Where a character does not exist in the destination
character set, a replacement character appears. Replacement characters can be
defined as part of a character set definition.

6-36 Oracle9i SQL Reference

CORR

CORR

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WES8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT(AE O @ABCDE’, 'US7ASCII’, 'WESISO8859P1)
FROM DUAL;

CONVERT(AEIO@ABCDE’

AEI??ABCDE?

Common character sets include:

« US7ASCII: US 7-bit ASCII character set

« WESDEC: West European 8-bit character set

« WESHP: HP West European Laserjet 8-bit character set

« F7DEC: DEC French 7-bit character set

« WESEBCDIC500: IBM West European EBCDIC Code Page 500
=« WEB8PC850: IBM PC Code Page 850

« WESISO8859P1: ISO 8859-1 West European 8-bit character set

Syntax
corr.:=

f—)| OVER P@»Canalytic_clause)%
DO

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

CORRreturns the coefficient of correlation of a set of number pairs. You can use it as
an aggregate or analytic function.

Functions 6-37

CORR

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) after eliminating the pairs for which either exprl or expr2
is null. Then Oracle makes the following computation:

COVAR_POP(exprl, expr2) / (STDDEV_POP(exprl) * STDDEV_POP(expr2))
The function returns a value of type NUMBERI the function is applied to an empty
set, then it returns null.

See Also:

« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example

The following example calculates the coefficient of correlation between the list
prices and minimum prices of products by weight class in the sample view
oe.products

SELECT weight_class, CORR(list_price, min_price)
FROM product_information
GROUP BY weight_class;

WEIGHT_CLASS CORR(LIST_PRICE,MIN_PRICE)

.99914795
999022941
.998484472
999359909
.999536087

b wbNPF

Analytic Example

The following example returns the cumulative coefficient of correlation of monthly
sales revenues and monthly units sold from the sample tables sh.sales and
sh.times for year 1998:

SELECT t.calendar_month_number,
CORR (SUM(s.amount_sold), SUM(s.quantity_sold))
OVER (ORDER BY t.calendar_month_number) as CUM_CORR
FROM sales s, times t
WHERE s.time_id = t.time_id AND calendar_year = 1998
GROUP BY t.calendar_month_number
ORDER BY t.calendar_month_number;

6-38 Oracle9i SQL Reference

CoS

CALENDAR_MONTH_NUMBER CUM_CORR

1
994309382
.852040875
.846652204
.871250628
.910029803
917556399
920154356
10 .86720251
11 .844864765
12 .903542662

©CoOo~NOoOOOaOM~rWNE

Correlation functions require more than one row on which to operate, so the first
row in the preceding example has no value calculated for it.

COS

Syntax
CosS::=

E3.0.0.0

Purpose
COSreturns the cosine of n (an angle expressed in radians).

Examples
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180)
"Cosine of 180 degrees" FROM DUAL;

Cosine of 180 degrees

Functions 6-39

COSH

COSH

COUNT

Syntax
cosh::=

EEI 0050

Purpose
COSHeturns the hyperbolic cosine of n.

Examples
The following example returns the hyperbolic cosine of zero:

SELECT COSHY(0) "Hyperbolic cosine of 0" FROM DUAL;

Hyperbolic cosine of 0

Syntax
count::=

f—)| OVER F@{analytic_clausem
)

DISTINCT
O ()
ALL

expr

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

COUNTreturns the number of rows in the query. You can use it as an aggregate or
analytic function.

6-40 Oracle9i SQL Reference

COUNT

If you specify DISTINCT, then you can specify only the query patrtition_
clause of the analytic_clause . The order_by clause and windowing
clause are not allowed.

If you specify expr , then COUNTreturns the number of rows where expr is not
null. You can count either all rows, or only distinct values of expr .

If you specify the asterisk (*), then this function returns all rows, including
duplicates and nulls. COUNThever returns null.

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Examples
The following examples use COUNTas an aggregate function:

SELECT COUNT(*) "Total* FROM employees;

SELECT COUNT(*) "Allstars" FROM employees
WHERE commission_pct > 0;

Allstars

SELECT COUNT(DISTINCT manager_id) "Managers" FROM employees;

Managers

Functions 6-41

COVAR_POP

Analytic Example

The following example calculates, for each employee in the employees table, the
moving count of employees earning salaries in the range $50 less than through $150
greater than the employee’s salary.

SELECT last_name, salary,
COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count FROM employees;

LAST_NAME SALARY MOV_COUNT
Olson 2100 3

Markle 2200 2

Philtanker 2200 2

Landry 2400 8

Gee 2400 8

Colmenares 2500 10

Patel 2500 10

Syntax

covar_pop::=

OVER analytic_clause
G0 707 (DA D]

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose
COVAR_POReturns the population covariance of a set of number pairs. You can use
it as an aggregate or analytic function.

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) pairs after eliminating all pairs for which either exprl or
expr2 is null. Then Oracle makes the following computation:

(SUM(exprl * expr2) - SUM(expr2) * SUM(exprl) /n)/n

6-42 Oracle9i SQL Reference

COVAR_POP

where n is the number of (exprl , expr2) pairs where neither exprl nor expr2 is
null.

The function returns a value of type NUMBERIf the function is applied to an empty
set, then it returns null.

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example

The following example calculates the population covariance for the sales revenue
amount and the units sold for each year from the sample table sh.sales

SELECT t.calendar_month_number,
COVAR_POP(s.amount_sold, s.quantity_sold) AS covar_pop,
COVAR_SAMP(s.amount_sold, s.quantity_sold) AS covar_samp
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.calendar_year = 1998
GROUP BY t.calendar_month_number;

CALENDAR_MONTH_NUMBER COVAR_POP COVAR_SAMP

15437.68586 5437.88704
25923.72544 5923.99139
3 6040.11777 6040.38623
4 5946.67897 5946.92754
55986.22483 5986.4463

6 5726.79371 5727.05703
7 5491.65269 5491.9239

85672.40362 5672.66882
9 5741.53626 5741.80025
10 5050.5683 5050.78195
11 5256.50553 5256.69145
12 5411.2053 5411.37709

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

Functions 6-43

COVAR_SAMP

SELECT product_id, supplier_id,
COVAR_POP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVP,
COVAR_SAMP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVS
FROM product_information p
WHERE category_id = 29
ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS

1774 103088 0

1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721.97619

COVAR_SAMP

Syntax
covar_samp::=

ﬂ OVER F@{aﬂalytic_clause)%
OEDHOA(H]

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose
COVAR_SAMRturns the sample covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

Both exprl and expr2 are number expressions. Oracle applies the function to the
set of (exprl , expr2) pairs after eliminating all pairs for which either exprl or
expr2 is null. Then Oracle makes the following computation:

(SUM(exprl * expr2) - SUM(exprl) * SUM(expr2) / n) / (n-1)

6-44 Oracle9i SQL Reference

COVAR_SAMP

where n is the number of (exprl , expr2) pairs where neither exprl nor expr2 is
null.

The function returns a value of type NUMBERI the function is applied to an empty
set, then it returns null.

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example calculates the population covariance for the sales revenue
amount and the units sold for each year from the sample table sh.sales

SELECT t.calendar_month_number,
COVAR_POP(s.amount_sold, s.quantity_sold) AS covar_pop,
COVAR_SAMP(s.amount_sold, s.quantity_sold) AS covar_samp
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.calendar_year = 1998
GROUP BY t.calendar_month_number;

CALENDAR_MONTH_NUMBER COVAR_POP COVAR_SAMP

1 5437.68586 5437.88704
2 5923.72544 5923.99139
3 6040.11777 6040.38623
4 5946.67897 5946.92754
55986.22483 5986.4463

6 5726.79371 5727.05703
7 5491.65269 5491.9239

8 5672.40362 5672.66882
9 5741.53626 5741.80025
10 5050.5683 5050.78195
11 5256.50553 5256.69145
12 5411.2053 5411.37709

Analytic Example

The following example calculates cumulative sample covariance of the list price and
minimum price of the products in the sample schema oe:

Functions 6-45

COVAR_SAMP

SELECT product_id, supplier_id,
COVAR_POP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVP,
COVAR_SAMP(list_price, min_price)
OVER (ORDER BY product_id, supplier_id)
AS CUM_COVS
FROM product_information p
WHERE category_id = 29
ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS

1774 103088 0

1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815
2416 103088 1475.97959 1721.97619

6-46 Oracle9i SQL Reference

CUME_DIST

CUME_DIST

Aggregate Syntax
cume_dist_aggregate::=

O
o ol e

Analytic Syntax
cume_dist_analytic::=

query_partition_clause
CUME_DIST o o OVER [x(((order_by_clause)»(:)»

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

CUME_DISTcalculates the cumulative distribution of a value in a group of values.
The range of values returned by CUME_DISTis >0 to <=1. Tie values always
evaluate to the same cumulative distribution value.

As an aggregate function, CUME_DISTcalculates, for a hypothetical row R
identified by the arguments of the function and a corresponding sort
specification, the relative position of row R among the rows in the aggregation
group. Oracle makes this calculation as if the hypothetical row R were inserted
into the group of rows to be aggregated over. The arguments of the function
identify a single hypothetical row within each aggregate group. Therefore, they
must all evaluate to constant expressions within each aggregate group. The
constant argument expressions and the expressions in the ORDER B¥lause of
the aggregate match by position. Therefore, the number of arguments must be
the same and their types must be compatible.

Functions 6-47

CUME_DIST

« Asan analytic function, CUME_DISTcomputes the relative position of a
specified value in a group of values. For a row R, assuming ascending ordering,
the CUME_DISTof R is the number of rows with values lower than or equal to
the value of R, divided by the number of rows being evaluated (the entire query
result set or a partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees
in the sample table oe.employees

SELECT CUME_DIST(15500, .05) WITHIN GROUP
(ORDER BY salary, commission_pct) "Cume-Dist of 15500"
FROM employees;

Cume-Dist of 15500

972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing area. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
FROM employees
WHERE job_id LIKE 'PU%’;

JOB_ID LAST_NAME SALARY CUME_DIST
PU_CLERK Colmenares 2500 2
PU_CLERK Himuro 2600 4
PU_CLERK Tobias 2800 .6
PU_CLERK Baida 2900 .8
PU_CLERK Khoo 3100 1

PU_MAN Raphaely 11000 1

6-48 Oracle9i SQL Reference

CURRENT_DATE

CURRENT_DATE

Syntax
current_date::=

CURRENT_DATE

Purpose

CURRENT_DATEeturns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE

Examples
The following example illustrates that CURRENT_DATIS sensitive to the session
time zone:

ALTER SESSION SET TIME_ZONE = '-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT ='DD-MON-YYYY HH24:MI:SS’,
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL,;

SESSIONTIMEZONE CURRENT_DATE

-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:07;
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL,;

SESSIONTIMEZONE CURRENT_DATE

-08:00 29-MAY-2000 10:14:33

Functions 6-49

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP

Syntax
current_timestamp::=

o precision »

—>| CURRENT_TIMESTAMP }

Purpose

CURRENT_TIMESTAMRturns the current date and time in the session time zone,
in a value of datatype TIMESTAMP WITH TIME ZONH he time zone displacement
reflects the current local time of the SQL session. If you omit precision, then the
default is 6. The difference between this function and LOCALTIMESTAMRs that
CURRENT_TIMESTAMRturns a TIMESTAMP WITH TIME ZONfalue while
LOCALTIMESTAMPeturns a TIMESTAMPvalue.

In the optional argument, precision specifies the fractional second precision of
the time value returned.

Examples

The following example illustrates that CURRENT_TIMESTAMR sensitive to the
session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT ='DD-MON-YYYY HH24:MI:SS’;
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL,;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = '-8:07;
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL,;

SESSIONTIMEZONE CURRENT_TIMESTAMP

-08:00 04-APR-00 10.18.21.366065 AM -08:00

If you use the CURRENT_TIMESTAMRIth a format mask, take care that the format
mask matches the value returned by the function. For example, consider the
following table:

6-50 Oracle9i SQL Reference

DBTIMEZONE

CREATE TABLE current_test (coll TIMESTAMP WITH TIME ZONE);
The following statement fails because the mask does not include the TIME ZONE
portion of the type returned by the function:
INSERT INTO current_test VALUES

(TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM"));
The following statement uses the correct format mask to match the return type of
CURRENT_TIMESTAMP

INSERT INTO current_test VALUES (TO_TIMESTAMP_TZ
(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM TZH:TZM"));

DBTIMEZONE

Syntax
dbtimezone::=

DBTIMEZONE

Purpose

DBTIMEZONFHeturns the value of the database time zone. The return type is a time
zone offset (a character type in the format '[+|-]TZH:TZM’) or a time zone region
name, depending on how the user specified the database time zone value in the
most recent CREATE DATABAS& ALTER DATABASKEtatement.

Examples

The following example assumes that the database time zone is set to UTC time
zone:

SELECT DBTIMEZONE FROM DUAL,

DBTIME

Functions 6-51

DECODE

DECODE

Syntax
decode::=
O ol N
default
EEH @O @O OF
Purpose

DECODEompares expr to each search value one by one. If expr is equal to a
search , then Oracle returns the corresponding result . If no match is found, then
Oracle returns default . If default is omitted, then Oracle returns null.

If expr and search contain character data, then Oracle compares them using
nonpadded comparison semantics. expr , search , and result can be any of the
datatypes CHARVARCHARPNCHARor NVARCHARZT he string returned is of
VARCHARZ2latatype and is in the same character set as the first result parameter.

The search |, result , and default values can be derived from expressions.
Oracle evaluates each search value only before comparing it to expr , rather than
evaluating all search values before comparing any of them with expr .
Consequently, Oracle never evaluates a search if a previous search is equal to
expr .

Oracle automatically converts expr and each search value to the datatype of the
first search value before comparing. Oracle automatically converts the return
value to the same datatype as the first result . If the first result has the datatype
CHARor if the first result is null, then Oracle converts the return value to the
datatype VARCHAR2

In a DECODHEunction, Oracle considers two nulls to be equivalent. If expr is null,
then Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODEunction, including expr ,
searches | results ,and default ,is 255.

6-52 Oracle9i SQL Reference

DECOMPOSE

See Also:

« "Datatype Comparison Rules" on page 2-45 for information on
comparison semantics

« "Data Conversion" on page 2-48 for information on datatype
conversion in general

« "Implicit and Explicit Data Conversion™" on page 2-49 for
information on the drawbacks of implicit conversion

Examples

This example decodes the value warehouse_id . If warehouse_id is 1, then the
function returns 'Southlake ’; if warehouse_id is 2, then it returns 'San
Francisco ’;and so forth. If warehouse_id isnot1, 2, 3, or 4, then the function
returns 'Non-domestic ’

SELECT product_id,

DECODE (warehouse_id, 1, 'Southlake’,

2, 'San Francisco’,

3, 'New Jersey’,

4, 'Seattle’,

'Non-domestic’)

"Location of inventory" FROM inventories
WHERE product_id < 1775;

DECOMPOSE

Syntax
decompose::=

| CANONICAL q
COMPATIBILITY

E=31010 CD 6 0%

Purpose

DECOMPOSE valid only for Unicode characters. DECOMPOStakes as its argument
a string in any datatype and returns a Unicode string after decomposition in the
same character set as the input. For example, an o-umlaut codepoint will be
returned as the "0" codepoint followed by an umlaut codepoint.

Functions 6-53

DECOMPOSE

« String can be any of the datatypes CHARVARCHAR2ZNCHARNVARCHAR?2
CLOB or NCLOB

« CANONICALcauses canonical decomposition, which allows recomposition (for
example, with the COMPOSHunction) to the original string. This is the default.

« COMPATIBILITY causes decomposition in compatibility mode. In this mode,
recomposition is not possible. This mode is useful, for example, when
decomposing half-width and full-width katakana characters, where
recomposition might not be desirable without external formatting or style
information.

See Also: Oracle9i Database Concepts for information on Unicode
character sets and character semantics

Examples

The following example decomposes the string "Chateaux
codepoints:

into its component

SELECT DECOMPOSE ('Chéateaux’) FROM DUAL;
DECOMPOSE

Cha’teaux

6-54 Oracle9i SQL Reference

DENSE_RANK

DENSE_RANK

Aggregate Syntax
dense_rank_aggregate::=

O
o @) -0 FE)

Analytic Syntax
dense_rank_analytic::=

query_partition_clause
DENSE_RANK o o OVER [(({order_by_clause)s(:)»

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

DENSE_RANIKomputes the rank of a row in an ordered group of rows. The ranks
are consecutive integers beginning with 1. The largest rank value is the number of
unique values returned by the query. Rank values are not skipped in the event of

ties. Rows with equal values for the ranking criteria receive the same rank.

« As an aggregate function, DENSE_RANIalculates the dense rank of a
hypothetical row identified by the arguments of the function with respect to a
given sort specification. The arguments of the function must all evaluate to
constant expressions within each aggregate group, because they identify a
single row within each group. The constant argument expressions and the
expressions in the order_by clause of the aggregate match by position.
Therefore, the number of arguments must be the same and types must be
compatible.

Functions 6-55

DENSE_RANK

« Asan analytic function, DENSE_RANKomputes the rank of each row returned
from a query with respect to the other rows, based on the values of the value
exprs inthe order_by clause

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe.employees

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
(ORDER BY salary DESC, commission_pct) "Dense Rank"
FROM employees;

Dense Rank

Analytic Example

The following statement selects the department name, employee name, and salary
of all employees who work in the HUMAN RESOURC&SPURCHASINGiepartment,
and then computes a rank for each unique salary in each of the two departments.
The salaries that are equal receive the same rank. Compare this example with the
example for RANK on page 6-123.

SELECT d.department_name, e.last_name, e.salary, DENSE_RANK()
OVER (PARTITION BY e.department_id ORDER BY e.salary) as drank
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.department_id IN ('30’, '40);

DEPARTMENT_NAME LAST_NAME SALARY DRANK
Purchasing Colmenares 2500 1

Purchasing Himuro 2600 2

Purchasing Tobias 2800 3

Purchasing Baida 2900 4

Purchasing Khoo 3100 5

Purchasing Raphaely 11000 6

Human Resources Marvis 6500

6-56 Oracle9i SQL Reference

DEPTH

DEPTH

Syntax
depth::=

—>| DEPTH P@»{correlation_integer)a@»

Purpose

DEPTHis an ancillary function used only with the UNDER_PATIdNnd EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable.

The correlation_integer can be any integer. Use it to correlate this ancillary
function with its primary condition if the statement contains multiple primary
conditions. Values less than 1 are treated as 1.

See Also:
« EQUALS_PATH on page 5-13, UNDER_PATH on page 5-20
« the related function PATH on page 6-115

Examples

The EQUALS_PATHNd UNDER_PATIdonditions can take two ancillary functions,
one of which is DEPTH The following example shows the use of both ancillary
functions. The example assumes the existence of the XMLSchema
warehouses.xsd (created in "Using XML in SQL Statements" on page D-11).

SELECT PATH(1), DEPTH(2)
FROM RESOURCE_VIEW
WHERE UNDER_PATH(res, '/sys/schemas/OFE’, 1)=1
AND UNDER_PATH(res, 'Isys/schemas/OF’, 2)=1,

PATH(1) DEPTH(2)
/www.oracle.com 1
/www.oracle.com/xwarehouses.xsd 2

Functions 6-57

DEREF

DEREF

Syntax
deref::=

Ecl0LCO0

Purpose

DERERreturns the object reference of argument expr , where expr must return a
REFto an object. If you do not use this function in a query, then Oracle returns the
object ID of the REFinstead, as shown in the example that follows.

See Also: MAKE_REF on page 6-94

Examples

The sample schema oe contains an object type cust_address_typ (its creation is
duplicated in the example that follows). The following example creates a table of
cust_address_typ_new , and another table with one column that is a REF to
cust_address_typ

CREATE TYPE cust_address_typ_new AS OBJECT
(street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
, City VARCHAR2(30)
, State_province VARCHAR2(10)
, country_id CHAR(2)
);
/
CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
add_id NUMBER,
address REF cust_address_typ_new
SCOPE IS address_table);

INSERT INTO address_table VALUES
('1 First’, 'G45 EUS8, "Paris’, 'CA’, 'US’);

INSERT INTO customer_addresses
SELECT 999, REF(a) FROM address_table a;

SELECT address FROM customer_addresses;

6-58 Oracle9i SQL Reference

DUMP

DUMP

ADDRESS

000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FEQ03400400B40DCB1
SELECT DEREF(address) FROM customer_addresses;

DEREFADDRESS)(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

CUST_ADDRESS_TYP('1 First’, 'G45 EUS’, 'Paris’, 'CA’, 'US’)

Syntax
dump::=

length
Oy LN
-0

Purpose

DUMPReturns a VARCHAR®alue containing the datatype code, length in bytes, and
internal representation of expr . The returned result is always in the database
character set. For the datatype corresponding to each code, see Table 2-1 on

page 2-7.

The argument return_fmt specifies the format of the return value and can have
any of the following values:

= 8returns result in octal notation.

« 10 returns result in decimal notation.

« 16 returns result in hexadecimal notation.
« 17 returns result as single characters.

By default, the return value contains no character set information. To retrieve the
character set name of expr , specify any of the preceding format values, plus 1000.
For example, a return_fmt of 1008 returns the result in octal, plus provides the
character set name of expr .

Functions 6-59

DUMP

The arguments start_position and length combine to determine which
portion of the internal representation to return. The default is to return the entire
internal representation in decimal notation.

If expr is null, then this function returns a null.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

The following examples show how to extract dump information from a string
expression and a column:

SELECT DUMP('abc’, 1016)
FROM DUAL;

DUMP('ABC’,1016)

Typ=96 Len=3 CharacterSet=WES8DEC: 61,62,63
SELECT DUMP(last_name, 8, 3, 2) "OCTAL"
FROM employees
WHERE last_name = 'Hunold’;

OCTAL

Typ=1 Len=6: 156,157

SELECT DUMP(last_name, 10, 3, 2) "ASCII"
FROM employees
WHERE last_name = 'Hunold’;

ASCII

Typ=1 Len=6: 110,111

6-60 Oracle9i SQL Reference

EXISTSNODE

EMPTY_BLOB, EMPTY_CLOB

Syntax
empty LOB::=

| EMPTY_BLOB | o o
EMPTY_CLOB

Purpose

EMPTY_BLOBNd EMPTY_CLOBeturn an empty LOB locator that can be used to
initialize a LOB variable or, in an INSERT or UPDATEstatement, to initialize a LOB
column or attribute to EMPTYEMPTYmeans that the LOB is initialized, but not
populated with data.

Restriction on LOB Locators You cannot use the locator returned from this
function as a parameter to the DBMS_LOBRackage or the OCI.

Examples

The following example initializes the ad_photo column of the sample pm.print_
media table to EMPTY

UPDATE print_media SET ad_photo = EMPTY_BLOB();

EXISTSNODE
Syntax
existsnode::=
—] EXISTSNODE @{XMLType_instance)»@»(XPath_string} @
Purpose

EXISTSNODEdetermines whether traversal of the document using the path results
in any nodes. It takes as arguments the XMLType instance containing an XML
document and a VARCHARZXPath string designating a path. The optional
namespace_string must resolve to a VARCHARZalue that specifies a default

Functions 6-61

EXP

EXP

mapping or namespace mapping for prefixes, which Oracle uses when evaluating
the XPath expression(s).

The return value is NUMBER
« 0if no nodes remain after applying the XPath traversal on the document

« lifany nodes remain

Examples
The following example tests for the existence of the /Warehouse/Dock node in the
XML path of the warehouse_spec column of the sample table oe.warehouses

SELECT warehouse_id, warehouse_name
FROM warehouses
WHERE EXISTSNODE(warehouse_spec, '/Warehouse/Docks’) = 1;

WAREHOUSE_ID WAREHOUSE_NAME

1 Southlake, Texas
2 San Francisco
4 Seattle, Washington

Syntax
exp::=

ES 02050

Purpose
EXPreturns e raised to the nth power, where e = 2.71828183 ...

Examples
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

54.59815

6-62 Oracle9i SQL Reference

EXTRACT (datetime)

EXTRACT (datetime)

Syntax

extract_datetime::=

YEAR
MONTH

DAY

)

[

HOUR

MINUTE

0 SECOND datetime_value_expression
-EXTRACT -FROM
TIMEZONE_HOUR interval_value_expression

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

Purpose

EXTRACTextracts and returns the value of a specified datetime field from a

datetime or interval value expression. When you extract a TIMEZONE_REGIONr
TIMEZONE_ABBRabbreviation), the value returned is a string containing the
appropriate time zone name or abbreviation. When you extract any of the other
values, the value returned is in the Gregorian calendar. When extracting from a
datetime with a time zone value, the value returned is in UTC. For a listing of time
zone names and their corresponding abbreviations, query the VSTIMEZONE_NAMES
dynamic performance view.

Some combinations of datetime field and datetime or interval value expression
result in ambiguity. In these cases, Oracle returns 'UNKNOWNkee the examples that
follow for additional information).

Functions 6-63

EXTRACT (datetime)

Note: The field you are extracting must be a field of the

datetime_value_expr or interval_value_expr . For

example, you can extract only YEAR MONTHand DAY from a DATE
value. Likewise, you can extract TIMEZONE_HOURnd TIMEZONE_
MINUTEonly from the TIMESTAMP WITH TIME ZON#atatype.

See Also:

« "Datetime/Interval Arithmetic" on page 2-25 for a description

of datetime_value _expr and interval_value_expr

« Oracle9i Database Reference for information on the dynamic

performance views

Examples
The following example returns the year 1998.

SELECT EXTRACT(YEAR FROM DATE '1998-03-07') FROM DUAL;

EXTRACT(YEARFROMDATE'1998-03-07’)

1998

The following example selects from the sample table hr.employees
who were hired after 1998:

SELECT last_name, employee_id, hire_date
FROM employees
WHERE EXTRACT(YEAR FROM
TO_DATE(hire_date, 'DD-MON-RR)) > 1998
ORDER BY hire_date;

LAST_NAME EMPLOYEE_ID HIRE_DATE
Landry 127 14-JAN-99
Lorentz 107 07-FEB-99
Cabrio 187 07-FEB-99

all employees

The following example results in ambiguity, so Oracle returns 'UNKNOWN

6-64 Oracle9i SQL Reference

EXTRACT (XML)

SELECT EXTRACT(TIMEZONE_REGION
FROM TIMESTAMP '1999-01-01 10:00:00 -08:00")
FROM DUAL;

EXTRACT(TIMEZONE_REGIONFROMTIMESTAMP’1999-01-0110:00:00-08:00’)

UNKNOWN

The ambiguity arises because the time zone numerical offset is provided in the
expression, and that numerical offset may map to more than one time zone region.

EXTRACT (XML)
Syntax
extract_xml::=
— EXTRACT WXMLType_instance)@@ {
Purpose

EXTRACT(XML) is similar to the EXISTSNODHunction. It applies a VARCHAR2
XPath string and returns an XMLType instance containing an XML fragment. The
optional namespace_string must resolve to a VARCHARZalue that specifies a
default mapping or namespace mapping for prefixes, which Oracle uses when
evaluating the XPath expression(s).

Examples

The following example extracts the value of the /Warehouse/Dock node of the
XML path of the warehouse_spec column in the sample table oe.warehouses

SELECT warehouse_name, EXTRACT(warehouse_spec, '/Warehouse/Docks’)
"Number of Docks"
FROM warehouses
WHERE warehouse_spec IS NOT NULL;

WAREHOUSE_NAME Number of Docks

Southlake, Texas <Docks>2</Docks>
San Francisco <Docks>1</Docks>
New Jersey <Docks/>

Seattle, Washington <Docks>3</Docks>

Functions 6-65

EXTRACTVALUE

Compare this example with the example for EXTRACTVALUE on page 6-66, which
returns the scalar value of the XML fragment.

EXTRACTVALUE

Syntax
extractvalue::=

0
—] EXTRACTVALUE |->®{XMLType_instance}@{xpath_string) @

The EXTRACTVALUHunNction takes as arguments an XMLType instance and an
XPath expression and returns a scalar value of the resultant node. The result must
be a single node and be either a text node, attribute, or element. If the result is an
element, the element must have a single text node as its child, and it is this value
that the function returns. If the specified XPath points to a node with more than one
child, or if the node pointed to has a non-text node child, Oracle returns an error.
The optional namespace_string must resolve to a VARCHAR®Xalue that specifies
a default mapping or namespace mapping for prefixes, which Oracle uses when
evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return
value, then a scalar value of the appropriate type is returned. Otherwise, the result
is of type VARCHARZFor documents that are not based on XML schemas, the return
type is always VARCHAR2

Examples

The following example takes as input the same arguments as the example for
EXTRACT (XML) on page 6-65. Instead of returning an XML fragment, as does the
EXTRACTfunction, it returns the scalar value of the XML fragment:

SELECT warehouse_name,
EXTRACTVALUE (e.warehouse_spec, '/Warehouse/Docks’)
"Docks"
FROM warehouses e
WHERE warehouse_spec IS NOT NULL;

6-66 Oracle9i SQL Reference

FIRST

WAREHOUSE_NAME Docks

Southlake, Texas 2
San Francisco 1
New Jersey

Seattle, Washington 3

FIRST

Syntax
first::=

{aggregate_functionﬂ KEEP |—>

—>®->| DENSE_RANK |—>| FIRST |->| ORDER |->| BY expr
f—)| OVER |—>Cquery_partitioning_clauseh

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions of the ORDER B¥lause and
OVERclause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic
functions that operate on a set of values from a set of rows that rank as the FIRST
or LAST with respect to a given sorting specification. If only one row ranks as
FIRST or LAST, the aggregate operates on the set with only one element.

When you need a value from the first or last row of a sorted group, but the needed
value is not the sort key, the FIRST and LAST functions eliminate the need for self
joins or views and enable better performance.

« The aggregate function is any one of the MIN, MAXSUMAVG COUNT
VARIANCE or STDDEMWunctions. It operates on values from the rows that rank
either FIRST or LAST. If only one row ranks as FIRST or LAST, the aggregate
operates on a singleton (nonaggregate) set.

Functions 6-67

FIRST

« DENSE_RANK FIRSBr DENSE_RANK LASihdicates that Oracle will aggregate
over only those rows with the minimum (FIRST) or the maximum (LAST)
dense rank ("olympic rank™).

You can use the FIRST and LAST functions as analytic functions by specifying the
OVERclause. The query_partitioning_clause is the only part of the OVER
clause valid with these functions.

Aggregate Example

The following example returns, within each department of the sample table
hr.employees , the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT department_id,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
FROM employees
GROUP BY department_id;

DEPARTMENT_ID Worst Best

10 4400 4400
20 6000 13000
30 2500 11000
40 6500 6500
50 2100 8200
60 4200 9000
70 10000 10000
80 6100 14000
90 17000 24000
100 6900 12000
110 8300 12000
7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns
the result for each employee within the department:

SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"

6-68 Oracle9i SQL Reference

FIRST_VALUE

FROM employees
ORDER BY department_id, salary;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
Whalen 10 4400 4400 4400

Fay 20 6000 6000 13000

Hartstein 20 13000 6000 13000

Gietz 110 8300 8300 12000

Higgins 110 12000 8300 12000

Grant 7000 7000 7000

Syntax

first_value::=

o @ o OVER |—>®—><analytic_c|ause)—>@->

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

FIRST_VALUE s an analytic function. It returns the first value in an ordered set of
values.

You cannot use FIRST_VALUE or any other analytic function for expr . That is, you
can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "About SQL Expressions" on page 4-2 for information
on valid forms of expr

Examples

The following example selects, for each employee in Department 90, the name of
the employee with the lowest salary.

Functions 6-69

FIRST_VALUE

SELECT departmeent_id, last_name, salary, FIRST_VALUE(last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY employee_id);

DEPARTMENT_ID LAST_NAME SALARY LOWEST_SAL

90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar
90 King 24000 Kochhar

The example illustrates the nondeterministic nature of the FIRST_VALUE function.
Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar
appears first because the rows returned by the subquery are ordered by employee
id . However, if the rows returned by the subquery are ordered by employee id in
descending order, as in the next example, then the function returns a different
value:

SELECT department_id, last_name, salary, FIRST_VALUE(last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) as fv
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER by employee_id DESC);

DEPARTMENT_ID LAST_NAME SALARY FV

90 De Haan 17000 De Haan
90 Kochhar 17000 De Haan
90 King 24000 De Haan

The following example shows how to make the FIRST_VALUE function
deterministic by ordering on a unique key.

SELECT department_id, last_name, salary, hire_date,
FIRST_VALUE(last_name) OVER
(ORDER BY salary ASC, hire_date ROWS UNBOUNDED PRECEDING) AS fv
FROM (SELECT * FROM employees
WHERE department_id = 90 ORDER BY employee_id DESC);

DEPARTMENT_ID LAST_NAME SALARY HIRE_DATE FV

90 Kochhar 17000 21-SEP-89 Kochhar
90 De Haan 17000 13-JAN-93 Kochhar
90 King 24000 17-JUN-87 Kochhar

6-70 Oracle9i SQL Reference

FROM_TZ

FLOOR

FROM_TZ

Syntax
floor::=

| FLoor (O

Purpose
FLOORreturns largest integer equal to or less than n.

Examples
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROM DUAL;

Floor
15
Syntax
from_tz::=
—>| FROM_TZ F@»Ctimestamp_value ‘ o
Purpose

FROM_Tzonverts a timestamp value at a time zone to a TIMESTAMP WITH TIME
ZONEvalue. time_zone_value s a character string in the format 'TZH:TZM’ or a
character expression that returns a string in TZRwith optional TZD format.

Examples
The following example returns a timestamp value to TIMESTAMP WITH TIME ZONE

SELECT FROM_TZ(TIMESTAMP "2000-03-28 08:00:00’, '3:00")
FROM DUAL,;

Functions 6-71

GREATEST

GREATEST

GROUP_ID

FROM_TZ(TIMESTAMP’2000-03-2808:00:00’,’3:00’)

28-MAR-00 08.00.00 AM +03:00

Syntax
greatest::=

O
EzEa o0

Purpose

GREATESTeturns the greatest of the list of exprs . All expr s after the first are
implicitly converted to the datatype of the first expr before the comparison. Oracle
compares the expr s using nonpadded comparison semantics. Character
comparison is based on the value of the character in the database character set. One
character is greater than another if it has a higher character set value. If the value
returned by this function is character data, then its datatype is always VARCHARZ2

See Also: "Datatype Comparison Rules" on page 2-45

Examples
The following statement selects the string with the greatest value:

SELECT GREATEST (HARRY’, 'HARRIOT’, 'HAROLD")
"Greatest" FROM DUAL;

Greatest

Syntax
group_id::=

2231010

6-72 Oracle9i SQL Reference

GROUP_ID

Purpose

GROUP_Idistinguishes duplicate groups resulting from a GROUP BYspecification.
It is therefore useful in filtering out duplicate groupings from the query result. It
returns an Oracle NUMBERo uniquely identify duplicate groups. This function is
applicable only in a SELECTstatement that contains a GROUP B¥lause.

If n duplicates exist for a particular grouping, then GROUP_IDreturns numbers in
the range 0 to n-1.

Examples

The following example assigns the value "1" to the duplicate co.country_region
grouping from a query on the sample tables sh.countries and sh.sales

SELECT co.country_region, co.country_subregion,
SUM(s.amount_sold) "Revenue",
GROUP_ID() g
FROM sales s, customers ¢, countries co
WHERE s.cust_id = c.cust_id AND
c.country_id = co.country_id AND
s.time_id = '1-JAN-00" AND
co.country_region IN ('Americas’, 'Europe’)
GROUP BY co.country_region,
ROLLUP (co.country_region, co.country_subregion);

COUNTRY_REGION COUNTRY_SUBREGION Revenue G

Americas Northern America 220844 0
Americas Southern America 10872 0
Europe Eastern Europe 12751 0
Europe Western Europe 558686 0
Americas 231716 0
Europe 571437 0
Americas 231716 1
Europe 571437 1

You could add the following HAVINGclause to the end of the statement to ensure
that only rows with GROUP_ID< 1 are returned:

HAVING GROUP_ID() < 1

Functions 6-73

GROUPING

GROUPING

Syntax
grouping::=

[Groe (D))

Purpose

GROUPING@Iistinguishes superaggregate rows from regular grouped rows. GROUP
BY extensions such as ROLLUPand CUBEproduce superaggregate rows where the
set of all values is represented by null. Using the GROUPINGunction, you can
distinguish a null representing the set of all values in a superaggregate row from a
null in a regular row.

The expr in the GROUPINGunction must match one of the expressions in the
GROUP BYlause. The function returns a value of 1 if the value of expr in the row is
a null representing the set of all values. Otherwise, it returns zero. The datatype of
the value returned by the GROUPINGunction is Oracle NUMBER

See Also: group_by clause of the SELECTstatement on
page 18-21 for a discussion of these terms

Examples

In the following example, which uses the sample tables hr.departments and
hr.employees , if the GROUPINGunction returns 1 (indicating a superaggregate
row rather than a regular row from the table), then the string "All Jobs" appears in
the "JOB" column instead of the null that would otherwise appear:

SELECT DECODE(GROUPING(department_name), 1, 'All Departments’,
department_name) AS department,
DECODE(GROUPING(job_id), 1, 'All Jobs’, job_id) AS job,
COUNT(*) "Total Empl", AVG(salary) * 12 "Average Sal"
FROM employees e, departments d
WHERE d.department_id = e.department_id
GROUP BY ROLLUP (department_name, job_id);

DEPARTMENT JOB Total Empl Average Sal
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800

6-74 Oracle9i SQL Reference

GROUPING_ID

GROUPING_ID

Administration All Jobs 1 52800
Executive AD_PRES 1 288000
Executive AD_VP 2 204000
Executive All Jobs 3 232000
Finance FI_ACCOUNT 5 95040
Finance FI_MGR 1 144000
Finance All Jobs 6 103200
Syntax

grouping_id::=

(9
[Grove o (Do) ()

Purpose

GROUPING_IDreturns a number corresponding to the GROUPINGit vector
associated with a row. GROUPING_IDis applicable only in a SELECTstatement that
contains a GROUP B¥xtension, such as ROLLUPor CUBE and a GROUPING
function. In queries with many GROUP B¥xpressions, determining the GROUP BY
level of a particular row requires many GROUPINGunctions, which leads to
cumbersome SQL. GROUPING_IDis useful in these cases.

GROUPING_IDis functionally equivalent to taking the results of multiple
GROUPINGunctions and concatenating them into a bit vector (a string of ones and
zeros). By using GROUPING_IDyou can avoid the need for multiple GROUPING
functions and make row filtering conditions easier to express. Row filtering is easier
with GROUPING _IDbecause the desired rows can be identified with a single
condition of GROUPING_ID= n. The function is especially useful when storing
multiple levels of aggregation in a single table.

Examples
The following example shows how to extract grouping IDs from a query of the
sample table sh.sales

SELECT channel_id, promo_id, sum(amount_sold) s_sales,
GROUPING(channel_id) gc,
GROUPING(promo_id) gp,

Functions 6-75

GROUPING_ID

GROUPING_ID(channel_id, promo_id) gcp,
GROUPING_ID(promo_id, channel_id) gpc
FROM sales
WHERE promo_id > 496

GROUP BY CUBE(channel_id, promo_id);

PROMO_ID S_SALES GC GP GCP

444440 0LLOLMVTTVTTVTTT - - " ""00000!'0O

497 26094.35

498 22272.4

499 19616.8
9999 87781668

87849651.6

497 50325.8
498 52215.4
499 58445.85

9999 169497409

169658396
497 31141.75
498 46942.8
499 24156
9999 70890248

70992488.6
497 110629.75
498 82937.25
499 80999.15
9999 267205791

267480357
497 8319.6
498 5347.65
499 19781
9999 28095689

28129137.3
497 226511.25
498 209715.5
499 202998.8
9999 623470805

624110031

6-76 Oracle9i SQL Reference

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 2

0 0 0 0
0 1 1 2

GPC

INITCAP

HEXTORAW

Syntax
hextoraw::=

[EELI0ICDI0

Purpose

HEXTORAMWbNverts char containing hexadecimal digits in the CHARVARCHAR2
NCHARor NVARCHARR2haracter set to a raw value.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

The following example creates a simple table with a raw column, and inserts a
hexadecimal value that has been converted to RAW

CREATE TABLE test (raw_col RAW(10));
INSERT INTO test VALUES (HEXTORAW('7D"));

See Also: "RAW and LONG RAW Datatypes" on page 2-27 and
RAWTOHEX on page 6-126

INITCAP

Syntax
initcap::=

LEA0CDI0

Functions 6-77

INSTR

INSTR

Purpose

INITCAP returns char , with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

char can be of any of the datatypes CHARVARCHARZ2NCHARor NVARCHARZThe
return value is the same datatype as char .

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples
The following example capitalizes each word in the string:

SELECT INITCAP('the soap’) "Capitals" FROM DUAL;

Capitals

The Soap

Syntax
instr::=

Ie=m)
=

=]
=

Purpose

The "in string" functions search string for substring . The function returns an
integer indicating the position of the character in string that is the first character

position
(O (posiion) \

O

substring

6-78 Oracle9i SQL Reference

INSTR

of this occurrence. INSTR calculates strings using characters as defined by the input
character set. INSTRB uses bytes instead of characters. INSTRC uses Unicode
complete characters. INSTR2 uses UCS2 codepoints. INSTR4 uses UCS4
codepoints.

« position is an nonzero integer indicating the character of string where
Oracle begins the search. If position is negative, then Oracle counts and
searches backward from the end of string

« occurrence is an integer indicating which occurrence of string Oracle
should search for. The value of occurrence must be positive.

Both string and substring can be any of the datatypes CHARVARCHAR?2
NCHARNVARCHARZLOB or NCLOBThe value returned is of NUMBERlatatype.

The default values of both position and occurrence are 1, meaning Oracle
begins searching at the first character of string for the first occurrence of
substring . The return value is relative to the beginning of string , regardless of
the value of position , and is expressed in characters. If the search is unsuccessful
(if substring does not appear occurrence times after the position character
of string), then the return value is 0.

Examples

The following example searches the string "CORPORATE FLOQReginning with the
third character, for the string "OR.. It returns the position in CORPORATE FLOGR
which the second occurrence of "OR begins:

SELECT INSTR(CORPORATE FLOOR',OR’, 3, 2)
"Instring” FROM DUAL;

Instring

In the next example, Oracle counts backward from the last character to the third
character from the end, which is the first "O" in "FLOOR". Oracle then searches
backward for the second occurrence of OR and finds that this second occurrence
begins with the second character in the search string :

SELECT INSTR(CORPORATE FLOOR',OR’, -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

Functions 6-79

LAG

LAG

2
This example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR’,'OR’,5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

Syntax
lag::=

O
~
a| LAG value_expr) @»
query_partition_clause
OVER (A order_by_clause) b

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

LAGis an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LAGprovides access to a row at a given physical offset prior
to that position.

If you do not specify offset , then its default is 1. The optional default value is
returned if the offset goes beyond the scope of the window. If you do not specify
default , then its default value is null.

You cannot use LAGor any other analytic function for value_expr . That is, you
can use other built-in function expressions for value_expr , but you cannot nest
analytic functions.

See Also: "About SQL Expressions" on page 4-2 for information
on valid forms of expr

6-80 Oracle9i SQL Reference

LAST

LAST

Examples

The following example provides, for each salesperson in the employees table, the
salary of the employee hired just before:

SELECT last_name, hire_date, salary,
LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM employees
WHERE job_id ='PU_CLERK’;

LAST_NAME HIRE_DATE SALARY PREV_SAL
Khoo 18-MAY-95 3100 0

Tobias 24-JUL-97 2800 3100

Baida 24-DEC-97 2900 2800

Himuro 15-NOV-98 2600 2900
Colmenares 10-AUG-99 2500 2600

Syntax

last::=

e(aggregate_function)-ﬁ KEEP |—>

DESC

lASC‘

—>®->| DENSE_RANK |—>| LAST |—>| ORDER |—>| BY expr

[—>| OVER |—>Cquery_partitioning_clauseh

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions of the query_partitioning
clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic
functions that operate on a set of values from a set of rows that rank as the FIRST
or LAST with respect to a given sorting specification. If only one row ranks as
FIRST or LAST, the aggregate operates on the set with only one element.

Functions 6-81

LAST

When you need a value from the first or last row of a sorted group, but the needed
value is not the sort key, the FIRST and LAST functions eliminate the need for self
joins or views and enable better performance.

« The aggregate function is any one of the MIN, MAX SUMAVG COUNT
VARIANCE or STDDEMWunctions. It operates on values from the rows that rank
either FIRST or LAST. If only one row ranks as FIRST or LAST, the aggregate
operates on a singleton (nonaggregate) set.

« DENSE_RANK FIRSBr DENSE_RANK LASihdicates that Oracle will aggregate
over only those rows with the minimum (FIRST) or the maximum (LAST)
dense rank ("olympic rank™).

You can use the FIRST and LAST functions as analytic functions by specifying the
OVERclause. The query_partitioning_clause is the only part of the OVER
clause valid with these functions.

Aggregate Example

The following example returns, within each department of the sample table
hr.employees , the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT department_id,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
FROM employees
GROUP BY department_id;

DEPARTMENT_ID Worst Best

10 4400 4400
20 6000 13000
30 2500 11000
40 6500 6500
50 2100 8200
60 4200 9000
70 10000 10000
80 6100 14000
90 17000 24000
100 6900 12000
110 8300 12000
7000 7000

6-82 Oracle9i SQL Reference

LAST_DAY

LAST DAY

Analytic Example

The next example makes the same calculation as the previous example but returns
the result for each employee within the department:

SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000
Syntax
last_day::=

0CDI0
Purpose

LAST_DAYreturns the date of the last day of the month that contains date .

Examples

The following statement determines how many days are left in the current month.
SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",

LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;

Functions 6-83

LAST_VALUE

SYSDATE Last Days Left

30-MAY-01 31-MAY-01 1

The following example adds 5 months to the hire date of each employee to give an
evaluation date:

SELECT last_name, hire_date, TO_CHAR(
ADD_MONTHS(LAST_DAY (hire_date), 5)) "Eval Date"
FROM employees;

LAST_NAME HIRE_DATE Eval Date
King 17-JUN-87 30-NOV-87
Kochhar 21-SEP-89 28-FEB-90
De Haan 13-JAN-93 30-JUN-93
Hunold 03-JAN-90 30-JUN-90
Ernst 21-MAY-91 31-OCT-91
Austin 25-JUN-97 30-NOV-97
Pataballa 05-FEB-98 31-JUL-98
Lorentz 07-FEB-99 31-JUL-99
Syntax

last_value::=

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

LAST_VALUEis an analytic function. It returns the last value in an ordered set of
values.

You cannot use LAST_VALUEor any other analytic function for expr . That is, you
can use other built-in function expressions for expr , but you cannot nest analytic
functions.

6-84 Oracle9i SQL Reference

LAST_VALUE

See Also: "About SQL Expressions” on page 4-2 for information
on valid forms of expr

Examples
The following example returns, for each row, the hire date of the employee earning
the highest salary.

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER

(ORDER BY salary

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY hire_date);

LAST_NAME SALARY HIRE_DATE LV

Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

This example illustrates the nondeterministic nature of the LAST_VALUEfunction.
Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar
appears first because the rows in the subquery are ordered by hire_date

However, if the rows are ordered by hire_date in descending order, as in the next
example, then the function returns a different value:

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER

(ORDER BY salary

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY hire_date DESQ;

LAST_NAME SALARY HIRE_DATE LV

De Haan 17000 13-JAN-93 17-JUN-87
Kochhar 17000 21-SEP-89 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

The following two examples show how to make the LAST_VALUEfunction
deterministic by ordering on a unique key. By ordering within the function by both
salary and hire_date , you can ensure the same result regardless of the ordering
in the subquery.

Functions 6-85

LEAD

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER
(ORDER BY salary, hire_date

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY hire_date);

LAST_NAME SALARY HIRE_DATE LV

Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87

SELECT last_name, salary, hire_date, LAST_VALUE(hire_date) OVER

(ORDER BY salary, hire_date

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS Iv
FROM (SELECT * FROM employees WHERE department_id = 90

ORDER BY hire_date DESQ;

LAST _NAME SALARY HIRE_DATE LV
Kochhar 17000 21-SEP-89 17-JUN-87
De Haan 17000 13-JAN-93 17-JUN-87
King 24000 17-JUN-87 17-JUN-87
Syntax

lead::=

—>| LEAD @{value_expr) ’ ‘ @—)
(order_by_clause 1 >

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

LEAD:is an analytic function. It provides access to more than one row of a table at
the same time without a self join. Given a series of rows returned from a query and

6-86 Oracle9i SQL Reference

LEAST

LEAST

a position of the cursor, LEADprovides access to a row at a given physical offset
beyond that position.

If you do not specify offset , then its default is 1. The optional default value is
returned if the offset goes beyond the scope of the table. If you do not specify
default , then its default value is null.

You cannot use LEADor any other analytic function for value_expr . Thatis, you
can use other built-in function expressions for value _expr , but you cannot nest
analytic functions.

See Also: "About SQL Expressions" on page 4-2 for information
on valid forms of expr

Examples

The following example provides, for each employee in the employees table, the
hire date of the employee hired just after:

SELECT last_name, hire_date,
LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
FROM employees WHERE department_id = 30;

LAST_NAME HIRE_DATE NextHired
Raphaely 07-DEC-94 18-MAY-95
Khoo 18-MAY-95 24-JUL-97
Tobias 24-JUL-97 24-DEC-97
Baida 24-DEC-97 15-NOV-98
Himuro 15-NOV-98 10-AUG-99
Colmenares 10-AUG-99

Syntax

least::=

'~
| LeasT H(O~(em))

Functions 6-87

LENGTH

LENGTH

Purpose

LEAST returns the least of the list of expr s. All expr s after the first are implicitly
converted to the datatype of the first expr before the comparison. Oracle compares
the expr s using nonpadded comparison semantics. If the value returned by this
function is character data, then its datatype is always VARCHAR2

Examples
The following statement is an example of using the LEAST function:

SELECT LEAST('HARRY',HARRIOT'/HAROLD’) "LEAST"
FROM DUAL,;

HAROLD

Syntax
length::=

Purpose

The "length" functions return the length of char . LENGTHalculates length using
characters as defined by the input character set. LENGTHBuses bytes instead of
characters. LENGTHGQises Unicode complete characters. LENGTH2uses UCS2
codepoints. LENGTH4uses UCS4 codepoints.

char can be any of the datatypes CHARVARCHARZNCHARNVARCHARZLOB or
NCLOBThe return value is of datatype NUMBERIf char has datatype CHARthen
the length includes all trailing blanks. If char is null, then this function returns
null.

6-88 Oracle9i SQL Reference

LN

LN

Examples

The following example uses the LENGTHunction using a single-byte database
character set.

SELECT LENGTH('CANDIDE’) "Length in characters"
FROM DUAL;

Length in characters

This example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE’) "Length in bytes"
FROM DUAL,;

Length in bytes

Syntax
In::=

Purpose
LN returns the natural logarithm of n, where n is greater than 0.

Examples
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95" FROM DUAL;
Natural log of 95

4.55387689

Functions 6-89

LOCALTIMESTAMP

LOCALTIMESTAMP

Syntax
localtimestamp::=

0 timestamp_precision o

—>| LOCALTIMESTAMP

Purpose

LOCALTIMESTAMPeturns the current date and time in the session time zone in a
value of datatype TIMESTAMPThe difference between this function and CURRENT _
TIMESTAMBis that LOCALTIMESTAMPeturns a TIMESTAMPvalue while
CURRENT_TIMESTAMtfturns a TIMESTAMP WITH TIME ZONfzalue.

See Also: CURRENT_TIMESTAMP on page 6-50

Examples

This example illustrates the difference between LOCALTIMESTAMRNd CURRENT _
TIMESTAMP

ALTER SESSION SET TIME_ZONE = "-5:00’;
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL,;

CURRENT_TIMESTAMP LOCALTIMESTAMP

04-APR-00 01.27.18.999220 PM -05:00 04-APR-00 01.27.19 PM

ALTER SESSION SET TIME_ZONE = '-8:00’;
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP

04-APR-00 10.27.45.132474 AM -08:00 04-APR-0010.27.451 AM

If you use the LOCALTIMESTAMRvith a format mask, take care that the format
mask matches the value returned by the function. For example, consider the
following table:

CREATE TABLE local_test (coll TIMESTAMP WITH LOCAL TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE
portion of the return type of the function:

6-90 Oracle9i SQL Reference

LOWER

LOG

LOWER

INSERT INTO local_test VALUES
(TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MI.SSXFF));

The following statement uses the correct format mask to match the return type of
LOCALTIMESTAMP

INSERT INTO local_test VALUES
(TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MIL.SSXFF PM));

Syntax
log::=

EX0 00,00

Purpose

LOGreturns the logarithm, base m of n. The base mcan be any positive number
other than 0 or 1 and n can be any positive number.

Examples
The following example returns the log of 100:

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL,;

Log base 10 of 100

Syntax
lower::=

[ower (D)

Functions 6-91

LPAD

LPAD

Purpose

LOWEReturns char , with all letters lowercase. char can be any of the datatypes
CHARVARCHAR2NCHARNVARCHARZCLOB or NCLOBThe return value is the
same datatype as char .

Examples
The following example returns a string in lowercase:

SELECT LOWER('MR. SCOTT MCMILLAN’) "Lowercase"
FROM DUAL,;

Lowercase

mr. scott mcmillan

Syntax
Ipad::=

.charz
o0 L g,

Purpose

LPADreturns charl , left-padded to length n with the sequence of characters in
char2 ; char2 defaults to a single blank. If charl is longer than n, then this
function returns the portion of charl that fitsin n.

Both charl and char2 can be any of the datatypes CHARVARCHARZ2NCHAR
NVARCHARZCLOB or NCLOBThe string returned is of VARCHAR2latatype and is
in the same character set as charl .

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Examples
The following example left-pads a string with the characters "*" and ".":

6-92 Oracle9i SQL Reference

LTRIM

LTRIM

SELECT LPAD('Page 1',15,*.") "LPAD example"
FROM DUAL;

LPAD example

*****Page 1

Syntax
[trim::=

mo@ L,

Purpose

LTRIM removes characters from the left of char , with all the leftmost characters
that appear in set removed; set defaults to a single blank. If char is a character
literal, then you must enclose it in single quotes. Oracle begins scanning char from
its first character and removes all characters that appear in set until reaching a
character not in set and then returns the result.

Both char and set can be any of the datatypes CHARVARCHARZNCHAR
NVARCHARZCLOB or NCLOBThe string returned is of VARCHARZ2latatype and is
in the same character set as char .

Examples
The following example trims all of the left-most x’s and y’s from a string:
SELECT LTRIM(xyxXxyLAST WORD’,’xy’) "LTRIM example"

FROM DUAL,;

LTRIM example

XxyLAST WORD

Functions 6-93

MAKE_REF

MAKE_REF

Syntax
make_ref::=

table

view

Purpose

MAKE_REFreates a REFto a row of an object view or a row in an object table
whose object identifier is primary key based.

See Also:

« Oracle9i Application Developer’s Guide - Fundamentals for more
information about object views

« DEREF on page 6-58

Examples
The sample schema oe contains an object view oc_inventories based on
inventory_typ . The object identifier is product_id . The following example

creates a REFto the row in the oc_inventories object view with a product_id
of 3003:

SELECT MAKE_REF (oc_inventories, 3003) FROM DUAL;

MAKE_REF(OC_INVENTORIES,3003)

00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

6-94 Oracle9i SQL Reference

MAX

MAX

Syntax
max::=

| DISTINCT I
ALL

MAX B((

f—)| OVER F@{analytic_clausem

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

MAXreturns maximum value of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, then you can specify only the query_patrtition_
clause of the analytic_clause . The order_by clause and windowing _
clause are not allowed.

See Also:

« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example determines the highest salary in the hr.employees table:

SELECT MAX(salary) "Maximum" FROM employees;

Maximum

Analytic Example

The following example calculates, for each employee, the highest salary of the
employees reporting to the same manager as the employee.

Functions 6-95

MAX

SELECT manager_id, last_name, salary,
MAX(salary) OVER (PARTITION BY manager_id) AS mgr_max
FROM employees;

MANAGER_ID LAST_NAME SALARY MGR_MAX
100 Kochhar 17000 17000
100 De Haan 17000 17000
100 Raphaely 11000 17000
100 Kaufling 7900 17000
100 Fripp 8200 17000
100 Weiss 8000 17000

If you enclose this query in the parent query with a predicate, then you can
determine the employee who makes the highest salary in each department;

SELECT manager_id, last_name, salary
FROM (SELECT manager_id, last_name, salary,
MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
FROM employees) WHERE salary = rmax_sal;

MANAGER_ID LAST_NAME SALARY
100 Kochhar 17000
100 De Haan 17000
101 Greenberg 12000
101 Higgens 12000
102 Hunold 9000
103 Ernst 6000
108 Faviet 9000
114 Khoo 3100
120 Nayer 3200
120 Taylor 3200
121 Sarchand 4200
122 Chung 3800
123 Bell 4000
124 Rajs 3500
145 Tucker 10000
146 King 10000
147 Vishney 10500
148 Ozer 11500
149 Abel 11000
201 Goyal 6000
205 Gietz 8300

King 24000

6-96 Oracle9i SQL Reference

MIN

MIN

Syntax
min::=

| DISTINCT I
ALL

[—>| OVER F@{analytic_clausem

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

MIN ((

Purpose
MIN returns minimum value of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, then you can specify only the query_patrtition_
clause of the analytic_clause . The order_by clause and windowing _
clause are not allowed.

See Also:

« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following statement returns the earliest hire date in the hr.employees table:

SELECT MIN(hire_date) "Earliest" FROM employees;

Earliest

17-JUN-87

Analytic Example

The following example determines, for each employee, the employees who were
hired on or before the same date as the employee. It then determines the subset of
employees reporting to the same manager as the employee, and returns the lowest
salary in that subset.

Functions 6-97

MOD

SELECT manager_id, last_name, hire_date, salary,
MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
RANGE UNBOUNDED PRECEDING) as p_cmin
FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE SALARY P_CMIN
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 17000
100 Raphaely 07-DEC-94 11000 11000
100 Kaufling 01-MAY-95 7900 7900
100 Hartstein 17-FEB-96 13000 7900
100 Weiss 18-JUL-96 8000 7900
100 Russell 01-OCT-96 14000 7900
100 Partners 05-JAN-97 13500 7900
100 Errazuriz 10-MAR-97 12000 7900

Syntax

mod::=

0,0:0:0:0
Purpose

MODreturns the remainder of mdivided by n. Returns mif nis 0.

Examples
The following example returns the remainder of 11 divided by 4:

SELECT MOD(11,4) "Modulus" FROM DUAL;
Modulus

This function behaves differently from the classical mathematical modulus function
when mis negative. The classical modulus can be expressed using the MOCfunction
with this formula:

6-98 Oracle9i SQL Reference

MONTHS_BETWEEN

m - n * FLOOR(m/n)

The following table illustrates the difference between the MOLCfunction and the
classical modulus:

m n MOD(m,n) Classical Modulus

11 4 3 3

11 -4 3 -1
-11 4 -3 1
-11 -4 -3 -3

See Also: FLOOR on page 6-71

MONTHS_BETWEEN

Syntax
months_between:;=

—>| MONTHS_BETWEEN 0 o .)

Purpose

MONTHS_BETWEE&turns number of months between dates datel and date2 . If
datel is later than dateZ2 , then the result is positive. If datel is earlier than
date2 , then the result is negative. If datel and date2 are either the same days of
the month or both last days of months, then the result is always an integer.
Otherwise Oracle calculates the fractional portion of the result based on a 31-day
month and considers the difference in time components datel and date2 .

Examples

The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
(TO_DATE('02-02-1995'’MM-DD-YYYY’),
TO_DATE(01-01-1995'’MM-DD-YYYY’)) "Months"
FROM DUAL;

Functions 6-99

NCHR

NCHR

NEW_TIME

Months

1.03225806

Syntax
nchr::=

—{ NCHR F@{number}»@»

Purpose

NCHRreturns the character having the binary equivalent to number in the national
character set. This function is equivalent to using the CHRfunction with the USING
NCHAR_C8Slause.

See Also: CHR on page 6-31

Examples
The following examples return the nchar character 187:

SELECT NCHR(187) FROM DUAL,;
NC
>

SELECT CHR(187 USING NCHAR_CS) FROM DUAL;

CH

Syntax
new_time::=

[REWTE (D E A OO (@A)

6-100 Oracle9/ SQL Reference

NEW_TIME

Purpose

NEW_TIMEeturns the date and time in time zone zone2 when date and time in
time zone zonel are date . Before using this function, you must set the NLS_DATE_
FORMAarameter to display 24-hour time.

Note: This function takes as input only a limited number of time
zones. You can have access to a much greater number of time zones
by combining the FROM_TZunction and the datetime expression.
See FROM_TZ on page 6-71 and the example for "Datetime
Expressions" on page 4-9.

The arguments zonel and zoneZ2 can be any of these text strings:

« AST, ADT: Atlantic Standard or Daylight Time

« BST, BDT: Bering Standard or Daylight Time

« CST, CDT: Central Standard or Daylight Time

« EST, EDT: Eastern Standard or Daylight Time

« GMT: Greenwich Mean Time

« HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.
« MST, MDT: Mountain Standard or Daylight Time

« NST: Newfoundland Standard Time

« PST, PDT: Pacific Standard or Daylight Time

« YST, YDT: Yukon Standard or Daylight Time

Examples
The following example returns an Atlantic Standard time, given the Pacific
Standard time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT =
'DD-MON-YYYY HH24:MI:SS’;

SELECT NEW_TIME(TO_DATE(
'11-10-99 01:23:45’, 'MM-DD-YY HH24:MI:SS’),
'AST’, 'PST’) "New Date and Time" FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

Functions 6-101

NEXT_DAY

NEXT_DAY

Syntax
next_day::=

[NEXT_DAY (O(date))(ehan)()

Purpose

NEXT_DAYreturns the date of the first weekday named by char that is later than
the date date . The argument char must be a day of the week in the date language
of your session, either the full name or the abbreviation. The minimum number of
letters required is the number of letters in the abbreviated version. Any characters
immediately following the valid abbreviation are ignored. The return value has the
same hours, minutes, and seconds component as the argument date .

Examples
This example returns the date of the next Tuesday after February 2, 2001:

SELECT NEXT_DAY('02-FEB-2001', TUESDAY’) "NEXT DAY"
FROM DUAL;

NEXT DAY

06-FEB-2001

NLS_CHARSET DECL_LEN

Syntax
nls_charset_decl_len::=

—{ NLS_CHARSET_DECL_LEN P@a(byte_count)—)@—)@har_set_id)a@—)

Purpose

NLS_CHARSET_DECL_LEMturns the declaration width (in number of characters)
of an NCHARolumn. The byte count argument is the width of the column. The
char_set id argument is the character set ID of the column.

6-102 Oracle9/ SQL Reference

NLS_CHARSET_ID

Examples
The following example returns the number of characters that are in a 200-byte
column when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN
(200, nls_charset_id('jal6eucfixed’))
FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED’))

100

NLS_CHARSET_ID

Syntax
nis_charset _id::=

LA OLCOL0

Purpose

NLS_CHARSET _IDreturns the character set ID number corresponding to character
set name text . The text argument is arun-time VARCHAR®alue. The text value
"CHAR_CSreturns the database character set ID number of the server. The text
value 'NCHAR_CSreturns the national character set ID number of the server.

Invalid character set names return null.

Examples
The following example returns the character set ID of a character set:

SELECT NLS_CHARSET_ID(jal6euc’)
FROM DUAL;

NLS_CHARSET ID(JA16EUC)

830

See Also: Oracle9i Database Globalization Support Guide for a list of
character set names

Functions 6-103

NLS_CHARSET_NAME

NLS_CHARSET NAME

Syntax
nls_charset_name::=

—]{ NLS_CHARSET_NAME F@{number}a@»

Purpose

NLS_CHARSET_NAMEturns the name of the character set corresponding to ID
number number. The character set name is returned as a VARCHAR®Xalue in the
database character set.

If number is not recognized as a valid character set ID, then this function returns
null.

Examples

The following example returns the chartacter set corresponding to character set ID
number 2:

SELECT NLS_CHARSET_NAME(2)
FROM DUAL;

WESDEC

See Also: Oracle9i Database Globalization Support Guide for a list of
character set IDs

NLS_INITCAP

Syntax
nls_initcap::=

-nlsparam
D@ YO Savy!

6-104 Oracle9/ SQL Reference

NLS_INITCAP

Purpose

NLS_INITCAP returns char , with the first letter of each word in uppercase, all
other letters in lowercase. Words are delimited by white space or characters that are
not alphanumeric.

Both char and 'nisparam’ can be any of the datatypes CHARVARCHAR2NCHAR
or NVARCHARZT he string returned is of VARCHAR2latatype and is in the same
character set as char .

The value of ‘nisparam’ can have this form:
'NLS_SORT = sort’

where sort is either a linguistic sort sequence or BINARY. The linguistic sort
sequence handles special linguistic requirements for case conversions. These
requirements can result in a return value of a different length than the char . If you
omit ‘nisparam’ , then this function uses the default sort sequence for your
session.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples
The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_INITCAP
(ijsland’) "InitCap" FROM DUAL;

InitCap

lisland

SELECT NLS_INITCAP
(ijsland’, ’'NLS_SORT = XDutch’) "InitCap"
FROM DUAL,;

InitCap

1Jsland

Functions 6-105

NLS_LOWER

See Also: Oracle9i Database Globalization Support Guide for
information on sort sequences

NLS_LOWER

Syntax
nls_lower::=

-nlsparam
D@ Savo

Purpose
NLS_LOWEReturns char , with all letters lowercase.

Both char and 'nisparam’ can be any of the datatypes CHARVARCHAR2NCHAR
NVARCHARZCLOB or NCLOBThe string returned is of VARCHARZ2latatype and is
in the same character set as char .

The 'nisparam’ can have the same form and serve the same purpose as in the
NLS_INITCAP function.

Examples
The following statement returns the character string 'citta’ ’ using the XGerman
linguistic sort sequence:

SELECT NLS_LOWER
(CITTA", 'NLS_SORT = XGerman’) "Lowercase"
FROM DUAL;

6-106 Oracle9/ SQL Reference

NLSSORT

NLSSORT

Syntax
nissort::=

nisparam
0 O Yo SACASAC = iCa Y
Purpose

NLSSORTreturns the string of bytes used to sort char .

Both char and ‘nisparam’ can be any of the datatypes CHARVARCHARZNCHAR
or NVARCHARZT he string returned is of RAWHatatype.

The value of ‘nisparams’ can have the form
'NLS_SORT = sort’
where sort is a linguistic sort sequence or BINARY. If you omit ‘nisparams’

then this function uses the default sort sequence for your session. If you specify
BINARY, then this function returns char .

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

This function can be used to specify comparisons based on a linguistic sort
sequence rather than on the binary value of a string. The following example creates
a test table containing two values and shows how the values returned can be
ordered by the NLSSORTfunction:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO test VALUES ('Gaardiner’);
INSERT INTO test VALUES ('Gaberd’);

SELECT * FROM test ORDER BY name;

Functions 6-107

NLS_UPPER

NLS_UPPER

Gaardiner
Gaberd

SELECT * FROM test
ORDER BY NLSSORT(name, 'NLS_SORT = XDanish’);

NAME

Gaberd

Gaardiner
See Also: Oracle9i Database Globalization Support Guide for
information on sort sequences

Syntax

nls_upper::=

-nlsparam
o@ YO Savol

Purpose
NLS_UPPEReturns char , with all letters uppercase.
Both char and ‘nisparam’ can be any of the datatypes CHARVARCHARZNCHAR

NVARCHARZCLOB or NCLOBThe string returned is of VARCHAR2latatype and is
in the same character set as char .

The 'nisparam’ can have the same form and serve the same purpose as in the
NLS_INITCAP function.

Examples
The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER ('grof3e’) "Uppercase"
FROM DUAL;

6-108 Oracle9/ SQL Reference

NTILE

NTILE

SELECT NLS_UPPER (‘grof3e’, 'NLS_SORT = XGerman’) "Uppercase”
FROM DUAL;

GROSSE

See Also: NLS_INITCAP on page 6-104

Syntax
ntile::=

(e (O Do (GETTD 0;

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

NTILE is an analytic function. It divides an ordered dataset into a number of
buckets indicated by expr and assigns the appropriate bucket number to each row.
The buckets are numbered 1 through expr, and expr must resolve to a positive
constant for each partition.

The number of rows in the buckets can differ by at most 1. The remainder values
(the remainder of number of rows divided by buckets) are distributed one for each
bucket, starting with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the
number of rows will be filled, and the remaining buckets will be empty.

You cannot use NTILE or any other analytic function for expr . That is, you can use
other built-in function expressions for expr , but you cannot nest analytic functions.

See Also: "About SQL Expressions" on page 4-2 for information
on valid forms of expr

Functions 6-109

NULLIF

Examples

The following example divides into 4 buckets the values in the salary column of
the oe.employees table from Department 100. The salary column has 6 values
in this department, so the two extra values (the remainder of 6 / 4) are allocated to
buckets 1 and 2, which therefore have one more value than buckets 3 or 4.

SELECT last_name, salary, NTILE(4) OVER (ORDER BY salary DESC)
AS quartile FROM employees
WHERE department_id = 100;

LAST_NAME SALARY QUARTILE
Greenberg 12000 1
Faviet 9000 1
Chen 8200 2
Urman 7800 2
Sciarra 7700 3
Popp 6900 4
Syntax
nullif::=

OICDIOCDI0
Purpose

NULLIF compares exprl and expr2 . If they are equal, then the function returns
null. If they are not equal, then the function returns exprl . You cannot specify the
literal NULLfor exprl .

The NULLIF function is logically equivalent to the following CASEexpression:
CASE WHEN exprl = expr 2 THEN NULL ELSE exprl END

See Also: "CASE Expressions” on page 4-6

Examples

The following example selects those employees from the sample schema hr who
have changed jobs since they were hired, as indicated by ajob_id in the job_
history table different from the current job_id in the employees table:

6-110 Oracle9/ SQL Reference

NUMTODSINTERVAL

SELECT e.last_name, NULLIF(e.job_id, j.job_id) "Old Job ID"
FROM employees e, job_history j
WHERE e.employee_id = j.employee_id
ORDER BY last_name;

LAST_NAME Old Job ID
De Haan AD_VP
Hartstein MK_MAN
Kaufling ST_MAN
Kochhar AD_VP
Kochhar AD_VP
Raphaely PU_MAN
Taylor SA_REP
Taylor
Whalen AD_ASST
Whalen
NUMTODSINTERVAL
Syntax
numtodsinterval::=
—>| NUMTODSINTERVAL o @ ’ ‘ ' o
Purpose

NUMTODSINTERVAdonverts n to an INTERVAL DAY TO SECON@eral. n can be a
number or an expression resolving to a number. char_expr can be of CHAR
VARCHARXNCHARor NVARCHAR®atatype. The value for char_expr specifies
the unit of n and must resolve to one of the following string values:

« ‘DAY

« ’'HOUR

« 'MINUTE
« ’'SECOND

char_expr is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, precision of the return is 9.

Functions 6-111

NUMTOYMINTERVAL

Examples

The following example calculates, for each employee, the number of employees
hired by the same manager within the last 100 days from his/her hire date:

SELECT manager_id, last_name, hire_date,
COUNT(*) OVER (PARTITION BY manager_id ORDER BY hire_date
RANGE NUMTODSINTERVAL(100, 'day’) PRECEDING) AS t_count
FROM employees;

MANAGER_ID LAST_NAME HIRE_DATE T_COUNT
100 Kochhar 21-SEP-89 1
100 De Haan 13-JAN-93 1
100 Raphaely 07-DEC-94 1
100 Kaufling 01-MAY-95 1
100 Hartstein 17-FEB-96 1
149 Grant 24-MAY-99 1
149 Johnson 04-JAN-00 1
201 Goyal 17-AUG-97 1
205 Gietz 07-JUN-94 1

King 17-JUN-87 1

NUMTOYMINTERVAL

Syntax
numtoyminterval::=

—>| NUMTOYMINTERVAL o @ ’ ‘ ' o

Purpose

NUMTOYMINTERVAlonverts number n to an INTERVAL YEAR TO MONTHeral. n
can be a number or an expression resolving to a number. char_expr can be of
CHARVARCHARXNCHARor NVARCHARA®atatype. The value for char_expr
specifies the unit of n, and must resolve to one of the following string values:

« 'YEAR
« 'MONTH

char_expr is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, precision of the return is 9.

6-112 Oracle9/ SQL Reference

NVL

NVL

Examples
The following example calculates, for each employee, the total salary of employees
hired in the past one year from his/her hire date.

SELECT last_name, hire_date, salary, SUM(salary)
OVER (ORDER BY hire_date
RANGE NUMTOYMINTERVAL(1,'year’) PRECEDING) AS t_sal
FROM employees;

LAST_NAME HIRE_DATE SALARY T_SAL
King 17-JUN-87 24000 24000

Whalen 17-SEP-87 4400 28400
Kochhar 21-SEP-89 17000 17000

Markle 08-MAR-00 2200 112400

Ande 24-MAR-00 6400 106500

Banda 21-APR-00 6200 109400

Kumar 21-APR-00 6100 109400
Syntax

nvl::=
OEDOEQ)

Purpose

NVLlets you replace a null (blank) with a string in the results of a query. If exprl is
null, then NVLreturns expr2 . If exprl is not null, then NVLreturns exprl . The
arguments exprl and expr2 can have any datatype. If their datatypes are
different, then Oracle converts expr2 to the datatype of exprl before comparing
them.

The datatype of the return value is always the same as the datatype of exprl ,
unless exprl is character data, in which case the return value’s datatype is
VARCHARZ2nNd is in the character set of exprl .

Functions 6-113

NVL2

Examples

The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR(commission_pct), 'Not Applicable’)
"COMMISSION" FROM employees
WHERE last_name LIKE 'B%’
ORDER BY last_name;

LAST_NAME COMMISSION
Baer Not Applicable
Baida Not Applicable
Banda A
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom 2
Bull Not Applicable
Syntax
nvi2::=

O DDA
Purpose

NVL2 lets you determine the value returned by a query based on whether a
specified expression is null or not null. If exprl is not null, then NVL2 returns
expr2 . If exprl is null, then NVL2returns expr3 . The argument exprl can have
any datatype. The arguments expr2 and expr3 can have any datatypes except
LONG

If the datatypes of expr2 and expr3 are different, then Oracle converts expr3 to
the datatype of expr2 before comparing them unless expr3 is a null constant. In
that case, a datatype conversion is not necessary.

The datatype of the return value is always the same as the datatype of expr2 ,
unless expr2 is character data, in which case the return value’s datatype is
VARCHAR2

6-114 Oracle9/ SQL Reference

PATH

PATH

Examples

The following example shows whether the income of some employees is made up
of salary plus commission, or just salary, depending on whether the commission_
pct column of employees is null or not.

SELECT last_name, salary, NVL2(commission_pct,
salary + (salary * commission_pct), salary) income
FROM employees WHERE last_name like 'B%’
ORDER BY last_name;

LAST_NAME SALARY INCOME
Baer 10000 10000
Baida 2900 2900
Banda 6200 6882
Bates 7300 8468
Bell 4000 4000
Bernstein 9500 11970
Bissot 3300 3300
Bloom 10000 12100
Bull 4100 4100
Syntax

path::=

—>| PATH F@{correlation_integer)»@»
Purpose

PATHis an ancillary function used only with the UNDER_PATHNnd EQUALS PATH
conditions. It returns the relative path that leads to the resource specified in the
parent condition.

The correlation number can be any number and is used to correlate this ancillary
function with its primary condition. Values less than 1 are treated as 1.

See Also:
« EQUALS_PATH on page 5-13 UNDER_PATH on page 5-20
« the related function DEPTH on page 6-57

Functions 6-115

PERCENT_RANK

Examples

The EQUALS_PATHNd UNDER_PATIdonditions can take two ancillary functions,
one of which is PATH The following example shows the use of both ancillary
functions. The example assumes the existence of the XMLSchema
warehouses.xsd (created in "Using XML in SQL Statements” on page D-11).

SELECT PATH(1), DEPTH(2)
FROM RESOURCE_VIEW
WHERE UNDER_PATH(res, '/sys/schemas/OFE’, 1)=1
AND UNDER_PATH(res, 'Isys/schemas/OFE’, 2)=1;

PATH(1) DEPTH(2)
/www.oracle.com 1
/www.oracle.com/xwarehouses.xsd 2

PERCENT_RANK

Aggregate Syntax
percent_rank_aggregate::=

O
Ol -

Analytic Syntax
percent_rank_analytic::=

query_partition_clause
PERCENT_RANK o o OVER |(((order_by_clause)a(:)e

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

6-116 Oracle9/ SQL Reference

PERCENT_RANK

Purpose

PERCENT_RANIS similar to the CUME_DIST(cumulative distribution) function.
The range of values returned by PERCENT_RANI§ 0 to 1, inclusive. The first row in
any set has a PERCENT_RANKf 0.

« Asan aggregate function, PERCENT_RAN&alculates, for a hypothetical row R
identified by the arguments of the function and a corresponding sort
specification, the rank of row R minus 1 divided by the number of rows in the
aggregate group. This calculation is made as if the hypothetical row R were
inserted into the group of rows over which Oracle is to aggregate. The
arguments of the function identify a single hypothetical row within each
aggregate group. Therefore, they must all evaluate to constant expressions
within each aggregate group. The constant argument expressions and the
expressions in the ORDER BY¥lause of the aggregate match by position.
Therefore the number of arguments must be the same and their types must be
compatible.

« Asan analytic function, for a row R, PERCENT_RAN&alculates the rank of R
minus 1, divided by 1 less than the number of rows being evaluated (the entire
guery result set or a partition).

Aggregate Example

The following example calculates the percent rank of a hypothetical employee in the
sample table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT PERCENT_RANK(15000, .05) WITHIN GROUP
(ORDER BY salary, commission_pct) "Percent-Rank"
FROM employees;

Percent-Rank

971962617

Analytic Example

The following example calculates, for each employee, the percent rank of the
employee’s salary within the department: SELECT department_id, last_name,
salary,
PERCENT_RANK()
OVER (PARTITION BY department_id ORDER BY salary DESC) AS pr
FROM employees
ORDER BY pr, salary;

Functions 6-117

PERCENTILE_CONT

DEPARTMENT_ID LAST_NAME SALARY
10 Whalen 4400 0
40 Marvis 6500 0
80 Vishney 10500 .176470588
50 Everett 3900 .181818182
30 Khoo 3100 2
80 Johnson 6200 .941176471
50 Markle 2200 .954545455
50 Philtanker 2200 .954545455
50 Olson 2100 1

PERCENTILE_CONT

Syntax
percentile_cont::=

— PERCENTILE_CONT WITHIN | GROUP |->@—>| oRDER | BY bexpr)

(=},
ASC

[a| OVER P@»Cquery_partition_clausem

See Also:

Purpose

Ox

"Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions of the OVERclause

PERCENTILE_CONTs an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns
an interpolated value that would fall into that percentile value with respect to the

sort specification. Nulls are ignored in the calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a
percentile value. This expr must be constant within each aggregation group. The
ORDER BY¥lause takes a single expression that must be a numeric or datetime
value, as these are the types over which Oracle can perform interpolation.

6-118 Oracle9/ SQL Reference

PERCENTILE_CONT

The result of PERCENTILE_CONTs computed by linear interpolation between
values after ordering them. Using the percentile value (P) and the number of rows
(N) in the aggregation group, we compute the row number we are interested in
after ordering the rows with respect to the sort specification. This row number (RN)
is computed according to the formula RN = (1+ (P*(N-1)) . The final result of
the aggregate function is computed by linear interpolation between the values from
rows at row numbers CRN = CEILING(RN) and FRN = FLOOR(RN) .

The final result will be:

if (CRN = FRN = RN) then
(value of expression from row at RN)

else
(CRN - RN) * (value of expression for row at FRN) +
(RN - FRN) * (value of expression for row at CRN)

You can use the PERCENTILE_CONTunction as an analytic function. You can
specify only the query partitioning_clause in its OVERclause. It returns, for
each row, the value that would fall into the specified percentile among a set of
values within each partition.

Aggregate Example
The following example computes the median salary in each department;

SELECT department_id,
PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median cont",
PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median disc"
FROM employees GROUP BY department_id;

DEPARTMENT _ID Median-cont Median-disc

10 4400 4400
20 9500 13000
30 2850 2900
40 6500 6500
50 3100 3100
60 4800 4800
70 10000 10000
80 8800 8800
90 17000 17000
100 8000 8200
110 10150 12000

Functions 6-119

PERCENTILE_CONT

PERCENTILE_CON®Nnd PERCENTILE_DISCmay return different results.
PERCENTILE_CONTeturns a computed result after doing linear interpolation.
PERCENTILE_DISCsimply returns a value from the set of values that are
aggregated over. When the percentile value is 0.5, as in this example, PERCENTILE_
CONTreturns the average of the two middle values for groups with even number of
elements, whereas PERCENTILE_DISCreturns the value of the first one among the
two middle values. For aggregate groups with an odd number of elements, both
functions return the value of the middle element.

Analytic Example

In the following example, the median for Department 60 is 4800, which has a
corresponding percentile (Percent_Rank) of 0.5. None of the salaries in
Department 30 have a percentile of 0.5, so the median value must be interpolated
between 2900 (percentile 0.4) and 2800 (percentile 0.6), which evaluates to 2850.

SELECT last_name, salary, department_id,
PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
OVER (PARTITION BY department_id) "Percentile_Cont",
PERCENT_RANK()
OVER (PARTITION BY department_id ORDER BY salary DESC)
"Percent_Rank"
FROM employees WHERE department_id IN (30, 60);

LAST_NAME SALARY DEPARTMENT_ID Percentile_Cont Percent_Rank

Raphaely 11000 30 2850 0
Khoo 3100 30 2850 2
Baida 2900 30 2850 4
Tobias 2800 30 2850 .6
Himuro 2600 30 2850 .8
Colmenares 2500 30 2850 1
Hunold 9000 60 4800 0
Ernst 6000 60 4800 .25
Austin 4800 60 4800 5
Pataballa 4800 60 4800 5
Lorentz 4200 60 4800 1

6-120 Oracle9/ SQL Reference

PERCENTILE_DISC

PERCENTILE_DISC

Syntax
percentile_disc::=

(=,

ASC
(O(exor)5())o witHIN [Group |->®—>| ORDER | BY b(expr) @»
[a| OVER F@{query_partition_clausem

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions of the OVERclause

Purpose

PERCENTILE_DISCis an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an
element from the set. Nulls are ignored in the calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a
percentile value. This expression must be constant within each aggregate group.
The ORDER BY¥lause takes a single expression that can be of any type that can be
sorted.

For a given percentile value P, PERCENTILE_DISCfunction sorts the values of the
expression in the ORDER B¥lause, and returns the one with the smallest CUME_
DIST value (with respect to the same sort specification) that is greater than or equal
toP.

Aggregate Example
See aggregate example for PERCENTILE_CONT on page 6-118.

Analytic Example

The following example calculates the median discrete percentile of the salary of
each employee in the sample table hr.employees

SELECT last_name, salary, department_id,
PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
OVER (PARTITION BY department_id) "Percentile_Disc",
CUME_DIST() OVER (PARTITION BY department_id

Functions 6-121

POWER

ORDER BY salary DESC) "Cume_Dist"
FROM employees where department_id in (30, 60);

LAST_NAME SALARY DEPARTMENT_ID Percentile_Disc Cume_Dist

Raphaely 11000 30 2900 .166666667
Khoo 3100 30 2900 .333333333
Baida 2900 30 2900 5
Tobias 2800 30 2900 .666666667
Himuro 2600 30 2900 .833333333
Colmenares 2500 30 2900 1
Hunold 9000 60 4800 2
Ernst 6000 60 4800 4
Austin 4800 60 4800 .8
Pataballa 4800 60 4800 .8
Lorentz 4200 60 4800 1

The median value for Department 30 is 2900, which is the value whose
corresponding percentile (Cume_Dist) is the smallest value greater than or equal to
0.5. The median value for Department 60 is 4800, which is the value whose
corresponding percentile is the smallest value greater than or equal to 0.5.

POWER

Syntax
power::=

RIEIO00:0,040

Purpose

POWEReturns mraised to the nth power. The base mand the exponent n can be any
numbers, but if mis negative, then n must be an integer.

Examples
The following example returns 3 squared:

SELECT POWER(3,2) "Raised" FROM DUAL;

6-122 Oracle9/ SQL Reference

RANK

RANK

Aggregate Syntax
rank_aggregate::=

'.
o o WITHIN |—>| GROUP|—>

Analytic Syntax
rank_analytic::=

query_partition_clause
RANK o o OVER B{((order_by_clause)} }>

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

RANKcalculates the rank of a value in a group of values. Rows with equal values for
the ranking criteria receive the same rank. Oracle then adds the number of tied rows
to the tied rank to calculate the next rank. Therefore, the ranks may not be
consecutive numbers.

« Asan aggregate function, RANKcalculates the rank of a hypothetical row
identified by the arguments of the function with respect to a given sort
specification. The arguments of the function must all evaluate to constant
expressions within each aggregate group, because they identify a single row
within each group. The constant argument expressions and the expressions in
the ORDER B¥lause of the aggregate match by position. Therefore, the number
of arguments must be the same and their types must be compatible.

« Asan analytic function, RANKcomputes the rank of each row returned from a
guery with respect to the other rows returned by the query, based on the values
of the value_exprs inthe order by clause

Functions 6-123

RANK

Aggregate Example

The following example calculates the rank of a hypothetical employee in the sample
table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT RANK(15500, .05) WITHIN GROUP
(ORDER BY salary, commission_pct) "Rank"
FROM employees;

Similarly, the following query returns the rank for a $15,500 salary among the
employee salaries:

SELECT RANK(15500) WITHIN GROUP
(ORDER BY salary DESC) "Rank of 15500"
FROM employees;

Rank of 15500

Analytic Example

The following statement ranks the employees in the sample hr schema within each
department based on their salary and commission. Identical salary values receive
the same rank and cause nonconsecutive ranks. Compare this example with the
example for DENSE_RANK on page 6-55.

SELECT department_id, last_name, salary, commission_pct,
RANK() OVER (PARTITION BY department_id
ORDER BY salary DESC, commission_pct) "Rank"
FROM employees;

DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank
10 Whalen 4400 1
20 Hartstein 13000 1
20 Fay 6000 2
30 Raphaely 11000 1
30 Khoo 3100 2
30 Baida 2900 3
30 Tobias 2800 4

6-124 Oracle9/ SQL Reference

RATIO_TO_REPORT

RATIO_TO_REPORT

Syntax
ratio_to_report::=

—J{ raTI0_T0_REPORT [(3(expr () (@

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

RATIO_TO_REPORTs an analytic function. It computes the ratio of a value to the
sum of a set of values. If expr evaluates to null, then the ratio-to-report value also
evaluates to null.

The set of values is determined by the query_partition _clause . If you omit
that clause, then the ratio-to-report is computed over all rows returned by the query.

You cannot use RATIO_TO_REPOR®r any other analytic function for expr . That is,
you can use other built-in function expressions for expr , but you cannot nest
analytic functions.

See Also: "About SQL Expressions" on page 4-2 for information
on valid forms of expr

Examples

The following example calculates the ratio-to-report value of each purchasing
clerk’s salary to the total of all purchasing clerks’ salaries:

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
FROM employees
WHERE job_id =’"PU_CLERK’;

LAST_NAME SALARY RR
Khoo 3100 .223021583
Baida 2900 .208633094
Tobias 2800 .201438849
Himuro 2600 .18705036
Colmenares 2500 .179856115

Functions 6-125

RAWTOHEX

RAWTOHEX

Syntax
rawtohex::=

EUEEI 0G0

Purpose

RAWTOHERONverts raw to a character value containing its hexadecimal equivalent.
The raw argument can be either RAWbr BLOBdatatype.

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTOHEX(raw_column) "Graphics"
FROM graphics;

Graphics

See Also: "RAW and LONG RAW Datatypes" on page 2-27 and
HEXTORAW on page 6-77

RAWTONHEX

Syntax
rawtonhex::=

EUEE 0G0

Purpose

RAWTONHEXNverts raw to an NVARCHARR2haracter value containing its
hexadecimal equivalent.

6-126 Oracle9/ SQL Reference

REF

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTONHEX(raw_column),
DUMP (RAWTONHEX (raw_column)) "DUMP"
FROM graphics;

RAWTONHEX(RA) DUMP
7D Typ=1 Len=4: 0,55,0,68
Syntax

ref;:=
© ®

Purpose

REFtakes as its argument a correlation variable (table alias) associated with a row
of an object table or an object view. A REFvalue is returned for the object instance
that is bound to the variable or row.

Examples

The sample schema oe contains a type called cust_address_typ , described as
follows:

Attribute Type

STREET_ADDRESS VARCHAR2(40)

POSTAL_CODE VARCHAR2(10)

CITY VARCHAR2(30)

STATE_PROVINCE VARCHAR2(10)

COUNTRY_ID CHAR(2)

The following example creates a table based on the sample type oe.cust_
address_typ , inserts a row into the table, and retrieves a REFvalue for the object
instance of the type in the addresses table:

Functions 6-127

REFTOHEX

CREATE TABLE addresses OF cust_address_typ;

INSERT INTO addresses VALUES (
'123 First Street’, '4GF H1J', 'Our Town’, 'Ourcounty’, 'US’);

SELECT REF(e) FROM addresses e;

REF(E)

00002802097CD1261E51925B60E0340800208254367CD1261E51905B60E034080020825436010101820000

REFTOHEX

See Also: Oracle9i Database Concepts

Syntax
reftohex::=

[reromd (D))

Purpose

REFTOHEXonverts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF

Examples

The sample schema oe contains a warehouse_typ . The following example builds
on that type to illustrate how to convert the REFvalue of a column to a character
value containing its hexadecimal equivalent:

CREATE TABLE warehouse_table OF warehouse_typ
(PRIMARY KEY (warehouse_id));

CREATE TABLE location_table
(location_number NUMBER, building REF warehouse_typ
SCOPE IS warehouse_table);
INSERT INTO warehouse_table VALUES (1, 'Downtown’, 99);
INSERT INTO location_table SELECT 10, REF(w) FROM warehouse_table w;

SELECT REFTOHEX(building) FROM location_table;

6-128 Oracle9/ SQL Reference

REGR_ (Linear Regression) Functions

REFTOHEX(BUILDING)

0000220208859B5E9255C31760E034080020825436859B5E9255C21760E034080020825436

REGR _ (Linear Regression) Functions
The linear regression functions are:
« REGR_SLOPE
« REGR_INTERCEPT
« REGR_COUNT

Syntax
linear_regr::=

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT
REGR_R2
X f_)| OVER F@{analytic_clausem
e} OO @D

REGR_AVGY
REGR_SXX

REGR_SYY

REGR_SXY

AR

Functions 6-129

REGR_ (Linear Regression) Functions

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

The linear regression functions fit an ordinary-least-squares regression line to a set
of number pairs. You can use them as both aggregate and analytic functions.

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Oracle applies the function to the set of (exprl , expr2) pairs after eliminating all
pairs for which either expr1 or expr2 is null. Oracle computes all the regression
functions simultaneously during a single pass through the data.

exprl isinterpreted as a value of the dependent variable (a "y value"), and expr2
is interpreted as a value of the independent variable (an "x value"). Both expressions
must be numbers.

REGR_SLOPEeturns the slope of the line. The return value is a number and can
be null. After the elimination of null (exprl , expr2) pairs, it makes the
following computation:

COVAR_POP(exprl, expr2) / VAR_POP(expr2)

REGR_INTERCEPTeturns the y-intercept of the regression line. The return
value is a number and can be null. After the elimination of null (exprl , expr2)
pairs, it makes the following computation:

AVG(exprl) - REGR_SLOPE(exprl, expr2) * AVG(expr2)

REGR_COUNTrEturns an integer that is the number of non-null number pairs
used to fit the regression line.

REGR_RZeturns the coefficient of determination (also called "R-squared" or
"goodness of fit") for the regression. The return value is a number and can be
null. VAR_POlexprl) and VAR_POIlexpr2) are evaluated after the
elimination of null pairs. The return values are:

6-130 Oracle9/ SQL Reference

REGR_ (Linear Regression) Functions

NULL if VAR_POP(expr2) =0

1if VAR_POP(exprl) =0 and
VAR_POP(expr2) =0

POWER(CORR(exprl,expr),2) if VAR_POP(exprl) >0 and
VAR_POP(expr2 =0

All of the remaining regression functions return a number and can be null:

REGR_AVGHvaluates the average of the independent variable (expr2) of the
regression line. It makes the following computation after the elimination of null
(exprl , expr2) pairs:

AVG(expr2)
REGR_AVG¥valuates the average of the dependent variable (exprl1) of the

regression line. It makes the following computation after the elimination of null
(exprl , expr2) pairs:

AVG(exprl)

REGR_SXYREGR_SXXREGR_SY¥re auxiliary functions that are used to compute
various diagnostic statistics.

REGR_SXMXnakes the following computation after the elimination of null
(exprl , expr2) pairs:

REGR_COUNT (exprl, expr2) * VAR_POP(expr2)

REGR_SYYnakes the following computation after the elimination of null
(exprl , expr2) pairs:

REGR_COUNT(exprl, expr2) * VAR_POP(exprl)

REGR_SXYnakes the following computation after the elimination of null
(exprl , expr2) pairs:

REGR_COUNT(exprl, expr2) * COVAR_POP(exprl, expr2)

The following examples are based on the sample tables sh.sales and
sh.products

General Linear Regression Example

The following example provides a comparison of the various linear regression
functions:

Functions 6-131

REGR_ (Linear Regression) Functions

SELECT

s.channel_id,

REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE ,
REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT ,
REGR_R2(s.quantity_sold, p.prod_list_price) RSQR ,
REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT ,
REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP ,
REGR_AVGY (s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sales s, products p

WHERE s.prod_id=p.prod_id AND

p.prod_category="Men’ AND
s.time_id=to_DATE('10-OCT-2000")

GROUP BY s.channel_id

C SLOPE INTCPT RSQR COUNT AVGLISTP AVGQSOLD

C -.03529838 16.4548382 .217277422 17 87.8764706 13.3529412
| -.0108044 13.3082392 .028398018 43 116.77907 12.0465116

P -.01729665 11.3634927 .026191191 33 80.5818182 9.96969697
S -.01277499 13.488506 .000473089 71 52.571831 12.8169014
T -.01026734 5.01019929 .064283727 21 75.2 4.23809524

REGR_SLOPE and REGR_INTERCEPT Examples

The following example determines the slope and intercept of the regression line for
the amount of sales and sale profits for each fiscal year:

SELECT t.fiscal_year,
REGR_SLOPE(s.amount_sold, s.quantity_sold) "Slope",
REGR_INTERCEPT(s.amount_sold, s.quantity_sold) "Intercept"
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.fiscal_year;

FISCAL_YEAR Slope Intercept

1998 49.3934247 71.6015479
1999 49.3443482 70.1502601
2000 49.2262135 75.0287476

The following example determines the cumulative slope and cumulative intercept
of the regression line for the amount of and quantity of sales for two products (270
and 260) for weekend transactions (day_number_in_week =6 or 7) during the last
three weeks (fiscal_week _number of 50, 51, or 52) of 1998:

6-132 Oracle9/ SQL Reference

REGR_ (Linear Regression) Functions

SELECT t.fiscal_month_number "Month", t.day_number_in_month "Day",

REGR_SLOPE(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_SLOPE,
REGR_INTERCEPT(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_ICPT

FROM sales s, times t

WHERE s.time_id = t.time_id
AND s.prod_id IN (270, 260)
AND t.fiscal_year=1998

AND t.fiscal_week_number IN (50, 51, 52)
AND t.day_number_in_week IN (6,7)
ORDER BY t.fiscal_month_desc, t.day_number_in_month;

Month

Day CUM_SLOPE CUM_ICPT

12
12
12
12
12
12
12
12
12
12
12
12
12
12

12 -68 1872

12 -68 1872

13 -20.244898 1254.36735
13 -20.244898 1254.36735
19 -18.826087 1287

20 62.4561404 125.28655
20 62.4561404 125.28655
20 62.4561404 125.28655
20 62.4561404 125.28655
26 67.2658228 58.9712313
26 67.2658228 58.9712313
27 37.5245541 284.958221
27 37.5245541 284.958221
27 37.5245541 284.958221

REGR_COUNT Examples
The following example returns the number of customers in the customers table

(out of a total of 319) who have account managers.

SELECT REGR_COUNT(customer_id, account_mgr_id) FROM customers;

REGR_COUNT(CUSTOMER_ID,ACCOUNT_MGR_ID)

231

The following example computes the cumulative number of transactions for each
day in April of 1998:

SELECT UNIQUE t.day_number_in_month,
REGR_COUNT(s.amount_sold, s.quantity_sold)

Functions 6-133

REGR_ (Linear Regression) Functions

OVER (PARTITION BY t.fiscal_month_number
ORDER BY t.day_number_in_month) "Regr_Count"
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.fiscal_year = 1998 AND t.fiscal_month_number = 4;

DAY_NUMBER_IN_MONTH Regr_Count

1 825

2 1650
3 2475
4 3300
26 21450
30 22200

REGR_R2 Examples
The following example computes the coefficient of determination of the regression
line for amount of sales greater than 5000 and quantity sold:

SELECT REGR_R2(amount_sold, quantity_sold) FROM sales
WHERE amount_sold > 5000;

REGR_R2(AMOUNT_SOLD,QUANTITY_SOLD)

.024087453

The following example computes the cumulative coefficient of determination of the
regression line for monthly sales amounts and quantities for each month during

1998:

SELECT t.fiscal_month_number,
REGR_R2(SUM(s.amount_sold), SUM(s.quantity_sold))
OVER (ORDER BY t.fiscal_month_number) "Regr_R2"

FROM sales s, times t

WHERE s.time_id = t.time_id

AND t.fiscal_year = 1998

GROUP BY t.fiscal_month_number
ORDER BY t.fiscal_month_number;

FISCAL_MONTH_NUMBER Regr_R2

1
2 1

6-134 Oracle9/ SQL Reference

REGR_ (Linear Regression) Functions

3.927372984
4.807019972
5.932745567
6 .94682861

7.965342011
8 .955768075
9.959542618
10 .938618575
11 .880931415
12 .882769189

REGR_AVGY and REGR_AVGX Examples
The following example calculates the regression average for the amount and
guantity of sales for each year:

SELECT t.fiscal_year,
REGR_AVGY(s.amount_sold, s.quantity sold) "Regr_AvgY",
REGR_AVGX(s.amount_sold, s.quantity sold) "Regr_AvgX"
FROM sales s, times t
WHERE s.time_id = t.time_id
GROUP BY t.fiscal_year;

FISCAL_YEAR Regr_AvgY Regr_AvgX

1998 716.602044 13.0584283
1999 714.910831 13.0665536
2000 717.331304 13.0479781

The following example calculates the cumulative averages for the amount and
guantity of sales profits for product 260 during the last two weeks of December
1998:

SELECT t.day_number_in_month,

REGR_AVGY(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
"Regr_AvgY",

REGR_AVGX(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
"Regr_AvgX"

FROM sales s, times t

WHERE s.time_id = t.time_id
AND s.prod_id = 260
AND t.fiscal_month_desc ='1998-12’
AND t.fiscal_week_number IN (51, 52)

ORDER BY t.day_number_in_month;

Functions 6-135

REGR_ (Linear Regression) Functions

DAY_NUMBER_IN_MONTH Regr_AvgY Regr_AvgX

14 882 24.5

14 882 24.5

15 801 22.25

15 801 22.25

16 7776 21.6

18 642.857143 17.8571429
18 642.857143 17.8571429
20 5895 16.375

21 544151111111

22 592.363636 16.4545455
22 592.363636 16.4545455
24 553.846154 15.3846154
24 553.846154 15.3846154
26 522 14.5

27 578.4 16.0666667

REGR_SXY, REGR_SXX, and REGR_SYY Examples

The following example computes the REGR_SXYREGR_SXXand REGR_SY¥alues
for the regression analysis of amount and quantity of sales for each year in the
sample sh.sales table:

SELECT t.fiscal_year,
REGR_SXY/(s.amount_sold, s.quantity_sold) "Regr_sxy",
REGR_SYY(s.amount_sold, s.quantity_sold) "Regr_syy",
REGR_SXX(s.amount_sold, s.quantity_sold) "Regr_sxx"

FROM sales s, times t

WHERE s.time_id = t.time_id

GROUP BY t.fiscal_year;

FISCAL_YEAR Regr_sxy Regr_syy Regr_sxx

1998 1620591607 2.3328E+11 32809865.2
1999 1955866724 2.7695E+11 39637097.2
2000 2127877398 3.0630E+11 43226509.7

The following example computes the cumulative REGR_SXYREGR_SXXand
REGR_SY ¥tatistics for amount and quantity of weekend sales for products 270 and
260 for each year-month value in 1998:

SELECT t.day_number_in_month,
REGR_SXY/(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxy",

6-136 Oracle9/ SQL Reference

REPLACE

REPLACE

REGR_SYY(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_syy",
REGR_SXX(s.amount_sold, s.quantity_sold)
OVER (ORDER BY t.fiscal_year, t.fiscal_month_desc) "Regr_sxx"
FROM sales s, times t
WHERE s.time_id = t.time_id
AND prod_id IN (270, 260)
AND t.fiscal_month_desc ='1998-02’
AND t.day number_in_week IN (6,7)
ORDER BY t.day_number_in_month;

DAY_NUMBER_IN_MONTH Regr_sxy Regr_syy Regr_sxx

1 130973783 1.8916E+10 2577797.94

30 130973783 1.8916E+10 2577797.94

Syntax
replace::=

o ‘ search_string @—)

Purpose

REPLACEeturns char with every occurrence of search_string replaced with
replacement_string . If replacement_string is omitted or null, then all
occurrences of search_string are removed. If search_string is null, then

char is returned.

Both search_string and replacement_string , as well as char , can be any of
the datatypes CHARVARCHAR2ZNCHARNVARCHARZCLOB or NCLOBThe string
returned is of VARCHARZ2latatype and is in the same character set as char .

This function provides functionality related to that provided by the TRANSLATE
function. TRANSLATEprovides single-character, one-to-one substitution. REPLACE
lets you substitute one string for another as well as to remove character strings.

See Also: TRANSLATE on page 6-188

Functions 6-137

ROUND (number)

Examples
The following example replaces occurrences of "J" with "BL":

SELECT REPLACE('JACK and JUE’,'J’,'BL’) "Changes"
FROM DUAL,;

Changes

BLACK and BLUE

ROUND (number)

Syntax
round_number::=

.integer
—J{ ROUND @{number} S @»

Purpose

ROUNDeturns number rounded to integer places right of the decimal point. If
integer is omitted, then number is rounded to 0 places. integer can be negative
to round off digits left of the decimal point. integer must be an integer.

Examples
The following example rounds a number to one decimal point;

SELECT ROUND(15.193,1) "Round" FROM DUAL,;

The following example rounds a number one digit to the left of the decimal point:
SELECT ROUND(15.193,-1) "Round" FROM DUAL;

6-138 Oracle9/ SQL Reference

ROW_NUMBER

ROUND (date)

Syntax
round_date::=

0@ L,

Purpose

ROUNDeturns date rounded to the unit specified by the format model fmt . If you
omit fmt , then date is rounded to the nearest day.

See Also: "ROUND and TRUNC Date Functions" on page 6-221
for the permitted format models to use in fmt

Examples
The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE ('27-OCT-00"),'YEAR’)
"New Year" FROM DUAL;

New Year

01-JAN-01

ROW_NUMBER

Syntax
row_number::=

query_partition_clause
ROW_NUMBER o o oVER (¢ {order_by_clause)»(:)»

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Functions 6-139

ROW_NUMBER

Purpose

ROW_NUMBE#®Ran analytic function. It assigns a unique number to each row to
which it is applied (either each row in the partition or each row returned by the
query), in the ordered sequence of rows specified in the order_by clause
beginning with 1.

You cannot use ROW_NUMBER any other analytic function for expr . That is, you

can use other built-in function expressions for expr , but you cannot nest analytic
functions.

See Also: "About SQL Expressions"” on page 4-2 for information
on valid forms of expr

Examples

For each department in the sample table oe.employees , the following example
assigns numbers to each row in order of employee’s hire date:

SELECT department_id, last_name, employee_id, ROW_NUMBER()
OVER (PARTITION BY department_id ORDER BY employee_id) AS emp_id
FROM employees;

DEPARTMENT_ID LAST_NAME EMPLOYEE_ID EMP_ID
10 Whalen 200 1
20 Hartstein 201 1
20 Fay 202 2
30 Raphaely 114 1
30 Khoo 115 2
30 Baida 116 3
30 Tobias 117 4
30 Himuro 118 5
30 Colmenares 119 6
40 Mavris 203 1
100 Popp 113 6
110 Higgins 205 1
110 Gietz 206 2

ROW_NUMBH®a nondeterministic function. However, employee_id is a unique

key, so the results of this application of the function are deterministic.

See Also: FIRST_VALUE on page 6-69 and LAST_VALUE on
page 6-84 for examples of nondeterministic behavior

6-140 Oracle9/ SQL Reference

ROWIDTONCHAR

ROWIDTOCHAR

Syntax
rowidtochar::=

[romorocr#e D))

Purpose

ROWIDTOCHAgdNverts a rowid value to VARCHAR2atatype. The result of this
conversion is always 18 characters long.

Examples

The following example converts a rowid value in the employees table to a
character value. (Results vary for each build of the sample database.)

SELECT ROWID FROM employees
WHERE ROWIDTOCHAR(ROWID) LIKE '%SAAb%’;

AAAFIAAFAAAABSAAD

ROWIDTONCHAR

Syntax
rowidtonchar::=

[rowToncR (D@

Purpose

ROWIDTONCHA®RNverts a rowid value to NVARCHAR®atatype. The result of this
conversion is always 18 characters long.

Examples

SELECT LENGTHB(ROWIDTONCHAR(ROWID)), ROWIDTONCHAR(ROWID)
FROM employees;

Functions 6-141

RPAD

RPAD

LENGTHB(ROWIDTONCHAR(ROWID)) ROWIDTONCHAR(ROWID

36 AAAFIAAFAAAABSAAA

Syntax
rpad:.=

.charz
@00 25N g,

Purpose

RPADreturns charl , right-padded to length n with char2 , replicated as many
times as necessary; char? defaults to a single blank. If charl is longer than n, then
this function returns the portion of charl that fits in n.

Both charl and char2 can be any of the datatypes CHARVARCHAR2NCHAR
NVARCHARZCLOB or NCLOBThe string returned is of VARCHAR2latatype and is
in the same character set as charl .

The argument n is the total length of the return value as it is displayed on your
terminal screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Examples
The following example right-pads a name with the letters "ab" until it is 12
characters long:

SELECT RPAD('MORRISON’,12,'ab’) "RPAD example"
FROM DUAL;

RPAD example

MORRISONabab

6-142 Oracle9/ SQL Reference

SESSIONTIMEZONE

RTRIM
Syntax
rtrim::=
O G,
Purpose
RTRIMreturns char , with all the rightmost characters that appear in set removed,;
set defaults to a single blank. If char is a character literal, then you must enclose it
in single quotes. RTRIMworks similarly to LTRIM.
Both char and set can be any of the datatypes CHARVARCHARNCHAR
NVARCHARZCLOB or NCLOBThe string returned is of VARCHARZ2latatype and is
in the same character set as char .
Examples
The following example trims the letters "xy" from the right side of a string:
SELECT RTRIM('BROWNINGyxXxy',’xy") "RTRIM example"
FROM DUAL,
RTRIM examp
BROWNINGyxX
See Also: LTRIM on page 6-93
SESSIONTIMEZONE
Syntax
sessiontimezone::=

—>| SESSIONTIMEZONE |->

Purpose

SESSIONTIMEZONEeturns the value of the current session’s time zone. The return
type is a time zone offset (a character type in the format '[+|]TZH:TZM’) or atime

Functions 6-143

SIGN

SIGN

zone region name, depending on how the user specified the session time zone value
in the most recent ALTER SESSIONstatement.

Note: You can set the default client session time zone using the
ORA_SDTz2nvironment variable. Please refer to Oracle9i Database
Globalization Support Guide for more information on this variable.

Examples
The following example returns the current session’s time zone:

SELECT SESSIONTIMEZONE FROM DUAL,;

SESSION

Syntax
sign::=

| siGN O

Purpose

SIGN returns -1 if n<0, then . If n=0, then the function returns 0. If n>0, then SIGN
returns 1.

Examples
The following example indicates that the function’s argument (-15) is <0:

SELECT SIGN(-15) "Sign" FROM DUAL,;

6-144 Oracle9/ SQL Reference

SINH

SIN

SINH

Syntax
sin::=

Purpose

SIN returns the sine of n (an angle expressed in radians).

Examples

The following example returns the sin of 30 degrees:
SELECT SIN(30 * 3.14159265359/180)

"Sine of 30 degrees" FROM DUAL,;

Sine of 30 degrees

Syntax
sinh::=

ELI0:00

Purpose
SINH returns the hyperbolic sine of n.

Examples
The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

1.17520119

Functions 6-145

SOUNDEX

SOUNDEX

Syntax
soundex::=

EL=1 0G0

Purpose

SOUNDEXeturns a character string containing the phonetic representation of char .
This function lets you compare words that are spelled differently, but sound alike in
English.

The phonetic representation is defined in The Art of Computer Programming, Volume
3: Sorting and Searching, by Donald E. Knuth, as follows:

« Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h, i, 0, u, w, y.

« Assign numbers to the remaining letters (after the first) as follows:

b,fp,v=1
G0k agsxz=2
d,t=3

1=4

m,n=5

r=6

« If two or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, then omit all but
the first.

« Return the first four bytes padded with 0.

char can be of any of the datatypes CHARVARCHARZNCHARor NVARCHARZT he
return value is the same datatype as char .

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

6-146 Oracle9/ SQL Reference

SQRT

Examples
The following example returns the employees whose last names are a phonetic
representation of "Smyth":

SELECT last_name, first_name
FROM hr.employees
WHERE SOUNDEX(last_name)
= SOUNDEX(SMYTHE);

LAST_NAME FIRST_NAME

Smith Lindsey
Smith William

SQRT

Syntax
sqrt:=

El 0500

Purpose

SQRTreturns the square root of n. The value n cannot be negative. SQRTreturns a
real number.

Examples
The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL,;
Square root

5.09901951

Functions 6-147

STDDEV

STDDEV

Syntax
stddev::=

| DISTINCT I
ALL

OVER analytic_clause
STDDEV ((expr ())

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

STDDEWeturns sample standard deviation of expr , a set of numbers. You can use it
as both an aggregate and analytic function. It differs from STDDEV_SAMh that
STDDEWeturns zero when it has only 1 row of input data, whereas STDDEV_SAMP
returns a null.

Oracle calculates the standard deviation as the square root of the variance defined
for the VARIANCEaggregate function.

If you specify DISTINCT, then you can specify only the query_partition_
clause of the analytic_clause . The order_by clause and windowing _
clause are not allowed.

See Also:

« "Aggregate Functions" on page 6-8, VARIANCE on page 6-206,
and STDDEV_SAMP on page 6-151

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Examples

The following example returns the standard deviation of the salaries in the sample
hr.employees table:

SELECT STDDEV(salary) "Deviation"
FROM employees;

6-148 Oracle9/ SQL Reference

STDDEV_POP

Deviation

3909.36575

Analytic Examples

The query in the following example returns the cumulative standard deviation of
the salaries in Department 80 in the sample table hr.employees , ordered by
hire_date

SELECT last_name, salary,
STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
FROM employees
WHERE department_id = 30;

LAST_NAME SALARY StdDev
Raphaely 11000 0

Khoo 3100 5586.14357
Tobias 2800 4650.0896
Baida 2900 4035.26125
Himuro 2600 3649.2465
Colmenares 2500 3362.58829
Syntax

stddev_pop::=

[a| OVER P@»Canalytic_clause)%
STDDEV_POP o)

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_PORomputes the population standard deviation and returns the square
root of the population variance. You can use it as both an aggregate and analytic
function.

Functions 6-149

STDDEV_POP

The expr is a number expression, and the function returns a value of type NUMBER
This function is the same as the square root of the VAR_POHFunction. When VAR_
POPreturns null, this function returns null.

See Also:

"Aggregate Functions" on page 6-8 and VAR_POP on
page 6-202

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example returns the population and sample standard deviations of
the amount of sales in the sample table sh.sales

SELECT STDDEV_POP(amount_sold) "Pop",
STDDEV_SAMP(amount_sold) "Samp"
FROM sales;

896.355151 896.355592

Analytic Example
The following example returns the population standard deviations of salaries in the
sample hr.employees table by department:

SELECT department_id, last_name, salary,
STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
FROM employees;

DEPARTMENT_ID LAST_NAME SALARY POP_STD
10 Whalen 4400 0
20 Hartstein 13000 3500
20 Goyal 6000 3500
100 Sciarra 7700 1644.18166
100 Urman 7800 1644.18166
100 Popp 6900 1644.18166
110 Higgens 12000 1850
110 Gietz 8300 1850

6-150 Oracle9/ SQL Reference

STDDEV_SAMP

STDDEV_SAMP

Syntax
stddev_samp::=

EEI O GEET0

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

STDDEV_SAMEomputes the cumulative sample standard deviation and returns the
square root of the sample variance. You can use it as both an aggregate and analytic
function.

The expr is a number expression, and the function returns a value of type NUMBER
This function is same as the square root of the VAR_SAMPRunction. When VAR _
SAMPreturns null, this function returns null.

See Also:

« "Aggregate Functions" on page 6-8 and VAR_SAMP on
page 6-204

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example returns the population and sample standard deviations of
the amount of sales in the sample table sh.sales

SELECT STDDEV_POP(amount_sold) "Pop",
STDDEV_SAMP(amount_sold) "Samp"
FROM sales;

896.355151 896.355592

Functions 6-151

SUBSTR

Analytic Example

The following example returns the sample standard deviation of salaries in the
employees table by department:

SELECT department_id, last_name, hire_date, salary,

STDDEV_SAMP(salary) OVER (PARTITION BY department_id

ORDER BY hire_date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev

FROM employees;

DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV

10 Whalen 17-SEP-87 4400
20 Hartstein 17-FEB-96 13000
20 Goyal 17-AUG-97 6000 4949.74747
30 Raphaely 07-DEC-94 11000
30 Khoo 18-MAY-95 3100 5586.14357
30 Tobias 24-JUL-97 2800 4650.0896
30 Baida 24-DEC-97 2900 4035.26125
100 Chen 28-SEP-97 8200 2003.33056
100 Sciarra 30-SEP-97 7700 1925.91969
100 Urman 07-MAR-98 7800 1785.49713
100 Popp 07-DEC-99 6900 1801.11077
110 Higgens 07-JUN-94 12000
110 Gietz 07-JUN-94 8300 2616.29509
Syntax
substr::=
E=a

‘ substring_length

position

=l
‘=

6-152 Oracle9/ SQL Reference

SUBSTR

Purpose
The "substring” functions return a portion of string , beginning at character
position , substring_length characters long. SUBSTRecalculates lengths using

characters as defined by the input character set. SUBSTRBuses bytes instead of
characters. SUBSTRQises Unicode complete characters. SUBSTR2uses UCS2
codepoints. SUBSTR4uses UCS4 codepoints.

« If position s 0, then it is treated as 1.

« If position s positive, then Oracle counts from the beginning of string to
find the first character.

« If position s negative, then Oracle counts backward from the end of string

« If substring_length is omitted, then Oracle returns all characters to the end
of string . If substring_length is less than 1, then a null is returned.

string can be any of the datatypes CHARVARCHARNCHARNVARCHARZLOB
or NCLOBThe return value is the same datatype as string . Floating-point
numbers passed as arguments to SUBSTRare automatically converted to integers.

Examples
The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR('ABCDEFG’,3,4) "Substring"
FROM DUAL,;

Substring

SELECT SUBSTR('ABCDEFG’,-5,4) "Substring"
FROM DUAL;

Substring

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
FROM DUAL;

Substring with bytes

Functions 6-153

SUM

SUM

Syntax
sum::=

| DISTINCT I
ALL

suM (¢

OVER P@»Canalytic_clausem
(expr ()) ﬂ

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose
SUMreturns the sum of values of expr . You can use it as an aggregate or analytic
function.

If you specify DISTINCT, then you can specify only the query_partition_
clause of the analytic_clause . The order_by clause and windowing _
clause are not allowed.

See Also:

« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example calculates the sum of all salaries in the sample
hr.employees table:

SELECT SUM(salary) "Total"
FROM employees;

691400
Analytic Example

The following example calculates, for each manager in the sample table
hr.employees , a cumulative total of salaries of employees who answer to that

6-154 Oracle9/ SQL Reference

SYS_CONNECT_BY_PATH

manager that are equal to or less than the current salary. You can see that Raphaely
and Cambrault have the same cumulative total. This is because Raphaely and
Cambrault have the identical salaries, so Oracle adds together their salary values
and applies the same cumulative total to both rows.

SELECT manager_id, last_name, salary,
SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary
RANGE UNBOUNDED PRECEDING) |_csum
FROM employees;

MANAGER_ID LAST_NAME SALARY L_CSUM
100 Mourgos 5800 5800
100 Vollman 6500 12300
100 Kaufling 7900 20200
100 Weiss 8000 28200
100 Fripp 8200 36400
100 Zlotkey 10500 46900
100 Raphaely 11000 68900
100 Cambrault 11000 68900
100 Errazuriz 12000 80900
149 Taylor 8600 30200
149 Hutton 8800 39000
149 Abel 11000 50000
201 Fay 6000 6000
205 Gietz 8300 8300

King 24000 24000

SYS_CONNECT BY_PATH

Syntax
sys_connect_by_path::=

—] SYS_CONNECT_BY_PATH |a®—><column

Purpose

SYS_CONNECT_BY_PATislvalid only in hierarchical queries. It returns the path of
a column value from root to node, with column values separated by char for each
row returned by CONNECT Bvyondition.

Functions 6-155

SYS_CONTEXT

Both column and char can be any of the datatypes CHARVARCHAR2NCHARor
NVARCHARZT he string returned is of VARCHAR2latatype and is in the same
character set as column .

See Also: "Hierarchical Queries" on page 8-3 for more
information about hierarchical queries and CONNECT Bv¥onditions

Examples

The following example returns the path of employee names from employee
Kochhar to all employees of Kochhar (and their employees):

SELECT LPAD(’, 2*level-1)||SYS_CONNECT_BY_PATH(last_name, /) "Path"
FROM employees
START WITH last_name ='Kochhar’
CONNECT BY PRIOR employee_id = manager _id;

Path

/Kochhar

/Kochhar/Greenberg
/Kochhar/Greenberg/Faviet
/Kochhar/Greenberg/Chen
/Kochhar/Greenberg/Sciarra
/Kochhar/Greenberg/Urman
/Kochhar/Greenberg/Popp

/Kochhar/Whalen

/Kochhar/Mavris

/Kochhar/Baer

/Kochhar/Higgins
/Kochhar/Higgins/Gietz

SYS_CONTEXT

Syntax
Sys_context::=

olc
[svs-comext OO e OO O 0F

6-156 Oracle9/ SQL Reference

SYS_CONTEXT

Purpose

SYS_CONTEXTeturns the value of parameter associated with the context
namespace . You can use this function in both SQL and PL/SQL statements.

For namespace and parameter , you can specify either a string (constant) or an
expression that resolves to a string designating a namespace or an attribute. The
context namespace must already have been created, and the associated
parameter and its value must also have been set using the DBMS_SESSIONet
context procedure. The namespace must be a valid SQL identifier. The
parameter name can be any string. It is not case sensitive, but it cannot exceed 30
bytes in length.

The datatype of the return value is VARCHARZThe default maximum size of the
return value is 256 bytes. You can override this default by specifying the optional
length parameter. The valid range of values is 1 to 4000 bytes. (If you specify an
invalid value, then Oracle ignores it and uses the default.)

Oracle9i provides a built-in namespace called USERENMvhich describes the current
session. The predefined parameters of namespace USEREN\re listed Table 6-2 on
page 6-158, along with the lengths of their return strings.

Restriction on SYS_CONTEXT You cannot specify this function in a parallel query.

See Also:

« Oracle9i Application Developer’s Guide - Fundamentals for
information on using the application context feature in your
application development

» CREATE CONTEXT on page 13-12 for information on creating
user-defined context namespaces

« Oracle9i Supplied PL/SQL Packages and Types Reference for
information on the DBMS_SESSIONet_context procedure

Examples
The following statement returns the name of the user who logged onto the
database:

CONNECT OE/OE
SELECT SYS_CONTEXT (USERENV’, 'SESSION_USER’)
FROM DUAL;

SYS_CONTEXT (USERENV’, 'SESSION_USER’)

Functions 6-157

SYS_CONTEXT

OE

The following hypothetical example returns the group number that was set as the
value for the attribute group_no in the PL/SQL package that was associated with
the context hr_apps when hr_apps was created:

SELECT SYS_CONTEXT (’hr_apps’, 'group_no’) "User Group"
FROM DUAL,;

Table 6-2 Predefined Parameters of Namespace USERENV

Return

Length
Parameter Return Value (bytes)
AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the NA

audit.

AUTHENTICATION_DATA Data being used to authenticate the login user. For 256
X.503 certificate authenticated sessions, this field
returns the context of the certificate in HEX2 format.

Note: You can change the return value of the
AUTHENTICATION_DATAttribute using the length
parameter of the syntax. Values of up to 4000 are
accepted. This is the only attribute of USERENYor
which Oracle implements such a change.

AUTHENTICATION_TYPE How the user was authenticated: 30

« DATABASEuser name/password authentication

« OS operating system external user
authentication

« NETWORkKetwork protocol or ANO
authentication

« PROXYOCI proxy connection authentication

BG_JOB_ID Job ID of the current session if it was established by 64
an Oracle background process. Null if the session
was not established by a background process.

CLIENT_IDENTIFIER Returns the client session identifier in the global NA
context—that is, the globally accessed application
context or (in the OCI context) the OCI_ATTR_
CLIENT_IDENTIFIER attribute. If no globally
relevant identifier has been set, returns null.

CLIENT_INFO Returns up to 64 bytes of user session information 64
that can be stored by an application using the DBMS _
APPLICATION_INFO package.

6-158 Oracle9/ SQL Reference

SYS_CONTEXT

Table 6-2 (Cont.) Predefined Parameters of Namespace USERENV

Return

Length
Parameter Return Value (bytes)
CURRENT_SCHEMA Name of the default schema being used in the 30

current schema. This value can be changed during
the session with an ALTER SESSION SET CURRENT_

SCHEMAtatement.

CURRENT_SCHEMAID

Identifier of the default schema being used in the 30

current session.

CURRENT_SQL Returns the current SQL that triggered the 64
fine-grained auditing event. You can specify this
attribute only inside the event handler for the
Fine-Grained Auditing feature.

CURRENT_USER The name of the user whose privilege the current 30
session is under.

CURRENT_USERID User ID of the user whose privilege the current 30
session is under.

DB_DOMAIN Domain of the database as specified in the DB_ 256
DOMAINinitialization parameter.

DB_NAME Name of the database as specified in the DB_NAME 30
initialization parameter.

ENTRY_ID The available auditing entry identifier. You cannot 30

use this attribute in distributed SQL statements. To

use this keyword in USERENMhe initialization
parameter AUDIT_TRAIL must be set to TRUE

EXTERNAL_NAME

External name of the database user. For SSL

256

authenticated sessions using v.503 certificates, this
field returns the distinguished name (DN) stored in

the user certificate.

FG_JOB_ID

Job ID of the current session if it was established by a 30
client foreground process. Null if the session was not

established by a foreground process.

GLOBAL_CONTEXT_
MEMORY

Returns the number being used in the System Global NA

Area by the globally accessed context.

HOST Name of the host machine from which the client has 54
connected.

INSTANCE The instance identification number of the current 30
instance.

Functions 6-159

SYS_CONTEXT

Table 6-2 (Cont.) Predefined Parameters of Namespace USERENV

Return
Length

Parameter Return Value (bytes)

IP_ADDRESS IP address of the machine from which the client is 30
connected.

ISDBA Returns TRUEIf the user has been authenticated as 30
having DBA privileges either through the operating
system or through a password file.

LANG The ISO abbreviation for the language name, a 62
shorter form than the existing 'LANGUAGE
parameter.

LANGUAGE The language and territory currently used by your 52
session, along with the database character set, in this
form:
language_territory.characterset

NETWORK_PROTOCOL Network protocol being used for communication, as 256
specified in the 'PROTOCGtprotocol ’ portion of
the connect string.

NLS_CALENDAR The current calendar of the current session. 62

NLS_CURRENCY The currency of the current session. 62

NLS_DATE_FORMAT The date format for the session. 62

NLS_DATE_LANGUAGE The language used for expressing dates. 62

NLS_SORT BINARYor the linguistic sort basis. 62

NLS_TERRITORY The territory of the current session. 62

OS_USER Operating system user name of the client process that 30
initiated the database session.

PROXY_USER Name of the database user who opened the current 30
session on behalf of SESSION_USER

PROXY_USERID Identifier of the database user who opened the 30
current session on behalf of SESSION_USER

SESSION_USER Database user name by which the current user is 30
authenticated. This value remains the same
throughout the duration of the session.

SESSION_USERID Identifier of the database user name by which the 30

current user is authenticated.

6-160 Oracle9/ SQL Reference

SYS_DBURIGEN

Table 6-2 (Cont.) Predefined Parameters of Namespace USERENV

Return
Length
Parameter Return Value (bytes)
SESSIONID The auditing session identifier. You cannot use this 30
attribute in distributed SQL statements.
TERMINAL The operating system identifier for the client of the 10

current session. In distributed SQL statements, this
attribute returns the identifier for your local session.
In a distributed environment, this is supported only
for remote SELECTstatements, not for remote
INSERT, UPDATE or DELETEOperations. (The return
length of this parameter may vary by operating
system.)

SYS_DBURIGEN

Syntax
sys_dburigen::=

M
U
@D | FOOFEOO0
o}

Purpose

SYS_DBURIGentakes as its argument one or more columns or attributes, and
optionally a rowid, and generates a URL of datatype DBURIType to a particular
column or row object. You can then use the URL to retrieve an XML document from
the database.

All columns or attributes referenced must reside in the same table. They must
perform the function of a primary key. That is, they need not actually match the
primary keys of the table, but they must reference a unique value. If you specify
multiple columns, then all but the final column identify the row in the database,
and the last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to
point only to the text of the document, then specify the optional 'text() . (In this
XML context, the lowercase 'text ’ is a keyword, not a syntactic placeholder.)

Functions 6-161

SYS_EXTRACT_UTC

If the table or view containing the columns or attributes does not have a schema
specified in the context of the query, then Oracle interprets the table or view name
as a public synonym.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
and Oracle9i XML Developer’s Kits Guide - XDK for information on
the URIType datatype and XML documents in the database

Examples

The following example uses the SYS_DBURIGenfunction to generate a URL of
datatype DBURIType to the email column of the row in the sample table
hr.employees where the employee_id = 206:

SELECT SYS_DBURIGEN(employee_id, email)
FROM employees
WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)

DBURITYPE(/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID="206")/EMAIL’, NULL)

SYS_EXTRACT UTC

Syntax
Sys_extract_utc::=

—J| svs_ExTRACT_UTC F@»Cdatetime_with_timezone)»@»

Purpose

SYS _EXTRACT_UTe@&xtracts the UTC (Coordinated Universal Time—formerly
Greenwich Mean Time) from a datetime with time zone displacement.

Examples
The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC(TIMESTAMP ’2000-03-28 11:30:00.00 -08:00)
FROM DUAL:

SYS_EXTRACT_UTC(TIMESTAMP’2000-03-2811:30:00.00-08:00")

28-MAR-00 07.30.00 PM

6-162 Oracle9/ SQL Reference

SYS_GUID

SYS_GUID

Syntax
sys_guid::=

EX0Y0

Purpose

SYS_GUIDgenerates and returns a globally unique identifier (RAW/alue) made up
of 16 bytes. On most platforms, the generated identifier consists of a host identifier
and a process or thread identifier of the process or thread invoking the function,
and a nonrepeating value (sequence of bytes) for that process or thread.

Examples

The following example adds a column to the sample table hr.locations , inserts
unique identifiers into each row, and returns the 32-character hexadecimal
representation of the 16-byte RAWalue of the global unique identifier:

ALTER TABLE locations ADD (uid_col RAW(32));
UPDATE locations SET uid_col = SYS_GUID();
SELECT location_id, uid_col FROM locations;

LOCATION_ID UID_COL

1000 7CD5B7769DF75CEFE034080020825436
1100 7CD5B7769DF85CEFE034080020825436
1200 7CD5B7769DF95CEFE034080020825436
1300 7CD5B7769DFASCEFE034080020825436

Functions 6-163

SYS_TYPEID

SYS_TYPEID

Syntax
sys_typeid::=

—>| SYS_TYPEID P@»Cobject_type_value)a@»

Purpose

SYS_TYPEIDreturns the typeid of the most specific type of the operand. This value
is used primarily to identify the type-discriminant column underlying a
substitutable column. For example, you can use the value returned by SYS_TYPEID
to build an index on the type-discriminant column.

Notes:
« Use this function only on object type operands.

« Allfinal root object types—that is, final types not belonging to a
type hierarchy—have a null typeid. Oracle assigns to all types
belonging to a type hierarchy a unique non-null typeid.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on typeids

Examples

The following examples use the tables persons and books , which are created in

"Substitutable Table and Column Examples" on page 15-67. Both tables in turn use
the person_t type, which is created in "Type Hierarchy Example" on page 16-22.

The first query returns the most specific types of the object instances stored in the

persons table.

SELECT name, SYS_TYPEID(VALUE(p)) "Type_id" FROM persons p;

NAME Type_id
Bob 01
Joe 02
Tim 03

The next query returns the most specific types of authors stored in the table books :

6-164 Oracle9/ SQL Reference

SYS_XMLAGG

SELECT b.title, b.author.name, SYS_TYPEID(author)
"Type_ID" FROM books b;

TITLE AUTHOR.NAME Type_ID
An Autobiography Bob 01
Business Rules Joe 02

Mixing School and Work Tim 03

You can use the SYS_TYPEIDfunction to create an index on the type-discriminant
column of a table. For an example, see "Indexing on Substitutable Columns:
Examples" on page 13-93.

SYS_XMLAGG

Syntax
SYS_XMLAgg::=

S O L

Purpose

SYS_ XMLAggaggregates all of the XML documents or fragments represented by
expr and produces a single XML document. It adds a new enclosing element with a
default name ROWSETf you want to format the XML document differently, then
specify fmt , which is an instance of the XMLFormat object.

See Also:

« "XML Format Model" on page 2-79 for using the attributes of
the XMLFormat type to format SYS_XMLAggresults

« SYS_XMLGEN on page 6-166

« Oracle9i XML API Reference - XDK and Oracle XML DB and
Oracle9i XML Developer’s Kits Guide - XDK for information on
XML types and their use

Examples

The following example uses the SYS_XMLGerfunction to generate an XML
document for each row of the sample table employees where the employee’s last

Functions 6-165

SYS_XMLGEN

name begins with the letter R, and then aggregates all of the rows into a single XML
document in the default enclosing element ROWSET

SELECT SYS_XMLAGG(SYS_XMLGEN(last_name))
FROM employees
WHERE last_name LIKE 'R%’;

SYS_XMLAGG(SYS_XMLGEN(LAST_NAME))

<ROWSET>
<LAST_NAME>Raphaely</LAST_NAME>
<LAST_NAME>Rogers</LAST_NAME>
<LAST_NAME>Rajs</LAST_NAME>
<LAST_NAME>Russell</LAST_NAME>
</ROWSET>

SYS_XMLGEN

Syntax
SYS_XMLGen::=

SEE @ L

Purpose

SYS_XMLGertakes an expression that evaluates to a particular row and column of
the database, and returns an instance of type XMLType containing an XML
document. The expr can be a scalar value, a user-defined type, or an XMLType
instance.

« If expr isascalar value, then the function returns an XML element containing
the scalar value.

« If expr isatype, then the function maps the user-defined type attributes to
XML elements.

« If expr isan XMLType instance, then the function encloses the document in an
XML element whose default tag name is ROW

By default the elements of the XML document match the elements of expr . For
example, if expr resolves to a column name, then the enclosing XML element will
be the same column name. If you want to format the XML document differently,
then specify fmt , which is an instance of the XMLFormat object.

6-166 Oracle9/ SQL Reference

SYSDATE

SYSDATE

See Also:

« "XML Format Model" on page 2-79 for a description of the
XMLFormat type and how to use its attributes to format SYS_
XMLGenresults

« Oracle9i XML API Reference - XDK and Oracle XML DB and
Oracle9i XML Developer’s Kits Guide - XDK for information on
XML types and their use

Examples

The following example retrieves the employee email ID from the sample table
oe.employees where the employee_id value is 205, and generates an instance of
an XMLType containing an XML document with an EMAIL element.

SELECT SYS_XMLGEN(email)
FROM employees
WHERE employee_id = 205;

SYS_XMLGEN(EMAIL)

<EMAIL>SHIGGINS</EMAIL>

Syntax
sysdate::=

Purpose

SYSDATEeturns the current date and time. The datatype of the returned value is
DATE The function requires no arguments. In distributed SQL statements, this
function returns the date and time on your local database. You cannot use this
function in the condition of a CHECKconstraint.

Examples
The following example returns the current date and time:

Functions 6-167

SYSTIMESTAMP

SELECT TO_CHAR
(SYSDATE, 'MM-DD-YYYY HH24:MI:SS")"NOW"
FROM DUAL,;

04-13-2001 09:45:51

SYSTIMESTAMP

Syntax
systimestamp::=

SYSTIMESTAMP

Purpose

SYSTIMESTAMPReturns the system date, including fractional seconds and time
zone of the system on which the database resides. The return type is TIMESTAMP
WITH TIME ZONE

Examples
The following example returns the system date.

SELECT SYSTIMESTAMP FROM DUAL,;

SYSTIMESTAMP

28-MAR-00 12.38.55.538741 PM -08:00

The following example shows how to explicitly specify fractional seconds:
SELECT TO_CHAR(SYSTIMESTAMP, 'SSSS.FF') FROM DUAL;

TO_CHAR(SYSTIM

5050.105900

6-168 Oracle9/ SQL Reference

TANH

TAN

Syntax
tan::=

EI00:0

Purpose
TANTreturns the tangent of n (an angle expressed in radians).

Examples
The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3.14159265359/180)
"Tangent of 135 degrees” FROM DUAL,;

Tangent of 135 degrees

TANH

Syntax
tanh::=

Bl 0500

Purpose
TANHreturns the hyperbolic tangent of n.

Examples
The following example returns the hyperbolic tangent of .5:
SELECT TANH(.5) "Hyperbolic tangent of .5"

FROM DUAL,;

Hyperbolic tangent of .5

462117157

Functions 6-169

TO_CHAR (character)

TO_CHAR (character)

Syntax
to_char_char::=

Purpose

TO_CHARCcharacter) converts NCHARNVARCHARZCLOB or NCLOBdata to the
database character set.

Examples
The following example interprets a simple string as character data:

SELECT TO_CHAR('01110’) FROM DUAL,;

Compare this example with the first example for TO_CHAR (number) on
page 6-173.

The following example converts some CLOBdata from the pm.print_media table
to the database character set:

SELECT TO_CHAR(ad_sourcetext) FROM print_media
WHERE product_id = 2268;

TO_CHAR(AD_SOURCETEXT)

* * *

TIGER2 2268...Standard Hayes Compatible Modem

Product ID: 2268

The #1 selling modem in the universe! Tiger2’s modem includes call
management and Internet voicing. Make real-time full duplex phone
calls at the same time you're online.

* * *

6-170 Oracle9/ SQL Reference

TO_CHAR (datetime)

TO_CHAR (datetime)

Syntax
to_char_date::=

_ AO0@E0
O Lo,

Purpose

TO_CHARdatetime) converts date of DATE TIMESTAMPTIMESTAMP WITH TIME
ZONE or TIMESTAMP WITH LOCAL TIME ZONfatatype to a value of VARCHAR?2
datatype in the format specified by the date format fmt . If you omit fmt , then date
is converted to a VARCHAR®alue as follows:

« DATEis converted to a value in the default date format.

« TIMESTAMPand TIMESTAMP WITH LOCAL TIME ZONige converted to values
in the default timestamp format.

« TIMESTAMP WITH TIME ZONE converted to a value in the default timestamp
with time zone format.

The 'nisparams ’ specifies the language in which month and day names and
abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language’

If you omit ‘nisparams’ |, then this function uses the default date language for
your session.

See Also: "Format Models" on page 2-61 for information on date
formats

Examples
The following example uses this table:
CREATE TABLE date_tab (

ts_col TIMESTAMP,

tsltz_col TIMESTAMP WITH LOCAL TIME ZONE,
tstz_col TIMESTAMP WITH TIME ZONE);

Functions 6-171

TO_CHAR (datetime)

The example shows the results of applying TO_CHARo different TIMESTAMP
datatypes. The result for a TIMESTAMP WITH LOCAL TIME ZON&lumn is sensitive
to session time zone, whereas the results for the TIMESTAMPand TIMESTAMP WITH
TIME ZONEcolumns are not sensitive to session time zone:

ALTER SESSION SET TIME_ZONE = '-8:00’;

INSERT INTO date_tab VALUES (
TIMESTAMP’1999-12-01 10:00:00’,
TIMESTAMP’1999-12-01 10:00:00’,
TIMESTAMP’1999-12-01 10:00:00';

INSERT INTO date_tab VALUES (
TIMESTAMP’1999-12-02 10:00:00 -8:00’,
TIMESTAMP’1999-12-02 10:00:00 -8:00’,
TIMESTAMP’1999-12-02 10:00:00 -8:00’);

SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF’),
TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM’)
FROM date_tab;

TO_CHAR(TS_COL,'DD-MON-YYYYHH2 TO_CHAR(TSTZ_COL,'DD-MON-YYYYHH24:MI:

01-DEC-1999 10:00:00 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF’)
FROM date_tab;

SESSIONTIMEZONE TO_CHAR(TSLTZ_COL, DD-MON-YYYY

-08:00 01-DEC-1999 10:00:00.000000
-08:00 02-DEC-1999 10:00:00.000000

ALTER SESSION SET TIME_ZONE = -5:00’;

SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF’),
TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM’)
FROM date_tab;

TO_CHAR(TS_COL,'DD-MON-YYYYHH2 TO_CHAR(TSTZ_COL,'DD-MON-YYYYHH24:MI:

01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

6-172 Oracle9/ SQL Reference

TO_CHAR (number)

SELECT SESSIONTIMEZONE,
TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF’)
FROM date_tab;

SESSIONTIMEZONE TO_CHAR(TSLTZ_COL,'DD-MON-YYYY
-05:00 01-DEC-1999 13:00:00.000000
-05:00 02-DEC-1999 13:00:00.000000

TO_CHAR (number)

Syntax
to_char_number::=

w ' nIsparam
O Loy

TO CHAR

Purpose

TO_CHARnumber) converts n of NUMBERIatatype to a value of VARCHAR2
datatype, using the optional number format fmt . If you omit fmt , then n is
converted to a VARCHAR®alue exactly long enough to hold its significant digits.

The 'nisparam’ specifies these characters that are returned by number format
elements:

« Decimal character

« Group separator

« Local currency symbol

« International currency symbol
This argument can have this form;

'NLS_NUMERIC_CHARACTERS = "dg”
NLS_CURRENCY = "text”
NLS_ISO_CURRENCY = territory ’

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted
string, you must use two single quotation marks around the parameter values. Ten
characters are available for the currency symbol.

Functions 6-173

TO_CHAR (number)

If you omit ‘nisparam’ or any one of the parameters, then this function uses the
default parameter values for your session.

See Also: "Format Models" on page 2-61 for information on
number formats

Examples
The following statement uses implicit conversion to interpret a string and a number
into a number:

SELECT TO_CHAR('01110’ + 1) FROM dual;

TO C

1111

Compare this example with the first example for TO_CHAR (character) on
page 6-170.

In the next example, the output is blank padded to the left of the currency symbol.

SELECT TO_CHAR(-10000,'L99G999D99MT’) "Amount"
FROM DUAL:

$10,000.00-

SELECT TO_CHAR(-10000,'L99G999D99MI’,
'NLS_NUMERIC_CHARACTERS =",."
NLS_CURRENCY = "AusDollars” ’) "Amount"

FROM DUAL;

Amount

AusDollars10.000,00-

Note: In the optional number format fmt , L designates local
currency symbol and MI designates a trailing minus sign. See
Table 2-13 on page 2-64 for a complete listing of number format
elements.

6-174 Oracle9/ SQL Reference

TO_DATE

TO_CLOB

TO_DATE

Syntax
to_clob::=

TO_CLOB o H
(erar)

Purpose

TO_CLOBonverts NCLOBvalues in a LOB column or other character strings to
CLOBvalues. char can be any of the datatypes CHARVARCHAR2NCHAR
NVARCHARZLOB or NCLOBOracle executes this function by converting the
underlying LOB data from the national character set to the database character set.

Examples

The following statement converts NCLOBdata from the sample pm.print_media
table to CLOBand inserts it into a CLOBcolumn, replacing existing data in that
column.

UPDATE PRINT_MEDIA
SET AD_FINALTEXT = TO_CLOB (AD_FLTEXTN);

Syntax
to_date::=

[’)@O

Purpose
TO_DATEconverts char of CHARVARCHARZNCHARor NVARCHAR®atatype to a
value of DATEdatatype. The fmt is a date format specifying the format of char . If

you omit fmt , then char must be in the default date format. If fmt is’J, for Julian,
then char must be an integer.

Functions 6-175

TO_DATE

Note: This function does not convert data to any of the other
datetime datatypes. For information on other datetime conversions,
please refer to TO_TIMESTAMP on page 6-185, TO_TIMESTAMP_
TZ on page 6-186, TO_DSINTERVAL on page 6-177, and "TO _
YMINTERVAL" on page 6-187.

The default date format is determined implicitly by the NLS_TERRITORY
initialization parameter, or can be set explicitly by the NLS_DATE_FORMAT
parameter.

The 'nisparam’ has the same purpose in this function as in the TO_CHARunction
for date conversion.

Do not use the TO_DATHEunction with a DATEvalue for the char argument. The
first two digits of the returned DATEvalue can differ from the original char ,
depending on fmt or the default date format.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

See Also: "Date Format Models" on page 2-68

Examples
The following example converts a character string into a date:

SELECT TO_DATE(
‘January 15, 1989, 11:00 A.M.’,
'Month dd, YYYY, HH:MI A.M.’,
'NLS_DATE_LANGUAGE = American’)
FROM DUAL;

TO_DATE(

15-JAN-89

The value returned reflects the default date format if the NLS_TERRITORY
parameter is set to ’"AMERICA Different NLS_TERRITORWalues result in different
default date formats:

6-176 Oracle9/ SQL Reference

TO_DSINTERVAL

ALTER SESSION SET NLS_TERRITORY = 'KOREAN’;

SELECT TO_DATE(
‘January 15, 1989, 11:00 A.M.’,
'Month dd, YYYY, HH:MI AM.’,
'NLS_DATE_LANGUAGE = American’)
FROM DUAL;

TO_DATE(

89/01/15

TO_DSINTERVAL

Syntax
to_dsinterval::=

m-nlsparam
—{ T0_DSINTERVAL | (O char | 9 O 0%

Purpose

TO_DSINTERVALconverts a character string of CHARVARCHARZNCHARor
NVARCHAR®atatype to an INTERVAL DAY TO SECONWpe.

« char isthe character string to be converted.

« Theonly valid nisparam you can specify in this function is NLS_NUMERIC_
CHARACTERS his argument can have the form:

NLS_NUMERIC_CHARACTERS = "dg"

where d and g represent the decimal character and group separator
respectively.

Examples
The following example selects from the employees table the employees who had
worked for the company for at least 100 days on January 1, 1990:

SELECT employee_id, last_name FROM employees
WHERE hire_date + TO_DSINTERVAL('100 10:00:00")
<= DATE '1990-01-01’;

Functions 6-177

TO_LOB

EMPLOYEE_ID LAST_NAME

100 King
101 Kochhar
200 Whalen

TO_LOB

Syntax
to_LOB::=

—>| TO_LOB P@»Oong_column)s@—)

Purpose

TO_LOBconverts LONGor LONG RAWalues in the column long_column to LOB
values. You can apply this function only to a LONGor LONG RAWbIumn, and only
in the SELECTIist of a subquery in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted
LONGuvalues. To convert LONG, create a CLOBcolumn. To convert LONG RA¥Y
create a BLOBcolumn.

Note: You cannot use the TO_LOBfunction to convert a LONG
column to a LOBcolumn in the subquery of a CREATE TABLE.AS
SELECTstatement if you are creating an index-organized table.
Instead, create the index-organized table without the LONGcolumn,
and then use the TO_LOBfunction in an INSERT ... AS SELECT
statement.

See Also:

« the modify_col _properties clause of ALTER TABLE on
page 11-2 for an alternative method of converting LONG
columns to LOB

« INSERT on page 17-53 for information on the subquery of an
INSERT statement

6-178 Oracle9/ SQL Reference

TO_MULTI_BYTE

Examples
The sample table pm.print_media has a column press_release of type LONG
This example re-creates part of the table, with LOB data in the press_release
column:
CREATE TABLE new_print_media (

product_id NUMBER(6),

ad_id NUMBER(6),
press_release CLOB);

INSERT INTO new_print_media
(SELECT p.product_id, p.ad_id, TO_LOB(p.press_release)
FROM print_media p);

TO_MULTI_BYTE

Syntax
to_multi_byte::=

(T BVE YD)

Purpose

TO_MULTI_BYTEreturns char with all of its single-byte characters converted to
their corresponding multibyte characters. char can be of datatype CHAR
VARCHARXNCHARor NVARCHARZT he value returned is in the same datatype as
char .

Any single-byte characters in char that have no multibyte equivalents appear in
the output string as single-byte characters. This function is useful only if your
database character set contains both single-byte and multibyte characters.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Functions 6-179

TO_NCHAR (character)

Examples

The following example illustrates converting from a single byte 'A’ to a multibyte
'A'in UTFS:

SELECT dump(TO_MULTI_BYTE('A")) FROM DUAL;

DUMP(TO_MULTI_BYTE(AY))

Typ=1 Len=3: 239,188,161

TO_NCHAR (character)

Syntax
to_nchar_char::=

(DO Cisparam (1)
O \

0}

Purpose

TO_NCHARcharacter) converts a character string, CLOB or NCLOBfrom the
database character set to the national character set. This function is equivalent to the
TRANSLATE.. USINGfunction with a USINGclause in the national character set.

See Also: "Data Conversion" on page 2-48 and TRANSLATE ...
USING on page 6-189

Examples

The following example converts NCLOBdata from the pm.print_media table to
the national character set:

SELECT TO_NCHAR(ad_fltextn) FROM print_media
WHERE product_id = 3106;

TO_NCHAR(AD_FLTEXTN)

TIGER2 Tastaturen...weltweit fuehrend in Computer-Ergonomie.
TIGER2 3106 Tastatur
Product Nummer: 3106

6-180 Oracle9/ SQL Reference

TO_NCHAR (datetime)

Nur 39 EURO!

Die Tastatur KB 101/CH-DE ist eine Standard PC/AT Tastatur mit 102
Tasten. Tasta

turbelegung: Schweizerdeutsch.

. NEU: Kommt mit ergonomischer Schaumstoffunterlage.

. Extraflache und ergonimisch-geknickte Versionen verfugbar auf Anfrage.
. Lieferbar in Elfenbein, Rot oder Schwarz.

TO_NCHAR (datetime)

Syntax
to_nchar_date::=

(DO otspaam))
(D \

TO_NCHAR
0 0

Purpose

TO_NCHARdatetime) converts a character string of DATE TIMESTAMPTIMESTAMP
WITH TIME ZONETIMESTAMP WITH LOCAL TIME ZONBNTERVAL MONTH TO
YEAR or INTERVAL DAY TO SECONifatatype from the database character set to the
national character set.

Examples

SELECT TO_NCHAR(order_date) FROM orders
WHERE order_status > 9;

TO_NCHAR(ORDER_DATE)

14-SEP-99 08.53.40.223345 AM
13-SEP-99 09.19.00.654279 AM
27-JUN-00 08.53.32.335522 PM
26-JUN-00 09.19.43.190089 PM
06-DEC-99 01.22.34.225609 PM

Functions 6-181

TO_NCHAR (number)

TO_NCHAR (number)

Syntax
to_nchar_number::=

ﬁ@O

TO NCHAR

Purpose

TO_NCHARnumber) converts a number to a string in the NVARCHARRharacter set.
The optional fmt and ’'nisparam’ corresponding to n can be of DATE
TIMESTAMPTIMESTAMP WITH TIME ZONHIMESTAMP WITH LOCAL TIME ZONE
INTERVAL MONTH TO YEA® INTERVAL DAY TO SECONiatatype.

0

Examples

SELECT TO_NCHAR(customer_id) "NCHAR_Customer_ID" FROM orders
WHERE order_status > 9;

NCHAR_Customer_ID

TO NCLOB

Syntax
to_nclob::=

TO_NCLOB H
(705658 (D

Purpose

TO_NCLORonverts CLOBvalues in a LOB column or other character strings to
NCLOBvalues. char can be any of the datatypes CHARVARCHAR2ZNCHAR

6-182 Oracle9/ SQL Reference

TO_NUMBER

NVARCHARZCLOB or NCLOBOracle implements this function by converting the
character set of the LOB column from the database character set to the national
character set.

Examples
The following example inserts some character data into an NCLOBcolumn of the
pm.print_media table by first converting the data with the TO_NCLOBunction:

INSERT INTO print_media (product_id, ad_id, ad_fltextn)
VALUES (3502, 31001,
TO_NCLOB('Placeholder for new product description’));

TO _NUMBER

Syntax
to_number::=

TO NUMBER char

Purpose

TO_NUMBEBbnverts char , a value of CHARVARCHAR2NCHARor NVARCHAR?2
datatype containing a number in the format specified by the optional format model
fmt , to a value of NUMBERlatatype.

Loy

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples
The following example converts character string data into a number:

UPDATE employees SET salary = salary +
TO_NUMBER('100.00’, '9G999D99°)
WHERE last_name = 'Perkins’;

Functions 6-183

TO_SINGLE_BYTE

The 'nisparam’ string in this function has the same purpose as it does in the TO_
CHARfunction for number conversions.

See Also: TO_CHAR (number) on page 6-173

SELECT TO_NUMBER(’-AusDollars100’,'L9G999D99’,
"NLS_NUMERIC_CHARACTERS =",.”
NLS_CURRENCY ="AusDollars”
") "Amount"
FROM DUAL;

Amount

TO_SINGLE_BYTE

Syntax
to_single_hyte::=

[70.5WLE BYE W (D@D

Purpose

TO_SINGLE_BYTEreturns char with all of its multibyte characters converted to
their corresponding single-byte characters. char can be of datatype CHAR
VARCHARZNCHARor NVARCHARZT he value returned is in the same datatype as
char .

Any multibyte characters in char that have no single-byte equivalents appear in
the output as multibyte characters. This function is useful only if your database
character set contains both single-byte and multibyte characters.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

6-184 Oracle9/ SQL Reference

TO_TIMESTAMP

Examples
The following example illustrates going from a multibyte A’ in UTF8 to a single
byte ASCII 'A’:

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;
T

A

TO_TIMESTAMP

Syntax
to_timestamp::=

m‘j

| TO_TIMESTAMP | char @

Purpose
TO_TIMESTAMRonverts char of CHARVARCHARZNCHARor NVARCHAR2
datatype to a value of TIMESTAMPdatatype.

The optional fmt specifies the format of char . If you omit fmt , then char must be
in the default format of the TIMESTAMPdatatype. The optional ‘nisparam’ has
the same purpose in this function as in the TO_CHARunction for date conversion.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples
The following example converts a character string to a timestamp:

SELECT TO_TIMESTAMP (°1999-12-01 11:00:00, 'YYYY-MM-DD HH:MI:SS’)
FROM DUAL;

Functions 6-185

TO_TIMESTAMP_TZ

TO_TIMESTAMP('1999-12-0111:00:00",'YYYY-MM-DDHH:MI:SS’)

01-DEC-99 11.00.00.000000000 AM

TO_TIMESTAMP_TZ

Syntax
to_timestamp_tz::=

—| TO_TIMESTAWP_TZ @@ 1 @
Purpose

TO_TIMESTAMP_TZonverts char of CHARVARCHAR2NCHARor NVARCHAR?2
datatype to a value of TIMESTAMP WITH TIME ZON#atatype.

Note: This function does not convert character strings to
TIMESTAMP WITH LOCAL TIME ZONBo do this, use a CAST
function, as shown in CAST on page 6-27.

The optional fmt specifies the format of char . If you omit fmt , then char must be
in the default format of the TIMESTAMP WITH TIME ZON#&atatype. The optional
‘nlsparam’ has the same purpose in this function as in the TO_CHARunction for
date conversion.

Examples

The following example converts a character string to a value of TIMESTAMP WITH
TIME ZONE

SELECT TO_TIMESTAMP_TZ('1999-12-01 11:00:00 -8:00’,
'YYYY-MM-DD HH:MI:SS TZH:TZM’) FROM DUAL;

TO_TIMESTAMP_TZ("1999-12-0111:00:00-08:00',YYYY-MM-DDHH:MI:SSTZH:TZM)

01-DEC-99 11.00.00.000000000 AM -08:00

6-186 Oracle9/ SQL Reference

TO_YMINTERVAL

The following example casts a null column in a UNIONoperation as TIMESTAMP
WITH LOCAL TIME ZONHEsing the sample tables oe.order_items and
oe.orders

SELECT order_id, line_item_id,
CAST(NULL AS TIMESTAMP WITH LOCAL TIME ZONE) order_date
FROM order_items

UNION

SELECT order_id, to_number(null), order_date
FROM orders;

ORDER_ID LINE_ITEM_ID ORDER_DATE

2354
2354
2354
2354
2354
2354
2354
2354
2354
2354 10
2354 11
2354 12
2354 13
2354 14-JUL-00 05.18.23.234567 PM
2355 1
2355 2

OO ~NOUIA, WNPE

TO_YMINTERVAL

Syntax
to_yminterval::=

—] TO_YMINTERVAL |a@—>| char F@»

Purpose

TO_YMINTERVAIconverts a character string of CHARVARCHARZ2NCHARor
NVARCHAR#®atatype to an INTERVAL YEAR TO MONTipe, where char is the
character string to be converted.

Functions 6-187

TRANSLATE

TRANSLATE

Examples

The following example calculates for each employee in the sample hr.employees
table a date one year two months after the hire date:

SELECT hire_date, hire_date + TO_YMINTERVAL('01-02") "14 months"
FROM employees;

HIRE_DATE 14 months

17-JUN-87 17-AUG-88
21-SEP-89 21-NOV-90
13-JAN-93 13-MAR-94
03-JAN-90 03-MAR-91
21-MAY-91 21-JUL-92

Syntax
translate::=

IEEE 0101010160 CED 01010 CED 010

Purpose

TRANSLATHEeturns char with all occurrences of each character in from_string
replaced by its corresponding character in to_string . Characters in char that are
notin from_string are not replaced. The argument from_string ~ can contain
more characters than to_string . In this case, the extra characters at the end of
from_string have no corresponding characters in to_string . If these extra
characters appear in char , then they are removed from the return value.

You cannot use an empty string for to_string to remove all characters in from_
string from the return value. Oracle interprets the empty string as null, and if this
function has a null argument, then it returns null.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

6-188 Oracle9/ SQL Reference

TRANSLATE ... USING

Examples
The following statement translates a license number. All letters ’ABC...Z’ are
translated to ’X’ and all digits 012 . .. 9" are translated to '9":

SELECT TRANSLATE('2KRW229',

'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

’9999999999 XX XXX XXX XXX XXX XXX XXX XXXXXX") "License”
FROM DUAL;

License

9XXX999
The following statement returns a license number with the characters removed and
the digits remaining:

SELECT TRANSLATE('2KRW229’,
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’, '0123456789’)
"Translate example"

FROM DUAL,;

Translate example

TRANSLATE ... USING

Syntax
translate_using::=

CHAR_CS
TSI (D e [T

Purpose

TRANSLATE.. USINGconverts fext into the character set specified for conversions
between the database character set and the national character set.

Functions 6-189

TRANSLATE ... USING

Note: The TRANSLATE.. USINGfunction is supported primarily
for ANSI compatibility. Oracle Corporation recommends that you
use the TO_CHARind TO_NCHARunctions, as appropriate, for
converting data to the database or national character set. TO_CHAR
and TO_NCHARan take as arguments a greater variety of datatypes
than TRANSLATE.. USING which accepts only character data.

The text argument is the expression to be converted.

« Specifying the USING CHAR_C&rgument converts text into the database
character set. The output datatype is VARCHAR2

« Specifying the USING NCHAR_C8rgument converts text into the national
character set. The output datatype is NVARCHAR?2

This function is similar to the Oracle CONVERTunction, but must be used instead of
CONVERTT either the input or the output datatype is being used as NCHARr
NVARCHARAf the input contains UCS2 codepoints or backslash characters (\), then
use the UNISTR function.

See Also: CONVERT on page 6-36 and UNISTR on page 6-196

Examples

The following statements use data from the sample table oe.product
descriptions to show the use of the TRANSLATE.. USINGfunction:

CREATE TABLE translate_tab (char_col VARCHAR2(100),
nchar_col NVARCHAR2(50));
INSERT INTO translate_tab
SELECT NULL, translated_name
FROM product_descriptions
WHERE product_id = 3501;

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL

C per a SPNIX4.0 - Sys
C pro SPNIX4.0 - Sys
C for SPNIX4.0 - Sys

C til SPNIX4.0 - Sys

6-190 Oracle9/ SQL Reference

TREAT

TREAT

UPDATE translate_tab
SET char_col = TRANSLATE (nchar_col USING CHAR_CYS);

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL

C per a SPNIX4.0 - Sys C per a SPNIX4.0 - Sys
C pro SPNIX4.0 - Sys C pro SPNIX4.0 - Sys

C for SPNIX4.0 - Sys C for SPNIX4.0 - Sys

C til SPNIX4.0 - Sys C til SPNIX4.0 - Sys

Syntax
treat::=

REF schema
FEo@EL LI o,

Purpose
TREATchanges the declared type of an expression.

You must have the EXECUTEbbject privilege on type to use this function.

« If the declared type of expr is source_type ,then type must be some
supertype or subtype of source_type . If the most specific type of expr is
type (or some subtype of type), then TREATreturns expr . If the most specific
type of expr is not type (or some subtype of type), then TREATreturns NULL

« If the declared type of expr is REFsource type ,then type must be some
subtype or supertype of source_type . If the most specific type of
DERERexpr) is type (or a subtype of type), then TREATreturns expr . If the
most specific type of DERERexpr) is not type (or a subtype of type), then
TREATreturns NULL

Functions 6-191

TRIM

TRIM

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

The following statement uses the table oe.persons , which is created in
"Substitutable Table and Column Examples" on page 15-67. That table is based on
the person_t type, which is created in "Type Hierarchy Example" on page 16-22.
The example retrieves the salary attribute of all people in the persons table, the
value being null for instances of people that are not employees.

SELECT name, TREAT(VALUE(p) AS employee_t).salary salary
FROM persons p;

NAME SALARY
Bob

Joe 100000
Tim 1000

You can use the TREATfunction to create an index on the subtype attributes of a
substitutable column. For an example, see "Indexing on Substitutable Columns:
Examples" on page 13-93.

Syntax
trim::=

TRAILING

trim_character

<

trim_source

6-192 Oracle9/ SQL Reference

TRIM

Purpose

TRIM enables you to trim leading or trailing characters (or both) from a character
string. If trim_character or trim_source s a character literal, then you must
enclose it in single quotes.

« Ifyou specify LEADING then Oracle removes any leading characters equal to
trim_character

« Ifyou specify TRAILING, then Oracle removes any trailing characters equal to
trim_character

« Ifyou specify BOTHor none of the three, then Oracle removes leading and
trailing characters equal to trim_character

= If you do not specify trim_character , then the default value is a blank space.

« If you specify only trim_source , then Oracle removes leading and trailing
blank spaces.

« The function returns a value with datatype VARCHARZThe maximum length of
the value is the length of trim_source

« Ifeither trim_source or trim_character is null, then the TRIM function
returns null.

Both trim_character and trim_source can be any of the datatypes CHAR
VARCHAR2NCHARNVARCHARZCLOB or NCLOBThe string returned is of
VARCHARZ2latatype and is in the same character set as trim_source

Examples
This example trims leading and trailing zeroes from a number:
SELECT TRIM (0 FROM 0009872348900) "TRIM Example"

FROM DUAL;

TRIM Example

98723489

Functions 6-193

TRUNC (number)

TRUNC (number)

Syntax
trunc_number::=

0@’0 0

Purpose

The TRUNQnumber) function returns n truncated to mdecimal places. If mis
omitted, then n is truncated to 0 places. mcan be negative to truncate (make zero) m
digits left of the decimal point.

Examples
The following example truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL,;

Truncate

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL,

Truncate

TRUNC (date)

Syntax
trunc_date::=

e o@ 2,

6-194 Oracle9/ SQL Reference

TZ_OFFSET

Purpose

The TRUNQdate) function returns date with the time portion of the day truncated
to the unit specified by the format model fmt . If you omit fmt , then date is
truncated to the nearest day.

See Also: "ROUND and TRUNC Date Functions" on page 6-221
for the permitted format models to use in fmt

Examples

The following example truncates a date:

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY’), 'YEAR’)
"New Year" FROM DUAL;

New Year

01-JAN-92

TZ_OFFSET

Syntax
tz_offset:;=

|I time_zone_name I.

SESSIONTIMEZONE

TZ_OFFSET

DBTMEZONE

Purpose

TZ_OFFSETreturns the time zone offset corresponding to the value entered based
on the date the statement is executed. You can enter a valid time zone name, a time
zone offset from UTC (which simply returns itself), or the keyword
SESSIONTIMEZONEr DBTIMEZONEFor a listing of valid values, query the
TZNAMEolumn of the V$TIMEZONE_NAME8&ynamic performance view.

Functions 6-195

uiD

UID

UNISTR

See Also: Oracle9i Database Reference for information on the
dynamic performance views

Examples

The following example returns the time zone offset of the US/Eastern time zone
from UTC:

SELECT TZ_OFFSET(US/Eastern’) FROM DUAL;

TZ_OFFS

Syntax
uid::=

uiD

Purpose

UID returns an integer that uniquely identifies the session user (the user who
logged on).

Examples
The following example returns the UID of the current user:

SELECT UID FROM DUAL,;

Syntax
unistr::=

| unisTR SO Dt) ()

6-196 Oracle9/ SQL Reference

UPDATEXML

Purpose

UNISTRtakes as its argument a string and returns it in the national character
set.The national character set of the database can be either AL16UTF16 or UTFS8.
UNISTR provides support for Unicode string literals by letting you specify the
Unicode encoding value of characters in the string. This is useful, for example, for
inserting data into NCHARolumns.

The Unicode encoding value has the form "\xxxx’ where "xxxx’ is the hexadecimal
value of a character in UCS-2 encoding format. To include the backslash in the
string itself, precede it with another backslash (\\).

For portability and data preservation, Oracle Corporation recommends that in the
UNISTR string argument you specify only ASCII characters and the Unicode
encoding values.

See Also: Oracle9i Database Globalization Support Guide for
information on Unicode and and national character sets

Examples

The following example passes both ASCII characters and Unicode encoding values
to the UNISTR function, which returns the string in the national character set:

SELECT UNISTR('abc\00e5\00f1\00f6') FROM DUAL;

UNISTR

UPDATEXML

Syntax
updatexml::=

A) O
—>| UPDATEXML F@{XMLType_instance XPath_string)»@{value_expr) @-)

Purpose

UPDATEXMlakes as arguments an XMLType instance and an XPath-value pair, and
returns an XMLType instance with the updated value. If XPath_string is an XML
element, then the corresponding value_expr must be an XMLType instance. If

Functions 6-197

UPDATEXML

XPath_string is an attribute or text node, then the value_expr can be any
scalar datatype. The datatypes of the target of each XPath_string and its
corresponding value_expr must match. The optional namespace_string must
resolve to a VARCHARZXalue that specifies a default mapping or namespace
mapping for prefixes, which Oracle uses when evaluating the XPath expression(s).

If you update an XML element to null, Oracle removes the attributes and children of
the element, and the element becomes empty. If you update the text node of an
element to null, Oracle removes the text value of the element, and the element itself
remains but is empty.

In most cases, this function materializes an XML document in memory and updates
the value. However, UPDATEXMIs optimized for UPDATEstatements on
object-relational columns so that the function updates the value directly in the
column. This optimization requires the following conditions:

« The XMLType_instance must be the same as the column in the UPDATE..
SETclause.

« The XPath_string must resolve to scalar content.

Examples

The following example updates to 4 the number of docks in the San Francisco
warehouse in the sample schema OE which has a warehouse_spec column of
type XMLType:

SELECT warehouse_name,
EXTRACT(warehouse_spec, 'Warehouse/Docks’)
"Number of Docks"

FROM warehouses
WHERE warehouse_name =’San Francisco’;

WAREHOUSE_NAME Number of Docks

San Francisco <Docks>1</Docks>
UPDATE warehouses SET warehouse_spec =
UPDATEXML(warehouse_spec,
'Warehouse/Docks/text()’,4)
WHERE warehouse_name = 'San Francisco’;
1 row updated.

SELECT warehouse_name,
EXTRACT (warehouse_spec, '/Warehouse/Docks’)

6-198 Oracle9/ SQL Reference

USER

"Number of Docks"
FROM warehouses
WHERE warehouse_name = 'San Francisco’;

WAREHOUSE_NAME Number of Docks

San Francisco <Docks>4</Docks>

UPPER

Syntax
upper::=

| UPPER B O(eha) ()

Purpose

UPPERreturns char , with all letters uppercase. char can be any of the datatypes
CHARVARCHARZNCHARNVARCHARZCLOB or NCLOBThe return value is the
same datatype as char .

Examples
The following example returns a string in uppercase:

SELECT UPPER('Large’) "Uppercase”
FROM DUAL;

USER

Syntax
user:=

Functions 6-199

USERENV

USERENV

Purpose

USERreturns the name of the session user (the user who logged on) with the
datatype VARCHAR2Oracle compares values of this function with blank-padded
comparison semantics.

In a distributed SQL statement, the UID and USERfunctions identify the user on
your local database. You cannot use these functions in the condition of a CHECK
constraint.

Examples
The following example returns the current user and the user’s UID:

SELECT USER, UID FROM DUAL;

Syntax
userenv::=

0,0 O
Purpose

Note: USERENN\s a legacy function that is retained for backward
compatibility. Oracle Corporation recommends that you use the
SYS_CONTEXTunction with the built-in USERENWhamespace for
current functionality. See SYS_CONTEXT on page 6-156 for more
information.

USERENVeturns information about the current session. This information can be
useful for writing an application-specific audit trail table or for determining the
language-specific characters currently used by your session. You cannot use
USERENN\N the condition of a CHECKeconstraint. Table 6-3 describes the values for
the parameter argument.

All calls to USERENVYeturn VARCHAR2lata except for calls with the SESSIONID,
ENTRYID and COMMITSClgarameters, which return NUMBER

6-200 Oracle9/ SQL Reference

USERENV

Table 6-3 Parameters of the USERENV Function

Parameter Return Value

CLIENT_INFO CLIENT_INFO returns up to 64 bytes of user session
information that can be stored by an application using the
DBMS_APPLICATION_INFOpackage.

Caution: Some commercial applications may be using this
context value. Check the applicable documentation for those
applications to determine what restrictions they may impose
on use of this context area.

See Also:
« Oracle9i Database Concepts for more on application context

« CREATE CONTEXT on page 13-12 and SYS_CONTEXT on
page 6-156

ENTRYID ENTRYIDreturns available auditing entry identifier. You
cannot use this attribute in distributed SQL statements. To use
this keyword in USERENMhe initialization parameter AUDIT _
TRAIL must be set to TRUE

ISDBA ISDBA returns 'TRUE if the user has been authenticated as
having DBA privileges either through the operating system or
through a password file.

LANG LANGeturns the ISO abbreviation for the language name, a
shorter form than the existing 'LANGUAGHparameter.

LANGUAGE LANGUAG@Eurns the language and territory currently used
by your session along with the database character set in this
form:

language_termitory.characterset

SESSIONID SESSIONID returns your auditing session identifier. You
cannot use this attribute in distributed SQL statements.

TERMINAL TERMINALreturns the operating system identifier for your
current session’s terminal. In distributed SQL statements, this
attribute returns the identifier for your local session. In a
distributed environment, this is supported only for remote
SELECTstatements, not for remote INSERT, UPDATEor
DELETEoperations.

Examples
The following example returns the LANGUAGPparameter of the current session:

SELECT USERENV(LANGUAGE’) "Language” FROM DUAL;

Functions 6-201

VALUE

VALUE

VAR_POP

Language

AMERICAN_AMERICA.WESDEC

Syntax
value::=

—>| VALUE |—>@-><correlation_variable)—>@—>

Purpose

VALUEtakes as its argument a correlation variable (table alias) associated with a
row of an object table and returns object instances stored in the object table. The
type of the object instances is the same type as the object table.

Examples

The following example uses the sample table oe.persons , which is created in
"Substitutable Table and Column Examples" on page 15-67: SELECT VALUE(p) FROM
persons p;

VALUE(P)(NAME, SSN)

PERSON_T(Bob’, 1234)
EMPLOYEE_T('Joe’, 32456, 12, 100000)
PART_TIME_EMP_T(Tim’, 5678, 13, 1000, 20)

See Also: "IS OF type Conditions" on page 5-19 for information
on using IS OF type conditions with the VALUEfunction

Syntax
var_pop::=

f—)| OVER |9®9| analytic_clause %

6-202 Oracle9/ SQL Reference

VAR_POP

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose
VAR_POPReturns the population variance of a set of numbers after discarding the
nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER
If the function is applied to an empty set, then it returns null. The function makes
the following calculation:

(SUM(expr 2) - SUM(expr) 2/ COUNT(expr)) / COUNT(expr)

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example returns the population variance of the salaries in the
employees table:

SELECT VAR_POP(salary) FROM employees;

VAR_POP(SALARY)

15140307.5

Analytic Example
The following example calculates the cumulative population and sample variances
of the monthly sales in 1998:

SELECT t.calendar_month_desc,

VAR_POP(SUM(s.amount_sold))

OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
VAR_SAMP(SUM(s.amount_sold))

OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
FROM sales s, times t
WHERE s.time_id = t.time_id AND t.calendar_year = 1998
GROUP BY t.calendar_month_desc;

Functions 6-203

VAR_SAMP

VAR_SAMP

CALENDAR Var_Pop Var_Samp

1998-01 0

1998-02 6.1321E+11 1.2264E+12
1998-03 4.7058E+11 7.0587E+11
1998-04 4.6929E+11 6.2572E+11
1998-05 1.5524E+12 1.9405E+12
1998-06 2.3711E+12 2.8453E+12
1998-07 3.7464E+12 4.3708E+12
1998-08 3.7852E+12 4.3260E+12
1998-09 3.5753E+12 4.0222E+12
1998-10 3.4343E+12 3.8159E+12
1998-11 3.4245E+12 3.7669E+12
1998-12 4.8937E+12 5.3386E+12

Syntax
var_samp::=

Ie| OVER |e@—>| analytic_clause %
OXCDI(

See Also: "Analytic Functions" on page 6-10 for information on
syntax, semantics, and restrictions

Purpose
VAR_SAMPeturns the sample variance of a set of numbers after discarding the
nulls in this set. You can use it as both an aggregate and analytic function.

The expr is a number expression, and the function returns a value of type NUMBER
If the function is applied to an empty set, then it returns null. The function makes
the following calculation:

(SUM(expr 2) - SUM(expr) 2/ COUNT(expr)) / (COUNT(expr) - 1)

This function is similar to VARIANCE except that given an input set of one element,
VARIANCEreturns 0 and VAR_SAMPReturns null.

6-204 Oracle9/ SQL Reference

VAR_SAMP

See Also:
« "Aggregate Functions” on page 6-8

« "About SQL Expressions” on page 4-2 for information on valid
forms of expr

Aggregate Example

The following example returns the sample variance of the salaries in the sample
employees table.

SELECT VAR_SAMP(salary) FROM employees;

VAR_SAMP(SALARY)

15283140.5

Analytic Example

The following example calculates the cumulative population and sample variances
of the monthly sales in 1998:

SELECT t.calendar_month_desc,

VAR_POP(SUM(s.amount_sold))

OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
VAR_SAMP(SUM(s.amount_sold))

OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
FROM sales s, times t
WHERE s.time_id = t.time_id AND t.calendar_year = 1998
GROUP BY t.calendar_month_desc;

CALENDAR Var_Pop Var_Samp

1998-01 0

1998-02 6.1321E+11 1.2264E+12
1998-03 4.7058E+11 7.0587E+11
1998-04 4.6929E+11 6.2572E+11
1998-05 1.5524E+12 1.9405E+12
1998-06 2.3711E+12 2.8453E+12
1998-07 3.7464E+12 4.3708E+12
1998-08 3.7852E+12 4.3260E+12
1998-09 3.5753E+12 4.0222E+12
1998-10 3.4343E+12 3.8159E+12
1998-11 3.4245E+12 3.7669E+12
1998-12 4.8937E+12 5.3386E+12

Functions 6-205

VARIANCE

VARIANCE

Syntax
variance::=

| DISTINCT I
ALL

[a| OVER P@»Canalytic_clausem
< @O

See Also: "Analytic Functions” on page 6-10 for information on
syntax, semantics, and restrictions

Purpose

VARIANCEreturns variance of expr . You can use it as an aggregate or analytic
function.

Oracle calculates the variance of expr as follows:
« 0ifthe number of rows in expr =1
« VAR_SAMRf the number of rows in expr >1

If you specify DISTINCT, then you can specify only the query_partition_
clause of the analytic_clause . The order_by clause and windowing _
clause are not allowed.

See Also:
« "Aggregate Functions" on page 6-8

« "About SQL Expressions" on page 4-2 for information on valid
forms of expr

Aggregate Example
The following example calculates the variance of all salaries in the sample
employees table:

SELECT VARIANCE(salary) "Variance"
FROM employees;

Variance

15283140.5

6-206 Oracle9/ SQL Reference

VSIZE

Analytic Example

The query returns the cumulative variance of salary values in Department 30
ordered by hire date.

SELECT last_name, salary, VARIANCE(salary)
OVER (ORDER BY hire_date) "Variance"
FROM employees
WHERE department_id = 30;

LAST_NAME SALARY Variance
Raphaely 11000 0
Khoo 3100 31205000
Tobias 2800 21623333.3
Baida 2900 16283333.3
Himuro 2600 13317000
Colmenares 2500 11307000
Syntax
vsize::=

OO
Purpose

VSIZE returns the number of bytes in the internal representation of expr . If expr is
null, then this function returns null.

Note: This function does not support CLOBdata directly.
However, CLOB can be passed in as arguments through implicit
data conversion. Please refer to "Datatype Comparison Rules" on
page 2-45 for more information.

Examples

The following example returns the number of bytes in the last_name of the
employee in department 10:

Functions 6-207

WIDTH_BUCKET

SELECT last_name, VSIZE (last_name) "BYTES"
FROM employees
WHERE department_id = 10;

LAST_NAME BYTES

Whalen 6

WIDTH_BUCKET

Syntax
width_bucket::=

a ‘ min_value ‘ max_value)s@{num_buckets)s@»

Purpose

WIDTH_BUCKETets you construct equiwidth histograms, in which the histogram
range is divided into intervals that have identical size. (Compare this function with
NTILE , which creates equiheight histograms.) Ideally each bucket is a "closed-open’
interval of the real number line. For example, a bucket can be assigned to scores
between 10.00 and 19.999... to indicate that 10 is included in the interval and 20 is
excluded. This is sometimes denoted [10, 20).

For a given expression, WIDTH_BUCKETeturns the bucket number into which the
value of this expression would fall after being evaluated.

« expr isthe expression for which the histogram is being created. This expression
must evaluate to a number or a datetime value. If expr evaluates to null, then
the expression returns null.

« min_value and max_value are expressions that resolve to the end points of
the acceptable range for expr . Both of these expressions must also evaluate to
number or datetime values, and neither can evaluate to null.

« hum_buckets is an expression that resolves to a constant indicating the
number of buckets. This expression must evaluate to a positive integer.

Oracle also creates (when needed) an underflow bucket numbered 0 and an
overflow bucket numbered num_buckets +1. These buckets handle values less than
min_value and more than max_value and are helpful in checking the
reasonableness of endpoints.

6-208 Oracle9/ SQL Reference

WIDTH_BUCKET

Examples

The following example creates a ten-bucket histogram on the credit_limit

column for customers in Switzerland in the sample table oe.customers and
returns the bucket number ("Credit Group") for each customer. Customers with
credit limits greater than the maximum value are assigned to the overflow bucket,
11:

SELECT customer_id, cust_last_name, credit_limit,
WIDTH_BUCKET (credit_limit, 100, 5000, 10) "Credit Group"
FROM customers WHERE nls_territory = 'SWITZERLAND’
ORDER BY "Credit Group";

CUSTOMER_ID CUST_LAST NAME CREDIT_LIMIT Credit Group

825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1
843 Oates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
849 Kaurusmdki 1800 4
828 Minnelli 2300 5
829 Hunter 2300 5
852 Tanner 2300 5
851 Brown 2300 5
850 Finney 2300 5
830 Dutt 3500 7
831 Bel Geddes 3500 7
832 Spacek 3500 7
838 Nicholson 3500 7
839 Johnson 3500 7
833 Moranis 3500 7
834 Idle 3500 7
845 Fawcett 5000 11
846 Brando 5000 11
847 Streep 5000 11

Functions 6-209

XMLAGG

XMLAGG
Syntax
XMLAgQ::=
—>| XMLAGG P@{XMLType_instance) @—>
Purpose

XMLAggis an aggregate function. It takes a collection of XML fragments and returns
an aggregated XML document. Any arguments that return null are dropped from
the result.

XMLAggis similar to SYS_XMLAggexcept that XMLAggreturns a collection of nodes,
but it does not accept formatting using the XMLFormat object. Also, XMLAggdoes
not enclose the output in an element tag as does SYS_XMLAgg

Note: Within the order_by clause , Oracle does not interpret
number literals as column positions, as it does in other uses of this
clause, but simply as number literals.

See Also: XMLELEMENT on page 6-214 and SYS_XMLAGG on
page 6-165

Examples

The following example produces a Department element containing Employee
elements with employee job ID and last name as the contents of the elements:

SELECT XMLELEMENT("Department",
XMLAGG(XMLELEMENT("Employee”,
e.job_id||' ’||e.last_name)

ORDER BY last_name))

as "Dept_list"

FROM employees e

WHERE e.department_id = 30;

Dept_list

<Department>
<Employee>PU_CLERK Baida</Employee>

6-210 Oracle9/ SQL Reference

XMLAGG

<Employee>PU_CLERK Colmenares</Employee>

<Employee>PU_CLERK Himuro</Employee>

<Employee>PU_CLERK Khoo</Employee>

<Employee>PU_MAN Raphaely</Employee>

<Employee>PU_CLERK Tobias</Employee>
</Department>

The result is a single row, because XMLAggaggregates the rows. You can use the
GROUP BYlause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department",
XMLAGG(XMLELEMENT("Employee", e.job_id|| ’||e.last_name)))
AS "Dept_list"
FROM employees e
GROUP BY e.department_id;

Dept_list

<Department>
<Employee>AD_ASST Whalen</Employee>
</Department>

<Department>
<Employee>MK_MAN Hartstein</Employee>
<Employee>MK_REP Fay</Employee>
</Department>

<Department>
<Employee>PU_MAN Raphaely</Employee>
<Employee>PU_CLERK Khoo</Employee>
<Employee>PU_CLERK Tobias</Employee>
<Employee>PU_CLERK Baida</Employee>
<Employee>PU_CLERK Colmenares</Employee>
<Employee>PU_CLERK Himuro</Employee>

</Department>

Functions 6-211

XMLCOLATTVAL

XMLCOLATTVAL

Syntax
XMLColAttVal::=

M\
)
|
XMLCOLATTVAL value_expr @»

Purpose

XMLColAttVal creates an XML fragment and then expands the resulting XML so
that each XML fragment has the name "column" with the attribute "name". You can
use the ASc_alias clause to change the value of the name attribute to something
other than the column name.

You must specify a value for value_expr . If value_expr is null, then no element
is returned.

Restriction on XMLColAttVal You cannot specify an object type column for
value_expr

Examples

The following example creates an Empelement for a subset of employees, with
nested employee_id ,last name ,and salary elements as the contents of Emp
Each nested element is named column and has a hame attribute with the column
name as the attribute value:

SELECT XMLELEMENT("Emp",
XMLCOLATTVAL(e.employee_id, e.last_name, e.salary)) "Emp Element"
FROM employees e
WHERE employee_id = 204;

Emp Element

<Emp>
<column name="EMPLOYEE_ID">204</column>
<column name="LAST_NAME">Baer</column>
<column name="SALARY">10000</column>
</Emp>

6-212 Oracle9/ SQL Reference

XMLCONCAT

See Also: the example for XMLFOREST on page 6-217 to compare
the output of these two functions

XMLCONCAT
Syntax
XMLConcat::=
’
O @ @
Purpose

XMLConcat takes as input a series of XMLType instances, concatenates the series of
elements for each row, and returns the concatenated series. XMLConcat is the
inverse of XMLSequence.

Null expressions are dropped from the result. If all the value expressions are null,
then the function returns null.

See Also: XMLSEQUENCE on page 6-218

Examples

The following example creates XML elements for the first and last names of a subset
of employees, and then concatenates and returns those elements:

SELECT XMLCONCAT(XMLELEMENT("First", e.first_name),
XMLELEMENT("Last", e.last_name)) AS "Result"
FROM employees e
WHERE e.employee_id > 202;

Result

<First>Susan</First>
<Last>Mauvris</Last>

<First>Hermann</First>
<Last>Baer</Last>

<First>Shelley</First>
<Last>Higgins</Last>

Functions 6-213

XMLELEMENT

<First>William</First>
<Last>Gietz</Last>

4 rows selected.

XMLELEMENT

NAME ’ XML_attributes_clause
XMLELEMENT o [T—\ identifier

Syntax
XMLElement::=

XML _attributes_clause::=

Y
)
XMLATTRIBUTES value_expr @

Purpose

XMLElement takes an element name for identifier , an optional collection of
attributes for the element, and arguments that make up the element’s content. It
returns an instance of type XMLType. XMLElement is similar to SYS_XMLGen
except that XMLElement can include attributes in the XML returned, but it does not
accept formatting using the XMLFormat object.

The XMLElement function is typically nested to produce an XML document with a
nested structure, as in the example in the following section.

You must specify a value for identifier , which Oracle uses as the enclosing tag.
The identifier does not have to be a column name or column reference. It cannot be
an expression or null.

In the XML _attributes clause , if the value_expr is null, then no attribute is
created for that value expression. The type of value_expr cannot be an object type
or collection.

The objects that make up the element content follow the XMLATTRIBUTES
keyword.

6-214 Oracle9/ SQL Reference

XMLELEMENT

« Ifvalue _expr is ascalar expression, then you can omit the ASclause, and

Oracle uses the column name as the element name.

« Ifvalue _expr isan object type or collection, then the ASclause is mandatory,

and Oracle uses the specified c_alias

as the enclosing tag.

« Ifvalue _expr isnull, then no element is created for that value expression.

See Also: SYS_XMLGEN on page 6-166

Examples

The following example produces an Empelement for a series of employees, with

nested elements that provide the employee’s name and hire date:
SELECT XMLELEMENT("Emp", XMLELEMENT("Name",

e.job_id||' ’||e.last_name),

XMLELEMENT("Hiredate", e.hire_date)) as "Result"
FROM employees e WHERE employee_id > 200;

Result

<Emp>
<Name>MK_MAN Hartstein</Name>
<Hiredate>17-FEB-96</Hiredate>
</Emp>

<Emp>
<Name>MK_REP Fay</Name>
<Hiredate>17-AUG-97</Hiredate>
</Emp>

<Emp>
<Name>HR_REP Mavris</Name>
<Hiredate>07-JUN-94</Hiredate>
</Emp>

<Emp>
<Name>PR_REP Baer</Name>
<Hiredate>07-JUN-94</Hiredate>
</Emp>

<Emp>
<Name>AC_MGR Higgins</Name>
<Hiredate>07-JUN-94</Hiredate>
</[Emp>

Functions 6-215

XMLELEMENT

<Emp>
<Name>AC_ACCOUNT Gietz</Name>
<Hiredate>07-JUN-94</Hiredate>
</Emp>

6 rows selected.

The following similar example uses the XMLElement function with the XML _

attributes_clause to create nested XML elements with attribute values for the

top-level element:

SELECT XMLELEMENT("Emp",
XMLATTRIBUTES(e.employee_id AS "ID", e.last_name),
XMLELEMENT("Dept", e.department_id),
XMLELEMENT("Salary", e.salary)) AS "Emp Element"

FROM employees e
WHERE e.employee_id = 206;

Emp Element

<Emp ID="206" LAST_NAME="Gietz">
<Dept>110</Dept>
<Salary>8300</Salary>

</Emp>

Notice that the AS identifier clause was not specified for the last_name
column. As a result, the XML returned uses the column name last_name as the
default.

Finally, the next example uses a subquery within the XML_ attributes_clause
retrieve information from another table into the attributes of an element:

SELECT XMLELEMENT("Emp", XMLATTRIBUTES(e.employee_id, e.last_name),
XMLELEMENT("Dept", XMLATTRIBUTES(e.department_id,
(SELECT d.department_name FROM departments d
WHERE d.department_id = e.department_id) as "Dept_name")),
XMLELEMENT ("salary", e.salary),
XMLELEMENT ("Hiredate", e.hire_date)) AS "Emp Element"
FROM employees e
WHERE employee_id = 205;

Emp Element

<Emp EMPLOYEE_ID="205" LAST_NAME="Higgins">
<Dept DEPARTMENT _ID="110" Dept_name="Accounting"/>

6-216 Oracle9/ SQL Reference

XMLFOREST

<salary>12000</salary>
<Hiredate>07-JUN-94</Hiredate>
</Emp>

XMLFOREST

Syntax
XMLForest::=

(M)
N
|
XMLFOREST value_expr @

Purpose

XMLForest converts each of its argument parameters to XML, and then returns an
XML fragment that is the concatenation of these converted arguments.

« Ifvalue _expr is ascalar expression, then you can omit the ASclause, and
Oracle uses the column name as the element name.

« Ifvalue _expr isan object type or collection, then the ASclause is mandatory,
and Oracle uses the specified ¢_alias as the enclosing tag.

« Ifvalue _expr isnull, then no element is created for that value _expr

Examples

The following example creates an Empelement for a subset of employees, with
nested employee_id ,last name ,and salary elements as the contents of Emp

SELECT XMLELEMENT("Emp",
XMLFOREST(e.employee_id, e.last_name, e.salary))
"Emp Element"

FROM employees e WHERE employee_id = 204;

Emp Element

<Emp>
<EMPLOYEE_ID>204</EMPLOYEE_ID>
<LAST_NAME>Baer</LAST_NAME>
<SALARY>10000</SALARY>

</Emp>

Functions 6-217

XMLSEQUENCE

See Also: the example for XMLCOLATTVAL on page 6-212 to
compare the output of these two functions

XMLSEQUENCE

Syntax
XMLSequence::=

XMLType_instance

XMLSEQUENCE

sys_refcursor_instance

Purpose
XMLSequence has two forms:

« The first form takes as input an XMLType instance and returns a varray of the
top-level nodes in the XMLType.

« The second form takes as input a REFCURSORistance, with an optional
instance of the XMLFormat object, and returns as an XMLSequence type an
XML document for each row of the cursor.

Because XMLSequence returns a collection of XMLType, you can use this function
in a TABLE clause to unnest the collection values into multiple rows, which can in
turn be further processed in the SQL query.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information on this function

Examples

The following example shows how XMLSequence divides up an XML document
with multiple elements into VARRAYsingle-element documents. In this example, the
TABLEkeyword instructs Oracle to consider the collection a table value that can be
used in the FROMlause of the subquery:

SELECT EXTRACT(warehouse_spec, '/Warehouse’) as "Warehouse"
FROM warehouses WHERE warehouse_name = 'San Francisco’;

6-218 Oracle9/ SQL Reference

XMLTRANSFORM

Warehouse

<Warehouse>
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

</Warehouse>

1 row selected.

SELECT VALUE(p)
FROM warehouses w,
TABLE(XMLSEQUENCE(EXTRACT (warehouse_spec, '/Warehouse/*"))) p
WHERE w.warehouse_name = 'San Francisco’;

VALUE(P)

<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

8 rows selected.

XMLTRANSFORM

Syntax
XMLTransform::=

—] XMLTRANSFORM @{XMLType_instance (Dp(xmLType instance 1))

Functions 6-219

XMLTRANSFORM

Purpose

XMLTransform takes as arguments an XMLType instance and an XSL style sheet,
which is itself a form of XMLType instance. It applies the style sheet to the instance
and returns an XMLType.

This function is useful for organizing data according to a style sheet as you are
retrieving it from the database.

See Also: Oracle9i XML API Reference - XDK and Oracle XML DB
for more information on this function

Examples
The XMLTransform function requires the existence of an XSL style sheet. Here is an
example of a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl_tab (coll XMLTYPE);

INSERT INTO xsl_tab VALUES (
XMLTYPE.createxmi(
'<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmins:xsl="http:/Mmmw.w3.0rg/1999/XSL/Transform" >
<xsl:output encoding="utf-8"/>
<l-- alphabetizes an xml tree -->
<xsl:template match="*">
<xsl:copy>
<xsl:apply-templates select="*|text()">
<xsl:sort select="name(.)" data-type="text" order="ascending"/>
</xsl:apply-templates>
<Ixsl:copy>
</xsl:template>
<xsl:template match="text()">
<xsl:value-of select="normalize-space(.)"/>
</xsl:template>
</xsl:stylesheet> "));

1 row created.

The next example uses the xsl_tab XSL style sheet to alphabetize the elements in
one warehouse_spec of the sample table oe.warehouses

SELECT XMLTRANSFORM(w.warehouse_spec, x.coll).GetClobVal()
FROM warehouses w, xsl_tab x
WHERE w.warehouse_name = 'San Francisco’;

6-220 Oracle9/ SQL Reference

ROUND and TRUNC Date Functions

XMLTRANSFORM(W.WAREHOUSE_SPEC,X.COL1).GETCLOBVAL()

<Warehouse>
<Area>50000</Area>
<Building>Rented</Building>
<DockType>Side load</DockType>
<Docks>1</Docks>
<Parking>Lot</Parking>
<RailAccess>N</RailAccess>
<VClearance>12 ft</VClearance>
<WaterAccess>Y</WaterAccess>

</Warehouse>

ROUND and TRUNC Date Functions

Table 6-4 lists the format models you can use with the ROUNRNd TRUNate
functions and the units to which they round and truncate dates. The default model,
'DD’, returns the date rounded or truncated to the day with a time of midnight.

Table 6-4 Date Format Models for the ROUND and TRUNC Date Functions

Format Model

Rounding or Truncating Unit

cC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY

Y

Year (rounds up on July 1)

IYYY
Y

Y

|

ISO Year

Q

Quarter (rounds up on the sixteenth day of the second month of the
quarter)

MONTH
MON
MM

RM

Month (rounds up on the sixteenth day)

Functions 6-221

User-Defined Functions

Table 6-4 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model = Rounding or Truncating Unit

Ww Same day of the week as the first day of the year
W Same day of the week as the first day of the ISO year
w Same day of the week as the first day of the month
DDD Day

DD

J

DAY Starting day of the week

DY

D

HH Hour

HH12

HH24

MI Minute

The starting day of the week used by the format models DAY, DY, and D is specified
implicitly by the initialization parameter NLS_TERRITORY

See Also: Oracle9i Database Reference and Oracle9i Database
Globalization Support Guide for information on this parameter

User-Defined Functions

You can write user-defined functions in PL/SQL or Java to provide functionality
that is not available in SQL or SQL built-in functions. User-defined functions can
appear in a SQL statement anywhere SQL functions can appear, that is, wherever an
expression can occur.

For example, user-defined functions can be used in the following:
= The select list of a SELECTstatement

= The condition of a WHERElause

» CONNECT BBTART WITHORDER B¥and GROUP B¥lauses
= The VALUESclause of an INSERT statement

= The SETclause of an UPDATEstatement

6-222 Oracle9/ SQL Reference

User-Defined Functions

Prerequisites

Note: Oracle SQL does not support calling of functions with
boolean parameters or returns. Therefore, if your user-defined
functions will be called from SQL statements, you must design
them to return numbers (0 or 1) or character strings (TRUE or
'FALSE).

user_defined_function::=

package
‘ (- . function

user_defined_operator
| DISTINCT I
ALL

expr

(OO (O

The optional expression list must match attributes of the function, package, or
operator.

Restriction on User-defined Functions The DISTINCT and ALL keywords are
valid only with a user-defined aggregate function.

See Also:

» CREATE FUNCTION on page 13-52 for information on creating
functions, including restrictions on user-defined functions

« Oracle9i Application Developer’s Guide - Fundamentals for a
complete description on the creation and use of user functions

User-defined functions must be created as top-level functions or declared with a
package specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE
privilege on the user function. To query a view defined with a user function, you
must have SELECTprivileges on the view. No separate EXECUTHBprivileges are
needed to select from the view.

Functions 6-223

User-Defined Functions

See Also:

« CREATE FUNCTION on page 13-52 for information on creating
top-level functions

« CREATE PACKAGE on page 14-52 for information on
specifying packaged functions

Name Precedence

Within a SQL statement, the names of database columns take precedence over the
names of functions with no parameters. For example, if the Human Resources
manager creates the following two objects in the hr schema:

CREATE TABLE new_emps (new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END ;

then in the following two statements, the reference to new_sal refers to the column
new_emps.new_sal

SELECT new_sal FROM new_emps;
SELECT new_emps.new_sal FROM new_emps;

To access the function new_sal , you would enter;
SELECT hr.new_sal FROM new_emps;

Here are some sample calls to user functions that are allowed in SQL expressions:

circle_area (radius)
payroll.tax_rate (empno)
hr.employees.tax_rate (dependent, empno)@remote

Example To call the tax_rate user function from schema hr, execute it against
the ss_ no and sal columnsintax_table ,and place the results in the variable
income_tax , specify the following:

SELECT hr.tax_rate (ss_no, sal)
INTO income_tax
FROM tax_table
WHERE ss_no = tax_id;

Naming Conventions

If only one of the optional schema or package names is given, then the first
identifier can be either a schema name or a package name. For example, to

6-224 Oracle9/ SQL Reference

User-Defined Functions

determine whether PAYROLLin the reference PAYROLLTAX_ RATEis a schema or
package name, Oracle proceeds as follows:

1. Check for the PAYROLLpackage in the current schema.

2. IfaPAYROLLpackage is not found, then look for a schema name PAYROLLthat
contains a top-level TAX_RATEfunction. If no such function is found, then
return an error.

3. If the PAYROLLpackage is found in the current schema, then look for a TAX _
RATEfunction in the PAYROLLpackage. If no such function is found, then
return an error.

You can also refer to a stored top-level function using any synonym that you have
defined for it.

Functions 6-225

User-Defined Functions

6-226 Oracle9/ SQL Reference

v

Common SQL DDL Clauses

This chapter describes some SQL data definition clauses that appear in multiple
SQL statements.

This chapter contains these sections:

allocate _extent clause
constraints

deallocate _unused_clause
file _specification
logging_clause
parallel_clause
physical_attributes_clause

storage_clause

Common SQL DDL Clauses 7-1

allocate_extent_clause

allocate _extent clause

Purpose

Syntax

Use the allocate _extent clause clause to explicitly allocate a new extent for a
database object.

Explicitly allocating an extent with this clause does not change the values of the
NEXTand PCTINCREASEtorage parameters, so does not affect the size of the next
extent to be allocated implicitly by Oracle.

See Also: storage clause on page 7-56 for information about
the NEXTand PCTINCREASEstorage parameters

You can allocate an extent in the following SQL statements:

« ALTER CLUSTERsee ALTER CLUSTER on page 9-6)

« ALTER INDEX to allocate an extent to the index, an index partition, or an index
subpartition (see ALTER INDEX on page 9-62)

«» ALTER MATERIALIZED VIEWto0 allocate an extent to the materialized view, one
of its partitions or subpartitions, or the overflow segment of an index-organized
materialized view (see ALTER MATERIALIZED VIEW on page 9-6)

» ALTER MATERIALIZED VIEW LOGsee ALTER MATERIALIZED VIEW LOG on
page 9-110)

« ALTER TABLEto allocate an extent to the table, a table partition, a table
subpartition, the mapping table of an index-organized table, the overflow
segment of an index-organized table, or a LOB storage segment (see ALTER
TABLE on page 11-2)

allocate_extent_clause::=

DATAFILE |e©—>(filename

INSTANCE |->(imeger

—>| ALLOCATE |—>| EXTENT |

7-2 Oracle9/ SQL Reference

allocate_extent_clause

Semantics

This section describes the parameters of the allocate extent clause . For
additional information, refer to the SQL statement in which you set or reset these
parameters for a particular database object.

Note: You cannot specify the allocate extent clause and
the deallocate unused clause in the same statement.

SIZE

Specify the size of the extent in bytes. Use K or Mto specify the extent size in
kilobytes or megabytes.

For a table, index, materialized view, or materialized view log, if you omit SIZE,
then Oracle determines the size based on the values of the storage parameters of the
object. However, for a cluster, Oracle does not evaluate the cluster’s storage
parameters, so you must specify SIZE if you do not want Oracle to use a default
value.

DATAFILE ' filename’

Specify one of the datafiles in the tablespace of the table, cluster, index, materialized
view, or materialized view log to contain the new extent. If you omit DATAFILE,
then Oracle chooses the datafile.

INSTANCE integer
Use this parameter only if you are using Oracle with Real Application Clusters.

Specifying INSTANCEInteger makes the new extent available to the freelist group
associated with the specified instance. If the instance number exceeds the maximum
number of freelist groups, then Oracle divides the specified number by the
maximum number and uses the remainder to identify the freelist group to be used.
An instance is identified by the value of its initialization parameter INSTANCE_
NUMBER

If you omit this parameter, then the space is allocated to the table, cluster, index,
materialized view, or materialized view log but is not drawn from any particular
freelist group. Instead, Oracle uses the master freelist and allocates space as needed.

Common SQL DDL Clauses 7-3

allocate_extent_clause

Note: If you are using automatic segment-space management,
then the INSTANCEparameter of the allocate extent clause

may not reserve the newly allocated space for the specified
instance, because automatic segment-space management does not
maintain rigid affinity between extents and instances.

See Also: Oracle9i Real Application Clusters Administration for more
information on setting the INSTANCEparameter of allocate
extent_clause

7-4 Oracle9/ SQL Reference

constraints

constraints

Purpose

Use one of the constraints to define an integrity constraint—a rule that restricts
the values in a database. Oracle lets you create six types of constraints and lets you
declare them in two ways.

The six types of integrity constraint are described briefly here and more fully in
"Semantics" on page 7-10:

« A NOT NULLconstraint prohibits a database value from being null.

=« Aunique constraint prohibits multiple rows from having the same value in the
same column or combination of columns but allows some values to be null.

« A primary key constraint combines a NOT NULLconstraint and a unique
constraint in a single declaration. That is, it prohibits multiple rows from having
the same value in the same column or combination of columns and prohibits
values from being null.

« A foreign key constraint requires values in one table to match values in
another table.

« A check constraint requires a value in the database to comply with a specified
condition.

« A REFcolumn by definition references an object in another object type or in a
relational table. A REF constraint lets you further describe the relationship
between the REFcolumn and the object it references.

You can define constraints syntactically in two ways:

« As part of the definition of an individual column or attribute. This is called
inline specification.

= As part of the table definition. This is called out-of-line specification.

NOT NULLconstraints must be declared inline. All other constraints can be declared
either inline or out of line.

Constraint clauses can appear in the following statements:
. CREATE TABLHsee CREATE TABLE on page 15-7)

» ALTER TABLE(ee ALTER TABLE on page 11-2)

« CREATE VIEWsee CREATE VIEW on page 16-39)

Common SQL DDL Clauses 7-5

constraints

« ALTER VIEW(see ALTER VIEW on page 12-31)
View Constraints Oracle does not enforce view constraints. However, you can
enforce constraints on views through constraints on base tables.

You can specify only unique, primary key, and foreign key constraints on views,
and they are supported only in DISABLE NOVALIDATEmMode. You cannot define
view constraints on attributes of an object column.

See Also:

« "View Constraints" on page 7-26 for additional information on
view constraints

« "DISABLE Clause" on page 7-22 for information on DISABLE
NOVALIDATEmode

Prerequisites
You must have the privileges necessary to issue the statement in which you are
defining the constraint.
To create a foreign key constraint, in addition, the parent table or view must be in
your own schema, or you must have the REFERENCES§rivilege on the columns of
the referenced key in the parent table or view.

Syntax

constraints:;=

inline_constraint
|I out_of_line_constraint ..
inline_ref_constraint

out_of line_ref _constraint

(inline_constraint::= on page 7-7, out_of line_constraint::= on
page 7-7, inline_ref _constraint::= on page 7-7, out_of line_ref_
constraint::= on page 7-8)

7-6 Oracle9/ SQL Reference

constraints

inline_constraint::=

(v
g NULL

UNIQUE

constraint_state
PRIMARY KEY

references_clause

CHECK |—>®{condition>9®

(references_clause::= on page 7-8)
out_of line_constraint::=

ﬂ CONSTRAINT Kconstraint_nameh

constraint_state

[—>| CONSTRAINT Kconstraint_nameh PRIMARY

\l CHECK F@e(condition)—)@

(references_clause::= on page 7-8, constraint_state::= on page 7-8)
inline_ref_constraint::=

references_clause

schema ‘

(scope_table)

WITH ROWID
f—)| CONSTRAINT |—>Cconstra|nt name constralnt state ’_)
(references clause)
(references_clause::= on page 7-8, constraint_state::= on page 7-8)

Common SQL DDL Clauses 7-7

constraints

out_of line_ref constraint::=

GEDY6

(scope_table)

ﬂ CONSTRAINT Kconstraint_nameh

FOREIGN

references_clause

=)
(references_clause::= on page 7-8, constraint_state::= on page 7-8)
references_clause ::=

=

E— O
REFERENCES (object)

constraint_state ::=

“ DEFERRABLE
INITIALLY

IMMEDIATE

=

=

(using_index_clause::= on page 7-9, exceptions_clause::= on page 7-10)

7-8 Oracle9/ SQL Reference

constraints

using_index_clause ::=

.schema
. 3 index)

—@{create_index_statement)s@—
,| PCTFREE |{integer)—
—>| USING |->| INDEX |->- —| INITRANS |{integer)— N
—| MAXTRANS |->(integer)—

-| TABLESPACE |{tab|espace)—

Wicrrs —_(
SORT
l NOSORT I

logging_clause

global_partitioned_index

(create_index_statement . create_index:.= on page 13-66, storage
clause s on page 7-56, logging_clause on page 7-45, global_partitioned_
index::= on page 7-9)

global_partitioned_index ::=

—] cLosaL | parTITIoN |} BY |} RANGE |—>®{column_IisWndex_partitioning_clause)»@»

index_partitioning_clause ::=

ﬂ f{segment_attributes_clauseh
[A— VALUES |->| LESS |—>| THAN o)

Common SQL DDL Clauses 7-9

constraints

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE |—><tablespace

logging_clause

(physical _attributes_clause::= on page 7-53, logging_clause on
page 7-45)

physical_attributes_clause::=

PCTFREE |{integer

PCTUSED |{integer

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause on page 7-56)

exceptions_clause ::=

m.schema
—>| EXCEPTIONS |->| INTO } . table)

Semantics

This section describes the semantics of the constraints . For additional
information, refer to the SQL statement in which you define or redefine a constraint
for a table or view.

7-10 Oracle9i SQL Reference

constraints

Note: Oracle does not support constraints on columns or
attributes whose type is a user-defined object, nested table, VARRAY
REF, or LOB, with two exceptions:

« NOT NULLconstraints are supported for a column or attribute
whose type is user-defined object, VARRAYREEF, or LOB.

« NOT NULILforeign key, and REFconstraints are supported on a
column of type REF

CONSTRAINT constraint_ name Specify a name for the constraint. If you omit this
identifier, then Oracle generates a name with the form SYS_n. Oracle stores the
name and the definition of the integrity constraint in the USER , ALL_, and DBA _
CONSTRAINTSJata dictionary views (in the CONSTRAINT_NAMand SEARCH_
CONDITIONcolumns, respectively).

See Also: Oracle9i Database Reference for information on the data
dictionary views

NOT NULL Constraints

A NOT NULLconstraint prohibits a column from containing nulls. The NULL
keyword does not actually define an integrity constraint, but you can specify it to
explicitly permit a column to contain nulls. You must define NOT NULLand NULL
using inline specification. If you specify neither NOT NULLnhor NULL, then the
default is NULL

NOT NULLconstraints are the only constraints you can specify inline on XMLType
and VARRAYtolumns.

To satisfy a NOT NULLconstraint, every row in the table must contain a value for the
column.

Note: Oracle does not index table rows in which all key columns
are null except in the case of bitmap indexes. Therefore, if you want
an index on all rows of a table, then you must either specify NOT
NULL constraints for at least one of the index key columns or create
a bitmap index.

Common SQL DDL Clauses 7-11

constraints

Restrictions on NOT NULL Constraints
=« You cannot specify NULLor NOT NULLin a view constraint.

= You cannot specify NULLor NOT NULLfor an attribute of an object. Instead, use
a CHECKconstraint with the IS [NOT NULL condition.

See Also: "Attribute-Level Constraints Example" on page 7-34
and "NOT NULL Example" on page 7-29

Unique Constraints

A unique constraint designates a column as a unique key. A composite unique key
designates a combination of columns as the unique key. When you define a unique
constraint inline, you need only the UNIQUEkeyword. When you define a unique
constraint out of line, you must also specify one or more columns. You must define
a composite unique key out of line.

To satisfy a unigue constraint, no two rows in the table can have the same value for
the unique key. However, the unique key made up of a single column can contain
nulls. To satisfy a composite unique key, no two rows in the table or view can have
the same combination of values in the key columns. Any row that contains nulls in
all key columns automatically satisfies the constraint. However, two rows that
contain nulls for one or more key columns and the same combination of values for
the other key columns violate the constraint.

Note: When you specify a unique constraint on one or more
columns, Oracle implicitly creates an index on the unique key. If
you are defining uniqueness for purposes of query performance,
then Oracle Corporation recommends that you instead create the
unique index explicitly using a CREATE UNIQUE INDEXtatement.
See CREATE INDEX on page 13-65 for more information.

Restrictions on Unique Constraints
« Atable or view can have only one unique key.

« None of the columns in the unique key can have datatype LOB, LONGLONG
RAVWARRAYNESTED TABLEOBJECTBFILE , or REF, or TIMESTAMP WITH
TIME ZONE However, the unique key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE

« A composite unigue key cannot have more than 32 columns.

7-12 Oracle9i SQL Reference

constraints

= You cannot designate the same column or combination of columns as both a
primary key and a unique key.

= You cannot specify a unique key when creating a subtable or a subview in an
inheritance hierarchy. The unique key can be specified only for the top-level
(root) table or view.

See Also: "Unique Key Example" on page 7-27 and Composite
Unique Key Example on page 7-28

Primary Key Constraints

A primary key constraint designates a column as the primary key of a table or view.
A composite primary key designates a combination of columns as the primary key.
When you define a primary key constraint inline, you need only the PRIMARY KEY
keywords. When you define a primary key constraint out of line, you must also
specify one or more columns. You must define a composite primary key out of line.

A primary key constraint combines a NOT NULLand unique constraint in one
declaration. Therefore, to satisfy a primary key constraint:

= No primary key value can appear in more than one row in the table.

« No column that is part of the primary key can contain a null.

Restrictions on Primary Key Constraints
« Atable or view can have only one primary key.

« None of the columns in the primary key can have datatype LOB, LONGLONG
RAVWARRAYNESTED TABLEOBJECTBFILE , or REF, or TIMESTAMP WITH
TIME ZONE However, the primary key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE

« The size of the primary key cannot exceed approximately one database block.
« A composite primary key cannot have more than 32 columns.

= You cannot designate the same column or combination of columns as both a
primary key and a unique key.

« You cannot specify a primary key when creating a subtable or a subview in an
inheritance hierarchy. The primary key can be specified only for the top-level
(root) table or view.

See Also: "Primary Key Example" on page 7-28 and "Composite
Primary Key Example" on page 7-29

Common SQL DDL Clauses 7-13

constraints

Foreign Key Constraints

A foreign key constraint (also called a referential integrity constraint) designates a
column as the foreign key and establishes a relationship between that foreign key
and a specified primary or unique key, called the referenced key. A composite
foreign key designates a combination of columns as the foreign key.

The table or view containing the foreign key is called the child object, and the table
or view containing the referenced key is called the parent object. The foreign key
and the referenced key can be in the same table or view. In this case, the parent and
child tables are the same. If you identify only the parent table or view and omit the
column name, then the foreign key automatically references the primary key of the
parent table or view. The corresponding column or columns of the foreign key and
the referenced key must match in order and datatype.

You can define a foreign key constraint on a single key column either inline or out
of line. You must specify a composite foreign key and a foreign key on an attribute
out of line.

To satisfy a composite foreign key constraint, the composite foreign key must refer
to a composite unique key or a composite primary key in the parent table or view,
or the value of at least one of the columns of the foreign key must be null.

You can designate the same column or combination of columns as both a foreign
key and a primary or unique key. You can also designate the same column or
combination of columns as both a foreign key and a cluster key.

You can define multiple foreign keys in a table or view. Also, a single column can be
part of more than one foreign key.

Restrictions on Foreign Key Constraints

=« None of the columns in the foreign key can have datatype LOB, LONGLONG
RAVWARRAYNESTED TABLEOBJECTBFILE , or REF, or TIMESTAMP WITH
TIME ZONE However, the primary key can contain a column of TIMESTAMP
WITH LOCAL TIME ZONE

« The referenced unique or primary key constraint on the parent table or view
must already be defined.

« A composite foreign key cannot have more than 32 columns.

« The child and parent tables must be on the same database. To enable referential
integrity constraints across nodes of a distributed database, you must use
database triggers. See CREATE TRIGGER on page 15-95.

7-14 Oracle9i SQL Reference

constraints

« If either the child or parent object is a view, then the constraint is subject to all
restrictions on view constraints. See "View Constraints" on page 7-26.

= You cannot define a foreign key constraint in a CREATE TABLEtatement that
contains an AS subquery clause. Instead, you must create the table without the
constraint and then add it later with an ALTER TABLEstatement.

See Also: Oracle9i Application Developer’s Guide - Fundamentals and
"Foreign Key Constraint Example" on page 7-29 and "Composite
Foreign Key Constraint Example" on page 7-31

references_clause Foreign key constraints use the references_clause syntax.
When you specify a foreign key constraint inline, you need only the references
clause .When you specify a foreign key constraint out of line, you must also
specify the FOREIGN KEYkeywords and one or more columns.

ON DELETE Clause The ON DELETEIlause lets you determine how Oracle
automatically maintains referential integrity if you remove a referenced primary or
unique key value. If you omit this clause, then Oracle does not allow you to delete
referenced key values in the parent table that have dependent rows in the child
table.

« Specify CASCADE(f you want Oracle to remove dependent foreign key values.

« Specify SET NULLIf you want Oracle to convert dependent foreign key values
to NULL

Restriction on ON DELETE You cannot specify this clause for a view constraint.

See Also: "ON DELETE Example" on page 7-31

Check Constraints

A check constraint lets you specify a condition that each row in the table must
satisfy. To satisfy the constraint, each row in the table must make the condition
either TRUEor unknown (due to a null). When Oracle evaluates a check constraint
condition for a particular row, any column names in the condition refer to the
column values in that row.

The syntax for inline and out-of-line specification of check constraints is the same.
However, inline specification can refer only to the column (or the attributes of the
column if it is an object column) currently being defined, whereas out-of-line
specification can refer to multiple columns or attributes.

Common SQL DDL Clauses 7-15

constraints

Note: Oracle does not verify that conditions of check constraints
are not mutually exclusive. Therefore, if you create multiple check
constraints for a column, design them carefully so their purposes
do not conflict. Do not assume any particular order of evaluation of
the conditions.

See Also:
« Chapter 5, "Conditions" for additional information and syntax

« "Check Constraint Examples" on page 7-32 and "Attribute-
Level Constraints Example" on page 7-34

Restrictions on Check Constraints

« You cannot specify a check constraint for a view. However, you can define the
view using the WITH CHECK OPTIOBlause, which is equivalent to specifying a
check constraint for the view.

« The condition of a check constraint can refer to any column in the table, but it
cannot refer to columns of other tables.

« Conditions of check constraints cannot contain the following constructs:

Subqueries and scalar subquery expressions

Calls to the functions that are not deterministic (CURRENT_DATE
CURRENT_TIMESTAMBBTIMEZONELOCALTIMESTAMP
SESSIONTIMEZONESYSDATESYSTIMESTAMRJID, USER and USERENY

Calls to user-defined functions

Dereferencing of REFcolumns (for example, using the DEREFunction)
Nested table columns or attributes

The pseudocolumns CURRVALNEXTVAL LEVEL, or ROWNUM

Date constants that are not fully specified

REF Constraints

REFconstraints let you describe the relationship between a column of type REFand
the object it references.

7-16 Oracle9i SQL Reference

constraints

ref_constraint REFconstraints use the ref_constraint syntax. You define a
REFconstraint either inline or out of line. Out-of-line specification requires you to
specify the REFcolumn or attribute you are further describing.

« For ref column , specify the name of a REFcolumn of an object or relational
table.

« For ref_attribute , specify an embedded REFattribute within an object
column of a relational table.

Both inline and out-of-line specification let you define a scope constraint, a rowid
constraint, or a referential integrity constraint on a REFcolumn.

If the REFcolumn’s scope table or referenced table has a primary-key-based object
identifier, then it is a user-defined REFcolumn.

See Also: Oracle9i Database Concepts for more information on
REFs, "Foreign Key Constraints" on page 7-14, and "REF Constraint
Examples" on page 7-34

SCOPE REF Constraints

In a table with a REFcolumn, each REFvalue in the column can conceivably
reference a row in a different object table. The SCOPEtlause restricts the scope of
references to a single table, scope table .The values in the REFcolumn or
attribute point to objects in scope _table , in which object instances (of the same
type as the REFcolumn) are stored.

Specify the SCOPEtlause to restrict the scope of references in the REFcolumn to a
single table. For you to specify this clause, scope table must be in your own
schema or you must have SELECTprivileges on scope table or SELECT ANY
TABLEsystem privileges. You can specify only one scope table for each REF
column.

Restrictions on Scope Constraints

= You cannot add a scope constraint to an existing column unless the table is
empty.

= You cannot specify a scope constraint for the REFelements of a VARRAY
column.

= You must specify this clause if you specify AS subquery and the subquery
returns user-defined REFs.

= You cannot subsequently drop a scope constraint from a REFcolumn.

Common SQL DDL Clauses 7-17

constraints

Rowid REF Constraints

Specify WITH ROWIDo store the rowid along with the REFvalue in ref_column
or ref_attribute . Storing the rowid with the REFvalue can improve the
performance of dereferencing operations, but will also use more space. Default
storage of REFvalues is without rowids.

See Also: the function DEREF on page 6-58 for an example of
dereferencing

Restrictions on Rowid Constraints
=« You cannot define a rowid constraint for the REFelements of a VARRAYtolumn.
= You cannot subsequently drop a rowid constraint from a REFcolumn.

« If the REFcolumn or attribute is scoped, then this clause is ignored and the
rowid is not stored with the REFvalue.

Referential Integrity Constraints on REF Columns

The references_clause of the ref_constraint syntax lets you define a
foreign key constraint on the REFcolumn.This clause also implicitly restricts the
scope of the REFcolumn or attribute to the referenced table. However, whereas a
foreign key constraint on a non-REFcolumn references an actual column in the
parent table, a foreign key constraint on a REFcolumn references the implicit object
identifier (OID) column of the parent table.

If you do not specify CONSTRAINTthen Oracle generates a system name for the
constraint of the form SYS_Qn.

If you add a referential integrity constraint to an existing REFcolumn that is already
scoped, then the referenced table must be the same as the scope table of the REF
column. If you later drop the referential integrity constraint, then the REFcolumn
will remain scoped to the referenced table.

As is the case for foreign key constraints on other types of columns, you can use the
references_clause alone for inline declaration. For out-of-line declaration you
must also specify the FOREIGN KEYeywords plus one or more REFcolumns or
attributes.

See Also: Oracle9i Application Developer’s Guide - Object-Relational
Features for more information on object identifiers

7-18 Oracle9i SQL Reference

constraints

Restrictions on Foreign Key Constraints of REF Columns

« Oracle implicitly adds a scope constraint when you add a referential integrity
constraint to an existing unscoped REFcolumn. Therefore, all the restrictions
that apply for scope constraints also apply in this case.

« You cannot specify a column after the object name in the references
clause .

Specifying Constraint State

As part of constraint definition, you can specify how and when Oracle should
enforce the constraint.

constraint_state You can use the constraint_state with both inline and out-
of-line specification. You can specify the clauses of constraint_state in any
order, but you can specify each clause only once.

DEFERRABLE Clause The DEFERRABLENd NOT DEFERRABLfgarameters
indicate whether or not, in subsequent transactions, constraint checking can be
deferred until the end of the transaction using the SET CONSTRAIN{S) statement.
If you omit this clause, then the default is NOT DEFERRABLE

« Specify NOT DEFERRABL#® indicate that in subsequent transactions you
cannot use the SET CONSTRAIN[S] clause to defer checking of this constraint
until the transaction is committed. The checking of a NOT DEFERRABLE
constraint can never be deferred to the end of the transaction.

Note: If you declare a new constraint NOT DEFERRABLEhen it
must be valid at the time the CREATE TABLBtatement is
committed or the CREATEstatement will fail.

« Specify DEFERRABLEHo indicate that in subsequent transactions you can use
the SET CONSTRAIN[S] clause to defer checking of this constraint until after
the transaction is committed. This setting in effect lets you disable the constraint
temporarily while making changes to the database that might violate the
constraint until all the changes are complete.

You cannot alter a constraint’s deferrability. That is, whether you specify either of
these parameters, or make the constraint NOT DEFERRABLENplicitly by specifying
neither of them, you cannot specify this clause in an ALTER TABLEstatement. You
must drop the constraint and re-create it.

Common SQL DDL Clauses 7-19

constraints

See Also:

« SET CONSTRAINTIS] on page 18-45 for information on setting
constraint checking for a transaction

« Oracle9i Database Administrator’s Guide and Oracle9i Database
Concepts for more information about deferred constraints

« "DEFERRABLE Constraint Examples" on page 7-36

Restriction on [NOT] DEFERRABLE You cannot specify either of these parameters
for a view constraint.

INITIALLY Clause The INITIALLY clause establishes the default checking
behavior for constraints that are DEFERRABLEThe INITIALLY setting can be
overridden by a SET CONSTRAIN{S) statement in a subsequent transaction.

« Specify INITIALLY IMMEDIATE to indicate that Oracle should check this
constraint at the end of each subsequent SQL statement. If you do not specify
INITIALLY at all, then the default is INITIALLY IMMEDIATE .

Note: If you declare a new constraint INITIALLY IMMEDIATE ,
then it must be valid at the time the CREATE TABLEtatement is
committed or the create statement will fail.

« Specify INITIALLY DEFERRED to indicate that Oracle should check this
constraint at the end of subsequent transactions.

This clause is not valid if you have declared the constraint to be NOT DEFERRABLE
because a NOT DEFERRABLEbNstraint is automatically INITIALLY IMMEDIATE
and cannot ever be INITIALLY DEFERRED.

VALIDATE | NOVALIDATE The behavior of VALIDATE and NOVALIDATEalways
depends on whether the constraint is enabled or disabled, either explicitly or by
default. Therefore they are described in the context of "ENABLE Clause" on

page 7-20 and "DISABLE Clause" on page 7-22.

ENABLE Clause Specify ENABLEIf you want the constraint to be applied to the
data in the table.

7-20 Oracle9i SQL Reference

constraints

Note: If you enable a unique or primary key constraint, and if no
index exists on the key, Oracle creates a unique index. This index is
dropped if the constraint is subsequently disabled, and Oracle
rebuilds the index every time the constraint is enabled.

To avoid rebuilding the index and eliminate redundant indexes,
create new primary key and unique constraints initially disabled.
Then create (or use existing) nonunique indexes to enforce the
constraint. Oracle does not drop a nonunique index when the
constraint is disabled, so subsequent ENABLEoperations are
facilitated.

ENABLE VALIDATEspecifies that all old and new data also complies with the
constraint. An enabled validated constraint guarantees that all data is and will
continue to be valid.

If any row in the table violates the integrity constraint, the constraint remains
disabled and Oracle returns an error. If all rows comply with the constraint,
Oracle enables the constraint. Subsequently, if new data violates the constraint,
Oracle does not execute the statement and returns an error indicating the
integrity constraint violation.

Note: If you place a primary key constraint in ENABLE VALIDATE
mode, the validation process will verify that the primary key
columns contain no nulls. To avoid this overhead, mark each
column in the primary key NOT NULLbefore entering data into the
column and before enabling the table’s primary key constraint.

ENABLE NOVALIDATENsures that all new DML operations on the constrained
data comply with the constraint. This clause does not ensure that existing data
in the table complies with the constraint and therefore does not require a table

lock.

If you specify neither VALIDATE nor NOVALIDATE the default is VALIDATE.

If you change the state of any single constraint from ENABLE NOVALIDATEo
ENABLE VALIDATE the operation can be performed in parallel, and does not block
reads, writes, or other DDL operations.

Common SQL DDL Clauses 7-21

constraints

Restriction on the ENABLE Clause You cannot enable a foreign key that
references a disabled unique or primary key.

DISABLE Clause Specify DISABLE to disable the integrity constraint. Disabled
integrity constraints appear in the data dictionary along with enabled constraints. If
you do not specify this clause when creating a constraint, Oracle automatically
enables the constraint.

« DISABLE VALIDATE disables the constraint and drops the index on the
constraint, but keeps the constraint valid. This feature is most useful in data
warehousing situations, because it lets you load large amounts of data while
also saving space by not having an index. This setting lets you load data from a
nonpartitioned table into a partitioned table using the exchange_patrtition_
clause of the ALTER TABLEstatement or using SQL*Loader. All other
modifications to the table (inserts, updates, and deletes) by other SQL
statements are disallowed.

See Also: Oracle9i Data Warehousing Guide for more information
on using this setting

« DISABLE NOVALIDATEsignifies that Oracle makes no effort to maintain the
constraint (because it is disabled) and cannot guarantee that the constraint is
true (because it is not being validated).

You cannot drop a table whose primary key is being referenced by a foreign key
even if the foreign key constraint is in DISABLE NOVALIDATEstate. Further, the
optimizer can use constraints in DISABLE NOVALIDATEstate.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on when to use this setting

If you specify neither VALIDATE nor NOVALIDATE the default is NOVALIDATE

If you disable a unique or primary key constraint that is using a unique index,
Oracle drops the unique index.

See Also: the enable disable clause of CREATE TABLBN
page 15-55 for additional notes and restrictions

RELY Clause RELYand NORELYare valid only when you are modifying an
existing constraint (that is, in the ALTER TABLE.. MODIFYconstraint syntax). These
parameters specify whether a constraint in NOVALIDATEmode is to be taken into

7-22 Oracle9i SQL Reference

constraints

account for query rewrite. Specify RELYto activate an existing constraint in
NOVALIDATEmode for query rewrite in an unenforced query rewrite integrity
mode. The constraint is in NOVALIDATEmMode, so Oracle does not enforce it. The
default is NORELY

Unenforced constraints are generally useful only with materialized views and
query rewrite. Depending on the QUERY_REWRITE_INTEGRITY¥hode (see ALTER
SESSION on page 10-2), query rewrite can use only constraints that are in
VALIDATE mode, or that are in NOVALIDATEmode with the RELY parameter set, to
determine join information.

Restriction on the RELY Clause You cannot set a nondeferrable NOT NULL
constraint to RELY

See Also: Oracle9i Data Warehousing Guide for more information
on materialized views and query rewrite

Using Indexes to Enforce Constraints

When defining the state of a unique or primary key constraint, you can specify an
index for Oracle to use to enforce the constraint, or you can instruct Oracle to create
the index used to enforce the constraint.

using_index_clause You can specify the using_index_clause only when
enabling unique or primary key constraints. You can specify the clauses of the
using_index_clause in any order, but you can specify each clause only once.

« If you specify schema.index , Oracle attempts to enforce the constraint using
the specified index. If Oracle cannot find the index or cannot use the index to
enforce the constraint, Oracle returns an error.

« Ifyou specify the create_index_statement , Oracle attempts to create the
index and use it to enforce the constraint. If Oracle cannot create the index or
cannot use the index to enforce the constraint, Oracle returns an error.

« Ifyou neither specify an existing index nor create a new index, Oracle creates
the index. In this case:

« The index receives the same name as the constraint.

« You can choose the values of the INITRANS, MAXTRANSTABLESPACE
PCTFREEand STORAGIHparameters for the index. You cannot specify
PCTUSEDr the logging clause for the index.

Common SQL DDL Clauses 7-23

constraints

« If table is partitioned, you can specify a locally or globally partitioned
index for the unique or primary key constraint.

Restrictions on the using index_clause
= You cannot specify this clause for a view constraint.
= You cannot specify this clause for a NOT NULL foreign key, or check constraint.

= You cannot specify an index (schema.index) or create an index (create
index_statement) when enabling the primary key of an index-organized
table.

See Also:

« physical_attributes clause on page 7-52 for
information on the INITRANS , MAXTRANSTABLESPACEand
PCTFREBRyarameters and storage _clause on page 7-56 for
information on the storage parameters

« CREATE INDEX on page 13-65 for a description of LOCALand
global _partitioned_index clause, and for a description
of NOSORENd logging_clause in relation to indexes

« "Explicit Index Control Example" on page 7-35

NOSORT clause Specify NOSORTo indicate that the table rows are stored in the
database in ascending order and that therefore Oracle does not have to sort the
rows when creating the index.

logging clause The logging clause lets you specify whether creation of the
index should be logged in the redo log file.

See Also: logging_clause on page 7-45

global_partitioned_index The global_patrtitioned_index clause lets you
specify that the partitioning of the index is user defined and is not equipartitioned
with the underlying table. By default, nonpartitioned indexes are global indexes.
Oracle will partition the global index on the ranges of values from the table
columns you specify in column_list . You cannot specify this clause for a local
index.

The column_list must specify a left prefix of the index column list. That is, if the
index is defined on columns a, b, and c, then for column_list you can specify (a ,
b,c),or(a,b),or(a, c), butyou cannot specify (b, c) or(c) or(b,a).

7-24 Oracle9i SQL Reference

constraints

Restrictions on the Global Partitioned Index Key
= You cannot specify more than 32 columns in column_list

« The columns cannot contain the ROWIDpseudocolumn or a column of type
ROWID

Note: If your enterprise has or will have databases using different
character sets, use caution when partitioning on character columns.
The sort sequence of characters is not identical in all character sets.

See Also: Oracle9i Database Globalization Support Guide for more
information on character set support

index_partitioning_clause Use this clause to describe the individual index
partitions. The number of repetitions of this clause determines the number of
partitions. If you omit partition , Oracle generates a name with the form SYS_Pn.

For VALUES LESS THARvalue _list), specify the (noninclusive) upper bound for
the current partition in a global index. The value list is a comma-delimited, ordered
list of literal values corresponding to the column list in the global _
partitioned_index clause. Always specify MAXVALUERS the value of the last
partition.

Note: If the index is partitioned on a DATEcolumn, and if the date
format does not specify the first two digits of the year, you must

use the TO_DATEfunction with a 4-character format mask for the
year. The date format is determined implicitly by NLS_TERRITORY
or explicitly by NLS_DATE_FORMAT

Handling Constraint Exceptions

When defining the state of a constraint, you can specify a table into which Oracle
places the rowids of all rows violating the constraint.

exceptions_clause Use the exceptions_clause syntax to define exception
handling. If you omit schema, then Oracle assumes the exceptions table is in your
own schema. If you omit this clause altogether, then Oracle assumes that the table is
named EXCEPTIONSThe EXCEPTIONSable or the table you specify must exist on
your local database.

Common SQL DDL Clauses 7-25

constraints

You can create the EXCEPTIONSable using one of these scripts:

« UTLEXCPT.SQLuses physical rowids. Therefore it can accommodate rows from
conventional tables but not from index-organized tables. (See the Note that
follows.)

« UTLEXPT1.SQLuses universal rowids, so it can accommodate rows from both
conventional and index-organized tables.

If you create your own exceptions table, then it must follow the format prescribed
by one of these two scripts.

Restrictions on the exceptions_clause

= You cannot specify this clause for a view constraint.

= You cannot specify this clause in a CREATE TABLEtatement, because no
rowids exist until after the successful completion of the statement.

Note: If you are collecting exceptions from index-organized tables
based on primary keys (rather than universal rowids), then you
must create a separate exceptions table for each index-organized
table to accommodate its primary-key storage. You create multiple
exceptions tables with different names by modifying and
resubmitting the script.

See Also:

« Oracle9i Database Migration Guide for compatibility issues
related to the use of these scripts

« The DBMS_IOTpackage in Oracle9i Supplied PL/SQL Packages
and Types Reference for information on the SQL scripts

« Oracle9i Database Performance Tuning Guide and Reference for
information on eliminating migrated and chained rows

View Constraints

Oracle does not enforce view constraints. However, operations on views are subject
to the integrity constraints defined on the underlying base tables. This means that
you can enforce constraints on views through constraints on base tables.

Restrictions on View Constraints View constraints are a subset of table
constraints and are subject to the following restrictions:

7-26 Oracle9i SQL Reference

constraints

Examples

= You can specify only unique, primary key, and foreign key constraints on views.
However, you can define the view using the WITH CHECK OPTIOBlause,
which is equivalent to specifying a check constraint for the view.

« Because view constraints are not enforced directly, you cannot specify
INITIALLY DEFERRED or DEFERRABLE

« View constraints are supported only in DISABLE NOVALIDATEmMode. You must
specify the keywords DISABLE NOVALIDATEwhen you declare the view
constraint, and you cannot specify any other mode.

= You cannot specify the using_index_clause , the exceptions_clause
clause, or the ON DELETElause of the references clause

« You cannot define view constraints on attributes of an object column.

Unique Key Example The following statement is a variation of the statement that
created the sample table sh.promotions . It defines inline and implicitly enables a
unique key on the promo_id column (other constraints are not shown):

CREATE TABLE promotions_varl
(promo_id NUMBER(6)
CONSTRAINT promo_id_u UNIQUE
, promo_name VARCHAR2(20)
, promo_category VARCHAR2(15)
, promo_cost NUMBER(10,2)
, promo_begin_date DATE
, promo_end_date DATE

)

The constraint promo_id_u identifies the promo_id column as a unique key. This
constraint ensures that no two promotions in the table have the same ID. However,
the constraint does allow promotions without identifiers.

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE promotions_var2
(promo_id NUMBER(6)
, promo_name VARCHAR2(20)
, promo_category VARCHAR2(15)
, promo_cost NUMBER(10,2)
, promo_begin_date DATE
, promo_end_date DATE
, CONSTRAINT promo_id_u UNIQUE (promo_id)

Common SQL DDL Clauses 7-27

constraints

USING INDEX PCTFREE 20
TABLESPACE stocks
STORAGE (INITIAL 8K NEXT 6K));

The preceding statement also contains the using_index_clause , Which specifies
storage characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example The following statement defines and enables a
composite unique key on the combination of the warehouse_id and warehouse_
name columns of the oe.warehouses table:

ALTER TABLE warehouses
ADD CONSTRAINT wh_ung UNIQUE (warehouse_id, warehouse_name)
USING INDEX PCTFREE 5
EXCEPTIONS INTO wrong_id;

The wh_ung constraint ensures that the same combination of warehouse_id and
warehouse_name values does not appear in the table more than once.
The ADD CONSTRAING@lause also specifies other properties of the constraint:

« The USING INDEXclause specifies storage characteristics for the index Oracle
creates to enable the constraint.

« The EXCEPTIONS INTCclause causes Oracle to write information to the
wrong_id table about any rows currently in the customers table that violate
the constraint. If the wrong_id exceptions table does not already exist, then
this statement will fail.

Primary Key Example The following statement is a variation of the statement that

created the sample table hr.locations . It creates the locations_demo table
and defines and enables a primary key on the location_id column (other
constraints from the hr.locations table are omitted):

CREATE TABLE locations_demo
(location_id NUMBER(4) CONSTRAINT loc_id_pk PRIMARY KEY
, Street_address VARCHAR2(40)
, postal_code VARCHAR2(12)
, City VARCHAR2(30)
, State_province VARCHAR2(25)
,country_id CHAR(2)
)

Theloc_id_pk constraint, specified inline, identifies the location_id column as
the primary key of the locations_demo table. This constraint ensures that no two

7-28 Oracle9i SQL Reference

constraints

locations in the table have the same location number and that no location identifier
is NULL

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE locations_demo
(location_id NUMBER(4)
, Street_address VARCHAR2(40)
, postal_code VARCHAR2(12)
, City VARCHAR2(30)
, State_province VARCHAR2(25)
,country_id CHAR(2)
, CONSTRAINT loc_id_pk PRIMARY KEY (location_id));

NOT NULL Example The following statement alters the locations_demo table
(created in "Primary Key Example" on page 7-28) to define and enable a NOT NULL
constraint on the country_id column:

ALTER TABLE locations_demo
MODIFY (country_id CONSTRAINT country_nn NOT NULL);

The constraint country_nn ensures that no location in the table has a null
country_id

Composite Primary Key Example The following statement defines a composite
primary key on the combination of the prod_id and cust_id columns of the
sample table sh.sales

ALTER TABLE sales
ADD CONSTRAINT sales_pk PRIMARY KEY (prod_id, cust_id) DISABLE;

This constraint identifies the combination of the prod_id and cust id columnsas
the primary key of the sales table. The constraint ensures that no two rows in the
table have the same values for both the prod_id column and the cust_id column.

The constraint clause (PRIMARY KEYalso specifies the following properties of the
constraint:

« The constraint definition does not include a constraint name, so Oracle
generates a name for the constraint.

« The DISABLE clause causes Oracle to define the constraint but not enable it.

Foreign Key Constraint Example The following statement creates the dept_20
table and defines and enables a foreign key on the department_id column that

Common SQL DDL Clauses 7-29

constraints

references the primary key on the department_id column of the departments
table:

CREATE TABLE dept_20
(employee_id NUMBER(4),
last_name VARCHAR2(10),
job_id VARCHAR2(9),
manager_id NUMBER(4),
hire_date DATE,
salary NUMBER(7,2),
commission_pct NUMBER(7,2),
department_id CONSTRAINT fk_deptno
REFERENCES departments(department_id));

The constraint fk_deptno ensures that all departments given for employees in the
dept_20 table are present in the departments table. However, employees can
have null department numbers, meaning they are not assigned to any department.
To ensure that all employees are assigned to a department, you could create a NOT
NULL constraint on the department_id ~ column in the dept_20 table, in addition
to the REFERENCEE&onstraint.

Before you define and enable this constraint, you must define and enable a
constraint that designates the department_id column of the departments table
as a primary or unique key.

The foreign key constraint definition does not use the FOREIGN KEYtlause, because
the constraint is defined inline. The datatype of the department _id column is not
needed, because Oracle automatically assigns to this column the datatype of the
referenced key.

The constraint definition identifies both the parent table and the columns of the
referenced key. Because the referenced key is the parent table’s primary key, the
referenced key column names are optional.

Alternatively, you can define this foreign key constraint out of line:

CREATE TABLE dept_20
(employee_id NUMBER(4),
last_name VARCHARZ2(10),
job_id VARCHAR2(9),
manager_id NUMBER(4),
hire_date DATE,
salary NUMBER(7,2),
commission_pct NUMBER(7,2),
department_id,

CONSTRAINT fk_deptno

7-30 Oracle9i SQL Reference

constraints

FOREIGN KEY (department_id)
REFERENCES departments(department_id));

The foreign key definitions in both statements of this statement omit the ON DELETE
clause, causing Oracle to prevent the deletion of a department if any employee
works in that department.

ON DELETE Example This statement creates the dept_20 table, defines and
enables two referential integrity constraints, and uses the ON DELETElause:

CREATE TABLE dept_20

(employee_id NUMBER(4) PRIMARY KEY,

last_name VARCHAR2(10),

job_id VARCHAR2(9),

manager_id NUMBER(4) CONSTRAINT fk_magr
REFERENCES employees ON DELETE SET NULL,

hire_date DATE,

salary NUMBER(7,2),

commission_pct NUMBER(7,2),

department_id NUMBER(2) CONSTRAINT fk_deptno
REFERENCES departments(department_id)
ON DELETE CASCADE);

Because of the first ON DELETElause, if manager number 2332 is deleted from the
employees table, then Oracle sets to null the value of manager_id for all
employees in the dept_20 table who previously had manager 2332.

Because of the second ON DELETElause, Oracle cascades any deletion of a
department_id value in the departments table to the department_id values
of its dependent rows of the dept_20 table. For example, if Department 20 is
deleted from the departments table, then Oracle deletes all of that department’s
employees from the dept_20 table.

Composite Foreign Key Constraint Example The following statement defines and
enables a foreign key on the combination of the employee_id and last_name
columns of the dept_20 table:

ALTER TABLE dept_20
ADD CONSTRAINT fk_empid_hiredate
FOREIGN KEY (employee_id, hire_date)
REFERENCES hr.job_history(employee_id, start_date)
EXCEPTIONS INTO wrong_emp;

Common SQL DDL Clauses 7-31

constraints

The constraint fk_empid_empname ensures that all the employees in the dept_20
table have employee_id and last_ name combinations that exist in the
employees table. Before you define and enable this constraint, you must define
and enable a constraint that designates the combination of the employee_id and
last_ name columns of the employees table as a primary or unique key.

The EXCEPTIONS INTCclause causes Oracle to write information to the wrong_id
table about any rows in the dept_20 table that violate the constraint. If the wrong_
id exceptions table does not already exist, then this statement will fail.

Check Constraint Examples ~ The following statement creates a divisions table
and defines a check constraint in each of the table’s columns:

CREATE TABLE divisions

(div_no NUMBER CONSTRAINT check_divno
CHECK (div_no BETWEEN 10 AND 99)
DISABLE,

div_name VARCHARZ2(9) CONSTRAINT check_divname
CHECK (div_name = UPPER(div_name))
DISABLE,

office VARCHAR2(10) CONSTRAINT check_office
CHECK (office IN (DALLAS’’BOSTON’,
'PARIS’,TOKYQ))
DISABLE);

Each constraint restricts the values of the column in which it is defined:

« check_divno ensures that no division numbers are less than 10 or greater than
99.

« check divhame ensures that all department names are in uppercase.

« check office restricts department locations to Dallas, Boston, Paris, or
Tokyo.

Because each CONSTRAINTclause contains the DISABLE clause, Oracle only defines
the constraints and does not enable them.

The following statement creates the dept_20 table, defining out of line and
implicitly enabling a check constraint:

CREATE TABLE dept_20
(employee_id NUMBER(4) PRIMARY KEY,
last_name VARCHAR2(10),
job_id VARCHAR2(9),
manager_id NUMBER(4),
salary NUMBER(7,2),

7-32 Oracle9i SQL Reference

constraints

commission_pct NUMBER(7,2),
department_id NUMBER(2),
CONSTRAINT check_sal CHECK (salary * commission_pct <= 5000));

This constraint uses an inequality condition to limit an employee’s total
commission, the product of salary and commission_pct , to $5000:

« If an employee has non-null values for both salary and commission, then the
product of these values must not exceed $5000 to satisfy the constraint.

« If an employee has a null salary or commission, then the result of the condition
is unknown and the employee automatically satisfies the constraint.

Because the constraint clause in this example does not supply a constraint name,
Oracle generates a name for the constraint.

The following statement defines and enables a primary key constraint, two foreign
key constraints, a NOT NULLconstraint, and two check constraints:

CREATE TABLE order_detail
(CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
order_id NUMBER
CONSTRAINT fk_oid
REFERENCES oe.orders(order_id),
part_ no NUMBER
CONSTRAINT fk_pno
REFERENCES oe.product_information(product_id),
quantity NUMBER
CONSTRAINT nn_qgty NOT NULL
CONSTRAINT check_qgty CHECK (quantity > 0),
cost NUMBER
CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

« pk_od identifies the combination of the order_id and product id columns
as the primary key of the table. To satisfy this constraint, no two rows in the
table can contain the same combination of values in the order_id and the
product_id columns, and no row in the table can have a null in either the
order_id orthe product id column.

« fk_oid identifies the order_id column as a foreign key that references the
order_id columninthe orders table in the sample schema oe. All new
values added to the column order_detail .order_id must already appear in
the column oe.orders.order_id

Common SQL DDL Clauses 7-33

constraints

« fk_pno identifies the product_id column as a foreign key that references the
product_id column in the product_information table owned by oe. All
new values added to the column order_detail.product_id must already
appear in the column oe.product_information.product_id

« nn_qty forbids nulls in the quantity column.

« check gty ensures that values in the quantity = column are always greater
than zero.

« check _cost ensures the values in the cost column are always greater than
zero.

This example also illustrates the following points about constraint clauses and
column definitions:

« Out-of-line constraint definition can appear before or after the column
definitions. In this example, the out-of-line definition of the pk_od constraint
precedes the column definitions.

« A column definition can contain multiple inline constraint definitions. In this
example, the definition of the quantity =~ column contains the definitions of
both the nn_gty and check_qty constraints.

« Atable can have multiple CHECKconstraints. Multiple CHECKeconstraints, each
with a simple condition enforcing a single business rule, is better than a single
CHECKeonstraint with a complicated condition enforcing multiple business
rules. When a constraint is violated, Oracle returns an error identifying the
constraint. Such an error more precisely identifies the violated business rule if
the identified constraint enables a single business rule.

Attribute-Level Constraints Example The following example guarantees that a
value exists for both the first name and last name attributes of the name
column in the students table:

CREATE TYPE person_name AS OBJECT
(first_name VARCHARZ2(30), last_name VARCHAR2(30));
/

CREATE TABLE students (name person_name, age INTEGER,
CHECK (name.first_name IS NOT NULL AND
name.last_name IS NOT NULL));

REF Constraint Examples The following example creates a duplicate of the
sample schema object type cust_address_typ , and then creates a table
containing a REFcolumn with a SCOPEconstraint:

7-34 Oracle9i SQL Reference

constraints

CREATE TYPE cust_address_typ_new AS OBJECT
(street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
, City VARCHAR2(30)
, State_province VARCHAR2(10)
, country_id CHAR(2)
)i
/
CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
add_id NUMBER,
address REF cust_address_typ_new
SCOPE IS address_table);

The following example creates the same table but with a referential integrity
constraint on the REFcolumn that references the OID column of the parent table:

CREATE TABLE customer_addresses (
add_id NUMBER,
address REF cust_address_typ REFERENCES address_table);

The following example uses the type department_typ and the table
departments_obj_t (created in "Creating Object Tables: Examples" on
page 15-77). A table with a scoped REFis then created.

CREATE TABLE employees_obj
(e_name VARCHAR2(100),
e_number NUMBER,
e_dept REF department_typ SCOPE IS departments_obj_t);

The following statement creates a table with a REFcolumn which has a referential
integrity constraint defined on it:

CREATE TABLE employees_obj
(e_name VARCHAR2(100),
e_number NUMBER,
e_dept REF department_typ REFERENCES departments_obj_t);

Explicit Index Control Example The following statement shows another way to
create a unique (or primary key) constraint that gives you explicit control over the
index (or indexes) Oracle uses to enforce the constraint:

CREATE TABLE promotions_var3
(promo_id NUMBER(6)
, promo_name VARCHAR2(20)

Common SQL DDL Clauses 7-35

constraints

, promo_category VARCHAR2(15)

, promo_cost NUMBER(10,2)

, promo_begin_date DATE

, promo_end_date DATE

, CONSTRAINT promo_id_u UNIQUE (promo_id, promo_cost)
USING INDEX (CREATE UNIQUE INDEX promo_ix1

ON promotions_var3 (promo_id, promo_cost))

, CONSTRAINT promo_id_u2 UNIQUE (promo_cost, promo_id)

USING INDEX promo_ix1);

This example also shows that you can create an index for one constraint and use
that index to create and enable another constraint in the same statement.

DEFERRABLE Constraint Examples The following statement creates table games
with a NOT DEFERRABLE INITIALLY IMMEDIATEconstraint check (by default) on
the scores column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));
To define a unique constraint on a column as INITIALLY DEFERRED DEFERRABLE
issue the following statement:

CREATE TABLE games
(scores NUMBER, CONSTRAINT ung_num UNIQUE (scores)
INITIALLY DEFERRED DEFERRABLE);

7-36 Oracle9i SQL Reference

deallocate_unused_clause

deallocate _unused clause

Purpose

Use the deallocate _unused_clause to explicitly deallocate unused space at the
end of a database object segment and make the space available for other segments
in the tablespace.

You can deallocate unused space using the following statements:

Syntax

ALTER CLUSTERsee ALTER CLUSTER on page 9-6)

ALTER INDEX to deallocate unused space from the index, an index partition, or
an index subpartition (see ALTER INDEX on page 9-62)

ALTER MATERIALIZED VIEWto deallocate unused space from the overflow
segment of an index-organized materialized view (see ALTER MATERIALIZED
VIEW on page 9-90)

ALTER TABLEto deallocate unused space from the table, a table partition, a
table subpartition, the mapping table of an index-organized table, the overflow
segment of an index-organized table, or a LOB storage segment (see ALTER
TABLE on page 11-2)

deallocate_unused_clause::=

—>| DEALLOCATE |—>| UNUSED | 1

Semantics

This section describes the semantics of the deallocate _unused_clause . For
additional information, refer to the SQL statement in which you set or reset this
clause for a particular database object.

Note: You cannot specify both the deallocate_unused _
clause and the allocate extent clause in the same
statement.

Common SQL DDL Clauses 7-37

deallocate_unused_clause

Oracle frees only unused space above the high water mark (that is, the point
beyond which database blocks have not yet been formatted to receive data). Oracle
deallocates unused space beginning from the end of the object and moving toward
the beginning of the object to the high water mark.

If an extent is completely contained in the deallocation, then the whole extent is
freed for reuse. If an extent is partially contained in the deallocation, then the used
part up to the high water mark becomes the extent, and the remaining unused space
is freed for reuse.

Oracle credits the amount of the released space to the user quota for the tablespace
in which the deallocation occurs.

The exact amount of space freed depends on the values of the INITIAL
MINEXTENTSand NEXTstorage parameters.

See Also: storage clause on page 7-56 for a description of
these parameters

KEEP integer

Specify the number of bytes above the high water mark that the segment of the
database object is to have after deallocation.

« If you omit KEEPand the high water mark is above the size of INITIAL and
MINEXTENTSthen all unused space above the high water mark is freed. When
the high water mark is less than the size of INITIAL or MINEXTENTSthen all
unused space above MINEXTENTSs freed.

« Ifyou specify KEER then the specified amount of space is kept and the
remaining space is freed. When the remaining number of extents is less than
MINEXTENTSthen MINEXTENTSs adjusted to the new number of extents. If
the initial extent becomes smaller than INITIAL , then INITIAL is adjusted to
the new size.

« Ineither case, Oracle sets the value of the NEXTstorage parameter to the size of
the last extent that was deallocated.

7-38 Oracle9i SQL Reference

file_specification

file_specification

Purpose
Use one of the file_specification forms to specify a file as a datafile or
tempfile, or to specify a group of one or more files as a redo log file group.
A file_specification can appear in the following statements:
« CREATE CONTROLFILEBee CREATE CONTROLFILE on page 13-15)
« CREATE DATABASEee CREATE DATABASE on page 13-23)
« ALTER DATABASKsee ALTER DATABASE on page 9-11)
« CREATE TABLESPACEee CREATE TABLESPACE on page 15-80)
« CREATE TEMPORARY TABLESPA&H CREATE TEMPORARY TABLESPACE
on page 15-92)
« ALTER TABLESPACKsee ALTER TABLESPACE on page 11-102)
Prerequisites
You must have the privileges necessary to issue one of the statements listed in the
preceding section.
Syntax

file_specification::=
datafile_tempfile_spec
. redo_log_file_spec ‘

datafile_tempfile_spec::=

W N o

Common SQL DDL Clauses 7-39

file_specification

redo_log_file_spec::=

filename

Semantics
This section describes the semantics of file_specification . For additional
information, refer to the SQL statement in which you specify a datafile, tempfile, or
redo log file.
filename’

For a new file, filename is the name of the new file. If you are not using Oracle-
managed files, then you must specify filename or the statement fails. However, if
you are using Oracle-managed files, then filename is optional, as are the
remaining clauses of the specification. In this case, Oracle creates a unique name for
the file and saves it in the directory specified by either the DB_ CREATE_FILE_DEST
initialization parameter (for any type of file) or by the DB_ CREATE_ONLINE_LOG _
DEST ninitialization parameter (which takes precedence over DB_CREATE_FILE
DESTfor log files).

7-40 Oracle9i SQL Reference

file_specification

See Also: Oracle9i Database Administrator’s Guide for more
information on Oracle-managed files, "Specifying a Datafile:
Example" on page 7-43, and "Specifying a Log File: Example" on
page 7-43

For an existing file, you must specify a filename. Specify the name of either a
datafile, tempfile, or a redo log file member. The filename can contain only single-
byte characters from 7-bit ASCII or EBCDIC character sets. Multibyte characters are
not valid.

A redo log file group can have one or more members (copies). Each filename must
be fully specified according to the conventions for your operating system.

SIZE Clause
Specify the size of the file in bytes. Use K or Mto specify the size in kilobytes or
megabytes.

« For undo tablespaces, you must specify the SIZE clause for each datafile. For
other tablespaces, you can omit this parameter if the file already exists, or if you
are creating an Oracle-managed file.

« If you omit this clause when creating an Oracle-managed file, then Oracle
creates a 100M file.

« The size of a tablespace must be one block greater than the sum of the sizes of
the objects contained in it.

See Also: Oracle9i Database Administrator’s Guide for information
on Automatic Undo Management and undo tablespaces and
"Adding a Log File: Example" on page 7-43

REUSE

Specify REUSHo allow Oracle to reuse an existing file. You must specify REUSHf
you specify a filename that already exists.

« If the file already exists, then Oracle reuses the filename and applies the new
size (if you specify SIZE) or retains the original size.

« If the file does not exist, then Oracle ignores this clause and creates the file.

Restriction on the REUSE Clause You cannot specify REUSHInless you have
specified filename

Common SQL DDL Clauses 7-41

file_specification

Note: Whenever Oracle uses an existing file, the file’s previous
contents are lost.

See Also: "Adding a Datafile: Example" on page 7-44 and
"Adding a Log File: Example" on page 7-43

autoextend_clause

Use the autoextend_clause to enable or disable the automatic extension of a
new datafile or tempfile. If you omit this clause:

« For Oracle-managed files:

« Ifyou specify SIZE, Oracle creates a file of the specified size with
AUTOEXTENMisabled.

« If you do not specify SIZE, Oracle creates a 100M file with AUTOEXTEND
enabled and MAXSIZE unlimited.

« For user-managed files, with or without SIZE specified, Oracle creates a file
with AUTOEXTEN®isabled.

ON Specify ONto enable autoextend.

OFF Specify OFFto turn off autoextend if is turned on.

Note: When you turn off autoextend, the values of NEXTand
MAXSIZEare set to zero. If you turn autoextend back on in a
subsequent statement, you must reset these values.

NEXT Use the NEXTclause to specify the size in bytes of the next increment of disk
space to be allocated automatically when more extents are required. Use K or Mto
specify this size in kilobytes or megabytes. The default is the size of one data block.

MAXSIZE Use the MAXSIZEclause to specify the maximum disk space allowed for
automatic extension of the datafile.

UNLIMITED Use the UNLIMITED clause if you do not want to limit the disk space
that Oracle can allocate to the datafile or tempfile.

7-42 Oracle9i SQL Reference

file_specification

Examples

Restriction on the autoextend clause You cannot specify this clause as part of
datafile_tempfile _spec in a CREATE CONTROLFILEatement or in an
ALTER DATABASE CREATE DATAFIldause.

Specifying a Log File: Example The following statement creates a database named
payable that has two redo log file groups, each with two members, and one
datafile:

CREATE DATABASE payable
LOGFILE GROUP 1 ('diska:logl.log’, 'diskb:logl.log’) SIZE 50K,
GROUP 2 (‘diska:log2.log’, 'diskb:log2.log’) SIZE 50K
DATAFILE 'diskc:dbone.dat’ SIZE 30M;

The first file specification in the LOGFILE clause specifies a redo log file group with

the GROURalue 1. This group has members named ’diska:logl.log “and
"diskb:logl.log ’, each 50 Kkilobytes in size.

The second file specification in the LOGFILE clause specifies a redo log file group
with the GROURalue 2. This group has members named "diska:log2.log “and
"diskb:log2.log ’, also 50 kilobytes in size.

The file specification in the DATAFILE clause specifies a datafile named
"diskc:dbone.dat ’, 30 megabytes in size.

Each file specification specifies a value for the SIZE parameter and omits the REUSE
clause, so none of these files can already exist. Oracle must create them.

Adding a Log File: Example The following statement adds another redo log file
group with two members to the payable database:

ALTER DATABASE payable
ADD LOGFILE GROUP 3 ('diska:log3.log’, 'diskb:log3.l0g")
SIZE 50K REUSE;

The file specification in the ADD LOGFILEclause specifies a new redo log file group
with the GROURalue 3. This new group has members named diska:log3.log ’
and 'diskb:log3.log ’, each 50 kilobytes in size. Because the file specification
specifies the REUSEclause, each member can (but need not) already exist.

Specifying a Datafile: Example The following statement creates a tablespace
named stocks that has three datafiles:

Common SQL DDL Clauses 7-43

file_specification

CREATE TABLESPACE stocks
DATAFILE ’'stockl.dat’ SIZE 10M,
'stock2.dat’ SIZE 10M,
'stock3.dat’ SIZE 10M;

The file specifications for the datafiles specify files named ’diskc:stock1.dat ’
"diskc:stock2.dat ’, and ’diskc:stock3.dat "

Adding a Datafile: Example The following statement alters the stocks tablespace
and adds a new datafile:

ALTER TABLESPACE stocks
ADD DATAFILE 'stock4.dat’ SIZE 10M REUSE;

The file specification specifies a datafile named ’diskc:stock4.dat . If the
filename does not exist, then Oracle simply ignores the REUSHEkeyword.

7-44 Oracle9i SQL Reference

logging_clause

logging_clause

Purpose

The logging_clause lets you specify whether creation of a database object will
be logged in the redo log file (LOGGING or not (NOLOGGIN

This clause also specifies whether subsequent Direct Loader (SQL*Loader) and
direct-path INSERT operations against the object are logged (LOGGING or not
logged (NOLOGGINYE

You can specify the logging clause in the following statements:

CREATE TABLENd ALTER TABLEfor logging of the table, one of its partitions,
a LOB segment, or the overflow segment of an index-organized table (see
CREATE TABLE on page 15-7 and ALTER TABLE on page 11-2).

CREATE INDEXand ALTER INDEX for logging of the index or one of its
partitions (see CREATE INDEX on page 13-65 and ALTER INDEX on
page 9-62).

CREATE MATERIALIZED VIEVEnd ALTER MATERIALIZED VIEWfor logging
of the materialized view, one of its partitions, or a LOB segment (see CREATE
MATERIALIZED VIEW on page 14-5 and ALTER MATERIALIZED VIEW on
page 9-90).

CREATE MATERIALIZED VIEW LO&hd ALTER MATERIALIZED VIEW LOGor
logging of the materialized view log or one of its partitions (see CREATE
MATERIALIZED VIEW LOG on page 14-34 and ALTER MATERIALIZED
VIEW LOG on page 9-110.)

CREATE TABLESPAC#&d ALTER TABLESPACHoO set or modify the default
logging characteristics for all objects created in the tablespace (see CREATE
TABLESPACE on page 15-80 and ALTER TABLESPACE on page 11-102.)

You can also specify LOGGINGor NOLOGGIN@or the following operations:

Rebuilding an index (using CREATE INDEX.. REBUILD)
Moving a table (using ALTER TABLE... MOVIE

Common SQL DDL Clauses 7-45

logging_clause

Syntax
logging_clause::=

| LOGGING q
NOLOGGING

Semantics

This section describes the semantics of the logging clause . For additional
information, refer to the SQL statement in which you set or reset logging
characteristics for a particular database object.

Specify LOGGINGTf you want the creation of a database object, as well as
subsequent inserts into the object, to be logged in the redo log file.

Specify NOLOGGIN® you do not want these operations to be logged.

« For a nonpartitioned object, the value specified for this clause is the actual
physical attribute of the segment associated with the object.

« For partitioned objects, the value specified for this clause is the default
physical attribute of the segments associated with all partitions specified in the
CREATEstatement (and in subsequent ALTER... ADD PARTITIONstatements),
unless you specify the logging attribute in the PARTITION description.

If the object for which you are specifying the logging attributes resides in a database
or tablespace in force logging mode, then Oracle ignores any NOLOGGINGetting
until the database or tablespace is taken out of force logging mode.

If the database is run in ARCHIVELOGMode, then media recovery from a backup
made before the LOGGINGoperation re-creates the object. However, media recovery
from a backup made before the NOLOGGIN®peration does not re-create the object.

The size of a redo log generated for an operation in NOLOGGIN@ode is
significantly smaller than the log generated in LOGGINGmode.

In NOLOGGIN@ode, data is modified with minimal logging (to mark new extents
INVALID and to record dictionary changes). When applied during media recovery,
the extent invalidation records mark a range of blocks as logically corrupt, because
the redo data is not fully logged. Therefore, if you cannot afford to lose the database
object, then you should take a backup after the NOLOGGIN®peration.

NOLOGGINGs supported in only a subset of the clauses that support LOGGING
Only the following operations support the NOLOGGIN@node:

7-46 Oracle9i SQL Reference

logging_clause

DML:

Direct-path INSERT (serial or parallel)
Direct Loader (SQL*Loader)

DDL:

CREATE TABLE. AS SELECT

CREATE TABLE.. LOB_storage_clause ... LOB_parameters ... NOCACHH
CACHE READS

ALTER TABLE... LOB _storage clause ... LOB_parameters .. NOCACHH
CACHE READG@or specify logging of newly created LOB columns)

ALTER TABLE.. modify_LOB_storage clause ... modify_LOB_
parameters ... NOCACHHE CACHE READG@o change logging of existing LOB
columns)

ALTER TABLE.. MOVE

ALTER TABLE... [all partition operations that involve data movement]

« ALTER TABLE.. ADD PARTITION(hash partition only)

« ALTER TABLE.. MERGE PARTITIONS

« ALTER TABLE.. SPLIT PARTITION

« ALTER TABLE.. MOVE PARTITION

« ALTER TABLE.. MODIFY PARTITION... ADD SUBPARTITION

« ALTER TABLE.. MODIFY PARTITION... COALESCE SUBPARTITION
« ALTER TABLE.. MODIFY PARTITION... REBUILD UNUSABLE INDEXES
CREATE INDEX

ALTER INDEX... REBUILD

ALTER INDEX... REBUILD PARTITION

ALTER INDEX... SPLIT PARTITION

For objects other than LOBs, if you omit this clause, then the logging attribute of
the object defaults to the logging attribute of the tablespace in which it resides.

For LOBs, if you omit this clause:

If you specify CACHEthen LOGGINGS used (because you cannot have CACHE
NOLOGGINE

Common SQL DDL Clauses 7-47

logging_clause

« If you specify NOCACHEr CACHE READ$hen the logging attribute defaults to
the logging attribute of the tablespace in which it resides.

NOLOGGIN@oes not apply to LOBs that are stored inline with row data. That is, if
you specify NOLOGGINGor LOBs with values less than 4000 bytes and you have
not disabled STORAGE IN RQWen Oracle ignores the NOLOGGINGpecification
and treats the LOB data the same as other table data.

See Also: Oracle9i Database Concepts and Oracle9i Database

Administrator’s Guide for more information about logging and
parallel DML

7-48 Oracle9i SQL Reference

parallel_clause

parallel_clause

Purpose

The parallel_clause lets you parallelize the creation of a database object and
set the default degree of parallelism for subsequent queries of and DML operations
on the object.

You can specify the parallel_clause in the following statements:

CREATE TABLEto set parallelism for the table (see CREATE TABLE on
page 15-7).

ALTER TABLE(see ALTER TABLE on page 11-2):
« To change parallelism for the table

« To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a table partition

CREATE CLUSTEBRnd ALTER CLUSTERO set or alter parallelism for a cluster
(see CREATE CLUSTER on page 13-2 and ALTER CLUSTER on page 9-6).

CREATE INDEXto set parallelism for the index (see CREATE INDEX on
page 13-65).

ALTER INDEX(see ALTER INDEX on page 9-62):
« To change parallelism for the table

« To parallelize the rebuilding of the index or the splitting of an index
partition

CREATE MATERIALIZED VIEWo set parallelism for the materialized view (see
CREATE MATERIALIZED VIEW on page 14-5).

ALTER MATERIALIZED VIEWsee ALTER MATERIALIZED VIEW on
page 9-90):

« To change parallelism for the materialized view

« To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a materialized view partition

« To parallelize the operations of adding or moving materialized view
subpartitions

Common SQL DDL Clauses 7-49

parallel_clause

« CREATE MATERIALIZED VIEW LQGo set parallelism for the table (see
CREATE MATERIALIZED VIEW LOG on page 14-34).

« ALTER MATERIALIZED VIEW LOGsee ALTER MATERIALIZED VIEW LOG on
page 9-110):

« To change parallelism for the materialized view

« To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a materialized view partition

« ALTER DATABASE. RECOVER©O recover the database (see ALTER DATABASE
on page 9-11).

« ALTER DATABASE. standby database_clauses : to parallelize operations
on the standby database (see ALTER DATABASE on page 9-11).

Syntax
parallel_clause::=

NOPARALLEL
PARALLEL

Semantics

This section describes the semantics of the parallel_clause . For additional
information, refer to the SQL statement in which you set or reset parallelism for a
particular database object or operation.

Note: The syntax of the parallel clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIlfor serial execution. This is the default.
PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism

equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS PER_CHbitialization parameter.

7-50 Oracle9i SQL Reference

parallel_clause

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

Common SQL DDL Clauses 7-51

physical_attributes_clause

physical_attributes_clause

Purpose

The physical_attributes clause lets you specify the value of the PCTFREE
PCTUSEDINITRANS, and MAXTRAN®arameters and the storage characteristics of
a table, cluster, index, or materialized view.

You can specify the physical_attributes clause in the following statements:

CREATE CLUSTEBRnd ALTER CLUSTERoo set or change the physical attributes
of the cluster and all tables in the cluster (see CREATE CLUSTER on page 13-2
and ALTER CLUSTER on page 9-6).

CREATE TABLEto set the physical attributes of the table, a table partition, the
OIDINDEX of an object table, or the overflow segment of an index-organized
table (see CREATE TABLE on page 15-7).

ALTER TABLEto change the physical attributes of the table, the default
physical attributes of future table partitions, or the physical attributes of
existing table partitions (see ALTER TABLE on page 11-2).

Notes:
= You cannot specify physical attributes for a temporary table.

= You cannot specify physical attributes for a clustered table.
Tables in a cluster inherit the cluster’s physical attributes.

CREATE INDEXto set the physical attributes of an index, or index partition (see
CREATE INDEX on page 13-65).

ALTER INDEX to change the physical attributes of the index, the default
physical attributes of future partitions, or the physical attributes of existing
index partitions (see ALTER INDEX on page 9-62).

CREATE MATERIALIZED VIEWo set the physical attributes of the materialized
view, one of its partitions, or the index Oracle generates to maintain the
materialized view (see CREATE MATERIALIZED VIEW on page 14-5).

ALTER MATERIALIZED VIEWto change the physical attributes of the
materialized view, the default physical attributes of future partitions, the
physical attributes of an existing partition, or the index Oracle creates to

7-52 Oracle9i SQL Reference

physical_attributes_clause

maintain the materialized view (see ALTER MATERIALIZED VIEW on
page 9-90).

« CREATE MATERIALIZED VIEW LOénd ALTER MATERIALIZED VIEW LOGo
set or change the physical attributes of the materialized view log (see CREATE
MATERIALIZED VIEW LOG on page 14-34 and ALTER MATERIALIZED
VIEW LOG on page 9-110).

Syntax
physical_attributes_clause::=

PCTFREE |{integer

PCTUSED |{integer

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause on page 7-56)

Semantics

This section describes the parameters of the physical_attributes clause . For
additional information, refer to the SQL statement in which you set or reset these
parameters for a particular database object.

PCTFREE integer

Specify a whole number representing the percentage of space in each data block of
the database object reserved for future updates to the object’s rows. The value of
PCTFREBmMust be a value from 0 to 99. A value of 0 means that the entire block can
be filled by inserts of new rows. The default value is 10. This value reserves 10% of
each block for updates to existing rows and allows inserts of new rows to fill a
maximum of 90% of each block.

PCTFREEhas the same function in the statements that create and alter tables,
partitions, clusters, indexes, materialized views, and materialized view logs. The
combination of PCTFREEand PCTUSEetermines whether new rows will be
inserted into existing data blocks or into new blocks.

Common SQL DDL Clauses 7-53

physical_attributes_clause

Restriction on the PCTFREE Clause ~ When altering an index, you can specify this
parameter only in the modify_index_default_attrs clause and the split
partition_clause

PCTUSED integer

Specify a whole number representing the minimum percentage of used space that
Oracle maintains for each data block of the database object. A block becomes a
candidate for row insertion when its used space falls below PCTUSEDPCTUSEDSs
specified as a positive integer from 0 to 99 and defaults to 40.

PCTUSEDas the same function in the statements that create and alter tables,
partitions, clusters, materialized views, and materialized view logs.

PCTUSEDSs not a valid table storage characteristic for an index-organized table
(ORGANIZATION INDEX.

The sum of PCTFREEand PCTUSEDNust be equal to or less than 100. You can use
PCTFREEand PCTUSEDogether to utilize space within a table more efficiently.

Restrictions on the PCTUSED Clause You cannot specify this parameter for an
index or for the index segment of an index-organized table.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for information on the performance effects of different values
PCTUSEDRnd PCTFREE

INITRANS integer

Specify the initial number of concurrent transaction entries allocated within each
data block allocated to the database object. This value can range from 1 to 255 and
defaults to 1, with the following exceptions:

« The default INITRANS value for a cluster or index is 2 or the default INITRANS
value of the cluster’s tablespace, whichever is greater.

» The default value for an index is 2
In general, you should not change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry in the block. The
size of a transaction entry depends on your operating system.

This parameter ensures that a minimum number of concurrent transactions can
update the block and helps avoid the overhead of dynamically allocating a
transaction entry.

7-54 Oracle9i SQL Reference

physical_attributes_clause

The INITRANS parameter serves the same purpose in the statements that create and
alter tables, partitions, clusters, indexes, materialized views, and materialized view
logs.

MAXTRANS integer

Specify the maximum number of concurrent transactions that can update a data
block allocated to the database object. This limit does not apply to queries. This
value can range from 1 to 255 and the default is a function of the data block size.
You should not change the MAXTRANSalue from its default.

If the number of concurrent transactions updating a block exceeds the INITRANS
value, then Oracle dynamically allocates transaction entries in the block until either
the MAXTRANSalue is exceeded or the block has no more free space.

The MAXTRAN®arameter serves the same purpose in the PARTITION description,
clusters, materialized views, and materialized view logs as in tables.

storage _clause The storage_clause lets you specify storage characteristics for
the table, object table OID index, partition, LOB data segment, LOB index segment,
or index-organized table overflow data segment. This clause has performance
ramifications for large tables. Storage should be allocated to minimize dynamic
allocation of additional space.

See Also: storage clause on page 7-56

Common SQL DDL Clauses 7-55

storage_clause

storage clause

Purpose

The storage _clause lets you specify how Oracle should store a database object.
Storage parameters affect both how long it takes to access data stored in the
database and how efficiently space in the database is used.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for a discussion of the effects of the storage parameters

When you create a cluster, index, rollback segment, materialized view, materialized
view log, table, or partition, you can specify values for the storage parameters for
the segments allocated to these objects. If you omit any storage parameter, then
Oracle uses the value of that parameter specified for the tablespace in which the
object resides.

When you alter a cluster, index, rollback segment, materialized view, materialized
view log, table, or partition, you can change the values of storage parameters. The
new values affect only future extent allocations.

The storage_clause is part of the physical_attributes clause , SO you can
specify this clause in any of the statements where you can specify the physical
attributes clause (see physical_attributes_clause on page 7-52).

In addition, you can specify the storage clause in the following statements:

« CREATE CLUSTEBnhd ALTER CLUSTER set or change the storage
characteristics of the cluster and all tables in the cluster (see CREATE CLUSTER
on page 13-2 and ALTER CLUSTER on page 9-6).

« CREATE INDEXand ALTER INDEX to set or change the storage characteristics
of an index or index partition (see CREATE INDEX on page 13-65 and ALTER
INDEX on page 9-62).

» CREATE MATERIALIZED VIEVEnd ALTER MATERIALIZED VIEWto set or
change the storage characteristics of a materialized view, one of its partitions, or
the index Oracle generates to maintain the materialized view (see CREATE
MATERIALIZED VIEW on page 14-5 and ALTER MATERIALIZED VIEW on
page 9-90).

«» CREATE MATERIALIZED VIEW LOénd ALTER MATERIALIZED VIEW LOGo
set or change the storage characteristics of the materialized view log (see

7-56 Oracle9i SQL Reference

storage_clause

Prerequisites

CREATE MATERIALIZED VIEW LOG on page 14-34 and ALTER
MATERIALIZED VIEW LOG on page 9-110).

» CREATE ROLLBACK SEGMEMH ALTER ROLLBACK SEGMENGA set or change
the storage attributes of a rollback segment (see CREATE ROLLBACK
SEGMENT on page 14-82 and ALTER ROLLBACK SEGMENT on page 9-136).

« CREATE TABLENd ALTER TABLEto set the storage characteristics of a LOB
data segment of the table or one of its partitions or subpartitions (see CREATE
TABLE on page 15-7 and ALTER TABLE on page 11-2).

« CREATE TABLESPAC#&d ALTER TABLESPACHO set or change the default
storage characteristics for objects created in the tablespace (see CREATE
TABLESPACE on page 15-80 and ALTER TABLESPACE on page 11-102).

« constraints :to specify storage for the index (and its partitions, if itis a
partitioned index) used to enforce the constraint (see constraints on
page 7-5).

To change the value of a STORAGHparameter, you must have the privileges
necessary to use the appropriate CREATEor ALTERstatement.

Common SQL DDL Clauses 7-57

storage_clause

Syntax
storage_clause:;=

INITIAL integer

NEXT integer

H MINEXTENTS b(integer)

MAXEXTENTS H
UNLIMITED
—| PCTINCREASE |{integer}

© H FREELISTS |(Cinteger) —>@->
—| FREELIST |->| GROUPS |{integer>—

—| OPTIMAL

RECYCLE |

|

x| BUFFER_POOL

Semantics

This section describes the parameters of the storage clause . For additional
information, refer to the SQL statement in which you set or reset these parameters
for a particular database object.

7-58 Oracle9i SQL Reference

storage_clause

Note: The storage clause is interpreted differently for locally
managed tablespaces. At creation, Oracle ignores MAXEXTENT&nd
uses the remaining parameter values to calculate the initial size of
the segment. For more information, see CREATE TABLESPACE on
page 15-80.

See Also: "Specifying Table Storage Attributes: Example” on
page 7-64 and "Specifying Rollback Segment Storage Attributes:
Example" on page 7-65

INITIAL

Specify in bytes the size of the object’s first extent. Oracle allocates space for this
extent when you create the schema object. Use Kor Mto specify this size in kilobytes
or megabytes.

The default value is the size of 5 data blocks. In tablespaces with manual segment-
space management, the minimum value is the size of 2 data blocks plus one data
block for each free list group you specify. In tablespaces with automatic segment-
space management, the minimum value is 5 data blocks. The maximum value
depends on your operating system.

In dictionary-managed tablespaces, if MINIMUM EXTENvas specified for the
tablespace when it was created, then Oracle rounds the value of INITIAL up to the
specified MINIMUM EXTENTSize if necessary. If MINIMUM EXTENTWvas not specified,
then Oracle rounds the INITIAL extent size for segments created in that tablespace
up to the minimum value (see preceding paragraph), or to multiples of 5 blocks if
the requested size is greater than 5 blocks.

In locally managed tablespaces, Oracle uses the value of INITIAL in conjunction
with the size of extents specified for the tablespace to determine the object’s first
extent. For example, in a uniform locally managed tablespace with 5Mextents, if you
specify an INITIAL value of 1M then Oracle creates five 1Mextents.

Restriction on INITIAL ~ You cannot specify INITIAL in an ALTERstatement.

See Also: FREELIST GROUPS on page 7-62 for information on
freelist groups

Common SQL DDL Clauses 7-59

storage_clause

NEXT

Specify in bytes the size of the next extent to be allocated to the object. Use K or Mto
specify the size in kilobytes or megabytes. The default value is the size of 5 data
blocks. The minimum value is the size of 1 data block. The maximum value
depends on your operating system. Oracle rounds values up to the next multiple of
the data block size for values less than 5 data blocks. For values greater than 5 data
blocks, Oracle rounds up to a value that minimizes fragmentation, as described in
Oracle9i Database Administrator’s Guide.

If you change the value of the NEXTparameter (that is, if you specify it in an ALTER
statement), then the next allocated extent will have the specified size, regardless of
the size of the most recently allocated extent and the value of the PCTINCREASE
parameter.

See Also: Oracle9i Database Administrator’s Guide for information
on how Oracle minimizes fragmentation

PCTINCREASE

Specify the percent by which the third and subsequent extents grow over the
preceding extent. The default value is 50, meaning that each subsequent extent is
50% larger than the preceding extent. The minimum value is 0, meaning all extents
after the first are the same size. The maximum value depends on your operating
system.

Oracle rounds the calculated size of each new extent to the nearest multiple of the
data block size.

If you change the value of the PCTINCREASEparameter (that is, if you specify it in
an ALTERstatement), then Oracle calculates the size of the next extent using this
new value and the size of the most recently allocated extent.

Suggestion: If you wish to keep all extents the same size, you can
prevent SMONrom coalescing extents by setting the value of
PCTINCREASHOo 0. In general, Oracle Corporation recommends a
setting of 0 as a way to minimize fragmentation and avoid the
possibility of very large temporary segments during processing.

Restriction on PCTINCREASE You cannot specify PCTINCREASHor rollback
segments. Rollback segments always have a PCTINCREASEvalue of 0.

7-60 Oracle9i SQL Reference

storage_clause

MINEXTENTS

Specify the total number of extents to allocate when the object is created. This
parameter lets you allocate a large amount of space when you create an object, even
if the space available is not contiguous. The default and minimum value is 1,
meaning that Oracle allocates only the initial extent, except for rollback segments,
for which the default and minimum value is 2. The maximum value depends on
your operating system.

If the MINEXTENTSvalue is greater than 1, then Oracle calculates the size of
subsequent extents based on the values of the INITIAL , NEXTand PCTINCREASE
storage parameters.

When changing the value of MINEXTENTSthat is, in an ALTERstatement), you can
reduce the value from its current value, but you cannot increase it. Resetting
MINEXTENTSo a smaller value might be useful, for example, before a TRUNCATE.
DROP STORAGHatement, if you want to ensure that the segment will maintain a
minimum number of extents after the TRUNCAT®peration.

Restriction on MINEXTENTS You cannot change the value of MINEXTENTSfor an
object that resides in a locally managed tablespace.

MAXEXTENTS
Specify the total number of extents, including the first, that Oracle can allocate for

the object. The minimum value is 1 (except for rollback segments, which always
have a minimum value of 2). The default value depends on your data block size.

Restriction on MAXEXTENTS You cannot change the value of MAXEXTENT$or an
object that resides in a locally managed tablespace.

UNLIMITED Specify UNLIMITED if you want extents to be allocated automatically
as needed. Oracle Corporation recommends this setting as a way to minimize
fragmentation.

However, do not use this clause for rollback segments. Rogue transactions
containing inserts, updates, or deletes that continue for a long time will continue to
create new extents until a disk is full.

Common SQL DDL Clauses 7-61

storage_clause

Caution: A rollback segment that you create without specifying
the storage clause has the same storage parameters as the
tablespace in which the rollback segment is created. Thus, if you
create the tablespace with MAXEXTENTS UNLIMITEXhen the
rollback segment will also have the same default.

FREELIST GROUPS

Specify the number of groups of free lists for the database object you are creating.
The default and minimum value for this parameter is 1. Oracle uses the instance
number of Real Application Clusters instances to map each instance to one free list
group.

Each free list group uses one database block. Therefore:

« If you do not specify a large enough value for INITIAL to cover the minimum

value plus one data block for each free list group, then Oracle increases the
value of INITIAL the necessary amount.

« If you are creating an object in a uniform locally managed tablespace, and the
extent size is not large enough to accommodate the number of freelist groups,
then the create operation will fail.

Note: Oracle ignores a setting of FREELIST GROUP$f the
tablespace in which the object resides is in automatic segment-
space management mode. If you are running your database in this
mode, please refer to the FREEPOOL$arameter of the LOB_
storage_clause on page 15-36.

Restriction on FREELIST GROUPS You can specify the FREELIST GROUPS
parameter only in CREATE TABLECREATE CLUSTERCREATE MATERIALIZED
VIEW CREATE MATERIALIZED VIEW LQ@nd CREATE INDEXtatements.

See Also: Oracle9i Real Application Clusters Administration

FREELISTS

For objects other than tablespaces, specify the number of free lists for each of the
free list groups for the table, partition, cluster, or index. The default and minimum
value for this parameter is 1, meaning that each free list group contains one free list.
The maximum value of this parameter depends on the data block size. If you

7-62 Oracle9i SQL Reference

storage_clause

specify a FREELISTS value that is too large, then Oracle returns an error indicating
the maximum value.

Note: Oracle ignores a setting of FREELISTS if the tablespace in
which the object resides is in automatic segment-space
management mode. If you are running your database in this mode,
please refer to the FREEPOOL$arameter of the LOB_storage
clause on page 15-36.

Restriction on FREELISTS You can specify FREELISTS in the storage _clause
of any statement except when creating or altering a tablespace or rollback segment.

OPTIMAL

The OPTIMALkeyword is relevant only to rollback segments. It specifies an optimal
size in bytes for a rollback segment. Use K or Mto specify this size in kilobytes or
megabytes. Oracle tries to maintain this size for the rollback segment by
dynamically deallocating extents when their data is no longer needed for active
transactions. Oracle deallocates as many extents as possible without reducing the
total size of the rollback segment below the OPTIMALvalue.

The value of OPTIMALcannot be less than the space initially allocated by the
MINEXTENTSINITIAL , NEXTand PCTINCREASEparameters. The maximum
value depends on your operating system. Oracle rounds values up to the next
multiple of the data block size.

NULL Specify NULLfor no optimal size for the rollback segment, meaning that
Oracle never deallocates the rollback segment’s extents. This is the default behavior.

BUFFER_POOL
The BUFFER_POOLtlause lets you specify a default buffer pool (cache) for a schema
object. All blocks for the object are stored in the specified cache.

« Ifyou define a buffer pool for a partitioned table or index, then the partitions
inherit the buffer pool from the table or index definition, unless overridden by a
partition-level definition.

« For an index-organized table, you can specify a buffer pool separately for the
index segment and the overflow segment.

Common SQL DDL Clauses 7-63

storage_clause

Examples

Restrictions on BUFFER_POOL

= You cannot specify this clause for a cluster table. However, you can specify it for
a cluster.

= You cannot specify this clause for a tablespace or for a rollback segment.

KEEP Specify KEEPto put blocks from the segment into the KEEPbuffer pool.
Maintaining an appropriately sized KEEPbuffer pool lets Oracle retain the schema
object in memory to avoid 1/0 operations. KEEPtakes precedence over any
NOCACHElause you specify for a table, cluster, materialized view, or materialized
view log.

RECYCLE Specify RECYCLEo put blocks from the segment into the RECYCLE
pool. An appropriately sized RECYCLBEool reduces the number of objects whose
default pool is the RECYCLBpool from taking up unnecessary cache space.

DEFAULT Specify DEFAULTto indicate the default buffer pool. This is the default
for objects not assigned to KEEPor RECYCLE

See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information about using multiple buffer pools

Specifying Table Storage Attributes: Example The following statement creates a
table and provides storage parameter values:

CREATE TABLE divisions
(div_no NUMBER(2),
div_name VARCHAR2(14),
location VARCHAR2(13))
STORAGE (INITIAL 100K NEXT 50K
MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 5);

Oracle allocates space for the table based on the STORAGHEparameter values as
follows:

« The MINEXTENTSvalue is 1, so Oracle allocates 1 extent for the table upon
creation.

« TheINITIAL value is 100K, so the first extent’s size is 100 kilobytes.

« If the table data grows to exceed the first extent, then Oracle allocates a second
extent. The NEXTvalue is 50K, so the second extent’s size would be 50 kilobytes.

7-64 Oracle9i SQL Reference

storage_clause

If the table data subsequently grows to exceed the first two extents, then Oracle
allocates a third extent. The PCTINCREASEvalue is 5, so the calculated size of
the third extent is 5% larger than the second extent, or 52.5 kilobytes. If the data
block size is 2 kilobytes, then Oracle rounds this value to 52 kilobytes.

If the table data continues to grow, then Oracle allocates more extents, each 5%
larger than the previous one.

The MAXEXTENTS®alue is 50, so Oracle can allocate as many as 50 extents for
the table.

Specifying Rollback Segment Storage Attributes: Example The following
statement creates a rollback segment and provides storage parameter values:

CREATE ROLLBACK SEGMENT rs_store

STORAGE (INITIAL 10K NEXT 10K

MINEXTENTS 2 MAXEXTENTS 25
OPTIMAL 50K));

Oracle allocates space for the rollback segment based on the STORAGparameter
values as follows:

The MINEXTENTSvalue is 2, so Oracle allocates 2 extents for the rollback
segment upon creation.

The INITIAL value is 10K, so the first extent’s size is 10 kilobytes.
The NEXTvalue is 10K, so the second extent’s size is 10 kilobytes.

If the rollback data exceeds the first two extents, then Oracle allocates a third
extent. The PCTINCREASEvalue for rollback segments is always 0, so the third
and subsequent extents are the same size as the second extent, 10 kilobytes.

The MAXEXTENTSalue is 25, so Oracle can allocate as many as 25 extents for
the rollback segment.

The OPTIMALvalue is 50K, so Oracle deallocates extents if the rollback segment
exceeds 50 kilobytes. Oracle deallocates only extents that contain data for
transactions that are no longer active.

Common SQL DDL Clauses 7-65

storage_clause

7-66 Oracle9i SQL Reference

8

SQL Queries and Subqueries

This chapter describes SQL queries and subqueries.

This chapter contains these sections:

About Queries and Subqueries

Creating Simple Queries

Hierarchical Queries

The UNION [ALL], INTERSECT, MINUS Operators
Sorting Query Results

Joins

Using Subqueries

Unnesting of Nested Subqueries

Selecting from the DUAL Table

Distributed Queries

SQL Queries and Subqueries 8-1

About Queries and Subqueries

About Queries and Subqueries

A query is an operation that retrieves data from one or more tables or views. In this
reference, a top-level SELECTstatement is called a query, and a query nested within
another SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them.
The top level of the syntax is shown in this chapter.

See Also: SELECT on page 18-4 for the full syntax of all the
clauses and the semantics of this statement

select::=

for_update_clause
('subquery) O
subquery::=

F'_"
f—(subquery_factoring_clauseh ALL

f{hierarchical_query_clauseh group_by_clause
—>| FROM table_reference)

ALL
=
=

subquery

[->| HAVING Kconditionh

Creating Simple Queries

The list of expressions that appears after the SELECTkeyword and before the FROM
clause is called the select list. Within the select list, you specify one or more
columns in the set of rows you want Oracle to return from one or more tables,
views, or materialized views. The number of columns, as well as their datatype and
length, are determined by the elements of the select list.

order_by_clause

8-2 Oracle9/ SQL Reference

Hierarchical Queries

If two or more tables have some column names in common, then you must qualify
column names with names of tables. Otherwise, fully qualified column names are
optional. However, it is always a good idea to qualify table and column references
explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, ¢_alias , to label the preceding expression in the select
list so that the column is displayed with a new heading. The alias effectively
renames the select list item for the duration of the query. The alias can be used in
the ORDER B¥lause, but not other clauses in the query.

You can use comments in a SELECTstatement to pass instructions, or hints, to the
Oracle optimizer. The optimizer uses hints to choose an execution plan for the
statement.

See Also: "Hints" on page 2-91 and Oracle9i Database Performance
Tuning Guide and Reference for more information on hints

Hierarchical Queries

If a table contains hierarchical data, then you can select rows in a hierarchical order
using the hierarchical query clause:

hierarchical_query clause::=

[—>| START |—>| WITH Kconditionh
} CONNECT |—>| BY |a<condition>—>

« START WITHspecifies the root row(s) of the hierarchy.

« CONNECT Bbypecifies the relationship between parent rows and child rows of
the hierarchy. In a hierarchical query, one expression in condition ~ must be
qualified with the PRIOR operator to refer to the parent row. For example,

... PRIOR expr = expr
or
... expr = PRIOR expr

If the CONNECT B¥ondition is compound, then only one condition requires
the PRIOR operator. For example:

CONNECT BY last_name != 'King’ AND PRIOR employee_id = manager_id

In addition, the CONNECT B¥ondition = cannot contain a subquery.

SQL Queries and Subqueries 8-3

Hierarchical Queries

PRIORis a unary operator and has the same precedence as the unary + and -
arithmetic operators. It evaluates the immediately following expression for the
parent row of the current row in a hierarchical query.

PRIORis most commonly used when comparing column values with the
equality operator. (The PRIORkeyword can be on either side of the operator.)
PRIOR causes Oracle to use the value of the parent row in the column.
Operators other than the equal sign (=) are theoretically possible in CONNECT
BY clauses. However, the conditions created by these other operators can result
in an infinite loop through the possible combinations. In this case Oracle detects
the loop at run time and returns an error.

See Also: "Examples" on page 8-5

The manner in which Oracle processes a WHEREIlause (if any) in a hierarchical
guery depends on whether the WHEREIlause contains a join:

If the WHERIPpredicate contains a join, Oracle applies the join predicates before
doing the CONNECT BJgrocessing.

If the WHEREIlause does not contain a join, Oracle applies all predicates other
than the CONNECT BYpredicates after doing the CONNECT BJgrocessing
without affecting the other rows of the hierarchy.

Oracle uses the information from the hierarchical query clause to form the hierarchy
using the following steps:

1.

Oracle processes the WHEREIlause either before or after the CONNECT B¥ause
depending on whether the WHEREIlause contains any join predicates (as
described in the preceding bullet list).

Oracle selects the root row(s) of the hierarchy—those rows that satisfy the
START WITHondition.

Oracle selects the child rows of each root row. Each child row must satisfy the
condition of the CONNECT B¥ondition with respect to one of the root rows.

Oracle selects successive generations of child rows. Oracle first selects the
children of the rows returned in step 3, and then the children of those children,
and so on. Oracle always selects children by evaluating the CONNECT BY
condition with respect to a current parent row.

If the query contains a WHERElause without a join, then Oracle eliminates all
rows from the hierarchy that do not satisfy the condition of the WHEREIlause.
Oracle evaluates this condition for each row individually, rather than removing
all the children of a row that does not satisfy the condition.

8-4 Oracle9/ SQL Reference

Hierarchical Queries

6. Oracle returns the rows in the order shown in Figure 8-1. In the diagram,
children appear below their parents. For an explanation of hierarchical trees, see
Figure 2-1, "Hierarchical Tree" on page 2-86.

Figure 81 Hierarchical Queries

ROOT

To find the children of a parent row, Oracle evaluates the PRIORexpression of the
CONNECT B¥ondition for the parent row and the other expression for each row in
the table. Rows for which the condition is true are the children of the parent. The
CONNECT B¥ondition can contain other conditions to further filter the rows
selected by the query. The CONNECT Bv¥ondition cannot contain a subquery.

If the CONNECT Bv¥ondition results in a loop in the hierarchy, then Oracle returns
an error. A loop occurs if one row is both the parent (or grandparent or direct
ancestor) and a child (or a grandchild or a direct descendent) of another row.

Note: In a hierarchical query, do not specify either ORDER B6r
GROUP BYas they will destroy the hierarchical order of the
CONNECT B¥esults. If you want to order rows of siblings of the
same parent, then use the ORDER SIBLINGS Btlause. See order
by clause on page 18-25.

Examples

The following hierarchical query uses the CONNECT Bulause to define the
relationship between employees and managers:

SQL Queries and Subqueries 8-5

Hierarchical Queries

SELECT employee_id, last_name, manager_id
FROM employees
CONNECT BY PRIOR employee_id = manager _id;

EMPLOYEE_ID LAST_NAME MANAGER_ID

101 Kochhar 100

108 Greenberg 101

109 Faviet 108

110 Chen 108

111 Sciarra 108

112 Urman 108

113 Popp 108

200 Whalen 101

The next example is similar to the preceding example, but uses the LEVEL
pseudocolumn to show parent and child rows:

SELECT employee_id, last_name, manager_id, LEVEL
FROM employees
CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID LEVEL

101 Kochhar 100 1

108 Greenberg 101 2

109 Faviet 108 3

110 Chen 108 3

111 Sciarra 108 3

112 Urman 108 3

113 Popp 108 3

Finally, the next example adds a START WITHclause to specify a root row for the
hierarchy, and an ORDER B¥lause using the SIBLINGS keyword to preserve
ordering within the hierarchy:

SELECT last_name, employee_id, manager_id, LEVEL
FROM employees
START WITH employee_id = 100
CONNECT BY PRIOR employee_id = manager_id
ORDER SIBLINGS BY last_name;

8-6 Oracle9/ SQL Reference

The UNION [ALL], INTERSECT, MINUS Operators

LAST_NAME EMPLOYEE_ID MANAGER _ID LEVEL
King 100 1
Cambrault 148 100 2
Bates 172 148 3
Bloom 169 148 3
Fox 170 148 3
Kumar 173 148 3
Ozer 168 148 3
Smith 171 148 3
De Haan 102 100 2
Hunold 103 102 3
Austin 105 103 4
Ernst 104 103 4
Lorentz 107 103 4
Pataballa 106 103 4
Errazuriz 147 100 2
Ande 166 147 3
Banda 167 147 3
See Also:

« LEVEL on page 2-86 for a discussion of how the LEVEL
pseudocolumn operates in a hierarchical query

« SYS_CONNECT_BY_PATH on page 6-155 for information on
retrieving the path of column values from root to node

« order_by clause on page 18-25 for more information on the
SIBLINGS keyword of ORDER BYlauses

The UNION [ALL], INTERSECT, MINUS Operators

You can combine multiple queries using the set operators UNION UNION ALL,
INTERSECT and MINUS All set operators have equal precedence. If a SQL
statement contains multiple set operators, then Oracle evaluates them from the left
to right if no parentheses explicitly specify another order.

The corresponding expressions in the select lists of the component queries of a
compound query must match in number and datatype. If component queries select
character data, then the datatype of the return values are determined as follows:

« If both queries select values of datatype CHARthen the returned values have
datatype CHAR

SQL Queries and Subqueries 8-7

The UNION [ALL], INTERSECT, MINUS Operators

« If either or both of the queries select values of datatype VARCHAR2then the
returned values have datatype VARCHAR2
Restrictions on Set Operators

« The set operators are not valid on columns of type BLOB CLOB BFILE ,
VARRAYor nested table.

« The UNION INTERSECT and MINUSoperators are not valid on LONGcolumns.

« If the select list preceding the set operator contains an expression, then you
must provide a column alias for the expression in order to refer to it in the
order_by clause

« You cannot also specify the for_update clause with these set operators.

« You cannot specify the order_by clause in the subquery of these
operators.

=« You cannot use these operators in SELECTstatements containing TABLE
collection expressions.

Note: To comply with emerging SQL standards, a future release of
Oracle will give the INTERSECToperator greater precedence than
the other set operators. Therefore, you should use parentheses to
specify order of evaluation in queries that use the INTERSECT
operator with other set operators.

The following examples combine the two query results with each of the set
operators.

UNION Example The following statement combines the results with the UNION
operator, which eliminates duplicate selected rows. This statement shows that you
must match datatype (using the TO_CHARunction) when columns do not exist in
one or the other table:

SELECT location_id, department_name "Department",
TO_CHAR(NULL) "Warehouse" FROM departments
UNION
SELECT location_id, TO_CHAR(NULL) "Department”, warehouse_name
FROM warehouses;

8-8 Oracle9/ SQL Reference

The UNION [ALL], INTERSECT, MINUS Operators

LOCATION_ID Department Warehouse
1400 IT
1400 Southlake, Texas
1500 Shipping
1500 San Francisco
1600 New Jersey
1700 Accounting

1700 Administration
1700 Benefits
1700 Construction

UNION ALL Example The UNIONoperator returns only distinct rows that appear
in either result, while the UNION ALLoperator returns all rows. The UNION ALL
operator does not eliminate duplicate selected rows:

SELECT product_id FROM order_items
UNION
SELECT product_id FROM inventories;

SELECT location_id FROM locations
UNION ALL
SELECT location_id FROM departments;

A location_id value that appears multiple times in either or both queries (such
as ’1700°) is returned only once by the UNIONoperator, but multiple times by the
UNION ALLoperator.

INTERSECT Example The following statement combines the results with the
INTERSECToperator, which returns only those rows returned by both queries:

SELECT product_id FROM inventories
INTERSECT
SELECT product_id FROM order_items;

MINUS Example The following statement combines results with the MINUS
operator, which returns only rows returned by the first query but not by the second:

SELECT product_id FROM inventories
MINUS
SELECT product_id FROM order_items;

SQL Queries and Subqueries 8-9

Sorting Query Results

Sorting Query Results

Joins

Use the ORDER BY¥lause to order the rows selected by a query. Sorting by position
is useful in the following cases:

« To order by a lengthy select list expression, you can specify its position, rather
than duplicate the entire expression, in the ORDER B¥lause.

« For compound queries (containing set operators UNION INTERSECT MINUS or
UNION ALL), the ORDER BY¥lause must use positions, rather than explicit
expressions. Also, the ORDER B¥lause can appear only in the last component
guery. The ORDER BY¥lause orders all rows returned by the entire compound

query.

The mechanism by which Oracle sorts values for the ORDER BY¥lause is specified
either explicitly by the NLS_SORTinitialization parameter or implicitly by the NLS_
LANGUAGHitialization parameter. You can change the sort mechanism
dynamically from one linguistic sort sequence to another using the ALTER SESSION
statement. You can also specify a specific sort sequence for a single query by using
the NLSSORTfunction with the NLS_SORTparameter in the ORDER BY¥lause.

See Also: Oracle9i Database Globalization Support Guide for
information on the NLS parameters

A join is a query that combines rows from two or more tables, views, or
materialized views. Oracle performs a join whenever multiple tables appear in the
guery’s FROMIlause. The query’s select list can select any columns from any of
these tables. If any two of these tables have a column name in common, then you
must qualify all references to these columns throughout the query with table names
to avoid ambiguity.

Join Conditions

Most join queries contain WHEREIlause conditions that compare two columns, each
from a different table. Such a condition is called a join condition. To execute a join,
Oracle combines pairs of rows, each containing one row from each table, for which
the join condition evaluates to TRUE The columns in the join conditions need not
also appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on
the join conditions comparing their columns and then joins the result to another
table based on join conditions containing columns of the joined tables and the new

8-10 Oracle9i SQL Reference

Joins

table. Oracle continues this process until all tables are joined into the result. The
optimizer determines the order in which Oracle joins tables based on the join
conditions, indexes on the tables, and, in the case of the cost-based optimization
approach, statistics for the tables.

In addition to join conditions, the WHEREIlause of a join query can also contain
other conditions that refer to columns of only one table. These conditions can
further restrict the rows returned by the join query.

Note: You cannot specify LOB columns in the WHERElause if the
WHEREIlause contains any joins. The use of LOBs in WHERElauses
is also subject to other restrictions. See Oracle9i Application
Developer’s Guide - Large Objects (LOBs) for more information.

Equijoins

An equijoin is a join with a join condition containing an equality operator. An
equijoin combines rows that have equivalent values for the specified columns.
Depending on the internal algorithm the optimizer chooses to execute the join, the
total size of the columns in the equijoin condition in a single table may be limited to
the size of a data block minus some overhead. The size of a data block is specified
by the initialization parameter DB_BLOCK_SIZE

See Also: "Using Join Queries: Examples" on page 18-34

Self Joins

A self join is a join of a table to itself. This table appears twice in the FROMIlause
and is followed by table aliases that qualify column names in the join condition. To
perform a self join, Oracle combines and returns rows of the table that satisfy the
join condition.

See Also: "Using Self Joins: Example" on page 18-36

Cartesian Products

If two tables in a join query have no join condition, then Oracle returns their
Cartesian product. Oracle combines each row of one table with each row of the
other. A Cartesian product always generates many rows and is rarely useful. For
example, the Cartesian product of two tables, each with 100 rows, has 10,000 rows.
Always include a join condition unless you specifically need a Cartesian product. If
a query joins three or more tables and you do not specify a join condition for a

SQL Queries and Subqueries 8-11

Joins

specific pair, then the optimizer may choose a join order that avoids producing an
intermediate Cartesian product.

Inner Joins

An inner join (sometimes called a "simple join") is a join of two or more tables that
returns only those rows that satisfy the join condition.

Outer Joins

An outer join extends the result of a simple join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table
for which no rows from the other satisfy the join condition.

« Towrite a query that performs an outer join of tables A and B and returns all
rows from A (a left outer join), use the LEFT [OUTERJOIN syntax in the FROM
clause, or apply the outer join operator (+) to all columns of B in the join
condition in the WHERIEElause. For all rows in A that have no matching rows in
B, Oracle returns null for any select list expressions containing columns of B.

« Towrite a query that performs an outer join of tables A and B and returns all
rows from B (a right outer join), use the RIGHT [OUTERJOIN syntax in the
FROMIlause, or apply the outer join operator (+) to all columns of A in the join
condition in the WHERIEElause. For all rows in B that have no matching rows in
A, Oracle returns null for any select list expressions containing columns of A.

« Towrite a query that performs an outer join and returns all rows from A and B,
extended with nulls if they do not satisfy the join condition (a full outer join),
use the FULL [OUTERJOIN syntax in the FROMIlause.

Oracle Corporation recommends that you use the FROMlause OUTER JOINsyntax
rather than the Oracle join operator. Outer join queries that use the Oracle join
operator (+) are subject to the following rules and restrictions, which do not apply
to the FROMIlause join syntax:

« You cannot specify the (+) operator in a query block that also contains FROM
clause join syntax.

« The (+) operator can appear only in the WHERElause or, in the context of
left-correlation (that is, when specifying the TABLEclause) in the FROMlause,
and can be applied only to a column of a table or view.

« If Aand B are joined by muiltiple join conditions, then you must use the (+)
operator in all of these conditions. If you do not, then Oracle will return only
the rows resulting from a simple join, but without a warning or error to advise
you that you do not have the results of an outer join.

8-12 Oracle9i SQL Reference

Using Subqueries

« The (+) operator does not produce an outer join if you specify one table in the
outer query and the other table in an inner query.

« You cannot use the (+) operator to outer-join a table to itself, although self joins
are valid. For example, the following statement is not valid:

-- The following statement is not valid:
SELECT employee_id, manager_id
FROM employees
WHERE employees.manager_id(+) = employees.employee_id;

However, the following self join is valid:

SELECT el.employee_id, el.manager_id, e2.employee_id
FROM employees el, employees e2
WHERE el.manager_id(+) = e2.employee_id;

« The (+) operator can be applied only to a column, not to an arbitrary expression.
However, an arbitrary expression can contain one or more columns marked
with the (+) operator.

« A condition containing the (+) operator cannot be combined with another
condition using the ORlogical operator.

« A condition cannot use the IN comparison condition to compare a column
marked with the (+) operator with an expression.

= A condition cannot compare any column marked with the (+) operator with a
subquery.

If the WHEREIlause contains a condition that compares a column from table B with
a constant, then the (+) operator must be applied to the column so that Oracle
returns the rows from table A for which it has generated nulls for this column.
Otherwise Oracle will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single table
can be the null-generated table for only one other table. For this reason, you cannot
apply the (+) operator to columns of B in the join condition for A and B and the join
condition for B and C.

See Also: SELECT on page 18-4 for the syntax for an outer join

Using Subqueries

A subquery answers multiple-part questions. For example, to determine who
works in Taylor’s department, you can first use a subquery to determine the

SQL Queries and Subqueries 8-13

Using Subqueries

department in which Taylor works. You can then answer the original question with
the parent SELECTstatement. A subquery in the FROMlause of a SELECT
statement is also called an inline view. A subquery in the WHERElause of a
SELECTstatement is also called a nested subquery.

A subquery can contain another subquery. Oracle imposes no limit on the number
of subquery levels in the FROMlause of the top-level query. You can nest up to 255
levels of subqueries in the WHERElause.

If columns in a subquery have the same name as columns in the containing
statement, then you must prefix any reference to the column of the table from the
containing statement with the table name or alias. To make your statements easier
for you to read, always qualify the columns in a subquery with the name or alias of
the table, view, or materialized view.

Oracle performs a correlated subquery when the subquery references a column
from a table referred to in the parent statement. A correlated subquery is evaluated
once for each row processed by the parent statement. The parent statement can be a
SELECTUPDATE or DELETEstatement.

A correlated subquery answers a multiple-part question whose answer depends on
the value in each row processed by the parent statement. For example, you can use
a correlated subquery to determine which employees earn more than the average
salaries for their departments. In this case, the correlated subquery specifically
computes the average salary for each department.

See Also: "Using Correlated Subqueries: Examples" on page 18-43

Use subqueries for the following purposes:

« To define the set of rows to be inserted into the target table of an INSERT or
CREATE TABLEtatement

« To define the set of rows to be included in a view or materialized view in a
CREATE VIEWr CREATE MATERIALIZED VIEV8tatement

« To define one or more values to be assigned to existing rows in an UPDATE
statement

« To provide values for conditions in a WHERElause, HAVINGclause, or START
WITHclause of SELECT UPDATEand DELETEstatements

« To define a table to be operated on by a containing query

8-14 Oracle9i SQL Reference

Unnesting of Nested Subqueries

You do this by placing the subquery in the FROMIlause of the containing query
as you would a table name. You may use subqueries in place of tables in this
way as well in INSERT, UPDATEand DELETEstatements.

Subqueries so used can employ correlation variables, but only those defined
within the subquery itself, not outer references. Outer references
("left-correlated subqueries") are allowed only in the FROMIlause of a SELECT
statement.

See Also: table_collection_expression on page 18-17

Scalar subqueries, which return a single column value from a single row, are a
valid form of expression. You can use scalar subquery expressions in most of
the places where expr is called for in syntax.

See Also: "Scalar Subquery Expressions” on page 4-13

Unnesting of Nested Subqueries

Subqueries are "nested” when they appear in the WHERElause of the parent
statement. When Oracle evaluates a statement with a nested subquery, it must
evaluate the subquery portion multiple times and may overlook some efficient
access paths or joins.

Subquery unnesting unnests and merges the body of the subquery into the body of
the statement that contains it, allowing the optimizer to consider them together
when evaluating access paths and joins. The optimizer can unnest most subqueries,
with some exceptions. Those exceptions include hierarchical subqueries and
subqueries that contain a ROWNUpseudocolumn, one of the set operators, a nested
aggregate function, or a correlated reference to a query block that is not the
subquery’s immediate outer query block.

Assuming no restrictions exist, the optimizer automatically unnests some (but not
all) of the following nested subqueries:

« Uncorrelated IN subqueries

« IN and EXISTS correlated subqueries, as long as they do not contain aggregate
functions or a GROUP B¥lause

You can enable extended subquery unnesting by instructing the optimizer to
unnest additional types of subqueries:

« You can unnest an uncorrelated NOT IN subquery by specifying the HASH_AJor
MERGE_Ahint in the subquery.

SQL Queries and Subqueries 8-15

Selecting from the DUAL Table

= You can unnest other subqueries by specifying the UNNESThint in the subquery.

See Also: Chapter 2, "Basic Elements of Oracle SQL" for
information on hints

Selecting from the DUAL Table

DUALIs a table automatically created by Oracle along with the data dictionary.
DUALIs in the schema of the user SYS but is accessible by the name DUALto all
users. It has one column, DUMMMefined to be VARCHARZ2(1), and contains one
row with a value "X’. Selecting from the DUALtable is useful for computing a
constant expression with the SELECTstatement. Because DUALhDas only one row,
the constant is returned only once. Alternatively, you can select a constant,
pseudocolumn, or expression from any table, but the value will be returned as
many times as there are rows in the table.

See Also: "SQL Functions" on page 6-2 for many examples of
selecting a constant value from DUAL

Distributed Queries

Oracle’s distributed database management system architecture lets you access data
in remote databases using Oracle Net and an Oracle server. You can identify a
remote table, view, or materialized view by appending @dblink to the end of its
name. The dblink must be a complete or partial name for a database link to the
database containing the remote table, view, or materialized view.

See Also:

« "Referring to Objects in Remote Databases" on page 2-118 for
more information on referring to database links

« Oracle9i Net Services Administrator’s Guide for information on
accessing remote databases

Restrictions on Distributed Queries Distributed queries are currently subject to
the restriction that all tables locked by a FOR UPDATElause and all tables with
LONGecolumns selected by the query must be located on the same database. For
example, the following statement will raise an error because it selects press_
release ,aLONGvalue, from the print._ media table on the remote database and
locks the print_media table on the local database:

8-16 Oracle9i SQL Reference

Distributed Queries

SELECT r.product_id, l.ad_id, r.press_release
FROM pm.print_media@remote r, pm.print_media |
FOR UPDATE OF l.ad_id;

In addition, Oracle currently does not support distributed queries that select
user-defined types or object REFs on remote tables.

SQL Queries and Subqueries 8-17

Distributed Queries

8-18 Oracle9i SQL Reference

9

SQL Statements: ALTER CLUSTER to
ALTER SEQUENCE

This chapter lists the various types of SQL statements and then describes the first
set (in alphabetical order) of SQL statements. The remaining SQL statements appear
in alphabetical order in Chapter 10 through Chapter 18.

This chapter contains the following sections:

« Types of SQL Statements

» Organization of SQL Statements
» ALTER CLUSTER

« ALTER DATABASE

« ALTER DIMENSION

« ALTER FUNCTION

« ALTER INDEX

« ALTER INDEXTYPE

« ALTER JAVA

« ALTER MATERIALIZED VIEW
» ALTER MATERIALIZED VIEW LOG
« ALTER OPERATOR

« ALTER OUTLINE

« ALTER PACKAGE

» ALTER PROCEDURE

« ALTER PROFILE

« ALTER RESOURCE COST

« ALTER ROLE

» ALTER ROLLBACK SEGMENT
« ALTER SEQUENCE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-1

Types of SQL Statements

Types of SQL Statements

The tables in the following sections provide a functional summary of SQL
statements and are divided into these categories:

« Data definition language (DDL) statements

« Data manipulation language (DML) statements
« Transaction control statements

= Session control statements

= System control statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements enable you to perform these tasks:

= Create, alter, and drop schema objects

« Grant and revoke privileges and roles

« Analyze information on a table, index, or cluster
« Establish auditing options

« Add comments to the data dictionary

The CREATEALTER and DRORommands require exclusive access to the specified
object. For example, an ALTER TABLEstatement fails if another user has an open
transaction on the specified table.

The GRANTREVOKEANALYZE AUDIT, and COMMENdommands do not require
exclusive access to the specified object. For example, you can analyze a table while
other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL
statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema
objects. For information on how Oracle recompiles and reauthorizes schema objects
and the circumstances under which a DDL statement would cause this, see Oracle9i
Database Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQIpackage.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

9-2 Oracle9/ SQL Reference

Types of SQL Statements

The DDL statements are:

ALTER... (All statements beginning with ALTER)
ANALYZE

ASSOCIATE STATISTICS

AUDIT

COMMENT

CREATE.. (All statements beginning with CREATE)
DISASSOCIATE STATISTICS

DROP.. (All statements beginning with DROP)
GRANT

NOAUDIT

RENAME

REVOKE

TRUNCATE

Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements query and manipulate data in
existing schema objects. These statements do not implicitly commit the current
transaction. The data manipulation language statements are:

CALL

DELETE
EXPLAIN PLAN
INSERT

LOCK TABLE
MERGE
SELECT
UPDATE

The CALL and EXPLAIN PLANstatements are supported in PL/SQL only when
executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements

Transaction control statements manage changes made by DML statements. The
transaction control statements are:

COMMIT
ROLLBACK
SAVEPOINT

SET TRANSACTION

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-3

Organization of SQL Statements

All transaction control statements, except certain forms of the COMMITand
ROLLBACKommands, are supported in PL/SQL. For information on the
restrictions, see COMMIT on page 12-75 and ROLLBACK on page 17-99.

Session Control Statements

Session control statements dynamically manage the properties of a user session.
These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements. The session control
statements are:

ALTER SESSION
SET ROLE

System Control Statement

The single system control statement, ALTER SYSTEMlynamically manages the
properties of an Oracle instance. This statement does not implicitly commit the
current transaction and is not supported in PL/SQL.

Embedded SQL Statements

Embedded SQL statements place DDL, DML, and transaction control statements
within a procedural language program. Embedded SQL is supported by the Oracle
precompilers and is documented in the following books:

« Pro*COBOL Precompiler Programmer’s Guide
« Pro*C/C++ Precompiler Programmer’s Guide
« SQL*Module for Ada Programmer’s Guide

Organization of SQL Statements

All SQL statements in this chapter, as well as in Chapters 10 through 18, are
organized into the following sections:

Syntax The syntax diagrams show the keywords and parameters that make up the
statement.

9-4 Oracle9/ SQL Reference

Organization of SQL Statements

Caution: Not all keywords and parameters are valid in all
circumstances. Be sure to refer to the "Semantics" section of each
statement and clause to learn about any restrictions on the syntax.

Purpose The "Purpose" section describes the basic uses of the statement.

Prerequisites The "Prerequisites" section lists privileges you must have and steps
that you must take before using the statement. In addition to the prerequisites
listed, most statements also require that the database be opened by your instance,
unless otherwise noted.

Semantics The "Semantics" section describes the purpose of the keywords,
parameter, and clauses that make up the syntax, as well as restrictions and other
usage notes that may apply to them. (The conventions for keywords and
parameters used in this chapter are explained in the Preface of this reference.)

Examples The "Examples" section shows how to use the various clauses and
parameters of the statement.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-5

ALTER CLUSTER

ALTER CLUSTER

Purpose

Use the ALTER CLUSTERtatement to redefine storage and parallelism
characteristics of a cluster.

Note: You cannot use this statement to change the number or the
name of columns in the cluster key, and you cannot change the
tablespace in which the cluster is stored.

See Also:

» CREATE CLUSTER on page 13-2 for information on creating a
cluster

« DROP CLUSTER on page 16-67 and DROP TABLE on
page 17-6 for information on removing tables from a cluster
Prerequisites

The cluster must be in your own schema or you must have the ALTER ANY
CLUSTERsystem privilege.

Syntax
alter_cluster::=

{physical_attributes_clause)—

schema .

| ALTER |->| CLUSTER } s(cluster)

allocate_extent_clause
—(dealIocate_unused_clause>7

=)

parallel_clause

9-6 Oracle9/ SQL Reference

ALTER CLUSTER

physical_attributes_clause ::=

PCTFREE |{integer

PCTUSED |{integer

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause on page 7-56)
allocate_extent_clause ::=

DATAFILE |e©—>(filename

INSTANCE |->(integer

—>| ALLOCATE |—>| EXTENT }

deallocate_unused_clause ::=

l'
integer m 1

—>| DEALLOCATE |->| UNUSED }

parallel_clause ::=

NOPARALLEL
()~
PARALLEL

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-7

ALTER CLUSTER

Semantics

schema

Specify the schema containing the cluster. If you omit schema, Oracle assumes the
cluster is in your own schema.

cluster
Specify the name of the cluster to be altered.

physical_attributes clause
Use this clause to change the values of the PCTUSEDPCTFREEINITRANS, and
MAXTRAN®arameters of the cluster.

Use the STORAGEIause to change the storage characteristics of the cluster.

Restriction on Physical Attributes You cannot change the values of the storage
parameters INITIAL and MINEXTENTSor a cluster.

See Also:

« physical attributes _clause on page 7-52 for a full
description of this clause

« Storage clause on page 7-56 for a full description of the
storage parameters

SIZE integer

Use the SIZE clause to specify the number of cluster keys that will be stored in data
blocks allocated to the cluster.

Restriction on SIZE You can change the SIZE parameter only for an indexed
cluster, not for a hash cluster.

See Also: CREATE CLUSTER on page 13-2 for a description of
the SIZE parameter and "Modifying a Cluster: Example” on
page 9-10

allocate extent clause

Specify the allocate extent clause to explicitly allocate a new extent for the
cluster.

9-8 Oracle9/ SQL Reference

ALTER CLUSTER

When you explicitly allocate an extent with this clause, Oracle does not evaluate the
cluster’s storage parameters and determine a new size for the next extent to be
allocated (as it does when you create a table). Therefore, specify SIZE if you do not
want Oracle to use a default value.

Restriction on Allocating Extents You can allocate a new extent only for an
indexed cluster, not for a hash cluster.

See Also: allocate _extent clause on page 7-2 for a full
description of this clause and "Deallocating Unused Space:
Example" on page 9-10

deallocate unused_clause

Use the deallocate _unused_clause to explicitly deallocate unused space at the
end of the cluster and make the freed space available for other segments.

See Also: deallocate_unused_clause on page 7-37 for a full
description of this clause

CACHE | NOCACHE

CACHE Specify CACHHEf you want the blocks retrieved for this cluster to be
placed at the most recently used end of the least recently used (LRU) list in the buffer
cache when a full table scan is performed. This clause is useful for small lookup
tables.

NOCACHE Specify NOCACHIH you want the blocks retrieved for this cluster to be
placed at the least recently used end of the LRU list in the buffer cache when a full
table scan is performed. This is the default behavior.

parallel_clause

Specify the parallel_clause to change the default degree of parallelism for
gueries and DMLon the cluster.

Restriction on Parallelized Clusters If the tables in cluster contain any columns
of LOB or user-defined object type, this statement as well as subsequent INSERT,
UPDATEor DELETEoperations on cluster are executed serially without
notification.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-9

ALTER CLUSTER

Examples

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIlfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism
equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS_PER_CHubiitialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

See Also: "Notes on the parallel_clause" for CREATE TABLE on
page 15-54

The following examples modify the clusters that were created in the "Examples"
section of CREATE CLUSTERN on page 13-9.

Modifying a Cluster: Example The next statement alters the personnel cluster:

ALTER CLUSTER personnel
SIZE 1024 CACHE;

Oracle allocates 1024 bytes for each cluster key value and turns on the cache
attribute. Assuming a data block size of 2 kilobytes, future data blocks within this
cluster contain 2 cluster keys in each data block, or 2 kilobytes divided by 1024
bytes.

Deallocating Unused Space: Example The following statement deallocates
unused space from the language cluster, keeping 30 kilobytes of unused space for
future use:

ALTER CLUSTER language
DEALLOCATE UNUSED KEEP 30 K;

9-10 Oracle9i SQL Reference

ALTER DATABASE

ALTER DATABASE
Purpose
Use the ALTER DATABASEtatement to modify, maintain, or recover an existing
database.
See Also:

« Oracle9i User-Managed Backup and Recovery Guide and Oracle9i Recovery
Manager User’s Guide for examples of performing media recovery

« Oracle Data Guard Concepts and Administration for additional
information on using the ALTER DATABASEtatement to maintain
standby databases

« CREATE DATABASE on page 13-23 for information on creating a
database

Prerequisites
You must have the ALTER DATABASEystem privilege.

To specify the RECOVERIause, you must also have the SYSDBAsystem privilege.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-11

ALTER DATABASE

Syntax
alter_database::=

| ALTER |—>| DATABASE

startup_clauses
recovery_clauses

database_file_clauses

logfile_clauses

i

I controlfile_clauses :

—Cstandby_database_clauses)—

conversion_clauses

redo_thread_clauses

chD
@D
&
e
I:
w
@D
' :
=
[{=}
I(ﬂ
o
QD
=
w
@D
\‘I’D

security_clause

Groups of ALTER DATABASE syntax:

startup_clauses::= on page 9-13
recovery_clauses::= on page 9-13

database file_clauses:= on page 9-17
logfile_clauses::= on page 9-19
controlfile_clauses::= on page 9-20
standby_database clauses:= on page 9-21
default_settings_clauses::= on page 9-22
conversion_clauses::= on page 9-22
redo_thread_clauses::= on page 9-22

security_clause::= on page 9-22

9-12 Oracle9i SQL Reference

ALTER DATABASE

startup_clauses ::=

STANDBY
e
CLONE

| RESETLOGS q
READ WRITE NORESETLOGS MIGRATE

recovery_clauses ::=

general_recovery

managed_standby_recovery
BACKUP

(general_recovery.:= on page 9-13, managed_standby_recovery::= on
page 9-15)
general_recovery =

AUTOMATIC f_)| FROM F@a@ocation}%
—{ RECOVER

ALLOW |->(integer}>| CORRUPTION

partial_database_recovery)
LOGFILE FO{filename)s@J

parallel_clause

CONTINUE

CANCEL

(full_database recovery::= on page 9-14, partial _database
recovery::= on page 9-14, parallel_clause::= on page 9-14)

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-13

ALTER DATABASE

full_database_recovery ::=

o]
@D
integer

USING |—>| BACKUP H CONTROLFILE

STANDBY
DATABASE

L |

partial_database_recovery ::=

,| TABLESPACE tablespace)

M\
)

TABLESPACE

f_)l CONSISTENT |->| WITH |_\
STANDBY CONTROLFILE |/

DATAFILE ‘ ‘
U iy

parallel_clause::=

NOPARALLEL
PARALLEL

integer

9-14 Oracle9i SQL Reference

ALTER DATABASE

managed_standby_recovery =

recover_clause
' cancel_clause ‘
' finish_clause ‘

—>| RECOVER |->| MANAGED |->| STANDBY |->| DATABASE }

(recover _clause::=
finish_clause::= on page 9-16)

recover_clause::=

f_)| FROM |->| SESSION h
DISCONNECT

DEFAULT |—>| DELAY }
integer

ALL |->| ARCHIVELOG }

4 SEQUENCE |e(integer>)

SWITCHOVER }

(parallel_clause::= on page 9-14)

on page 9-15, cancel_clause::=

on page 9-16,

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-15

ALTER DATABASE

cancel_clause::=

—)
CANCEL

finish_clause::=

[_>| FROM || SESSION |-\
,e| DISCONNECT \ parallel_clause
WAIT
l NOWAIT '

f_)l STANDBY |->| LOGFILE |—\

(parallel_clause::= on page 9-14)

9-16 Oracle9i SQL Reference

ALTER DATABASE

database _file_clauses ::=

M)
N\

M)

(%

/| CREATE |->| DATAFILE

filenumber

DATAFILE ' llename ‘
[T Gy

M\

N\
TEMPFILE ‘ ‘
(ERE b oy

datafile_tempfile_spec
l NEW d

/| ONLINE
_—
OFFLINE

RESIZE
H(autoextend_clause)

END BACKUP

(M)
N\

ﬁ

RESIZE integer

—(autoextend_clause)
f_)| INCLUDING |4 DATAFILES |-\
-| DROP
—| ONLINE
\| OFFLINE
(datafile_tempfile_spec::= on page 7-39, autoextend_clause:.= on

page 9-18)

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-17

ALTER DATABASE

autoextend_clause ::=

AUTOEXTEND

1 maxsize_clause

9-18 Oracle9i SQL Reference

ALTER DATABASE

logfile_clauses ::=

ARCHIVELOG
NOARCHIVELOG

NO

.!l FORCE |->| LOGGING }

"
)
STANDBY THREAD ‘ GROUP
—| ADD 1\' LOGFILE redo_log_file_spec
STANDBY
—| DROP i LOGFILE Iogfile_descriptor)

M\
U
[STANDBY | /»-\ [REUSE | ’
—| ADD ﬁ-\4 LOGFILE |->| MEMBER filename>->® } TO
7)
-STANDBY
—| DROP A } LOGFILE |->| MEMBER ‘

(M)
(U

=)

logfile_descriptor

—| ADD |->| SUPPLEMENTAL |—>| LOG |->| DATA }

—| DROP |->| SUPPLEMENTAL |->| LOG |->| DATA }

m
UNARCHIVED) J /—>| UNRECOVERABLE |4f DATAFILE |—\
\| CLEAR ﬁ' LOGFILE Iogfile_descriptor)

(redo_log file_spec::= on page 7-40)

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-19

ALTER DATABASE

logfile_descriptor::=

‘ filename ‘

controffile_clauses ::=

CREATE |->| STANDBY |—>| CONTROLFILE |—>| AS |a®-><filename

filename

trace_file_clause

BACKUP |->| CONTROLFILE |->| TO

trace_file_clause::=

-REUSE
O pual=tal

RESETLOGS
l NORESETLOGS I

{7 L

9-20 Oracle9i SQL Reference

ALTER DATABASE

standby_database clauses ::=

=t

f_)| STANDBY |->| LOGFILE |-\
ﬂ>| SKIP \
/| ACTIVATE } STANDBY |—>| DATABASE }
PROTECTION

AVAILABILITY }

PERFORMANCE

-| SET |->| STANDBY |->| DATABASE |->| TO |->| MAXIMIZE

redo_log_file_spec

E— ()
REGISTER

—Ccommit_switchover_clause)

LOGFILE

> —

NEW |->| PRIMARY |—><db|ink

INITIAL

-| START |->| LOGICAL |->| STANDBY |->| APPLY }

STOP
H LOGICAL |->| STANDBY |->| APPLY }
ABORT
parallel_clause

(redo_log file spec::= on page 7-40)
commit_switchover_clause::=

WAIT
SESSION |—>| SHUTDOWN)—1 Q
-NOWAIT

—>| COMMIT |->| TO |->| SWITCHOVER |->| TO

)

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-21

ALTER DATABASE

default_settings_clauses ::=

/| CHARACTER |->| SET |-><character_set)

-| NATIONAL |->| CHARACTER |->| SET |—><character_set)—
_ (" set_time_zone_clause)
-| DEFAULT |->| TEMPORARY |->| TABLESPACE Ktablespace)i

\{ RENAME | GLOBAL_NAME Bf TO Kdatabase)»—"—/ .

set_time_zone clause ::=

—>| SET |->| TIME_ZONE a '

®
(SHO®
hoduivg

conversion_clauses ::=

RESET H COMPATIBILITY
CONVERT

redo_thread_clauses ::=

-PUBLIC
=

DISABLE |—>| THREAD |{integer

security_clause ::=

STANDBY

—>| GUARD

9-22 Oracle9i SQL Reference

ALTER DATABASE

Semantics

database

Specify the name of the database to be altered. The database name can contain only
ASCII characters. If you omit database , Oracle alters the database identified by
the value of the initialization parameter DB_NAMEYou can alter only the database
whose control files are specified by the initialization parameter CONTROL_FILES
The database identifier is not related to the Oracle Net database specification.

Startup_clauses

The startup_clauses let you mount and open the database so that it is
accessible to users.

MOUNT Clause

Use the MOUNTIlause to mount the database. Do not use this clause when the
database is mounted.

MOUNT STANDBY DATABASE Specify MOUNT STANDBY DATABABENnount a
physical standby database. As soon as this statement executes, the standby instance
can receive archived redo logs from the primary instance and can archive the logs to
the STANDBY_ARCHIVE_DESIbcation.

See Also: Oracle Data Guard Concepts and Administration

MOUNT CLONE DATABASE Specify MOUNT CLONE DATABA®ENount the clone
database.

See Also: Oracle9i User-Managed Backup and Recovery Guide for
more information on clone databases

OPEN Clause

Use the OPENclause to make the database available for normal use. You must
mount the database before you can open it.

If you specify only OPENwithout any other keywords, the default is OPEN READ
WRITE NORESETLOGS

READ WRITE Specify READ WRITHo open the database in read/write mode,
allowing users to generate redo logs. This is the default.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-23

ALTER DATABASE

See Also: "READ ONLY /7 READ WRITE: Example" on page 9-52

RESETLOGS Specify RESETLOGSo reset the current log sequence number to 1
and discards any redo information that was not applied during recovery, ensuring
that it will never be applied. This effectively discards all changes that are in the redo
log, but not in the database.

You must specify RESETLOG3$0 open the database after performing media
recovery with an incomplete recovery using the RECOVERIause or with a backup
control file. After opening the database with this clause, you should perform a
complete database backup.

NORESETLOGS Specify NORESETLOG®S retain the current state of the log
sequence number and redo log files.

Restriction on Resetting Logs You can specify RESETLOG&nd NORESETLOGS
only after performing incomplete media recovery or complete media recovery with
a backup control file. In any other case, Oracle uses the NORESETLOGS
automatically.

MIGRATE Use the MIGRATEclause only if you are upgrading from Oracle release
7.3.4 to the current release. This clause instructs Oracle to modify system
parameters dynamically as required for the upgrade. For upgrade from releases
other than 7.3.4, you can use the SQL*Plus STARTUP MIGRATEommand.

See Also:

« Oracle9i Database Migration Guide for information on the steps
required to migrate a database from one release to another

« SQL*Plus User’s Guide and Reference for information on the
SQL*Plus STARTUR.ommand

READ ONLY Specify READ ONLYo restrict users to read-only transactions,
preventing them from generating redo logs. You can use this clause to make a
physical standby database available for queries even while archive logs are being
copied from the primary database site.

Restrictions on the OPEN Clause

= You cannot open a database READ ONLYf it is currently opened READ WRITE
by another instance.

= You cannot open a database READ ONLYf it requires recovery.

9-24 Oracle9i SQL Reference

ALTER DATABASE

« You cannot take tablespaces offline while the database is open READ ONLY
However, you can take datafiles offline and online, and you can recover offline
datafiles and tablespaces while the database is open READ ONLY

recovery clauses
The recovery clauses include post-backup operations.

See Also: Oracle9i Backup and Recovery Concepts and Oracle9i
Recovery Manager User’s Guide for information on backing up the
database and "Database Recovery: Examples" on page 9-54

general_recovery

The general _recovery clause lets you control media recovery for the database
or standby database, or for specified tablespaces or files. You can use this clause
when your instance has the database mounted, open or closed, and the files
involved are not in use.

Restrictions on General Database Recovery

« You can recover the entire database only when the database is closed.

« Your instance must have the database mounted in exclusive mode.

= You can recover tablespaces or datafiles when the database is open or closed, if
the tablespaces or datafiles to be recovered are offline.

= You cannot perform media recovery if you are connected to Oracle through the
Shared Server architecture.

Note: If you do not have special media requirements, Oracle
Corporation recommends that you use the SQL*Plus RECOVER
command rather than the general_recovery clause

See Also:

« Oracle9i User-Managed Backup and Recovery Guide for more
information on media recovery

« SQL*Plus User’s Guide and Reference for information on the
SQL*Plus RECOVERommand

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-25

ALTER DATABASE

AUTOMATIC

Specify AUTOMATIAf you want Oracle to automatically generate the name of the
next archived redo log file needed to continue the recovery operation. If the LOG_
ARCHIVE_DEST n parameters are defined, Oracle scans those that are valid and
enabled for the first local destination. It uses that destination in conjunction with
LOG_ARCHIVE_FORMA®D generate the target redo log filename. If the LOG_
ARCHIVE_DEST n parameters are not defined, Oracle uses the value of the LOG _
ARCHIVE_DESTparameter instead.

If the resulting file is found, Oracle applies the redo contained in that file. If the file
is not found, Oracle prompts you for a filename, displaying the generated filename
as a suggestion.

If you specify neither AUTOMATIGhor LOGFILE, Oracle prompts you for a
filename, displaying the generated filename as a suggestion. You can then accept
the generated filename or replace it with a fully qualified filename. If you know that
the archived filename differs from what Oracle would generate, you can save time
by using the LOGFILE clause.

FROM ’location’

Specify FROMlocation’ to indicate the location from which the archived redo
log file group is read. The value of location = must be a fully specified file location
following the conventions of your operating system. If you omit this parameter,
Oracle assumes that the archived redo log file group is in the location specified by
the initialization parameter LOG_ARCHIVE_DES®r LOG_ARCHIVE_DEST_1

full_database_recovery
The full_database recovery clause lets you recover an entire database.

DATABASE Specify the DATABASElause to recover the entire database. This is the
default. You can use this clause only when the database is closed.

STANDBY DATABASE Specify the STANDBY DATABASHause to manually
recover a physical standby database using the control file and archived redo log
files copied from the primary database. The standby database must be mounted but
not open.

Note: This clause recovers only online datafiles.

« Use the UNTIL clause to specify the duration of the recovery operation.

9-26 Oracle9i SQL Reference

ALTER DATABASE

« CANCELndicates cancel-based recovery. This clause recovers the database
until you issue the ALTER DATABASEtatement with the RECOVER CANCEL
clause.

« TIME indicates time-based recovery. This parameter recovers the database
to the time specified by the date. The date must be a character literal in the
format 'YYYY-MM-DD:HH24:MI:SS’

« CHANGHNdicates change-based recovery. This parameter recovers the
database to a transaction-consistent state immediately before the system
change number (SCN) specified by integer

« Specify USING BACKUP CONTROLFILiEyou want to use a backup control file
instead of the current control file.

partial_database _recovery

The partial_database recovery clause lets you recover individual
tablespaces and datafiles.

TABLESPACE Specify the TABLESPACEIlause to recover only the specified
tablespaces. You can use this clause if the database is open or closed, provided the
tablespaces to be recovered are offline.

See Also: "Using Parallel Recovery Processes: Example" on
page 9-52

DATAFILE Specify the DATAFILE clause to recover the specified datafiles. You can
use this clause when the database is open or closed, provided the datafiles to be
recovered are offline.

You can identify the datafile by name or by number. If you identify it by number,
then filenumber is an integer representing the number found in the FILE#
column of the VSDATAFILE dynamic performance view or in the FILE_ID column
of the DBA_DATA_FILESdata dictionary view.

STANDBY TABLESPACE Specify STANDBY TABLESPACIS reconstruct a lost or
damaged tablespace in the standby database using archived redo log files copied
from the primary database and a control file.

STANDBY DATAFILE Specify STANDBY DATAFILEBo manually reconstruct a lost
or damaged datafile in the physical standby database using archived redo log files
copied from the primary database and a control file. You can identify the file by
name or by number, as described for the DATAFILE clause.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-27

ALTER DATABASE

« Specify UNTIL [CONSISTENT WITHCONTROLFILEf you want the recovery of
an old standby datafile or tablespace to use the current standby database
control file. However, any redo in advance of the standby controlfile will not be
applied. The keywords CONSISTENT WITHre optional and are provided for
semantic clarity.

LOGFILE

Specify the LOGFILE 'filename ' to continue media recovery by applying the
specified redo log file.

TEST

Use the TESTclause to conduct a trial recovery. A trial recovery is useful if a normal
recovery procedure has encountered some problem. It lets you look ahead into the
redo stream to detect possible additional problems. The trial recovery applies redo
in a way similar to normal recovery, but it does not write changes to disk, and it
rolls back its changes at the end of the trial recovery.

ALLOW ... CORRUPTION

The ALLOWinteger CORRUPTIONIause lets you specify, in the event of logfile
corruption, the number of corrupt blocks that can be tolerated while allowing
recovery to proceed.

When you use this clause during trial recovery (that is, in conjunction with the
TESTclause), integer can exceed 1. When using this clause during normal
recovery, integer cannot exceed 1.

See Also:

« Oracle9i User-Managed Backup and Recovery Guide for
information on database recovery in general

« Oracle Data Guard Concepts and Administration for information
on managed recovery of standby databases

parallel_clause

Use the PARALLELclause to specify whether the recovery of media will be
parallelized.

9-28 Oracle9i SQL Reference

ALTER DATABASE

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIlfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism
equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS_ PER_CHbitialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 15-54

CONTINUE

Specify CONTINUEo continue multi-instance recovery after it has been interrupted
to disable a thread.

Specify CONTINUE DEFAULTo continue recovery using the redo log file that Oracle
would automatically generate if no other logfile were specified. This clause is
equivalent to specifying AUTOMATICexcept that Oracle does not prompt for a
filename.

CANCEL
Specify CANCELto terminate cancel-based recovery.

managed_standby recovery

The managed_standby recovery clause applies to physical standby only. Use it
to specify managed standby recovery mode. This mode assumes that the managed
standby database is an active component of an overall standby database
architecture. A primary database actively archives its redo log files to the standby
site. As these archived redo logs arrive at the standby site, they become available for
use by a managed standby recovery operation. Managed standby recovery is

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-29

ALTER DATABASE

restricted to media recovery. You can use this clause when your instance has the
database mounted, open or closed, and the files involved are not in use.

Restrictions on Managed Standby Recovery The same restrictions apply as are
listed under general _recovery on page 9-25.

See Also: Oracle Data Guard Concepts and Administration for more
information on the parameters of this clause "Recovering a
Managed Standby Database: Examples” on page 9-55

DISCONNECT Specify DISCONNECTo indicate that the managed redo process
(MRP), an Oracle background process, should apply archived redo files as a
detached background process. Doing so leaves the current session available for
other tasks. (The FROM SESSIONMeywords are optional and are provided for
semantic clarity.)

Restrictions on DISCONNECT

« You can specify DISCONNECDnly when you are initiating managed standby
recovery. You cannot specify it after the operation has started.

= You cannot specify both TIMEOUTand DISCONNECTFROM SESSION
TIMEOUTapplies only to foreground recovery operations, whereas the
DISCONNECTIause initiates background recovery operations.

TIMEOUT integer Specify in minutes the wait period of the managed recovery
operation. The recovery process waits for integer minutes for a requested
archived log redo to be available for writing to the managed standby database. If
the redo log file does not become available within that time, the recovery process
terminates with an error message. You can then issue the statement again to return
to managed standby recovery mode.

If you omit TIMEOUTor if you specify NOTIMEOU;Tthe database remains in

managed standby recovery mode until you reissue the statement with the RECOVER
CANCELclause or until instance shutdown or failure.

Restrictions on TIMEOUT

« If you specify TIMEOUT you cannot also specify FINISH .

« You cannot specify both TIMEOUTand DISCONNECTFROM SESSION
TIMEOUTapplies only to foreground recovery operations, whereas the
DISCONNECTIause initiates background recovery operations.

9-30 Oracle9i SQL Reference

ALTER DATABASE

NODELAY | DEFAULT DELAY | DELAY integer Specify DELAYto instruct Oracle to
wait the specified interval (in minutes) before applying the archived redo logs. The
delay interval begins after the archived redo logs have been selected for recovery.

« Specify NODELAYT the need arises to apply a delayed archivelog immediately
on the standby database.

« Specify DEFAULT DELAYo revert to the number of minutes specified in the
LOG_ARCHIVE_DESTn initialization parameter on the primary database.

Both of these parameters override any setting of DELAYin the LOG_ARCHIVE_
DEST n parameter on the primary database. If you specify neither of these
parameters, application of the archivelog is delayed according to the LOG
ARCHIVE_DEST n setting. If DELAYwas not specified in that parameter, the
archivelog is applied immediately.

Restrictions on DELAY
« You cannot specify both NODELAYand DELAY
« If you specify DELAY you cannot also specify FINISH .

See Also: Oracle9i Database Reference for detailed information on
the LOG_ARCHIVE_DESTn parameter

NEXT integer Use the NEXTparameter to apply the specified number of archived
redo logs as soon as possible after they have been archived. This parameter
temporarily overrides any delay setting in the LOG_ARCHIVE_DESTn initialization
parameter on the primary database and over any DELAYvalues specified in an
earlier ALTER DATABASE. managed standby recovery statement. Once the
integer archived redo logs are processed, any such delay again takes effect.

Restriction on NEXT If you specify NEXT you cannot also specify FINISH .

See Also: Oracle9i Database Reference for detailed information on
the LOG_ARCHIVE_DESTn parameter

EXPIRE integer Specify the number of minutes from the current time after which
the managed recovery operation terminates automatically. The process may actually
expire after the interval specified, because Oracle will finish processing any
archived redo log that is being processed at the expiration time.

Specify NOEXPIREto disable a previously specified EXPIRE option.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-31

ALTER DATABASE

Expiration is always relative to the time the current statement is issued rather than
to the start time of the managed recovery process. To terminate an existing
managed recovery operation, use the CANCELparameter.

Restriction on EXPIRE If you specify EXPIRE, you cannot also specify FINISH .

THROUGH Clause Use this clause to instruct Oracle when to terminate managed
recovery.

« THROUGH. SEQUENCHEpecify this clause if you want Oracle to terminate
managed recovery based on thread number and sequence number of an
archivelog. Once the corresponding archivelog has been applied, managed
recovery terminates. If you omit the THREADxlause, Oracle assumes thread 1.

« THROUGH ALL ARCHIVELOSpecify this clause if you want Oracle to continue
the managed standby process until all archivelogs have been recovered. You
can use this statement to override an earlier statement that specified THROUGH
... SEQUENCHTf you omit the THROUGLklause entirely, this is the default.

« THROUGH SWITCHOVERThe managed standby recovery process normally
stops when it encounters a switchover operation, because these operations
produce an "end-of-redo archival” indicator. This clause is useful if you have
more than one standby database, all but one of which will remain in the
standby role after the switchover. This clause keeps the managed standby
recovery process operational. It lets these "secondary" standby databases wait to
receive the redo stream from the new primary database, rather than stopping
the recovery process and then starting it again after the new primary database
is activated.

« Specify ALL to keep managed standby recovery operational through all
switchover operations.

« Specify LAST to cancel managed standby recovery operations after the final
end-of-redo archival indicator.

« Specify NEXTto cancel managed standby recovery after recovering the next
end-of-redo archival indicator encountered. This is the default.

CANCEL Specify CANCELto terminate the managed standby recovery operation
after applying all the redo in the current archived redo file. If you specify only the
CANCELkeyword, session control returns when the recovery process actually
terminates.

« Specify CANCEL IMMEDIATHEo terminate the managed recovery operation after
applying all the redo in the current archived redo file or after the next redo log

9-32 Oracle9i SQL Reference

ALTER DATABASE

file read, whichever comes first. Session control returns when the recovery
process actually terminates.

Restriction on CANCEL IMMEDIATE The CANCEL IMMEDIATElause cannot be
issued from the same session that issued the RECOVER MANAGED STANDBY
DATABASEtatement.

« CANCEL IMMEDIATE NOWAIi§ the same as CANCEL IMMEDIATEXxcept that
session control returns immediately, not after the recovery process terminates.

« CANCEL NOWAIlterminates the managed recovery operation after the next redo
log file read and returns session control immediately.

FINISH The FINISH clause applies only to physical standby databases. Specify
FINISH to recover the current standby online redo logfiles of the standby database.
Use this clause only in the event of the failure of the primary database, when the
logwriter (LGWR) process has been transmitting redo to the standby current logs.
This clause overrides any delay intervals specified for the archivelogs, so that
Oracle applies the logs immediately.

After the FINISH operation, you must open the standby database as the primary
database.

Specify NOWAITto have control returned immediately rather than after the recovery
process is complete.

Restrictions on FINISH You cannot specify FINISH if you have also specified
TIMEOUT DELAY EXPIRE, or NEXT

parallel_clause Use the parallel_clause to indicate whether Oracle should
parallelize the managed recovery processes. If you specify NOPARALLElor omit
this clause entirely, Oracle performs the managed standby recovery operation
serially.

See Also:
« parallel_clause on page 7-49 for more information on this
clause

« Oracle Data Guard Concepts and Administration for guidelines on
determining whether parallel managed standby recovery will
result in performance gains

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-33

ALTER DATABASE

END BACKUP Clause

Specify END BACKUR take out of online backup mode any datafiles in the
database currently in online backup mode. The database must be mounted but not
open when you perform this operation.

You can end online ("hot") backup operations in three ways. During normal
operation, you can take a tablespace out of online backup mode using the ALTER
TABLESPACE.. END BACKUBtatement. Doing so avoids the increased overhead of
leaving the tablespace in online backup mode.

After a system failure, instance failure, or SHUTDOWN ABOB@eration, Oracle does
not know whether the files in online backup mode match the files at the time the
system crashed. If you know the files are consistent, you can take either individual
datafiles or all datafiles out of online backup mode. Doing so avoids media recovery
of the files upon startup.

« Totake an individual datafile out of online backup mode, use the ALTER
DATABASE DATAFILE.. END BACKUBtatement. See database _file
clauses on page 9-34.

« To take all datafiles in a tablespace out of online backup mode, use an ALTER
TABLESPACE.. END BACKUBtatement.

See Also: ALTER TABLESPACE on page 11-102 for information
on ending online tablespace backup

database_file clauses

The database_file_clauses let you modify datafiles and tempfiles. You can
use any of the following clauses when your instance has the database mounted,
open or closed, and the files involved are not in use.

CREATE DATAFILE

Use the CREATE DATAFILEclause to create a new empty datafile in place of an old
one. You can use this clause to re-create a datafile that was lost with no backup. The
filename or filenumber must identify a file that is or was once part of the
database. If you identify the file by number, then filenumber is an integer
representing the number found in the FILE# column of the V$DATAFILE dynamic
performance view or in the FILE_ID column of the DBA_DATA_FILESdata
dictionary view.

= Specify AS NEWo create an Oracle-managed datafile with a system-generated
filename, the same size as the file being replaced, in the default file system
location for datafiles.

9-34 Oracle9i SQL Reference

ALTER DATABASE

« Specify AS datafile_tempfile _spec to assign a filename (and optional
size) for the new datafile.

If the original file (flename or filenumber) is an existing Oracle-managed
datafile, then Oracle attempts to delete the original file after creating the new file. If
the original file is an existing user-managed datafile, Oracle does not attempt to
delete the original file.

If you omit the ASclause entirely, Oracle creates the new file with the same name
and size as the file specified by filename or filenumber

During recovery, all archived redo logs written to since the original datafile was
created must be applied to the new, empty version of the lost datafile.

Oracle creates the new file in the same state as the old file when it was created. You
must perform media recovery on the new file to return it to the state of the old file
at the time it was lost.

Restrictions on Creating New Datafiles

« You cannot create a new file based on the first datafile of the SYSTEM
tablespace.

= You cannot specify the autoextend_clause of datafile _tempfile _spec
in this CREATE DATAFILEclause.

See Also: file_specification on page 7-39 for a full
description of the file specification (datafile_tempfile_spec)
and "Creating a New Datafile: Example" on page 9-54

DATAFILE Clauses

The DATAFILE clauses let you manipulate a file that you identify by name or by
number. If you identify it by number, then filenumber is an integer representing
the number found in the FILE# column of the V$DATAFILE dynamic performance
view or in the FILE_ID column of the DBA_DATA_FILESdata dictionary view. The
DATAFILE clauses affect your database files as follows:

ONLINE Specify ONLINEto bring the datafile online.
OFFLINE Specify OFFLINE to take the datafile offline. If the database is open, you

must perform media recovery on the datafile before bringing it back online, because
a checkpoint is not performed on the datafile before it is taken offline.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-35

ALTER DATABASE

DROP If the database is in NOARCHIVELO®ode, you must specify the DROP
clause to take a datafile offline. However, the DRORlause does not remove the
datafile from the database. To do that, you must drop the tablespace in which the
datafile resides. Until you do so, the datafile remains in the data dictionary with the
status RECOVERr OFFLINE.

If the database is in ARCHIVELOGNode, Oracle ignores the DROFkeyword.

RESIZE Specify RESIZE if you want Oracle to attempt to increase or decrease the
size of the datafile to the specified absolute size in bytes. Use K or Mto specify this
size in kilobytes or megabytes. There is no default, so you must specify a size.

If sufficient disk space is not available for the increased size, or if the file contains
data beyond the specified decreased size, Oracle returns an error.

See Also: "Resizing a Datafile: Example" on page 9-54

END BACKUP Specify END BACKUB take the datafile out of online backup mode.
The END BACKURPlause is described more fully at the top level of the syntax of
ALTER DATABASESee "END BACKUP Clause" on page 9-34.

TEMPFILE Clause

Use the TEMPFILE clause to resize your temporary datafile or specify the
autoextend_clause , with the same effect as with a permanent datafile. You can
identify the tempfile by name or by number. If you identify it by number, then
filenumber is an integer representing the number found in the FILE# column of
the V$TEMPFILE dynamic performance view.

Note: On some operating systems, Oracle does not allocate space
for the tempfile until the tempfile blocks are actually accessed. This
delay in space allocation results in faster creation and resizing of
tempfiles, but it requires that sufficient disk space is available when
the tempfiles are later used. To avoid potential problems, before
you create or resize a tempfile, ensure that the available disk space
exceeds the size of the new tempfile or the increased size of a
resized tempfile. The excess space should allow for anticipated
increases in disk space use by unrelated operations as well. Then
proceed with the creation or resizing operation.

9-36 Oracle9i SQL Reference

ALTER DATABASE

Restriction on Modifying Tempfiles You cannot specify TEMPFILE unless the
database is open.

DROP Specify DRORo drop tempfile from the database. The tablespace
remains.

If you specify INCLUDING DATAFILES, Oracle also deletes the associated operating
system files and writes a message to the alert log for each such deleted file.

autoextend_clause

Use the autoextend clause to enable or disable the automatic extension of a
new datafile or tempfile.

See Also: file_specification on page 7-39 for information
about the autoextend clause

RENAME FILE Clause

Use the RENAME FILEclause to rename datafiles, tempfiles, or redo log file
members. You must create each filename using the conventions for filenames on
your operating system before specifying this clause.

« To use this clause for datafiles and tempfiles, the database must be mounted.
The database can also be open, but the datafile or tempfile being renamed must
be offline.

« To use this clause for logfiles, the database must be mounted but not open.

This clause renames only files in the control file. It does not actually rename them
on your operating system. The operating system files continue to exist, but Oracle
no longer uses them. If the old files were Oracle managed, Oracle drops the old
operating system file after this statement executes, because the control file no longer
points to them as datafiles, tempfiles, or redo log files.

See Also: "Renaming a Log File Member: Example" on page 9-53

logfile_clauses
The logfile clauses let you add, drop, or modify log files.

ARCHIVELOG | NOARCHIVELOG

Use the ARCHIVELOGlause and NOARCHIVELOG@lause only if your instance has
the database mounted but not open, with Real Application Clusters disabled.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-37

ALTER DATABASE

ARCHIVELOG Specify ARCHIVELOGdf you want the contents of a redo log file
group to be archived before the group can be reused. This mode prepares for the
possibility of media recovery. Use this clause only after shutting down your
instance normally, or immediately with no errors, and then restarting it and
mounting the database with Real Application Clusters disabled.

NOARCHIVELOG Specify NOARCHIVELO® you do not want the contents of a
redo log file group to be archived so that the group can be reused. This mode does
not prepare for recovery after media failure.

[NO] FORCE LOGGING

Use this clause to put the database into or take the database out of FORCE LOGGING
mode. The database must be mounted or open.

In FORCE LOGGIN@ode, Oracle will log all changes in the database except for
changes in temporary tablespaces and temporary segments. This setting takes
precedence over and is independent of any NOLOGGIN®@r FORCE LOGGING
settings you specify for individual tablespaces and any NOLOGGINGettings you
specify for individual database objects.

If you specify FORCE LOGGIN®racle waits for all ongoing unlogged operations to
finish.

See Also: Oracle9i Database Administrator’s Guide for information
on when to use FORCE LOGGIN@&ode

ADD [STANDBY] LOGFILE Clause

Use the ADD LOGFILEclause to add one or more redo log file groups to the
specified thread, making them available to the instance assigned the thread. If you
specify STANDBYthe redo log file created is for use by physical standby databases
only.

To learn whether a logfile has been designated for online or standby database use,
query the TYPEcolumn of the VSLOGFILE dynamic performance view.

See Also: "Adding Redo Log File Groups: Examples" on
page 9-52

THREAD The THREADxlause is applicable only if you are using Oracle with the
Real Application Clusters option in parallel mode. integer is the thread number.
The number of threads you can create is limited by the value of the MAXINSTANCES
parameter specified in the CREATE DATABAS&atement.

9-38 Oracle9i SQL Reference

ALTER DATABASE

If you omit THREADthe redo log file group is added to the thread assigned to your
instance.

GROUP The GROURIause uniquely identifies the redo log file group among all
groups in all threads and can range from 1 to the MAXLOGFILESvalue. You cannot
add multiple redo log file groups having the same GROURalue. If you omit this
parameter, Oracle generates its value automatically. You can examine the GROUP
value for a redo log file group through the dynamic performance view V$LOG

redo_log_file_spec Each redo_log file_spec specifies a redo log file group
containing one or more members (that is, one or more copies).

See Also:
« file_specification on page 7-39

« Oracle9i Database Reference for information on dynamic
performance views

DROP LOGFILE Clause

Use the DROP LOGFILElause to drop all members of a redo log file group. Specify
a redo log file group as indicated for the ADD LOGFILE MEMBEdRause.

« Todrop the current log file group, you must first issue an ALTER SYSTEM
SWITCH LOGFILEstatement.

= You cannot drop a redo log file group if it needs archiving.

= You cannot drop a redo log file group if doing so would cause the redo thread
to contain less than two redo log file groups.

See Also: ALTER SYSTEM on page 10-20 and "Dropping Log File
Members: Example” on page 9-53

ADD [STANDBY] LOGFILE MEMBER Clause

Use the ADD LOGFILE MEMBEdause to add new members to existing redo log file
groups. Each new member is specified by ‘filename’ . If the file already exists, it
must be the same size as the other group members, and you must specify REUSEIf
the file does not exist, Oracle creates a file of the correct size. You cannot add a
member to a group if all of the group’s members have been lost through media
failure.

You can specify STANDBYfor symmetry, to indicate that the logfile member is for
use only by a physical standby database. However, this keyword is not required. If

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-39

ALTER DATABASE

group integer was added for standby database use, all of its members will be
used only for standby databases as well.

You can specify an existing redo log file group in one of two ways:

GROUP integer Specify the value of the GROURarameter that identifies the redo
log file group.

filename (s) List all members of the redo log file group. You must fully specify each
filename according to the conventions of your operating system.

See Also: "Adding Redo Log File Group Members: Example" on
page 9-53

DROP LOGFILE MEMBER Clause

Use the DROP LOGFILE MEMBE#use to drop one or more redo log file members.
Each ‘filename’ must fully specify a member using the conventions for
filenames on your operating system.

« Todrop alog file in the current log, you must first issue an ALTER SYSTEM
SWITCH LOGFILEstatement.

See Also: ALTER SYSTEM on page 10-20

=« You cannot use this clause to drop all members of a redo log file group that
contains valid data. To perform that operation, use the DROP LOGFILElause.

See Also: "Dropping Log File Members: Example" on page 9-53

ADD SUPPLEMENTAL LOG DATA Clause

Specify the ADD SUPPLEMENTAL LOG DAd&use to place additional column data
into the log stream any time an update operation is performed. These four
keywords alone enable minimal supplemental logging, which is not enabled by
default.

Minimal supplemental logging ensures that Logminer (and any products building
on Logminer technology) will have sufficient information to support chained rows
and various storage arrangements such as cluster tables.

If supplemental log data will be the source of change in another database, such as a
logical standby, the log data must also uniquely identify each row updated. In this
case, you should enable identification key (“full") supplemental logging by
specifying PRIMARY KEY COLUMNSd UNIQUE KEY COLUMNS

9-40 Oracle9i SQL Reference

ALTER DATABASE

PRIMARY KEY COLUMNS When you specify PRIMARY KEY COLUMNGSFracle
ensures, for all tables with a primary key, that all columns of the primary key are
placed into the redo log whenever an update operation is performed. If no primary
key is defined, Oracle places into the redo log a set of columns that uniquely
identifies the row. This set may include all columns with a fixed-length maximum
size.

UNIQUE INDEX COLUMNS When you specify UNIQUE INDEX COLUMNB®Iracle
ensures, for all tables with a unique key, that if any unique key columns are
modified, all other columns belonging to the unique key are also placed into the
redo log.

Note: You can issue this statement when the database is open.
However, Oracle will invalidate all DML cursors in the cursor
cache, which will have an effect on performance until the cache is
repopulated.

See Also: Oracle Data Guard Concepts and Administration for
information on supplemental logging

DROP SUPPLEMENTAL LOG DATA Clause

Use the DROP SUPPLEMENTAL LOG DAT&use to instruct Oracle to stop placing
additional log information into the redo log stream whenever an update operation
occurs. This statement terminates the effect of a previous ADD SUPPLEMENTAL LOG
DATAstatement.

See Also: Oracle Data Guard Concepts and Administration for
information on supplemental logging

CLEAR LOGFILE Clause

Use the CLEAR LOGFILEclause to reinitialize an online redo log, optionally without
archiving the redo log. CLEAR LOGFILEis similar to adding and dropping a redo
log, except that the statement may be issued even if there are only two logs for the
thread and also may be issued for the current redo log of a closed thread.

« You must specify UNARCHIVEDf you want to reuse a redo log that was not
archived.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-41

ALTER DATABASE

Caution: Specifying UNARCHIVEDnakes backups unusable if the
redo log is needed for recovery.

« You must specify UNRECOVERABLE DATAFILiEyou have taken the datafile
offline with the database in ARCHIVELOGnNode (that is, you specified ALTER
DATABASE.. DATAFILE OFFLINE without the DROFkeyword), and if the
unarchived log to be cleared is needed to recover the datafile before bringing it
back online. In this case, you must drop the datafile and the entire tablespace
once the CLEAR LOGFILEstatement completes.

Do not use CLEAR LOGFILEto clear a log needed for media recovery. If it is
necessary to clear a log containing redo after the database checkpoint, you must
first perform incomplete media recovery. The current redo log of an open thread
can be cleared. The current log of a closed thread can be cleared by switching
logs in the closed thread.

If the CLEAR LOGFILEstatement is interrupted by a system or instance failure,
then the database may hang. If this occurs, reissue the statement after the
database is restarted. If the failure occurred because of 1/0 errors accessing one
member of a log group, then that member can be dropped and other members
added.

See Also: "Clearing a Log File: Example" on page 9-54

controlfile _clauses
The controlfile_clauses let you create or back up a control file.

CREATE STANDBY CONTROLFILE Clause

The CREATE STANDBY CONTROLFItRuse applies only to physical standby
databases. Use this clause to create a control file to be used to maintain a physical
standby database. If the file already exists, you must specify REUSE

See Also: Oracle Data Guard Concepts and Administration

BACKUP CONTROLFILE Clause

Use the BACKUP CONTROLFILEause to back up the current control file. The
database must be open or mounted when you specify this clause.

9-42 Oracle9i SQL Reference

ALTER DATABASE

TO 'filename’ Specify the file to which the control file is backed up. You must fully
specify the filename using the conventions for your operating system. If the
specified file already exists, you must specify REUSE

TO TRACE Specify TO TRACHf you want Oracle to write SQL statements to a
trace file rather than making a physical backup of the control file. You can use SQL
statements written to the trace file to start up the database, re-create the control file,
and recover and open the database appropriately, based on the created control file.

You can copy the statements from the trace file into a script file, edit the statements
as necessary, and use the script if all copies of the control file are lost (or to change
the size of the control file).

« Specify ASfilename if you want Oracle to place the script into a file called
filename rather than into the standard trace file.

« Specify REUSEo allow Oracle to overwrite any existing file called filename

« RESETLOG®dicates that the SQL statement written to the trace file for
starting the database is ALTER DATABASE OPEN RESETLO®HSS setting is
valid only if the online logs are unavailable.

« NORESETLOGIBdicates that the SQL statement written to the trace file for
starting the database is ALTER DATABASE OPEN NORESETLOIBS setting is
valid only if all the online logs are available.

If you cannot predict the future state of the online logs, specify neither RESETLOGS
nor NORESETLOG® this case, Oracle puts both versions of the script into the trace
file, and you can choose which version is appropriate when the script becomes
necessary.

standby_database_clauses

Use these clauses to activate the standby database or to specify whether itisin
protected or unprotected mode.

See Also: Oracle Data Guard Concepts and Administration for
descriptions of physical and logical the standby database and for
information on maintaining and using standby databases

ACTIVATE STANDBY DATABASE Clause

The ACTIVATE STANDBY DATABASHause changes the state of a standby database
to an active database and prepares it to become the primary database. The database
must be mounted before you can specify this clause.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-43

ALTER DATABASE

PHYSICAL Specify PHYSICALto activate a physical standby database. This is the
default.

LOGICAL Specify LOGICALto activate a logical standby database. If you have
more than one logical standby database, you should first ensure that the same log
data is available on all the standby systems.

SKIP [STANDBY LOGFILE] This clause applies only to physical standby databases.
Use this clause to force the operation to proceed even if standby redo logfiles
contain data that could be recovered using the RECOVER MANAGED STANDBY
DATABASE FINISHcommand.

Note: Oracle Corporation recommends that you always use the
RECOVER MANAGED STANDBY DATABASE FINtStdment for
physical standby even if you do not use standby redo logfiles. Use
the SKIP clause only if it is acceptable to discard the contents of the
standby redo log.

SET STANDBY [DATABASE] Clause

Use this clause to specify the level of protection for the data in your database
environment. You specify this clause from the primary database, which must be
mounted but not open.

Note: The PROTECTERNnd UNPROTECTEKeywords have been
replaced for clarity but are still supported. PROTECTEIs
equivalent to TO MAXIMIZE PROTECTIONJNPROTECTEDR
equivalent to TO MAXIMIZE PERFORMANCE

TO MAXIMIZE PROTECTION This setting establishes "maximum protection mode"
and offers the highest level of data protection. A transaction does not commit until
all data needed to recover that transaction has been written to at least one physical
standby database that is configured to use the SYNClog transport mode. If the
primary database is unable to write the redo records to at least one such standby
database, the primary database is shut down. This mode guarantees zero data loss,
but it has the greatest potential impact on the performance and availability of the
primary database.

TO MAXIMIZE AVAILABILITY This setting establishes "maximum availability
mode" and offers the next highest level of data protection. A transaction does not

9-44 Oracle9i SQL Reference

ALTER DATABASE

commit until all data needed to recover that transaction has been written to at least
one (physical or logical) standby database that is configured to use the SYNClog
transport mode. Unlike maximum protection mode, the primary database does not
shut down if it is unable to write the redo records to at least one such standby
database. Instead, the protection is lowered to maximum performance mode until
the fault has been corrected and the standby database has caught up with the
primary database. This mode guarantees zero data loss unless the primary database
fails while in maximum performance mode. Maximum availability mode provides
the highest level of data protection that is possible without affecting the availability
of the primary database.

TO MAXIMIZE PERFORMANCE This setting establishes "maximum performance
mode" and is the default setting. A transaction commits before the data needed to
recover that transaction has been written to a standby database. Therefore, some
transactions may be lost if the primary database fails and you are unable to recover
the redo records from the primary database. This mode provides the highest level of
data protection that is possible without affecting the performance of the primary
database.

To determine the current mode of the database, query the PROTECTION_MODE
column of the V$DATABASHEIynamic performance view.

See Also: Oracle Data Guard Concepts and Administration for full
information on using these standby database settings

REGISTER LOGFILE Clause

Specify the REGISTER LOGFILEclause from the standby database to manually
register log files from the failed primary.

For a logical standby database, you can use this command to seed the initial starting
point for a new logical standby database. Then when you issue an ALTER
DATABASE START LOGICAL STANDBY APPLY INITIAtommand, Oracle will use
the lowest registered logfile as its starting point.

OR REPLACE Specify OR REPLACHD allow an existing archivelog entry in the
standby database to be updated, for example, when its location or file specification
changes. The SCNs of the entries must match exactly, and the original entry must
have been created by the managed standby log transmittal mechanism.

COMMIT TO SWITCHOVER Clause

Use this clause to perform a "graceful switchover", in which the current primary
database take on standby status, and one standby database becomes the primary

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-45

ALTER DATABASE

database. In a Real Application Clusters environment, all instances other than the
instance from which you issue this statement must be shutdown normally.

« Specify PHYSICALto prepare the primary database to run in the role of a
physical standby database.

« Specify LOGICALto prepare the primary database to run in the role of a logical
standby database. If you specify LOGICAL you must then issue an ALTER
DATABASE START LOGICAL STANDBY APRitatement.

« On the primary database, specify COMMIT TO SWITCHOVER TO STANBBY
perform a graceful database switchover of the primary database to standby
database status. The primary database must be open.

« On one of the standby databases, issue a COMMIT TO SWITCHOVER TO PRIMARY
statement to perform a graceful switchover of this standby database to primary
status. The standby database must be mounted or open in READ ONLYnode.

WITH | WITHOUT SESSION SHUTDOWN If you specify WITH SESSION
SHUTDOWMracle shuts down any open application sessions and rolls back
uncommitted transactions as part of the execution of this statement. If you omit this
clause or specify WITHOUT SESSION SHUTDOMhich is the default), the
statement will fail if any application sessions are open.

Restriction on WITH SESSION SHUTDOWN This clause is not necessary or
supported for a logical database.

WAIT | NOWAIT Specify WAIT if you want Oracle to return control after the
completion of the SWITCHOVERommand. Specify NOWAITif you want Oracle to
return control before the switchover operation is complete. the default is WAIT.

See Also: Oracle Data Guard Concepts and Administration for full
information on graceful switchover between primary and standby
databases

START LOGICAL STANDBY APPLY Clause

Specify the START LOGICAL STANDBY APPLcYause to begin applying redo logs to
a logical standby database.

« Specify INITIAL the first time you apply the logs to the standby database.

« Specify NEW PRIMAR#fter the ALTER DATABASE COMMIT TO SWITCHOVER TO
LOGICAL STANDBtatement or when a standby database has completed

9-46 Oracle9i SQL Reference

ALTER DATABASE

processing logs from one primary and now a new database becomes the
primary.

STOP | ABORT LOGICAL STANDBY Clause

Use this clause to stop the log apply services. This clause applies only to logical
standby databases, not to physical standby databases. Use the STOPclause to stop
the apply in an orderly fashion.

default_settings clauses
Use these clauses to modify the default settings of the database.

CHARACTER SET, NATIONAL CHARACTER SET

CHARACTER SEdhanges the character set the database uses to store data.
NATIONAL CHARACTER SEhanges the national character set used to store data in
columns specifically defined as NCHARNCLOBor NVARCHARZpecify
character_set without quotation marks. The database must be open.

Cautions:

« You cannot roll back an ALTER DATABASE CHARACTER S&T
ALTER DATABASE NATIONAL CHARACTER SEifement.
Therefore, you should perform a full backup before issuing
either of these statements.

« Oracle Corporation recommends that you use the Character Set
Scanner (CSSCAN) to analyze your data before migrating your
existing database character set to a new database character set.
Doing so will help you avoid losing non-ASCII data that you
might not have been aware was in your database. Please see
Oracle9i Database Globalization Support Guide for more
information about CSSCAN.

Notes on Changing Character Sets

In Oracle9i, CLOBdata is stored as UCS-2 (two-byte fixed-width Unicode) for
multibyte database character sets. For single-byte database character sets, CLOB
data is stored in the database character set. When you change the database or
national character set with an ALTER DATABASEtatement, no data conversion is
performed. Therefore, if you change the database character set from single byte to
multibyte using this statement, CLOBcolumns will remain in the original database

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-47

ALTER DATABASE

character set. This may introduce data inconsistency in your CLOBcolumns.
Likewise, if you change the national character set from one Unicode set to another,
your SQL NCHARolumns (NCHARNVARCHARZNCLOB may be corrupted.

The recommended procedure for changing database character sets is:
1. Export the CLOBand SQL NCHARJatatype columns.
2. Drop the tables containing the CLOBand SQL NCHARolumns.

3. Use ALTER DATABASEtatements to change the character set and national
character set.

4. Reimport the CLOBand SQL NCHARolumns.

Restrictions on Changing Character Sets

=« You must have SYSDBAsystem privilege, and you must start up the database in
restricted mode (for example, with the SQL*Plus STARTUP RESTRICT
command).

« The current character set must be a strict subset of the character set to which
you change. That is, each character represented by a codepoint value in the
source character set must be represented by the same codepoint value in the
target character set.

See Also: Oracle9i Database Globalization Support Guide for
information on database character set migration and "Changing a
Character Set: Example" on page 9-54

set _time_zone_clause

Use the SET TIME_ZONElause to set the time zone of the database. You can specify
the time zone in two ways:

« By specifying a displacement from UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). The valid range of hh:mmis -12:00 to
+14:00.

« By specifying a time zone region. To see a listing of valid region names, query
the TZNAMEolumn of the V$TIMEZONE_NAME&ynamic performance view.

9-48 Oracle9i SQL Reference

ALTER DATABASE

Note: Oracle Corporation recommends that you set the database
time zone to UTC ("0:00"). Doing so can improve performance,
especially across databases, as nho conversion of time zones will be
required.

See Also: Oracle9i Database Reference for information on the
dynamic performance views

Oracle normalizes all new TIMESTAMP WITH LOCAL TIME ZONtata to the time
zone of the database when the data is stored on disk. Oracle does not automatically
update existing data in the database to the new time zone. To determine the time
zone of the database, query the built-in function DBTIMEZONHKsee DBTIMEZONE
on page 6-51).

After setting or changing the time zone with this clause, you must restart the
database for the new time zone to take effect.

DEFAULT TEMPORARY TABLESPACE Clause

Specify this clause to change the default temporary tablespace of the database. After
this operation completes, Oracle automatically reassigns to the new default
temporary tablespace all users who had been assigned to the old default temporary
tablespace. You can then drop the old default temporary tablespace if you wish.

To learn the name of the current default temporary tablespace, query the
PROPERTY_VALUE&olumn of the DATABASE_PROPERTIES8ata dictionary table
where the PROPERTY_NAME'DEFAULT_TEMP_TABLESPACE

Restrictions on Default Temporary Tablespaces

« The tablespace you assign or reassign as the default temporary tablespace must
have a standard block size.

« If the SYSTEMablespace is locally managed, the tablespace you specify as the
default temporary tablespace must also be locally managed.

See Also: "Defining a Default Temporary Tablespace: Example"
on page 9-53

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-49

ALTER DATABASE

conversion_clauses

RESET COMPATIBILITY Clause

Specify RESET COMPATIBILITY to mark the database to be reset to an earlier
version of Oracle when the database is next restarted. The database must be open.

Note: RESET COMPATIBILITY works only if you have
successfully disabled Oracle features that affect backward
compatibility.

See Also: Oracle9i Database Migration Guide for more information
on downgrading to an earlier version of Oracle

CONVERT Clause

Use the CONVERTIlause to complete the conversion of the Oracle7 data dictionary:.
After you use this clause, the Oracle7 data dictionary no longer exists in the Oracle
database.

Note: Use this clause only when you are migrating to Oracle9i,
and do not use this clause when the database is mounted.

See Also: Oracle9i Database Migration Guide

redo_thread clauses
Use these clauses to enable and disable the thread of redo log file groups.

ENABLE THREAD Clause

In an Oracle Real Application Clusters environment, specify ENABLE THREAED
enable the specified thread of redo log file groups. The thread must have at least
two redo log file groups before you can enable it. The database must be open.

PUBLIC Specify PUBLIC to make the enabled thread available to any instance that
does not explicitly request a specific thread with the initialization parameter
THREADIf you omit PUBLIC, the thread is available only to the instance that
explicitly requests it with the initialization parameter THREAD

9-50 Oracle9i SQL Reference

ALTER DATABASE

See Also: Oracle9i Real Application Clusters Administration for more
information on enabling and disabling threads

DISABLE THREAD Clause

Specify DISABLE THREADo disable the specified thread, making it unavailable to
all instances. The database must be open, but you cannot disable a thread if an
instance using it has the database mounted.

See Also: Oracle9i Real Application Clusters Administration for more
information on enabling and disabling threads and "Disabling and
Enabling a Real Application Clusters Thread: Examples” on

page 9-53

RENAME GLOBAL_NAME Clause

Specify RENAME GLOBAL_NANtEchange the global name of the database. The
database is the new database name and can be as long as eight bytes. The optional
domain specifies where the database is effectively located in the network hierarchy.
Do not use this clause when the database is mounted.

Note: Renaming your database does not change global references
to your database from existing database links, synonyms, and
stored procedures and functions on remote databases. Changing
such references is the responsibility of the administrator of the
remote databases.

See Also: Oracle9i Heterogeneous Connectivity Administrator’s Guide
for more information on global names and "Changing the Global
Database Name: Example" on page 9-54

security _clause
Use the security clause (GUARDto protect data in the database from being
changed.

ALL Specify ALL to prevent all users other than SYSfrom making changes to any
data in the database.

STANDBY Specify STANDBMo prevent all users other than SYSfrom making
changes to any database object being maintained by logical standby. This setting is

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-51

ALTER DATABASE

Examples

useful if you want report operations to be able to modify data as long as it is not
being replicated by logical standby.

See Also: Oracle Data Guard Concepts and Administration for
information on logical standby

NONE Specify NONEf you want normal security for all data in the database.

READ ONLY / READ WRITE: Example The first statement that follows opens the
database in read-only mode. The second statement returns the database to
read/write mode and clears the online redo logs:

ALTER DATABASE OPEN READ ONLY;
ALTER DATABASE OPEN READ WRITE RESETLOGS;

Using Parallel Recovery Processes: Example The following statement performs
tablespace recovery using parallel recovery processes:

ALTER DATABASE
RECOVER TABLESPACE tbs_03
PARALLEL,;

Adding Redo Log File Groups: Examples The following statement adds a redo
log file group with two members and identifies it with a GROURParameter value of
3:

ALTER DATABASE
ADD LOGFILE GROUP 3
('diska:log3.log’ ,
‘diskb:log3.log’) SIZE 50K;

The following statement adds a redo log file group containing two members to
thread 5 (in a Real Application Clusters environment) and assigns it a GROUP
parameter value of 4:

ALTER DATABASE
ADD LOGFILE THREAD 5 GROUP 4
('diska:log4.log’,
‘diskb:log4:log’);

9-52 Oracle9i SQL Reference

ALTER DATABASE

Dropping Log File Members: Example The following statement drops one redo
log file member added in the previous example:

ALTER DATABASE
DROP LOGFILE MEMBER 'diskb:log3.log’;

The following statement drops all members of the redo log file group 3:
ALTER DATABASE DROP LOGFILE GROUP 3;

Adding Redo Log File Group Members: Example The following statement adds a
member to the redo log file group added in the previous example:

ALTER DATABASE
ADD LOGFILE MEMBER 'diskc:log3.log’
TO GROUP 3;

Renaming a Log File Member: Example The following statement renames a redo
log file member:

ALTER DATABASE
RENAME FILE 'diskc:log3.log’ TO 'diskb:log3.log’;

The preceding statement only changes the member of the redo log group from one
file to another. The statement does not actually change the name of the file
"diskc:log3.log’ to 'diskb:log3.log’ . You must perform this operation
through your operating system.

Defining a Default Temporary Tablespace: Example The following statement
makes the tbs 5 tablespace the default temporary tablespace of the database. This
statement either establishes a default temporary tablespace if none was specified at
create time, or replaces an existing default temporary tablespace with temp:

ALTER DATABASE

DEFAULT TEMPORARY TABLESPACE tbs_5;
Disabling and Enabling a Real Application Clusters Thread: Examples The
following statement disables thread 5 in a Real Application Clusters environment:
ALTER DATABASE

DISABLE THREAD 5;

The following statement enables thread 5 in a Real Application Clusters
environment, making it available to any Oracle instance that does not explicitly
request a specific thread:

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-53

ALTER DATABASE

ALTER DATABASE
ENABLE PUBLIC THREAD 5;

Creating a New Datafile: Example The following statement creates a new datafile
‘tabspace_fileO4.dbf " based on the file 'tabspace_file03.dbf . Before
creating the new datafile, you must take the existing datafile (or the tablespace in
which it resides) offline.

ALTER DATABASE
CREATE DATAFILE 'tbs_f03.dbf
AS 'tbs_f04.dbf’

Changing the Global Database Name: Example The following statement changes
the global name of the database and includes both the database name and domain:

ALTER DATABASE
RENAME GLOBAL_NAME TO demo.world.oracle.com;

Changing a Character Set: Example The following statements change the
database character set and national character set to the UTF8 character set:

ALTER DATABASE CHARACTER SET UTFS;
ALTER DATABASE NATIONAL CHARACTER SET UTFS;

The database name is optional, and the character set name is specified without
guotation marks.

Resizing a Datafile: Example The following statement attempts to change the size
of datafile 'disk1:dbl.dat’

ALTER DATABASE

DATAFILE 'disk1l:dbl.dat’ RESIZE 10 M;
Clearing a Log File: Example The following statement clears a log file:
ALTER DATABASE

CLEAR LOGFILE 'diskc:log3.log’;

Database Recovery: Examples The following statement performs complete
recovery of the entire database, letting Oracle generate the name of the next
archived redo log file needed:

ALTER DATABASE
RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle to apply:

9-54 Oracle9i SQL Reference

ALTER DATABASE

ALTER DATABASE
RECOVER LOGFILE ’diskc:log3.log’;

The following statement recovers the standby datafile /finance/stbs_21.f :
using the corresponding datafile in the original standby database, plus all relevant
archived logs and the current standby database control file:

ALTER DATABASE

RECOVER STANDBY DATAFILE 'ffinance/sths_21.f

UNTIL CONTROLFILE;
The following statement performs time-based recovery of the database:
ALTER DATABASE

RECOVER AUTOMATIC UNTIL TIME '2001-10-27:14:00:00’;

Oracle recovers the database until 2:00 p.m. on October 27, 2001.

For an example of recovering a tablespace, see "Using Parallel Recovery Processes:
Example" on page 9-52.

Recovering a Managed Standby Database: Examples The following statement
recovers the standby database in managed standby recovery mode:
ALTER DATABASE

RECOVER MANAGED STANDBY DATABASE;

The following statement puts the database in managed standby recovery mode. The
managed recovery process will wait up to 60 minutes for the next archive log:

ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE TIMEOUT 60;
If each subsequent log arrives within 60 minutes of the last log, recovery continues
indefinitely or until manually terminated.
The following statement terminates the managed recovery operation:
ALTER DATABASE
RECOVER MANAGED STANDBY DATABASE CANCEL IMMEDIATE;

The managed recovery operation terminates before the next group of redo is read
from the current redo log file. Media recovery ends in the "middle" of applying redo
from the current redo log file.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-55

ALTER DIMENSION

ALTER DIMENSION

Purpose

Use the ALTER DIMENSIONstatement to change the hierarchical relationships or
dimension attributes of a dimension.

See Also: CREATE DIMENSION on page 13-43 for more
information on dimensions

Prerequisites
The dimension must be in your schema or you must have the ALTER ANY
DIMENSIONSsystem privilege to use this statement.
A dimension is always altered under the rights of the owner.

Syntax

alter_dimension::=

m.schema
—>| ALTER |—>| DIMENSION } . (dimension)

l{ ADD ’

level_clause

i)
hierarchy_clause)

attribute_clause

=

HIERARCHY |—><hierarch) |

ATTRIBUTE

DROP

\| COMPILE

9-56 Oracle9i SQL Reference

ALTER DIMENSION

level_clause::=

level_column

level_table

hierarchy_clause::=

-join_clause
—>| HIERARCHY Khierarchy}s@»(child_level)»—q CHILD |—>| OF Kparent_level)) A @»

join_clause::=

child_key_column

attribute_clause::=

ATTRIBUTE

Semantics

The following keywords, parameters, and clauses have meaning unique to ALTER
DIMENSION Keywords, parameters, and clauses that do not appear here have the
same functionality that they have in the CREATE DIMENSIONtatement.

See Also: CREATE DIMENSION on page 13-43
schema

Specify the schema of the dimension you want to modify. If you do not specify
schema, Oracle assumes the dimension is in your own schema.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-57

ALTER DIMENSION

Example

dimension
Specify the name of the dimension. This dimension must already exist.

ADD

The ADDclauses let you add a level, hierarchy, or attribute to the dimension.
Adding one of these elements does not invalidate any existing materialized view.

Oracle processes ADD LEVELclauses prior to any other ADDclauses.

DROP

The DRORlauses let you drop a level, hierarchy, or attribute from the dimension.
Any level, hierarchy, or attribute you specify must already exist.

Restriction on DROP If any attributes or hierarchies reference a level, you cannot
drop the level until you either drop all the referencing attributes and hierarchies or
specify CASCADE

CASCADE Specify CASCADEf you want Oracle to drop any attributes or
hierarchies that reference the level, along with the level itself.

RESTRICT Specify RESTRICTif you want to prevent Oracle from dropping a level
that is referenced by any attributes or hierarchies. This is the default.

COMPILE

Specify COMPILEto explicitly recompile an invalidated dimension. Oracle
automatically compiles a dimension when you issue an ADDclause or DROR:lause.
However, if you alter an object referenced by the dimension (for example, if you
drop and then re-create a table referenced in the dimension), the dimension will be
invalidated, and you must recompile it explicitly.

Modifying a Dimension: Examples The following examples modify the
customers_dim dimension in the sample schema sh:

ALTER DIMENSION customers_dim
DROP ATTRIBUTE country;

ALTER DIMENSION customers_dim
ADD LEVEL zone IS customers.cust_postal_code
ADD ATTRIBUTE zone DETERMINES (cust_city);

9-58 Oracle9i SQL Reference

ALTER FUNCTION

ALTER FUNCTION

Purpose

Use the ALTER FUNCTIONtatement to recompile an invalid standalone stored
function. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

The ALTER FUNCTIONMtatement is similar to ALTER PROCEDURE on page 9-124.
For information on how Oracle recompiles functions and procedures, see Oracle9i
Database Concepts.

Note: This statement does not change the declaration or definition
of an existing function. To redeclare or redefine a function, use the
CREATE FUNCTIOBtatement with the OR REPLACElause; see
CREATE FUNCTION on page 13-52.

Prerequisites

The function must be in your own schema or you must have ALTER ANY
PROCEDURS§ystem privilege.

Syntax
alter_function::=

. f—)l DEBUG |_\ /—>| REUSE |->| SETTINGS |_\
| ALTER |->| FUNCTION } {function)->| COMPILE } O

Semantics

schema

Specify the schema containing the function. If you omit schema, Oracle assumes
the function is in your own schema.

function
Specify the name of the function to be recompiled.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-59

ALTER FUNCTION

Example

COMPILE

Specify COMPILEto cause Oracle to recompile the function. The COMPILEkeyword
is required. If Oracle does not compile the function successfully, you can see the
associated compiler error messages with the SQL*Plus command SHOW ERRORS

During recompilation, Oracle drops all persistent compiler switch settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGSlause.

DEBUG

Specify DEBUQO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

REUSE SETTINGS

Specify REUSE SETTINGSo prevent Oracle from dropping and reacquiring
compiler switch settings. With this clause, Oracle preserves the existing settings and
uses them for the recompilation.

If you specify both DEBUGnd REUSE SETTINGSOracle sets the persistently stored
value of the PLSQL_COMPILER_FLAG@arameter to INTERPRETEDDEBUGNoO
other compiler switch values are changed.

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on
the interaction of the PLSQL_COMPILER_FLAG@arameter with
the COMPILEclause

Recompiling a Function: Example To explicitly recompile the function get_bal
owned by the sample user oe, issue the following statement:

ALTER FUNCTION oe.get_bal
COMPILE;

If Oracle encounters no compilation errors while recompiling get_bal , get_bal
becomes valid. Oracle can subsequently execute it without recompiling it at run
time. If recompiling get_bal results in compilation errors, Oracle returns an error,
and get_bal remains invalid.

9-60 Oracle9i SQL Reference

ALTER FUNCTION

Oracle also invalidates all objects that depend upon get_bal . If you subsequently
reference one of these objects without explicitly recompiling it first, Oracle
recompiles it implicitly at run time.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-61

ALTER INDEX

ALTER INDEX

Purpose

Prerequisites

Use the ALTER INDEXstatement to change or rebuild an existing index.

See Also: CREATE INDEX on page 13-65 for information on
creating an index

The index must be in your own schema or you must have ALTER ANY INDEX
system privilege.

To execute the MONITORING USAG#ause, the index must be in your own schema.

To modify a domain index, you must have EXECUTEobject privilege on the
indextype of the index.

Schema object privileges are granted on the parent index, not on individual index
partitions or subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to
modify or rebuild an index subpartition.

See Also: CREATE INDEX on page 13-65 and Oracle9i Data
Cartridge Developer’s Guide for information on domain indexes

9-62 Oracle9i SQL Reference

ALTER INDEX

Syntax
alter_index::=

schema
LEN

deallocate_unused_clause

parallel_clause
physical_attributes_clause)—
ol O

—| RENAME H T0 |—><new_name\

)
—| UPDATE |—>| BLOCK |—>| REFERENCES |7

(deallocate_unused_clause::= on page 9-64, allocate_extent

clause::= on page 9-64, parallel_clause::= on page 9-64, physical

attributes_clause::= on page 9-64, logging_clause::=

rebuild_clause::= on page 9-65, alter_index_patrtitioning::=

page 9-66)

on page 7-46,

on

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-63

ALTER INDEX

deallocate_unused_clause ::=

KEEP integer
| KEEP | \

—>| DEALLOCATE |—>| UNUSED }

allocate_extent_clause ::=

DATAFILE |e®->(filename

INSTANCE |—><integer

—>| ALLOCATE |—>| EXTENT }

parallel_clause ::=

NOPARALLEL
()~
PARALLEL

physical_attributes_clause ::=

PCTFREE |{imeger

PCTUSED |a(integer

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause::= on page 7-58)

9-64 Oracle9i SQL Reference

ALTER INDEX

logging_clause::=

| LOGGING q
NOLOGGING

rebuild_clause ::=

PARTITION |—><partition

SUBPARTITION |—>(subpartition

| REVERSE q
NOREVERSE

e| REBUILD
A_parallel_clause)

-| TABLESPACE |—><tab|espace)

[ermmieiees Y DA DA Lpmameen))0
—|ONLINE

-| COMPUTE |->| STATISTICS }

—(physical_attributes_cIause)

—(key_compression)
N logging_clause)

(physical_attributes_clause::= on page 9-64, key compression::= on
page 9-65, logging_clause::= on page 7-46)
key_compression::=

()
NOCOMPRESS

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-65

ALTER INDEX

alter_index_partitioning ::=

/(modify_index_default_attrs)

\Cmodify_inde _subpartition)-/
(modify_index_default_attrs:.= on page 9-66, modify _index_
partition::= on page 9-67, rename_index_patrtition::= on page 9-67,
drop_index_patrtition::= on page 9-67, split_index_patrtition::= on

page 9-67, modify_index_subpartition::= on page 9-68)
modify_index_default_attrs ::=

FOR |->| PARTITION Kpartitionh

—>| MODIFY |->| DEFAULT |->| ATTRIBUTES } I—)'

physical_attributes_clause

tablespace
—)
logging_clause
(physical_attributes_clause::= on page 9-64, logging_clause::= on
page 7-46)

9-66 Oracle9i SQL Reference

ALTER INDEX

modify_index_partition ::=

physical_attributes_clause}

logging_clause
deallocate_unused_clause)—
allocate_extent_clause
—{ opIFY Hf PARTITION J5(partition) PARAMETERS |(()()»(alter_partion_params)} J5() H_,
-| COALESCE |

—| UPDATE |->| BLOCK |->| REFERENCES |

|
\| UNUSABLE

(physical_attributes_clause::= on page 9-64, logging_clause::= on
page 7-46, allocate _extent_clause::= on page 9-64, deallocate _unused
clause::= on page 9-64)

rename_index_partition ::=

PARTITION |{partition
-RENAME -TO -new_name
SUBPARTITION |{subpartition

drop_index_partition ::=

—>| DROP |—>| PARTITION |—><partition_name)—>

split_index_partition ::=

—>| SPLIT |->| PARTITION |—><partition_name_old)—>| AT o " o
ﬂ INTO index_partition_description}s@e(index_partition_description)% parallel_clause

(parallel_clause::= on page 9-64)

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-67

ALTER INDEX

index_partition_description::=

segment_attributes_clause

key_compression

~X partition) \
—>| PARTITION

(key_compression::= on page 9-65)
segment_attributes_clause::=

physical_attributes_clause

TABLESPACE |—><tablespace
logging_clause

(physical _attributes_clause::= on page 9-64, logging_clause::= on
page 7-46)
modify_index_subpartition ::=

allocate_extent_clause

—>| MODIFY |->| SUBPARTITION |{subpartition

deallocate_unused_clause

(allocate _extent clause::= on page 9-64, deallocate _unused
clause::= on page 9-64)

Semantics
schema

Specify the schema containing the index. If you omit schema, Oracle assumes the
index is in your own schema.

index
Specify the name of the index to be altered.

9-68 Oracle9i SQL Reference

ALTER INDEX

Restrictions on Modifying Indexes

« Ifindex isadomain index, you can specify only the PARAMETERS8ause, the
RENAMElause, the rebuild_clause (with or without the PARAMETERS
clause), the parallel _clause , or the UNUSABLEIlause. No other clauses are
valid.

= You cannot alter or rename a domain index that is marked LOADINGor
FAILED. If an index is marked FAILED, the only clause you can specify is
REBUILD.

See Also: Oracle9i Data Cartridge Developer’s Guide for information
on the LOADINGand FAILED states of domain indexes

deallocate unused_clause

Use the deallocate _unused_clause to explicitly deallocate unused space at the
end of the index and make the freed space available for other segments in the
tablespace.

If index is range-partitioned or hash-partitioned, Oracle deallocates unused space
from each index partition. If index is a local index on a composite-partitioned
table, Oracle deallocates unused space from each index subpartition.

Restrictions on Deallocating Space
= You cannot specify this clause for an index on a temporary table.
« You cannot specify this clause and also specify the rebuild_clause

See Also: deallocate_unused_clause on page 7-37 for a full
description of this clause

KEEP integer The KEEPclause lets you specify the number of bytes above the
high water mark that the index will have after deallocation. If the number of
remaining extents are less than MINEXTENTSthen MINEXTENTSs set to the
current number of extents. If the initial extent becomes smaller than INITIAL , then
INITIAL is set to the value of the current initial extent. If you omit KEER all unused
space is freed.

See Also: ALTER TABLE on page 11-2 for a complete description
of this clause

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-69

ALTER INDEX

allocate _extent clause

The allocate_extent clause lets you explicitly allocate a new extent for the
index. For a local index on a hash-partitioned table, Oracle allocates a new extent
for each partition of the index.

Restriction on Allocating Extents You cannot specify this clause for an index on a
temporary table or for a range-partitioned or composite-partitioned index.

See Also: allocate_extent_clause on page 7-2 for a full
description of this clause

parallel_clause

Use the PARALLELclause to change the default degree of parallelism for queries
and DML on the index.

Restriction on Parallelizing Indexes You cannot specify this clause for an index on
a temporary table.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism
equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS_PER_CHbitialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

See Also: "Notes on the parallel_clause” for CREATE TABLEon
page 15-54 and "Enabling Parallel Queries: Example" on page 9-83

9-70 Oracle9i SQL Reference

ALTER INDEX

physical_attributes_clause

Use the physical_attributes clause to change the values of parameters for a
nonpartitioned index, all partitions and subpartitions of a partitioned index, a
specified partition, or all subpartitions of a specified partition.

See Also:

« the physical attributes parameters in CREATE TABLE on
page 15-7

« "Modifying Real Attributes: Example" on page 9-82 and
"Changing MAXEXTENTS: Example" on page 9-83

Restrictions on Index Physical Attributes
= You cannot specify this clause for an index on a temporary table.
= You cannot specify the PCTUSEDparameter at all when altering an index.

« You can specify the PCTFREBRparameter only as part of the rebuild_clause ,
the modify_index_default_attrs clause, or the split_partition
clause .

storage_clause

Use the storage clause to change the storage parameters for a nonpartitioned
index, index partition, or all partitions of a partitioned index, or default values of
these parameters for a partitioned index.

See Also: storage clause on page 7-56

logging_clause

Use the logging_clause to specify whether subsequent Direct Loader
(SQL*Loader) and direct-path INSERT operations against a nonpartitioned index, a
range or hash index partition, or all partitions or subpartitions of a composite-
partitioned index will be logged (LOGGING or not logged (NOLOGGINEn the redo
log file.

An index segment can have logging attributes different from those of the base table
and different from those of other index segments for the same base table.

Restriction on Index Logging You cannot specify this clause for an index on a
temporary table.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-71

ALTER INDEX

See Also:

« logging clause on page 7-45 for a full description of this
clause

« Oracle9i Database Concepts and the Oracle9i Data Warehousing
Guide for more information about LOGGINGand parallel DML

RECOVERABLE | UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGINGand
NOLOGGIN@espectively. Although RECOVERABLENd UNRECOVERABLd#te
supported for backward compatibility, Oracle Corporation strongly recommends
that you use the LOGGINGand NOLOGGIN&eywords.

RECOVERABLIE not a valid keyword for creating partitioned tables or LOB storage
characteristics. UNRECOVERABLE not a valid keyword for creating partitioned or
index-organized tables. Also, it can be specified only with the ASsubquery clause of
CREATE INDEX

rebuild_clause

Use the rebuild clause to re-create an existing index or one of its partitions or
subpartitions. If index is marked UNUSABLEa successful rebuild will mark it
USABLE For a function-based index, this clause also enables the index. If the
function on which the index is based does not exist, the rebuild statement will fail.

Restrictions on Rebuilding Indexes

= You cannot rebuild an index on a temporary table.

= You cannot rebuild a bitmap index that is marked INVALID . Instead, you must
drop and then re-create it.

= You cannot rebuild an entire partitioned index. You must rebuild each partition
or subpartition, as described for the PARTITION clause.

= You cannot also specify the deallocate unused_clause in this statement.

= You cannot change the value of the PCTFREEparameter for the index as a
whole (ALTER INDEX or for a partition (ALTER INDEX... MODIFY PARTITION.
You can specify PCTFREHN all other forms of the ALTER INDEXstatement.

9-72 Oracle9i SQL Reference

ALTER INDEX

« For adomain index:

= You can specify only the PARAMETERS8&8ause (either for the index or for a
partition of the index) or the parallel_clause . No other rebuild clauses
are valid.

« You can rebuild the index only if index is not marked IN._ PROGRESS

« You can rebuild the index partitions only if index is not marked IN_
PROGRESSr FAILED and partition is not marked IN. PROGRESS

« You cannot rebuild a local index, but you can rebuild a partition of a local index
(ALTER INDEX... REBUILD PARTITION).

« For alocal index on a hash partition or subpartition, the only parameter you
can specify is TABLESPACE

PARTITION Clause

Use the PARTITION clause to rebuild one partition of an index. You can also use
this clause to move an index partition to another tablespace or to change a create-
time physical attribute.

Note: The storage of partitioned database entities in tablespaces of
different block sizes is subject to several restrictions. Please refer to
Oracle9i Database Administrator’s Guide for a discussion of these
restrictions.

Restriction on Rebuilding Partitions You cannot specify this clause for a local
index on a composite-partitioned table. Instead, use the REBUILD SUBPARTITION
clause.

See Also: Oracle9i Database Administrator’s Guide for more
information about partition maintenance operations and
"Rebuilding Unusable Index Partitions: Example" on page 9-83

SUBPARTITION Clause

Use the SUBPARTITIONCclause to rebuild one subpartition of an index. You can also
use this clause to move an index subpartition to another tablespace. If you do not
specify TABLESPACEthe subpartition is rebuilt in the same tablespace.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-73

ALTER INDEX

Note: The storage of partitioned database entities in tablespaces of
different block sizes is subject to several restrictions. Please refer to
Oracle9i Database Administrator’s Guide for a discussion of these
restrictions.

Restrictions on Modifying Index Subpartitions

« The only parameters you can specify for a subpartition are TABLESPACENnd
the parallel_clause

« You cannot rebuild the subpartition of a list partition.

REVERSE | NOREVERSE
Indicate whether the bytes of the index block are stored in reverse order:

« REVERSKEtores the bytes of the index block in reverse order and excludes the
rowid when the index is rebuilt.

« NOREVERSHEOres the bytes of the index block without reversing the order
when the index is rebuilt. Rebuilding a REVERSHEndex without the NOREVERSE
keyword produces a rebuilt, reverse-keyed index.

Restrictions on Reverse Indexes
= You cannot reverse a bitmap index or an index-organized table.
= You cannot specify REVERSEr NOREVERSHr a partition or subpartition.

See Also: "Storing Index Blocks in Reverse Order: Example" on
page 9-82

parallel_clause
Use the parallel _clause to parallelize the rebuilding of the index.

See Also: "Rebuilding an Index in Parallel: Example" on
page 9-82

TABLESPACE Clause

Specify the tablespace where the rebuilt index, index partition, or index subpartition
will be stored. The default is the default tablespace where the index or partition
resided before you rebuilt it.

9-74 Oracle9i SQL Reference

ALTER INDEX

COMPRESS | NOCOMPRESS

Specify COMPRES® enable key compression, which eliminates repeated
occurrence of key column values. Use integer to specify the prefix length
(number of prefix columns to compress).

« For unique indexes, the range of valid prefix length values is from 1 to the
number of key columns minus 1. The default prefix length is the number of key
columns minus 1.

« For nonunique indexes, the range of valid prefix length values is from 1 to the
number of key columns. The default prefix length is number of key columns.

Oracle compresses only nonpartitioned indexes that are nonunique or unique
indexes of at least two columns.

Specify NOCOMPRESS disable key compression. This is the default.

Restriction on Key Compression You cannot specify COMPRESHr a bitmap
index.

ONLINE Clause

Specify ONLINE to allow DML operations on the table or partition during
rebuilding of the index.

Restrictions on ONLINE

« Parallel DML is not supported during online index building. If you specify
ONLINE and then issue parallel DML statements, Oracle returns an error.

« You cannot specify ONLINE for a bitmap index or a cluster index.

« For aunique index on an index-organized table, the number of index key
columns plus the number of primary key columns in the index-organized table
cannot exceed 32.

COMPUTE STATISTICS Clause

Specify COMPUTE STATISTICSf you want to collect statistics at relatively little cost
during the rebuilding of an index. These statistics are stored in the data dictionary
for ongoing use by the optimizer in choosing a plan of execution for SQL
statements.

The types of statistics collected depend on the type of index you are rebuilding.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-75

ALTER INDEX

Note: If you create an index using another index (instead of a
table), the original index might not provide adequate statistical
information. Therefore, Oracle generally uses the base table to
compute the statistics, which will improve the statistics but may
negatively affect performance.

Additional methods of collecting statistics are available in PL/SQL packages and
procedures

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
and "Collecting Index Statistics: Example" on page 9-82

logging_clause
Specify whether the ALTER INDEX... REBUILD operation will be logged.

See Also: logging_clause on page 7-45 for a full description of
this clause

PARAMETERS Clause
The PARAMETERS8ause applies only to domain indexes. This clause specifies the

parameter string that is passed uninterpreted to the appropriate ODCI indextype
routine. The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, the string must refer to index-level
parameters. If you are rebuilding a partition of the index, the string must refer to
partition-level parameters.

If index is marked UNUSABLEmModifying the parameters alone does not make it
USABLE You must also rebuild the UNUSABLENdex to make it usable.

Note: If you have installed Oracle Text, you can rebuild your
Oracle Text domain indexes using parameters specific to that
product. For more information on those parameters, please refer to
Oracle Text Reference.

Restrictions on the PARAMETERS Clause

= You can specify this clause only for a domain index.

9-76 Oracle9i SQL Reference

ALTER INDEX

= You can modify index partitions only if index is not marked IN. PROGRESSr
FAILED, no index partitions are marked IN_PROGRESSand the partition being
modified is not marked FAILED.

See Also:

« Oracle9i Data Cartridge Developer’s Guide for more information
on indextype routines.

« CREATE INDEX on page 13-65 for more information on
domain indexes

ENABLE Clause

ENABLEapplies only to a function-based index that has been disabled because a
user-defined function used by the index was dropped or replaced. This clause
enables such an index if these conditions are true:

« The function is currently valid

« The signature of the current function matches the signature of the function
when the index was created

« The function is currently marked as DETERMINISTIC

Restriction on Enabling Function-based Indexes You cannot specify any other
clauses of ALTER INDEXin the same statement with ENABLE

DISABLE Clause

DISABLE applies only to a function-based index. This clause enables you to disable
the use of a function-based index. You might want to do so, for example, while
working on the body of the function. Afterward you can either rebuild the index or
specify another ALTER INDEXstatement with the ENABLEkeyword.

UNUSABLE Clause

Specify UNUSABLHEo mark the index or index partition(s) or index subpartition(s)
UNUSABLEAnN unusable index must be rebuilt, or dropped and re-created, before it
can be used. While one partition is marked UNUSABLEthe other partitions of the
index are still valid. You can execute statements that require the index if the
statements do not access the unusable partition. You can also split or rename the
unusable partition before rebuilding it.

Restriction on Marking Indexes Unusable You cannot specify this clause for an
index on a temporary table.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-77

ALTER INDEX

RENAME Clause
Use this clause to rename an index. The new_index_name is a single identifier and
does not include the schema name.

Restriction on Renaming Indexes For a domain index, neither index nor any
partitions of index can be marked IN_PROGRESS®r FAILED.

See Also: "Renaming an Index: Example" on page 9-83

COALESCE Clause
Specify COALESCHo instruct Oracle to merge the contents of index blocks where

possible to free blocks for reuse.
Restrictions on Coalescing Index Blocks
= You cannot specify this clause for an index on a temporary table.
« Do not specify this clause for the primary key index of an index-organized
table. Instead use the COALESCElause of ALTER TABLE
See Also:

« Oracle9i Database Administrator’s Guide for more information on
space management and coalescing indexes

« COALESCE on page 11-109 for information on coalescing space
of an index-organized table

MONITORING USAGE | NOMONITORING USAGE
Use this clause to determine whether Oracle should monitor index use.
« Specify MONITORING USAGH begin monitoring the index. Oracle first clears

existing information on index usage, and then monitors the index for use until a
subsequent ALTER INDEX... NOMONITORING USAGEtement is executed.

« To terminate monitoring of the index, specify NOMONITORING USAGE

To see whether the index has been used since this ALTER INDEX... NOMONITORING
USAGHEstatement was issued, query the USEDcolumn of the VSOBJECT _USAGE
dynamic performance view.

See Also: Oracle9i Database Reference for information on the data
dictionary and dynamic performance views

9-78 Oracle9i SQL Reference

ALTER INDEX

UPDATE BLOCK REFERENCES Clause

The UPDATE BLOCK REFERENC®&S&use is valid only for normal and domain
indexes on index-organized tables. Specify this clause to update all the stale "guess"
data block addresses stored as part of the index row with the correct database
address for the corresponding block identified by the primary key.

Note: For a domain index, Oracle executes the ODClIndexAlter
routine with the alter_option parameter set to
AlterindexUpdBlockRefs . This routine enables the cartridge
code to update the stale "guess" data block addresses in the index.

Restriction on UPDATE BLOCK REFERENCES You cannot combine this clause
with any other clause of ALTER INDEX

alter_index_partitioning

The partitioning clauses of the ALTER INDEXstatement are valid only for
partitioned indexes.

Note: The storage of partitioned database entities in tablespaces of
different block sizes is subject to several restrictions. Please refer to
Oracle9i Database Administrator’s Guide for a discussion of these
restrictions.

Restrictions on Altering Index Partitions
= You cannot specify any of these clauses for an index on a temporary table.

« You can combine several operations on the base index into one ALTER INDEX
statement (except RENAMENd REBUILD), but you cannot combine partition
operations with other partition operations or with operations on the base index.

modify_index_default_attrs
Specify new values for the default attributes of a partitioned index.

Restriction on Modifying Partition Default Attributes The only attribute you can

specify for an index on a hash-partitioned or composite-partitioned table is
TABLESPACE

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-79

ALTER INDEX

TABLESPACE Specify the default tablespace for new partitions of an index or
subpartitions of an index partition.

logging _clause Specify the default logging attribute of a partitioned index or an
index partition.

See Also: logging clause on page 7-45 for a full description of
this clause

FOR PARTITION Use the FOR PARTITIONCclause to specify the default attributes
for the subpartitions of a partition of a local index on a composite-partitioned table.

Restriction on FOR PARTITION You cannot specify FOR PARTITIONfor a list
partition.

See Also: "Modifying Default Attributes: Example" on page 9-84

modify_index_partition

Use the modify_index_patrtition clause to modify the real physical attributes,
logging attribute, or storage characteristics of index partition partition or its
subpartitions.

UPDATE BLOCK REFERENCES The UPDATE BLOCK REFERENC®##&use is valid
only for normal indexes on index-organized tables. Use this clause to update all
stale "guess" data block addresses stored in the secondary index partition.

Restrictions on UPDATE BLOCK REFERENCES

« You cannot specify the physical _attributes_clause for an index on a
hash-partitioned table.

« You cannot specify UPDATE BLOCK REFERENC®&#h any other clause in
ALTER INDEX

Note: If the index is a local index on a composite-partitioned
table, the changes you specify here will override any attributes
specified earlier for the subpartitions of index, as well as establish
default values of attributes for future subpartitions of that partition.
To change the default attributes of the partition without overriding
the attributes of subpartitions, use ALTER TABLE.. MODIFY
DEFAULT ATTRIBUTES OF PARTITION

9-80 Oracle9i SQL Reference

ALTER INDEX

See Also: "Marking an Index Unusable: Examples" on page 9-83

rename_index_partition

Use the rename_index_patrtition clauses to rename index partition or
subpartition to new_name.

Restrictions on Renaming Index Partitions
= You cannot rename the subpartition of a list partition.

« For a partition of a domain index, index must not be marked IN_PROGRESSr
FAILED, none of the partitions can be marked IN_PROGRESSand the partition
you are renaming must not be marked FAILED.

See Also: "Renaming an Index Partition: Example" on page 9-84

drop_index_partition

Use the drop_index_patrtition clause to remove a partition and the data in it
from a partitioned global index. When you drop a partition of a global index, Oracle
marks the index’s next partition UNUSABLEYou cannot drop the highest partition
of a global index.

See Also: "Dropping an Index Partition: Example" on page 9-84

split_index_partition
Use the split_index_partition clause to split a partition of a global
partitioned index into two partitions, adding a new partition to the index.

Splitting a partition marked UNUSABLEesults in two partitions, both marked
UNUSABLEYou must rebuild the partitions before you can use them.

Splitting a usable partition results in two partitions populated with index data. Both
new partitions are usable.

AT Clause Specify the new noninclusive upper bound for split_partition_1

The value_list must evaluate to less than the presplit partition bound for
partition_name_old and greater than the partition bound for the next lowest
partition (if there is one).

INTO Clause Specify (optionally) the name and physical attributes of each of the
two partitions resulting from the split.

See Also: "Splitting a Partition: Example" on page 9-84

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-81

ALTER INDEX

Examples

modify_index_subpartition

Use the modify_index_subpatrtition clause to mark UNUSABLBr allocate or
deallocate storage for a subpartition of a local index on a composite-partitioned
table. All other attributes of such a subpartition are inherited from partition-level
default attributes.

Storing Index Blocks in Reverse Order: Example The following statement
rebuilds index ord_customer_ix (created in "Creating an Index: Example" on
page 13-87) so that the bytes of the index block are stored in reverse order:

ALTER INDEX ord_customer_ix REBUILD REVERSE;

Collecting Index Statistics: Example The following statement collects statistics on
the nonpartitioned ord_customer_ix index:

ALTER INDEX ord_customer_ix REBUILD COMPUTE STATISTICS;
The type of statistics collected depends on the type of index you are rebuilding.

See Also: Oracle9i Database Concepts

Rebuilding an Index in Parallel: Example The following statement causes the
index to be rebuilt from the existing index by using parallel execution processes to
scan the old and to build the new index:

ALTER INDEX ord_customer_ix REBUILD PARALLEL;

Modifying Real Attributes: Example The following statement alters the oe.cust_
Iname_ix index so that future data blocks within this index use 5 initial
transaction entries and an incremental extent of 100 kilobytes:

/* Unless you change the default tablespace of sample user oe,
or specify different tablespace storage for the index, this
example fails because the default tablespace originally assigned
to oe is locally managed.

*/

ALTER INDEX oe.cust_Ilname_ix
INITRANS 5
STORAGE (NEXT 100K);

If the oe.cust_Iname_ix index were partitioned, this statement would also alter
the default attributes of future partitions of the index. New partitions added in the

9-82 Oracle9i SQL Reference

ALTER INDEX

future would then use 5 initial transaction entries and an incremental extent of
100K.

Enabling Parallel Queries: Example The following statement sets the parallel
attributes for index upper_ix (created in "Creating a Function-Based Index:
Example" on page 13-89) so that scans on the index will be parallelized:

ALTER INDEX upper_ix PARALLEL;

Renaming an Index: Example The following statement renames an index:

ALTER INDEX upper_ix RENAME TO upper_name_ix;

Marking an Index Unusable: Examples The following statements use the cost_

ix index, which was created in "Creating a Global Partitioned Index: Example" on
page 13-90. Partition p1 of that index was dropped in "Dropping an Index Partition:
Example" on page 9-84. The first statement marks the marks index partition p2 as
UNUSABLE

ALTER INDEX cost_ix
MODIFY PARTITION p2 UNUSABLE;

The next statement marks the entire index cost_ix as UNUSABLE
ALTER INDEX cost_ix UNUSABLE;

Rebuilding Unusable Index Partitions: Example The following statements rebuild
partitions p2 and p3 of the cost_ix index, making the index once more usable:
The rebuilding of partition p3 will not be logged:

ALTER INDEX cost_ix
REBUILD PARTITION p2;
ALTER INDEX cost_ix
REBUILD PARTITION p3 NOLOGGING;

Changing MAXEXTENTS: Example The following statement changes the
maximum number of extents for partition p3 and changes the logging attribute:

/* This example will fail if the tablespace in which partition p3
resides is locally managed.

*/

ALTER INDEX cost_ix MODIFY PARTITION p3
STORAGE(MAXEXTENTS 30) LOGGING;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-83

ALTER INDEX

Renaming an Index Partition: Example The following statement renames an index
partition of the cost_ix index (created in "Creating a Global Partitioned Index:
Example" on page 13-90):

ALTER INDEX cost_ix
RENAME PARTITION p3 TO p3_Q3;

Splitting a Partition: Example The following statement splits partition p2 of index
cost_ix (created in "Creating a Global Partitioned Index: Example" on page 13-90)
into p2a and p2b:

ALTER INDEX cost_ix
SPLIT PARTITION p2 AT (1500)
INTO (PARTITION p2a TABLESPACE tbs_01 LOGGING,
PARTITION p2b TABLESPACE ths_02);

Dropping an Index Partition: Example The following statement drops index
partition p1 from the cost_ix index:

ALTER INDEX cost_ix
DROP PARTITION p1;

Modifying Default Attributes: Example The following statement alters the default
attributes of local partitioned index prod_idx , which was created in "Creating an

Index on a Hash-Partitioned Table: Example.” on page 13-91. New partitions added
in the future will use 5 initial transaction entries and an incremental extent of 100K:

ALTER INDEX prod_idx
MODIFY DEFAULT ATTRIBUTES INITRANS 5 STORAGE (NEXT 100K);

9-84 Oracle9i SQL Reference

ALTER INDEXTYPE

ALTER INDEXTYPE

Purpose

Use the ALTER INDEXTYPEstatement to add or drop an operator of the indextype
or to modify the implementation type or change the properties of the indextype.

Prerequisites

To alter an indextype in your own or another schema, you must have the ALTER
ANY INDEXTYPEystem privilege.

To add a new operator, you must have the EXECUTEbbject privilege on the
operator.

To change the implementation type, you must have the EXECUTEbbject privilege on
the new implementation type.

Syntax
alter_indextype::=

m.schema
—>| ALTER |—>| INDEXTYPE } . (indextype)>
(M)

()
’ using_type_clause
IO >

Lo

COMPILE

using_type_clause::=

.
—>| USING implementation_type

Semantics
schema

Specify the name of the schema in which the indextype resides. If you omit schema,
Oracle assumes the indextype is in your own schema.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-85

ALTER INDEXTYPE

Examples

indextype
Specify the name of the indextype to be modified.

ADD | DROP
Use the ADDor DRORclause to add or drop an operator.

« For schema, specify the schema containing the operator. If you omit schema,
Oracle assumes the operator is in your own schema.

« For operator , specify the name of the operator supported by the indextype.
All the operators listed in this clause should be valid operators.

« For parameter_type |, list the types of parameters to the operator.

USING Clause

The USINGclause lets you specify a new type to provide the implementation for the
indextype.

COMPILE

Use this clause to recompile the indextype explicitly. This clause is required only
after some upgrade operations, because Oracle normally recompiles the indextype
automatically.

Altering an Indextype: Example The following example adds another operator
binding to the TextindexType indextype created in the CREATE INDEXTYPE
statement. TextindexType can now support a new operator lob_contains with
the bindings(CLOB CLOB:

ALTER INDEXTYPE TextindexType ADD lob_contains(CLOB, CLOB);

9-86 Oracle9i SQL Reference

ALTER JAVA

ALTER JAVA
Purpose
Use the ALTER JAVAstatement to force the resolution of a Java class schema object
or compilation of a Java source schema object. (You cannot call the methods of a
Java class before all its external references to Java hames are associated with other
classes.)
See Also: Oracle9i Java Stored Procedures Developer’s Guide for more
information on resolving Java classes and compiling Java sources
Prerequisites
The Java source or class must be in your own schema, or you must have the ALTER
ANY PROCEDURSstem privilege. You must also have the EXECUTEbbject
privilege on Java classes.
Syntax
alter_java::=

- . { object_name)»»
Iiuﬁﬁ'

COMPILE
l RESOLVE I
invoker_rights_clause

invoker_rights_clause ::=

C

URRENT_USER
AUTHID H
DEFINER

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-87

ALTER JAVA

Semantics

JAVA SOURCE
Use ALTER JAVA SOURCH compile a Java source schema object.

JAVA CLASS
Use ALTER JAVA CLASSo resolve a Java class schema object.

object_name

Specify a previously created Java class or source schema object. Use double
guotation marks to preserve lower- or mixed-case names.

RESOLVER

The RESOLVERIause lets you specify how schemas are searched for referenced
fully specified Java names, using the mapping pairs specified when the Java class or
source was created.

See Also: CREATE JAVA on page 13-98 and "Resolving a Java
Class: Example" on page 9-89

RESOLVE | COMPILE
RESOLVEnd COMPILEare synonymous keywords. They let you specify that
Oracle should attempt to resolve the primary Java class schema object.

« When applied to a class, resolution of referenced names to other class schema
objects occurs.

« When applied to a source, source compilation occurs.

invoker_rights_clause

The invoker_rights _clause lets you specify whether the methods of the class
execute with the privileges and in the schema of the user who defined it or with the
privileges and in the schema of CURRENT_USER

This clause also determines how Oracle resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures
of the type.

9-88 Oracle9i SQL Reference

ALTER JAVA

AUTHID CURRENT_USER Specify CURRENT_USERYyou want the methods of the
class to execute with the privileges of CURRENT_USERNhis clause is the default
and creates an "invoker-rights class."

This clause also specifies that external names in queries, DML operations, and
dynamic SQL statements resolve in the schema of CURRENT_USERxternal names
in all other statements resolve in the schema in which the methods reside.

AUTHID DEFINER Specify DEFINERIf you want the methods of the class to
execute with the privileges of the user who defined it.
This clause also specifies that external names resolve in the schema where the
methods reside.

See Also:

= Oracle9i Database Concepts and Oracle9i Application Developer’s
Guide - Fundamentals for information on how CURRENT_USER
determined

« Oracle9i Java Stored Procedures Developer’s Guide

Example

Resolving a Java Class: Example The following statement forces the resolution of
aJava class:

ALTER JAVA CLASS "Agent"
RESOLVER (("/home/java/bin/*" pm)(* public))
RESOLVE;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-89

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW

Purpose

Prerequisites

A materialized view is a database object that contains the results of a query. The
FROMIlause of the query can name tables, views, and other materialized views.
Collectively these are called master tables (a replication term) or detail tables (a
data warehouse term). This reference uses "master tables" for consistency. The
databases containing the master tables are called the master databases.

Use the ALTER MATERIALIZED VIEWstatement to modify an existing materialized
view in one or more of the following ways:

« To change its storage characteristics
« To change its refresh method, mode, or time
« Toalter its structure so that it is a different type of materialized view

« Toenable or disable query rewrite.

Note: The keyword SNAPSHOTs supported in place of
MATERIALIZED VIEWfor backward compatibility.

See Also:

« CREATE MATERIALIZED VIEW on page 14-5 for more
information on creating materialized views

« Oracle9i Advanced Replication for information on materialized
views in a replication environment

« Oracle9i Data Warehousing Guide for information on
materialized views in a data warehousing environment

The privileges required to alter a materialized view should be granted directly, as
follows:

The materialized view must be in your own schema, or you must have the ALTER
ANY MATERIALIZED VIEWSsystem privilege.

To enable a materialized view for query rewrite:

9-90 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

If all of the master tables in the materialized view are in your schema, you must
have the QUERY REWRITfrivilege.

If any of the master tables are in another schema, you must have the GLOBAL
QUERY REWRITgrivilege.

If the materialized view is in another user’s schema, both you and the owner of
that schema must have the appropriate QUERY REWRITgrivilege, as described
in the preceding two items. In addition, the owner of the materialized view
must have SELECTaccess to any master tables that the materialized view
owner does not own.

See Also: Oracle9i Advanced Replication and Oracle9i Data
Warehousing Guide

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-91

ALTER MATERIALIZED VIEW

Syntax
alter_materialized_view::=

—>| ALTER |->| MATERIALIZED |—>| VIEW } A materialized_view)

,Cphysical_attributes_clause%
—Cdata_segment_compression)—
M)
N
LOB_storage_clause
M)
N
modify_LOB_storage_clause
alter_table_partitioning
parallel_clause
logging_clause
allocate_extent_clause

¥
=
\P
J

il

CACHE
l NOCACHE ' alter_iot_clauses
MODIFY |—>Cscoped_table_ref_constraint)7

REBUILD

ﬂ USING H INDEX |a<physical_attributes_clauseh

==

COMPILE

CONSIDER |->| FRESH }—J

alter_mv_refresh

QUERY |—>| REWRITE

O

(physical_attributes_clause::= on page 9-93, data_segment
compression::= on page 9-93, LOB_storage clause::= on page 9-93,
modify _LOB_storage clause::= on page 9-94, alter_table

partitioning on page 11-60 — part of ALTER TABLEsyntax, parallel

9-92 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

clause::= on page 9-95, logging_clause::=
extent clause::= on page 9-96)
physical_attributes_clause ::=

PCTFREE |{integer

PCTUSED |{integer

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause::=
data_segment_compression ::=

on page 7-58)

| COMPRESS q
NOCOMPRESS

LOB_storage clause ::=

‘
(@)

()] store as Ie@—(LOB_parameters

on page 9-95, allocate

LOB_segname)—(De(LOB_parameters)—>Q)7

LOB_item)e@->| STORE [AS

S
LOB_segname)

LOB_parameters

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-93

ALTER MATERIALIZED VIEW

LOB_parameters::=

N
4 TABLESPACE |->Qab|espace)
ENABLE
H STORAGE
DISABLE
—(storage_clause)

CHUNK mtegerj

—| PCTVERSION |—>Cinteger)

—| RETENTION

—| FREEPOOLS |{integer)

logging_clause }—’

(storage_clause::= on page 7-58, logging_clause::= on page 7-46)
modify LOB_storage clause ::=

—>| MODIFY |—>| LOB |—>®{LOB_item)a@»@—(modify_LOB_parameters)»@»

9-94 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

modify LOB_parameters::=

A storage_clause)

H PCTVERSION |(integer)

—| RETENTION

H FREEPOOLS | integer)

—| REBUILD |->| FREEPOOLS }

logging_clause }‘

allocate_extent_clause

dealIocate_unused_clausey

(storage_clause:.= on page 7-58, logging_clause::= on page 7-46,
allocate _extent clause::= on page 9-96, deallocate _unused
clause::= on page 9-96)

parallel_clause ::=

NOPARALLEL
integer
PARALLEL H

logging_clause::=

LOGGING
l NOLOGGING I

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-95

ALTER MATERIALIZED VIEW

allocate_extent_clause ::=

DATAFILE @{filename

INSTANCE |->(integer

—>| ALLOCATE |->| EXTENT }

deallocate_unused_clause::=

integer m

—>| DEALLOCATE |—>| UNUSED } \

alter_iot_clauses ::=
index_org_table_clause

l alter_overflow_clause .

alter_mapping_table_clauses

(index_org_table clause::= on page 9-96, alter_overflow _clause::=
on page 9-97, alter_mapping_table clauses : not supported with materialized
views)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD |->(integer

key_compression

faGndex_org_overflow_clauseh

(mapping_table clause : not supported with materialized views, key
compression : not supported with materialized views, index_org_overflow
clause::= on page 9-97)

9-96 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

index_org_overflow_clause::=

ﬂ INCLUDING |—>Ccolumn_name fa(segment_attributes_clauseh
J OVERFLOW
11— |

alter_overflow_clause::=

allocate_extent_clause

deallocate_unused_clause

OVERFLOW

add_overflow_clause

(allocate_extent clause::= on page 9-96, deallocate _unused
clause::= on page 9-96)
add_overflow_clause::=

segment_attributes_clauseh
—{ ADD |5 OVERFLOW |

M
(%
fe(segment_attributes_clauseh ’
PARTITION %

scoped_table_ref constraint;:=

schema ‘

ref_column

scope_table_name

ref_attribute

il

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-97

ALTER MATERIALIZED VIEW

alter_mv_refresh ::=

o]
-

dat
=

—| WITH |—>| PRIMARY |—>| KEY }
DEFAULT |->| MASTER |->| ROLLBACK |—>| SEGMENT
USING
- MASTER |->| ROLLBACK |—>| SEGMENT |->(ro||back_segment

schema

Specify the schema containing the materialized view. If you omit schema, Oracle
assumes the materialized view is in your own schema.

Semantics

materialized_view
Specify the name of the materialized view to be altered.

physical_attributes clause

Specify new values for the PCTFREEPCTUSEDINITRANS, and MAXTRANS
parameters (or, when used in the USING INDEXclause, for the INITRANS and
MAXTRAN®arameters only) and the storage characteristics for the materialized
view.

See Also:

« ALTER TABLE on page 11-2 for information on the PCTFREE
PCTUSEDINITRANS, and MAXTRAN®arameters

« Storage clause on page 7-56 for information about storage
characteristics

9-98 Oracle9i SQL Reference

ALTER MATERIALIZED VIEW

data_segment_compression

Use the data_segment _compression clause to instruct Oracle whether to
compress data segments to reduce disk and memory use. The COMPRESEeyword
enables data segment compression. The NOCOMPRES&yword disables data
segment compression.

See Also: data_segment_compression clause of CREATE
TABLEon page 15-29 for more information on data segment
compression

LOB_storage_clause

The LOB_storage clause lets you specify the storage characteristics of a new
LOB. LOB storage behaves for materialized views exactly as it does for tables.

See Also: the LOB_storage clause of CREATE TABLBN
page 15-36 for information on the LOB storage parameters

modify LOB_storage clause

The modify_LOB_storage_clause lets you modify the physical attributes of the
LOB attribute lob_item or LOB object attribute. Modification of LOB storage
behaves for materialized views exactly as it does for tables.

See Also: the modify LOB_storage clause of ALTER TABLE
on page 11-57 for information on the LOB storage parameters that
can be modified

alter_table_partitioning

The syntax and general functioning of the partitioning clauses for materialized
views is the same as for partitioned tables.

See Also: alter_table_partitioning on page 11-60

Restrictions on Altering Table Partitions

= You cannot specify the LOB_storage clause or modify LOB_storage
clause within any of the partitioning _clauses

« If you attempt to drop, truncate, or exchange a materialized view patrtition,
Oracle raises an error.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-99

ALTER MATERIALIZED VIEW

Note: If you wish to keep the contents of the materialized view
synchronized with those of the master table, Oracle Corporation
recommends that you manually perform a complete refresh of all
materialized views dependent on the table after dropping or
truncating a table partition.

MODIFY PARTITION UNUSABLE LOCAL INDEXES Use this clause to mark
UNUSABLEII the local index partitions associated with partition

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES Use this clause to
rebuild the unusable local index partitions associated with partition

parallel_clause

The parallel_clause lets you change the default degree of parallelism for the
materialized view.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism
equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS_PER_CHbitialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

See Also: "Notes on the parallel_clause” for CREATE TABLEon
page 15-54

logging_clause
Specify or change the logging characteristics of the materialized view.

9-100 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW

See Also: logging_clause on page 7-45 for a full description of
this clause

allocate _extent clause

The allocate_extent_clause lets you explicitly allocate a new extent for the
materialized view.

See Also: allocate_extent_clause on page 7-2 for a full
description of this clause

CACHE | NOCACHE

For data that will be accessed frequently, CACHEpecifies that the blocks retrieved
for this table are placed at the most recently used end of the LRU list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup
tables. NOCACHZEpecifies that the blocks are placed at the least recently used end of
the LRU list.

See Also: ALTER TABLE on page 11-2 for information about
specifying CACHEor NOCACHE

alter_iot_clauses

Use the alter_iot_clauses to change the characteristics of an index-organized
materialized view. The keywords and parameters of the components of the alter_
iot_clauses have the same semantics as in ALTER TABLE with the restrictions
that follow.

Restrictions on Altering Index-organized Materialized Views You cannot specify
the mapping_table clause or the key compression clause of the index_
org_table_clause

See Also: "index_org _table clause” of CREATE
MATERIALIZED VIEWon page 14-18 for information on creating an
index-organized materialized view

USING INDEX Clause

Use this clause to change the value of INITRANS, MAXTRANSInd STORAGE
parameters for the index Oracle uses to maintain the materialized view’s data.

Restriction on the USING INDEX clause You cannot specify the PCTUSEDr
PCTFREBRarameters in this clause.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-101

ALTER MATERIALIZED VIEW

MODIFY scoped table ref constraint

Use the MODIFYscoped_table_ref _constraint clause to rescope a REF
column or attribute to a new table.

Restrictions on Rescoping REF Columns You can rescope only one REFcolumn
or attribute in each ALTER MATERIALIZED VIEWstatement, and this must be the
only clause in this statement.

REBUILD Clause

Specify REBUILDto regenerate refresh operations if a type that is referenced in
materialized_view has evolved.

Restriction on the REBUILD clause You cannot specify any other clause in the
same ALTER MATERIALIZED VIEWstatement.

alter_mv_refresh

Use the alter_mv_refresh to change the default method and mode and the
default times for automatic refreshes. If the contents of a materialized view’s master
tables are modified, the data in the materialized view must be updated to make the
materialized view accurately reflect the data currently in its master table(s). This
clause lets you schedule the times and specify the method and mode for Oracle to
refresh the materialized view.

Note: This clause only sets the default refresh options. For
instructions on actually implementing the refresh, refer to Oracle9i
Advanced Replication and Oracle9i Data Warehousing Guide.

FAST Clause

Specify FAST for incremental refresh method, which performs the refresh according
to the changes that have occurred to the master tables. The changes are stored either
in the materialized view log associated with the master table (for conventional DML
changes) or in the direct loader log (for direct-path INSERT operations).

For both conventional DML changes and for direct-path INSERTS, other conditions
may restrict the eligibility of a materialized view for fast refresh.

9-102 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW

See Also:

« Oracle9i Advanced Replication for restrictions on fast refresh in
replication environments

« Oracle9i Data Warehousing Guide for restrictions on fast refresh
in data warehouse environments

« "Automatic Refresh: Examples" on page 9-107

Restrictions on FAST Refresh

« When you specify FASTrefresh at create time, Oracle verifies that the
materialized view you are creating is eligible for fast refresh. When you change
the refresh method to FASTin an ALTER MATERIALIZED VIEWstatement,
Oracle does not perform this verification. If the materialized view is not eligible
for fast refresh, Oracle will return an error when you attempt to refresh this
view.

« Materialized views are not eligible for fast refresh if the defining query contains
an analytic function.

See Also: "Analytic Functions" on page 6-10

COMPLETE Clause

Specify COMPLETEor the complete refresh method, which is implemented by
executing the materialized view’s defining query. If you request a complete refresh,
Oracle performs a complete refresh even if a fast refresh is possible.

See Also: "Complete Refresh: Example" on page 9-108

FORCE Clause

Specify FORCEHTf, when a refresh occurs, you want Oracle to perform a fast refresh if
one is possible or a complete refresh otherwise.

ON COMMIT Clause

Specify ON COMMITT you want a fast refresh to occur whenever Oracle commits a
transaction that operates on a master table of the materialized view.

Restriction on ON COMMIT This clause is supported only for materialized join
views and single-table materialized aggregate views.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-103

ALTER MATERIALIZED VIEW

See Also: Oracle9i Advanced Replication and Oracle9i Data
Warehousing Guide

ON DEMAND Clause

Specify ON DEMANiDyou want the materialized view to be refreshed on demand by
calling one of the three DBMS_MVIEWEfresh procedures. If you omit both ON
COMMITand ON DEMANDN DEMANIS the default.

See Also:

« Oracle9i Supplied PL/SQL Packages and Types Reference for
information on these procedures

» Oracle9i Data Warehousing Guide on the types of materialized
views you can create by specifying REFRESH ON DEMAND

Note: If you specify ON COMMISr ON DEMANDBou cannot also
specify START WITHor NEXT

START WITH Clause
Specify START WITHdate to indicate a date for the first automatic refresh time.

NEXT Clause

Specify NEXTto indicate a date expression for calculating the interval between
automatic refreshes.

Both the START WITHand NEXTvalues must evaluate to a time in the future. If you
omit the START WITHvalue, Oracle determines the first automatic refresh time by
evaluating the NEXTexpression with respect to the creation time of the materialized
view. If you specify a START WITHvalue but omit the NEXTvalue, Oracle refreshes
the materialized view only once. If you omit both the START WITHand NEXT
values, or if you omit the alter_mv_refresh entirely, Oracle does not
automatically refresh the materialized view.

WITH PRIMARY KEY Clause

Specify WITH PRIMARY KEYo change a rowid materialized view to a primary key
materialized view. Primary key materialized views allow materialized view master
tables to be reorganized without affecting the materialized view’s ability to continue
to fast refresh.

9-104 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW

For you to specify this clause, the master table must contain an enabled primary key
constraint and must have defined on it a materialized view log that logs primary
key information.

See Also:

» Oracle9i Advanced Replication for detailed information about
primary key materialized views and Oracle9i Database Migration
Guide for information on changing rowid materialized views to
primary key materialized views

« "Primary Key Materialized View: Example" on page 9-109

USING ROLLBACK SEGMENT Clause

Specify USING ROLLBACK SEGMERbIchange the remote rollback segment to be
used during materialized view refresh, where rollback segment is the name of
the rollback segment to be used.

See Also: Oracle9i Advanced Replication for information on
changing the local materialized view rollback segment using the
DBMS_REFRESphckage and "Changing Materialized View
Rollback Segments; Examples" on page 9-109

DEFAULT Specify DEFAULTIf you want Oracle to choose the rollback segment to
use. If you specify DEFAULTyou cannot specify rollback segment.

MASTER ... rollback_segment Specify the remote rollback segment to be used at
the remote master for the individual materialized view. (To change the local
materialized view rollback segment, use the DBMS_REFRESphckage, described in
Oracle9i Advanced Replication.)

One master rollback segment is stored for each materialized view and is validated
during materialized view creation and refresh. If the materialized view is complex,
the master rollback segment, if specified, is ignored.

QUERY REWRITE Clause

Use this clause to determine whether the materialized view is eligible to be used for
guery rewrite.

ENABLE Clause
Specify ENABLEto enable the materialized view for query rewrite.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-105

ALTER MATERIALIZED VIEW

See Also: "Enabling Query Rewrite: Example" on page 9-108

Restrictions on Enabling Materialized Views

« If the materialized view is in an invalid or unusable state, it is not eligible for
query rewrite in spite of the ENABLEmMode.

=« You cannot enable query rewrite if the materialized view was created totally or
in part from a view.

= You can enable query rewrite only if all user-defined functions in the
materialized view are DETERMINISTIC.

See Also: CREATE FUNCTION on page 13-52

= You can enable query rewrite only if expressions in the statement are
repeatable. For example, you cannot include CURRENT_TIMBr USER

See Also: Oracle9i Data Warehousing Guide for more information
on query rewrite

DISABLE Clause

Specify DISABLE if you do not want the materialized view to be eligible for use by
query rewrite. (If a materialized view is in the invalid state, it is not eligible for use
by query rewrite, whether or not it is disabled.) However, a disabled materialized
view can be refreshed.

COMPILE

Specify COMPILEto explicitly revalidate a materialized view. If an object upon
which the materialized view depends is dropped or altered, the materialized view
remains accessible, but it is invalid for query rewrite. You can use this clause to
explicitly revalidate the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, it cannot be refreshed or used for query
rewrite.

See Also: "Compiling a Materialized View: Example" on
page 9-109

CONSIDER FRESH

This clause lets you manage the staleness state of a materialized after changes have
been made to its master tables. CONSIDER FRESHirects Oracle to consider the

9-106 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW

Examples

materialized view fresh and therefore eligible for query rewrite in the TRUSTEDor
STALE_TOLERATEDnodes. Because Oracle cannot guarantee the freshness of the
materialized view, query rewrite in ENFORCEMode is not supported. This clause
also sets the staleness state of the materialized view to UNKNOWRNhe staleness state
is displayed in the STALENESSolumn of the ALL_ MVIEWS DBA_ MVIEWSand
USER_MVIEWSata dictionary views.

Note: A materialized view is stale if changes have been made to
the contents of any of its master tables. This clause directs Oracle to
assume that the materialized view is fresh and that no such changes
have been made. Therefore, actual updates to those tables pending
refresh are purged with respect to the materialized view.

See Also: Oracle9i Data Warehousing Guide for more information
on query rewrite and the implications of performing partition
maintenance operations on master tables, and "CONSIDER FRESH:
Example" on page 9-108

Automatic Refresh: Examples The following statement changes the default
refresh method for the sales_by month_by_state materialized view (created in
"Creating Materialized Aggregate Views: Example" on page 14-28) to FAST:

ALTER MATERIALIZED VIEW sales_by_month_by_state
REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it
is a simple materialized view and its master table has a materialized view log that
was created before the materialized view was created or last refreshed.

Because the REFRESHIlause does not specify START WITHor NEXTvalues, Oracle
will use the refresh intervals established by the REFRESHIlause when the sales_
by _month_by state = materialized view was created or last altered.

The following statement stores a new interval between automatic refreshes for the
sales_by month_by state materialized view:

ALTER MATERIALIZED VIEW sales_by month_by state
REFRESH NEXT SYSDATE+7;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-107

ALTER MATERIALIZED VIEW

Because the REFRESHIlause does not specify a START WITHvalue, the next
automatic refresh occurs at the time established by the START WITHand NEXT
values specified when the sales_by _month_by_state materialized view was
created or last altered.

At the time of the next automatic refresh, Oracle refreshes the materialized view,
evaluates the NEXTexpression SYSDATE?7 to determine the next automatic refresh
time, and continues to refresh the materialized view automatically once a week.
Because the REFRESHIlause does not explicitly specify a refresh method, Oracle
continues to use the refresh method specified by the REFRESHIause of the CREATE
MATERIALIZED VIEWor most recent ALTER MATERIALIZED VIEWstatement.

CONSIDER FRESH: Example The following statement instructs Oracle that
materialized view sales_by month_by state should be considered fresh. This
statement allows sales_by month_by state to be eligible for query rewrite in
TRUSTEDmMode even after you have performed partition maintenance operations
on the master tables of sales_by month_by state

ALTER MATERIALIZED VIEW sales_by_month_by_state CONSIDER FRESH;

See Also: Splitting Table Partitions: Examples on page 11-93 for a
partitioning maintenance example that would require this ALTER
MATERIALIZED VIEWexample

Complete Refresh: Example The following statement specifies a new refresh
method, a new NEXTrefresh time, and a new interval between automatic refreshes
of the emp_data materialized view (created in "Periodic Refresh of Materialized
Views: Example" on page 14-30):

ALTER MATERIALIZED VIEW emp_data
REFRESH COMPLETE
START WITH TRUNC(SYSDATE+1) + 9/24
NEXT SYSDATE+7;

The START WITHvalue establishes the next automatic refresh for the materialized
view to be 9:00 a.m. tomorrow. At that point, Oracle performs a complete refresh of
the materialized view, evaluates the NEXTexpression, and subsequently refreshes
the materialized view every week.

Enabling Query Rewrite: Example The following statement enables query rewrite
on the materialized view mv1land implicitly revalidates it:

9-108 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW

ALTER MATERIALIZED VIEW emp_data
ENABLE QUERY REWRITE;

Changing Materialized View Rollback Segments: Examples The following
statement changes the remote master rollback segment used during materialized
view refresh to rbs_two

ALTER MATERIALIZED VIEW new_employees
REFRESH USING MASTER ROLLBACK SEGMENT rbs_two;

The following statement changes the remote master rollback segment used during
materialized view refresh to one chosen by Oracle:

ALTER MATERIALIZED VIEW new_employees
REFRESH USING DEFAULT MASTER ROLLBACK SEGMENT;

Primary Key Materialized View: Example The following statement changes the
rowid materialized view order_data (created in "Creating Rowid Materialized
Views: Example" on page 14-30) to a primary key materialized view. This example
requires that you have already defined a materialized view log with a primary key
on order_data

ALTER MATERIALIZED VIEW order_data

REFRESH WITH PRIMARY KEY;
Compiling a Materialized View: Example The following statement revalidates the
materialized view store_mv :

ALTER MATERIALIZED VIEW order_data COMPILE;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-109

ALTER MATERIALIZED VIEW LOG

ALTER MATERIALIZED VIEW LOG

Purpose
Use the ALTER MATERIALIZED VIEW LOGtatement to alter the storage
characteristics, refresh mode or time, or type of an existing materialized view log. A
materialized view log is a table associated with the master table of a materialized
view.

Note: The keyword SNAPSHOTSs supported in place of
MATERIALIZED VIEWfor backward compatibility.

See Also:

« CREATE MATERIALIZED VIEW LOG on page 14-34 for
information on creating a materialized view log

« ALTER MATERIALIZED VIEW on page 9-90 for more
information on materialized views, including refreshing them

« CREATE MATERIALIZED VIEW on page 14-5 for a description
of the various types of materialized views

Prerequisites

Only the owner of the master table or a user with the SELECTprivilege on the
master table and the ALTERprivilege on the materialized view log can alter a
materialized view log.

See Also: Oracle9i Advanced Replication for detailed information
about the prerequisites for ALTER MATERIALIZED VIEW LOG

9-110 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW LOG

Syntax
alter_materialized view_log::=

m.schema
—>| ALTER |->| MATERIALIZED |—>| VIEW |->| LOG |->| ON } . (table)>

physical_attributes_clause}

=

2\

M)
N\

a lcolumn' 0

’ new_values_clause

(physical_attributes_clause::= on page 9-112, alter_table_

partitioning on page 11-60 — part of ALTER TABLEsyntax, parallel_

clause::= on page 9-112, logging_clause::= on page 7-46, allocate

extent_clause::= on page 9-112, new_values_clause::= on page 9-111),
new_values_clause::=

INCLUDING
H NEW -VALUES
EXCLUDING

O

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-111

ALTER MATERIALIZED VIEW LOG

physical_attributes_clause ::=

PCTFREE |{integer

PCTUSED |{imeger

INITRANS |{integer

MAXTRANS |{integer

storage_clause

(storage_clause::= on page 7-58)
allocate_extent_clause ::=

DATAFILE |e©—>(filename

INSTANCE |->(imeger

—>| ALLOCATE |—>| EXTENT }

parallel_clause ::=

NOPARALLEL
(o)
PARALLEL

Semantics

schema
Specify the schema containing the master table. If you omit schema, Oracle
assumes the materialized view log is in your own schema.

table

Specify the name of the master table associated with the materialized view log to be
altered.

9-112 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW LOG

physical_attributes_clause

The physical_attributes clause lets you change the value of PCTFREE
PCTUSEDINITRANS, and MAXTRAN®arameters and storage characteristics for the
table, the partition, the overflow data segment, or the default characteristics of a
partitioned table.

Restriction on Materialized View Physical Attributes You cannot use the
storage clause to modify extent parameters if the materialized view log resides
in a locally managed tablespace.

See Also: CREATE TABLE on page 15-7 for a description of these
parameters

alter_table_partitioning
The syntax and general functioning of the partitioning clauses is the same as

described for the ALTER TABLEstatement.
Restrictions on Altering Materialized View Partitions

« You cannot use the LOB_storage clause or modify LOB_storage
clause when modifying partitions of a materialized view log.

« If you attempt to drop, truncate, or exchange a materialized view log partition,
Oracle raises an error.

See Also: alter_table_partitioning on page 11-60

parallel_clause

The parallel_clause lets you specify whether parallel operations will be
supported for the materialized view log.

Note: The syntax of the parallel_clause supersedes syntax
appearing in earlier releases of Oracle. Superseded syntax is still
supported for backward compatibility, but may result in slightly
different behavior than that documented.

NOPARALLEL Specify NOPARALLEIfor serial execution. This is the default.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-113

ALTER MATERIALIZED VIEW LOG

PARALLEL Specify PARALLELIf you want Oracle to select a degree of parallelism
equal to the number of CPUs available on all participating instances times the value
of the PARALLEL_THREADS_PER_CHpbiitialization parameter.

PARALLEL integer Specification of integer indicates the degree of parallelism,
which is the number of parallel threads used in the parallel operation. Each parallel
thread may use one or two parallel execution servers. Normally Oracle calculates
the optimum degree of parallelism, so it is not necessary for you to specify

integer

See Also: "Notes on the parallel_clause" for CREATE TABLEon
page 15-54

logging clause
Specify the logging attribute of the materialized view log.

See Also: logging _clause on page 7-45 for a full description of
this clause

allocate _extent_clause

Use the allocate _extent clause to explicitly allocate a new extent for the
materialized view log.

See Also: allocate_extent clause on page 7-2 for a full
description of this clause

CACHE | NOCACHE Clause

For data that will be accessed frequently, CACHEspecifies that the blocks retrieved
for this log are placed at the most recently used end of the LRU list in the buffer
cache when a full table scan is performed. This attribute is useful for small lookup
tables. NOCACHZEpecifies that the blocks are placed at the least recently used end of
the LRU list.

See Also: CREATE TABLE on page 15-7 for information about
specifying CACHEbor NOCACHE

ADD Clause

The ADDclause lets you augment the materialized view log so that it records the
primary key values, rowid values, or object ID values when rows in the

9-114 Oracle9/ SQL Reference

ALTER MATERIALIZED VIEW LOG

materialized view master table are changed. This clause can also be used to record
additional columns.

To stop recording any of this information, you must first drop the materialized view
log and then re-create it. Dropping the materialized view log and then re-creating it
forces each of the existing materialized views that depend on the master table to
complete refresh on its next refresh.

Restriction on Augmenting Materialized View Logs You can specify only one
PRIMARY KEYone ROWIDone OBJECT IDand one column list for each
materialized view log. Therefore, if any of these three values were specified at create
time (either implicitly or explicitly), you cannot specify those values in this ALTER
statement.

OBJECT ID Specify OBJECT IDif you want the appropriate object identifier of all
rows that are changed to be recorded in the materialized view log.

Restriction on the OBJECT ID clause You can specify OBJECT IDonly for logs on
object tables, and you cannot specify it for storage tables.

PRIMARY KEY Specify PRIMARY KEMf you want the primary key values of all
rows that are changed to be recorded in the materialized view log.

ROWID Specify ROWIDf you want the rowid values of all rows that are changed
to be recorded in the materialized view log.

column Specify the additional columns whose values you want to be recorded in
the materialized view log for all rows that are changed. Typically these columns are
filter columns (non-primary-key columns referenced by materialized views) and
join columns (non-primary-key columns that define a join in the WHERElause of
the subquery).

See Also:

« CREATE MATERIALIZED VIEW on page 14-5 for details on
explicit and implicit inclusion of materialized view log values

« Oracle9i Advanced Replication for more information about filter
columns and join columns

« "Rowid Materialized View Log: Example" on page 9-116

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-115

ALTER MATERIALIZED VIEW LOG

Examples

NEW VALUES Clause

The NEW VALUES8ause lets you specify whether Oracle saves both old and new
values in the materialized view log. The value you set in this clause applies to all
columns in the log, not only to primary key, rowid, or columns you may have
added in this ALTER MATERIALIZED VIEW LOGtatement.

INCLUDING Specify INCLUDING to save both new and old values in the log. If this
log is for a table on which you have a single-table materialized aggregate view, and
if you want the materialized view to be eligible for fast refresh, you must specify
INCLUDING.

EXCLUDING Specify EXCLUDINGo disable the recording of new values in the log.
You can use this clause to avoid the overhead of recording new values.

If you have a fast-refreshable single-table materialized aggregate view defined on
this table, do not specify EXCLUDING NEW VALUESless you first change the
refresh mode of the materialized view to something other than FAST.

See Also: "Materialized View Log EXCLUDING NEW VALUES:
Example" on page 9-116

Rowid Materialized View Log: Example The following statement alters an existing
primary key materialized view log to also record rowid information:

ALTER MATERIALIZED VIEW LOG ON order_items ADD ROWID;

Materialized View Log EXCLUDING NEW VALUES: Example The following
statement alters the materialized view log on hr.employees by adding a filter
column and excluding new values. Any materialized aggregate views that use this
log will no longer be fast refreshable. However, if fast refresh is no longer needed,
this action avoids the overhead of recording new values:

ALTER MATERIALIZED VIEW LOG ON employees
ADD (commission_pct)
EXCLUDING NEW VALUES;

9-116 Oracle9/ SQL Reference

ALTER OPERATOR

ALTER OPERATOR

Purpose
Use the ALTER OPERATO®Ratement to compile an existing operator.

See Also: CREATE OPERATOR on page 14-44

Prerequisites

The operator must be in your own or another schema, or you must have the ALTER
ANY OPERATO$ystem privilege.

Syntax
alter_operator::=

schema .

| ALTER |->| OPERATOR } (operator)—>| COMPILE |9®

Semantics

schema

Specify the schema containing the operator. If you omit this clause, Oracle assumes
the operator is in your own schema.

operator
Specify the name of the operator to be recompiled.

COMPILE
Specify COMPILEto cause Oracle to recompile the operator. The COMPILEkeyword
is required.
Examples
Compiling a User-defined Operator: Example The following example compiles

the operator eq_op (which was created in "Creating User-Defined Operators:
Example" on page 14-47):

ALTER OPERATOR eq_op COMPILE;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-117

ALTER OUTLINE

ALTER OUTLINE

Purpose

Use the ALTER OUTLINEstatement to rename a stored outline, reassign it to a
different category, or regenerate it by compiling the outline’s SQL statement and
replacing the old outline data with the outline created under current conditions.

See Also: CREATE OUTLINE on page 14-48 and Oracle9i Database
Performance Tuning Guide and Reference for more information on outlines

Prerequisites
To modify an outline, you must have the ALTER ANY OUTLINEystem privilege.

Syntax
alter_outline::=

=

O

,| REBUILD
I T | - ~
| ALTER |->| OUTLINE (outline’) u RENAME |—>| TO |—>(new_out||ne_name

|)
CHANGE |—>| CATEGORY |—>| TO Knew_category_name)J

Semantics

PUBLIC | PRIVATE

Specify PUBLIC if you want to modify the public version of this outline. This is the
default.

Specify PRIVATE if you want to modify the outline that is private to the current
session and whose data is stored in the current parsing schema.

outline
Specify the name of the outline to be modified.

REBUILD

Specify REBUILDto regenerate the execution plan for outline using current
conditions.

9-118 Oracle9/ SQL Reference

ALTER OUTLINE

Example

See Also: "Rebuilding an Outline: Example" on page 9-119

RENAME TO Clause
Use the RENAME T@®ause to specify an outline name to replace outline

CHANGE CATEGORY TO Clause

Use the CHANGE CATEGORY dl@use to specify the name of the category into
which the outline will be moved.

Rebuilding an Outline: Example The following statement regenerates a stored
outline called salaries by compiling the outline’s text and replacing the old
outline data with the outline created under current conditions.

ALTER OUTLINE salaries REBUILD;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-119

ALTER PACKAGE

ALTER PACKAGE

Purpose

Use the ALTER PACKAGEatement to explicitly recompile a package specification,
body, or both. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGREatement
recompiles all package objects together. You cannot use the ALTER PROCEDURE
statement or ALTER FUNCTIONtatement to recompile individually a procedure or
function that is part of a package.

Note: This statement does not change the declaration or definition
of an existing package. To redeclare or redefine a package, use the
CREATE PACKAGE or the CREATE PACKAGE BODY on

page 14-52 statement with the OR REPLACElause.

Prerequisites

For you to modify a package, the package must be in your own schema or you must
have ALTER ANY PROCEDURYstem privilege.

Syntax
alter_package::=

m.schema
—>| ALTER |->| PACKAGE } . (package >

I PACKAGE q
l SPECIFICATION '
BODY

[—>| REUSE [SETTINGS |—\ O
COMPILE :

9-120 Oracle9/ SQL Reference

ALTER PACKAGE

Semantics

schema

Specify the schema containing the package. If you omit schema, Oracle assumes the
package is in your own schema.

package
Specify the name of the package to be recompiled.

COMPILE

You must specify COMPILEto recompile the package specification or body. The
COMPILEkeyword is required.

During recompilation, Oracle drops all persistent compiler switch settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGSlause.

If recompiling the package results in compilation errors, Oracle returns an error and
the body remains invalid. You can see the associated compiler error messages with
the SQL*Plus command SHOW ERRORS

See Also: "Recompiling a Package: Examples" on page 9-122

SPECIFICATION

Specify SPECIFICATION to recompile only the package specification, regardless of
whether it is invalid. You might want to recompile a package specification to check
for compilation errors after modifying the specification.

When you recompile a package specification, Oracle invalidates any local objects
that depend on the specification, such as procedures that call procedures or
functions in the package. The body of a package also depends on its specification. If
you subsequently reference one of these dependent objects without first explicitly
recompiling it, Oracle recompiles it implicitly at run time.

BODY

Specify BODYto recompile only the package body regardless of whether it is invalid.
You might want to recompile a package body after modifying it. Recompiling a
package body does not invalidate objects that depend upon the package
specification.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-121

ALTER PACKAGE

When you recompile a package body, Oracle first recompiles the objects on which
the body depends, if any of those objects are invalid. If Oracle recompiles the body
successfully, the body becomes valid.

PACKAGE

Specify PACKAGHo recompile both the package specification and the package body
if one exists, regardless of whether they are invalid. This is the default. The
recompilation of the package specification and body lead to the invalidation and
recompilation as described for SPECIFICATION and BODY

See Also: Oracle9i Database Concepts for information on how
Oracle maintains dependencies among schema objects, including
remote objects

DEBUG

Specify DEBUQO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
information on debugging packages

REUSE SETTINGS

Specify REUSE SETTINGS3o prevent Oracle from dropping and reacquiring
compiler switch settings. With this clause, Oracle preserves the existing settings and
uses them for the recompilation.

If you specify both DEBUGind REUSE SETTINGSOracle sets the persistently stored
value of the PLSQL_COMPILER_FLAG®arameter to INTERPRETEDDEBUGNoO
other compiler switch values are changed.

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on
the interaction of the PLSQL_COMPILER_FLAG@arameter with
the COMPILEclause

Examples

Recompiling a Package: Examples This statement explicitly recompiles the
specification and body of the hr.emp_mgmt package that was created in "Creating
a Package: Example” on page 14-55:

9-122 Oracle9/ SQL Reference

ALTER PACKAGE

ALTER PACKAGE emp_mgmt
COMPILE PACKAGE;

If Oracle encounters no compilation errors while recompiling the accounting
specification and body, emp_mgmtbecomes valid. The user hr can subsequently
call or reference all package objects declared in the specification of emp_mgmt
without run-time recompilation. If recompiling emp_mgmtresults in compilation
errors, Oracle returns an error and emp_mgmtremains invalid.

Oracle also invalidates all objects that depend upon emp_mgmt If you subsequently
reference one of these objects without explicitly recompiling it first, Oracle
recompiles it implicitly at run time.

To recompile the body of the emp_mgmtpackage in the schema hr, issue the
following statement:

ALTER PACKAGE hr.emp_mgmt
COMPILE BODY;

If Oracle encounters no compilation errors while recompiling the package body, the
body becomes valid. The user hr can subsequently call or reference all package
objects declared in the specification of emp_mgmtwithout run-time recompilation.
If recompiling the body results in compilation errors, Oracle returns an error
message and the body remains invalid.

Because this statement recompiles the body and not the specification of emp_mgmt
Oracle does not invalidate dependent objects.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-123

ALTER PROCEDURE

ALTER PROCEDURE

Purpose

Use the ALTER PROCEDURIEatement to explicitly recompile a standalone stored
procedure. Explicit recompilation eliminates the need for implicit run-time
recompilation and prevents associated run-time compilation errors and
performance overhead.

To recompile a procedure that is part of a package, recompile the entire package
using the ALTER PACKAGEtatement (see ALTER PACKAGE on page 9-120).

Note: This statement does not change the declaration or definition
of an existing procedure. To redeclare or redefine a procedure, use
the CREATE PROCEDUREtement with the OR REPLACEIlause
(see CREATE PROCEDURE on page 14-64).

The ALTER PROCEDURIEtement is quite similar to the ALTER FUNCTION
statement.

See Also: ALTER FUNCTION on page 9-59
Prerequisites
The procedure must be in your own schema or you must have ALTER ANY

PROCEDURS$ystem privilege.

Syntax
alter_procedure::=

f—)l DEBUG |-\ f—)l REUSE [SETTINGS |_\
| ALTER |5 PROCEDURE | (procedure)5 COMPILE | O

Semantics

schema

Specify the schema containing the procedure. If you omit schema, Oracle assumes
the procedure is in your own schema.

9-124 Oracle9/ SQL Reference

ALTER PROCEDURE

procedure
Specify the name of the procedure to be recompiled.

COMPILE

Specify COMPILEto recompile the procedure. The COMPILEkeyword is required.
Oracle recompiles the procedure regardless of whether it is valid or invalid.

« Oracle first recompiles objects upon which the procedure depends, if any of
those objects are invalid.

« Oracle also invalidates any local objects that depend upon the procedure, such
as procedures that call the recompiled procedure or package bodies that define
procedures that call the recompiled procedure.

« If Oracle recompiles the procedure successfully, the procedure becomes valid. If
recompiling the procedure results in compilation errors, then Oracle returns an
error and the procedure remains invalid. You can see the associated compiler
error messages with the SQL*Plus command SHOW ERRORS

During recompilation, Oracle drops all persistent compiler switch settings, retrieves
them again from the session, and stores them at the end of compilation. To avoid
this process, specify the REUSE SETTINGSlause.

See Also: Oracle9i Database Concepts for information on how
Oracle maintains dependencies among schema objects, including
remote objects and "Recompiling a Procedure: Example" on

page 9-126

DEBUG

Specify DEBUQO instruct the PL/SQL compiler to generate and store the code for
use by the PL/SQL debugger.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information on debugging procedures

REUSE SETTINGS

Specify REUSE SETTINGSo prevent Oracle from dropping and reacquiring
compiler switch settings. With this clause, Oracle preserves the existing settings and
uses them for the recompilation.

If you specify both DEBUGNd REUSE SETTINGSOracle sets the persistently stored
value of the PLSQL_COMPILER_FLAG®arameter to INTERPRETEDDEBUGNoO
other compiler switch values are changed.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-125

ALTER PROCEDURE

Example

See Also: PL/SQL User’s Guide and Reference and Oracle9i
Application Developer’s Guide - Fundamentals for more information on
the interaction of the PLSQL_COMPILER_FLAG@arameter with
the COMPILEclause

Recompiling a Procedure: Example To explicitly recompile the procedure
remove_emp owned by the user hr, issue the following statement:

ALTER PROCEDURE hr.remove_emp
COMPILE;

If Oracle encounters no compilation errors while recompiling credit |, credit
becomes valid. Oracle can subsequently execute it without recompiling it at run
time. If recompiling credit results in compilation errors, Oracle returns an error
and credit remains invalid.

Oracle also invalidates all dependent objects. These objects include any procedures,
functions, and package bodies that call credit . If you subsequently reference one
of these objects without first explicitly recompiling it, Oracle recompiles it implicitly
at run time.

9-126 Oracle9/ SQL Reference

ALTER PROFILE

ALTER PROFILE

Purpose

Use the ALTER PROFILEstatement to add, modify, or remove a resource limit or
password management parameter in a profile.

Changes made to a profile with an ALTER PROFILEstatement affect users only in
their subsequent sessions, not in their current sessions.

See Also: CREATE PROFILE on page 14-71 for information on
creating a profile

Prerequisites
You must have ALTER PROFILEsystem privilege to change profile resource limits.
To modify password limits and protection, you must have ALTER PROFILEand
ALTER USERystem privileges.

Syntax

alter_profile::=

| ALTER |{ PROFILE | profile }of LIMIT H
password_parameters

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-127

ALTER PROFILE

resource_parameters::=

,| SESSIONS_PER_USER |—
—| CPU_PER_SESSION |7

—| LOGICAL_READS_PER_SESSION |-

[T
‘=

—| LOGICAL_READS_PER_CALL |—

s COMPOSITE_LIMIT N

UNLIMITED |

|

\| PRIVATE_SGA

password_parameters::=

4 FAILED_LOGIN_ATTEMPTS |\

—| PASSWORD _LIFE_TIME |—

—| PASSWORD_REUSE_TIME |—

e
‘=

H=
DEFAULT

—| PASSWORD_REUSE_MAX |—

—| PASSWORD_LOCK_TIME |—

\| PASSWORD_GRACE_TIME |u

\| PASSWORD_VERIFY_FUNCTION

9-128 Oracle9/ SQL Reference

ALTER PROFILE

Semantics

Examples

The keywords, parameters, and clauses in the ALTER PROFILEstatement all have
the same meaning as in the CREATE PROFILEtatement.

Note: You cannot remove a limit from the DEFAULTprofile.

See Also: CREATE PROFILE on page 14-71 and the examples in
the next section

Making a Password Unavailable: Example The following statement makes the
password of the new_profile profile (created in "Creating a Profile; Example" on
page 14-76) unavailable for reuse for 90 days:

ALTER PROFILE new_profile
LIMIT PASSWORD_REUSE_TIME 90
PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Password Values: Example The following statement defaults the
PASSWORD_REUSE_TIME&lue of the app_user profile (created in "Setting Profile
Password Limits: Example" on page 14-77) to its defined value in the DEFAULT
profile:

ALTER PROFILE app_user
LIMIT PASSWORD_REUSE_TIME DEFAULT
PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time: Example The following
statement alters profile app_user with FAILED_LOGIN_ATTEMPTSset to 5 and
PASSWORD_LOCK_TIMEt to 1:

ALTER PROFILE app_user LIMIT
FAILED_LOGIN_ATTEMPTS 5
PASSWORD_LOCK_TIME 1;

This statement causes app_user ’s account to become locked for 1 day after 5
unsuccessful login attempts.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-129

ALTER PROFILE

Changing Password Lifetime and Grace Period: Example The following
statement modifies profile app_user2 PASSWORD_LIFE_TIME to 90 days and
PASSWORD_GRACE_TINES days:

ALTER PROFILE app_user2 LIMIT
PASSWORD_LIFE_TIME 90
PASSWORD_GRACE_TIME 5;

Limiting Concurrent Sessions: Example This statement defines a new limit of 5
concurrent sessions for the app_user profile:

ALTER PROFILE app_user LIMIT SESSIONS_PER_USER 5;

If the engineer profile does not currently define a limit for SESSIONS_PER_USER
the preceding statement adds the limit of 5 to the profile. If the profile already

defines a limit, the preceding statement redefines it to 5. Any user assigned the
engineer profile is subsequently limited to 5 concurrent sessions.

Removing Profile Limits: Example This statement removes the IDLE_TIME limit
from the app_user profile:
ALTER PROFILE app_user LIMIT IDLE_TIME DEFAULT,

Any user assigned the app_user profile is subject in their subsequent sessions to
the IDLE_TIME limit defined in the DEFAULTprofile.

Limiting Profile Idle Time: Example This statement defines a limit of 2 minutes of
idle time for the DEFAUL Tprofile:
ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

« Users who are not explicitly assigned any profile

« Users who are explicitly assigned a profile that does not define an IDLE_TIME
limit

This statement defines unlimited idle time for the app_user2 profile:

ALTER PROFILE app_user2 LIMIT IDLE_TIME UNLIMITED;

Any user assigned the app_user2 profile is subsequently permitted unlimited idle
time.

9-130 Oracle9/ SQL Reference

ALTER RESOURCE COST

ALTER RESOURCE COST

Purpose

Prerequisites

Syntax

Use the ALTER RESOURCE COStatement to specify or change the formula by
which Oracle calculates the total resource cost used in a session.

Although Oracle monitors the use of other resources, only the four resources shown
in the syntax can contribute to the total resource cost for a session.

Once you have specified a formula for the total resource cost, you can limit this cost
for a session with the COMPOSITE_LIMIT parameter of the CREATE PROFILE
statement. If a session’s cost exceeds the limit, Oracle aborts the session and returns
an error. If you use the ALTER RESOURCE COStatement to change the weight
assigned to each resource, Oracle uses these new weights to calculate the total
resource cost for all current and subsequent sessions.

See Also: CREATE PROFILE on page 14-71 for information on all
resources and on establishing resource limits

You must have ALTER RESOURCE COSyistem privilege.

alter_resource_cost::=

CPU_PER_SESSION

CONNECT_TIME

| ALTER |_>| RESOURCE |->| cosT

Semantics

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

CPU_PER_SESSION
Specify the amount of CPU time that can be used by a session measured in
hundredth of seconds.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-131

ALTER RESOURCE COST

Example

CONNECT_TIME
Specify the elapsed time allowed for a session measured in minutes.

LOGICAL_READS_PER_SESSION

Specify the number of data blocks that can be read during a session, including
blocks read from both memory and disk.

PRIVATE_SGA

Specify the number of bytes of private space in the system global area (SGA) that
can be used by a session. This limit applies only if you are using Shared Server
architecture and allocating private space in the SGA for your session.

integer

Specify the weight of each resource. The weight that you assign to each resource
determines how much the use of that resource contributes to the total resource cost.
If you do not assign a weight to a resource, the weight defaults to 0, and use of the
resource subsequently does not contribute to the cost. The weights you assign apply
to all subsequent sessions in the database.

Oracle calculates the total resource cost by first multiplying the amount of each
resource used in the session by the resource’s weight, and then summing the
products for all four resources. For any session, this cost is limited by the value of
the COMPOSITE_LIMIT parameter in the user’s profile. Both the products and the
total cost are expressed in units called service units.

Altering Resource Costs: Examples The following statement assigns weights to
the resources CPU_PER_SESSIONNd CONNECT_TIME

ALTER RESOURCE COST

CPU_PER_SESSION 100

CONNECT_TIME 1;
The weights establish this cost formula for a session:
cost = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

where the values of CPU_PER_SESSIONMNd CONNECT_TIMHre either values in
the DEFAULTprofile or in the profile of the user of the session.

9-132 Oracle9/ SQL Reference

ALTER RESOURCE COST

Because the preceding statement assigns no weight to the resources LOGICAL _
READS_PER_SESSIOBNd PRIVATE_SGA these resources do not appear in the
formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, a session
exceeds this limit whenever cost exceeds 500. For example, a session using 0.04
seconds of CPU time and 101 minutes of elapsed time exceeds the limit. A session
using 0.0301 seconds of CPU time and 200 minutes of elapsed time also exceeds the
limit.

You can subsequently change the weights with another ALTER RESOURCE
statement:

ALTER RESOURCE COST
LOGICAL_READS_PER_SESSION 2
CONNECT_TIME 0;

These new weights establish a new cost formula:

cost = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSIONNd LOGICAL_READS_PER_SECONEE
either the values in the DEFAULTprofile or in the profile of the user of this session.
This ALTER RESOURCE COStatement changes the formula in these ways:

« The statement omits a weight for the CPU_PER_SESSIONesource and the
resource was already assigned a weight, so the resource remains in the formula
with its original weight.

« The statement assigns a weight to the LOGICAL_READS PER_SESSION
resource, so this resource now appears in the formula.

« The statement assigns a weight of 0 to the CONNECT_TIMEesource, so this
resource no longer appears in the formula.

« The statement omits a weight for the PRIVATE_SGAresource and the resource
was not already assigned a weight, so the resource still does not appear in the
formula.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-133

ALTER ROLE

ALTER ROLE

Purpose
Use the ALTER ROLEtatement to change the authorization needed to enable a role.

See Also:
« CREATE ROLE on page 14-79 for information on creating a role

« SET ROLE on page 18-47 for information on enabling or
disabling a role for your session

Prerequisites

You must either have been granted the role with the ADMIN OPTIONor have ALTER
ANY ROLBEystem privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:
« Revoke all grants of roles identified externally to the role and
« Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user
who is currently altering the role.

Syntax
alter_role::=

NOT |->| IDENTIFIED |

password

schema .

package

IDENTIFIED

EXTERNALLY

GLOBALLY

Semantics

The keywords, parameters, and clauses in the ALTER ROLEtatement all have the
same meaning as in the CREATE ROLEtatement.

9-134 Oracle9/ SQL Reference

ALTER ROLE

Examples

Notes:

« When you alter a role, user sessions in which the role is already
enabled are not affected.

« If you change a role identified by password to an application
role (with the USING package clause), password information
associated with the role is lost. Oracle will use the new
authentication mechanism the next time the role is to be
enabled.

« If you have the ALTER ANY ROLEystem privilege and you
change a role that is IDENTIFIED GLOBALLY to IDENTIFIED
BY password , IDENTIFIED EXTERNALLY, or NOT
IDENTIFIED , then Oracle grants you the altered role with the
ADMIN OPTIONas it would have if you had created the role
identified nonglobally.

See Also: CREATE ROLE on page 14-79 and the examples that
follow

Changing Role Identification: Example The following statement changes the role
warehouse_user (created in "Creating a Role: Example" on page 14-81) to NOT
IDENTIFIED :

ALTER ROLE warehouse_user NOT IDENTIFIED;
Changing a Role Password: Example This statement changes the password on the
dw_manager role (created in "Creating a Role: Example" on page 14-81) to data :
ALTER ROLE dw_manager

IDENTIFIED BY data;

Users granted the dw_manager role must subsequently enter the new password
"data" to enable the role.

Application Roles: Example The following example changes the dw_manager
role to an application role using the hr.admin package:

ALTER ROLE dw_manager IDENTIFIED USING hr.admin;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-135

ALTER ROLLBACK SEGMENT

ALTER ROLLBACK SEGMENT

Purpose

Use the ALTER ROLLBACK SEGMEBt&tement to bring a rollback segment online or
offline, change its storage characteristics, or shrink it to an optimal or specified size.

The information in this section assumes that your database is running in rollback
undo mode (the UNDO_MANAGEMEMitialization parameter is set to MANUAIlor
not set at all).

If your database is running in Automatic Undo Management mode (the UNDO _

MANAGEMEN itialization parameter is set to AUTQ, then user-created rollback

segments are irrelevant. In this case, Oracle returns an error in response to any

CREATE ROLLBACK SEGMENTALTER ROLLBACK SEGMEBtatement. To

suppress these errors, set the UNDO_SUPPRESS ERROBBameter to TRUE
See Also:

« CREATE ROLLBACK SEGMENT on page 14-82 for
information on creating a rollback segment

« Oracle9i Database Reference for information on the UNDO _
MANAGEMENIhd UNDO_SUPPRESS ERROBRBameters

Prerequisites
You must have ALTER ROLLBACK SEGMEBfstem privilege.

Syntax
alter_rollback_segment::=

,1 ONLINE
—| OFFLINE
H(storage_clause)

| ALTER |->| ROLLBACK |->| SEGMENT |—><r0|lback_segment>+

\| SHRINK

(storage_clause on page 7-56)

9-136 Oracle9/ SQL Reference

ALTER ROLLBACK SEGMENT

Semantics

rollback _segment
Specify the name of an existing rollback segment.

ONLINE

Specify ONLINE to bring the rollback segment online. When you create a rollback
segment, it is initially offline and not available for transactions. This clause brings
the rollback segment online, making it available for transactions by your instance.
You can also bring a rollback segment online when you start your instance with the
initialization parameter ROLLBACK_SEGMENTS

See Also: "Bringing a Rollback Segment Online: Example" on
page 9-138

OFFLINE
Specify OFFLINE to take the rollback segment offline.

« Ifthe rollback segment does not contain any information needed to roll back an
active transaction, Oracle takes it offline immediately.

« Ifthe rollback segment does contain information for active transactions, Oracle
makes the rollback segment unavailable for future transactions and takes it
offline after all the active transactions are committed or rolled back.

Once the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query the data dictionary
view DBA_ROLLBACK_SEG®nline rollback segments have a STATUSvalue of IN_
USE Offline rollback segments have a STATUSvalue of AVAILABLE.

Restriction on Taking Rollback Segments Offline You cannot take the SYSTEM
rollback segment offline.

See Also: Oracle9i Database Administrator’s Guide for more

information on making rollback segments available and
unavailable

storage clause
Use the storage clause to change the rollback segment’s storage characteristics.

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-137

ALTER ROLLBACK SEGMENT

Examples

Restriction on Rollback Segment Storage You cannot change the values of the
INITIAL and MINEXTENTSfor an existing rollback segment.

See Also: storage clause on page 7-56 for syntax and
additional information "Changing Rollback Segment Storage:
Example" on page 9-139

SHRINK Clause

Specify SHRINKif you want Oracle to attempt to shrink the rollback segment to an
optimal or specified size. The success and amount of shrinkage depend on the
available free space in the rollback segment and how active transactions are holding
space in the rollback segment.

The value of integer is in bytes, unless you specify K or Mfor kilobytes or
megabytes.

If you do not specify TOinteger , then the size defaults to the OPTIMALvalue of

the storage clause of the CREATE ROLLBACK SEGMEtatement that created

the rollback segment. If OPTIMALwas not specified, then the size defaults to the
MINEXTENTSvalue of the storage clause of the CREATE ROLLBACK SEGMENT
statement.

Regardless of whether you specify TOinteger

« The value to which Oracle shrinks the rollback segment is valid for the
execution of the statement. Thereafter, the size reverts to the OPTIMALvalue of
the CREATE ROLLBACK SEGMEidtement.

« The rollback segment cannot shrink to less than two extents.
To determine the actual size of a rollback segment after attempting to shrink it,
query the BYTES BLOCKSand EXTENTScolumns of the DBA_SEGMENT@3ew.

Restriction on Shrinking Rollback Segments In a Real Application Clusters
environment, you can shrink only rollback segments that are online to your
instance.

See Also: "Resizing a Rollback Segment: Example" on page 9-139

Bringing a Rollback Segment Online: Example This statement brings the rollback
segment rbs_one online:

9-138 Oracle9/ SQL Reference

ALTER ROLLBACK SEGMENT

ALTER ROLLBACK SEGMENT rbs_one ONLINE;
Changing Rollback Segment Storage: Example This statement changes the
STORAGIHparameters for rbs_one :
ALTER ROLLBACK SEGMENT rbs_one

STORAGE (NEXT 1000 MAXEXTENTS 20);
Resizing a Rollback Segment: Example This statement attempts to resize a
rollback segment to 100 megabytes:

ALTER ROLLBACK SEGMENT rbs_one
SHRINK TO 100 M;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-139

ALTER SEQUENCE

ALTER SEQUENCE

Purpose

Use the ALTER SEQUENC#atement to change the increment, minimum and
maximum values, cached numbers, and behavior of an existing sequence. This
statement affects only future sequence numbers.

See Also: CREATE SEQUENCE on page 14-89 for additional
information on sequences

Prerequisites
The sequence must be in your own schema, or you must have the ALTERobject
privilege on the sequence, or you must have the ALTER ANY SEQUENGESstem
privilege.

Syntax

alter_sequence::=

/| INCREMENT |->| BY |—>(integer)

MAXVALUE |{integer
NOMAXVALUE
MINVALUE |{integer

[ALTER | SEQUENCE | @ ()

| CYCLE
| NOCYCLE I

NOCACHE

L

0

| RDER q
NOORDER

9-140 Oracle9/ SQL Reference

ALTER SEQUENCE

Semantics

Examples

The keywords and parameters in this statement serve the same purposes they serve
when you create a sequence.

« Torestart the sequence at a different number, you must drop and re-create it.

« If you change the INCREMENT BYalue before the first invocation of NEXTVAL
some sequence numbers will be skipped. Therefore, if you want to retain the
original START WITHvalue, you must drop the sequence and re-create it with
the original START WITHvalue and the new INCREMENT BYalue.

« Oracle performs some validations. For example, a new MAXVALUEannot be
imposed that is less than the current sequence number.

See Also:

« CREATE SEQUENCE on page 14-89 for information on
creating a sequence

« DROP SEQUENCE on page 17-2 for information on dropping
and re-creating a sequence

Modifying a Sequence: Examples This statement sets a new maximum value for
the customers_seq sequence:

ALTER SEQUENCE customers_seq
MAXVALUE 1500;
This statement turns on CYCLEand CACHEor the customers_seq sequence:

ALTER SEQUENCE customers_seq
CYCLE
CACHE 5;

SQL Statements: ALTER CLUSTER to ALTER SEQUENCE 9-141

ALTER SEQUENCE

9-142 Oracle9/ SQL Reference

10

SQL Statements: ALTER SESSION to
ALTER SYSTEM

This chapter contains the following SQL statements:
ALTER SESSION
ALTER SYSTEM

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-1

ALTER SESSION

ALTER SESSION

Purpose

Use the ALTER SESSIONstatement to specify or modify any of the conditions or
parameters that affect your connection to the database. The statement stays in effect

until you disconnect from the database.

To enable and disable the SQL trace facility, you must have ALTER SESSIONsystem

To enable or disable resumable space allocation, you must have the RESUMABLE

You do not need any privileges to perform the other operations of this statement

Prerequisites

privilege.

system privilege.

unless otherwise indicated.
Syntax

alter_session::=

ROLLBACK }

/| ADVISE

-| CLOSE |->| DATABASE |->| LINK |{dblink}

ENABLE

H COMMIT |—>|E|—>| PROCEDURE |
DISABLE

ENABLE

| ALTER |->| SESSION |->-

DISABLE PARALLEL

[—>| PARALLEL |—>(integeh

ENABLE |—>| RESUMABLE }
DISABLE |->| RESUMABLE |

J_

\(alter_session_set_clause)

10-2 Oracle9/ SQL Reference

ALTER SESSION

alter_session_set_clause ::=

COMMENT
)| SET Picparametef”ame>—>®{parameter_value)) _ e ‘ @ ‘

Semantics

ADVISE Clause

The ADVISE clause sends advice to a remote database to force a distributed
transaction. The advice appears in the ADVICE column of the DBA_2PC_PENDING
view on the remote database (the values are 'C for COMMIT'R for ROLLBACKand ’
’ for NOTHING. If the transaction becomes in doubt, then the administrator of that
database can use this advice to decide whether to commit or roll back the
transaction.

You can send different advice to different remote databases by issuing multiple
ALTER SESSIONstatements with the ADVISE clause in a single transaction. Each
such statement sends advice to the databases referenced in the following statements
in the transaction until another such statement is issued.

See Also: "Forcing a Distributed Transaction: Example" on
page 10-16

CLOSE DATABASE LINK Clause

Specify CLOSE DATABASE LINKo close the database link dblink . When you issue
a statement that uses a database link, Oracle creates a session for you on the remote
database using that link. The connection remains open until you end your local
session or until the number of database links for your session exceeds the value of
the initialization parameter OPEN_LINKS If you want to reduce the network
overhead associated with keeping the link open, then use this clause to close the
link explicitly if you do not plan to use it again in your session.

See Also: Closing a Database Link: Example on page 10-17

ENABLE | DISABLE COMMIT IN PROCEDURE

Procedures and stored functions written in PL/SQL can issue COMMITand
ROLLBACKtatements. If your application would be disrupted by a COMMITor
ROLLBACKtatement not issued directly by the application itself, then specify

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-3

ALTER SESSION

DISABLE COMMIT IN PROCEDURHause to prevent procedures and stored
functions called during your session from issuing these statements.

You can subsequently allow procedures and stored functions to issue COMMITand
ROLLBACkKstatements in your session by issuing the ENABLE DISABLE COMMIT IN
PROCEDURE

Some applications (such as SQL*Forms) automatically prohibit COMMITand
ROLLBACKtatements in procedures and stored functions. Refer to your application
documentation for more information.

PARALLEL DML | DDL | QUERY

The PARALLELparameter determines whether all subsequent DML, DDL, or query
statements in the session will be considered for parallel execution. This clause
enables you to override the degree of parallelism of tables during the current
session without changing the tables themselves. Uncommitted transactions must
either be committed or rolled back prior to executing this clause for DML.

See Also: "Enabling Parallel DML: Example" on page 10-16

ENABLE Clause

Specify ENABLEto execute subsequent statements in the session in parallel. This is
the default for DDL and query statements.

« DML The session’s DML statements are executed in parallel mode if a parallel
hint or a parallel clause is specified.

« DDL The session’s DDL statements are executed in parallel mode if a parallel
clause is specified.

« QUERYThe session’s queries are executed in parallel mode if a parallel hint or a
parallel clause is specified

Restriction on the ENABLE clause You cannot specify the optional PARALLEL
integer with ENABLE

DISABLE Clause

Specify DISABLE to execute subsequent statements serially. This is the default for
DML statements.

« DML The session’s DML statements are executed serially.

« DDL The session’s DDL statements are executed serially.

10-4 Oracle9/ SQL Reference

ALTER SESSION

« QUERYThe session’s queries are executed serially.

Restriction on the DISABLE clause You cannot specify the optional PARALLEL
integer with DISABLE.

FORCE Clause

FORCHorces parallel execution of subsequent statements in the session. If no
parallel clause or hint is specified, then a default degree of parallelism is used. This
clause overrides any parallel _clause specified in subsequent statements in the
session, but is overridden by a parallel hint.

« DML Provided no parallel DML restrictions are violated, subsequent DML
statements in the session are executed with the default degree of parallelism,
unless a degree is specified in this clause.

« DDL Subsequent DDL statements in the session are executed with the default
degree of parallelism, unless a degree is specified in this clause. Resulting
database objects will have associated with them the prevailing degree of
parallelism.

Using FORCE DDhautomatically causes all tables created in this session to be
created with a default level of parallelism. The effect is the same as if you had
specified the parallel_clause (with default degree) with the CREATE
TABLEstatement.

« QUERYSubsequent queries are executed with the default degree of parallelism,
unless a degree is specified in this clause.
PARALLEL integer Specify an integer to explicitly specify a degree of parallelism:

« For FORCE DDlthe degree overrides any parallel clause in subsequent DDL
statements.

« For FORCE DMand QUERMthe degree overrides the degree currently stored for
the table in the data dictionary.

« A degree specified in a statement through a hint will override the degree being
forced.

The following types of DML operations are not parallelized regardless of this
clause:

« Operations on clustered tables

« Operations with embedded functions that either write or read database or
package states

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-5

ALTER SESSION

« Operations on tables with triggers that could fire

« Operations on tables or schema objects containing object types, or LONGor LOB
datatypes.

RESUMABLE Clauses

These clauses let you enable and disable resumable space allocation. This feature
allows an operation to be suspended in the event of an out-of-space error condition
and to resume automatically from the point of interruption when the error
condition is fixed.

Note: Resumable space allocation is fully supported for
operations on locally managed tablespaces. Some restrictions apply
if you are using dictionary-managed tablespaces. For information
on these restrictions, please refer to Oracle9i Database Administrator’s
Guide.

ENABLE RESUMABLE
This clause enables resumable space allocation for the session.

TIMEOUT TIMEOUTIets you specify (in seconds) the time during which an
operation can remain suspended while waiting for the error condition to be fixed. If
the error condition is not fixed within the TIMEOUTperiod, then Oracle aborts the
suspended operation.

NAME NAMBHets you specify a user-defined text string to help users identify the
statements issued during the session while the session is in resumable mode. Oracle
inserts the text string into the USER_RESUMABLd#Hhd DBA_RESUMABLé#8ata
dictionary views. If you do not specify NAMEthen Oracle inserts the default string
'User username (userid), Session sessionid , Instance instanceid '

See Also: Oracle9i Database Reference for information on the data
dictionary views

DISABLE RESUMABLE
This clause disables resumable space allocation for the session.

alter_session_set_clause

Use the alter_session _set clause to set the parameters that follow (session
parameters and initialization parameters that are dynamic in the scope of the

10-6 Oracle9/ SQL Reference

ALTER SESSION

ALTER SESSIONstatement). You can set values for multiple parameters in the same
alter_session_set clause

COMMENIEts you associate a comment string with this change in the value of the
parameter.

Initialization Parameters and ALTER SESSION

All initialization parameters that can be set using an ALTER SYSTEMtatement are
documented at ALTER SYSTEM on page 10-20. The initialization parameters that
are dynamic in the scope of ALTER SESSIONare listed in Table 10-1 on page 10-7
with cross-references to their descriptions in ALTER SYSTEMThe only difference in
behavior is that when you set these parameters using ALTER SESSIONthe value
you set persists only for the duration of the current session.

A number of parameters that can be set using ALTER SESSIONare not initialization
parameters. That is, you can set them only with ALTER SESSIONnNot in an
initialization parameter file. Those session parameters are described after Table 10-1.

Caution: Unless otherwise indicated, the parameters described
here are initialization parameters, and the descriptions indicate
only the general nature of the parameters. Before changing the
values of initialization parameters, please refer to their full
description in Oracle9i Database Reference or Oracle9i Database
Globalization Support Guide.

Table 10-1 Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

CURSOR_SHARINGN page 10-43 See also Oracle9i Database Performance
Tuning Guide and Reference for
information on setting this parameter in
these and other environments.

DB_BLOCK_CHECKINGn page 10-45 The setting made by ALTER SESSION
SET DB_BLOCK_CHECKING®vill be
overridden by any subsequent ALTER
SYSTEM SET DB_BLOCK_CHECKING
statement.

DB_CREATE_FILE_DESTon page 10-47 —

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-7

Initialization Parameters and ALTER SESSION

Table 10-1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

DB_CREATE_ONLINE_LOG_DEST on page 10-47 —

DB_FILE_MULTIBLOCK_READ_COUNn —
page 10-48

FILESYSTEMIO_OPTIONSon page 10-59 —

GLOBAL_NAMESN page 10-60 See "Referring to Objects in Remote
Databases" on page 2-118 and Oracle9i
Heterogeneous Connectivity
Administrator’s Guide for more
information on global name resolution
and how Oracle enforces it.

HASH_AREA_SIZEon page 10-60 —

HASH_JOIN_ENABLEDn page 10-61 —

LOG_ARCHIVE_DEST_mn page 10-69 —

LOG_ARCHIVE_DEST_STATE_an page 10-70 —

LOG_ARCHIVE_MIN_SUCCEED_DESi page 10-72 —

MAX_DUMP_FILE_SIZEon page 10-77 —

Globalization Support (NLS_) Parameters:

When you start an instance, Oracle establishes globalization support based on the values of
initialization parameters that begin with "NLS". You can query the dynamic performance table
VSNLS_PARAMETER®S see the current globalization attributes for your session. For more
information about NLS parameters, see Oracle9i Database Globalization Support Guide.

NLS_CALENDARN page 10-78 —

NLS_COMMPN page 10-79 —

NLS_CURRENCHN page 10-79 —

NLS_ DATE_FORMAGN page 10-79 See "Date Format Models" on page 2-68
for information on valid date format
models.

NLS_DATE_LANGUAG®E page 10-80 —

NLS_ DUAL_CURRENGM page 10-80 See "Number Format Models" on
page 2-63 for information on number
format elements.

NLS_ISO_CURRENCH¥nN page 10-80 —

10-8 Oracle9/ SQL Reference

ALTER SESSION

Table 10-1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter

Comments

NLS_LANGUAGEN page 10-81

NLS_LENGTH_SEMANTIC6EN page 10-81

NLS_NCHAR_CONV_EX®R page 10-81

NLS_NUMERIC_CHARACTERS page 10-82

NLS_SORTon page 10-82

NLS_TERRITORYon page 10-82

NLS_TIMESTAMP_FORMAGh page 10-83

NLS_TIMESTAMP_TZ_FORMASh page 10-83

OBJECT_CACHE_MAX_SIZE_PERCENm
page 10-84

OBJECT_CACHE_OPTIMAL_SIZBn page 10-84

OLAP_PAGE_POOL_SIZBn page 10-84

OPTIMIZER_DYNAMIC_SAMPLIN®n page 10-86

See Oracle9i Database Performance Tuning
Guide and Reference for information on
how to set this parameter.

OPTIMIZER_INDEX_CACHINGon page 10-87

OPTIMIZER_INDEX_COST_ADJn page 10-87

OPTIMIZER_MAX_PERMUTATIONSh page 10-87

OPTIMIZER_MODEN page 10-88

See Oracle9i Database Concepts and
Oracle9i Database Performance Tuning
Guide and Reference for information on
how to choose a goal for the cost-based
approach based on the characteristics of
your application.

ORACLE_TRACE_ENABLdh page 10-89

PARALLEL_INSTANCE_GROUSh page 10-92

PARALLEL_MIN_PERCEN®N page 10-93

PARTITION_VIEW_ENABLEDon page 10-94

For important information on partition
views, see "Partition Views" on
page 16-40.

PLSQL_COMPILER_FLAGSnN page 10-95

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-9

Session Parameters and ALTER SESSION

Table 10-1 (Cont.) Initialization Parameters You Can Set with ALTER SESSION

Parameter Comments

QUERY_REWRITE_ENABLED page 10-99 —

QUERY_REWRITE_INTEGRIT®n page 10-99 —

REMOTE_DEPENDENCIES_MQibEpage 10-101 —

SESSION_CACHED_CURSORSpage 10-105 —

SORT_AREA_RETAINED_SIZ®n page 10-109 —

SORT_AREA_SIZBEon page 10-110 —

STAR_TRANSFORMATION_ENABL&Dpage 10-112 —

STATISTICS_LEVEL on page 10-112 —

TIMED_OS_STATISTICS on page 10-113 —

TIMED_STATISTICS on page 10-114 —

TRACE_ENABLEDN page 10-114 —

UNDO_SUPPRESS_ERRO#t5page 10-117 —

WORKAREA_SIZE_POLIC¥n page 10-119 —

Session Parameters and ALTER SESSION

The following parameters are session parameters only, not initialization parameters:

CONSTRAINT[S]
Syntax:

CONSTRAINTI[S] = { IMMEDIATE | DEFERRED | DEFAULT }
The CONSTRAINTI[S] parameter determines when conditions specified by a
deferrable constraint are enforced.

« immediate indicates that the conditions specified by the deferrable constraint
are checked immediately after each DML statement. This setting is equivalent to
issuing the SET CONSTRAINTS ALL IMMEDIATEtatement at the beginning of
each transaction in your session.

« deferred indicates that the conditions specified by the deferrable constraint
are checked when the transaction is committed. This setting is equivalent to

10-10 Oracle9i SQL Reference

ALTER SESSION

issuing the SET CONSTRAINTS ALL DEFERRERtement at the beginning of
each transaction in your session.

« default restores all constraints at the beginning of each transaction to their
initial state of DEFERREDr IMMEDIATE

CREATE_STORED_OUTLINES
Syntax:

CREATE_STORED_OUTLINES = {TRUE | FALSE | 'category_name’}

The CREATE_STORED_OUTLINHSrameter determines whether Oracle should
automatically create and store an outline for each query submitted during the
session.

« true enables automatic outline creation for subsequent queries in the same
session. These outlines receive a unique system-generated name and are stored
in the DEFAULTcategory. If a particular query already has an outline defined
for it in the DEFAULTcategory, then that outline will remain and a new outline
will not be created.

« false disables automatic outline creation during the session. This is the
default.

« category name has the same behavior as TRUEexcept that any outline
created during the session is stored in the category _name category.

CURRENT_SCHEMA
Syntax:

CURRENT_SCHEMA = schema

The CURRENT_SCHEM»arameter changes the current schema of the session to the
specified schema. Subsequent unqualified references to schema objects during the
session will resolve to objects in the specified schema. The setting persists for the
duration of the session or until you issue another ALTER SESSION SET CURRENT _
SCHEMAtatement.

This setting offers a convenient way to perform operations on objects in a schema
other than that of the current user without having to qualify the objects with the
schema name. This setting changes the current schema, but it does not change the
session user or the current user, nor does it give you any additional system or object
privileges for the session.

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-11

Session Parameters and ALTER SESSION

ERROR_ON_OVERLAP_TIME
Syntax:

ERROR_ON_OVERLAP_TIME = {TRUE | FALSE}

The ERROR_ON_OVERLAP_TIMEtermines how Oracle should handle an
ambiguous boundary datetime value—that is, a case in which it is not clear whether
the datetime is in standard or daylight savings time.

« Specify TRUEto return an error for the ambiguous overlap timestamp.

« Specify FALSEto default the ambiguous overlap timestamp to the standard
time. This is the default.

FLAGGER
Syntax:

FLAGGER = { ENTRY | INTERMEDIATE | FULL | OFF }

The FLAGGERyarameter specifies FIPS flagging, which causes an error message to
be generated when a SQL statement issued is an extension of ANSI SQL92.
FLAGGERS a session parameter only, not an initialization parameter.

In Oracle, there is currently no difference between Entry, Intermediate, or Full level
flagging. Once flagging is set in a session, a subsequent ALTER SESSION SET
FLAGGERtatement will work, but generates the message, ORA-00097. This allows
FIPS flagging to be altered without disconnecting the session. OFFturns off

flagging.

See Also: Appendix B, "Oracle and Standard SQL", for more
information about Oracle compliance with current ANSI SQL
standards

INSTANCE
Syntax:

INSTANCE = integer

The INSTANCEparameter in a Real Application Clusters environment accesses
database files as if the session were connected to the instance specified by integer.
INSTANCE:Is a session parameter only, not an initialization parameter. For optimum
performance, each instance of Real Application Clusters uses its own private
rollback segments, freelist groups, and so on. In a Real Application Clusters
environment, you normally connect to a particular instance and access data that is

10-12 Oracle9i SQL Reference

ALTER SESSION

partitioned primarily for your use. If you must connect to another instance, then the
data partitioning can be lost. Setting this parameter lets you access an instance as if
you were connected to your own instance.

ISOLATION_LEVEL
Syntax:

ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED}

The ISOLATION_LEVEL parameter specifies how transactions containing database
modifications are handled. ISOLATION_LEVEL is a session parameter only, not an
initialization parameter.

« SERIALIZABLE indicates that transactions in the session use the serializable
transaction isolation mode as specified in SQL92. That is, if a serializable
transaction attempts to execute a DML statement that updates rows currently
being updated by another uncommitted transaction at the start of the
serializable transaction, then the DML statement fails. A serializable transaction
can see its own updates.

« READ COMMITTEIDdicates that transactions in the session will use the default
Oracle transaction behavior. Thus, if the transaction contains DML that requires
row locks held by another transaction, then the DML statement will wait until
the row locks are released.

PLSQL_DEBUG
Syntax:

PLSQL_DEBUG ={ TRUE | FALSE }

The PLSQL_DEBU@arameter sets the default for including or not including
debugging information during compile operations. Setting this parameter to TRUE
has the same effect as adding the DEBUGkeyword to ALTER{FUNCTION]
PROCEDUREPACKAGECOMPILEstatements.

SKIP_UNUSABLE_INDEXES
Syntax:

SKIP_UNUSABLE_INDEXES = { TRUE | FALSE }

The SKIP_UNUSABLE_INDEXESarameter controls the use and reporting of tables
with unusable indexes or index partitions. SKIP_UNUSABLE_INDEXESs a session
parameter only, not an initialization parameter.

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-13

Session Parameters and ALTER SESSION

« TRUEdisables error reporting of indexes and index partitions marked
UNUSABLEThis setting allows all operations (inserts, deletes, updates, and
selects) on tables with unusable indexes or index partitions.

Note: If an index is used to enforce a UNIQUEconstraint on a
table, then allowing insert and update operations on the table
might violate the constraint. Therefore, this setting does not disable
error reporting for unusable indexes that are unique.

« FALSEenables error reporting of indexes marked UNUSABLEThis setting does
not allow inserts, deletes, and updates on tables with unusable indexes or index
partitions. This is the default.

SQL_TRACE
Syntax:

INSTANCE = integer
SQL_TRACHS an initialization parameter. However, when you change its value

with an ALTER SESSIONstatement, the results are not reflected in the
V$PARAMETERiew. Therefore, in this context it is considered a session parameter

only.
See Also: Oracle9i Database Performance Tuning Guide and Reference
for more information on the SQL trace facility, including how to
format and interpret its output

TIME_ZONE

Syntax:

TIME_ZONE = ’[+ | -] hh:mm’
| LOCAL
| DBTIMEZONE

| 'time_zone_region’

The TIME_ZONEparameter specifies the default local time zone displacement for
the current SQL session. TIME_ZONEis a session parameter only, not an
initialization parameter. To determine the time zone of the current session, query
the built-in function SESSIONTIMEZONHsee SESSIONTIMEZONE on page 6-143).

10-14 Oracle9i SQL Reference

ALTER SESSION

Specify a format mask ('[+|-]hh:mm’) indicating the hours and minutes
before or after UTC (Coordinated Universal Time—formerly Greenwich Mean
Time). The valid range for hh:mmis -12:00 to +14:00.

Specify LOCALLto set the default local time zone displacement of the current
SQL session to the original default local time zone displacement that was
established when the current SQL session was started.

Specify DBTIMEZONHo set the current session time zone to match the value set
for the database time zone. If you specify this setting, then the DBTIMEZONE
function will return the database time zone as a UTC offset or a time zone
region, depending on how the database time zone has been set.

Specify a valid time_zone _region . To see a listing of valid region names,
guery the TZNAMEcolumn of the VSTIMEZONE_NAMES8ynamic performance
view. If you specify this setting, then the SESSIONTIMEZONEunction will
return the region name.

Note: You can also set the default client session time zone using
the ORA_SDT2nvironment variable. Please refer to Oracle9i
Database Globalization Support Guide for more information on this
variable.

USE_PRIVATE_OUTLINES
Syntax:

USE_PRIVATE_OUTLINES = { TRUE | FALSE | category_name }

The USE_PRIVATE_OUTLINESparameter lets you control the use of private
outlines. When this parameter is enabled and an outlined SQL statement is issued,
the optimizer retrieves the outline from the session private area rather than the
public area used when USE_STORED_OUTLINER enabled. If no outline exists in
the session private area, then the optimizer will not use an outline to compile the
statement. USE_PRIVATE_OUTLINESSs not an initialization parameter.

TRUEcauses the optimizer to use private outlines stored in the DEFAULT
category when compiling requests.

FALSE specifies that the optimizer should not use stored private outlines. This
is the default. If USE_STORED_OUTLINERB enabled, then the optimizer will
use stored public outlines.

category_name causes the optimizer to use outlines stored in the category
name category when compiling requests.

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-15

Session Parameters and ALTER SESSION

Examples

Restriction on USE_PRIVATE_OUTLINES You cannot enable this parameter if
USE_STORED_OUTLINEB enabled.

USE_STORED_OUTLINES
Syntax:

USE_STORED_OUTLINES = { TRUE | FALSE | category_name }

The USE_STORED_OUTLINESarameter determines whether the optimizer will use
stored public outlines to generate execution plans. USE_STORED_ OUTLINEB not
an initialization parameter.

« TRUEcauses the optimizer to use outlines stored in the DEFAULTcategory when
compiling requests.

« FALSEspecifies that the optimizer should not use stored outlines. This is the
default.

« category name causes the optimizer to use outlines stored in the category
name category when compiling requests.

Restriction on USED_STORED_OUTLINES You cannot enable this parameter if
USE_PRIVATE_OUTLINESS enabled.

Enabling Parallel DML: Example Issue the following statement to enable parallel
DML mode for the current session:

ALTER SESSION ENABLE PARALLEL DML;

Forcing a Distributed Transaction: Example The following transaction inserts an
employee record into the employees table on the database identified by the
database link remote and deletes an employee record from the employees table
on the database identified by local

ALTER SESSION
ADVISE COMMIT;

INSERT INTO employees@remote
VALUES (8002, 'Juan’, 'Fernandez’, 'juanf@hr.com’, NULL,
TO_DATE('04-OCT-1992’, 'DD-MON-YYYY’), 'SA_CLERK’, 3000,
NULL, 121, 20);

10-16 Oracle9i SQL Reference

ALTER SESSION

ALTER SESSION
ADVISE ROLLBACK;

DELETE FROM employees@local
WHERE employee_id = 8002;

COMMIT;

This transaction has two ALTER SESSIONstatements with the ADVISE clause. If the
transaction becomes in doubt, then remote is sent the advice 'COMMITby virtue of
the first ALTER SESSIONstatement and local is sent the advice 'ROLLBACKby
virtue of the second.

Closing a Database Link: Example This statement updates the jobs table on the
local database using a database link, commits the transaction, and explicitly closes
the database link:

UPDATE jobs@local SET min_salary = 3000
WHERE job_id = 'SH_CLERK;
COMMIT;

ALTER SESSION
CLOSE DATABASE LINK local;

Changing the Date Format Dynamically: Example The following statement
dynamically changes the default date format for your session to 'YYYY MM
DD-HH24:MI:SS’

ALTER SESSION
SET NLS_DATE_FORMAT ="YYYY MM DD HH24:MI:SS’;

Oracle uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
FROM DUAL;

2001 04 12 12:30:38

Changing the Date Language Dynamically: Example The following statement
changes the language for date format elements to French:

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-17

Session Parameters and ALTER SESSION

ALTER SESSION
SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, 'Day DD Month YYYY’) Today
FROM DUAL;

TODAY

Jeudi 12 Avril 2001

Changing the ISO Currency: Example The following statement dynamically
changes the ISO currency symbol to the ISO currency symbol for the territory
America:

ALTER SESSION
SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(salary), 'C999G999D99’) Total
FROM employees;

uUSD694,900.00

Changing the Decimal Character and Group Separator: Example The following
statement dynamically changes the decimal character to comma (,) and the group
separator to period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS =",.";

Oracle returns these new characters when you use their number format elements;
ALTER SESSION SET NLS_CURRENCY ="FF;

SELECT TO_CHAR(SUM(salary), 'L999G999D99’) Total FROM employees;
FF694.900,00

Changing the NLS Currency: Example The following statement dynamically
changes the local currency symbol to ‘DM’

ALTER SESSION
SET NLS_CURRENCY ='DM’;

10-18 Oracle9i SQL Reference

ALTER SESSION

SELECT TO_CHAR(SUM(salary), 'L999G999D99’) Total
FROM employees;

DM694.900,00
Changing the NLS Language: Example The following statement dynamically
changes to French the language in which error messages are displayed:

ALTER SESSION
SET NLS_LANGUAGE = FRENCH;

Session modifiee.
SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Changing the Linguistic Sort Sequence: Example The following statement
dynamically changes the linguistic sort sequence to Spanish:

ALTER SESSION
SET NLS_SORT = XSpanish;

Oracle sorts character values based on their position in the Spanish linguistic sort
sequence.

Enabling SQL Trace: Example To enable the SQL trace facility for your session,
issue the following statement:
ALTER SESSION

SET SQL_TRACE = TRUE;
Enabling Query Rewrite: Example This statement enables query rewrite in the
current session for all materialized views that have not been explicitly disabled:
ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-19

ALTER SYSTEM

ALTER SYSTEM

Purpose

Use the ALTER SYSTEMtatement to dynamically alter your Oracle instance. The
settings stay in effect as long as the database is mounted.

Prerequisites
You must have ALTER SYSTEMystem privilege.

10-20 Oracle9i SQL Reference

ALTER SYSTEM

Syntax
alter_system::=

A archive_log_clause)

—| CHECKPOINT

=
|
=)
DISTRIBUTED RECOVERY
DISABLE H

ENABLE
g RESTRICTED |->| SESSION |7
| DISABLE |
-| FLUSH |->| SHARED_POOL |

. -0
end_session_clauses

-| SWITCH |->| LOGFILE }

|

QUIESCE |->| RESTRICTED h

UNQUIESCE
IMMEDIATE
—| SHUTDOWN (dispatcher_name -

—| REGISTER
—I SET |—>—(Calter_system_set_clause))

\| RESET |—>—(<alter_system_reset_clause)J—

—| CHECK |->| DATAFILES |

| ALTER |->| SYSTEM |—>-

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-21

ALTER SYSTEM

archive_log_clause ::=

ARCHIVE LOG

,| SEQUENCE |->(imeger)
CHANGE integer

NOSWITCH
—| CURRENT

OO

f_)| USING |->| BACKUP |->| CONTROLFILE |-\
- LOGFILE @{filename)a@

NEXT

ALL

START

EIFIER

end_session_clauses::=

DISCONNECT |—>| SESSION Mntegerl}s@a{integeﬂ}@ ﬂ

POST_TRANSACTION |-\

\
)

KILL H SESSION F@»{integerl}»@-{integer@s@

alter_system_set clause ::=

~]
6 parameter_value

==
‘el

10-22 Oracle9i SQL Reference

ALTER SYSTEM

alter_system_reset_clause ::=

—(parameter_name

r{ SCOPE a

ElLOL0:C)L0

Semantics

archive_log clause

The archive _log clause manually archives redo log files or enables or disables
automatic archiving. To use this clause, your instance must have the database
mounted. The database can be either open or closed unless otherwise noted.

THREAD Clause

Specify THREADXo indicate the thread containing the redo log file group to be
archived.

Restriction on the THREAD clause Set this parameter only if you are using Oracle
with Real Application Clusters.

See Also: "Archiving Redo Logs Manually: Examples" on
page 10-119

SEQUENCE Clause

Specify SEQUENCIED manually archive the online redo log file group identified by
the log sequence number integer in the specified thread. If you omit the THREAD
parameter, then Oracle archives the specified group from the thread assigned to
your instance.

CHANGE Clause

Specify CHANGEHEo manually archive the online redo log file group containing the
redo log entry with the system change number (SCN) specified by integer in the
specified thread. If the SCN is in the current redo log file group, then Oracle
performs a log switch. If you omit the THREADparameter, then Oracle archives the
groups containing this SCN from all enabled threads.

You can use this clause only when your instance has the database open.

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-23

ALTER SYSTEM

CURRENT Clause

Specify CURRENTo manually archive the current redo log file group of the
specified thread, forcing a log switch. If you omit the THREADparameter, then
Oracle archives all redo log file groups from all enabled threads, including logs
previous to current logs. You can specify CURRENDnly when the database is open.

NOSWITCH Specify NOSWITCHf you want to manually archive the current redo
log file group without forcing a log switch. This setting is used primarily with
standby databases to prevent data divergence when the primary database shuts
down. Divergence implies the possibility of data loss in case of primary database
failure.

You can use the NOSWITCHlause only when your instance has the database
mounted but not open. If the database is open, then this operation closes the
database automatically. You must then manually shut down the database before
you can reopen it.

GROUP Clause

Specify GROURo manually archive the online redo log file group with the GROUP
value specified by integer . You can determine the GROURalue for a redo log file
group by querying the data dictionary view DBA_LOG_FILES If you specify both

the THREADand GROURarameters, then the specified redo log file group must be

in the specified thread.

LOGFILE Clause n

Specify LOGFILE to manually archive the online redo log file group containing the
redo log file member identified by 'filename . If you specify both the THREADand
LOGFILE parameters, then the specified redo log file group must be in the specified
thread.

If the database was mounted with a backup controlfile, then specify USING BACKUP
CONTROLFILEo permit archiving of all online logdfiles, including the current
logfile.

Restriction on the LOGFILE clause You must archive redo log file groups in the
order in which they are filled. If you specify a redo log file group for archiving with
the LOGFILE parameter, and earlier redo log file groups are not yet archived, then
Oracle returns an error.

10-24 Oracle9i SQL Reference

ALTER SYSTEM

NEXT Clause

Specify NEXTto manually archive the next online redo log file group from the
specified thread that is full but has not yet been archived. If you omit the THREAD
parameter, then Oracle archives the earliest unarchived redo log file group from any
enabled thread.

ALL Clause

Specify ALL to manually archive all online redo log file groups from the specified
thread that are full but have not been archived. If you omit the THREADparameter,
then Oracle archives all full unarchived redo log file groups from all enabled
threads.

START Clause
Specify STARTto enable automatic archiving of redo log file groups.

Restriction on the START clause You can enable automatic archiving only for the
thread assigned to your instance.

TO location Clause

Specify TO’location ' to indicate the primary location to which the redo log file
groups are archived. The value of this parameter must be a fully specified file
location following the conventions of your operating system. If you omit this
parameter, then Oracle archives the redo log file group to the location specified by
the initialization parameters LOG_ARCHIVE_DES®r LOG_ARCHIVE_DESTn.

STOP Clause

Specify STOPto disable automatic archiving of redo log file groups. You can disable
automatic archiving only for the thread assigned to your instance.

CHECKPOINT Clause

Specify CHECKPOINTo explicitly force Oracle to perform a checkpoint, ensuring
that all changes made by committed transactions are written to datafiles on disk.
You can specify this clause only when your instance has the database open. Oracle
does not return control to you until the checkpoint is complete.

GLOBAL In a Real Application Clusters environment, this setting causes Oracle to

perform a checkpoint for all instances that have opened the database. This is the
default.

SQL Statements: ALTER SESSION to ALTER SYSTEM 10-25

ALTER SYSTEM

LOCAL In aReal Application Clusters environment, this setting causes Oracle to
perform a checkpoint only for the thread of redo log file groups for the instance
from which you issue the statement.

See Also: "Forcing a Checkpoint: Example" on page 10-120

CHECK DATAFILES Clause

In a distributed database system, such as a Real Application Clusters environment,
this clause updates an instance’s SGA from the database control file to reflect
information on all online datafiles.

« Specify GLOBALto perform this synchronization for all instances that have
opened the database. This is the default.

« Specify LOCALto perform this synchronization only for the local instance.

Your instance should have the database open.

end_session_clauses
The end_session_clauses give you several ways to end the current session.

DISCONNECT SESSION Clause

Use the DISCONNECT SESSIOBlause to disconnect the current session by
destroying the dedicated server process (or virtual circuit if the connection was
made by way of a Shared Server). To use this clause, your instance must have the
database open. You must identify the session