
1

Oracle® Fusion Middleware
What's New in Oracle WebLogic Server

12c Release 1 (12.1.1)

E24494-07

February 2014

Welcome to Oracle WebLogic Server. This is most significant release of WebLogic
Server to date, as it is the first release of WebLogic Server that is compliant with Java
Enterprise Edition 6 (Java EE 6).

The following sections describe new and changed functionality in this WebLogic
Server release:

■ Section 1, "JDK 7 Certification"

■ Section 2, "Java EE 6 Support"

■ Section 3, "Administration Console"

■ Section 4, "Core Server"

■ Section 5, "Enterprise Java Beans (EJBs)"

■ Section 6, "JDBC Data Sources"

■ Section 7, "Node Manager"

■ Section 8, "Resource Adapters"

■ Section 9, "Security"

■ Section 10, "Stand-alone Clients"

■ Section 11, "Web Services"

■ Section 12, "Web Server Plug-ins"

■ Section 13, "Standards Support"

■ Section 14, "Supported Configurations"

■ Section 15, "WebLogic Server Compatibility"

■ Section 16, "Documentation Accessibility"

1 JDK 7 Certification
On March 15, 2012, Oracle made available an updated Oracle WebLogic Server 12.1.1
distribution. This distribution includes patches that enable Java SE Development Kit
(JDK) 7 certification and provide other product optimizations. Oracle recommends
use of WebLogic Server 12.1.1 with these patches applied, on both JDK 6 and JDK 7.
You can obtain these patches in either of the following ways:

■ The preferred approach is to use the updated WebLogic Server 12.1.1 distribution.
If you obtain the updated product distribution for WebLogic Server 12.1.1 on or
after March 15, 2012, the patches are included. After you install WebLogic Server,

2

the JDK 7 certification patches are automatically applied and put in effect when
using standard WebLogic Server start scripts.

For more information about obtaining the Oracle WebLogic Server distribution for
your platform, see "Product Distribution" in the Oracle WebLogic Server Installation
Guide.

■ If you obtained a product distribution for WebLogic Server 12.1.1 prior to March
15, 2012, and you do not wish to re-install with the updated WebLogic Server
distribution, you can obtain the patches from My Oracle Support at
http://support.oracle.com/ and apply them to your existing installation. For
information about how to obtain and apply these patches, see Section 1.1, "About
the Patches Available for WebLogic Server 12.1.1".

If you are unsure whether your WebLogic Server 12.1.1 distribution contains the
patches, launch Smart Update to view the patches applied your installation, or inspect
the contents of your MW_HOME/patch_wls1211/patch_jars directory, where MW_HOME
represents the Middleware home directory.

1.1 About the Patches Available for WebLogic Server 12.1.1
Table 1 lists the categories of patches that are included in the updated distribution of
WebLogic Server 12.1.1. This table also provides links to the sections in the Oracle
WebLogic Server Release Notes where the specific issues corrected by those patches are
described.

If you use an updated WebLogic Server 12.1.1 distribution that is available on March
15, 2012:

■ The patches are placed in the MW_HOME/patch_wls1211/patch_jars directory on
your computer, where MW_HOME represents your Middleware home directory.

■ The patches contained in this patch directory will be included in the system
classpath using standard WebLogic Server start scripts so that those patches
automatically go into effect when WebLogic Server is started.

Note: Before you install the updated WebLogic Server 12.1.1
distribution or the JDK 7 certification patches, Oracle recommends
first installing JDK 7. For information, see "Using WebLogic Server
with JDK 7" in the Oracle WebLogic Server Installation Guide.

Table 1 Issues Corrected by Patches Available for WebLogic Server 12.1.1

For information about issues
corrected by the following see the following section in the Release Notes

JDK 7 certification patches "JDK 7 Certification"

Contexts and Dependency Injection
patches

"Contexts and Dependency Injection"

Deployment performance
optimization patches

"Deployment Performance"

Developer experience patch
(applies to the developer-only
distribution)

"Developer Experience"

3

■ If you do not use standard WebLogic Server start scripts, you must ensure that
your start scripts will pick up patches that are stored in the preceding patch
directory location.

If you have an installation of WebLogic Server 12.1.1 obtained prior to March 15, 2012,
you may prefer to download and apply the patches yourself rather than re-installing
WebLogic Server 12.1.1. If you choose to apply the patches yourself, you can refer to
the bug descriptions in the sections listed in Table 1 for links to My Oracle Support
where the patches can be obtained.

If you choose to download and apply the patches yourself, note the following:

■ To apply these patches to an installation created with a package installer (see
"Types of Installers" in Oracle WebLogic Server Installation Guide), follow the
instructions provided in Oracle Smart Update Installing Patches and Maintenance
Packs.

■ WebLogic Server Smart Update is not included in the WebLogic Server
developer-only ZIP file distribution. To apply these patches to an installation
created with this ZIP file distribution, you must:

1. Download the patch ZIP files from My Oracle Support using the Oracle patch
numbers provided in the Oracle WebLogic Server Release Notes sections
referenced in Table 1.

2. From each patch ZIP file you download, extract the patch jar file and copy it
into a well-known patch directory, such as MW_HOME/patch_wls1211/patch_
jars.

Note that the particular patch jar file you need to copy is typically embedded
within a high-level jar file in the patch ZIP file.

For example, a downloaded patch ZIP named p13019800_12110_Generic.zip
might contain the jar file 8PE3.jar. Unjarring 8PE3.jar yields, in turn, in inner
jar file named something like BUGnnnn_1211.jar. (This inner jar file is typically
located within a dirs sub-folder.) This inner jar file—that is, BUGnnnn_
1211.jar—is the patch jar that must be copied into the well-known patch
directory.

The patches contained in this well-known patch directory are included in the
system classpath using standard WebLogic Server start scripts so that those
patches automatically go into effect when WebLogic Server is started.

If you do not use standard WebLogic Server start scripts, you must ensure that
your start scripts pick up patches that are stored in the well-known location where
you have placed your patches.

2 Java EE 6 Support
This release of WebLogic Server supports Java EE 6. This section describes the main
features of Java EE 6 that can be leveraged by application developers in a WebLogic
Server 12.1.1 environment. It includes the following sections:

■ Section 2.1, "Java EE 6 Platform Highlights"

■ Section 2.2, "Enterprise JavaBeans (EJB) 3.1"

■ Section 2.3, "Java Servlet 3.0 Technology"

■ Section 2.4, "JavaServer Faces (JSF) 2.x and JavaServer Pages Standard Tag Library
(JSTL) 1.2"

4

■ Section 2.5, "Java Persistence API (JPA) 2.0"

■ Section 2.6, "Java Transaction API (JTA)"

■ Section 2.7, "Java API for RESTful Web Services 1.0"

■ Section 2.8, "Managed Beans 1.0"

■ Section 2.9, "Contexts and Dependency Injection for the Java EE Platform 1.0"

■ Section 2.10, "Dependency Injection for Java 1.0"

■ Section 2.11, "Bean Validation"

■ Section 2.12, "Java EE Connector Architecture (JCA) 1.6"

■ Section 2.13, "Java Authorization Contract for Containers (JACC) 1.3"

■ Section 2.14, "Java Authentication Service Provider Interface for Containers
(JASPIC) 1.0"

■ Section 2.15, "Common Annotations for Java Platform 1.1"

■ Section 2.16, "Java Architecture for XML Binding (JAXB) 2.2"

■ Section 2.17, "Java API for XML Web Services (JAX-WS) 2.2"

■ Section 2.18, "Interceptors 1.1"

2.1 Java EE 6 Platform Highlights
The most important goal of the Java EE 6 platform is to simplify development by
providing a common foundation for the various kinds of components in the Java EE
platform. Developers benefit from productivity improvements with more annotations
and less XML configuration, more Plain Old Java Objects (POJOs), and simplified
packaging. The Java EE 6 platform includes the following new features:

■ New technologies, including the following:

- Java API for RESTful Web Services (JAX-RS)

- Managed Beans

- Contexts and Dependency Injection for the Java EE Platform (JSR 299)

- Dependency Injection for Java (JSR 330)

- Bean Validation (JSR 303)

- Java Authentication Service Provider Interface for Containers (JASPIC)

■ New features for Enterprise JavaBeans (EJB) components

■ New features for servlets

■ New features for JavaServer Faces components

2.2 Enterprise JavaBeans (EJB) 3.1
An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having
fields and methods to implement modules of business logic. You can think of an
enterprise bean as a building block that can be used alone or with other enterprise
beans to execute business logic on the Java EE server.

Enterprise beans are either session beans or message-driven beans:

5

■ A session bean represents a transient conversation with a client. When the client
finishes executing, the session bean and its data are gone.

■ A message-driven bean combines features of a session bean and a message
listener, allowing a business component to receive messages asynchronously.
Commonly, these are Java Message Service (JMS) messages.

In the Java EE 6 platform, new enterprise bean features including:

■ The ability to package local enterprise beans in a WAR file

■ Singleton session beans, which provide easy access to shared state

■ Simplified no-interface client view, which provides session bean access without a
separate local business interface

■ Asynchronous session bean invocations

■ Portable global JNDI name syntax for looking up EJB components

■ Automatically created EJB timers and calendar-based EJB timer expressions

■ An embeddable API for executing EJB components within a Java SE environment

For more information on these features, see Section 5, "Enterprise Java Beans (EJBs)".

The Interceptors specification, which is part of the EJB 3.1 specification, makes the
interceptor facility that is originally defined as part of the EJB 3.0 specification more
generally available.

WebLogic Server features that are provided in this release to support EJB 3.1 include:

■ EJB 3.1 annotation support

■ Administration Console support for EJBs in a WAR.

2.3 Java Servlet 3.0 Technology
Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class
extends the capabilities of servers that host applications accessed by way of a
request-response programming model. Although servlets can respond to any type of
request, they are commonly used to extend the applications hosted by Web servers.

In the Java EE 6 platform, new Java servlet technology features include:

■ Annotation support

■ Asynchronous support

■ Ease of configuration

■ Enhancements to existing APIs

■ Pluggability

2.4 JavaServer Faces (JSF) 2.x and JavaServer Pages Standard Tag Library
(JSTL) 1.2
This release of WebLogic Server supports JSF 2.x and JSTL 1.2. JSF 2.x and JSTL 1.2
have been incorporated directly into the server's classpath. Applications deployed to
WebLogic Server can seamlessly make use of JSF 2.x and JSTL 1.2 without requiring
developers to deploy and reference separate shared libraries.

6

JSF technology is a user interface framework for building web applications. The main
components of JSF technology are:

■ A GUI component framework.

■ A flexible model for rendering components in different kinds of HTML or different
markup languages and technologies. A Renderer object generates the markup to
render the component and converts the data stored in a model object to types that
can be represented in a view.

■ A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI component:

■ Input validation

■ Event handling

■ Data conversion between model objects and components

■ Managed model object creation

■ Page navigation configuration

■ Expression Language (EL)

All of this functionality is available using standard Java APIs and XML-based
configuration files.

In the Java EE 6 platform, new JSF features include:

■ The ability to use annotations instead of a configuration file to specify managed
beans

■ Facelets, a display technology that replaces JavaServer Pages (JSP) technology
using XHTML files

■ Ajax support

■ Composite components

■ Implicit navigation

JSTL encapsulates core functionality common to many JSP applications. Instead of
mixing tags from numerous vendors in your JSP applications, you use a single,
standard set of tags. This standardization allows you to deploy your applications on
any JSP container that supports JSTL and makes it more likely that the implementation
of the tags is optimized.

JSTL has an iterator and conditional tags for handling flow control, tags for
manipulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

2.5 Java Persistence API (JPA) 2.0
JPA is a Java standards-based solution for persistence. Persistence uses an
object/relational mapping approach to bridge the gap between an object-oriented
model and a relational database. The Java Persistence API can also be used in Java SE
applications, outside of the Java EE environment. Java Persistence consists of the
following areas:

■ The Java Persistence API

■ The query language

7

■ Object/relational mapping metadata

2.6 Java Transaction API (JTA)
JPA provides a standard interface for demarcating transactions. The Java EE
architecture provides a default auto commit to handle transaction commits and
rollbacks. An auto commit means that any other applications that are viewing data
will see the updated data after each database read or write operation. However, if your
application performs two separate database access operations that depend on each
other, you will want to use the JTA API to demarcate where the entire transaction,
including both operations, begins, rolls back, and commits.

2.7 Java API for RESTful Web Services 1.0
This release of WebLogic Server provides full support for the Java API for RESTful
Web Services (JAX-RS).

JAX-RS for the development of web services is built according to the Representational
State Transfer (REST) architectural style. A JAX-RS application is a web application
that consists of classes that are packaged as a servlet in a WAR file along with required
libraries.

The JAX-RS API is new to the Java EE 6 platform.

2.8 Managed Beans 1.0
Managed Beans, lightweight container-managed objects (POJOs) with minimal
requirements, support a small set of basic services, such as resource injection, lifecycle
callbacks, and interceptors. Managed Beans represent a generalization of the managed
beans specified by JavaServer Faces technology and can be used anywhere in a Java EE
application, not just in web modules.

The Managed Beans specification is part of the Java EE 6 platform specification (JSR
316).

Managed Beans are new to the Java EE 6 platform.

2.9 Contexts and Dependency Injection for the Java EE Platform 1.0
Contexts and Dependency Injection (CDI) for the Java EE platform defines a set of
services for using injection to specify dependencies in an application. CDI provides
contextual life cycle management of beans, type-safe injection points, a loosely
coupled event framework, loosely coupled interceptors and decorators, alternative
implementations of beans, bean navigation through the Unified Expression Language
(EL), and a service provider interface (SPI) that enables CDI extensions to support
third-party frameworks or future Java EE components. CDI is integrated with the
major component technologies in Java EE.

CDI is new to the Java EE 6 platform

2.10 Dependency Injection for Java 1.0
Dependency Injection (DI) for Java defines a standard set of annotations (and one
interface) for use on injectable classes.

In the Java EE platform, CDI provides support for DI. Specifically, you can use DI
injection points only in a CDI-enabled application.

8

DI for Java is new to the Java EE 6 platform.

2.11 Bean Validation
The Bean Validation specification (JSR 316) defines a metadata model and API for
validating data in JavaBeans components. It is supported on both the server and Java
EE 6 client; therefore, instead of distributing validation of data over several layers,
such as the browser and the server side, you can define the validation constraints in
one place and share them across the different layers. Further, bean validation is not
only for validating beans. In fact, it can also be used to validate any Java object.

Bean Validation is new to the Java EE 6 platform.

2.12 Java EE Connector Architecture (JCA) 1.6
JCA is used by tools vendors and system integrators to create resource adapters that
support access to enterprise information systems that can be plugged in to any Java EE
product. A resource adapter is a software component that allows Java EE application
components to access and interact with the underlying resource manager of the EIS.
Because a resource adapter is specific to its resource manager, a different resource
adapter typically exists for each type of database or enterprise information system.

JCA also provides a performance-oriented, secure, scalable, and message-based
transactional integration of Java EE based web services with existing EISs that can be
either synchronous or asynchronous. Existing applications and EISs integrated
through the Java EE Connector architecture into the Java EE platform can be exposed
as XML-based web services by using JAX-WS and Java EE component models. Thus
JAX-WS and the Java EE Connector architecture are complementary technologies for
enterprise application integration (EAI) and end-to-end business integration.

2.13 Java Authorization Contract for Containers (JACC) 1.3
The JACC specification defines a contract between a Java EE application server and an
authorization policy provider. All Java EE containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the
Java EE authorization model. The specification defines the binding of container access
decisions to operations on instances of these permission classes. It defines the
semantics of policy providers that use the new permission classes to address the
authorization requirements of the Java EE platform, including the definition and use of
roles.

2.14 Java Authentication Service Provider Interface for Containers
(JASPIC) 1.0
This release of WebLogic Server provides support for the JASPIC specification.

The JASPIC specification defines a service provider interface (SPI) by which
authentication providers that implement message authentication mechanisms may be
integrated in client or server message-processing containers or runtimes.
Authentication providers integrated through this interface operate on network
messages provided to them by their calling container. The authentication providers
transform outgoing messages so that the source of the message can be authenticated
by the receiving container, and the recipient of the message can be authenticated by
the message sender. Authentication providers authenticate incoming messages and

9

return to their calling container the identity established as a result of the message
authentication.

JASPIC is new to the Java EE 6 platform.

For more information, see Section 9.1, "Java Authentication Service Provider Interface
for Containers (JASPIC) Support".

2.15 Common Annotations for Java Platform 1.1
Java EE 6 supports naming of applications and modules. In WebLogic Server 12.1.1,
application containers have been modified to include support for the Java EE 6
<application_name> element in application.xml. For more detailed information, see
"Understanding Default Deployment Names" in Deploying Applications to Oracle
WebLogic Server.

2.16 Java Architecture for XML Binding (JAXB) 2.2
JAXB provides a convenient way to bind an XML schema to a representation in Java
language programs. JAXB can be used independently or in combination with JAX-WS,
where it provides a standard data binding for web service messages. All Java EE
application client containers, web containers, and EJB containers support the JAXB
API.

2.17 Java API for XML Web Services (JAX-WS) 2.2
The JAX-WS specification provides support for web services that use the JAXB API for
binding XML data to Java objects. The JAX-WS specification defines client APIs for
accessing web services as well as techniques for implementing web service endpoints.
The Implementing Enterprise Web Services specification describes the deployment of
JAX-WS-based services and clients. The EJB and Java Servlet specifications also
describe aspects of such deployment. It must be possible to deploy JAX-WS-based
applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process
message requests and responses. In general, these message handlers execute in the
same container and with the same privileges and execution context as the JAX-WS
client or endpoint component with which they are associated. These message handlers
have access to the same JNDI java:comp/env namespace as their associated
component. Custom serializers and deserializers, if supported, are treated in the same
way as message handlers.

2.18 Interceptors 1.1
This release of WebLogic Server provides generic support for interceptors. Support for
a generic interceptor layer that can be used by the EJB container has been added.

Interceptors are used in conjunction with Java EE managed classes to allow developers
to invoke interceptor methods in conjunction with method invocations or lifecycle
events on an associated target class. Common uses of interceptors are logging,
auditing, or profiling.

Interceptors can be defined within a target class as an interceptor method, or in an
associated class called an interceptor class. Interceptor classes contain methods that are
invoked in conjunction with the methods or lifecycle events of the target class.

10

Interceptor classes and methods are defined using metadata annotations, or in the
deployment descriptor of the application containing the interceptors and target
classes.

3 Administration Console
This section describes the new Administration Console features in this release of
WebLogic Server.

3.1 Support for EJB Modules in a WAR File
Support for managing EJB modules that are directly inside of Web application archive
(WAR) files via the Administration Console has been added. For more information, see
Section 5.1, "Packaging and Deploying EJBs Directly in WAR Files".

3.2 Console Changes to Support Java EE 6
Various Administration Console changes have been made to support the
implementation of Java EE 6, including changes to:

■ Deployment

■ Application container

■ SCA container

■ Split source

■ Application and module naming

4 Core Server
WebLogic Server 12.1.1 includes a new Maven plug-in for WebLogic Server
(wls-maven-plugin) with enhanced functionality to install, start and stop servers,
create domains, execute WLST scripts, and compile and deploy applications from
within your Maven environment. For more information, see "Using the WebLogic
Development Maven Plug-In" in Developing Applications for Oracle WebLogic Server.

5 Enterprise Java Beans (EJBs)
This section describes the new EJB 3.1 features in this release of WebLogic Server:

■ Section 5.1, "Packaging and Deploying EJBs Directly in WAR Files"

■ Section 5.2, "Singleton Session Beans"

■ Section 5.3, "EJB Timer Enhancements"

■ Section 5.4, "Portable Global JNDI Names"

■ Section 5.5, "Asynchronous Session Bean Invocations"

■ Section 5.6, "Simplified No Interface Client View"

■ Section 5.7, "Embeddable EJB API"

■ Section 5.8, "JPA 2.0 Support Using the Default TopLink Persistence Provider"

■ Section 5.9, "Applications That Use Kodo as the Persistence Provider"

11

5.1 Packaging and Deploying EJBs Directly in WAR Files
EJB 3.1 provides the ability to place EJB modules directly inside of Web application
archive (WAR) files, removing the need to produce archives to store the Web and EJB
components and combine them together in an enterprise application archive (EAR)
file. For more information see, "Packaging an EJB In a WAR" in Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

5.2 Singleton Session Beans
Singleton session beans provide a formal programming construct that guarantees a
session bean will be instantiated once per application in a particular Java Virtual
Machine (JVM), and that it will exist for the life cycle of the application. With
singletons, you can easily share state between multiple instances of an enterprise bean
component or between multiple enterprise bean components in the application. For
more information see, "Singleton Session Beans" in Understanding Oracle WebLogic
Server.

5.3 EJB Timer Enhancements
EJB 3.1 provides the following TimerService features:

■ Calendar-based EJB Timers – EJB 3.1 supports calendar-based EJB TimerService
expressions. The scheduling functionality takes the form of CRON-styled schedule
definitions that can be placed on EJB methods, in order to have the methods be
automatically invoked according to the defined schedule. For more information
see, "Calendar-based Timers" in Programming WebLogic Enterprise JavaBeans, Version
3.0 for Oracle WebLogic Server.

■ Automatically-created EJB Timers – EJB 3.1 supports the automatic creation of a
timer based on metadata in the bean class or deployment descriptor, which allows
the bean developer to schedule a timer without relying on a bean invocation to
programmatically invoke one of the Timer Service timer creation methods.
Automatically created timers are created by the container as a result of application
deployment. For more information see, "Automatically-created EJB Timers" in
Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

5.4 Portable Global JNDI Names
The Portable Global JNDI naming option in EJB 3.1 provides a number of common,
well-known namespaces in which EJB components can be registered and looked up
from using the pattern java:global[/<app-name>]/<module-name>/<bean-name>. This
standardizes how and where EJB components are registered in JNDI, and how they
can be looked up and used by applications. For more information see, "Programming
Access to EJB Clients" in Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

5.5 Asynchronous Session Bean Invocations
An EJB 3.1 session bean can expose methods with asynchronous client invocation
semantics. Using the @Asynchronous annotation in an EJB class or specific method will
direct the EJB container to return control immediately to the client when the method is
invoked. The method may return a future object to allow the client to check on the
status of the method invocation, and retrieve result values that are asynchronously

12

produced. For more information see, "Programming Asynchronous Business Methods"
in Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

5.6 Simplified No Interface Client View
The No-interface local client view type simplifies EJB development by providing local
session bean access without requiring a separate local business interface, allowing
components to have EJB bean class instances directly injected. For more information
see, "Accessing EJBs Using the No-Interface Client View" in Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

5.7 Embeddable EJB API
EJB 3.1 supports an embeddable API for executing EJB components within a Java SE
environment. Unlike traditional Java EE server-based execution, embeddable usage
allows client code and its corresponding enterprise beans to run within the same
virtual machine and class loader. This provides better support for testing, offline
processing (for example, batch jobs), and the use of the EJB programming model in
desktop applications. For more information, see "Using an Embedded EJB Container in
Oracle WebLogic Server" in Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

5.8 JPA 2.0 Support Using the Default TopLink Persistence Provider
Oracle TopLink, a JPA 2.0 persistence provider, is now the default JPA provider,
replacing Kodo, which was the default provider in previous releases. Any application
that does not specify a JPA provider in persistence.xml will now use TopLink by
default. Applications can continue to use Kodo (a JPA 1.0 provider) by explicitly
specifying Kodo/OpenJPA as their persistence provider in persistence.xml. In
addition, a Weblogic Server domain can be configured to use Kodo by default, if
desired.

For more information, see "Configuring the Persistence Provider in WebLogic Server"
in Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

5.9 Applications That Use Kodo as the Persistence Provider
WebLogic Server runs with the JPA 2.0 JAR in the server’s classpath. Although JPA 2.0
is upwardly compatible with JPA 1.0, JPA 2.0 introduced some methods to existing JPA
interfaces that conflict with existing signatures in OpenJPA interfaces. As a result,
applications that continue to use Kodo/JPA as the persistence provider with WebLogic
Server 12.1.1 must be recompiled. For more information, see "Updating Applications
to Overcome Conflicts" in Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

6 JDBC Data Sources
This release of WebLogic Server supports data sources per the Java EE 6 specifications.

WebLogic Server 12.1.1 also provides an extended set of WebLogic data source
configuration attributes. See "Using DataSource Resource Definitions" in Programming
JDBC for Oracle WebLogic Server.

13

7 Node Manager
The default value for startScriptEnabled has been changed to true as of this release.
In previous releases, the default was false.

8 Resource Adapters
WebLogic Server now fully supports the Java EE Connector Architecture Specification,
Version 1.6 Final Release, as well as resource adapters based on versions 1.0 and 1.5 of
the Java EE Connector Architecture. Except where noted, the following sections
describe new functionality for version 1.6 resource adapters:

■ Section 8.1, "Ease of Development and Configuration"

■ Section 8.2, "Generic Work Context"

■ Section 8.3, "Security"

■ Section 8.4, "Schema Changes"

■ Section 8.5, "Contexts and Dependency Injection (CDI) Support"

8.1 Ease of Development and Configuration
WebLogic Server supports several ease-of-development and ease-of-configuration
features introduced in the Java EE Connector Architecture version 1.6, including the
following:

■ Metadata annotations — Developer complexity is reduced by supporting the use
of annotations in resource adapter class files. Annotations can specify deployment
information, eliminating the need to create the ra.xml deployment descriptor file
manually.

■ Dynamic configuration properties that can be defined on ResourceAdapter,
ManagedConnectionFactory, and Admin Object beans.

■ The ability to specify, at run time, the level of transaction support a resource
adapter can provide.

8.2 Generic Work Context
The Generic Work Context, new in Connector Architecture version 1.6, is a mechanism
for resource adapters to propagate contextual information, in addition to transaction
inflow, from Enterprise Information Systems (EISes) during message delivery and
Work submission. The Generic Work Context has the following impact on developing,
configuring, and running resource adapters in the WebLogic Server environment:

■ Transaction support—The new TransactionContext replaces the transaction inflow
contract.

■ Security— The new SecurityContext defines the security context for work
submitted by the resource adapter on behalf of the EIS to WebLogic Server.

■ Management of long-running work—A resource adapter can define constants to
represent long-running Work instances in WebLogic Server, including the threads
in which they execute, to facilitate better thread monitoring and management.

14

8.3 Security
The WebLogic Server adds supplemental support for the security context in the
Administration Console by providing a means to create inbound EIS-to-WebLogic
principal mappings, which map EIS principals, such as users or groups defined in the
EIS security domain, to corresponding principals in the WebLogic domain. For more
information, see "Security" in Programming Resource Adapters for Oracle WebLogic Server.

8.4 Schema Changes
As a result of the features added to Connector Architecture 1.6 to simplify
development and configuration, the schemas for the ra.xml and weblogic-ra.xml
deployment descriptor files have changed. For more information, see "weblogic-ra.xml
Schema" in Programming Resource Adapters for Oracle WebLogic Server.

8.5 Contexts and Dependency Injection (CDI) Support
The WebLogic Server Connector container adds support for JSR 299: Contexts and
Dependency Injection for the Java EE Platform (CDI) in embedded and global resource
adapters. CDI defines a set of services for using injection to specify dependencies in an
application. WebLogic Server supports the following CDI features in 1.6 resource
adapters:

■ Bean discovery — The resource adapter RAR, all JARs packaged inside the RAR,
and every bean archive referenced by the RAR is searched, regardless of whether a
beans.xml bean archive descriptor file exists in those JARs.

■ Bean Manager — The ExtendedBootstrapContext class now includes the
getBeanManager method. This method can be used to return a resource adapter’s
Bean Manager, which provides the means to retrieve bean instances from that
adapter.

■ Bean injection — WebLogic Server includes a number of built-in beans in its
Connector Architecture 1.6 implementation that permit injection points for
references to a variety of artifacts for the current resource adapter bean, such as the
BootstrapContext, WorkManager, XATerminator, and JTA
TransactionSynchronizationRegistry objects.

■ Support for the javax.annotation.PostConstruct and
javax.annotation.PreDestroy annotation types on ResourceAdapter,
ManagedConnectionFactory, ActivationSpec, and Admin Object beans.

Note that the use of the javax.annotation.Resource annotation type used for
declaring a reference to a resource adapter’s managed beans is not supported. For
more information, see "Using Contexts and Dependency Injection in Resource
Adapters" in Programming Resource Adapters for Oracle WebLogic Server.

9 Security
This section describes the following security changes in WebLogic Server 12.1.1:

■ Section 9.1, "Java Authentication Service Provider Interface for Containers
(JASPIC) Support"

■ Section 9.2, "Java Authorization Contract for Containers (JACC) 1.4 Support"

■ Section 9.3, "RSA JSSE Provider"

■ Section 9.4, "SSL Implementation"

15

■ Section 9.5, "Enhancements to Support for Single Sign-On with Microsoft Clients"

9.1 Java Authentication Service Provider Interface for Containers (JASPIC)
Support
This release of WebLogic Server supports JSR 196: Java Authentication Service
Provider Interface for Containers (JASPIC) Version 1.0. The JASPIC specification
defines a service provider interface (SPI) by which authentication providers that
implement message authentication mechanisms can be integrated in server Web
application message processing containers or runtimes.

The message processing run time uses this SPI at the identified message processing
points to delegate the corresponding message security processing to the authentication
providers.

The JASPIC authentication provider assumes responsibility for authenticating the user
credentials and returning a Subject. WebLogic Server then treats this Subject as it
would all others.

Authentication providers integrated through this interface operate on network
messages provided to them by the WLS container. They authenticate incoming Web
application messages and return to their calling container (WLS) the identity (the
expected Subject) established as a result of the message authentication.

9.2 Java Authorization Contract for Containers (JACC) 1.4 Support
In this release, WebLogic Server adds support for JACC 1.4. For information about
using JACC, see "Using the Java Authorization Contract for Containers" in
Programming Security for Oracle WebLogic Server.

9.3 RSA JSSE Provider
WebLogic Server 12.1.1 includes support for the RSA JSSE provider. RSA JSSE is a
third-party JSSE provider that can be statically registered in the JVM if you wish to use
it. For information about how to install and configure the RSA JSSE provider, see
"Using the RSA JSSE Provider in WebLogic Server" in Securing Oracle WebLogic Server.

9.4 SSL Implementation
Certicom has been removed from WebLogic Server 12.1.1 and is no longer supported.

JSSE is the only SSL implementation that is supported in WebLogic Server 12.1.1. The
following configuration changes have been made to be consistent with this support:

■ The default for JSSEEnabled has been changed to true. Oracle recommends that
you keep this value set to true.

■ If JSSEEnabled is set to false, it will be ignored. That is, the MBean value will not
be changed either in memory or the persisted config.xml file. WebLogic Server
will continue to use JSSE, but will issue a warning.

9.5 Enhancements to Support for Single Sign-On with Microsoft Clients
The release of WebLogic Server adds the following enhancements to its support for
single sign-on (SSO) with Microsoft clients using Windows Integrated Authentication

16

based on the Simple and Protected Negotiate (SPNEGO) mechanism and the Kerberos
protocol:

■ Use of the AES-128, AES-256, and RC4 encryption algorithms for encrypting the
user accounts that are mapped to Kerberos services on the WebLogic Server host

■ Support for Java SE clients

10 Stand-alone Clients
The WebLogic Thin T3 Client jar (wlthint3client.jar) supports the GlassFish
application server version 3.1 and higher. For more information, see "Developing a
WebLogic Thin T3 Client" in Oracle Fusion Middleware Programming Stand-alone Clients
for Oracle WebLogic Server.

11 Web Services
This section describes new and changed WebLogic Web Services features in this release
of WebLogic Server, including:

■ Section 11.1, "WebLogic Web Service Compliance With Java EE 6"

■ Section 11.2, "Enhanced Support of Web Services in EJB 3.1"

■ Section 11.3, "Improved Support for Jersey JAX-RS RI Version 1.9"

■ Section 11.4, "New RESTful Web Service (JAX-RS) Sample"

■ Section 11.5, "Support for EclipseLink MOXy (JAXB)"

■ Section 11.6, "UDDI v2.0 Registry and UDDIExplorer Removed in this Release"

■ Section 11.7, "WebLogic Web Services 8.1 Application Environment Removed"

11.1 WebLogic Web Service Compliance With Java EE 6
WebLogic Web service features and standards are compliant with Java EE 6. For the
current list of standards supported for WebLogic Web services, see "Features and
Standards Supported by WebLogic Web Services" in Introducing WebLogic Web Services
for Oracle WebLogic Server.

11.2 Enhanced Support of Web Services in EJB 3.1
WebLogic Web services include enhancements to support EJB 3.1. Specifically,
WebLogic Web services can be packaged as follows:

■ EJB in a WAR file

■ Singleton EJB

11.3 Improved Support for Jersey JAX-RS RI Version 1.9
WebLogic Server supports Jersey Java API for RESTful Web Services (JAX-RS)
Reference Implementation (RI) Version 1.9, which is a production quality
implementation of the JSR-311 JAX-RS specification, defined at:
http://jcp.org/en/jsr/summary?id=311. In this release, the JAX-RS application
environment is no longer dependent on WebLogic Server shared libraries and provides
WebLogic Server Runtime MBeans for post-deployment manageability. As required,
you can use a more recent version of the Jersey JAX-RS RI.

17

For information about developing WebLogic Web services that conform to the
Representational State Transfer (REST) architectural style using JAX-RS, see Developing
RESTful Web Services for Oracle WebLogic Server.

11.4 New RESTful Web Service (JAX-RS) Sample
A new sample, RESTful Web Services (JAX-RS), has been added to the WebLogic
Server Sample Applications and Code Examples. For information about accessing the
JAX-RS sample, see "Sample Application and Code Examples" in Understanding Oracle
WebLogic Server.

11.5 Support for EclipseLink MOXy (JAXB)
In this release, EclipseLink MOXy (JAXB) is the default data binding and JAXB
provider. For more information about EclipseLink MOXy (JAXB), see:

■ "Using JAXB Data Binding" in Developing JAX-WS Web Services for Oracle WebLogic
Server

■ EclipseLink MOXy (JAXB) User’s Guide at
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

Alternatively, you can enable the Glassfish RI JAXB as the data binding and JAXB
provider at the server or application level. For more information, see "Using the
Glassfish RI JAXB Data Binding and JAXB Providers" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

11.6 UDDI v2.0 Registry and UDDIExplorer Removed in this Release
The UDDI v2.0 registry and UDDIExplorer applications have been removed in this
release. Customers are encouraged to consider upgrading to Oracle Enterprise
Repository or Oracle Service Registry, which provide SOA visibility and governance.
For more information, see
http://www.oracle.com/us/technologies/soa/soa-governance/index.html. From
the list of products at the bottom of the page, select Oracle Service Registry. On the
lower right, expand the Brochures and Data Sheets section to access the Oracle
Enterprise Repository and Oracle Service Registry for SOA Governance data sheet.

11.7 WebLogic Web Services 8.1 Application Environment Removed
The WebLogic Web Services 8.1 application environment has been removed in this
release. As a result, WebLogic Web service applications built on WebLogic Server 8.1
are no longer supported in this release. You must upgrade you 8.1 Web services to a
more recent version.

12 Web Server Plug-ins
The WebLogic Web Server plug-ins are no longer included with WebLogic Server. The
plug-ins are now available as a separate download. You can download the plug-ins
from
http://www.oracle.com/technetwork/middleware/weblogic/downloads/wls-main-0
97127.html. For more information, please see the My Oracle Support Doc ID 1111903.1
within Oracle Support.

18

13 Standards Support
This release of WebLogic Server supports the following standards and versions.

13.1 Java Standards
Table 2 lists currently supported Java standards.

Table 2 Java Standards Support

Standard Version

Contexts and Dependency Injection for Java EE 1.0

Dependency Injection for Java EE 1.0

Expression Language (EL) 2.2, 2.1, 2.0

Only JSP 2.0 and greater supports
Expression Language 2.x.

JAAS 1.0 Full

JASPIC 1.0

Java API for XML-Based Web Services (JAX-WS) 2.2, 2.1, 2.0

Java API for RESTful Web Services (JAX-RS) 1.1

Java Authorization Contract for Containers (JACC) 1.4

Java EE 6.0

Java EE Application Deployment 1.2

Java EE Bean Validation 1.1

Jave EE Common Annotations 1.0

Java EE Connector Architecture 1.6

Java EE EJB 3.1

Java EE Enterprise Web Services 1.3, 1.2, 1.1

Jave EE Interceptors 1.1

Java EE JDBC 4.0, 3.0

Java EE JMS 1.1, 1.0.2b

Java EE JNDI 1.2

Java EE JSF 2.1, 2.0, 1.2, 1.1

Java EE JSP 2.2, 2.1, 2.0, 1.2, and 1.1

JSP 1.2. and 1.1 include Expression
Language (EL), but do not support EL
2.x or greater.

Java EE Managed Beans 1.0

Java EE Servlet 3.0, 2.5, 2.4, 2.3, and 2.2

Java RMI 1.0

JavaMail 1.4

JAX-B 2.2, 2.1, 2.0

JAX-P 1.3, 1.2, 1.1

19

13.2 Web Services Standards
For the current list of standards supported for WebLogic Web services, see "Features
and Standards Supported by WebLogic Web Services" in Introducing WebLogic Web
Services for Oracle WebLogic Server.

13.3 Other Standards
Table 3 lists other standards that are supported in this release of WebLogic Server.

JAX-R 1.0

JAX-RPC 1.1

JCE 1.4

JDKs 7.0 (1.7), 6.0 (1.6)

JMX 1.2, 1.0

JPA 2.0, 1.0

JSR 77: Java EE Management 1.1

JSTL 1.2

Managed Beans 1.0

OTS/JTA OTS 1.2 and JTA 1.1

RMI/IIOP 1.0

SOAP Attachments for Java (SAAJ) 1.3, 1.2

Streaming API for XML (StAX) 1.0

Web Services Metadata for the Java Platform 2.0, 1.1

Table 3 Other Standards

Standard Version

SSL v3

X.509 v3

LDAP v3

TLS v1.1, v1.2

HTTP 1.1

SNMP SNMPv1, SNMPv2, SNMPv3

xTensible Access Control Markup Language (XACML) 2.0

Partial implementation of Core and Hierarchical Role Based
Access Control (RABC) Profile of XACML

2.0

Internet Protocol (IP) Versions:

■ v6

■ v4

Table 2 (Cont.) Java Standards Support

Standard Version

20

For more information about IPv6 support for all Fusion Middleware products, refer to
the IPv6 Certification worksheet in the Oracle Fusion Middleware 11g Release 1 (11.1.1.x)
Certification Matrix at
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html.

14 Supported Configurations
For the most current information on supported configurations, refer to the Oracle
Fusion Middleware Supported Configurations Central Hub.

15 WebLogic Server Compatibility
For the most current information on compatibility between current version of
WebLogic Server and previous releases, see "WebLogic Server Compatibility" in
Understanding Oracle WebLogic Server.

16 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Oracle Fusion Middleware What's New in Oracle WebLogic Server, 12c Release 1 (12.1.1)
E24494-07

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

	1 JDK 7 Certification
	1.1 About the Patches Available for WebLogic Server 12.1.1

	2 Java EE 6 Support
	2.1 Java EE 6 Platform Highlights
	2.2 Enterprise JavaBeans (EJB) 3.1
	2.3 Java Servlet 3.0 Technology
	2.4 JavaServer Faces (JSF) 2.x and JavaServer Pages Standard Tag Library (JSTL) 1.2
	2.5 Java Persistence API (JPA) 2.0
	2.6 Java Transaction API (JTA)
	2.7 Java API for RESTful Web Services 1.0
	2.8 Managed Beans 1.0
	2.9 Contexts and Dependency Injection for the Java EE Platform 1.0
	2.10 Dependency Injection for Java 1.0
	2.11 Bean Validation
	2.12 Java EE Connector Architecture (JCA) 1.6
	2.13 Java Authorization Contract for Containers (JACC) 1.3
	2.14 Java Authentication Service Provider Interface for Containers (JASPIC) 1.0
	2.15 Common Annotations for Java Platform 1.1
	2.16 Java Architecture for XML Binding (JAXB) 2.2
	2.17 Java API for XML Web Services (JAX-WS) 2.2
	2.18 Interceptors 1.1

	3 Administration Console
	3.1 Support for EJB Modules in a WAR File
	3.2 Console Changes to Support Java EE 6

	4 Core Server
	5 Enterprise Java Beans (EJBs)
	5.1 Packaging and Deploying EJBs Directly in WAR Files
	5.2 Singleton Session Beans
	5.3 EJB Timer Enhancements
	5.4 Portable Global JNDI Names
	5.5 Asynchronous Session Bean Invocations
	5.6 Simplified No Interface Client View
	5.7 Embeddable EJB API
	5.8 JPA 2.0 Support Using the Default TopLink Persistence Provider
	5.9 Applications That Use Kodo as the Persistence Provider

	6 JDBC Data Sources
	7 Node Manager
	8 Resource Adapters
	8.1 Ease of Development and Configuration
	8.2 Generic Work Context
	8.3 Security
	8.4 Schema Changes
	8.5 Contexts and Dependency Injection (CDI) Support

	9 Security
	9.1 Java Authentication Service Provider Interface for Containers (JASPIC) Support
	9.2 Java Authorization Contract for Containers (JACC) 1.4 Support
	9.3 RSA JSSE Provider
	9.4 SSL Implementation
	9.5 Enhancements to Support for Single Sign-On with Microsoft Clients

	10 Stand-alone Clients
	11 Web Services
	11.1 WebLogic Web Service Compliance With Java EE 6
	11.2 Enhanced Support of Web Services in EJB 3.1
	11.3 Improved Support for Jersey JAX-RS RI Version 1.9
	11.4 New RESTful Web Service (JAX-RS) Sample
	11.5 Support for EclipseLink MOXy (JAXB)
	11.6 UDDI v2.0 Registry and UDDIExplorer Removed in this Release
	11.7 WebLogic Web Services 8.1 Application Environment Removed

	12 Web Server Plug-ins
	13 Standards Support
	13.1 Java Standards
	13.2 Web Services Standards
	13.3 Other Standards

	14 Supported Configurations
	15 WebLogic Server Compatibility
	16 Documentation Accessibility

