'r' @,

c !
L ea

BEA
WebLogic Server

Programming
WebLogic RMI

BEA WebLogic Server 6.1
Document Date: June 24, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebL ogic RM|

Part Number Date Software Version

N/A June 24, 2001 BEA WebL ogic Server Version 6.1

Contents

About This Document

N 0 [1= 0 TS \Y
E-UOCSWED SHEB....ceieieceee ettt see st aa e sreeaeesreens Vi
HOw to Print the DOCUMENEcccvieeieeere s s Vi
Related INfOrmMation..........cceeiv e e Vi
(0o 1 r=o: A U LS TR vii
Documentation CONVENTIONScccuiererererereeeseeresseeeere e ere e e sre e sreseensenes Vii
1. Introducing WebLogic RMI
What iISWEDLOGIC RMI2.....ooiiiiiciiiee ettt 1-1
Features of WEBLOGIC RMI.......cccciiiiiiiiicic s 1-2

2. Programming Considerations

WebLogiC RMI COMPITES ..ot 2-1
Dynamic Proxies and BYteCOdEcccoereruererieneenieie e 2-2
WebLogic RMI Compiler Options.........cccvveererinsrsesieseeseeeseeeeeesenens 2-3
Replicating StUbS iN @ CIUSEYcocoiuiiie e e 2-6

WebLogicC RMI FrameWOrKoooeeiiiiiiine e e 2-7
Additional WebLogic RMI Compiler FEatUres.........coceevvvereeeneeeeeeieneenns 2-7

Dynamic ProxXieS in RMIcooiiiiiiieeere e 2-8
Using the WebLogic RMI Compiler with Proxies..........ccoccooeveneiieinicenene 2-8

HOt COUE GENEIBLION.......cceieerereeerere et 2-9

WeDLOGIC RMI REGISITY ...ttt e 2-9

WebL ogic RMI Implementation FEatures............cccoeviiiiene e 2-9
INDI e 2-10
rmi.RMISECUrityManagEScccoereeeriireei e 2-10
rMi.registry.LOCAEREGISIIYooveeereeiceireee et 2-10

Programming WebL ogic RMI i

FIMNELSEIVET ClASSES.cuviiceeeceei ettt s e s reesse e st esseeesbassabeeressresens 2-11

SELSECUNTEYMBNAOEceeeeeeeeee ettt e b e s e 2-12
UNUSEA ClBSSES.....veiiveieiiiecteetessrte et ssveesres st s ses st s sbesssee s sbessneesbessaes 2-12
Y =00 B G 00 Too I 2-12

3. Implementing WebLogic RMI

Overview of the WebLogic RMI AP ..o 31
Procedures for Implementing WebLogic RMIccooeveveeiccevceccecce e 32
Creating Classes That Can Be Invoked Remotely ... 33
Step 1. Write aRemote INterface.......coovvvveveveeveceseseece e 33

Step 2. Implement the Remote Interface........cccceveveevvecceveve e 3-4

Step 3. Compilethe Java Class ... 3-6

Step 4. Compile the Implementation Class with RMI Compiler 36

Step 5: Write Code That Invokes Remote Methods...........cccccceevenene. 37

Full Code EXaMPIESccoiiiiiiiiiee e e e 3-7

Programming WebL ogic RMI

About This Document

This document describes the BEA WebL ogic Server™ RMI implementation of the
JavaSoft Remote Method Invocation (RM1) specification from Sun Microsystems. The
BEA implementation is known as WebL ogic RMI.

The document is organized as follows:

m Chapter 1, “Introducing WebL ogic RMI,” isan overview of WebLogic RMI
features and its architecture.

m Chapter 2, “Programming Considerations,” describes the features that you use to
program RMI for WebL ogic Server.

m Chapter 3, “Implementing WebL ogic RMI,” describes the packages shipped as
part of WebLogic RMI and provides procedures for implementing WebL ogic
RMI. (The public API includes the WebL ogic implementation of the RMI base
classes, the registry, and the server packages.)

Audience

This document is written for application devel opers who want to build e-commerce
applications using the Remote Method Invocation (RMI) features. It is assumed that
readers know Web technol ogies, object-oriented programming techniques, and the
Java programming language.

Programming WebL ogic RMI v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

Vi

The BEA corporate Web site provides all documentation for WebL ogic Server. In
addition to this document you may want to review the Programming RMI over 11OP
document. WebLogic RMI over |10OP extends the RMI programming model by
providing the ability for clients to access RMI remote objects using the Internet
Inter-ORB Protocol (110P).

Programming WebL ogic RMI

http://www.adobe.com
http://e-docs.bea.com/wls/docs61/rmi_iiop/index.html

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

If you have any questions about this version of BEA WebL ogic Server, or if you have
problems installing and running BEA WebL ogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. Y ou can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic RMI vii

mailto:docsupport@bea.com
http://www.bea.com

viii

Convention Usage
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
italic .
Example:
t ext amp
String Custoner Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Programming WebL ogic RMI

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic RMI iX

Programming WebL ogic RMI

What is WebLogic RMI?

1 Introducing WebLogic
RMI

The following sections introduce and describe the features of WebL ogic RMI.
m What is WebLogic RMI?
m Features of WebLogic RMI

What is WebLogic RMI?

Remote Method Invocation (RMI) is the standard for distributed object computing in
Java. RMI enables an application to obtain a reference to an object that exists
elsewhere in the network, and then invoke methods on that object asthough it existed
locally intheclient’ svirtual machine. RM|I specifies how distributed Java applications
should operate over multiple Java virtual machines.

WebL ogic implements the JavaSoft RMI specification. WebL ogic RMI provides
standards-based di stributed object computing. WebL ogic Server enablesfast, reliable,
large-scale network computing, and WebL ogic RMI allows products, services, and
resources to exist anywhere on the network but appear to the programmer and the end
user as part of the local environment.

WebL ogic RMI scales linearly under load, and execution requests can be partitioned
into a configured number of server threads. Multiple server threads allow WebL ogic
Server to take advantage of latency time and available processors.

Programming WebL ogic RMI 11

Features of WebLogic RMI

WebL ogic RMI iscompletely standards-compliant. If you use ancther implementation
of RMI, you can convert your programs by changing nothing more than the import
statement. Differences exist between the JavaSoft reference implementation of RMI
and the WebL ogic RMI product; however, these differences are completely
transparent to the developer.

In addition, WebL ogic RMI is fully integrated with WebL ogic Java Naming and
Directory Interface (JNDI). Applications can be partitioned into meaningful name
spaces by using either the INDI API or the Registry interfacesin WebLogic RMI.

This document contains information about using WebLogic RMI, but it isnot a
beginner'stutorial on remote objects or writing distributed applications. If you are just
beginning to learn about RMI, visit the JavaSoft Web site and take the RMI tutorial.

Features of WebLogic RMI

Like the JavaSoft reference implementation of RMI, WebL ogic RMI provides
transparent remote invocation in different JVMs. Remote interfaces and
implementations that are written to the RMI specification can be used with WebL ogic
RMI without changes.

The following tables highlight important features of WebL ogic implementation of
RMI.

Table 1-1 WebL ogic RM1 Performance

Feature WebL ogic RMI

Overall performance Enhanced by WebL ogic RMI integration into the
WebL ogic Server framework, which provides
underlying support for communications,
management of threads and sockets, efficient
garbage collection, and server-related support.

Scalability Scales linearly under load. Scales dramatically
better than JavaSoft RMI. Even relatively small,
single-processor, PC-class servers can support more
than 1,000 simultaneous RMI clients, depending on
server workload and complexity of method calls.

Programming WebL ogic RMI 1-2

Features of WebLogic RMI

Table 1-1 WebL ogic RM1 Performance

Feature WebL ogic RMI

Management of threads and Uses asingle, asynchronous, bidirectional

sockets connection for WebL ogic RMI client-to-network
traffic. Same connection can support WebL ogic
JDBC requests or other services.

Serialization Uses high-performance serialization, which offersa

significant performance gain, even for one-time use
of remote class.

Resolution of co-located
objects

No performance penalty for co-located objects that
are defined as remote. References to co-located
“remote” objectsresolved asdirect referencesto the
actual implementation object.

Processes for supporting
services

WebL ogic RMI registry replaces the RMI registry
process. WebL ogic RMI runs inside WebL ogic
Server. No additional processes needed.

Table 1-2 WebL ogic RM| Ease of Use

Feature

WebL ogic RMI

rmic

Proxies and bytecode dynamically generated by
WebL ogic RMI at run time, which obviates need
to explicitly run rmic, except for clusterable or
I1OP clients.

Ease-of-use extensions

Provides ease-of-use extensions for remote
interfaces and code generation. For example, itis
not necessary for each method in the interface to
declareaj ava. rmi . Renot eExcepti onin
its throws block. Exceptions that your application
throws can be specific to that application and can
extend Runt i neExcepti on.

Programming WebL ogic RMI

1-3

Features of WebLogic RMI

Table 1-2 WebL ogic RM| Ease of Use

Feature

WebL ogic RMI

Proxies

A class used by the clients of aremote object. In
the case of RMI, skeleton and a stub classes are
used. The stub classisthe instance that isinvoked
upon in the client's Java Virtual Machine (JVM).
The skeleton class, which exists in the remote
JVM, unmarshals the invoked method and
argumentsontheremote VM, invokesthe method
on the instance of the remote object, and then
marshals the results for return to the client.

Security Manager

No Security Manager required. All WebL ogic
RMI services provided by WebL ogic Server,
which provides more sophisticated security
options, such as SSL and ACLs. Y ou can comment
out the call to setSecurityManager() when
converting RMI code to WebLogic RMI.

Inheritance

No reguirement to extend UnicastRemoteObject,
thus preserving your logical object hierarchy.
Remote classes do not have to inherit from
UnicastRemoteObject in order to inherit
rmi.server package implementation. They can
inherit classes from within your application
hierarchy and yet retain the behavior of the
rmi.server package.

Instrumentation and
management

WebL ogic Server, which hosts the RMI registry,
provides awell-instrumented environment for
development and deployment of distributed
applications.

Programming WebL ogic RMI 1-4

Features of WebLogic RMI

Table 1-3 WebLogic RMI Naming and L ookup

Feature

WebL ogic RMI

Naming

Fully integrated with WebL ogic INDI. Applications
can be partitioned into meaningful name spaces by
using JNDI API or the WebLogic RMI registry
interfaces. INDI allows publication of RMI objects
through enterprise naming services, such as LDAP
or NDS.

Lookup

In URLS, use the standard rmi:// scheme, https:/,
iiop://, or http://, which tunnels WebL ogic RMI
requests over HTTP, making WebL ogic RMI
remote invocation available through firewalls.

Client-side invocation

Supports client-to-server, client-to-client, and
server-to-client invocations. Operates within the
well-defined WebL ogic Server environment with
optimized, multiplexed, asynchronous, and
bidirectional client-server connections. Thusaclient
application can publish its objects through the
registry, and other clients or servers can use the
client-resident objects as they would any
server-resident objects.

Programming WebL ogic RMI

1-5

1 Introducing WebLogic RMI

1-6 Programming WebL ogic RMI

WebLogic RMI Compiler

2 Programming
Considerations

The following sections describe the WebL ogic RMI features that you use to program
RMI for use with WebL ogic Server.

WebL ogic RMI Compiler

WebL ogic RMI Framework

Dynamic Proxiesin RMI

Hot Code Generation

WebL ogic RMI Registry

WebL ogic RMI Implementation Features
RMI and T3 Protocol

WebLogic RMI Compiler

The WebLogic RMI compiler (webl ogi c. r m ¢) generates dynamic proxies on the
client-side for custom remote object interfaces and provides hot code generation for
server-side objects. When r ni ¢ isrun, the hot code generation feature generates
bytecode that is dynamically created at runtime, when the RMI object is deployed.

Programming WebL ogic RMI 2-1

2

Programming Considerations

Note: You only need to explicitly runr mi ¢ for clusterable or 11OP clients.
(WebLogic RMI over [10P extends the RMI programming model by
providing the ability for clients to access RMI remote objects using the
Internet Inter-ORB Protocol, |10P.) See Programming WebLogic RMI over
[1OP for more information on using RMI over [10P.

The dynamic proxy classisthe serializable class that is passed to the client. Hot code
generation is the RMI feature that produces the bytecode is a server-side class that
processes requests from the dynamic proxy on the client. The implementation for the
classis bound to anamein the RMI registry in WebL ogic Server.

A client acquires the proxy for the class by looking up the classin the registry. The
client calls methods on the proxy just asif it werealocal class and the proxy serializes
the requests and sends them to WebL ogic Server. The dynamically created bytecode
de-serializes client requests and executes them against the implementation classes,
serializing results and sending them back to the proxy on the client.

Dynamic Proxies and Bytecode

2-2

In previousversionsof WebL ogic Server, pre6.1, runningr ni ¢ generated stubson the
client and skeleton code on the server-side. Now, rmic generatesan XML deployment
descriptor which isloaded at runtime. | nstead of astub, the client uses adynamic proxy
to communicate with remote objects. A skeleton classis created on the fly in memory.
So, you no longer need to generate classes.

To enable pre-6.1 WeblL ogic RMI objects to run under |ater versions of WebL ogic
Server, rerun r mi ¢ on those objects. Thiswill generate the necessary proxies and
bytecode that enable the deployed RMI object.

If your remote objectsare EJBS, rerunwebl ogi c. ej bc again to enable pre-WebL ogic
Server 6.1 objects to work in the post-6.1 version. See Programming Enterprise
JavaBeans for instructions on using webl ogi c. ej bc.

Rerunning either webl ogi c. r mi ¢ using one or more of the following parameters,
-oneway, -clusterable, -stickToFirstServer orwebl ogic. ej bc onthe
remote object produces a deployment descriptor file for that object

Programming WebL ogic RMI

http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html

WebLogic RMI Compiler

WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for
example, you could add -d \ cl asses exanpl es. hel | 0. Hel | ol npl tothe
compiler option at the command line. All other options supported by the Java compiler
can be used and are passed directly to the Java compiler.

Thefollowing tableslist j ava webl ogi c. r mi ¢ options. Enter these options after
java webl ogi c. r ni ¢ and before the name of the remote class.

Table 2-1 WebL ogic RMI Compiler Options

Option

Description

-cal | Router
<cal | Rout er Cl ass>

Only for use in conjunction with - cl ust er abl e.
Specifies the class to be used for routing method calls.
This class must implement

webl ogi c. rmi . cluster. Cal | Rout er.If specified,
an instance of the classis called before each method call
and can designate a server to route to based on the method
parameters. This option either returns a server name or
null. Null indicates that the current |oad algorithm should
be used.

-clusterable

Marksthe serviceasclusterable (can be hosted by multiple
serversin aWebL ogic cluster). Each hosting object, or
replica, is bound into the naming service under acommon
name. When the service proxy isretrieved from the
naming service, it contains areplica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-coment ary

Emits commentary

- di spat chPol i cy

Specifies a configured execute queue that the service

<queueNane> should use for obtaining execute threads in WebL ogic
Server. See Using Execute Queues to Control Thread
Usage for more information.

-hel p Prints a description of the options

-idl Generates IDLs for remote interfaces

-idl Overwite

Overwrites existing IDL files

Programming WebL ogic RMI 2-3

Programming Considerations

Option Description
-idl Verbose Displays verbose information for IDL information
-idlStrict Generates IDL according to OMG standard

-idl NoFactori es

Prevents generation of factory methods for value types

-idl Directory
<idl Directory>

Specifies the directory where IDL fileswill be created
(Default = current directory)

-iiop

Generates I1OP proxy from servers

-iiopDirectory

Specifies the directory where 11OP proxy classes are
written

- keepgener at ed

Allows you to keep the source of generated proxy classes
and bytecode when you run the WebL ogic RMI compiler.

-1 oadAl gorithm
<al gorithne

Only for use in conjunction with - cl ust er abl e.
Specifies a service specific algorithm to use for
load-balancing and fail-over (Default =

webl ogi c. cl ust er. | oadAl gorit hm). Must beone
of the following: round-robin, random, or weight-based.

- met hodsAr el denpot ent

Only for use in conduction with - cl ust er abl e.
Indicates that the methods on this class are idem potent.
This allows the proxy to attempt recovery form any
communication failure, even if it can not ensure that
failure occurred before the remote method was invoked.
By default (if thisoption isnot used) the proxy only retries
on failuresthat are guaranteed to have occurred before the
remote method was invoked.

- nomangl ednanes

Causes the compiler to produce proxies specific to the
remote class.

-repli caLi st Ref reshl nt
erval <seconds>

Only for use in conjunction with - cl ust er abl e.
Specifies the minimum time to wait between attempts to
refresh the replicalist from the cluster (Default = 180
seconds).

-sti ckToFi rst Server

Programming WebL ogic RMI

Only for use in conjunction with - cl ust er abl e.
Enables “sticky” load balancing. The server chosen for
servicing the first request is used for all subsequent
requests.

WebLogic RMI Compiler

Option

Description

-version

Prints version information

Table 2-2 Cluster-Specific WebL ogic RM1 Compiler Options

Option

Description

-cal | Router
<cal | Rout er d ass>

Only for use in conjunction with - cl ust er abl e.
Specifies the class to be used for routing method calls.
This class must implement

webl ogi c. rmi . cluster. Cal | Rout er.If specified,
an instance of the classis called before each method call
and can designate a server to route to based on the method
parameters. This option either returns a server name or
null. Nul | indicatesthat the current load a gorithm should
be used.

-clusterable

Marksthe serviceasclusterable (can be hosted by multiple
serversin aWebL ogic cluster). Each hosting object, or
replica, is bound into the naming service under acommon
name. When the service proxy isretrieved from the
naming service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-1 oadAl gorithm
<al gorithnp

Only for use in conjunction with - cl ust er abl e.
Specifies a service specific algorithm to use for
load-balancing and fail-over (Default =

webl ogi c. cl ust er. | oadAl gorit hm). Must beone
of the following: round-robin, random, or weight-based.

Load agorithm name may only be used in conjunction
with - cl ust er abl e. Specifies a service-specific
agorithmthat will beused by the proxy to handlefail-over
and load balancing. If this argument is unspecified, the
default load balancing algorithm is specified in the
Administration Console. For example, to specify
weight-based load balancing:

$ java weblogic.rmc -clusterable
-1 oadAl gori t hnewei ght - based

Programming WebL ogic RMI 2-5

2

Programming Considerations

Option

Description

- met hodsAr el denpot ent

May only be used in conjunction with - cl ust er abl e.
Indicates to the proxy that it can attempt retries after
fail-over even if it might result in executing the same
method multiple times. If this flag isn't present, methods
for this proxy are not considered idem potent. The
exceptions that are handled by this are described in
Exceptions Used for fail-over.

-replicalLi st Ref reshl nt
erval <seconds>

Only for usein conjunction with - cl ust er abl e.
Specifies the minimum time to wait between attempts to
refresh the replicalist from the cluster (Default = 180
seconds).

-sti ckToFirst Server

Only for use in conjunction with - cl ust er abl e.
Enables “ sticky” load balancing. The server chosen for
servicing the first request is used for all subsequent
requests.

Replicating Stubs in a Cluster

2-6

Y ou can also generate stubs that are not replicated in the cluster; these are known as
"pinned” services, because after they areregistered they will be avail able only from the
host with which they are registered and will not provide transparent fail-over or load

bal ancing.

If you use webl ogi c. r mi ¢ to compile an RMI object using the clustering option and
then deploy the object on two nodes (A and B) of athree node server cluster A, B, and
C) with replicating binding on all three nodesyou get the same view from each server.
When you do a INDI lookup on all three nodes, you get the same stub and when you
make method calls, the server performsload balancing between the first two nodes

Therefore, if you compile RMI objects with the clusterable option and bind them to a
JNDI tree with replicate bindings set to fal se, when you do a INDI lookup you get the

following results:

m On Server A, you get a stub that pointsto Sever A

m On Server B, you get a stub that pointsto Server B

m On Server C, you get a NameNotFoundException

Programming WebL ogic RMI

WebLogic RMI Framework

If you make aremote call to Server A failsand it fails because the server isno longer
available, the clusterable stub does a re-lookup and depending on where the call is
routed, one of the following can occur:

m On Server B, you get a stub that pointsto Server B
m On Server C, you get a NameNotFoundException

If your RMI object is non-clusterable and you bind it to a INDI tree with replicate
bindings set to f al se, when you do a INDI lookup you get pinned stubs and there is
no failover. Pinned services are available cluster-wide, because they are bound into the
replicated cluster-wide INDI tree. However, if the individual server that hosts the
pinned servicesfails, the client cannot fail-over to another server.

If your RMI object is non-clusterable and you bind it to a INDI tree with replicate
bindings set to t r ue, thiswill fail because the object is non-clusterable and only one
server can provide a non-clusterable service in a cluster.

WebLogic RMI Framework

WebL ogic RMI is divided between aclient and server framework. The client runtime
does not have server sockets and therefore does not listen for connections. It obtains
its connections through the server. Only the server knows about the client socket.
Thereforeif you plan to host aremote object on the client, the client must be connected
to WebL ogic Server. WebL ogic Server processes requests for and passesinformation
to the client. In other words, client-side RMI objects can only be reached through a
singleWebL ogic Server, eveninacluster. If aclient-side RMI object isbound into the
JNDI naming service, it will only bereachable aslong asthe server that carried out the
bind isreachable.

Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include;
m Signatures of remote methods do not need to throw Renot eExcept i on.

m Remote exceptions can be mapped to Runt i neExcept i on.

Programming WebL ogic RMI 2-7

2

Programming Considerations

m Remote classes can also implement non-remote interfaces.

Dynamic Proxies in RMI

A dynamic proxy or proxy is a class used by the clients of aremote object. This class
implements alist of interfaces specified at runtime when the class is created. In the
case of RMI, dynamic proxies are

In the case of RMI, dynamically generated bytecode and proxy classes are used. The
proxy classistheinstance that is invoked upon in the client's Java Virtua Machine
(JVM). The proxy class marshals the invoked method name and its arguments;
forwards these to the remote VM. After the remote invocation is completed and
returns, the proxy class unmarshals the results on the client. The generated bytecode—
which exists in the remote JV M—unmarhsal s the invoked method and arguments on
the remote JVM, invokes the method on the instance of the remote object, and then
marshals the results for return to the client.

Using the WebLogic RMI Compiler with Proxies

2-8

The default behavior of the WebLogic RMI compiler isto produce proxies for the
remoteinterface and for the remote classesto sharethe proxies. A proxyisaclass used
by the clients of aremote object. In the case of RMI, dynamically generated bytecode
and proxy classes are used.

For example, exanpl e. hel | 0. Hel | ol npl andcount er . exanpl e. G aol npl are
represented by a single proxy class and bytecode—the proxy that matches the remote
interface implemented by the remote object, in this case, exanpl e. hel | 0. Hel | o.

When aremote object implements more than one interface, the proxy names and
packages are determined by encoding the set of interfaces. Y ou can override this
default behavior with the WebL ogic RMI compiler option - nomangl ednanes, which
causes the compiler to produce proxies specific to the remote class. When a
class-specific proxy isfound, it takes precedence over the interface-specific proxy.

Programming WebL ogic RMI

Hot Code Generation

In addition, with WebL ogic RMI proxy classes, the proxies are not final. References
to collocated remote objects are references to the objects themselves, not to the
proxies.

Hot Code Generation

When you runr mi ¢, you use WebL ogic Server’'s hot code generation feature to
automatically generate bytecode in memory for server classes. This bytecodeis
generated on the fly as needed for the remote object. WebL ogic Server no longer
generates the skeleton class for the object when webl ogi c. rni ¢ isrun.

WebLogic RMI Registry

WebL ogic Server hosts the RMI registry and provides server infrastructure for RMI
clients. The overhead for RMI registry and server communicationsis minimal, because
registry traffic is multiplexed over the same connection as JDBC and other kinds of
traffic. Clients use a single socket for RMI; scaling for RMI clientsis linear in the
WebL ogic Server environment.

The WebLogic RMI registry is created when WebL ogic Server starts up, and callsto
create new registries simply locate the existing registry. Objects that have been bound
intheregistry can be accessed with avariety of client protocols, including the standard
rmi://, aswell as http://, or https://. In fact, al of the naming services use INDI.

WebLogic RMI Implementation Features

In general, functional equivalents of all methodsin thej ava. r mi package are
provided in WebL ogic RMI, except for those methods in the RM O assLoader and
themethod j ava. rmi . server. Renot eServer. get C i ent Host ().

Programming WebL ogic RMI 2-9

2 Programming Considerations

JNDI

All other interfaces, exceptions, and classes are supported in WebLogic RMI. The
following sections note particular implementations that may be of interest.

Use Java Naming and Directory Interface (JNDI) as the preferred mechanism for
naming objectsin WebL ogic RMI. The INDI is an application programming interface
(API) that provides naming services to Java applications. JNDI is an integral
component of Sun Microsystems Inc.’s Java 2 Enterprise Edition (J2EE) technology.
A naming service associates names with objects and finds objects based on their given
names. (The RMI registry isan example of a naming service.)

Using INDI with RMI alows you to make distributed programming more efficient.
However, you should be aware of the number of round trips between remote client and
the server. Repeated INDI lookups between the client and server may cause
performance problems

rmi.RMISecurityManager

rm . RM Securit yManager isimplemented as a non-final classwith all public
methods in WebL ogic RMI, and, unlike the restrictive JavaSoft reference
implementation, is entirely permissive. Security in WebLogic RMI is an integrated
part of the larger WebL ogic environment, for which there is support for SSL (Secure
Socket Layer) and ACLs (Access Control Lists).

rmi.registry.LocateRegistry

2-10

rm.registry. Locat eRegi stry isimplemented asafinal classwith all public
methods. However, acall toLocat eRegi stry. creat eRegi stry(i nt port) does
not create a collocated registry, but rather attempts to connect to the server-side
instance that implements INDI, for which host and port are designated by attributes. In
WebL ogic RMI, acall to this method allows the client to find the JINDI tree on

WebL ogic Server.

Programming WebL ogic RMI

WebLogic RMI Implementation Features

Note: You can use protocols other than the default (r mi) aswell, and provide the
scheme, host, and port as a URL, as shown here:

Locat eRegi stry. get Regi stry(https://1ocal host: 7002) ;

This examplelocates a WebL ogic Server registry on the local host at port 7002, using
astandard SSL protocal.

rmi.server Classes

rm . server. LogSt r eamdiverges from the JavaSoft reference implementation in
that thewri t e(byt e[]) method logs messages through the WebL ogic Server log
file.

rm . server. Renot eObj ect isimplementedin WebL ogic RMI to preservethetype
equivalence of Uni cast Renot eQbj ect , but the functionality is provided by the
WebL ogic RMI base class pr oxy.

rm . server. Renot eSer ver isimplemented as the abstract super-class of
rm . server. Uni cast Renpt eObj ect and all public methods are supported in
WebL ogic RMI with the exception of get O i ent Host ().

rm . server. Uni cast Renot eQbj ect isimplemented as the base class for remote
objects, and all the methods in this class are implemented in terms of the WebL ogic
RMI base class Pr oxy. Thisalows the proxy to override non-final Gbj ect methods
and equate these to the implementation without making any requirements on the
implementation.

In WebL ogic RMI, all method parameters are pass-by-value, unless the invoking
object resides in the same Java Virtual Machine (JVM) asthe RMI object. In this
scenario, method parameters are pass-by-reference.

Note: WebLogic RMI does not support uploading classes from the client. In other

words, any classes passed to a remote object must be available within the
server's CLASSPATH.

Programming WebL ogic RMI 2-11

2

Programming Considerations

setSecurityManager

Theset Securi t yManager () methodisprovidedinWebLogic RMI for compilation
compatibility only. No security isassociated with it, because WebL ogic RMI depends
on the more general security model within WebL ogic Server. If, however, you do set
a security manager, you can set only one. Before setting a security manager, you
should test to see if one has already been set; if you try to set another, your program

will throw an exception. Here is an example:

if (System getSecurityManager() == null)

Unused Classes

Syst em set Securi t yManager (new RM SecurityManager());

The following classes are implemented but unused in WebLogic RMI:

rm

rm.
rm.
rm.
rm.
rm.

rm.

. dgc. Lease

dgc. VM D

server. vj I D

server. Qperation
server.RM O assLoader
server. RM Socket Fact ory

server.U D

RMI and T3 Protocol

2-12

RMI communicationsin WebL ogic Server use the T3 protocol, an optimized protocol
used to transport data between WebL ogic Server and other Java programs, including
clientsand other WebL ogic Servers. A server instance keepstrack of each Java Virtual
Machine (JV M) with which it connects, and creates asingle T3 connectionto carry all

traffic for aJVM.

Programming WebL ogic RMI

RMI and T3 Protocol

For example, if aJava client accesses an enterprise bean and a JDBC connection pool
on WebL ogic Server, asingle network connection is established between the

WebL ogic Server VM and theclient VM. The EJB and JDBC services can bewritten
asif they had sole use of a dedicated network connection because the T3 protocol
invisibly multiplexes packets on the single connection.

Any two Java programs with avalid T3 connection—such as two server instances, or
a server instance and a Java client—use periodic point-to-point “ heartbeats’ to
announce and determine continued availability. Each end point periodically issues a
heartbeat to the peer, and similarly, determines that the peer is still available based on
continued receipt of heartbeats from the peer.

The frequency with which a server instance issues heartbeats is determined by the
heartbeat interval, which by default is 60 seconds.

The number of missed heartbeats from a peer that a server instance waits before
deciding the peer is unavailable is determined by the heartbeat period, which by
default, is 4.

Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—
either heartbeats or other communi cation—from a peer before deciding that the peer is
unreachable.

Changing timeout defaultsis not recommended.

Programming WebL ogic RMI 2-13

2 Programming Considerations

2-14 Programming WebL ogic RMI

Overview of the WebLogic RMI API

3 Implementing
WebLogic RMI

The following sections describe the WebL ogic RMI API:
m Overview of the WebLogic RMI API
m Procedures for Implementing WebL ogic RMI

Overview of the WebLogic RMI API

Several packages are shipped with WebL ogic Server as part of WebLogic RMI. The
public API includes:

m WebL ogic implementation of the RMI base classes
m Registry

m Server packages

m WebLogic RMI compiler

m Supporting classes that are not part of the public API

If you have written RMI classes, you can drop them in WebL ogic RMI by changing
theimport statement on aremoteinterface and the classesthat extend it. To add remote
invocation to your client applications, look up the object by name in the registry.

Programming WebL ogic RMI 31

3

Implementing WebLogic RMI

The basic building block for all remote objectsistheinterfacej ava. r mi . Renot e,
which contains no methods. Y ou extend this "tagging" interface—that is, it functions
asatag to identify remote classes—to create your own remote interface, with methods
that create a structure for your remote object. Then you implement your own remote
interface with aremote class. Thisimplementation is bound to a namein the registry,
where a client or server can look up the object and use it remotely.

Asin the JavaSoft reference implementation of RMI, thej ava. r mi . Nani ng classis
an important one. It includes methods for binding, unbinding, and rebinding namesto
remote objects in the registry. It also includes al ookup() method to give aclient
access to a named remote object in the registry.

In addition, WebL ogic JNDI provides naming and lookup services. WebLogic RMI
supports naming and lookup in INDI.

WebLogic RMI exceptions are identical to and extend j ava. r mi exceptions so that
existing interfaces and implementations do not have to change exception handling.

Procedures for Implementing WebLogic RMI

32

The following sections describe how to implement WebL ogic Server RMI:
m Creating Classes That Can Be Invoked Remotely
Step 1. Write a Remote Interface
Step 2. Implement the Remote Interface
Step 3. Compile the Java Class
Step 4. Compile the Implementation Class with RMI Compiler
Step 5: Write Code That Invokes Remote Methods

m Full Code Examples

Programming WebL ogic RMI

Procedures for Implementing WebLogic RMI

Creating Classes That Can Be Invoked Remotely

Y ou can write your own WebLogic RMI classesin just afew steps. Hereisasimple
example.

Step 1. Write a Remote Interface

Every classthat can be remotely invoked implements aremote interface. Using aJava
codetext editor, write the remote interface in adherence with the following guidelines.

m A remote interface must extend the interfacej ava. r mi . Renot e, which
contains no method signatures. Include method signatures that will be
implemented in every remote class that implements the interface. For detailed
information on how to write an interface, see the Sun Microsystems JavaSoft
tutorial Creating Interfaces.

m Theremoteinterface must be public. Otherwise a client gets an error when
attempting to load a remote object that implementsiit.

m Unlikethe JavaSoft RMI, it is not necessary for each method in the interface to
declarej ava. r mi . Renpt eExcepti on initst hr ows block. The exceptions
that your application throws can be specific to your application, and can extend
Runt i neExcept i on. WebLogic RMI subclasses
java. rm . Renot eExcept i on, soif you already have existing RMI classes,
you will not have to change your exception handling.

m Your Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in remote classes.

Hereis an example of aremote interface with the method signature
sayHel | o() .

package examples.rm .nultihello;

inmport java.rm.*;

public interface Hell o extends java.rm.Rempte {
String sayHell o() throws RenoteException;

}

With JavaSoft's RMI, every class that implements a remote interface must have
accompanying, precompiled proxies. WebL ogic RMI supports more flexible runtime
code generation; WebL ogic RMI supports dynamic proxies and dynamically created

Programming WebL ogic RMI 33

3

Implementing WebLogic RMI

bytecode that are type-correct but are otherwise independent of the class that
implementstheinterface. If aclassimplementsasingleremoteinterface, the proxy and
bytecode that is generated by the compiler will have the same name as the remote
interface. If a classimplements more than one remoteinterface, the name of the proxy
and bytecode that result from compilation will depend on the name mangling used by
the compiler.

Step 2. Implement the Remote Interface

34

Still using aJavacodetext editor, writethe class beinvoked remotely. Theclass should
implement the remote interface that you wrote in Step 1, which means that you
implement the method signatures that are contained in the interface. Currently, all the
code generation that takes place in WebL ogic RMI is dependent on this classfile.

With WebL ogic RMI, your class does not need to extend Uni cast Renot eObj ect ,
which is required by JavaSoft RMI. This allows you to retain a class hierarchy that
makes sense for your application.

Y our class can implement more than one remote interface. Y our class can also define
methods that are not in the remote interface, but you cannot invoke those methods
remotely.

This exampleimplements aclassthat createsmultiple Hel | ol npl s and bindseach to
aunique namein the registry. The method sayHel | o() greetsthe user and identifies
the object which was remotely invoked.

package exanples.rm .nultihello;
inmport java.rm.*;
public class Hellolnmpl inplenents Hello {
private String name;
public Hellolnmpl (String s) throws RenoteException {
nane = s;
}
public String sayHello() throws RenoteException {

return "Hello! From" + nane;

Programming WebL ogic RMI

Procedures for Implementing WebLogic RMI

Next, writeanai n() method that creates aninstance of the remote object and registers
it in the WebL ogic RMI registry, by binding it to a name (a URL that points to the
implementation of the object). A client that needs to obtain a proxy to use the object
remotely will be able to look up the object by name.

The string name excepted by the RMI registry has the following syntax:

rm ://host nane: port/renot e(hj ect Nane

The hostname and port identify the machine and port on which the RMI registry is
running and the remoteObjectName is the remote object’ s string name. The hostname,
port, and the prefix, rmi: are optional. If you do not specify ahostname, then WebL ogic
Server defaults to the local host. If you do not specify a port, then WebL ogic Server
uses 1099. If you do not specify the remoteObjectName, then the object being named
isthe RMI registry itself.

For more information, see the RMI specification.

Below isan example of amai n() method for the Hel | ol npl class. Thisregistersthe
Hel | ol npl object under the name Mul ti Hel | oServer inaWebLogic Server

registry.
public static void main(String[] argv) {

/1 Not needed with WbLogic RM

/1 System set SecurityManager (new Rm SecurityManager());

// But if you include this Iine of code, you should make

// it conditional, as shown here:

/1 if (System getSecurityManager() == null)

I Syst em set Securit yManager (new Rm SecurityManager());

int i =0;

try {

for (i =0; i < 10; i++) {

Hel [ol npl obj = new Hellolnpl ("Ml tiHelloServer" + i);
Nam ng. rebi nd("//1 ocal host/Milti Hel | oServer" + i, obj);

Systemout.printin("MiltiHelloServer" + i + " created.");

}

Programming WebL ogic RMI 35

3 Implementing WebLogic RMI

Systemout.printIn("Created and registered " + i +
" MultiHellolnpls.");

}
catch (Exception e) {

Systemout.printin("Hellolnmpl error: " + e.getMessage());

e.printStackTrace();

}

WebL ogic RMI does not require that you set a Security Manager in order to integrate
security into your application. Security is handled by WebL ogic Server support for
SSL and ACLs. If you must, you may use your own security manager, but do not install
itin WebL ogic Server.

Step 3. Compile the Java Class

Usej avac or someother Javacompiler to compilethe. j ava filestoproduce. cl ass
files for the remote interface and the class that implementsiit.

Step 4. Compile the Implementation Class with RMI Compiler

To run the WebLogic RMI compilern (webl ogi c. r mi c), use the command pattern:
$ java webl ogi c.rm ¢ nameO Renot ed ass

where namef Renot ed ass isthe full package name of the class that implements
your Remote interface. With the examples we have used previoudy, the command
would be;

$ java webl ogic.rm c exanples.rm. hello. Hel | ol npl

Settheflag - keepgener at ed when you run the WebL ogic RMI compiler if you want
to keep the generated wource if creating stubs and skeleton classes. For alisting of the
available Webl ogic RMI compiler options, see*.WebL ogic RMI Compiler Options”
on page 2-3.

36 Programming WebL ogic RMI

Procedures for Implementing WebLogic RMI

Step 5: Write Code That Invokes Remote Methods

Using a Java code text editor, once you compile and install the remote class, the

interface it implements, and its proxy and the bytecode on the WebL ogic Server, you
can add code to a WebL ogic client application to invoke methods in the remote class.

In general, it takes just asingle line of code: get areference to the remote object. Do
thiswiththeNami ng. | ookup() method. Hereisashort WebL ogic client application
that uses an object created in a previous example.

package nypackage. nyclient;

inmport java.rm.*;

public class Hellowsrld throws Exception {

}

/1 Look up the renpote object in the

/1 WeblLogic's registry

Hell o hi = (Hell o)Nam ng. | ookup("Hel | oRenoteWorl d");

/1 Invoke a nethod renptely
String nmessage = hi.sayHello();

System out . printl n(message);

This example demonstrates using a Java application as the client.

Full Code Examples

Hereisthe full code for the Hello interface.

package exanples.rm . hello;

inmport java.rm.*;

public interface Hell o extends java.rm .Renote {

Programming WebL ogic RMI

3-7

3 Implementing WebLogic RMI

String sayHel l o() throws RenoteException;

}

Hereisthefull code for the Hel | ol npl class that implementsit.

package exanples.rm . hell o;

inmport java.rm.*;

public class Hell ol npl
/1 Don't need this in WblLogic RM:
/1 extends Uni cast Renot eChj ect

i mpl ements Hello {

public Hellolnpl() throws RenpteException {

super () ;

public String sayHello() throws RenpteException {
return "Hello Renote World!!";

public static void main(String[] argv) {
try {
Hel | ol npl obj = new Hel l ol npl () ;
Nam ng. bi nd(" Hel | oRenot eWor 1 d", obj);

3-8 Programming WebL ogic RMI

Procedures for Implementing WebLogic RMI

catch (Exception e) {
Systemout.printin("Hellolnpl error: " + e.getMessage());

e.printStackTrace();

Programming WebL ogic RMI 39

3 Implementing WebLogic RMI

3-10 Programming WebL ogic RMI

	1 Introducing WebLogic RMI
	What is WebLogic RMI?
	Features of WebLogic RMI

	2 Programming Considerations
	WebLogic RMI Compiler
	Dynamic Proxies and Bytecode
	.WebLogic RMI Compiler Options
	Replicating Stubs in a Cluster

	WebLogic RMI Framework
	Additional WebLogic RMI Compiler Features

	Dynamic Proxies in RMI
	Using the WebLogic RMI Compiler with Proxies

	Hot Code Generation
	WebLogic RMI Registry
	WebLogic RMI Implementation Features
	JNDI
	rmi.RMISecurityManager
	rmi.registry.LocateRegistry
	rmi.server Classes
	setSecurityManager
	Unused Classes

	RMI and T3 Protocol

	3 Implementing WebLogic RMI
	Overview of the WebLogic RMI API
	Procedures for Implementing WebLogic RMI
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3. Compile the Java Class
	Step 4. Compile the Implementation Class with RMI Compiler
	Step 5: Write Code That Invokes Remote Methods
	Full Code Examples

