Writing Device Drivers

Part No: E29051-01

ORACI_EM October 2012

Copyright © 1992, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Celogiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder a toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas quelles soient exemptes
derreurs et vous invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, oula documentation qui I'accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de ce logiciel
oul'utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante sapplique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est
destiné a étre utilisé dans des applications a risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires a son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l'utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a
d’autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées dAdvanced Micro
Devices. UNIX est une marque déposée d’'The Open Group.

Celogiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cotts occasionnés ou des dommages causés par l'acces a
des contenus, produits ou services tiers, ou a leur utilisation.

121010@25097

Contents

PrEface ... s 31
Partl Designing Device Drivers for the Oracle Solaris Platformc.cccoooovivieninnnecniceenn, 37
1 Overview of Oracle Solaris Device Drivers ... 39
Device DIiver BasiCs ...
What Is a Device DIiver?cocovevenenecencereeeencenenennns
What Is a Device Driver ENtry POINE?c.ocvveniirieeiniiniieieinereeneiseie et ssesenns 40
Device Driver ENtry POINESc.vciiiieiiiiece st 41
Entry Points Common t0 ALl DIIVETLSc..covceveuiurecuiirienierieeneeieeeneeseeenessesessesesessensessesens 41
Entry Points for BIOCK DeVIce DITVELSoceuiureuereuiiereerienieenereienseneeenecneesesenesesensessesensens 44
Entry Points for Character Device Drivers
Entry Points for STREAMS Device Drivers
Entry Points for Memory Mapped Devices
Entry Points for Network Device DIIVETScccccueuiurimniinemnereneeeneeeseieesesesessensenassssssesens 48
Entry Points for SCSTHBA DIIVELSccovviuireeererierineieneesesesensensesesesesssasesessessessessesssssssens 48
Entry Points for PC Card DIIVETScccviureeriurieereerieeeeniereensesseieneseeessesssssssessessesensessesessens 49
Considerations in Device DIiver DeSIZNc.oceeureureeeirerneeeinerriiniseinerneeneetsessesessessesessessessesessesseseens 50
DDI/DKI Facilities
DIiver CONEXT .ot
Returning EITOTS ..o
Dynamic Memory AllOCAtiONcouiuiiiriiiciiiccc s 53
HOEPIUGGING ...ttt e saen 54
2 Oracle Solaris Kerneland DeviceTree ... 55
What Is the KeInel? ..ottt ssesessessesessessessesessessesessesesssacsns 55
Multithreaded Execution ENVIFONIMENT «..c..cuuvueueviueiiirieeieerieeieieiseeeseeseseeseisese s esessessesens 57

Contents

VIrtUal MEIMOTY .ouvuieiniiieiceeieiecireiseie et ssctsese e seas s sse bt esessesasassscsasen 57
Devices as SPECIal FALESouiuiviiiriniiiriciciricictr ettt ettt 57
DDI/DKIINEEITACESouvereeriirieniieiireiacieiseeisiesssesseessse s sssesss s asssase s sssssesssesss s sssnans 58
OVErview Of the DEVICE TTEEvuvueeuierieiriirieireireieietsei sttt sttt bttt 59
Device Tree Components .59
Displaying the DevVICe TTEEcccveureeuiuriiereiriierietieneiereeseaesseaeaessesssseeesseesesessesesessessssesessees 60
Binding a DIiver t0 @ DEVICEccveuvieriirieerciriieeeereieeeneeseiessesesensessesseee s s sssessesssssesessens 62

3 MUIITRI@AAING ...ttt s e nnns 67
Locking Primitives .. 67
Storage Classes of DIVEr DAta ... ssssssssse s ssssens 67
Mutual-EXCIUSION LOCKScuviiiiiciriieicireieicincieieceeie ittt saesesenaeen 68
Readers/WIItEr LOCKSvuevueuieiecieirieeiceeienctneieneeseeseie e ese s sssesesseasesesse s ssesasasescsnces 69
SEIMAPROTES ...ttt ettt ettt 69
Thread SYNnchIONIZAtIONccocuiviciiiicciece et 70
Condition Variables in Thread Synchronization ... 70

cv wait() and cv_timedwait () Functions

CV_Walt SIQ() FUNCHON .ottt aene

cv_timedwait Sig() FUNCHON ..ottt
Choosing a LocKing SChemeoccuvrieiiinieieieeece e 74
Potential Locking Pitfallsocvcrieiiirieiciniieicneireeciseieieeseie et ssese e sessesessees 74
Threads Unable to Receive SIgNalscoecureeiiirierienieieiieeeieeeneesesensessesessenessesensens 75
G PYOPEITIES ...ttt ettt sttt ettt a st b ettt et e s bbbttt eanas e st ebebeaeananas 77
Device PrOPEITIEScuviiiiiiiiciccci s 77
Device Property Names ... 78
Creating and Updating PrOPerties ... 78
LOOKING UP PIOPEITIES ..uveuvevrivreireiriecintiieeiaeinteeeeeseasesesseesesessesesessesssssesessessesessesssessesssasesesnees 78
Changes to the driver.cont FIle ... neneee 80
prop_op () ENtry POINT ..o 81

5 Managing Events and Queueing Tasks
Managing EVENTS ..ot

INtrOAUCHON t0 BVEIIES ...viuivieicecceceetceeee ettt ettt nesaeneaenen

4 Writing Device Drivers « October 2012

Contents

Using ddi_log_sysevent() to LOg EVeNnts ..., 85
Defining Event AtIIDULESccccuciciiiriiiiiecccecicie e 86
QUEUEING TASKS ...t 89
Introduction to Task QUEUESccueuriueurireueiriiieireeiricie ettt ettt 89
Task QUEUE INEEITACESvouireeieieeceieceeeeeee ettt ettt sttt ses e saese e enensenan 90
Observing Task QUEUEScccueueveeuriurieeriirieneieeereeeee e ese s sse s sas s sasaesenaes 90
Driver AUtOCONTIGUIATIONcooviriieiei ettt nse s e 93
Driver Loading and Unloadingc.cvecreureeineineueicinernieenerneieieeneseeessesseeesessesessessessssessessesesss 93
Data Structures ReqUired fOr DITVETScveuveeeineireurieineirieeieireieieiseisesessetsesesessesessessessssessessesesans 94
MOATINKAGE STITUCLULE .ottt bbbttt sttt esne 95

modldrv Structure

dev_ops Structure
cb_ops Structure

Loadable Driver Interfaces

CANIT() EXAMIPLE oottt 98
CFINL() EXAMPLE vttt 99
CANTO() EXAMIPLE wevureiiiiicieetrictece ettt ettt

Device Configuration Concepts ...
Device Instances and Instance Numbers
Minor Nodes and Minor NUMDETSc.ccccueuiruriniueiririeinieisieie et ssessseessans 101
probe () Entry POINt ...
attach() Entry Point
detach () Entry Point

getinfo() Entry POINt ... 110
USING DEVICE IDSoviiiiiiiiiiiiiici s 112
Registering Device IDS ... 112
Unregistering Device IDS ... 113
Device Access: Programmed 1/0 ..ottt seses 115
DeVICE MEIMOTYoiiiiiiiiiiiiiii bbb bbb 115
Managing Differences in Device and Host ENdiannessc.ccceeveeveneerernerrercrerecneenenens 116
Managing Data Ordering Requirements
ddi_device acC attr STIUCLUIE ..ccoceiciecieiece ettt s e sesenees
Mapping Device MEMOTY ..ot

Contents

Mapping Setup EXAMPLE ...c.coeurrueuiirieeieirieeicieesieitiseee et ssese e esesessesenns 117
Device Access FUNCHONScceuiiiiiiciiiiiciccccc e 118
Alternate Device ACCeSS INEITACEScvvurevmvmermerurerieiiniireneierenseriesiesisessesease e ssesseseeseees 120
INEErFUPTHANMIRES ...ttt 121
Interrupt Handler OVEIVIEWc.ouccricurinicuniieiricieieiciseeiet et ssescse st sstsessesesessesessesssesseaes 121
Device INTEITUPLS ..cuuiiiiiiccc s 122
High-Level INTEITUPLSccviuieeiciieiciiiriect et saeesenes 122
Legacy INTEITUPLS ...c.cuuiiiiiiiiciiii bbb 123
Standard and Extended Message-Signaled INterruptscccocveeeuveuneeercrneeercuremreensenneneene 123
SOFEWATE INTEITUPLS .cvuvrrveiecreeeiecireeeeicittseee ettt seb et ta bbb saeen
DDI Interrupt FUNCHONS ..coovviiiiiiiiiiiiiciccciiice e
Interrupt Capability FUNCHONSc.oveuierieeiiiriieicirtieiciciseecisesceieieese e sseseesenns

Interrupt Initialization and Destruction Functions
Priority Management FUNCHONS ..o
SOft INtErTUPt FUNCHOMS ...uvuvireeiicicirincieieicineete ettt ese et s e seesssesneacs
Interrupt FUNCtion EXAMPILESc.vueeeuiinieeieciniinicitineieiciseie e sessesenne
Registering INTEITUPLS ..o
Registering Legacy Interrupts
Registering MSTINTEITUPLScccviiuiiiiiiiiiiiciciiciiisici s sesssaessaes
Interrupt Resource Management ...
The Interrupt Resource Management FEaturecccocveeeunirecmneneennerneenerneene e
Callback INEEITACESouuieriiriiiiiicic et
Interrupt Request Interfaces
Example Implementation of Interrupt Resource Managementcecveeeeceneerecrrcenenene 139
Interrupt Handler FUNCHONALILYcouevieeieiiicicircicereeeeieceteeeeeeie et eeesenesensensesenaenne
Handling High-Level INEITUPLScocuvvueueureueicireireicireireieietreteeseesetsesessessesessetseseesessessesessessesesseenes
High-LeVel MULEXEScvuvermieeernenieenieniesieensesesenseseae e sese e ese e ssesessessssessessesesssessssssenns

High-Level Interrupt Handling Example

Direct Memory AcCess (DIVIA) ...ttt ettt et 153

DIMA MOUEL .ttt s st et enens s sssesesesesenens

Types of Device DMA
Bus-Master DMA
TRIrd-Party DMAcoviereicineieicintiseieeasesesseistae ettt sese s e ssessssenns 154

Writing Device Drivers « October 2012

Contents

10

11

First-Party DIMA ... 155
Types of Host Platform DMAccccuvuriciniiniieicireieicneeseiesisesesetsese e ssesssse s ssss s ssssesesasen 155
DMA Software Components: Handles, Windows, and COOKIESc.ccvverereeeerieeeerreereenseerennns 155
DIMA OPETALIOIS .euvevevvveieiiririeieieieieittsisteeete ettt sttt bbbttt s bttt s s benesens 156

Performing Bus-Master DMA Transferscoccvcreeeeeuneeneceneeneeinerneenessesesessessesessesseseens 156

Performing First-Party DMA TTansferscoovereemcrniemcrnineeeneeneseenenseseesesessesenne 157

Performing Third-Party DMA TTansfersoereeeeuneneceneeneeineineesessesesessessesesesseseens 157

DMA AHIIDULES .ot e
Managing DIMA RESOUICESccciiuiuiiiiiiiiiiicieieiciiesi ittt sssassne

Object Lockingc.cveueenee.

Allocating a DMA Handle

Allocating DIMA RESOUICEScuuueeemmiuiereacererrieeieseeeeessessesesesseseesessessesessessesessesessesesesseseens

Determining Maximum Burst S1Zescccccvviiriiiiiiiininiiiicecrcceeessseeeeenenne

Allocating Private DMA BUffers ..o ssessesenne

Handling Resource Allocation Failures
Programming the DMA ENGINEc.oveveuiricriirieieinieceeeiceseenesesesessese e sessesesessesenns
Freeing the DIMA RESOUICESc.cuuiuiuiuiieicicieciieniseesesssese e ssess s saesessassns
Freeing the DMA Handlecocceiiniercinieenieeneenesseisese e ssesesessesessesenns
Canceling DMA Callbacksccoviiiiiiiiiiiiiiciecssiecssssss s
Synchronizing Memory Objects
DMA WINAOWS ..ottt

Mapping Device and Kernel Memory ... 177
Memory Mapping Overview
EXPOIting the MapPINgcoceeeeueureueieiniieeeeineiseieteasesesseesesseseseesesesssssesesse s ssesssssssesssssesesacssesesaces
The segmap(9E) ENtry POINt ..ot e seesessenns 177
The devmap(9E) ENtry POINt ...c.cccuevieiiiiricicireicicicieeeiciseieseisese et sseseesenns 179
Associating Device Memory With User Mappingsceceveureereereeeererneeemerinneeersessesensessesensens 181
Associating Kernel Memory With User Mappings
Allocating Kernel Memory fOr USET ACCESScccuiureeuernieemerrernienrenneeenesseseeessessesessesseseene
Exporting Kernel Memory to APPLICAtiONScoc.eueueereucrnieremciernierierneenesessessesesesseseesesseseene
Freeing Kernel Memory Exported for USer ACCESSccueueuereriureerniureeererneeeeeneeeesenenens 186
Device Context ManagemMENt ..ottt seseens 187
Introduction t0 DeVICe COMEXL ..c.uvuvuiurruercerierrecieiieeieeresesseeeiereessesesessessesessessessssesssssesessessesesaees 187

Contents

12

13

What Is @ Device CONEXL? ... sasssnes 187
Context Management Modelccceuiininiininciciniieieeese e sesssesans 187
Context Management OPeration ... sisesessssesesssens 189
devmap Callback CTU STIUCIUIE ..ccviveieeieieieeeeeeerestee ettt eve st e s resbesse s eseenees 189
Entry Points for Device Context Managementcoceeeecereereeureenemeesersesessessesesessessesenne 190
Associating User Mappings With Driver NOtificationsc.ecccveuveeeverneererernenneeenerrenneenne 197
Managing Mapping ACCESSESccuvuviiuiuiuiuiiiiririiiiieisesesesisisse e ies s ssssssesenen 198
PoOWEr ManagemENTcocoivieieieiiiiiiieteie ettt es e s bbb e e st esesesne
Power Management FTameWOTKccocuiriciniinieiniinieiceiecetseeeeseseceeesese e esessennes
Device Power Management ..o
System Power Managementccccvcuiiiniiininiciiiice i sssssesssesesssesessssesssans
Device Power Management MOdelcccvecruricininieicineinicncineeeeeneieicesessesessessesessessesessesns

Power Management Components

Power Management STAtes ...
POWET LEVELS ...
Power Management DepPendenciesccueeuureeeieenieeeceneineeeneeneseseinesessesssssesesessesessees 205
Automatic Power Management for DeVICeSc..c.vveuneuriureneiniirieenennieeeeieeeenseeee e 206

Device Power Management Interfaces
power () Entry POINtccoiiiiiiiccc e
System Power Management MOdelcccvuevcirurieciniinieincineieicneiseieieeseieieisessesessessesesessesessesns
Autoshutdown Threshold ... s
BUSY STALE .t

Hardware State

Automatic Power Management for Systems

Entry Points Used by System Power Managementccccveeeeveuneeneemerneerrennememensesneenne 211
Power Management Device Access EXAMPLEc.ocuevucureureeeineenieeicineinicincineeeieeneseecesenseeessensesenaes 215
Power Management FLOW 0f CONEIOLc.vuivocuiinieciiinieicireieicretneeeeeseseeeessesseaesessesensessesessennes

Changes to Power Management Interfaces

Hardening Oracle SolariS DFIVErSc.ccooviiicieieeeeeecee ettt ssanes

Oracle Fault Management Architecture I/O Fault Services
What Is Predictive Self-Healing?cccccoveuuee
Oracle Solaris Fault Managercccceveeueureeeemieeeneieenessesenessesseseneseeseesssessesesssesenns
Error HANALNG «..covveeeciiericiireccr e e

Writing Device Drivers « October 2012

Contents

14

Partll

15

Layered Driver INterface (LDI) ...ttt 235
LDI OVEIVIEW ..ottt 235
Kernel INTErfacesovuuciiiiiiiiiicc s 236
Layered Identifiers — Kernel Device CONSUIMETSc.evevruemermerreeememneeemerneseesenessesensesseseene 236
Layered Driver Handles — Target DEVICESccvuueuiureuemmernieremceneireaeieineseesessessesessessesesesseseens 237
LDI Kernel Interfaces EXamPpleccoceuricurinieeinincinineicinieicinecieeeeiseeeseseseiseesessesesessesesseaeans 241
USEE INTEITACES .ouvuveeiririeiaciriteiecici ettt bbb 251
Device Information Library INterfacesccovceecureercrnivecrneneeeneeeneeeneeesensessesenne 251
Print System Configuration Command INterfacescoeeuveureeenerneeercrneneeineeneensenneeeene 253

Device User Command Interfaces

Designing Specific Kinds of DeVice DIIVErSc.oooiuriurieineininineinencreeee e 259

Drivers for Character DEVICESc.occuruiururireeiieieeeeisee ettt et sss st eassesees
Overview of the Character DITVEr StIUCTUTEcccvevueievrieirieecieieieiesesesseeesesesesssssssssesesesesssnss
Character Device AUtOCONTIGUIALIONuvuuiveiviiiiiciiiicie i ssssseses
Device Access (Character DIIVETS) ..c.cvvviuiceiveeieeeeeeeeeeieeeseeeeteseteseesesessssesesessssssessssessessssssssensssensans
open () Entry Point (Character DIIVETS)cccccocniuriciniirieineiieiciniisicsisieescssesesseseseeaens
close() Entry Point (Character DIIVEIS)ccccveureeuniureeemcurerneeenerneeeneesesenseesessesensessesennes
I/O Request HANAING ...t ss s ssessanes
USET AQAIESSES ..uvevveiereieiieereseetetesesseessssss et sesses s sss s s st s e ssssssesesesssssssssssesesesssssssnsssnseses
VECTOTEA T/O ettt ettt et s bbbt e bbb asesnas st esenns
Differences Between Synchronous and Asynchronous I/O
Data Transfer MethOdsccoveueiieinieieiierisece ettt s s sssans
Mapping Device MEMOTYcccccviiiiiiiiiiiiiiiiiis s
Multiplexing I/O on File DeSCIIPLOLSccccuiuiecumiuiieiiiriieieiiirieencieieeeeseee e ssesenans
Miscellaneous I/O CONLIOLc.vviiieeieieieiriieeee ettt s s ss bbb sssssnses
ioctl() Entry Point (Character Drivers)
1/0O Control Support for 64-Bit Capable Device DIiVerscccocuviiininiincincicisininiinennns
Handling copyout () OVEITIOWc.cuveeiieniiniieieicreieeeireiseesesessensesseseseesessese e ssessesaesanes
32-bit and 64-bit Data StruCtUure MACTOScceeveveeeeeeerereieieeeseseeesesessssssssessesesessssssssssssssesesssssses

Declaring and Initializing Structure Handles

Operations on Structure HAndIes ..o ssesseseene

Contents

16 Drivers for Block Devices

17

10

Other OPErationscccueueveeeiureueuiireieieereeesessesessesteesse s ssessese e ssesessesteseseseseesesseseesessenns 286

Block Driver Structure OVETVIEWcccceveeeereieisisereseeiesesessssssssssssssessssssssssssssssesessssssssssssssssesesesnes 287
FIIE T/O ettt ettt ettt ettt et a ettt ettt eae s s bt e st et eaean s s s enereas 288
Block Device AUtOCONIGUIALIONuvuuivuierieiiiiciicicieii et sessaes 289
CoNtrolling DEVICE ACCESScuvrevvecurirrecieirieeieireteeeeesetseae e tsesessessetsesessessesessessesessessesseaessessesessesnes 291
open () Entry Point (BIOCK DIIVETS)occuiuiueiiiiieiciiiriciiireieecicieeeneiseseseisese e seeesenses 291
close () Entry Point (BIOCK DIIVETS)cccoeureuercurerreeeinernieeeeereineeeesesneeessessesessessessesessessesessesnes 292
strategy () Entry POING ... 293
DUT STIUCEUTE ettt ettt ettt sttt ettt et e b ettt be e benentene 293
Synchronous Data Transfers (BIOCK DIIVELS)c.ceuevurriniuniiniererererereneeeineiseesessenessersessesssssces 295
Asynchronous Data Transfers (BIOCK DIIVEIS)c.coviuriueurunieereunieneecrneineieneenesenseeessesesessesessens 299
Checking for Invalid buf Requests
Enqueting the REQUESTc.cvueveuiirieciierieeireeecitee et sscaeanenns
Starting the FIrst TTANSTETc.oceucveeveereeiiniineineireienenenieteeeeseasese e ssessssasessessessessessessessnes

Handling the Interrupting Device

dump () and print () Entry POINS ..o eeeese s sseseans
dump () Entry Point (Block Drivers)
print() Entry Point (Block Drivers)

DT S DL oo B ¥ A 7<) o SO
L1 o Yo o OO

DISK PEITOTINANCE ..ttt ettt a et se et saenssenen

SCSITArgEEDIIVELScooveiiecieee ettt ettt bbb et e st esne
Introduction to Target DIIVETS ... ssssssnes
Sun Common SCST Architecture OVEIVIEWccvcviveveereieiriinereieesessssssssssssesesssssssssssssesesesnes
General Flow of Control
SCSA FUNCHOMNS 1.ttt ettt sttt ettt ettt b et sbe et aen
Hardware Configuration Fileccc.ceeirreninercrnerceenineneineieese e neessesssessessessessessessessessenes
Declarations and Data SEIUCLUIESccovveeverereieieiererieieiesesessessssesessesesesssssssssssssessssssssssssssssesesesnes
SCSL AEVICE SIIUCIULE ..cuvveeeeieteieteiteeet ettt ettt e sese et esa s e sesaesesessesassesnsnnsans
scsi_pkt Structure (Target Drivers)
Autoconfiguration for SCSI Target DITVELSc.ceeevereureuremrererersererierensssesseasesesessessersessesssens
probe () Entry Point (SCSI Target Drivers)

Writing Device Drivers « October 2012

Contents

18

attach() Entry Point (SCSI Target DIIVEIS)cocveureureeereeniermerieneieneenesenseneesesensessesensens 317

detach() Entry Point (SCSI Target DIIVErS)cccoeeeureureeueureeeeerneineensessesesennesessessessesenns 319

getinfo() Entry Point (SCSI Target DIIVErs) ..o 320
ReESOUICE ALIOCATION ettt ettt ettt eaesen

scsi_init pkt() Function

scsi_sync_pkt() Function

scsi destroy pKt() FUNCHON ..ottt 322
scsi alloc _consistent buf () FUNCHON ..o 322
scsi free consistent buf () FUNCHON ..o 322
Building and Transporting a Commandcccueuiiiiniiiics s 323

Buildinga Command

Setting Target Capabilities

Transporting @ COMMAINAcoueuiurieereinieercrreneee e eseessesenns 324
Command COMPIETIONvuuurureeeumiiriieieirieeciieee sttt sese e sese e eseseasesenns 325
ReUSE Of PACKELSoceeieeiiiiiii ittt 326
Auto-Request Sense MOde ... 327
Dump Handling

SCSTOPLIONS ..t

SCSIHOSt BUS AdQPLEr DIIVEISooeieeeeieieieieicccce ettt s s ae s seses
Introduction to Host Bus Adapter Drivers
SCSTINLETTACE ouvreeiirierieeieireteeae ettt sttt sttt bbb b bbbttt s et ebenaesas
SCSA HBA INEEITACES ..euvvriueriieirincieisteisieie ettt ettt bttt
SCSA HBA Entry Point SUMMATIY ..o eessssssssssesssssans
SCSA HBA Data STIUCLUIEScoueuiiiriiieieieiciirineeieieieeettisse e seiesestsessss s s esscsssesesesesenes

Per-Target INStance Dataccoiericiriieiieinccncecee e sessesensnaes

Transport Structure Cloning

SCSA HBA FUNCHONS ...t ssssssnane
HBA Driver Dependency and Configuration ISSUESccuveeeueereeeeeuneereecenieneeeneesesenesseseesens 344

Declarations and SEIUCTUIEScouiuieriiiiiiniiiic s ssssssaas 344

Entry Points for Module InitialiZationcccoeeeeueureercrniercrienieeneeneineeneneeeesenessesenne 345

Autoconfiguration Entry POINEScccveeeiciriericineinieieneeeeseisceeiesseeessese e sesseseene 347
Entry Points for SCSA HBA Drivers

Target Driver Instance InitialiZationcccccvcveeuiureercrninecnereeseeeeseee e essesenne 351

ReSOUICE ALIOCALION ...oeivrerieiniieciciee ettt e 353

Contents

12

19

20

Command TTANSPOIT ...c.vuvuierrieieiieeieciireee ettt e seaessnee 362
Capability Management ... ssessssssssssssessessesssssesenes 368
Abort and Reset Managementc..ceeeeeureeereereeriremnenneeemsensesseessesesesesseseesessessesessessesensenns 373
Dynamic RecONfIGUIAtIONc.ovueuiuereciiiiecieiieeieitieee et sessesenne 375
SCSIHBA DIiver SPECIfic ISSUESc.euueueiurieeicireiriieictneieietreteeseesetsesessetsesessesseseesessessesessessesessesns 376
Installing HBA DIIVETScovuiuereuieeeemiereienseseienseseeensenesessessessese e sesessesssssssessesesessessessnsenns 376
HBA Configuration PIOPEItiescccreureueueureueeeuierieieeseeieisesesessessesesessesesessesessessesessenns 376
x86 Target Driver Configuration PrOPertiesccccveuveerneunerreemnerneemerneeeeenenneenenseseesenne 377
SUPPOIL FOr QUETNG ...ttt sttt seb ettt sttt sebe st 379
Drivers for Network Devices ... 381
GLDv3 Network Device Driver Framework ... 381
GLDV3 MAC ReGISTIationccccuiiiiiiiiiiiciiiiiiccic s 382
GLDv3 Capabilities
GLDv3 Data Paths
GLDv3 State Change NOtICAtIONScccueurecumiureeniirieeereeeeeieee e neseeseesseseens 397
GLDV3 NetWOrK StAtISTICS ...uvvurvrueereereeciiireieieiseseeeiteessesessesesessese e ssessssesessesesessesessessesessenns

GLDV3 PIOPEITIES .cevvrriiiniecicieieieesittstieieiesessesesesesesesese s s sesessesesessaesesesesessaneasasscsenen

Summary of GLDv3 Interfaces

GLDv2 Network Device Driver Framework
GLDV2 DevVice SUPPOTT ..ottt
GLDV2 DLPI PTOVIAETS ...uvvvuieierieerieieiiiseessesisisesiisessssssssssssssesssesns
GLDV2 DLPT PIIMIEIVES ..ouveuiieieirieiiirieisteeteie sttt ettt sttt sa e enen
GLDv2 I/O Control Functions
GLDV2 Driver ReEQUIIeMENtSc.ccueiiiiuiiiiiiiiiiiiicciieececee e
GLDV2 NetWOTK STATISTICS vuvuvurerereeereriririiisiseeieisisiiessssssessssesessssssssssessssssssssssssessssssssssssssseses
GLDv2 Declarations and Data SEEUCTUIEScoveveeveveuerereieeseeeesesesssssssssesesesesssssnssassenes
GLDV2 FUNCtion ATGUMENLScuoviiiiiiiiiiiiiiiiicicii st sssasasnenen
GLDv2 Entry Points
GLDV2 REtUIT VAIUES .ovveieieeririeieieieiriicsseietses st sssssssae st ssssssssessssssasssssssssesesssssssssssssseses

GLDV2 SEIrvice ROULINES ..voovivieeiiiicieitietecteete ettt et et et ereeteereesseeassssesaeessessesssensesssessesenns
USB Drivers
USB in the Oracle Solaris ENVIFONMENTccooiveerevieeetieeieeeereteeeeteeereseeee e eseseeseseseesenseseseeneseneens 427
USBA 2.0 FIAIMEWOTK ..ttt ettt nenenen 427

Writing Device Drivers « October 2012

Contents

21

USB CLENt DITIVETS w..eovecervieiniirieenseieeeeeesseesesessessesessessesessessasesessessesessessesessesesssessessesessessesesns 428
Binding CLHENT DIIVETScveureeiiurieeieiriieeeeneeseeesetsesesseeseseesesssssesesessesesse s ssesssssssesssssssessssnesesaees 430
How USB Devices Appear to the SYStEIMcocuveueuiureeeecininicineireeeseeeeetseseeeiesseseesseseene 430
USB Devices and the Oracle Solaris Device TTeec.eeuveurereeriereeeenernieeeeineiseeisesseseesseseens 430
Compatible Device Names
Devices With Multiple INTErfacesccurueueinecerincueinicieneicisecieseeiseeee e tesesseesesseseseeeaes 432
Devices With Interface- Association DeSCIIPLOLSc.ceeueuriucueinceeirineeeireeieieeeiseesesseeeseeeaes 433
Checking Device DIiver BINdIngscccvereeeeuneuercunieneerniineeierneseeesneeeesessessesessessesessesseseene 434
Basic DEVICE ACCESScuuuiuiiiiiiicciiciie bbb 435
Before the Client Driver Is Attachedc.oceuereurieiniericinireeiseeeseisee e sseseene 435
The Descriptor Tree
Registering Drivers to Gain Device ACCESScoceuviimiiniiirieiiiiiciiciieiicsccesese s 437
Device CommuUNICAtIONc.cuiviiiiiiiiiiiiii s 438
USB ENAPOINES ..ot sesense st esessessese s sese s ssessesessessesessessesessescsesnns
The Defatlt PIPec.eucvucuieeieciriiriciiireiciciseieeieieeie s sessesenne
PIPE STALES ..o
Opening Pipes
CLOSING PIPES vrviieereeieceeieieeitireie sttt sttt et
Data TIANSTTouvuierieiiciciie s es s
FIUSRING PIPES .vecvuvreeieciiicieciiteiecitireiciciseie ettt s tasesnns
Device State Management ...t 448
Hotplugging USB DEVICEScuvveumiuieermeiieeeieriireeneiseee e ssessesessessesessessssssessessesenns 449
Power Management
STTAlIZATION .cvuvueiieciiicircte ettt
UHlIEY FUNCHOMS w.voveevriieieereeececiei et sseasese s ese s sse s ese s nse s naes
Device Configuration FaCIlitiesceceureeercuniureerniineieieineeiciseiseeessesesessese e ssesseseene 456
Other Utility FUNCHOMScouvuuiiiiiiiiiciiiiisiiiecicicie it sssssssssssssnssens 458
Sample USB DeVICE DIFIVELScucuiuiueiimcirieieiieeieieietsieietseaesstsesetsesesesescsstsese s eaeses st sssesesssssseseaes 459
SRAOVDIIVELS ... 461
Introduction t0 SR-IOV ...ttt ese st sae s asesesaeen 461
Benefits Of SR-TOV ..ottt et e 463
Supported Platforms
GLOSSATY ettt ettt st sttt b et
Overview Of SR-IOV DeViCe DIIVETc.cvucuivrieeieiriieicireineieinetseseeetseseesessessesessessesessessessesessessesesaes 464

Contents

14

Partlil

22

Physical FUNCtION (PF) DIIVET ..cuvueiiirieeiciiiricieirieeieieiseeeisese e sessesesessesessesessesnns 464
Virtual FUNCION (VF) DIIVEL .voviviuieiieieiereteteeeeeeeeetete ettt s s s s s sessasassesesesenens 465
Device Configuration Parametersoceeeeeuiereernirneeneeeeemenessesesessesesessesesseseeseesenns 466
Boot Configuration SEQUEIICEcvwuuueecurieercereirreeieireienesseteeseesetsesessessesessessessesessessesessessesessesnes 469
SR-IOV INterfaces SUMMATIYc.ccueureeeieurieeicireinieeeretseietetrese st sesesses st sesessessessesessessesessesnes 470
DIFIVET TOCELS wovvviieeeieriricieie sttt ettt s s sassssse s st essnsssnsnse 471
Interfaces fOr SR-IOV DIIVETScoeuevevrieereeeeiereteieiessieeese sttt s st sesessssssssssssesesesens 471
pci_param_get () INTEITACEcoiiiiiiiieietetecee ettt s s nas 471
pci param_get ioCtT() INtEIfACe ...t 472

pci_plist get() Interface
pci plist getvf() Interface

PCiV_ VT CONTig() INTEITACE covoveriririeieieiieietetctetee ettt aas
PCi Plist TOOKUP () INEEITACE ..oovieieitereieieiieceeete ettt aesenas 476
pci_param free () INEIfACE ..ttt n s s s aas 477

pciv_send() Interface
SR-TOV DIIVET TOCLLS ..vvveveiieiecicieteieieeiesisie ettt tsse s s s ses s ssssssssssesesesssssssssssssssesnes
DA STIUCLUTES ..vieeveeiieieieie ettt ettt et se e se e be s aebe e sse e s eseseesensssensasesan
TIOV_GET_VER_INFO IOCH ...oururueiereiriiiierieieisisireessssae et ssssss st ssssssssssssssesessssssssssnseses
IOV_GET_PARAM_INFO Ioctl
IOV_VALIDATE_PARAM Ioctl

DriVEr CallDACKSovueiieeieiciei ettt
Sample Code fOr DIiver IOCHSoceuriiuriieirieieireeiriceisecie ettt
BUilding @ DeVIiC@ DIIVENcooviieeeieees et s s nsaens 485
Compiling, Loading, Packaging, and Testing Driversccoocovneenncnnncnncenenceneneenene 487

Driver Development Summary

Driver Code Layout
HEAART FIlES ...ttt et e
SOUTCE FIlES .ot
ConfIGUIation FIlesc.eveuiuriueiiuiieiciiinieiireieeitiene et e

Preparing for Driver INStallationc..ccvveiercrercrerneineineieeseeneneessenssessessesessensessessessenes
Compiling and Linking the Driver
Module DEPEndenciesccvcueeriueuricueinecinineieireeciseeieeseete e seese s asesese e sseaes

Writing a Hardware Configuration Fileccocveocncncencnincnenecccseeneseeeseeeenenne

Writing Device Drivers « October 2012

Contents

23

24

Installing, Updating, and Removing DIIVETSc..eccreurreurerreeeecenernicenerneeeeseeneseescanesseeessessesenses 492
Copying the Driver to a Module Directorycccceuiniuniineinceeineeinieneseeseieee s 493
Installing Drivers With @dd_drVccceeiieeeieeeee e e eessesenns 494
Updating Driver INfOrmationocccereuninecriinienerneeeeseeneesessesesessesessensessesesessesenne 494
ReMOVING the DIIVETcuivieiiiiieciiiriicieineeecieiseie sttt et e 495

Loading and Unloading DITVETSc.cveeiueeeriireemennieeeneeeneeneeseeensessesensesesessessessesessessesessens 495

DIIVET PACKAZING ...evuirieiiiiecieciei ittt s 495

Criteria for TeSting DIIVETScocvveueuriueeeereiricierreieieireiesesessesessessesessessessssessessesessessesessessessssesnes 496
ConfIGUIAtion TESINGvvvuevrerieeeiiriseieireieieiree sttt bbbttt e 496
Functionality Testing
Error HANALNG «...covveeeiiieeicice ettt e s
Testing Loading and Unloading ... sessesenne 497
Stress, Performance, and Interoperability TeStingcccocuecueuoceririniniinciseieienennenennas 497
DDI/DKI Compliance TeSHNGoueueueverecuiureemirnieenereeemsereseesensessesensessesessessessssessessesenns
Installation and Packaging Testing
Testing Specific TYPes Of DIIVELSccccvieereuiureeriinieenerneieneseeeesenessesessessesessesseseesesessesenns

Debugging, Testing, and Tuning Device Drivers ... 503

Testing Drivers
Enable the Deadman Feature to Avoid a Hard Hang

Testing With a Serial CONNECHONcovueueiueuiereeeiiinieeieineeeciseiseeesesese e sesseseens 504
Setting Up Test MOAULES ... easesenne 506
Avoiding Data Loss 01 @ TeSt SYStEIMuueuuruuiureueriiriieieineieieiesseiesessesessessesessessessesesesseseens 509
Recovering the Device Directory

DebUGEZING TOOLS ...evuirieiiirieeiciri ettt bbb
Postmortem DebUg@Ingcoceiniecirereceee e e

Using the kmdb Kernel Debugger
Using the mdb Modular DebUZEETc..cvveverireeriirieneieeieieee e essesenne
Useful Debugging Tasks With kmdb and mdb

TUNINE DIIVETS .oueiiiiiiiciiicii s

KEINEL STATISTICS .cvuvreeeiucereieieeeeieieeieisesetsei sttt bt
DTrace for Dynamic INStrumentationccceeeeeureeeecrneuemereuneenerneeensersesessesessesessessesenne
Recommended COdiNG Practicescccooumiiiiiieeniee ettt 531
Debugging Preparation TEChNIQUESc.cceuiureeciiirieeieinieecriseeceieeceseie et eeessessese e ssesenaees 531

Contents

16

PartIV

Use a Unique Prefix to Avoid Kernel Symbol ColliSionsc.ecureereeurcrneerrcrneeneerneenenenne 531
Use cmn_err() to Log Driver ACHVILY ..o 532
Use ASSERT () to Catch Invalid ASSUMPHONS ..vvuceeeeueiricieiecinireeetreeieeneetseesessesesseseseeneaes 532
Usemutex_owned () to Validate and Document Locking Requirementscccecurceeeneen. 533
Use Conditional Compilation to Toggle Costly Debugging Featuresccocovcveeureunenecne 533
Declaring a Variable VOLatile ..o nsessesessesessesensees 534
SEIVICEADILILY .cvuvviieirtiiieireecictet ettt sttt 536
Periodic Health Checks ..o sseessesenns 536
APPENAIXESocovveeeeiiieie ettt ettt ettt et s e s bbbt s as st s b ebesebess s st bebesesesnanananas 537
Hardware OVEIVIEW ... 539
SPARC P1OCeSSOT ISSUESvuiuiiiiiiiiiiiii s 539
SPARC Data ALIGNMENE ..ot sss s sasssenes 540
Member Alignment in SPARC StIUCLUIEScvvuevmiureeemcrnieemnereeneenenseeeneisesensenessesenesseseens 540
SPARC BYte Orderingccocuuiueiueiiiiiiiiniiiieiinisiesissssssesssssssssssssss s ssssssessssassssns 540
SPARC Re@ister WINAOWSc.cvueuivrreciiiieeiiiriieneiteemeseesesessessese e sessssessessesesessesessesessssenns 541
SPARC Multiply and Divide INStIUCHONScocvvieiieiiieiiiieiissisieissiscsse s iessanees 541
X86 Processor ISSUESccuiiueiiiciiiicicc e 541
X86 BYte Orderingoceiviviiriciiiccicct s e 541
x86 Architecture Manuals ... 542
ENAIANDNESS .ottt

Store Buffers

System Memory Model
Total Store Ordering (TSO) ...ccceeireeieireeeeireee ittt seaeesenns
Partial Store Ordering (PSO) ..o

BUS ATCRIECLUTIES ..ouveieiriieictreieiictreteeiceteie ettt sttt ettt tseaesscnes
Device Identification
SUPPOIted INTEITUPE TYPES .oucveeecercvreeierieeiciitereeieeseseseisesenseeseseneessessesesse s anesensesssssesessces

BUS SPECIICS evvuvrrviuiiiieeieereie ettt ettt eae et es sttt bbbt ees
PCI Local Bus

Writing Device Drivers « October 2012

Contents

INtErTUPL ISSUES ...
PROM on SPARC Machines
Open BOOt PROM 3 ...ttt ss et se s sens
Reading and WIIHINGc..cceiureeuiiniciineccieiereeiseie et ssese e ssesessesenns

Summary of Oracle Solaris DDI/DKI Services
MOAULE FUNCHONS ..vuvureiieciicicinieietreicieicietsteie ettt esesesescseeseae s eacss ettt aeseseeacaen

Device Information Tree Node (dev_info_t) FUNCHONSccccoeveveveveiieieieierercieeeeeeee e 558
Device (deV_ 1) FUNCHONS ...vovcveveieeeeiiieiieeeteteteeeeeete et s e be e ss bbbt s s s sesesessanans
Property FUNCHONSc.coiiiiiiiiiiiiiic s

Device SOftware State FUNCHONScovivieiieieiiceceece ettt ettt sa s ns

Memory Allocation and Deallocation Functions

Kernel Thread Control and Synchronization FUNCHONSc.ccccieiiciniinciineiniccineiecieinianns 561
Task Queue Management FUNCHONScceururieererniuerenniirieneireeeneneeeesenessesensessesensessesessesesesens 562
Interrupt FUNCHONScviviiiiiiiiiccc s 563
Programmed I/O FUNCHONS ... 565
Direct Memory Access (DMA) FUNCHOISc.vuevueurruereunieereciieneeneireeenenseeensesessesensessesessessesessens 571

User Space Access Functions

User Process Event Functions

User Process Information FUNCHIONScocuvveieeieieeieiieeecceeeete et ese s ses s ssessssssessseneans 574
User Application Kernel and Device Access FUNCHONScuvuiveieereericenieniiceneineeeeeiseeeesesneeneaens 575
Time-Related FUNCHONS ...ccocveviveieeeiciiciieieteteetceet ettt teiesass st s bt s s s b seseaes

Power Management FUNCHONSccooiiiiiiiiiiiiiicc s

Fault Management Functions ...

Kernel Statistics FUNCIONScuevrveereiriieicieieicietneieicineieeenetseseesessesessessesessessessesessessesessesessssesne

Kernel Logging and Printing FUNCHONScoeeureuriciniinieineireeeicineteiciseeseeeesetsesessessessesessessesenaes 579
Buffered I/O FUNCHONS ..o ss s sessaes 579
Virtual Memory FUNCHONScuiureieiricieiniencieieeeneeseeensesseseseesessesessessesessesesessesssssesessssesessees 580

Device ID Functions
SCSI Functions
Resource Map Management Functions
SYSLEM GLODAL SEALEeeveieieiiei ettt ettt

Contents

18

UHHEY FUNCHOIS w.vuvvrviieietieeictreieictreteeiccteee ettt sese st eese et sese sttt sae st sesesncnnes 583

Making a Device Driver 64-Bit Ready
Introduction to 64-Bit Driver Design

General CONVEISION STEPSccueureueeiurieeieiretetetreteeeeesetseie et st ssesset s st sese et sttt sesessetsesesacsnes
Use Fixed-Width Types for Hardware RegiStersccouvuremimrerereremeeineerernerserenereeneesens 587
Use Fixed-Width Common Access FUNCHONSc..cuveueuiureeeecuniereerneineeneineeseineeeeseseesesenne 587
Check and Extend Use of Derived TYPESc.ccceuueereuiurererermemserneseeiessessessesessessensesssssesses 588
Check Changed Fields in DDI Data StrUCLUIEScoceueueeremcriereemcrnemenserseseseneseesensesseseene 588
Check Changed Arguments of DDI FUNCHONSceuiuerereremmerneeeeeeirenseesensessersensensessesenes 589
Modify Routines That Handle Data Sharingceccevereeenerneeeecrnenecrneeneensenseeeeensessesenne 591
Check Structures with 64-bit Long Data Types on x86-Based Platformsccccccoevuucee 592

Well Known ioctl Interfaces

DeVICE SIZES ..vovveurereererereeeeeeereeeeeee e

ConsSOle FrameBUFfEI DIIVELSc.oooviieeieeeeeeeeeeeeeeeee ettt st st s e st esesnenens

Oracle Solaris Consoles and the Kernel Terminal EMulatorcccccveeeecencneeencneeecenenneennes
x86 Platform Console COMMUNICATION ..vuvueuirieieineiirnieireiseieieisesseetsessesese et ssesessenne
SPARC Platform Console COMMUNICAIONcuvueuriummeuierrerniiererereeeneneeeeseseasesessessesensenne

Console Visual I/O INEEITACESc.ovueuiurieeiiirieeieireieieireiseie ettt sttt sesesaesnes
I/O CONLIOLINTEITACES ...vuvveveereerecirieiecitiiee ettt e
POlLIEd I/O INLETTACES ...euvreveiueriiieeieisiseieiseie ettt
Video Mode Change Callback Interface

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers
VIS DEVINIT oottt b s ean b anenes
VIS DEFINI oottt s b s e a s s b b sas e b bn s
VIS_CONSDISPLAY
VIS CONSCOPY .ooooeeereeeesreeseeeeeseeseeenne
VIS_CONSCURSOR
VIS _PUTCMAP ...ttt st a s s b s b s b b asens
VIS _GETCMAP Lottt b e san b anenes

Implementing Polled I/O in Console Frame Buffer Drivers

Frame Buffer Specific Configuration Moduleccccveureuence.

The X Window System Frame Buffer Specific DDX Module

Developing, Testing, and Debugging Console Frame Bufter Driversccocoveeevenenecencereennee

Writing Device Drivers « October 2012

Contents

Testing the I/O Control INtErfacescuiiiiicinininiiiic e 607
Testing the Polled I/O INEIfaces ..o 607
Testing the Video Mode Change Callback FUNCHONcoucueeeecrieeecrnerecieeceeeeneinne 608
Additional Suggestions for Testing Console Frame Buffer Driverscoccececneureerrcrnennc. 608
PCL.CONT R ..ottt et et se st es s s es s st senseteneeaenn 609
DESCIIPTION ... s 609
System Configuration SECHIONccvwiuiuriereuererererierieisesseisese e ssessessessssssesse e ssessessesssseces 609
Device Configuration SECHON «.....c.ovcueuriuereeriuercreirreeneireeerseseeereessesesessessesesseseseseesssssesessessesessens 610
SYIAK Lo 610
REfEIEIEES ..o 610
INAEX ... 611

20

Figures

FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 5-1
FIGURE 6-1
FIGURE 9-1
FIGURE 11-1
FIGURE 11-2
FIGURE 12-1
FIGURE 15-1
FIGURE 16-1
FIGURE 17-1
FIGURE 18-1
FIGURE 18-2
FIGURE 18-3
FIGURE 18-4
FIGURE 18-5
FIGURE 20-1
FIGURE 20-2
FIGURE 20-3
FIGURE 20-4
FIGURE 20-5
FIGURE 21-1
FIGURE 21-2
FIGURE A-1

FIGURE A-2

Oracle SOlAriS KEIMELc.oovvuiiveieiieeieeeceieeeeeeee ettt nnen 56
EXample DeVICe TTEEovueuuircieieieiiciciricieiseieiseeie ettt et sseaesees 60
Device NOAE NAIMIESooveeereveeereeiereeeeeteeeteee ettt ereseseeseaseseasesesensens

Specific Driver Node Binding

Generic Driver Node Binding

Event PIUMDINGc.vvueveieiriciciriecreirecrctneieeceisese et ssesces

Module Loading and Autoconfiguration Entry Pointsccccccveeeeereevccrniennnees 94
CPU and System I/O Cachesccvuiiiniiiinciiiciccse e 171
Device Context Managementccccceeueiniiieeininininiiieeesessesesseesesesseses 188
Device Context Switched to User Process Accccoouvinineiniincincicisieninininnns 189
Power Management Conceptual State Diagramccoceeeeeveneeenerneeevenncnnenenne 217

Character Driver Roadmap
Block Driver ROAAMAD ...ccveeiiiierieireirieireiseieeeiseieee ettt
SCSA BIOCK DIQGIAIM ...uvueiiaiieincieieicieeseieieiseie ettt nns
SCSATNLEITACE ..ottt

Transport Layer FLOW ..ot

HBA Transport Structures

Cloning Transport Operation

5CSi PKt(9S) Structure POINTEISc.ccveveveueiiirerereteeeeeeeere ettt sanes 354
Oracle Solaris USB ArChiteCturecoeueueueiriieeeeueieieeeirireeeeeeeeeeseseseeee e eeseenes 428
Driver and Controller INTErfacesooeurerereeerereieinirieeseeiesesssessessesesesenes 429
A Hierarchical USB DeSCriptor TTEEc.cuveueurecerineucinecieineieireeeeeneeesesesesneacaes 436

USB Device State Machine
USB Power Management ...

SR-TIOV TeChNOIOZYcccvuiiiieiiniiiiiicc e

High-Level View of Sparc OVM Configurationceeeeeneeeeecrneereeereeneeennens 469
Byte Ordering Required for Host Bus Dependencycocevccncunienccenennn. 542
Data Ordering Host Bus Dependencyc.coecrerecrneuneeunerneernerneeeenenneeneenne 543

Figures

22

FIGURE A-3 Machine Block Diagram

FIGURE A-4 Base Address Registers for Memory and I/O ...

Writing Device Drivers « October 2012

Tables

TABLE 1-1
TABLE 1-2
TABLE 1-3
TABLE 1-4
TABLE 1-5
TABLE 1-6
TABLE 1-7
TABLE 4-1
TABLE 5-1
TABLE 6-1
TABLE 8-1
TABLE 8-2
TABLE 9-1
TABLE 12-1
TABLE 17-1
TABLE 18-1
TABLE 18-2
TABLE 18-3
TABLE 19-1
TABLE 20-1
TABLE 20-2
TABLE 21-1
TABLE 21-2
TABLE 22-1
TABLE 23-1
TABLE 23-2
TABLE A-1

TABLE A-2

Entry Points for ALl DIIVer TYPES ...c.oveveureeeeceniericiiereiereeneeenseseesesesseesesessessesensens 42
Additional Entry Points for BIOCK DIIVETSccccviurieererrieerernieeeeneeneeenenneeennens 44
Additional Entry Points for Character DIIVErSc.ccevveeeneenerninrerenerenenenenne 45
Entry Points for STREAMS DIIVETScovuuiuiuriuiireieieirieeenseesenseese e sseseessesaeens 47
Entry Points for Character Drivers That Use devmap for Memory Mapping 47
Additional Entry Points for SCSTHBA DIIVELSc.cvvueveureeereerneerrerieneeerenneeennens 48
Entry Points for PC Card Drivers Onlyccococeveenerenecereencnneennes 49
Property INterface USESccuuueiuciiiiniiiiiiiiiecesiisseeiissssssssssssssss s ssenns 79
Functions for Using Name-Value Pairscocooeveereeincneeiceneeneceneneecneiennens 88
POSSIDIE NOAE TYPES «..cvuvrreiinirieiniieeieieieeieitisese it snenns

Callback SUPPOIt INtErfacesccveveueurieueirieirireere et

Interrupt Vector Request Interfaces
Resource Allocation HaNdiNgc.ccceueiuiuniiniincincincicicineeeseeeseneneeesennnns
Power Management INterfacesc.oocvreeuneureeeecinceneceneinienensceeseseensessenenne
Standard SCSA FUNCHONScciuiiiciiiiiicicicccicice s
SCSA HBA Entry Point SUmmary ...
SCSAHBA FUNCHONS ...viviiciitieici ettt s
SCSA Entry Points
GLDV3 INLEITACES ..ot

Request InitialiZationc.ccveuricncininiciniicnce e

Request Transfer SEtUPcocveeeeureeereuniereeeieireeeiseseseseseese s sesseseesenns
Configuration Parameters Definitionccccoceveurerecrnierercnnernecnenneenenseieenenne
Interfaces for SR-IOV DIFIVELScveuvueuierimeeeireieieireisieiseisesessessese e sseseesenns
Compiler Options for SPARC and x86 64-bit Architectures
KMAD MACTOS ..ottt

Ethernet MII/GMII Physical Layer Interface Kernel Statisticsccccccoeeneunes 527
Device Physical Space in the Utra2 ... 549
Ultra 2 SBus Address Bitsccocuviieiciciniiniiiniicicicicisicciccscs e 550

Tables

24

TABLE B-1
TABLE B-2
TABLE B-3
TABLE B-4
TABLE B-5
TABLE B-6
TABLE B-7
TABLE B-8
TABLE B-9
TABLE B-10
TABLE B-11
TABLE B-12

TABLE C-1

Deprecated Property FUNCHONS «.....cceuevereunierereriineeieineeeeeneseeeessesessessesessenne 559
Deprecated Memory Allocation and Deallocation Functionsc.cccveeeuee. 561
Deprecated Interrupt FUNCHONScucvieeeereceniriciricicreceeireicieecieeseesessescieeeaees 564
Deprecated Programmed I/O FUNCHONSccoviuiicicicininiinciseicicieicieeeen 568
Deprecated Direct Memory Access (DMA) FUNCHONScoovuueeereecrennereniaenanes 572
Deprecated User Space Access Functions

Deprecated User Process Information FUNCtionscoceeveuveeeecuneunceennennceeeenne 575
Deprecated User Application Kernel and Device Access Functions 575
Deprecated Time-Related FUNCHONSceueueereneueiricicirecinrceieeceseeieeseieieeeas 576
Deprecated Power Management FUNCIONScocveeeecrreerecineenieineinceerncieeenne 577
Deprecated Virtual Memory FUNCHONSc..cuvemiurieerereeeneieeeeeeeeeennenne 580
Deprecated SCSI FUNCHONSvuvurureeevmieieereiieeeeiteresesessesesessesesseessesessessesessenne 582
Comparison of ILP32 and LP64 Data TYPEScccocueurinirnernirncrreiseneneneeaenans 585

Writing Device Drivers « October 2012

Examples

EXAMPLE 3-1
EXAMPLE 3-2
EXAMPLE 3-3
EXAMPLE 4-1
EXAMPLE 4-2
EXAMPLE 5-1
EXAMPLE 5-2
EXAMPLE 6-1
EXAMPLE 6-2
EXAMPLE 6-3
EXAMPLE 6-4
EXAMPLE 6-5
EXAMPLE 6-6
EXAMPLE 6-7
EXAMPLE 7-1
EXAMPLE 7-2
EXAMPLE 8-1
EXAMPLE 8-2
EXAMPLE 8-3
EXAMPLE 8-4
EXAMPLE 8-5
EXAMPLE 8-6
EXAMPLE 8-7
EXAMPLE 8-8
EXAMPLE 8-9
EXAMPLE 8-10
EXAMPLE 8-11

EXAMPLE 8-12

Using Mutexes and Condition Variablesccccreneneercrnieeecenieneenneeneennens 71
Using cv_timedwait () s 72
USINg cV_wWait_ S1g() s 73
Driver Check for Locally Configured Timeout Valueccccocuvcuvcuccecinenennnn. 81
Prop 0P () ROULINE ..ot 82
Calling ddi_T10g_SYSEVENT () ceevcecreeeeeireireeeeeireieeesserseseeseseseese s sseseesessessesens 86
Creating and Populating a Name-Value Pair Listccccocveenerreeeeccnernecnnerneennes 87
Loadable Interface SECHONcocueucueerrreieriireieieieierenienissseeeseese s ssenasssessens 97
S ANAt () FUNCHION ottt
probe(9E) Routine

probe(9E) Routine Using ddi_poKe8(9F)cccevuurecriurecrerreeeernieeeeneinenenennene 103
Typical attach () Entry POINtoccueieecinirecireeeeeeeee e 107
Typical detach () Entry POInt ..o 110
Typical getinfo () Entry POINtc.occvireeeeeiniericiririecincceiseseie e 111
MaPPING SELUP ...cvuviiiiiiiic s 118
Mapping Setup: BUHETc.occcuiirieiciiecreiecereeeeeee e 119
Changing Soft INterrupt PrIOTILYccovuevureerernemrerceereeeereniiseineisesesensenseneeeseenn 127
Checking for Pending INteITUPLSccccvuiiuimriviiiiieinicciseiissiccessisesiesenines 127
Setting INterrupt MasKSc.c.vveeueureeereuieeneieieeneireseneseseeseseseese s sencsessenne
Clearing Interrupt Masks

Registering a Legacy INterruptccccciviviviiiiniiininiiiicscccccees 129
Removinga Legacy INterrupt ..o 130
Registering a Set of MSTINTEITUPLScuruvueeeerieeeriereieicireieieeneeeeseseesesessessesenaees 131
Removing MSTINtErrupts ... 133
Interrupt EXAMPIE ...oocecuieiueiiciricicitcieirectcieecte ettt seeacaees 146
Handling High-Level Interrupts With attach ()ccccoeveeeveneeevcrnenerennencennenne 148
High-level Interrupt ROULINEc.ccuvvieiiiiiiciciciiccce e 149
Low-Level Soft Interrupt ROULINEcovueeeueureeeecinierieincireeineescie e 150

Examples

26

EXAMPLE 9-1
EXAMPLE 9-2
EXAMPLE 9-3
EXAMPLE 9-4
EXAMPLE 9-5
EXAMPLE 9-6
EXAMPLE 9-7
EXAMPLE 9-8
EXAMPLE 10-1

EXAMPLE 10-2

EXAMPLE 10-3
EXAMPLE 10-4
EXAMPLE 10-5
EXAMPLE 11-1
EXAMPLE 11-2
EXAMPLE 11-3
EXAMPLE 11-4
EXAMPLE 11-5
EXAMPLE 11-6
EXAMPLE 12-1
EXAMPLE 12-2
EXAMPLE 12-3
EXAMPLE 12-4
EXAMPLE 12-5
EXAMPLE 12-6
EXAMPLE 12-7
EXAMPLE 12-8
EXAMPLE 12-9
EXAMPLE 14-1
EXAMPLE 14-2
EXAMPLE 14-3
EXAMPLE 14-4
EXAMPLE 14-5
EXAMPLE 14-6

EXAMPLE 14-7

DMA Callback EXAMPLEcourvrreririeeiciiireicieireeicineieeeseie e seseesenns 164
Determining Burst SiZe ..o 165
Usingddi_dma_mem_alloC(9F) ... 166
ddi_dma_cookie(9S) EXaMPLeccocccvrieiricininicinicieiccisieictnecreneeceseeseneacaees 168
Freeing DMA Resources

Canceling DMA Callbackscocuvueuiiiecmcrieeiecieeeenseeee e 169
Setting Up DMA WINAOWSc.cviuriueiiiriieeeineinieitireeeisesesessesessesessesessessesessenne 173
Interrupt Handler Using DMA WINAOWScccviuriemcmnieercrneneeenreenneneeeenenne 174
SegMap (9E) ROULINE ...vicuieieieeiieieeectescctetcet ettt aesaeeanens 178
Using the segmap () Function to Change the Address Returned by the mmap ()
Call oo 179
Using the devmap_devmem_setup () ROULINEcoeueerecrreerecinernceierneinecereicnene 182
Using the ddi_umem_alloc() ROULINEcccoevcuieeeiirierecieiricienceeeeeeeeeene
devmap_umem Setup(9F) ROULINEcccceveveieereeeeieieieieeeece et sneas
Using the devmap () ROULINE ... s
Using the devmap_access () ROULINEc.cccucureeciiinierecineineeienceeeneiseeeeneeeene

Using the devmap_contextmgt () Routine
Using the devmap_dup () ROULINE ..c.vcueeiececireeicireirecreireieeeicieeneeiseieeeseeene

Using the devmap_unmap () ROULINEcuveeerieeecirircnereeeeeeeenees e

devmap(9E) Entry Point With Context Management Supportc.coocveeenee. 198
Sample pm-compONENt ENtIY ..o seseene

attach(9E) Routine With pm- components Propertycococvceeeunerrecencrneenene

Multiple Component pm-components ENtIYcccovecnerreeenerneeeerennerneeenennenene

Using the power () Routine for a Single-Component Device
power(9E) Routine for Multiple-Component Deviceccoveueuneeeererceeerecnnen.
detach(9E) Routine Implementing DDI_SUSPENDcccceuvueunimremcucmimsucnennns
attach(9E) Routine Implementing DDI_RESUMEceveremremememrememereeennenenene
DEVICE ACCESS ...ttt
Device Operation COMPIEtIONcecueereeeuierereriineeeicineireensessesesessesesenseseesenne
Configuration FIle ..ot sessesensessesenaessesseaes
Driver Source File ...
Write a Short Message to the Layered Device ...
Write a Longer Message to the Layered Devicecccveeecuneenecrnerncernerncenenenne
Change the Target DeVICe ..ot

Device Usage INfOrmationcceeieuiuccininiecciniessissiessseissessssssanns

Ancestor Node Usage INformationccvceeceneereceneeneeeneuneseeennesneessensesensenne

Writing Device Drivers « October 2012

Examples

EXAMPLE 14-8
EXAMPLE 14-9
EXAMPLE 14-10
EXAMPLE 14-11
EXAMPLE 14-12
EXAMPLE 15-1
EXAMPLE 15-2
EXAMPLE 15-3
EXAMPLE 15-4
EXAMPLE 15-5
EXAMPLE 15-6
EXAMPLE 15-7
EXAMPLE 15-8
EXAMPLE 15-9
EXAMPLE 15-10
EXAMPLE 15-11
EXAMPLE 15-12
EXAMPLE 15-13
EXAMPLE 15-14
EXAMPLE 15-15
EXAMPLE 15-16
EXAMPLE 16-1
EXAMPLE 16-2
EXAMPLE 16-3
EXAMPLE 16-4
EXAMPLE 16-5
EXAMPLE 16-6
EXAMPLE 16-7
EXAMPLE 17-1
EXAMPLE 17-2
EXAMPLE 17-3
EXAMPLE 17-4
EXAMPLE 17-5
EXAMPLE 17-6
EXAMPLE 17-7

EXAMPLE 18-1

Child Node Usage INfOrmationcceeveeeeeuneerecuneeneernemneeeensesenensessesenesseseene 254
Layering and Device Minor Node Information - Keyboardcc.ccocevecuneunence 254
Layering and Device Minor Node Information - Network Device 255

Consumers of Underlying Device Nodes
Consumer of the Keyboard Device ...

Character Driver attach () ROULINEcooveveiveeeieieeecieeeeeeeeeeeeee et

Character Driver open(9E) ROULINEcooeveevevieeereeereeieeeeeeeeeeeveeeereeeveeeeenenees
Ramdisk read(9E) Routine Using uiomove(9F)cccocvveuvenivevcrnenccnnerneenenn. 270
Programmed I/O write(9E) Routine Using uwritec(9F)ccovvvcneuvecnnee 270
read(9E) and write(9E) Routines Using phySi0(9F)ccccoooevervevevcrnernecunenneee
aread(9E) and awrite(9E) Routines Using aphysio(9F)

MAINPAYS(IF) ROULITIE .ottt nens
STrategy(9E) ROULINEcooveveverireeieiiieeieeete ettt b eneaes
Interrupt ROULINEcocviiiiiiiiiiic s
CAPOLT(IE) ROULINE ...oveiveiieteietceee ettt ettt n e
Interrupt Routine Supporting chpolL(9E)cccocviiiiiiiivcininiciniiiccciicn,
ioctl(9E) Routine
Usingioct1(9E)
ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications ...281
Handling copyout(9F) OVErflowcccceueivinineineinererenenenineiseisenenenensenans

Using Data Structure Macros to Move Data ...,

Block Driver attach () ROULINE ..c.cecvueueeeecuniereciiireeicineieeeineeeee e

Block Driver open(9E) ROULINEceeveveiiririeierererereeeesiesese e seseseseseesens

Block Device cloSe(9E) ROULIIEeevieeeeeeceeeeeeeeeteeeteeeeeeeeeeee ettt eenenees

Synchronous Interrupt Routine for Block Drivers
Enqueuing Data Transfer Requests for Block DIiverscccoocuecvcucicinininnns
Starting the First Data Request for a BLOCk DIIVeTccocviereueeercenereeneeneneenennes
Block Driver Routine for Asynchronous Interruptscccececeeverneeeererncereenne
SCSI Target Driver probe(9E) ROULINEc.ocvvueveurierieceiiriecieireeecereieeeeseesenennees
SCSI Target Driver attach(9E) ROUINEc..covcuiuviceciiiciieccceceene
SCSI Target Driver detach(9E) ROULINEc..cueeeriueecrerecrcineieeeeeenenceennenne
Alternative SCSI Target Driver getinfo () Code Fragment
Completion Routine for a SCSIDIIVETcccvcueumcrnirnieniireieirereaeneneeneeeaeen
Enabling Auto-Request Sense Modecccuveeeemiereernieneennenneeneeeneneseesenne
AUMP(IE) ROULIIIE .ttt sn s
Module Initialization for SCSTHBAccoveuririiiniricnerieineisce e

27

Examples

28

EXAMPLE 18-2
EXAMPLE 18-3
EXAMPLE 18-4
EXAMPLE 18-5
EXAMPLE 18-6
EXAMPLE 18-7
EXAMPLE 18-8
EXAMPLE 18-9
EXAMPLE 18-10
EXAMPLE 18-11
EXAMPLE 18-12
EXAMPLE 19-1

EXAMPLE 19-2

EXAMPLE 19-3
EXAMPLE 19-4
EXAMPLE 19-5
EXAMPLE 19-6
EXAMPLE 19-7
EXAMPLE 20-1
EXAMPLE 20-2
EXAMPLE 20-3
EXAMPLE 20-4
EXAMPLE 21-1
EXAMPLE 21-2
EXAMPLE 23-1
EXAMPLE 23-2
EXAMPLE 23-3
EXAMPLE 23-4
EXAMPLE 23-5
EXAMPLE 23-6
EXAMPLE 23-7
EXAMPLE 23-8
EXAMPLE 23-9
EXAMPLE 23-10

EXAMPLE 23-11

HBA Driver Initialization of a SCSI Packet Structurecocceeeevereveveerereeenenes 354
HBA Driver Allocation 0f DMA RESOUTCEScvvureruirerirenrnisinisesssssesssssssessnens 357
DMA Resource Reallocation for HBA DIIVELSccccceveveeririeceeiereieeeesseeenes 359
HBA Driver tran_destroy_pkt(9E) Entry Pointcc.cccccveuniincninvcncrnennn. 360
HBA Driver tran_sync_pkt(9E) Entry Point
HBA Driver tran_dmafree(9E) Entry Pointccccoocvniencincnncncnecncnnennn.
HBA Driver tran_start(9E) Entry Pointcccccvcveecnenecencnceenerneeercrnennene
HBA Driver Interrupt Handlerccoeevvnnecinccnencnnecneceneceeeneceeeaes
HBA Driver tran_getcap(9E) Entry Pointccccocvevecnenecincnccenerneeercnnenene
HBA Driver tran_setcap(9E) Entry Point ...
HBA Driver tran_reset_notify(9E) Entry Pointccccoovenivenencnccencrnennen.
Themac_init ops()andmac_fini_ops() Functions

Themac_alloc(),mac_register(),andmac_free() Functionsand

MAC_ regiSter SEIUCIULE ..ottt 383
Themac_unregister() FUNCHIONcccceveieieieeeiereeeeeeeee et 384
Themac callbacks SLIUCIULEcccvevieeeeieeieieieeieeeeee e sasasene 385
Themc_getcapab () ENtry POINtc.cocuevieencrniceneinircreeeeceeeneiseeeeneeene 386
Themc_tx() andmri_tx() Entry POINT c.ocvceveeiniineenecincirecicncieeeeseeeieeene 394
Themc_getstat () ENtry POINt ..o 398
USB Mouse Compatible Device NAMIESc..c.eueeieremeeerneeeeerneiriesenresesesseseeenne 431
Compatible Device Names Shown by the Print Configuration Command431
USB Audio Compatible Device NamESc.ocevvueueureueeerneeeeerneirieseinesessesseseeenne 432
USB Video Interface Association Compatible Namesccceveevreneeernecernnenes 433
Setting Device Configuration Parameters

SR-IOV pci_param_get(9F) ROULINEccoeveveveviiiieiererereeceee e
Setting input-device and output-device With Boot PROM Commands 505
Setting input-device and output-device With the eeprom Command 506
Using modinfo to Confirm a Loaded DIIVer ... 507
Recoveringa Damaged Device DIreCtorycocvveeeeeureeeeneuneeerceneuensenneenesenens 510
Setting Standard Breakpoints in KMADcccccveeeeernienecrrerneenerneenenneeesenennene 513
Setting Deferred Breakpoints in Kmabc.ceceeeeeeerieneeneencrnemerenenneenesseesenennes 513

Invoking mdb on a Crash Dump

Invoking mdb on a Running Kernel

Reading All Registers on a SPARC Processor With kmdbccccvveevcrniereeennee 517
Reading and Writing Registers on an x86 Machine With kmdbccccceuuevueee 517
Inspecting the Registers of a Different Processoroevereevceneereceneeneennes 518

Writing Device Drivers « October 2012

Examples

EXAMPLE 23-12
EXAMPLE 23-13
EXAMPLE 23-14
EXAMPLE 23-15
EXAMPLE 23-16
EXAMPLE 23-17
EXAMPLE 23-18
EXAMPLE 23-19
EXAMPLE 23-20
EXAMPLE 23-21

EXAMPLE 23-22

Retrieving the Value of an Individual Register From a Specified Processor518
Displaying Kernel Data Structures With a Debugger ...
Displaying the Size of a Kernel Data Structureccccveeeeereereereeneeerenreeennes
Displaying the Offset to a Kernel Data Structureccooceeeeneveerneenecnnceneeennees
Displaying the Relative Addresses of a Kernel Data Structureccccceeuuneeen.
Displaying the Absolute Addresses of a Kernel Data Structure
Usingthe : : prtcont DCmd ..o
Displaying Device Information for an Individual Nodeccccoeuvivcvincinnunncs
Using the : :prtconf Dcmd in Verbose Modeovcuiuveeeneinicncneeeecnninecnnees
Using the : :devbindings Dcmd to Locate Driver Instancesoccoveeveeenee
Modifying a Kernel Variable With a Debuggerccccocoveveunerviencnenenerncrnennn.

29

30

Preface

Writing Device Drivers provides information on developing drivers for character-oriented
devices, block-oriented devices, network devices, SCSI target and HBA devices, and USB
devices for the Oracle Solaris Operating System (Oracle Solaris OS). This book discusses how to
develop multithreaded reentrant device drivers for all architectures that conform to the Oracle
Solaris OS DDI/DKI (Device Driver Interface, Driver-Kernel Interface). A common driver
programming approach is described that enables drivers to be written without concern for
platform-specific issues such as endianness and data ordering.

Additional topics include hardening Oracle Solaris drivers; power management; driver
autoconfiguration; programmed I/O; Direct Memory Access (DMA); device context
management; compilation, installation, and testing drivers; debugging drivers; and porting
Oracle Solaris drivers to a 64-bit environment.

Note - This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware
Compatibility Lists. This document cites any implementation differences between the platform

types.

In this document, these x86 related terms mean the following:

= x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.
= x64 relates specifically to 64-bit x86 compatible CPUs.

= "32-bitx86" points out specific 32-bit information about x86 based systems.

For supported systems, see the Oracle Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is written for UNIX programmers who are familiar with UNIX device drivers.
Overview information is provided, but the book is not intended to serve as a general tutorial on
device drivers.

31

http://www.oracle.com/webfolder/technetwork/hcl/index.html

Preface

Note - The Oracle Solaris operating system (Oracle Solaris OS) runs on both SPARC and x86
architectures. The Oracle Solaris OS also runs on both 64-bit and 32-bit address spaces. The
information in this document applies to all platforms and address spaces unless specifically
noted.

How This Book Is Organized

This book is organized into the following chapters:

32

Chapter 1, “Overview of Oracle Solaris Device Drivers,” provides an introduction to device
drivers and associated entry points on the Oracle Solaris platform. The entry points for each
device driver type are presented in tables.

Chapter 2, “Oracle Solaris Kernel and Device Tree,” provides an overview of the Oracle
Solaris kernel with an explanation of how devices are represented as nodes in a device tree.

Chapter 3, “Multithreading,” describes the aspects of the Oracle Solaris multithreaded
kernel that are relevant for device driver developers.

Chapter 4, “Properties,” describes the set of interfaces for using device properties.
Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log events
and how to use task queues to perform a task at a later time.

Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide for
autoconfiguration.

Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and methodologies
for drivers to read or write to device memory.

Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts. These
mechanisms include allocating, registering, servicing, and removing interrupts.

Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the
DMA interfaces.

Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing
device and kernel memory.

Chapter 11, “Device Context Management,” describes the set of interfaces that enable device
drivers to manage user access to devices.

Chapter 12, “Power Management,” explains the interfaces for Power Management, a
framework for managing power consumption.

Chapter 13, “Hardening Oracle Solaris Drivers,” describes how to integrate fault
management capabilities into I/O device drivers, how to incorporate defensive
programming practices, and how to use the driver hardening test harness.

Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Writing Device Drivers « October 2012

Preface

= Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

= Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.

= Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture (SCSA)
and the requirements for SCSI target drivers.

= Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host Bus
Adapter (HBA) drivers.

= Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD). The
GLDv3 framework is a function calls-based interface of MAC plugins and MAC driver
service routines and structures.

= Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

= Chapter 21, “SR-IOV Drivers,” describes the requirements to write a SR-IOV device driver.

= Chapter 22, “Compiling, Loading, Packaging, and Testing Drivers,” provides information
on compiling, linking, and installing a driver.

= Chapter 23, “Debugging, Testing, and Tuning Device Drivers,” describes techniques for
debugging, testing, and tuning drivers.

= Chapter 24, “Recommended Coding Practices,” describes the recommended coding
practices for writing drivers.

= Appendix A, “Hardware Overview,” discusses multi-platform hardware issues for device
drivers.

= Appendix B, “Summary of Oracle Solaris DDI/DKI Services,” provides tables of kernel
functions for device drivers. Deprecated functions are indicated as well.

= Appendix C, “Making a Device Driver 64-Bit Ready,” provides guidelines for updating a
device driver to run in a 64-bit environment.

= Appendix D, “Console Frame Buffer Drivers,” describes how to add the necessary interfaces
to a frame buffer driver to enable the driver to interact with the Oracle Solaris kernel
terminal emulator.

Related Books and Papers

For detailed reference information about the device driver interfaces, see the section 9 man
pages. Section 9E, Intro(9E), describes DDI/DKI (Device Driver Interface, Driver-Kernel
Interface) driver entry points. Section 9F, Intro(9F), describes DDI/DKI kernel functions.
Sections 9P and 9S, Intro(9S), describe DDI/DKI properties and data structures.

For information on hardware and other driver-related issues, see the following books:

= Device Driver Tutorial
» Oracle Solaris Modular Debugger Guide

33

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fintro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sintro-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=DRIVERTUT
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MODDEBUG

Preface

= Oracle Solaris 11.1 Dynamic Tracing Guide
= Multithreaded Programming Guide
» STREAMS Programming Guide

34 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=MTP
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS

Preface

The following book might also be useful:

m SPARC International; The SPARC Architecture Manual, Version 9; Prentice Hall; 1993;
ISBN 978-0130992277

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories, ~ Edit your . login file.

and onscreen computer output
P P Use 1s -a to list all files.

machine name% you have mail.

AaBbCc123 What you type, contrasted with onscreen machine_nameS su
computer output
Password:
aabbcecl23 Placeholder: replace with a real name or value The command to remove a file is rm
filename.
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.
emphasized

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

35

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Shell Prompts in Command Examples

The following table shows UNIX system prompts and superuser prompts for shells that are
included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether
the command should be executed by a regular user or a user with privileges.

TABLEP-2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $
Bash shell, Korn shell, and Bourne shell for superuser — #
Cshell machine name%

C shell for superuser machine_name#

36 Writing Device Drivers « October 2012

PART |

Designing Device Drivers for the Oracle
Solaris Platform

The first part of this manual provides general information for developing device drivers on
the Oracle Solaris platform. This part includes the following chapters:

Chapter 1, “Overview of Oracle Solaris Device Drivers,” provides an introduction to
device drivers and associated entry points on the Oracle Solaris platform. The entry
points for each device driver type are presented in tables.

Chapter 2, “Oracle Solaris Kernel and Device Tree,” provides an overview of the Oracle
Solaris kernel with an explanation of how devices are represented as nodes in a device
tree.

Chapter 3, “Multithreading,” describes the aspects of the Oracle Solaris multithreaded
kernel that are relevant for device driver developers.

Chapter 4, “Properties,” describes the set of interfaces for using device properties.

Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log
events and how to use task queues to perform a task at a later time.

Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide
for autoconfiguration.

Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and
methodologies for drivers to read or write to device memory.

37

Designing Device Drivers for the Oracle Solaris Platform

38

Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts. These
mechanisms include allocating, registering, servicing, and removing interrupts.

Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the
DMA interfaces.

Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing
device and kernel memory.

Chapter 11, “Device Context Management,” describes the set of interfaces that enable device
drivers to manage user access to devices.

Chapter 12, “Power Management,” explains the interfaces for the Power Management
feature, a framework for managing power consumption.

Chapter 13, “Hardening Oracle Solaris Drivers,” describes how to integrate fault
management capabilities into I/O device drivers, how to incorporate defensive
programming practices, and how to use the driver hardening test harness.

Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Writing Device Drivers « October 2012

L K R 4 CHAPTER 1

Overview of Oracle Solaris Device Drivers

This chapter gives an overview of Oracle Solaris device drivers. The chapter provides
information on the following subjects:

= “Device Driver Basics” on page 39
= “Device Driver Entry Points” on page 41
= “Considerations in Device Driver Design” on page 50

Device Driver Basics

This section introduces you to device drivers and their entry points on the Oracle Solaris
platform.

Whatls a Device Driver?

A device driver is a kernel module that is responsible for managing the low-level I/O operations
of a hardware device. Device drivers are written with standard interfaces that the kernel can call
to interface with a device. Device drivers can also be software-only, emulating a device that
exists only in software, such as RAM disks, buses, and pseudo-terminals.

A device driver contains all the device-specific code necessary to communicate with a device.
This code includes a standard set of interfaces to the rest of the system. This interface shields the
kernel from device specifics just as the system call interface protects application programs from
platform specifics. Application programs and the rest of the kernel need little, if any,
device-specific code to address the device. In this way, device drivers make the system more
portable and easier to maintain.

When the Oracle Solaris operating system (Oracle Solaris OS) is initialized, devices identify
themselves and are organized into the device tree, a hierarchy of devices. In effect, the device tree
is a hardware model for the kernel. An individual device driver is represented as a node in the
tree with no children. This type of node is referred to as a leaf driver. A driver that provides

39

Device Driver Basics

40

services to other drivers is called a bus nexus driver and is shown as a node with children. As part
of the boot process, physical devices are mapped to drivers in the tree so that the drivers can be
located when needed. For more information on how the Oracle Solaris OS accommodates
devices, see Chapter 2, “Oracle Solaris Kernel and Device Tree”

Device drivers are classified by how they handle I/O. Device drivers fall into three broad
categories:

= Block device drivers — For cases where handling I/O data as asynchronous chunks is
appropriate. Typically, block drivers are used to manage devices with physically addressable
storage media, such as disks.

= Character device drivers — For devices that perform I/O on a continuous flow of bytes.

Note — A driver can be both block and character at the same time if you set up two different
interfaces to the file system. See “Devices as Special Files” on page 57.

Included in the character category are drivers that use the STREAMS model (see below),
programmed I/O, direct memory access, SCSI buses, USB, and other network I/O.

» STREAMS device drivers - Subset of character drivers that uses the streamio(7I) set of
routines for character I/O within the kernel.

What Is a Device Driver Entry Point?

An entry point is a function within a device driver that can be called by an external entity to get
access to some driver functionality or to operate a device. Each device driver provides a
standard set of functions as entry points. For the complete list of entry points for all driver types,
see the Intro(9E) man page. The Oracle Solaris kernel uses entry points for these general task
areas:

» Loading and unloading the driver

= Autoconfiguring the device - Autoconfiguration is the process of loading a device driver's
code and static data into memory so that the driver is registered with the system.

= Providing I/O services for the driver

Drivers for different types of devices have different sets of entry points according to the kinds of
operations the devices perform. A driver for a memory-mapped character-oriented device, for
example, supports a devmap(9E) entry point, while a block driver does not support this entry.

Use a prefix based on the name of your driver to give driver functions unique names. Typically,
this prefix is the name of the driver, such as xx_open () for the open(9E) routine of driver xx. See
“Use a Unique Prefix to Avoid Kernel Symbol Collisions” on page 531 for more information. In
subsequent examples in this book, xx is used as the driver prefix.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e

Device Driver Entry Points

Device Driver Entry Points

This section provides lists of entry points for the following categories:

“Entry Points Common to All Drivers” on page 41
“Entry Points for Block Device Drivers” on page 44
“Entry Points for Character Device Drivers” on page 45
“Entry Points for STREAMS Device Drivers” on page 46
“Entry Points for Memory Mapped Devices” on page 47
“Entry Points for Network Device Drivers” on page 48
“Entry Points for SCSI HBA Drivers” on page 48

“Entry Points for PC Card Drivers” on page 49

Entry Points Common to All Drivers

Some operations can be performed by any type of driver, such as the functions that are required
for module loading and for the required autoconfiguration entry points. This section discusses
types of entry points that are common to all drivers. The common entry points are listed in
“Summary of Common Entry Points” on page 42 with links to man pages and other relevant
discussions.

Device Access Entry Points

Drivers for character and block devices export the cb_ops(9S) structure, which defines the
driver entry points for block device access and character device access. Both types of drivers are
required to support the open(9E) and close(9E) entry points. Block drivers are required to
support strategy(9E), while character drivers can choose to implement whatever mix of
read(9E), write(9E), ioct1(9E), mmap(9E), or devmap(9E) entry points is appropriate for the
type of device. Character drivers can also support a polling interface through chpol1(9E).
Asynchronous I/O is supported through aread(9E) and awrite(9E) for block drivers and those
drivers that can use both block and character file systems.

Loadable Module Entry Points
All drivers are required to implement the loadable module entry points _init(9E), fini(9E),

and info(9E) toload, unload, and report information about the driver module.

Drivers should allocate and initialize any global resources in _init(9E). Drivers should release
their resourcesin _fini(9E).

Note - In the Oracle Solaris OS, only the loadable module routines must be visible outside the
driver object module. Other routines can have the storage class static.

Chapter 1 - Overview of Oracle Solaris Device Drivers 41

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e

Device Driver Entry Points

TABLE 1-1 Entry Point

Autoconfiguration Entry Points

Drivers are required to implement the attach(9E), detach(9E), and getinfo(9E) entry points
for device autoconfiguration. Drivers can also implement the optional entry point probe(9E) in
cases where devices do not identify themselves during boot-up, such as SCSI target devices. See
Chapter 6, “Driver Autoconfiguration,” for more information on these routines.

Kernel Statistics Entry Points

The Oracle Solaris platform provides a rich set of interfaces to maintain and export kernel-level
statistics, also known as kstats. Drivers are free to use these interfaces to export driver and
device statistics that can be used by user applications to observe the internal state of the driver.
Two entry points are provided for working with kernel statistics:

= ks_snapshot(9E) captures kstats at a specific time.

m ks update(9E) can be used to update kstat data at will. ks_update() is useful in situations
where a device is set up to track kernel data but extracting that data is time-consuming.

For further information, see the kstat_create(9F) and kstat(9S) man pages. See also “Kernel
Statistics” on page 524.

Power Management Entry Point

Drivers for hardware devices that provide Power Management functionality can support the
optional power(9E) entry point. See Chapter 12, “Power Management,” for details about this
entry point.

System Quiesce Entry Point

A driver that manages devices must implement the quiesce(9E) entry point. Drivers that do
not manage devices can set the devo_quiesce field in the dev_ops structure to
ddi_quiesce_not_needed().The quiesce() function can be called only when the system is
single-threaded at high PIL (priority interrupt level) with preemption disabled. Therefore, this
function must not be blocked. If a device has a defined reset state configuration, the driver
should return that device to that reset state as part of the quiesce operation. An example of this
case is Fast Reboot, where firmware is bypassed when booting to a new operating system image.

Summary of Common Entry Points
The following table lists entry points that can be used by all types of drivers.

s for All Driver Types

Category / Entry Point

Usage Description

cb_ops Entry Points

42

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Equiesce-9e

Device Driver Entry Points

TABLE 1-1 Entry Points for All Driver Types (Continued)

Category/ Entry Point Usage Description

open(9E) Required Gets access to a device. Additional information:
= “open() Entry Point (Character Drivers)” on page 264
= “open() Entry Point (Block Drivers)” on page 291

close(9E) Required Gives up access to a device. The version of close () for STREAMS drivers hasa
different signature than character and block drivers. Additional information:
® “close() Entry Point (Character Drivers)” on page 266
® “close() Entry Point (Block Drivers)” on page 292

Loadable Module Entry Points

_init(9E) Required Initializes a loadable module. Additional information: “Loadable Driver
Interfaces” on page 97

_fini(9E) Required Prepares a loadable module for unloading. Required for all driver types.
Additional information: “Loadable Driver Interfaces” on page 97

_info(9E) Required Returns information about a loadable module. Additional information:
“Loadable Driver Interfaces” on page 97

Autoconfiguration Entry Points

attach(9E) Required Adds a device to the system as part of initialization. Also used to resume a
system that has been suspended. Additional information: “attach () Entry
Point” on page 104

detach(9E) Required Detaches a device from the system. Also, used to suspend a device temporarily.
Additional information: “detach () Entry Point” on page 109

getinfo(9E) Required Gets device information that is specific to the driver, such as the mapping
between a device number and the corresponding instance. Additional
information:
® “getinfo() Entry Point” on page 110
® “getinfo() Entry Point (SCSI Target Drivers)” on page 320.

probe(9E) See Determines if a non-self-identifying device is present. Required for a device

Description that cannot identify itself. Additional information:

= “probe() Entry Point” on page 101
® “probe() Entry Point (SCSI Target Drivers)” on page 315

Kernel Statistics Entry Points

ks _snapshot(9E) Optional Takes a snapshot of kstat(9S) data. Additional information: “Kernel Statistics”
on page 524

ks update(9E) Optional Updates kstat(9S) data dynamically. Additional information: “Kernel

Power Management Entry Point

Statistics” on page 524

Chapter 1 « Overview of Oracle Solaris Device Drivers 43

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Skstat-9s

Device Driver Entry Points

TABLE 1-1 Entry Points for All Driver Types (Continued)

Category / Entry Point Usage Description

power(9E) Required Sets the power level of a device. If not used, set to NULL. Additional
information: “power () Entry Point” on page 208

System Quiesce Entry Point

quiesce(9E) See Quiesces a device so that the device no longer generates interrupts or modifies
Description ~ oraccesses memory.

Miscellaneous Entry Points

prop op(9E) See Reports driver property information. Required unless ddi_prop_op(9F) is
Description substituted. Additional information:
® “Creating and Updating Properties” on page 78
® “prop_op() Entry Point” on page 81

dump(9E) See Dumps memory to a device during system failure. Required for any device that
Description is to be used as the dump device during a panic. Additional information:
= “dump() Entry Point (Block Drivers)” on page 303
= “Dump Handling” on page 328

identify(9E) Obsolete Do not use this entry point. Assign nulldev(9F) to this entry point in the
dev_ops structure.

Entry Points for Block Device Drivers

Devices that support a file system are known as block devices. Drivers written for these devices
are known as block device drivers. Block device drivers take a file system request, in the form of
abuf(9S) structure, and issue the I/O operations to the disk to transfer the specified block. The
main interface to the file system is the st rategy(9E) routine. See Chapter 16, “Drivers for Block
Devices,” for more information.

A block device driver can also provide a character driver interface to enable utility programs to
bypass the file system and to access the device directly. This device access is commonly referred
to as the raw interface to a block device.

The following table lists additional entry points that can be used by block device drivers. See
also “Entry Points Common to All Drivers” on page 41.

TABLE1-2 Additional Entry Points for Block Drivers

Entry Point Usage Description

aread(9E) Optional Performs an asynchronous read. Drivers that do not support an aread () entry
point should use the nodev(9F) error return function. Additional information:
= “Differences Between Synchronous and Asynchronous I/O” on page 269
® “DMA Transfers (Asynchronous)” on page 272

44 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Equiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f

Device Driver Entry Points

TABLE 1-2 Additional Entry Points for Block Drivers (Continued)

Entry Point

Usage Description

awrite(9E)

print(9E)

strategy(9E)

Optional Performs an asynchronous write. Drivers that do not support an awrite()
entry point should use the nodev(9F) error return function. Additional
information:
® “Differences Between Synchronous and Asynchronous I/O” on page 269
® “DMA Transfers (Asynchronous)” on page 272

Required Displays a driver message on the system console. Additional information:
“print () Entry Point (Block Drivers)” on page 303

Required Perform block I/0. Additional information:

® “Canceling DMA Callbacks” on page 169
“DMA Transfers (Synchronous)” on page 271
“strategy () Entry Point” on page 274
“DMA Transfers (Asynchronous)” on page 272

“General Flow of Control” on page 309

“x86 Target Driver Configuration Properties” on page 377

Entry Points for Character Device Drivers

Character device drivers normally perform I/O in a byte stream. Examples of devices that use
character drivers include tape drives and serial ports. Character device drivers can also provide
additional interfaces not present in block drivers, such as I/O control (ioctl) commands,
memory mapping, and device polling. See Chapter 15, “Drivers for Character Devices,” for
more information.

The main task of any device driver is to perform I/O, and many character device drivers do what
is called byte-stream or character 1/O. The driver transfers data to and from the device without
using a specific device address. This type of transfer is in contrast to block device drivers, where
part of the file system request identifies a specific location on the device.

The read(9E) and write(9E) entry points handle byte-stream I/O for standard character
drivers. See “I/O Request Handling” on page 266 for more information.

The following table lists additional entry points that can be used by character device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 41.

TABLE 1-3 Additional Entry Points for Character Drivers

Entry Point

Usage Description

chpoll1(9E)

Optional Polls events for a non-STREAMS character driver. Additional information:
“Multiplexing I/O on File Descriptors” on page 276

Chapter 1 « Overview of Oracle Solaris Device Drivers 45

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e

Device Driver Entry Points

TABLE 1-3 Additional Entry Points for Character Drivers (Continued)

Entry Point Usage Description

ioct1(9E) Optional Performs a range of I/O commands for character drivers. ioct1() routines
must make sure that user data is copied into or out of the kernel address space
explicitly using copyin(9F), copyout(9F), ddi_copyin(9F), and
ddi_copyout(9F), as appropriate. Additional information:
B “ioctl() Entry Point (Character Drivers)” on page 278
= “Well Known ioctl Interfaces” on page 593

read(9E) Required Reads data from a device. Additional information:
. “Vectored I/O” on page 267

® “Differences Between Synchronous and Asynchronous I/O” on page 269
= “Programmed I/O Transfers” on page 269
® “DMA Transfers (Synchronous)” on page 271
® “General Flow of Control” on page 309
segmap(9E) Optional Maps device memory into user space. Additional information:

® “Exporting the Mapping” on page 177
® “Allocating Kernel Memory for User Access” on page 183
® “Associating User Mappings With Driver Notifications” on page 197

write(9E) Required Writes data to a device. Additional information:
® “Device Access Functions” on page 118
" “Vectored I/O” on page 267
® “Differences Between Synchronous and Asynchronous I/0” on page 269
® “Programmed I/O Transfers” on page 269
= “DMA Transfers (Synchronous)” on page 271
® “General Flow of Control” on page 309

Entry Points for STREAMS Device Drivers

STREAMS is a separate programming model for writing a character driver. Devices that receive
data asynchronously, such as terminal and network devices, are suited to a STREAMS
implementation. STREAMS device drivers must provide the loading and autoconfiguration
support described in Chapter 6, “Driver Autoconfiguration” See the STREAMS Programming
Guide for additional information on how to write STREAMS drivers.

The following table lists additional entry points that can be used by STREAMS device drivers.
For other entry points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points
for Character Device Drivers” on page 45.

46 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS

Device Driver Entry Points

TABLE 1-4 Entry Points for STREAMS Drivers

Entry Point Usage Description
put(9E) See Coordinates the passing of messages from one queue to the next queue in a
Description stream. Required, except for the side of the driver that reads data. Additional
information: STREAMS Programming Guide
srv(9E) Required Manipulate messages in a queue. Additional information: STREAMS
Programming Guide

Entry Points for Memory Mapped Devices

For certain devices, such as frame buffers, providing application programs with direct access to
device memory is more efficient than byte-stream I/O. Applications can map device memory
into their address spaces using the mmap(2) system call. To support memory mapping, device
drivers implement segmap(9E) and devmap(9E) entry points. For information on devmap(9E),
see Chapter 10, “Mapping Device and Kernel Memory.” For information on segmap(9E), see
Chapter 15, “Drivers for Character Devices”

Drivers that define the devmap(9E) entry point usually do not define read(9E) and write(9E)
entry points, because application programs perform I/O directly to the devices after calling
mmap(2).

The following table lists additional entry points that can be used by character device drivers that
use the devmap framework to perform memory mapping. For other entry points, see “Entry
Points Common to All Drivers” on page 41 and “Entry Points for Character Device Drivers” on
page 45.

TABLE 1-5 Entry Points for Character Drivers That Use devmap for Memory Mapping

Entry Point Usage Description

devmap(9E) Required Validates and translates virtual mapping for a memory-mapped device.
Additional information: “Exporting the Mapping” on page 177

devmap_access(9E) Optional Notifies drivers when an access is made to a mapping with validation or
protection problems. Additional information: “devmap_access () Entry Point”
on page 191

devmap_contextmgt(9E) Required Performs device context switching on a mapping. Additional information:

devmap_dup(9E)

devmap map(9E)

“devmap_contextmgt () Entry Point” on page 193

Optional Duplicates a device mapping. Additional information: “devmap_dup () Entry
Point” on page 194

Optional Creates a device mapping. Additional information: “devmap_map () Entry
Point” on page 190

Chapter 1 « Overview of Oracle Solaris Device Drivers 47

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eput-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esrv-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-map-9e

Device Driver Entry Points

TABLE 1-5 Entry Points for Character Drivers That Use devmap for Memory Mapping (Continued)

Entry Point

Usage

Description

devmap unmap(9E)

Optional

Cancels a device mapping. Additional information: “devmap_unmap () Entry
Point” on page 195

Entry Points for Network Device Drivers

See Table 19-1 for a list of entry points for network device drivers that use the Generic LAN
Driver version 3 (GLDv3) framework. For more information, see “GLDv3 Network Device
Driver Framework” on page 381 and “GLDv3 MAC Registration Functions” on page 382 in
Chapter 19, “Drivers for Network Devices.”

Entry Points for SCSI HBA Drivers

The following table lists additional entry points that can be used by SCSI HBA device drivers.
For information on the SCSI HBA transport structure, see scsi_hba_tran(9S). For other entry
points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points for Character
Device Drivers” on page 45.

TABLE1-6 Additional Entry Points for SCSI HBA Drivers

Entry Point Usage Description

tran_abort(9E) Required Aborts a specified SCSI command that has been transported to a SCSI Host Bus
Adapter (HBA) driver. Additional information: “tran_abort () Entry Point” on
page 373

tran bus_ reset(9E) Optional Resets a SCSI bus. Additional information: “tran_bus_reset () Entry Point” on
page 374

tran destroy pkt(9E) Required Frees resources that are allocated for a SCSI packet. Additional information:
“tran_destroy_pkt() Entry Point” on page 360

tran_dmafree(9E) Required Frees DMA resources that have been allocated for a SCSI packet. Additional
information: “tran_dmafree() Entry Point” on page 361

tran_getcap(9E) Required Gets the current value of a specific capability that is provided by the HBA driver.
Additional information: “tran_getcap () Entry Point” on page 368

tran init pkt(9E) Required Allocate and initialize resources for a SCSI packet. Additional information:
“Resource Allocation” on page 353

tran_quiesce(9E) Optional Stop all activity on a SCSI bus, typically for dynamic reconfiguration.
Additional information: “Dynamic Reconfiguration” on page 375

tran_reset(9E) Required Resets a SCSI bus or target device. Additional information: “tran_reset()

Entry Point” on page 373

48 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-reset-9e

Device Driver Entry Points

TABLE 1-6 Additional Entry Points for SCSTHBA Drivers (Continued)

Entry Point Usage Description

tran_reset_notify(9E) Optional Requests notification of a SCSI target device for a bus reset. Additional
information: “tran_reset_notify() Entry Point” on page 374

tran_setcap(9E) Required Sets the value of a specific capability that is provided by the SCSI HBA driver.
Additional information: “tran_setcap() Entry Point” on page 370

tran_start(9E) Required Requests the transport of a SCSI command. Additional information:
“tran_start() Entry Point” on page 362

tran_sync pkt(9E) Required Synchronizes the view of data by an HBA driver or device. Additional
information: “tran_sync_pkt () Entry Point” on page 361

tran tgt free(9E) Optional Requests allocated SCSI HBA resources to be freed on behalf of a target device.
Additional information:
® “tran_tgt_free() Entry Point” on page 353
® “Transport Structure Cloning” on page 342

tran_tgt_init(9E) Optional Requests SCSI HBA resources to be initialized on behalf of a target device.
Additional information:
® “tran_tgt_init() Entry Point” on page 352
B “scsi_device Structure” on page 338

tran tgt probe(9E) Optional Probes a specified target on a SCSI bus. Additional information:
“tran_tgt_probe() Entry Point” on page 352

tran_unquiesce(9E) Optional Resumes I/O activity on a SCSI bus after tran_quiesce(9E) has been called,

typically for dynamic reconfiguration. Additional information: “Dynamic
Reconfiguration” on page 375

TABLE 1-7 Entry Points for PC Card Drivers Only

Entry Points for PC Card Drivers

The following table lists additional entry points that can be used by PC Card device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points for
Character Device Drivers” on page 45.

Entry Point

Usage

Description

csx_event_handler(9E) Required

Handles events for a PC Card driver. The driver must call the
csx_RegisterClient(9F) function explicitly to set the entry point instead of
using a structure field like cb_ops.

Chapter 1 - Overview of Oracle Solaris Device Drivers

49

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ecsx-event-handler-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcsx-registerclient-9f

Considerations in Device Driver Design

Considerations in Device Driver Design

50

A device driver must be compatible with the Oracle Solaris OS, both as a consumer and
provider of services. This section discusses the following issues, which should be considered in
device driver design:

“DDI/DKI Facilities” on page 50

“Driver Context” on page 52

“Returning Errors” on page 53

“Dynamic Memory Allocation” on page 53
“Hotplugging” on page 54

DDI/DKI Facilities

The Oracle Solaris DDI/DKI interfaces are provided for driver portability. With DDI/DKI,
developers can write driver code in a standard fashion without having to worry about hardware
or platform differences. This section describes aspects of the DDI/DKI interfaces.

Device IDs

The DDI interfaces enable drivers to provide a persistent, unique identifier for a device. The
device ID can be used to identify or locate a device. The ID is independent of the device's name
or number (dev_t). Applications can use the functions defined in l1ibdevid(3LIB) to read and
manipulate the device IDs registered by the drivers.

Device Properties

The attributes of a device or device driver are specified by properties. A property is a name-value
pair. The name is a string that identifies the property with an associated value. Properties can be
defined by the FCode of a self-identifying device, by a hardware configuration file (see the
driver.conf(4) man page), or by the driver itself using the ddi_prop_update(9F) family of
routines.

Interrupt Handling
The DDI/DKI addresses the following aspects of device interrupt handling:
= Registering device interrupts with the system

= Removing device interrupts
= Dispatching interrupts to interrupt handlers

Device interrupt sources are contained in a property called interrupt, which is either provided
by the PROM of a self-identifying device, in a hardware configuration file, or by the booting
system on the x86 platform.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-9f

Considerations in Device Driver Design

Callback Functions

Certain DDI mechanisms provide a callback mechanism. DDI functions provide a mechanism
for scheduling a callback when a condition is met. Callback functions can be used for the
following typical conditions:

= A transfer has completed
= Aresource has become available
= A time-out period has expired

Callback functions are somewhat similar to entry points, for example, interrupt handlers. DDI
functions that allow callbacks expect the callback function to perform certain tasks. In the case
of DMA routines, a callback function must return a value indicating whether the callback
function needs to be rescheduled in case of a failure.

Callback functions execute as a separate interrupt thread. Callbacks must handle all the usual
multithreading issues.

Note - A driver must cancel all scheduled callback functions before detaching a device.

Software State Management

To assist device driver writers in allocating state structures, the DDI/DKI provides a set of
memory management routines called the software state management routines, also known as
the soft-state routines. These routines dynamically allocate, retrieve, and destroy memory items
of a specified size, and hide the details of list management. An instance number is used to
identify the desired memory item. This number is typically the instance number assigned by the
system.

Routines are provided for the following tasks:

Initialize a driver's soft-state list

Allocate space for an instance of a driver's soft state
Retrieve a pointer to an instance of a driver's soft state
Free the memory for an instance of a driver's soft state
Finish using a driver's soft-state list

See “Loadable Driver Interfaces” on page 97 for an example of how to use these routines.

Programmed 1/0 Device Access

Programmed I/O device access is the act of reading and writing of device registers or device
memory by the host CPU. The Oracle Solaris DDI provides interfaces for mapping a device's
registers or memory by the kernel as well as interfaces for reading and writing to device memory
from the driver. These interfaces enable drivers to be developed that are platform and bus
independent, by automatically managing any difference in device and host endianness as well as
by enforcing any memory-store sequence requirements imposed by the device.

Chapter 1 - Overview of Oracle Solaris Device Drivers 51

Considerations in Device Driver Design

52

Direct Memory Access (DMA)

The Oracle Solaris platform defines a high-level, architecture-independent model for
supporting DMA-capable devices. The Oracle Solaris DDI shields drivers from
platform-specific details. This concept enables a common driver to run on multiple platforms
and architectures.

Layered Driver Interfaces

The DDI/DKI provides a group of interfaces referred to as layered device interfaces (LDI).
These interfaces enable a device to be accessed from within the Oracle Solaris kernel. This
capability enables developers to write applications that observe kernel device usage. For
example, both the prtconf(1M) and fuser(1M) commands use LDI to enable system
administrators to track aspects of device usage. The LDI is covered in more detail in Chapter 14,
“Layered Driver Interface (LDI)”

Driver Context

The driver context refers to the condition under which a driver is currently operating. The
context limits the operations that a driver can perform. The driver context depends on the
executing code that is invoked. Driver code executes in four contexts:

= User context. A driver entry point has user context when invoked by a user thread in a
synchronous fashion. That is, the user thread waits for the system to return from the entry
point that was invoked. For example, the read(9E) entry point of the driver has user context
when invoked by a read(2) system call. In this case, the driver has access to the user area for
copying data into and out of the user thread.

= Kernel context. A driver function has kernel context when invoked by some part of the
kernel. In a block device driver, the strategy(9E) entry point can be called by the pageout
daemon to write pages to the device. Because the page daemon has no relation to the current
user thread, strategy(9E) has kernel context in this case.

= Interrupt context.Interrupt context is a more restrictive form of kernel context. Interrupt
context is invoked as a result of the servicing of an interrupt. Driver interrupt routines
operate in interrupt context with an associated interrupt level. Callback routines also
operate in an interrupt context. See Chapter 8, “Interrupt Handlers,” for more information.

= High-level interrupt context. High-level interrupt context is a more restricted form of
interrupt context. If ddi_intr_hilevel(9F) indicates that an interrupt is high level, the
driver interrupt handler runs in high-level interrupt context. See Chapter 8, “Interrupt
Handlers,” for more information.

The manual pages in section 9F document the allowable contexts for each function. For
example, in kernel context the driver must not call copyin(9F).

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-hilevel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyin-9f

Considerations in Device Driver Design

Returning Errors

Device drivers do not usually print messages, except for unexpected errors such as data
corruption. Instead, the driver entry points should return error codes so that the application
can determine how to handle the error. Use the cmn_err(9F) function to write messages to a
system log that can then be displayed on the console.

The format string specifier interpreted by cmn_err(9F) is similar to the printf(3C) format
string specifier, with the addition of the format %b, which prints bit fields. The first character of
the format string can have a special meaning. Calls to cmn_err(9F) also specify the message
level, which indicates the severity label to be printed. See the cmn_err(9F) man page for more
details.

The level CE_PANIC has the side effect of crashing the system. This level should be used only if
the system is in such an unstable state that to continue would cause more problems. The level
can also be used to get a system core dump when debugging. CE_PANIC should not be used in
production device drivers.

Dynamic Memory Allocation

Device drivers must be prepared to simultaneously handle all attached devices that the drivers
claim to drive. The number of devices that the driver handles should not be limited. All
per-device information must be dynamically allocated.

void *kmem alloc(size t size, int flag);

The standard kernel memory allocation routine is kmem_alloc(9F). kmem_alloc() is similar to
the Clibrary routine malloc(3C), with the addition of the flag argument. The flag argument
can be either KM_SLEEP or KM_NOSLEEP, indicating whether the caller is willing to block if the
requested size is not available. IfKM_NOSLEEP is set and memory is not available,

kmem alloc(9F) returns NULL.

kmem_ zalloc(9F) is similar to kmem_alloc(9F), but also clears the contents of the allocated
memory.

Note - Kernel memory is a limited resource, not pageable, and competes with user applications
and the rest of the kernel for physical memory. Drivers that allocate a large amount of kernel
memory can cause system performance to degrade.

void kmem free(void *cp, size t size);

Memory allocated by kmem_alloc(9F) or by kmem_zalloc(9F) is returned to the system with
kmem_free(9F). kmem_free() is similar to the Clibrary routine f ree(3C), with the addition of
the size argument. Drivers must keep track of the size of each allocated object in order to call
kmem free(9F) later.

Chapter 1 « Overview of Oracle Solaris Device Drivers 53

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-free-9f

Considerations in Device Driver Design

54

Hotplugging

This manual does not highlight hotplugging information. If you follow the rules and
suggestions for writing device drivers given in this book, your driver should be able to handle
hotplugging. In particular, make sure that both autoconfiguration (see Chapter 6, “Driver
Autoconfiguration”) and detach(9E) work correctly in your driver. In addition, if you are
designing a driver that uses power management, you should follow the information given in
Chapter 12, “Power Management.” SCSTHBA drivers might need to add a cb_ops structure to
their dev_ops structure (see Chapter 18, “SCSI Host Bus Adapter Drivers”) to take advantage of
hotplugging capabilities.

Previous versions of the Oracle Solaris OS required hotpluggable drivers to include a
DT_HOTPLUG property, but this property is no longer required. Driver writers are free, however,
to include and use the DT_HOTPLUG property as they see fit.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

L K R 4 CHAPTER 2

Oracle Solaris Kernel and Device Tree

A device driver needs to work transparently as an integral part of the operating system.
Understanding how the kernel works is a prerequisite for learning about device drivers. This
chapter provides an overview of the Oracle Solaris kernel and device tree. For an overview of
how device drivers work, see Chapter 1, “Overview of Oracle Solaris Device Drivers.”

This chapter provides information on the following subjects:

“What Is the Kernel?” on page 55

“Multithreaded Execution Environment” on page 57
“Virtual Memory” on page 57

“Devices as Special Files” on page 57

“DDI/DKI Interfaces” on page 58

“Device Tree Components” on page 59

“Displaying the Device Tree” on page 60

“Binding a Driver to a Device” on page 62

What Is the Kernel?

The Oracle Solaris kernel is a program that manages system resources. The kernel insulates
applications from the system hardware and provides them with essential system services such as
input/output (I/O) management, virtual memory, and scheduling. The kernel consists of object
modules that are dynamically loaded into memory when needed.

The Oracle Solaris kernel can be divided logically into two parts: the first part, referred to as the
kernel, manages file systems, scheduling, and virtual memory. The second part, referred to as
the I/O subsystem, manages the physical components.

The kernel provides a set of interfaces for applications to use that are accessible through system
calls. System calls are documented in section 2 of the Reference Manual Collection (see
Intro(2)). Some system calls are used to invoke device drivers to perform I/O. Device drivers are
loadable kernel modules that manage data transfers while insulating the rest of the kernel from

55

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2intro-2

What s the Kernel?

56

the device hardware. To be compatible with the operating system, device drivers need to be able
to accommodate such features as multithreading, virtual memory addressing, and both 32-bit

and 64-bit operation.

The following figure illustrates the kernel. The kernel modules handle system calls from

application programs. The I/O modules communicate with hardware.

FIGURE2-1 Oracle Solaris Kernel
Application programs
User
level
Kernel
v v v v v level
Process Memory File systems Device Networkin
management | | management Y control 9
. Network
File systems
dz:)a;:mo(jr;) Virtual Character | | Subsystems
code memory Block drivers NIC
drivers drivers
A A A A T
1 1 Hardware
v v v v ¢ level
Serial ports,
GPU RAM Disks specia etorkc
oards

The kernel provides access to device drivers through the following features:

Device-to-driver mapping. The kernel maintains the device tree. Each node in the tree
represents a virtual or a physical device. The kernel binds each node to a driver by matching
the device node name with the set of drivers installed in the system. The device is made

accessible to applications only if there is a driver binding.

Writing Device Drivers « October 2012

What s the Kernel?

= DDI/DKI interfaces. DDI/DKI (Device Driver Interface/Driver-Kernel Interface)
interfaces standardize interactions between the driver and the kernel, the device hardware,
and the boot/configuration software. These interfaces keep the driver independent from the
kernel and improve the driver's portability across successive releases of the operating system
on a particular machine.

= LDI. The LDI (Layered Driver Interface) is an extension of the DDI/DKI. The LDI enables a
kernel module to access other devices in the system. The LDI also enables you to determine
which devices are currently being used by the kernel. See Chapter 14, “Layered Driver
Interface (LDI)”

Multithreaded Execution Environment

The Oracle Solaris kernel is multithreaded. On a multiprocessor machine, multiple kernel
threads can be running kernel code, and can do so concurrently. Kernel threads can also be
preempted by other kernel threads at any time.

The multithreading of the kernel imposes some additional restrictions on device drivers. For
more information on multithreading considerations, see Chapter 3, “Multithreading.” Device
drivers must be coded to run as needed at the request of many different threads. For each
thread, a driver must handle contention problems from overlapping I/O requests.

Virtual Memory

A complete overview of the Oracle Solaris virtual memory system is beyond the scope of this
book, but two virtual memory terms of special importance are used when discussing device
drivers: virtual address and address space.

= Virtual address. A virtual address is an address that is mapped by the memory management
unit (MMU) to a physical hardware address. All addresses directly accessible by the driver
are kernel virtual addresses. Kernel virtual addresses refer to the kernel address space.

= Address space. An address space is a set of virtual address segments. Each segment is a
contiguous range of virtual addresses. Each user process has an address space called the user
address space. The kernel has its own address space, called the kernel address space.

Devices as Special Files

Devices are represented in the file system by special files. In the Oracle Solaris OS, these files
reside in the /devices directory hierarchy.

Special files can be of type block or character. The type indicates which kind of device driver
operates the device. Drivers can be implemented to operate on both types. For example, disk
drivers export a character interface for use by the fsck(1) and mkfs (1) utilities, and a block
interface for use by the file system.

Chapter2 - Oracle Solaris Kernel and Device Tree 57

What s the Kernel?

58

Associated with each special file is a device number (dev_t). A device number consists of a
major number and a minor number. The major number identifies the device driver associated
with the special file. The minor number is created and used by the device driver to further
identify the special file. Usually, the minor number is an encoding that is used to identify which
device instance the driver should access and which type of access should be performed. For
example, the minor number can identify a tape device used for backup and can specify that the
tape needs to be rewound when the backup operation is complete.

DDI/DKI Interfaces

In System V Release 4 (SVR4), the interface between device drivers and the rest of the UNIX
kernel was standardized as the DDI/DKI. The DDI/DKI is documented in section 9 of the
Reference Manual Collection. Section 9E documents driver entry points, section 9F documents
driver-callable functions, and section 9S documents kernel data structures used by device
drivers. See Intro(9E), Intro(9F), and Intro(9S).

The DDI/DKI is intended to standardize and document all interfaces between device drivers
and the rest of the kernel. In addition, the DDI/DKI enables source and binary compatibility for
drivers on any machine that runs the Oracle Solaris OS, regardless of the processor architecture,
whether SPARC or x86. Drivers that use only kernel facilities that are part of the DDI/DKI are
known as DDI/DKI-compliant device drivers.

The DDI/DKI enables you to write platform-independent device drivers for any machine that
runs the Oracle Solaris OS. These binary-compatible drivers enable you to more easily integrate
third-party hardware and software into any machine that runs the Oracle Solaris OS. The
DDI/DKI is architecture independent, which enables the same driver to work across a diverse
set of machine architectures.

Platform independence is accomplished by the design of DDI in the following areas:

= Dynamic loading and unloading of modules
= Power management
= Interrupt handling

= Accessing the device space from the kernel or a user process, that is, register mapping and
memory mapping

m Accessing kernel or user process space from the device using DMA services

= Managing device properties

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fintro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sintro-9s

Overview of the Device Tree

Overview of the Device Tree

Devices in the Oracle Solaris OS are represented as a tree of interconnected device information
nodes. The device tree describes the configuration of loaded devices for a particular machine.

Device Tree Components

The system builds a tree structure that contains information about the devices connected to the
machine at boot time. The device tree can also be modified by dynamic reconfiguration
operations while the system is in normal operation. The tree begins at the root device node,
which represents the platform.

Below the root node are the branches of the device tree. A branch consists of one or more bus
nexus devices and a terminating leaf device.

A bus nexus device provides bus mapping and translation services to subordinate devices in the
device tree. PCI - PCI bridges, PCMCIA adapters, and SCSI HBAs are all examples of nexus
devices. The discussion of writing drivers for nexus devices is limited to the development of
SCSI HBA drivers (see Chapter 18, “SCSI Host Bus Adapter Drivers”).

Leaf devices are typically peripheral devices such as disks, tapes, network adapters, frame
buffers, and so forth. Leaf device drivers export the traditional character driver interfaces and
block driver interfaces. The interfaces enable user processes to read data from and write data to
either storage or communication devices.

The system goes through the following steps to build the tree:

1. The CPU isinitialized and searches for firmware.

2. The main firmware (OpenBoot, Basic Input/Output System (BIOS), or Bootconf) initializes
and creates the device tree with known or self-identifying hardware.

3. When the main firmware finds compatible firmware on a device, the main firmware
initializes the device and retrieves the device's properties.

4. The firmware locates and boots the operating system.

5. Thekernel starts at the root node of the tree, searches for a matching device driver, and
binds that driver to the device.

6. Ifthe device is a nexus, the kernel looks for child devices that have not been detected by the
firmware. The kernel adds any child devices to the tree below the nexus node.

7. The kernel repeats the process from Step 5 until no further device nodes need to be created.

Each driver exports a device operations structure dev_ops(9S) to define the operations that the
device driver can perform. The device operations structure contains function pointers for
generic operations such as attach(9E), detach(9E), and getinfo(9E). The structure also
contains a pointer to a set of operations specific to bus nexus drivers and a pointer to a set of
operations specific to leaf drivers.

Chapter2 - Oracle Solaris Kernel and Device Tree 59

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e

Overview of the Device Tree

60

The tree structure creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus driver requires a
service that is architecturally dependent in nature, that driver requests its parent to provide the
service. This approach enables drivers to function regardless of the architecture of the machine
or the processor. A typical device tree is shown in the following figure.

FIGURE2-2 Example Device Tree

root node
I |
pseudo PCI bus SUNW, ffb
nexus node nexus node leaf node
: I
I |
PCI bus PCI bus
nexus node nexus node
I |
ebus network ide
nexus node leaf node nexus node
I I
I | I |
fdthree o se dad sd
leaf node leaf node leaf node leaf node

The nexus nodes can have one or more children. The leaf nodes represent individual devices.

Displaying the Device Tree

The device tree can be displayed in three ways:

= The libdevinfo library provides interfaces to access the contents of the device tree
programmatically.

= The prtconf(1M) command displays the complete contents of the device tree.

= The /devices hierarchy is a representation of the device tree. Use the 1s(1) command to
view the hierarchy.

Note - /devices displays only devices that have drivers configured into the system. The
prtconf(1M) command shows all device nodes regardless of whether a driver for the device
exists on the system.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

Overview of the Device Tree

libdevinfo Library

The libdevinfo library provides interfaces for accessing all public device configuration data.
See the libdevinfo(3LIB) man page for a list of interfaces.

prtconf Command

The following excerpted prtconf(1M) command example displays all the devices in the system.

Memory size: 128 Megabytes
System Peripherals (Software Nodes):

SUNW,Ultra-5 10
packages (driver not attached)
terminal-emulator (driver not attached)
deblocker (driver not attached)
obp-tftp (driver not attached)
disk-label (driver not attached)
SUNW, builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)
chosen (driver not attached)
openprom (driver not attached)
client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)
pci, instance #0
pci, instance #0
ebus, instance #0
auxio (driver not attached)
power, instance #0
SUNW, pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree, instance #0
eeprom (driver not attached)
flashprom (driver not attached)
SUNW, CS4231 (driver not attached)
network, instance #0
SUNW,m64B (driver not attached)
ide, instance #0
disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
sd, instance #15
pci, instance #1
pci, instance #0
pcil@8e,1000 (driver not attached)
SUNW, hme, instance #1
SUNW, isptwo, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #0 (driver not attached)

Chapter2 - Oracle Solaris Kernel and Device Tree 61

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

Overview of the Device Tree

62

sd, instance #1 (driver not attached)
sd, instance #2 (driver not attached)

SUNW,UltraSPARC-IIi (driver not attached)
SUNW, ffb, instance #0
pseudo, instance #0

/devices Directory

The /devices hierarchy provides a namespace that represents the device tree. Following is an
abbreviated listing of the /devices namespace. The sample output corresponds to the example
device tree and prtconf(1M) output shown previously.

/devices

/devices/pseudo

/devices/pci@lf,0:devctl

/devices/SUNW, ffb@le,0: ffb0o

/devices/pci@lf,0

/devices/pci@lf,0/pci@l,1
/devices/pci@lf,0/pci@l, 1/SUNW, m64B@2:m640
/devices/pci@lf,0/pci@l,1l/ide@3:devctl
/devices/pci@lf,0/pci@l,1/ide@3:scsi
/devices/pci@lf,0/pci@l, 1/ebus@l
/devices/pci@lf,0/pci@l, 1/ebus@l/power@l4,724000:power button
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:a
/devices/pci@lf,0/pci@l,1/ebus@l/se@14,400000:b
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:0,hdlc
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:1,hdlc
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:a,cu
/devices/pci@lf,0/pci@l, 1/ebus@l/se@14,400000:b,cu
/devices/pci@lf,0/pci@l, 1/ebus@l/ecpp@l4,3043bc:ecppd
/devices/pci@lf,0/pci@l, 1/ebus@l/fdthree@l4,3023f0:a
/devices/pci@lf,0/pci@l,1/ebus@l/fdthree@l4,3023f0:a, raw
/devices/pci@lf,0/pci@l, 1/ebus@l/SUNW,CS4231@14,200000:sound,audio
/devices/pci@lf,0/pci@l, 1/ebus@l/SUNW,CS4231@14,200000:sound,audioctl
/devices/pci@lf,0/pci@l,1/ide@3
/devices/pci@lf,0/pci@l,1l/ide@3/sd@2,0:a
/devices/pci@lf,0/pci@l,1/ide@3/sd@2,0:a, raw
/devices/pci@lf,0/pci@l,1/ide@3/dad@d,0:a
/devices/pci@lf,0/pci@l,1/ide@3/dad@?,0:a, raw
/devices/pci@lf,0/pci@l

/devices/pci@lf,0/pci@l/pci@2
/devices/pci@lf,0/pci@l/pci@2/SUNW, isptwo@4:devctl
/devices/pci@lf,0/pci@l/pci@2/SUNW, isptwo@4:scsi

Binding a Driver to a Device

In addition to constructing the device tree, the kernel determines the drivers that are used to
manage the devices.

Binding a driver to a device refers to the process by which the system selects a driver to manage
a particular device. The binding name is the name that links a driver to a unique device node in
the device information tree. For each device in the device tree, the system attempts to choose a

driver from a list of installed drivers.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

Overview of the Device Tree

Each device node has an associated name property. This property can be assigned either from
an external agent, such as the PROM, during system boot or from a driver. conf configuration
file. In any case, the name property represents the node name assigned to a device in the device
tree. The node name is the name visible in /devices and listed in the prtconf(1M) output.

FIGURE2-3 Device Node Names

device node names

SUNW, CS4231 glm hme
(name property)

st sd

A device node can have an associated compatible property as well. The compatible property
contains an ordered list of one or more possible driver names or driver aliases for the device.

The system uses both the compatible and the name properties to select a driver for the device.
The system first attempts to match the contents of the compatible property, if the compatible
property exists, to a driver on the system. Beginning with the first driver name on the
compatible property list, the system attempts to match the driver name to a known driver on the
system. Each entry on the list is processed until the system either finds a match or reaches the
end of the list.

If the contents of either the name property or the compatible property match a driver on the
system, then that driver is bound to the device node. If no match is found, no driver is bound to
the device node.

Generic Device Names

Some devices specify a generic device name as the value for the name property. Generic device
names describe the function of a device without actually identifying a specific driver for the
device. For example, a SCSI host bus adapter might have a generic device name of scsi. An
Ethernet device might have a generic device name of ethernet.

Chapter2 - Oracle Solaris Kernel and Device Tree 63

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

Overview of the Device Tree

64

The compatible property enables the system to determine alternate driver names for devices
with a generic device name, for example, glm for scsi HBA device drivers or hme for ethernet
device drivers.

Devices with generic device names are required to supply a compatible property.

Note - For a complete description of generic device names, see the IEEE 1275 Open Firmware
Boot Standard.

The following figure shows a device node with a specific device name. The driver binding name
SUNW, ffb is the same name as the device node name.

FIGURE2-4 Specific Driver Node Binding

Device Node A

name = SUNW, £fb
binding name = SUNW, £fb

/devices/SUNW, ffb@le, 0:££b0

The following figure shows a device node with the generic device name display. The driver
binding name SUNW, ffb is the first name on the compatible property driver list that matches a
driver on the system driver list. In this case, display is a generic device name for frame buffers.

Writing Device Drivers « October 2012

Overview of the Device Tree

FIGURE2-5 Generic Driver Node Binding

Device Node B

name = display

compatible = fast_fb
SUNW, £fb
slow_fb

binding name = SUNW, £fb

/devices/display@le, 0:£fb0

Chapter2 - Oracle Solaris Kernel and Device Tree 65

66

L K R 4 CHAPTER 3

Multithreading

This chapter describes the locking primitives and thread synchronization mechanisms of the
Oracle Solaris multithreaded kernel. You should design device drivers to take advantage of
multithreading. This chapter provides information on the following subjects:

= “Locking Primitives” on page 67
= “Thread Synchronization” on page 70
= “Choosing a Locking Scheme” on page 74

Locking Primitives

In traditional UNIX systems, every section of kernel code terminates either through an explicit
call to sleep(1) to give up the processor or through a hardware interrupt. The Oracle Solaris OS
operates differently. A kernel thread can be preempted at any time to run another thread.
Because all kernel threads share kernel address space and often need to read and modify the
same data, the kernel provides a number of locking primitives to prevent threads from
corrupting shared data. These mechanisms include mutual exclusion locks, which are also
known as mutexes, readers/writer locks, and semaphores.

Storage Classes of Driver Data

The storage class of data is a guide to whether the driver might need to take explicit steps to
control access to the data. The three data storage classes are:

= Automatic (stack) data. Every thread has a private stack, so drivers never need to lock
automatic variables.

= Global static data. Global static data can be shared by any number of threads in the driver.
The driver might need to lock this type of data at times.

= Kernel heap data. Any number of threads in the driver can share kernel heap data, such as
data allocated by kmem_alloc(9F). The driver needs to protect shared data at all times.

67

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1sleep-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f

Locking Primitives

Mutual-Exclusion Locks

A mutual-exclusion lock, or mutex, is usually associated with a set of data and regulates access
to that data. Mutexes provide a way to allow only one thread at a time access to that data. The
mutex functions are:

mutex_destroy(9F) Releases any associated storage.

mutex_ enter(9F) Acquires a mutex.

mutex exit(9F) Releases a mutex.

mutex_init(9F) Initializes a mutex.

mutex_owned(9F) Tests to determine whether the mutex is held by the current thread.

To be used in ASSERT(9F) only.

mutex_tryenter(9F) Acquires a mutex if available, but does not block.

Setting Up Mutexes

Device drivers usually allocate a mutex for each driver data structure. The mutex is typically a
field in the structure of type kmutex_t.mutex_init(9F) is called to prepare the mutex for use.
This call is usually made at attach(9E) time for per-device mutexes and _init(9E) time for
global driver mutexes.

For example,

struct xxstate *xsp;

/* .. */
mutex_init(&xsp->mu, NULL, MUTEX DRIVER, NULL);
/¥ .. */

For a more complete example of mutex initialization, see Chapter 6, “Driver
Autoconfiguration”

The driver must destroy the mutex with mutex_destroy(9F) before being unloaded. Destroying
the mutex is usually done at detach(9E) time for per-device mutexes and _fini(9E) time for
global driver mutexes.

Using Mutexes

Every section of the driver code that needs to read or write the shared data structure must do the
following tasks:

= Acquire the mutex
®m Access the data
® Release the mutex

68 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-owned-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fassert-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e

Locking Primitives

The scope of a mutex, that is, the data the mutex protects, is entirely up to the programmer. A
mutex protects a data structure only if every code path that accesses the data structure does so
while holding the mutex.

Readers/Writer Locks

A readers/writer lock regulates access to a set of data. The readers/writer lock is so called because
many threads can hold the lock simultaneously for reading, but only one thread can hold the
lock for writing.

Most device drivers do not use readers/writer locks. These locks are slower than mutexes. The
locks provide a performance gain only when they protect commonly read data that is not
frequently written. In this case, contention for a mutex could become a bottleneck, so using a
readers/writer lock might be more efficient. The readers/writer functions are summarized in the
following table. See the rwlock(9F) man page for detailed information. The readers/writer lock
functions are:

rw_destroy(9F) Destroys a readers/writer lock

rw_downgrade(9F) Downgrades a readers/writer lock holder from writer to reader
rw_enter(9F) Acquires a readers/writer lock

rw_exit(9F) Releases a readers/writer lock

rw_init(9F) Initializes a readers/writer lock

rw_read locked(9F) Determines whether a readers/writer lock is held for read or write

rw_tryenter(9F) Attempts to acquire a readers/writer lock without waiting
rw_tryupgrade(9F) Attempts to upgrade readers/writer lock holder from reader to writer
Semaphores

Counting semaphores are available as an alternative primitive for managing threads within
device drivers. See the semaphore(9F) man page for more information. The semaphore
functions are:

sema_destroy(9F) Destroys a semaphore.

sema_init(9F) Initialize a semaphore.
sema_p(9F) Decrement semaphore and possibly block.
sema_p_sig(9F) Decrement semaphore but do not block if signal is pending. See

“Threads Unable to Receive Signals” on page 75.

Chapter3 - Multithreading 69

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frwlock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-downgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-read-locked-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Frw-tryupgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsemaphore-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-p-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-p-sig-9f

Thread Synchronization

sema_tryp(9F) Attempt to decrement semaphore, but do not block.

sema_v(9F) Increment semaphore and possibly unblock waiter.

Thread Synchronization

In addition to protecting shared data, drivers often need to synchronize execution among
multiple threads.

Condition Variables in Thread Synchronization

Condition variables are a standard form of thread synchronization. They are designed to be
used with mutexes. The associated mutex is used to ensure that a condition can be checked
atomically, and that the thread can block on the associated condition variable without missing
either a change to the condition or a signal that the condition has changed.

The condvar(9F) functions are:

cv_broadcast(9F) Signals all threads waiting on the condition variable.
cv_destroy(9F) Destroys a condition variable.

cv_init(9F) Initializes a condition variable.

cv_signal(9F) Signals one thread waiting on the condition variable.
cv_timedwait(9F) Waits for condition, time-out, or signal. See “Threads Unable to

Receive Signals” on page 75.
cv_timedwait sig(9F) Waits for condition or time-out.
cv_wait(9F) Waits for condition.

cv_wait sig(9F) Waits for condition or return zero on receipt of a signal. See
“Threads Unable to Receive Signals” on page 75.

Initializing Condition Variables

Declare a condition variable of type kcondvar_t for each condition. Usually, the condition
variables are declared in the driver's soft-state structure. Use cv_init(9F) to initialize each
condition variable. Similar to mutexes, condition variables are usually initialized at attach(9E)
time. A typical example of initializing a condition variable is:

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);

70 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-tryp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fsema-v-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcondvar-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Thread Synchronization

For a more complete example of condition variable initialization, see Chapter 6, “Driver
Autoconfiguration”

Waiting for the Condition

To use condition variables, follow these steps in the code path waiting for the condition:

1. Acquire the mutex guarding the condition.
2. Test the condition.

3. Ifthe test results do not allow the thread to continue, use cv_wait(9F) to block the current
thread on the condition. The cv_wait(9F) function releases the mutex before blocking the
thread and reacquires the mutex before returning. On return from cv_wait(9F), repeat the
test.

4. After the test allows the thread to continue, set the condition to its new value. For example,
set a device flag to busy.

5. Release the mutex.

Signaling the Condition
Follow these steps in the code path to signal the condition:

1. Acquire the mutex guarding the condition.

2. Set the condition.

3. Signal the blocked thread with cv_broadcast(9F).
4. Release the mutex.

The following example uses a busy flag along with mutex and condition variables to force the
read(9E) routine to wait until the device is no longer busy before starting a transfer.

EXAMPLE 3-1 Using Mutexes and Condition Variables

static int
xxread(dev_t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

/* L. */

mutex enter(&xsp->mu);

while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);

xsp->busy = 1;

mutex exit(&xsp->mu);

/* perform the data access */

}

static uint_t

xxintr(caddr t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
mutex enter(&xsp->mu);

Chapter3 - Multithreading 71

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e

Thread Synchronization

72

EXAMPLE 3-1 Using Mutexes and Condition Variables (Continued)

xsp->busy = 0;
cv_broadcast(&xsp->cv);
mutex exit(&xsp->mu);

cv_wait() and cv_timedwait () Functions

If a thread is blocked on a condition with cv_wait(9F) and that condition does not occur, the
thread would wait forever. To avoid that situation, use cv_timedwait(9F), which depends upon
another thread to perform a wakeup. cv_timedwait () takes an absolute wait time as an
argument. cv_timedwait () returns -1 if the time is reached and the event has not occurred.
cv_timedwait () returns a positive value if the condition is met.

cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the system was
last rebooted. The wait time can be determined by retrieving the current value with
ddi_get_lbolt(9F). The driver usually has a maximum number of seconds or microseconds to
wait, so this value is converted to clock ticks with drv_usectohz(9F) and added to the value
fromddi_get lbolt(9F).

The following example shows how to use cv_timedwait(9F) to wait up to five seconds to access
the device before returning EIO to the caller.

EXAMPLE3-2 Using cv_timedwait()

clock t cur_ticks, to;
mutex_enter(&xsp->mu);
while (xsp->busy) {
cur_ticks = ddi_get lbolt();
to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */
if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {
/*
* The timeout time ’'to’ was reached without the
* condition being signaled.
*/
/* tidy up and exit */
mutex_exit(&xsp->mu);
return (EIO);
}
}
xsp->busy = 1;
mutex_exit(&xsp->mu);

Although device driver writers generally prefer to use cv_timedwait(9F) over cv_wait(9F),
sometimes cv_wait(9F) is a better choice. For example, cv_wait(9F) is better if a driver is
waiting on the following conditions:

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdrv-usectohz-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f

Thread Synchronization

= Internal driver state changes, where such a state change might require some command to be
executed, or a set amount of time to pass

= Something the driver needs to single-thread

= Some situation that is already managing a possible timeout, as when “A” depends on “B,” and
“B”is using cv_timedwait(9F)

cv_wait_sig() Function

A driver might be waiting for a condition that cannot occur or will not happen for a long time.
In such cases, the user can send a signal to abort the thread. Depending on the driver design, the
signal might not cause the driver to wake up.

cv_wait_sig(9F) allows a signal to unblock the thread. This capability enables the user to break
out of potentially long waits by sending a signal to the thread with kil1(1) or by typing the
interrupt character. cv_wait_sig(9F) returns zero if it is returning because of a signal, or
nonzero if the condition occurred. However, see “Threads Unable to Receive Signals” on

page 75 for cases in which signals might not be received.

The following example shows how to use cv_wait_sig(9F) to allow a signal to unblock the
thread.

EXAMPLE3-3 Usingcv_wait_sig()

mutex _enter(&xsp->mu);
while (xsp->busy) {
if (cv_wait sig(&xsp->cv, &xsp->mu) == 0) {
/* Signaled while waiting for the condition */
/* tidy up and exit */
mutex exit(&xsp->mu);
return (EINTR);
}
}
xsp->busy = 1;
mutex exit(&xsp->mu);

cv_timedwait_sig() Function

cv_timedwait_sig(9F)issimilarto cv_timedwait(9F)and cv_wait_sig(9F), except that
cv_timedwait_sig() returns -1 without the condition being signaled after a timeout has been
reached, or 0 if a signal (for example, kil1(2)) is sent to the thread.

Forboth cv_timedwait(9F)and cv_timedwait sig(9F), time is measured in absolute clock
ticks since the last system reboot.

Chapter3 - Multithreading 73

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-timedwait-sig-9f

Choosing a Locking Scheme

Choosing a Locking Scheme

74

The locking scheme for most device drivers should be kept straightforward. Using additional
locks allows more concurrency but increases overhead. Using fewer locks is less time
consuming but allows less concurrency. Generally, use one mutex per data structure, a
condition variable for each event or condition the driver must wait for, and a mutex for each
major set of data global to the driver. Avoid holding mutexes for long periods of time. Use the
following guidelines when choosing a locking scheme:

Use the multithreading semantics of the entry point to your advantage.

Make all entry points re-entrant. You can reduce the amount of shared data by changing a
static variable to automatic.

If your driver acquires multiple mutexes, acquire and release the mutexes in the same order
in all code paths.

Hold and release locks within the same functional space.

Avoid holding driver mutexes when calling DDI interfaces that can block, for example,
kmem alloc(9F) with KM SLEEP.

To look atlock usage, use lockstat(1M). Lockstat(1M) monitors all kernel lock events,
gathers frequency and timing data about the events, and displays the data.

See the Multithreaded Programming Guide for more details on multithreaded operations.

Potential Locking Pitfalls

Mutexes are not re-entrant by the same thread. If you already own the mutex, attempting to
claim this mutex a second time leads to the following panic:

panic: recursive mutex enter. mutex %x caller %x

Releasing a mutex that the current thread does not hold causes this panic:

panic: mutex adaptive exit: mutex not held by thread

The following panic occurs only on uniprocessors:

panic: lock set: lock held and only one CPU

The lock_set panic indicates that a spin mutex is held and will spin forever, because no other
CPU can release this mutex. This situation can happen if the driver forgets to release the mutex
on one code path or becomes blocked while holding the mutex.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mlockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mlockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=MTP

Choosing a Locking Scheme

A common cause of the lock_set panic occurs when a device with a high-level interrupt calls a
routine that blocks, such as cv_wait(9F). Another typical cause is a high-level handler grabbing
an adaptive mutex by calling mutex_enter(9F).

Threads Unable to Receive Signals

The sema_p sig(),cv _wait sig(),and cv_timedwait sig() functions can be awakened
when the thread receives a signal. A problem can arise because some threads are unable to
receive signals. For example, when close(9E) is called as a result of the application calling
close(2), signals can be received. However, when close(9E) is called from within the exit(2)
processing that closes all open file descriptors, the thread cannot receive signals. When the
thread cannot receive signals, sema_p_sig() behavesas sema_p(), cv_wait_sig() behavesas
cv_wait(),and cv_timedwait sig() behavesascv_ timedwait().

Use caution to avoid sleeping forever on events that might never occur. Events that never occur
create unkillable (defunct) threads and make the device unusable until the system is rebooted.
Signals cannot be received by defunct processes.

To detect whether the current thread is able to receive a signal, use the

ddi_can_receive sig(9F) function. Ifthe ddi_can receive sig()function returnsB_TRUE,
then the above functions can wake up on a received signal. If the

ddi can_receive sig()function returnsB_FALSE, then the above functions cannot wake up

onareceived signal. If the ddi_can_receive_sig()function returns B_FALSE, then the driver
should use an alternate means, such as the timeout(9F) function, to reawaken.

One important case where this problem occurs is with serial ports. If the remote system asserts
flow control and the close(9E) function blocks while attempting to drain the output data, a
port can be stuck until the flow control condition is resolved or the system is rebooted. Such
drivers should detect this case and set up a timer to abort the drain operation when the flow
control condition persists for an excessive period of time.

This issue also affects the qwait sig(9F) function, which is described in Chapter 7, “STREAMS
Framework - Kernel Level,” in STREAMS Programming Guide.

Chapter3 - Multithreading 75

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-can-receive-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fqwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMSfrmkern7-17735
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=STREAMSfrmkern7-17735

76

L R 2 4 CHAPTER 4

Properties

Properties are user-defined, name-value pair structures that are managed using the DDI/DKI
interfaces. This chapter provides information on the following subjects:

= “Device Property Names” on page 78

= “Creating and Updating Properties” on page 78

= “Looking Up Properties” on page 78

= “prop_op() Entry Point” on page 81
Device Properties

Device attribute information can be represented by a name-value pair notation called a
property.

For example, device registers and onboard memory can be represented by the reg property. The
reg property is a software abstraction that describes device hardware registers. The value of the
reg property encodes the device register address location and size. Drivers use the reg property
to access device registers.

Another example is the interrupt property. An interrupt property represents the device
interrupt. The value of the interrupt property encodes the device-interrupt PIN.

Five types of values can be assigned to properties:

Byte array - Series of bytes of an arbitrary length
Integer property — An integer value

Integer array property — An array of integers

String property — A null-terminated string

String array property — A list of null-terminated strings

A property that has no value is considered to be a Boolean property. A Boolean property that
exists is true. A Boolean value that does not exist is false.

77

Device Properties

78

Device Property Names

Strictly speaking, DDI/DKI software property names have no restrictions. Certain uses are
recommended, however. The IEEE 1275-1994 Standard for Boot Firmware defines properties
as follows:

A property is a human readable text string consisting of from 1 to 31 printable characters.
Property names cannot contain upper case characters or the characters /7, “\”, “”, “[, “]” and
“@”. Property names beginning with the character “+” are reserved for use by future revisions of
IEEE 1275-1994.

By convention, underscores are not used in property names. Use a hyphen (-) instead. By
convention, property names ending with the question mark character (?) contain values that
are strings, typically TRUE or FALSE, for example auto-boot?.

For a discussion of adding properties in driver configuration files, see the driver.conf(4) man
page. The pm(9P) and pm- components(9P) man pages show how properties are used in power
management. Read the sd(7D) man page as an example of how properties should be
documented in device driver man pages.

Creating and Updating Properties

To create a property for a driver, or to update an existing property, use an interface from the
DDI driver update interfaces such as ddi_prop_update_int(9F) or
ddi_prop_update_string(9F) with the appropriate property type. See Table 4-1 for a list of
available property interfaces. These interfaces are typically called from the driver's attach(9E)
entry point. In the following example, ddi_prop_update_string()creates a string property
called pm-hardware-state with a value of needs - suspend - resume.

/* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi prop update string(device, dip,
"pm-hardware-state", "needs-suspend-resume");

In most cases, using addi_prop_update() routine is sufficient for updating a property.
Sometimes, however, the overhead of updating a property value that is subject to frequent
change can cause performance problems. See “prop_op () Entry Point” on page 81 fora
description of using a local instance of a property value to avoid using ddi_prop_update().

Looking Up Properties

A driver can request a property from its parent, which in turn can ask its parent. The driver can
control whether the request can go higher than its parent.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7sd-7d
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Device Properties

For example, the esp driver in the following example maintains an integer property called
targetx-sync-speed for each target. The x in targetx-sync-speed represents the target
number. The prtconf(1M) command displays driver properties in verbose mode. The
following example shows a partial listing for the esp driver.

% prtconf -v

esp, instance #0

Driver software properties:

name <target2-sync-speed> length <4>

value <0x00000fa0>.

The following table provides a summary of the property interfaces.

TABLE4-1 Property Interface Uses

Family

Property Interfaces

Description

ddi prop lookup

ddi_prop_update

ddi prop remove

ddi prop exists(9F)

ddi prop get int(9F)
ddi prop_get int64(9F)
ddi prop lookup int array(9F)

ddi prop lookup int64 array(9F)

ddi prop lookup string(9F)

ddi prop lookup string array(9F)
ddi prop lookup byte array(9F)
ddi prop update int(9F)

ddi prop update int64(9F)

ddi prop update int array(9F)
ddi prop update string(9F)
ddi prop update string array(9F)

ddi prop update int64 array(9F)

ddi prop update byte array(9F)

ddi prop remove(9F)

Looks up a property and returns successfully if
the property exists. Fails if the property does
not exist

Looks up and returns an integer property
Looks up and returns a 64-bit integer property
Looks up and returns an integer array property

Looks up and returns a 64-bit integer array
property

Looks up and returns a string property
Looks up and returns a string array property
Looks up and returns a byte array property
Updates or creates an integer property

Updates or creates a single 64-bit integer
property

Updates or creates an integer array property
Updates or creates a string property
Updates or creates a string array property

Updates or creates a 64-bit integer array
property

Updates or creates a byte array property

Removes a property

Chapter4 - Properties

79

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-exists-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-remove-9f

Device Properties

TABLE4-1 Property Interface Uses (Continued)
Family Property Interfaces Description
ddi prop remove all(9F) Removes all properties that are associated with

adevice

80

Whenever possible, use 64-bit versions of int property interfaces such as
ddi_prop update int64(9F) instead of 32-bit versions such as ddi_prop update int(9F)).

Changestothedriver.conf File

When a system running the Oracle Solaris OS is upgraded, new versions of drivers may be
installed. During the upgrade process, the driver. conf file is also updated on the system. The
driver. conf file is customized by both the vendor and the system administrator. During a
system upgrade, the system's previous configuration should continue to work with the new
drivers, the vendor's driver. conf file and with the administrator's driver. conf file.

In the Oracle Solaris 11 release, driver writers have an option to provide a separate driver.conf
file that will contain the vendor provided driver data. The new driver. conf file is stored in the
/etc/driver/drv directory. This enables the system to retain any administrative changes made
to the file. If a driver is found in both the configuration files, the system will merge the files and
present a file with the combined properties. The format of the vendor's driver. conf file is the
same as the administrator's driver configuration file.

The vendor and administrative configuration data can now be made available to the driver
explicitly via new interfaces. This enables the driver writer to encode any merge logic directly in
the driver rather than in the class action scripts or the pre-install scripts and post-install scripts.
The customizations made to the administrative file are preserved and the driver can decide on
the relevance of the new values to the old values.

In order for a driver to ensure that the above model works well, the driver developer should
consider the following:

= Design the driver such that a set of disciplined, configurable options are available.

= Describe fully the driver's options and the model in the driver documentation and man
pages.

= Ifthe driver changes its configuration options such that the administrator settings are either
invalidated or superseded, the driver should ensure that previous administrative settings are
honored. To lookup the previous configuration, the driver can use the
ddi_prop_lookup(9F) interface with the property type set to either DDI_PROP_VENDOR or
DDI_PROP_ADMIN.

For example, if a driver supports a timeout configuration in units of seconds and a new
version of the driver now supports a finer timeout granularity in units of milliseconds. The
new property should be named such that it can be distinguished from the previous property.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-remove-all-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-9f

Device Properties

The driver should then look up the earlier property on the administrative list and if the
property is found, the driver should continue to honor it. The following driver code
illustrates the timeout example.

EXAMPLE 4-1 Driver Check for Locally Configured Timeout Value

* Has the timeout been locally configured using the
* prior option of timeout in units of seconds?
*/
if (ddi_prop lookup int(DDI DEV T ANY, dip,
DDI PROP ADMIN, "timeout",&ivalues,&n) ==
DDI PROP_SUCCESS) {
if (n I=1) {
ddi prop free(ivalues);
return (EINVAL);
}
/* yes - convert our working timeout accordingly */
dip->ms timeout = 1000 * ivalues[0];
/* record the new parameter setting for confirmation */
(void) ddi prop update int(DDI _DEV_ T NONE,
dip, "ms-timeout", dip->ms timeout);
ddi prop free(ivalues);

R T T I S A e S T

The prtconf(1M) command displays the driver properties and the new -u option can be used
to display the original property value and the changed property value.

prop_op() Entry Point

The prop_op(9E) entry point is generally required for reporting device properties or driver
properties to the system. If the driver does not need to create or manage its own properties, then
the ddi_prop_op(9F) function can be used for this entry point.

ddi_prop_op(9F) can be used as the prop_op(9E) entry point for a device driver when
ddi_prop_op() is defined in the driver's cb_ops(9S) structure. ddi_prop_op() enables a leaf
device to search for and obtain property values from the device's property list.

If the driver has to maintain a property whose value changes frequently, you should define a
driver-specific prop_op () routine within the cb_ops structure instead of calling
ddi_prop_op(). This technique avoids the inefficiency of using ddi_prop_update()
repeatedly. The driver should then maintain a copy of the property value either within its
soft-state structure or in a driver variable.

The prop_op(9E) entry point reports the values of specific driver properties and device
properties to the system. In many cases, the ddi_prop_op(9F) routine can be used as the driver's
prop_op() entry pointin the cb_ops(9S) structure. ddi_prop_op() performs all of the required
processing. ddi_prop_op() is sufficient for drivers that do not require special processing when
handling device property requests.

Chapter4 - Properties 81

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s

Device Properties

82

However, sometimes the driver must provide a prop_op() entry point. For example, if a driver
maintains a property whose value changes frequently, updating the property with
ddi_prop_update(9F) for each change is not efficient. Instead, the driver should maintain a
shadow copy of the property in the instance's soft state. The driver would then update the
shadow copy when the value changes without using any of the ddi_prop_update() routines.
The prop_op() entry point must intercept requests for this property and use one of the
ddi_prop_update() routines to update the value of the property before passing the request to
ddi_prop_op() to process the property request.

In the following example, prop_op () intercepts requests for the temperature property. The
driver updates a variable in the state structure whenever the property changes. However, the
property is updated only when a request is made. The driver then uses ddi_prop_op() to
process the property request. If the property request is not specific to a device, the driver does
not intercept the request. This situation is indicated when the value of the dev parameter is
equal to DDI_DEV_T_ANY, the wildcard device number.

EXAMPLE4-2 prop_op() Routine

static int
xx_prop op(dev t dev, dev info t *dip, ddi prop op t prop op,
int flags, char *name, caddr_t valuep, int *lengthp)

{

minor_t instance;

struct xxstate *xsp;

if (dev != DDI DEV T ANY) {

return (ddi _prop op(dev, dip, prop_op, flags, name,
valuep, lengthp));
}

instance = getminor(dev);
xsp = ddi get soft state(statep, instance);
if (xsp == NULL)
return (DDI_PROP_NOTFOUND);
if (strcmp(name, "temperature") == 0) {
ddi prop update int(dev, dip, name, temperature);

}

/* other cases */

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-9f

L K R 4 CHAPTER 5

Managing Events and Queueing Tasks

Drivers use events to respond to state changes. This chapter provides the following information
on events:

= “Introduction to Events” on page 83
= “Usingddi_log_sysevent() to Log Events” on page 85
= “Defining Event Attributes” on page 86

Drivers use task queues to manage resource dependencies between tasks. This chapter provides
the following information about task queues:

= “Introduction to Task Queues” on page 89
= “Task Queue Interfaces” on page 90
= “Observing Task Queues” on page 90

Managing Events

A system often needs to respond to a condition change such as a user action or system request.
For example, a device might issue a warning when a component begins to overheat, or might
start a movie player when a DVD is inserted into a drive. Device drivers can use a special
message called an event to inform the system that a change in state has taken place.

Introduction to Events

An event is a message that a device driver sends to interested entities to indicate that a change of
state has taken place. Events are implemented in the Oracle Solaris OS as user-defined,
name-value pair structures that are managed using the nvlist* functions. (See the
nvlist_alloc(9F) man page. Events are organized by vendor, class, and subclass. For example,
you could define a class for monitoring environmental conditions. An environmental class
could have subclasses to indicate changes in temperature, fan status, and power.

83

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f

Managing Events

When a change in state occurs, the device notifies the driver. The driver then uses the
ddi_log_sysevent(9F) function to log this event in a queue called sysevent. The sysevent
queue passes events to the user level for handling by either the syseventd daemon or
syseventconfd daemon. These daemons send notifications to any applications that have
subscribed for notification of the specified event.

Two methods for designers of user-level applications deal with events:

= Anapplication can use the routines in libsysevent(3LIB) to subscribe with the syseventd
daemon for notification when a specific event occurs.

= A developer can write a separate user-level application to respond to an event. This type of
application needs to be registered with syseventadm(1M). When syseventconfd
encounters the specified event, the application is run and deals with the event accordingly.

This process is illustrated in the following figure.

FIGURE5-1 Event Plumbing

syseventadm(1M)

Application
A
v
libsysevent sysevent. conf
7y Registry
v i
syseventd P syseventconfd
User level -~
Kernel level
Sysevent
Queue

A

ddi_ log sysevent(9F)

Driver

84 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibsysevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Msyseventadm-1m

Managing Events

Usingddi_log_sysevent() to Log Events

Device drivers use the ddi_log_sysevent(9F) interface to generate and log events with the

system.

ddi_log_sysevent () Syntax

ddi_log_sysevent() uses the following syntax:

int ddi log sysevent(dev_info t "dip, char *vendor, char *class,
char *subclass, nvlist_t *attr-list, sysevent_id_t *eidp, int sleep-flag) ;

where:
dip

vendor

class

subclass

attr-list

A pointer to the dev_info node for this driver.

A pointer to a string that defines the driver's vendor. Third-party drivers should
use their company's stock symbol or a similarly enduring identifier.
Oracle-supplied drivers use DDI_VENDOR SUNW.

A pointer to a string defining the event's class. class is a driver-specific value. An
example of a class might be a string that represents a set of environmental
conditions that affect a device. This value must be understood by the event
consumer.

A driver-specific string that represents a subset of the class argument. For
example, within a class that represents environmental conditions, an event
subclass might refer to the device's temperature. This value must be intelligible to
the event consumer.

A pointer to an nvlist_t structure that lists name-value attributes associated
with the event. Name-value attributes are driver-defined and can refer to a specific
attribute or condition of the device.

For example, consider a device that reads both CD-ROMs and DVDs. That device
could have an attribute with the name disc_type and the value equal to either
cd_romor dvd.

As with class and subclass, an event consumer must be able to interpret the
name-value pairs.

For more information on name-value pairs and the nvlist_t structure, see
“Defining Event Attributes” on page 86, as well as the nvlist_alloc(9F) man

page.

If the event has no attributes, then this argument should be set to NULL.

Chapter5 « Managing Events and Queueing Tasks 85

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f

Managing Events

86

eidp The address of a sysevent_id_t structure. The sysevent _id_t structure is used
to provide a unique identification for the event. ddi log sysevent(9F) returns
this structure with a system-provided event sequence number and time stamp.
See the ddi_log_sysevent(9F) man page for more information on the
sysevent id t structure.

sleep-flag A flag that indicates how the caller wants to handle the possibility of resources not
being available. If sleep-flag is set to DDI_SLEEP, the driver blocks until the
resources become available. With DDI_NOSLEEP, an allocation will not sleep and
cannot be guaranteed to succeed. If DDI_ENOMEM is returned, the driver would
need to retry the operation at a later time.

Even with DDI_SLEEP, other error returns are possible with this interface, such as
system busy, the syseventd daemon not responding, or trying to log an event in
interrupt context.

Sample Code for Logging Events

A device driver performs the following tasks to log events:

= Allocate memory for the attribute list using nvlist_alloc(9F)

= Add name-value pairs to the attribute list

= Usetheddi_log_sysevent(9F) function to log the event in the sysevent queue
= Callnvlist_free(9F) when the attribute list is no longer needed

The following example demonstrates how to use ddi_log_sysevent().

EXAMPLE5-1 Callingddi_log_sysevent()

char *vendor_name = "DDI VENDOR JGJG"
char *my class = "]JGJG event";

char *my subclass = "JGJG alert"
nvlist t *nvl;

/* .. %/
nvlist alloc(&nvl, nvflag, kmflag);
/* .. */

(void) nvlist add byte array(nvl, propname, (uchar t *)propval, proplen + 1);
/* .. */
if (ddi_log_sysevent(dip, vendor_name, my class,
my subclass, nvl, NULL, DDI SLEEP)!= DDI SUCCESS)
cmn_err(CE_WARN, "error logging system event")
nvlist free(nvl);

Defining Event Attributes

Event attributes are defined as a list of name-value pairs. The Oracle Solaris DDI provides
routines and structures for storing information in name-value pairs. Name-value pairs are
retained in an nvlist_t structure, which is opaque to the driver. The value for a name-value

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-free-9f

Managing Events

pair can be a Boolean, an int, a byte, a string, an nvlist, or an array of these data types. An int
can be defined as 16 bits, 32 bits, or 64 bits and can be signed or unsigned.

The steps in creating a list of name-value pairs are as follows.

1. Createannvlist t structure with nvlist alloc(9F).
Thenvlist_alloc() interface takes three arguments:
= nvlp - Pointer to a pointer to an nvlist_t structure

= nvflag - Flag to indicate the uniqueness of the names of the pairs. If this flag is set to
NV_UNIQUE_NAME_TYPE, any existing pair that matches the name and type of a new pair is
removed from the list. If the flag is set to NV_UNIQUE_NAME, then any existing pair with a
duplicate name is removed, regardless of its type. Specifying NV_UNIQUE_NAME_TYPE
allows a list to contain two or more pairs with the same name as long as their types are
different, whereas with Nv_UNIQUE_NAME only one instance of a pair name can be in the
list. If the flag is not set, then no uniqueness checking is done and the consumer of the list
is responsible for dealing with duplicates.

= kmflag - Flag to indicate the allocation policy for kernel memory. If this argument is set
to KM_SLEEP, then the driver blocks until the requested memory is available for
allocation. KM_SLEEP allocations might sleep but are guaranteed to succeed. KM_NOSLEEP
allocations are guaranteed not to sleep but might return NULL if no memory is currently
available.

2. Populate the nvlist with name-value pairs. For example, to add a string, use
nvlist_add_string(9F). Toadd an array of 32-bit integers, use
nvlist_add_int32_array(9F). Thenvlist_add_boolean(9F) man page containsa
complete list of interfaces for adding pairs.

To deallocate a list, use nvlist free(9F).

The following code sample illustrates the creation of a name-value list.

EXAMPLE5-2 Creating and Populating a Name-Value Pair List

nvlist t*
create nvlist()
{
int err;
char *str = "child"
int32_t ints[] = {0, 1, 2};
nvlist t *nvl;

err = nvlist alloc(&nvl, NV_UNIQUE NAME, 0); /* allocate list */
if (err)

return (NULL);
if ((nvlist add string(nvl, "name", str) != 0) ||

(nvlist add int32 array(nvl, "prop", ints, 3) !=0)) {
nvlist free(nvl);
return (NULL);

Chapter5 « Managing Events and Queueing Tasks 87

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-add-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-add-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-free-9f

Managing Events

EXAMPLE5-2 Creating and Populating a Name-Value Pair List (Continued)
return (nvl);
Drivers can retrieve the elements of an nvlist by using a lookup function for that type, such as

nvlist_lookup_int32_array(9F), which takes as an argument the name of the pair to be
searched for.

Note - These interfaces work only if either NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE is
specified when nvlist_alloc(9F) is called. Otherwise, ENOTSUP is returned, because the list
cannot contain multiple pairs with the same name.

A list of name-value list pairs can be placed in contiguous memory. This approach is useful for
passing the list to an entity that has subscribed for notification. The first step is to get the size of
the memory block that is needed for the list with nvlist_size(9F). The next step is to pack the
list into the buffer with nvlist_pack(9F). The consumer receiving the buffer's content can
unpack the buffer with nvlist_unpack(9E).

The functions for manipulating name-value pairs are available to both user-level and
kernel-level developers. You can find identical man pages for these functions in both man pages
section 3: Library Interfaces and Headers and in man pages section 9: DDI and DKI Kernel
Functions. For alist of functions that operate on name-value pairs, see the following table.

TABLE5-1 Functions for Using Name-Value Pairs

Man Page

Purpose / Functions

nvlist add_boolean(9F) Add name-value pairs to the list. Functions include:

nvlist alloc(9F)

nvlist add boolean(),nvlist add boolean value(),nvlist add byte(),
nvlist_add_int8(),nvlist_add_uint8(),nvlist_add_intl6(),
nvlist add uintl6(),nvlist _add_int32(),nvlist_add uint32(),
nvlist add int64(),nvlist add uint64(),nvlist add string(),
nvlist add nvlist(),nvlist add nvpair(),nvlist add boolean array(),

nvlist add_int8 array, nvlist add_uint8 array(), nvlist_add_nvlist_array(),
nvlist add byte array(),nvlist add intl6 array(),nvlist add uintl6 array(),
nvlist _add_int32 array(),nvlist_add uint32_array(),
nvlist add int64 array(),nvlist add uint64 array(),
nvlist add string array()

Manipulate the name-value list buffer. Functions include:

nvlist alloc(),nvlist free(),nvlist size(),nvlist pack(),nvlist _unpack(),
nvlist dup(),nvlist merge()

88

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-lookup-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-pack-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-unpack-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3F
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3F
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-alloc-9f

Queueing Tasks

TABLE5-1 Functions for Using Name-Value Pairs (Continued)

Man Page

Purpose / Functions

nvlist lookup boolean(9F)

nvlist next nvpair(9F)

nvlist remove(9F)

Search for name-value pairs. Functions include:

nvlist lookup boolean(),nvlist lookup boolean value(),nvlist lookup byte(),
nvlist lookup_int8(),nvlist lookup int16(),nvlist lookup int32(),
nvlist lookup_int64(),nvlist_lookup uint8(),nvlist lookup_uintl6(),
nvlist lookup uint32(),nvlist lookup uint64(),nvlist lookup string(),
nvlist lookup nvlist(),nvlist lookup boolean array,

nvlist lookup_byte array(),nvlist lookup_int8 array(),
nvlist_lookup_int16_array(),nvlist_lookup_int32_array(),

nvlist lookup_int64 array(),nvlist lookup uint8 array(),

nvlist lookup_uintl6_array(),nvlist lookup_uint32_array(),
nvlist_lookup_uint64 array(),nvlist_lookup_string_array(),

nvlist lookup nvlist array(),nvlist lookup pairs()

Get name-value pair data. Functions include:
nvlist next nvpair(),nvpair name(),nvpair type()
Remove name-value pairs. Functions include:

nv_remove(),nv_remove all()

Queueing Tasks

This section discusses how to use task queues to postpone processing of some tasks and delegate
their execution to another kernel thread.

Introduction to Task Queues

A common operation in kernel programming is to schedule a task to be performed at a later
time, by a different thread. The following examples give some reasons that you might want a
different thread to perform a task at a later time:

= Your current code path is time critical. The additional task you want to perform is not time

critical.

= The additional task might require grabbing a lock that another thread is currently holding.

= You cannot block in your current context. The additional task might need to block, for
example to wait for memory.

= A condition is preventing your code path from completing, but your current code path
cannot sleep or fail. You need to queue the current task to execute after the condition

disappears.

= Youneed to launch multiple tasks in parallel.

Chapter5 « Managing Events and Queueing Tasks 89

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-lookup-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-next-nvpair-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnvlist-remove-9f

Queueing Tasks

In each of these cases, a task is executed in a different context. A different context is usually a
different kernel thread with a different set of locks held and possibly a different priority. Task
queues provide a generic kernel API for scheduling asynchronous tasks.

A task queue is a list of tasks with one or more threads to service the list. If a task queue has a
single service thread, all tasks are guaranteed to execute in the order in which they are added to
the list. If a task queue has more than one service thread, the order in which the tasks will
execute is not known.

Note - If the task queue has more than one service thread, make sure that the execution of one
task does not depend on the execution of any other task. Dependencies between tasks can cause
a deadlock to occur.

Task Queue Interfaces

The following DDI interfaces manage task queues. These interfaces are defined in the
sys/sunddi.h header file. See the taskq(9F) man page for more information about these

interfaces.

ddi_taskq_t Opaque handle
TASKQ_DEFAULTPRI System default priority

DDI_SLEEP Can block for memory
DDI_NOSLEEP Cannot block for memory

ddi taskq create() Create a task queue
ddi_taskq_destroy() Destroy a task queue
ddi_taskq_dispatch() Add a task to a task queue
ddi_taskq_wait() Wait for pending tasks to complete
ddi taskq suspend() Suspend a task queue

ddi taskq suspended() Check whether a task queue is suspended
ddi_taskq_resume() Resume a suspended task queue
Observing Task Queues

The typical usage in drivers is to create task queues at attach(9E). Most taskq_dispatch()
invocations are from interrupt context.

90 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ftaskq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Queueing Tasks

This section describes two techniques that you can use to monitor the system resources that are
consumed by a task queue. Task queues export statistics on the use of system time by task queue

threads. Task queues also use DTrace SDT probes to determine when a task queue starts and

finishes execution of a task.

Task Queue Kernel Statistics Counters

Every task queue has an associated set of kstat counters. Examine the output of the following

kstat(1M) command:

$ kstat -c taskq
module: unix

instance: 0

name: ata_nexus_enum_tq class: taskq
crtime 53.877907833
executed 0
maxtasks 0
nactive 1
nalloc 0
priority 60
snaptime 258059.249256749
tasks 0
threads 1
totaltime 0

module: unix

instance: 0

name: callout taskq class: taskq
crtime 0
executed 13956358
maxtasks 4
nactive 4
nalloc 0
priority 99
snaptime 258059.24981709
tasks 13956358
threads 2
totaltime 120247890619

The kstat output shown above includes the following information:
= The name of the task queue and its instance number
= The number of scheduled (tasks) and executed (executed) tasks

= The number of kernel threads processing the task queue (threads) and their priority
(priority)

= The total time (in nanoseconds) spent processing all the tasks (totaltime)

The following example shows how you can use the kstat command to observe how a counter
(number of scheduled tasks) increases over time:

$ kstat -p unix:0:callout_taskq:tasks 1 5
unix:0:callout_taskq:tasks 13994642

unix:0:callout taskq:tasks 13994711

Chapter5 « Managing Events and Queueing Tasks 91

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mkstat-1m

Queueing Tasks

92

unix:0@:callout taskq:tasks 13994784
unix:0:callout taskq:tasks 13994855
unix:0:callout_taskq:tasks 13994926

Task Queue DTrace SDT Probes

Task queues provide several useful SDT probes. All the probes described in this section have the
following two arguments:

= The task queue pointer returned by ddi_taskq_create()

= The pointer to the taskq_ent_t structure. Use this pointer in your D script to extract the
function and the argument.

You can use these probes to collect precise timing information about individual task queues and
individual tasks being executed through them. For example, the following script prints the
functions that were scheduled through task queues for every 10 seconds:

!/usr/sbin/dtrace -qs

sdt:genunix::taskqg-enqueue
{
this->tq (taskg t *)arg0;
this->tqe (taskg ent t *) argl;
@[this->tq->tq name,
this->tq->tq_instance,
this->tqe->tgent func] = count();

}

tick-10s

{
printa ("ss(%d): %a called %@d times\n", @);
trunc(@);

}

On a particular machine, the above D script produced the following output:

callout taskq(1l): genunix‘callout execute called 51 times
callout_taskq(0): genunix%allout_execute called 701 times

kmem taskq(0@): genunix‘kmem update timeout called 1 times

kmem taskq(@): genunix‘kmem hash rescale called 4 times

callout taskq(l): genunix‘callout execute called 40 times

USB hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 256 times
callout taskq(0): genunix%allout_execute called 702 times

kmem taskq(0@): genunix‘kmem update timeout called 1 times
kmem_taskq(@): genunix‘kmem hash rescale called 4 times

callout taskq(l): genunix%allout_execute called 28 times

USB _hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 228 times
callout taskq(@): genunix‘callout execute called 706 times

callout taskq(l): genunixkalloutfexecute called 24 times

USB hid 81 pipehndl tq 1(14): usba‘hcdi cb thread called 141 times
callout taskq(0): genunix%allout_execute called 708 times

Writing Device Drivers « October 2012

CHAPTER 6

Driver Autoconfiguration

Autoconfiguration means the driver loads code and static data into memory. This information
is then registered with the system. Autoconfiguration also involves attaching individual device
instances that are controlled by the driver.

This chapter provides information on the following subjects:

“Driver Loading and Unloading” on page 93
“Data Structures Required for Drivers” on page 94
“Loadable Driver Interfaces” on page 97

“Device Configuration Concepts” on page 100
“Using Device IDs” on page 112

Driver Loading and Unloading

The system loads driver binary modules from the drv subdirectory of the kernel module
directory for autoconfiguration. See “Copying the Driver to a Module Directory” on page 493.

After a module is read into memory with all symbols resolved, the system calls the _init(9E)
entry point for that module. The _init () function callsmod_install(9F), which actually loads
the module.

Note - During the call tomod_install(), other threads are able to call attach(9E) as soon as
mod_install() is called. From a programming standpoint, all _init () initialization must
occur beforemod_install() is called. If mod_install() fails (that is a nonzero value is
returned), then the initialization must be backed out.

Upon successful completion of _init (), the driver is properly registered with the system. At
this point, the driver is not actively managing any device. Device management happens as part
of device configuration.

93

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Data Structures Required for Drivers

The system unloads driver binary modules either to conserve system memory or at the explicit
request of a user. Before deleting the driver code and data from memory, the fini(9E) entry
point of the driver is invoked. The driver is unloaded, if and only if fini() returns success.

The following figure provides a structural overview of a device driver. The shaded area
highlights the driver data structures and entry points. The upper half of the shaded area
contains data structures and entry points that support driver loading and unloading. The lower
halfis concerned with driver configuration.

FIGURE6-1 Module Loading and Autoconfiguration Entry Points

| modlinkage (9S) | info ()

_fini ()
“init ()

| mod1ldrv (9S) |

| attach (9E)
detach (9E)
getinfo (9E)
probe (9E)
power (9E)

| cb_ops (9S) |

Data Structures Required for Drivers

94

To support autoconfiguration, drivers are required to statically initialize the following data
structures:

= modlinkage(9S)
= modldrv(9S)

= dev_ops(9S)

= cb ops(9S)

The data structures in Figure 5-1 are relied on by the driver. These structures must be provided
and be initialized correctly. Without these data structures, the driver might not load properly.
As aresult, the necessary routines might not be loaded. If an operation is not supported by the
driver, the address of the nodev(9F) routine can be used as a placeholder. In some instances, the
driver supports the entry point and only needs to return success or failure. In such cases, the
address of the routine nulldev(9F) can be used.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Smodlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Smodldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f

Data Structures Required for Drivers

Note — These structures should be initialized at compile-time. The driver should not access or
change the structures at any other time.

modlinkage Structure
static struct modlinkage xxmodlinkage = {
MODREV 1, /* ml _rev */
&xxmodldrv, /* ml_linkage[] */
NULL /* NULL termination */
+

The first field is the version number of the module that loads the subsystem. This field should be
MODREV_1. The second field points to driver's modldrv structure defined next. The last element
of the structure should always be NULL.

modIdrv Structure

static struct modldrv xxmodldrv = {
&mod driverops, /* drv_modops */
"generic driver v1.1", /* drv_linkinfo */
&xx_dev_ops /* drv_dev _ops */

b

This structure describes the module in more detail. The first field provides information
regarding installation of the module. This field should be set to &mod_driverops for driver
modules. The second field is a string to be displayed by modinfo(1M). The second field should
contain sufficient information for identifying the version of source code that generated the
driver binary. The last field points to the driver's dev_ops structure defined in the following
section.

dev_ops Structure

static struct dev ops xx dev ops = {

DEVO REV, /* devo_rev */

0, /* devo refcnt */

xxgetinfo, /* devo_getinfo: getinfo(9E) */
nulldev, /* devo_identify: identify(9E) */
xxprobe, /* devo probe: probe(9E) */
xxattach, /* devo attach: attach(9E) */
xxdetach, /* devo detach: detach(9E) */
nodev, /* devo reset: see devo quiesce */
&xx_cb_ops, /* devo _cb ops */

NULL, /* devo_bus ops */

&xxpower, /* devo power: power(9E) */
ddi_quiesce not needed, /* devo_quiesce: quiesce(9E) */

+

Chapter 6 « Driver Autoconfiguration 95

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mmodinfo-1m

Data Structures Required for Drivers

96

The dev_ops(9S) structure enables the kernel to find the autoconfiguration entry points of the
device driver. The devo_rev field identifies the revision number of the structure. This field must
be set to DEVO_REV. The devo_refcnt field must be initialized to zero. The function address
fields should be filled in with the address of the appropriate driver entry point, except in the
following cases:

= Setthedevo_identify field to nulldev(9F). The identify () entry point is obsolete.
= Setthedevo probe field to nulldev(9F) if a probe(9E) routine is not needed.

= Setthedevo reset field to nodev(9F). The nodev () function returns ENXIO. See
devo quiesce.

® Setthedevo power field to NULL if a power () routine is not needed. Drivers for devices that
provide Power Management functionality must have a power(9E) entry point. See
Chapter 12, “Power Management.”

m Setthedevo quiescefieldtoddi quiesce not needed() if the driver does not need to
implement quiesce. Drivers that manage devices must provide a quiesce(9E) entry point.

The devo_cb_ops member should include the address of the cb_ops(9S) structure. The
devo_bus_ops field must be set to NULL.

cb_ops Structure

static struct cb_ops xx_cb_ops = {

xxopen, /* open(9E) */
xxclose, /* close(9E) */
xxstrategy, /* strategy(9E) */
xxprint, /* print(9E) */
xxdump, /* dump(9E) */
xxread, /* read(9E) */
xxwrite, /* write(9E) */
xxioctl, /* ioctl(9E) */
xxdevmap, /* devmap(9E) */
nodev, /* mmap(9E) */
xxsegmap, /* segmap(9E) */
xxchpoll, /* chpoll(9E) */
XXprop_op, /* prop_op(9E) */
NULL, /* streamtab(9S) */
D MP | D 64BIT, /* cb flag */

CB REV, /* cb _rev */
Xxxaread, /* aread(9E) */
Xxxawrite /* awrite(9E) */

+;

The cb_ops(9S) structure contains the entry points for the character operations and block
operations of the device driver. Any entry points that the driver does not support should be
initialized to nodev(9F). For example, character device drivers should set all the block-only
fields, such as cb_stategy, to nodev(9F). Note that the mmap(9E) entry point is maintained for
compatibility with previous releases. Drivers should use the devmap(9E) entry point for device
memory mapping. If devmap(9E) is supported, set mmap(9E) to nodev(9F).

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Equiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f

Loadable Driver Interfaces

The streamtab field indicates whether the driver is STREAMS-based. Only the network device
drivers that are discussed in Chapter 19, “Drivers for Network Devices,” are STREAMS-based.
All non-STREAMS-based drivers must set the st reamtab field to NULL.

The cb_flag member contains the following flags:

= TheD_MP flagindicates that the driver is safe for multithreading. The Oracle Solaris OS
supports only thread-safe drivers so D_MP must be set.

= TheD_64BIT flag causes the driver to use the uio_loffset field of the uio(9S) structure. The
driver should set the D_64BIT flag in the cb_flag field to handle 64-bit offsets properly.

= TheD_DEVMAP flag supports the devmap(9E) entry point. For information on devmap(9E), see
Chapter 10, “Mapping Device and Kernel Memory.”

cb_revisthe cb_ops structure revision number. This field must be set to CB_REV.

Loadable Driver Interfaces

Device drivers must be dynamically loadable. Drivers should also be unloadable to help
conserve memory resources. Drivers that can be unloaded are also easier to test, debug, and
patch.

Each device driver is required to implement _init(9E), fini(9E),and_info(9E) entry points
to support driver loading and unloading. The following example shows a typical
implementation of loadable driver interfaces.

EXAMPLE6-1 Loadable Interface Section

static void *statep; /* for soft state routines */
static struct cb ops xx cb ops; /* forward reference */
static struct dev_ops xx ops = {

DEVO_REV,

0,

xxgetinfo,

nulldev,

xxprobe,

xxattach,

xxdetach,

xxreset,

nodev,

&xx_cb_ops,

NULL,

xxpower,

ddi quiesce not needed,
}

static struct modldrv modldrv = {
&mod_driverops,
"xx driver v1.0",
&xx_ops

+

Chapter 6 - Driver Autoconfiguration 97

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-info-9e

Loadable Driver Interfaces

98

EXAMPLE6-1 Loadable Interface Section (Continued)

static struct modlinkage modlinkage = {

MODREV 1,
&modldrv,
NULL
+
int
~init(void)
{
int error;
ddi soft state init(&statep, sizeof (struct xxstate),
estimated_number_of_instances) ;
/* further per-module initialization if necessary */
error = mod_install(&modlinkage);
if (error !'=0) {
/* undo any per-module initialization done earlier */
ddi soft state fini(&statep);
}
return (error);
}
int
_fini(void)
{
int error;
error = mod remove(&modlinkage);
if (error == 0) {
/* release per-module resources if any were allocated */
ddi soft state fini(&statep);
}
return (error);
}
int
~info(struct modinfo *modinfop)
{
return (mod info(&modlinkage, modinfop));
}

_init() Example

The following example shows a typical _init(9E) interface.

EXAMPLE6-2 _init () Function

static void *xxstatep;
int
_init(void)
{
int error;
const int max_instance = 20; /* estimated max device instances */

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e

Loadable Driver Interfaces

EXAMPLE6-2 _init () Function (Continued)

ddi soft state init(&xxstatep, sizeof (struct xxstate), max_instance);
error = mod_install(&xxmodlinkage);

if (error !=0) {
/*
* Cleanup after a failure
*/

ddi soft state fini(&xxstatep);
}

return (error);

The driver should perform any one-time resource allocation or data initialization during driver
loading in _init (). For example, the driver should initialize any mutexes global to the driver in
this routine. The driver should not, however, use _init(9E) to allocate or initialize anything
that has to do with a particular instance of the device. Per-instance initialization must be done
in attach(9E). For example, if a driver for a printer can handle more than one printer at the
same time, that driver should allocate resources specific to each printer instance in attach().

Note - Once _init(9E) has called mod_install(9F), the driver should not change any of the
data structures attached to the modlinkage (9S) structure because the system might make
copies or change the data structures.

_fini() Example

The following example demonstrates the _fini () routine.

int
_fini(void)
{
int error;
error = mod_remove (&modlinkage);
if (error !'=0) {
return (error);
}
/*
* Cleanup resources allocated in _init()
*/
ddi soft state fini(&xxstatep);
return (0);
}

Similarly, in _fini(), the driver should release any resources that were allocated in _init().
The driver must remove itself from the system module list.

Chapter 6 « Driver Autoconfiguration 99

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e

Device Configuration Concepts

Note - _fini() might be called when the driver is attached to hardware instances. In this case,
mod_remove(9F) returns failure. Therefore, driver resources should not be released until
mod remove () returns success.

_info() Example

The following example demonstrates the _info(9E) routine.

int
_info(struct modinfo *modinfop)

{
}

return (mod info(&xxmodlinkage, modinfop));

The driver is called to return module information. The entry point should be implemented as
shown above.

Device Configuration Concepts

100

For each node in the kernel device tree, the system selects a driver for the node based on the
node name and the compatible property (see “Binding a Driver to a Device” on page 62). The
same driver might bind to multiple device nodes. The driver can differentiate different nodes by
instance numbers assigned by the system.

After a driver is selected for a device node, the driver's probe(9E) entry point is called to
determine the presence of the device on the system. If probe () is successful, the driver's
attach(9E) entry point is invoked to set up and manage the device. The device can be opened if
and only ifattach () returns success (see “attach () Entry Point” on page 104).

A device might be unconfigured to conserve system memory resources or to enable the device
to be removed while the system is still running. To enable the device to be unconfigured, the
system first checks whether the device instance is referenced. This check involves calling the
driver's getinfo(9E) entry point to obtain information known only to the driver (see
“getinfo() Entry Point” on page 110). If the device instance is not referenced, the driver's
detach(9E) routine is invoked to unconfigure the device (see “detach () Entry Point” on
page 109).

To recap, each driver must define the following entry points that are used by the kernel for
device configuration:

= probe(9E)
® attach(9E)
®m detach(9E)

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

Device Configuration Concepts

m getinfo(9E)

Note that attach(), detach(),and getinfo() are required. probe() is only required for
devices that cannot identify themselves. For self-identifying devices, an explicit probe () routine
can be provided, or nulldev(9F) can be specified in the dev_ops structure for the probe () entry
point.

Device Instances and Instance Numbers

The system assigns an instance number to each device. The driver might not reliably predict the
value of the instance number assigned to a particular device. The driver should retrieve the
particular instance number that has been assigned by calling ddi_get_instance(9F).

Instance numbers represent the system's notion of devices. Each dev_info, that is, each node in
the device tree, for a particular driver is assigned an instance number by the kernel.
Furthermore, instance numbers provide a convenient mechanism for indexing data specificto a
particular physical device. The most common use of instance numbers is

ddi get soft state(9F), which uses instance numbers to retrieve soft state data for specific
physical devices.

Caution - For pseudo devices, that is, the children of pseudo nexuses, the instance numbers are
defined in the driver.conf(4) file using the instance property. If the driver. conf file does
not contain the instance property, the behavior is undefined. For hardware device nodes, the
system assigns instance numbers when the device is first seen by the OS. The instance numbers
persist across system reboots and OS upgrades.

Minor Nodes and Minor Numbers

Drivers are responsible for managing their minor number namespace. For example, the sd
driver needs to export eight character minor nodes and eight block minor nodes to the file
system for each disk. Each minor node represents either a block interface or a character
interface to a portion of the disk. The getinfo(9E) entry point informs the system about the
mapping from minor number to device instance (see “getinfo() Entry Point” on page 110).

probe () Entry Point

For non-self-identifying devices, the probe(9E) entry point should determine whether the
hardware device is present on the system.

For probe() to determine whether the instance of the device is present, probe () needs to
perform many tasks that are also commonly done by attach(9E). In particular, probe () might
need to map the device registers.

Chapter 6 - Driver Autoconfiguration 101

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Device Configuration Concepts

102

Probing the device registers is device-specific. The driver often has to perform a series of tests of
the hardware to assure that the hardware is really present. The test criteria must be rigorous
enough to avoid misidentifying devices. For example, a device might appear to be present when
in fact that device is not available, because a different device seems to behave like the expected
device.

The test returns the following flags:

= DDI_PROBE_SUCCESS if the probe was successful

= DDI PROBE FAILURE if the probe failed

= DDI_PROBE_DONTCARE if the probe was unsuccessful yet attach(9E) still needs to be called
= DDI_PROBE_PARTIAL if the instance is not present now, but might be present in the future

For a given device instance, attach(9E) will not be called until probe(9E) has succeeded at least
once on that device.

probe(9E) must free all the resources that probe () has allocated, because probe () might be
called multiple times. However, attach(9E) is not necessarily called even if probe(9E) has
succeeded

ddi_dev_is sid(9F) can be used in a driver's probe(9E) routine to determine whether the
device is self-identifying. ddi_dev_is_sid() is useful in drivers written for self-identifying and
non-self-identifying versions of the same device.

The following example is a sample probe () routine.

EXAMPLE6-3 probe(9E) Routine

static int
xxprobe(dev_info t *dip)
{
ddi acc handle t dev hdl;
ddi device acc attr t dev attr;
Pio csr *csrp;
uint8 t csrval;

/*

* if the device is self identifying, no need to probe
*/

if (ddi dev is sid(dip) == DDI SUCCESS)

return (DDI_PROBE DONTCARE) ;

/*

* Initalize the device access attributes and map in

* the devices CSR register (register 0)

*/
dev_attr.devacc_attr version = DDI_DEVICE ATTR VO;
dev_attr.devacc_attr _endian_ flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc attr dataorder = DDI STRICTORDER ACC;

if (ddi_regs map setup(dip, @, (caddr_t *)&csrp, 0, sizeof (Pio csr),

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e

Device Configuration Concepts

EXAMPLE6-3 probe(9E) Routine (Continued)

&dev_attr, &dev hdl) != DDI SUCCESS)
return (DDI PROBE FAILURE);

/*
* Reset the device
* Once the reset completes the CSR should read back
* (PIO_DEV_READY | PIO IDLE_INTR)
*/
ddi_put8(dev_hdl, csrp, PIO RESET);
csrval = ddi get8(dev hdl, csrp);

/*
* tear down the mappings and return probe success/failure
*/

ddi regs map free(&dev hdl);

if ((csrval & Oxff) == (PIO DEV READY | PIO IDLE INTR))
return (DDI_PROBE_SUCCESS);

else

return (DDI PROBE FAILURE);

When the driver's probe(9E) routine is called, the driver does not know whether the device
being probed exists on the bus. Therefore, the driver might attempt to access device registers for
anonexistent device. A bus fault might be generated on some buses as a result.

The following example shows a probe(9E) routine that uses ddi_poke8(9F) to check for the
existence of the device. ddi_poke8() cautiously attempts to write a value to a specified virtual
address, using the parent nexus driver to assist in the process where necessary. If the address is
not valid or the value cannot be written without an error occurring, an error code is returned.
See also ddi_peek(9F).

In this example, ddi_regs_map_setup(9F) is used to map the device registers.

EXAMPLE6-4 probe(9E) Routine Using ddi_poke8(9F)

static int
xxprobe(dev_info t *dip)
{
ddi acc handle t dev hdl;
ddi device acc attr t dev attr;
Pio csr *csrp;
uint8 t csrval;
/*
* if the device is self-identifying, no need to probe
*/
if (ddi dev is sid(dip) == DDI SUCCESS)
return (DDI PROBE DONTCARE) ;

/*

* Initialize the device access attrributes and map in
* the device’s CSR register (register 0)

Chapter 6 - Driver Autoconfiguration 103

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-poke8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f

Device Configuration Concepts

104

EXAMPLE6-4 probe(9E) Routine Using ddi_poke8(9F) (Continued)

*/

dev_attr.devacc_attr _version - DDI_DEVICE ATTR VO;
dev_attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev_attr.devacc attr dataorder = DDI STRICTORDER ACC;

if (ddi regs map setup(dip, @, (caddr t *)&csrp, 0, sizeof (Pio csr),
&dev _attr, &dev _hdl) != DDI SUCCESS)
return (DDI_PROBE_FAILURE);

/*

The bus can generate a fault when probing for devices that
do not exist. Use ddi poke8(9f) to handle any faults that
might occur.

Reset the device. Once the reset completes the CSR should read
back (PIO DEV READY | PIO IDLE INTR)

* X X X X X

*/

if (ddi poke8(dip, csrp, PIO RESET) != DDI SUCCESS) {
ddi regs map free(&dev hdl);

return (DDI FAILURE);

csrval = ddi get8(dev _hdl, csrp);

/*

* tear down the mappings and return probe success/failure
*/

ddi regs map free(&dev hdl);

if ((csrval & Oxff) == (PIO _DEV_READY | PIO IDLE_INTR))
return (DDI PROBE SUCCESS);

else

return (DDI_PROBE_FAILURE);

attach() Entry Point

The kernel calls a driver's attach(9E) entry point to attach an instance of a device or to resume
operation for an instance of a device that has been suspended or has been shut down by the
power management framework. This section discusses only the operation of attaching device
instances. Power management is discussed in Chapter 12, “Power Management.”

A driver's attach(9E) entry point is called to attach each instance of a device that is bound to
the driver. The entry point is called with the instance of the device node to attach, with
DDI_ATTACH specified as the cmd argument to attach(9E). The attach entry point typically
includes the following types of processing:

Allocating a soft-state structure for the device instance
Initializing per-instance mutexes

Initializing condition variables

Registering the device's interrupts

Mapping the registers and memory of the device instance
Creating minor device nodes for the device instance

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Device Configuration Concepts

= Reporting that the device instance has attached

Driver Soft-State Management

To assist device driver writers in allocating state structures, the Oracle Solaris DDI/DKI
provides a set of memory management routines called software state management routines,
which are also known as the soft-state routines. These routines dynamically allocate, retrieve,
and destroy memory items of a specified size, and hide the details of list management. An
instance number identifies the desired memory item. This number is typically the instance
number assigned by the system.

Drivers typically allocate a soft-state structure for each device instance that attaches to the
driver by calling ddi_soft_state_zalloc(9F), passing the instance number of the device.
Because no two device nodes can have the same instance number,
ddi_soft_state_zalloc(9F) failsif an allocation already exists for a given instance number.

A driver's character or block entry point (cb_ops(9S)) references a particular soft state structure
by first decoding the device's instance number from the dev_t argument that is passed to the
entry point function. The driver then calls ddi_get_soft_state(9F), passing the per-driver
soft-state list and the instance number that was derived. A NULL return value indicates that
effectively the device does not exist and the appropriate code should be returned by the driver.

See “Creating Minor Device Nodes” on page 105 for additional information on how instance
numbers and device numbers, or dev_t's, are related.

Lock Variable and Conditional Variable Initialization

Drivers should initialize any per-instance locks and condition variables during attach. The
initialization of any locks that are acquired by the driver's interrupt handler must be initialized
prior to adding any interrupt handlers. See Chapter 3, “Multithreading,” for a description of
lock initialization and usage. See Chapter 8, “Interrupt Handlers,” for a discussion of interrupt
handler and lock issues.

Creating Minor Device Nodes

An important part of the attach process is the creation of minor nodes for the device instance. A
minor node contains the information exported by the device and the DDI framework. The
system uses this information to create a special file for the minor node under /devices.

Minor nodes are created when the driver calls ddi_create minor node(9F). The driver
supplies a minor number, a minor name, a minor node type, and whether the minor node
represents a block or character device.

Drivers can create any number of minor nodes for a device. The Oracle Solaris DDI/DKI
expects certain classes of devices to have minor nodes created in a particular format. For
example, disk drivers are expected to create 16 minor nodes for each physical disk instance
attached. Eight minor nodes are created, representing the a - h block device interfaces, with an
additional eight minor nodes for the a, raw - h, raw character device interfaces.

Chapter 6 - Driver Autoconfiguration 105

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f

Device Configuration Concepts

106

The minor number passed to ddi_create_minor_node(9F) is defined wholly by the driver. The
minor number is usually an encoding of the instance number of the device with a minor node
identifier. In the preceding example, the driver creates minor numbers for each of the minor
nodes by shifting the instance number of the device left by three bits and using the OR of that
result with the minor node index. The values of the minor node index range from 0 to 7. Note
that minor nodes a and a, raw share the same minor number. These minor nodes are
distinguished by the spec_type argument passed to ddi_create_minor_node().

The minor node type passed to ddi_create_minor_node(9F) classifies the type of device, such
as disks, tapes, network interfaces, frame buffers, and so forth.

The following table lists the types of possible nodes that might be created.

TABLE6-1 Possible Node Types

Constant Description

DDI_NT SERIAL Serial port

DDI NT SERIAL DO Dialout ports

DDI NT BLOCK Hard disks

DDI _NT BLOCK CHAN Hard disks with channel or target numbers
DDI NT CD ROM drives (CD-ROM)

DDI_NT_CD_CHAN ROM drives with channel or target numbers
DDI_NT_FD Floppy disks

DDI NT TAPE Tape drives

DDI NT NET Network devices

DDI_NT_DISPLAY Display devices

DDI NT_MOUSE Mouse

DDI NT KEYBOARD Keyboard

DDI NT AUDIO Audio Device

DDI_PSEUDO General pseudo devices

The node types DDI_NT BLOCK,DDI NT BLOCK CHAN,DDI NT CD,and DDI NT CD CHAN cause
devfsadm(1M) to identify the device instance as a disk and to create names in the /dev/dsk or
/dev/rdsk directory.

The node type DDI_NT_TAPE causes devfsadm(1M) to identify the device instance as a tape and
to create names in the /dev/rmt directory.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevfsadm-1m

Device Configuration Concepts

The node types DDI_NT_SERIAL and DDI_NT_SERIAL_DO cause devfsadm(1M) to perform these
actions:

= Identify the device instance as a serial port
= Create names in the /dev/term directory
= Add entries to the /etc/inittab file

Vendor-supplied strings should include an identifying value such as a name or stock symbol to
make the strings unique. The string can be used in conjunction with devfsadm(1M) and the
devlinks.tab file (see the devlinks(1M) man page) to create logical names in /dev.

Deferred Attach

open(9E) might be called on a minor device before attach(9E) has succeeded on the
corresponding instance. open () must then return ENXIO, which causes the system to attempt to
attach the device. If the attach () succeeds, the open () is retried automatically.

EXAMPLE6-5 Typical attach() Entry Point

/*
* Attach an instance of the driver. We take all the knowledge we
* have about our board and check it against what has been filled in
* for us from our FCode or from our driver.conf(4) file.
*/
static int
xxattach(dev_info t *dip, ddi attach cmd t cmd)
{
int instance;
Pio *pio p;
ddi device acc attr t da attr;
static int pio validate device(dev info t *);

switch (cmd) {
case DDI_ATTACH:

/*
* first validate the device conforms to a configuration this driver
* supports
*/
if (pio validate device(dip) == 0)
return (DDI FAILURE);
/*

* Allocate a soft state structure for this device instance
* Store a pointer to the device node in our soft state structure
* and a reference to the soft state structure in the device

* node.

*/

instance = ddi_get instance(dip);

if (ddi soft state zalloc(pio softstate, instance) != 0)

return (DDI FAILURE);
pio p = ddi get soft state(pio softstate, instance);
ddi set driver private(dip, (caddr_t)pio p);
pio p->dip = dip;
/*

* Before adding the interrupt, get the interrupt block
* cookie associated with the interrupt specification to

Chapter 6 - Driver Autoconfiguration 107

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevlinks-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Device Configuration Concepts

108

EXAMPLE6-5 Typical attach() Entry Point (Continued)

* initialize the mutex used by the interrupt handler.
*/
if (ddi get iblock cookie(dip, @, &pio p->iblock cookie) !=
DDI SUCCESS) {
ddi soft state free(pio softstate, instance);
return (DDI_FAILURE);
}

mutex init(&pio p->mutex, NULL, MUTEX DRIVER, pio p->iblock cookie);
/*
* Now that the mutex is initialized, add the interrupt itself.
*/
if (ddi add intr(dip, @, NULL, NULL, pio intr, (caddr t)instance) !=
DDI SUCCESS) {
mutex_destroy(&pio_p>mutex);
ddi soft state free(pio softstate, instance);
return (DDI_FAILURE);
}
/*
* Initialize the device access attributes for the register mapping
*/
dev_acc attr.devacc attr version = DDI DEVICE ATTR VO;
dev_acc attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev _acc attr.devacc attr dataorder = DDI STRICTORDER ACC;
/*
* Map in the csr register (register 0)
*/
if (ddi regs map setup(dip, @, (caddr t *)&(pio p->csr), 0
sizeof (Pio csr), &dev acc attr, &pio p->csr handle) !
DDI SUCCESS) {
ddi_remove intr(pio p->dip, @, pio_p->iblock cookie);
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);

’

}

/*

* Map in the data register (register 1)

*/

if (ddi regs map setup(dip, 1, (caddr t *)&(pio p->data), O,
sizeof (uchar_t), &dev_acc_attr, &pio p->data handle) !
DDI SUCCESS) {
ddi remove intr(pio p->dip, @, pio p->iblock cookie);
ddi regs map free(&pio p->csr handle);
mutex destroy(&pio p->mutex);
ddi_soft_state free(pio_softstate, instance);
return (DDI FAILURE);

}
/*
* Create an entry in /devices for user processes to open(2)
* This driver will create a minor node entry in /devices
* of the form: /devices/..../pio@X,Y:pio
*/
if (ddi create minor node(dip, ddi get name(dip), S IFCHR,
instance, DDI PSEUDO, 0) == DDI FAILURE) {
ddi_remove intr(pio p->dip, @, pio_p->iblock cookie);
ddi_regs_map_free(&pio_p->csr_handle);

Writing Device Drivers « October 2012

Device Configuration Concepts

EXAMPLE6-5 Typical attach() Entry Point (Continued)

ddi regs map free(&pio p->data handle);
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);
}
/*
* reset device (including disabling interrupts)
*/
ddi put8(pio p->csr handle, pio p->csr, PIO RESET);
/*
* report the name of the device instance which has attached
*/
ddi report dev(dip);
return (DDI SUCCESS);

case DDI_RESUME:
return (DDI SUCCESS);

default:
return (DDI FAILURE);

}

Note - The attach () routine must not make any assumptions about the order of invocations on
different device instances. The system might invoke attach() concurrently on different device
instances. The system might also invoke attach() and detach() concurrently on different
device instances.

detach() Entry Point

The kernel calls a driver's detach(9E) entry point to detach an instance of a device or to suspend
operation for an instance of a device by power management. This section discusses the
operation of detaching device instances. Refer to Chapter 12, “Power Management,” for a
discussion of power management issues.

A driver's detach() entry point is called to detach an instance of a device that is bound to the
driver. The entry point is called with the instance of the device node to be detached and with
DDI_DETACH, which is specified as the cmd argument to the entry point.

A driver is required to cancel or wait for any time outs or callbacks to complete, then release any
resources that are allocated to the device instance before returning. If for some reason a driver
cannot cancel outstanding callbacks for free resources, the driver is required to return the
device to its original state and return DDI_FAILURE from the entry point, leaving the device
instance in the attached state.

Chapter 6 - Driver Autoconfiguration 109

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

Device Configuration Concepts

110

There are two types of callback routines: those callbacks that can be canceled and those that
cannot be canceled. timeout(9F) and bufcall(9F) callbacks can be atomically cancelled by the
driver during detach(9E). Other types of callbacks such as scsi_init_pkt(9F) and

ddi dma buf bind handle(9F) cannot be canceled. The driver must either block in detach ()
until the callback completes or else fail the request to detach.

EXAMPLE6-6 Typical detach() Entry Point

/*
* detach(9e)
* free the resources that were allocated in attach(9e)

*/
static int
xxdetach(dev_info_t *dip, ddi_detach cmd_t cmd)
{
Pio *pio_p;
int instance;

switch (cmd) {
case DDI_DETACH:

instance = ddi_get instance(dip);
pio p = ddi get soft state(pio softstate, instance);

/*

* turn off the device

* free any resources allocated in attach

*/
ddi put8(pio p->csr handle, pio p->csr, PIO RESET);
ddi_remove_minor_node(dip, NULL);
ddi_regs_map_free(&pio p->csr_handle);
ddi_regs map_free(&pio p->data_handle);
ddi remove intr(pio p->dip, 0, pio p->iblock cookie);
mutex_destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI_SUCCESS);

case DDI SUSPEND:
default:

return (DDI FAILURE);
}

getinfo() Entry Point

The system calls getinfo(9E) to obtain configuration information that only the driver knows.
The mapping of minor numbers to device instances is entirely under the control of the driver.
The system sometimes needs to ask the driver which device a particular dev_t represents.

The getinfo() function can take either DDI_INFO DEVT2INSTANCE or DDI_INFO DEVT2DEVINFO
as its infocmd argument. The DDI_INFO_DEVT2INSTANCE command requests the instance
number of a device. The DDI_INFO_DEVT2DEVINFO command requests a pointer to the dev_info
structure of a device.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbufcall-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e

Device Configuration Concepts

In the DDI_INFO_DEVT2INSTANCE case, argisadev_t,and getinfo() must translate the minor
number in dev_t to an instance number. In the following example, the minor number is the
instance number, so getinfo() simply passes back the minor number. In this case, the driver
must not assume that a state structure is available, since getinfo () might be called before
attach(). The mapping defined by the driver between the minor device number and the
instance number does not necessarily follow the mapping shown in the example. In all cases,
however, the mapping must be static.

Inthe DDI_INFO_DEVT2DEVINFO case, argis again adev_t,so getinfo() first decodes the
instance number for the device. getinfo () then passes back the dev_info pointer saved in the
driver's soft state structure for the appropriate device, as shown in the following example.

EXAMPLE6-7 Typical getinfo() Entry Point

/*
* getinfo(9e)
* Return the instance number or device node given a dev_t
*/
static int
xxgetinfo(dev_info t *dip, ddi info cmd t infocmd, void *arg, void **result)
{
int error;
Pio *pio_p;
int instance = getminor((dev t)arg);

switch (infocmd) {
/*
* return the device node if the driver has attached the
* device instance identified by the dev t value which was passed
*/
case DDI INFO DEVT2DEVINFO:
pio p = ddi get soft state(pio softstate, instance);
if (pio_p == NULL) {
*result = NULL;
error = DDI_FAILURE;
} else {
mutex_enter(&pio p->mutex);
*result = pio p->dip;
mutex exit(&pio p->mutex);
error = DDI_SUCCESS;
}
break;
/*
* the driver can always return the instance number given a dev_ t
* value, even if the instance is not attached.
*/
case DDI_INFO DEVT2INSTANCE:
*result = (void *)instance;
error = DDI SUCCESS;
break;
default:
*result = NULL;
error = DDI FAILURE;
}

return (error);

Chapter 6 - Driver Autoconfiguration m

Using Device IDs

EXAMPLE6-7 Typical getinfo() Entry Point (Continued)

Note - The getinfo () routine must be kept in sync with the minor nodes that the driver creates.
If the minor nodes get out of sync, any hotplug operations might fail and cause a system panic.

Using Device IDs

112

The Oracle Solaris DDI interfaces enable drivers to provide the device ID, a persistent unique
identifier for a device. The device ID can be used to identify or locate a device. The device ID is
independent of the /devices name or device number (dev_t). Applications can use the
functions defined in 1ibdevid(3LIB) to read and manipulate the device IDs registered by the
drivers.

Before a driver can export a device ID, the driver needs to verify the device is capable of either
providing a unique ID or of storing a host-generated unique ID in a not normally accessible
area. WWN (world-wide number) is an example of a unique ID that is provided by the device.
Device NVRAM and reserved sectors are examples of non-accessible areas where
host-generated unique IDs can be safely stored.

Registering Device IDs

Drivers typically initialize and register device IDs in the driver's attach(9E) handler. As
mentioned above, the driver is responsible for registering a device ID that is persistent. As such,
the driver might be required to handle both devices that can provide a unique ID directly
(WWN) and devices where fabricated IDs are written to and read from stable storage.

Registering a Device-Supplied ID

If the device can supply the driver with an identifier that is unique, the driver can simply
initialize the device ID with this identifier and register the ID with the Oracle Solaris DDI.

/*
* The device provides a guaranteed unique identifier,
* in this case a SCSI3-WWN. The WWN for the device has been
* stored in the device’s soft state.
*/
if (ddi_devid init(dip, DEVID_SCSI3 WWN, un->un_wwn_len, un->un_wwn,
&un->un_devid) != DDI SUCCESS)
return (DDI FAILURE);

(void) ddi devid register(dip, un->un_devid);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Using Device IDs

Registering a Fabricated ID

A driver might also register device IDs for devices that do not directly supply a unique ID.
Registering these IDs requires the device to be capable of storing and retrieving a small amount
of data in a reserved area. The driver can then create a fabricated device ID and write it to the
reserved area.

/*

* the device doesn’t supply a unique ID, attempt to read

* a fabricated ID from the device’s reserved data.

*/

if (xxx_read_deviceid(un, &devid buf) == XXX OK) {

if (ddi devid valid(devid buf) == DDI SUCCESS) {

devid sz = ddi devi sizeof(devid buf);
un->un_devid = kmem_alloc(devid sz, KM SLEEP);
bcopy(devid buf, un->un devid, devid sz);
ddi devid register(dip, un->un_devid);
return (XXX OK);

}
/*
* we failed to read a valid device ID from the device
* fabricate an ID, store it on the device, and register
* it with the DDI
*/
if (ddi devid init(dip, DEVID FAB, @, NULL, &un->un devid)
== DDI FAILURE) {
return (XXX FAILURE);
}
if (xxx_write deviceid(un) != XXX OK) {
ddi devid free(un->un devid);
un->un_devid = NULL;
return (XXX FAILURE);
}
ddi devid register(dip, un->un devid);
return (XXX OK);

Unregistering Device IDs

Drivers typically unregister and free any device IDs that are allocated as part of the detach(9E)
handling. The driver first calls ddi_devid_unregister(9F) to unregister the device ID for the
device instance. The driver must then free the device ID handle itself by calling
ddi_devid_free(9F), and then passing the handle that had been returned by
ddi_devid_init(9F). The driver is responsible for managing any space allocated for WWN or
Serial Number data.

Chapter 6 - Driver Autoconfiguration 113

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-init-9f

114

L K R 4 CHAPTER 7

Device Access: Programmed /O

The Oracle Solaris OS provides driver developers with a comprehensive set of interfaces for
accessing device memory. These interfaces are designed to shield the driver from
platform-specific dependencies by handling mismatches between processor and device
endianness as well as enforcing any data order dependencies the device might have. By using
these interfaces, you can develop a single-source driver that runs on both the SPARC and x86
processor architectures as well as the various platforms from each respective processor family.

This chapter provides information on the following subjects:

= “Managing Differences in Device and Host Endianness” on page 116
= “Managing Data Ordering Requirements” on page 116

= “ddi_device_acc_attr Structure” on page 116

= “Mapping Device Memory” on page 117

= “Mapping Setup Example” on page 117

= “Alternate Device Access Interfaces” on page 120

Device Memory

Devices that support programmed I/O are assigned one or more regions of bus address space
that map to addressable regions of the device. These mappings are described as pairs of values in
the reg property associated with the device. Each value pair describes a segment of a bus
address.

Drivers identify a particular bus address mapping by specifying the register number, or
regspec, which is an index into the devices' reg property. The reg property identifies the
busaddr and size for the device. Drivers pass the register number when making calls to DDI
functions such as ddi_regs_map_setup(9F). Drivers can determine how many mappable
regions have been assigned to the device by calling ddi_dev_nregs(9F).

115

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dev-nregs-9f

Device Memory

116

Managing Differences in Device and Host Endianness

The data format of the host can have different endian characteristics than the data format of the
device. In such a case, data transferred between the host and device would need to be
byte-swapped to conform to the data format requirements of the destination location. Devices
with the same endian characteristics of the host require no byte-swapping of the data.

Drivers specify the endian characteristics of the device by setting the appropriate flag in the
ddi device acc_attr(9S) structure thatis passed to ddi regs map setup(9F). The DDI
framework then performs any required byte-swapping when the driver callsa ddi_getX
routine like ddi_get8(9F) oraddi_putX routine like ddi_put16(9F) to read or write to device
memory.

Managing Data Ordering Requirements

Platforms can reorder loads and stores of data to optimize performance of the platform.
Because reordering might not be allowed by certain devices, the driver is required to specify the
device's ordering requirements when setting up mappings to the device.

ddi_device_acc_attr Structure

This structure describes the endian and data order requirements of the device. The driver is
required to initialize and pass this structure as an argument to ddi_regs_map_setup(9F).

typedef struct ddi device acc attr {

ushort_t devacc_attr_version;
uchar t devacc attr endian flags;
uchar_t devacc_attr_dataorder;

} ddi device acc attr t;

devacc_attr version Specifies DDI_DEVICE ATTR V0

devacc attr endian flags Describes the endian characteristics of the device. Specified as
a bit value whose possible values are:

= DDI_NEVERSWAP_ACC — Never swap data

®m DDI STRUCTURE BE ACC - The device data format is
big-endian

= DDI STRUCTURE LE ACC - The device data format is
little-endian

devacc_attr dataorder Describes the order in which the CPU must reference data as
required by the device. Specified as an enumerated value,
where data access restrictions are ordered from most strict to
least strict.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f

Device Memory

®m DDI_STRICTORDER ACC - The host mustissue the
references in order, as specified by the programmer. This
flag is the default behavior.

® DDI UNORDERED OK ACC - The host is allowed to reorder
loads and stores to device memory.

= DDI_MERGING_OK_ACC - The hostis allowed to merge
individual stores to consecutive locations. This setting
also implies reordering.

®m DDI LOADCACHING OK_ACC - The host is allowed to read
data from the device until a store occurs.

® DDI STORECACHING OK_ACC — The host is allowed to cache
data written to the device. The host can then defer writing
the data to the device until a future time.

Note - The system can access data more strictly than the driver specifies in
devacc_attr_dataorder. The restriction to the host diminishes while moving from strict data
ordering to cache storing in terms of data accesses by the driver.

Mapping Device Memory

Drivers typically map all regions of a device during attach(9E). The driver maps a region of
device memory by calling ddi_regs_map_setup(9F), specifying the register number of the
region to map, the device access attributes for the region, an offset, and size. The DDI
framework sets up the mappings for the device region and returns an opaque handle to the
driver. This data access handle is passed as an argument to the ddi_get8(9F) or ddi_put8(9F)
family of routines when reading data from or writing data to that region of the device.

The driver verifies that the shape of the device mappings match what the driver is expecting by
checking the number of mappings exported by the device. The driver calls ddi_dev_nregs(9F)
and then verifies the size of each mapping by calling ddi_dev_regsize(9F).

Mapping Setup Example

The following simple example demonstrates the DDI data access interfaces. This driver is for a
fictional little endian device that accepts one character at a time and generates an interrupt
when ready for another character. This device implements two register sets: the first is an 8-bit
CSR register, and the second is an 8-bit data register.

Chapter7 - Device Access: Programmed 1/0 17

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dev-nregs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dev-regsize-9f

Device Access Functions

EXAMPLE7-1 Mapping Setup

#define CSR REG 0
#define DATA REG 1
/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE ATTR VO;
dev_acc attr.devacc attr endian flags = DDI STRUCTURE LE ACC;
dev _acc attr.devacc attr dataorder = DDI STRICTORDER ACC;
/*
* Map in the csr register (register 0)
*/
if (ddi_regs map setup(dip, CSR REG, (caddr t *)&(pio p->csr), O,
sizeof (Pio csr), &dev acc attr, &pio p->csr handle) != DDI SUCCESS) {
mutex destroy(&pio p->mutex);
ddi soft state free(pio softstate, instance);
return (DDI_FAILURE);
}
/*
* Map in the data register (register 1)
*/
if (ddi_regs map_setup(dip, DATA REG, (caddr t *)&(pio p->data), 0,
sizeof (uchar t), &dev acc attr, &pio p->data handle) \
!= DDI_SUCCESS) {
mutex destroy(&pio p->mutex);
ddi regs map free(&pio p->csr handle);
ddi soft state free(pio softstate, instance);
return (DDI FAILURE);

Device Access Functions

118

Drivers use the ddi_get8(9F) and ddi_put8(9F) family of routines in conjunction with the
handle returned by ddi_regs_map_setup(9F) to transfer data to and from a device. The DDI
framework automatically handles any byte-swapping that is required to meet the endian format
for the host or device, and enforces any store-ordering constraints the device might have.

The DDI provides interfaces for transferring data in 8-bit, 16-bit, 32-bit, and 64-bit quantities,
as well as interfaces for transferring multiple values repeatedly. See the man pages for the
ddi_get8(9F),ddi_ put8(9F),ddi rep get8(9F)andddi_ rep put8(9F) families of routines
for a complete listing and description of these interfaces.

The following example builds on Example 7-1 where the driver mapped the device's CSR and
data registers. Here, the driver's write(9E) entry point, when called, writes a buffer of data to
the device one byte at a time.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-rep-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-rep-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e

Device Access Functions

EXAMPLE7-2 Mapping Setup: Buffer

static int
pio write(dev t dev, struct uio *uiop, cred t *credp)

{
int retval;
int error = OK;
Pio *pio p = ddi get soft state(pio softstate, getminor(dev));
if (pio p == NULL)
return (ENXIO);
mutex_enter(&pio p->mutex);
/*
* enable interrupts from the device by setting the Interrupt
* Enable bit in the devices CSR register
*/
ddi put8(pio p->csr_handle, pio p->csr,
(ddi get8(pio p->csr_handle, pio p->csr) | PIO INTR ENABLE));
while (uiop->uio resid > 0) {
/*
* This device issues an IDLE interrupt when it is ready
* to accept a character; the interrupt can be cleared
* by setting PIO INTR CLEAR. The interrupt is reasserted
* after the next character is written or the next time
* PIO_INTR ENABLE is toggled on.
*
* wait for interrupt (see pio _intr)
*/
cv_wait(&pio p->cv, &pio p->mutex);
/*
* get a character from the user’s write request
* fail the write request if any errors are encountered
*/
if ((retval = uwritec(uiop)) == -1) {
error = retval;
break;
}
/*
* pass the character to the device by writing it to
* the device’s data register
*/
ddi put8(pio p->data handle, pio p->data, (uchar t)retval);
}
/*
* disable interrupts by clearing the Interrupt Enable bit
* in the CSR
*/
ddi put8(pio p->csr handle, pio p->csr,
(ddi_get8(pio_p->csr_handle, pio p->csr) & ~PIO INTR ENABLE));
mutex_exit(&pio p->mutex);
return (error);
}

Chapter7 - Device Access: Programmed 1/0 119

Device Access Functions

120

Alternate Device Access Interfaces

In addition to implementing all device accesses through the ddi_get8(9F) and ddi_put8(9F)
families of interfaces, the Oracle Solaris OS provides interfaces that are specific to particular bus
implementations. While these functions can be more efficient on some platforms, use of these
routines can limit the ability of the driver to remain portable across different bus versions of the
device.

Memory Space Access

With memory mapped access, device registers appear in memory address space. The ddi_getX
family of routines and the ddi_putX family are available for use by drivers as an alternative to
the standard device access interfaces.

1/0 Space Access

With I/O space access, the device registers appear in I/O space, where each addressable element
is called an I/O port. The ddi_io get8(9F)and ddi io put8(9F) routines are available for use
by drivers as an alternative to the standard device access interfaces.

PCl Configuration Space Access

To access PCI configuration space without using the normal device access interfaces, a driver is
required to map PCI configuration space by calling pci_config_setup(9F) in place of

ddi_regs _map_setup(9F). The driver can then call the pci_config_get8(9F) and
pci_config_put8(9F) families of interfaces to access PCI configuration space.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-io-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-io-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-config-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-config-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-config-put8-9f

L K R 4 CHAPTER 8

Interrupt Handlers

This chapter describes mechanisms for handling interrupts, such as allocating, registering,
servicing, and removing interrupts. This chapter provides information on the following
subjects:

= “Interrupt Handler Overview” on page 121

= “Device Interrupts” on page 122

= “Registering Interrupts” on page 128

= “Interrupt Resource Management” on page 134
= “Interrupt Handler Functionality” on page 145
“Handling High-Level Interrupts” on page 147

Interrupt Handler Overview

An interrupt is a hardware signal from a device to a CPU. An interrupt tells the CPU that the
device needs attention and that the CPU should stop any current activity and respond to the
device. If the CPU is not performing a task that has higher priority than the priority of the
interrupt, then the CPU suspends the current thread. The CPU then invokes the interrupt
handler for the device that sent the interrupt signal. The job of the interrupt handler is to service
the device and stop the device from interrupting. When the interrupt handler returns, the CPU
resumes the work it was doing before the interrupt occurred.

The Oracle Solaris DDI/DKI provides interfaces for performing the following tasks:

= Determining interrupt type and registration requirements
® Registering interrupts

Servicing interrupts

Masking interrupts

Getting interrupt pending information

= Getting and setting priority information

121

Device Interrupts

Device Interrupts

122

I/O buses implement interrupts in two common ways: vectored and polled. Both methods
commonly supply a bus-interrupt priority level. Vectored devices also supply an interrupt
vector. Polled devices do not supply interrupt vectors.

To stay current with changing bus technologies, the Oracle Solaris OS has been enhanced to
accommodate both newer types of interrupts and more traditional interrupts that have been in
use for many years. Specifically, the operating system now recognizes three types of interrupts:

= Legacy interrupts — Legacy or fixed interrupts refer to interrupts that use older bus
technologies. With these technologies, interrupts are signaled by using one or more external
pins that are wired “out-of-band,” that is, separately from the main lines of the bus. Newer
bus technologies such as PCI Express maintain software compatibility by emulating legacy
interrupts through in-band mechanisms. These emulated interrupts are treated as legacy
interrupts by the host OS.

= Message-signaled interrupts — Instead of using pins, message-signaled interrupts (MSI) are
in-band messages and can target addresses in the host bridge. (See “PCI Local Bus” on
page 545 for more information on host bridges.) MSIs can send data along with the interrupt
message. Each MSI is unshared so that an MSI that is assigned to a device is guaranteed to be
unique within the system. A PCI function can request up to 32 MSI messages.

= Extended message-signaled interrupts — Extended message-signaled interrupts (MSI-X)
are an enhanced version of MSIs. MSI-X interrupts have the following added advantages:

= Support 2048 messages rather than 32 messages
= Support independent message address and message data for each message
= Support per-message masking

= Enable more flexibility when software allocates fewer vectors than hardware requests.
The software can reuse the same MSI-X address and data in multiple MSI-X slots.

Note - Some newer bus technologies such as PCI Express require MSIs but can accommodate
legacy interrupts by using INTx emulation. INTx emulation is used for compatibility purposes,
but is not considered to be good practice.

High-Level Interrupts

A bus prioritizes a device interrupt at a bus-interrupt level. The bus interrupt level is then
mapped to a processor-interrupt level. A bus interrupt level that maps to a CPU interrupt
priority above the scheduler priority level is called a high-level interrupt. High-level interrupt
handlers are restricted to calling the following DDI interfaces:

= mutex enter(9F)and mutex exit(9F)ona mutex thatis initialized with an interrupt
priority associated with the high-level interrupt

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-exit-9f

Device Interrupts

® ddi intr trigger softint(9F)

= The following DDI get and put routines: ddi_get8(9F), ddi_put8(9F), ddi_get16(9F),
ddi_put16(9F),ddi get32(9F),ddi put32(9F),ddi get64(9F),and ddi_put64(9F).

A bus-interrupt level by itself does not determine whether a device interrupts at a high level. A
particular bus-interrupt level can map to a high-level interrupt on one platform, but map to an
ordinary interrupt on another platform.

A driver is not required to support devices that have high-level interrupts. However, the driver
is required to check the interrupt level. If the interrupt priority is greater than or equal to the
highest system priority, the interrupt handler runs in high-level interrupt context. In this case,
the driver can fail to attach, or the driver can use a two-level scheme to handle interrupts. For
more information, see “Handling High-Level Interrupts” on page 147.

Legacy Interrupts

The only information that the system has about a device interrupt is the priority level of the bus
interrupt and the interrupt request number. An example of the priority level for a bus interrupt
is the IPL on an SBus in a SPARC machine. An example of an interrupt request number is the
IRQ on an ISA bus in an x86 machine.

When an interrupt handler is registered, the system adds the handler to a list of potential
interrupt handlers for each IPL or IRQ. When the interrupt occurs, the system must determine
which device actually caused the interrupt, among all devices that are associated with a given
IPL or IRQ. The system calls all the interrupt handlers for the designated IPL or IRQ until one
handler claims the interrupt.

The following buses are capable of supporting polled interrupts:

= SBus
= [SA
= PCI

Standard and Extended Message-Signaled Interrupts

Both standard (MSI) and extended (MSI-X) message-signaled interrupts are implemented as
in-band messages. A message-signaled interrupt is posted as a write with an address and value
that are specified by the software.

MSI Interrupts

Conventional PCI specifications include optional support for Message Signaled Interrupts
(MSI). An MST is an in-band message that is implemented as a posted write. The address and
the data for the MSI are specified by software and are specific to the host bridge. Because the

Chapter8 -« Interrupt Handlers 123

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-put64-9f

Device Interrupts

124

messages are in-band, the receipt of the message can be used to “push” data that is associated
with the interrupt. By definition, MSI interrupts are unshared. Each MSI message that is
assigned to a device is guaranteed to be a unique message in the system. PCI functions can
request 1, 2, 4, 8, 16, or 32 MSI messages. Note that the system software can allocate fewer MSI
messages to a function than the function requested. The host bridge can be limited in the
number of unique MSI messages that are allocated for devices.

MSI-X Interrupts

MSI-X interrupts are enhanced versions of MSI interrupts that have the same features as MSI
interrupts with the following key differences:

= A maximum of 2048 MSI-X interrupt vectors are supported per device.
m Address and data entries are unique per interrupt vector.
= MSI-X supports per function masking and per vector masking.

With MSI-X interrupts, an unallocated interrupt vector of a device can use a previously added
or initialized MSI-X interrupt vector to share the same vector address, vector data, interrupt
handler, and handler arguments. Use the ddi_intr_dup_handler(9F) function to alias the
resources provided by the Oracle Solaris OS to the unallocated interrupt vectors on an
associated device. For example, if 2 MSI-X interrupts are allocated to a driver and 32 interrupts
are supported on the device, then the driver can use ddi_intr_dup_handler() to alias the 2
interrupts it received to the 30 additional interrupts on the device.

The ddi_intr_dup_handler() function can duplicate interrupts that were added with
ddi_intr_add_handler(9F) or initialized with ddi_intr_enable(9F).

A duplicated interrupt is disabled initially. Use ddi_intr_enable() to enable the duplicated
interrupt. You cannot remove the original MSI-X interrupt handler until all duplicated
interrupt handlers that are associated with this original interrupt handler are removed. To
remove a duplicated interrupt handler, first call ddi_intr disable(9F), and then call
ddi_intr_free(9F). When all duplicated interrupt handlers that are associated with this
original interrupt handler are removed, then you can use ddi_intr_remove_handler(9F) to
remove the original MSI-X interrupt handler. See the ddi_intr_dup_handler(9F) man page
for examples.

Software Interrupts

The Oracle Solaris DDI/DKI supports software interrupts, also known as soft interrupts. Soft
interrupts are initiated by software rather than by a hardware device. Handlers for these
interrupts must also be added to and removed from the system. Soft interrupt handlers run in
interrupt context and therefore can be used to do many of the tasks that belong to an interrupt
handler.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-remove-handler-9f

DDl Interrupt Functions

Hardware interrupt handlers must perform their tasks quickly, because the handlers might have
to suspend other system activity while doing these tasks. This requirement is particularly true
for high-level interrupt handlers, which operate at priority levels greater than the priority level
of the system scheduler. High-level interrupt handlers mask the operations of all lower-priority
interrupts, including the interrupt operations of the system clock. Consequently, the interrupt
handler must avoid involvement in activities that might cause it to sleep, such as acquiring a
mutex.

If the handler sleeps, then the system might hang because the clock is masked and incapable of
scheduling the sleeping thread. For this reason, high-level interrupt handlers normally perform
a minimum amount of work at high-priority levels and delegate other tasks to software
interrupts, which run below the priority level of the high-level interrupt handler. Because
software interrupt handlers run below the priority level of the system scheduler, software
interrupt handlers can do the work that the high-level interrupt handler was incapable of doing.

DDl Interrupt Functions

The Oracle Solaris OS provides a framework for registering and unregistering interrupts and
provides support for Message Signaled Interrupts (MSIs). Interrupt management interfaces
enable you to manipulate priorities, capabilities, and interrupt masking, and to obtain pending
information.

Interrupt Capability Functions

Use the following functions to obtain interrupt information:

ddi intr get navail(9F) Returns the number of interrupts available for a
specified hardware device and interrupt type.

ddi intr get nintrs(9F) Returns the number of interrupts that the device
supports for the specified interrupt type.

ddi_intr get supported types(9F) Returns the hardware interrupt types that are
supported by both the device and the host.

ddi_intr_get_cap(9F) Returns interrupt capability flags for the specified
interrupt.

Interrupt Initialization and Destruction Functions

Use the following functions to create and remove interrupts:

ddi_intr_alloc(9F) Allocates system resources and interrupt vectors for the
specified type of interrupt.

Chapter8 -« Interrupt Handlers 125

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-navail-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-alloc-9f

DDl Interrupt Functions

126

ddi_intr_free(9F)

ddi_intr_set cap(9F)

ddi_intr _add handler(9F)
ddi_intr dup handler(9F)

ddi_intr_remove handler(9F)
ddi_intr_enable(9F)
ddi_intr_disable(9F)

ddi_intr block enable(9F)

ddi_intr block disable(9F)

ddi_intr_set mask(9F)

ddi intr clr mask(9F)

ddi_intr get pending(9F)

Releases the system resources and interrupt vectors for a
specified interrupt handle.

Sets the capability of the specified interrupt through the
use of the DDI_INTR_FLAG_LEVEL and
DDI_INTR_FLAG_EDGE flags.

Adds an interrupt handler.

Use with MSI-X only. Copies an address and data pair for
an allocated interrupt vector to an unused interrupt vector
on the same device.

Removes the specified interrupt handler.
Enables the specified interrupt.
Disables the specified interrupt.

Use with MSI only. Enables the specified range of
interrupts.

Use with MSI only. Disables the specified range of
interrupts.

Sets an interrupt mask if the specified interrupt is enabled.

Clears an interrupt mask if the specified interrupt is
enabled.

Reads the interrupt pending bit if such a bit is supported
by either the host bridge or the device.

Priority Management Functions

Use the following functions to obtain and set priority information:

ddi_intr_get pri(9F)

ddi_intr_set pri(9F)

ddi_intr get hilevel pri(9F)

Returns the current software priority setting for the
specified interrupt.

Sets the interrupt priority level for the specified interrupt.

Returns the minimum priority level for a high-level
interrupt.

Soft Interrupt Functions

Use the following functions to manipulate soft interrupts and soft interrupt handlers:

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-block-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-hilevel-pri-9f

DDl Interrupt Functions

ddi_intr add softint(9F) Adds a soft interrupt handler.
ddi intr trigger softint(9F) Triggers the specified soft interrupt.
ddi intr remove softint(9F) Removes the specified soft interrupt handler.

ddi_intr_get_softint_pri(9F) Returns the softinterrupt priority for the specified
interrupt.

ddi_intr_set_softint pri(9F) Changes the relative soft interrupt priority for the
specified soft interrupt.

Interrupt Function Examples

This section provides examples for performing the following tasks:

Changing soft interrupt priority
Checking for pending interrupts
Setting interrupt masks
Clearing interrupt masks

EXAMPLE8-1 Changing Soft Interrupt Priority
Usetheddi_intr_set_softint_pri(9F) function to change the soft interrupt priority to 9.
if (ddi_intr set softint pri(mydev->mydev softint hdl, 9) != DDI SUCCESS)
cmn_err (CE_WARN, "ddi intr set softint pri failed");
EXAMPLE8-2 Checking for Pending Interrupts
Usetheddi_intr_get_pending(9F) function to check whether an interrupt is pending.
if (ddi_intr get pending(mydevp->htable[@], &pending) != DDI SUCCESS)
cmn_err(CE WARN, "ddi intr get pending() failed");
else if (pending)
cmn_err(CE_NOTE, "ddi intr get pending(): Interrupt pending")
EXAMPLE8-3 Setting Interrupt Masks

Usetheddi_intr_set_mask(9F) function to set interrupt masking to prevent the device from
receiving interrupts.

if ((ddi intr set mask(mydevp->htable[@]) != DDI SUCCESS))
cmn_err(CE_WARN, "ddi_intr set mask() failed");

Chapter8 -« Interrupt Handlers 127

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-remove-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-mask-9f

Registering Interrupts

EXAMPLE8-4 Clearing Interrupt Masks

Usetheddi_intr_clr_mask(9F) function to clear interrupt masking. The
ddi_intr_clr_mask(9F) function fails if the specified interrupt is not enabled. If the
ddi_intr_clr_mask(9F) function succeeds, the device starts generating interrupts.

if (ddi_intr_clr _mask(mydevp->htable[0]) != DDI SUCCESS)
cmn_err(CE_WARN, "ddi_intr clr mask() failed");

Registering Interrupts

128

Before a device driver can receive and service interrupts, the driver must call
ddi_intr_add_handler(9F) to register an interrupt handler with the system. Registering
interrupt handlers provides the system with a way to associate an interrupt handler with an
interrupt specification. The interrupt handler is called when the device might have been
responsible for the interrupt. The handler has the responsibility of determining whether it
should handle the interrupt and, if so, of claiming that interrupt.

Tip - Use the : : interrupts command in the mdb or kmdb debugger to retrieve the registered
interrupt information of a device on supported SPARC and x86 systems.

Registering Legacy Interrupts

To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Useddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Useddi_intr_get_nintrs(9F) to determine the number of supported interrupt types.
Use kmem_zalloc(9F) to allocate memory for DDI interrupt handles.
4. For each interrupt type that you allocate, take the following steps:

Useddi_intr_get_pri(9F) to get the priority for the interrupt.

If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
Usemutex_ init(9F) to initialize the lock.

Useddi_intr_add_handler(9F) to register the handler for the interrupt.
Useddi_intr_enable(9F) to enable the interrupt.

o a0 o

5. Take the following steps to free each interrupt:
a. Disable each interrupt using ddi_intr_disable(9F).

b. Remove the interrupt handler using ddi_intr_remove_handler(9F).

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-remove-handler-9f

Registering Interrupts

c. Remove the lock using mutex_destroy(9F).

d. Freetheinterrupt usingddi_intr_free(9F) and kmem_free(9F) to free memory that
was allocated for DDI interrupt handles.

EXAMPLE8-5 Registering a Legacy Interrupt

The following example shows how to install an interrupt handler for a device called mydev. This
example assumes that mydev supports one interrupt only.

/* Determine which types of interrupts supported */
ret = ddi intr get supported types(mydevp->mydev dip, &type);

if ((ret != DDI SUCCESS) || (!(type & DDI INTR TYPE FIXED))) {
cmn_err(CE WARN, "Fixed type interrupt is not supported");
return (DDI FAILURE);

}

/* Determine number of supported interrupts */
ret = ddi_intr_get nintrs(mydevp->mydev_dip, DDI_INTR TYPE_ FIXED,
&count);

/*
* Fixed interrupts can only have one interrupt. Check to make
* sure that number of supported interrupts and number of
* available interrupts are both equal to 1.
*/
if ((ret != DDI SUCCESS) || (count != 1)) {
cmn_err(CE_WARN, "No fixed interrupts");
return (DDI FAILURE);
}

/* Allocate memory for DDI interrupt handles */

mydevp->mydev_htable = kmem zalloc(sizeof (ddi_intr handle t),
KM_SLEEP);

ret = ddi_intr_alloc(mydevp->mydev_dip, mydevp->mydev_htable,
DDI INTR TYPE FIXED, @, count, &actual, 0);

if ((ret != DDI_SUCCESS) || (actual != 1)) {
cmn_err(CE_WARN, "ddi_intr alloc() failed 0x%x", ret);
kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle t));
return (DDI FAILURE);

}

/* Sanity check that count and available are the same. */
ASSERT (count == actual);

/* Get the priority of the interrupt */
if (ddi_intr _get pri(mydevp->mydev_htable[0], &mydevp->mydev intr pri)) {
cmn_err(CE_WARN, "ddi_intr alloc() failed 0x%x", ret);

(void) ddi intr free(mydevp->mydev htable[0]);
kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);

Chapter8 -« Interrupt Handlers 129

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-free-9f

Registering Interrupts

EXAMPLE8-5 Registeringa Legacy Interrupt (Continued)

cmn_err(CE _NOTE, "Supported Interrupt pri = 0x%x", mydevp->mydev intr pri);

/* Test for high level mutex */
if (mydevp->mydev_intr pri >= ddi intr get hilevel pri()) {
cmn_err(CE_WARN, "Hi level interrupt not supported")

(void) ddi intr free(mydevp->mydev htable[0]);
kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle t));

return (DDI FAILURE);
}

/* Initialize the mutex */
mutex init(&mydevp->mydev int mutex, NULL, MUTEX DRIVER,
DDI INTR PRI(mydevp->mydev intr pri));

/* Register the interrupt handler */

if (ddi_intr_add handler(mydevp->mydev htable[@], mydev intr,
(caddr t)mydevp, NULL) !'=DDI SUCCESS) {
cmn_err(CE_WARN, "ddi intr add handler() failed")

mutex destroy(&mydevp->mydev _int mutex);
(void) ddi_intr free(mydevp->mydev htable[0]);
kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);
}

/* Enable the interrupt */
if (ddi_intr _enable(mydevp->mydev_htable[0]) !'= DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr enable() failed");

(void) ddi intr remove handler(mydevp->mydev htable[0]);
mutex_destroy(&mydevp->mydev_int mutex);

(void) ddi _intr free(mydevp->mydev htable[0]);

kmem free(mydevp->mydev htable, sizeof (ddi intr handle t));

return (DDI FAILURE);

}
return (DDI SUCCESS);

}

EXAMPLE 8-6 Removinga Legacy Interrupt

The following example shows how legacy interrupts are removed.

/* disable interrupt */
(void) ddi_intr disable(mydevp->mydev htable[0]);

/* Remove interrupt handler */
(void) ddi intr remove handler(mydevp->mydev htable[0]);

/* free interrupt handle */

130 Writing Device Drivers « October 2012

Registering Interrupts

EXAMPLE8-6 Removinga Legacy Interrupt (Continued)

(void) ddi intr free(mydevp->mydev htable[0]);

/* free memory */
kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle t));

Registering MSI Interrupts

To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Useddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Useddi_intr_get_nintrs(9F) to determine the number of supported MSI interrupt types.
Useddi_intr_alloc(9F) to allocate memory for the MSI interrupts.
4. For each interrupt type that you allocate, take the following steps:

Useddi_intr_get_pri(9F) to get the priority for the interrupt.

If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
Usemutex_init(9F) to initialize the lock.

Useddi_intr_add_handler(9F) to register the handler for the interrupt.

Ao oe

5. Use one of the following functions to enable all the interrupts:

m Useddi intr block enable(9F) to enable all the interrupts in a block.
= Useddi_intr_enable(9F)in aloop to enable each interrupt individually.

EXAMPLE8-7 Registeringa Set of MSI Interrupts

The following example illustrates how to register an MSI interrupt for a device called mydev.

/* Get supported interrupt types */

if (ddi_intr_get supported types(devinfo, &intr types) != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi intr get supported types failed");
goto attach fail;

}

if (intr_types & DDI INTR TYPE MSI)
mydev_add msi intrs(mydevp);

/* Check count, available and actual interrupts */

static int

mydev_add msi intrs(mydev_t *mydevp)

{
dev_info_ t *devinfo = mydevp->devinfo;
int count, avail, actual;
int X, Yy, rc, inum = 0;

/* Get number of interrupts */

Chapter8 -« Interrupt Handlers 131

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-enable-9f

Registering Interrupts

EXAMPLE8-7 Registering a Set of MSI Interrupts (Continued)

rc = ddi intr get nintrs(devinfo, DDI INTR TYPE MSI, &count);
if ((rc != DDI SUCCESS) || (count == 0)) {
cmn_err(CE_WARN, "ddi_intr get nintrs() failure, rc: %d, "
"count: %d", rc, count);
return (DDI FAILURE);
}

/* Get number of available interrupts */
rc = ddi_intr_get navail(devinfo, DDI_INTR TYPE MSI, &avail);
if ((rc != DDI_SUCCESS) || (avail == 0)) {
cmn_err(CE_WARN, "ddi intr get navail() failure, "
"rc: %d, avail: %d\n", rc, avail);
return (DDI FAILURE);

if (avail < count) {
cmn_err(CE _NOTE, "nitrs() returned %d, navail returned %d",
count, avail);

}

/* Allocate memory for MSI interrupts */
mydevp->intr_size = count * sizeof (ddi_intr_handle t);
mydevp->htable = kmem alloc(mydevp->intr size, KM SLEEP);

rc = ddi_intr alloc(devinfo, mydevp->htable, DDI INTR TYPE MSI, inum,
count, &actual, DDI INTR ALLOC NORMAL);

if ((rc !'= DDI SUCCESS) || (actual == 0)) {
cmn_err(CE WARN, "ddi intr alloc() failed: %d", rc);
kmem free(mydevp->htable, mydevp->intr size);
return (DDI FAILURE);

}

if (actual < count) {
cmn_err(CE_NOTE, "Requested: %d, Received: %d", count, actual);

}

mydevp->intr cnt = actual;

/*

* Get priority for first msi, assume remaining are all the same
*/

if (ddi_intr get pri(mydevp->htable[0], &mydev->intr pri) !=
DDI SUCCESS) {
cmn_err(CE WARN, "ddi intr get pri() failed");

/* Free already allocated intr */
for (y = 0; y < actual; y++) {

(void) ddi intr free(mydevp->htable[y]);
}

kmem_free(mydevp->htable, mydevp->intr size);
return (DDI FAILURE);
}

/* Call ddi intr add handler() */
for (x = 0; x < actual; x++) {

132 Writing Device Drivers « October 2012

Registering Interrupts

EXAMPLE8-7 Registeringa Set of MSI Interrupts (Continued)

if (ddi_intr add handler(mydevp->htable[x], mydev intr,
(caddr_t)mydevp, NULL) !'= DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr_add handler() failed");

/* Free already allocated intr */
for (y = 0; y < actual; y++) {

(void) ddi intr free(mydevp->htable[y]);
}

kmem free(mydevp->htable, mydevp->intr size);
return (DDI FAILURE);

}

(void) ddi intr get cap(mydevp->htable[0], &mydevp->intr cap);
if (mydev->m_intr cap & DDI_INTR FLAG BLOCK) {

/* Call ddi intr block enable() for MSI */

(void) ddi_intr _block enable(mydev->m_htable, mydev->m intr_cnt);
} else {

/* Call ddi intr enable() for MSI non block enable */

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi intr enable(mydev->m htable[x]);
}

}
return (DDI SUCCESS);

EXAMPLE8-8 Removing MSI Interrupts

The following example shows how to remove MSI interrupts.

static void
mydev_rem intrs(mydev t *mydev)
{

int X;

/* Disable all interrupts */
if (mydev->m intr cap & DDI INTR FLAG BLOCK) {

/* Call ddi_intr block disable() */

(void) ddi intr block disable(mydev->m htable, mydev->m intr cnt);
} else {

for (x = 0; x < mydev->m _intr cnt; x++) {

(void) ddi intr disable(mydev->m htable[x]);

}

}

/* Call ddi_intr remove handler() */

for (x = 0; x < mydev->m intr cnt; x++) {
(void) ddi_intr remove handler(mydev->m htable[x]);
(void) ddi intr free(mydev->m htable[x]);

}

kmem_free(mydev->m_htable, mydev->m_intr size);

Chapter8 -« Interrupt Handlers 133

Interrupt Resource Management

Interrupt Resource Management

134

This section discusses how a driver for a device that can generate many different interruptible
conditions can utilize the Interrupt Resource Management feature to optimize its allocation of
interrupt vectors.

The Interrupt Resource Management Feature

The Interrupt Resource Management feature can enable a device driver to use more interrupt
resources by dynamically managing the driver's interrupt configuration. When the Interrupt
Resource Management feature is not used, configuration of interrupt handling usually only
occurs in a driver's attach(9E) routine. The Interrupt Resource Management feature monitors
the system for changes, recalculates the number of interrupt vectors to grant to each device in
response to those changes, and notifies each affected participating driver of the driver's new
allocation of interrupt vectors. A participating driver is a driver that has registered a callback
handler as described in “Callback Interfaces” on page 135. Changes that can cause interrupt
vector reallocation include adding or removing devices, or an explicit request as described in
“Modify Number of Interrupt Vectors Requested” on page 138.

The Interrupt Resource Management feature is not available on every Oracle Solaris platform.
The feature is only available to PCle devices that utilize MSI-X interrupts.

Note - A driver that utilizes the Interrupt Resource Management feature must be able to adapt
correctly when the feature is not available.

When the Interrupt Resource Management feature is available, it can enable a driver to gain
access to more interrupt vectors than the driver might otherwise be allocated. A driver might
process interrupt conditions more efficiently when utilizing a larger number of interrupt
vectors.

The Interrupt Resource Management feature dynamically adjusts the number of interrupt
vectors granted to each participating driver depending upon the following constraints:

= Total number available. A finite number of interrupt vectors exists in the system.

= Total number requested. A driver might be granted fewer, but never more than the number
of interrupt vectors it requested.

= Fairness to other drivers. The total number of interrupt vectors available is shared by many
drivers in a manner that is fair in relation to the total number requested by each driver.

Writing Device Drivers « October 2012

Interrupt Resource Management

The number of interrupt vectors made available to a device at any given time can vary:

= Asother devices are dynamically added to or removed from the system

= Asdrivers dynamically change the number of interrupt vectors they request in response to

load

A driver must provide the following support to use the Interrupt Resource Management
feature:

= Callback support. Drivers must register a callback handler so they can be notified when their

number of available interrupts has been changed by the system. Drivers must be able to
increase or decrease their interrupt usage.

= Interrupt requests. Drivers must specify how many interrupts they want to use.

= Interrupt usage. Drivers must request the correct number of interrupts at any given time,
based on:

= Whatinterruptible conditions their hardware can generate
= How many processors can be used to process those conditions in parallel

= Interrupt flexibility. Drivers must be flexible enough to assign one or more interruptible
conditions to each interrupt vector in a manner that best fits their current number of
available interrupts. Drivers might need to reconfigure these assignments when their
number of available interrupts increases or decreases at arbitrary times.

Callback Interfaces

A driver must use the following interfaces to register its callback support.

TABLE8-1 Callback Support Interfaces

Interface Data Structures Description
ddi cb register() ddi cb flags t, Register a callback handler function to
ddi cb handle t receive specific types of actions.
ddi cb unregister() ddi cb handle t Unregister a callback handler function.
(*ddi cb func t)() ddi cb action t Receive callback actions and specific
arguments relevant to each action to be
processed.

Register a Callback Handler Function

Usetheddi_cb_register(9F) function to register a callback handler function for a driver.

int
ddi cb register (dev_info t *dip, ddi cb flags t cbflags,

Chapter8 -« Interrupt Handlers

135

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-cb-register-9f

Interrupt Resource Management

136

ddi_cb_func_t cbfunc, void *argl, void *arg2,
ddi cb handle t *ret hdlp);

The driver can register only one callback function. This one callback function is used to handle
all individual callback actions. The chflags parameter determines which types of actions
should be received by the driver when they occur. The cbfunc () routine is called whenever a
relevant action should be processed by the driver. The driver specifies two private arguments
(argland arg2) to send to itself during each execution of its cbfunc () routine.

The cbflags () parameter is an enumerated type that specifies which actions the driver
supports.

typedef enum {
DDI_CB_FLAG_INTR
} ddi cb flags t;

To register support for Interrupt Resource Management actions, a driver must register a
handler and include the DDI_CB_FLAG_INTR flag. When the callback handler is successfully
registered, an opaque handle is returned through the ret_hd1lp parameter. When the driver is

finished with the callback handler, the driver can use the ret_hdlp parameter to unregister the
callback handler.

Register the callback handler in the driver's attach(9F) entry point. Save the opaque handle in
the driver's soft state. Unregister the callback handler in the driver's detach(9F) entry point.

Unregister a Callback Handler Function
Usetheddi_cb_unregister(9F) function to unregister a callback handler function for a driver.

int
ddi cb unregister (ddi cb_handle t hdl);

Make this call in the driver's detach(9F) entry point. After this call, the driver no longer receives
callback actions.

The driver also loses any additional support from the system that it gained from havinga
registered callback handling function. For example, some interrupt vectors previously made
available to the driver are immediately taken back when the driver unregisters its callback
handling function. Before returning successfully, the ddi_cb_unregister() function notifies
the driver of any final actions that result from losing support from the system.

Callback Handler Function

Use the registered callback handling function to receive callback actions and receive arguments
that are specific to each action to be processed.

typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t cbaction,
void *cbarg, void *argl, void *arg2);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-cb-unregister-9f

Interrupt Resource Management

The cbaction parameter specifies what action the driver is receiving a callback to process.

typedef enum {
DDI_CB_INTR ADD,
DDI_CB_INTR REMOVE
} ddi_cb_action_t;

ADDI CB INTR ADD action means that the driver now has more interrupts available to use. A
DDI_CB_INTR REMOVE action means that the driver now has fewer interrupts available to use.
Cast the cbarg parameter to an int to determine the number of interrupts added or removed.
The cbarg value represents the change in the number of interrupts that are available.

For example, get the change in the number of interrupts available:

count = (int) (uintptr t)cbarg;

If the chactionisDDI_CB_INTR_ADD, add charg number of interrupt vectors. If the cbaction is
DDI_CB_INTR_REMOVE, free charg number of interrupt vectors.

Seeddi cb register(9F) for an explanation of argl and arg2.

The callback handling function must be able to perform correctly for the entire time that the
function is registered. The callback function cannot depend upon any data structures that
might be destroyed before the callback function is successfully unregistered.

The callback handling function must return one of the following values:

= DDI_SUCCESS ifit correctly handled the action
= DDI FAILURE ifitencountered an internal error
= DDI_ENOTSUP ifit received an unrecognized action

Interrupt Request Interfaces

A driver must use the following interfaces to request interrupt vectors from the system.

TABLES-2 Interrupt Vector Request Interfaces

Interface Data Structures Description
ddi_intr_alloc() ddi_intr_handle_t Allocate interrupts.
ddi intr set nreq() Change number of interrupt vectors
requested.
Allocate an Interrupt

Usetheddi_intr_alloc(9F) function to initially allocate interrupts.

Chapter8 -« Interrupt Handlers 137

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-cb-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-alloc-9f

Interrupt Resource Management

138

int
ddi intr alloc (dev info t *dip, ddi intr handle t *h array, int type,
int inum, int count, int *actualp, int behavior);

Before calling this function, the driver must allocate an empty handle array large enough to
contain the number of interrupts requested. The ddi_intr_alloc() function attempts to
allocate count number of interrupt handles, and initialize the array with the assigned interrupt
vectors beginning at the offset specified by the inum parameter. The actualp parameter returns
the actual number of interrupt vectors that were allocated.

A driver can use the ddi_intr_alloc() function in two ways:

m Thedriver can call theddi_intr_alloc() function multiple times to allocate interrupt
vectors to individual members of the interrupt handle array in separate steps.

= Thedriver can call the ddi_intr_alloc() function one time to allocate all of the interrupt
vectors for the device at once.

If you are using the Interrupt Resource Management feature, call ddi_intr_alloc() one time
to allocate all interrupt vectors at once. The count parameter is the total number of interrupt
vectors requested by the driver. If the value in actualp is less than the value of count, then the
system is not able to fulfill the request completely. The Interrupt Resource Management feature
saves this request (count becomes nreq - see below) and might be able to allocate more
interrupt vectors to this driver at a later time.

Note - When you use the Interrupt Resource Management feature, additional calls to
ddi_intr_alloc() donotchange the total number of interrupt vectors requested. Use the
ddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

Modify Number of Interrupt Vectors Requested

Usetheddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

int

ddi_intr_set nreq (dev_info t *dip, int nreq);

When the Interrupt Resource Management feature is available, a driver can use the
ddi_intr_set_nreq() function to dynamically adjust the total number of interrupt vectors

requested. The driver might do this in response to the actual load that exists once the driver is
attached.

A driver must first callddi_intr_alloc(9F) to request an initial number of interrupt vectors.
Any time after the ddi_intr_alloc()call, the driver can callddi_intr_set_nreq() to change
its request size. The specified nreq value is the driver's new total number of requested interrupt
vectors. The Interrupt Resource Management feature might rebalance the number of interrupts
allocated to each driver in the system in response to this new request. Whenever the Interrupt

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-set-nreq-9f

Interrupt Resource Management

Resource Management feature rebalances the number of interrupts allocated to drivers, each
affected driver receives a callback notification that more or fewer interrupt vectors are available
for the driver to use.

A driver might dynamically adjust its total number of requested interrupt vectors if, for
example, it uses interrupts in conjunction with specific transactions that it is processing. A
storage driver might associate a DMA engine with each ongoing transaction, thus requiring
interrupt vectors for that reason. A driver might make calls to ddi_intr_set_nreq() inits
open(9F) and close(9F) routines to scale its interrupt usage in response to actual use of the
driver.

Interrupt Usage and Flexibility

A driver for a device that supports many different interruptible conditions must be able to map
those conditions to an arbitrary number of interrupt vectors. The driver cannot assume that
interrupt vectors that are allocated will remain available. Some currently available interrupts
might later be taken back by the system to accommodate the needs of other drivers in the
system.

A driver must be able to:

= Determine how many interrupts its hardware supports.

= Determine how many interrupts are appropriate to use. For example, the total number of
processors in the system might affect this evaluation.

= Compare the number of interrupts needed with the number of interrupts available at any
given time.

In summary, the driver must be able to select a mixture of interrupt handling functions and
program its hardware to generate interrupts according to need and interrupt availability. In
some cases multiple interrupts might be targeted to the same vector, and the interrupt handler
for that interrupt vector must determine which interrupts occurred. The performance of the
device can be affected by how well the driver maps interrupts to interrupt vectors.

Example Implementation of Interrupt Resource
Management

One type of device driver that is an excellent candidate for interrupt resource management is a
network device driver. The network device hardware supports multiple transmit and receive
channels.

The network device generates a unique interrupt condition whenever the device receives a
packet on one of its receive channels or transmits a packet on one of its transmit channels. The
hardware can send a specific MSI-X interrupt for each event that can occur. A table in the
hardware determines which MSI-X interrupt to generate for each event.

Chapter8 -« Interrupt Handlers 139

Interrupt Resource Management

140

To optimize performance, the driver requests enough interrupts from the system to give each
separate interrupt its own interrupt vector. The driver makes this request when it first calls
ddi_intr_alloc(9F)inits attach(9F) routine.

The driver then evaluates the actual number of interrupts it received from ddi_intr_alloc()
in actualp. It might receive all the interrupts it requested, or it might receive fewer interrupts.

A separate function inside the driver uses the total number of available interrupts to calculate
which MSI-X interrupts to generate for each event. This function programs the table in the
hardware accordingly.

= Ifthe driver receives all of its requested interrupt vectors, each entry in the hardware table
has its own unique MSI-X interrupt. A one-to-one mapping exists between interrupt
conditions and interrupt vectors. The hardware generates a unique MSI-X interrupt for
each type of event.

= Ifthe driver has fewer interrupt vectors available, some MSI-X interrupt numbers must
appear multiple times in the hardware table. The hardware generates the same MSI-X
interrupt for more than one type of event.

The driver should have two different interrupt handler functions.

= One interrupt handler function performs a specific task in response to an interrupt. This
simple function handles interrupts that are generated by only one of the possible hardware
events.

= A second interrupt handler function is more complicated. This function handles the case
where multiple interrupts are mapped to the same MSI-X interrupt vector.

In the example driver in this section, the function xx_setup_interrupts() uses the number of
available interrupt vectors to program the hardware and calls the appropriate interrupt handler
for each of those interrupt vectors. The xx_setup_interrupts() function is called in two
places: after ddi_intr_alloc() is called in xx_attach(), and after interrupt vector allocations
are adjusted in the xx_cbfunc() callback handler function.

int
xx_setup_interrupts(xx state t *statep, int navail, xx_intrs_t *xx_ intrs p);

The xx_setup_interrupts() function is called with an array of xx_intrs_t data structures.

typedef struct {

ddi intr_handler t inthandler;
void *argl;
void *arg2;

} xx_intrs_t;

This xx_setup_interrupts() functionality must exist in the driver independent of whether
the Interrupt Resource Management feature is available. Drivers must be able to function with
fewer interrupt vectors than the number requested during attach. If the Interrupt Resource
Management feature is available, you can modify the driver to dynamically adjust to a new
number of available interrupt vectors.

Writing Device Drivers « October 2012

Interrupt Resource Management

Other functionality that the driver must provide independent of whether the Interrupt
Resource Management feature is available includes the ability to quiesce the hardware and
resume the hardware. Quiesce and resume are needed for certain events related to power
management and hotplugging. Quiesce and resume also are required to handle interrupt
callback actions.

The quiesce function is called in xx_detach().
int

XX_quiesce(xx state t *statep);

The resume function is called in xx_attach().
int

Xx_resume(xx state t *statep);

Make the following modifications to enhance this device driver to use the Interrupt Resource
Management feature:

= Register a callback handler. The driver must register for the actions that indicate when fewer
or more interrupts are available.

= Handle callbacks. The driver must quiesce its hardware, reprogram its interrupt handling,
and resume its hardware in response to each such callback action.

* attach(9F) routine.

* Creates soft state, registers callback handler, initializes
* hardware, and sets up interrupt handling for the driver.

*/
xx_attach(dev_info t *dip, ddi_attach cmd t cmd)
{
Xx_state t *statep = NULL;
Xx_intr t *intrs = NULL;
ddi_intr_handle t *hdls;
ddi cb _handle_t cb_hdl;
int instance;
int type;
int types;
int nintrs;
int nactual;
int inum;

/* Get device instance */
instance = ddi_get instance(dip);

switch (cmd) {
case DDI ATTACH:

/* Get soft state */

if (ddi soft state zalloc(state list, instance) != 0)
return (DDI FAILURE);

statep = ddi_get soft state(state list, instance);

Chapter8 -« Interrupt Handlers 141

Interrupt Resource Management

ddi_set driver private(dip, (caddr_t)statep);
statep->dip = dip;

/* Initialize hardware */
xx_initialize(statep);

/* Register callback handler */
if (ddi cb register(dip, DDI CB FLAG INTR, xx cbfunc,
statep, NULL, &cb hdl) !'= 0) {
ddi soft state free(state list, instance);
return (DDI FAILURE);
}
statep->cb hdl = cb hdl;

/* Select interrupt type */

ddi intr get supported types(dip, &types);

if (types & DDI INTR TYPE MSIX) {
type = DDI INTR TYPE MSIX;

} else if (types & DDI INTR TYPE MSI) {
type = DDI_INTR TYPE MSI;

} else {
type

DDI_INTR TYPE FIXED;

}
statep->type = type;

/* Get number of supported interrupts */
ddi intr get nintrs(dip, type, &nintrs);

/* Allocate interrupt handle array */
statep->hdls size = nintrs * sizeof (ddi intr handle t);
statep->hdls = kmem zalloc(statep->hdls size, KMEM SLEEP);

/* Allocate interrupt setup array */
statep->intrs size = nintrs * sizeof (xx_intr t);
statep->intrs = kmem zalloc(statep->intrs size, KMEM SLEEP);

/* Allocate interrupt vectors */
ddi intr alloc(dip, hdls, type, @, nintrs, &nactual, 0);
statep->nactual = nactual;

/* Configure interrupt handling */
Xx_setup interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = @; inum < nactual; inum++) {

ddi intr add handler(&hdls[inum],
intrs[inum].inthandler,
intrs[inum].argl, intrs[inum].arg2);

ddi_intr_enable(hdls[inum]);

}

break;

case DDI_RESUME:

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI_FAILURE);

142 Writing Device Drivers « October 2012

Interrupt Resource Management

/* Resume hardware */
xx_resume(statep);

break;
}
return (DDI SUCESS);
}
/*
* detach(9F) routine.
*
* Stops the hardware, disables interrupt handling, unregisters
* a callback handler, and destroys the soft state for the driver.
*/
xx_detach(dev_info t *dip, ddi_detach_cmd_t cmd)
{
xx_state t *statep = NULL;
int instance;
int inum;

/* Get device instance */
instance = ddi get instance(dip);

switch (cmd) {
case DDI DETACH:

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI_FAILURE);

/* Stop device */
xx_uninitialize(statep);

/* Disable and free interrupts */

for (inum = @; inum < statep->nactual; inum++) {
ddi intr disable(statep->hdls[inum]);
ddi intr remove handler(statep->hdls[inum]);
ddi intr free(statep->hdls[inum]);

}

/* Unregister callback handler */
ddi cb unregister(statep->cb hdl);

/* Free interrupt handle array */
kmem free(statep->hdls, statep->hdls size);

/* Free interrupt setup array */
kmem free(statep->intrs, statep->intrs size);

/* Free soft state */
ddi soft state free(state list, instance);

break;

case DDI SUSPEND:

Chapter8 -« Interrupt Handlers 143

Interrupt Resource Management

/* Get soft state */
statep = ddi get soft state(state list, instance);
if (statep == NULL)

return (DDI FAILURE);

/* Suspend hardware */
xx_quiesce(statep);

break;

i

return (DDI SUCCESS);

* (*ddi cbfunc) () routine.

* Adapt interrupt usage when availability changes.
*/
int
xx_cbfunc(dev_info t *dip, ddi cb action t cbaction, void *cbarg,
void *argl, void *arg2)

{
xx_state t *statep = (xx _state t *)argl;
int count;
int inum;
int nactual;

switch (cbaction) {
case DDI CB INTR ADD:
case DDI CB INTR REMOVE:

/* Get change in availability */
count = (int) (uintptr_t)cbarg;

/* Suspend hardware */
XX_quiesce(statep);

/* Tear down previous interrupt handling */

for (inum = @; inum < statep->nactual; inum++) {
ddi intr disable(statep->hdls[inum]);
ddi intr remove handler(statep->hdls[inum]);

}

/* Adjust interrupt vector allocations */
if (cbaction == DDI CB INTR ADD) {

/* Allocate additional interrupt vectors */
ddi intr alloc(dip, statep->hdls, statep->type,
statep->nactual, count, &nactual, 0);

/* Update actual count of available interrupts */
statep->nactual += nactual;

} else {
/* Free removed interrupt vectors */

for (inum = statep->nactual - count;
inum < statep->nactual; inum++) {

144 Writing Device Drivers « October 2012

Interrupt Handler Functionality

ddi_intr_free(statep->hdls[inum]);

}

/* Update actual count of available interrupts */
statep->nactual -= count;

}

/* Configure interrupt handling */
xx_setup_interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = @; inum < statep->nactual; inum++) {
ddi intr_add handler(&statep->hdls[inum],
statep->intrs[inum].inthandler,
statep->intrs[inum].argl,
statep->intrs[inum].arg2);
ddi_intr_enable(statep->hdls[inum]);
}

/* Resume hardware */
XX_resume(statep);

break;
default:

return (DDI ENOTSUP);
}

return (DDI SUCCESS);

Interrupt Handler Functionality

The driver framework and the device each place demands on the interrupt handler. All
interrupt handlers are required to do the following tasks:

Determine whether the device is interrupting and possibly reject the interrupt.

The interrupt handler first examines the device to determine whether this device issued the
interrupt. If this device did not issue the interrupt, the handler must return
DDI_INTR_UNCLAIMED. This step enables the implementation of device polling. Any device at
the given interrupt priority level might have issued the interrupt. Device polling tells the
system whether this device issued the interrupt.

Inform the device that the device is being serviced.

Informing a device about servicing is a device-specific operation that is required for the
majority of devices. For example, SBus devices are required to interrupt until the driver tells
the SBus devices to stop. This approach guarantees that all SBus devices that interrupt at the
same priority level are serviced.

Perform any I/O request-related processing.

Chapter8 -« Interrupt Handlers 145

Interrupt Handler Functionality

146

Devices interrupt for different reasons, such as transfer done or transfer error. This step can
involve using data access functions to read the device's data buffer, examine the device's
error register, and set the status field in a data structure accordingly. Interrupt dispatching
and processing are relatively time consuming.

Do any additional processing that could prevent another interrupt.
For example, read the next item of data from the device.

Return DDI_INTR CLAIMED.

MSI interrupts must always be claimed.

Claiming an interrupt is optional for MSI-X interrupts. In either case, the ownership of the
interrupt need not be checked, because MSI and MSI-X interrupts are not shared with other
devices.

Drivers that support hotplugging and multiple MSI or MSI-X interrupts should retain a
separate interrupt for hotplug events and register a separate ISR (interrupt service
routine) for that interrupt.

The following example shows an interrupt routine for a device called mydev.

EXAMPLE8-9 Interrupt Example

static uint_t
mydev_intr(caddr_t argl, caddr_t arg2)

{

struct mydevstate *xsp = (struct mydevstate *)argl;
uint8 t status;
volatile uint8 t temp;

/*
* Claim or reject the interrupt.This example assumes
* that the device’s CSR includes this information.
*/

mutex_enter(&xsp->high mu);

/* use data access routines to read status */
status = ddi_get8(xsp->data_access _handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high mu);

return (DDI INTR UNCLAIMED); /* dev not interrupting */

Inform the device that it is being serviced, and re-enable
interrupts. The example assumes that writing to the
CSR accomplishes this. The driver must ensure that this data
access operation makes it to the device before the interrupt
service routine returns. For example, using the data access
functions to read the CSR, if it does not result in unwanted
* effects, can ensure this.
*/
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR _INTERRUPT | ENABLE INTERRUPTS);

* X X K X ¥

/* flush store buffers */

Writing Device Drivers « October 2012

Handling High-Level Interrupts

EXAMPLE8-9 Interrupt Example (Continued)

temp = ddi get8(xsp->data access handle, &xsp->regp->csr);

mutex exit(&xsp->mu);
return (DDI_INTR CLAIMED);

Most of the steps performed by the interrupt routine depend on the specifics of the device itself.
Consult the hardware manual for the device to determine the cause of the interrupt, detect error
conditions, and access the device data registers.

Handling High-Level Interrupts

High-level interrupts are those interrupts that interrupt at the level of the scheduler and above.
This level does not allow the scheduler to run. Therefore, high-level interrupt handlers cannot
be preempted by the scheduler. High-level interrupts cannot block because of the scheduler.
High-level interrupts can only use mutual exclusion locks for locking.

The driver must determine whether the device is using high-level interrupts. Do this test in the
driver's attach(9E) entry point when you register interrupts. See “High-Level Interrupt
Handling Example” on page 147.

= Iftheinterrupt priority returned from ddi_intr_get_pri(9F) is greater than or equal to the
priority returned from ddi_intr_get hilevel pri(9F), the driver can fail to attach, or the
driver can implement a high-level interrupt handler. The high-level interrupt handler uses a
lower-priority software interrupt to handle the device. To allow more concurrency, use a
separate mutex to protect data from the high-level handler.

= Iftheinterrupt priority returned from ddi_intr_get_pri(9F) isless than the priority
returned from ddi_intr_get_hilevel pri(9F), the attach(9E) entry point falls through
to regular interrupt registration. In this case, a soft interrupt is not necessary.

High-Level Mutexes

A mutex initialized with an interrupt priority that represents a high-level interrupt is known as
a high-level mutex. While holding a high-level mutex, the driver is subject to the same
restrictions as a high-level interrupt handler.

High-Level Interrupt Handling Example

In the following example, the high-level mutex (xsp->high_mu) is used only to protect data
shared between the high-level interrupt handler and the soft interrupt handler. The protected

Chapter8 -« Interrupt Handlers 147

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-intr-get-hilevel-pri-9f

Handling High-Level Interrupts

data includes a queue used by both the high-level interrupt handler and the low-level handler,

and

a flag that indicates that the low-level handler is running. A separate low-level mutex

(xsp->low_mu) protects the rest of the driver from the soft interrupt handler.

EXAMPLE8-10 Handling High-Level Interrupts With attach ()

static int
mydevattach(dev_info t *dip, ddi attach cmd t cmd)

{

struct mydevstate *xsp;
VA

ret = ddi_intr_get supported types(dip, &type);

if ((ret !'= DDI_SUCCESS) || (!(type & DDI_INTR_TYPE_FIXED))) {
cmn_err(CE_WARN, "ddi_intr get supported types() failed")
return (DDI FAILURE);

}

ret = ddi_intr_get nintrs(dip, DDI_INTR TYPE_FIXED, &count);

/*
* Fixed interrupts can only have one interrupt. Check to make
* sure that number of supported interrupts and number of
* available interrupts are both equal to 1.
*/
if ((ret != DDI SUCCESS) || (count != 1)) {
cmn_err(CE_WARN, "No fixed interrupts found");
return (DDI FAILURE);
}

Xxsp->xs_htable = kmem zalloc(count * sizeof (ddi intr handle t),
KM SLEEP);

ret = ddi_intr_alloc(dip, xsp->xs_htable, DDI_INTR TYPE FIXED, 0,
count, &actual, 0);

if ((ret != DDI SUCCESS) || (actual !'= 1)) {
cmn_err(CE_WARN, "ddi_intr alloc failed 0x%x", ret");
kmem free(xsp->xs htable, sizeof (ddi intr handle t));
return (DDI FAILURE);
}

ret = ddi intr get pri(xsp->xs htable[0], &intr pri);

if (ret != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr get pri failed 0x%x", ret");
(void) ddi intr free(xsp->xs htable[0]);
kmem free(xsp->xs htable, sizeof (ddi intr handle t));
return (DDI FAILURE);

}

if (intr_pri >= ddi_intr_get hilevel pri()) {

mutex init(&xsp->high mu, NULL, MUTEX DRIVER,
DDI INTR PRI(intr pri));

ret = ddi intr add handler(xsp->xs htable[0],
mydevhigh intr, (caddr t)xsp, NULL);

148 Writing Device Drivers « October 2012

Handling High-Level Interrupts

EXAMPLE 8-10 Handling High-Level Interrupts With attach() (Continued)

if (ret != DDI SUCCESS) {
cmn_err(CE_WARN, "ddi_intr_add handler failed 0x%x", ret")
mutex destroy(&xsp>xs int mutex);
(void) ddi_intr free(xsp->xs_htable[0]);
kmem free(xsp->xs htable, sizeof (ddi intr handle t));
return (DDI FAILURE);
}

/* add soft interrupt */

if (ddi intr add softint(xsp->xs dip, &xsp->xs softint hdl,
DDI INTR SOFTPRI MAX, xs soft intr, (caddr t)xsp) !=
DDI SUCCESS) {
cmn_err(CE_WARN, "add soft interrupt failed");
mutex_destroy(&xsp->high mu);
(void) ddi_intr_remove_handler(xsp->xs_htable[0]);
(void) ddi intr free(xsp->xs htable[0]);
kmem free(xsp->xs_htable, sizeof (ddi_intr_handle t));
return (DDI_FAILURE);

}

xsp->low_soft pri = DDI_INTR_SOFTPRI_MAX;

mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,
DDI INTR PRI(xsp->low soft pri));

} else {

/*
* regular interrupt registration continues from here
* do not use a soft interrupt
*/

}

return (DDI SUCCESS);

The high-level interrupt routine services the device and queues the data. The high-level routine
triggers a software interrupt if the low-level routine is not running, as the following example
demonstrates.

EXAMPLE8-11 High-level Interrupt Routine

static uint t
mydevhigh intr(caddr t argl, caddr t arg2)

struct mydevstate *xsp = (struct mydevstate *)argl;
uint8 t status;

volatile uint8 t temp;

int need softint;

mutex_enter(&xsp->high mu);
/* read status */
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->high mu);

Chapter8 -« Interrupt Handlers 149

Handling High-Level Interrupts

EXAMPLE 8-11 High-level Interrupt Routine (Continued)

return (DDI INTR UNCLAIMED); /* dev not interrupting */
}

ddi_put8(xsp->data_access handle,&xsp->regp->csr,
CLEAR_INTERRUPT | ENABLE_INTERRUPTS);

/* flush store buffers */

temp = ddi get8(xsp->data access handle, &xsp->regp->csr);

/* read data from device, queue data for low-level interrupt handler */
if (xsp->softint running)

need softint = 0;
else {

xsp->softint_count++;

need_softint = 1;

mutex_exit(&xsp->high mu);

/* read-only access to xsp->id, no mutex needed */
if (need_softint) {
ret = ddi_intr_trigger softint(xsp->xs_softint_hdl, NULL);
if (ret == DDI_EPENDING) {
cmn_err(CE_WARN, "ddi_intr trigger_ softint() soft interrupt "
"already pending for this handler")
} else if (ret != DDI_SUCCESS) {
cmn_err(CE_WARN, "ddi intr trigger softint() failed")
}
}

return (DDI_INTR CLAIMED);

The low-level interrupt routine is started by the high-level interrupt routine, which triggers a
software interrupt. The low-level interrupt routine runs until there is nothing left to process, as
the following example shows.

EXAMPLE8-12 Low-Level Soft Interrupt Routine

static uint t
mydev_soft intr(caddr t argl, caddr t arg2)
{
struct mydevstate *mydevp = (struct mydevstate *)argl;
/X L %/
mutex enter(&mydevp->low mu);
mutex_enter(&mydevp->high mu);
if (mydevp->softint count > 1) {
mydevp->softint count--;
mutex_exit(&mydevp->high mu);
mutex_exit(&mydevp->low mu);
return (DDI INTR CLAIMED);
}

if (/* queue empty */) {

mutex exit(&mydevp->high mu);
mutex_exit(&mydevp->low mu);

150 Writing Device Drivers « October 2012

Handling High-Level Interrupts

EXAMPLE 8-12 Low-Level Soft Interrupt Routine (Continued)

return (DDI_INTR UNCLAIMED);
}

mydevp->softint_running = 1;

while (EMBEDDED COMMENT:data on queue) {
ASSERT (mutex_owned (&mydevp->high mu);
/* Dequeue data from high-level queue. */
mutex exit(&mydevp->high mu);
/* normal interrupt processing */
mutex enter(&mydevp->high mu);

}

mydevp->softint running = 0;
mydevp->softint count = 0;
mutex exit(&mydevp->high mu);
mutex exit(&mydevp->low mu);
return (DDI INTR CLAIMED);

Chapter8 -« Interrupt Handlers 151

152

CHAPTER 9

Direct Memory Access (DMA)

Many devices can temporarily take control of the bus. These devices can perform data transfers
that involve main memory and other devices. Because the device is doing the work without the
help of the CPU, this type of data transfer is known as direct memory access (DMA). The
following types of DMA transfers can be performed:

= Between two devices
= Between a device and memory
= Between memory and memory

This chapter explains transfers between a device and memory only. The chapter provides
information on the following subjects:

“DMA Model” on page 153

“Types of Device DMA” on page 154

“Types of Host Platform DMA” on page 155

“DMA Software Components: Handles, Windows, and Cookies” on page 155
“DMA Operations” on page 156

“Managing DMA Resources” on page 161

“DMA Windows” on page 173

DMA Model

The Oracle Solaris Device Driver Interface/Driver-Kernel Interface (DDI/DKI) provides a
high-level, architecture-independent model for DMA. This model enables the framework, that
is, the DMA routines, to hide architecture-specific details such as the following:

= Setting up DMA mappings
= Building scatter-gather lists
= Ensuring that I/O and CPU caches are consistent

Several abstractions are used in the DDI/DKI to describe aspects of a DMA transaction:

= DMA object - Memory that is the source or destination of a DMA transfer.

153

Types of Device DMA

= DMA handle - An opaque object returned from a successful ddi_dma_alloc_handle(9F)
call. The DMA handle can be used in subsequent DMA subroutine calls to refer to such
DMA objects.

= DMA cookie - A ddi_dma_cookie(9S) structure (ddi_dma_cookie t) describes a
contiguous portion of a DMA object that is entirely addressable by the device. The cookie
contains DMA addressing information that is required to program the DM A engine.

Rather than map an object directly into memory, device drivers allocate DMA resources for a
memory object. The DMA routines then perform any platform-specific operations that are
needed to set up the object for DMA access. The driver receives a DMA handle to identify the
DMA resources that are allocated for the object. This handle is opaque to the device driver. The
driver must save the handle and pass the handle in subsequent calls to DMA routines. The
driver should not interpret the handle in any way.

Operations that provide the following services are defined on a DMA handle:

= Manipulating DMA resources
= Synchronizing DMA objects
= Retrieving attributes of the allocated resources

Types of Device DMA

154

Devices perform one of the following three types of DMA:

= Bus-master DMA
= Third-party DMA
= First-party DMA

Bus-Master DMA

The driver should program the device's DMA registers directly in cases where the device acts
like a true bus master. For example, a device acts like a bus master when the DMA engine resides
on the device board. The transfer address and count are obtained from the DMA cookie to be
passed on to the device.

Third-Party DMA

Third-party DMA uses a system DMA engine resident on the main system board, which has
several DMA channels that are available for use by devices. The device relies on the system's
DMA engine to perform the data transfers between the device and memory. The driver uses
DMA engine routines (see the ddi_dmae(9F) function) to initialize and program the DMA
engine. For each DMA data transfer, the driver programs the DMA engine and then gives the
device a command to initiate the transfer in cooperation with that engine.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-cookie-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-9f

DMA Software Components: Handles, Windows, and Cookies

First-Party DMA

Under first-party DMA, the device uses a channel from the system's DMA engine to drive that
device's DMA bus cycles. Use the ddi_dmae_1stparty(9F) function to configure this channel in
a cascade mode so that the DM A engine does not interfere with the transfer.

Types of Host Platform DMA

The platform on which the device operates provides either direct memory access (DMA) or
direct virtual memory access (DVMA).

On platforms that support DMA, the system provides the device with a physical address in
order to perform transfers. In this case, the transfer of a DMA object can actually consist of a
number of physically discontiguous transfers. An example is when an application transfers a
buffer that spans several contiguous virtual pages that map to physically discontiguous pages.
To deal with the discontiguous memory, devices for these platforms usually have some kind of
scatter-gather DMA capability. Typically, x86 systems provide physical addresses for direct
memory transfers.

On platforms that support DVMA, the system provides the device with a virtual address to
perform transfers. In this case, memory management units (MMU) provided by the underlying
platform translate device accesses to these virtual addresses into the proper physical addresses.
The device transfers to and from a contiguous virtual image that can be mapped to
discontiguous physical pages. Devices that operate in these platforms do not need
scatter-gather DMA capability. Typically, SPARC platforms provide virtual addresses for direct
memory transfers.

DMA Software Components: Handles, Windows, and Cookies

A DMA handle is an opaque pointer that represents an object, usually a memory buffer or
address. A DMA handle enables a device to perform DMA transfers. Several different calls to
DMA routines use the handle to identify the DMA resources that are allocated for the object.

An object represented by a DM A handle is completely covered by one or more DMA cookies. A
DMA cookie represents a contiguous piece of memory that is used in data transfers by the DMA
engine. The system divides objects into multiple cookies based on the following information:

= Theddi dma_attr(9S) attribute structure provided by the driver
= Memory location of the target object
= Alignment of the target object

If an object does not fit within the limitations of the DMA engine, that object must be broken
into multiple DMA windows. You can only activate and allocate resources for one window ata

Chapter9 - Direct Memory Access (DMA) 155

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-1stparty-9f

DMA Operations

time. Use the ddi_dma_getwin(9F) function to position between windows within an object.
Each DMA window consists of one or more DMA cookies. For more information, see “DMA
Windows” on page 173.

Some DMA engines can accept more than one cookie. Such engines perform scatter-gather I/O
without the help of the system. If multiple cookies are returned from a bind, the driver should
callddi_dma_nextcookie(9F) repeatedly to retrieve each cookie. These cookies must then be
programmed into the engine. The device can then be programmed to transfer the total number
of bytes covered by the aggregate of these DM A cookies.

DMA Operations

156

The steps in a DMA transfer are similar among the types of DMA. The following sections
present methods for performing DMA transfers.

Note - You do not need to ensure that the DMA object is locked in memory in block drivers for
buffers that come from the file system. The file system has already locked the data in memory.

Performing Bus-Master DMA Transfers

The driver should perform the following steps for bus-master DMA.

1. Describe the DMA attributes. This step enables the routines to ensure that the device is able
to access the buffer.

2. Allocate a DMA handle.

hed

Ensure that the DMA object is locked in memory. See the physio(9F) or
ddi_umem_lock(9F) man page.

. Allocate DMA resources for the object.
. Program the DMA engine on the device.

. When the transfer is complete, continue the bus master operation.

4
5
6. Start the engine.
7
8. Perform any required object synchronizations.
9

. Release the DMA resources.
10. Free the DMA handle.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-lock-9f

DMA Operations

Performing First-Party DMA Transfers

The driver should perform the following steps for first-party DMA.

1. Allocate a DMA channel.
2. Useddi_dmae_1lstparty(9F) to configure the channel.
3. Ensure that the DMA object is locked in memory. See the physio(9F) or
ddi_umem_lock(9F) man page.
. Allocate DMA resources for the object.
. Program the DMA engine on the device.

. When the transfer is complete, continue the bus-master operation.

4
5
6. Start the engine.
7
8. Perform any required object synchronizations.
9

. Release the DMA resources.
10. Deallocate the DMA channel.

Performing Third-Party DMA Transfers

The driver should perform these steps for third-party DMA.

Allocate a DMA channel.

Retrieve the system's DMA engine attributes with ddi_dmae_getattr(9F).

Lock the DMA object in memory. See the physio(9F) or ddi_umem_lock(9F) man page.
Allocate DMA resources for the object.

Useddi_dmae_prog(9F) to program the system DMA engine to perform the transfer.
Perform any required object synchronizations.

Use ddi_dmae_stop(9F) to stop the DMA engine.

Release the DMA resources.

Deallocate the DMA channel.

00N W=

Certain hardware platforms restrict DM A capabilities in a bus-specific way. Drivers should use
ddi slaveonly(9F) to determine whether the device is in a slot in which DMA is possible.

DMA Attributes

DMA attributes describe the attributes and limits of a DMA engine, which include:

m Limits on addresses that the device can access
= Maximum transfer count
= Address alignment restrictions

Chapter9 - Direct Memory Access (DMA) 157

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-1stparty-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-getattr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-prog-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dmae-stop-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-slaveonly-9f

DMA Operations

158

A device driver must inform the system about any DMA engine limitations through the
ddi_dma_attr(9S) structure. This action ensures that DMA resources that are allocated by the
system can be accessed by the device's DMA engine. The system can impose additional
restrictions on the device attributes, but the system never removes any of the driver-supplied

restrictions.

ddi_dma_attr Structure

The DMA attribute structure has the following members:

typedef struct ddi dma_attr {

uint_t dma_attr_version; /* version number */

uint64 t dma attr addr lo; /* low DMA address range */
uint64 t dma_attr_addr_hi; /* high DMA address range */
uint64 t dma_attr count max; /* DMA counter register */
uint64 t dma_attr align; /* DMA address alignment */
uint t dma_attr burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64 t dma_attr_maxxfer; /* max DMA xfer size */
uint64 t dma_attr seg; /* segment boundary */

int dma attr sgllen; /* s/g length */

uint32 t dma_attr_granular; /* granularity of device */
uint t dma_attr flags; /* Bus specific DMA flags */

} ddi_dma_attr_t;
where:

dma_attr version

dma_attr addr lo
dma_attr_addr_hi

dma_attr count max

dma_attr align

dma attr burstsizes

Version number of the attribute structure. dma_attr version
should be set to DMA_ATTR_VO.

Lowest bus address that the DMA engine can access.
Highest bus address that the DMA engine can access.

Specifies the maximum transfer count that the DMA engine can
handle in one cookie. The limit is expressed as the maximum count
minus one. This count is used as a bit mask, so the count must also
be one less than a power of two.

Specifies alignment requirements when allocating memory from
ddi_dma_mem_alloc(9F). An example of an alignment requirement
is alignment on a page boundary. The dma_attr_align field is used
only when allocating memory. This field is ignored during bind
operations. For bind operations, the driver must ensure that the
buffer is aligned appropriately.

Specifies the burst sizes that the device supports. A burst size is the
amount of data the device can transfer before relinquishing the bus.
This member is a binary encoding of burst sizes, which are assumed
to be powers of two. For example, if the device is capable of doing

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f

DMA Operations

dma_attr_minxfer

dma attr maxxfer

dma_attr seg

dma_attr sgllen

dma_attr granular

dma attr flags

SBus Example

1-byte, 2-byte, 4-byte, and 16-byte bursts, this field should be set to
0x17. The system also uses this field to determine alignment
restrictions.

Minimum effective transfer size that the device can perform. This
size also influences restrictions on alignment and on padding.

Describes the maximum number of bytes that the DM A engine can
accommodate in one I/O command. This limitation is only
significant if dna_attr_maxxfer isless than (dma_attr_count_max
+ 1) * dma_attr sgllen.

Upper bound of the DMA engine's address register. dna_attr_seg
is often used where the upper 8 bits of an address register are a latch
that contains a segment number. The lower 24 bits are used to
address a segment. In this case, dma_attr_seg would be set to
O0xFFFFFE, which prevents the system from crossing a 24-bit
segment boundary when allocating resources for the object.

Specifies the maximum number of entries in the scatter-gather list.
dma_attr_sgllen is the number of cookies that the DMA engine
can consume in one I/O request to the device. If the DMA engine
has no scatter-gather list, this field should be set to 1.

This field gives the granularity in bytes of the DMA transfer ability
of the device. An example of how this value is used is to specify the
sector size of a mass storage device. When a bind operation requires
a partial mapping, this field is used to ensure that the sum of the
sizes of the cookies in a DMA window is a whole multiple of
granularity. However, if the device does not have a scatter-gather
capability, it is impossible for the DDI to ensure the granularity. For
this case, the value of the dma_attr _granular field should be 1.

This field can be set to DDI DMA FORCE PHYSICAL, which indicates
that the system should return physical rather than virtual I/O
addresses if the system supports both. If the system does not
support physical DMA, the return value from
ddi_dma_alloc_handle(9F) isDDI DMA BADATTR. In this case, the
driver has to clear DDI_DMA_FORCE_PHYSICAL and retry the
operation.

A DMA engine on an SBus in a SPARC machine has the following attributes:

= Access to addresses ranging from 0xFF000000 to OxFFFFFFFF only
= 32-bit DMA counter register

Chapter9 - Direct Memory Access (DMA) 159

DMA Operations

160

Ability to handle byte-aligned transfers

Support for 1-byte, 2-byte, and 4-byte burst sizes
Minimum effective transfer size of 1 byte

32-bit address register

No scatter-gather list

Operation on sectors only, for example, a disk

A DMA engine on an SBus in a SPARC machine has the following attribute structure:

static ddi dma attr t attributes = {

DMA_ATTR VO, /* Version number */

OxFF000000, /* low address */
OXFFFFFFFF, /* high address */
OxFFFFFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes: Ox1 | 0x2 | 0x4 */
ox1, /* minimum transfer size */
OxFFFFFFFF, /* max transfer size */
OXFFFFFFFF, /* address register max */
1, /* no scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

+

ISA Bus Example

A DMA engine on an ISA bus in an x86 machine has the following attributes:

Access to the first 16 megabytes of memory only

Inability to cross a 1-megabyte boundary in a single DMA transfer
16-bit counter register

Ability to handle byte-aligned transfers

Support for 1-byte, 2-byte, and 4-byte burst sizes

Minimum effective transfer size of 1 byte

Ability to hold up to 17 scatter-gather transfers

Operation on sectors only, for example, a disk

A DMA engine on an ISA bus in an x86 machine has the following attribute structure:

static ddi dma attr t attributes = {

DMA ATTR VO, /* Version number */

0x00000000, /* low address */

Ox00OFFFFFF, /* high address */

OXFFFF, /* counter register max */

1, /* byte alignment */

ox7, /* burst sizes */

0x1, /* minimum transfer size */
OxFFFFFFFF, /* max transfer size */
OX000FFFFF, /* address register max */

17, /* scatter-gather */

512, /* device operates on sectors */

Writing Device Drivers « October 2012

Managing DMA Resources

0, /* attr flag: set to 0 */

Managing DMA Resources

This section describes how to manage DMA resources.

Object Locking

Before allocating the DMA resources for a memory object, the object must be prevented from
moving. Otherwise, the system can remove the object from memory while the device is trying to
write to that object. A missing object would cause the data transfer to fail and possibly corrupt
the system. The process of preventing memory objects from moving during a DMA transfer is
known as locking down the object.

The following object types do not require explicit locking:

= Buffers coming from the file system through strategy(9E). These buffers are already locked
by the file system.

= Kernel memory allocated within the device driver, such as that allocated by
ddi_dma_mem_alloc(9F).

For other objects such as buffers from user space, physio(9F) or ddi_umem_lock(9F) must be
used to lock down the objects. Locking down objects with these functions is usually performed
in the read(9E) or write(9E) routines of a character device driver. See “Data Transfer Methods
on page 269 for an example.

»

Allocating a DMA Handle

A DMA handle is an opaque object that is used as a reference to subsequently allocated DMA
resources. The DMA handle is usually allocated in the driver's attach() entry point that uses
ddi_dma_alloc_handle(9F). The ddi_dma_alloc_handle() function takes the device
information that is referred to by dip and the device's DMA attributes described by a

ddi dma attr(9S) structure as parameters. The ddi_dma_alloc_handle() function has the
following syntax:

int ddi dma alloc handle(dev _info t *dip,
ddi dma attr t *attr, int (*callback)(caddr t),
caddr_t arg, ddi_dma_handle_t *handlep);
where:

dip Pointer to the device's dev_info structure.

Chapter9 - Direct Memory Access (DMA) 161

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-attr-9s

Managing DMA Resources

162

attr

callback
arg

handlep

Pointer toaddi_dma_attr(9S) structure, as described in “DMA Attributes” on
page 157.

Address of the callback function for handling resource allocation failures.
Argument to be passed to the callback function.

Pointer to a DMA handle to store the returned handle.

Allocating DMA Resources

Two interfaces allocate DMA resources:

® ddi_dma_buf_bind handle(9F) - Used with buf (9S) structures

® ddi_dma_addr_bind_handle(9F) - Used with virtual addresses

DMA resources are usually allocated in the driver's xxstart () routine, if an xxstart () routine
exists. See “Asynchronous Data Transfers (Block Drivers)” on page 299 for a discussion of
xxstart (). These two interfaces have the following syntax:

int ddi dma_addr bind handle(ddi dma handle t handle,
struct as *as, caddr t addr,
size t len, uint t flags, int (*callback)(caddr t),
caddr t arg, ddi dma cookie t *cookiep, uint t *ccountp);

int ddi dma buf bind handle(ddi dma handle t handle,
struct buf *bp, uint t flags,
int (*callback)(caddr t), caddr t arg,
ddi_dma_cookie t *cookiep, uint_t *ccountp);

The following arguments are common to both ddi_dma_addr_bind_handle(9F) and
ddi_dma_buf_bind_handle(9F):

handle
flags

callback

arg
cookiep

ccountp

DMA handle and the object for allocating resources.

Set of flags that indicate the transfer direction and other attributes. DDI_DMA_READ
indicates a data transfer from device to memory. DDI_DMA_WRITE indicates a data
transfer from memory to device. See the ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F) man page for a complete discussion of the
available flags.

Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

Argument to pass to the callback function.
Pointer to the first DM A cookie for this object.

Pointer to the number of DMA cookies for this object.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-alloc-handle-9f

Managing DMA Resources

For ddi_dma_addr_bind_handle(9F), the object is described by an address range with the
following parameters:

as Pointer to an address space structure. The value of as must be NULL.
addr Base kernel address of the object.

len Length of the object in bytes.

For ddi_dma_buf_bind_handle(9F), the object is described by a buf(9S) structure pointed to by
bp.

Device Register Structure

DMA-capable devices require more registers than were used in the previous examples.

The following fields are used in the device register structure to support DMA-capable device
with no scatter-gather support:

uint32 t dma_addr; /* starting address for DMA */
uint32 t dma_size; /* amount of data to transfer */

The following fields are used in the device register structure to support DMA-capable devices
with scatter-gather support:

struct sglentry {
uint32_t dma_addr;
uint32 t dma_size;
} sglist[SGLLEN];

caddr t iopb addr; /* When written, informs the device of the next */
/* command’s parameter block address. */
/* When read after an interrupt, contains */
/* the address of the completed command. */

DMA Callback Example

In Example 9-1, xxstart () is used as the callback function. The per-device state structure is
used as the argument to xxstart (). The xxstart () function attempts to start the command. If
the command cannot be started because resources are not available, xxstart () is scheduled to
be called later when resources are available.

Because xxstart() is used as a DMA callback, xxstart () must adhere to the following rules,
which are imposed on DMA callbacks:

= Resources cannot be assumed to be available. The callback must try to allocate resources
again.

Chapter9 - Direct Memory Access (DMA) 163

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s

Managing DMA Resources

164

= The callback must indicate to the system whether allocation succeeded.
DDI_DMA CALLBACK RUNOUT should be returned if the callback fails to allocate resources, in
which case xxstart () needs to be called again later. DDI_DMA_CALLBACK_DONE indicates
success, so that no further callback is necessary.

EXAMPLE9-1 DMA Callback Example

static int
xxstart(caddr_t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct device reg *regp;
int flags;
mutex_enter(&xsp->mu);
if (xsp->busy) {
/* transfer in progress */
mutex exit(&xsp->mu);
return (DDI_DMA CALLBACK RUNOUT);
}
xsp->busy = 1;
regp = Xsp->regp;
if (/* transfer is a read */) {
flags = DDI DMA READ;
} else {
flags = DDI DMA WRITE;

mutex_exit(&xsp->mu);

if (ddi_dma buf bind handle(xsp->handle,xsp->bp,flags, xxstart,
(caddr t)xsp, &cookie, &ccount) != DDI DMA MAPPED) {
/* really should check all return values in a switch */
mutex_enter(&xsp->mu);
xsp->busy=0;
mutex_exit(&xsp->mu);
return (DDI DMA CALLBACK RUNOUT);

}
/* Program the DMA engine. */
return (DDI DMA CALLBACK DONE);

Determining Maximum Burst Sizes

Drivers specify the DMA burst sizes that their device supports in the

dma_attr burstsizesfield of the ddi dma attr(9S) structure. This field is a bitmap of the
supported burst sizes. However, when DMA resources are allocated, the system might impose
further restrictions on the burst sizes that might be actually used by the device. The

ddi dma_burstsizes(9F) routine can be used to obtain the allowed burst sizes. This routine
returns the appropriate burst size bitmap for the device. When DMA resources are allocated, a
driver can ask the system for appropriate burst sizes to use for its DMA engine.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-burstsizes-9f

Managing DMA Resources

EXAMPLE9-2 Determining Burst Size

#define BEST BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma buf bind handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr t)xsp, &cookie, &ccount) != DDI DMA MAPPED) {
/* error handling */

}

burst = ddi_dma_burstsizes(xsp->handle);

/* check which bit is set and choose one burstsize to */

/* program the DMA engine */

if (burst & BEST BURST SIZE) {
/* program DMA engine to use this burst size */

} else {
/* other cases */

}

Allocating Private DMA Buffers

Some device drivers might need to allocate memory for DMA transfers in addition to
performing transfers requested by user threads and the kernel. Some examples of allocating
private DMA buffers are setting up shared memory for communication with the device and
allocating intermediate transfer buffers. Use ddi_dma_mem_alloc(9F) to allocate memory for
DMA transfers.

int ddi_dma_mem alloc(ddi _dma_handle_t handle, size t length,
ddi_device acc_attr_t *accattrp, uint_ t flags,
int (*waitfp)(caddr t), caddr t arg, caddr t *kaddrp,
size t *real length, ddi acc handle t *handlep);

where:

handle DMA handle

length Length in bytes of the desired allocation

accattrp Pointer to a device access attribute structure

flags Data transfer mode flags. Possible values are DDI_DMA_CONSISTENT and
DDI_DMA_STREAMING.

waitfp Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

arg Argument to pass to the callback function

kaddrp Pointer on a successful return that contains the address of the allocated storage

real_length Length in bytes that was allocated

handlep Pointer to a data access handle

Chapter9 - Direct Memory Access (DMA) 165

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-alloc-handle-9f

Managing DMA Resources

166

The flags parameter should be set to DDI_DMA_CONSISTENT if the device accesses in a
nonsequential fashion. Synchronization steps that use ddi_dma_sync(9F) should be as
lightweight as possible due to frequent application to small objects. This type of access is
commonly known as consistent access. Consistent access is particularly useful for I/O
parameter blocks that are used for communication between a device and the driver.

On the x86 platform, allocation of DMA memory that is physically contiguous has these
requirements:

m Thelength of the scatter-gather list dma_attr_sglleninthe ddi_dma_attr(9S) structure
must be set to 1.

= Do notspecify DDI_DMA_PARTIAL.DDI_DMA_PARTIAL allows partial resource allocation.

The following example shows how to allocate IOPB memory and the necessary DMA resources
to access this memory. DMA resources must still be allocated, and the DDI_DMA_CONSISTENT
flag must be passed to the allocation function.

EXAMPLE9-3 Using ddi_dma_mem_alloc(9F)

if (ddi_dma_mem alloc(xsp->iopb handle, size, &accattr,
DDI DMA CONSISTENT, DDI DMA SLEEP, NULL, &xsp->iopb array,
&real length, &xsp->acchandle) != DDI SUCCESS) {
/* error handling */
goto failure;

}

if (ddi_dma addr bind handle(xsp->iopb handle, NULL,
Xsp->iopb array, real length,
DDI DMA READ | DDI DMA CONSISTENT, DDI DMA SLEEP,
NULL, &cookie, &count) != DDI_DMA MAPPED) {
/* error handling */
ddi dma mem free(&xsp->acchandle);
goto failure;

The flags parameter should be set to DDI_DMA_STREAMING for memory transfers that are
sequential, unidirectional, block-sized, and block-aligned. This type of access is commonly
known as streaming access.

In some cases, an I/O transfer can be sped up by using an I/O cache. I/O cache transfers one
cache line at a minimum. The ddi_dma_mem_alloc(9F) routine rounds size to a multiple of the
cache line to avoid data corruption.

The ddi_dma_mem_alloc(9F) function returns the actual size of the allocated memory object.
Because of padding and alignment requirements, the actual size might be larger than the
requested size. The ddi_dma_addr_bind_handle(9F) function requires the actual length.

Use the ddi_dma_mem_free(9F) function to free the memory allocated by
ddi dma mem alloc(9F).

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f

Managing DMA Resources

Note - Drivers must ensure that buffers are aligned appropriately. Drivers for devices that have
alignment requirements on down bound DMA buffers might need to copy the data into a driver
intermediate buffer that meets the requirements, and then bind that intermediate buffer to the
DMA handle for DMA. Use ddi dma mem_alloc(9F) to allocate the driver intermediate buffer.
Always use ddi_dma_mem_alloc(9F) instead of kmem_alloc(9F) to allocate memory for the
device to access.

Handling Resource Allocation Failures

The resource-allocation routines provide the driver with several options when handling
allocation failures. The waitfp argument indicates whether the allocation routines block, return
immediately, or schedule a callback, as shown in the following table.

TABLE9-1 Resource Allocation Handling

waitfp value Indicated Action

DDI DMA DONTWAIT Driver does not want to wait for resources to become available

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to become available

Other values The address of a function to be called when resources are likely to be
available

Programming the DMA Engine

When the resources have been successfully allocated, the device must be programmed.
Although programming a DMA engine is device specific, all DM A engines require a starting
address and a transfer count. Device drivers retrieve these two values from the DMA cookie
returned by a successful call from ddi_dma_addr_bind_handle(9F),

ddi_dma_buf bind_handle(9F), or ddi_dma_getwin(9F). These functions all return the first
DMA cookie and a cookie count indicating whether the DMA object consists of more than one
cookie. If the cookie count N is greater than 1, ddi_dma_nextcookie(9F) must be called N-1
times to retrieve all the remaining cookies.

A DMA cookie is of type ddi_dma_cookie(9S). This type of cookie has the following fields:

uint64 t ~dmac_11; /* 64-bit DMA address */
uint32 t ~dmac_la[2]; /* 2 x 32-bit address */
size t dmac_size; /* DMA cookie size */

uint t dmac_type; /* bus specific type bits */

The dmac_laddress specifies a 64-bit I/O address that is appropriate for programming the
device's DMA engine. If a device has a 64-bit DMA address register, a driver should use this
field to program the DMA engine. The dmac_address field specifies a 32-bit I/O address that

Chapter9 - Direct Memory Access (DMA) 167

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-dma-cookie-9s

Managing DMA Resources

168

should be used for devices that have a 32-bit DMA address register. The dmac_size field
contains the transfer count. Depending on the bus architecture, the dmac_type field in the
cookie might be required by the driver. The driver should not perform any manipulations, such
as logical or arithmetic, on the cookie.

EXAMPLE9-4 ddi_dma_cookie(9S) Example

ddi dma cookie t cookie;

if (ddi_dma buf bind handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &xsp->ccount) != DDI DMA MAPPED) {
/* error handling */
}
sglp = regp->sglist;
for (cnt = 1; cnt <= SGLLEN; cnt++, sglp++) {
/* store the cookie parms into the S/G list */
ddi put32(xsp->access hdl, &sglp->dma size,
(uint32 t)cookie.dmac size);
ddi_put32(xsp->access_hdl, &sglp->dma_addr,
cookie.dmac address);
/* Check for end of cookie list */
if (cnt == xsp->ccount)
break;
/* Get next DMA cookie */
(void) ddi dma_nextcookie(xsp->handle, &cookie);
}
/* start DMA transfer */
ddi put8(xsp->access _hdl, ®p->csr,
ENABLE INTERRUPTS | START TRANSFER);

Freeing the DMA Resources

After a DMA transfer is completed, usually in the interrupt routine, the driver can release DMA
resources by calling ddi_dma_unbind_handle(9F).

As described in “Synchronizing Memory Objects” on page 171, ddi_dma_unbind_handle(9F)
callsddi_dma_sync(9F), eliminating the need for any explicit synchronization. After calling
ddi_dma_unbind handle(9F), the DMA resources become invalid, and further references to the
resources have undefined results. The following example shows how to use

ddi_dma_unbind handle(9F).

EXAMPLE9-5 Freeing DMA Resources

static uint t
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
uint8 t status;
volatile uint8 t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access _hdl, &xsp->regp->csr);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-unbind-handle-9f

Managing DMA Resources

EXAMPLE9-5 Freeing DMA Resources (Continued)

if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);
return (DDI INTR UNCLAIMED);
}
ddi put8(xsp->access hdl, &xsp->regp->csr, CLEAR INTERRUPT);
/* for store buffers */
temp = ddi get8(xsp->access hdl, &xsp->regp->csr);
ddi dma unbind handle(xsp->handle);
/* Check for errors. */
xsp->busy = 0;
mutex exit(&xsp->mu);
if (/* pending transfers */) {
(void) xxstart((caddr t)xsp);

}
return (DDI_INTR CLAIMED);

The DMA resources should be released. The DMA resources should be reallocated if a different
object is to be used in the next transfer. However, if the same object is always used, the resources
can be allocated once. The resources can then be reused as long as intervening calls to
ddi_dma_sync(9F) remain.

Freeing the DMA Handle

When the driver is detached, the DMA handle must be freed. The ddi_dma_free handle(9F)
function destroys the DM A handle and destroys any residual resources that the system is
caching on the handle. Any further references of the DM A handle will have undefined results.

Canceling DMA Callbacks

DMA callbacks cannot be canceled. Cancelinga DMA callback requires some additional code
in the driver's detach(9E) entry point. The detach () routine must not return DDI_SUCCESS if
any outstanding callbacks exist. See Example 9-6. When DMA callbacks occur, the detach ()
routine must wait for the callback to run. When the callback has finished, detach () must
prevent the callback from rescheduling itself. Callbacks can be prevented from rescheduling
through additional fields in the state structure, as shown in the following example.

EXAMPLE9-6 Canceling DM A Callbacks

static int
xxdetach(dev_info t *dip, ddi detach cmd t cmd)
{

VA

mutex_enter(&xsp->callback mutex);
xsp->cancel callbacks = 1;
while (xsp->callback count > 0) {

Chapter9 - Direct Memory Access (DMA) 169

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-free-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

Managing DMA Resources

EXAMPLE9-6 Canceling DMA Callbacks (Continued)

cv_wait(&xsp->callback cv, &xsp->callback mutex);

}
mutex exit(&xsp->callback mutex);
VA

}

static int

xxstrategy(struct buf *bp)

/* .. %/
mutex_enter(&xsp->callback mutex);
Xsp->bp = bp;

error = ddi dma buf bind handle(xsp->handle, xsp->bp, flags,
xxdmacallback, (caddr t)xsp, &cookie, &ccount);
if (error == DDI DMA NORESOURCES)
xsp->callback count++;
mutex_exit(&xsp->callback mutex);
/* ... X/
}

static int
xxdmacallback(caddr t callbackarg)
{
struct xxstate *xsp = (struct xxstate *)callbackarg;
/* .. */
mutex enter(&xsp->callback mutex);
if (xsp->cancel callbacks) {
/* do not reschedule, in process of detaching */
xsp->callback count--;
if (xsp->callback count == 0)
cv_signal(&xsp->callback cv);
mutex exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE); /* don’'t reschedule it */

* Presumably at this point the device is still active

* and will not be detached until the DMA has completed.

* A return of @ means try again later

*/

error = ddi dma buf bind handle(xsp->handle, xsp->bp, flags,
DDI DMA DONTWAIT, NULL, &cookie, &ccount);

if (error == DDI_DMA MAPPED) {
/* Program the DMA engine. */
xsp->callback count--;
mutex exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE);

if (error !'= DDI DMA NORESOURCES) {
xsp->callback count--;
mutex_exit(&xsp->callback mutex);
return (DDI DMA CALLBACK DONE);

}

mutex exit(&xsp->callback mutex);

return (DDI_DMA CALLBACK RUNOUT);

170 Writing Device Drivers « October 2012

Managing DMA Resources

Synchronizing Memory Objects

In the process of accessing the memory object, the driver might need to synchronize the
memory object with respect to various caches. This section provides guidelines on when and
how to synchronize memory objects.

Cache

CPU cache is a very high-speed memory that sits between the CPU and the system's main
memory. I/O cache sits between the device and the system's main memory, as shown in the
following figure.

FIGURE9-1 CPU and System I/O Caches

Memory
I
I |
System
CPU cache /O cache
I I
Bus extender
cPU 1/0 cache
I
1/0 device

When an attempt is made to read data from main memory, the associated cache checks for the
requested data. If the data is available, the cache supplies the data quickly. If the cache does not
have the data, the cache retrieves the data from main memory. The cache then passes the data
on to the requester and saves the data in case of a subsequent request.

Similarly, on a write cycle, the data is stored in the cache quickly. The CPU or device is allowed
to continue executing, that is, transferring data. Storing data in a cache takes much less time
than waiting for the data to be written to memory.

With this model, after a device transfer is complete, the data can still be in the I/O cache with no
data in main memory. If the CPU accesses the memory, the CPU might read the wrong data
from the CPU cache. The driver must call a synchronization routine to flush the data from the
I/0O cache and update the CPU cache with the new data. This action ensures a consistent view of
the memory for the CPU. Similarly, a synchronization step is required if data modified by the
CPU is to be accessed by a device.

Chapter9 - Direct Memory Access (DMA) 171

Managing DMA Resources

172

You can create additional caches and buffers between the device and memory, such as bus
extenders and bridges. Use ddi_dma_sync(9F) to synchronize all applicable caches.

ddi_dma_sync() Function

A memory object might have multiple mappings, such as for the CPU and for a device, by
means of a DMA handle. A driver with multiple mappings needs to call ddi_dma_sync(9F) if
any mappings are used to modify the memory object. Calling ddi_dma_sync() ensures that the
modification of the memory object is complete before the object is accessed through a different
mapping. The ddi_dma_sync() function can also inform other mappings of the object if any
cached references to the object are now stale. Additionally, ddi_dma_sync() flushes or
invalidates stale cache references as necessary.

Generally, the driver must call ddi_dma_sync() when a DMA transfer completes. The
exception to this rule is if deallocating the DMA resources with ddi_dma_unbind_handle(9F)
does an implicitddi_dma_sync () on behalf of the driver. The syntax for ddi_dma_sync() is as
follows:

int ddi_dma_sync(ddi _dma handle t handle, off t off,
size t length, uint t type);

If the object is going to be read by the DMA engine of the device, the device's view of the object
must be synchronized by setting type to DDI_DMA_SYNC_FORDEV. If the DMA engine of the
device has written to the memory object and the object is going to be read by the CPU, the
CPU's view of the object must be synchronized by setting type to DDI_DMA_SYNC_FORCPU.

The following example demonstrates synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI DMA SYNC FORCPU)
== DDI SUCCESS) {
/* the CPU can now access the transferred data */
/* .. */
} else {
/* error handling */

}

Use the flagDDI_DMA_SYNC_FORKERNEL if the only mapping is for the kernel, as in the case of
memory thatis allocated by ddi_dma_mem_alloc(9F). The system tries to synchronize the
kernel's view more quickly than the CPU's view. If the system cannot synchronize the kernel
view faster, the system acts as if the DDI_DMA_SYNC_FORCPU flag were set.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-mem-alloc-9f

DMAWindows

DMA Windows

If an object does not fit within the limitations of the DMA engine, the transfer must be broken
into a series of smaller transfers. The driver can break up the transfer itself. Alternatively, the
driver can allow the system to allocate resources for only part of the object, thereby creating a
series of DMA windows. Allowing the system to allocate resources is the preferred solution,
because the system can manage the resources more effectively than the driver can manage the
resources.

A DMA window has two attributes. The offset attribute is measured from the beginning of the
object. The length attribute is the number of bytes of memory to be allocated. After a partial
allocation, only a range of length bytes that starts at offset has allocated resources.

A DMA window is requested by specifying the DDI_DMA PARTIAL flag as a parameter to
ddi_dma_buf bind_handle(9F)orddi_dma_addr_bind handle(9F). Both functions return
DDI_DMA_PARTIAL_MAP if a window can be established. However, the system might allocate
resources for the entire object, in which case DDI_DMA_MAPPED is returned. The driver should
check the return value to determine whether DMA windows are in use. See the following
example.

EXAMPLE9-7 Setting Up DMA Windows

static int
xxstart (caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct device reg *regp = xsp->reg;
ddi dma cookie t cookie;
int status;
mutex_enter(&xsp->mu);
if (xsp->busy) {
/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI DMA CALLBACK RUNOUT);
}
xsp->busy = 1;
mutex exit(&xsp->mu);
if (/* transfer is a read */) {
flags = DDI DMA READ;
} else {
flags = DDI DMA WRITE;
}
flags |= DDI DMA PARTIAL;
status = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp,
flags, xxstart, (caddr t)xsp, &cookie, &ccount);
if (status != DDI DMA MAPPED &&
status != DDI DMA PARTIAL MAP)
return (DDI DMA CALLBACK RUNOUT);
if (status == DDI DMA PARTIAL MAP) {
ddi dma numwin(xsp->handle, &xsp->nwin);
xsp->partial = 1;
xsp->windex = 0;
} else {

Chapter9 - Direct Memory Access (DMA) 173

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-addr-bind-handle-9f

DMAWindows

174

EXAMPLE9-7 Setting Up DMA Windows (Continued)

xsp->partial = 0;
}
/* Program the DMA engine. */
return (DDI_DMA_CALLBACK DONE);

Two functions operate with DMA windows. The first, ddi_dma_numwin(9F), returns the
number of DMA windows for a particular DMA object. The other function,
ddi_dma_getwin(9F), allows repositioning within the object, that is, reallocation of system
resources. The ddi_dma_getwin () function shifts the current window to a new window within
the object. Because ddi_dma_getwin () reallocates system resources to the new window, the
previous window becomes invalid.

Caution - Do not move the DMA windows with a call to ddi_dma_getwin () before transfers into
the current window are complete. Wait until the transfer to the current window is complete,
which is when the interrupt arrives. Then call ddi_dma_getwin () to avoid data corruption.

The ddi_dma_getwin () function is normally called from an interrupt routine, as shown in
Example 9-8. The first DMA transfer is initiated as a result of a call to the driver. Subsequent
transfers are started from the interrupt routine.

The interrupt routine examines the status of the device to determine whether the device
completes the transfer successfully. If not, normal error recovery occurs. If the transfer is
successful, the routine must determine whether the logical transfer is complete. A complete
transfer includes the entire object as specified by the buf(9S) structure. In a partial transfer, only
one DMA window is moved. In a partial transfer, the interrupt routine moves the window with
ddi_dma_getwin(9F), retrieves a new cookie, and starts another DMA transfer.

If the logical request has been completed, the interrupt routine checks for pending requests. If
necessary, the interrupt routine starts a transfer. Otherwise, the routine returns without
invoking another DMA transfer. The following example illustrates the usual flow control.

EXAMPLE9-8 Interrupt Handler Using DMA Windows

static uint_t
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8 t temp;
mutex _enter(&xsp->mu);
/* read status */
status = ddi get8(xsp->access hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex_exit(&xsp->mu);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-numwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-getwin-9f

DMAWindows

EXAMPLE9-8 Interrupt Handler Using DMA Windows (Continued)

}

ddi put8(xsp->access hdl,&xsp->regp->csr, CLEAR INTERRUPT);

return (DDI_INTR UNCLAIMED);

/* for store buffers */
temp = ddi get8(xsp->access hdl, &xsp->regp->csr);
if (/* an error occurred during transfer */) {

bioerror(xsp->bp, EIO);
xsp->partial = 0;

} else {

}

xsp->bp->b resid -= /* amount transferred */ ;

if (xsp->partial && (++xsp->windex < xsp->nwin)) {

}

/* device still marked busy to protect state */

mutex exit(&xsp->mu);

(void) ddi dma_getwin(xsp->handle, xsp->windex,
&offset, &len, &cookie, &ccount);

/* Program the DMA engine with the new cookie(s). */

return (DDI INTR CLAIMED);

ddi_dma_unbind_handle(xsp->handle);
biodone(xsp->bp);

xsp->busy = 0;

xsp->partial = 0;

mutex exit(&xsp->mu);

if (/* pending transfers */) {

(void) xxstart((caddr t)xsp);

}
return (DDI_INTR_CLAIMED);

Chapter9 « Direct Memory Access (DMA)

175

176

L K R 4 CHAPTER 10

Mapping Device and Kernel Memory

Some device drivers allow applications to access device or kernel memory through mmap(2).
Frame buffer drivers, for example, enable the frame buffer to be mapped into a user thread.
Another example would be a pseudo driver that uses a shared kernel memory pool to
communicate with an application. This chapter provides information on the following subjects:

“Memory Mapping Overview” on page 177

“Exporting the Mapping” on page 177

“Associating Device Memory With User Mappings” on page 181
“Associating Kernel Memory With User Mappings” on page 182

Memory Mapping Overview

The steps that a driver must take to export device or kernel memory are as follows:

1. SettheD_ DEVMAP flagin the cb_flag flag of the cb_ops(9S) structure.

2. Define a devmap(9E) driver entry point and optional segmap(9E) entry point to export the
mapping.

3. Usedevmap_devmem_setup(9F) to set up user mappings to a device. To set up user
mappings to kernel memory, use devmap_umem_setup(9F).

Exporting the Mapping

This section describes how to use the segmap(9E) and devmap(9E) entry points.

The segmap(9E) Entry Point

The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine. By providing a segmap ()

177

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f

Exporting the Mapping

178

entry point, a driver can take care of general tasks before or after creating the mapping. For
example, the driver can check mapping permissions and allocate private mapping resources.
The driver can also make adjustments to the mapping to accommodate non-page-aligned
device buffers. The segmap () entry point must call the ddi_devmap_segmap(9F) function before
returning. The ddi_devmap_segmap () function calls the driver's devmap(9E) entry point to
perform the actual mapping.

The segmap () function has the following syntax:

int segmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,
off t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

where:

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

asp Pointer to the address space into which the device memory should be mapped.
Note that this argument can be either a struct as *, as shown in Example 10-1,
oraddi as_handle_t,asshown in Example 10-2. This is because ddidevmap . h
includes the following declaration:
typedef struct as *ddi as handle t

addrp Pointer to the address in the address space to which the device memory should be
mapped.

len Length (in bytes) of the memory being mapped.

prot A bit field that specifies the protections. Possible settings are PROT_READ,
PROT_WRITE, PROT_EXEC, PROT_USER, and PROT_ALL. See the man page
for details.

maxprot Maximum protection flag possible for attempted mapping. The PROT_WRITE bit
can be masked out if the user opened the special file read-only.

flags Flags that indicate the type of mapping. Possible values include MAP_SHARED
and MAP_PRIVATE.

credp Pointer to the user credentials structure.

In the following example, the driver controls a frame buffer that allows write-only mappings.
The driver returns EINVAL if the application tries to gain read access and then calls
ddi_devmap_segmap(9F) to set up the user mapping.

EXAMPLE10-1 segmap(9E) Routine

static int
xxsegmap(dev_t dev, off t off, struct as *asp, caddr t *addrp,

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f

Exporting the Mapping

EXAMPLE 10-1 segmap(9E) Routine (Continued)

off t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred t *credp)

{
if (prot & PROT_READ)
return (EINVAL);
return (ddi devmap segmap(dev, off, as, addrp,
len, prot, maxprot, flags, cred));
}

The following example shows how to handle a device that has a buffer that is not page-aligned in
its register space. This example maps a buffer that starts at offset 0x800, so that mmap(2) returns
an address that corresponds to the start of the buffer. The devmap_devmem_setup(9F) function
maps entire pages, requires the mapping to be page aligned, and returns an address to the start
of a page. If this address is passed through segmap(9E), or if no segmap () entry point is defined,
mmap () returns the address that corresponds to the start of the page, not the address that
corresponds to the start of the buffer. In this example, the buffer offset is added to the
page-aligned address that was returned by devmap_devmem_setup so that the resulting address
returned is the desired start of the buffer.

EXAMPLE 10-2 Using the segmap () Function to Change the Address Returned by the mmap () Call

#define BUFFER OFFSET 0x800

int

xx_segmap(dev t dev, off t off, ddi as handle t as, caddr t *addrp, off t len,
uint t prot, uint t maxprot, uint t flags, cred t *credp)

{
int rval;
unsigned long pagemask = ptob(1lL) - 1L;
if ((rval = ddi devmap segmap(dev, off, as, addrp, len, prot, maxprot,
flags, credp)) == DDI SUCCESS) {
/*
* The address returned by ddi devmap segmap is the start of the page
* that contains the buffer. Add the offset of the buffer to get the
* final address.
*/
*addrp += BUFFER OFFSET & pagemask);
}
return (rval);
}

The devmap(9E) Entry Point

The devmap(9E) entry point is called from the ddi_devmap_segmap(9F) function inside the
segmap(9E) entry point.

Chapter 10 « Mapping Device and Kernel Memory 179

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e

Exporting the Mapping

180

The devmap(9E) entry point is called as a result of the mmap(2) system call. The devmap(9E)
function is called to export device memory or kernel memory to user applications. The
devmap () function is used for the following operations:

= Validate the user mapping to the device or kernel memory

= Translate the logical offset within the application mapping to the corresponding offset
within the device or kernel memory

® Pass the mapping information to the system for setting up the mapping

The devmap () function has the following syntax:

int devmap(dev_t dev, devmap_cookie t handle, offset_t off,
size_t len, size_t *maplen, uint_t model);

where:
dev Device whose memory is to be mapped.

handle ~ Device-mapping handle that the system creates and uses to describe a mapping to
contiguous memory in the device or kernel.

off Logical offset within the application mapping that has to be translated by the driver
to the corresponding offset within the device or kernel memory.

len Length (in bytes) of the memory being mapped.

maplen Enables driver to associate different kernel memory regions or multiple physically
discontiguous memory regions with one contiguous user application mapping.

model Data model type of the current thread.

The system creates multiple mapping handles in one mmap(2) system call. For example, the
mapping might contain multiple physically discontiguous memory regions.

Initially, devmap(9E) is called with the parameters off and len. These parameters are passed by
the application to mmap(2). devmap(9E) sets *maplen to the length from off to the end of a
contiguous memory region. The *maplen value must be rounded up to a multiple of a page size.
The *maplen value can be set to less than the original mapping length len. If so, the system uses
a new mapping handle with adjusted off and len parameters to call devmap(9E) repeatedly until
the initial mapping length is satisfied.

If a driver supports multiple application data models, model must be passed to

ddi_model convert from(9F). The ddi model convert from() function determines whether
a data model mismatch exists between the current thread and the device driver. The device
driver might have to adjust the shape of data structures before exporting the structures to a user
thread that supports a different data model. See Appendix C, “Making a Device Driver 64-Bit
Ready,” page for more details.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-model-convert-from-9f

Associating Device Memory With User Mappings

The devmap(9E) entry point must return -1 if the logical offset, off, is out of the range of
memory exported by the driver.

Associating Device Memory With User Mappings

Call devmap_devmem_setup(9F) from the driver's devmap(9E) entry point to export device
memory to user applications.

The devmap_devmem_setup(9F) function has the following syntax:

int devmap_devmem_setup(devmap_cookie t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber,
offset_t roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device acc_attr_t *accattrp);

where:
handle Opaque device-mapping handle that the system uses to identify the mapping.
dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback_ct1(9S) structure that enables the driver to be
notified of user events on the mapping.

rnumber Index number to the register address space set.

roff Offset into the device memory.

len Length in bytes that is exported.

maxprot Allows the driver to specify different protections for different regions within the
exported device memory.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to addi device acc_attr(9S) structure.

The roffand len arguments describe a range within the device memory specified by the register
set rnumber. The register specifications that are referred to by rnumber are described by the reg
property. For devices with only one register set, pass zero for rnumber. The range is defined by
roffand len. The range is made accessible to the user's application mapping at the offset that is
passed in by the devmap(9E) entry point. Usually the driver passes the devmap(9E) offset directly
to devmap_devmem_setup(9F). The return address of mmap(2) then maps to the beginning
address of the register set.

The maxprot argument enables the driver to specify different protections for different regions
within the exported device memory. For example, to disallow write access for a region, set only
PROT_READ and PROT_USER for that region.

Chapter 10 « Mapping Device and Kernel Memory 181

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2

Associating Kernel Memory With User Mappings

The following example shows how to export device memory to an application. The driver first
determines whether the requested mapping falls within the device memory region. The size of
the device memory is determined using ddi_dev_regsize(9F). The length of the mapping is
rounded up to a multiple of a page size using ptob(9F) and btopr(9F). Then
devmap_devmem_setup(9F) is called to export the device memory to the application.

EXAMPLE 10-3 Using the devmap_devmem_setup () Routine

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off, size t len,
size t *maplen, uint t model)
{
struct xxstate *xsp;
int error, rnumber;
off t regsize;

/* Set up data access attribute structure */
struct ddi device acc attr xx acc attr = {
DDI DEVICE ATTR VO,
DDI NEVERSWAP ACC,
DDI STRICTORDER ACC
+
xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (-1);
/* use register set 0 */
rnumber = 0;
/* get size of register set */
if (ddi_dev_regsize(xsp->dip, rnumber, ®size) != DDI SUCCESS)
return (-1);
/* round up len to a multiple of a page size */
len = ptob(btopr(len));
if (off + len > regsize)
return (-1);
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, NULL, rnumber,
off, len, PROT ALL, DEVMAP DEFAULTS, &xx_ acc attr);
/* acknowledge the entire range */
*maplen = len;
return (error);

Associating Kernel Memory With User Mappings

Some device drivers might need to allocate kernel memory that is made accessible to user
programs through mmap(2). One example is setting up shared memory for communication
between two applications. Another example is sharing memory between a driver and an
application.

When exporting kernel memory to user applications, follow these steps:

1. Useddi_umem_alloc(9F) to allocate kernel memory.

182 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dev-regsize-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fptob-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbtopr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

2. Use devmap_umem_setup(9F) to export the memory.
3. Useddi_umem_free(9F) to free the memory when the memory is no longer needed.

Allocating Kernel Memory for User Access

Useddi_umem_alloc(9F) to allocate kernel memory that is exported to applications.
ddi_umem_alloc() uses the following syntax:

void *ddi_umem_alloc(size t size, int flag, ddi_umem_cookie t

*cookiep) ;

where:

size Number of bytes to allocate.

flag Used to determine the sleep conditions and the memory type.

cookiep Pointer to a kernel memory cookie.

ddi_umem_alloc(9F) allocates page-aligned kernel memory. ddi_umem_alloc() returnsa
pointer to the allocated memory. Initially, the memory is filled with zeroes. The number of bytes
that are allocated is a multiple of the system page size, which is rounded up from the size
parameter. The allocated memory can be used in the kernel. This memory can be exported to
applications as well. cookiep is a pointer to the kernel memory cookie that describes the kernel
memory being allocated. cookiep is used in devmap_umem_setup(9F) when the driver exports
the kernel memory to a user application.

The flag argument indicates whether ddi_umem_alloc(9F) blocks or returns immediately, and
whether the allocated kernel memory is pageable. The values for the flag argument as follows:

DDI UMEM NOSLEEP Driver does not need to wait for memory to become available. Return
NULL if memory is not available.

DDI UMEM SLEEP Driver can wait indefinitely for memory to become available.

DDI_UMEM_PAGEABLE Driver allows memory to be paged out. If not set, the memory is
locked down.

The ddi_umem_lock() function can perform device-locked-memory checks. The function
checks against the limit value that is specified in project.max-locked-memory. If the current
project locked-memory usage is below the limit, the project's locked-memory byte count is
increased. After the limit check, the memory islocked. The ddi_umem_unlock() function
unlocks the memory, and the project's locked-memory byte count is decremented.

The accounting method that is used is an imprecise full price model. For example, two callers of
umem_lockmemory () within the same project with overlapping memory regions are charged
twice.

Chapter 10 « Mapping Device and Kernel Memory 183

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

For information about the project.max-locked-memory and zone.max-locked memory
resource controls on Oracle Solaris systems with zones installed, see Resource Management and
Oracle Solaris Zones Developer’s Guide and see resource_controls(5).

The following example shows how to allocate kernel memory for application access. The driver
exports one page of kernel memory, which is used by multiple applications as a shared memory
area. The memory is allocated in segmap(9E) when an application maps the shared page the first
time. An additional page is allocated if the driver has to support multiple application data
models. For example, a 64-bit driver might export memory both to 64-bit applications and to
32-bit applications. 64-bit applications share the first page, and 32-bit applications share the
second page.

EXAMPLE 10-4 Usingtheddi_umem_alloc() Routine

static int

xxsegmap(dev_t dev, off t off, struct as *asp, caddr_t *addrp, off_t len,
unsigned int prot, unsigned int maxprot, unsigned int flags,
cred t *credp)

int error;
minor t instance = getminor(dev);
struct xxstate *xsp = ddi_get soft state(statep, instance);

size t mem size;
/* 64-bit driver supports 64-bit and 32-bit applications */
switch (ddi mmap get model()) {
case DDI_MODEL_LP64:
mem_size = ptob(2);
break;
case DDI_MODEL ILP32:
mem_size = ptob(1);
break;

}

mutex_enter(&xsp->mu);
if (xsp->umem == NULL) {
/* allocate the shared area as kernel pageable memory */
xsp->umem = ddi umem_ alloc(mem size,
DDI UMEM SLEEP | DDI UMEM PAGEABLE, &xsp->ucookie);
}
mutex exit(&xsp->mu);
/* Set up the user mapping */
error = devmap setup(dev, (offset t)off, asp, addrp, len,
prot, maxprot, flags, credp);
return (error);

184 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=RSCMGRDEVGD
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=RSCMGRDEVGD
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN5resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e

Associating Kernel Memory With User Mappings

Exporting Kernel Memory to Applications

Use devmap_umem_setup(9F) to export kernel memory to user applications.
devmap_umem_setup () must be called from the driver's devmap(9E) entry point. The syntax for
devmap_umem_setup() is as follows:

int devmap_umem_setup(devmap_cookie t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, ddi_umem cookie t cookie,
offset_t koff, size t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accatirp);

where:
handle Opaque structure used to describe the mapping.
dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback ct1(9S) structure.

cookie Kernel memory cookie returned by ddi_umem_alloc(9F).

koff Offset into the kernel memory specified by cookie.

len Length in bytes that is exported.

maxprot Specifies the maximum protection possible for the exported mapping.
flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to addi_device acc_attr(9S) structure.

handle is a device-mapping handle that the system uses to identify the mapping. handle is
passed in by the devmap(9E) entry point. dip is a pointer to the device's dev_info structure.
callbackops enables the driver to be notified of user events on the mapping. Most drivers set
callbackops to NULL when kernel memory is exported.

koffand len specify a range within the kernel memory allocated by ddi_umem_alloc(9F). This
range is made accessible to the user's application mapping at the offset that is passed in by the
devmap(9E) entry point. Usually, the driver passes the devmap(9E) offset directly to
devmap_umem_setup(9F). The return address of mmap(2) then maps to the kernel address
returned by ddi_umem_alloc(9F). koffand len must be page-aligned.

maxprot enables the driver to specify different protections for different regions within the
exported kernel memory. For example, one region might not allow write access by only setting
PROT READ and PROT USER.

The following example shows how to export kernel memory to an application. The driver first
checks whether the requested mapping falls within the allocated kernel memory region. Ifa
64-bit driver receives a mapping request from a 32-bit application, the request is redirected to

Chapter 10 « Mapping Device and Kernel Memory 185

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f

Associating Kernel Memory With User Mappings

186

the second page of the kernel memory area. This redirection ensures that only applications
compiled to the same data model share the same page.

EXAMPLE10-5 devmap umem_setup(9F) Routine

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off, size t len,
size t *maplen, uint_t model)

{

struct xxstate *xsp;

int error;

/* round up len to a multiple of a page size */

len = ptob(btopr(len));

/* check if the requested range is ok */

if (off + len > ptob(1))
return (ENXIO);

xsp = ddi_get soft state(statep, getminor(dev));

if (xsp == NULL)
return (ENXIO);

if (ddi model convert from(model) == DDI MODEL ILP32)
/* request from 32-bit application. Skip first page */
off += ptob(1);

/* export the memory to the application */

error = devmap umem setup(handle, xsp->dip, NULL, xsp->ucookie,
off, len, PROT ALL, DEVMAP DEFAULTS, NULL);

*maplen = len;

return (error);

}

Freeing Kernel Memory Exported for User Access

When the driver is unloaded, the memory that was allocated by ddi_umem_alloc(9F) must be
freed by calling ddi_umem_free(9F).

void ddi umem free(ddi umem cookie t cookie);

cookie is the kernel memory cookie returned by ddi_umem_alloc(9F).

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-umem-alloc-9f

L R 2 4 CHAPTER 11

Device Context Management

Some device drivers, such as drivers for graphics hardware, provide user processes with direct
access to the device. These devices often require that only one process at a time accesses the
device.

This chapter describes the set of interfaces that enable device drivers to manage access to such
devices. The chapter provides information on the following subjects:

= “Introduction to Device Context” on page 187
= “Context Management Model” on page 187
= “Context Management Operation” on page 189

Introduction to Device Context

This section introduces device context and the context management model.

Whatls a Device Context?

The context of a device is the current state of the device hardware. The device driver manages
the device context for a process on behalf of the process. The driver must maintain a separate
device context for each process that accesses the device. The device driver has the responsibility
to restore the correct device context when a process accesses the device.

Context Management Model

Frame buffers provide a good example of device context management. An accelerated frame
buffer enables user processes to directly manipulate the control registers of the device through
memory-mapped access. Because these processes do not use traditional system calls, a process
that accesses the device need not call the device driver. However, the device driver must be

187

Introduction to Device Context

188

notified when a process is about to access a device. The driver needs to restore the correct device
context and needs to provide any necessary synchronization.

To resolve this problem, the device context management interfaces enable a device driver to be
notified when a user process accesses memory-mapped regions of the device, and to control
accesses to the device's hardware. Synchronization and management of the various device
contexts are the responsibility of the device driver. When a user process accesses a mapping, the
device driver must restore the correct device context for that process.

A device driver is notified whenever a user process performs any of the following actions:

® Accesses a mapping

= Duplicates a mapping
= Frees amapping

= Creates a mapping

The following figure shows multiple user processes that have memory-mapped a device. The
driver has granted process B access to the device, and process B no longer notifies the driver of
accesses. However, the driver is still notified if either process A or process C accesses the device.

FIGURE 11-1 Device Context Management

User processes Device memory
Process A | >«
N
N
N N N
N g
Current context | Process B < Device
7 s
7 s
7
7
Process C | ~

At some point in the future, process A accesses the device. The device driver is notified and
blocks future access to the device by process B. The driver then saves the device context for
process B. The driver restores the device context of process A. The driver then grants access to
process A, as illustrated in the following figure. At this point, the device driver is notified if
either process B or process C accesses the device.

Writing Device Drivers « October 2012

Context Management Operation

FIGURE 11-2 Device Context Switched to User Process A

User processes Device memory

Current context | Process A

Process B) Device

ProcessC |

On a multiprocessor machine, multiple processes could attempt to access the device at the same
time. This situation can cause thrashing. Some devices require a longer time to restore a device
context. To prevent more CPU time from being used to restore a device context than to actually
use that device context, the minimum time that a process needs to have access to the device can
be set using devmap_set_ctx_timeout(9F).

The kernel guarantees that once a device driver has granted access to a process, no other process
is allowed to request access to the same device for the time interval specified by
devmap_set ctx_timeout(9F).

Context Management Operation

The general steps for performing device context management are as follows:

Defineadevmap callback ct1(9S) structure.

Allocate space to save device context if necessary.

Set up user mappings to the device and driver notifications with devmap_devmem_setup(9F).

Manage user access to the device with devmap_load(9F) and devmap_unload(9F).

ARl

Free the device context structure, if needed.

devmap_callback ctlStructure

The device driver must allocate and initialize a devmap callback ct1(9S) structure to inform
the system about the entry point routines for device context management.

This structure uses the following syntax:

struct devmap callback ctl {
int devmap rev;
int (*devmap map) (devmap cookie t dhp, dev t dev,
uint t flags, offset t off, size t len, void **pvtp);

Chapter 11 - Device Context Management 189

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s

Context Management Operation

190

int (*devmap_access) (devmap_cookie t dhp, void *pvtp,
offset t off, size t len, uint t type, uint t rw);
int (*devmap dup) (devmap cookie t dhp, void *pvtp,
devmap_cookie t new dhp, void **new pvtp);

void (*devmap unmap) (devmap cookie t dhp, void *pvtp,
offset_t off, size t len, devmap_ cookie t new dhpl,
void **new pvtpl, devmap_cookie t new dhp2,

void **new pvtp2);

}i

devmap_rev The version number of the devmap _callback ctl structure. The version
number must be set to DEVMAP_OPS_REV.

devmap_map Must be set to the address of the driver's devmap_map(9E) entry point.

devmap_access Must be set to the address of the driver's devmap_access(9E) entry point.
devmap_dup Must be set to the address of the driver's devmap_dup(9E) entry point.

devmap_unmap Must be set to the address of the driver's devmap_unmap(9E) entry point.

Entry Points for Device Context Management

The following entry points are used to manage device context:

devmap(9E)
devmap_access(9E)
devmap_contextmgt(9E)
devmap_dup(9E)
devmap_unmap(9E)

devmap_map () Entry Point
The syntax for devmap(9E) is as follows:

int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,
offset_t offset, size t len, void **new-devprivate);

The devmap_map () entry point is called after the driver returns from its devmap () entry point
and the system has established the user mapping to the device memory. The devmap () entry
point enables a driver to perform additional processing or to allocate mapping specific private
data. For example, in order to support context switching, the driver has to allocate a context
structure. The driver must then associate the context structure with the mapping.

The system expects the driver to return a pointer to the allocated private data in
*new-devprivate. The driver must store offset and len, which define the range of the mapping, in
its private data. Later, when the system calls devmap_unmap(9E), the driver uses this information
to determine how much of the mapping is being unmapped.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-unmap-9e

Context Management Operation

flags indicates whether the driver should allocate a private context for the mapping. For
example, a driver can allocate a memory region to store the device context if flags is set to
MAP_PRIVATE. If MAP_SHARED is set, the driver returns a pointer to a shared region.

The following example shows a devmap () entry point. The driver allocates a new context
structure. The driver then saves relevant parameters passed in by the entry point. Next, the
mapping is assigned a new context either through allocation or by attaching the mapping to an
already existing shared context. The minimum time interval that the mapping should have
access to the device is set to one millisecond.

EXAMPLE 11-1 Using the devmap () Routine

static int
int xxdevmap map(devmap cookie t handle, dev t dev, uint t flags,
offset t offset, size t len, void **new devprivate)
{
struct xxstate *xsp = ddi get soft state(statep,
getminor(dev));
struct xxctx *newctx;

/* create a new context structure */

newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);

newctx->xsp = Xsp;

newctx->handle handle;

newctx->offset offset;

newctx->flags = flags;

newctx->len = len;

mutex_enter(&xsp->ctx_lock);

if (flags & MAP_PRIVATE) {
/* allocate a private context and initialize it */
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
xxctxinit (newctx);

} else {
/* set a pointer to the shared context */
newctx->context = xsp->ctx_shared;

}

mutex exit(&xsp->ctx lock);

/* give at least 1 ms access before context switching */
devmap set ctx timeout(handle, drv usectohz(1000));

/* return the context structure */

*new devprivate = newctx;

return(0);

devmap_access () Entry Point

The devmap_access(9E) entry point is called when an access is made to a mapping whose
translations are invalid. Mapping translations are invalidated when the mapping is created with
devmap_devmem_setup(9F) in response to mmap(2), duplicated by fork(2), or explicitly
invalidated by a call to devmap_unload(9F).

The syntax for devmap_access () is as follows:

Chapter 11 - Device Context Management 191

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f

Context Management Operation

192

int xxdevmap_access(devmap_cookie_t handle, void *devprivate,
offset_t offset, size t len, uint_t type, uint_t rw);

where:
handle Mapping handle of the mapping that was accessed by a user process.

devprivate Pointer to the driver private data associated with the mapping.

offset Offset within the mapping that was accessed.
len Length in bytes of the memory being accessed.
type Type of access operation.

rw Specifies the direction of access.

The system expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations before

devmap_access () returns. For mappings that support context switching, the device driver
should call devmap_do_ctxmgt (). This routine is passed all parameters from
devmap_access(9E), as well as a pointer to the driver entry point devmap_contextmgt(9E),
which handles the context switching. For mappings that do not support context switching, the
driver should call devmap default access(9F). The purpose of devmap default access() is
to call devmap_load(9F) to load the user translation.

The following example shows a devmap_access(9E) entry point. The mapping is divided into
two regions. The region that starts at offset OFF_CTXMG with a length of CTXMGT_SIZE bytes
supports context management. The rest of the mapping supports default access.

EXAMPLE 11-2 Using the devmap_access () Routine

#define OFF CTXMG 0
#define CTXMGT_ SIZE 0x20000
static int

xxdevmap _access(devmap cookie t handle, void *devprivate,
offset t off, size t len, uint t type, uint t rw)

{
offset t diff;
int error;
if ((diff = off - OFF CTXMG) >= 0 && diff < CTXMGT SIZE) {
error = devmap _do_ctxmgt(handle, devprivate, off,
len, type, rw, xxdevmap contextmgt);
} else {
error = devmap default access(handle, devprivate,
off, len, type, rw);
}
return (error);
}

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e

Context Management Operation

devmap_contextmgt () Entry Point

The syntax for devmap_contextmgt(9E) is as follows:

int xxdevmap_contextmgt(devmap_cookie_ t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

devmap_contextmgt () should call devmap_unload(9F) with the handle of the mapping that
currently has access to the device. This approach invalidates the translations for that mapping.
The approach ensures that a call to devmap_access(9E) occurs for the current mapping the next
time the mapping is accessed. The mapping translations for the mapping that caused the access
event to occur need to be validated. Accordingly, the driver must restore the device context for
the process requesting access. Furthermore, the driver must call devmap_load(9F) on the handle
of the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations validated by a call to
devmap_load () do not generate a call to devmap_access (). A subsequent call to
devmap_unload () invalidates the mapping translations. This call enables devmap_access () to
be called again.

If either devmap_load() or devmap_unload() returns an error, devmap_contextmgt () should
immediately return that error. If the device driver encounters a hardware failure while restoring
a device context, a - 1 should be returned. Otherwise, after successfully handling the access
request, devmap_contextmgt () should return zero. A return of other than zero from
devmap_contextmgt () causes a SIGBUS or SIGSEGV to be sent to the process.

The following example shows how to manage a one-page device context.

Note - xxctxsave() and xxctxrestore() are device-dependent context save and restore
functions. xxctxsave () reads data from the registers and saves the data in the soft state
structure. xxctxrestore () takes data that is saved in the soft state structure and writes the data
to device registers. Note that the read, write, and save are all performed with the DDI/DKI data
access routines.

EXAMPLE 11-3 Using the devmap_contextmgt () Routine

static int

xxdevmap_contextmgt(devmap cookie t handle, void *devprivate,
offset t off, size t len, uint t type, uint t rw)

{
int error;
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx lock);
/* unload mapping for current context */

if (xsp->current ctx != NULL) {
if ((error = devmap unload(xsp->current ctx->handle,
off, len)) !=0) {

Chapter 11 - Device Context Management 193

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f

Context Management Operation

194

EXAMPLE 11-3 Using the devmap_contextmgt () Routine (Continued)

xsp->current ctx = NULL;
mutex_exit(&xsp->ctx lock);
return (error);

}

/* Switch device context - device dependent */
if (xxctxsave(xsp->current ctx, off, len) < 0) {
xsp->current ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);
}
if (xxctxrestore(ctxp, off, len) < 0){
xsp->current ctx = NULL;
mutex_exit(&xsp->ctx lock);
return (-1);
}
xsp->current ctx = ctxp;
/* establish mapping for new context and return */
error = devmap_load(handle, off, len, type, rw);
if (error)
xsp->current_ctx = NULL;
mutex exit(&xsp->ctx lock);
return (error);

devmap_dup () Entry Point

The devmap_dup(9E) entry point is called when a device mapping is duplicated, for example, by
a user process that calls fork(2). The driver is expected to generate new driver private data for
the new mapping.

The syntax fordevmap_dup () is as follows:

int xxdevmap_dup(devmap_cookie t handle, void *devprivate,
devmap_cookie_t new-handle, void **new-devprivate) ;

where:

handle Mapping handle of the mapping being duplicated.

new-handle Mapping handle of the mapping that was duplicated.

devprivate Pointer to the driver private data associated with the mapping being

duplicated.

*new-devprivate Should be set to point to the new driver private data for the new mapping.

Mappings that have been created with devmap_dup () by default have their mapping
translations invalidated. Invalid mapping translations force a call to the devmap_access(9E)
entry point the first time the mapping is accessed.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e

Context Management Operation

The following example shows a typical devmap_dup () routine.

EXAMPLE 11-4 Using the devmap_dup () Routine

static int
xxdevmap dup(devmap cookie t handle, void *devprivate,

{

devmap_cookie t new_handle, void **new_devprivate)

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
struct xxctx *newctx;
/* Create a new context for the duplicated mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = Xxsp;
newctx->handle = new handle;
newctx->offset = ctxp->offset;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len;
mutex_enter(&xsp->ctx_lock);
if (ctxp->flags & MAP PRIVATE) {
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX SIZE);
} else {
newctx->context = xsp->ctx_shared;

mutex exit(&xsp->ctx lock);
*new devprivate = newctx;
return(0);

devmap_unmap () Entry Point

The devmap_unmap(9E) entry point is called when a mapping is unmapped. Unmapping can be
caused by a user process exiting or by calling the munmap (2) system call.

The syntax for devmap_unmap () is as follows:

void xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size t len, devmap_cookie t new-handlel,
void **new-devprivatel, devmap_cookie t new-handle2,
void **new-devprivate2) ;

where:

handle Mapping handle of the mapping being freed.

devprivate Pointer to the driver private data associated with the mapping.

off Offset within the logical device memory at which the unmapping begins.
len Length in bytes of the memory being unmapped.

new-handlel

The value of new-handlel can be NULL.

Chapter 11 - Device Context Management

Handle that the system uses to describe the new region that ends at off - 1.

195

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-unmap-9e

Context Management Operation

196

new-devprivatel Pointer to be filled in by the driver with the private driver mapping data for
the new region that ends at off - 1. new-devprivatel is ignored if
new-handlel is NULL.

new-handle2 Handle that the system uses to describe the new region that begins at off +
len. The value of new-handle2 can be NULL.

new-devprivate2 Pointer to be filled in by the driver with the driver private mapping data for
the new region that begins at off + len. new-devprivate2 is ignored if
new-handle2 is NULL.

The devmap_unmap () routine is expected to free any driver private resources that were allocated
when this mapping was created, either by devmap_map(9E) or by devmap_dup(9E). If the
mapping is only partially unmapped, the driver must allocate new private data for the
remaining mapping before freeing the old private data. Calling devmap_unload(9F) on the
handle of the freed mapping is not necessary, even if this handle points to the mapping with the
valid translations. However, to prevent future devmap access(9E) problems, the device driver
should make sure the current mapping representation is set to “no current mapping”.

The following example shows a typical devmap_unmap () routine.

EXAMPLE 11-5 Using the devmap_unmap () Routine

static void

xxdevmap unmap(devmap cookie t handle, void *devprivate,
offset t off, size t len, devmap cookie t new handlel,
void **new devprivatel, devmap cookie t new handle2,
void **new devprivate2)

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx lock);
/*
* If new handlel is not NULL, we are unmapping
* at the end of the mapping.
*/
if (new handlel != NULL) {
/* Create a new context structure for the mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = Xxsp;
if (ctxp->flags & MAP_PRIVATE) {
/* allocate memory for the private context and copy it */
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX SIZE);
} else {
/* point to the shared context */
newctx->context = xsp->ctx_shared;
}
newctx->handle new handlel;
newctx->offset ctxp->offset;
newctx->len = off - ctxp->offset;
*new_devprivatel = newctx;

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e

Context Management Operation

EXAMPLE 11-5 Using the devmap_unmap () Routine (Continued)

/*
* If new handle2 is not NULL, we are unmapping
* at the beginning of the mapping.
*/
if (new handle2 != NULL) {
/* Create a new context for the mapping */
newctx = kmem alloc(sizeof (struct xxctx), KM SLEEP);
newctx->xsp = Xsp;
if (ctxp->flags & MAP_PRIVATE) {
newctx->context = kmem alloc(XXCTX SIZE, KM SLEEP);
bcopy (ctxp->context, newctx->context, XXCTX_ SIZE);
} else {
newctx->context = xsp->ctx shared;
}
newctx->handle new _handle2;
newctx->offset off + len;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len - (off + len - ctxp->off);
*new devprivate2 = newctx;

}
if (xsp->current ctx == ctxp)
xsp->current _ctx = NULL;
mutex_exit(&xsp->ctx lock);
if (ctxp->flags & MAP_PRIVATE)
kmem free(ctxp->context, XXCTX SIZE);
kmem free(ctxp, sizeof (struct xxctx));

Associating User Mappings With Driver Notifications

When a user process requests a mapping to a device with mmap(2), the driver‘s segmap(9E) entry
point is called. The driver must use ddi_devmap_segmap(9F) or devmap_setup(9F) when setting
up the memory mapping if the driver needs to manage device contexts. Both functions call the
driver's devmap(9E) entry point, which uses devmap_devmem_setup(9F) to associate the device
memory with the user mapping. See Chapter 10, “Mapping Device and Kernel Memory,” for
details on how to map device memory.

The driver must inform the system of the devmap_callback_ct1(9S) entry points to get
notifications of accesses to the user mapping. The driver informs the system by providing a
pointer to adevmap_callback_ct1(9S) structure to devmap_devmem_setup(9F). A
devmap_callback_ct1(9S) structure describes a set of entry points for context management.
These entry points are called by the system to notify a device driver to manage events on the
device mappings.

The system associates each mapping with a mapping handle. This handle is passed to each of
the entry points for context management. The mapping handle can be used to invalidate and
validate the mapping translations. If the driver invalidates the mapping translations, the driver

Chapter 11 - Device Context Management 197

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdevmap-callback-ctl-9s

Context Management Operation

198

will be notified of any future access to the mapping. If the driver validates the mapping
translations, the driver will no longer be notified of accesses to the mapping. Mappings are
always created with the mapping translations invalidated so that the driver will be notified on
first access to the mapping.

The following example shows how to set up a mapping using the device context management
interfaces.

EXAMPLE11-6 devmap(9E) Entry Point With Context Management Support

static struct devmap callback ctl xx_callback ctl = {
DEVMAP_OPS REV, xxdevmap map, Xxxdevmap access,
xxdevmap_dup, xxdevmap_unmap

+s

static int
xxdevmap(dev_t dev, devmap cookie t handle, offset t off,
size t len, size t *maplen, uint t model)
{
struct xxstate *xsp;
uint t rnumber;
int error;

/* Setup data access attribute structure */
struct ddi_device acc_attr xx_acc_attr = {
DDI DEVICE ATTR V0,
DDI NEVERSWAP ACC,
DDI_STRICTORDER ACC
+
xsp = ddi_get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
len = ptob(btopr(len));
rnumber = 0;
/* Set up the device mapping */
error = devmap devmem setup(handle, xsp->dip, &xx callback ctl,
rnumber, off, len, PROT_ALL, 0, &xx_acc_attr);
*maplen = len;
return (error);

Managing Mapping Accesses

The device driver is notified when a user process accesses an address in the memory-mapped
region that does not have valid mapping translations. When the access event occurs, the
mapping translations of the process that currently has access to the device must be invalidated.
The device context of the process that requested access to the device must be restored.
Furthermore, the translations of the mapping of the process requesting access must be
validated.

Writing Device Drivers « October 2012

Context Management Operation

The functions devmap_load(9F) and devmap_unload(9F) are used to validate and invalidate
mapping translations.

devmap_load () Entry Point
The syntax for devmap_load(9F) is as follows:

int devmap_load(devmap_cookie_ t handle, offset_t offset,
size t len, uint_t fype, uint_t rw);

devmap_load () validates the mapping translations for the pages of the mapping specified by
handle,offset, and len. By validating the mapping translations for these pages, the driver is
telling the system not to intercept accesses to these pages of the mapping. Furthermore, the
system must not allow accesses to proceed without notifying the device driver.

devmap_load () must be called with the offset and the handle of the mapping that generated the
access event for the access to complete. If devmap_load(9F) is not called on this handle, the
mapping translations are not validated, and the process receives a SIGBUS.

devmap_unload() Entry Point

The syntax for devmap_unload(9F) is as follows:

int devmap_unload(devmap_cookie t handle, offset_t offset, size t len);

devmap_unload() invalidates the mapping translations for the pages of the mapping specified
by handle, offset, and len. By invalidating the mapping translations for these pages, the device
driver is telling the system to intercept accesses to these pages of the mapping. Furthermore, the
system must notify the device driver the next time that these mapping pages are accessed by
calling the devmap_access(9E) entry point.

For both functions, requests affect the entire page that contains the offset and all pages up to and
including the entire page that contains the last byte, as indicated by offset + len. The device
driver must ensure that for each page of device memory being mapped, only one process has
valid translations at any one time.

Both functions return zero if successful. If, however, an error occurred in validating or
invalidating the mapping translations, that error is returned to the device driver. The device
driver must return this error to the system.

Chapter 11 - Device Context Management 199

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-access-9e

200

L R 2 4 CHAPTER 12

Power Management

Power management provides the ability to control and manage the electrical power usage of a
computer system or device. Power management enables systems to conserve energy by using
less power when idle and by shutting down completely when not in use. For example, desktop
computer systems can use a significant amount of power and often are left idle, particularly at
night. Power management software can detect that the system is not being used. Accordingly,
power management can power down the system or some of its components.

This chapter provides information on the following subjects:

= “Power Management Framework” on page 201

= “Device Power Management Model” on page 203

= “System Power Management Model” on page 210

= “Power Management Device Access Example” on page 215
= “Power Management Flow of Control” on page 216

Power Management Framework

The Oracle Solaris Power Management framework depends on device drivers to implement
device-specific power management functions. The framework is implemented in two parts:

= Device power management — Automatically turns off unused devices to reduce power
consumption

= System power management — Automatically turns off the computer when the entire system
isidle

201

Power Management Framework

202

Device Power Management

The framework enables devices to reduce their energy consumption after a specified idle time
interval. As part of power management, system software checks for idle devices. The Power
Management framework exports interfaces that enable communication between the system
software and the device driver.

The Oracle Solaris Power Management framework provides the following features for device
power management:

= A device-independent model for power-manageable devices.
= dtpower(1M), a tool for configuring workstation power management.

= A set of DDIinterfaces for notifying the framework about power management compatibility
and idleness state.

System Power Management

System power management involves saving the state of the system prior to powering the system
down. Thus, the system can be returned to the same state immediately when the system is
turned back on.

To shut down an entire system with return to the state prior to the shutdown, take the following
steps:
m Stop kernel threads and user processes. Restart these threads and processes later.

= Save the hardware state of all devices on the system to disk. Restore the state later.

SPARC only - System power management is currently implemented only on some SPARC
systems supported by the Oracle Solaris OS.

The System Power Management framework in the Oracle Solaris OS provides the following
features for system power management:

= A platform-independent model of system idleness.

= A setof interfaces for the device driver to override the method for determining which
drivers have hardware state.

m A set of interfaces to enable the framework to call into the driver to save and restore the
device state.

= A mechanism for notifying processes that a resume operation has occurred.

Writing Device Drivers « October 2012

Device Power Management Model

Device Power Management Model

The following sections describe the details of the device power management model. This model
includes the following elements:

Components

Idleness

Power levels

Dependency

Policy

Device power management interfaces
Power management entry points

Power Management Components

A device is power manageable if the power consumption of the device can be reduced when the
device is idle. Conceptually, a power-manageable device consists of a number of
power-manageable hardware units that are called components.

The device driver notifies the system about device components and their associated power
levels. Accordingly, the driver creates a pm- components(9P) property in the driver's attach(9E)
entry point as part of driver initialization.

Most devices that are power manageable implement only a single component. An example of a
single-component, power-manageable device is a disk whose spindle motor can be stopped to
save power when the disk is idle.

If a device has multiple power-manageable units that are separately controllable, the device
should implement multiple components.

An example of a two-component, power-manageable device is a frame buffer card with a
monitor. Frame buffer electronics is the first component [component 0]. The frame buffer's
power consumption can be reduced when not in use. The monitor is the second component
[component 1]. The monitor can also enter alower power mode when the monitor is not in use.
The frame buffer electronics and monitor are considered by the system as one device with two
components.

Multiple Power Management Components

To the power management framework, all components are considered equal and completely
independent of each other. If the component states are not completely compatible, the device
driver must ensure that undesirable state combinations do not occur. For example, a frame
buffer/monitor card has the following possible states: D@, D1, D2, and D3. The monitor attached
to the card has the following potential states: On, Standby, Suspend, and Of f. These states are
not necessarily compatible with each other. For example, if the monitor is On, then the frame

Chapter 12 - Power Management 203

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Device Power Management Model

204

buffer must be at Do, that is, full on. If the frame buffer driver gets a request to power up the
monitor to On while the frame buffer is at D3, the driver must call pm_raise_power(9F) to bring
the frame buffer up before setting the monitor On. System requests to lower the power of the
frame buffer while the monitor is On must be refused by the driver.

Power Management States

Each component of a device can be in one of two states: busy or idle. The device driver notifies
the framework of changes in the device state by calling pm_busy_component(9F) and
pm_idle_component(9F). When components are initially created, the components are
considered idle.

Power Levels

From the pm- components property exported by the device, the Device Power Management
framework knows what power levels the device supports. Power-level values must be positive
integers. The interpretation of power levels is determined by the device driver writer. Power
levels must be listed in monotonically increasing order in the pm- components property. A
power level of 0 is interpreted by the framework to mean off. When the framework must power
up a device due to a dependency, the framework sets each component at its highest power level.

The following example shows a pm- components entry from the . conf file of a driver that
implements a single power-managed component consisting of a disk spindle motor. The disk
spindle motor is component 0. The spindle motor supports two power levels. These levels
represent “stopped” and “spinning at full speed””

EXAMPLE 12-1 Sample pm-component Entry

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed"

The following example shows how Example 12-1 could be implemented in the attach ()
routine of the driver.

EXAMPLE 12-2 attach(9E) Routine With pm-components Property

static char *pmcomps[] = {
"NAME=Spindle Motor"
"0=Stopped",
"1=Full Speed"
+
/X L0 %/
xxattach(dev_info t *dip, ddi_attach cmd t cmd)
{

/* L. X/
if (ddi prop update string array(DDI DEV T NONE, dip,
"pm-components", &pmcomp[0],

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-idle-component-9f

Device Power Management Model

EXAMPLE 12-2 attach(9E) Routine With pm-components Property (Continued)

sizeof (pmcomps) / sizeof (char *)) != DDI PROP_SUCCESS)
goto failed;
/* .. X/

The following example shows a frame buffer that implements two components. Component 0 is
the frame buffer electronics that support four different power levels. Component 1 represents
the state of power management of the attached monitor.

EXAMPLE 12-3 Multiple Component pm-components Entry

pm-components="NAME=Frame Buffer", "0=0ff", "1=Suspend", \
"2=Standby", "3=0n",
"NAME=Monitor", "0=0ff", "1=Suspend", "2=Standby", "3=0n";

When a device driver is first attached, the framework does not know the power level of the
device. A power transition can occur when:

m Thedriver calls pm_raise power(9F) or pm_lower power(9F).

= The framework has lowered the power level of a component because a time threshold has
been exceeded.

= Another device has changed power and a dependency exists between the two devices. See
“Power Management Dependencies” on page 205.

After a power transition, the framework begins tracking the power level of each component of
the device. Tracking also occurs if the driver has informed the framework of the power level.
The driver informs the framework of a power level change by calling

pm_power has changed(9F).

The system calculates a default threshold for each potential power transition. These thresholds
are based on the system idleness threshold. Another default threshold based on the system
idleness threshold is used when the component power level is unknown.

Power Management Dependencies

Some devices should be powered down only when other devices are also powered down. For
example, if a CD-ROM drive is allowed to power down, necessary functions, such as the ability
to eject a CD, might be lost.

To prevent a device from powering down independently, you can make that device dependent
on another device that is likely to remain powered on. Typically, a device is made dependent
upon a frame buffer, because a monitor is generally on whenever a user is utilizing a system.

Chapter 12 - Power Management 205

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-power-has-changed-9f

Device Power Management Model

206

Where dependent-phys-path is the device that is kept powered up, such as the CD-ROM drive.

phys-path represents the device whose power state is to be depended on, such as the frame
buffer.

The following syntax enables you to indicate dependency in a general fashion:

device-dependency-property property phys-path

Such an entry mandates that any device that exports the property property must be dependent
upon the device named by phys-path. Because this dependency applies especially to
removable-media devices, /etc/power. conf includes the following line by default:

device dependent-property removable-media /dev/fb

With this syntax, no device that exports the removable-media property can be powered down
unless the console frame buffer is also powered down.

For more information, see the removable-media(9P) man page.

Automatic Power Management for Devices

If automatic power management is enabled, then all devices with a pm- components(9P)
property automatically will use power management. After a component has been idle for a
default period, the component is automatically lowered to the next lowest power level. The
default period is calculated by the power management framework to set the entire device to its
lowest power state within the system idleness threshold.

Note - By default, automatic power management is enabled on all SPARC desktop systems first
shipped after July 1, 1999. This feature is disabled by default for all other systems.

Device Power Management Interfaces

A device driver that supports a device with power-manageable components must create a
pm-components(9P) property. This property indicates to the system that the device has
power-manageable components. pm- components also tells the system which power levels are
available. The driver typically informs the system by calling
ddi_prop_update_string_array(9F) from the driver's attach(9E) entry point. An alternative
means of informing the system is from a driver. conf(4) file. See the pm- components(9P) man
page for details.

Busy-Idle State Transitions

The driver must keep the framework informed of device state transitions from idle to busy or
busy to idle. Where these transitions happen is entirely device-specific. The transitions between
the busy and idle states depend on the nature of the device and the abstraction represented by

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sremovable-media-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p

Device Power Management Model

the specific component. For example, SCSI disk target drivers typically export a single
component, which represents whether the SCSI target disk drive is spun up or not. The
component is marked busy whenever an outstanding request to the drive exists. The
component is marked idle when the last queued request finishes. Some components are created
and never marked busy. For example, components created by pm- components(9P) are created
in an idle state.

The pm_busy_component(9F) and pm_idle_component(9F) interfaces notify the power
management framework of busy-idle state transitions. The pm_busy_component(9F) call has the
following syntax:

int pm_busy component(dev_info_t *dip, int component);

pm_busy_component(9F) marks component as busy. While the component is busy, that
component should not be powered off. If the component is already powered off, then marking
that component busy does not change the power level. The driver needs to call
pm_raise_power(9F) for this purpose. Calls to pm_busy component(9F) are cumulative and
require a corresponding number of calls to pm_idle_component to idle the component.

The pm_idle_component(9F) routine has the following syntax:

int pm_idle component(dev_info t *dip, int component);

pm_idle_component(9F) marks component asidle. An idle component is subject to being
powered off. pm_idle_component (9F) must be called once for each call to
pm_busy_component (9F) in order to idle the component.

Device Power State Transitions

A device driver can call pm_raise_power(9F) to request that a component be set to at least a
given power level. Setting the power level in this manner is necessary before using a component
that has been powered off. For example, the read(9E) routine of a SCSI disk target driver might
need to spin up the disk, if the disk has been powered off. The pm_raise power(9F) function
requests the power management framework to initiate a device power state transition to a
higher power level. Normally, reductions in component power levels are initiated by the
framework. However, a device driver should call pm_lower_power(9F) when detaching, in order
to reduce the power consumption of unused devices as much as possible.

Powering down can pose risks for some devices. For example, some tape drives damage tapes
when power is removed. Similarly, some disk drives have a limited tolerance for power cycles,
because each cycle results in a head landing. Use the no-involuntary-power-cycles(9P)
property to notify the system that the device driver should control all power cycles for the
device. This approach prevents power from being removed from a device while the device
driver is detached unless the device was powered off by a driver's call to pm_lower_power(9F)
from its detach(9E) entry point.

Chapter 12 - Power Management 207

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sno-involuntary-power-cycles-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

Device Power Management Model

208

The pm_raise_power(9F) function is called when the driver discovers that a component needed
for some operation is at an insufficient power level. This interface causes the driver to raise the
current power level of the component to the needed level. All the devices that depend on this
device are also brought back to full power by this call.

Call the pm_lower_power(9F) function when the device is detaching once access to the device is
no longer needed. Call pm_lower_power(9F) to set each component at the lowest power so that
the device uses as little power as possible while not in use. The pm_lower power () function
must be called from the detach () entry point. The pm_lower_power () function has no effect if
itis called from any other part of the driver.

The pm_power_has_changed(9F) function is called to notify the framework about a power
transition. The transition might be due to the device changing its own power level. The
transition might also be due to an operation such as suspend-resume. The syntax for
pm_power_has_changed(9F) is the same as the syntax for pm_raise_power(9F).

power () Entry Point
The power management framework uses the power(9E) entry point.

power () uses the following syntax:

int power(dev_info_t *dip, int component, int level);

When a component's power level needs to be changed, the system calls the power(9E) entry
point. The action taken by this entry point is device driver-specific. In the example of the SCSI
target disk driver mentioned previously, setting the power level to 0 results in sending a SCSI
command to spin down the disk, while setting the power level to the full power level results in
sending a SCSI command to spin up the disk.

If a power transition can cause the dfevice to lose state, the driver must save any necessary state
in memory for later restoration. If a power transition requires the saved state to be restored
before the device can be used again, then the driver must restore that state. The framework
makes no assumptions about what power transactions cause the loss of state or require the
restoration of state for automatically power-managed devices. The following example shows a
sample power () routine.

EXAMPLE 12-4 Using the power () Routine for a Single-Component Device
int
xxpower(dev_info t *dip, int component, int level)

{
struct xxstate *xsp;
int instance;

instance = ddi_get instance(dip);
xsp = ddi_get soft state(statep, instance);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e

Device Power Management Model

EXAMPLE 12-4 Using the power () Routine for a Single-Component Device (Continued)
/*
* Make sure the request is valid
*/

if (!xx_valid_power_ level(component, level))
return (DDI FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&
xsp->xx_power_ level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}
if (xsp->xx_power_level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
Xsp->xx_power_level[component] = level;
}

mutex exit(&xsp->mu);
return (DDI SUCCESS);

The following example is a power () routine for a device with two components, where
component 0 must be on when component 1 is on.

EXAMPLE 12-5 power(9E) Routine for Multiple-Component Device
int

xxpower(dev_info t *dip, int component, int level)

{

struct xxstate *xsp;
int instance;

instance = ddi_get instance(dip);
xsp = ddi get soft state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid _power level(component, level))
return (DDI_FAILURE);
mutex _enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&
xsp->xx_power level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI FAILURE);
}
/*

Chapter 12 - Power Management 209

System Power Management Model

EXAMPLE 12-5 power(9E) Routine for Multiple-Component Device (Continued)

* This code implements inter-component dependencies:
* If we are bringing up component 1 and component 0
* is off, we must bring component @ up first, and if
* we are asked to shut down component @ while component
* 1 is up we must refuse
*/
if (component == 1 && level > 0 && xsp->xx_power level[0] == 0) {
XSp->xX_busy[0]++;
if (pm_busy component(dip, @) !'= DDI SUCCESS) {
/*
* This can only happen if the args to
* pm_busy component()
* are wrong, or pm-components property was not
* exported by the driver.
*/
Xsp->xx_busy[0]--;
mutex exit(&xsp->mu);
cmn_err(CE_WARN, "xxpower pm busy component()
failed");
return (DDI FAILURE);
}
mutex exit(&xsp->mu);
if (pm raise power(dip, @, XX FULL POWER @) != DDI SUCCESS)
return (DDI_FAILURE);
mutex _enter(&xsp->mu);
}
if (component == 0 && level == 0 && xsp->xx_power level[l] != 0) {
mutex_exit(&xsp->mu);
return (DDI FAILURE);

}
if (xsp->xx_power level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
Xsp->xx_power level[component] = level;
}

mutex_exit(&xsp->mu);
return (DDI SUCCESS);

System Power Management Model

This section describes the details of the System Power Management model. The model includes
the following components:

Autoshutdown threshold

Busy state

Hardware state

Policy

Power management entry points

210 Writing Device Drivers « October 2012

System Power Management Model

Autoshutdown Threshold

The system can be shut down, that is, powered off, automatically after a configurable period of
idleness. This period is known as the autoshutdown threshold. This behavior is enabled by
default for SPARC desktop systems first shipped after October 1, 1995 and before July 1, 1999.

Busy State

The busy state of the system can be measured in several ways. The currently supported built-in
metric items are keyboard characters, mouse activity, tty characters, load average, disk reads,
and NES requests. Any one of these items can make the system busy. In addition to the built-in
metrics, an interface is defined for running a user-specified process that can indicate that the
system is busy.

Hardware State

Devices that export a reg property are considered to have hardware state that must be saved
prior to shutting down the system. A device without the reg property is considered to be
stateless. However, this consideration can be overridden by the device driver.

A device with hardware state but no reg property, such as a SCSI driver, must be called to save
and restore the state if the driver exports a pm-hardware-state property with the value
needs-suspend- resume. Otherwise, the lack of a reg property is taken to mean that the device
has no hardware state. For information on device properties, see Chapter 4, “Properties”

A device with a reg property and no hardware state can export a pm-hardware-state property
with the value no-suspend- resume. Using no- suspend- resume with the pm-hardware-state
property keeps the framework from calling the driver to save and restore that state. For more
information on power management properties, see the pm- components(9P) man page.

Automatic Power Management for Systems

The system is shut down if the system has been idle for autoshutdown threshold minutes:

Entry Points Used by System Power Management

System power management passes the command DDI_SUSPEND to the detach(9E) driver entry

point to request the driver to save the device hardware state. System power management passes
the command DDI_RESUME to the attach(9E) driver entry point to request the driver to restore

the device hardware state.

Chapter 12 - Power Management 211

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

System Power Management Model

212

detach() Entry Point
The syntax for detach(9E) is as follows:

int detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

A device with a reg property or a pm-hardware-state property set to needs - suspend- resume
must be able to save the hardware state of the device. The framework calls into the driver's
detach(9E) entry point to enable the driver to save the state for restoration after the system
power returns. To process the DDI_SUSPEND command, detach(9E) must perform the following
tasks:

= Block further operations from being initiated until the device is resumed, except for
dump(9E) requests.

= Wait until outstanding operations have completed. If an outstanding operation can be
restarted, you can abort that operation.

= Cancel any timeouts and callbacks that are pending.

= Save any volatile hardware state to memory. The state includes the contents of device
registers, and can also include downloaded firmware.

If the driver is unable to suspend the device and save its state to memory, then the driver must
return DDI_FAILURE. The framework then aborts the system power management operation.

In some cases, powering down a device involves certain risks. For example, if a tape drive is
powered oft with a tape inside, the tape can be damaged. In such a case, attach(9E) should do
the following:

= Callddi_removing power(9F) to determine whether a DDI_SUSPEND command can cause
power to be removed from the device.

m Determine whether power removal can cause problems.

If both cases are true, the DDI_SUSPEND request should be rejected. Example 12-6 shows an
attach(9E) routine using ddi_removing_power(9F) to check whether the DDI_SUSPEND
command causes problems.

Dump requests must be honored. The framework uses the dump(9E) entry point to write out the
state file that contains the contents of memory. See the dump(9E) man page for the restrictions
that are imposed on the device driver when using this entry point.

Calling the detach(9E) entry point of a power-manageable component with the DDI_SUSPEND
command should save the state when the device is powered off. The driver should cancel
pending timeouts. The driver should also suppress any calls to pm_raise_power(9F) except for
dump(9E) requests. When the device is resumed by a call to attach(9E) with a command of
DDI_RESUME, timeouts and calls to pm_raise_power() can be resumed. The driver must keep
sufficient track of its state to be able to deal appropriately with this possibility. The following
example shows a detach(9E) routine with the DDI_SUSPEND command implemented.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-removing-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-removing-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

System Power Management Model

EXAMPLE 12-6 detach(9E) Routine Implementing DDI_SUSPEND

int

xxdetach(dev_info t *dip, ddi detach cmd t cmd)

{

struct xxstate *xsp;
int instance;

instance = ddi_get instance(dip);
xsp = ddi_get soft state(statep, instance);

switch (cmd) {
case DDI DETACH:

/* o0 */
case DDI SUSPEND:
/*

* We do not allow DDI SUSPEND if power will be removed and
* we have a device that damages tape when power is removed

* We do support DDI SUSPEND for Device Reconfiguration.
*/

if (ddi_removing power(dip) && xxdamages tape(dip))

return (DDI FAILURE);

mutex_enter(&xsp->mu);

xsp->xx_suspended = 1; /* stop new operations */

/*
* Sleep waiting for all the commands to be completed

If a callback is outstanding which cannot be cancelled
suspend request

This section is only needed if the driver maintains a
running timeout

* X K X X X ¥

*/
if (xsp->xx_timeout id) {
timeout id t temp timeout id = xsp->xx_timeout id;
Xsp->xx_timeout id = 0;
mutex exit(&xsp->mu);
untimeout (temp timeout id);
mutex_enter(&xsp->mu);

if (!xsp->xx state saved) {
/*
* Save device register contents into
* Xxsp->xx_device_state
*/
}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);
default:
return (DDI FAILURE);

attach() Entry Point
The syntax for attach(9E) is as follows:

int attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

Chapter 12 - Power Management

then either wait for the callback to complete or fail the

213

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

System Power Management Model

214

When power is restored to the system, each device with a reg property or with a
pm-hardware-state property of value needs - suspend- resume has its attach(9E) entry point
called with a command value of DDI_RESUME. If the system shutdown is aborted, each suspended
driver is called to resume even though the power has not been shut off. Consequently, the
resume code in attach(9E) must make no assumptions about whether the system actually lost
power.

The power management framework considers the power level of the components to be
unknown at DDI_RESUME time. Depending on the nature of the device, the driver writer has two
choices:

m Ifthe driver can determine the actual power level of the components of the device without
powering the components up, such as by reading a register, then the driver should notify the
framework of the power level of each component by calling pm_power_has_changed(9F).

= Ifthe driver cannot determine the power levels of the components, then the driver should
mark each component internally as unknown and call pm_raise_power(9F) before the first
access to each component.

The following example shows an attach(9E) routine with the DDI_RESUME command.

EXAMPLE 12-7 attach(9E) Routine Implementing DDI_RESUME

int
xxattach(devinfo t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;

int instance;

instance = ddi get instance(dip);
xsp = ddi get soft state(statep, instance);

switch (cmd) {
case DDI_ATTACH:
/* o0 x/
case DDI_RESUME:
mutex_enter(&xsp->mu);
if (xsp->xx_pm_state saved) {
/*
* Restore device register contents from
* xsp->xx_device state
*/
}
/*
* This section is optional and only needed if the
* driver maintains a running timeout

*/
Xsp->xx_timeout id = timeout(/* ... */);
Xsp->xx_suspended = 0; /* allow new operations */

cv_broadcast (&xsp->xx_suspend_cv);

/* If it is possible to determine in a device-specific
* way what the power levels of components are without
* powering the components up,

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e

Power Management Device Access Example

EXAMPLE 12-7 attach(9E) Routine Implementing DDI_RESUME (Continued)

* then the following code is recommended
*/
for (i = @; 1 < num_components; i++) {
xsp->xx_power_level[i] = xx_get_power_level(dip, i);
if (xsp->xx_power level[i] != XX LEVEL UNKNOWN)
(void) pm power has changed(dip, i,
Xsp->xx_power level[i]);
}
mutex_exit(&xsp->mu);
return(DDI SUCCESS);
default:
return(DDI_FAILURE);
}

Note - The detach(9E) and attach(9E) interfaces can also be used to resume a system that has
been quiesced.

Power Management Device Access Example

If power management is supported, and detach(9E) and attach(9E) are used as in
Example 12-6 and Example 12-7, then access to the device can be made from user context, for
example, from read(2),write(2),and ioct1(2).

The following example demonstrates this approach. The example assumes that the operation
about to be performed requires a component component that is operating at power level level.

EXAMPLE 12-8 Device Access

mutex enter(&xsp->mu);
/*
* Block command while device is suspended by DDI SUSPEND
*/
while (xsp->xx_suspended)
cv_wait(&xsp->xx_suspend_cv, &xsp->mu);
/*
* Mark component busy so xx_power() will reject attempt to lower power
*/
Xsp->xx_busy[component]++;
if (pm_busy component(dip, component) != DDI SUCCESS) {
Xsp->xx_busy[component]--;
/*
* Log error and abort
*/
}
if (xsp->xx_power level[component] < level) {
mutex_exit (&xsp->mu);
if (pm_raise power(dip, component, level) != DDI SUCCESS) {

Chapter 12 - Power Management 215

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2

Power Management Flow of Control

EXAMPLE 12-8 Device Access (Continued)
/*
* Log error and abort
*/
}

mutex_enter(&xsp->mu);

The code fragment in the following example can be used when device operation completes, for
example, in the device's interrupt handler.

EXAMPLE 12-9 Device Operation Completion

/*

* For each command completion, decrement the busy count and unstack
* the pm busy component() call by calling pm idle component(). This
* will allow device power to be lowered when all commands complete
* (all pm_busy component() counts are unstacked)
*/

Xsp->xx_busy[component]--;

if (pm_idle component(dip, component) != DDI SUCCESS) {

Xsp->xx_busy[component]++;

/*
* Log error and abort
*/

}

/*

* If no more outstanding commands, wake up anyone (like DDI_ SUSPEND)
* waiting for all commands to be completed
*/

Power Management Flow of Control

216

Figure 12-1 illustrates the flow of control in the power management framework.

When a component's activity is complete, a driver can call pm_idle_component(9F) to mark the
component as idle. When the component has been idle for its threshold time, the framework
can lower the power of the component to its next lower level. The framework calls the
power(9E) function to set the component's power to the next lower supported power level, if a
lower level exists. The driver's power(9E) function should reject any attempt to lower the power
level of a component when that component is busy. The power(9E) function should save any
state that could be lost in a transition to a lower level prior to making that transition.

When the component is needed at a higher level, the driver calls pm_busy_component(9F). This
call keeps the framework from lowering the power still further and then calls
pm_raise_power(9F) on the component. The framework next calls power(9E) to raise the
power of the component before the call to pm_raise power(9F) returns. The driver's power(9E)
code must restore any state that was lost in the lower level but that is needed in the higher level.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e

Power Management Flow of Control

When a driver is detaching, the driver should call pm_lower_power(9F) for each component to
lower its power to its lowest level. The framework can then call the driver's power(9E) routine to
lower the power of the component before the call to pm lower power(9F) returns.

FIGURE 12-1 Power Management Conceptual State Diagram
A
pm_raise power(9F)

power(9E) @

Higher power level

pm_idle component(9F) N

Busy | ”| Idle
reh pm_busy component(9F)
pm_raise power(9F) pm_lower power(9F)

power(9E) @ power(9E)

Lower power level

pm_idle component(9F) N v
Busy | ”| Idle
N

pm_busy component(9F)

pm_lower power(9F)

power(9E)

v

@ power(9E) can be called by the framework to raise the power level of a
component as a result of a dependency or can be called by the framework
as a result of the driver's call to pm_raise power(9F).

power(9E) can be called by the framework to lower the power level of a
component as a result of a device idleness, or can be called by the framework
as a result of the driver's call to pm_lower power(9F) when the driver is detaching.

Note:
9E routines are always called by the framework.
9F routines are always called by the driver.

Chapter 12 - Power Management 217

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f

Changes to Power Management Interfaces

Changes to Power Management Interfaces

Prior to the Solaris 8 release, power management of devices was not automatic. Developers had
toadd an entry to /etc/power. conf for each device that was to be power-managed. The
framework assumed that all devices supported only two power levels: 0 and standard power.

Power assumed an implied dependency of all other components on component 0. When
component 0 changed to level 0, a call was made into the driver's detach(9E) with the
DDI_PM_SUSPEND command to save the hardware state. When component 0 changed from level
0, a call was made to the attach(9E) routine with the command DDI PM RESUME to restore
hardware state.

The following interfaces and commands are obsolete, although they are still supported for

binary purposes:

= ddi dev is needed(9F)

= pm create components(9F)
= pm destroy components(9F)
= pm_get normal power(9F)

pm_set normal power(9F)
= DDI_PM_SUSPEND
= DDI_PM RESUME

Since the Solaris 8 release, devices that export the pm- components property automatically use
power management if autopm is enabled.

The framework now knows from the pm- components property which power levels are
supported by each device.

The framework makes no assumptions about dependencies among the different components of
a device. The device driver is responsible for saving and restoring hardware state as needed
when changing power levels.

These changes enable the power management framework to deal with emerging device
technology. Power management now results in greater power savings. The framework can
detect automatically which devices can save power. The framework can use intermediate power
states of the devices. A system can now meet energy consumption goals without powering down
the entire system and without any functions.

TABLE12-1 Power Management Interfaces

Removed Interfaces Equivalent Interfaces
pm_create components(9F) pm-components(9P)
pm_set normal power(9F) pm-components(9P)
pm_destroy components(9F) None

218 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Spm-components-9p

Changes to Power Management Interfaces

TABLE 12-1 Power Management Interfaces

(Continued)

Removed Interfaces

Equivalent Interfaces

pm_get normal power(9F)
ddi dev is needed(9F)
None

None
DDI_PM_SUSPEND

DDI_PM_RESUME

None

pm raise power(9F)

pm lower power(9F)
pm_power has_changed(9F)
None

None

Chapter 12 - Power Management

219

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpm-power-has-changed-9f

220

L K R 4 CHAPTER 13

Hardening Oracle Solaris Drivers

Fault Management Architecture (FMA) I/O Fault Services enable driver developers to integrate
fault management capabilities into I/O device drivers. The Oracle Solaris I/O fault services
framework defines a set of interfaces that enable all drivers to coordinate and perform basic
error handling tasks and activities. The Oracle Solaris FMA as a whole provides for error
handling and fault diagnosis, in addition to response and recovery. FMA is a component of
Oracle's Predictive Self-Healing strategy.

A driver is considered hardened when it uses the defensive programming practices described in
this document in addition to the I/O fault services framework for error handling and diagnosis.
The driver hardening test harness tests that the I/O fault services and defensive programming
requirements have been correctly fulfilled.

This document contains the following section:

= “Oracle Fault Management Architecture I/O Fault Services” on page 221 provides a reference
for driver developers who want to integrate fault management capabilities into I/O device
drivers.

Oracle Fault Management Architecture 1/0 Fault Services

This section explains how to integrate fault management error reporting, error handling, and
diagnosis for I/O device drivers. This section provides an in-depth examination of the I/O fault
services framework and how to utilize the I/O fault service APIs within a device driver.

This section discusses the following topics:

= “What Is Predictive Self-Healing?” on page 222 provides background and an overview of the
Oracle Fault Management Architecture.

= “Oracle Solaris Fault Manager” on page 222 describes additional background with a focus on
a high-level overview of the Oracle Solaris Fault Manager, fmd(1M).

221

Oracle Fault Management Architecture 1/0 Fault Services

222

= “Error Handling” on page 225 is the primary section for driver developers. This section
highlights the best practice coding techniques for high-availability and the use of I/O fault
services in driver code to interact with the FMA.

What Is Predictive Self-Healing?

Traditionally, systems have exported hardware and software error information directly to
human administrators and to management software in the form of syslog messages. Often,
error detection, diagnosis, reporting, and handling was embedded in the code of each driver.

A system like the Solaris OS predictive self-healing system is first and foremost self-diagnosing.
Self-diagnosing means the system provides technology to automatically diagnose problems
from observed symptoms, and the results of the diagnosis can then be used to trigger automated
response and recovery. A fault in hardware or a defect in software can be associated with a set of
possible observed symptoms called errors. The data generated by the system as the result of
observing an error is called an error report or ereport.

In a system capable of self-healing, ereports are captured by the system and are encoded as a set
of name-value pairs described by an extensible event protocol to form an ereport event. Ereport
events and other data are gathered to facilitate self-healing, and are dispatched to software
components called diagnosis engines designed to diagnose the underlying problems
corresponding to the error symptoms observed by the system. A diagnosis engine runs in the
background and silently consumes error telemetry until it can produce a diagnosis or predict a
fault.

After processing sufficient telemetry to reach a conclusion, a diagnosis engine produces another
event called a fault event. The fault event is then broadcast to all agents that are interested in the
specific fault event. An agent is a software component that initiates recovery and responds to
specific fault events. A software component known as the Oracle Solaris Fault Manager,
fmd(1M), manages the multiplexing of events between ereport generators, diagnosis engines,
and agent software.

Oracle Solaris Fault Manager

The Oracle Solaris Fault Manager, fmd(1M), is responsible for dispatching in-bound error
telemetry events to the appropriate diagnosis engines. The diagnosis engine is responsible for
identifying the underlying hardware faults or software defects that are producing the error
symptoms. The fmd(1M) daemon is the Oracle Solaris OS implementation of a fault manager. It
starts at boot time and loads all of the diagnosis engines and agents available on the system. The
Oracle Solaris Fault Manager also provides interfaces for system administrators and service
personnel to observe fault management activity.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmd-1m

Oracle Fault Management Architecture I/0 Fault Services

Diagnosis, Suspect Lists, and Fault Events

Once a diagnosis has been made, the diagnosis is output in the form of a list.suspect event. A
list.suspect event is an event comprised of one or more possible fault or defect events.
Sometimes the diagnosis cannot narrow the cause of errors to a single fault or defect. For
example, the underlying problem might be a broken wire connecting controllers to the main
system bus. The problem might be with a component on the bus or with the bus itself. In this
specific case, the list.suspect event will contain multiple fault events: one for each controller
attached to the bus, and one for the bus itself.

In addition to describing the fault that was diagnosed, a fault event also contains four payload
members for which the diagnosis is applicable.

= The resource is the component that was diagnosed as faulty. The fmdump(1M) command
shows this payload member as “Problem in”

= The Automated System Recovery Unit (ASRU) is the hardware or software component that
must be disabled to prevent further error symptoms from occurring. The fmdump(1M)
command shows this payload member as “Affects”

= The Field Replaceable Unit (FRU) is the component that must be replaced or repaired to fix
the underlying problem.

= The Label payload is a string that gives the location of the FRU in the same form as it is
printed on the chassis or motherboard, for example next to a DIMM slot or PCI card slot.
The fmdumpcommand shows this payload member as “Location”

For example, after receiving a certain number of ECC correctable errors in a given amount of
time for a particular memory location, the CPU and memory diagnosis engine issues a
diagnosis (list.suspect event) for a faulty DIMM.

fmdump -v -u 38bd6flb-adde-4c21-db4e-ccd26fa8573c

TIME uuID SUNW-MSG-ID
Oct 31 13:40:18.1864 38bd6flb-ad4de-4c21-dbde-ccd26fa8573c AMD-8000-8L
100% fault.cpu.amd.icachetag

Problem in: hc:///motherboard=0/chip=0/cpu=0
Affects: cpu:///cpuid=0

FRU: hc:///motherboard=0/chip=0

Location: SLOT 2

In this example, fmd(1M) has identified a problem in a resource, specifically a CPU
(hc:///motherboard=0/chip=0/cpu=0). To suppress further error symptoms and to prevent
an uncorrectable error from occurring, an ASRU, (cpu:///cpuid=0), is identified for
retirement. The component that needs to be replaced is the FRU
(hc:///motherboard=0/chip=0).

Response Agents
An agent is a software component that takes action in response to a diagnosis or repair. For

example, the CPU and memory retire agent is designed to act on list.suspects that contain a

Chapter 13 - Hardening Oracle Solaris Drivers 223

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmdump-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmd-1m

Oracle Fault Management Architecture 1/0 Fault Services

224

fault.cpu.* event. The cpumem- retire agent will attempt to off-line a CPU or retire a physical
memory page from service. If the agent is successful, an entry in the fault manager's ASRU
cache is added for the page or CPU that was successfully retired. The fmadm(1M) utility, as
shown in the example below, shows an entry for a memory rank that has been diagnosed as
having a fault. ASRUs that the system does not have the ability to off-line, retire, or disable, will
also have an entry in the ASRU cache, but they will be seen as degraded. Degraded means the
resource associated with the ASRU is faulty, but the ASRU is unable to be removed from
service. Currently Oracle Solaris agent software cannot act upon I/O ASRUs (device instances).
All faulty I/O resource entries in the cache are in the degraded state.

fmadm faulty
STATE RESOURCE / UUID

degraded mem:///motherboard=0/chip=1/memory-controller=0/dimm=3/rank=0
ccae89df-2217-4f5c-add4-d920f78b4faf

The primary purpose of a retire agent is to isolate (safely remove from service) the piece of
hardware or software that has been diagnosed as faulty.

Agents can also take other important actions such as the following actions:

= Send alerts via SNMP traps. This can translate a diagnosis into an alert for SNMP that plugs
into existing software mechanisms.

= Post a syslog message. Message specific diagnoses (for example, syslog message agent) can
take the result of a diagnosis and translate it into a syslog message that administrators can
use to take a specific action.

= Other agent actions such as update the FRUID. Response agents can be platform-specific.

Message IDs and Dictionary Files

The syslog message agent takes the output of the diagnosis (the list.suspect event) and writes
specific messages to the console or /var/adm/messages. Often console messages can be difficult
to understand. FMA remedies this problem by providing a defined fault message structure that
is generated every time a list.suspect event is delivered to a syslog message.

The syslog agent generates a message identifier (MSG ID). The event registry generates
dictionary files (.dict files) that map a list.suspect event to a structured message identifier that
should be used to identify and view the associated knowledge article. Message files, (. po files)
map the message ID to localized messages for every possible list of suspected faults that the
diagnosis engine can generate. The following is an example of a fault message emitted on a test
system.

SUNW-MSG-ID: AMD-8000-7U, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Jul 28 04:26:51 PDT 2006

PLATFORM: Sun Fire V40z, CSN: XG051535088, HOSTNAME: parity
SOURCE: eft, REV: 1.16

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmadm-1m

Oracle Fault Management Architecture I/0 Fault Services

EVENT-ID: add96f65-5473-69e6-dbel-8b3d00d5c47b

DESC: The number of errors associated with this CPU has exceeded

acceptable levels. Refer to http://support.oracle.com/msg/SMF-8000-05
for more information.

AUTO-RESPONSE: An attempt will be made to remove this CPU from service.
IMPACT: Performance of this system may be affected.

REC-ACTION: Schedule a repair procedure to replace the affected CPU.
Use fmdump -v -u <EVENT ID> to identify the module.

System Topology

To identify where a fault might have occurred, diagnosis engines need to have the topology for a
given software or hardware system represented. The fmd(1M) daemon provides diagnosis
engines with a handle to a topology snapshot that can be used during diagnosis. Topology
information is used to represent the resource, ASRU, and FRU found in each fault event. The
topology can also be used to store the platform label, FRUID, and serial number identification.

The resource payload member in the fault event is always represented by the physical path
location from the platform chassis outward. For example, a PCI controller function that is
bridged from the main system bus to a PCIlocal bus is represented by its hc scheme path name:

hc:///motherboard=0/hostbridge=1/pcibus=0/pcidev=13/pcifn=0

The ASRU payload member in the fault event is typically represented by the Oracle Solaris
device tree instance name that is bound to a hardware controller, device, or function. FMA uses
the dev scheme to represent the ASRU in its native format for actions that might be taken by a
future implementation of a retire agent specifically designed for I/O devices:

dev:////pci@le,600000/ide@d

The FRU payload representation in the fault event varies depending on the closest replaceable
component to the I/O resource that has been diagnosed as faulty. For example, a fault event for
abroken embedded PCI controller might name the motherboard of the system as the FRU that
needs to be replaced:

hc:///motherboard=0

The label payload is a string that gives the location of the FRU in the same form as it is printed
on the chassis or motherboard, for example next to a DIMM slot or PCI card slot:

Label: SLOT 2

Error Handling

This section describes how to use I/O fault services APIs to handle errors within a driver. This
section discusses how drivers should indicate and initialize their fault management capabilities,
generate error reports, and register the driver's error handler routine.

Chapter 13 - Hardening Oracle Solaris Drivers 225

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmd-1m

Oracle Fault Management Architecture 1/0 Fault Services

226

Drivers that have been instrumented to provide FMA error report telemetry detect errors and
determine the impact of those errors on the services provided by the driver. Following the
detection of an error, the driver should determine when its services have been impacted and to
what degree.

AnT/O driver must respond immediately to detected errors. Appropriate responses include:

Attempt recovery

Retry an I/O transaction

Attempt fail-over techniques

Report the error to the calling application/stack

If the error cannot be constrained any other way, then panic

Errors detected by the driver are communicated to the fault management daemon as an ereport.
An ereport is a structured event defined by the FMA event protocol. The event protocol is a
specification for a set of common data fields that must be used to describe all possible error and
fault events, in addition to the list of suspected faults. Ereports are gathered into a flow of error
telemetry and dispatched to the diagnosis engine.

Declaring Fault Management Capabilities

A hardened device driver must declare its fault management capabilities to the I/O Fault
Management framework. Use the ddi_fm_init(9F) function to declare the fault management
capabilities of your driver.

void ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock cookie t *ibcp)

Theddi fm init() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point. The ddi_fm_init() function usually is called from the attach() entry
point. The ddi_fm_init() function allocates and initializes resources according to fmcap. The
fmcap parameter must be set to the bitwise-inclusive-OR of the following fault management
capabilities:

= DDI_FM_EREPORT_CAPABLE - Driver is responsible for and capable of generating FMA
protocol error events (ereports) upon detection of an error condition.

m DDI_FM_ACCCHK_CAPABLE - Driver is responsible for and capable of checking for errors upon
completion of one or more access I/O transactions.

= DDI_FM_DMACHK_ CAPABLE - Driver is responsible for and capable of checking for errors upon
completion of one or more DMA I/O transactions.

m DDI_FM ERRCB_CAPABLE - Driver has an error callback function.

A hardened leaf driver generally sets all these capabilities. However, if its parent nexus is not
capable of supporting any one of the requested capabilities, the associated bit is cleared and
returned as such to the driver. Before returning from ddi_fm_init(9F), the I/O fault services
framework creates a set of fault management capability properties: fm-ereport-capable,
fm-accchk-capable, fm-dmachk-capable and fm-errcb-capable. The currently supported
fault management capability level is observable by using the prtconf(1M) command.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-fm-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

Oracle Fault Management Architecture I/0 Fault Services

To make your driver support administrative selection of fault management capabilities, export
and set the fault management capability level properties to the values described above in the
driver.conf(4) file. The fm- capable properties must be set and read prior to calling
ddi_fm_init() with the desired capability list.

The following example from the bge driver shows the bge_fm_init () function, which calls the
ddi_fm_init(9F) function. The bge fm_init() function is called in the bge attach()
function.

static void
bge fm init(bge t *bgep)
{
ddi iblock cookie t iblk;

/* Only register with IO Fault Services if we have some capability */
if (bgep->fm capabilities) {
bge reg accattr.devacc attr access = DDI FLAGERR ACC;
dma_attr.dma_attr_flags = DDI_DMA FLAGERR;
/*
* Register capabilities with IO Fault Services
*/
ddi fm init(bgep->devinfo, &bgep->fm capabilities, &iblk);
/*
* Initialize pci ereport capabilities if ereport capable
*/
if (DDI_FM EREPORT_CAP(bgep->fm capabilities) ||
DDI FM ERRCB CAP(bgep->fm capabilities))
pci_ereport _setup(bgep->devinfo);
/*
* Register error callback if error callback capable
*/
if (DDI_FM ERRCB_CAP(bgep->fm_capabilities))
ddi_fm_handler_register(bgep->devinfo,
bge fm error cb, (void*) bgep);
} else {
/*
* These fields have to be cleared of FMA if there are no
* FMA capabilities at runtime.
*/
bge reg accattr.devacc attr _access = DDI_DEFAULT ACC;
dma_attr.dma attr flags = 0;

Cleaning Up Fault Management Resources

The ddi_fm_fini(9F) function cleans up resources allocated to support fault management for

dip.
void ddi_fm_fini(dev_info_t *dip)

Theddi fm fini() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point.

Chapter 13 - Hardening Oracle Solaris Drivers 227

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-fm-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e

Oracle Fault Management Architecture 1/0 Fault Services

The following example from the bge driver shows the bge_fm_fini() function, which calls the
ddi_fm_fini(9F) function. The bge fm fini() function is called in the bge unattach()
function, which is called in both the bge_attach() and bge detach() functions.

static void
bge fm fini(bge t *bgep)

{
/* Only unregister FMA capabilities if we registered some */
if (bgep->fm capabilities) {
/*
* Release any resources allocated by pci ereport setup()
*/
if (DDI FM EREPORT CAP(bgep->fm capabilities) ||
DDI FM ERRCB CAP(bgep->fm capabilities))
pci ereport teardown(bgep->devinfo);
/*
* Un-register error callback if error callback capable
*/
if (DDI_FM ERRCB_CAP(bgep->fm capabilities))
ddi fm handler unregister(bgep->devinfo);
/*
* Unregister from IO Fault Services
*/
ddi fm fini(bgep->devinfo);
}
}

Getting the Fault Management Capability Bit Mask
The ddi_fm_capable(9F) function returns the capability bit mask currently set for dip.

void ddi_fm_capable(dev_info_t *dip)

Reporting Errors

This section provides information about the following topics:

= “Queueing an Error Event” on page 228 discusses how to queue error events.

= “Detecting and Reporting PCI-Related Errors” on page 229 describes how to report
PClI-related errors.

= “Reporting Standard I/O Controller Errors” on page 230 describes how to report standard
I/O controller errors.

= “Service Impact Function” on page 232 discusses how to report whether an error has
impacted the services provided by a device.

Queueing an Error Event

Theddi_fm_ereport_post(9F) function causes an ereport event to be queued for delivery to
the fault manager daemon, fmd(1M).

228 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-fm-capable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-fm-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfmd-1m

Oracle Fault Management Architecture I/0 Fault Services

void ddi_fm_ereport_post(dev_info_t *dip,

const char *error_class,

uint64_t ena,

int sflag, ...)
The sflag parameter indicates whether the caller is willing to wait for system memory and event
channel resources to become available.

The ENA indicates the Error Numeric Association (ENA) for this error report. The ENA might
have been initialized and obtained from another error detecting software module such as a bus
nexus driver. If the ENA is set to 0, it will be initialized by ddi_fm_ereport_post().

The name-value pair (nvpair) variable argument list contains one or more name, type, value
pointer nvpair tuples for non-array data_type_t types or one or more name, type, number of
element, value pointer tuples for data_type_t array types. The nvpair tuples make up the
ereport event payload required for diagnosis. The end of the argument list is specified by NULL.

The ereport class names and payloads described in “Reporting Standard I/O Controller Errors”
on page 230 for I/O controllers are used as appropriate for error_class. Other ereport class

names and payloads can be defined, but they must be registered in the Oracle event registry and
accompanied by driver specific diagnosis engine software, or the Eversholt fault tree (eft) rules.

void
bge fm ereport(bge t *bgep, char *detail)
{
uint64 t ena;
char buf[FM MAX CLASS];
(void) snprintf(buf, FM MAX CLASS, "%s.%s", DDI_FM DEVICE, detail);
ena = fm_ena_generate(@, FM_ENA FMT1);
if (DDI FM EREPORT CAP(bgep->fm capabilities)) {
ddi_fm_ereport _post(bgep->devinfo, buf, ena, DDI_NOSLEEP,
FM VERSION, DATA TYPE UINT8, FM EREPORT VERSO, NULL);
}
}

Detecting and Reporting PCl-Related Errors

PClI-related errors, including PCI, PCI-X, and PCI-E, are automatically detected and reported
when you use pci_ereport_post(9F).

void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uintl6_t *xx_status)

Drivers do not need to generate driver-specific ereports for errors that occur in the PCI Local
Bus configuration status registers. The pci_ereport_post() function can report data parity
errors, master aborts, target aborts, signaled system errors, and much more.

If pci_ereport_post() isto be used by a driver, then pci_ereport_setup(9F) must have been
previously called during the driver's attach(9E) routine, and pci_ereport_teardown(9F) must
subsequently be called during the driver's detach(9E) routine.

The bge code samples below show the bge driver invoking the pci_ereport_post() function
from the driver's error handler.

Chapter 13 - Hardening Oracle Solaris Drivers 229

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-ereport-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpci-ereport-teardown-9f

Oracle Fault Management Architecture 1/0 Fault Services

/*
* The I/0 fault service error handling callback function
*/
/*ARGSUSED*/
static int
bge fm error cb(dev info t *dip, ddi fm error t *err, const void *impl data)
{
/*
* as the driver can always deal with an error
* in any dma or access handle, we can just return
* the fme_status value.
*/
pci_ereport post(dip, err, NULL);
return (err->fme status);
}

Reporting Standard I/0 Controller Errors

A standard set of device ereports is defined for commonly seen errors for I/O controllers. These
ereports should be generated whenever one of the error symptoms described in this section is
detected.

The ereports described in this section are dispatched for diagnosis to the eft diagnosis engine,
which uses a common set of standard rules to diagnose them. Any other errors detected by
device drivers must be defined as ereport events in the Sun event registry and must be
accompanied by device specific diagnosis software or eft rules.

DDI_FM_DEVICE_INVAL_STATE
The driver has detected that the device is in an invalid state.

A driver should post an error when it detects that the data it transmits or receives appear to
be invalid. For example, in the bge code, the bge _chip_reset() and bge receive ring()

routines generate the ereport.io.device.inval_state error when these routines detect

invalid data.

/*
* The SEND INDEX registers should be reset to zero by the
* global chip reset; if they’re not, there’ll be trouble
* later on.
*/
sx0 = bge _reg get32(bgep, NIC DIAG SEND INDEX REG(O));
if (sx0 !'= 0) {
BGE_REPORT((bgep, "SEND INDEX - device didn’t RESET"));
bge fm ereport(bgep, DDI FM DEVICE INVAL STATE);
return (DDI FAILURE);
}
/X L. X/
/*
* Sync (all) the receive ring descriptors
* before accepting the packets they describe
*/
DMA SYNC(rrp->desc, DDI DMA SYNC FORKERNEL);
if (*rrp->prod _index p >= rrp->desc.nslots) {
bgep->bge chip state = BGE_CHIP_ ERROR;

230 Writing Device Drivers « October 2012

Oracle Fault Management Architecture I/0 Fault Services

bge_fm_ereport(bgep, DDI_FM_DEVICE INVAL_STATE);
return (NULL);
}
DDI_FM_DEVICE_INTERN_CORR
The device has reported a self-corrected internal error. For example, a correctable ECC error
has been detected by the hardware in an internal buffer within the device. This error flag is
not used in the bge driver.

DDI_FM_DEVICE_INTERN_UNCORR
The device has reported an uncorrectable internal error. For example, an uncorrectable ECC
error has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver.

DDI_FM_DEVICE_STALL
The driver has detected that data transfer has stalled unexpectedly.

The bge_factotum_stall_check() routine provides an example of stall detection.

dogval = bge atomic sh132(&bgep->watchdog, 1);
if (dogval < bge watchdog count)
return (B FALSE);

BGE_REPORT((bgep, "Tx stall detected,
watchdog code @x%x", dogval));

bge fm ereport(bgep, DDI FM DEVICE STALL);
return (B _TRUE);

DDI_FM_DEVICE_NO_RESPONSE
The device is not responding to a driver command.

bge chip poll engine(bge t *bgep, bge regno t regno,
uint32 t mask, uint32 t val)

{
uint32 t regval;
uint32_t n;
for (n = 200; n; --n) {
regval = bge reg get32(bgep, regno);
if ((regval & mask) == val)
return (B _TRUE);
drv_usecwait(100);
}
bge fm_ereport(bgep, DDI_FM DEVICE NO RESPONSE)
return (B_FALSE);
}

DDI_FM_DEVICE_BADINT_LIMIT
The device has raised too many consecutive invalid interrupts.

The bge_intr() routine within the bge driver provides an example of stuck interrupt
detection. The bge_fm_ereport() function is a wrapper for the ddi_fm_ereport_post(9F)
function. See the bge_fm_ereport () example in “Queueing an Error Event” on page 228.

Chapter 13 - Hardening Oracle Solaris Drivers 231

Oracle Fault Management Architecture 1/0 Fault Services

232

if (bgep->missed_dmas >= bge dma_miss_limit) {
/*

*

If this happens multiple times in a row,
it means DMA is just not working. Maybe
the chip has failed, or maybe there’s a
problem on the PCI bus or in the host-PCI
bridge (Tomatillo).

At all events, we want to stop further
interrupts and let the recovery code take
over to see whether anything can be done
about it ...

* X K X X X X ¥ X

*/
bge fm ereport(bgep,

DDI FM DEVICE BADINT LIMIT);
goto chip stop;

Service Impact Function

A fault management capable driver must indicate whether or not an error has impacted the
services provided by a device. Following detection of an error and, if necessary, a shutdown of
services, the driver should invoke the ddi_fm_service impact(9F) routine to reflect the
current service state of the device instance. The service state can be used by diagnosis and
recovery software to help identify or react to the problem.

Theddi fm service impact() routine should be called both when an error has been detected
by the driver itself, and when the framework has detected an error and marked an access or
DMA handle as faulty.

void ddi_fm_service impact(dev_info_t *dip, int svc_impact)

The following service impact values (svc_impact) are accepted by ddi_fm_service_impact():

DDI_SERVICE_LOST The service provided by the device is unavailable due to a
device fault or software defect.
DDI_SERVICE_DEGRADED The driver is unable to provide normal service, but the

driver can provide a partial or degraded level of service.
For example, the driver might have to make repeated
attempts to perform an operation before it succeeds, or it
might be running at less that its configured speed.

DDI_SERVICE_UNAFFECTED The driver has detected an error, but the services provided
by the device instance are unaffected.

DDI_SERVICE_RESTORED All of the device's services have been restored.

The calltoddi_fm_service_impact () generates the following ereports on behalf of the driver,
based on the service impact argument to the service impact routine:

®m ereport.io.service.lost

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-fm-service-impact-9f

Oracle Fault Management Architecture I/0 Fault Services

® ereport.io.service.degraded
m ereport.io.service.unaffected
m ereport.io.service.restored

In the following bge code, the driver determines that it is unable to successfully restart
transmitting or receiving packets as the result of an error. The service state of the device
transitions to DDI_SERVICE_LOST.

/*
* ALl OK, reinitialize hardware and kick off GLD scheduling
*/
mutex_enter(bgep->genlock);
if (bge restart(bgep, B TRUE) != DDI SUCCESS) {
(void) bge check acc handle(bgep, bgep->cfg handle);
(void) bge check acc_handle(bgep, bgep->io_handle);
ddi fm service impact(bgep->devinfo, DDI SERVICE LOST);
mutex exit(bgep->genlock);
return (DDI_FAILURE);

Note - The ddi_fm_service_impact() function should not be called from the registered
callback routine.

Chapter 13 - Hardening Oracle Solaris Drivers 233

234

L K R 4 CHAPTER 14

Layered Driver Interface (LDI)

The LDl is a set of DDI/DKI that enables a kernel module to access other devices in the system.
The LDI also enables you to determine which devices are currently being used by kernel
modules.

This chapter covers the following topics:

“Kernel Interfaces” on page 236
“User Interfaces” on page 251

LDI Overview

The LDI includes two categories of interfaces:

Kernel interfaces. User applications use system calls to open, read, and write to devices that

are managed by a device driver within the kernel. Kernel modules can use the LDI kernel
interfaces to open, read, and write to devices that are managed by another device driver
within the kernel. For example, a user application might use read(2) and a kernel module
might use 1di_read(9F) to read the same device. See “Kernel Interfaces” on page 236.

User interfaces. The LDI user interfaces can provide information to user processes
regarding which devices are currently being used by other devices in the kernel. See “User
Interfaces” on page 251.

The following terms are commonly used in discussing the LDI:

Target Device. A target device is a device within the kernel that is managed by a device
driver and is being accessed by a device consumer.

Device Consumer. A device consumer is a user process or kernel module that opens and
accesses a target device. A device consumer normally performs operations such as open,
read,write, or ioctl on a target device.

235

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-read-9f

Kernel Interfaces

= Kernel Device Consumer. A kernel device consumer is a particular kind of device
consumer. A kernel device consumer is a kernel module that accesses a target device. The
kernel device consumer usually is not the device driver that manages the target device that is
being accessed. Instead, the kernel device consumer accesses the target device indirectly
through the device driver that manages the target device.

= Layered Driver. A layered driver is a particular kind of kernel device consumer. A layered
driver is a kernel driver that does not directly manage any piece of hardware. Instead, a
layered driver accesses one of more target devices indirectly through the device drivers that
manage those target devices. Volume managers and STREAMS multiplexers are good
examples of layered drivers.

Kernel Interfaces

236

Some LDI kernel interfaces enable the LDI to track and report kernel device usage information.
See “Layered Identifiers — Kernel Device Consumers” on page 236.

Other LDI kernel interfaces enable kernel modules to perform access operations such as open,
read, and write a target device. These LDI kernel interfaces also enable a kernel device
consumer to query property and event information about target devices. See “Layered Driver
Handles - Target Devices” on page 237.

“LDI Kernel Interfaces Example” on page 241 shows an example driver that uses many of these
LDI interfaces.

Layered Identifiers — Kernel Device Consumers

Layered identifiers enable the LDI to track and report kernel device usage information. A
layered identifier (1di_ident_t) identifies a kernel device consumer. Kernel device consumers
must obtain a layered identifier prior to opening a target device using the LDI.

Layered drivers are the only supported types of kernel device consumers. Therefore, a layered
driver must obtain a layered identifier that is associated with the device number, the device
information node, or the stream of the layered driver. The layered identifier is associated with
the layered driver. The layered identifier is not associated with the target device.

You can retrieve the kernel device usage information that is collected by the LDI by using the
libdevinfo(3LIB) interfaces, the fuser(1M) command, or the prtconf(1M) command. For
example, the prtconf(1M) command can show which target devices a layered driver is
accessing or which layered drivers are accessing a particular target device. See “User Interfaces”
on page 251 to learn more about how to retrieve device usage information.

The following describes the LDI layered identifier interfaces:

1di_ident_t Layered identifier. An opaque type.

Writing Device Drivers « October 2012

Kernel Interfaces

1di_ident from dev(9F) Allocate and retrieve a layered identifier that is associated
with a dev_t device number.

1di ident from dip(9F) Allocate and retrieve a layered identifier that is associated
withadev info t device information node.

1di_ident from_ stream(9F) Allocate and retrieve a layered identifier that is associated
with a stream.

1di_ident release(9F) Release a layered identifier that was allocated with
1di_ident from dev(9F), ldi_ident from dip(9F), or
1di_ident from_stream(9F).

Layered Driver Handles - Target Devices

Kernel device consumers must use a layered driver handle (1di_handle_t) to access a target
device through LDl interfaces. The 1di_handle_t type is valid only with LDI interfaces. The
LDI allocates and returns this handle when the LDI successfully opens a device. A kernel device
consumer can then use this handle to access the target device through the LDI interfaces. The
LDI deallocates the handle when the LDI closes the device. See “LDI Kernel Interfaces Example”
on page 241 for an example.

This section discusses how kernel device consumers can access target devices and retrieve
different types of information. See “Opening and Closing Target Devices” on page 237 to learn
how kernel device consumers can open and close target devices. See “Accessing Target Devices”
on page 238 to learn how kernel device consumers can perform operations such as read, write,
strategy, and ioctl on target devices. “Retrieving Target Device Information” on page 239
describes interfaces that retrieve target device information such as device open type and device
minor name. “Retrieving Target Device Property Values” on page 239 describes interfaces that
retrieve values and address of target device properties. See “Receiving Asynchronous Device
Event Notification” on page 240 to learn how kernel device consumers can receive event
notification from target devices.

Opening and Closing Target Devices

This section describes the LDI kernel interfaces for opening and closing target devices. The
open interfaces take a pointer to a layered driver handle. The open interfaces attempt to open
the target device specified by the device number, device ID, or path name. If the open operation
is successful, the open interfaces allocate and return a layered driver handle that can be used to
access the target device. The close interface closes the target device associated with the specified
layered driver handle and then frees the layered driver handle.

1di_handle_t Layered driver handle for target device access. An opaque data
structure that is returned when a device is successfully opened.

Chapter 14 - Layered Driver Interface (LDI) 237

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-from-dip-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-from-stream-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-release-9f

Kernel Interfaces

238

1di_open_by dev(9F)

Open the device specified by the dev_t device number parameter.

1di_open_by devid(9F) Open the device specified by the ddi_devid_t device ID

parameter. You also must specify the minor node name to open.

1di_open_by name(9F) Open a device by path name. The path name is a null-terminated

1di close(9F)

string in the kernel address space. The path name must be an
absolute path, beginning with a forward slash character (/).

Close a device that was opened with 1di_open_by_dev(9F),
1di_open_ by devid(9F), or 1di_open_ by name(9F). After
1di_close(9F) returns, the layered driver handle of the device
that was closed is no longer valid.

Accessing Target Devices

This section describes the LDI kernel interfaces for accessing target devices. These interfaces
enable a kernel device consumer to perform operations on the target device specified by the
layered driver handle. Kernel device consumers can perform operations such as read, write,
strategy,and ioctl on the target device.

1di_handle_t

1di_read(9F)

1di_aread(9F)

1di_write(9F)

1di_awrite(9F)

1di_strategy(9F)

1di_dump(9F)

1di_poll(9F)

1di ioctl(9F)

Layered driver handle for target device access. An opaque data
structure.

Pass a read request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Pass an asynchronous read request to the device entry point for the
target device. This operation is supported for block and character
devices.

Pass a write request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Pass an asynchronous write request to the device entry point for the
target device. This operation is supported for block and character
devices.

Pass a strategy request to the device entry point for the target device.
This operation is supported for block and character devices.

Pass a dump request to the device entry point for the target device. This
operation is supported for block and character devices.

Pass a poll request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

Passan ioctl request to the device entry point for the target device.
This operation is supported for block, character, and STREAMS
devices. The LDI supports STREAMS linking and STREAMS ioctl

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-open-by-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-open-by-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-read-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-aread-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-write-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-awrite-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-strategy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-dump-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ioctl-9f

Kernel Interfaces

commands. See the “STREAM IOCTLS” section of the 1di_ioct1(9F)
man page. See also the ioct1l commands in the streamio(7I) man page.

1di_devmap(9F) Pass a devmap request to the device entry point for the target device. This
operation is supported for block and character devices.

1di_getmsg(9F) Get a message block from a stream.

1di putmsg(9F) Put a message block on a stream.

Retrieving Target Device Information

This section describes LDI interfaces that kernel device consumers can use to retrieve device
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive information such as device number, device open
type, device ID, device minor name, and device size.

1di_get dev(9F) Get the dev_t device number for the target device specified by
the layered driver handle.

1di_get _otyp(9F) Get the open flag that was used to open the target device
specified by the layered driver handle. This flag tells you whether
the target device is a character device or a block device.

1di get devid(9F) Gettheddi_devid_t device ID for the target device specified by
the layered driver handle. Use ddi_devid_free(9F) to free the
ddi_devid_t when you are finished using the device ID.

1di_get minor_name(9F) Retrieve a buffer that contains the name of the minor node that
was opened for the target device. Use kmem_f ree(9F) to release
the buffer when you are finished using the minor node name.

1di_get_size(9F) Retrieve the partition size of the target device specified by the
layered driver handle.

Retrieving Target Device Property Values

This section describes LDI interfaces that kernel device consumers can use to retrieve property
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive values and addresses of properties and determine
whether a property exists.

1di_prop_exists(9F) Return 1 if the property exists for the target device
specified by the layered driver handle. Return 0 if the
property does not exist for the specified target
device.

Chapter 14 « Layered Driver Interface (LDI) 239

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-devmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-getmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-putmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-otyp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-minor-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fkmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-exists-9f

Kernel Interfaces

240

ldi_prop_get_int(9F) Search for an int integer property that is associated
with the target device specified by the layered driver
handle. If the integer property is found, return the
property value.

1di_prop_get int64(9F) Search for an int64_t integer property that is
associated with the target device specified by the
layered driver handle. If the integer property is
found, return the property value.

ldi_prop_lookup_int_array(9F) Retrieve the address of an int integer array property
value for the target device specified by the layered
driver handle.

1di_prop_lookup_int64 array(9F) Retrieve the address of an int64_t integer array
property value for the target device specified by the
layered driver handle.

1di_prop_lookup string(9F) Retrieve the address of a null-terminated string
property value for the target device specified by the
layered driver handle.

1di_prop_lookup_string array(9F) Retrieve the address of an array of strings. The string
array is an array of pointers to null-terminated
strings of property values for the target device
specified by the layered driver handle.

1di_prop_lookup byte array(9F) Retrieve the address of an array of bytes. The byte
array is a property value of the target device specified
by the layered driver handle.

Receiving Asynchronous Device Event Notification

The LDI enables kernel device consumers to register for event notification and to receive event
notification from target devices. A kernel device consumer can register an event handler that
will be called when the event occurs. The kernel device consumer must open a device and
receive a layered driver handle before the kernel device consumer can register for event
notification with the LDI event notification interfaces.

The LDI event notification interfaces enable a kernel device consumer to specify an event name
and to retrieve an associated kernel event cookie. The kernel device consumer can then pass the
layered driver handle (1di_handle_t), the cookie (ddi_eventcookie_t), and the event handler
toldi_add_event_handler(9F) to register for event notification. When registration completes
successfully, the kernel device consumer receives a unique LDI event handler identifier
(ldi_callback_id_t). The LDI event handler identifier is an opaque type that can be used only
with the LDI event notification interfaces.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-add-event-handler-9f

Kernel Interfaces

The LDI provides a framework to register for events generated by other devices. The LDI itself
does not define any event types or provide interfaces for generating events.

The following describes the LDI asynchronous event notification interfaces:
1di_callback_id_t Event handler identifier. An opaque type.

1di_get eventcookie(9F) Retrieve an event service cookie for the target device
specified by the layered driver handle.

1di add event handler(9F) Add the callback handler specified by the
1di_callback_id_t registration identifier. The callback
handler is invoked when the event specified by the
ddi_eventcookie t cookie occurs.

1di_remove event handler(9F) Remove the callback handler specified by the
1di_callback_id_t registration identifier.

LDI Kernel Interfaces Example

This section shows an example kernel device consumer that uses some of the LDI calls
discussed in the preceding sections in this chapter. This section discusses the following aspects
of this example module:

= “Device Configuration File” on page 241
= “Driver Source File” on page 242
= “Test the Layered Driver” on page 250

This example kernel device consumer is named lyr. The lyr module is a layered driver that
uses LDI calls to send data to a target device. In its open(9E) entry point, the lyr driver opens
the device that is specified by the lyr_targ property in the lyr. conf configuration file. In its
write(9E) entry point, the lyr driver writes all of its incoming data to the device specified by
the lyr_targ property.

Device Configuration File

In the configuration file shown below, the target device that the lyr driver is writing to is the
console.

EXAMPLE 14-1 Configuration File

#
Use is subject to license terms.
#

#pragma ident

"957%%M°% %1% %E% SMI"

name="lyr" parent="pseudo" instance=1;
lyr targ="/dev/console";

Chapter 14 - Layered Driver Interface (LDI) 241

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-get-eventcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-add-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-remove-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e

Kernel Interfaces

242

Driver Source File

In the driver source file shown below, the lyr_state_t structure holds the soft state for the lyr
driver. The soft state includes the layered driver handle (1h) for the lyr_targ device and the
layered identifier (11) for the lyr device. For more information on soft state, see “Retrieving
Driver Soft State Information” on page 523.

In the lyr_open() entry point, ddi_prop_lookup_string(9F) retrieves from the lyr_targ
property the name of the target device for the lyr device to open. The
ldi_ident_from_dev(9F) function gets an LDI layered identifier for the lyr device. The
ldi_open_by_name(9F) function opens the lyr_targ device and gets a layered driver handle for
the lyr_targ device.

Note that if any failure occurs in lyr_open(), the 1di_close(9F), ldi_ident_release(9F), and
ddi_prop_free(9F) calls undo everything that was done. The 1di_close(9F) function closes
the lyr_targdevice. The 1di_ident_release(9F) function releases the lyr layered identifier.
The ddi_prop_free(9F) function frees resources allocated when the lyr_targ device name was
retrieved. If no failure occurs, the 1di_close(9F) and 1di_ident release(9F) functions are
called in the lyr_close() entry point.

In the last line of the driver module, the 1di_write(9F) function is called. The 1di_write(9F)
function takes the data written to the lyr device in the lyr_write() entry point and writes that
datato the lyr_targ device. The 1di_write(9F) function uses the layered driver handle for the
lyr_targ device to write the data to the lyr_targ device.

EXAMPLE 14-2 Driver Source File

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>

typedef struct lyr state {

1di_handle t 1h;
1di ident t 1i;
dev_info_t *dip;
minor t minor;
int flags;
kmutex t lock;

} lyr state t;

#define LYR OPENED
#define LYR _IDENTED

0x1 /* 1h is valid
0x2 /* 1i is valid

Writing Device Drivers « October 2012

*/
*/

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-ident-release-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fldi-write-9f

Kernel Interfaces

EXAMPLE 14-2 Driver Source File

static int lyr info(dev_info t *, ddi info cmd t, void *, void **);
static int lyr attach(dev info t *, ddi attach cmd t);

static int lyr_detach(dev_info_t *, ddi_detach_cmd_t);

static int lyr open(dev t *, int, int, cred t *);

static int lyr close(dev_t, int, int, cred t *);

static int lyr write(dev_t, struct uio *, cred t *);

static void *lyr_statep;

(Continued)

static struct cb ops lyr cb ops = {

lyr _open,
lyr close,
nodev,
nodev,
nodev,
nodev,

lyr write,
nodev,
nodev,
nodev,
nodev,
nochpoll,
ddi prop op,
NULL,

D NEW | D MP,
CB REV,
nodev,

nodev

};

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

open */
close */

strategy */

print */
dump */
read */
write */
ioctl */
devmap */
mmap */
segmap */
poll */
prop_op */
streamtab
cb flag */
cb rev */
aread */
awrite */

static struct dev ops lyr dev ops = {

DEVO_REV,
0,
lyr_info,
nulldev,
nulldev,
lyr _attach,
lyr detach,
nodev,
&lyr cb ops,
NULL,

NULL,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ddi quiesce not needed,

b

devo rev, */

refcnt */
getinfo */

identify */

probe */
attach */
detach */
reset */
cb ops */
bus ops */
power */

/* quiesce */

static struct modldrv modldrv = {

&mod_driverops,
"LDI example driver"
&lyr dev_ops

+

static struct modlinkage modlinkage =
MODREV 1,
&modldrv,

Chapter 14 - Layered Driver Interface (LDI)

{

243

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

NULL
+

int
_init(void)
{

int rv;

if ((rv = ddi_soft_state init(&lyr_statep, sizeof (lyr_state t),
0)) '=10) {
cmn_err(CE WARN, "lyr init: soft state init failed\n")
return (rv);

if ((rv = mod_install(&modlinkage)) !'= 0) {
cmn_err(CE_WARN, "lyr init: mod install failed\n")
goto FAIL;

}

return (rv);

/*NOTEREACHED*/

FAIL:
ddi_soft_state fini(&lyr_statep);
return (rv);

}
int
_info(struct modinfo *modinfop)

{
}

return (mod_info(&modlinkage, modinfop));

int
~fini(void)
{

int rv;

if ((rv = mod_remove(&modlinkage)) != 0) {
return(rv);
}
ddi_soft_state fini(&lyr statep);
return (rv);
}
/*
* 1:1 mapping between minor number and instance
*/
static int
lyr info(dev _info t *dip, ddi info cmd t infocmd, void *arg, void **result)
{
int inst;
minor_t minor;
lyr state t *statep;
char *myname = "lyr_info"

minor = getminor((dev_t)arg);

inst = minor;
switch (infocmd) {

244 Writing Device Drivers « October 2012

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

case DDI INFO DEVT2DEVINFO:
statep = ddi_get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: get soft state
"failed on inst %d\n", myname, inst);
return (DDI FAILURE);

}
*result = (void *)statep->dip;
break;

case DDI INFO DEVT2INSTANCE:
*result = (void *)inst;

break;
default:
break;
}
return (DDI SUCCESS);
}
static int
lyr attach(dev_info t *dip, ddi_attach cmd_t cmd)
{

int inst;
lyr state t *statep;
char *myname = "lyr attach"

switch (cmd) {
case DDI_ATTACH:
inst = ddi get instance(dip);

if (ddi_soft state zalloc(lyr statep, inst) != DDI SUCCESS) {
cmn_err(CE_WARN, "%s: ddi soft state zallac failed "
"on inst %d\n", myname, inst);
goto FAIL;
H
statep = (lyr _state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE WARN, "%s: ddi get soft state failed on
"inst %d\n", myname, inst);
goto FAIL;

}

statep->dip = dip;

statep->minor = inst;

if (ddi_create minor node(dip, "node", S IFCHR, statep->minor,
DDI PSEUDO, @) '= DDI SUCCESS) {
cmn_err(CE_WARN, "%s: ddi create minor node failed on

"inst %d\n", myname, inst);

goto FAIL;

}
mutex init(&statep->lock, NULL, MUTEX DRIVER, NULL);
return (DDI SUCCESS);
case DDI_RESUME:
case DDI PM RESUME:
default:
break;

Chapter 14 - Layered Driver Interface (LDI) 245

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

}
return (DDI_FAILURE);
/*NOTREACHED*/

FAIL:
ddi soft state free(lyr statep, inst);
ddi_remove_minor_node(dip, NULL);
return (DDI_ FAILURE);

}

static int
lyr detach(dev _info t *dip, ddi detach cmd t cmd)
{

int inst;

lyr state t *statep;

char *myname = "lyr detach"

inst = ddi get instance(dip);
statep = ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: get soft state failed on
"inst %d\n", myname, inst);
return (DDI FAILURE);

}
if (statep->dip != dip) {
cmn_err(CE_WARN, "%s: soft state does not match devinfo
"on inst %d\n", myname, inst);
return (DDI FAILURE);

}

switch (cmd) {

case DDI_DETACH:
mutex destroy(&statep->lock);
ddi soft state free(lyr statep, inst);
ddi_remove minor node(dip, NULL);
return (DDI SUCCESS);

case DDI_SUSPEND:

case DDI_PM SUSPEND:

default:
break;

}

return (DDI_FAILURE);

* on this driver’s open, we open the target specified by a property and store
the layered handle and ident in our soft state. a good target would be
"/dev/console" or more interestingly, a pseudo terminal as specified by the
tty command

I

*/
/*ARGSUSED*/
static int
lyr open(dev_t *devtp, int oflag, int otyp, cred t *credp)

int rv, inst = getminor(*devtp);
lyr state t *statep;

char *myname = "lyr open"
dev_info t *dip;

246 Writing Device Drivers « October 2012

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

char *lyr_targ = NULL;

statep = (lyr state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: ddi get soft state failed on
"inst %d\n", myname, inst);
return (EIO);

}

dip = statep->dip;

/*

* our target device to open should be specified by the "lyr targ"

* string property, which should be set in this driver’s .conf file

*/

if (ddi_prop lookup string(DDI DEV T ANY, dip, DDI PROP_NOTPROM,
"lyr _targ", &lyr targ) '= DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s: ddi_prop_lookup_string failed on

"inst %d\n", myname, inst);

return (EIO);

}
/*
* since we only have one pair of lh’s and 1i’s available, we don’t
* allow multiple on the same instance
*/
mutex_enter(&statep->lock);
if (statep->flags & (LYR OPENED | LYR IDENTED)) {
cmn_err(CE_WARN, "%s: multiple layered opens or idents
"from inst %d not allowed\n", myname, inst);
mutex exit(&statep->lock);
ddi prop free(lyr targ);
return (EIO);

rv = 1di ident from dev(*devtp, &statep->1i);
if (rv !=0) {
cmn_err(CE_WARN, "%s: 1di_ident from dev failed on inst %d\n"
myname, inst);
goto FAIL;
}
statep->flags |= LYR IDENTED;
rv = 1di open by name(lyr targ, FREAD | FWRITE, credp, &statep->lh,
statep->1i);
if (rv 1= 0) {
cmn_err(CE_WARN, "ss: ldi open_by name failed on inst %d\n",
myname, inst);
goto FAIL;
}
statep->flags |= LYR OPENED;
cmn_err(CE_CONT, "\n%s: opened target
myname, lyr targ, inst);
rv =0;

%s’ successfully on inst %d\n"

FAIL:
/* cleanup on error */
if (rv 1= 0) {
if (statep->flags & LYR OPENED)
(void)ldi close(statep->lh, FREAD | FWRITE, credp);

Chapter 14 - Layered Driver Interface (LDI) 247

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

if (statep->flags & LYR IDENTED)
1di_ident release(statep->1i);
statep->flags &= ~(LYR OPENED | LYR IDENTED);
}
mutex exit(&statep->lock);
if (lyr_targ != NULL)
ddi prop free(lyr targ);
return (rv);

}
/*
* on this driver’s close, we close the target indicated by the lh member
* in our soft state and release the ident, 1i as well. in fact, we MUST do
* both of these at all times even if close yields an error because the
* device framework effectively closes the device, releasing all data
* associated with it and simply returning whatever value the target’s
* close(9E) returned. therefore, we must as well.
*/
/*ARGSUSED*/
static int
lyr close(dev t devt, int oflag, int otyp, cred t *credp)
{
int rv, inst = getminor(devt);
lyr _state t *statep;
char *myname = "lyr close"
statep = (lyr state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: ddi get soft state failed on "
"inst %d\n", myname, inst);
return (EIO);
}
mutex _enter(&statep->lock);
rv = 1di close(statep->lh, FREAD | FWRITE, credp);
if (rv !'=0) {
cmn_err(CE_WARN, "%s: 1di close failed on inst %d, but will "
"continue to release ident\n", myname, inst);
}
1di ident release(statep->1i);
if (rv == 0) {
cmn_err(CE_CONT, "\n%s: closed target successfully on "
"inst %d\n", myname, inst);
}
statep->flags &= ~(LYR OPENED | LYR IDENTED);
mutex _exit(&statep->lock);
return (rv);
}
/*
* echo the data we receive to the target
*/
/*ARGSUSED*/
static int
lyr write(dev_t devt, struct uio *uiop, cred_t *credp)
{

int rv, inst = getminor(devt);
lyr state t *statep;
char *myname = "lyr write"

248 Writing Device Drivers « October 2012

Kernel Interfaces

EXAMPLE 14-2 Driver Source File (Continued)

statep = (lyr _state t *)ddi get soft state(lyr statep, inst);
if (statep == NULL) {
cmn_err(CE_WARN, "%s: ddi_get soft_state failed on
"inst %d\n", myname, inst);
return (EIO);

return (ldi write(statep->lh, uiop, credp));

How to Build and Load the Layered Driver

Compile the driver.
Use the -D_KERNEL option to indicate that this is a kernel module.
= Ifyouare compiling for a SPARC architecture, use the -xarch=v9 option:

% cc -c¢ -D_KERNEL -xarch=v9 lyr.c
= Ifyouare compiling for a 32-bit x86 architecture, use the following command:

°

% cc -c -D_KERNEL lyr.c

Link the driver.
% ld -r -o lyr lyr.o

Install the configuration file.
As user root, copy the configuration file to the kernel driver area of the machine:

cp lyr.conf /usr/kernel/drv
Install the driver binary.

= Asuser root, copy the driver binary to the sparcv9 driver area on a SPARC architecture:

cp lyr /usr/kernel/drv/sparcv9
= Asuser root, copy the driver binary to the drv driver area on a 32-bit x86 architecture:

cp lyr /usr/kernel/drv

Load the driver.

As user root, use the add_drv(1M) command to load the driver.
add_drv lyr

List the pseudo devices to confirm that the lyr device now exists:
ls /devices/pseudo | grep lyr

lyrel
lyr@l:node

Chapter 14 - Layered Driver Interface (LDI) 249

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Madd-drv-1m

Kernel Interfaces

250

Test the Layered Driver

To test the lyr driver, write a message to the lyr device and verify that the message displays on
the lyr_targ device.

EXAMPLE 14-3 Write a Short Message to the Layered Device

In this example, the lyr_targ device is the console of the system where the lyr device is
installed.

If the display you are viewing is also the display for the console device of the system where the
lyr device is installed, note that writing to the console will corrupt your display. The console
messages will appear outside your window system. You will need to redraw or refresh your
display after testing the lyr driver.

If the display you are viewing is not the display for the console device of the system where the
lyr device is installed, log into or otherwise gain a view of the display of the target console
device.

The following command writes a very brief message to the lyr device:

echo "\n\n\t===> Hello World!! <===\n" > /devices/pseudo/lyr@l:node

You should see the following messages displayed on the target console:

console login:
===> Hello World!! <===
lyr:
lyr open: opened target '/dev/console’ successfully on inst 1
lyr:
lyr close: closed target successfully on inst 1
The messages from lyr_open() and lyr_close() come from the cmn_err(9F) calls in the
lyr_open() and lyr_close() entry points.

EXAMPLE 14-4 Write a Longer Message to the Layered Device

The following command writes a longer message to the lyr device:

cat lyr.conf > /devices/pseudo/lyr@l:node

You should see the following messages displayed on the target console:

lyr:
lyr open: opened target '/dev/console’ successfully on inst 1
#

Use is subject to license terms.

#
#pragma ident "%Z%%M% %I% %E% SMI"

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcmn-err-9f

User Interfaces

EXAMPLE 14-4 Write a Longer Message to the Layered Device (Continued)

name="lyr" parent="pseudo" instance=1;
lyr_targ="/dev/console";

lyr:

lyr close: closed target successfully on inst 1

EXAMPLE 14-5 Change the Target Device

To change the target device, edit /usr/kernel/drv/lyr. conf and change the value of the
lyr_targ property to be a path to a different target device. For example, the target device could
be the output of a tty command in alocal terminal. An example of such a device path is
/dev/pts/4.

Make sure the lyr device is not in use before you update the driver to use the new target device.

modinfo -c | grep lyr
174 3 lyr UNLOADED/UNINSTALLED

Use the update_drv(1M) command to reload the lyr. conf configuration file:

update_drv lyr

Write a message to the lyr device again and verify that the message displays on the new
lyr targ device.

User Interfaces

The LDI includes user-level library and command interfaces to report device layering and usage
information. “Device Information Library Interfaces” on page 251 discusses the
libdevinfo(3LIB) interfaces for reporting device layering information. “Print System
Configuration Command Interfaces” on page 253 discusses the prtconf(1M) interfaces for
reporting kernel device usage information. “Device User Command Interfaces” on page 256
discusses the fuser(1M) interfaces for reporting device consumer information.

Device Information Library Interfaces

The LDI includes libdevinfo(3LIB) interfaces that report a snapshot of device layering
information. Device layering occurs when one device in the system is a consumer of another
device in the system. Device layering information is reported only if both the consumer and the
target are bound to a device node that is contained within the snapshot.

Chapter 14 - Layered Driver Interface (LDI) 251

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Flibdevinfo-3lib

User Interfaces

Device layering information is reported by the libdevinfo(3LIB) interfaces as a directed graph.
An Inode is an abstraction that represents a vertex in the graph and is bound to a device node.
You can use libdevinfo(3LIB) interfaces to access properties of an Inode, such as the name and
device number of the node.

The edges in the graph are represented by a link. A link has a source Inode that represents the
device consumer. A link also has a target Inode that represents the target device.

The following describes the libdevinfo(3LIB) device layering information interfaces:

DINFOLYR Snapshot flag that enables you to capture device
layering information.

di link t A directed link between two endpoints. Each
endpointisadi_lnode_t. An opaque structure.

di_lnode_t The endpoint of a link. An opaque structure. A
di_lnode_tisboundtoadi node t.

di_node_t Represents a device node. An opaque structure. A
di_node_t is not necessarily bound to a
di lnode t.

di walk link(3DEVINFO) Walk all links in the snapshot.

di walk lnode(3DEVINFO) Walk all Inodes in the snapshot.

di link next by node(3DEVINFO) Get a handle to the next link where the specified
di_node_t node is either the source or the target.

di_link next by lnode(3DEVINFO) Get a handle to the next link where the specified
di_lnode_t Inode is either the source or the target.

di link to lnode(3DEVINFO) Get the Inode that corresponds to the specified
endpointofadi link tlink.

di_link_spectype(3DEVINFO) Get the link spectype. The spectype indicates how
the target device is being accessed. The target
device is represented by the target Inode.

di_lnode next(3DEVINFO) Get a handle to the next occurrence of the specified
di_lnode_t Inode associated with the specified
di_node_t device node.

di lnode name(3DEVINFO) Get the name that is associated with the specified
Inode.

di lnode devinfo(3DEVINFO) Get a handle to the device node that is associated
with the specified Inode.

252 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-walk-link-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-walk-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-next-by-node-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-next-by-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-to-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-spectype-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-next-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-name-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-devinfo-3devinfo

User Interfaces

di_lnode_devt(3DEVINFO) Get the device number of the device node that is
associated with the specified Inode.

The device layering information returned by the LDI can be quite complex. Therefore, the LDI
provides interfaces to help you traverse the device tree and the device usage graph. These
interfaces enable the consumer of a device tree snapshot to associate custom data pointers with
different structures within the snapshot. For example, as an application traverses Inodes, the
application can update the custom pointer associated with each Inode to mark which Inodes
already have been seen.

The following describes the libdevinfo(3LIB) node and link marking interfaces:

di lnode private set(3DEVINFO) Associate the specified data with the specified Inode.
This association enables you to traverse Inodes in the
snapshot.

di_lnode private get(3DEVINFO) Retrieve a pointer to data that was associated with an
Inode through a call to
di lnode private set(3DEVINFO).

di link private set(3DEVINFO) Associate the specified data with the specified link.
This association enables you to traverse links in the
snapshot.

di link private get(3DEVINFO) Retrieve a pointer to data that was associated with a
link through a call to
di link private set(3DEVINFO).

Print System Configuration Command Interfaces

The prtconf(1M) command is enhanced to display kernel device usage information. The
default prtconf(1M) output is not changed. Device usage information is displayed when you
specify the verbose option (-v) with the prtconf(1M) command. Usage information about a
particular device is displayed when you specify a path to that device on the prtconf(1M)
command line.

prtconf -v Display device minor node and device usage information. Show kernel
consumers and the minor nodes each kernel consumer currently has
open.

prtconf path Display device usage information for the device specified by path.

prtconf -a path Display device usage information for the device specified by path and all
device nodes that are ancestors of path.

prtconf -c path Display device usage information for the device specified by path and all
device nodes that are children of path.

Chapter 14 « Layered Driver Interface (LDI) 253

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-devt-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-private-set-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-lnode-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-private-set-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN3Ddi-link-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mprtconf-1m

User Interfaces

254

EXAMPLE 14-6 Device Usage Information

When you want usage information about a particular device, the value of the path parameter
can be any valid device path.

% prtconf /dev/cfg/c0
SUNW, isptwo, instance #0

EXAMPLE 14-7 Ancestor Node Usage Information

To display usage information about a particular device and all device nodes that are ancestors of
that particular device, specify the -a flag with the prtconf(1M) command. Ancestors include all
nodes up to the root of the device tree. If you specify the -a flag with the prtconf(1M)
command, then you must also specify a device path name.

% prtconf -a /dev/cfg/c0O
SUNW, Sun-Fire
ssm, instance #0
pci, instance #0
pci, instance #0
SUNW, isptwo, instance #0

EXAMPLE 14-8 Child Node Usage Information

To display usage information about a particular device and all device nodes that are children of
that particular device, specify the - c flag with the prtconf(1M) command. If you specify the -c
flag with the prtconf(1M) command, then you must also specify a device path name.

% prtconf -c /dev/cfg/cO

SUNW, isptwo, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #1
sd, instance #0
sd, instance #6
st, instance #1 (driver not attached)
st, instance #0 (driver not attached)
st, instance #2 (driver not attached)
st, instance #3 (driver not attached)
st, instance #4 (driver not attached)
st, instance #5 (driver not attached)
st, instance #6 (driver not attached)
ses, instance #0 (driver not attached)

EXAMPLE 14-9 Layering and Device Minor Node Information — Keyboard

To display device layering and device minor node information about a particular device, specify
the -v flag with the prtconf(1M) command.

% prtconf -v /dev/kbd
conskbd, instance #0

Writing Device Drivers « October 2012

User Interfaces

EXAMPLE 14-9 Layering and Device Minor Node Information — Keyboard (Continued)

System properties:

Device Layered Over:
mod=kb8042 dev=(101,0)
dev _path=/isa/i8042@1,60/keyboard@0
Device Minor Nodes:
dev=(103,0)
dev_path=/pseudo/conskbd@®: kbd
spectype=chr type=minor
dev link=/dev/kbd
dev=(103,1)
dev_path=/pseudo/conskbd@d: conskbd
spectype=chr type=internal
Device Minor Layered Under:
mod=wc accesstype=chr
dev_path=/pseudo/wc@d

This example shows that the /dev/kbd device is layered on top of the hardware keyboard device
(/isa/i8042@1,60/keyboard@d). This example also shows that the /dev/kbd device has two
device minor nodes. The first minor node has a /dev link that can be used to access the node.
The second minor node is an internal node that is not accessible through the file system. The
second minor node has been opened by the wc driver, which is the workstation console.
Compare the output from this example to the output from Example 14-12.

EXAMPLE 14-10 Layering and Device Minor Node Information — Network Device

This example shows which devices are using the currently plumbed network device.

% prtconf -v /dev/iprb@
pcil028,145, instance #0
Hardware properties:

Interrupt Specifications:

Device Minor Nodes:
dev=(27,1)
dev _path=/pci@0,0/pci8086,244e@le/pcil@28,145@c:iprb0d
spectype=chr type=minor
alias=/dev/iprb0
dev=(27,4098)
dev_path=<clone>
Device Minor Layered Under:
mod=udp6 accesstype=chr
dev _path=/pseudo/udp6@0
dev=(27,4097)
dev_path=<clone>
Device Minor Layered Under:
mod=udp accesstype=chr
dev_path=/pseudo/udp@d
dev=(27,4096)
dev_path=<clone>
Device Minor Layered Under:

Chapter 14 « Layered Driver Interface (LDI) 255

User Interfaces

256

EXAMPLE 14-10 Layering and Device Minor Node Information — Network Device (Continued)

mod=udp accesstype=chr
dev_path=/pseudo/udp@0

This example shows that the iprb@ device has been linked under udp and udp6. Notice that no
paths are shown to the minor nodes that udp and udp6 are using. No paths are shown in this case
because the minor nodes were created through clone opens of the iprb driver, and therefore
there are no file system paths by which these nodes can be accessed. Compare the output from
this example to the output from Example 14-11.

Device User Command Interfaces

The fuser(1M) command is enhanced to display device usage information. The fuser(1M)
command displays device usage information only if path represents a device minor node. The
-d flag is valid for the fuser(1M) command only if you specify a path that represents a device
minor node.

fuser path Display information about application device consumers and kernel device
consumers if path represents a device minor node.

fuser -d path Display all users of the underlying device that is associated with the device
minor node represented by path.

Kernel device consumers are reported in one of the following four formats. Kernel device
consumers always are surrounded by square brackets ([1).

kernel_module_name]
kernel_module_name,dev_path=path]
kernel_module_name, dev=(major, minor)]
kernel_module_name, dev=(major, minor) ,dev_path=path]

[

[

[

[
When the fuser(1M) command displays file or device users, the output consists of a process ID
on stdout followed by a character on stderr. The character on stderr describes how the file or
device is being used. All kernel consumer information is displayed to stderr. No kernel

consumer information is displayed to stdout.

If you do not use the -d flag, then the fuser(1M) command reports consumers of only the
device minor node that is specified by path. If you use the -d flag, then the fuser(1M) command
reports consumers of the device node that underlies the minor node specified by path. The
following example illustrates the difference in report output in these two cases.

EXAMPLE 14-11 Consumers of Underlying Device Nodes

Most network devices clone their minor node when the device is opened. If you request device
usage information for the clone minor node, the usage information might show that no process
is using the device. If instead you request device usage information for the underlying device

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mfuser-1m

User Interfaces

EXAMPLE 14-11 Consumers of Underlying Device Nodes (Continued)

node, the usage information might show that a process is using the device. In this example, no
device consumers are reported when only a device path is passed to the fuser(1M) command.

When the -d flag is used, the output shows that the device is being accessed by udp and udpé.

% fuser /dev/iprb0

/dev/iprb0:

% fuser -d /dev/iprbo

/dev/iprb@: [udp,dev_path=/pseudo/udp@®] [udp6,dev path=/pseudo/udp6@0]

Compare the output from this example to the output from Example 14-10.

EXAMPLE 14-12 Consumer of the Keyboard Device

In this example, a kernel consumer is accessing /dev/kbd. The kernel consumer that is
accessing the /dev/kbd device is the workstation console driver.

% fuser -d /dev/kbd
/dev/kbd: [genunix] [wc,dev path=/pseudo/wc@0]

Compare the output from this example to the output from Example 14-9.

Chapter 14 - Layered Driver Interface (LDI)

257

258

PART 11

Designing Specific Kinds of Device Drivers

The second part of the book provides design information that is specific to the type of
driver:

Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.

Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture
(SCSA) and the requirements for SCSI target drivers.

Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host
Bus Adapter (HBA) drivers.

Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD).
The GLDv3 framework is a function calls-based interface of MAC plugins and MAC
driver service routines and structures.

Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

Chapter 21, “SR-IOV Drivers,” describes the SR-IOV device driver and the interfaces
available to write an SR-IOV driver.

259

260

L K R 4 CHAPTER 15

Drivers for Character Devices

A character device does not have physically addressable storage media, such as tape drives or
serial ports, where I/O is normally performed in a byte stream. This chapter describes the
structure of a character device driver, focusing in particular on entry points for character
drivers. In addition, this chapter describes the use of physio(9F) and aphysio(9F) in the
context of synchronous and asynchronous I/O transfers.

This chapter provides information on the following subjects:

= “Overview of the Character Driver Structure” on page 261
= “Character Device Autoconfiguration” on page 263

= “Device Access (Character Drivers)” on page 264

= “I/O Request Handling” on page 266

= “Mapping Device Memory” on page 275

= “Multiplexing I/O on File Descriptors” on page 276

= “Miscellaneous I/O Control” on page 278

= “32-bitand 64-bit Data Structure Macros” on page 283

Overview of the Character Driver Structure

Figure 15-1 shows data structures and routines that define the structure of a character device
driver. Device drivers typically include the following elements:

= Device-loadable driver section
= Device configuration section
= Character driver entry points

The shaded device access section in the following figure illustrates character driver entry points.

261

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f

Overview of the Character Driver Structure

FIGURE 15-1

| modlinkage(9S) |
|
| modldrv(9S) |

| cb_ops(9S) |

Character Driver Roadmap

Character Device

open(9E)
close(9E)
read(9E)
write(9E)
ioct1(9E)
chpoll(9E)
aread(9E)
awrite(9E)
mmap(9E)
devmap(9E)
segmap(9E)
prop_op(9E)

Associated with each device driver isa dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. These structures contain pointers to the driver entry points:

= open(9E)
m close(9E)
= read(9E)

" write(9E)

®m ioctl(9E)

= chpoll(9E)
= aread(9E)

= awrite(9E)
= mmap(9E)

= devmap(9E)
®m segmap(9E)
= prop_op(9E)

Note - Some of these entry points can be replaced with nodev(9F) or nulldev(9F) as

appropriate.

262 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f

Character Device Autoconfiguration

Character Device Autoconfiguration

The attach(9E) routine should perform the common initialization tasks that all devices
require, such as:

Allocating per-instance state structures

Registering device interrupts

Mapping the device's registers

Initializing mutex variables and condition variables
Creating power-manageable components

Creating minor nodes

See “attach() Entry Point” on page 104 for code examples of these tasks.

Character device drivers create minor nodes of type S_IFCHR. A minor node of S_IFCHR causes a
character special file that represents the node to eventually appear in the /devices hierarchy.

The following example shows a typical attach(9E) routine for character drivers. Properties that
are associated with the device are commonly declared in an attach () routine. This example
uses a predefined Size property. Size is the equivalent of the Nblocks property for getting the
size of partition in a block device. If, for example, you are doing character I/O on a disk device,
you might use Size to get the size of a partition. Since Size is a 64-bit property, you must use a
64-bit property interface. In this case, you use ddi_prop_update_int64(9F). See “Device
Properties” on page 77 for more information about properties.

EXAMPLE 15-1 Character Driver attach () Routine

static int
xxattach(dev_info t *dip, ddi attach cmd t cmd)
{
int instance = ddi get instance(dip);
switch (cmd) {
case DDI_ATTACH:
/*

*

Allocate a state structure and initialize it.

* Map the device's registers.

* Add the device driver’s interrupt handler(s).

* Initialize any mutexes and condition variables.
* Create power manageable components.
*
*
*

Create the device’s minor node. Note that the node type
argument is set to DDI NT TAPE.

if (ddi create minor node(dip, minor_name, S IFCHR,
instance, DDI NT TAPE, @) == DDI FAILURE)

/* Free resources allocated so far. */

/* Remove any previously allocated minor nodes. */
ddi remove minor node(dip, NULL);

return (DDI FAILURE);

Chapter 15 « Drivers for Character Devices 263

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int64-9f

Device Access (Character Drivers)

EXAMPLE 15-1 Character Driver attach () Routine (Continued)

* Create driver properties like "Size." Use "Size"
* instead of "size" to ensure the property works
* for large bytecounts.
*/
xsp->Size = size_of device_in_bytes;
maj number = ddi driver major(dip);
if (ddi_prop update int64(makedevice(maj number, instance),
dip, "Size", xsp->Size) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Size property\n"
ddi get name(dip));
/* Free resources allocated so far. */
return (DDI_FAILURE);
}
/X L. %/
return (DDI SUCCESS);
case DDI_RESUME:
/* See the "Power Management" chapter in this book. */
default:
return (DDI_ FAILURE);
}
}

Device Access (Character Drivers)

264

Access to a device by one or more application programs is controlled through the open(9E) and
close(9E) entry points. An open(2) system call to a special file that represents a character device
always causes a call to the open(9E) routine for the driver. For a particular minor device,
open(9E) can be called many times. The close(9E) routine is called only when the final
reference to a device is removed. If the device is accessed through file descriptors, the final call to
close(9E) can occur as a result of a close(2) or exit(2) system call. If the device is accessed
through memory mapping, the final call to close(9E) can occur as a result of a munmap(2)
system call.

open () Entry Point (Character Drivers)

The primary function of open () is to verify that the open request is allowed. The syntax for
open(9E) is as follows:

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

where:

devp Pointer to a device number. The open () routine is passed a pointer so that the driver
can change the minor number. With this pointer, drivers can dynamically create
minor instances of the device. An example would be a pseudo terminal driver that
creates a new pseudo-terminal whenever the driver is opened. A driver that

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e

Device Access (Character Drivers)

flag

otyp

dynamically chooses the minor number normally creates only one minor device node
inattach(9E) with ddi_create_minor_node(9F), then changes the minor number
component of *devp using makedevice(9F) and getmajor(9F):

*devp = makedevice(getmajor(*devp), new_minor)

You do not have to call ddi_create minor node(9F) for the new minor. A driver
must not change the major number of *devp. The driver must keep track of available
minor numbers internally.

Flag with bits to indicate whether the device is opened for reading (FREAD), writing
(FWRITE), or both. User threads issuing the open(2) system call can also request
exclusive access to the device (FEXCL) or specify that the open should not block for
any reason (FNDELAY), but the driver must enforce both cases. A driver for a
write-only device such as a printer might consider an open(9E) for reading invalid.

Integer that indicates how open () was called. The driver must check that the value of
otyp is appropriate for the device. For character drivers, otyp should be OTYP_CHR (see
the open(9E) man page).

credp Pointer to a credential structure containing information about the caller, such as the

The

user ID and group IDs. Drivers should not examine the structure directly, but should
instead use drv_priv(9F) to check for the common case of root privileges. In this
example, only root or a user with the PRIV_SYS_DEVICES privilege is allowed to
open the device for writing.

following example shows a character driver open(9E) routine.

EXAMPLE 15-2 Character Driver open(9E) Routine

stat
XX0p

{

ic int

en(dev_t *devp, int flag, int otyp, cred t *credp)

minor t instance;

if (getminor(*devp) /* if device pointer is invalid */

return (EINVAL);
instance = getminor(*devp); /* one-to-one example mapping */
/* Is the instance attached? */
if (ddi_get soft state(statep, instance) == NULL)
return (ENXIO);
/* verify that otyp is appropriate */
if (otyp != OTYP_CHR)
return (EINVAL);

if ((flag & FWRITE) && drv _priv(credp) == EPERM)
return (EPERM);
return (0);

Chapter 15 « Drivers for Character Devices 265

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmakedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdrv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e

1/0 Request Handling

close() Entry Point (Character Drivers)

The syntax for close(9E) is as follows:

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close() should perform any cleanup necessary to finish using the minor device, and prepare
the device (and driver) to be opened again. For example, the open routine might have been
invoked with the exclusive access (FEXCL) flag. A call to close(9E) would allow additional open
routines to continue. Other functions that close(9E) might perform are:

= Waiting for I/O to drain from output buffers before returning
= Rewindinga tape (tape device)
= Hanging up the phone line (modem device)

A driver that waits for I/O to drain could wait forever if draining stalls due to external
conditions such as flow control. See “Threads Unable to Receive Signals” on page 75 for
information about how to avoid this problem.

1/0 Request Handling

266

This section discusses I/O request processing in detail.

User Addresses

When a user thread issues a write(2) system call, the thread passes the address of a buffer in
user space:

char buffer[] = "python";
count = write(fd, buffer, strlen(buffer) + 1);

The system builds a uio(9S) structure to describe this transfer by allocating an iovec(9S)
structure and setting the iov_base field to the address passed to write(2), in this case, buffer.
The uio(9S) structure is passed to the driver write(9E) routine. See “Vectored I/O” on page 267
for more information about the uio(9S) structure.

The address in the iovec(9S) is in user space, not kernel space. Thus, the address is neither
guaranteed to be currently in memory nor to be a valid address. In either case, accessing a user
address directly from the device driver or from the kernel could crash the system. Thus, device
drivers should never access user addresses directly. Instead, a data transfer routine in the Oracle
Solaris DDI/DKI should be used to transfer data into or out of the kernel. These routines can
handle page faults. The DDI/DKI routines can bring in the proper user page to continue the
copy transparently. Alternatively, the routines can return an error on an invalid access.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Siovec-9s

I/0 Request Handling

copyout(9F) can be used to copy data from kernel space to user space. copyin(9F) can copy
data from user space to kernel space. ddi_copyout(9F) and ddi_copyin(9F) operate similarly
but are to be used in the ioct1(9E) routine. copyin(9F) and copyout(9F) can be used on the
buffer described by each iovec(9S) structure, or uiomove(9F) can perform the entire transfer to
or from a contiguous area of driver or device memory.

Vectored 1/0

In character drivers, transfers are described by a uio(9S) structure. The uio(9S) structure
contains information about the direction and size of the transfer, plus an array of bufters for one
end of the transfer. The other end is the device.

The uio(9S) structure contains the following members:

iovec_ t *uio_iov; /* base address of the iovec */
/* buffer description array */
int uio_iovcent; /* the number of iovec structures */
off t uio offset; /* 32-bit offset into file where */
/* data is transferred from or to */
offset t uio loffset; /* 64-bit offset into file where */
/* data is transferred from or to */
uio seg t uio segflg; /* identifies the type of I/0 transfer */

/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO USERSPACE: kernel <-> user */

short uio fmode; /* file mode flags (not driver setTable) */
daddr_t uio limit; /* 32-bit ulimit for file (maximum */
/* block offset). not driver settable. */
diskaddr_ t uio 1limit; /* 64-bit ulimit for file (maximum block */
/* block offset). not driver settable. */
int uio resid; /* amount (in bytes) not */

/* transferred on completion */

A uio(9S) structure is passed to the driver read(9E) and write(9E) entry points. This structure
is generalized to support what is called gather-write and scatter-read. When writing to a device,
the data buffers to be written do not have to be contiguous in application memory. Similarly,
data that is transferred from a device into memory comes off in a contiguous stream but can go
into noncontiguous areas of application memory. See the readv(2), writev(2), pread(2), and
pwrite(2) man pages for more information on scatter-gather I/0.

Each buffer is described by an iovec(9S) structure. This structure contains a pointer to the data
area and the number of bytes to be transferred.

caddr t iov base; /* address of buffer */
int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec(9S) structures. The base address of
this array is held in uio_iov, and the number of elements is stored in uio_iovent.

Chapter 15 « Drivers for Character Devices 267

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2readv-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2writev-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2pread-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2pwrite-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Siovec-9s

1/0 Request Handling

268

The uio_offset field contains the 32-bit offset into the device at which the application needs to
begin the transfer. uio_loffset is used for 64-bit file offsets. If the device does not support the
notion of an offset, these fields can be safely ignored. The driver should interpret either
uio_offset oruio_loffset, but not both. If the driver has set the D_64BIT flag in the
cb_ops(9S) structure, that driver should use uio_loffset.

The uio_resid field starts out as the number of bytes to be transferred, that is, the sum of all the
iov_lenfieldsin uio_iov. This field must be set by the driver to the number of bytes that were
not transferred before returning. The read(2) and write(2) system calls use the return value
from the read(9E) and write(9E) entry points to determine failed transfers. If a failure occurs,
these routines return -1. If the return value indicates success, the system calls return the number
of bytes requested minus uio_resid.Ifuio_resid is not changed by the driver, the read(2) and
write(2) calls return 0. A return value of 0 indicates end-of-file, even though all the data has
been transferred.

The support routines uiomove(9F), physio(9F), and aphysio(9F) update the uio(9S) structure
directly. These support routines update the device offset to account for the data transfer.
Neither the uio_offset oruio_loffset fields need to be adjusted when the driver is used with
a seekable device that uses the concept of position. I/O performed to a device in this manner is
constrained by the maximum possible value of uio_offset oruio_loffset. An example of
such a usage is raw I/O on a disk.

If the device has no concept of position, the driver can take the following steps:

1. Saveuio offsetoruio loffset.
2. Perform the I/O operation.
3. Restoreuio offsetoruio loffset to the field's initial value.

I/0O that is performed to a device in this manner is not constrained by the maximum possible
value of uio_offset oruio_loffset. An example of this type of usage is I/O on a serial line.

The following example shows one way to preserve uio_loffset in the read(9E) function.

static int
xxread(dev_t dev, struct uio *uio p, cred t *cred p)
{
offset t off;
/* .. */
off = uio_p->uio_loffset; /* save the offset */
/* do the transfer */
uio p->uio loffset = off; /* restore it */

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e

I/0 Request Handling

Differences Between Synchronous and Asynchronous
1/0

Data transfers can be synchronous or asynchronous. The determining factor is whether the entry
point that schedules the transfer returns immediately or waits until the I/O has been completed.

The read(9E) and write(9E) entry points are synchronous entry points. The transfer must not
return until the I/O is complete. Upon return from the routines, the process knows whether the
transfer has succeeded.

The aread(9E) and awrite(9E) entry points are asynchronous entry points. Asynchronous
entry points schedule the I/O and return immediately. Upon return, the process that issues the
request knows that the I/O is scheduled and that the status of the I/O must be determined later.
In the meantime, the process can perform other operations.

With an asynchronous I/O request to the kernel, the process is not required to wait while the
I/Ois in process. A process can perform multiple I/O requests and allow the kernel to handle
the data transfer details. Asynchronous I/O requests enable applications such as transaction
processing to use concurrent programming methods to increase performance or response time.
Any performance boost for applications that use asynchronous I/O, however, comes at the
expense of greater programming complexity.

Data Transfer Methods

Data can be transferred using either programmed I/O or DMA. These data transfer methods
can be used either by synchronous or by asynchronous entry points, depending on the
capabilities of the device.

Programmed I/0 Transfers

Programmed I/O devices rely on the CPU to perform the data transfer. Programmed I/O data
transfers are identical to other read and write operations for device registers. Various data
access routines are used to read or store values to device memory.

uiomove(9F) can be used to transfer data to some programmed I/O devices. uiomove(9F)
transfers data between the user space, as defined by the uio (9S) structure, and the kernel.
uiomove () can handle page faults, so the memory to which data is transferred need not be
locked down. uiomove () also updates the uio_resid field in the uio(9S) structure. The
following example shows one way to write a ramdisk read(9E) routine. It uses synchronous I/O
and relies on the presence of the following fields in the ramdisk state structure:

caddr t ram; /* base address of ramdisk */
int ramsize; /* size of the ramdisk */

Chapter 15 « Drivers for Character Devices 269

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e

1/0 Request Handling

EXAMPLE 15-3 Ramdisk read(9E) Routine Using uiomove(9F)

static int
rd read(dev_t dev, struct uio *uiop, cred t *credp)
{

rd_devstate t *rsp;

rsp = ddi get soft state(rd statep, getminor(dev));
if (rsp == NULL)

return (ENXIO);
if (uiop->uio offset >= rsp->ramsize)

return (EINVAL);

* uiomove takes the offset into the kernel buffer,

* the data transfer count (minimum of the requested and

* the remaining data), the UIO READ flag, and a pointer

* to the uio structure.

*/

return (uiomove(rsp->ram + uiop->uio offset,
min(uiop->uio resid, rsp->ramsize - uiop->uio offset),
UIO READ, uiop));

Another example of programmed I/O would be a driver that writes data one byte at a time
directly to the device's memory. Each byte is retrieved from the uio(9S) structure by using
uwritec(9F). The byte is then sent to the device. read(9E) can use ureadc(9F) to transfer a byte
from the device to the area described by the uio(9S) structure.

EXAMPLE 15-4 Programmed I/O write(9E) Routine Using uwritec(9F)

static int
xxwrite(dev_t dev, struct uio *uiop, cred t *credp)
{

int value;

struct xxstate *Xsp;

xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
/* if the device implements a power manageable component, do this: */
pm_busy component(xsp->dip, 0);
if (xsp->pm_suspended)
pm_raise power(xsp->dip, normal power);

while (uiop->uio resid > 0) {
/*
* do the programmed I/0 access
*/
value = uwritec(uiop);
if (value == -1)
return (EFAULT);

ddi put8(xsp->data access handle, &xsp->regp->data,
(uint8 t)value);

ddi put8(xsp->data access handle, &xsp->regp->csr,
START_TRANSFER) ;

270 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fuwritec-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fureadc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Suio-9s

I/0 Request Handling

EXAMPLE 15-4 Programmed I/O write(9E) Routine Using uwritec(9F) (Continued)

/*
* this device requires a ten microsecond delay
* between writes
*/

drv_usecwait(10);

}
pm_idle component(xsp->dip, 0);
return (0);

DMA Transfers (Synchronous)

Character drivers generally use physio(9F) to do the setup work for DMA transfers in read(9E)
andwrite(9E), as is shown in Example 15-5.

int physio(int (*strat) (struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct uio *uio);

physio(9F) requires the driver to provide the address of a strategy(9E) routine. physio(9F)
ensures that memory space is locked down, that is, memory cannot be paged out, for the
duration of the data transfer. This lock-down is necessary for DMA transfers because DMA
transfers cannot handle page faults. physio(9F) also provides an automated way of breaking a
larger transfer into a series of smaller, more manageable ones. See “minphys () Entry Point” on
page 273 for more information.

EXAMPLE 15-5 read(9E) and write(9E) Routines Using physio(9F)

static int
xxread(dev t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

int ret;

xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B READ, xxminphys, uiop);
return (ret);

}

static int
xxwrite(dev_t dev, struct uio *uiop, cred t *credp)
{

struct xxstate *xsp;

int ret;

xsp = ddi_get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B WRITE, xxminphys, uiop);

Chapter 15 « Drivers for Character Devices 271

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f

1/0 Request Handling

272

EXAMPLE 15-5 read(9E) and write(9E) Routines Using physio(9F) (Continued)

return (ret);

In the call to physio(9F), xxstrategy is a pointer to the driver strategy () routine. Passing
NULL as the buf(9S) structure pointer tells physio(9F) to allocate a buf(9S) structure. If the
driver must provide physio(9F) with a buf(9S) structure, get rbuf(9F) should be used to
allocate the structure. physio(9F) returns zero if the transfer completes successfully, or an error
number on failure. After calling strategy(9E), physio(9F) calls biowait(9F) to block until the
transfer either completes or fails. The return value of physio(9F) is determined by the error
field in the buf(9S) structure set by bioerror(9F).

DMA Transfers (Asynchronous)

Character drivers that support aread(9E) and awrite(9E) use aphysio(9F) instead of
physio(9F).

int aphysio(int (*strat)(struct buf *), int (*cancel) (struct buf *),
dev_t dev, int rw, void (*mincnt)(struct buf *),
struct aio_req *aio_reqp);

Note - The address of anocancel(9F) is the only value that can currently be passed as the second
argument to aphysio(9F).

aphysio(9F) requires the driver to pass the address of a strategy(9E) routine. aphysio(9F)
ensures that memory space is locked down, that is, cannot be paged out, for the duration of the
data transfer. This lock-down is necessary for DMA transfers because DMA transfers cannot
handle page faults. aphysio(9F) also provides an automated way of breaking a larger transfer
into a series of smaller, more manageable ones. See “minphys () Entry Point” on page 273 for
more information.

Example 15-5 and Example 15-6 demonstrate that the aread(9E) and awrite(9E) entry points
differ only slightly from the read(9E) and write(9E) entry points. The difference is primarily in
their use of aphysio(9F) instead of physio(9F).

EXAMPLE 15-6 aread(9E) and awrite(9E) Routines Using aphysio(9F)

static int
xxaread(dev_t dev, struct aio req *aiop, cred t *cred p)

{

struct xxstate *xsp;
xsp = ddi_get soft state(statep, getminor(dev));

if (xsp == NULL)
return (ENXIO);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetrbuf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiowait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fanocancel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f

I/0 Request Handling

EXAMPLE 15-6 aread(9E) and awrite(9E) Routines Using aphysio(9F) (Continued)

return (aphysio(xxstrategy, anocancel, dev, B_READ,
xxminphys, aiop));

}
static int
xxawrite(dev_t dev, struct aio req *aiop, cred t *cred p)
{
struct xxstate *xsp;
xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B WRITE,
xxminphys,aiop));
}

In the call to aphysio(9F), xxstrategy () is a pointer to the driver strategy routine. aiop is a
pointer to the aio_req(9S) structure. aiop is passed to aread(9E) and awrite(9E). aio_req(9S)
describes where the data is to be stored in user space. aphysio(9F) returns zero if the I/O
request is scheduled successfully or an error number on failure. After calling strategy(9E),
aphysio(9F) returns without waiting for the I/O to complete or fail.

minphys () Entry Point

The minphys () entry point is a pointer to a function to be called by physio(9F) or aphysio(9F).
The purpose of xxminphys is to ensure that the size of the requested transfer does not exceed a
driver-imposed limit. If the user requests a larger transfer, strategy(9E) is called repeatedly,
requesting no more than the imposed limit at a time. This approach is important because DMA
resources are limited. Drivers for slow devices, such as printers, should be careful not to tie up
resources for along time.

Usually, a driver passes the address of the kernel function minphys(9F), but the driver can
define its own xxminphys () routine instead. The job of xxminphys () is to keep the b_bcount
field of the buf(9S) structure under a driver's limit. The driver should adhere to other system
limits as well. For example, the driver's xxminphys () routine should call the system
minphys(9F) routine after setting the b_bcount field and before returning.

EXAMPLE 15-7 minphys(9F) Routine

#define XXMINVAL (512 << 10) /* 512 KB */
static void
xxminphys(struct buf *bp)

if (bp->b_bcount > XXMINVAL)

bp->b bcount = XXMINVAL
minphys(bp);

Chapter 15 « Drivers for Character Devices 273

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Saio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Saio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fminphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fminphys-9f

1/0 Request Handling

274

strategy () Entry Point

The strategy(9E) routine originated in block drivers. The strategy function got its name from
implementing a strategy for efficient queuing of I/O requests to a block device. A driver fora
character-oriented device can also use a strategy (9E) routine. In the character I/O model
presented here, strategy(9E) does not maintain a queue of requests, but rather services one
request at a time.

In the following example, the strategy(9E) routine for a character-oriented DMA device
allocates DMA resources for synchronous data transfer. strategy () starts the command by
programming the device register. See Chapter 9, “Direct Memory Access (DMA),” for a detailed
description.

Note - strategy(9E) does not receive a device number (dev_t) as a parameter. Instead, the
device number is retrieved from the b_edev field of the buf(9S) structure passed to
strategy(9E).

EXAMPLE 15-8 strategy(9E) Routine

static int

xxstrategy(struct buf *bp)

{
minor_ t instance;
struct xxstate *Xsp;

ddi dma cookie t cookie;

instance = getminor(bp->b edev);
xsp = ddi_get soft_state(statep, instance);
/X L X/
* If the device has power manageable components,
* mark the device busy with pm busy components(9F),
* and then ensure that the device is
* powered up by calling pm_raise power(9F).
*/
/* Set up DMA resources with ddi dma alloc_handle(9F) and
* ddi dma buf bind handle(9F).
*/
xsp->bp = bp; /* remember bp */
/* Program DMA engine and start command */
return (0);

Note - Although strategy () is declared to return an int, strategy () must always return zero.

On completion of the DMA transfer, the device generates an interrupt, causing the interrupt
routine to be called. In the following example, xxintr () receives a pointer to the state structure
for the device that might have generated the interrupt.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Mapping Device Memory

EXAMPLE 15-9 Interrupt Routine

static u_int
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
if (/* device did not interrupt */) {
return (DDI INTR UNCLAIMED);
}

if (/* error */) {
/* error handling */

}

/* Release any resources used in the transfer, such as DMA resources.
* ddi_dma_unbind_handle(9F) and ddi_dma_ free handle(9F)

* Notify threads that the transfer is complete.

*/

biodone(xsp->bp);

return (DDI INTR CLAIMED);

The driver indicates an error by calling bioerror(9F). The driver must call biodone(9F) when
the transfer is complete or after indicating an error with bioerror(9F).

Mapping Device Memory

Some devices, such as frame buffers, have memory that is directly accessible to user threads by
way of memory mapping. Drivers for these devices typically do not support the read(9E) and
write(9E) interfaces. Instead, these drivers support memory mapping with the devmap(9E)
entry point. For example, a frame buffer driver might implement the devmap(9E) entry point to
enable the frame buffer to be mapped in a user thread.

The devmap(9E) entry point is called to export device memory or kernel memory to user
applications. The devmap () function is called from devmap_setup(9F) inside segmap(9E) or on
behalf of ddi_devmap segmap(9F).

The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine.

See Chapter 10, “Mapping Device and Kernel Memory,” and Chapter 11, “Device Context
Management,” for details.

Chapter 15 « Drivers for Character Devices 275

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdevmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-devmap-segmap-9f

Multiplexing 1/0 on File Descriptors

Multiplexing 1/0 on File Descriptors

276

A thread sometimes needs to handle I/O on more than one file descriptor. One example is an
application program that needs to read the temperature from a temperature-sensing device and
then report the temperature to an interactive display. A program that makes a read request with
no data available should not block while waiting for the temperature before interacting with the
user again.

The pol1(2) system call provides users with a mechanism for multiplexing I/O over a set of file
descriptors that reference open files. po11(2) identifies those file descriptors on which a
program can send or receive data without blocking, or on which certain events have occurred.

To enable a program to poll a character driver, the driver must implement the chpol1(9E) entry
point. The system calls chpol1(9E) when a user process issues a pol1(2) system call on a file
descriptor associated with the device. The chpol1(9E) entry point routine is used by
non-STREAMS character device drivers that need to support polling.

The chpol1(9E) function uses the following syntax:

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

In the chpol1(9E) entry point, the driver must follow these rules:
= Implement the following algorithm when the chpol1(9E) entry point is called:

if (/* events are satisfied now */) {
*reventsp = mask_of_satisfied_events
} else {
*reventsp = 0;
if (lanyyet)
*phpp = &local_pollhead_structure;
}

return (0);

See the chpol1(9E) man page for a discussion of events to check. The chpol1(9E) entry
point should then return the mask of satisfied events by setting the return events in
*reventsp.

If no events have occurred, the return field for the events is cleared. If the anyyet field is not
set, the driver must return an instance of the pollhead structure. The pollhead structure is
usually allocated in a state structure. The pollhead structure should be treated as opaque by
the driver. None of the pollhead fields should be referenced.

= Call pollwakeup(9F) whenever a device condition of type events, listed in Example 15-10,
occurs. This function should be called only with one event at a time. You can call
pollwakeup(9F) in the interrupt routine when the condition has occurred.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpollwakeup-9f

Multiplexing I/O on File Descriptors

Example 15-10 and Example 15-11 show how to implement the polling discipline and how to
use pollwakeup(9F).

The following example shows how to handle the POLLIN and POLLERR events. The driver first
reads the status register to determine the current state of the device. The parameter events
specifies which conditions the driver should check. If an appropriate condition has occurred,
the driver sets that bit in *reventsp. If none of the conditions has occurred and if anyyet is not
set, the address of the pollhead structure is returned in *phpp.

EXAMPLE15-10 chpoll1(9E) Routine

static int
xxchpoll(dev t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp)
{
uint8 t status;
short revent;
struct xxstate *xsp;

xsp = ddi _get soft state(statep, getminor(dev));
if (xsp == NULL)
return (ENXIO);
revent = 0;
/*
* Valid events are:
* POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR
* This example checks only for POLLIN and POLLERR.
*/
status = ddi_get8(xsp->data_access handle, &xsp->regp->csr);
if ((events & POLLIN) && data available to read) {
revent |= POLLIN;
}
if (status & DEVICE ERROR) {
revent |= POLLERR;
}
/* if nothing has occurred */
if (revent == 0) {
if (lanyyet) {
*phpp = &xsp->pollhead;

}
*reventsp = revent;
return (0);

The following example shows how to use the pollwakeup(9F) function. The pollwakeup(9F)
function usually is called in the interrupt routine when a supported condition has occurred. The
interrupt routine reads the status from the status register and checks for the conditions. The
routine then calls pollwakeup(9F) for each event to possibly notify polling threads that they
should check again. Note that pollwakeup(9F) should not be called with any locks held, since
deadlock could result if another routine tried to enter chpol1(9E) and grab the same lock.

Chapter 15 « Drivers for Character Devices 277

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fpollwakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Echpoll-9e

Miscellaneous I/0 Control

EXAMPLE 15-11 Interrupt Routine Supporting chpol1(9E)

static u_int
xxintr(caddr t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
uint8 t status;
/* normal interrupt processing */
/* L0 X/
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (status & DEVICE ERROR) {
pollwakeup (&xsp->pollhead, POLLERR);
}
if (/* just completed a read */) {
pollwakeup (&xsp->pollhead, POLLIN);
}
/* L0 %/
return (DDI INTR CLAIMED);
}

Miscellaneous 1/0 Control

#define XXIOC

The 10ct1(9E) routine is called when a user thread issues an ioct1(2) system call on a file
descriptor associated with the device. The I/O control mechanism is a catchall for getting and
setting device-specific parameters. This mechanism is frequently used to set a device-specific
mode, either by setting internal driver software flags or by writing commands to the device. The
control mechanism can also be used to return information to the user about the current device
state. In short, the control mechanism can do whatever the application and driver need to have
done.

ioctl() Entry Point (Character Drivers)

int xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioct1(9E) should perform. By convention, the
driver with which an I/O control command is associated is indicated in bits 8-15 of the
command. Typically, the ASCII code of a character represents the driver. The driver-specific
command in bits 0-7. The creation of some I/O commands is illustrated in the following
example:

('x’" << 8) /* 'x'" is a character that represents device xx */

#define XX GET_STATUS (XXIOC | 1) /* get status register */

#define XX_SET CMD

278

(XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands should be
documented in the driver documentation or a man page. The command should also be defined
in a public header file, so that applications can determine the name of the command, what the

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e

Miscellaneous 1/0 Control

command does, and what the command accepts or returns as arg. Any data transfer of arg into
or out of the driver must be performed by the driver.

Certain classes of devices such as frame buffers or disks must support standard sets of I/O
control requests. These standard I/O control interfaces are documented in the Solaris 8
Reference Manual Collection. For example, fbio(7I) documents the I/O controls that frame
buffers must support, and dkio(7I) documents standard disk I/O controls. See “Miscellaneous
1/0 Control” on page 278 for more information on I/O controls.

Drivers must use ddi_copyin(9F) to transfer arg data from the user-level application to the
kernel level. Drivers must use ddi_copyout(9F) to transfer data from the kernel to the user
level. Failure to use ddi copyin(9F) or ddi copyout(9F) can result in panics under two
conditions. A panic occurs if the architecture separates the kernel and user address spaces, or if
the user address has been swapped out.

ioctl(9E) is usually a switch statement with a case for each supported ioct1(9E) request.

EXAMPLE 15-12 ioct1(9E) Routine

static int
xxioctl(dev t dev, int cmd, intptr t arg, int mode,
cred t *credp, int *rvalp)

{

uint8 t csr;

struct xxstate *xsp;

xsp = ddi_get soft _state(statep, getminor(dev));

if (xsp == NULL) {
return (ENXIO);

}

switch (cmd) {

case XX _GET_STATUS:
csr = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (ddi_copyout(&csr, (void *)arg, sizeof (uint8 t), mode) != 0) {

return (EFAULT);

}
break;

case XX_SET_CMD:
if (ddi_copyin((void *)arg, &csr, sizeof (uint8 t), mode) != 0) {

return (EFAULT);

}
ddi put8(xsp->data access handle, &xsp->regp->csr, csr);
break;

default:
/* generic "ioctl unknown" error */
return (ENOTTY);

return (0);

}

The cmd variable identifies a specific device control operation. A problem can occur if arg
contains a user virtual address. ioct1(9E) must call ddi_copyin(9F) or ddi_copyout(9F) to

Chapter 15 « Drivers for Character Devices 279

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-copyout-9f

Miscellaneous I/0 Control

280

transfer data between the data structure in the application program pointed to by arg and the
driver. In Example 15-12, for the case of an XX _GET_STATUS request, the contents of
xsp->regp->csrare copied to the address in arg. ioct1(9E) can store in *rvalp any integer value
as the return value to the ioct1(2) system call that makes a successful request. Negative return
values, such as -1, should be avoided. Many application programs assume that negative values
indicate failure.

The following example demonstrates an application that uses the I/O controls discussed in the
previous paragraph.

EXAMPLE15-13 Usingioct1(9E)

#include <sys/types.h>

#include "xxio.h" /* contains device’s ioctl cmds and args */
int
main(void)
{
uint8_t status;
/* .0 X/
/*
* read the device status
*/
if (ioctl(fd, XX _GET_STATUS, &status) == -1) {
/* error handling */
H
printf("device status %x\n", status);
exit(0);

1/0 Control Support for 64-Bit Capable Device Drivers

The Oracle Solaris kernel runs in 64-bit mode on suitable hardware, supporting both 32-bit
applications and 64-bit applications. A 64-bit device driver is required to support I/O control
commands from programs of both sizes. The difference between a 32-bit program and a 64-bit
program is the C language type model. A 32-bit program is ILP32, and a 64-bit program is
LP64. See Appendix C, “Making a Device Driver 64-Bit Ready,” for information on C data type
models.

If data that flows between programs and the kernel is not identical in format, the driver must be
able to handle the model mismatch. Handling a model mismatch requires making appropriate
adjustments to the data.

To determine whether a model mismatch exists, the ioct1(9E) mode parameter passes the data
model bits to the driver. As Example 15-14 shows, the mode parameter is then passed to
ddi_model_convert_from(9F) to determine whether any model conversion is necessary.

A flag subfield of the mode argument is used to pass the data model to the ioct1(9E) routine.
The flag is set to one of the following:

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e

Miscellaneous 1/0 Control

= DATAMODEL_ILP32
= DATAMODEL LP64

FNATIVE is conditionally defined to match the data model of the kernel implementation. The
FMODELS mask should be used to extract the flag from the mode argument. The driver can then
examine the data model explicitly to determine how to copy the application data structure.

The DDI function ddi_model convert from(9F) isa convenience routine that can assist some
drivers with their ioct1() calls. The function takes the data type model of the user application
as an argument and returns one of the following values:

= DDI MODEL ILP32 - Convertfrom ILP32 application
= DDI MODEL NONE - No conversion needed

DDI_MODEL_NONE is returned if no data conversion is necessary, as occurs when the application
and driver have the same data model. DDI_MODEL_ILP32 is returned to a driver that is compiled
to the LP64 model and that communicates with a 32-bit application.

In the following example, the driver copies a data structure that contains a user address. The
data structure changes size from ILP32 to LP64. Accordingly, the 64-bit driver uses a 32-bit
version of the structure when communicating with a 32-bit application.

EXAMPLE 15-14 ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications
struct args32 {

uint32 t addr; /* 32-bit address in LP64 */
int len;

}

struct args {
caddr_t addr; /* 64-bit address in LP64 */
int len;

}

static int

xxioctl(dev_t dev, int cmd, intptr t arg, int mode,
cred t *credp, int *rvalp)
{
struct xxstate *xsp;
struct args a;
xsp = ddi get soft state(statep, getminor(dev));
if (xsp == NULL) {
return (ENXIO);
}
switch (cmd) {
case XX COPYIN DATA:
switch(ddi_model convert from(mode)) {
case DDI MODEL ILP32:
{
struct args32 a32;

/* copy 32-bit args data shape */

if (ddi_copyin((void *)arg, &a32,
sizeof (struct args32), mode) != 0) {

Chapter 15 « Drivers for Character Devices 281

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-model-convert-from-9f

Miscellaneous I/0 Control

EXAMPLE 15-14 ioct1(9E) Routine to Support 32-bit Applications and 64-bit Applications

(Continued)
return (EFAULT);
}
/* convert 32-bit to 64-bit args data shape */
a.addr = a32.addr;
a.len = a32.len;
break;
}

case DDI_MODEL_NONE:
/* application and driver have same data model. */
if (ddi copyin((void *)arg, &a, sizeof (struct args),
mode) !'= 0) {
return (EFAULT);
}
}

/* continue using data shape in native driver data model. */
break;

case XX COPYOUT DATA:
/* copyout handling */
break;
default:
/* generic "ioctl unknown" error */
return (ENOTTY);
}

return (0);

Handling copyout () Overflow

Sometimes a driver needs to copy out a native quantity that no longer fits in the 32-bit sized
structure. In this case, the driver should return EOVERFLOW to the caller. EOVERFLOW serves as an
indication that the data type in the interface is too small to hold the value to be returned, as
shown in the following example.

EXAMPLE 15-15 Handling copyout(9F) Overflow
int
xxioctl(dev_t dev, int cmd, intptr t arg, int mode,
cred_t *cr, int *rval p)
{
struct resdata res;
/* body of driver */
switch (ddi model convert from(mode & FMODELS)) {
case DDI MODEL ILP32: {
struct resdata32 res32;

if (res.size > UINT MAX)

return (EOVERFLOW) ;
res32.size = (size32 t)res.size;
res32.flag = res.flag;

282 Writing Device Drivers « October 2012

32-bit and 64-bit Data Structure Macros

EXAMPLE 15-15 Handling copyout(9F) Overflow (Continued)

if (ddi_ copyout(&res32,
(void *)arg, sizeof (res32), mode))
return (EFAULT);
}

break;

case DDI_MODEL NONE:
if (ddi copyout(&res, (void *)arg, sizeof (res), mode))
return (EFAULT);
break;

return (0);

32-bit and 64-bit Data Structure Macros

The method in Example 15-15 works well for many drivers. An alternate scheme is to use the
data structure macros that are provided in <sys/model. h>to move data between the application
and the kernel. These macros make the code less cluttered and behave identically, from a
functional perspective.

EXAMPLE 15-16 Using Data Structure Macros to Move Data
int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred t *cr, int *rval p)

{
STRUCT DECL(opdata, op);

if (cmd !'= OPONE)
return (ENOTTY);

STRUCT INIT(op, mode);

if (copyin((void *)arg,
STRUCT BUF(op), STRUCT SIZE(op)))
return (EFAULT);

if (STRUCT FGET(op, flag) != XXACTIVE ||
STRUCT FGET(op, size) > XXSIZE)
return (EINVAL);
xxdowork(device state, STRUCT FGET(op, size));
return (0);

Chapter 15 « Drivers for Character Devices 283

32-bit and 64-bit Data Structure Macros

284

How Do the Structure Macros Work?

In a 64-bit device driver, structure macros enable the use of the same piece of kernel memory by
data structures of both sizes. The memory bufter holds the contents of the native form of the
data structure, that is, the LP64 form, and the ILP32 form. Each structure access is implemented
by a conditional expression. When compiled as a 32-bit driver, only one data model, the native
form, is supported. No conditional expression is used.

The 64-bit versions of the macros depend on the definition of a shadow version of the data
structure. The shadow version describes the 32-bit interface with fixed-width types. The name
of the shadow data structure is formed by appending “32” to the name of the native data
structure. For convenience, place the definition of the shadow structure in the same file as the
native structure to ease future maintenance costs.

The macros can take the following arguments:

structname The structure name of the native form of the data structure as entered after the
struct keyword.

umodel A flag word that contains the user data model, such as FILP32 or FLP64,
extracted from the mode parameter of ioct1(9E).

handle The name used to refer to a particular instance of a structure that is
manipulated by these macros.

fieldname The name of the field within the structure.

When to Use Structure Macros

Macros enable you to make in-place references only to the fields of a data item. Macros do not
provide a way to take separate code paths that are based on the data model. Macros should be
avoided if the number of fields in the data structure is large. Macros should also be avoided if the
frequency of references to these fields is high.

Macros hide many of the differences between data models in the implementation of the macros.
As aresult, code written with this interface is generally easier to read. When compiled as a
32-bit driver, the resulting code is compact without needing clumsy #ifdefs, but still preserves
type checking.

Declaring and Initializing Structure Handles

STRUCT_DECL(9F) and STRUCT INIT(9F) can be used to declare and initialize a handle and space
for decoding an ioctl on the stack. STRUCT_HANDLE(9F) and STRUCT_SET_HANDLE(9F) declare

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-set-handle-9f

32-bit and 64-bit Data Structure Macros

and initialize a handle without allocating space on the stack. The latter macros can be useful if
the structure is very large, or is contained in some other data structure.

Note - Because the STRUCT DECL(9F) and STRUCT HANDLE(9F) macros expand to data structure
declarations, these macros should be grouped with such declarations in C code.

The macros for declaring and initializing structures are as follows:

STRUCT DECL (structname, handle)
Declares a structure handle that is called handle for a structname data structure.
STRUCT_DECL allocates space for its native form on the stack. The native form is assumed to
be larger than or equal to the ILP32 form of the structure.

STRUCT _INIT (handle, umodel)
Initializes the data model for handle to umodel. This macro must be invoked before any
access is made to a structure handle declared with STRUCT DECL(9F).

STRUCT HANDLE (structname, handle)
Declares a structure handle that is called handle. Contrast with STRUCT DECL(9F).

STRUCT_SET _HANDLE (handle, umodel, addr)
Initializes the data model for handle to umodel, and sets addr as the buffer used for
subsequent manipulation. Invoke this macro before accessing a structure handle declared
with STRUCT DECL(9F).

Operations on Structure Handles

The macros for performing operations on structures are as follows:

size t STRUCT_SIZE(handle)
Returns the size of the structure referred to by handle, according to its embedded data
model.

typeof fieldname STRUCT_FGET (handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a
non-pointer type.

typeof fieldname STRUCT_FGETP (handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a pointer

type.

STRUCT_FSET (handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The type of val
should match the type of fieldname. The field is a non-pointer type.

Chapter 15 « Drivers for Character Devices 285

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fstruct-decl-9f

32-bit and 64-bit Data Structure Macros

STRUCT_FSETP (handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The field is a
pointer type.

typeof fieldname *STRUCT_FADDR (handle, fieldname)
Returns the address of the indicated field in the data structure referred to by handle.

struct structname *STRUCT BUF (handle)
Returns a pointer to the native structure described by handle.

Other Operations

Some miscellaneous structure macros follow:

size t SIZEOF STRUCT (struct_name, datamodel)
Returns the size of struct_name, which is based on the given data model.

size t SIZEOF PTR(datamodel)
Returns the size of a pointer based on the given data model.

286 Writing Device Drivers « October 2012

L K R 4 CHAPTER 16

Drivers for Block Devices

This chapter describes the structure of block device drivers. The kernel views a block device as a
set of randomly accessible logical blocks. The file system uses a list of buf(9S) structures to
buffer the data blocks between a block device and the user space. Only block devices can
support a file system.

This chapter provides information on the following subjects:

= “Block Driver Structure Overview” on page 287

= “FileI/O” on page 288

= “Block Device Autoconfiguration” on page 289

= “Controlling Device Access” on page 291

= “Synchronous Data Transfers (Block Drivers)” on page 295
= “Asynchronous Data Transfers (Block Drivers)” on page 299
= “dump() and print() Entry Points” on page 303

= “Disk Device Drivers” on page 304

Block Driver Structure Overview

Figure 16-1 shows data structures and routines that define the structure of a block device
driver. Device drivers typically include the following elements:

m Device-loadable driver section
= Device configuration section
m Device access section

The shaded device access section in the following figure illustrates entry points for block
drivers.

287

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s

Filel/O

Filel/O

288

FIGURE 16-1 Block Driver Roadmap

| modlinkage(9S) |

|
| modldrv(9S) |

| b ops(9S) | Block Device

open(9E)
close(9E)
strategy(9E)
print(9E)

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. See Chapter 6, “Driver Autoconfiguration,” for details on driver data
structures.

Block device drivers provide these entry points:

= open(9E)

m close(9E)

m strategy(9E)
= print(9E)

Note - Some of the entry points can be replaced by nodev(9F) or nulldev(9F) as appropriate.

A file system is a tree-structured hierarchy of directories and files. Some file systems, such as the
UNIX File System (UFS), reside on block-oriented devices. File systems are created by
format(1M) and newfs(1M).

When an application issues a read(2) or write(2) system call to an ordinary file on the UFS file
system, the file system can call the device driver strategy(9E) entry point for the block device
on which the file system resides. The file system code can call strategy(9E) several times for a
single read(2) or write(2) system call.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mnewfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2write-2

Block Device Autoconfiguration

The file system code determines the logical device address, or logical block number, for each
ordinary file block. A block I/O request is then built in the form of a buf(9S) structure directed
at the block device. The driver strategy(9E) entry point then interprets the buf(9S) structure
and completes the request.

Block Device Autoconfiguration

attach(9E) should perform the common initialization tasks for each instance of a device:

Allocating per-instance state structures
Mapping the device's registers
Registering device interrupts

Initializing mutex and condition variables
Creating power manageable components
Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK. As a result, a block special file that
represents the node appears in the /devices hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and consist of a
controller number, bus-address number, disk number, and slice number. These names are
created by the devfsadm(1M) program if the node type is set to DDI_NT_BLOCK or

DDI NT BLOCK CHAN.DDI NT BLOCK CHAN should be specified if the device communicates on a
channel, that is, a bus with an additional level of addressability. SCSI disks are a good example.
DDI_NT_BLOCK_CHAN causes a bus-address field (tN) to appear in the logical name.

DDI NT BLOCK should be used for most other devices.

A minor device refers to a partition on the disk. For each minor device, the driver must create
an nblocks or Nblocks property. This integer property gives the number of blocks supported
by the minor device expressed in units of DEV_BSIZE, that is, 512 bytes. The file system uses the
nblocks and Nblocks properties to determine device limits. Nblocks is the 64-bit version of
nblocks. Nblocks should be used with storage devices that can hold over 1 Tbyte of storage per
disk. See “Device Properties” on page 77 for more information.

Example 16-1 shows a typical attach(9E) entry point with emphasis on creating the device's
minor node and the Nblocks property. Note that because this example uses Nblocks and not
nblocks,ddi prop update int64(9F)is called instead of ddi_prop update int(9F).

As a side note, this example shows the use of makedevice(9F) to create a device number for
ddi_prop_update int64 (). The makedevice function makes use of ddi_driver major(9F),
which generates a major number from a pointer to a dev_info_t structure. Using
ddi_driver_major() issimilar to using getmajor(9F), which gets a dev_t structure pointer.

EXAMPLE 16-1 Block Driver attach() Routine

static int
xxattach(dev_info t *dip, ddi_attach cmd t cmd)

Chapter 16 « Drivers for Block Devices 289

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmakedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-driver-major-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fgetmajor-9f

Block Device Autoconfiguration

EXAMPLE 16-1 Block Driver attach () Routine (Continued)

int instance = ddi get instance(dip);
switch (cmd) {
case DDI_ATTACH:
/*
* allocate a state structure and initialize it
* map the devices registers
add the device driver’s interrupt handler(s)
initialize any mutexes and condition variables
read label information if the device is a disk
create power manageable components

IS S S R R I

Create the device minor node. Note that the node type
argument is set to DDI NT BLOCK.

*/
if (ddi create minor node(dip, "minor_name", S IFBLK,
instance, DDI NT BLOCK, @) == DDI FAILURE) {
/* free resources allocated so far */
/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

Create driver properties like "Nblocks". If the device

is a disk, the Nblocks property is usually calculated from
information in the disk label. Use "Nblocks" instead of
"nblocks" to ensure the property works for large disks.

R

*/

xsp->Nblocks = size;

/* size is the size of the device in 512 byte blocks */

maj number = ddi driver major(dip);

if (ddi prop update int64(makedevice(maj number, instance), dip,
"Nblocks", xsp->Nblocks) != DDI PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Nblocks property\n"

ddi get name(dip));

/* free resources allocated so far */
return (DDI FAILURE);

}

Xsp->open = 0;

xsp->nlayered = 0;

VA 4

return (DDI_ SUCCESS);

case DDI_RESUME:

/* For information, see Chapter 12, "Power Management," in this book.
default:

return (DDI FAILURE);

290 Writing Device Drivers « October 2012

Controlling Device Access

Controlling Device Access

This section describes the entry points for open() and close () functions in block device
drivers. See Chapter 15, “Drivers for Character Devices,” for more information on open(9E) and
close(9E).

open () Entry Point (Block Drivers)

The open(9E) entry point is used to gain access to a given device. The open(9E) routine of a
block driver is called when a user thread issues an open(2) or mount(2) system call on a block
special file associated with the minor device, or when a layered driver calls open(9E). See “File
I/O” on page 288 for more information.

The open () entry point should check for the following conditions:

= The device can be opened, that is, the device is online and ready.

= The device can be opened as requested. The device supports the operation. The device's
current state does not conflict with the request.

= The caller has permission to open the device.

The following example demonstrates a block driver open(9E) entry point.

EXAMPLE 16-2 Block Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flags, int otyp, cred t *credp)
{

minor_t instance;

struct xxstate *Xsp;

instance = getminor(*devp);
xsp = ddi get soft state(statep, instance);
if (xsp == NULL)
return (ENXIO);
mutex_enter(&xsp->mu);
/*
* only honor FEXCL. If a regular open or a layered open
* is still outstanding on the device, the exclusive open
* must fail.
*/
if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {
mutex exit(&xsp->mu);
return (EAGAIN);
}
switch (otyp) {
case OTYP_LYR:
xsp->nlayered++;
break;
case OTYP_BLK:
Xsp->open = 1;

Chapter 16 « Drivers for Block Devices 291

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN2mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e

Controlling Device Access

EXAMPLE 16-2 Block Driver open(9E) Routine (Continued)

break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

mutex exit(&xsp->mu);
return (0);

The otyp argument is used to specify the type of open on the device. 0TYP_BLK is the typical
open type for a block device. A device can be opened several times with otyp set to OTYP_BLK.
close(9E) is called only once when the final close of type OTYP_BLK has occurred for the device.
otyp is set to OTYP_LYR if the device is being used as a layered device. For every open of type
OTYP_LYR, the layering driver issues a corresponding close of type OTYP_LYR. The example keeps
track of each type of open so the driver can determine when the device is not being used in
close(9E).

close() Entry Point (Block Drivers)

The close(9E) entry point uses the same arguments as open(9E) with one exception. dev is the
device number rather than a pointer to the device number.

The close() routine should verify otyp in the same way as was described for the open(9E) entry
point. In the following example, close () must determine when the device can really be closed.
Closing is affected by the number of block opens and layered opens.

EXAMPLE 16-3 Block Device close(9E) Routine

static int
xxclose(dev t dev, int flag, int otyp, cred t *credp)
{

minor_t instance;

struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get soft state(statep, instance);
if (xsp == NULL)
return (ENXIO);
mutex_enter(&xsp->mu);
switch (otyp) {
case OTYP_LYR:
xsp->nlayered- -;
break;
case OTYP_BLK:
xsp->open = 0;
break;
default:
mutex_exit(&xsp->mu);

292 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eopen-9e

Controlling Device Access

EXAMPLE 16-3 Block Device close(9E) Routine (Continued)

return (EINVAL);
}

if (xsp->open || xsp->nlayered) {
/* not done yet */
mutex exit(&xsp->mu);
return (0);
}
/* cleanup (rewind tape, free memory, etc.) */
/* wait for I/0 to drain */
mutex exit(&xsp->mu);

return (0);

strategy () Entry Point

The strategy(9E) entry point is used to read and write data buffers to and from a block device.
The name strategy refers to the fact that this entry point might implement some optimal
strategy for ordering requests to the device.

strategy(9E) can be written to process one request at a time, that is, a synchronous transfer.
strategy() can also be written to queue multiple requests to the device, as in an asynchronous
transfer. When choosing a method, the abilities and limitations of the device should be taken
into account.

The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure describes
the transfer request, and contains status information on return. buf(9S) and strategy(9E) are
the focus of block device operations.

buf Structure

The following buf structure members are important to block drivers:

int b flags; /* Buffer status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
size t b _bcount; /* # of bytes to transfer */
union {

caddr t b addr; /* Buffer’s virtual address */
} b un;
daddr_t b _blkno; /* Block number on device */
diskaddr_t b _1blkno; /* Expanded block number on device */
size t b resid; /* # of bytes not transferred after error */
int b _error; /* Expanded error field */
void *p private; /* "opaque" driver private area */
dev t b _edev; /* expanded dev field */

Chapter 16 « Drivers for Block Devices 293

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Controlling Device Access

294

where:

av_forwandav back

b bcount

b un.b addr

b _blkno
b_1blkno

b resid
b error

b flags

A\

b_private

b edev

Pointers that the driver can use to manage a list of buffers by the
driver. See “Asynchronous Data Transfers (Block Drivers)” on
page 299 for a discussion of the av_forwand av_back pointers.

Specifies the number of bytes to be transferred by the device.

The kernel virtual address of the data buffer. Only valid after
bp _mapin(9F) call.

The starting 32-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_1blkno but not both.

The starting 64-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_1blkno but not both.

Set by the driver to indicate the number of bytes that were not
transferred because of an error. See Example 16-7 for an example of
setting b_resid. The b_resid member is overloaded. b_resid is also
used by disksort(9F).

Set to an error number by the driver when a transfer error occurs.
b_error is set in conjunction with the b_flags B_ERROR bit. See the
Intro(9E) man page for details about error values. Drivers should
use bioerror(9F) rather than setting b_error directly.

Flags with status and transfer attributes of the buf structure. If
B_READ is set, the buf structure indicates a transfer from the device to
memory. Otherwise, this structure indicates a transfer from memory
to the device. If the driver encounters an error during data transfer,
the driver should set the B_ERROR field in the b flags member. In
addition, the driver should provide a more specific error value in
b_error. Drivers should use bioerror(9F) rather than setting
B_ERROR.

Caution - Drivers should never clear b_flags.

For exclusive use by the driver to store driver-private data.

Contains the device number of the device that was used in the
transfer.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdisksort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f

Synchronous Data Transfers (Block Drivers)

bp_mapin Structure

A buf structure pointer can be passed into the device driver's strategy(9E) routine. However,
the data buffer referred toby b_un.b_addr is not necessarily mapped in the kernel's address
space. Therefore, the driver cannot directly access the data. Most block-oriented devices have
DMA capability and therefore do not need to access the data buffer directly. Instead, these
devices use the DMA mapping routines to enable the device's DMA engine to do the data
transfer. For details about using DMA, see Chapter 9, “Direct Memory Access (DMA)”

If a driver needs to access the data buffer directly, that driver must first map the buffer into the
kernel's address space by using bp_mapin(9F). bp_mapout(9F) should be used when the driver
no longer needs to access the data directly.

A Caution — bp_mapout(9F) should only be called on buffers that have been allocated and are
owned by the device driver. bp_mapout () must not be called on buffers that are passed to the
driver through the strategy(9E) entry point, such as a file system. bp_mapin(9F) does not keep
areference count. bp_mapout(9F) removes any kernel mapping on which a layer over the device
driver might rely.

Synchronous Data Transfers (Block Drivers)

This section presents a simple method for performing synchronous I/O transfers. This method
assumes that the hardware is a simple disk device that can transfer only one data buffer at a time
by using DMA. Another assumption is that the disk can be spun up and spun down by software
command. The device driver's st rategy(9E) routine waits for the current request to be
completed before accepting a new request. The device interrupts when the transfer is complete.
The device also interrupts if an error occurs.

The steps for performing a synchronous data transfer for a block driver are as follows:

1. Check for invalid buf(9S) requests.

Check the buf(9S) structure that is passed to strategy(9E) for validity. All drivers should
check the following conditions:

= The request begins at a valid block. The driver converts the b_blkno field to the correct
device offset and then determines whether the offset is valid for the device.

= The request does not go beyond the last block on the device.

= Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error with
bioerror(9F). The driver should then complete the request by calling biodone(9F).

biodone() notifies the caller of strategy(9E) that the transfer is complete. In this case, the
transfer has stopped because of an error.

Chapter 16 « Drivers for Block Devices 295

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Synchronous Data Transfers (Block Drivers)

296

2. Check whether the device is busy.

Synchronous data transfers allow single-threaded access to the device. The device driver
enforces this access in two ways:

= The driver maintains a busy flag that is guarded by a mutex.

= The driver waits on a condition variable with cv_wait(9F), when the device is busy.

If the device is busy, the thread waits until the interrupt handler indicates that the device is
notlonger busy. The available status can be indicated by either the cv_broadcast(9F) or the
cv_signal(9F) function. See Chapter 3, “Multithreading;” for details on condition variables.

When the device is no longer busy, the strategy(9E) routine marks the device as available.
strategy () then prepares the buffer and the device for the transfer.

Set up the buffer for DMA.

Prepare the data buffer for a DMA transfer by using ddi_dma_alloc_handle(9F) to allocate
aDMA handle. Use ddi dma buf bind handle(9F) to bind the data buffer to the handle.
For information on setting up DMA resources and related data structures, see Chapter 9,
“Direct Memory Access (DMA).”

Begin the transfer.

At this point, a pointer to the buf(9S) structure is saved in the state structure of the device.
The interrupt routine can then complete the transfer by calling biodone(9F).

The device driver then accesses device registers to initiate a data transfer. In most cases, the
driver should protect the device registers from other threads by using mutexes. In this case,
because strategy(9E) is single-threaded, guarding the device registers is not necessary. See
Chapter 3, “Multithreading,” for details about data locks.

When the executing thread has started the device's DMA engine, the driver can return
execution control to the calling routine, as follows:

static int
xxstrategy(struct buf *bp)
{
struct xxstate *xsp;
struct device reg *regp;
minor_t instance;
ddi dma cookie t cookie;
instance = getminor(bp->b edev);
xsp = ddi_get soft state(statep, instance);
if (xsp == NULL) {
bioerror(bp, ENXIO);
biodone(bp);
return (0);
}
/* validate the transfer request */
if ((bp->b_blkno >= xsp->Nblocks) || (bp->b blkno < 0)) {
bioerror(bp, EINVAL);
biodone(bp);
return (0);

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Synchronous Data Transfers (Block Drivers)

}
/*

* Hold off all threads until the device is not busy.

*/
mutex _enter(&xsp->mu);
while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);
}
xsp->busy = 1;
mutex_exit(&xsp->mu);
/*

* If the device has power manageable components,
mark the device busy with pm_busy components(9F),
and then ensure that the device
is powered up by calling pm raise power(9F).

* K X X ¥

Set up DMA resources with ddi dma alloc handle(9F) and
* ddi_dma_buf bind handle(9F).
*/
xsp->bp = bp;
regp = Xsp->regp;
ddi put32(xsp->data access handle, ®p->dma addr,
cookie.dmac_address);
ddi put32(xsp->data access handle, ®p->dma size,
(uint32_t)cookie.dmac_size);
ddi put8(xsp->data access handle, ®p->csr,
ENABLE INTERRUPTS | START TRANSFER);
return (0);

}
5. Handle the interrupting device.

When the device finishes the data transfer, the device generates an interrupt, which
eventually results in the driver's interrupt routine being called. Most drivers specify the state
structure of the device as the argument to the interrupt routine when registering interrupts.
Seetheddi_add_intr(9F) man page and “Registering Interrupts” on page 128. The
interrupt routine can then access the buf(9S) structure being transferred, plus any other
information that is available from the state structure.

The interrupt handler should check the device's status register to determine whether the
transfer completed without error. If an error occurred, the handler should indicate the
appropriate error with bioerror(9F). The handler should also clear the pending interrupt
for the device and then complete the transfer by calling biodone(9F).

As the final task, the handler clears the busy flag. The handler then calls cv_signal(9F) or
cv_broadcast(9F) on the condition variable, signaling that the device is no longer busy.
This notification enables other threads waiting for the device in strategy(9E) to proceed
with the next data transfer.

The following example shows a synchronous interrupt routine.
EXAMPLE 16-4 Synchronous Interrupt Routine for Block Drivers

static u_int
xxintr(caddr_t arg)

Chapter 16 « Drivers for Block Devices 297

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Synchronous Data Transfers (Block Drivers)

EXAMPLE 16-4 Synchronous Interrupt Routine for Block Drivers (Continued)

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex exit(&xsp->mu);
return (DDI_INTR UNCLAIMED);

}

/* Get the buf responsible for this interrupt */
bp = xsp->bp;

xsp->bp = NULL;

/*

* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE ERROR) {
/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
} else {
/* success */
bp->b resid = 0;
}
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);

* If the device has power manageable components that were
* marked busy in strategy(9F), mark them idle now with

* pm_idle component(9F)

* Release any resources used in the transfer, such as DMA
* resources ddi_dma_unbind handle(9F) and

* ddi_dma_free handle(9F).

*

*

Let the next I/O thread have access to the device.
xsp->busy = 0;
cv_signal(&xsp->cv);

mutex_exit(&xsp->mu);
return (DDI INTR CLAIMED);

298 Writing Device Drivers « October 2012

Asynchronous Data Transfers (Block Drivers)

Asynchronous Data Transfers (Block Drivers)

This section presents a method for performing asynchronous I/O transfers. The driver queues
the I/O requests and then returns control to the caller. Again, the assumption is that the
hardware is a simple disk device that allows one transfer at a time. The device interrupts when a
data transfer has completed. An interrupt also takes place if an error occurs. The basic steps for
performing asynchronous data transfers are:

1. Check for invalid buf(9S) requests.
2. Enqueue the request.

3. Startthe first transfer.

4. Handle the interrupting device.

Checking for Invalid buf Requests

Asin the synchronous case, the device driver should check the buf(9S) structure passed to
strategy(9E) for validity. See “Synchronous Data Transfers (Block Drivers)” on page 295 for
more details.

Enqueuing the Request

Unlike synchronous data transfers, a driver does not wait for an asynchronous request to
complete. Instead, the driver adds the request to a queue. The head of the queue can be the
current transfer. The head of the queue can also be a separate field in the state structure for
holding the active request, as in Example 16-5.

If the queue is initially empty, then the hardware is not busy and st rategy(9E) starts the
transfer before returning. Otherwise, if a transfer completes with a non-empty queue, the
interrupt routine begins a new transfer. Example 16-5 places the decision of whether to starta
new transfer into a separate routine for convenience.

The driver can use the av_forwand the av_back members of the buf(9S) structure to manage a
list of transfer requests. A single pointer can be used to manage a singly linked list, or both
pointers can be used together to build a doubly linked list. The device hardware specification
specifies which type of list management, such as insertion policies, is used to optimize the
performance of the device. The transfer list is a per-device list, so the head and tail of the list are
stored in the state structure.

The following example provides multiple threads with access to the driver shared data, such as
the transfer list. You must identify the shared data and must protect the data with a mutex. See
Chapter 3, “Multithreading,” for more details about mutex locks.

Chapter 16 « Drivers for Block Devices 299

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s

Asynchronous Data Transfers (Block Drivers)

EXAMPLE 16-5 Enqueuing Data Transfer Requests for Block Drivers

static int
xxstrategy(struct buf *bp)
{
struct xxstate *xsp;
minor_t instance;
instance = getminor(bp->b edev);
xsp = ddi_get soft_state(statep, instance);

VA 4

/* validate transfer request */
/X L0/

/*

* Add the request to the end of the queue. Depending on the device, a sorting
* algorithm, such as disksort(9F) can be used if it improves the
* performance of the device.
*/
mutex_enter(&xsp->mu);
bp->av_forw = NULL;
if (xsp->list head) {
/* Non-empty transfer list */
xsp->list tail->av_forw = bp;
xsp->list tail = bp;
} else {
/* Empty Transfer list */
xsp->list _head = bp;
xsp->list tail = bp;
}
mutex_exit(&xsp->mu);
/* Start the transfer if possible */
(void) xxstart((caddr_t)xsp);
return (0);

Starting the First Transfer

Device drivers that implement queuing usually have a start () routine. start() dequeues the
next request and starts the data transfer to or from the device. In this example, start ()
processes all requests regardless of the state of the device, whether busy or free.

Note - start () must be written to be called from any context. start() can be called by both the
strategy routine in kernel context and the interrupt routine in interrupt context.

start() is called by strategy(9E) every time strategy () queues a request so that an idle
device can be started. If the device is busy, start () returns immediately.

start() is also called by the interrupt handler before the handler returns from a claimed
interrupt so that a nonempty queue can be serviced. If the queue is empty, start () returns
immediately.

300 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e

Asynchronous Data Transfers (Block Drivers)

Because start() isa private driver routine, start () can take any arguments and can return
any type. The following code sample is written to be used as a DMA callback, although that
portion is not shown. Accordingly, the example must take a caddr_t asan argument and return
an int. See “Handling Resource Allocation Failures” on page 167 for more information about
DMA callback routines.

EXAMPLE 16-6 Starting the First Data Request for a Block Driver

static int

xxstart(caddr_t arg)

{
struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;

mutex_enter(&xsp->mu);
/*

* If there is nothing more to do, or the device is

* busy, return.

*/
if (xsp->list head == NULL || xsp->busy) {

mutex_exit(&xsp->mu);
return (0);
}
xsp->busy = 1;
/* Get the first buffer off the transfer list */
bp = xsp->list head;
/* Update the head and tail pointer */
xsp->list head = xsp->list head->av forw;
if (xsp->list head == NULL)
xsp->list tail = NULL;
bp->av_forw = NULL;
mutex exit(&xsp->mu);
/*

* If the device has power manageable components,
mark the device busy with pm busy components(9F),
and then ensure that the device
is powered up by calling pm raise power(9F).

*

*

*

*

* Set up DMA resources with ddi dma_alloc handle(9F) and

* ddi_dma_buf bind handle(9F).

*/

xsp->bp = bp;

ddi put32(xsp->data_access handle, &xsp->regp->dma_addr,
cookie.dmac address);

ddi put32(xsp->data access handle, &xsp->regp->dma size,
(uint32 t)cookie.dmac size);

ddi put8(xsp->data access handle, &xsp->regp->csr,
ENABLE_INTERRUPTS | START TRANSFER);

return (0);

Chapter 16 « Drivers for Block Devices 301

Asynchronous Data Transfers (Block Drivers)

Handling the Interrupting Device

The interrupt routine is similar to the asynchronous version, with the addition of the call to
start() and the removal of the call to cv_signal(9F).

EXAMPLE 16-7 Block Driver Routine for Asynchronous Interrupts

static u_int
xxintr(caddr t arg)
{
struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8 t status;
mutex_enter(&xsp->mu);
status = ddi get8(xsp->data access handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {
mutex exit(&xsp->mu);
return (DDI_INTR UNCLAIMED);

/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE ERROR) {
/* failure */
bp->b resid = bp->b bcount;
bioerror(bp, EIO);
} else {
/* success */
bp->b resid = 0;
}
ddi put8(xsp->data access handle, &xsp->regp->csr,
CLEAR _INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);
/*
* If the device has power manageable components that were
* marked busy in strategy(9F), mark them idle now with
pm _idle component(9F)
Release any resources used in the transfer, such as DMA
resources (ddi dma unbind handle(9F) and
ddi dma free handle(9F)).

R R S O

Let the next I/0 thread have access to the device.
*/

Xsp->busy = 0;

mutex_exit(&xsp->mu);

(void) xxstart((caddr t)xsp);

return (DDI INTR CLAIMED);

302 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcv-signal-9f

dump () and print () Entry Points

dump () and print() Entry Points

This section discusses the dump(9E) and print(9E) entry points.

dump () Entry Point (Block Drivers)

The dump(9E) entry point is used to copy a portion of virtual address space directly to the
specified device in the case of a system failure. dump () is also used to copy the state of the kernel
out to disk during a checkpoint operation. See the cpr(7) and dump(9E) man pages for more
information. The entry point must be capable of performing this operation without the use of
interrupts, because interrupts are disabled during the checkpoint operation.

int dump(dev t dev, caddr t addr, daddr t blkno, int nblk)

where:
dev Device number of the device to receive the dump.
addr Base kernel virtual address at which to start the dump.

blkno Block at which the dump is to start.
nblk Number of blocks to dump.

The dump depends upon the existing driver working properly.

print() Entry Point (Block Drivers)

int print(dev_t dev, char *str)

The print(9E) entry point is called by the system to display a message about an exception that
has been detected. print(9E) should call cmn_err(9F) to post the message to the console on
behalf of the system. The following example demonstrates a typical print() entry point.

static int
xxprint(dev_t dev, char *str)

{
cmn_err(CE_CONT, “xx: %s\n”, str);
return (0);

Chapter 16 « Drivers for Block Devices 303

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fcmn-err-9f

Disk Device Drivers

Disk Device Drivers

304

Disk devices represent an important class of block device drivers.

Diskioctls

Oracle Solaris disk drivers need to support a minimum set of ioct1 commands specific to
Oracle Solaris disk drivers. These I/O controls are specified in the dkio(7I) manual page. Disk
I/O controls transfer disk information to or from the device driver. An Oracle Solaris disk
device is supported by disk utility commands such as format(1M) and newfs(1M). The
mandatory Sun disk I/O controls are as follows:

DKIOCINFO Returns information that describes the disk controller
DKIOCGAPART Returnsa disk's partition map

DKIOCSAPART Setsa disk's partition map

DKIOCGGEOM Returns a disk's geometry

DKIOCSGEOM Sets a disk's geometry

DKIOCGVTOC Returns a disk's Volume Table of Contents

DKIOCSVTOC Sets a disk's Volume Table of Contents

Disk Performance

The Oracle Solaris DDI/DKI provides facilities to optimize I/O transfers for improved file
system performance. A mechanism manages the list of I/O requests so as to optimize disk access
for a file system. See “Asynchronous Data Transfers (Block Drivers)” on page 299 for a
description of enqueuing an I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {

long b flags; /* not used, needed for consistency*/

struct buf *b forw, *b_back; /* queue of unit queues */

struct buf *av forw, *av_back; /* queue of bufs for this unit */
long b bcount; /* active flag */

+s

The diskhd data structure has two buf pointers that the driver can manipulate. The av_forw
pointer points to the first active I/O request. The second pointer, av_back, points to the last
active request on the list.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN1Mnewfs-1m

Disk Device Drivers

A pointer to this structure is passed as an argument to disksort(9F), along with a pointer to the
current buf structure being processed. The disksort () routine sorts the buf requests to
optimize disk seek. The routine then inserts the buf pointer into the diskhd list. The
disksort() program uses the value thatisin b_resid of the buf structure as a sort key. The
driver is responsible for setting this value. Most Sun disk drivers use the cylinder group as the
sort key. This approach optimizes the file system read-ahead accesses.

When data has been added to the diskhd list, the device needs to transfer the data. If the device
is not busy processing a request, the xxstart () routine pulls the first buf structure off the
diskhd list and starts a transfer.

If the device is busy, the driver should return from the xxstrategy () entry point. When the
hardware is done with the data transfer, an interrupt is generated. The driver's interrupt routine
is then called to service the device. After servicing the interrupt, the driver can then call the
start() routine to process the next buf structure in the diskhd list.

Chapter 16 « Drivers for Block Devices 305

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fdisksort-9f

306

L R 2 4 CHAPTER 17

SCSITarget Drivers

The Oracle Solaris DDI/DKI divides the software interface to SCSI devices into two major parts:
target drivers and host bus adapter (HBA) drivers. Target refers to a driver for a device on a SCSI
bus, such as a disk or a tape drive. Host bus adapter refers to the driver for the SCSI controller on
the host machine. SCSA defines the interface between these two components. This chapter
discusses target drivers only. See Chapter 18, “SCSI Host Bus Adapter Drivers,” for information
on host bus adapter drivers.

Note - The terms “host bus adapter” and “HBA” are equivalent to “host adapter,” which is
defined in SCSI specifications.

This chapter provides information on the following subjects:

“Introduction to Target Drivers” on page 307

“Sun Common SCSI Architecture Overview” on page 308
“Hardware Configuration File” on page 311
“Declarations and Data Structures” on page 311
“Autoconfiguration for SCSI Target Drivers” on page 315
“Resource Allocation” on page 320

“Building and Transporting a Command” on page 323
“SCSI Options” on page 329

Introduction to Target Drivers

Target drivers can be either character or block device drivers, depending on the device. Drivers
for tape drives are usually character device drivers, while disks are handled by block device
drivers. This chapter describes how to write a SCSI target driver. The chapter discusses the
additional requirements that SCSA places on block and character drivers for SCSI target
devices.

307

Sun Common SCSI Architecture Overview

The following reference documents provide supplemental information needed by the designers
of target drivers and host bus adapter drivers.

Small Computer System Interface 2 (SCSI-2), ANSI/NCITS X3.131-1994, Global Engineering
Documents, 1998. ISBN 1199002488.

The Basics of SCSI, Fourth Edition, ANCOT Corporation, 1998. ISBN 0963743988.

Refer also to the SCSI command specification for the target device, provided by the hardware
vendor.

Sun Common SCSI Architecture Overview

The Sun Common SCSI Architecture (SCSA) is the Solaris DDI/DKI programming interface
for the transmission of SCSI commands from a target driver to a host bus adapter driver. This
interface is independent of the type of host bus adapter hardware, the platform, the processor
architecture, and the SCSI command being transported across the interface.

Conforming to the SCSA enables the target driver to pass SCSI commands to target devices
without knowledge of the hardware implementation of the host bus adapter.

The SCSA conceptually separates building the SCSI command from transporting the command
with data across the SCSI bus. The architecture defines the software interface between
high-level and low-level software components. The higher level software component consists of
one or more SCSI target drivers, which translate I/O requests into SCSI commands appropriate
for the peripheral device. The following example illustrates the SCSI architecture.

308 Writing Device Drivers « October 2012

Sun Common SCSI Architecture Overview

FIGURE17-1 SCSA Block Diagram

Con Application Application
Applications program 1 program 2
— | |
I I
System calls
I
Target Target Target
driver 1 driver 2 driver 3
Kernel— |
Sun Common SCSI Architecture (SCSA)
I I
Host bus adapter Host bus adapter
driver 1 driver 2
= | |
Hardware — SCSI hardware SCSI hardware
— interface interface

The lower-level software component consists of a SCSA interface layer and one or more host
bus adapter drivers. The target driver is responsible for the generation of the proper SCSI
commands required to execute the desired function and for processing the results.

General Flow of Control

Assuming no transport errors occur, the following steps describe the general flow of control for
aread or write request.

1.

The target driver's read(9E) or write(9E) entry point is invoked. physio(9F) is used to lock
down memory, prepare a buf structure, and call the strategy routine.

The target driver's strategy(9E) routine checks the request. strategy () then allocates a
scsi_pkt(9S) byusing scsi_init_pkt(9F). The target driver initializes the packet and sets
the SCSI command descriptor block (CDB) using the scsi_setup_cdb(9F) function. The
target driver also specifies a timeout. Then, the driver provides a pointer to a callback
function. The callback function is called by the host bus adapter driver on completion of the
command. The buf(9S) pointer should be saved in the SCSI packet's target-private space.

The target driver submits the packet to the host bus adapter driver by using
scsi_transport(9F). The target driver is then free to accept other requests. The target
driver should not access the packet while the packet is in transport. If either the host bus
adapter driver or the target supports queueing, new requests can be submitted while the
packet is in transport.

As soon as the SCSI bus is free and the target not busy, the host bus adapter driver selects the
target and passes the CDB. The target driver executes the command. The target then
performs the requested data transfers.

Chapter 17 - SCSITarget Drivers 309

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-transport-9f

Sun Common SCSI Architecture Overview

5. After the target sends completion status and the command completes, the host bus adapter
driver notifies the target driver. To perform the notification, the host calls the completion
function that was specified in the SCSI packet. At this time the host bus adapter driver is no
longer responsible for the packet, and the target driver has regained ownership of the
packet.

6. The SCSI packet's completion routine analyzes the returned information. The completion
routine then determines whether the SCSI operation was successful. If a failure has
occurred, the target driver retries the command by calling scsi_transport(9F) again. If the
host bus adapter driver does not support auto request sense, the target driver must submit a
request sense packet to retrieve the sense data in the event of a check condition.

7. After successful completion or if the command cannot be retried, the target driver calls
scsi_destroy pkt(9F).scsi_destroy_pkt() synchronizesthe data. scsi_destroy_pkt()
then frees the packet. If the target driver needs to access the data before freeing the packet,
scsi_sync_pkt(9F) is called.

8. Finally, the target driver notifies the requesting application that the read or write transaction
is complete. This notification is made by returning from the read(9E) entry point in the
driver for character devices. Otherwise, notification is made indirectly through
biodone(9F).

SCSA allows the execution of many of such operations, both overlapped and queued, at various
points in the process. The model places the management of system resources on the host bus
adapter driver. The software interface enables the execution of target driver functions on host
bus adapter drivers by using SCSI bus adapters of varying degrees of sophistication.

SCSA Functions

SCSA defines functions to manage the allocation and freeing of resources, the sensing and
setting of control states, and the transport of SCSI commands. These functions are listed in the
following table.

TABLE 17-1 Standard SCSA Functions

Function Name Category

scsi abort(9F) Error handling
scsi alloc consistent buf(9F)

scsi destroy pkt(9F)

scsi dmafree(9F)

scsi free consistent buf(9F)

scsi ifgetcap(9F) Transport information and control

310 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-ifgetcap-9f

Declarations and Data Structures

TABLE 17-1 Standard SCSA Functions (Continued)

Function Name Category

scsi ifsetcap(9F)

scsi init pkt(9F) Resource management
scsi poll(9F) Polled I/O
scsi probe(9F) Probe functions

scsi reset(9F)

scsi setup cdb(9F) CDB initialization function
scsi sync pkt(9F)

scsi transport(9F) Command transport

scsi unprobe(9F)

Note - If your driver needs to work with a SCSI-1 device, use the makecom(9F).

Hardware Configuration File

Because SCSI devices are not self-identifying, a hardware configuration file is required for a
target driver. See the driver.conf(4) and scsi_free_consistent_buf(9F) man pages for
details. The following is a typical configuration file:

name="xx" class="scsi" target=2 lun=0;

The system reads the file during autoconfiguration. The system uses the class property to
identify the driver's possible parent. Then, the system attempts to attach the driver to any parent
driver that is of class scsi. All host bus adapter drivers are of this class. Using the class property
rather than the parent property is preferred. This approach enables any host bus adapter driver
that finds the expected device at the specified target and [un IDs to attach to the target. The
target driver is responsible for verifying the class in its probe(9E) routine.

Declarations and Data Structures

Target drivers must include the header file <sys/scsi/scsi.h>.

SCSI target drivers must use the following command to generate a binary module:

1d -r xx xx.0 -N"misc/scsi"

Chapter 17 - SCSITarget Drivers 311

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fmakecom-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e

Declarations and Data Structures

312

scsi_device Structure

The host bus adapter driver allocates and initializes a scsi_device(9S) structure for the target
driver before either the probe(9E) or attach(9E) routine is called. This structure stores
information about each SCSI logical unit, including pointers to information areas that contain
both generic and device-specific information. One scsi_device(9S) structure exists for each
logical unit that is attached to the system. The target driver can retrieve a pointer to this
structure by calling ddi_get_driver_private(9F).

Caution - Because the host bus adapter driver uses the private field in the target device's
dev_info structure, target drivers must not use ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {

struct scsi address sd_address; /* opaque address */
dev_info_t *sd_dev; /* device node */
kmutex_t sd_mutex;
void *sd reserved;
struct scsi inquiry *sd ing;
struct scsi extended sense *sd sense;
caddr_t sd private;
}i
where:

sd_address Data structure that is passed to the routines for SCSI resource allocation.
sd_dev Pointer to the target's dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the host bus
adapter driver and can be used by the target driver as a per-device mutex. Do
not hold this mutex across a call to scsi_transport(9F) or scsi_pol1(9F). See
Chapter 3, “Multithreading,” for more information on mutexes.

sd_inq Pointer for the target device's SCSI inquiry data. The scsi_probe(9F) routine
allocates a buffer, fills the buffer in with inquiry data, and attaches the buffer to
this field.

sd_sense Pointer to a buffer to contain SCSI request sense data from the device. The

target driver must allocate and manage this buffer. See “attach() Entry Point
(SCSI Target Drivers)” on page 317.

sd_private Pointer field for use by the target driver. This field is commonly used to store a
pointer to a private target driver state structure.

Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f

Declarations and Data Structures

scsi_pkt Structure (Target Drivers)

The scsi_pkt structure contains the following fields:

struct scsi pkt {

opaque_t pkt _ha private; /* private data for host adapter */
struct scsi address pkt address; /* destination packet is for */
opaque t pkt private; /* private data for target driver */
void (*pkt_comp) (struct scsi pkt *); /* completion routine */
uint t pkt_flags; /* flags */
int pkt time; /* time allotted to complete command */
uchar t *pkt scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize t pkt resid; /* data bytes not transferred */
uint t pkt_state; /* state of command */
uint t pkt statistics; /* statistics */
uchar t pkt reason; /* reason completion called */

}

where:

pkt address Target device's address set by scsi_init_pkt(9F).

pkt_private Place to store private data for the target driver. pkt_private is commonly used
to save the buf(9S) pointer for the command.

pkt_comp Address of the completion routine. The host bus adapter driver calls this
routine when the driver has transported the command. Transporting the
command does not mean that the command succeeded. The target might
have been busy. Another possibility is that the target might not have
responded before the time out period elapsed. See the description for
pkt_time field. The target driver must supply a valid value in this field. This
value can be NULL if the driver does not want to be notified.

Note - Two different SCSI callback routines are provided. The pkt_comp field identifies a
completion callback routine, which is called when the host bus adapter completes its processing.
A resource callback routine is also available, which is called when currently unavailable
resources are likely to be available. See the scsi_init_pkt(9F) man page.

pkt_ flags Provides additional control information, for example, to transport the
command without disconnect privileges (FLAG_NODISCON) or to disable
callbacks (FLAG_NOINTR). See the scsi_pkt(9S) man page for details.

pkt_time Time out value in seconds. If the command is not completed within this
time, the host bus adapter calls the completion routine with pkt_reason
set to CMD_TIMEOUT. The target driver should set this field to longer than

Chapter 17 - SCSITarget Drivers 313

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-pkt-9s

Declarations and Data Structures

pkt scbp

pkt cdbp

pkt resid

pkt state

pkt_statistics

pkt reason

the maximum time the command might take. If the timeout is zero, no
timeout is requested. Timeout starts when the command is transmitted on
the SCSI bus.

Pointer to the block for SCSI status completion. This field is filled in by the
host bus adapter driver.

Pointer to the SCSI command descriptor block, the actual command to be
sent to the target device. The host bus adapter driver does not interpret
this field. The target driver must fill the field in with a command that the
target device can process.

Residual of the operation. The pkt_resid field has two different uses
depending on how pkt_resid is used. When pkt_resid is used to allocate
DMA resources foracommand scsi_init_pkt(9F), pkt_resid indicates
the number of unallocable bytes. DMA resources might not be allocated
due to DMA hardware scatter-gather or other device limitations. After
command transport, pkt_resid indicates the number of non-transferable
data bytes. The field is filled in by the host bus adapter driver before the
completion routine is called.

Indicates the state of the command. The host bus adapter driver fills in
this field as the command progresses. One bit is set in this field for each of
the five following command states:

STATE_GOT_BUS - Acquired the bus

STATE_GOT_TARGET - Selected the target
STATE_SENT_CMD - Sent the command
STATE_XFERRED_DATA - Transferred data, if appropriate
STATE GOT STATUS - Received status from the device

Contains transport-related statistics set by the host bus adapter driver.

Gives the reason the completion routine was called. The completion
routine decodes this field. The routine then takes the appropriate action.
If the command completes, that is, no transport errors occur, this field is
set to CMD_CMPLT. Other values in this field indicate an error. After a
command is completed, the target driver should examine the pkt_scbp
field for a check condition status. See the scsi_pkt(9S) man page for
more information.

314 Writing Device Drivers « October 2012

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-pkt-9s

Autoconfiguration for SCSI Target Drivers

Autoconfiguration for SCSI Target Drivers

SCSI target drivers must implement the standard autoconfiguration routines _init(9E),
_fini(9E),and _info(9E). See “Loadable Driver Interfaces” on page 97 for more information.

The following routines are also required, but these routines must perform specific SCSI and

SCSA processing:
= probe(9E)

® attach(9E)

m detach(9E)

m getinfo(9E)

probe() Entry Point (SCSI Target Drivers)

SCSI target devices are not self-identifying, so target drivers must have a probe(9E) routine.
This routine must determine whether the expected type of device is present and responding.

The general structure and the return codes of the probe(9E) routine are the same as the
structure and return codes for other device drivers. SCSI target drivers must use the
scsi_probe(9F) routine in their probe(9E) entry point. scsi_probe(9F) sends a SCSI inquiry
command to the device and returns a code that indicates the result. If the SCSI inquiry
command is successful, scsi_probe(9F) allocatesa scsi_inquiry(9S) structure and fills the
structure in with the device's inquiry data. Upon return from scsi_probe(9F), the sd_ing field
ofthe scsi device(9S) structure points to this scsi inquiry(9S) structure.

Because probe(9E) must be stateless, the target driver must call scsi_unprobe(9F) before
probe(9E) returns, even if scsi_probe(9F) fails.

Example 17-1 shows a typical probe(9E) routine. The routine in the example retrieves the
scsi_device(9S) structure from the private field of its dev_info structure. The routine also
retrieves the device's SCSI target and logical unit numbers for printing in messages. The
probe(9E) routine then calls scsi_probe(9F) to verify that the expected device, a printer in this
case, is present.

If successful, scsi_probe(9F) attaches the device's SCSI inquiry dataina scsi_inquiry(9S)
structure to the sd_ingq field of the scsi_device(9S) structure. The driver can then determine
whether the device type is a printer, which is reported in the inq_dtype field. If the device is a
printer, the type is reported with scsi_10g(9F), using scsi_dname(9F) to convert the device
type into a string.

EXAMPLE 17-1 SCSI Target Driver probe(9E) Routine

static int
xxprobe(dev_info t *dip)

Chapter 17 - SCSITarget Drivers 315

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-log-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-dname-9f

Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-1 SCSI Target Driver probe(9E) Routine (Continued)

struct scsi device *sdp;

int rval, target, lun;

/*

* Get a pointer to the scsi device(9S) structure

*/

sdp = (struct scsi device *)ddi get driver private(dip);

target = sdp->sd_address.a_target;
lun = sdp->sd address.a lun;
/*
* Call scsi probe(9F) to send the Inquiry command. It will
* fill in the sd_inq field of the scsi device structure.
*/
switch (scsi probe(sdp, NULL FUNC)) {
case SCSIPROBE FAILURE:
case SCSIPROBE NORESP:
case SCSIPROBE_NOMEM:
/*
* In these cases, device might be powered off,
* in which case we might be able to successfully
* probe it at some future time - referred to
* as ‘deferred attach’.
*/
rval = DDI PROBE PARTIAL;
break;
case SCSIPROBE NONCCS:
default:
/*
* Device isn’t of the type we can deal with,
* and/or it will never be usable.

*/
rval = DDI_PROBE_FAILURE;
break;
case SCSIPROBE EXISTS:
/*

* There is a device at the target/lun address. Check
* inq_dtype to make sure that it is the right device
* type. See scsi inquiry(9S)for possible device types.
*/
switch (sdp->sd ing->inq dtype) {
case DTYPE PRINTER:
scsi log(sdp, "xx", SCSI DEBUG,
"found %s device at target%d, lun%sd\n"
scsi_dname((int)sdp->sd_ing->inq_dtype),
target, lun);
rval = DDI_PROBE_SUCCESS;
break;
case DTYPE NOTPRESENT:
default:
rval = DDI PROBE FAILURE;
break;
}
}

scsi unprobe(sdp);

316 Writing Device Drivers « October 2012

Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-1 SCSI Target Driver probe(9E) Routine (Continued)

return (rval);

A more thorough probe(9E) routine could check scsi_inquiry(9S) to make sure that the
device is of the type expected by a particular driver.

attach() Entry Point (SCSI Target Drivers)

After the probe(9E) routine has verified that the expected device is present, attach(9E) is
called. attach() performs these tasks:

= Allocates and initializes any per-instance data.
= Creates minor device node information.

= Restores the hardware state of a device after a suspension of the device or the system. See
“attach() Entry Point” on page 104 for details.

A SCSI target driver needs to call scsi_probe(9F) again to retrieve the device's inquiry data.
The driver must also create a SCSI request sense packet. If the attach is successful, the attach ()
function should not call scsi_unprobe(9F).

Three routines are used to create the request sense packet: scsi_alloc_consistent buf(9F),
scsi init pkt(9F),and scsi setup cdb(9F).scsi alloc consistent buf(9F) allocates a
buffer that is suitable for consistent DMA. scsi_alloc_consistent buf() thenreturnsa
pointer to a buf(9S) structure. The advantage of a consistent buffer is that no explicit
synchronization of the data is required. In other words, the target driver can access the data
after the callback. The sd_sense element of the device's scsi_device(9S) structure must be
initialized with the address of the sense buffer. scsi_init_pkt(9F) creates and partially
initializes a scsi_pkt(9S) structure. scsi_setup_cdb(9F) creates a SCSI command descriptor
block, in this case by creating a SCSI request sense command.

Note that a SCSI device is not self-identifying and does not have a reg property. As a result, the
driver must set the pm-hardware-state property. Setting pm-hardware-state informs the
framework that this device needs to be suspended and then resumed.

The following example shows the SCSI target driver's attach () routine.

EXAMPLE 17-2 SCSI Target Driver attach(9E) Routine

static int
xxattach(dev_info t *dip, ddi attach cmd t cmd)
{

struct xxstate *xXsp;

struct scsi pkt *rgpkt = NULL;

Chapter 17 - SCSITarget Drivers 317

http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E26502&id=REFMAN9Fscsi-setup-cdb-9f

Autoconfiguration for SCSI Target Drivers

EXAMPLE 17-2 SCSI Target Driver attach(9E) Routine (Continued)

struct scsi device *sdp;
struct buf *bp = NULL;
int instance;

instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
/* For information, see the "Directory Memory Access (DMA)" */
/* chapter in this book. */
default:
return (DDI_FAILURE);

}
/*
* Allocate a state structure and initialize it.
*/
xsp = ddi get soft state(statep, instance);
sdp = (struct scsi device *)ddi get driver private(dip);
/*
* Cross-link the state and scsi device(9S) structures.
*/

sdp->sd private = (caddr t)xsp;
xsp->sdp = sdp;
/*
* Call scsi probe(9F) again to get and validate inquiry data.
* Allocate a request sense buffer. The buf(9S) structure
is set to NULL to tell the routine to allocate a new one.
The callback function is set to NULL FUNC to tell the
routine to return failure immediately if no
resources are available.

* X X X

*/
bp = scsi alloc consistent buf(&sdp->sd address, NULL,
SENSE_LENGTH, B_READ, NULL_FUNC, NULL);
if (bp == NULL)
goto failed;
/*
* Create a Request Sense scsi pkt(9S) structure.
*/