

[1] Java Platform, Standard Edition
Java Flight Recorder Runtime Guide

Release 5.5

E28976-04

March 2015

Describes the Java Flight Recorder runtime implementation
and instructions for using the tool.

Java Platform, Standard Edition Java Flight Recorder Runtime Guide, Release 5.5

E28976-04

Copyright © 2001, 2015 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is in preproduction status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and
conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been
executed by you and Oracle and with which you agree to comply. This document and information contained
herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

iii

Contents

1 About Java Flight Recorder

1.1 Understanding Events.. 1-2
1.2 Understanding Data Flow ... 1-2
1.3 Java Flight Recorder Architecture .. 1-3
1.4 Enabling Java Flight Recorder... 1-3
1.4.1 Improving the Fidelity of the JFR Method Profiler .. 1-4

2 Running Java Flight Recorder

2.1 Using the Command Line.. 2-1
2.2 Using Diagnostic Commands ... 2-2
2.3 Configuring Recordings... 2-7
2.3.1 Setting Maximum Size and Age .. 2-7
2.3.2 Setting the Delay .. 2-7
2.3.3 Setting Compression ... 2-7
2.4 Creating Recordings Automatically... 2-7
2.4.1 Creating a Recording On Exit .. 2-8
2.4.2 Creating a Recording Using Triggers ... 2-8
2.5 Security ... 2-8
2.6 Troubleshooting .. 2-8
A.1 Command-Line Options ... A-1
A.2 Diagnostic Command Reference ... A-1
A.2.1 JFR.start .. A-2
A.2.2 JFR.check .. A-2
A.2.3 JFR.stop .. A-3
A.2.4 JFR.dump ... A-3
A.2.5 VM.unlock_commercial_features... A-3
A.2.6 VM.check_commercial_features... A-3

iv

v

Preface

This document describes the Java Flight Recorder runtime implementation and
instructions for using the tool.

Audience
This document is intended for Java developers and support engineers who need an
introduction about the architecture and runtime implementation of Java Flight
Recorder. It assumes that the reader has basic knowledge of the Java programming
language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Note: Java Flight Recorder requires a commercial license for use in
production. To learn more about commercial features and how to
enable them please visit
http://www.oracle.com/technetwork/java/javaseproducts/.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

About Java Flight Recorder 1-1

1About Java Flight Recorder

Java Flight Recorder (JFR) is a tool for collecting, diagnosing, and profiling data about
a running Java application. It is integrated into the Java Virtual Machine (JVM) and
causes almost no performance overhead, so it can be used even in heavily loaded
production environments. When default settings are used, performance impact is less
than one percent. For some applications, it can be significantly lower. However, for
short-running applications (which are not the kind of applications running in
production environments), relative startup and warmup times can be larger, which
might impact the performance by more than one percent. JFR collects data about the
JVM as well as the Java application running on it.

Compared to other similar tools, JFR has the following benefits:

■ Provides Better Data: JFR captures data from various parts of the runtime, and
significant effort has been made to ensure that the captured data represents the
true state of the system. Examples of this effort include minimizing the observer
effect, and being able to capture samples outside safe points.

■ Provides a Better Data Model: The data model is self-describing. A recording, no
matter the size, contains everything required to understand the data.

■ Provides Better Performance: The flight recorder engine itself is optimized for
performance. Care has been taken to ensure that data capture will not undo
optimizations or otherwise negatively affect performance. Some data can be
obtained practically for free, because it is already captured by the runtime.

■ Allows for Third-Party Event Providers: A set of APIs make it possible for JFR to
capture data from third-party applications, including WebLogic Server and other
Oracle products.

■ Reduces Total Cost of Ownership: JFR enables you to spend less time diagnosing
and troubleshooting problems, reduces operating costs and business interrupts,
provides faster resolution time when problems occur, and improves system
efficiency.

JFR is primarily used for:

■ Profiling

JFR continuously captures information about the running system. This profiling
information includes execution profiling (which shows where the program spends

Note: Java Flight Recorder requires a commercial license for use in
production. To learn more about commercial features and how to
enable them please visit
http://www.oracle.com/technetwork/java/javaseproducts/.

Understanding Events

1-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

its time), thread stall/latency profiling (which shows why the threads are not
running), allocation profiling (which shows where the allocation pressure is),
garbage collection details and more.

■ Black Box Analysis

JFR continuously saves information to a circular buffer. Because the overhead is so
low, the flight recorder can be always on. The information can be accessed later,
when looking for the cause of a particular anomaly.

■ Support and Debugging

Data collected by JFR can be essential when contacting Oracle support to help
diagnose issues with your Java application.

1.1 Understanding Events
Java Flight Recorder collects data about events. Events occur in the JVM or the Java
application at a specific point in time. Each event has a name, a time stamp, and an
optional payload. The payload is the data associated with an event, for example, the
CPU usage, the Java heap size before and after the event, the thread ID of the lock
holder, and so on.

Most events also have information about the thread in which the event occurred, the
stack trace at the time of the event, and the duration of the event. Using the
information available in events, you can reconstruct the runtime details for the JVM
and the Java application.

JFR collects information about four types of events:

■ An instant event occurs instantly, and is logged right away.

■ A duration event has a start and an end time, and is logged when it completes.

■ A timed event is a duration event that has an optional user defined threshold, so
that only events lasting longer than the specified period of time are recorded. This
is not possible for other types of events.

■ A sample event (also called requestable event) is logged at a regular interval to
provide a sample of system activity. You can configure how often sampling occurs.

JFR monitors the running system at an extremely high level of detail. This produces an
enormous amount of data. To keep the overhead as low as possible, limit the type of
recorded events to those you actually need. In most cases, very short duration events
are of no interest, so limit the recording to events with a duration exceeding a certain
meaningful threshold.

1.2 Understanding Data Flow
JFR collects data from the JVM (through internal APIs) and from the Java application
(through the JFR APIs). This data is stored in small thread-local buffers that are
flushed to a global in-memory buffer. Data in the global in-memory buffer is then
written to disk. Disk write operations are expensive, so you should try to minimize
them by carefully selecting the event data you enable for recording. The format of the
binary recording files is very compact and efficient for applications to read and write.

There is no information overlap between the various buffers. A particular chunk of
data is available either in memory or on disk, but never in both places. This has the
following implications:

Enabling Java Flight Recorder

About Java Flight Recorder 1-3

■ Data not yet flushed to a disk buffer will not be available in the event of a power
failure.

■ A JVM crash can result in some data being available in the core file (that is, the
in-memory buffer) and some in the disk buffer. JFR does not provide the capability
to merge such buffers.

■ There may be a small delay before data collected by JFR is available to you (for
example, when it has to be moved to a different buffer before it can be made
visible).

■ The data in the recording file may not be in time sequential order as the data is
collected in chunks from several thread buffers.

In some cases, the JVM drops the event order to ensure that it does not crash. Any data
that cannot be written fast enough to disk is discarded. When this happens, the
recording file will include information on which time period was affected. This
information will also be logged to the logging facility of the JVM.

You can configure JFR to not write any data to disk. In this mode, the global buffer acts
as a circular buffer and the oldest data is dropped when the buffer is full. This very
low-overhead operating mode still collects all the vital data necessary for root-cause
problem analysis. Because the most recent data is always available in the global buffer,
it can be written to disk on demand whenever operations or surveillance systems
detect a problem. However, in this mode, only the last few minutes of data is available,
so it only contains the most recent events. If you need to get the full history of
operation for a long period of time, use the default mode where events are written to
disk regularly.

1.3 Java Flight Recorder Architecture
JFR is comprised of the following components:

■ JFR runtime is the recording engine inside the JVM that produces the recordings.
The runtime engine itself is comprised of the following components:

– The agent controls buffers, disk I/O, MBeans, and so on. This component
provides a dynamic library written in C and Java code, and also provides a
JVM-independent pure Java implementation.

– The producers insert data into the buffers. They can collect events from the JVM
and the Java application, and (through a Java API) from third-party
applications.

■ Flight Recorder plugin for Java Mission Control (JMC) enables you to work with JFR
from the JMC client, using a graphical user interface (GUI) to start, stop, and
configure recordings, as well as view recording files.

1.4 Enabling Java Flight Recorder
By default, JFR is disabled in the JVM. To enable JFR, you must launch your Java
application with the -XX:+FlightRecorder option. Because JFR is a commercial
feature, available only in the commercial packages based on Java Platform, Standard
Edition (Oracle Java SE Advanced and Oracle Java SE Suite), you also have to enable
commercial features using the -XX:+UnlockCommercialFeatures options.

For example, to enable JFR when launching a Java application named MyApp, use the
following command:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder MyApp

Enabling Java Flight Recorder

1-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

Alternatively, (if using JDK 8u40 or later) you can enable JFR at runtime from within
JMC itself. When you start a new Flight Recording, a dialog box will appear stating
that:

Commercial Features are not enabled in the JVM. To start a Flight Recording, you
need to enable Commercial Features. Do you want to do that now?
Click "Yes" to enable these features.

You can also enable Java Flight Recorder in a running JVM by using the appropriate
jcmd diagnostic commands. For examples, see Section 2.2, "Using Diagnostic
Commands".

Note that when running alternative languages relying on lambda forms on the JVM --
such as the JavaScript implementation Nashorn -- the depths of the stack traces can get
quite deep. To ensure that stack traces with large stacks are sampled properly, you
may need to increase the Flight Recorder stack depth. Setting its value to 1024 will
usually be enough:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder
-XX:FlightRecorderOptions=stackdepth=1024 MyApp

1.4.1 Improving the Fidelity of the JFR Method Profiler
One nice property of the JFR method profiler is that it does not require threads to be at
safe points in order for stacks to be sampled. However, since the common case is that
stacks will only be walked at safe points, HotSpot normally does not provide metadata
for non-safe point parts of the code, which means that such samples will not be
properly resolved to the correct line number and BCI. That is, unless you specify:

-XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints
With DebugNonSafepoints, the compiler will generate the necessary metadata for the
parts of the code not at safe points as well.

2

Running Java Flight Recorder 2-1

2Running Java Flight Recorder

[2] This chapter describes how you can run Java Flight Recorder.

You can run multiple recordings concurrently and configure each recording using
different settings; in particular, you can configure different recordings to capture
different sets of events. However, in order to make the internal logic of Java Flight
Recorder as streamlined as possible, the resulting recording always contains the union
of all events for all recordings active at that time. This means that if more than one
recording is running, you might end up with more information in the recording than
you wanted. This can be confusing but has no other negative implications.

The easiest and most intuitive way to use JFR is through the Flight Recorder plug-in
that is integrated into Java Mission Control. This plug-in enables access to JFR
functionality through an intuitive GUI. For more information about using the JMC
client to control JFR, see the Flight Recorder Plug-in section of the Java Mission
Control help.

This chapter explains more advanced ways of running and managing JFR recordings
and contains the following sections:

■ Using the Command Line

■ Using Diagnostic Commands

■ Configuring Recordings

■ Creating Recordings Automatically

■ Security

■ Troubleshooting

2.1 Using the Command Line
Before creating a flight recording, you must first unlock commercial features and
enable Java Flight Recorder. This can be done in a variety of ways, ranging from java
command line options, to jcmd diagnostic commands, to Graphical User Interface
(GUI) controls within Java Mission Control. This flexibility enables you to provide the
appropriate options at startup, or interact with JFR later, after the JVM is already
running.

Note: Java Flight Recorder requires a commercial license for use in
production. To learn more about commercial features and how to
enable them please visit
http://www.oracle.com/technetwork/java/javaseproducts/.

Using Diagnostic Commands

2-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

The following example uses java command-line options to run MyApp and
immediately start a 60-second recording. The recording will be saved to a file named
myrecording.jfr:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder
-XX:StartFlightRecording=duration=60s,filename=myrecording.jfr MyApp

For more information about the supported command-line options, see Appendix A.1,
"Command-Line Options".

2.2 Using Diagnostic Commands
It is possible to control recordings using jcmd and JFR-specific diagnostic commands.
For a more detailed description of Diagnostic Commands, see Appendix A.2,
"Diagnostic Command Reference".

The simplest way to execute a diagnostic command is to use the jcmd tool (located in
the Java installation directory). To issue a command, you must pass the process
identifier of the JVM (or the name of the main class) and the actual command as
arguments to jcmd.

For example, to start a 60-second recording on the running Java process with the
identifier 5368 and save it to myrecording.jfr in the current directory, use the
following:

jcmd 5368 JFR.start duration=60s filename=myrecording.jfr

To see a list of all running Java processes, run the jcmd command without any
arguments. To see a complete list of commands available to a running Java application,
specify help as the diagnostic command after the process identifier (or the name of the
main class).

The following examples show various use cases for running jcmd with Java Flight
Recorder, assuming a demo program that lives in MyApp.jar.

Example 2–1 Dynamic Interaction Using jcmd

Example 2-1 unlocks commercial features and enables Java Flight Recorder
dynamically at runtime. No extra options are provided when the Java application is
launched. Once the JVM is running, the jcmd commands VM.unlock_commercial_
features and JFR.start are used to unlock commercial features and start a new flight
recording.

$java -jar MyApp.jar
$jcmd 40019 VM.command_line
40019:
VM Arguments:
java_command: MyApp.jar
java_class_path (initial): MyApp.jar
Launcher Type: SUN_STANDARD

$jcmd 40019 VM.check_commercial_features
40019:
Commercial Features are locked.

$jcmd 40019 JFR.check
40019:
Java Flight Recorder not enabled.

Use VM.unlock_commercial_features to enable.

Using Diagnostic Commands

Running Java Flight Recorder 2-3

$jcmd 40019 VM.unlock_commercial_features
40019:
Commercial Features now unlocked.

$jcmd 40019 VM.check_commercial_features
40019:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has not been used.
Resource Management is disabled.

$jcmd 40019 JFR.check
40019:

No available recordings.

Use JFR.start to start a recording.

$jcmd 40019 JFR.start name=my_recording filename=myrecording.jfr dumponexit=true
40019:
Started recording 1. No limit (duration/maxsize/maxage) in use.

Use JFR.dump name=my_recording to copy recording data to file.

$jcmd 40019 VM.check_commercial_features
40019:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has been used.
 Resource Management is disabled.

$jcmd 40019 JFR.check
40019:
Recording: recording=1 name="my_recording" filename="myrecording.jfr"
compress=false (running)

$

Example 2–2 Using -XX:+UnlockCommercialFeatures and -XX:+FlightRecorder

Example 2-2 unlocks commercial features and enables JFR by passing options
-XX:+UnlockCommercialFeatures and -XX:+FlightRecorder to the java command
when the application starts.

$java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -jar MyApp.jar

$jcmd 37152 VM.command_line
37152:
VM Arguments:
jvm_args: -XX:+UnlockCommercialFeatures -XX:+FlightRecorder
java_command: MyApp.jar
java_class_path (initial): MyApp.jar
Launcher Type: SUN_STANDARD

$jcmd 37152 VM.check_commercial_features
37152:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has not been used.
 Resource Management is disabled.

Using Diagnostic Commands

2-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

$jcmd 37152 JFR.check
37152:
No available recordings.

Use JFR.start to start a recording.

$jcmd 37152 JFR.start name=my_recording filename=myrecording.jfr dumponexit=true
37152:
Started recording 1. No limit (duration/maxsize/maxage) in use.

Use JFR.dump name=my_recording to copy recording data to file.

$jcmd 37152 JFR.check
37152:
Recording: recording=1 name="my_recording" filename="myrecording.jfr"
compress=false (running)

$jcmd 37152 VM.check_commercial_features
37152:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has been used.
 Resource Management is disabled.
$

Example 2–3 Using -XX:+UnlockCommercialFeatures with a JFR Dynamic Start

Example 2-3 starts JFR dynamically (using JFR.start) after the application has been
launched with -XX:+UnlockCommercialFeatures.

$java -XX:+UnlockCommercialFeatures -jar MyApp.jar

$jcmd 39970 VM.command_line
39970:
VM Arguments:
jvm_args: -XX:+UnlockCommercialFeatures
java_command: MyApp.jar
java_class_path (initial): MyApp.jar
Launcher Type: SUN_STANDARD

$jcmd 39970 VM.check_commercial_features
39970:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has not been used.
 Resource Management is disabled.

$jcmd 39970 JFR.check
39970:
No available recordings.

Use JFR.start to start a recording.

$jcmd 39970 VM.check_commercial_features
39970:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has not been used.
 Resource Management is disabled.

Using Diagnostic Commands

Running Java Flight Recorder 2-5

$jcmd 39970 JFR.start name=my_recording filename=myrecording.jfr dumponexit=true

39970:

Started recording 1. No limit (duration/maxsize/maxage) in use.

Use JFR.dump name=my_recording to copy recording data to file.

$jcmd 39970 VM.check_commercial_features

39970:

Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has been used.
 Resource Management is disabled.

$jcmd 39970 JFR.check
39970:
Recording: recording=1 name="my_recording" filename="myrecording.jfr"
compress=false (running)
$

Example 2–4 Locking Commercial Features with -XX:-UnlockCommercialFeatures

Example 2-4 launches the application with commercial features explicitly locked
(-XX:-UnlockCommercialFeatures). It then unlocks commercial features with
VM.unlock_commercial_features, and starts a new flight recording with JFR.start.

$ java -XX:-UnlockCommercialFeatures -jar MyApp.jar

$jcmd 40110 VM.command_line
40110:
VM Arguments:
jvm_args: -XX:-UnlockCommercialFeatures
java_command: MyApp.jar
java_class_path (initial): MyApp.jar
Launcher Type: SUN_STANDARD

$jcmd 40110 VM.check_commercial_features
40110:
Commercial Features are locked.

$jcmd 40110 VM.unlock_commercial_features
40110:
Commercial Features now unlocked.

$jcmd 40110 VM.check_commercial_features
40110:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has not been used.
 Resource Management is disabled.

$jcmd 40110 JFR.start name=my_recording filename=myrecording.jfr dumponexit=true
40110:
Started recording 1. No limit (duration/maxsize/maxage) in use.

Use JFR.dump name=my_recording to copy recording data to file.

Using Diagnostic Commands

2-6 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

$jcmd 40110 JFR.check
40110:
Recording: recording=1 name="my_recording" filename="myrecording.jfr"
compress=false (running)

$jcmd 40110 VM.check_commercial_features
40110:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder has been used.
 Resource Management is disabled.
$

Example 2–5 Disabling JFR with -XX:-FlightRecorder

Example 2-5 disables JFR entirely by passing -XX:-FlightRecorder to the java
command when the application starts. It is not possible to dynamically create a new
flight recording if this option has been specified.

$java -XX:+UnlockCommercialFeatures -XX:-FlightRecorder -jar MyApp.jar
$jcmd 39589 VM.command_line
39589:
VM Arguments:
jvm_args: -XX:+UnlockCommercialFeatures -XX:-FlightRecorder
java_command: MyApp.jar
java_class_path (initial): MyApp.jar
Launcher Type: SUN_STANDARD

$jcmd 39589 VM.check_commercial_features

39589:
Commercial Features are unlocked.
Status of individual features:
 Java Flight Recorder is disabled.
 Resource Management is disabled.

$jcmd 39589 JFR.check
39589:
Java Flight Recorder is disabled.

$jcmd 39589 JFR.stop
39589:
Java Flight Recorder is disabled.

$jcmd 39589 VM.unlock_commercial_features
39589:
Commercial Features already unlocked.

$jcmd 39589 JFR.start name=my_recording filename=myrecording.jfr dumponexit=true
39589:
Java Flight Recorder is disabled.
$

Example 2–6 Invalid Option Combinations

Example 2-6 shows what happens when invalid option combinations are passed to the
java command. In this case, the user attempts to enable JFR (-XX:+FlightRecorder)
with simultaneously locking commercial features (-XX:-UnlockCommercialFeatures).

$ java -XX:-UnlockCommercialFeatures -XX:+FlightRecorder -jar MyApp.jar
Error: To use 'FlightRecorder', first unlock using -XX:+UnlockCommercialFeatures.

Creating Recordings Automatically

Running Java Flight Recorder 2-7

Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.
$

2.3 Configuring Recordings
You can configure an explicit recording in a number of other ways. These techniques
work the same regardless of how you start a recording (that is, either by using the
command-line approach or by using diagnostic commands).

2.3.1 Setting Maximum Size and Age
You can configure an explicit recording to have a maximum size or age by using the
following parameters:

maxsize=size

Append the letter k or K to indicate kilobytes, m or M to indicate megabytes, g or G
to indicate gigabytes, or do not specify any suffix to set the size in bytes.

maxage=age

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours,
or d to indicate days.

If both a size limit and an age are specified, the data is deleted when either limit is
reached.

2.3.2 Setting the Delay
When scheduling a recording. you might want to add a delay before the recording is
actually started; for example, when running from the command line, you might want
the application to boot or reach a steady state before starting the recording. To achieve
this, use the delay parameter:

delay=delay

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours, or d
to indicate days.

2.3.3 Setting Compression
Although the recording file format is very compact, you can compress it further by
adding it to a ZIP archive. To enable compression, use the following parameter:

compress=true

Note that CPU resources are required for the compression, which can negatively
impact performance.

2.4 Creating Recordings Automatically
When running with a default recording you can configure Java Flight Recorder to
automatically save the current in-memory recording data to a file whenever certain
conditions occur. If a disk repository is used, the current information in the disk
repository will also be included.

Security

2-8 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

2.4.1 Creating a Recording On Exit
To save the recording data to the specified path every time the JVM exits, start your
application with the following option:

-XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpath=pat
h

Set path to the location where the recording should be saved. If you specify a directory,
a file with the date and time as the name is created in that directory. If you specify a
file name, that name is used. If you do not specify a path, the recording will be saved
in the current directory.

You can also specify dumponexit=true as a parameter to the
-XX:StartFlightRecording option:

-XX:StartFlightRecording=name=test,filename=D:\test.jfr,dumponexit=true
In this case, the dump file will be written to the location defined by the filename
parameter.

2.4.2 Creating a Recording Using Triggers
You can use the Console in Java Mission Control to set triggers. A trigger is a rule that
executes an action whenever a condition specified by the rule is true. For example, you
can create a rule that triggers a flight recording to commence whenever the heap size
exceeds 100 MB. Triggers in Java Mission Control can use any property exposed
through a JMX MBean as the input to the rule. They can launch many other actions
than just Flight Recorder dumps.

Define triggers on the Triggers tab of the JMX Console. For more information on how
to create triggers, see the Java Mission Control help.

2.5 Security
The recording file can potentially contain confidential information such as Java
command-line options and environment variables. Use extreme care when you store or
transfer the recording files as you would do with diagnostic core files or heap dumps.

Table 2–1 describes security permissions for various methods of using JFR.

2.6 Troubleshooting
You can collect a significant amount of diagnostic information from Java Flight
Recorder by starting the JVM with one of the following options:

■ -XX:FlightRecorderOptions=loglevel=debug

■ -XX:FlightRecorderOptions=loglevel=trace.

Table 2–1 Security Permissions

Method Security

Command line Anyone with access to the command line of the Java process
must be trusted.

Diagnostic commands Only the owner of the Java process can use jcmd to control the
process.

Java Mission Control Client Java Mission Control Client uses JMX to access the JVM.

A

Command Reference A-1

ACommand Reference

This appendix serves as a basic reference to the commands you can use with Java
Flight Recorder. It contains the following sections:

■ Section A.1, "Command-Line Options"

■ Section A.2, "Diagnostic Command Reference"

A.1 Command-Line Options
When you launch your Java application with the java command, you can specify
options to enable Java Flight Recorder, configure its settings, and start a recording. The
following command-line options are specific to Java Flight Recorder:

■ -XX:+|-FlightRecorder

■ -XX:FlightRecorderOptions

■ -XX:StartFlightRecording

These command-line options are available only in the commercial license of the JDK.
To use them, you have to also specify the -XX:+UnlockCommercialFeatures option, or
unlock commercial features after the application is running. For examples of unlocking
commercial features and starting a flight recording dynamically at runtime, see
Section 2.1, "Using the Command Line".

A.2 Diagnostic Command Reference
This is a description of the diagnostic commands available to control Java Flight
Recorder and the parameters available for each command. This information is also
available by running the jcmd command with the process identifier specified, followed
by the help parameter and the command name. For example, to get help information

Note: Java Flight Recorder requires a commercial license for use in
production. To learn more about commercial features and how to
enable them please visit
http://www.oracle.com/technetwork/java/javaseproducts/.

Note: You should use -XX options only if you have a thorough
understanding of your system. If you use these commands
improperly, you might affect the stability or performance of your
system. -XX options are experimental, and they are subject to change
at any time.

Diagnostic Command Reference

A-2 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

for the JFR.start command on a running JVM process with the identifier 5361, run
the following:

jcmd 5361 help JFR.start

To get a full list of diagnostic commands available to the JVM, do not specify the name
of the command.

The diagnostic commands associated with Java Flight Recorder are:

■ JFR.start

■ JFR.check

■ JFR.stop

■ JFR.dump

■ VM.unlock_commercial_features

■ VM.check_commercial_features

A.2.1 JFR.start
The JFR.start diagnostic command starts a flight recording. Table A–1 lists the
parameters you can use with this command.

A.2.2 JFR.check
The JFR.check command shows information about running recordings. Table A–2 lists
the parameters you can use with this command.

Table A–1 JFR.start

Parameter Description Type of value Default

name Name of recording String

settings Server-side template String

defaultrecording Starts default recording Boolean False

delay Delay start of recording Time 0s

duration Duration of recording Time 0s (means
"forever")

filename Resulting recording filename String

compress GZip compress the resulting
recording file

Boolean False

maxage Maximum age of buffer data Time 0s (means "no
age limit")

maxsize Maximum size of buffers in bytes Long 0 (means "no
max size")

Table A–2 JFR.check

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

verbose Print verbose data Boolean False

Diagnostic Command Reference

Command Reference A-3

A.2.3 JFR.stop
The JFR.stop diagnostic command stops running flight recordings. Table A–3 lists the
parameters you can use with this command.

A.2.4 JFR.dump
The JFR.dump diagnostic command stops running flight recordings. Table A–4 lists the
parameters you can use with this command.

A.2.5 VM.unlock_commercial_features
The VM.unlock_commercial_features command is used to unlock commercial
features in a JVM that is already running. This command has no parameters.

A.2.6 VM.check_commercial_features
The VM.check_commercial_features command is used to check whether commercial
features are locked or unlocked in a JVM that is already running. This command has
no parameters.

Table A–3 JFR.stop

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

discard Discards the recording data Boolean

copy_to_file Copy recording data to file String

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Table A–4 JFR.dump

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

copy_to_file Copy recording data to file String

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Diagnostic Command Reference

A-4 Java Platform, Standard Edition Java Flight Recorder Runtime Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 About Java Flight Recorder
	1.1 Understanding Events
	1.2 Understanding Data Flow
	1.3 Java Flight Recorder Architecture
	1.4 Enabling Java Flight Recorder
	1.4.1 Improving the Fidelity of the JFR Method Profiler

	2 Running Java Flight Recorder
	2.1 Using the Command Line
	2.2 Using Diagnostic Commands
	2.3 Configuring Recordings
	2.3.1 Setting Maximum Size and Age
	2.3.2 Setting the Delay
	2.3.3 Setting Compression

	2.4 Creating Recordings Automatically
	2.4.1 Creating a Recording On Exit
	2.4.2 Creating a Recording Using Triggers

	2.5 Security
	2.6 Troubleshooting
	A.1 Command-Line Options
	A.2 Diagnostic Command Reference
	A.2.1 JFR.start
	A.2.2 JFR.check
	A.2.3 JFR.stop
	A.2.4 JFR.dump
	A.2.5 VM.unlock_commercial_features
	A.2.6 VM.check_commercial_features

