
WebLogic Server™

B E A W e b L o g i c S e r v e r 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA

Programming the WebLogic
J2EE Connector Architecture

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming the WebLogic J2EE Connector Architecture

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of the WebLogic J2EE Connector Architecture
WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality..................... 1-2

J2EE Connector Architecture Terminology .. 1-2

Overview of the BEA WebLogic J2EE Connector Architecture Implementation..
1-5

J2EE Connector Architecture Components... 1-6

System-level Contracts... 1-7

Common Client Interface (CCI)... 1-8

Packaging and Deployment.. 1-9

Black Box Example... 1-10

2. Security
Container-Managed and Application-Managed Sign-on................................... 2-2

Application-Managed Sign-on ... 2-2

Container-Managed Sign-on .. 2-3

Security Principal Map .. 2-3

Using Container-Managed Sign-On... 2-4

Default Resource Principal... 2-5

Password Converter Tool .. 2-5

3. Transaction Management
Supported Transaction Levels ... 3-2
Programming the WebLogic J2EE Connector Architecture iii

Specifying the Transaction Levels in the .rar Configuration............................. 3-3

Transaction Management Contract.. 3-3

4. Connection Management
Error Logging and Tracing Facility... 4-2

Configuring Connection Properties ... 4-2

BEA WebLogic Server Extended Connection Management Features 4-3

Minimizing the Run-Time Performance Cost Associated with Creating
ManagedConnections .. 4-3

Controlling Connection Pool Growth... 4-4

Controlling System Resource Usage .. 4-5

Detecting Connection Leaks... 4-5

Monitoring Connection Pools Using the Console ... 4-6

5. Configuration
Resource Adapter Developer Tools... 5-2

ANT Tasks to Create Skeleton Deployment Descriptors........................... 5-2

Resource Adapter Deployment Descriptor Editor...................................... 5-2

XML Editor .. 5-2

Configuring Resource Adapters .. 5-3

Overview of the Resource Adapter .. 5-3

Creating and Modifying Resource Adapters: Main Steps.......................... 5-3

Creating a New Resource Adapter (.rar) ... 5-4

Modifying an Existing Resource Adapter (.rar).................................. 5-5

Automatic Generation of the weblogic-ra.xml File 5-7

Configuring the ra-link-ref Element.. 5-8

Packaging Guidelines ... 5-9

Packaging Resource Adapters (.rar) ... 5-10

Configuring the ra.xml File ... 5-11

Configuring the weblogic-ra.xml File ... 5-11

Configuring the weblogic-ra.xml File .. 5-12

Configurable weblogic-ra.xml Entities .. 5-12

Configuring the Security Principal Map.. 5-13

Using the Password Converter Tool .. 5-15

How to Execute .. 5-15
iv Programming the WebLogic J2EE Connector Architecture

Security Hint .. 5-16

Configuring the Transaction Level Type .. 5-17

6. Writing J2EE Connector Architecture- Compliant Resource
Adapters

Connection Management... 6-2

Security Management.. 6-3

Transaction Management .. 6-3

Packaging and Deployment... 6-4

Restrictions... 6-4

Packaging ... 6-5

Deployment .. 6-5

7. Resource Adapter Deployment
Resource Adapter Deployment Overview... 7-2

Deployment Options .. 7-2

Deployment Descriptor .. 7-2

Resource Adapter Deployment Names .. 7-3

Using the Administration Console .. 7-3

Deploying Resource Adapters Using the Administration Console............ 7-3

Viewing Deployed Resource Adapters Using the Administration Console
7-4

Undeploying Deployed Resource Adapters Using the Administration
Console.. 7-4

Updating Deployed Resource Adapters Using the Administration Console ...
7-5

Using the Applications Directory.. 7-6

Using weblogic.deploy .. 7-8

Viewing Deployed Resource Adapters Using weblogic.deploy 7-8

Undeploying Deployed Resource Adapters Using weblogic.deploy 7-9

Updating Deployed Resource Adapters Using weblogic.deploy 7-9

Including a Resource Adapter in an Enterprise Application (.ear file) 7-10

8. Client Considerations
Common Client Interface (CCI).. 8-2

ConnectionFactory and Connection .. 8-2
Programming the WebLogic J2EE Connector Architecture v

Obtaining the ConnectionFactory (Client-JNDI Interaction) 8-3

Obtaining a Connection in a Managed Application 8-3

Obtaining a Connection in a Non-Managed Application 8-5

A. weblogic-ra.xml Deployment Descriptor Elements
Manually Editing XML Deployment Files... A-2

Basic Conventions ... A-2

DOCTYPE Header Information .. A-2

Document Type Definitions (DTDs) for Validation A-3

Using the Console Deployment Descriptor Editor to Edit Files A-4

weblogic-ra.xml DTD... A-6

weblogic-ra. xml Element Hierarchy Diagram... A-13

weblogic-ra.xml Element Descriptions .. A-15

B. Workarounds for Common BEA J2EE Connector Architecture
Exceptions

Problem Granting Connection Request to a ManagedConnectionFactory That
Does Not Exist in Connection Pool... B-2

What Causes This Exception? How Can it Be Resolved? B-2

Cause Number One: Client-modified ManagedConnectionFactory is Not
Hashed on the Server Such That It Can Be Found Again on Subsequent
Lookups.. B-2

Preventing the Manifestation of This Exception B-5

Cause Number Two: A Client is Attempting to Use a Resource Adapter from
a Remote JVM.. B-6

Related Behavior: Client-side Mutators Do Not Work as Expected......... B-6

ClassCastException .. B-7

Preventing the Manifestation of This Exception B-7

ResourceAllocationException .. B-8
vi Programming the WebLogic J2EE Connector Architecture

About This Document

This document introduces the WebLogic J2EE Connector Architecture and describes
how to configure and deploy resource adapters to WebLogic Server. The document is
organized as follows:

� Chapter 1, “Overview of the WebLogic J2EE Connector Architecture,” provides
an overview of the WebLogic J2EE Connector Architecture.

� Chapter 2, “Security,” discusses WebLogic J2EE Connector Architecture
security considerations.

� Chapter 3, “Transaction Management,” introduces the various types of
transaction levels supported by the WebLogic J2EE Connector Architecture and
explains how to specify the transaction levels in the resource adapter .rar
archive.

� Chapter 4, “Connection Management,” introduces you to various connection
management tasks.

� Chapter 5, “Configuration,” outlines the configuration tasks that you perform to
deploy resource adapters to WebLogic Server.

� Chapter 6, “Writing J2EE Connector Architecture- Compliant Resource
Adapters,” provides requirements for writing a resource adapter (.rar).

� Chapter 7, “Resource Adapter Deployment,” provides an overview of resource
adapters and explains how to configure and deploy them to WebLogic Server.

� Chapter 8, “Client Considerations,” discusses WebLogic J2EE Connector
Architecture client considerations.

� Appendix A, “weblogic-ra.xml Deployment Descriptor Elements,” provides the
weblogic-ra.xml DTD and deployment descriptor elements.
Programming the WebLogic J2EE Connector Architecture vii

� Appendix B, “Workarounds for Common BEA J2EE Connector Architecture
Exceptions,” provides troubleshooting information for two common connector
exceptions.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming the WebLogic J2EE Connector Architecture

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. In
particular, refer to the following:

� Javadoc for the BEA WebLogic J2EE Connector Architecture (See the product
distribution CD.)

� Weblogic-specific Resource Adapter Document Type Definition (See
Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”)

� BEA WebLogic Application Integration (See
http://edocs.bea.com/wlintegration/v2_0/applicationintegration/devel/index.htm.)
This document describes how to build a resource adapter.

Also refer to the following documentation from Sun Microsystems:

� J2EE Connector Architecture—http://java.sun.com/j2ee/connector/index.html

� J2EE Connector Specification, Version 1.0, Proposed Final Draft 2—
http://java.sun.com/j2ee/download.html#connectorspec

� J2EE Platform Specification, Version 1.3, Proposed Final Draft 3—
http://java.sun.com/j2ee

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
Programming the WebLogic J2EE Connector Architecture ix

mailto:docsupport@bea.com

WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float
x Programming the WebLogic J2EE Connector Architecture

http://www.bea.com

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming the WebLogic J2EE Connector Architecture xi

xii Programming the WebLogic J2EE Connector Architecture

CHAPTER
1 Overview of the
WebLogic J2EE
Connector Architecture

The following sections provide an overview of the BEA WebLogic J2EE Connector
Architecture:

� WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality

� Overview of the BEA WebLogic J2EE Connector Architecture Implementation

� J2EE Connector Architecture Components

� Black Box Example
Programming the WebLogic J2EE Connector Architecture 1-1

1 Overview of the WebLogic J2EE Connector Architecture
WebLogic Server 6.1 with J2EE 1.2 and J2EE
1.3 Functionality

This document illustrates functionality defined in a non-final specification, J2EE 1.3.
It requires you to run WebLogic Server with J2EE 1.3 features enabled. If you attempt
to deploy the WebLogic Server Connector Architecture with the WebLogic Server 6.1
distribution that has J2EE 1.2 features only, the deployment will fail.

Both the J2EE 1.2-certified distribution of WebLogic Server 6.1 with J2EE 1.2
features only and the WebLogic Server 6.1 distribution with J2EE 1.3 features enabled
are available at http://commerce.bea.com/downloads/products.jsp. They are also
available on the Product CD.

J2EE Connector Architecture Terminology

Key terms and concepts that you will encounter throughout the WebLogic J2EE
Connector Architecture documentation include the following:

� Common client interface (CCI)—defines a standard client API for application
components and enables application components and Enterprise Application
Integration (EAI) frameworks to drive interactions across heterogeneous EISes
using a common client API. The J2EE Connector Architecture defines a CCI for
EIS access.

� Container—part of an application server—such as WebLogic Server—that
provides deployment and run-time support for application components. A
container allows you to monitor and manage supported components as well as
the service(s) that monitor and manage the components. Containers can be one
of the following:

� Connector containers that host resource adapters

� Web containers that host JSP, servlets, and static HTML pages

� EJB containers that host EJB components
1-2 Programming the WebLogic J2EE Connector Architecture

J2EE Connector Architecture Terminology
� Application client containers that host standalone application clients

For more details on different types of standard containers, refer to Enterprise
JavaBeans (EJBs), Java Server Pages (JSPs), and Servlets specifications.

� Enterprise Information System (EIS) resource—provides EIS-specific
functionality to its clients. Examples are:

� Record or set of records in a database system

� Business object in an Enterprise Resource Planning (ERP) System

� Transaction program in a transaction processing system

� Enterprise Information System (EIS)—provides the information infrastructure
for an enterprise. An EIS offers a set of services to its clients. These services are
exposed to clients as local and/or remote interfaces. Examples of an EIS include:

� ERP system

� Mainframe transaction processing system

� Legacy database system

� J2EE Connector—See Resource Adapter.

� J2EE Connector Architecture—an architecture for integration of J2EE-compliant
application servers with enterprise information systems (EISes). There are two
parts to this architecture: an EIS vendor-provided resource adapter and an
application server—such as WebLogic Server— to which the resource adapter
plugs in. This architecture defines a set of contracts—such as transactions,
security, and connection management—that a resource adapter has to support to
plug in to an application server. The J2EE Connector Architecture also defines a
Common Client Interface (CCI) for EIS access. The CCI defines a client API for
interacting with heterogeneous EISes.

� Managed environment—defines an operational environment for a J2EE-based,
multi-tier, Web-enabled application that accesses EISes. The application consists
of one or more application components—EJBs, JSPs, servlets—which are
deployed on containers. These containers can be one of the following:

� Web containers that host JSP, servlets, and static HTML pages

� EJB containers that host EJB components

� Application client containers that host standalone application clients
Programming the WebLogic J2EE Connector Architecture 1-3

1 Overview of the WebLogic J2EE Connector Architecture
� Non-managed environment—defines an operational environment for a two-tier
application. An application client directly uses a resource adapter to access the
EIS; the EIS defines the second tier for a two-tier application.

� .rar file—resource adapter archive. A compressed (zip) file used to load
classes and other files required to run a resource adapter.

� ra.xml file—describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

� Resource Adapter—a system-level software driver used by an application server
such as WebLogic Server to connect to an EIS. A resource adapter serves as the
“J2EE connector.” The WebLogic J2EE Connector Architecture supports
resource adapters developed by Enterprise Information Systems (EISes) vendors
and third-party application developers that can be deployed in any application
server supporting the Sun Microsystems J2EE Platform Specification, Version
1.3. Resource adapters contain the Java, and if necessary, the native components
required to interact with the EIS.

� Resource manager—part of an EIS that manages a set of shared EIS resources.
Examples of resource managers are a database system, a mainframe TP system,
and an ERP system. A client requests access to a resource manager to use its
managed resources. A transactional resource manager can participate in
transactions that are externally controlled and coordinated by a transaction
manager. In the context of the J2EE Connector Architecture, clients of a
resource manager can include middle-tier application servers and client-tier
applications. A resource manager is typically a different address space or on a
different machine from the client that accesses it.

� Service provider interface (SPI)—contains the objects that provide and manage
connectivity to the EIS, establish transaction demarcation, and provide a
framework for event listening and request transmission. All J2EE Connector
Architecture-compliant resource adapters must provide an implementation for
these interfaces in the javax.resource.spi package.

� System contract—a mechanism by which connection requests are passed
between entities. To achieve a standard system-level pluggability between
application servers such as WebLogic Server and EISes, the Connector
Architecture defines a standard set of system-level contracts between an
application server and an EIS. The EIS side of these system-level contracts is
implemented in a resource adapter.
1-4 Programming the WebLogic J2EE Connector Architecture

Overview of the BEA WebLogic J2EE Connector Architecture Implementation
� weblogic-ra.xml file—adds additional WebLogic Server-specific deployment
information to the ra.xml file.

Overview of the BEA WebLogic J2EE
Connector Architecture Implementation

BEA WebLogic Server continues to build upon the implementation of the Sun
Microsystems J2EE Platform Specification, Version 1.3. The J2EE Connector
Architecture adds simplified Enterprise Information System (EIS) integration to the
J2EE platform. The goal is to leverage the strengths of the J2EE platform—including
component models, transaction and security infrastructures—to address the challenges
of EIS integration.

The J2EE Connector Architecture provides a Java solution to the problem of
connectivity between the multitude of application servers and EISes. By using the
Connector Architecture, it is no longer necessary for EIS vendors to customize their
product for each application server. By conforming to the J2EE Connector
Architecture, BEA WebLogic Server does not require added custom code in order to
extend its support connectivity to a new EIS.

The Connector Architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. This resource adapter plugs into WebLogic Server and provides the
underlying infrastructure for the integration between an EIS and WebLogic Server.

By supporting the Connector Architecture, BEA WebLogic Server is assured of
connectivity to multiple EISes. In turn, EIS vendors must provide only one standard
Connector Architecture-compliant resource adapter that has the capability to plug into
BEA WebLogic Server.
Programming the WebLogic J2EE Connector Architecture 1-5

1 Overview of the WebLogic J2EE Connector Architecture
J2EE Connector Architecture Components

The J2EE Connector Architecture is implemented in an application server such as
WebLogic Server and an EIS-specific resource adapter. A resource adapter is a system
library specific to an EIS and provides connectivity to the EIS. A resource adapter is
analogous to a JDBC driver. The interface between a resource adapter and the EIS is
specific to the underlying EIS; it can be a native interface.

The J2EE Connector Architecture has three main components:

� System-level Contracts—between the resource adapter and the application server
(WebLogic Server)

� Common Client Interface (CCI)—provides a client API for Java applications and
development tools to access the resource adapter

� Packaging and Deployment Interfaces—provides ability for various resource
adapters to plug into J2EE applications in a modular manner
1-6 Programming the WebLogic J2EE Connector Architecture

J2EE Connector Architecture Components
The following diagram illustrates the J2EE Connector Architecture:

Figure 1-1 J2EE Connector Architecture

A resource adapter serves as the “J2EE connector.” The WebLogic J2EE Connector
Architecture supports resource adapters developed by Enterprise Information Systems
(EISes) vendors and third-party application developers that can be deployed in any
application server supporting the Sun Microsystems J2EE Platform Specification,
Version 1.3. Resource adapters contain the Java, and if necessary, the native
components required to interact with the EIS.

System-level Contracts

The J2EE Connector Architecture specification defines a set of system-level contracts
between the J2EE-compliant application server (WebLogic Server) and an
EIS-specific resource adapter. WebLogic Server, in compliance with this
specification, has implemented a set of defined standard contracts for:
Programming the WebLogic J2EE Connector Architecture 1-7

1 Overview of the WebLogic J2EE Connector Architecture
� Connection management—a contract that gives an application server pool
connections to underlying EISes. It also allows application components to
connect to an EIS. This results in a scalable application environment that
supports a large number of clients requiring access to EISes.

Note: For more information on connection management, refer to

� Transaction management—a contract between the transaction manager and an
EIS supporting transaction access to EIS resource managers. This contract
allows an application server to use a transaction manager to manage transactions
across multiple resource managers.

Note: For more information on transaction management, refer to Chapter 3,
“Transaction Management.”

� Security management—a contract that provides secure access to an EIS and
provides support for a secure application environment. This reduces threats to
the EIS and protects information resources that the EIS manages.

Note: For more information on security management, refer to Chapter 2, “Security.”

Common Client Interface (CCI)

The Common Client Interface (CCI) defines a standard client API for application
components. The CCI enables application components and Enterprise Application
Integration (EAI) frameworks to drive interactions across heterogeneous EISes using
a common client API.

The target users of the CCI are enterprise tool vendors and EAI vendors. Application
components themselves may also write to the API, but the CCI is a low-level API. The
specification recommends that the CCI be the basis for richer functionality provided
by the tool vendors, rather than being an application-level programming interface used
by most application developers.

Further, the CCI defines a remote function-call interface that focuses on executing
functions on an EIS and retrieving the results. The CCI is independent of a specific
EIS; for example: data types specific to an EIS. However, the CCI is capable of being
driven by EIS-specific metadata from a repository.
1-8 Programming the WebLogic J2EE Connector Architecture

J2EE Connector Architecture Components
The CCI enables WebLogic Server applications to create and manage connections to
an EIS, execute an interaction, and manage data records as input, output or return
values. The CCI is designed to leverage the JavaBeans architecture and Java Collection
framework.

The 1.0 version of the J2EE Connector Architecture recommends that a resource
adapter support CCI as its client API, while it requires that the resource adapter
implement the system contracts. A resource adapter may choose to have a client API
different from CCI, such as the client API based on the Java Database Connectivity
(JDBC) API.

Note: For more information relating to the Common Client Interface, refer to
Chapter 8, “Client Considerations.”

Packaging and Deployment

The J2EE Connector Architecture provides packaging and deployment interfaces, so
that various resources adapters can easily plug into compliant J2EE application servers
such as WebLogic Server in a modular manner.

Figure 1-2 Packaging and Deployment
Programming the WebLogic J2EE Connector Architecture 1-9

1 Overview of the WebLogic J2EE Connector Architecture
A resource adapter provider develops a set of Java interfaces and classes as part of its
implementation of a resource adapter. These Java classes implement J2EE Connector
Architecture-specified contracts and EIS-specific functionality provided by the
resource adapter. The development of a resource adapter can also require use of native
libraries specific to the underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries,
help files, documentation, and other resources) with a deployment descriptor to create
a Resource Adapter Module. A deployment descriptor defines the contract between a
resource adapter provider and a deployer for the deployment of a resource adapter.

You can deploy resource adapter module as a shared, stand-alone module or packaged
as part of an application. During deployment, you install a resource adapter module on
an application server such as WebLogic Server and then configure it into the target
operational environment. The configuration of a resource adapter is based on the
properties defined in the deployment descriptor as part of the resource adapter module.

Note: For more information on packaging and deployment, refer to Chapter 6,
“Writing J2EE Connector Architecture- Compliant Resource Adapters,”
Chapter 5, “Configuration,” and Chapter 7, “Resource Adapter Deployment.”

Black Box Example

A simple code example for a resource adapter is provided with this release. This code
example uses a Black Box resource adapter that mimics JDBC calls. An EJB is used
to model the data in the Black Box, and a Java client is used to query the Black Box
resource adapter and display the output. The example uses the all-Java Cloudscape
DBMS, which is provided in an evaluation version with WebLogic Server. For more
information, refer to the WebLogic J2EE Connector Architecture Example Javadoc
provided with the product download.
1-10 Programming the WebLogic J2EE Connector Architecture

CHAPTER
2 Security

The following sections discuss WebLogic J2EE Connector Architecture security:

� Container-Managed and Application-Managed Sign-on

� Security Principal Map

� Password Converter Tool
Programming the WebLogic J2EE Connector Architecture 2-1

2 Security
Container-Managed and
Application-Managed Sign-on

As specified in the J2EE Connector Specification, Version 1.0, Proposed Final Draft
2, the WebLogic J2EE Connector Architecture implementation supports both
container-managed and application-managed sign-on.

At runtime, the Weblogic J2EE Connector Architecture implementation determines—
based upon the specified information in the invoking client component’s deployment
descriptor—the chosen sign-on mechanism. If the Weblogic Server J2EE Connector
Architecture implementation is unable to determine what sign-on mechanism is being
requested by the client component—typically due to an improper JNDI lookup of the
resource adapter Connection Factory—the Connector Architecture attempts
container-managed sign-on.

Note: Note that even in this case, if the client component has specified explicit
security information, this information is also presented on the call to obtain the
connection.

For related information, see “Obtaining the ConnectionFactory (Client-JNDI
Interaction)” in Chapter 8, “Client Considerations.”

Application-Managed Sign-on

With application-managed sign-on, the client component provides the necessary
security information (typically a username and password) when making the call to
obtain a connection to an Enterprise Information System (EIS). In this scenario, the
application server provides no additional security processing other than to pass this
information along on the request for the connection. The provided resource adapter
uses the client component provided security information to perform the EIS sign-on in
a resource adapter implementation specific manner.
2-2 Programming the WebLogic J2EE Connector Architecture

Security Principal Map
Container-Managed Sign-on

With container-managed sign-on, the client component does not present any security
information, and the container must determine the necessary sign-on information and
provide this information to the resource adapter when making a call to request a
connection. In all container-managed sign-on scenarios, the container must determine
an appropriate Resource Principal and provide this Resource Principal information to
the resource adapter in the form of a Java Authentication and Authorization Service
(JAAS) Subject.

Security Principal Map

The “EIS Sign-on” section of the J2EE Connector Specification, Version 1.0,
Proposed Final Draft 2 (http://java.sun.com/j2ee/download.html#connectorspec)
identifies a number of possible options for defining a Resource Principal on whose
behalf the sign-on is being performed. The Weblogic Server implementation
implements the Security Principal Map option identified in the specification.

Under this option, a resource principal is determined by mapping from the identity of
the initiating/caller principal for the invoking component. The resultant resource
principal does not inherit the identity or security attributes of the principal that it is
mapped from, but instead gets its identity and security attributes (password) based
upon the defined mapping.

Therefore, in order to enable and use container-managed sign-on, Weblogic Server
must provide a mechanism to specify the initiating-principal to resource-
principal association. WebLogic Server does this through a Security Principal Map
that can be defined for each deployed resource adapter.

If container-managed sign-on is requested by the client component and no Security
Principal Map is configured for the deployed resource adapter, an attempt is made to
obtain the connection, but the provided JAAS Subject will be NULL. Support for this
scenario will be based upon the resource adapter implementation.

A scenario in which omitting configuration of a Security Principal Map might be
considered valid is the case in which a resource adapter internally obtains all of its EIS
connections with a hard-coded and pre-configured set of security information, and
Programming the WebLogic J2EE Connector Architecture 2-3

2 Security
therefore does not depend on the security information passed to it on requests for new
connections. (In a sense, this is a third scenario, outside of application-managed
sign-on and container-managed sign-on.)

While the defined connection management system contracts define how security
information is exchanged between WebLogic Server and the provided resource
adapter, the determination of whether to use container-managed sign-on or
application-managed sign-on is based on deployment information defined for the
client application that is requesting a connection. For more information on how a
connection management system contract is specified, see Chapter 8, “Client
Considerations.”

For more information on how client components specify the sign-on mechanism, see
the “Application Programming Model” section of the “Connection Management”
chapter in the J2EE Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

For more information on the J2EE Connector Architecture application security model,
see the “Application Security Model” of the same document.

Using Container-Managed Sign-On

To use container-managed sign-on, WebLogic Server must identify a resource
principal and then request the connection on behalf of the resource principal. In order
to make this identification, WebLogic Server looks for a Security Principal Mapping
specified with the security-principal-map element in the weblogic-ra.xml
deployment descriptor file.

A security-principal-map element defines the relationship of
initiating-principal to a resource-principal.

Each security-principal-map element provides a mechanism to define
appropriate resource principal values for resource adapter and EIS sign-on processing.
The security-principal-map elements allow you to specify a defined set of
initiating principals and the corresponding resource principal's username and password
to be used when allocating managed connections and connection handles.
2-4 Programming the WebLogic J2EE Connector Architecture

Password Converter Tool
Default Resource Principal

A default resource principal can be defined for the connection factory in the
security-principal-map element. If you specify an initiating-principal
value of '*' and a corresponding resource-principal value, the defined
resource-principal is utilized whenever the current identity is not matched
elsewhere in the map.

This is an optional element, however. You must specify it in some form if
container-managed sign-on is supported by the resource adapter and used by any
client.

In addition, the deployment-time population of the Connection Pool with Managed
Connections is attempted using the defined 'default' resource principal if one is
specified.

For instructions on configuring the J2EE Connector Architecture
security-principal-map and associating it with the deployed .rar (resource
adapter), refer to “Configuring the Security Principal Map” in Chapter 5,
“Configuration.”

Password Converter Tool

Because BEA understands the importance of protecting security passwords, it provides
a converter tool that can encrypt all passwords present in the weblogic-ra.xml file.

For more information, refer to “Configuring the Security Principal Map,” in Chapter 5,
“Configuration.”
Programming the WebLogic J2EE Connector Architecture 2-5

2 Security
2-6 Programming the WebLogic J2EE Connector Architecture

CHAPTER
3 Transaction
Management

The following sections describe the various types of transaction levels supported by
the WebLogic J2EE Connector Architecture and explain how to specify the transaction
levels in the resource adapter .rar archive.

� Supported Transaction Levels

� Specifying the Transaction Levels in the .rar Configuration

� Transaction Management Contract
Programming the WebLogic J2EE Connector Architecture 3-1

3 Transaction Management
Supported Transaction Levels

Transactional access to EISes is an important requirement for business applications.
The J2EE Connector Architecture supports the concept of transactions—a number of
operations that must be committed together or not at all for the data to remain
consistent and to maintain data integrity.

The BEA WebLogic Server J2EE Connector Architecture implementation utilizes
WebLogic Server’s robust Transaction Manager implementation and supports
resource adapters having the following transaction support levels (as described in the
J2EE Connector Specification, Version 1.0, Proposed Final Draft 2):

� XA Transaction support—allows a transaction to be managed by a transaction
manager external to a resource adapter (and therefore external to an EIS). A
resource adapter defines the type of transaction support by specifying the
transaction-support element in the ra.xml file; a resource adapter can only
support one type. When an application component demarcates an EIS connection
request as part of a transaction, the application server is responsible for enlisting
the XA resource with the transaction manager. When the application component
closes that connection, the application server de-lists the XA resource from the
transaction manager and cleans up the EIS connection once the transaction has
completed.

� Local Transaction support—allows an application server to manage resources,
which are local to the resource adapter. Unlike XA transaction, it cannot
participate in a two-phase commit protocol (2PC). A resource adapter defines the
type of transaction support by specifying the transaction-support element in the
resource adapter ra.xml file; a resource adapter can only support one type.
When an application component requests for an EIS connection, the application
server starts a local transaction based on the current transaction context. When
the application component closes that connection, the application server does a
commit on the local transaction and also cleans up the EIS connection once the
transaction has completed.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition:
http://java.sun.com/dtd/connector_1_0.dtd
3-2 Programming the WebLogic J2EE Connector Architecture

Specifying the Transaction Levels in the .rar Configuration
� No Transaction support—in general, if a resource adapter does not support XA
or Local Transaction support (and therefore “supports” No Transaction), it
means that if an application component needs to use that resource adapter, the
application component must not involve any connections to the EIS, represented
by that resource adapter, in a transaction. However, if an application component
needs to involve EIS connections in a transaction, the application component
must interact with a resource adapter that supports XA or Local Transactions.

For more information on supported transaction levels, see the “Transaction
Management” chapter in the J2EE Connector Specification, Version 1.0, Proposed
Final Draft 2 (http://java.sun.com/j2ee/download.html#connectorspec).

Specifying the Transaction Levels in the .rar
Configuration

The resource adapter specifies which kind of transaction it supports in the ra.xml
deployment descriptor file provided by Sun Microsystems. For instructions on
specifying the transaction level type in the .rar, refer to “Configuring the Transaction
Level Type” in Chapter 5, “Configuration.”

Note: Refer to the following Sun Microsystems documentation for information on
the ra.xml document type definition:
http://java.sun.com/dtd/connector_1_0.dtd

Transaction Management Contract

In many cases, a transaction (termed local transaction) is limited in scope to a single
EIS system, and the EIS resource manager itself manages such a transaction. While an
XA transaction (or global transaction) can span multiple resource managers. This form
of transaction requires transaction coordination by an external transaction manager,
typically bundled with an application server. A transaction manager uses a two-phase
Programming the WebLogic J2EE Connector Architecture 3-3

3 Transaction Management
commit protocol (2PC) to manage a transaction that spans multiple resource managers
(EISes). It uses one-phase commit optimization if only one resource manager is
participating in an XA transaction.

The J2EE Connector Architecture defines a transaction management contract between
an application server and a resource adapter (and its underlying resource manager).
The transaction management contract extends the connection management contract
and provides support for management of both local and XA transactions. The
transaction management contract has two parts, depending on the type of transaction.

� JTA XAResource based contract between a transaction manager and an EIS
resource manager

� Local transaction management contract

These contracts enable an application server such as WebLogic Server to provide the
infrastructure and runtime environment for transaction management. Application
components rely on this transaction infrastructure to support the component-level
transaction model.

Because EIS implementations are so varied, the transactional support must be very
flexible. The J2EE Connector Architecture imposes no requirements on the EIS for
transaction management. Depending on the implementation of transactions within the
EIS, a resource adapter may provide:

� No transaction support at all—this is typical of legacy applications and many
back-end systems.

� Support for only local transactions

� Support for both local and XA transactions

WebLogic Server supports all three levels of transactions, ensuring its support of EISes
at different transaction levels.
3-4 Programming the WebLogic J2EE Connector Architecture

CHAPTER
4 Connection
Management

The following sections introduce you to the various connection management tasks
relating to the BEA WebLogic J2EE Connection Management Architecture.

� Error Logging and Tracing Facility

� Configuring Connection Properties

� BEA WebLogic Server Extended Connection Management Features

� Monitoring Connection Pools Using the Console
Programming the WebLogic J2EE Connector Architecture 4-1

4 Connection Management
Error Logging and Tracing Facility

As stated in the J2EE Connector Specification, Version 1.0, Proposed Final Draft 2,
one of the requirements for application servers is use of
ManagedConnectionFactory.set/getLogWriter to provide an error logging
and tracing facility for the resource adapter.

Two elements are provided in the weblogic-ra.xml descriptor file to configure this
feature in BEA WebLogic Server:

� The logging-enabled element indicates whether logging is turned on or off.
The default value for this element is false.

� The log-filename element specifies the filename in which to write the logging
information.

For more information, see Appendix A, “weblogic-ra.xml Deployment Descriptor
Elements.”

Configuring Connection Properties

The ra.xml deployment descriptor file contains a config-property element to
declare a single configuration setting for a ManagedConnectionFactory instance.
The resource adapter provider typically sets these configuration properties. However,
if a configuration property is not set, the person deploying the resource adapter is
responsible for providing a value for the property.

WebLogic Server allows you to set configuration properties through the use of the
map-config-property element in the weblogic-ra.xml deployment descriptor
file. To configure a set of configuration properties for a resource adapter, you specify
a map-config-property-name and map-config-property-value pair for each
configuration property to declare.

You can also use the map-config-property element to override the values
specified in the ra.xml deployment descriptor file. At startup, WebLogic Server
compares the values of map-config-property against the values of
4-2 Programming the WebLogic J2EE Connector Architecture

BEA WebLogic Server Extended Connection Management Features
config-property in the ra.xml file. If the configuration property names match,
WebLogic Server uses the map-config-property-value for the corresponding
configuration property name.

BEA WebLogic Server Extended Connection
Management Features

In addition to the connection management requirements stated in the J2EE Connector
Specification, Version 1.0, Proposed Final Draft 2, BEA WebLogic Server provides
optional settings and services to configure and automatically maintain the size of the
connection pool.

Minimizing the Run-Time Performance Cost Associated
with Creating ManagedConnections

Creating ManagedConnections can be expensive depending on the complexity of the
Enterprise Information System (EIS) that the ManagedConnection is representing. As
a result, you may decide to populate the connection pool with an initial number of
ManagedConnections upon startup of WebLogic Server and therefore avoid creating
them at run time. You can configure this setting using the initial-capacity element in
the weblogic-ra.xml descriptor file. The default value for this element is 1
ManagedConnection.

As stated in the J2EE Connector Specification, Version 1.0, Proposed Final Draft 2,
when an application component requests a connection to an EIS through the resource
adapter, WebLogic Server first tries to match the type of connection being requested
with any existing and available ManagedConnection in the connection pool. However,
if a match is not found, a new ManagedConnection may be created to satisfy the
connection request.

WebLogic Server provides a setting to allow a number of additional
ManagedConnections to be created automatically when a match is not found. This
feature provides you with the flexibility to control connection pool growth over time
Programming the WebLogic J2EE Connector Architecture 4-3

4 Connection Management
and the performance hit on the server each time this growth occurs. You can configure
this setting using the capacity-increment element in the weblogic-ra.xml
descriptor file. The default value is 1 ManagedConnection.

Since no initiating security principal or request context information is known at
WebLogic Server startup, the initial ManagedConnections, configured with
initial-capacity, are created with a default security context containing a default
subject and a client request information of null. When additional
ManagedConnections—configured with capacity-increment—are created, the
first ManagedConnection is created with the known initiating principal and client
request information of the connection request. The remaining ManagedConnections—
up to the capacity-increment limit—are created using the same default security
context used when creating the initial ManagedConnections.

For more information about configuring the default Resource Principal, refer to
Chapter 2, “Security.”

Controlling Connection Pool Growth

As more ManagedConnections are created over time, the amount of system
resources—such as memory and disk space—that each ManagedConnection consumes
increases. Depending on the Enterprise Information System (EIS), this amount may
affect the performance of the overall system. To control the effects of
ManagedConnections on system resources, WebLogic Server allows you to configure
a setting for the allowed maximum number of allocated ManagedConnections.

You configure this setting using the maximum-capacity element in the
weblogic-ra.xml descriptor file. If a new ManagedConnection (or more than one
ManagedConnection in the case of capacity-increment being greater than one)
needs to be created during a connection request, WebLogic Server ensures that no
more than the maximum number of allowed ManagedConnections are created. If the
maximum number is reached, WebLogic Server attempts to recycle a
ManagedConnection from the connection pool. However, if there are no connections
to recycle, a warning is logged indicating that the attempt to recycle failed and that the
connection request can only be granted for the amount of connections up to the allowed
maximum amount. The default value for maximum-capacity is 10
ManagedConnections.
4-4 Programming the WebLogic J2EE Connector Architecture

BEA WebLogic Server Extended Connection Management Features
Controlling System Resource Usage

Although setting the maximum number of ManagedConnections prevents the server
from becoming overloaded by more allocated ManagedConnections than it can handle,
it does not control the efficient amount of system resources needed at any given time.
WebLogic Server provides a service that monitors the activity of
ManagedConnections in the connection pool during the deployment of a resource
adapter. If the usage decreases and remains at this level over a period of time, the size
of the connection pool is reduced to an efficient amount necessary to adequately satisfy
ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this
service, you can set the shrinking-enabled element in the weblogic-ra.xml
descriptor file to false. Use the shrink-period-minutes element in the
weblogic-ra.xml descriptor file to set the frequency with which WebLogic Server
calculates the need for connection pool size reduction, and if reduction is needed,
selectively removes unused ManagedConnections from the pool. The default value of
this element is 15 minutes.

Detecting Connection Leaks

As stated in the J2EE Connector Specification, Version 1.0, Proposed Final Draft 2,
once the application component has completed its use of the EIS connection, it sends
a close connection request. At this point, WebLogic Server is responsible for any
necessary cleanup and making the connection available for a future connection
request. However, if the application component fails to close the connection, the
connection pool can exhausted of its available connections, and future connection
requests can therefore fail.

WebLogic Server provides a service to prevent the above scenario by automatically
closing a ManagedConnection that has exhausted its usage time. You can set the usage
time using the connection-duration-time element in the weblogic-ra.xml
descriptor file. You can also use the connection-cleanup-frequency element to
set the frequency with which WebLogic Server calculates the usage time of the
currently used ManagedConnections and closes those that have exceeded their usage
time.
Programming the WebLogic J2EE Connector Architecture 4-5

4 Connection Management
To turn off the connection leak detection service, set the
connection-cleanup-frequency element to -1. By default, this service is turned
off. The unit used in these element values is seconds.

Monitoring Connection Pools Using the
Console

To monitor all connection pool run times for a connector using the BEA WebLogic
Server Administrative Console, proceed as follows:

1. Select a connector to monitor in the left pane of the Console.

2. Right-click with your mouse, and select Monitor all Connector Connection Pool
Runtimes from the pop-up menu.

Connection pool run-time information is provided in the right pane for the
selected connector.
4-6 Programming the WebLogic J2EE Connector Architecture

CHAPTER
5 Configuration

The following sections outline configuration requirements for the WebLogic J2EE
Connector Architecture implementation:

� Resource Adapter Developer Tools

� Resource Adapter Developer Tools

� Configuring the ra.xml File

� Configuring the weblogic-ra.xml File

� Configuring the Security Principal Map

� Using the Password Converter Tool

� Configuring the Transaction Level Type
Programming the WebLogic J2EE Connector Architecture 5-1

5 Configuration
Resource Adapter Developer Tools

BEA provides several tools you can use to help you create and configure resource
adapters. These tools are described in this section.

ANT Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic ANT utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
ANT task looks at a directory containing a resource adapter creates deployment
descriptors based on the files it finds in the resource adapter. Because the ANT utility
does not have information about all of the desired configurations and mappings for
your resource adapter, the skeleton deployment descriptors the utility creates are
incomplete. After the utility creates the skeleton deployment descriptors, you can use
a text editor, an XML editor, or the Administration Console to edit the deployment
descriptors and complete the configuration of your resource adapter.

For more information on using ANT utilities to create deployment descriptors, see
Packaging Resource Adapters.

Resource Adapter Deployment Descriptor Editor

The WebLogic Server Administration Console has an integrated deployment
descriptor editor. You must create at least a skeleton ra.xml deployment descriptor
before using this integrated editor. For more information, see Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”

XML Editor

BEA now provides a simple, user-friendly tool from Ensemble for creating and editing
XML files. It can validate XML code according to a specified DTD or XML Schema.
The XML editor can be used on Windows or Solaris machines and is downloadable
from BEA dev2dev at http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp.
5-2 Programming the WebLogic J2EE Connector Architecture

http://e-docs.bea.com/wls/docs61/programming/packaging.html#1054540
http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp

Configuring Resource Adapters
Configuring Resource Adapters

This section introduces and discusses how to configure the resource adapter for
deployment to WebLogic Server.

Overview of the Resource Adapter

The J2EE Connector Architecture enables both Enterprise Information System (EIS)
vendors and third-party application developers to develop resource adapters that can
be deployed in any application server supporting the Sun Microsystems J2EE Platform
Specification, Version 1.3.

The resource adapter is the central piece of the WebLogic J2EE Connector
Architecture; it serves as the J2EE connector between the client component and the
EIS. When a resource adapter is deployed in the WebLogic Server environment, it
enables the development of robust J2EE Platform applications that can access remote
EIS systems. Resource adapters contain the Java components, and if necessary, the
native components required to interact with the EIS.

For more information on creating resource adapters, see the Sun Microsystems J2EE
Connector Architecture page and the J2EE Connector Specification, Version 1.0,
Proposed Final Draft 2. These can be found on the Sun Microsystems Web site at the
following respective URLs:

http://java.sun.com/j2ee/connector/

http://java.sun.com/j2ee/download.html#connectorspec

Creating and Modifying Resource Adapters: Main Steps

Creating a resource adapter requires creating the classes for the particular resource
adapter (ConnectionFactory, Connection, and so on) and the connector-specific
deployment descriptors, and then packaging everything up into an jar file to be
deployed to WebLogic Server.
Programming the WebLogic J2EE Connector Architecture 5-3

5 Configuration
Creating a New Resource Adapter (.rar)

The following are the main steps for creating a resource adapter (.rar):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml
file. For example:

� <managedconnectionfactory-class>com.sun.connector.blackbox.Loc
alTxManagedConnectionFactory</managedconnectionfactory-class
>

� <connectionfactory-interface>javax.sql.DataSource</connectionf
actory-interface>

� <connectionfactory-impl-class>com.sun.connector.blackbox.JdbcD
ataSource</connectionfactory-impl-class>

� <connection-interface>java.sql.Connection</connection-interfac
e>

� <connection-impl-class>com.sun.connector.blackbox.JdbcConnecti
on</connection-impl-class>

2. Compile the Java code for the interfaces and implementation into class files.

For detailed information about compiling, refer to “Preparing to Compile” in
“Developing WebLogic Server Applications.”

3. Package the Java classes into a Java archive (.jar) file.

4. Create the resource adapter-specific deployment descriptors:

� ra.xml describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

� weblogic-ra.xml adds additional WebLogic Server-specific deployment
information.

For more information, refer to “Configuring the ra.xml File” and “Configuring
the weblogic-ra.xml File” on page 5-11.

Note: If your resource adapter .rar does not contain a weblogic-ra.xml file,
WebLogic Server automatically generates this file for you. For more
information, see “Automatic Generation of the weblogic-ra.xml File.”
5-4 Programming the WebLogic J2EE Connector Architecture

http://e-docs.bea.com/wls/docs61/programming/environment.html
http://e-docs.bea.com/wls/docs61/programming/environment.html

Configuring Resource Adapters
5. Create a resource adapter archive file (.rar file).

a. The first step is to create an empty staging directory.

b. Place the .rar file containing the resource adapter Java classes in the staging
directory.

c. Then, place the deployment descriptors in a subdirectory called META-INF.

d. Next, create the resource adapter archive by executing a jar command like the
following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter archive file,
refer to “Packaging Resource Adapters (.rar)” on page 5-10.

6. Deploy the .rar resource adapter archive file on WebLogic Server or include it
in an enterprise archive (.ear) file to be deployed as part of an enterprise
application.

Refer to “Deploying Applications and Components” in “Packaging and
Deploying WebLogic Server Applications” for detailed information about
deploying components and applications.

Modifying an Existing Resource Adapter (.rar)

The following is an example of how to take an existing resource adapter (.rar) and
modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repacking.

1. Create a temporary directory to stage the resource adapter:

mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:

cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:

cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

� A jar file containing Java classes that implement the resource adapter
Programming the WebLogic J2EE Connector Architecture 5-5

http://e-docs.bea.com/wls/docs61/programming/packaging.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html

5 Configuration
� A META-INF directory containing the files: Manifest.mf and ra.xml

Execute these commands to see these files:

c:/stagedir> ls

blackbox-notx.jar

META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific
deployment descriptor for resource adapters. In this file, you specify parameters
for connection factories, connection pools, and security mappings.

Note: If your resource adapter .rar does not contain a weblogic-ra.xml file,
WebLogic Server automatically generates this file for you. For more
information, see “Automatic Generation of the weblogic-ra.xml File.”

Refer to “Configuring the weblogic-ra.xml File” on page 5-12 and Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements,” for more information on
the weblogic-ra.xml file.

5. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory
where you extracted the .rar file or in the directory containing a resource
adapter in exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

weblogic-ra.xml

6. Create the resource adapter archive:

jar cvf blackbox-notx.jar -C c:/stagedir
5-6 Programming the WebLogic J2EE Connector Architecture

Configuring Resource Adapters
7. Deploy the resource adapter in WebLogic Server. For more information on
deploying a resource adapter in WebLogic Server, see Chapter 7, “Resource
Adapter Deployment.”

Automatic Generation of the weblogic-ra.xml File

If your resource adapter .rar does not contain a weblogic-ra.xml file, WebLogic
Server automatically generates this file for you. This feature enables you to deploy
third-party resource adapters to WebLogic Server without worrying about modifying
them for WebLogic Server. You need only modify two default attribute values that
WebLogic Server generates in the weblogic-ra.xml file:
<connection-factory-name> and <jndi-name>.

� WebLogic Server prepends <connection-factory-name> with the default
value of __TMP_CFNAME_.

� It prepends <jndi-name> with the default value of __TMP_JNDINAME_.

For instructions on how to change these default values, see “Using the Console
Deployment Descriptor Editor to Edit Files” in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”

The following is what the generated weblogic-ra.xml file looks like before you
change the default values:

Listing 5-1 weblogic-ra.xml Default Values

<weblogic-connection-factory-dd>

<connection-factory-name>__TMP_CFNAME_.\config\mydomain\applicati
ons\whitebox-notx.rar</connection-factory-name>

<jndi-name>__TMP_JNDINAME_.\config\mydomain\applications\whitebox
-notx.rar</jndi-name>

<pool-params>

<initial-capacity>0</initial-capacity>

<max-capacity>1</max-capacity>

<capacity-increment>1</capacity-increment>

<shrinking-enabled>false</shrinking-enabled>
Programming the WebLogic J2EE Connector Architecture 5-7

5 Configuration
<shrink-period-minutes>200</shrink-period-minutes>

</pool-params>

<security-principal-map>

</security-principal-map>

</weblogic-connection-factory-dd>

Configuring the ra-link-ref Element

The optional <ra-link-ref> element allows you to associate multiple deployed
resource adapters with a single deployed resource adapter. In other words, it allows
you to link (reuse) resources already configured in a base resource adapter to another
resource adapter, modifying only a subset of attributes. The <ra-link-ref> element
enables you to avoid—where possible—duplicating resources (such as classes, .jar
files, image files, and so on). Any values defined in the base resource adapter
deployment are inherited by the linked resource adapter, unless otherwise specified in
the <ra-link-ref> element.

If you use the optional <ra-link-ref> element, you must provide either all or none
of the values in the <pool-params> element. The <pool-params> element values
are not partially inherited by the linked resource adapter from the base resource
adapter.

Do one of the following:

� Assign the <max-capacity> element the value of 0 (zero) using the Console
Deployment Descriptor Editor. This allows the linked resource adapter to inherit
its <pool-params> element values from the base resource adapter.

� Assign the <max-capacity> element any value other than 0 (zero). The linked
resource adapter will inherit no values from the base resource adapter. If you
choose this option, you must specify all of the <pool-params> element values
for the linked resource adapter.

For instructions on editing the weblogic-ra.xml file, see “Using the Console
Deployment Descriptor Editor to Edit Files” in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”
5-8 Programming the WebLogic J2EE Connector Architecture

Configuring Resource Adapters
Packaging Guidelines

A resource adapter is a WebLogic Server component contained in an .rar archive file
within the applications/ directory. The deployment process begins with the .rar
file or a deployment directory, both of which contain the compiled resource adapter
interfaces and implementation classes created by the resource adapter provider.
Regardless of whether the compiled classes are stored in an .rar file or a deployment
directory, they must reside in subdirectories that match their Java package structures.

Resource adapters use a common directory format. This same format is used when a
resource adapter is packaged in an exploded directory format as an .rar file. A
resource adapter is structured as in the following example:

Listing 5-2 Resource Adapter Structure

/META-INF/ra.xml

/META-INF/weblogic-ra.xml

/images/ra.jpg

/readme.html

/eis.jar

/utilities.jar

/windows.dll

unix.so

Note the following about the files in a resource adapter:

� Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a
subdirectory called META-INF.
Programming the WebLogic J2EE Connector Architecture 5-9

5 Configuration
� The resource adapter can contain multiple jar files that contain the Java classes
and interfaces used by the resource adapter. (For example, eis.jar and
utilities.jar)

� The resource adapter can contain native libraries required by the resource
adapter for interacting with the EIS. (For example, windows.dll and
unix.so)

The resource adapter can include documentation and related files not directly used by
the resource adapter. (For example, readme.html and /images/ra.jpg)

Packaging Resource Adapters (.rar)

You can stage one or more resource adapters in a directory and package them in a jar
file. Before you package your resource adapters, be sure you read and understand
“Resolving Class References Between Components” in “Packaging and Deploying
WebLogic Server Applications,” which describes how WebLogic Server loads classes.

To stage and package a resource adapter:

1. Create a temporary staging directory.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a .jar file to store the resource adapter Java classes. Add this .jar file
to the top level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition at:
http://java.sun.com/dtd/connector_1_0.dtd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory
and add entries for the resource adapter.

Note: Refer to Appendix A, “weblogic-ra.xml Deployment Descriptor
Elements,” for information on the weblogic-ra.xml document type
definition.
5-10 Programming the WebLogic J2EE Connector Architecture

http://e-docs.bea.com/wls/docs61/programming/packaging.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html

Configuring the ra.xml File
7. When all of the resource adapter classes and deployment descriptors are set up in
the staging directory, you can create the resource adapter JAR file with a jar
command such as:

jar cvf jar-file.rar -C staging-dir.

This command creates a jar file that you can deploy on a WebLogic Server or
package in an application JAR file.

The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the resource adapters.

For instructions on creating a resource adapter and modifying an existing resource
adapter for deployment to WebLogic Server, see “Creating and Modifying Resource
Adapters: Main Steps” on page 5-3.

Configuring the ra.xml File

If you do not have an ra.xml file, you must manually create or edit an existing one
to set the necessary deployment properties for the resource adapter. You can use a text
editor to edit the properties. For information on creating an ra.xml file, refer to the
J2EE Connector Specification, Version 1.0, Proposed Final Draft 2:
http://java.sun.com/j2ee/download.html#connectorspec

Configuring the weblogic-ra.xml File

The weblogic-ra.xml file contains information required for deploying a resource
adapter in WebLogic Server. In this file, you specify certain attributes. This
functionality is consistent with the equivalent .xml extensions for EJBs and Web
applications in WebLogic Server, which also add WebLogic-specific deployment
descriptors to the deployable archive.

These sections describe how to configure the weblogic-ra.xml file to define
WebLogic Server-specific content for deployment to WebLogic Server.
Programming the WebLogic J2EE Connector Architecture 5-11

5 Configuration
Configuring the weblogic-ra.xml File

As is, the basic .rar or deployment directory cannot be deployed to WebLogic
Server. You must first create and configure WebLogic Server-specific deployment
properties in the weblogic-ra.xml file, and add that file to the deployment.

The weblogic-ra.xml file defines the connection factory, connection pool
parameters, security principal mapping parameters, and more. See Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements,” for a complete list of properties
available in the file.

Configurable weblogic-ra.xml Entities

The weblogic-ra.xml file contains information required for deploying a resource
adapter in WebLogic Server. In this file, you specify the following attributes:

� Name of the connection factory.

� Descriptive text about the connection factory.

� JNDI name bound to a connection factory.

� Reference to a separately deployed connection factory that contains resource
adapter components that can be shared with the current resource adapter.

� Directory where all shared libraries should be copied.

� Connection pool parameters that set the following behavior:

� Initial number of managed connections WebLogic Server attempts to allocate
at deployment time.

� Maximum number of managed connections WebLogic Server allows to be
allocated at any one time.

� Number of managed connections WebLogic Server attempts to allocate when
filling a request for a new connection.

� Whether WebLogic Server attempts to reclaim unused managed connections
to save system resources.
5-12 Programming the WebLogic J2EE Connector Architecture

Configuring the Security Principal Map
� The time WebLogic Server waits between attempts to reclaim unused
managed connections.

� The frequency of time to detect and reclaim connections that have exceeded
their usage time.

� The amount of usage time allowed for a connection.

� Values for configuration properties defined in a <config-entry> element of
the J2EE resource adapter deployment descriptor, ra.xml.

� Mapping of security principals for Resource Adapter/EIS sign-on processing.
This mapping identifies resource principals to be used when requesting EIS
connections for applications that use container-managed security and for EIS
connections requested during initial deployment.

� Flag to indicate whether logging is required for the ManagedConnectionFactory
or ManagedConnection.

� File to store logging information for the ManagedConnectionFactory or
ManagedConnection.

Note: Refer to the weblogic-ra.xml DTD in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements,” for more information on setting the
parameters in weblogic-ra.xml. You can also look at the
weblogic-ra.xml file in the included Simple Black Box resource adapter
example provided with the product download.

Note: For information on configuring connection properties in a resource adapter,
refer to Chapter 4, “Connection Management.”

Configuring the Security Principal Map

To use container-managed sign-on, WebLogic Server must identify a resource
principal and then request the connection to the EIS on behalf of the resource principal.
In order to make this identification, WebLogic Server looks for a security principal
map that you have specified with the <security-principal-map> element in the
weblogic-ra.xml deployment descriptor file.
Programming the WebLogic J2EE Connector Architecture 5-13

5 Configuration
This map builds associations between WebLogic Server initiating principals
(WebLogic Server users with identities defined in the WebLogic Security Realm) and
resource principals (users known to the resource adapter / EIS system).

In addition, the <security-principal-map> enables you to define a default
initiating principal that you can map to an appropriate resource principal when the
initiating principal identified at run time is not found in the mapping. You establish the
default initiating principal in the <security-principal-map> element with an
<initiating-principal> element that has a value of *, for example:

<initiating-principal>*</initiating-principal>

You must also include a corresponding <resource-principal> entry in the
<security-principal-map> element that specifies a username and password.

The following example shows an association between a WebLogic Server initiating
principal and a resource principal.

Listing 5-3 Example <initiating-principal> and <resource-principal> Entry

<security-principal-map>

 <map-entry>

<initiating-principal>*</initiating-principal>

 <resource-principal>

 <resource-username>default</resource-username>

<resource-password>try</resource-password>

 </resource-principal>

 </map-entry>

</security-principal-map>

This default initiating principal mapping is also used at deployment time if the
connection pool parameters indicate that WebLogic Server should initialize
connections. The absence of a default initiating principal entry or the absence of a
<security-principal-map> element may prevent WebLogic Server from creating
connections using container-managed security.
5-14 Programming the WebLogic J2EE Connector Architecture

Using the Password Converter Tool
Using the Password Converter Tool

Because current configuration and packaging requirements for resource adapters in
WebLogic Server require manual editing of the weblogic-ra.xml file, any new
passwords specified in the security-principal-map entries are done in clear-text.

Because BEA understands the importance of protecting security passwords, it provides
a converter tool that allows for the encryption of all passwords present in the
weblogic-ra.xml file. The converter tool is shipped in the standard weblogic.jar
file.

If you require a resource adapter to have clear-text passwords that do not exist in the
WebLogic Server environment, then you must post-process the resultant
weblogic-ra.xml file by using the converter tool each time a new clear-text
password is added.

You must run the provided password converter tool to convert all resource-password
values that are in clear text to encrypted password values. This converter tool parses
an existing weblogic-ra.xml file containing clear-text passwords and creates a new
weblogic-ra.xml file that contains encrypted passwords. This is the new file that
you package in the .rar file for deployment to WebLogic Server.

How to Execute

To run the converter tool, execute the following syntax in a DOS command shell:

Listing 5-4 Converter Tool Syntax

java weblogic.Connector.ConnectorXMLEncrypt
<input-weblogic-ra.xml> <output-weblogic-ra.xml>
<domain-config-directory-location>
Programming the WebLogic J2EE Connector Architecture 5-15

5 Configuration
Security Hint

A security hint that is specific to the domain used in the encryption / decryption process
requires inclusion of the <domain config directory location>; the converter
tool must be directed to use the specific hint for this domain. The resultant encrypted
passwords are specific to this domain. Therefore, the resultant .rar with encrypted
password values are deployable only on the specified domain.
5-16 Programming the WebLogic J2EE Connector Architecture

Configuring the Transaction Level Type
Configuring the Transaction Level Type

You must specify the transaction level type supported by the resource adapter in the
ra.xml deployment descriptor file. To specify the transaction support level:

� For No Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>NoTransaction</transaction-support>

� For XA Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>XATransaction</transaction-support>

� For Local Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>LocalTransaction</transaction-support>

For instructions on editing an .xml file, see Manually Editing XML Deployment Files
and Using the Console Deployment Descriptor Editor to Edit Files in Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”

For more information on specifying the transaction level in the .rar configuration,
see “Resource Adapter XML DTD” under “Packaging and Deployment” in the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).
Programming the WebLogic J2EE Connector Architecture 5-17

5 Configuration
5-18 Programming the WebLogic J2EE Connector Architecture

CHAPTER
6 Writing J2EE Connector
Architecture-
Compliant Resource
Adapters

The following sections identify the requirements for developing a compliant Resource
Adapter, as identified in the J2EE Platform Specification, Version 1.3, Proposed Final
Draft 3—http://java.sun.com/j2ee. The following sections correspond to the System
Contract requirements identified in this specification:

� Connection Management

� Security Management

� Transaction Management

� Packaging and Deployment

In addition, any Weblogic specific limitations/restrictions are identified.

Note: For instructions on building a resource adapter, see the BEA WebLogic
Application Integration documentation at:
http://edocs.bea.com/wlintegration/v2_0/applicationintegration/devel/index.htm
Programming the WebLogic J2EE Connector Architecture 6-1

6 Writing J2EE Connector Architecture- Compliant Resource Adapters
Connection Management

The connection management contract requirements for a resource adapter are as
follows:

� A resource adapter must provide implementations of the following interfaces:

� javax.resource.spi.ManagedConnectionFactory

� javax.resource.spi.ManagedConnection

� javax.resource.spi.ManagedConnectionMetaData

� The ManagedConnection implementation provided by a resource adapter must
use the following interface and classes to provide support to an application
server for connection management (and transaction management, as explained
later):

� javax.resource.spi.ConnectionEvent

� javax.resource.spi.ConnectionEventListener

To support non-managed environments, a resource adapter is not required to use
the above two interfaces to drive its internal object interactions.

� A resource adapter is required to provide support for basic error logging and
tracing by implementing the following methods:

� ManagedConnectionFactory.set/getLogWriter

� ManagedConnnection.set/getLogWriter

� A resource adapter is required to provide a default implementation of the
javax.resource.spi.ConnectionManager interface. The implementation
class comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter should not use the default ConnectionManager implementation class.

A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection
pooling, error logging and tracing, and security management. The default
ConnectionManager delegates to the ManagedConnectionFactory the
creation of physical connections to the underlying EIS.

� In a managed environment, a resource adapter is not allowed to support its own
internal connection pooling. In this case, the application server is responsible for
6-2 Programming the WebLogic J2EE Connector Architecture

Security Management
connection pooling. However, a resource adapter may multiplex connections
(one or more ConnectionManager instances per physical connection) over a
single physical pipe transparent to the application server and components.

In a non-managed two-tier application scenario, a resource adapter is allowed to
support connection pooling internal to the resource adapter.

Security Management

The security management contract requirements for a resource adapter are as follows:

� The resource adapter is required to support the security contract by
implementing the method
ManagedConnectionFactory.createManagedConnection.

� The resource adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection method implementation.

� The resource adapter is required to specify its support for the security contract as
part of its deployment descriptor. The relevant deployment descriptor elements
are: authentication-mechanism, authentication-mechanism-type,
reauthentication-support and credential-interface. Refer to
section 10.6, “Resource Adapter XML DTD,” of the J2EE Connector
Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

Transaction Management

This section outlines the transaction management contract requirements for a resource
adapter. A resource adapter can be classified based on the level of transaction support,
as follows:

� Level NoTransaction—The resource adapter supports neither resource
manager local nor JTA transactions. It implements neither XAResource nor
LocalTransaction interfaces.
Programming the WebLogic J2EE Connector Architecture 6-3

6 Writing J2EE Connector Architecture- Compliant Resource Adapters
� Level LocalTransaction—The resource adapter supports resource manager
local transactions by implementing the LocalTransaction interface. The local
transaction management contract is specified in section 6.7 of the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

� Level XATransaction—The resource adapter supports both resource manager
local and JTA transactions by implementing LocalTransaction and
XAResource interfaces respectively. The requirements for support
XAResource-based contract are specified in section 6.6 of the J2EE Connector
Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

Note: Other levels of support (includes any transaction optimizations supported by
an underlying resource manager) are outside the scope of the Connector
Architecture.

The above levels reflect the major steps of transaction support that a resource adapter
needs to make to allow external transaction coordination. Depending on its transaction
capabilities and requirements of its underlying EIS, a resource adapter can choose to
support any one of the above transaction support levels.

Packaging and Deployment

The following sections discuss packaging and deployment requirements for resource
adapters.

Restrictions

At present, the WebLogic J2EE Connector Architecture supports only serializable
ConnectionFactory implementations. (Referenceable-only ConnectionFactory
implementations are not supported.)

In addition, the WebLogic J2EE Connector Architecture does not support the
javax.resource.spi.security.GenericCredential
credential-interface or the Kerbv5 authentication-mechanism-type.
6-4 Programming the WebLogic J2EE Connector Architecture

Packaging and Deployment
Specification of either of these values for the <authentication-mechanism>
in the ra.xml file for the resource adapter being deployed will result in a failed
deployment.

Packaging

The file format for a packaged resource adapter module defines the contract between
a resource adapter provider and deployer. A packaged resource adapter includes the
following elements:

� Java classes and interfaces that are required for the implementation of both the
Connector Architecture contracts and the functionality of the resource adapter

� Utility Java classes for the resource adapter

� Platform-dependent native libraries required by the resource adapter

� Help files and documentation

� Descriptive meta information that ties the above elements together

Deployment

For information on packaging requirements, refer to section 10.3.1, “Resource Adapter
Provider,” and section 10.5.1, “Responsibilities,” of the J2EE Connector Specification,
Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec). Section 10.3.1 discusses
deployment requirements, while section 10.5.1 discusses how to support JNDI
Configuration and Lookup.
Programming the WebLogic J2EE Connector Architecture 6-5

6 Writing J2EE Connector Architecture- Compliant Resource Adapters
6-6 Programming the WebLogic J2EE Connector Architecture

CHAPTER
7 Resource Adapter
Deployment

The following sections explain how to deploy, undeploy, and update the deployment
of configured resource adapters to WebLogic Server:

� Resource Adapter Deployment Overview

� Using the Administration Console

� Using the Applications Directory

� Using weblogic.deploy

� Including a Resource Adapter in an Enterprise Application (.ear file)
Programming the WebLogic J2EE Connector Architecture 7-1

7 Resource Adapter Deployment
Resource Adapter Deployment Overview

Deployment of a resource adapter is similar to deployment of Web Applications, EJBs,
and Enterprise Applications. Like these deployment units, you can deploy a resource
adapter in an exploded directory format or as an archive file.

Deployment Options

You can deploy a resource adapter:

� Dynamically using command line or through the Administration Console

� Automatically while WebLogic Server is running by copying the archive file or
exploded directory into the applications directory of a WebLogic Server
domain

� As part of an Enterprise Application, which is deployed in an archive file called
an .ear

Deployment Descriptor

Also similar to Web Applications, EJBs, and Enterprise Applications, resource
adapters use two deployment descriptors to define their operational parameters. The
deployment descriptor ra.xml is defined by Sun Microsystems in the J2EE Connector
Specification, Version 1.0, Proposed Final Draft 2. The weblogic-ra.xml
deployment descriptor is specific to WebLogic Server and defines operational
parameters unique to WebLogic Server. For more information about the
weblogic-ra.xml deployment descriptor, refer to Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”
7-2 Programming the WebLogic J2EE Connector Architecture

Using the Administration Console
Resource Adapter Deployment Names

When you deploy a resource adapter .rar file or deployment directory, you must
specify a name for the deployment unit, for example, myResourceAdapter. This
name provides a shorthand reference to the resource adapter deployment that you can
later use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a
deployment name that matches the path and filename of the .rar file or deployment
directory. You can use this assigned name to undeploy or update the resource adapter
after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the
server is rebooted. Undeploying a resource adapter does not remove the associated
deployment name, because you may later re-use that name to deploy the resource
adapter.

Using the Administration Console

This section discusses resource adapter deployment tasks using the Administration
Console.

Deploying Resource Adapters Using the Administration
Console

To deploy a resource adapter using the WebLogic Server Administration Console:

1. Start WebLogic Server.

2. Open the Administration Console.

3. Open the Domain you will be working in.
Programming the WebLogic J2EE Connector Architecture 7-3

7 Resource Adapter Deployment
4. Under Deployments, select Connectors in the left panel. The Connector
Deployments table displays in the right pane showing all the deployed
Connectors (Resource Adapters).

5. Select Configure a new Connector Component...

6. Enter the following information:

� Name—modify the default name of the connector component as needed.

� URI Path—enter the full path of the resource adapter .rar file or a directory
containing the resource adapter exploded directory format. For example:
c:\myaps\components\myResourceAdapter.rar

� Deployed—indicate whether the Resource Adapter .rar file should be
deployed when created.

7. Select the Create button.

8. Note that the new resource adapter now appears in the Deployments table in the
right pane.

Viewing Deployed Resource Adapters Using the
Administration Console

To view a deployed resource adapter in the Administration Console:

1. In the Administration Console under Deployments, select Connectors (Resource
Adapters) in the left panel.

2. View a list of deployed Connectors in the Connector Deployments table in the
right pane.

Undeploying Deployed Resource Adapters Using the
Administration Console

To undeploy a deployed resource adapter from the WebLogic Server Administration
Console:
7-4 Programming the WebLogic J2EE Connector Architecture

Using the Administration Console
1. In the Administration Console under Deployments, select Connectors (Resource
Adapters) in the left panel.

2. In the Connector Deployments table, select the connector to undeploy.

3. Under the Configuration tab, de-select the Deployed checkbox.

4. Click Apply.

Undeploying a resource adapter does not remove the resource adapter name from
WebLogic Server. The resource adapter remains undeployed for the duration of the
Server session, as long as you do not change it once it has been undeployed. You
cannot re-use the deployment name with the deploy argument until you reboot the
server. You can re-use the deployment name to update the deployment, as described in
the following section.

Updating Deployed Resource Adapters Using the
Administration Console

When you update the contents of the resource adapter .rar file or deployment
directory that has been deployed to WebLogic Server, those updates are not reflected
in WebLogic Server until:

� You reboot the server (if the .rar or directory is to be automatically deployed)

or

� You update the resource adapter deployment using the WebLogic Server
Administration Console

From the WebLogic Server Administration Console:

1. In the Administration Console under Deployments, select Connectors (Resource
Adapters) in the left panel.

2. In the Connector Deployments table, select the connector to update.

3. Update the Connector Name and Deployed status as needed.

4. Click Apply.
Programming the WebLogic J2EE Connector Architecture 7-5

7 Resource Adapter Deployment
Using the Applications Directory

You can deploy a resource adapter automatically while WebLogic Server is running.
The /applications directory is monitored during runtime of the WebLogic Server
and detects if a new .rar is added (causing deployment) or if an existing .rar is
removed (causing undeployment).

To deploy a resource adapter using the applications directory:

1. Copy the .rar archive or the exploded directory containing a resource adapter to
the applications directory of a domain.

For example, after copying a resource adapter called myResourceAdapter in
exploded format, your WebLogic Server installation looks like this (not all the
files for a resource adapter are shown here):
7-6 Programming the WebLogic J2EE Connector Architecture

Using the Applications Directory
Listing 7-1 myResourceAdapter

\---beaHome

\---wlserver6.x

\---config

\---mydomain

\---applications

\---myResourceAdapter

eis.jar

readme.html

unix.so

utilities.jar

windows.dll

\---META-INF

ra.xml

weblogic-ra.xml

After copying a .rar file, your WebLogic Server installation looks like this:

Listing 7-2 rar File

\---beaHome

\---wlserver6.x

\---config

\---mydomain

\---applications

myResourceAdapter.rar
Programming the WebLogic J2EE Connector Architecture 7-7

7 Resource Adapter Deployment
2. Start WebLogic Server. When you boot WebLogic Server, it automatically
attempts to deploy the specified resource adapter .rar file or deployment
directory.

3. Launch the Administration Console.

4. In the right pane, click Resource Adapter Deployments.

5. Verify that the resource adapter is listed and that the Deployed box is selected.

Using weblogic.deploy

To deploy a resource adapter .rar file or deployment directory that has not been
deployed to WebLogic Server, use the following command:

% java weblogic.deploy -port port_number -host host_name

deploy password name source

where:

� name is the string containing the name you want to assign to this resource
adapter deployment unit.

� password is the password for the WebLogic Server system account.

� source is the full path and filename of the resource adapter .rar file you want
to deploy, or the full path of the resource adapter deployment directory.

Viewing Deployed Resource Adapters Using
weblogic.deploy

To view resource adapters that are deployed on a local WebLogic Server, from the
command line enter the following:

% java weblogic.deploy list password

where password is the password for the WebLogic Server System account.
7-8 Programming the WebLogic J2EE Connector Architecture

Using weblogic.deploy
To list deployed resource adapters on a remote server, from the command line enter
the following:

% java weblogic.deploy -port port_number -host host_name

list password

Undeploying Deployed Resource Adapters Using
weblogic.deploy

Undeploying a resource adapter does not remove the deployment name associated with
the resource adapter .rar file or deployment directory. The deployment name remains
in the server to allow for later updates of the resource adapter.

To undeploy a deployed resource adapter from the command line, you need only
reference the assigned deployment unit name, as in:

%java weblogic.deploy -port 7001 -host localhost undeploy

password myResourceAdapter

Undeploying a resource adapter does not remove the resource adapter name from
WebLogic Server. The resource adapter will remain undeployed for the duration of the
Server session, as long as you do not change it once it has been undeployed. You
cannot re-use the deployment name with the deploy argument until you reboot the
server. You can re-use the deployment name to update the deployment, as described in
“Updating Deployed Resource Adapters Using weblogic.deploy” on page 7-9.

Updating Deployed Resource Adapters Using
weblogic.deploy

When you update the contents of the resource adapter .rar file or deployment
directory that has been deployed to WebLogic Server, those updates are not reflected
in WebLogic Server until:

� You reboot the server (if the .rar or directory is to be automatically deployed)
or
Programming the WebLogic J2EE Connector Architecture 7-9

7 Resource Adapter Deployment
� You update the resource adapter deployment using the WebLogic Server
Administration Console

To update or redeploy the resource adapter from the command line, use the update
argument and specify the active resource adapter deployment name:

%java weblogic.deploy -port 7001 -host localhost update

password myResourceAdapter

Including a Resource Adapter in an
Enterprise Application (.ear file)

As part of the J2EE Platform Specification, Version 1.3, Proposed Final Draft 3, it is
now possible to include a resource adapter archive (.rar) file inside an Enterprise
Application archive (.ear) and then deploy the application in WebLogic Server.

To deploy an Enterprise Application that contains a resource adapter archive:

1. Place the .rar file inside the .ear archive just as you would a .war or .jar
archive.

2. Create a valid application.xml and place it in the META-INF directory of the
.ear archive.

Note the following when creating an application.xml:

The application deployment descriptor must contain the new <connector>
element to identify the resource adapter archive within the .ear archive. For
example:

<connector>RevisedBlackBoxNoTx.rar</connector>

Because the <connector> element is a new addition to the J2EE Platform
Specification, Version 1.3, the application.xml file must contain the
following DOCTYPE entry to identify it as a J2EE Platform Specification,
Version 1.3 deployment descriptor.
7-10 Programming the WebLogic J2EE Connector Architecture

Including a Resource Adapter in an Enterprise Application (.ear file)
Listing 7-3 DOCTYPE Entry

<!DOCTYPE application PUBLIC ‘-//Sun Microsystems, Inc.//DTD

J2EE Application 1.3//EN’

‘http://java.sun.com/dtd/application_1_3.dtd’>

If you do not use this DOCTYPE entry, the resource adapter will not be
deployed.

The following listing is an example of an application.xml file.

Listing 7-4 application.xml File

<application>

<display-name> ConnectorSampleearApp </display-name>

<module>

<connector>RevisedBlackBoxNoTx.rar</connector>

</module>

<module>

<ejb>ejb_basic_beanManaged.jar</ejb>

</module>

</application>

3. Deploy the Enterprise Application in WebLogic Server.

For general information about deployment of Enterprise Applications, see
“Enterprise Applications” in “Understanding WebLogic Server Applications.”
Programming the WebLogic J2EE Connector Architecture 7-11

http://e-docs.bea.com/wls/docs61/programming/concepts.html

7 Resource Adapter Deployment
7-12 Programming the WebLogic J2EE Connector Architecture

CHAPTER
8 Client Considerations

The following sections discuss WebLogic J2EE Connector Architecture client
considerations:

� Common Client Interface (CCI)

� ConnectionFactory and Connection

� Obtaining the ConnectionFactory (Client-JNDI Interaction)
Programming the WebLogic J2EE Connector Architecture 8-1

8 Client Considerations
Common Client Interface (CCI)

The client API used by application components for EIS access can be defined as
follows:

� The standard common client interface (CCI) discussed in chapter 9, “Common
Client Interface,” of the J2EE Connector Specification, Version 1.0, Proposed
Final Draft 2 at: http://java.sun.com/j2ee/download.html#connectorspec.

� A client API specific to the type of a resource adapter and its underlying EIS.
An example of such EIS-specific client APIs is JDBC for relational databases.

The CCI is a common client API for accessing EISes. The CCI is targeted towards
Enterprise Application Integration (EAI) and enterprise tool vendors.

The J2EE Connector Architecture defines a Common Client Interface (CCI) for EIS
access. The CCI defines a standard client API for application components that enables
application components and EAI frameworks to drive interactions across
heterogeneous EISes.

ConnectionFactory and Connection

A connection factory is a public interface that enables connection to an EIS instance;
a ConnectionFactory interface is provided by a resource adapter. An application looks
up a ConnectionFactory instance in the JNDI namespace and uses it to obtain EIS
connections.

One goal of the J2EE Connector Architecture is to support a consistent application
programming model across both CCI and EIS-specific client APIs. This model is
achieved through use of a design pattern—specified as an interface template—for both
the ConnectionFactory and Connection interfaces.

For more information on this design pattern, see section 5.5.1, “ConnectionFactory
and Connection” of the J2EE Connector Specification, Version 1.0, Proposed Final
Draft 2 at: http://java.sun.com/j2ee/download.html#connectorspec
8-2 Programming the WebLogic J2EE Connector Architecture

Obtaining the ConnectionFactory (Client-JNDI Interaction)
Obtaining the ConnectionFactory
(Client-JNDI Interaction)

This section discusses how a connection to an EIS instance is obtained from a
ConnectionFactory. For further information, refer to section 5.4.1, “Managed
Application Scenario,” of the J2EE Connector Specification, Version 1.0, Proposed
Final Draft 2 at: http://java.sun.com/j2ee/download.html#connectorspec

Obtaining a Connection in a Managed Application

The following tasks are performed when a managed application obtains a connection
to an EIS instance from a ConnectionFactory, as specified in the res-type variable:

1. The application assembler or component provider specifies the connection factory
requirements for an application component by using a deployment descriptor
mechanism. For example:

� res-ref-name: eis/myEIS

� res-type: javax.resource.cci.ConnectionFactory

� res-auth: Application or Container

2. The person deploying the resource adapter sets the configuration information for
the resource adapter.

3. The application server uses a configured resource adapter to create physical
connections to the underlying EIS. Refer to Chapter 10 of the J2EE Connector
Specification, Version 1.0, Proposed Final Draft 2 for more information on
packaging and deployment of resource adapters at:
http://java.sun.com/j2ee/download.html#connectorspec

4. The application component looks up a connection factory instance in the
component’s environment by using the JNDI interface.
Programming the WebLogic J2EE Connector Architecture 8-3

8 Client Considerations
Listing 8-1 JNDI Lookup

//obtain the initial JNDI Naming context

Context initctc = new InitialContext();

// perform JNDI lookup to obtain the connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)

initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as
that specified in the res-ref-name element of the deployment descriptor. The
JNDI lookup results in a connection factory instance of type
java.resource.cci.ConnectionFactory as specified in the res-type
element.

5. The application component invokes the getConnection method on the
connection factory to obtain an EIS connection. The returned connection instance
represents an application level handle to an underlying physical connection. An
application component obtains multiple connections by calling the method
getConnection on the connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

6. The application component uses the returned connection to access the underlying
EIS.

7. After the component finishes with the connection, it closes the connection using
the close method on the Connection interface.

cx.close();

8. If an application component fails to close an allocated connection after its use,
that connection is considered an unused connection. The application server
manages the cleanup of unused connections. When a container terminates a
component instance, the container cleans up all connections used by that
component instance.
8-4 Programming the WebLogic J2EE Connector Architecture

Obtaining the ConnectionFactory (Client-JNDI Interaction)
Obtaining a Connection in a Non-Managed Application

In a non-managed application scenario, the application developer must follow a similar
programming model to that of a managed application. Non-management involves
lookup of a connection factory instance, obtaining an EIS connection, using the
connection for EIS access, and finally closing the connection.

The following tasks are performed when a non-managed application obtains a
connection to an EIS instance from a ConnectionFactory:

1. The application client calls a method on the
javax.resource.cci.ConnectionFactory instance (returned from the JNDI
lookup) to get a connection to the underlying EIS instance.

2. The ConnectionFactory instance delegates the connection request from the
application to the default ConnectionManager instance. The resource adapter
provides the default ConnectionManager implementation.

3. The ConnectionManager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnectionFactory.createManagedConnection method.

4. The ManagedConnectionFactory instance handles the
createManagedConnection method by creating a new physical connection to the
underlying EIS, represented by a ManagedConnection instance. The
ManagedConnectionFactory uses the security information (passed as a Subject
instance), any ConnectionRequestInfo, and its configured set of properties
(such as port number, server name) to create a new ManagedConnection
instance.

5. The ConnectionManager instance calls the
ManagedConnection.getConnection method to get an application-level
connection handle. Calling the getConnection method does not necessarily
create a new physical connection to the EIS instance. Calling getConnection
produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnection instance.

6. The ConnectionManager instance returns the connection handle to the
ConnectionFactory instance, which then returns the connection to the
application that initiated the connection request.
Programming the WebLogic J2EE Connector Architecture 8-5

8 Client Considerations
8-6 Programming the WebLogic J2EE Connector Architecture

A weblogic-ra.xml
Deployment Descriptor
Elements

The following sections provide a complete reference for the WebLogic Server 6.1
specific XML deployment properties used in the WebLogic Server resource adapter
archive and an explanation of how to edit the XML deployment file manually. Use
these sections if you need to refer to the deployment descriptor used for resource
adapters.

Note: If your resource adapter .rar does not contain a weblogic-ra.xml file,
WebLogic Server automatically generates this file for you. For more
information, see “Automatic Generation of the weblogic-ra.xml File” in
Chapter 5, “Configuration.”

� Manually Editing XML Deployment Files

� Using the Console Deployment Descriptor Editor to Edit Files

� weblogic-ra.xml DTD

� weblogic-ra. xml Element Hierarchy Diagram

� weblogic-ra.xml Element Descriptions
Programming the WebLogic J2EE Connector Architecture A-1

A weblogic-ra.xml Deployment Descriptor Elements
Manually Editing XML Deployment Files

To define or make changes to the XML deployment descriptors used in the WebLogic
Server resource adapter archive, you must manually define or edit the XML elements
in the weblogic-ra.xml file.

Basic Conventions

To manually edit XML elements:

� Make sure that you use an ASCII text editor that does not reformat the XML or
insert additional characters that could invalidate the file.

� Use the correct case for file and directory names, even if your operating system
ignores the case.

� To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value. For example:

<max-config-property></max-config-property>

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose.

The header refers to the location and version of the Document Type Definition (DTD)
file for the deployment descriptor. Although this header references an external URL at
java.sun.com, WebLogic Server contains its own copy of the DTD file, so your host
server need not have access to the Internet. However, you must still include this
<!DOCTYPE...> element in your ra.xml file, and have it reference the external URL
because the version of the DTD contained in this element is used to identify the version
of this deployment descriptor.
A-2 Programming the WebLogic J2EE Connector Architecture

Manually Editing XML Deployment Files
The entire DOCTYPE headers for the ra.xml and weblogic-ra.xml files are as
follows:

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier
‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server utilities
ignore the DTDs embedded within the DOCTYPE header of XML deployment files, and
instead use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

The following links provide the public DTD locations for XML deployment files used
with WebLogic Server:

� connector_1_0.dtd contains the DTD for the standard ra.xml deployment
file, required for all resource adapters. This DTD is maintained as part of the
J2EE Connector Specification, Version 1.0; refer to this specification for
information about the elements used in the connector_1_0.dtd
(http://java.sun.com/j2ee/download.html#connectorspec).

XML File DOCTYPE header

ra.xml <!DOCTYPE connector PUBLIC
 '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN'
 'http://java.sun.com/dtd/connector_1_0.dtd'>

weblogic-ra.xml <!DOCTYPE connector PUBLIC

'-//BEA Systems, Inc.//DTD WebLogic 6.0.0
Connector//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic600-ra
.dtd'
Programming the WebLogic J2EE Connector Architecture A-3

A weblogic-ra.xml Deployment Descriptor Elements
� weblogic-ra.dtd contains the DTD used for creating weblogic-ra.xml,
which defines resource adapter properties used for deployment to WebLogic
Server. This file is located at
http://www.bea.com/servers/wls600/dtd/weblogic600-ra.dtd

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

Using the Console Deployment Descriptor
Editor to Edit Files

This section describes the procedure for editing the following resource adapter
deployment descriptors using the Administration Console Deployment Descriptor
Editor:

� ra.xml

� weblogic-ra.xml

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming the WebLogic J2EE Connector Architecture.

To edit the resource adapter deployment descriptors, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.
A-4 Programming the WebLogic J2EE Connector Architecture

http://e-docs.bea.com/wls/docs61/jconnector/index.html

Using the Console Deployment Descriptor Editor to Edit Files
The Administration Console window appears in a new browser. The left pane
contains a tree structure that lists all the elements in the two resource adapter
deployment descriptors and the right pane contains a form for the descriptive
elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

� The RA node contains the elements of the ra.xml deployment descriptor.

� The WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.
Programming the WebLogic J2EE Connector Architecture A-5

A weblogic-ra.xml Deployment Descriptor Elements
b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you have made all your changes to the resource adapter deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the resource adapter *.rar archive file or the display
name of the resource adapter.

10. Click Validate if you want to ensure that the entries in the resource adapter
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server's memory.

weblogic-ra.xml DTD

Listing A-1 weblogic-ra.xml DTD

DTD for weblogic-ra.xml

<!--

XML DTD for Weblogic Specific Resource Adapter deployment
descriptor 1.0

-->

<!--

This DTD defines the Weblogic specific deployment information for
defining a deployable Resource Adapter Connection Factory. It
provides for complete specification of all configurable Connection
Factory parameters including Connection Pool parameters, Security
parameters for Resource Principal Mapping and the ability to define
values for configuration parameters which exist in the ra.xml
deployment descriptor.

-->

Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.

<!--
A-6 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml DTD
The weblogic-connection-factory-dd element is the root element of
the Weblogic specific deployment descriptor for the deployed
resource adapter.

-->

<!ELEMENT weblogic-connection-factory-dd (connection-factory-name,
description?, jndi-name, ra-link-ref?, native-libdir?,
pool-params?, logging-enabled?, log-filename?,
map-config-property*, security-principal-map?)>

<!--

The connection-factory-name element defines that logical name that
will be associated with this specific deployment of the Resource
Adapter and its corresponding Connection Factory.

The value of connection-factory-name can be used in other deployed
Resource Adapters via the ra-link-ref element. This will allow
multiple deployed Connection Factories to utilize a common deployed
Resource Adapter, as well as share configuration specifications.

This is a required element.

-->

<!ELEMENT connection-factory-name (#PCDATA)>

<!--

The description element is used to provide text describing the
parent element. The description element should include any
information that the deployer wants to describe about the deployed
Connection Factory.

This is an optional element.

-->

<!ELEMENT description (#PCDATA)>

<!--

The jndi-name element defines the name that will be used to bind
the Connection Factory Object into the Weblogic JNDI Namespace.
Client EJBs and Servlets will use this same JNDI in their defined
Reference Descriptor elements of the weblogic specific deployment
descriptors.

This is a required element.

-->
Programming the WebLogic J2EE Connector Architecture A-7

A weblogic-ra.xml Deployment Descriptor Elements
<!ELEMENT jndi-name (#PCDATA)>

<!--

The ra-link-ref element allows for the logical association of
multiple deployed Connection Factories with a single deployed
Resource Adapter. The specification of the optional ra-link-ref
element with a value identifying a separately deployed Connection
Factory results in this newly deployed Connection Factory sharing
the Resource Adapter, which had been deployed with the referenced
Connection Factory.

In addition, any values defined in the referred Connection Factories
deployment will be inherited by this newly deployed Connection
Factory unless specified.

This is an optional element.

-->

<!ELEMENT ra-link-ref (#PCDATA)>

<!--

The native-libdir element identifies the directory location to be
used for all native libraries present in this resource adapter
deployment. As part of deployment processing, all encountered
native libraries will be copied to the location specified.

It is the responsibility of the Administrator to perform the
necessary platform actions such that these libraries will be found
during Weblogic Server runtime.

This is a required element IF native libraries are present.

-->

<!ELEMENT native-libdir (#PCDATA)>

<!--

The pool-params element is the root element for providing Connection
Pool specific parameters for this Connection Factory.

Weblogic will use these specifications in controlling the behavior
of the maintained pool of Managed Connections.

This is an optional element. Failure to specify this element or any
of its specific element items will result in default values being
assigned. Refer to the description of each individual element for
the designated default value.
A-8 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml DTD
-->

<!ELEMENT pool-params (initial-capacity?, max-capacity?,
capacity-increment?, shrinking-enabled?, shrink-period-minutes?,
connection-cleanup-frequency?, connection-duration-time?)>

<!--

The initial-capacity element identifies the initial number of
managed connections, which the Weblogic Server will attempt to
obtain during deployment.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 1

-->

<!ELEMENT initial-capacity (#PCDATA)>

<!--

The max-capacity element identifies the maximum number of managed
connections, which the Weblogic Server will allow. Requests for
newly allocated managed connections beyond this limit will result
in a ResourceAllocationException being returned to the caller.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 10

-->

<!ELEMENT max-capacity (#PCDATA)>

<!--

The capacity-increment element identifies the number of additional
managed connections, which the Weblogic Server will attempt to
obtain during resizing of the maintained connection pool.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 1
Programming the WebLogic J2EE Connector Architecture A-9

A weblogic-ra.xml Deployment Descriptor Elements
-->

<!ELEMENT capacity-increment (#PCDATA)>

<!--

The shrinking-enabled element indicates whether or not the
Connection Pool should have unused Managed Connections reclaimed as
a means to control system resources.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range: true|false

Default Value: true

-->

<!ELEMENT shrinking-enabled (#PCDATA)>

<!--

The shrink-period-minutes element identifies the amount of time the
Connection Pool Management will wait between attempts to reclaim
unused Managed Connections.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 15

-->

<!ELEMENT shrink-period-minutes (#PCDATA)>

<!--

The connection-cleanup-frequency element identifies the amount of
time (in seconds) the Connection Pool Management will wait between
attempts to destroy Connection handles which have exceeded their
usage duration. This element, used in conjunction with
connection-duration-time, prevents connection leaks when an
Application may have not closed a connection after completing usage.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.
A-10 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml DTD
Default Value:-1

-->

<!ELEMENT connection-cleanup-frequency (#PCDATA)>

<!--

The connection-duration-time element identifies the amount of time
(in seconds) a Connection handle can be active. This element, used
in conjunction with connection-cleanup-frequency, prevents leaks
when an Application may have not closed a connection after
completing usage.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:-1

-->

<!ELEMENT connection-duration-time (#PCDATA)>

<!--

The logging-enabled element indicates whether or not the log writer
is set for either the ManagedConnectionFactory or
ManagedConnection. If this element is set to true, output generated
from either the ManagedConnectionFactory or ManagedConnection will
be sent to the file specified by the log-filename element.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range: true|false

Default Value: false

-->

<!ELEMENT logging-enabled (#PCDATA)>

<!--

The log-filename element specifies the name of the log file which
output generated from either the ManagedConnectionFactory or a
ManagedConnection are sent.

The full address of the filename is required.
Programming the WebLogic J2EE Connector Architecture A-11

A weblogic-ra.xml Deployment Descriptor Elements
This is an optional element.

-->

<!ELEMENT log-filename (#PCDATA)>

<!--

Each map-config-property element identifies a configuration
property name and value that corresponds to an ra.xml config-entry
element with the corresponding config-property-name.

At deployment time, all values present in a map-config-property
specification will be set on the ManagedConnectionFactory.

Values specified via a map-config-property will supersede any
default value that may have been specified in the corresponding
ra.xml config-entry element.

This is an optional element.

-->

<!ELEMENT map-config-property (map-config-property-name,
map-config-property-value)>

<!ELEMENT map-config-property-name (#PCDATA)>

<!ELEMENT map-config-property-value (#PCDATA)>

<!--

Each security-principal-map element provides a mechanism to define
appropriate Resource Principal values for Resource Adapter/EIS
authorization processing, based upon the known Weblogic Runtime
Initiating Principal.

This map allows for the specification of a defined set of Initiating
Principals and the corresponding Resource Principal's Username and
Password that should be used when allocating Managed Connections
and Connection Handles.

A default Resource Principal can be defined for the Connection
Factory via the map. By specifying an initiating-principal value of
'*' and a corresponding resource-principal, the defined
resource-principal will be utilized whenever the current identity
is NOT matched elsewhere in the map.
A-12 Programming the WebLogic J2EE Connector Architecture

weblogic-ra. xml Element Hierarchy Diagram
This is an optional element, however, it must be specified in some
form if Container Managed Sign-on is supported by the Resource
Adapter and used by ANY client.

In addition, the deployment-time population of the Connection Pool
with Managed Connections will be attempted using the defined
'default' resource principal if one is specified.

-->

<!ELEMENT security-principal-map (map-entry*)>

<!ELEMENT map-entry (initiating-principal+, resource-principal)>

<!ELEMENT initiating-principal (#PCDATA)>

<!ELEMENT resource-principal (resource-username,
resource-password)>

<!ELEMENT resource-username (#PCDATA)>

<!ELEMENT resource-password (#PCDATA)>

weblogic-ra. xml Element Hierarchy
Diagram

The following diagram summarizes the structure of the weblogic-ra.xml
deployment descriptor.
Programming the WebLogic J2EE Connector Architecture A-13

A weblogic-ra.xml Deployment Descriptor Elements
Listing A-2 weblogic-ra.xml Element Hierarchy
A-14 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml Element Descriptions
weblogic-ra.xml Element Descriptions

The following sections describe each of the elements that can be defined in the
weblogic-ra.xml file:

� weblogic-connection-factory-dd (required)—the root element of the
Weblogic-specific deployment descriptor for the deployed resource adapter.

� connection-factory-name (required)—defines the logical name that will be
associated with this specific deployment of the resource adapter and its
corresponding connection factory. The value of this element can be used in other
deployed resource adapters through the ra-link-ref element, allowing
multiple deployed Connection Factories to utilize a common deployed resource
adapter, as well as share configuration specifications.

� description (optional)—provides text describing the parent element. This
element should include any information that the deployer wants to describe
about the deployed Connection Factory.

� jndi-name (required)—defines the name that will be used to bind the
Connection Factory Object into the WebLogic JNDI Namespace. Client EJBs
and Servlets use the same JNDI in their defined Reference Descriptor elements
of the WebLogic-specific deployment descriptors.

� ra-link-ref (optional)—allows for the logical association of multiple
deployed connection factories with a single deployed resource adapter. The
specification of the optional ra-link-ref element with a value identifying a
separately deployed connection factory will result in this newly deployed
connection factory sharing the resource adapter that has been deployed with the
referenced connection factory. In addition, any values defined in the referred
connection factories deployment will be inherited by this newly deployed
connection factory unless specified.

� native-libdir (required if native libraries present)—identifies the directory
location to be used for all native libraries present in this resource adapter
deployment. As part of deployment processing, all encountered native libraries
will be copied to the location specified. It is the responsibility of the
administrator to perform the necessary platform actions such that these libraries
will be found during WebLogic Server run time.
Programming the WebLogic J2EE Connector Architecture A-15

A weblogic-ra.xml Deployment Descriptor Elements
� pool-params (optional)—the root element for providing connection
pool-specific parameters for this connection factory. WebLogic Server uses these
specifications in controlling the behavior of the maintained pool of managed
connections.

Failure to specify this element or any of its specific element items will result in
default values being assigned. Refer to the description of each individual
element for the designated default value.

� initial-capacity (optional)—identifies the initial number of managed
connections, which WebLogic Server attempts to obtain during deployment.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Default Value: 1

� max-capacity (optional)—identifies the maximum number of managed
connections, which WebLogic Server will allow. Requests for newly allocated
managed connections beyond this limit results in a
ResourceAllocationException being returned to the caller.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Default Value: 10

� capacity-increment (optional)—identifies the maximum number of
additional managed connections that WebLogic Server attempts to obtain during
resizing of the maintained connection pool.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Default Value: 1

� shrinking-enabled (optional)—indicates whether or not the connection pool
should have unused managed connections reclaimed as a means to control
system resources.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Value Range: true | false

Default Value: true
A-16 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml Element Descriptions
� shrink-period-minutes (optional)—identifies the amount of time the
connection pool manager will wait between attempts to reclaim unused managed
connections.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Default Value: 15

� connection-cleanup-frequency (optional)—identifies the amount of time
the connection pool management will wait between attempts to destroy
connection handles which have exceeded their usage duration. This element,
used in conjunction with connection-duration-time, prevents connection leaks
when an application may have not closed a connection after completing usage.

Failure to specify this value will result in Weblogic using its defined default
value.

Default Value: -1

� connection-duration-time (optional)—identifies the amount of time a
connection can be active. This element, used in conjunction with
connection-cleanup-frequency, prevents leaks when an application may have not
closed a connection after completing usage.

Failure to specify this value will result in Weblogic using its defined default
value.

Default Value: -1

� logging-enabled (optional)—indicates whether or not the log writer is set for
either the ManagedConnectionFactory or ManagedConnection. If this
element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be sent to the file
specified by the log-filename element.

Failure to specify this value will result in WebLogic Server using its defined
default value.

Value Range: true | false

Default Value: false

� log-filename (optional)—specifies the name of the log file from which output
generated from the ManagedConnectionFactory or a ManagedConnection is
sent.
Programming the WebLogic J2EE Connector Architecture A-17

A weblogic-ra.xml Deployment Descriptor Elements
The full address of the filename is required.

� map-config-property (optional, zero or more)—identifies a configuration
property name and value that corresponds to an ra.xml config-entry
element with the corresponding config-property-name. At deployment time,
all values present in a map-config-property specification will be set on the
ManagedConnectionFactory. Values specified via a map-config-property will
supersede any default value that may have been specified in the corresponding
ra.xml config-entry element.

� map-config-property-name (optional)—identifies a name that corresponds to
an ra.xml config-entry element with the corresponding
config-property-name.

� map-config-property-value (optional)—identifies a value that corresponds
to an ra.xml config-entry element with the corresponding
config-property-name.

� security-principal-map (optional)—provides a mechanism to define
appropriate resource-principal values for resource adapter and EIS
authorization processing, based upon the known WebLogic run time
initiating-principal. This map allows for the specification of a defined set
of initiating principals and the corresponding resource principal’s username and
password that should be used when allocating managed connections and
connection handles.

A default resource-principal can be defined for the connection factory via
the map. By specifying an initiating-principal value of ‘*’ and a
corresponding resource-principal, the defined resource-principal will
be utilized whenever the current identity is not matched elsewhere in the map.

This is an optional element, however, it must be specified in some form if
container managed sign-on is supported by the resource adapter and used by any
client.

In addition, the deployment-time population of the connection pool with
managed connections will be attempted using the defined ‘default’ resource
principal if one is specified.

� map-entry—identifies an entry in the security-principal-map.

� initiating-principal (optional, zero or more)

� resource-principal (optional)—can be defined for the connection factory
via the security-principal-map. By specifying an initiating-principal
A-18 Programming the WebLogic J2EE Connector Architecture

weblogic-ra.xml Element Descriptions
value of ‘*’ and a corresponding resource-principal, the defined
resource-principal will be utilized whenever the current identity is not
matched elsewhere in the map.

� resource-username (optional)—username identified with the
resource-principal. Used when allocating managed connections and
connection handles.

� resource-password (optional)—password identified with the
resource-principal. Used when allocating managed connections and
connection handles.
Programming the WebLogic J2EE Connector Architecture A-19

A weblogic-ra.xml Deployment Descriptor Elements
A-20 Programming the WebLogic J2EE Connector Architecture

CHAPTER
B Workarounds for
Common BEA J2EE
Connector Architecture
Exceptions

This document provides solutions for two common WebLogic J2EE connector
exceptions and provides workarounds for these exceptions:

� “Problem Granting Connection Request to a ManagedConnectionFactory That
Does Not Exist in Connection Pool” on page -2

� “ClassCastException” on page -7

� “ResourceAllocationException” on page -8
Programming the WebLogic J2EE Connector Architecture B-1

B Workarounds for Common BEA J2EE Connector Architecture Exceptions
Problem Granting Connection Request to a
ManagedConnectionFactory That Does Not
Exist in Connection Pool

The ConnectionPoolManager’s getConnection(ManagedConnectionFactory
mcf, ConnectionRequestInfo cxInfo) method throws this exception internal to
WebLogic Server when it is unable to find a ConnectionPool associated with a given
ManagedConnectionFactory.

What Causes This Exception? How Can it Be Resolved?

Two causes exist for this exception, as well as one related behavior, which can be
confusing:

� Cause Number One: Client-modified ManagedConnectionFactory is Not Hashed
on the Server Such That It Can Be Found Again on Subsequent Lookups

� Cause Number Two: A Client is Attempting to Use a Resource Adapter from a
Remote JVM

� Related Behavior: Client-side Mutators Do Not Work as Expected

Cause Number One: Client-modified
ManagedConnectionFactory is Not Hashed on the Server
Such That It Can Be Found Again on Subsequent Lookups

This issue is caused by a combination of the basic behavior of Hashtables in Java and
how Serializable objects work with JNDI.
B-2 Programming the WebLogic J2EE Connector Architecture

Problem Granting Connection Request to a ManagedConnectionFactory That Does
Hashtables allow arbitrary key-value pairs to be stored in memory and found quickly
later using the key from the key-value pair. When a key and its associated object is
written into a Java Hashtable, the key’s hashCode() method is invoked to obtain an
integer value that is not guaranteed to be unique but is guaranteed to be well distributed
with respect to all of the Hashtable keys.

This hashing occurs once when an object is written into the Hashtable. The server
writes this object into the data structure with the purpose of later using this same
derived integer value repeatedly as a method for finding a small candidate set of
matching keys quickly.

When the server performs a subsequent lookup into the Hashtable, it hashes the
requested key using its overridden hashCode() method or the one found in
java.lang.Object. Note that the default hashCode() method simply returns the
memory address of the object whose hashCode() method was invoked. It then
obtains the set of keys in the backing data structure whose hashed values match the
lookup key’s hashed key value. Then, the implementation iterates through this
candidate list and determines whether there is an appropriate match by executing the
following code:

for (Entry e = tab[index] ; e != null ; e = e.next) {

 if ((e.hash == hash) && e.key.equals(key)) {

 return e.value;

 }

}

return null;

This code compares the lookup key to each candidate list by calling the equals()
method on each candidate key. If it finds a match, it returns the value. If it falls through
the loop without finding a match, it returns a null value.

Consider the object interactions in the deployment of a resource adapter and a JNDI
lookup of a resource adapter’s ConnectionFactory implementation when the
application server only supports Serializable JNDI entries (as opposed to Referencable
entries). On deployment of a resource adapter, the application server creates an
instance of the ManagedConnectionFactory associated with that resource adapter. The
server further associates its ConnectionManager implementation with the
ManagedConnectionFactory it just created.
Programming the WebLogic J2EE Connector Architecture B-3

B Workarounds for Common BEA J2EE Connector Architecture Exceptions
Next, the ManagedConnectionFactory creates an instance of the ConnectionFactory
and the ConnectionFactory associates itself with its ManagedConnectionFactory
(MCF). At this point, the critical triad of resources is set up. Internally, this link is
represented as a pair of Hashtables—one that maps JNDI names to MCFs
(jndiToMCFMap) and another that maps MCFs to internal representations of
connection pools (poolTable). The ConnectionManager is implicit to the application
server so no explicit mapping is required.

The ConnectionFactory (what a resource adapter’s client sees) has an MCF, and the
MCF has a ConnectionManager implementation courtesy of the application server
(through the implicit mapping mentioned above). Finally, the ConnectionFactory (the
client-facing object) is bound into JNDI. This is where the confusion may occur.

The current WebLogic Server JNDI implementation supports
java.io.Serializable objects but not javax.naming.Referenceable ones.
When Referenceable objects are bound to JNDI, a reference (containing an endpoint)
to the actual object is actually bound to JNDI. The binding does not actually transport
the object into the naming tree. When the server binds Serializable objects into the
JNDI tree, the object (and all of its referenced Serializable objects) is literally
serialized into the tree.

When a client performs a lookup() on its naming context for the ConnectionFactory,
the same serialization process happens in reverse. The ConnectionFactory
implementation is serialized into the address space of the client. Even if the client is
running in the same address space as the JNDI implementation (the server), this
serialization takes place. The application component (client) now has a copy of the
actual object graph in the JNDI tree.

Note the MCF is serialized to the client as part of the object graph. Suppose a resource
adapter’s MCF contains fields used to manage the state of the MCF. Further, assume
that the MCF’s overridden hashCode() and equals() methods take these fields into
account. For an example, consider a debug flag.

Note that when the resource adapter is deployed, an entry is made into the
jndiToMCFMap Hashtable. Recalling how Hashtables work in Java, the hash is
calculated using all fields, including our debug flag since those fields are used in the
hashCode() method. When a client performs a JNDI lookup(), it obtains its own
copy of the CF (and its MCF).

Next, the client sets the debug flag to true and calls getConnection() on the CF.
The CF then calls allocateConnection() on the CM with the MCF and the
ConnectionRequestInfo objects as parameters. The CM attempts to look up the MCF
in its poolTable Hashtable using the MCF as the key for the lookup. The Java
B-4 Programming the WebLogic J2EE Connector Architecture

Problem Granting Connection Request to a ManagedConnectionFactory That Does
Hashtable implementation hashes the MCF (including the debug flag) to obtain a
candidate list of matches in the poolTable Hashtable. Since the internal state of the
MCF has changed between the original deploy-time put into the Hashtable and this
subsequent lookup, the MCF is not found and the following exception is logged:

Problem granting connection request to a
ManagedConnectionFactory which does not exist in connection pool.
Check your MCF's hashcode().

Preventing the Manifestation of This Exception

The simplest way to prevent this exception is to have WebLogic Server support JNDI
objects that implement the javax.naming.Referenceable interface. This requires
no additional work on the part of the resource adapter developer. This functionality is
planned for the next major release of the product.

In the meantime, developers can take a number of steps to avoid this exception,
depending on the resource adapter’s MCF state requirements. The easiest solution is
to implement the hashCode() and equals() methods for the resource adapter’s
MCF. Of course, if you—based on the information in this document—choose to solve
the problem in another resource adapter-specific way, that is fine too.

The guideline for implementing hashCode() and equals() is that these methods
should only consider the internal state that is absolutely necessary to uniquely identify
the resource adapter instance from any other resource adapter instances running in the
server. For example, if a resource adapter is built to talk to a mainframe TP instance,
then it might consider its host IP address, port, and region in its hashCode() and
equals() methods. It is also desirable to have something else in the method that can
break a tie between two different types of resource adapters that happen to use the same
configuration data. This could be a name, class type, and so on.
Programming the WebLogic J2EE Connector Architecture B-5

B Workarounds for Common BEA J2EE Connector Architecture Exceptions
Cause Number Two: A Client is Attempting to Use a
Resource Adapter from a Remote JVM

Cause number two for this exception is a simpler case. The J2EE Connector
Architecture is a model that is—at least for the time being—not intended to be
accessed remotely. None of the defined interfaces are remote, and the architected
system contracts presume a local relationship between an MCF and a
ConnectionManager.

Having said that, the fact that WebLogic Server’s J2EE Connector Architecture
implementation reports an attempt to access a ConnectionFactory remotely as being a
problem with an MFC’s hashCode() implementation is a bug and will be fixed in an
upcoming release. There will be a better error message.

Related Behavior: Client-side Mutators Do Not Work as
Expected

Another side effect of the lack of a Referenceable JNDI implementation is that since
there are two copies of the MCF during a client interaction, client-side changes made
to an MCF are not reflected on the server side.

Note that during deployment of a resource adapter, WebLogic Server binds an object
graph into the JNDI tree. Also, when a client looks up this graph with
Naming.lookup(), it obtains a copy of this graph that is serialized—not the original.
If a client changes the internal state of an MCF, those changes are not reflected on the
server side. Using the debug flag again, if a client executes a setDebug(true)
method, that change to the state (debug) of the MCF is local to that client’s copy of the
MCF and the server-side copy will not share the same state as the client.
B-6 Programming the WebLogic J2EE Connector Architecture

ClassCastException
ClassCastException

Currently, the WebLogic J2EE Connector Architecture container uses a custom
classloader to allow for some extended features related to loading and finding classes
used by resource adapters. One problem with the current implementation is that
referencing resource adapter classes from WebLogic Server containers such as the
Web (servlet/JSP) or EJB containers does not behave intuitively. When performing
type comparison and casting, the JVM prepends the classloader that loaded the class
to the class type (in other words, com.acb.ra.MyCF is represented internally as
RARClassloader@abcdef:com.acb.ra.MyCF). For detailed information, see the
Java Language Specification.

The Web and EJB containers use a classloader that is inherited from a WebLogic
Server classloader, so it works well with other WebLogic Server resources and is
capable of hot deploy and other features. The RARClassLoader—used by the J2EE
Connector Architecture—inherits from the Java classloader and is not in the
WebLogic hierarchy. This will be fixed at the earliest possible opportunity.

When an application component (running in the Web or EJB container) looks up a
ConnectionFactory in JNDI, the returned object is an instance of the object created by
the RARClassloader (RARClassloader@abcdef.com.acb.ra.MyCF). The object
the application component expects is actually
WebLogicClassloader@fedcba:com.acb.ra.MyCF. When you try to assign a
variable or cast, a ClassCastException is thrown.

Preventing the Manifestation of This Exception

The most reliable way to avoid this error is to place the resource adapter’s classes in
the WebLogic Server classpath by adding the path to the resource adapter’s classes into
the CLASSPATH setting in the startup script for WebLogic Server. This disables the
hot deploy and redeploy features that WebLogic Server provides. Again, we recognize
that this is not desirable and intend to fix it as soon as possible.
Programming the WebLogic J2EE Connector Architecture B-7

B Workarounds for Common BEA J2EE Connector Architecture Exceptions
ResourceAllocationException

BlackBoxNoTx > ResourceAllocationException of
javax.resource.spi.EISSystemException: SQLException: No suitable driver on
createManagedConnection.

The BlackBox resource adapter is a resource adapter that provides a JDBC connection
to any database. To avoid this exception, follow these steps to configure this resource
adapter to point to a particular database:

1. Make sure that a JDBC connection pool is set up in WebLogic Server for your
database.

2. In that RAR, set the CONNECTION_URL configuration property, in the
weblogic-ra.xml file, to the appropriate JDBC pool that you configured in
step 1 above.

3. Make sure that the database’s JAR file is specified on the WebLogic Server
classpath.

BEA ships a BlackBox sample that is configured to use Cloudscape as part of the
WebLogic 6.1 kit. Refer to the BlackBox sample for an example on how to set up this
configuration.
B-8 Programming the WebLogic J2EE Connector Architecture

Symbols
.ear file

including a resource adapter in 7-10
.rar file 1-4

automatic generation of the weblogic-
ra.xml file 5-7

creating a new 5-4
directory format 5-9
modifying an existing 5-5
packaging 5-10
specifying transaction levels 3-3

A
Administration Console

deploying resource adapters 7-3
monitoring connection pools 4-6
undeploying resource adapters 7-4
updating resource adapters 7-5
using the deployment descriptor editor

A-4
viewing deployed resource adapters 7-4

application.xml file 7-11
application-managed sign-on 2-2
applications directory

deploying resource adapters from 7-6
architecture 1-7

B
black box example 1-10

C
capacity-increment element 4-4, A-16
client considerations 8-1

connection and ConnectionFactory 8-2
obtaining a connection in a managed

application 8-3
obtaining a connection in a non-

managed application 8-5

obtaining the ConnectionFactory 8-3
client-JNDI interaction 8-3
common client interface (CCI) 1-2, 1-6, 1-8,

8-2
components

common client interface (CCI) 1-6, 1-8
packaging and deployment interface 1-9
packaging and deployment interfaces 1-

6
system-level contracts 1-6, 1-7
WebLogic J2EE Connector Architecture

1-6
configuration 5-1

automatic generation of the weblogic-
ra.xml file 5-7

configuring the ra-link-ref element 5-8
creating a new resource adapter 5-4
modifying an existing resource adapter

5-5
packaging guidelines 5-9
packaging resource adapters 5-10
password converter tool 5-15
ra.xml file 5-11
security principal map 5-13
transaction level type 5-17
weblogic-ra.xml file 5-11

connection
configuring properties 4-2
leak detection 4-5
obtaining in a non-managed application

8-5
connection management 1-8, 4-1, 6-2, 8-2

configuring connection properties 4-2
controlling connection pool growth 4-4
controlling system resource usage 4-5
detecting connection leaks 4-5
error logging 4-2
extended features 4-3
tracing facility 4-2

connection pool
controlling growth 4-4
Programming the WebLogic J2EE Connector Architecture I-1

monitoring using the Console 4-6
connection-cleanup-frequency element 4-5,

A-17
connection-duration-time element 4-5, A-17
ConnectionFactory 8-2

obtaining (client-JNDI interaction) 8-3
obtaining a connection in a managed

application 8-3
connection-factory-name element 5-7, A-15
ConnectionManager 8-5
container 1-2
container-managed sign-on 2-2

using 2-4
customer support contact information ix

D
default resource principal 2-5
deployment 6-5

options, for resource adapters 7-2
overview 7-2
resource adapter names 7-3
resource adapters 7-1
undeploying resource adapters using the

Administration Console 7-4
undeploying resource adapters using

weblogic.deploy 7-9
updating deployed resource adapters

using weblogic.deploy 7-9
updating resource adapters using the

Administration Console 7-5
using the Administration Console 7-3
using the applications directory 7-6
using weblogic.deploy 7-8

deployment descriptors 5-9
basic conventions for manually editing

A-2
DOCTYPE header information A-2
editing A-4
weblogic-ra.xml elements A-1

description element A-15

diagram of WebLogic J2EE Connector
Architecture 1-7

DOCTYPE entry 7-11
document type definition (DTD)

validation A-3
weblogic-ra.xml file A-6

documentation, where to find it viii

E
enterprise applications

including a resource adapter in 7-10
enterprise information system (EIS) 1-3
error logging 4-2
example, WebLogic J2EE Connector

Architecture 1-10
extended connection management

features 4-3

H
hierarchy diagram

weblogic-ra.xml elements A-13

I
implementation overview

WebLogic J2EE Connector Architecture
1-5

initial-capacity element 4-4, A-16
initiating-principal element 2-4, 5-14, A-18

J
J2EE connector (see resource adapter) 1-3
J2EE Connector Specification, Version 1.0,

Proposed Final Draft 2 2-3
jar file 5-10
jndi-name element A-15
JTA XAResource-based contract 3-4
I-2 Programming the WebLogic J2EE Connector Architecture

L
local transaction

management contract 3-4
support 3-2, 3-4

log-filename element 4-2, A-17
logging-enabled element 4-2, A-17

M
managed environment 1-3
ManagedConnections

minimizing run-time performance costs
4-3

manually editing XML deployment files A-2
map-config-property element 4-2, A-18
map-config-property-name element 4-2, A-

18
map-config-property-value element 4-2, A-

18
map-entry element A-18
max-capacity element 5-8, A-16
maximum-capacity element 4-4
monitoring

connection pools 4-6

N
native libraries 5-10
native-libdir element A-15
no transaction support 3-4
non-managed environment 1-4

O
overview, WebLogic J2EE Connector

Architecture 1-1

P
packaging 6-5

and deployment interface 1-6, 1-9

guidelines 5-9
password converter tool 2-5

instructions for using 5-15
security hint 5-16
syntax 5-15

pool-params element A-16
printing product documentation viii

R
ra.xml file 1-4, 4-2

configuring 5-11
DOCTYPE header A-3
specifying the transaction level support

3-3
ra-link-ref element 5-8, A-15
resource adapters 1-4

connection management 6-2
creating a new .rar 5-4
creating, main steps 5-3
deploying using the Administration

Console 7-3
deploying with weblogic.deploy 7-8
deployment 7-1
deployment descriptors 5-9
deployment names 7-3
deployment options 7-2
deployment overview 7-2
deployment using the applications

directory 7-6
including in an enterprise application

(.ear file) 7-10
jar files 5-10
modifying an existing 5-5
modifying, main steps 5-3
native libraries 5-10
overview 5-3
packaging 5-10
packaging and deployment 6-4
packaging and deployment restrictions

6-4
Programming the WebLogic J2EE Connector Architecture I-3

security management 6-3
structure 5-9
transaction management 6-3
updating deployed, using

weblogic.deploy 7-9
updating using the Administration

Console 7-5
viewing deployed, using the

Administration Console 7-4
viewing deployed, using

weblogic.deploy 7-8
writing J2EE Connector Architecture-

compliant resource adapters 6-
1

resource manager 1-4
resource-password element A-19
resource-principal element 2-4, 5-14, A-18

default 2-5
resource-username element A-19

S
security 2-1

application-managed sign-on 2-2
configuring the security principal map 5-

13
container-managed sign-on 2-2
hint 5-16
management 1-8, 6-3
password converter tool 2-5, 5-15
principal map 2-3

security principal map 2-4
configuring 5-13
default resource principal 2-5
example entries 5-14
using container-managed sign-on 2-4

security-principal-map element 5-13, A-18
service provider interface (SPI) 1-4
shrinking-enabled element A-16
shrink-period-minutes element A-17
Sun Microsystems J2EE Platform

Specification, Version 1.3 1-5
support

technical ix
system contract 1-4
system resource, controlling usage 4-5
system-level contracts 1-6, 1-7

security management 1-8
transaction management 1-8

T
terminology 1-2
tracing facility 4-2
transaction levels

configuring 5-17
local transaction support 3-2
local transactions 3-4
no transaction support 3-3, 3-4
specifying in the .rar configuration 3-3
XA transaction support 3-2, 3-4

transaction management 1-8, 3-1, 6-3
contract 3-3
supported transaction levels 3-2

U
undeployment 7-4

using weblogic.deploy to undeploy
deployed resource adapters 7-9

W
WebLogic J2EE Connector Architecture 1-3

automatic generation of the weblogic-
ra.xml file 5-7

black box example 1-10
client considerations 8-1
common client interface (CCI) 8-2
components 1-6
configuration 5-1
connection management 4-1
I-4 Programming the WebLogic J2EE Connector Architecture

ConnectionFactory 8-2
diagram 1-7
implementation overview 1-5
overview 1-1
packaging guidelines 5-9
password converter tool 2-5
security 2-1
security principal map 2-3
terminology 1-2
transaction management 3-1
writing compliant resource adapters 6-1

WebLogic Server
extended connection management

features 4-3
weblogic.deploy 7-8

undeploying resource adapters 7-9
updating deployed resource adapters 7-9
viewing deployed resource adapters 7-8

weblogic-connection-factory-dd element A-
15

weblogic-ra.xml file 1-5, 4-2, A-1
automatic generation of 5-7
configurable entities 5-12
configuring 5-11
default values 5-7
DOCTYPE header A-3
document type definition (DTD) A-6
element descriptions A-15
element hierarchy diagram A-13
manually editing XML deployment files

A-2

X
XA transaction support 3-2, 3-4
XML deployment files, manually editing A-2
Programming the WebLogic J2EE Connector Architecture I-5

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	1. Overview of the WebLogic J2EE Connector Architecture
	2. Security
	3. Transaction Management
	4. Connection Management
	5. Configuration
	6. Writing J2EE Connector Architecture- Compliant Resource Adapters
	7. Resource Adapter Deployment
	8. Client Considerations
	A. weblogic-ra.xml Deployment Descriptor Elements
	B. Workarounds for Common BEA J2EE Connector Architecture Exceptions

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the WebLogic J2EE Connector Architecture
	WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality
	J2EE Connector Architecture Terminology
	Overview of the BEA WebLogic J2EE Connector Architecture Implementation
	J2EE Connector Architecture Components
	Figure 1�1 J2EE Connector Architecture
	System-level Contracts
	Common Client Interface (CCI)
	Packaging and Deployment
	Figure 1�2 Packaging and Deployment

	Black Box Example

	2 Security
	Container-Managed and Application-Managed Sign-on
	Application-Managed Sign-on
	Container-Managed Sign-on
	Security Principal Map
	Using Container-Managed Sign-On
	Default Resource Principal

	Password Converter Tool

	3 Transaction Management
	Supported Transaction Levels
	Specifying the Transaction Levels in the .rar Configuration
	Transaction Management Contract

	4 Connection Management
	Error Logging and Tracing Facility
	Configuring Connection Properties
	BEA WebLogic Server Extended Connection Management Features
	Minimizing the Run-Time Performance Cost Associated with Creating ManagedConnections
	Controlling Connection Pool Growth
	Controlling System Resource Usage
	Detecting Connection Leaks

	Monitoring Connection Pools Using the Console
	1. Select a connector to monitor in the left pane of the Console.
	2. Right-click with your mouse, and select Monitor all Connector Connection Pool Runtimes from th...

	5 Configuration
	Resource Adapter Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	Resource Adapter Deployment Descriptor Editor
	XML Editor
	Configuring Resource Adapters
	Overview of the Resource Adapter
	Creating and Modifying Resource Adapters: Main Steps
	Creating a New Resource Adapter (.rar)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Package the Java classes into a Java archive (.jar) file.
	4. Create the resource adapter-specific deployment descriptors:
	5. Create a resource adapter archive file (.rar file).
	a. The first step is to create an empty staging directory.
	b. Place the .rar file containing the resource adapter Java classes in the staging directory.
	c. Then, place the deployment descriptors in a subdirectory called META-INF.
	d. Next, create the resource adapter archive by executing a jar command like the following in the...
	6. Deploy the .rar resource adapter archive file on WebLogic Server or include it in an enterpris...

	Modifying an Existing Resource Adapter (.rar)
	1. Create a temporary directory to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter in WebLogic Server. For more information on deploying a resource a...

	Automatic Generation of the weblogic-ra.xml File
	Listing 5-1 weblogic-ra.xml Default Values

	Configuring the ra-link-ref Element

	Packaging Guidelines
	Listing 5-2 Resource Adapter Structure

	Packaging Resource Adapters (.rar)
	1. Create a temporary staging directory.
	2. Compile or copy the resource adapter Java classes into the staging directory.
	3. Create a .jar file to store the resource adapter Java classes. Add this .jar file to the top l...
	4. Create a META-INF subdirectory in the staging directory.
	5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	7. When all of the resource adapter classes and deployment descriptors are set up in the staging ...

	Configuring the ra.xml File
	Configuring the weblogic-ra.xml File
	Configuring the weblogic-ra.xml File
	Configurable weblogic-ra.xml Entities

	Configuring the Security Principal Map
	Listing 5-3 Example <initiating-principal> and <resource-principal> Entry

	Using the Password Converter Tool
	How to Execute
	Listing 5-4 Converter Tool Syntax

	Security Hint

	Configuring the Transaction Level Type

	6 Writing J2EE Connector Architecture- Compliant Resource Adapters
	Connection Management
	Security Management
	Transaction Management
	Packaging and Deployment
	Restrictions
	Packaging
	Deployment

	7 Resource Adapter Deployment
	Resource Adapter Deployment Overview
	Deployment Options
	Deployment Descriptor
	Resource Adapter Deployment Names
	Using the Administration Console
	Deploying Resource Adapters Using the Administration Console
	1. Start WebLogic Server.
	2. Open the Administration Console.
	3. Open the Domain you will be working in.
	4. Under Deployments, select Connectors in the left panel. The Connector Deployments table displa...
	5. Select Configure a new Connector Component...
	6. Enter the following information:
	7. Select the Create button.
	8. Note that the new resource adapter now appears in the Deployments table in the right pane.

	Viewing Deployed Resource Adapters Using the Administration Console
	1. In the Administration Console under Deployments, select Connectors (Resource Adapters) in the ...
	2. View a list of deployed Connectors in the Connector Deployments table in the right pane.

	Undeploying Deployed Resource Adapters Using the Administration Console
	1. In the Administration Console under Deployments, select Connectors (Resource Adapters) in the ...
	2. In the Connector Deployments table, select the connector to undeploy.
	3. Under the Configuration tab, de-select the Deployed checkbox.
	4. Click Apply.

	Updating Deployed Resource Adapters Using the Administration Console
	1. In the Administration Console under Deployments, select Connectors (Resource Adapters) in the ...
	2. In the Connector Deployments table, select the connector to update.
	3. Update the Connector Name and Deployed status as needed.
	4. Click Apply.

	Using the Applications Directory
	1. Copy the .rar archive or the exploded directory containing a resource adapter to the applicati...
	Listing 7-1 myResourceAdapter
	Listing 7-2 rar File
	2. Start WebLogic Server. When you boot WebLogic Server, it automatically attempts to deploy the ...
	3. Launch the Administration Console.
	4. In the right pane, click Resource Adapter Deployments.
	5. Verify that the resource adapter is listed and that the Deployed box is selected.

	Using weblogic.deploy
	Viewing Deployed Resource Adapters Using weblogic.deploy
	Undeploying Deployed Resource Adapters Using weblogic.deploy
	Updating Deployed Resource Adapters Using weblogic.deploy

	Including a Resource Adapter in an Enterprise Application (.ear file)
	1. Place the .rar file inside the .ear archive just as you would a .war or .jar archive.
	2. Create a valid application.xml and place it in the META-INF directory of the .ear archive.
	Listing 7-3 DOCTYPE Entry
	Listing 7-4 application.xml File
	3. Deploy the Enterprise Application in WebLogic Server.

	8 Client Considerations
	Common Client Interface (CCI)
	ConnectionFactory and Connection
	Obtaining the ConnectionFactory (Client-JNDI Interaction)
	Obtaining a Connection in a Managed Application
	1. The application assembler or component provider specifies the connection factory requirements ...
	2. The person deploying the resource adapter sets the configuration information for the resource ...
	3. The application server uses a configured resource adapter to create physical connections to th...
	4. The application component looks up a connection factory instance in the component’s environmen...
	Listing 8-1 JNDI Lookup
	5. The application component invokes the getConnection method on the connection factory to obtain...
	6. The application component uses the returned connection to access the underlying EIS.
	7. After the component finishes with the connection, it closes the connection using the close met...
	8. If an application component fails to close an allocated connection after its use, that connect...

	Obtaining a Connection in a Non-Managed Application
	1. The application client calls a method on the javax.resource.cci.ConnectionFactory instance (re...
	2. The ConnectionFactory instance delegates the connection request from the application to the de...
	3. The ConnectionManager instance creates a new physical connection to the underlying EIS instanc...
	4. The ManagedConnectionFactory instance handles the createManagedConnection method by creating a...
	5. The ConnectionManager instance calls the ManagedConnection.getConnection method to get an appl...
	6. The ConnectionManager instance returns the connection handle to the ConnectionFactory instance...

	A weblogic-ra.xml Deployment Descriptor Elements
	Manually Editing XML Deployment Files
	Basic Conventions
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	Using the Console Deployment Descriptor Editor to Edit Files
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors, follow thes...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors, follow ...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the resource adapter deployment descriptors, click the ...
	10. Click Validate if you want to ensure that the entries in the resource adapter deployment desc...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	weblogic-ra.xml DTD
	Listing A-1 weblogic-ra.xml DTD

	weblogic-ra. xml Element Hierarchy Diagram
	Listing A-2 weblogic-ra.xml Element Hierarchy

	weblogic-ra.xml Element Descriptions

	B Workarounds for Common BEA J2EE Connector Architecture Exceptions
	Problem Granting Connection Request to a ManagedConnectionFactory That Does Not Exist in Connecti...
	What Causes This Exception? How Can it Be Resolved?
	Cause Number One: Client-modified ManagedConnectionFactory is Not Hashed on the Server Such That ...
	Preventing the Manifestation of This Exception
	Cause Number Two: A Client is Attempting to Use a Resource Adapter from a Remote JVM
	Related Behavior: Client-side Mutators Do Not Work as Expected

	ClassCastException
	Preventing the Manifestation of This Exception
	ResourceAllocationException
	1. Make sure that a JDBC connection pool is set up in WebLogic Server for your database.
	2. In that RAR, set the CONNECTION_URL configuration property, in the weblogic-ra.xml file, to th...
	3. Make sure that the database’s JAR file is specified on the WebLogic Server classpath.
	Symbols
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

