0?7,

r
P i’
L/

BEAJRoCKIte
Mission
Control®

Using JRockit Mission
Control in the Eclipse
IDE

Mission Control 3.0.2
Document Revised: June, 2008

Contents

1. Introduction

Benefits of the Integration. i e 1-1
Differences between Eclipse IDE and RCP Versions of JRockit Mission Control1-2
Making the Oracle JRockit IVM Your JVM i 1-2
Selecting a Perspectiveot e 1-4
Jumping to Application SOUICE.ottt e e 1-8

USING JUMP-10-SOUICE . .« . v vt et ettt e et et 1-9

JRockit Mission Control Plug-ins with Jump-to-Source Enabled. 1-9

Using Mission Control in the Eclipse IDE v

vi Using Mission Control in the Eclipse IDE

Introduction

The Eclipse plug-in edition of Oracle JRockit Mission Control provides seamless integration of
JRockit Mission Control’s application profiling and monitoring toolset with the Eclipse

development platform. By integrating the JRockit Mission Control Client with Eclipse, you can
combine the features of Eclipse with the power tool set that comprises JRockit Mission Control.

This document describes this integration and provides instructions for using the special
functionality enabled by integrating the JRockit Mission Control Client with Eclipse. The topics
include:

e Benefits of the Integration

o Differences between Eclipse IDE and RCP Versions of JRockit Mission Control
e Making the Oracle JRockit JVM Your JVM

e Selecting a Perspective

e Jumping to Application Source

Benefits of the Integration

When the JRockit Mission Control Client is run within the Eclipse IDE, you have access to IDE
features that aren’t otherwise available in the toolset when it is run as a standalone Rich Client
Platform (RCP) application. The most significant of these features is the ability to see specific
code in the running application by opening it directly from the JRockit Mission Control Client, a
function called Jump-to-Source.

Using JRockit Mission Control in the Eclipse IDE 1-1

Introduction

The other obvious benefit of integrating the JRockit Mission Control Client with the Eclipse IDE
is that it allows you to profile and monitor an application during their development phase just as
you would during their production phase. This allows you to spot potential runtime problems
before you actually deploy your application to production; for example, you might, while
monitoring an application during its development notice a memory leak. By catching the memory
leak during development, you can correct it before you migrate your application to a production
environment.

Differences between Eclipse IDE and RCP Versions of
JRockit Mission Gontrol

Generally, the Eclipse version of the JRockit Mission Control Client works identically to the RCP
version. Any component in the Eclipse version offers the same functionality and user interface as
the comparable component delivered on the RCP.

The biggest difference that the Eclipse version has over the RCP version is the Jump-to-Source
feature. Jump-to-Source, described in Jumping to Application Source, is enabled by close
coupling of the monitoring and profiling toolset with the development environment.With this
feature, you can not only see the name of a “problem” class or method displayed in the JRockit
Mission Control Client, but you can jump from the displayed name directly to that class or
method’s source, where you can evaluate the code to see what might be causing the problem.
Jump-to-Source is enabled for the Management Console, the JRockit Runtime Analyzer, and the
Memory Leak Detector.

Making the Oracle JRockit JVM Your JVM

1-2

While the JRockit Mission Control client can work with many different JVMs, it is highly
recommended that you use the Oracle JRockit JVM as your JVM when running the JRockit
Mission Control Client on the Eclipse platform. Not only will you avail yourself of the JRockit
JVM’s exceptional performance but, by using this JVM, JRockit Mission Control’s autodetect
feature is enabled, which makes it simple to connect JRockit Mission Control to your running
application.

To make the JRockit JVM the JVM on which you will run JRockit Mission Control

1. Go to your file system browser (for example, Windows Explorer).

Using JRockit Mission Control in the Eclipse IDE

Making the Oracle JRockit JVYM Your JVM

2. Locate your Eclipse installation folder (for example, C:\Program Files\Eclipse) and,
with a file editor other than Notepad, open the file eclipse. ini. It will look something like
the example in Listing 1-1.

Listing 1-1 eclipse.ini Example

-showsplash
org.eclipse.platform
--launcher . XXMaxPermSize

256M

-vmargs

-Dosgi .requiredJavaVersion=1.5
-Xms40m

-Xmx512m

3. Make the following changes to eclipse.ini:

— Remove all flags related to other JVMs than the JRockit JVM (for example,
--launcher . XXMaxPermSize 256M)

— On the third line down (after org.eclipse.platform), add the following:

-vim
<Full path to JRockit JDK’s javaw File>

The full path to the JRockit JDK's javaw file might look like this on Windows:
C:\Program Files\Java\jrockit-R27.4.0-jdk1.6.0_02\bin\javaw.exe
or like this on Linux and Solaris:
$HOME/Jrockit-R27.4.0-jdk1.6.0_02/bin/javaw

— Depending upon your particular JRockit JVM implementation and the applications
running on it, you can set any valid JRockit JVM command-line option. For example,
you might want to set a garbage collector that meets your system priorities by using the
-XgcPrio: option or increase (or decrease) the initial and maximum heap size by
changing the values for -Xms and -Xmx.

For more information on tuning the JVM, please refer to Profiling and Performance
Tuning in the Oracle JRockit JVM Diagnostics Guide.

Using JRockit Mission Control in the Eclipse IDE 1-3

Introduction

For more information on the available command-line options, please refer to the Oracle
JRockit JVM Command-Line Reference.

4. When you are done making the necessary changes to eclipse. ini, save and close the file.
Listing 1-2 shows an example of the eclipse. ini file updated to make the JRockit JVM the
active JVM.

Listing 1-2 Updated eclipse.ini file for a Windows implementation

-showsplash

org.eclipse.platform

-vm

C:\Program Files\Java\jrockit-R27.4_0-jdk1.6.0_02\bin\javaw.exe
-vmargs

-Dosgi -requiredJavaVersion=1.5

-Xms256m

-Xmx512m

-XgcPrio:pausetime

Selecting a Perspective

1-4

A “perspective” defines a set of views and their relative positions within the Eclipse window; in
other words, it is a template for graphically presenting different types of information in Eclipse.
For example, the Java perspective combines views that you would commonly use while editing
Java source files, while the Debug perspective contains the views that you would use while
debugging Java programs.

JRockit Mission Control plug-ins to Eclipse come with a predefined perspective called Mission
Control. This perspective shows the JRockit Mission Control user interface so that you can use
the tools that comprise JRockit Mission Control to profile applications as you develop them in
Eclipse.

This topic will show you how:
e To open the JRockit Mission Control Perspective
e To change perspective from JRockit Mission Control

e To reopen the Mission Control Perspective

Using JRockit Mission Control in the Eclipse IDE

Selecting a Perspective

To open the JRockit Mission Control Perspective

1. Intop right corner of the Eclipse window, click the Open Perspective icon (Figure 1-1).

Figure 1-1 Open Perspective Icon

Open Perspective ;
lcon (& 3svs |
[E] Task List 52 =0
g4 w7
Find: Foall P}
s LT R U

The Open Perspective context menu appears (Figure 1-2).

Figure 1-2 Open Perspective Context Menu

B |3}J Java
35 Debug
‘J Java
‘ J Jawva Browsing
2. Select Other...

The Open Perspective dialog box appears (Figure 1-3).

Using JRockit Mission Control in the Eclipse IDE 1-5

Introduction

Figure 1-3 Open Perspective Dialog Box

& Open Perspective @

%CVS Repositary Exploring
Debug

aJJava ({default)

g,JJava Browsing

Java Type Hierarchy
EMission Contral
3:’(Mission Control Latency
2 perfarce
() Planning
=Jr=Plug-in Development
r[\:,Resource
éDTeam Synchronizing

Cancel

3. Select Mission Control and click OK.

The Eclipse window reconfigures to show the Mission Control Perspective (Figure 1-4).

1-6 Using JRockit Mission Control in the Eclipse IDE

Figure 1-4 Mission Control Perspective

& Mission Contral - Eclipse SDK

Selecting a Perspective

Fin Edl Hvgibn Search Projecd Mun Window Hel

Q- o H

[l o =T

BHOW ag-
= Connectors
= & Decererrnd
e
=g

34 11.5) i\Eclpse 3. 3ecipseiphugnsiong. edips

S (NIR) 4552 (45520
YL (AT (AT

EF 45Dt 52 Meson Contr... | [Mssion Contral | 8] Perforcs 8 Jevs

To change perspective from JRockit Mission Control
You can change perspectives from JRockit Mission Control to another perspective by using one

of the methods described in Table 1-1:

Using JRockit Mission Control in the Eclipse IDE 1-1

Introduction

Table 1-1 Changing Perspectives
If... Do this...

You’ve never opened 1. Click the Open Perspective icon.
the perspective 2. Either:

— Select the perspective you want to open.

— If the perspective name does not appear on the context menu,
select Other... to open the Open Perspective dialog box and
select the perspective from there.

You’ve opened the If you’ve opened the perspective before, a button for that perspective will

perspective before appear in the top right corner of the Standard Mission Control Perspective,
near the Open Perspective icon. Simply click the button for the perspective
you want to open.

To reopen the Mission Control Perspective

If you have already opened the Mission Control Perspective for this project, a Mission Control
button will appear next to the Open Perspective button in the top right corner of the Eclipse
window (Figure 1-5).

Figure 1-5 Open Mission Control Perspective Button

@ Mission Contral | 21
e N

To reopen the perspective, simply click that button.

Jumping to Application Source

1-8

When running JRockit Mission Control plug-ins in an Eclipse IDE you can select a method or
class and jump from the JRockit Mission Control Client directly to the source code where that
method or class is declared. An editor will open up showing you the source file. Jump-to-Source
is available in JRA, the Management Console and the Memory Leak Detector:

This topic contains the following information:
e Using Jump-to-Source

e JRockit Mission Control Plug-ins with Jump-to-Source Enabled

Using JRockit Mission Control in the Eclipse IDE

Jumping to Application Source

Using Jump-to-Source

To jump from the JRockit Mission Control Client to source code

Note: The following procedure is generic. See JRockit Mission Control Plug-ins with
Jump-to-Source Enabled for a list of plug-ins where this feature is enabled.

1. On the table, tree or other GUI component listing classes or methods, right-click the class or
method for which you want to see the source code.

A context menu appears (Figure 1-6).

Figure 1-6 Jump to Source Command on the Context Menu

Method trace ;
= java.lang.Object.wait{long)
i : aas W orkerPool.sleepilong)

org. &
: 3
5 java. Run As

+ com.j EbUQ As * | Recordinglob.doTheJob(IF
Cpen Method 4 AttributeSubscription Threa
Operative Set P L pnd
com.g Color bars ¥ |.arrayhatificationBuffer . Fet)

LS I, Le gt 1.5 i icatorAdmi
_‘:\:ﬁ sun.ini Femol em\e'rm‘_g_rx?;_smmunlcqirh il

2. Select Open Method (or Open Type, if you are jumping from to a class call).

The associated source code will appear in a new editor.

JRockit Mission Control Plug-ins with Jump-to-Source
Enabled

Note: This feature only works with versions of the JRockit Mission Control Client integrated
into the Eclipse IDE.

Table 1-2 lists the JRockit Mission Control plug-ins where Jump-to-Source is enabled.

Using JRockit Mission Control in the Eclipse IDE 1-9

Introduction

Table 1-2 Plug-ins with Jump-to-Source Enabled

Plug-in Component

Management Console e Threads tab
— Stack traces for selected threads
e Exception Counter
— Profiling Information table

JRA ¢ Methods Tab
— The tables and both the trees.
¢« GCsTab

— The GC method call tree for a garbage collection.
¢ GC General Tab
— Garbage collection call trees.
¢ Objects Tab
— Both Start of Recording and End of recording
¢ Optimizations:
— Inthe table.
e Locks
— Java Locks
e Latency Log:
— Event Details
— Event Properties
— Stack Trace
e Latency Log
— Event Property Histogram,
» Latency Traces
— The trace trees.

Memory Leak Detector « Trend Table
« Application Stack Traces

1-10 Using JRockit Mission Control in the Eclipse IDE

