'r' @,

c !
L ea

BEA
WebLogic Server

Programming
WebLogic JNDI

BEA WebLogic Server Version 6.1
Document Date: November 17, 2003

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic JNDI

Document Edition Document Date Software Version

N/A November 17, 2003 BEA WebL ogic Server Version 6.1

About This Document v

Audiencev

e-docs Web Sitev

How to Print the Document vi

Contact Us! vi

Documentation Conventions vii

Introduction to WebL ogic JNDI 1-1

Overview of INDI in WebL ogic Server 1-1

Programming with WebL ogic JNDI 2-1

Using WebL ogic JNDI from a Java Client 2-1

Setting Up INDI Environment Properties for the Initial Context 2-2
Creating a Context Using aHash Table 2-4

Creating a Context Using a WebL ogic Environment Object 2-4
Creating a Context from a Server-Side Object 2-6

JNDI Contexts and Threads 2-6

Using the Context to Look Up a Named Object 2-10

Using a Named Object to Get an Object Reference 2-11

Closing the Context 2-11

Using WebL ogic JNDI in a Clustered Environment 2-12
Clustering J2EE Services 2-12

Making Custom Objects Available to a WebL ogic Server Cluster 2-13
Data Caching Design Pattern 2-15

Exactly-Once-Per-Cluster Design Pattern 2-16

Using WebL ogic INDI from a Client in a Clustered Environment 2-16
Using WebL ogic JINDI Between WebL ogic Domains 2-18

About This Document

This document explains how to program with the INDI feature provided with the BEA
WebL ogic Server™ product.

This document is organized as follows:

m Chapter 1, “Introduction to WebL ogic INDI,” provides an overview of the INDI
capabilitiesin WebL ogic Server.

m Chapter 2, “Programming with WebL ogic JNDI,” explains how to program with
the WebL ogic INDI functionality in Javaclient applications.

Audience

This document is intended for programmers who are devel oping applications with
WebL ogic Server and want to use the INDI feature.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

Programming WebL ogic JNDI v

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Vi

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionalswho create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:;
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

Programming WebL ogic JNDI

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneoudly.

italics

Emphasis and book titles.

nonospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

i mport java.util.Enuneration;
chrmod u+w *

conf i g/ exanpl es/ appl i cati ons
.java

config. xm

f1 oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1

A set of choicesin asyntax line.

Programming WebL ogic JNDI

vii

viii

Convention

Usage

[]

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic JNDI

CHAPTER

1 Introduction to
WebLogic JNDI

This section presents an overview of the INDI implementation in WebL ogic Server.

Overview of JNDI in WebLogic Server

In an enterprise, naming services provideameansfor your application to locate objects
on the network. A naming service associates names with objects and finds objects
based on their given names. (The RMI registry isagood example of anaming service.)

The Java Naming and Directory Interface (JNDI) is an application programming
interface (API) that provides naming servicesto Javaapplications. INDI isan integral
component of Sun Microsystems Inc.’s Java 2 Enterprise Edition (J2EE) technology.

JNDI is defined to be independent of any specific naming or directory service
implementation. It supports the use of a single method for accessing various new and
existing services.

The JNDI support provided by WebL ogic Server is based on the standard INDI API
classes defined by Sun Microsystems, Inc. This support allows any service-provider
implementation to be plugged into the INDI framework using the standard service
provider interface (SPI) conventions. In addition, INDI allows Java applicationsin
WebL ogic Server to access external directory servicessuch asLDAPin astandardized
fashion, by plugging in the appropriate service provider. WebL ogic Server supports
version 1.2.1 of the INDI API.

The WebL ogic Server implementation of JINDI supplies methods that:

Programming WebL ogic JNDI 1-1

http://www.javasoft.com/products/jndi/index.html

1

Introduction to WebL ogic JNDI

1-2

m Give clients access to the WebL ogic name services
m Make abjects available in the WebL ogic namespace
m Retrieve objects from the WebL ogic namespace

Each WebL ogic Server cluster is supported by areplicated cluster-wide INDI tree that
provides access to both replicated and pinned RMI and EJB objects. While the INDI
tree representing the cluster appears to the client as a single global tree, the tree
containing the cluster-wide servicesis actually replicated across each WeblL ogic
Server in the cluster. For more information, see Using WebL ogic JNDI in a Clustered
Environment.

The integrated naming service provided by WebL ogic Server INDI may be used by
many other WebL ogic services. For example, WebLogic RMI can bind and access
remote objects by both standard RMI methods and INDI methods.

In addition to the standard Sun Microsystems Inc. interfaces for INDI, WebL ogic
Server provides its own implementation,

webl ogi c. j ndi . WL.I ni ti al Cont ext Fact ory, that uses the standard JNDI
interfaces.

In your application code, you need not instantiate this class directly. Instead, you can
usethe standard j avax. nami ng. I ni ti al Cont ext classand set the appropriate hash
table properties, as documented in the section Setting Up JINDI Environment
Properties for the Initial Context. All interaction is done through the

j avax. nam ng. Cont ext interface, as described in the INDI Javadoc.

For instructions on using the WebL ogic INDI API for client connections, see
Programming with WebL ogic JNDI.

Programming WebL ogic JNDI

CHAPTER

2 Programming with
WebLogic JNDI

The following sections describe programming with WebL ogic JNDI including:

m “Using WebLogic JNDI from a Java Client” on page 2-1

m “Setting Up INDI Environment Properties for the Initial Context” on page 2-2
m “Using the Context to Look Up a Named Object” on page 2-10

m “Using aNamed Object to Get an Object Reference” on page 2-11

m “Closing the Context” on page 2-11

m “Using WebLogic JNDI in a Clustered Environment” on page 2-12

m “Using WebLogic INDI Between WebL ogic Domains’ on page 2-18

Using WebLogic JNDI from a Java Client

The WebL ogic Server INDI Service Provider Interface (SPI) provides an

I nitial Context implementation that allows remote Java clients to connect to
WebL ogic Server. The client can specify standard INDI environment properties that
identify a particular WebL ogic Server deployment and related connection properties
for logging in to WebL ogic Server.

Programming WebL ogic JNDI 2-1

2

Programming with WebLogic JNDI

To participate in a session with WebL ogic Server, aJava client must be able to get an
object reference for aremote object and invoke operations on the object. To
accomplish this, the client application code must perform the following procedure:

1. Set up INDI environment propertiesfor thel ni ti al Cont ext .
2. Establishan|niti al Cont ext with WebLogic Server.
3. Usethe Context to look up a named object in the WebL ogic Server namespace.

4. Usethe named object to get a reference for the remote object and invoke
operations on the remote object.

5. Complete the session.

The following sections discuss INDI client operations for connecting to a specific
WebL ogic Server. For information about using INDI in acluster of WebL ogic Servers,
see“Using WebL ogic INDI from aClient in a Clustered Environment” on page 2-16.

Before you can use JINDI to access an object in a WebL ogic Server environment, you
must |oad the object into the WebL ogic Server JNDI tree. For instructions on loading
objects in the INDI tree, see Managing JNDI.

Setting Up JNDI Environment Properties for
the InitialContext

2-2

Thefirst task that must be performed by any Java client application isto create
environment properties. Thel ni ti al Cont ext factory uses various propertiesto
customizethel ni ti al Cont ext for a specific environment. Y ou can set these
properties either by using a hash table or the set () method of aWebL ogic
Environment object. These properties, which are specified name-to-value pairs,
determine how the W.I ni t i al Cont ext Fact ory creates the Context.

The following properties are used to customize the | ni ti al Cont ext :

m Cont ext . PROVI DER_URL— specifies the URL of the WebL ogic Server that
provides the name service. The default ist 3: / /| ocal host : 7001.

Programming WebL ogic JNDI

http://e-docs.bea.com/wls/docs61/adminguide/jndi.html

Setting Up JNDI Environment Properties for the Initial Context

m Cont ext. SECURI TY_PRI NCI PAL—specifies the identity of the User (that is, a
User defined in a WebL ogic Server security realm) for authentication purposes.
The property defaults to the guest User unless the thread has already been
associated with a WebL ogic Server User. For more information, see Managing
Security at http://e-docs.bea.com/wls/docs61l/adminguide/cnfgsec.html.

m Cont ext . SECURI TY_CREDENTI ALS—specifies either the password for the User
defined in the Cont ext . SECURI TY_PRI NCI PAL property or an object that
implements thewebl ogi c. securi ty. acl . User | nf o interface with the
Cont ext . SECURI TY_CREDENTI ALS property defined. If you pass a UserInfo
object in this property, the Cont ext . PROVI DER_URL property isignored. The
property defaultsto the guest User unless the thread has already been
associated with a User. For more information, see Managing Security at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html.

Y ou can use the same properties on either a client or a server. If you define the
properties on a server-side object, alocal Context isused. If you define the properties
on aclient or another WebL ogic Server, the Context delegates to a remote Context
running on the WebL ogic Server specified by the Cont ext . PROVI DER_URL property.

Listing 2-1 shows how to obtain a Context using the properties
Cont ext . | NI TI AL_CONTEXT_FACTORY and Cont ext . PROVI DER_URL.

Listing 2-1 Obtaining a Context

Context ctx = null;
Hasht abl e ht = new Hasht abl e();
ht . put (Context. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. j ndi . W.I ni tial Cont ext Factory");
ht . put (Cont ext . PROVI DER_URL,
"t3://1ocal host: 7001");

try {
ctx = new Initial Context(ht);

/] Use the context in your program

catch (Nani ngException e) {
/1 a failure occurred
}

finally {
try {ctx.close();}
catch (Exception e) {
// a failure occurred

}

Programming WebL ogic JNDI 2-3

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

2

Programming with WebLogic JNDI

Additional WebL ogic-specific properties are also available for configuring security
parameters and controlling how objects are bound into the cluster-wide JNDI tree.
Note that bindings may or may not be replicated across the INDI tree of each server
within the cluster. Properties such as these are identified by constantsin the

webl ogi c. j ndi . W.Cont ext class. For more information about JNDI-related
clustering issues, see “Using WebLogic JNDI from a Client in a Clustered
Environment” on page 2-16.

Creating a Context Using a Hash Table

Y ou can create a Context with a hash table in which you have specified the properties
described in“ Setting Up INDI Environment Propertiesfor the Initial Context” on page
2-2.

To do so, pass the hash table to the constructor for I ni t i al Cont ext . The property
java. nanming. factory.initial isusedto specify how thel ni ti al Cont ext is
created. To use WebL ogic INDI, you must always set the

java.nami ng.factory.initial property to

webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory. This setting identifies the factory
that actually creates the Context.

Creating a Context Using a WebLogic Environment Object

2-4

Y ou can also create a Context by using a WebL ogic environment object implemented
by thewebl ogi c. j ndi . envi r onnent interface. Although the environment object is
WebL ogic-specific, it offers the following advantages:

m A set of defaults which reduces the amount of code you need to write.

m Convenienceset () methods that provide compile-type type-safety. The
type-safety set () methods can save you time both writing and debugging code.

The WebL ogic Environment object provides the following defaults:

Programming WebL ogic JNDI

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jndi/Environment.html

Setting Up JNDI Environment Properties for the Initial Context

m |f you do not specify an| ni ti al Cont ext factory, W.I ni ti al Cont ext Fact ory
isused.

m |f you do not specify auser and password in the
Cont ext . SECURI TY_PRI NCI PAL and Cont ext . CREDENTI ALS properties, the
guest User and password are used unless the thread has already been associated
with auser.

m |f you do not specify aCont ext . PROVI DER_URL property,
t3://1 ocal host: 7001 isused.

If youwant to create | ni ti al Cont ext with these defaults, write the following code:

Envi ronment env = new Environnent();
Context ctx = env.getlnitial Context();

If you want to set only aWebL ogic Server to a Distributed Name Service (DNS) name
for client cluster access, write the following code:

Envi ronment env = new Environnent();

env. set Provi der URL("t 3:// mywebl ogi ccl ust er. com 7001");

Context ctx = env.getlnitial Context();

Note: Every timeyou create anew JNDI environment object, you are creating anew
security scope. This security scope ends with acont ext . cl ose() method.

Theenvironment . get I nitial Cont ext () method doesnot work correctly
with the I1OP protocol.

Listing 2-2 illustrates using a INDI Environment object to create a security context.

Listing 2-2 Creating a Security Context with a INDI Environment Object

webl ogi c. j ndi. Envi ronment environment = new
webl ogi c. j ndi . Envi ronment () ;
envi ronment . set I nitial Cont ext Fact ory(
webl ogi c. j ndi . Envi ronnment . DEFAULT | NI TI AL_CONTEXT_FACTORY) ;
envi ronment . set Provi der URL(“t 3://bross: 4441") ;
envi ronment . set Securi tyPrinci pal (“guest”);
envi ronment . set Securi tyCrendenti al s(“guest”);
Hasht abl e props = environment. get Properties();
Initial Context ctx = new Initial Context(props);

Programming WebL ogic JNDI 2-5

2

Programming with WebLogic JNDI

Creating a Context from a Server-Side Object

Y ou may also need to create a Context from an object (an Enterprise JavaBean (EJB)
or Remote Method Invocation (RMI) object) that isinstantiated in the Java Virtual
Machine (JVM) of WebL ogic Server. When using a server-side object, you do not
need to specify the Cont ext . PROVI DER_URL property. Usernames and passwords are
required only if you want to sign in as a specific User. Server-side contextsrunin the
context of WebL ogic Server.

To create a Context from within a server-side object, you first must create a new
I nitial Context, asfollows:

Context ctx = new Initial Context();

Y ou do not need to specify afactory or a provider URL. By default, the context is
created as a Context and is connected to the local naming service unlessthe object you
are accessing ison adifferent WebL ogic domain and the user credentials are different
in the other WebL ogic domain. If the user credentials are different on the other

WebL ogic domain, you must create a INDI Context with a username and password.
For more information, see “ Using WebL ogic INDI Between WebL ogic Domains’ on
page 2-18.

JNDI Contexts and Threads

2-6

When you create a INDI Context with a username and password, you associate a user
with athread. When the Context is created, the user is pushed onto the context stack
associated with the thread. Before starting anew Context on the thread, you must close
thefirst Context so that thefirst user isno longer associated with the thread. Otherwise,
users are pushed down in the stack each time a new context created. Thisis not an
efficient use of resources and may result in the incorrect user being returned by

ctx. 1 ookup() calls. Thisscenario isillustrated by the following steps:

1. Create a Context (with username and credential) called ct x1 for user 1. In the
process of creating the context, user 1 is associated with the thread and pushed
onto the stack associated with the thread. The current user is now user 1.

Programming WebL ogic JNDI

Setting Up JNDI Environment Properties for the Initial Context

2. Create a second Context (with username and credential) called ct x2 for user 2.
At this point, the thread has a stack of users associated with it. User 2 is at the top
of the stack and user 1 isbelow it in the stack, so user 2 isused isthe current
user.

3. Ifyoudoactxl. | ookup("abc") call,user 2 isused as the identity rather than
user 1, because user 2 is at the top of the stack. To get the expected result, which
isto havect x1. | ookup("abc") call performed asuser 1, you need to do a
ctx2. cl ose() call. Thect x2. cl ose() call removesuser 2 from the stack
associated with the thread and so that act x1. | ookup("abc") call now uses
userl as expected.

Note Therearetwo situationswhereacl ose() call doesnot removethe current
user from the stack and this can cause JINDI context problems. For
information on how to avoid JNDI context problems, see “How to Avoid
Potential INDI Context Problems’ on page 2-7.

How to Avoid Potential JNDI Context Problems

Whileissuing acl ose() call usually behaves as described in “ INDI Contexts and
Threads’ on page 2-6. However, there are two exceptions to expected behavior:

e First Login
e | ast Used

First Login

When using protocols other than I1OP, the first user is“sticky” in the sense that it
becomes the default user when no other user is present. This scenario isdescribed in
the following steps:

1. Create a Context (with username and credential) called ct x1 for userl. Inthe
process of creating the context, user 1 is associated with the thread and stored in
the stack, that is, the current identity is set touser 1.

2. Doactx1.close() cal.
3. Doact x1.1 ookup() call. The current identity is user 1.

4. Create a Context (with username and credential) called ct x2 for user2. In the
process of creating the context, user 2 is associated with the thread and stored in
the stack, that is, the current identity is set to user 2.

Programming WebL ogic JNDI 2-7

2 Programming with WebLogic JNDI

5. Doactx2.close() cal.
6. Doact x2. | ookup() cal. The current identity is user1.

Sncect x1 wasthefirst user, the current identity stays set touser 1 after step 4. Note
that not only isuser 1 the current user on thisthread, it isthe current user on all threads
that do not have another identity defined. Thus, user 1 becomes the default user when
no other user identity ispresent. Thisisnot good practice as any subsequent loginsthat
do not have a username and credential will be granted theidentify of user 1 by default.

To work around this problem, implement one of the following options:

m Option 1: If the client has control of mai n() , implement the wrapper code
shown in Listing 2-3 in the client code.

Listing 2-3 JNDI Context and Threads Wrapper Code

import java.security.PrivilegedAction;
i mport javax.security.auth. Subject;
i mport webl ogi c. security. Security;

public class client

{
public static void main(String[] args)
{
Security.runAs(new Subject (),
new Privil egedAction() {
public Qoject run() {
I

/11f inplementing in client code, main() goes here.
/1
return null;
}
1)
}
}

m Option 2: If the client does not have control of mai n() , implement the wrapper
code shown in Listing 2-3 on each thread'sr un() method.

m Option 3: Create a Context that logs in as a non-privileged user (a
non-privileged user is a user that is not a member of any group). Be surethisis
the first logon on the client. Immediately execute ct x. cl ose() call to remove

2-8 Programming WebL ogic JNDI

Setting Up JNDI Environment Properties for the Initial Context

Last Used

the non-privileged user from the thread's user stack. Because the non-privileged
user isthefirst user to logon, it becomes the default user. Subsequently, any
thread that has an empty user stack will have the identity of non-privileged user.

Note: If you choose to use Option 3, be advised of how non-privileged users
relatetotheuser s and ever yone groups, which are configured by default
in the security realm in this release of WebL ogic Server. Theuser s and
ever yone groups are convenience groups that allow you to apply global
roles and security policies. By default, all WebL ogic Server users,
including non-privileged users, are members of the ever yone group, but
non-privileged users are not members of the user s group.

When using [10OP, an exception to expected behavior arises when there is one Context
on the stack and that Context isremoved by acl ose() . Theidentity of the last context
removed from the stack determines the current identity of the user. This scenario is
described in the following steps:

1. Create a Context (with username and credential) called ct x1 for userl. Inthe
process of creating the context, user 1 is associated with the thread and stored in
the stack, that is, the current identity is set touser 1.

2. Doactx1.close() cal.
3. Doact x1. 1 ookup() call. The current identity is user 1.

4. Create a Context (with username and credential) called ct x2 for user2. In the
process of creating the context, user 2 is associated with the thread and stored in
the stack, that is, the current identity is set to user 2.

5. Doactx2.close() cal.

6. Doact x2. 1 ookup() call. The current identity is user2.

Programming WebL ogic JNDI 29

2 Programming with WebLogic JNDI

Using the Context to Look Up a Named
Object

Every Javaclient application must obtain aninitial object that provides servicesfor the
application. An object cannot not be looked up, however, unlessit is loaded in the
WebL ogic Server namespace. For more information, see Managing JNDI in the
Administration Guide.

Thel ookup() method on the Context is used to obtain named objects. The argument
passed to thel ookup() methodisastring that contai nsthe name of the desired object.
Listing 2-4 shows how to retrieve an EJB named Ser vi ceBean.

Listing 2-4 Looking Up a Named Object

try {
Servi ceBean bean = (ServiceBean)ctx.| ookup("ejb.serviceBean");

}
cat ch (NaneNot FoundException e) {
/1 binding does not exist

}
catch (Nam ngException e) {
// a failure occurred

}

2-10 Programming WebL ogic JNDI

http://e-docs.bea.com/wls/docs61/adminguide/jndi.html

Using a Named Object to Get an Object Reference

Using a Named Object to Get an Object
Reference

EJB client applications get object references to EJB remote objects from EJB Homes.
RMI client applications get object references to other RMI objects from an initial
named object. Both initial named remote objects are known to WebL ogic Server as
factories. A factory isany object that can return areference to another object that isin
the WebL ogic namespace.

The client application invokes a method on afactory to obtain areference to aremote
object of a specific class. The client application then invokes methods on the remote
object, passing any required arguments.

Listing 2-5 contains a code fragment that obtains a remote object and then invokes a
method on it.

Listing 2-5 Using a Named Object to Get an Object Reference

Servi ceBean bean = Servi ceBean. Hone. create("ej b. Servi ceBean")

Servi cebean. addi t en(66) ;

Closing the Context

After clientsfinish working with a Context, BEA Systems recommends that the client
close the Context in order to release resources and avoid memory leaks. BEA
recommendsthat you use afi nal | y{} block and wrap the cl ose() methodina
try{} block. If you attempt to close a context that was never instantiated because of
an error, the Java client application throws an exception.

In Listing 2-6, the client closes the context, releasing the resource being used.

Programming WebL ogic JNDI 2-11

2 Programming with WebLogic JNDI

Listing 2-6 Closing the Context

try {
ctx.close();

} catch (Exception e) {
/la failure occurred

}

Using WebLogic JNDI in a Clustered
Environment

The intent of WebL ogic JNDI isto provide a naming service for J2EE services,
specifically EJB, RMI, and Java Messaging Service (IMS). Therefore, it isimportant
to understand the implications of binding an object to the INDI treein a clustered
environment.

The following sections discuss how WebL ogic JNDI isimplemented in a clustered
environment and offer some approaches you can take to make your own objects
available to JNDI clients.

Clustering J2EE Services

WebL ogic RMI isthe enabling technology that allows clientsin one VM to access
EJBs and JM S services from aclient in another VM. RMI stubs marshal incoming
callsfrom the client to the RMI object. To make J2EE services available to aclient,
WebL ogic binds an RMI stub for a particular service into its INDI tree under a
particular name. The RMI stub is updated with the location of other instances of the
RMI object as the instances are deployed to other serversin the cluster. If aserver
within the cluster fails, the RMI stubsin the other server’s JNDI tree are updated to
reflect the server failure.

2-12 Programming WebL ogic JNDI

Using WebLogic JNDI in a Clustered Environment

When aclient connects to a cluster, it is actually connecting to one of the WebL ogic
Servers aready in the cluster. Because the INDI tree for this WebL ogic Server
contains the RMI stubs for all services offered by the other WebL ogic Serversin the
cluster in addition toitsown services, the cluster appearsto the client asone WebL ogic
Server hosting all of the cluster-wide services. When anew WebL ogic Server joinsa
cluster, each WebL ogic Server aready in the cluster is responsible for sharing
information about its own servicesto the new WebL ogic Server. With theinformation
collected from all the other serversin the cluster, the new server may create its own
copy of the cluster-wide JNDI tree.

RMI stubs significantly affect how WebL ogic JNDI isimplemented in a clustered
environment:

m RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs
across all WebL ogic Serversin a cluster with little overhead in terms of
server-to-server cross-talk.

m RMI stubs serve as the mechanism for replication across a cluster. An instance
of aRMI object is deployed to asingle WebL ogic Server, however, the stub is
replicated across the cluster.

Making Custom Objects Available to a WebLogic Server

Cluster

When you bind a custom object (anon-RMI object) into a JNDI treein aWebL ogic
Server cluster, the object is replicated across al the serversin the cluster. However, if
the host server goes down, the custom object is removed from the cluster’ s INDI tree.
Custom abjects are not replicated unless the custom object is bound again. Y ou need
to unbind and rebind a custom object every time you want to propagate changes made
to the custom object. Therefore, WebL ogic INDI should not be used as a distributed
object cache. Y ou can use a third-party solution with WebL ogic Server to provide
distributed caches.

Suppose the custom object needs to be accessed only by EJBs that are deployed on
only one WebL ogic Server. Obviously it isunnecessary to replicate this custom object
throughout all the WebL ogic Serversin the cluster. In fact, you should avoid
replicating the custom object in order to avoid any performance degradation due to
unnecessary server-to-server communication. To create abinding that is not replicated

Programming WebL ogic JNDI 2-13

2

Programming with WebLogic JNDI

2-14

across WebL ogic Serversin acluster, you must specify the REPLI CATE_BI NDI NGS
property when creating the context that binds the custom object to the namespace.
Listing 2-7 illustrates the use of the REPLI CATE_BI NDI NGS property.

Listing 2-7 Usingthe REPLICATE_BINDINGS Property

Hasht abl e ht = new Hasht abl e();
//turn off binding replication
ht . put (W.Cont ext . REPLI CATE_BI NDI NGS, "fal se");
try {
Context ctx = new Initial Context(ht);
/1bind the object
ct x. bi nd("ny_object", MyQoect);
} catch (Nam ngException ne) {
//failure occured

When you are using this technique and you need to use the custom object, you must
explicitly obtainan | ni ti al Cont ext for the WebL ogic Server. If you connect to any
other WebL ogic Server in the cluster, the binding does not appear in the INDI tree.

If you need a custom object accessible from any WebL ogic Server in the cluster,
deploy the custom object on each WebL ogic Server in the cluster without replicating
the INDI bindings.

When using WebL ogic INDI to replicate bindings, the bound object will be handled
asif it is owned by the host WebL ogic Server. If the host WebL ogic Server fails, the
custom object is removed from all the INDI trees of all WebLogic Serversin the
cluster. This behavior can have an adverse effect on the availability of the custom
object.

Note: Youcannotusea/ or- character inaJNDI Cont ext . bi nd(Stri ng Narre).
If the Binding name string containsa/ or - character, a
j avax. nam ng. NaneNot FoundExcept i on is raised.

Programming WebL ogic JNDI

Using WebLogic JNDI in a Clustered Environment

Data Caching Design Pattern

A common task in Web applicationsisto cache data used by multiple objectsfor a
period of time to avoid the overhead associated with data computation or connecting
to another service.

Suppose you have designed acustom data caching object that performswell onasingle
WebL ogic Server and you would like to use this same object within a WebL ogic
cluster. If you bind the data caching object in the INDI tree of one of the WebL ogic
Servers, WebL ogic INDI will, by default, copy the object to each of the other

WebL ogic Serversin the cluster. It isimportant to note that since thisis not an RMI
object, what you are binding into the INDI tree (and copying to the other WebL ogic
Servers) is the object itself, not a stub that refers to a single instance of the object
hosted on one of the WebL ogic Servers. Do not assume from the fact that WebL ogic
Server copies a custom object between servers that custom objects can be used as a
distributed cache. Remember the custom object is removed from the cluster if the
WebL ogic Server to which it was bound fails and changes to the customer object are
not propagated through the cluster unless the object is unbound and rebound to the
JINDI tree.

For the sake of performance and availahility, it is often desirable to avoid using
WebL ogic INDI’s binding replication to copy large custom objects with high
availability requirementsto all of the WebL ogic Serversinacluster. Asan alternative,
you can deploy a separate instance of the custom object on each of the WebL ogic
Serversin the cluster. When binding the object to each WebL ogic Server’s INDI tree,
you should make sure to turn off binding replication as described in “Making Custom
Objects Available to aWebL ogic Server Cluster” on page 2-13. In this design pattern,
each WebL ogic Server has a copy of the custom object but you will avoid copying
large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its
own logic for when it needs to refresh its cache independently of the other data cache
objects in the cluster. For example, suppose a client accesses the data cache on one
WebL ogic Server. It isthe first time the caching object has been accessed, so it
computes or obtains the information and saves a copy of the information for future
reguests. Now suppose another client connectsto the cluster to perform the same task
asthefirst client only thistime the connection is made to adifferent WebL ogic Server
inthecluster. If thisthefirst timethis particular data caching object has been accessed,
it will need to compute the information regardless of whether other data caching

Programming WebL ogic JNDI 2-15

2 Programming with WebLogic JNDI

objects in the cluster already have the information cached. Of course, for any future
requests, this instance of the data cache object will be able to refer to the information
it has saved.

Exactly-Once-Per-Cluster Design Pattern

In somecases, itisdesirableto have aservicethat appearsonly onceinthecluster. This
is accomplished by deploying the service on one machine only. For RMI objects, you
can usethedefault behavior of WebL ogic INDI to replicate the binding (the RMI stub)
and the single instance of your object will be accessible from all WebL ogic Serversin
thecluster. Thisisreferred to asapinned service. For non-RMI objects, make sure that
you use the REPLI CATE_BI NDI NGS property when binding the object to the
namespace. In this case, you will need to explicitly connect to the host WebL ogic
Server to access the object. Alternatively, you can create an RMI object that is
deployed on the same host WebL ogic Server that can act as aproxy for your non-RMI
object. The stub for the proxy can be replicated (using the default WeblL ogic INDI
behavior) allowing clients connected to any WebL ogic Server in the cluster to access
the non-RMI object viathe RMI proxy.

This design pattern for an exactly-once-per-cluster service presents an additional
challengefor serviceswith high availability requirements. Since the failover feature of
WebL ogic Clusters relies on having multiple deployments of each clustered service,
failover for an exactly-once-per-cluster service will not be available. For services that
require high availability, it is suggested that you implement a hardware,
High-Availability (HA) framework for the host WebL ogic Server. The framework
allowsWebL ogic Server to berestarted in the event of afailure with aminimal amount
of disruption to availability of the service.

Using WebLogic JNDI from a Client in a Clustered
Environment

The JNDI binding for an object can appear in the INDI tree for one WebL ogic Server
in the cluster, or it can be replicated to all the WebL ogic Serversin the cluster. If the
object of interest isbound in only one WebL ogic Server, you must explicitly connect

2-16 Programming WebL ogic JNDI

Using WebLogic JNDI in a Clustered Environment

to the host WebL ogic Server by setting the Cont ext . PROVI DER_URL property to the
host WebL ogic Server’ sURL when creating the I nitial Context, asdescribedin“Using
WebL ogic JNDI from a Java Client” on page 2-1.

In most cases, however, the object of interest is either a clustered service or a pinned
service. As aresult, astub for the service is displayed in the INDI tree for each

WebL ogic Server inthe cluster. In this case, the client does not need to name a specific
WebL ogic Server to provideitsnaming service. Infact, itisbest for theclient to simply
request that a WebL ogic Cluster provide a naming service, in which case the context
factory in WebL ogic Server can choose whichever WebL ogic Server in the cluster
seems most appropriate for the client. Currently, a naming service provider is chosen
within WebL ogic using the DNS round-robin feature.

The context that isreturned to aclient of clustered servicesis, in general, implemented
asafailover stub that can transparently change the naming service provider if afailure
(such as a communication failure) with the selected WebL ogic Server occurs.

Listing 2-8 shows how a client uses the cluster’ s naming service.

Listing 2-8 Using the Naming Servicein a WebL ogic Cluster

Hasht abl e ht = new Hasht abl e() ;
ht . put (Context. | Nl TI AL_CONTEXT_FACTCRY,
"webl ogi c. j ndi . W.I ni tial Cont ext Factory");
ht . put (Cont ext. PROVI DER_URL, "t3://acnmeCl uster:7001");
try {
Context ctx = new Initial Context(ht);
// Do the client's work

catch (Nami ngException ne) {
/1 A failure occurred

}
finally {
try {ctx.close();}
catch (Exception e) {
// a failure occurred
}
}

Programming WebL ogic JNDI 2-17

2

Programming with WebLogic JNDI

The host nane specified as part of the provider URL isthe DNS name for the cluster
that can be defined by the C ust er Addr ess setting in a Cluster stanza of the

config. xn file.d ust er Addr ess mapsto thelist of hosts providing naming service
inthis cluster. For moreinformation, see Configuring WebL ogic Serversand Clusters.

In Listing 2-8, the cluster name acmed ust er isused to connect to any of the
WebL ogic Serversin the cluster. The resulting Context is replicated so that it can fail
over transparently to any WebL ogic Server in the cluster.

An alternative method of specifying the initial point of contact with the WebL ogic
Cluster is to supply a comma-delimited list of DNS Server names or |P addresses, as
shown in the following sample code:

ht . put (Cont ext. PROVI DER URL, "t 3://acnel, acne2, acne3: 7001");

Notice that all the WebL ogic Servers must listen on the same port, as specified at the
end of the URL.

Using WebLogic JNDI Between WebLogic
Domains

2-18

Since the context stack associated with the current thread contains the
user credentials, if acached EJB Object (that is, the Handleis cached) is
being referenced, BEA Systems recommends that you get an initial
context before accessing methods on that EJB. For example, you can
cache the EJB's Handle and subsequently used it without incurring the
overhead of thel ookup() andcreat e() methods. However, if the current
thread's context is associated with a different user than the one that was
used initially to lookup the EJB, and if the user credentials
(username/password) are not the same in both WebL ogic domains, a
security exception isthrown if the EJB’s cached handle is used.
Therefore, in this scenario, the client is required to obtain anew context
before using the EJB's cached Handle.

Programming WebL ogic JNDI

http://e-docs.bea.com/wls/docs61/adminguide/config.html

	Copyright
	1 Introduction to WebLogic JNDI
	Overview of JNDI in WebLogic Server

	2 Programming with WebLogic JNDI
	Using WebLogic JNDI from a Java Client
	Setting Up JNDI Environment Properties for the InitialContext
	Creating a Context Using a Hash Table
	Creating a Context Using a WebLogic Environment Object
	Creating a Context from a Server-Side Object
	JNDI Contexts and Threads
	How to Avoid Potential JNDI Context Problems

	Using the Context to Look Up a Named Object
	Using a Named Object to Get an Object Reference
	Closing the Context
	Using WebLogic JNDI in a Clustered Environment
	Clustering J2EE Services
	Making Custom Objects Available to a WebLogic Server Cluster
	Data Caching Design Pattern
	Exactly-Once-Per-Cluster Design Pattern
	Using WebLogic JNDI from a Client in a Clustered Environment

	Using WebLogic JNDI Between WebLogic Domains

