

[1] Oracle® Fusion Middleware
WebLogic Web Services Reference for Oracle WebLogic Server
12.1.3

12c (12.1.3)

E47708-03

August 2015

Documentation for software developers that provides
reference information for developing WebLogic web services
for WebLogic Server 12.1.3.

Oracle Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E47708-03

Copyright © 2013, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

What's New in This Guide .. xiii

New and Changed Features for 12c (12.1.3) .. xiii
New and Changed Features for 12c (12.1.2) .. xiii

1 Introduction

2 Ant Task Reference

2.1 Overview of WebLogic Web Services Ant Tasks ... 2-1
2.2 clientgen ... 2-2
2.2.1 Taskdef Classname .. 2-3
2.2.2 Child Elements ... 2-3
2.2.2.1 binding ... 2-3
2.2.2.2 jmstransportclient... 2-4
2.2.2.3 xmlcatalog.. 2-4
2.2.3 Attributes .. 2-5
2.2.4 Examples .. 2-11
2.3 jwsc... 2-13
2.3.1 Taskdef Classname .. 2-15
2.3.2 Child Elements .. 2-15
2.3.2.1 binding .. 2-16
2.3.2.2 clientgen.. 2-16
2.3.2.3 descriptor .. 2-21
2.3.2.4 jmstransportservice ... 2-21
2.3.2.5 jws .. 2-22
2.3.2.6 jwsfileset.. 2-26
2.3.2.7 module .. 2-27
2.3.2.8 WLHttpTransport.. 2-29
2.3.2.9 WLHttpsTransport .. 2-31
2.3.2.10 WLJMSTransport... 2-32
2.3.3 Attributes ... 2-34
2.3.3.1 WebLogic-Specific jwsc Attributes ... 2-34

iv

2.3.3.2 Standard Ant Attributes and Child Elements That Apply to jwsc 2-37
2.3.4 Examples .. 2-38
2.4 wsdlc .. 2-42
2.4.1 Taskdef Classname ... 2-44
2.4.2 Child Elements .. 2-44
2.4.2.1 binding .. 2-44
2.4.2.2 xmlcatalog... 2-44
2.4.3 Attributes ... 2-45
2.4.3.1 WebLogic-Specific wsdlc Attributes... 2-45
2.4.3.2 Standard Ant javac Attributes That Apply To wsdlc... 2-52
2.4.4 Example.. 2-53
2.5 wsdlget .. 2-54
2.5.1 Taskdef Classname ... 2-55
2.5.2 Child Elements .. 2-55
2.5.3 Attributes ... 2-55
2.5.4 Example.. 2-56

3 JWS Annotation Reference

3.1 Overview of JWS Annotation Tags .. 3-1
3.2 Web Services Metadata Annotations (JSR-181) .. 3-3
3.3 JAX-WS Annotations (JSR-224) ... 3-4
3.4 JAXB Annotations (JSR-222) .. 3-5
3.5 Common Annotations (JSR-250)... 3-6
3.6 WebLogic-specific Annotations .. 3-6
3.6.1 com.oracle.webservices.api.jms.JMSTransportClient... 3-9
3.6.2 com.oracle.webservices.api.jms.JMSTransportService.. 3-10
3.6.3 weblogic.jws.AsyncFailure.. 3-11
3.6.4 weblogic.jws.AsyncResponse ... 3-13
3.6.5 weblogic.jws.Binding ... 3-15
3.6.6 weblogic.jws.BufferQueue... 3-16
3.6.6.1 Description ... 3-16
3.6.6.2 Attributes .. 3-16
3.6.6.3 Example... 3-16
3.6.7 weblogic.jws.Callback.. 3-17
3.6.7.1 Description ... 3-17
3.6.7.2 Example... 3-17
3.6.8 weblogic.jws.CallbackMethod .. 3-18
3.6.8.1 Description ... 3-18
3.6.8.2 Attributes .. 3-19
3.6.8.3 Example... 3-19
3.6.9 weblogic.jws.CallbackService ... 3-19
3.6.9.1 Description ... 3-19
3.6.9.2 Attributes .. 3-20
3.6.9.3 Example... 3-20
3.6.10 weblogic.jws.Context ... 3-20
3.6.10.1 Description ... 3-20
3.6.10.2 Example... 3-21

v

3.6.11 weblogic.jws.Conversation.. 3-21
3.6.11.1 Description ... 3-21
3.6.11.2 Attributes .. 3-22
3.6.11.3 Example... 3-22
3.6.12 weblogic.jws.Conversational .. 3-22
3.6.12.1 Description ... 3-23
3.6.12.2 Attributes .. 3-23
3.6.12.3 Example... 3-24
3.6.13 weblogic.jws.FileStore.. 3-25
3.6.13.1 Description ... 3-25
3.6.13.2 Attributes .. 3-25
3.6.14 weblogic.jws.MessageBuffer ... 3-25
3.6.14.1 Description ... 3-25
3.6.14.2 Attributes .. 3-26
3.6.14.3 Example... 3-26
3.6.15 weblogic.jws.Policies.. 3-27
3.6.15.1 Description ... 3-27
3.6.15.2 Example... 3-27
3.6.16 weblogic.jws.Policy .. 3-27
3.6.16.1 Description ... 3-27
3.6.16.2 Attributes .. 3-28
3.6.16.3 Example... 3-29
3.6.17 weblogic.jws.ReliabilityBuffer .. 3-29
3.6.17.1 Description ... 3-29
3.6.17.2 Attributes .. 3-29
3.6.17.3 Example... 3-30
3.6.18 weblogic.jws.ReliabilityErrorHandler ... 3-30
3.6.18.1 Description ... 3-31
3.6.18.2 Attributes .. 3-31
3.6.18.3 Example... 3-31
3.6.19 weblogic.jws.ServiceClient .. 3-32
3.6.19.1 Description ... 3-32
3.6.19.2 Attributes .. 3-33
3.6.19.3 Example... 3-33
3.6.20 weblogic.jws.StreamAttachments .. 3-34
3.6.20.1 Description ... 3-34
3.6.20.2 Example... 3-34
3.6.21 weblogic.jws.Transactional ... 3-35
3.6.21.1 Description ... 3-35
3.6.21.2 Attributes .. 3-35
3.6.21.3 Example... 3-35
3.6.22 weblogic.jws.Types... 3-36
3.6.22.1 Description ... 3-36
3.6.22.2 Attributes .. 3-36
3.6.22.3 Example... 3-36
3.6.23 weblogic.jws.WildcardBinding... 3-37
3.6.23.1 Description ... 3-37

vi

3.6.23.2 Attributes .. 3-37
3.6.23.3 Example... 3-38
3.6.24 weblogic.jws.WildcardBindings ... 3-38
3.6.24.1 Description ... 3-38
3.6.25 weblogic.jws.WLHttpTransport ... 3-38
3.6.25.1 Description ... 3-38
3.6.25.2 Attributes .. 3-38
3.6.25.3 Example... 3-39
3.6.26 weblogic.jws.WLHttpsTransport ... 3-39
3.6.26.1 Description ... 3-39
3.6.26.2 Attributes .. 3-40
3.6.26.3 Example... 3-40
3.6.27 weblogic.jws.WLJmsTransport... 3-40
3.6.27.1 Description ... 3-40
3.6.27.2 Attributes .. 3-41
3.6.27.3 Example... 3-41
3.6.28 weblogic.jws.WSDL.. 3-41
3.6.28.1 Description ... 3-41
3.6.28.2 Attributes .. 3-42
3.6.28.3 Example... 3-42
3.6.29 weblogic.jws.security.CallbackRolesAllowed.. 3-42
3.6.29.1 Description ... 3-42
3.6.29.2 Attributes .. 3-43
3.6.29.3 Example... 3-43
3.6.30 weblogic.jws.security.RolesAllowed ... 3-43
3.6.30.1 Description ... 3-43
3.6.30.2 Attributes .. 3-43
3.6.30.3 Example... 3-44
3.6.31 weblogic.jws.security.RolesReferenced... 3-44
3.6.31.1 Description ... 3-44
3.6.31.2 Example... 3-44
3.6.32 weblogic.jws.security.RunAs .. 3-45
3.6.32.1 Description ... 3-45
3.6.32.2 Attributes .. 3-45
3.6.32.3 Example... 3-45
3.6.33 weblogic.jws.security.SecurityRole.. 3-45
3.6.33.1 Description ... 3-45
3.6.33.2 Attributes .. 3-46
3.6.33.3 Example... 3-46
3.6.34 weblogic.jws.security.SecurityRoleRef .. 3-47
3.6.34.1 Description ... 3-47
3.6.34.2 Attributes .. 3-47
3.6.34.3 Example... 3-47
3.6.35 weblogic.jws.security.UserDataConstraint... 3-47
3.6.35.1 Description ... 3-47
3.6.35.2 Attributes .. 3-48
3.6.35.3 Example... 3-48

vii

3.6.36 weblogic.jws.security.WssConfiguration.. 3-48
3.6.36.1 Description ... 3-48
3.6.36.2 Attributes .. 3-49
3.6.36.3 Example... 3-49
3.6.37 weblogic.jws.soap.SOAPBinding ... 3-50
3.6.37.1 Description ... 3-50
3.6.37.2 Attributes .. 3-50
3.6.37.3 Example... 3-51
3.6.38 weblogic.jws.security.SecurityRoles (deprecated)... 3-52
3.6.38.1 Description ... 3-52
3.6.38.2 Attributes .. 3-52
3.6.38.3 Example... 3-53
3.6.39 weblogic.jws.security.SecurityIdentity (deprecated) .. 3-53
3.6.39.1 Description ... 3-53
3.6.39.2 Attributes .. 3-54
3.6.39.3 Example... 3-54
3.6.40 weblogic.wsee.jws.jaxws.owsm.Property ... 3-54
3.6.40.1 Description ... 3-54
3.6.40.2 Example... 3-55
3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies... 3-55
3.6.41.1 Description ... 3-55
3.6.41.2 Example... 3-55
3.6.42 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy ... 3-55
3.6.42.1 Description ... 3-55
3.6.42.2 Attributes .. 3-56
3.6.42.3 Examples... 3-56
3.6.43 weblogic.wsee.wstx.wsat.Transactional.. 3-56
3.6.43.1 Description ... 3-56
3.6.43.2 Attributes .. 3-57
3.6.43.3 Example... 3-58

4 Web Service Reliable Messaging Policy Assertion Reference

4.1 Overview of a WS-Policy File That Contains Web Service Reliable Messaging
Assertions... 4-1

4.2 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1. 4-2
4.2.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2

and 1.1 ... 4-2
4.2.2 Element Descriptions .. 4-2
4.2.2.1 wsp:Policy.. 4-2
4.2.2.2 wsrmp:DeliveryAssurance.. 4-3
4.2.2.3 wsrmp:RMAssertion .. 4-3
4.2.2.4 wsrmp:SequenceSTR.. 4-3
4.2.2.5 wsrmp:SequenceTransportSecurity... 4-3
4.3 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0

(Deprecated) .. 4-4
4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions....... 4-4
4.3.2 Element Description .. 4-4

viii

4.3.2.1 beapolicy:Expires.. 4-4
4.3.2.2 beapolicy:QOS... 4-5
4.3.2.3 wsrm:AcknowledgementInterval .. 4-5
4.3.2.4 wsrm:BaseRetransmissionInterval... 4-6
4.3.2.5 wsrm:ExponentialBackoff ... 4-6
4.3.2.6 wsrm:InactivityTimeout .. 4-7
4.3.2.7 wsrm:RMAssertion .. 4-7

5 Web Service MakeConnection Policy Assertion Reference

5.1 Overview of a WS-Policy File That Contains MakeConnection Assertions....................... 5-1
5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5 5-2
5.3 Element Descriptions.. 5-2
5.3.1 wsp:Policy... 5-2
5.3.2 wsmc:MCSupported.. 5-2

6 Oracle Web Services Security Policy Assertion Reference

6.1 Overview of a Policy File That Contains Security Assertions.. 6-1
6.2 Example of a Policy File With Security Elements .. 6-2
6.3 Element Description ... 6-3
6.3.1 CanonicalizationAlgorithm.. 6-4
6.3.2 Claims.. 6-4
6.3.3 Confidentiality ... 6-4
6.3.4 ConfirmationMethod .. 6-5
6.3.5 DigestAlgorithm .. 6-6
6.3.6 EncryptionAlgorithm.. 6-6
6.3.7 Identity .. 6-7
6.3.8 Integrity... 6-7
6.3.9 KeyInfo .. 6-8
6.3.10 KeyWrappingAlgorithm... 6-8
6.3.11 Label... 6-8
6.3.12 Length.. 6-8
6.3.13 MessageAge.. 6-8
6.3.14 MessageParts ... 6-10
6.3.15 Policy .. 6-10
6.3.16 SecurityToken.. 6-10
6.3.17 SecurityTokenReference .. 6-11
6.3.18 SignatureAlgorithm.. 6-12
6.3.19 SupportedTokens.. 6-12
6.3.20 Target.. 6-12
6.3.21 TokenLifeTime .. 6-12
6.3.22 Transform... 6-12
6.3.23 UsePassword ... 6-13
6.4 Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted

or Signed.. 6-13
6.4.1 XPath 1.0... 6-14
6.4.2 Pre-Defined wsp:Body() Function.. 6-15
6.4.3 WebLogic-Specific Header Functions.. 6-15

ix

7 WebLogic Web Service Deployment Descriptor Schema Reference

7.1 Overview of weblogic-webservices.xml.. 7-1
7.2 Example of a weblogic-webservices.xml Deployment Descriptor File............................... 7-2
7.3 Element Descriptions.. 7-2
7.3.1 acknowledgement-interval... 7-4
7.3.2 activation-config .. 7-5
7.3.3 auth-constraint ... 7-5
7.3.4 base-retransmission-interval .. 7-5
7.3.5 binding-version .. 7-5
7.3.6 buffer-retry-count .. 7-6
7.3.7 buffer-retry-delay .. 7-6
7.3.8 buffering-config ... 7-6
7.3.9 callback-protocol.. 7-6
7.3.10 connection-factory-jndi-name.. 7-6
7.3.11 customized.. 7-6
7.3.12 default-logical-store-name.. 7-7
7.3.13 delivery-mode .. 7-7
7.3.14 deployment-listener-list.. 7-7
7.3.15 deployment-listener .. 7-7
7.3.16 destination-name ... 7-7
7.3.17 destination-type ... 7-7
7.3.18 enable-http-wsdl-access.. 7-7
7.3.19 enabled .. 7-7
7.3.20 exposed.. 7-8
7.3.21 fastinfoset .. 7-8
7.3.22 flowType ... 7-8
7.3.23 http-flush-response.. 7-8
7.3.24 http-response-buffersize ... 7-8
7.3.25 inactivity-timeout .. 7-8
7.3.26 jndi-connection-factory-name.. 7-9
7.3.27 jndi-context-parameter.. 7-9
7.3.28 jndi-initial-context-factory.. 7-9
7.3.29 jndi-url ... 7-9
7.3.30 logging-level ... 7-9
7.3.31 login-config.. 7-10
7.3.32 lookup-variant... 7-10
7.3.33 mbean-name .. 7-10
7.3.34 mdb-per-destination... 7-10
7.3.35 message-type ... 7-11
7.3.36 messaging-queue-jndi-name... 7-11
7.3.37 messaging-queue-mdb-run-as-principal-name.. 7-11
7.3.38 name ... 7-11
7.3.39 non-buffered-destination... 7-11
7.3.40 non-buffered-source ... 7-11
7.3.41 operation .. 7-12
7.3.42 persistence-config ... 7-12
7.3.43 port-component... 7-12

x

7.3.44 port-component-name ... 7-12
7.3.45 priority.. 7-12
7.3.46 reliability-config.. 7-12
7.3.47 reply-to-name .. 7-12
7.3.48 request-queue .. 7-13
7.3.49 response-queue ... 7-13
7.3.50 retransmission-exponential-backoff... 7-13
7.3.51 retry-count ... 7-13
7.3.52 retry-delay.. 7-13
7.3.53 run-as-principal... 7-14
7.3.54 run-as-role.. 7-14
7.3.55 sequence-expiration.. 7-14
7.3.56 service-endpoint-address .. 7-14
7.3.57 soapjms-service-endpoint-address... 7-14
7.3.58 stream-attachments .. 7-15
7.3.59 target-service ... 7-15
7.3.60 time-to-live... 7-15
7.3.61 transport-guarantee.. 7-15
7.3.62 transaction-enabled .. 7-16
7.3.63 transaction-timeout .. 7-16
7.3.64 validate-request... 7-16
7.3.65 version .. 7-16
7.3.66 weblogic-webservices .. 7-16
7.3.67 webservice-contextpath ... 7-17
7.3.68 webservice-description .. 7-17
7.3.69 webservice-description-name ... 7-17
7.3.70 webservice-security .. 7-17
7.3.71 webservice-serviceuri... 7-17
7.3.72 webservice-type .. 7-18
7.3.73 wsat-config... 7-18
7.3.74 wsdl... 7-18
7.3.75 wsdl-publish-file ... 7-18

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

xiii

What's New in This Guide

The following topics introduce the new and changed features of WebLogic web
services in Oracle Fusion Middleware 12c (12.1.3), and provides pointers to additional
information.

New and Changed Features for 12c (12.1.3)
For Oracle Fusion Middleware 12c (12.1.3), this document does not contain any new or
changed features.

New and Changed Features for 12c (12.1.2)
Oracle Fusion Middleware 12c (12.1.2) includes the following new and changed
features for this document.

■ Ant task feature support for SOAP over JMS transport, including the following
new child elements:

– <jmstransportclient> child element of clientgen to configure SOAP over
JMS transport on the client, as described in Section 2.2.2.2,
"jmstransportclient."

– <jmstransportservice> child element of jwsc to configure SOAP over JMS
transport on the service, as described in Section 2.3.2.4, "jmstransportservice."

■ Annotation support for SOAP over JMS transport, including the following:

– com.oracle.webservices.api.jms.JMSTransportClient annotation, as
described in Section 3.6.1,
"com.oracle.webservices.api.jms.JMSTransportClient."

– com.oracle.webservices.api.jms.JMSTransportService annotation, as
described in Section 3.6.2,
"com.oracle.webservices.api.jms.JMSTransportService."

■ Annotation support for attaching Oracle Web Services Manager (OWSM) security
policies to WebLogic web service clients, as well as WebLogic web services.
Annotation support includes:

– weblogic.wsee.jws.jaxws.owsm.Property annotation to override
configuration properties when attaching an OWSM policy, as described in
Section 3.6.40, "weblogic.wsee.jws.jaxws.owsm.Property."

– weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation to attach an
array of OWSM polices, as described in Section 3.6.41,
"weblogic.wsee.jws.jaxws.owsm.SecurityPolicies."

xiv

– weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation to attach an
OWSM policy, as described in Section 3.6.42,
"weblogic.wsee.jws.jaxws.owsm.SecurityPolicy."

■ New deployment descriptor elements to support SOAP over JMS transport, as
described in Chapter 7, "WebLogic Web Service Deployment Descriptor Schema
Reference."

1

Introduction 1-1

1Introduction

[2] This chapter list the reference information that is available to software developers who
develop WebLogic web services for WebLogic Server 12.1.3.

The following table summarizes the topics described in this document.

For an overview of WebLogic web services, samples, and related documentation, see
Understanding WebLogic Web Services for Oracle WebLogic Server.

Table 1–1 WebLogic Web Service Reference Topics

This Reference Topic . . . Describes . . .

Chapter 2, "Ant Task Reference" WebLogic web services Ant tasks.

Chapter 3, "JWS Annotation
Reference"

JWS annotations that you can use in the JWS file that
implements your web service.

Chapter 4, "Web Service
Reliable Messaging Policy
Assertion Reference"

Policy assertions you can add to a WS-Policy file to configure
the web service reliable messaging feature of a WebLogic web
service.

Chapter 5, "Web Service
MakeConnection Policy
Assertion Reference"

Policy assertions you can add to a WS-Policy file to configure
the web service MakeConnection feature of a WebLogic web
service.

Chapter 6, "Oracle Web Services
Security Policy Assertion
Reference"

Policy assertions you can add to a WS-Policy file to configure
the message-level (digital signatures and encryption) security
of a WebLogic web service, using a proprietary Oracle
security policy schema.

Note: You may prefer to use files that conform to the OASIS
WS-SecurityPolicy specification, as described in "Configuring
Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server.

Chapter 7, "WebLogic Web
Service Deployment Descriptor
Schema Reference"

Elements in the WebLogic-specific web services deployment
descriptor weblogic-webservices.xml.

1-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2

Ant Task Reference 2-1

2Ant Task Reference

[3] The chapter provides reference information about the WebLogic web services Ant
tasks for WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Overview of WebLogic Web Services Ant Tasks

■ clientgen

■ jwsc

■ wsdlc

■ wsdlget

2.1 Overview of WebLogic Web Services Ant Tasks
Ant is a Java-based build tool, similar to the make command but much more powerful.
Ant uses XML-based configuration files (called build.xml by default) to execute tasks
written in Java. Oracle provides a number of Ant tasks that help you generate
important web service-related artifacts.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and
EJB JAR files. For more information, see the Apache Ant Manual at
http://jakarta.apache.org/ant/manual/.

The following table provides an overview of the web service Ant tasks provided by
Oracle.

Note: The Apache Jakarta Web site publishes online documentation
for only the most current version of Ant, which might be different
from the version of Ant that is bundled with WebLogic Server. To
determine the version of Ant that is bundled with WebLogic Server,
run the following command after setting your WebLogic environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the
Ant zip file from http://archive.apache.org/dist/ant/binaries/
and extract the documentation.

clientgen

2-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

For detailed information about how to integrate and use these Ant tasks in your
development environment to program a web service and a client application that
invokes the web service, see:

■ "Using Oracle WebLogic Server Ant Tasks" in Understanding WebLogic Web Services
for Oracle WebLogic Server

■ Developing JAX-WS Web Services for Oracle WebLogic Server

■ Developing JAX-RPC Web Services for Oracle WebLogic Server

2.2 clientgen
The clientgen Ant task generates, from an existing WSDL file, the client component
files that client applications use to invoke both WebLogic and non-WebLogic web
services.

The generated artifacts for JAX-WS web services include:

■ The Java class for the Service interface implementation for the particular web
service you want to invoke.

■ JAXB data binding artifacts.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

The generated artifacts for JAX-RPC web services include:

■ The Java class for the Stub and Service interface implementations for the
particular web service you want to invoke.

■ The Java source code for any user-defined XML Schema data types included in the
WSDL file.

■ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

■ A client-side copy of the WSDL file.

Two types of client applications use the generated artifacts of clientgen to invoke web
services:

■ Stand-alone Java clients that do not use the Java Platform, Enterprise Edition (Java
EE) Version 5 client container.

■ Java EE clients, such as EJBs, JSPs, and web services, that use the Java EE client
container.

Table 2–1 WebLogic Web Service Ant Tasks

Ant Task Description

Section 2.2, "clientgen" Generates the Service stubs and other client-side artifacts used to invoke a web
service.

Section 2.3, "jwsc" Compiles a Java web service (JWS)-annotated file into a web service.

Section 2.4, "wsdlc" Generates a partial web service implementation based on a WSDL file.

Section 2.5, "wsdlget" Downloads to the local directory a WSDL and its imported XML targets, such as XSD
and WSDL files.

clientgen

Ant Task Reference 2-3

By default, the clientgen Ant task generates client artifacts for a JAX-RPC web
service. If you are generating client artifacts for a JAX-WS web service, you can set the
type attribute to JAXWS. For example: type="JAXWS".

You typically use the destDir attribute of clientgen to specify the directory into
which all the artifacts should be generated, and then compile the generate Java files
yourself using the javac Ant task. However, clientgen also provides a destFile
attribute if you want the Ant task to compile the Java files for you and package them,
along with the other generated artifacts, into the specified JAR file. You must specify
one of either destFile or destDir, although you cannot specify both.

The following sections provide more information about the clientgen Ant task:

■ Section 2.2.1, "Taskdef Classname"

■ Section 2.2.2, "Child Elements"

■ Section 2.2.3, "Attributes"

■ Section 2.2.4, "Examples"

2.2.1 Taskdef Classname
The following shows the task definition for the clientgen classname which must
appear in your Ant build file.

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

2.2.2 Child Elements
The following sections describe the WebLogic-specific child elements for the
clientgen Ant task.

■ Section 2.2.2.1, "binding"

■ Section 2.2.2.2, "jmstransportclient"

■ Section 2.2.2.3, "xmlcatalog"

2.2.2.1 binding
Use the <binding> child element to specify one of the following:

■ For JAX-WS, one or more customization files that specify one or more of the
following:

– JAX-WS and JAXB custom binding declarations. For more information, see
"Customizing XML Schema-to-Java Mapping Using Binding Declarations" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

– SOAP handler files. For more information, see "Creating and Using SOAP
Message Handlers" in Developing JAX-WS Web Services for Oracle WebLogic
Server.

■ For JAX-RPC, one or more XMLBeans configuration files, which by convention
end in .xsdconfig. Use this element if your web service uses Apache XMLBeans
at http://xmlbeans.apache.org/ data types as parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all
the same attributes. See the Apache Ant documentation on the Fileset element at

clientgen

2-4 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

http://ant.apache.org/manual/Types/fileset.html for the full list of attributes you
can specify.

2.2.2.2 jmstransportclient

The <jmstransportclient> element enables and configures SOAP over JMS transport.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the
<jmstransportclient> element. For a complete list of JMS transport properties
supported, see "Configuring JMS Transport Properties" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

The following example shows how to enable and configure JMS transport when
generating the web service client using clientgen.

<target name="clientgen">
<clientgen
 wsdl="./WarehouseService.wsdl"
 destDir="clientclasses"
 packageName="client.warehouse"
 type="JAXWS">
 <jmstransportclient
 targetService="JWSCEndpointService"
 destinationName="com.oracle.webservices.jms.SoapJmsRequestQueue"
 jndiInitialContextFactory="weblogic.jndi.WLInitialContextFactory"
 jndiConnectionFactoryName="weblogic.jms.ConnectionFactory"
 jndiURL="t3://localhost:7001"
 deliveryMode="NON_PERSISTENT"
 timeToLive="60000"
 priority="1"
 messageType="TEXT"
 replyToName="com.oracle.webservices.jms.SoapJmsResponseQueue"
 />
</clientgen>

2.2.2.3 xmlcatalog

The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog.
You embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

Note: The <jmstransportclient> child element applies to JAX-WS
only; this child element is not valid for JAX-RPC.

Note: The <xmlcatalog> child element applies to JAX-WS only; this
child element is not valid for JAX-RPC.

clientgen

Ant Task Reference 2-5

In the above syntax, public_id specifies the public identifier of the original XML
resource (WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
clientgen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml">
 <xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For more information, see "Using XML Catalogs" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

2.2.3 Attributes
The following table describe the WebLogic-specific attributes of the clientgen Ant
task, and specifies whether they are valid for JAX-WS or JAX-RPC web services or
both.

clientgen

2-6 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–2 WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

autoDetectWrapped Specifies whether the clientgen Ant task
should try to determine whether the
parameters and return type of
document-literal web services are of type
wrapped or bare.

When the clientgen Ant task parses a
WSDL file to create the client stubs, it
attempts to determine whether a
document-literal web service uses wrapped
or bare parameters and return types based
on the names of the XML Schema elements,
the name of the operations and parameters,
and so on. Depending on how the names of
these components match up, the clientgen
Ant task makes a best guess as to whether
the parameters are wrapped or bare. In
some cases, however, you might want the
Ant task to always assume that the
parameters are of type bare; in this case, set
the autoDetectWrapped attribute to False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

catalog Specifies an external XML catalog file. For
more information, see "Using XML
Catalogs" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

String No JAX-WS

copyWsdl Controls whether the WSDL should be
copied in the destination directory defined
by destDir.

Boolean No JAX-WS

destDir Directory into which the clientgen Ant
task generates the client source code,
WSDL, and client deployment descriptor
files.

You can set this attribute to any directory
you want. However, if you are generating
the client component files to invoke a web
service from an EJB, JSP, or other web
service, you typically set this attribute to
the directory of the Java EE component
which holds shared classes, such as
META-INF for EJBs, WEB-INF/classes for
Web Applications, or APP-INF/classes for
Enterprise Applications. If you are
invoking the web service from a
stand-alone client, then you can generate
the client component files into the same
source code directory hierarchy as your
client application code.

String You must
specify
either the
destFile or
destDir
attribute,
but not both.

Both

clientgen

Ant Task Reference 2-7

destFile Name of a JAR file or exploded directory
into which the clientgen task packages the
client source code, compiled classes,
WSDL, and client deployment descriptor
files. If you specify this attribute, the
clientgen Ant task also compiles all Java
code into classes.

To create or update a JAR file, use a .jar
suffix when specifying the JAR file, such as
myclientjar.jar. If the attribute value
does not have a .jar suffix, then the
clientgen task assumes you are referring
to a directory name.

If you specify a JAR file or directory that
does not exist, the clientgen task creates a
new JAR file or directory.

String You must
specify
either the
destFile or
destDir
attribute,
but not both.

Both

failonerror Specifies whether the clientgen Ant task
continues executing in the event of an error.

Valid values for this attribute are True or
False. The default value is True, which
means clientgen continues executing even
after it encounters an error.

Boolean No Both

generateAsyncMethods Specifies whether the clientgen Ant task
should include methods in the generated
stubs that client applications can use to
invoke a web service operation
asynchronously.

For example, if you specify True (which is
also the default value), and one of the web
service operations in the WSDL is called
getQuote, then the clientgen Ant task also
generates a method called getQuoteAsync
in the stubs which client applications
invoke instead of the original getQuote
method. This asynchronous flavor of the
operation also has an additional parameter,
of data type
weblogic.wsee.async.AsyncPreCallConte
xt, that client applications can use to set
asynchronous properties, contextual
variables, and so on.

Note: If the web service operation is
marked as one-way, the clientgen Ant task
never generates the asynchronous flavor of
the stub, even if you explicitly set the
generateAsyncMethods attribute to True.

Valid values for this attribute are True or
False. The default value is True, which
means the asynchronous methods are
generated by default.

Boolean No JAX-RPC

Table 2–2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

clientgen

2-8 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

generatePolicyMethods Specifies whether the clientgen Ant task
should include WS-Policy-loading methods
in the generated stubs. These methods can
be used by client applications to load a
local WS-Policy file.

If you specify True, four flavors of a
method called getXXXSoapPort() are
added as extensions to the Service
interface in the generated client stubs,
where XXX refers to the name of the web
service. Client applications can use these
methods to load and apply local WS-Policy
files, rather than apply any WS-Policy files
deployed with the web service itself. Client
applications can specify whether the local
WS-Policy file applies to inbound,
outbound, or both SOAP messages and
whether to load the local WS-Policy from
an InputStream or a URI.

Valid values for this attribute are True or
False. The default value is False, which
means the additional methods are not
generated.

See "Using a Client-Side Security
WS-Policy File" in Securing WebLogic Web
Services for Oracle WebLogic Server for more
information.

Boolean No JAX-RPC

getRuntimeCatalog Specifies whether the clientgen Ant task
should generate the XML catalog artifacts
in the client runtime environment. To
disable their generation, set this flag to
false. This value defaults to true. For
more information, see "Disabling XML
Catalogs in the Client Runtime" in
Developing JAX-WS Web Services for Oracle
WebLogic Server.

Boolean No JAX-WS

Table 2–2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

clientgen

Ant Task Reference 2-9

handlerChainFile Specifies the name of the XML file that
describes the client-side SOAP message
handlers that execute when a client
application invokes a web service.

Each handler specified in the file executes
twice:

■ Directly before the client application
sends the SOAP request to the web
service

■ Directly after the client application
receives the SOAP response from the
web service

If you do not specify this clientgen
attribute, then no client-side handlers
execute, even if they are in your
CLASSPATH.

See "Creating and Using Client-Side SOAP
Message Handlers" in Developing JAX-RPC
Web Services for Oracle WebLogic Server for
details and examples about creating
client-side SOAP message handlers.

String No JAX-RPC

includeGlobalTypes Specifies that the clientgen Ant task
should generate Java representations of all
XML Schema data types in the WSDL,
rather than just the data types that are
explicitly used in the web service
operations.

Valid values for this attribute are True or
False. The default value is False, which
means that clientgen generates Java
representations for only the actively-used
XML data types.

Boolean No JAX-RPC

jaxRPCWrappedArrayStyle When the clientgen Ant task is generating
the Java equivalent to XML Schema data
types in the WSDL file, and the task
encounters an XML complex type with a
single enclosing sequence with a single
element with the maxOccurs attribute equal
to unbounded, the task generates, by
default, a Java structure whose name is the
lowest named enclosing complex type or
element. To change this behavior so that the
task generates a literal array instead, set the
jaxRPCWrappedArrayStyle to False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

Table 2–2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

clientgen

2-10 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

packageName Package name into which the generated
client interfaces and stub files are
packaged.

If you do not specify this attribute, the
clientgen Ant task generates Java files
whose package name is based on the
targetNamespace of the WSDL file. For
example, if the targetNamespace is
http://example.org, then the package
name might be org.example or something
similar. If you want control over the
package name, then you should specify this
attribute.

If you do specify this attribute, Oracle
recommends you use all lower-case letters
for the package name.

String No Both

serviceName Name of the web service in the WSDL file
for which the corresponding client
component files should be generated.

The web service name corresponds to the
<service> element in the WSDL file.

The generated mapping file and client-side
copy of the WSDL file will use this name.
For example, if you set serviceName to
CuteService, the mapping file will be
called cuteService_java_wsdl_
mapping.xml and the client-side copy of the
WSDL will be called CuteService_saved_
wsdl.wsdl.

String This
attribute is
required
only if the
WSDL file
contains
more than
one
<service>
element.

The Ant task
returns an
error if you
do not
specify this
attribute
and the
WSDL file
contains
more than
one
<service>
element.

JAX-RPC

sortSchemaTypes In an XSD file, two complex types are
defined, one a named global type and the
other an unnamed local type. By default,
clientgen automatically generates its own
name for the unnamed local type, and the
name generated when compiling different
WSDL files is not always consistent.

When enabled, the type names in the Java
files generated by clientgen will be the
same.

Boolean No JAX-RPC

Table 2–2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

clientgen

Ant Task Reference 2-11

2.2.4 Examples
The following examples illustrate how to build a clientgen Ant target.

Example 1 Building a Basic clientgen Ant Target
In the following example, when the sample build_client target is executed,
clientgen uses the WSDL file specified by the wsdl attribute to generate all the
client-side artifacts needed to invoke the web service specified by the serviceName
attribute. The clientgen Ant task generates all the artifacts into the
/output/clientclasses directory. All generated Java code is in the
myapp.myservice.client package. After clientgen has finished, the javac Ant task
then compiles the Java code, both clientgen-generated as well as your own client
application that uses the generated artifacts and contains your business code. By
default, clientgen generates client artifacts based on a JAX-RPC web service.

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
...
<target name="build_client">
<clientgen
 wsdl="http://example.com/myapp/myservice.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService" />
<javac ... />
</target>

Example 2 Generating a JAX-WS Web Service Client
In the preceding example, it is assumed that the web service for which you are
generating client artifacts is based on JAX-RPC; the following example shows how to
use the type attribute to specify that the web service is based on JAX-WS:

type Specifies the type of web service for which
you are generating client artifacts: JAX-WS
or JAX-RPC.

Valid values are:

■ JAXWS

■ JAXRPC

Default value is JAXRPC.

String No Both

wsdl Full path name or URL of the WSDL that
describes a web service (either WebLogic or
non-WebLogic) for which the client
component files should be generated.

The generated stub factory classes in the
client JAR file use the value of this attribute
in the default constructor.

String Yes Both

wsdlLocation Specifies the value of the wsdlLocation
attribute generated on the
@WebServiceClient.

String No JAX-WS

Table 2–2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required?

JAX-WS,
JAX-RPC,
or Both?

clientgen

2-12 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

<clientgen
 type="JAXWS"
 wsdl="http://${wls.hostname}:${wls.port}/JaxWsImpl/JaxWsImplService?WSDL"
 destDir="/output/clientclasses"
 packageName="examples.webservices.jaxws.client"
/>

Example 3 Compiling and Packaging the Generated Artifacts
If you want the clientgen Ant task to compile and package the generated artifacts for
you, specify the destFile attribute rather than destDir. In this example, you do not
need to also specify the javac Ant task after clientgen in the build.xml file because
the Java code has already been compiled.

<clientgen
 type="JAXWS"
 wsdl="http://example.com/myapp/myservice.wsdl"
 destFile="/output/jarfiles/myclient.jar"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService"
/>

Example 4 Executing clientgen on a Static WSDL File
You typically execute the clientgen Ant task on a WSDL file that is deployed on the
Web and accessed using HTTP. Sometimes, however, you might want to execute
clientgen on a static WSDL file that is packaged in an archive file, such as the WAR or
JAR file generated by the jwsc Ant task. In this case you must use the following syntax
for the wsdl attribute:

wsdl="jar:file:archive_file!WSDL_file"

where archive_file refers to the full or relative (to the current directory) name of the
archive file and WSDL_file refers to the full pathname of the WSDL file, relative to the
root directory of the archive file.

The following example shows how to execute clientgen on a static WSDL file called
SimpleService.wsdl, which is packaged in the WEB-INF directory of a WAR file called
SimpleImpl.war, which is located in the
output/myEAR/examples/webservices/simple sub-directory of the directory that
contains the build.xml file.

<clientgen
 type="JAXWS"

wsdl="jar:file:output/myEAR/examples/webservices/simple/SimpleImpl.war!/WEB-INF/Si
mpleService.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
/>

Example 5 Setting Java Properties
You can use the standard Ant <sysproperty> nested element to set Java properties,
such as the username and password of a valid WebLogic Server user (if you have
enabled access control on the web service) or the name of a client-side trust store that
contains trusted certificates, as shown in the following example:

<clientgen

jwsc

Ant Task Reference 2-13

 type="JAXWS"
 wsdl="http://example.com/myapp/mySecuredService.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.mysecuredservice.client"
 serviceName="SecureStockQuoteService"
 <sysproperty key="javax.net.ssl.trustStore"
 value="/keystores/DemoTrust.jks"/>
 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"
 value="false"/>
 <sysproperty key="javax.xml.rpc.security.auth.username"
 value="juliet"/>
 <sysproperty key="javax.xml.rpc.security.auth.password"
 value="secret"/>
</clientgen>

2.3 jwsc
The jwsc Ant task takes as input one or more Java Web Service (JWS) files that
contains both standard and WebLogic-specific JWS annotations and generates all the
artifacts you need to create a WebLogic web service.

The generated artifacts for JAX-WS web services include:

■ JSR-109 web service class file at http://www.jcp.org/en/jsr/detail?id=109,
such as the service endpoint interface (called JWS_ClassNamePortType.java,
where JWS_ClassName refers to the JWS class).

■ JAXB data binding artifact class file.

■ All required deployment descriptors, including:

– Servlet-based web service deployment descriptor file: web.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

The generated artifacts for JAX-RPC web services include:

■ JSR-109 web service class file at http://www.jcp.org/en/jsr/detail?id=175,
such as the service endpoint interface (called JWS_ClassNamePortType.java,
where JWS_ClassName refers to the JWS class).

■ All required deployment descriptors, which can include:

– Standard and WebLogic-specific web services deployment descriptors:
webservices.xml, weblogic-webservices.xml, and
weblogic-webservices-policy.xml.

– JAX-RPC mapping files.

– Java class-implemented web services: web.xml and weblogic.xml.

– EJB-implemented web services: ejb-jar.xml and weblogic-ejb-jar.xml.

Note: For JAX-WS web services:

■ The WSDL file is generated when the service endpoint is
deployed.

■ No EJB deployment descriptors are required for EJB 3.0-based
web services.

jwsc

2-14 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

■ The XML Schema representation of any Java user-defined types used as
parameters or return values to the web service operations.

■ The WSDL file that publicly describes the web service.

After generating all the artifacts, the jwsc Ant task compiles the Java and JWS files,
packages the compiled classes and generated artifacts into a deployable Web
application WAR file, and finally creates an exploded Enterprise Application directory
that contains the JAR file. You then deploy this Enterprise Application to WebLogic
Server.

By default, the jwsc Ant task generates a web service that conforms to the JAX-RPC
specification. You can control the type of web services that is generated using the type
attribute of the <jws> child element. For example, to generate a JAX-WS web service,
set type="JAXWS" attribute of the <jws> child element.

You specify the JWS file or files you want the jwsc Ant task to compile using the <jws>
element, as described in Section 2.3.2.5, "jws". If the <jws> element is an immediate
child of the jwsc Ant task, then jwsc generates a separate WAR file for each JWS file. If
you want all the JWS files, along with their supporting artifacts, to be packaged in a
single WAR file, then group all the <jws> elements under a single <module> element. A
single WAR file reduces WebLogic server resources and allows the web services to
share common objects, such as user-defined data types. Using this method you can
also specify the same context path for the web services; if they are each packaged in
their own WAR file then each service must also have a unique context path.

When you use the <module> element, you can use the <jwsfileset> child element to
search for a list of JWS files in one or more directories, rather than list each one
individually using <jws>.

Typically, jwsc generates a new Enterprise Application exploded directory at the
location specified by the destDir attribute. However, if you specify an existing
Enterprise Application as the destination directory, jwsc updates any existing
application.xml file with the new web services information.

Similarly, jwsc typically generates new Web application deployment descriptors
(web.xml and weblogic.xml) that describe the generated Web application. If, however,
you have an existing Web application to which you want to add web services, you can
use the <descriptor> child element of the <module> element to specify existing
web.xml and weblogic.xml files; in this case, jwsc copies these files to the destDir
directory and adds new information to them. Use the standard Ant <fileset> element
to copy the other existing Web application files to the destDir directory.

Note: Although not typical, you can code your JWS file to explicitly
implement javax.ejb.SessionBean. See "Should You Implement a
Stateless Session EJB?" in Developing JAX-WS Web Services for Oracle
WebLogic Server for details. Because this case is not typical, it is
assumed in this section that jwsc packages your web service in a Web
application WAR file, and EJB-specific information is generated only
when necessary.

jwsc

Ant Task Reference 2-15

If one or more of the JWS files to be compiled itself includes an invoke of a different
web service, then you can use the <clientgen> element of jwsc to generate and
compile the required client component files, such as the Stub and Service interface
implementations for the particular web service you want to invoke. These files are
packaged in the generated WAR file so as to make them available to the invoking web
service.

The following sections discuss additional important information about jwsc:

■ Section 2.3.1, "Taskdef Classname"

■ Section 2.3.3, "Attributes"

■ Section 2.3.4, "Examples"

2.3.1 Taskdef Classname
The following shows the task definition for the jwsc classname which must appear in
your Ant build file.

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

2.3.2 Child Elements
The following shows the child element hierarchy of the jwsc Ant task.

<jwsc> {1}
 <jws> {0 or more}
 <WLHttpTransport> {0 or 1}
 <WLHttpsTransport> {0 or 1}
 <jmstransportservice> {0 or 1} -- JAX-WS web services only
 <WLJMSTransport> {0 or 1} -- JAX-RPC web services only
 <clientgen> {0 or more}
 <descriptor> {0 or more}
 <module> {0 or more}
 <jws> {0 or more}
 <WLHttpTransport> {0 or 1}
 <WLHttpsTransport> {0 or 1}
 <jmstransportservice> {0 or 1} -- JAX-WS web services only
 <WLJMSTransport> {0 or 1} -- JAX-RPC web services only
 <clientgen> {0 or more}
 <descriptor> {0 or more}
 <jwsfileset> {0 or more}
 <binding> {0 or more}

The jwsc Ant task has a variety of attributes and three child elements:

■ <jws> element—Used as either a child element of <jwsc> or <module>. Defines the
transport (HTTP, HTTPs, or JMS) using on of the following child elements:

– <WLHttpTransport>. See Section 2.3.2.8, "WLHttpTransport."

– <WLHttpsTransport>. See Section 2.3.2.9, "WLHttpsTransport."

Note: The existing web.xml and weblogic.xml files pointed to by the
<descriptor> element must be XML Schema-based, not DTD-based
which will cause the jwsc Ant task to fail with a validation error.

jwsc

2-16 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

– <jmstransportservice> (JAX-WS only). See Section 2.3.2.4,
"jmstransportservice."

– <WLJMSTransport> (JAX-RPC only). See Section 2.3.2.4, "jmstransportservice."

For more information, see Section 2.3.2.5, "jws."

■ <module> element—Groups one or more JWS files (also specified with the <jws>
element) into a single module (WAR file); if you do not specify <module>, then
each JWS file is packaged into its own module, or WAR file. For more information,
see Section 2.3.2.7, "module."

■ <binding> element—Specifies custom binding information. For more information,
see Section 2.3.2.1, "binding."

The <clientgen> and <descriptor> elements are children only of the elements that
generate modules: either the actual <module> element itself, or <jws> when used as a
child of jwsc, rather than a child of <module>.

The <jwsfileset> element can be used only as a child of <module>.

The following sections describe each child element in the jwsc Ant task in more detail.

2.3.2.1 binding
Use the <binding> child element to specify one of the following:

■ For JAX-WS, one or more customization files that specify JAX-WS and JAXB
custom binding declarations. For more information, see "Customizing XML
Schema-to-Java Mapping Using Binding Declarations" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

■ For JAX-RPC, one or more XMLBeans configuration files, which by convention
end in .xsdconfig. Use this element if your web service uses Apache XMLBeans
http://xmlbeans.apache.org/ data types as parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all
the same attributes. See the Apache Ant documentation on the Fileset element at
http://ant.apache.org/manual/Types/fileset.html for the full list of attributes you
can specify.

2.3.2.2 clientgen
Use the <clientgen> element if the JWS file itself invokes another web service and you
want the jwsc Ant task to automatically generate and compile the required client-side
artifacts and package them in the Web application WAR file together with the web
service. The client-side artifacts include:

■ The Java classes or the Stub and Service interface implementations for the
particular web service you want to invoke.

■ The Java classes for any user-defined XML Schema data types included in the
WSDL file.

■ For JAX-RPC, the mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

Note: The <binding> child element is not valid if you specify the
compliedWsdl attribute of the <jws> element.

jwsc

Ant Task Reference 2-17

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

You can specify the standard Ant <sysproperty> child element to specify properties
required by the web service from which you are generating client-side artifacts. For
example, if the web service is secured, you can use the
javax.xml.rpc.security.auth.username|password properties to set the
authenticated username and password. See the Ant documentation at
http://ant.apache.org/manual/ for the java Ant task for additional information
about <sysproperty>.

You can use the <clientgen> child element for generating both JAX-WS and JAX-RPC
web services.

The following table describes the attributes of the <clientgen> element.

jwsc

2-18 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–3 Attributes of the <clientgen> Element

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

autoDetectWrapped Specifies whether the jwsc Ant task should
try to determine whether the parameters and
return type of document-literal web services
are of type wrapped or bare.

When the jwsc Ant task parses a WSDL file to
create the stubs, it attempts to determine
whether a document-literal web service uses
wrapped or bare parameters and return types
based on the names of the XML Schema
elements, the name of the operations and
parameters, and so on. Depending on how the
names of these components match up, the
jwsc Ant task makes a best guess as to
whether the parameters are wrapped or bare.
In some cases, however, you might want the
Ant task to always assume that the parameters
are of type bare; in this case, set the
autoDetectWrapped attribute to False.

Valid values for this attribute are True or
False. The default value is True.

No JAX-RPC

catalog Specifies an external XML catalog file.

For more information, see "Using XML
Catalogs" in Developing JAX-WS Web Services
for Oracle WebLogic Server.

No JAX-WS

handlerChainFile Specifies the name of the XML file that
describes the client-side SOAP message
handlers that execute when the JWS file
invokes a web service.

Each handler specified in the file executes
twice:

■ directly before the JWS sends the SOAP
request to the invoked web service.

■ directly after the JWS receives the SOAP
response from the invoked web service.

If you do not specify this attribute, then no
client-side handlers execute when the web
service is invoked from the JWS file, even if
they are in your CLASSPATH.

See "Creating and Using Client-Side SOAP
Message Handlers" in Developing JAX-RPC
Web Services for Oracle WebLogic Server for
details and examples about creating
client-side SOAP message handlers.

No JAX-RPC

jwsc

Ant Task Reference 2-19

generateAsyncMethods Specifies whether the jwsc Ant task should
include methods in the generated stubs that
the JWS file can use to invoke a web service
operation asynchronously.

For example, if you specify True (which is
also the default value), and one of the web
service operations in the WSDL is called
getQuote, then the jwsc Ant task also
generates a method called getQuoteAsync in
the stubs which the JWS file can use instead of
the original getQuote method. This
asynchronous flavor of the operation also has
an additional parameter, of data type
weblogic.wsee.async.AsyncPreCallContext,
that the JWS file can use to set asynchronous
properties, contextual variables, and so on.

Note: If the operation of the web service being
invoked in the JWS file is marked as one-way,
the jwsc Ant task never generates the
asynchronous flavor of the stub, even if you
explicitly set the generateAsyncMethods
attribute to True.

Valid values for this attribute are True or
False. The default value is True, which means
the asynchronous methods are generated by
default.

No JAX-RPC

generatePolicyMethods Specifies whether the jwsc Ant task should
include WS-Policy-loading methods in the
generated stubs. You can use these methods in
your JWS file, when invoking the web service,
to load a local WS-Policy file.

If you specify True, four flavors of a method
called getXXXSoapPort() are added as
extensions to the Service interface in the
generated client stubs, where XXX refers to the
name of the web service. You can program the
JWS file to use these methods to load and
apply local WS-Policy files, rather than apply
any WS-Policy file deployed with the web
service itself. You can specify in the JWS file
whether the local WS-Policy file applies to
inbound, outbound, or both SOAP messages
and whether to load the local WS-Policy file
from an InputStream or a URI.

Valid values for this attribute are True or
False. The default value is False, which
means the additional methods are not
generated.

See "Using a Client-Side Security WS-Policy
File" in Securing WebLogic Web Services for
Oracle WebLogic Server for more information.

No JAX-RPC

Table 2–3 (Cont.) Attributes of the <clientgen> Element

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

jwsc

2-20 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

includeGlobalTypes Specifies that the jwsc Ant task should
generate Java representations of all XML
Schema data types in the WSDL, rather than
just the data types that are explicitly used in
the web service operations.

Valid values for this attribute are True or
False. The default value is False, which
means that jwsc generates Java
representations for only the actively-used
XML data types.

No JAX-RPC

jaxRPCWrappedArrayStyle When the jwsc Ant task is generating the Java
equivalent to XML Schema data types in the
WSDL file, and the task encounters an XML
complex type with a single enclosing
sequence with a single element with the
maxOccurs attribute equal to unbounded, the
task generates, by default, a Java structure
whose name is the lowest named enclosing
complex type or element. To change this
behavior so that the task generates a literal
array instead, set the
jaxRPCWrappedArrayStyle to False.

Valid values for this attribute are True or
False. The default value is True

No JAX-RPC

packageName Package name into which the generated client
interfaces and stub files are packaged.

Oracle recommends you use all lower-case
letters for the package name.

Yes Both

serviceName Name of the web service in the WSDL file for
which the corresponding client-side artifacts
should be generated.

The web service name corresponds to the
<service> element in the WSDL file.

The generated JAX-RPC mapping file and
client-side copy of the WSDL file will use this
name. For example, if you set serviceName to
CuteService, the JAX-RPC mapping file will
be called cuteService_java_wsdl_
mapping.xml and the client-side copy of the
WSDL will be called CuteService_saved_
wsdl.wsdl.

This attribute
is required
only if the
WSDL file
contains more
than one
<service>
element.

The Ant task
returns an
error if you
do not specify
this attribute
and the
WSDL file
contains more
than one
<service>
element.

JAX-RPC

wsdl Full path name or URL of the WSDL that
describes a web service (either WebLogic or
non-WebLogic) for which the client artifacts
should be generated.

The generated stub factory classes use the
value of this attribute in the default
constructor.

Yes Both

Table 2–3 (Cont.) Attributes of the <clientgen> Element

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

jwsc

Ant Task Reference 2-21

2.3.2.3 descriptor
Use the <descriptor> element to specify that, rather than create new Web application
deployment descriptors when generating the WAR that will contain the
implementation of the web service, the jwsc task should instead copy existing files and
update them with the new information. This is useful when you have an existing Web
application to which you want to add one or more web services. You typically use this
element together with the standard <FileSet> Ant task to copy other existing Web
application artifacts, such as HTML files and Java classes, to the jwsc-generated Web
application.

You can use this element with only the following two deployment descriptor files:

■ web.xml

■ weblogic.xml

Use a separate <descriptor> element for each deployment descriptor file.

The <descriptor> element is a child of either <module> or <jws>, when the latter is a
direct child of the main jwsc Ant task.

You can use the <descriptor> child element only for generating JAX-RPC web
services. To view this element within the jwsc element hierarchy, see Section 2.3.3,
"Attributes." See Section 2.3.4, "Examples" for examples of using the element.

The following table describes the attributes of the <descriptor> element.

2.3.2.4 jmstransportservice

Use the <jmstransportservice> element to enable and configure SOAP over JMS
transport for JAX-WS web services and clients.

Note: The existing web.xml and weblogic.xml files pointed to by the
<descriptor> element must be XML Schema-based, not DTD-based
which will cause the jwsc Ant task to fail with a validation error.

Table 2–4 Attributes of the <descriptor> Element

Attribute Description Required?

file Full pathname (either absolute or relative to the directory that contains the
build.xml file) of the existing deployment descriptor file. The deployment
descriptor must be XML Schema-based, not DTD-based.

The jwsc Ant task does not update this file directly, but rather, copies it to the
newly-generated Web application.

Yes

Note: You can use the <jmstransportservice> child element for
configuring SOAP over JMS transport for JAX-WS web services only.
For information about configuring SOAP over JMS transport for
JAX-RPC web services, see Section 2.3.2.10, "WLJMSTransport."

You cannot use SOAP over JMS transport in conjunction with Web
Services reliable messaging or streaming SOAP attachments, as
described in Developing JAX-WS Web Services for Oracle WebLogic
Server.

jwsc

2-22 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

■ Reliability

■ Scalability

■ Quality of service

For more information about using SOAP over JMS transport, see "Using SOAP Over
JMS Transport as the Connection Protocol" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

The <jmstransportservice> element is a child in the <jws> element of the jwsc Ant
task. You can specify zero or one <jmstransportservice> element for a given JWS file.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the
<jmstransportservice> element. For a complete list of JMS transport properties
supported, see "Configuring JMS Transport Properties" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

The following example shows how to enable and configure JMS transport when
generating the web service using jwsc.

<?xml version="1.0"?>
<project name="jaxws.jms.jwsc" default="all">
 <import file="../build-jms.xml"/>
 <path id="client.class.path">
 <pathelement path="${clientclasses.dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <target name="jwsc">
 <jwsc srcdir="." sourcepath="client" destdir="${output.dir}" debug="on"
 keepGenerated="yes">
 <jws file="JWSCEndpoint.java" type="JAXWS" explode="true">
 <jmstransportservice
 targetService="JWSCEndpointService"
 destinationName="com.oracle.webservices.api.jms.RequestQueue"
 jndiInitialContextFactory="weblogic.jndi.WLInitialContextFactory"
 jndiConnectionFactoryName="weblogic.jms.XAConnectionFactory"
 jndiURL="t3://localhost:7001"
 deliveryMode="PERSISTENT"
 timeToLive="60000"
 priority="1"
 messageType="TEXT"
 activationConfig = "transAttribute=Supports"
 />
 </jws>
 </jwsc>
</target>
</project>

2.3.2.5 jws
The <jws> element specifies the name of a JWS file that implements your web service
and for which the Ant task should generate Java code and supporting artifacts and
then package into a deployable WAR file inside of an Enterprise Application.

You can specify the <jws> element in the following two different levels of the jwsc
element hierarchy:

jwsc

Ant Task Reference 2-23

■ An immediate child element of the jwsc Ant task. In this case, jwsc generates a
separate WAR file for each JWS file. You typically use this method if you are
specifying just one JWS file to the jwsc Ant task.

■ A child element of the <module> element, which in turn is a child of jwsc. In this
case, jwsc generates a single WAR file that includes all the generated code and
artifacts for all the JWS files grouped within the <module> element. This method is
useful if you want all JWS files to share supporting files, such as common Java
data types.

You are required to specify either a <jws> or <module> child element of jwsc.

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

You can use the standard Ant <FileSet> child element with the <jws> element of jwsc.

You can use the <jws> child element when generating both JAX-WS and JAX-RPC web
services.

The following table describes the attributes of the <jws> element. The description
specifies whether the attribute applies in the case that <jws> is a child of jwsc, is a
child of <module> or in both cases.

jwsc

2-24 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–5 Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

compiledWsdl Full pathname of the JAR file generated by the wsdlc Ant
task based on an existing WSDL file. The JAR file contains
the JWS interface file that implements a web service based
on this WSDL, as well as data binding artifacts for
converting parameter and return value data between its
Java and XML representations; the XML Schema section of
the WSDL defines the XML representation of the data.

You use this attribute only in the "starting from WSDL" use
case, in which you first use the Section 2.4, "wsdlc" Ant task
to generate the JAR file, along with the JWS file that
implements the generated JWS interface. After you update
the JWS implementation class with business logic, you run
the jwsc Ant task to generate a deployable web service,
using the file attribute to specify this updated JWS
implementation file.

You do not use the compiledWsdl attribute for the "starting
from Java" use case in which you write your JWS file from
scratch and the WSDL file that describes the web service is
generated by the WebLogic web services runtime.

Applies to <jws> when used as a child of both jwsc and
<module>.

Only
required for
the "starting
from WSDL"
use case

Both

contextPath Context path (or context root) of the web service.

For example, assume the deployed WSDL of a WebLogic
web service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

The value of this attribute overrides any other context path
set for the JWS file. This includes the transport-related JWS
annotations, as well as the transport-related child elements
of <jws>.

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default value of
its contextPath is HelloWorldImpl.

Applies only when <jws> is a direct child of jwsc.

For more information about defining the context path, see:

■ "Defining the Context Path of a WebLogic Web
Service" in Developing JAX-WS Web Services for Oracle
WebLogic Server

■ "Defining the Context Path of a WebLogic Web
Service" in Developing JAX-RPC Web Services for Oracle
WebLogic Server.

No Both

explode Specifies whether the generated WAR file that contains the
deployable web service is in exploded directory format or
not.

Valid values for this attribute are true or false. Default
value is false, which means that jwsc generates an actual
WAR archive file, and not an exploded directory.

Applies only when <jws> is a direct child of jwsc.

No Both

jwsc

Ant Task Reference 2-25

file The name of the JWS file that you want to compile. The
jwsc Ant task looks for the file in the srcdir directory.

Applies to <jws> when used as a child of both jwsc and
<module>.

Yes Both

generateWsdl Specifies whether the generated WAR file includes the
WSDL file in the WEB-INF directory. Valid values for this
attribute are true or false. Default value is false, which
means that jwsc does not include the WSDL file in the
generated WAR file.

Applies to <jws> when used as a child of both jwsc and
<module>.

Yes JAX-WS

includeSchemas The full pathname of the XML Schema file that describes an
XMLBeans parameter or return value of the web service.

To specify more than one XML Schema file, use either a
comma or semi-colon as a delimiter:

includeSchemas="po.xsd,customer.xsd"

This attribute is only supported in the case where the JWS
file explicitly uses an XMLBeans data type as a parameter or
return value of a web service operation. If you are not
using the XMLBeans data type, the jwsc Ant task returns an
error if you specify this attribute.

Additionally, you can use this attribute only for web
services whose SOAP binding is document-literal-bare.
Because the default SOAP binding of a WebLogic web
service is document-literal-wrapped, the corresponding
JWS file must include the following JWS annotation:

@SOAPBinding(
 style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.BARE)

For more information on XMLBeans, see
http://xmlbeans.apache.org/.

Applies to <jws> when used as a child of both jwsc and
<module>.

Required if
you are using
an XMLBeans
data type as a
parameter or
return value

JAX-RPC

Table 2–5 (Cont.) Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

jwsc

2-26 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2.3.2.6 jwsfileset
Use the <jwsfileset> child element of <module> to specify one or more directories in
which the jwsc Ant task searches for JWS files to compile. The list of JWS files that
jwsc finds is then treated as if each file had been individually specified with the <jws>
child element of <module>.

Use the standard nested elements of the <FileSet> Ant task to narrow the search. For
example, use the <include> element to specify the pattern matching that
<jwsfileset> should follow when determining the JWS files it should include in the
list. See the Ant documentation at http://ant.apache.org/manual/ for details about
<FileSet> and its nested elements.

You can use the <jwsfileset> child element for generating both JAX-WS and
JAX-RPC web services.

name The name of the generated WAR file (or exploded directory,
if the explode attribute is set to true) that contains the
deployable web service. If an actual JAR archive file is
generated, the name of the file will have a .war extension.

The default value of this attribute is the name of the JWS
file, specified by the file attribute.

Applies only when <jws> is a direct child of jwsc.

No Both

type Specifies the type of web service to generate: JAX-WS or
JAX-RPC.

Valid values are:

■ JAXWS

■ JAXRPC

Default value is JAXRPC.

No Both

wsdlOnly Specifies that only a WSDL file should be generated for this
JWS file.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated because the
WSDL must include the XML Schema that describes the
data types of the parameters and return values of the web
service operations.

The WSDL is generated into the destDir directory. The
name of the file is JWS_ClassNameService.wsdl, where
JWS_ClassName refers to the name of the JWS class. JWS_
ClassNameService is also the name of web service in the
generated WSDL file.

If you set this attribute to true but also set the explode
attribute to false (which is also the default value), then
jwsc ignores the explode attribute and always generates
the output in exploded format.

Valid values for this attribute are true or false. The default
value is false, which means that all artifacts are generated
by default, not just the WSDL file.

Applies only when <jws> is a child of jwsc.

No Both

Table 2–5 (Cont.) Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

jwsc

Ant Task Reference 2-27

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

The following table describes the attributes of the <jwsfileset> element.

2.3.2.7 module
The <module> element groups one or more <jws> elements together so that their
generated code and artifacts are packaged in a single Web application (WAR) file. The
<module> element is a child of the main jwsc Ant task.

You can group only web services implemented with the same backend component
(Java class or stateless session EJB) under a single <module> element; you cannot mix
and match. By default, jwsc always implements your web service as a plain Java class;
the only exception is if you have implemented a stateless session EJB in your JWS file.
This means, for example, that if one of the JWS files specified by the <jws> child
element of <module> implements javax.ejb.SessionBean, then all its sibling <jws>
files must also implement javax.ejb.SessionBean. If this is not possible, then you
cannot group all the JWS files under a single <module>.

The web services within a module must have the same contextPath, but must have
unique serviceURIs. You can set the common contextPath by specifying it as an
attribute to the <module> element, or ensuring that the @WLXXXTransport annotations
(for JAX-RPC only) and/or <WLXXXTransport> elements for each web service have the
same value for the contextPath attribute. The jwsc Ant task validates these values and
returns an error if they are not unique. For more information about defining the
context path, see:

■ "Defining the Context Path of a WebLogic Web Service" in Developing JAX-WS Web
Services for Oracle WebLogic Server

■ "Defining the Context Path of a WebLogic Web Service" in Developing JAX-RPC
Web Services for Oracle WebLogic Server.

You must specify at least one <jws> child element of <module>.

You can use the <module> child element when generating both JAX-WS and JAX-RPC
web services.

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

The following table describes the attributes of the <module> element.

Table 2–6 Attributes of the <jwsfileset> Element

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

scrdir Specifies the directories (separated by semi-colons) that the jwsc
Ant task should search for JWS files to compile.

Yes Both

type Specifies the type of web service to generate for each found JWS
file: JAX-WS or JAX-RPC.

Valid values are:

■ JAXWS

■ JAXRPC

Default value is JAXRPC.

No Both

jwsc

2-28 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–7 Attributes of the <module> Element of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

contextPath Context path (or context root) of all the web services
contained in this module.

For example, assume the deployed WSDL of a WebLogic
web service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

The value of this attribute overrides any other context path
set for any of the JWS files contained in this module. This
includes the transport-related JWS annotations, as well as
the transport-related child elements of <jws>.

The default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS
file is HelloWorldImpl.java, then the default value of its
contextPath is HelloWorldImpl.

For more information about defining the context path, see:

■ "Defining the Context Path of a WebLogic Web Service"
in Developing JAX-WS Web Services for Oracle WebLogic
Server

■ "Defining the Context Path of a WebLogic Web Service"
in Developing JAX-RPC Web Services for Oracle WebLogic
Server.

Only required
to ensure that
the context
paths of
multiple web
services in a
single WAR
are the same.

Both

ejbWsInWar Specifies whether to package EJB-based web services in a
WAR file instead of a JAR file. Valid values for this attribute
are true or false. Default value is false, which means that
EJB-based web services are packaged in a JAR file.

No JAX-WS

explode Specifies whether the generated WAR file that contains the
deployable web service(s) is in exploded directory format or
not. Valid values for this attribute are true or false. Default
value is false, which means that jwsc generates an actual
WAR archive file, and not an exploded directory.

No Both

jwsc

Ant Task Reference 2-29

2.3.2.8 WLHttpTransport
Use the WLHttpTransport child element of the <jws> element to specify the context
path and service URI sections of the URL used to invoke the web service over the
HTTP transport, as well as the name of the port in the generated WSDL.

You can specify one or zero <WLHttpTransport> elements for a given JWS file.

You can use the <WlHttpTransport> child element when generating both JAX-WS and
JAX-RPC web services.

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

The following table describes the attributes of <WLHttpTransport>.

generateWsdl Specifies whether the generated WAR file includes the
WSDL file. Valid values for this attribute are true or false.
Default value is false, which means that jwsc generates an
actual WAR archive file, and not an exploded directory.

No JAX-WS

name The name of the generated WAR file (or exploded directory,
if the explode attribute is set to true) that contains the
deployable web service(s). If an actual WAR archive file is
generated, the name of the file will have a .war extension.

The default value of this attribute is jws.

No Both

wsldOnly Specifies that only a WSDL file should be generated for each
JWS file specified by the <jws> child element of <module>.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated because the
WSDL must include the XML Schema that describes the data
types of the parameters and return values of the web service
operations.

The WSDL is generated into the destDir directory. The name
of the file is JWS_ClassNameService.wsdl, where JWS_
ClassName refers to the name of the JWS class. JWS_
ClassNameService is also the name of web service in the
generated WSDL file.

If you set this attribute to true but also set the explode
attribute to false (which is also the default value), then jwsc
ignores the explode attribute and always generates the
output in exploded format.

Valid values for this attribute are true or false. The default
value is false, which means that all artifacts are generated
by default, not just the WSDL file.

No Both

Table 2–7 (Cont.) Attributes of the <module> Element of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

jwsc

2-30 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–8 Attributes of the <WLHttpTransport> Child Element of the <jws> Element

Attribute Description Required?

JAX-RPC,
JAX-WS, or
Both?

contextPath Context path (or context root) of the web service.

For example, assume the deployed WSDL of a WebLogic web
service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The contextPath for this web service is financial.

The default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file
is HelloWorldImpl.java, then the default value of its
contextPath is HelloWorldImpl.

For more information about defining the context path, see:

■ "Defining the Context Path of a WebLogic Web Service"
in Developing JAX-WS Web Services for Oracle WebLogic
Server

■ "Defining the Context Path of a WebLogic Web Service"
in Developing JAX-RPC Web Services for Oracle WebLogic
Server.

No Both

serviceUri Web service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic web
service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this web service is GetQuote.

For JAX-WS, the default value of this attribute is the
serviceName element of the @WebService annotation if
specified. Otherwise, the name of the JWS file, without its
extension, followed by Service. For example, if the
serviceName element of the @WebService annotation is not
specified and the name of the JWS file is
HelloWorldImpl.java, then the default value of its
serviceUri is HelloWorldImplService.

For JAX-RPC, the default value of this attribute is the name
of the JWS file, without its extension. For example, if the
name of the JWS file is HelloWorldImpl.java, then the
default value of its serviceUri is HelloWorldImpl.

No Both

portName The name of the port in the generated WSDL. This attribute
maps to the name attribute of the <port> element in the
WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file. In
particular, the default portName is the value of the name
attribute of @WebService annotation, plus the actual text
SoapPort. For example, if @WebService.name is set to
MyService, then the default portName is MyServiceSoapPort.

No Both

jwsc

Ant Task Reference 2-31

2.3.2.9 WLHttpsTransport

Use the WLHttpsTransport element to specify the context path and service URI
sections of the URL used to invoke the web service over the secure HTTPS transport,
as well as the name of the port in the generated WSDL.

The <WLHttpsTransport> element is a child of the <jws> element. You can specify one
or zero <WLHttpsTransport> elements for a given JWS file. You can use the
<WlHttpsTransport> child element only for generating JAX-RPC web services.

See Section 2.3.3, "Attributes" top view where this element fits in the jwsc element
hierarchy.

The following table describes the attributes of <WLHttpsTransport>.

Note: The <WLHttpsTransport> element is deprecated as of version
9.2 of WebLogic Server. You should use the <WLHttpTransport>
element instead because it now supports both the HTTP and HTTPS
protocols. If you want client applications to access the web service
using only the HTTPS protocol, then you must specify the
@weblogic.jws.security.UserDataConstraint JWS annotation in
your JWS file.

jwsc

2-32 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2.3.2.10 WLJMSTransport

Use the WLJMSTransport element to specify the context path and service URI sections
of the URL used to invoke the web service over the JMS transport, as well as the name
of the port in the generated WSDL. You also specify the name of the JMS queue and
connection factory that you have already configured for JMS transport.

Table 2–9 Attributes of the <WLHttpsTransport> Child Element of the <jws> Element

Attribute Description Required?

contextPath Context path (or context root) of the web service.

For example, assume the deployed WSDL of a WebLogic web service is as
follows:

https://hostname:7001/financial/GetQuote?WSDL

The contextPath for this web service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is HelloWorldImpl.java,
then the default value of its contextPath is HelloWorldImpl.

For more information about defining the context path, see:

■ "Defining the Context Path of a WebLogic Web Service" in Developing
JAX-WS Web Services for Oracle WebLogic Server

■ "Defining the Context Path of a WebLogic Web Service" in Developing
JAX-RPC Web Services for Oracle WebLogic Server.

No

serviceUri Web service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic web service is as
follows:

https://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this web service is GetQuote.

For JAX-WS, the default value of this attribute is the serviceName element of
the @WebService annotation if specified. Otherwise, the name of the JWS file,
without its extension, followed by Service. For example, if the serviceName
element of the @WebService annotation is not specified and the name of the
JWS file is HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImplService.

For JAX-RPC, the default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImpl.

No

[portName The name of the port in the generated WSDL. This attribute maps to the name
attribute of the <port> element in the WSDL.

The default value of this attribute is based on the @javax.jws.WebService
annotation of the JWS file. In particular, the default portName is the value of
the name attribute of @WebService annotation, plus the actual text SoapPort.
For example, if @WebService.name is set to MyService, then the default
portName is MyServiceSoapPort.

No

Note: You can use the <WLJmsTransport> child element for
configuring SOAP over JMS transport for JAX-RPC web services only.
For information about configuring JMS transport for JAX-WS web
services, see Section 2.3.2.4, "jmstransportservice."

jwsc

Ant Task Reference 2-33

The <WLJmsTransport> element is a child of the <jws> element. You can specify one or
zero <WLJmsTransport> elements for a given JWS file.

To view this element within the jwsc element hierarchy, see Section 2.3.3, "Attributes."
See Section 2.3.4, "Examples" for examples of using the element.

The following table describes the attributes of <WLJmsTransport>.

Table 2–10 Attributes of the <WLJMSTransport> Child Element of the <jws> Element

Attribute Description Required?

contextPath Context path (or context root) of the web service.

For example, assume the deployed WSDL of a WebLogic web service is as
follows:

http://hostname:7001/financial/GetQuote?WSDL

The contextPath for this web service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its contextPath is
HelloWorldImpl.

For more information about defining the context path, see:

■ "Defining the Context Path of a WebLogic Web Service" in Developing
JAX-WS Web Services for Oracle WebLogic Server

■ "Defining the Context Path of a WebLogic Web Service" in Developing
JAX-RPC Web Services for Oracle WebLogic Server.

No

serviceUri Web service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic web service is as
follows:

http://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this web service is GetQuote.

For JAX-WS, the default value of this attribute is the serviceName element
of the @WebService annotation if specified. Otherwise, the name of the
JWS file, without its extension, followed by Service. For example, if the
serviceName element of the @WebService annotation is not specified and
the name of the JWS file is HelloWorldImpl.java, then the default value of
its serviceUri is HelloWorldImplService.

For JAX-RPC, the default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImpl.

No

jwsc

2-34 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2.3.3 Attributes
The following sections describe the attributes of the jwsc Ant task.

■ Section 2.3.3.1, "WebLogic-Specific jwsc Attributes"

■ Section 2.3.3.2, "Standard Ant Attributes and Child Elements That Apply to jwsc"

2.3.3.1 WebLogic-Specific jwsc Attributes
The following table summarizes the WebLogic-specific jwsc attributes.

portName The name of the port in the generated WSDL. This attribute maps to the
name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the @javax.jws.WebService
annotation of the JWS file. In particular, the default portName is the value
of the name attribute of @WebService annotation, plus the actual text
SoapPort. For example, if @WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

No

queue The JNDI name of the JMS queue that you have configured for the JMS
transport. See "Using JMS Transport as the Connection Protocol" in
Developing JAX-RPC Web Services for Oracle WebLogic Server for details
about using JMS transport.

The default value of this attribute, if you do not specify it, is
weblogic.wsee.DefaultQueue. You must still create this JMS queue in the
WebLogic Server instance to which you deploy your web service.

No

connectionFactory The JNDI name of the JMS connection factory that you have configured
for the JMS transport.

The default value of this attribute is the default JMS connection factory for
your WebLogic Server instance.

No

Table 2–10 (Cont.) Attributes of the <WLJMSTransport> Child Element of the <jws> Element

Attribute Description Required?

jwsc

Ant Task Reference 2-35

Table 2–11 Attributes of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS,
or Both?

applicationXml Specifies the full name and path of the application.xml
deployment descriptor of the Enterprise Application. If you
specify an existing file, the jwsc Ant task updates it to include
the web services information. However, jwsc does not
automatically copy the updated application.xml file to the
destDir; you must manually copy this file to the destDIR.

If the file does not exist, jwsc creates it. The jwsc Ant task also
creates or updates the corresponding
weblogic-application.xml file in the same directory.

If you do not specify this attribute, jwsc creates or updates the
file destDir/META-INF/application.xml, where destDir is the
jwsc attribute.

No Both

destdir The full pathname of the directory that will contain the
compiled JWS files, XML Schemas, WSDL, and generated
deployment descriptor files, all packaged into a JAR or WAR
file.

The jwsc Ant task creates an exploded Enterprise Application
at the specified directory, or updates one if you point to an
existing application directory. The jwsc task generates the JAR
or WAR file that implements the web service in this directory,
as well as other needed files, such as the application.xml file
in the META-INF directory; the jwsc Ant task updates an existing
application.xml file if it finds one, or creates a new one if not.
Use the applicationXML attribute to specify a different
application.xml from the default.

Yes Both

destEncoding Specifies the character encoding of the output files, such as the
deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is UTF-8.

No Both

dotNetStyle Specifies that the jwsc Ant task should generate a .NET-style
web service.

In particular, this means that, in the WSDL of the web service,
the value of the name attribute of the <part> element that
corresponds to the return parameter is parameters rather than
returnParameters. This applies only to
document-literal-wrapped web services.

The valid values for this attribute are true and false. The
default value is true, which means .NET-style web service are
generated by default.

No JAX-RPC

jwsc

2-36 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

enableAsyncService Specifies whether the web service is using one or more of the
asynchronous features of WebLogic web service: web service
reliable messaging, asynchronous request-response, buffering,
or conversations.

In the case of web service reliable messaging, you must ensure
that this attribute is enabled for both the reliable web service
and the web service that is invoking the operations reliably. In
the case of the other features (conversations, asynchronous
request-response, and buffering), the attribute must be enabled
only on the client web service.

When this attribute is set to true (default value), WebLogic
Server automatically deploys internal modules that handle the
asynchronous web service features. Therefore, if you are not
using any of these features in your web service, consider setting
this attribute to false so that WebLogic Server does not waste
resources by deploying unneeded internal modules.

Valid values for this attribute are true and false. The default
value is true.

Note: This attribute is deprecated as of Version 9.2 of WebLogic
Server.

No Deprecate
d attribute
so not
applicable.

keepGenerated Specifies whether the Java source files and artifacts generated
by this Ant task should be regenerated if they already exist.

If you specify no, new Java source files and artifacts are always
generated and any existing artifacts are overwritten.

If you specify yes, the Ant task regenerates only those artifacts
that have changed, based on the timestamp of any existing
artifacts.

Valid values for this attribute are yes or no. The default value is
no.

No Both

Table 2–11 (Cont.) Attributes of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS,
or Both?

jwsc

Ant Task Reference 2-37

2.3.3.2 Standard Ant Attributes and Child Elements That Apply to jwsc
In addition to the WebLogic-defined jwsc attributes, you can also define the following
standard javac attributes; see the Ant documentation at
http://ant.apache.org/manual/ for additional information about each attribute:

■ bootclasspath

■ bootClasspathRef

■ classpath

■ classpathRef

■ compiler

■ debug

■ debugLevel

■ depend

■ deprecation

■ destdir

■ encoding

sourcepath The full pathname of top-level directory that contains the Java
files referenced by the JWS file, such as JavaBeans used as
parameters or user-defined exceptions. The Java files are in
sub-directories of the sourcepath directory that correspond to
their package names. The sourcepath pathname can be either
absolute or relative to the directory which contains the Ant
build.xml file.

For example, if sourcepath is /src and the JWS file references a
JavaBean called MyType.java which is in the
webservices.financial package, then this implies that the
MyType.java Java file is stored in the
/src/webservices/financial directory.

The default value of this attribute is the value of the srcdir
attribute. This means that, by default, the JWS file and the
objects it references are in the same package. If this is not the
case, then you should specify the sourcepath accordingly.

No Both

srcdir The full pathname of top-level directory that contains the JWS
file you want to compile (specified with the file attribute of
the <jws> child element). The JWS file is in sub-directories of
the srcdir directory that corresponds to its package name. The
srcdir pathname can be either absolute or relative to the
directory which contains the Ant build.xml file.

For example, if srcdir is /src and the JWS file called
MyService.java is in the webservices.financial package,
then this implies that the MyService.java JWS file is stored in
the /src/webservices/financial directory.

Yes Both

srcEncoding Specifies the character encoding of the input files, such as the
JWS file or configuration XML files. Examples of character
encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is the character encoding set
for the JVM.

No Both

Table 2–11 (Cont.) Attributes of the jwsc Ant Task

Attribute Description Required?

JAX-RPC,
JAX-WS,
or Both?

jwsc

2-38 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

■ extdirs

■ failonerror

■ fork

■ includeantruntime

■ includejavaruntime

■ listfiles

■ memoryInitialSize

■ memoryMaximumSize

■ nowarn

■ optimize

■ proceed

■ source

■ sourcepath

■ sourcepathRef

■ tempdir

■ verbose

You can also use the following standard Ant child elements with the jwsc Ant task:

■ <SourcePath>

■ <Classpath>

■ <Extdirs>

You can use the following standard Ant elements with the <jws> and <module> child
elements of the jwsc Ant task:

■ <FileSet>

■ <ZipFileSet>

2.3.4 Examples
The following examples illustrate how to build a jwsc Ant target. See Developing
JAX-WS Web Services for Oracle WebLogic Server or Developing JAX-RPC Web Services for
Oracle WebLogic Server for samples of complete build.xml files that contain many other
targets that are useful when iteratively developing a WebLogic web service, such as
clean, deploy, client, and run.

Example 1 Building a Basic jwsc Ant Target
The following sample shows a very simple usage of jwsc. In this example, the JWS file
called TestServiceImpl.java is located in the src/examples/webservices/jwsc
sub-directory of the directory that contains the build.xml file. The jwsc Ant task
generates the web service artifacts in the output/TestEar sub-directory. In addition to
the web service JAR file, the jwsc Ant task also generates the application.xml file
that describes the Enterprise Application in the output/TestEar/META-INF directory.

 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/TestEar">

jwsc

Ant Task Reference 2-39

 <jws file="examples/webservices/jwsc/TestServiceImpl.java" />
 </jwsc>
 </target>

Example 2 Generating a JAX-WS Web Service
By default, the jwsc Ant task generates a web service that conforms to the JAX-RPC
specification. You can control the type of web services that is generated using the type
attribute of the <jws> child element as shown in the following example. In this
example, a JAX-WS web service is generated.

 <target name="build-service8">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/jaxws/JaxWsImpl.java"
 type="JAXWS"
 />
 </jwsc>
 </target>

Example 3 Specifying Multiple JWS Files
This example shows how to specify multiple JWS files, resulting in separate web
services packaged in their own Web application WAR files, although all are still
deployed as part of the same Enterprise Application.

This example also shows how to enable debugging and verbose output; how to specify
that jwsc not regenerate any existing temporary files in the output directory; and how
to use classpathref attribute to add to the standard CLASSPATH by referencing a
path called add.class.path that has been specified elsewhere in the build.xml file
using the standard Ant <path> target.

 <path id="add.class.path">
 <pathelement path="${myclasses-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
...
 <target name="build-service2">
 <jwsc
 srcdir="src"
 destdir="output/TestEar"
 verbose="on"
 debug="on"
 keepGenerated="yes"
 classpathref="add.class.path" >
 <jws file="examples/webservices/jwsc/TestServiceImpl.java"
 type="JAXWS"/>
 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java"
 type="JAXWS"/>
 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java"
 type="JAXWS"/>
 </jwsc>
 </target>

jwsc

2-40 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Example 4 Packaging Multiple Web Services Into a Single WAR File
If you want to package multiple web services into a single WAR file, group the <jws>
elements under a <module> element, as shown in the following example. In this case,
the three web services are packaged in a WAR file called myJAR.war, located at the top
level of the Enterprise Application exploded directory. The contextPath attribute of
<module> specifies that the context path of all three web services is test; this value
overrides any context path specified in a transport annotation of the JWS files.

 <target name="build-service3">
 <jwsc
 srcdir="src"
 destdir="output/TestEar" >
 <module contextPath="test" name="myJar" >
 <jws file="examples/webservices/jwsc/TestServiceImpl.java"
 type="JAXWS"/>
 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java"
 type="JAXWS"/>
 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java"
 type="JAXWS"/>
 </module>
 </jwsc>
 </target>

Example 5 Configuring Multiple Transports
The following example shows how to specify that the JAX-RPC web service can be
invoked using all transports (HTTP/HTTPS/JMS).

This example also shows how to use the <clientgen> element to generate and include
the client-side artifacts (such as the Stub and Service implementations) of the web
service described by http://examples.org/complex/ComplexService?WSDL. This
indicates that the TestServiceImpl.java JWS file, in addition to implementing a web
service, must also acts as a client to the ComplexService web service and must include
Java code to invoke operations of ComplexService.

 <target name="build-service4">
 <jwsc
 srcdir="src"
 destdir="output/TestEar">
 <jws file="examples/webservices/jwsc/TestServiceImpl.java">
 <WLHttpTransport
 contextPath="TestService" serviceUri="TestService"
 portName="TestServicePortHTTP"/>
 <WLJmsTransport
 contextPath="TestService" serviceUri="JMSTestService"
 portName="TestServicePortJMS"
 queue="JMSTransportQueue"/>
 <clientgen
 wsdl="http://examples.org/complex/ComplexService?WSDL"
 serviceName="ComplexService"
 packageName="examples.webservices.simple_client"/>
 </jws>
 </jwsc>
 </target>

Example 6 Grouping Multiple <jws> Elements into a <module> Element
The following example is very similar to the preceding one, except that it groups the
<jws> elements under a <module> element.

jwsc

Ant Task Reference 2-41

In this example, the individual transport elements no longer define their own
contextPath attributes; rather, the parent <module> element defines it instead. This
improves maintenance and understanding of what jwsc actually does. Also note that
the <clientgen> element is a child of <module>, and not <jws> as in the previous
example.

<target name="build-service5">
 <jwsc
 srcdir="src"
 destdir="output/TestEar">
 <module contextPath="TestService" >
 <jws file="examples/webservices/jwsc/TestServiceImpl.java">
 <WLHttpTransport
 serviceUri="TestService"
 portName="TestServicePort1"/>
 </jws>
 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />
 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java" />
 <clientgen
 wsdl="http://examples.org/complex/ComplexService?WSDL"
 serviceName="ComplexService"
 packageName="examples.webservices.simple_client" />
 </module>
 </jwsc>
</target>

Example 7 Specifying a File Set
The following example show how to use the <jwsfileset> element.

In this example, jwsc searches for *.java files in the directory
src/examples/webservices/jwsc, relative to the directory that contains build.xml,
determines which Java files contain JWS annotations, and then processes each file as if
it had been specified with a <jws> child element of <module>. The <include> element
is a standard Ant element at http://ant.apache.org/manual/, described in the
documentation for the standard <FilesSet> task.

 <target name="build-service6">
 <jwsc
 srcdir="src"
 destdir="output/TestEar" >
 <module contextPath="test" name="myJar" >
 <jwsfileset srcdir="src/examples/webservices/jwsc" >
 <include name="**/*.java" />
 </jwsfileset>
 </module>
 </jwsc>
 </target>

Example 8 Updating Existing Web Application Deployment Descriptors
The following example shows how to specify that the jwsc Ant task not create new
Web application deployment descriptors, but rather, add to existing ones.

In this preceding example, the explode="true" attribute of <module> specifies that the
generated Web application should be in exploded directory format, rather than the
default WAR archive file. The <descriptor> child elements specify jwsc should copy
the existing web.xml and weblogic.xml files, located in the webapp/WEB-INF
subdirectory of the directory that contains the build.xml file, to the new Web

wsdlc

2-42 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

application exploded directory, and that new web service information from the
specified JWS file should be added to the files, rather than jwsc creating new ones. The
example also shows how to use the standard Ant at http://ant.apache.org/manual/
<FileSet> task to copy additional files to the generated WAR file; if any of the copied
files are Java files, the jwsc Ant task compiles the files and puts the compiled classes
into the classes directory of the Web application.

<target name="build-service7">
 <jwsc
 srcdir="src"
 destdir="output/TestEar" >
 <module contextPath="test" name="myJar" explode="true" >
 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />
 <FileSet dir="webapp" >
 <include name="**/*.java" />
 </FileSet>
 <descriptor file="webapp/WEB-INF/web.xml" />
 <descriptor file="webapp/WEB-INF/weblogic.xml" />
 </module>
 </jwsc>
</target>

You can specify the type attribute for the <jws> or <jwsfileset> elements.

2.4 wsdlc
The wsdlc Ant task generates, from an existing WSDL file, a set of artifacts that
together provide a partial Java implementation of the web service described by the
WSDL file. By specifying the type attribute, you can generate a partial implementation
based on either JAX-WS or JAX-RPC.

By default, it is assumed that the WSDL file includes a single <service> element from
which the wsdlc Ant task generates artifacts. You can, however, use the
srcServiceName attribute to specify a specific web service, in the case that there is
more than one <service> element in the WSDL file, or use the srcPortName attribute
to specify a specific port of a web service in the case that there is more than one <port>
child element for a given web service.

The wsdlc Ant task generates the following artifacts:

■ A JWS interface file—or service endpoint interface—that implements the web
service described by the WSDL file. The interface includes full method signatures
that implement the web service operations, and JWS annotations (such as
@WebService and @SOAPBinding) that implement other aspects of the web service.
You should not modify this file.

■ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the web service parameters and return values. The XML
Schema of the data types is specified in the WSDL, and the Java representation is
generated by the wsdlc Ant task. You should not modify this file.

■ A JWS file that contains a partial (stubbed-out) implementation of the generated
JWS interface. You need to modify this file to include your business code.

■ Optional Javadocs for the generated JWS interface.

After running the wsdlc Ant task, (which typically you only do once) you update the
generated JWS implementation file, for example, to add Java code to the methods so
that they function as defined by your business requirements. The generated JWS
implementation file does not initially contain any business logic because the wsdlc Ant

wsdlc

Ant Task Reference 2-43

task does not know how you want your web service to function, although it does
know the shape of the web service, based on the WSDL file.

When you code the JWS implementation file, you can also add additional JWS
annotations, although you must abide by the following rules:

■ The only standard JSR-181 JWS annotations you can include in the JWS
implementation file are @WebService and @HandlerChain, @SOAPMessageHandler,
and @SOAPMessageHandlers. If you specify any other JWS-181 JWS annotations, the
jwsc Ant task will return an error when you try to compile the JWS file into a web
service.

■ You cannot attach policies to the web service within the JWS implementation file
using the weblogic.jws.Policy or weblogic.jws.Policies annotations.

You can attach policies to the deployed web service using the WebLogic Server
Administration Console if there is not a policy already defined in the WSDL.

■ Additionally, you can specify only the serviceName and endpointInterface
attributes of the @WebService annotation. Use the serviceName attribute to specify
a different <service> WSDL element from the one that the wsdlc Ant task used, in
the rare case that the WSDL file contains more than one <service> element. Use
the endpointInterface attribute to specify the JWS interface generated by the
wsdlc Ant task.

■ For JAX-RPC web services, you can specify WebLogic-specific JWS annotations, as
required. You cannot use any WebLogic-specific JWS annotations in a JAX-WS web
service.

■ For JAX-WS, you can specify JAX-WS (JSR 224 at http://jax-ws.java.net), JAXB
(JSR 222 at http://jcp.org/en/jsr/detail?id=222), or Common (JSR 250 at
http://jcp.org/en/jsr/detail?id=250) annotations, as required.

After you have coded the JWS file with your business logic, run the jwsc Ant task to
generate a complete Java implementation of the web service. Use the compiledWsdl
attribute of jwsc to specify the JAR file generated by the wsdlc Ant task which
contains the JWS interface file and data binding artifacts. By specifying this attribute,
the jwsc Ant task does not generate a new WSDL file but instead uses the one in the
JAR file. Consequently, when you deploy the web service and view its WSDL, the
deployed WSDL will look just like the one from which you initially started.

Depending on the type of partial implementation you generate (JAX-WS or JAX-RPC),
the Java package name of the generated complex data types differs, as described in the
following guidelines:

■ For JAX-WS, if you specify the packageName attribute, then all artifacts (Java
complex data types, JWS interface, and the JWS interface implementation) are
generated into this package. If you want to change the package name of the
generated Java complex data types in this case, use the <binding> child element of
the wsdlc Ant task to specify a custom binding declarations file. For information

Note: The only potential difference between the original and
deployed WSDL is the value of the location attribute of the
<address> element of the port(s) of the web service. The deployed
WSDL will specify the actual hostname and URI of the deployed web
service, which is most likely different from that of the original WSDL.
This difference is to be expected when deploying a real web service
based on a static WSDL.

wsdlc

2-44 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

about creating a custom binding declarations file, see "Using JAXB Data Binding"
in Developing JAX-WS Web Services for Oracle WebLogic Server.

■ For JAX-RPC, if you specify the packageName attribute of the wsdlc Ant task, only
the generated JWS interface and implementation are in this package. The package
name of the generated Java complex data types, however, always corresponds to
the XSD Schema type namespace, whether you specify the packageName attribute
or not.

See "Creating a web service from a WSDL File" in Developing JAX-WS Web Services for
Oracle WebLogic Server for a complete example of using the wsdlc Ant task in
conjunction with jwsc.

The following sections discuss additional important information about wsdlc:

■ Section 2.4.1, "Taskdef Classname"

■ Section 2.4.2, "Child Elements"

■ Section 2.4.3, "Attributes"

■ Section 2.4.4, "Example"

2.4.1 Taskdef Classname
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

2.4.2 Child Elements
The wsdlc Ant task has the following WebLogic-specific child elements:

■ Section 2.4.2.1, "binding"

■ Section 2.4.2.2, "xmlcatalog"

For a list of elements associated with the standard Ant javac task that you can also set
for the wsdlc Ant task, see Section 2.4.3.2, "Standard Ant javac Attributes That Apply
To wsdlc."

2.4.2.1 binding
Use the <binding> child element to specify one of the following:

■ For JAX-WS, one or more customization files that specify JAX-WS and JAXB
custom binding declarations. For more information, see "Customizing XML
Schema-to-Java Mapping Using Binding Declarations" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

■ For JAX-RPC, one or more XMLBeans configuration files, which by convention
end in .xsdconfig. Use this element if your web service uses Apache XMLBeans
at http://xmlbeans.apache.org/ data types as parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all
the same attributes. See the Apache Ant documentation on the Fileset element at
http://ant.apache.org/manual/Types/fileset.html for the full list of attributes you
can specify.

2.4.2.2 xmlcatalog
The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

wsdlc

Ant Task Reference 2-45

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog.
You embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML
resource (WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
wsdlc. Relevant code lines are shown in bold.

<target name="wsdlc">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 <xmlcatalog refid="wsimportcatalog"/>
 </wsdlc>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For more information, see "Using XML Catalogs" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

2.4.3 Attributes
The table in the following sections describes the attributes of the wsdlc Ant task.

■ Section 2.4.3.1, "WebLogic-Specific wsdlc Attributes"

■ Section 2.4.3.2, "Standard Ant javac Attributes That Apply To wsdlc"

2.4.3.1 WebLogic-Specific wsdlc Attributes
The following table describes the WebLogic-specific wsdlc attributes.

wsdlc

2-46 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Table 2–12 WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

autoDetectWrapped Specifies whether the wsdlc Ant task
should try to determine whether the
parameters and return type of
document-literal web services are of
type wrapped or bare.

When the wsdlc Ant task parses a
WSDL file to create the partial JWS
file that implements the web service,
it attempts to determine whether a
document-literal web service uses
wrapped or bare parameters and
return types based on the names of
the XML Schema elements, the
name of the operations and
parameters, and so on. Depending
on how the names of these
components match up, the wsdlc
Ant task makes a best guess as to
whether the parameters are
wrapped or bare. In some cases,
however, you might want the Ant
task to always assume that the
parameters are of type bare; in this
case, set the autoDetectWrapped
attribute to False.

Valid values for this attribute are
True or False. The default value is
True.

Boolean No JAX-RPC

catalog Specifies an external XML catalog
file. For more information, see
"Using XML Catalogs" in Developing
JAX-WS Web Services for Oracle
WebLogic Server.

String No Both

destImplDir Directory into which the
stubbed-out JWS implementation
file is generated.

The generated JWS file implements
the generated JWS interface file
(contained within the JAR file). You
update this JWS implementation
file, adding Java code to the
methods so that they behave as you
want, then later specify this updated
JWS file to the jwsc Ant task to
generate a deployable web service.

String No Both

wsdlc

Ant Task Reference 2-47

destJavadocDir Directory into which Javadoc that
describes the JWS interface is
generated.

Because you should never unjar or
update the generated JAR file that
contains the JWS interface file that
implements the specified web
service, you can get detailed
information about the interface file
from this generated Javadoc. You
can then use this documentation,
together with the generated
stubbed-out JWS implementation
file, to add business logic to the
partially generated web service.

String No Both

destJwsDir Directory into which the JAR file
that contains the JWS interface and
data binding artifacts should be
generated.

The name of the generated JAR file
is WSDLFile_wsdl.jar, where
WSDLFile refers to the root name of
the WSDL file. For example, if the
name of the WSDL file you specify
to the file attribute is
MyService.wsdl, then the generated
JAR file is MyService_wsdl.jar.

String Yes Both

explode Specifies whether the generated JAR
file that contains the generated JWS
interface file and data binding
artifacts is in exploded directory
format or not.

Valid values for this attribute are
true or false. Default value is
false, which means that wsdlc
generates an actual JAR archive file,
and not an exploded directory.

Boolean No Both

jaxRPCWrappedArraySty
le

When the wsdlc Ant task is
generating the Java equivalent to
XML Schema data types in the
WSDL file, and the task encounters
an XML complex type with a single
enclosing sequence with a single
element with the maxOccurs
attribute equal to unbounded, the
task generates, by default, a Java
structure whose name is the lowest
named enclosing complex type or
element. To change this behavior so
that the task generates a literal array
instead, set the
jaxRPCWrappedArrayStyle to False.

Valid values for this attribute are
True or False. The default value is
True.

Boolean No JAX-RPC

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

2-48 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

packageName Package into which the generated
JWS interface and implementation
files should be generated.

If you do not specify this attribute,
the wsdlc Ant task generates a
package name based on the
targetNamespace of the WSDL.

String No Both

sortSchemaTypes In an XSD file, two complex types
are defined, one a named global
type and the other an unnamed local
type. By default, clientgen
automatically generates its own
name for the unnamed local type,
and the name generated when
compiling different WSDL files is
not always consistent.

When enabled, the type names in
the Java files generated by
clientgen will be the same.

Boolean No JAX-RPC

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

Ant Task Reference 2-49

srcBindingName Name of the WSDL binding from
which the JWS interface file should
be generated.

The wsdlc Ant task runs against the
first <service> element it finds in
the WSDL file. Therefore, you only
need to specify the srcBindingName
attribute if there is more than one
<binding> element associated with
this first <service> element.

If the namespace of the binding is
the same as the namespace of the
service, then you just need to specify
the name of the binding for the
value of this attribute. For example:

srcBindingName="MyBinding"

However, if the namespace of the
binding is different from the
namespace of the service, then you
must also specify the namespace
URI, using the following format:

srcBindingName="{URI}BindingNam
e"

For example, if the namespace URI
of the MyBinding binding is
www.examples.org, then you specify
the attribute value as follows:

srcBindingName="{www.examples.o
rg}MyBinding"

Note: This attribute is deprecated as
of Version 9.2 of WebLogic Server.
Use srcPortName or srcServiceName
instead.

String Only if the
WSDL file
contains more
than one
<binding>
element

JAX-RPC

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

2-50 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

srcPortName Name of the WSDL port from which
the JWS interface file should be
generated.

Set the value of this attribute to the
value of the name attribute of the
<port> element that corresponds to
the web service port for which you
want to generate a JWS interface file.
The <port> element is a child
element of the <service> element in
the WSDL file.

If you do not specify this attribute,
wsdlc generates a JWS interface file
from the service specified by
srcServiceName.

Note: For JAX-RPC, if you specify
this attribute, you cannot also
specify srcServiceName.

String No Both

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

Ant Task Reference 2-51

srcServiceName Name of the web service from
which the JWS interface file should
be generated.

Set the value of this attribute to the
value of the name attribute of the
<service> element that corresponds
to the web service for which you
want to generate a JWS interface file.

The wsdlc Ant task generates a
single JWS endpoint interface and
data binding JAR file for a given
web service. This means that if the
<service> element contains more
than one <port> element, the
following must be true:

■ The bindings for each port must
be the same or equivalent to
each other.

■ The transport for each port
must be different. The wsdlc
Ant task determines the
transport for a port from the
address listed in its <address>
child element. Because
WebLogic web services support
only three transports (JMS,
HTTP, and HTTPS), this means
that there can be at most three
<port> child elements for the
<service> element specified by
this attribute. The generated
JWS implementation file will
then include the corresponding
@WLXXXTransport annotations
(for JAX-RPC web services).

If you do not specify either this or
the srcPortName attribute, the
WSDL file must include only one
<service> element. The wsdlc Ant
task generates the JWS interface file
and data binding JAR file from this
single web service.

Note: For JAX-RPC, if you specify
this attribute, you cannot also
specify srcPortName.

String No Both

srcWsdl Name of the WSDL from which to
generate the JAR file that contains
the JWS interface and data binding
artifacts.

The name must include its
pathname, either absolute or relative
to the directory which contains the
Ant build.xml file.

String Yes Both

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

2-52 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2.4.3.2 Standard Ant javac Attributes That Apply To wsdlc
In addition to the WebLogic-specific wsdlc attributes, you can also define the
following standard javac attributes; see the Ant documentation at
http://ant.apache.org/manual/ for additional information about each attribute:

■ bootclasspath

■ bootClasspathRef

■ classpath

■ classpathRef

■ compiler

■ debug

■ debugLevel

■ depend

■ deprecation

type Specifies the type of web service for
which you are generating a partial
implementation: JAX-WS or
JAX-RPC.

Valid values are:

■ JAXWS

■ JAXRPC

Default value is JAXRPC.

String No Both

typeFamily Specifies the type of data binding
classes to generate.

Valid values are:

■ TYLAR—Refers to the standard
WebLogic web services data
binding classes, described in
"Using JAXB Data Binding" in
Developing JAX-WS Web Services
for Oracle WebLogic Server.

■ XMLBEANS

■ XMLBEANS_APACHE

Default value is TYLAR.

Note: JAXB data binding classes are
always generated for a JAX-WS web
service.

String No JAX-RPC

wlw81CallbackGen Specifies whether to generate a
WebLogic Workshop 8.1 style
callback.

Valid values for this attribute are
True or False. The default value is
False.

Boolean No JAX-RPC

Table 2–12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required?

JAX-RPC
,
JAX-WS,
or Both?

wsdlc

Ant Task Reference 2-53

■ destdir

■ encoding

■ extdirs

■ failonerror

■ fork

■ includeantruntime

■ includejavaruntime

■ listfiles

■ memoryInitialSize

■ memoryMaximumSize

■ nowarn

■ optimize

■ proceed

■ source

■ sourcepath

■ sourcepathRef

■ tempdir

■ verbose

You can also use the following standard Ant child elements with the wsdlc Ant task:

■ <FileSet>

■ <SourcePath>

■ <Classpath>

■ <Extdirs>

2.4.4 Example
The following excerpt from an Ant build.xml file shows how to use the wsdlc and
jwsc Ant tasks together to build a WebLogic web service. The build file includes two
different targets: generate-from-wsdl that runs the wsdlc Ant task against an existing
WSDL file, and build-service that runs the jwsc Ant task to build a deployable web
service from the artifacts generated by the wsdlc Ant task:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 type="JAXWS" />
 </target>
 <target name="build-service">
 <jwsc

wsdlget

2-54 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 srcdir="src"
 destdir="output/wsdlcEar">
 <jws file=
"examples/webservices/wsdlc/TemperatureService_TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXWS"/>
 </jwsc>
 </target>

In the example, the wsdlc Ant task takes as input the TemperatureService.wsdl file
and generates the JAR file that contains the JWS interface and data binding artifacts
into the directory output/compiledWsdl. The name of the JAR file is
TemperatureService_wsdl.jar. The Ant task also generates a JWS file that contains a
stubbed-out implementation of the JWS interface into the
output/impl/examples/webservices/wsdlc directory (a combination of the value of
the destImplDir attribute and the directory hierarchy corresponding to the specified
packageName).

For JAX-WS, the name of the stubbed-out JWS implementation file is based on the
name of the <service> element and its inner <port> element in the WSDL file. For
example, if the service name is TemperatureService and the port name is
TemperaturePortType, then the generated JWS implementation file is called
TemperatureService_TemperaturePortTypeImpl.java.

For JAX-RPC, the name of the stubbed-out JWS implementation file is based on the
name of the <portType> element that corresponds to the first <service> element. For
example, if the portType name is TemperaturePortType, then the generated JWS
implementation file is called TemperaturePortTypeImpl.java.

After running wsdlc, you code the stubbed-out JWS implementation file, adding your
business logic. Typically, you move this JWS file from the wsdlc-output directory to a
more permanent directory that contains your application source code; in the example,
the fully coded TemperatureService_TemperaturePortTypeImpl.java JWS file has
been moved to the directory src/examples/webservices/wsdlc/. You then run the
jwsc Ant task, specifying this JWS file as usual. The only additional attribute you must
specify is compiledWsdl to point to the JAR file generated by the wsdlc Ant task, as
shown in the preceding example. This indicates that you do not want the jwsc Ant
task to generate a new WSDL file, because you want to use the original one that has
been compiled into the JAR file.

2.5 wsdlget
The wsdlget Ant task downloads to the local directory a WSDL and its imported XML
resources.

You may wish to use the download files when defining and referencing an XML
catalog to redirect remote XML resources in your application to a local version of the
resources.

For more information, see "Using XML Catalogs" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

The following sections discuss additional important information about wsdlget:

■ Section 2.5.1, "Taskdef Classname"

■ Section 2.5.2, "Child Elements"

■ Section 2.5.3, "Attributes"

■ Section 2.5.4, "Example"

wsdlget

Ant Task Reference 2-55

2.5.1 Taskdef Classname
 <taskdef name="wsdlget"
 classname="weblogic.wsee.tools.anttasks.WsdlGetTask"/>

2.5.2 Child Elements
The wsdlget Ant task has one WebLogic-specific child element: <xmlcatalog>. The
<xmlcatalog> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog.
You embed an XML catalog in the build.xml file using the following syntax:

<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML
resource (WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
wsdlget. Relevant code lines are shown in bold.

<target name="wsdlget">
<wsdlget
 wsdl="${wsdl}"
 destDir="${wsdl.dir}"
 catalog="wsdlcatalog.xml"/>
 <xmlcatalog refid="wsimportcatalog"/>
</wsdlget>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For more information, see "Using XML Catalogs" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

2.5.3 Attributes
The following table describes the attributes of the wsdlget Ant task.

wsdlget

2-56 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

2.5.4 Example
The following excerpt from an Ant build.xml file shows how to use the wsdlget Ant
task to download a WSDL and its imported XML resources. The XML resources will be
saved to the wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"
 <wsdlget
 wsdl="http://host/service?wsdl"
 destDir="./wsdl/"
 />
</target>

Table 2–13 WebLogic-specific Attributes of the wsdlget Ant Task

Attribute Description Data Type Required?

JAX-RPC,
JAX-WS,
or Both?

catalog Specifies an external XML catalog file. For
more information, see "Using XML Catalogs"
in Developing JAX-WS Web Services for Oracle
WebLogic Server.

String No Both

destDir Directory into which the XML resources are
copied.

The generated JWS file implements the
generated JWS interface file (contained
within the JAR file). You update this JWS
implementation file, adding Java code to the
methods so that they behave as you want,
then later specify this updated JWS file to the
jwsc Ant task to generate a deployable web
service.

String Yes Both

wsdl Name of the WSDL to copy to the local
directory.

String No Both

3

JWS Annotation Reference 3-1

3JWS Annotation Reference

[4] The chapter provides reference documentation about the WebLogic-specific JWS
annotations for WebLogic Server 12.1.3.

This chapter includes the following topics:

■ Overview of JWS Annotation Tags

■ Web Services Metadata Annotations (JSR-181)

■ JAX-WS Annotations (JSR-224)

■ JAXB Annotations (JSR-222)

■ Common Annotations (JSR-250)

■ WebLogic-specific Annotations

3.1 Overview of JWS Annotation Tags
The WebLogic Web Services programming model uses the JDK 5.0 metadata
annotations feature (specified by JSR-175 at
http://www.jcp.org/en/jsr/detail?id=175). In this programming model, you create
an annotated Java file and then use Ant tasks to compile the file into the Java source
code and generate all the associated artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains
the Java code that determines how your Web Service behaves. A JWS file is an
ordinary Java class file that uses annotations to specify the shape and characteristics of
the Web Service.

The JWS annotations that are supported vary based on whether you are creating a
JAX-WS or JAX-RPC Web Service. The following table compares the Web Service
annotation support for JAX-WS and JAX-RPC.

Table 3–1 Web Service Annotation Support

Annotations JAX-WS JAX-RPC

Section 3.2, "Web Services Metadata Annotations (JSR-181)" Y Y

Section 3.3, "JAX-WS Annotations (JSR-224)" Y N

Section 3.4, "JAXB Annotations (JSR-222)" Y N

Section 3.5, "Common Annotations (JSR-250)" Y N

Section 3.6, "WebLogic-specific Annotations" Y Y

Overview of JWS Annotation Tags

3-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

You can target a JWS annotation at either the class-, method- or parameter-level in a
JWS file. Some annotations can be targeted at more than one level, such as
@SecurityRoles that can be targeted at both the class and method level.

The following example shows a simple JWS file that uses standard JSR-181, shown in
bold:

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 *
*/
public class ComplexImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 // Standard JWS annotation to expose method "echoStruct" as a public operation

Web Services Metadata Annotations (JSR-181)

JWS Annotation Reference 3-3

 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".
 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");
 return struct;
 }
}

The following sections describe the JWS annotations that are supported.

3.2 Web Services Metadata Annotations (JSR-181)
The following table summarizes the standard JSR-181 annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service. Each of these
annotations are available with the javax.jws at
http://download.oracle.com/javaee/6/api/javax/jws/package-summary.html or
javax.jws.soap package at
http://download.oracle.com/javaee/6/api/javax/jws/soap/package-summary.htm
l and are described in more detail in the Web Services Metadata for the Java Platform
(JSR-181) specification at http://www.jcp.org/en/jsr/detail?id=181.

Table 3–2 Standard JSR-181 JWS Annotations

This annotation . . . Specifies . . .

javax.jws.WebService At the class level that the JWS file implements a Web Service. For more
information, see "Specifying that the JWS File Implements a Web Service
(@WebService Annotation)" in Developing JAX-WS Web Services for Oracle
WebLogic Server or in Developing JAX-RPC Web Services for Oracle WebLogic
Server.

javax.jws.WebMethod That a method of the JWS file should be exposed as a public operation of the
Web Service. For more information, see "Specifying That a JWS Method Be
Exposed as a Public Operation (@WebMethod and @OneWay Annotations)" in
Developing JAX-WS Web Services for Oracle WebLogic Server or Developing
JAX-RPC Web Services for Oracle WebLogic Server.

javax.jws.OneWay That an operation not return a value to the calling application. For more
information, see "Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)" in Developing JAX-WS Web
Services for Oracle WebLogic Server or Developing JAX-RPC Web Services for Oracle
WebLogic Server.

javax.jws.WebParam The mapping between operation input parameters of the Web Service and
elements of the generated WSDL file, as well as specify the behavior of the
parameter. For more information, see "Customizing the Mapping Between
Operation Parameters and WSDL Elements (@WebParam Annotation)" in
Developing JAX-WS Web Services for Oracle WebLogic Server or Developing
JAX-RPC Web Services for Oracle WebLogic Server.

JAX-WS Annotations (JSR-224)

3-4 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.3 JAX-WS Annotations (JSR-224)

The following table summarizes the JAX-WS (JSR-224) annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service. Each of these
annotations are available with the javax.xml.ws package at
http://download.oracle.com/javaee/6/api/javax/xml/ws/package-summary.html
and are described in more detail in JAX-WS 2.1 Annotations at
http://jax-ws.java.net/nonav/2.1.4/docs/annotations.html.

javax.jws.WebResult The mapping between the Web Service operation return value and the
corresponding element of the generated WSDL file. For more information, see
"Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)" in Developing JAX-WS Web Services for Oracle
WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server.

javax.jws.HandlerChain An external handler chain. For more information, see "Creating and Using
SOAP Message Handlers" in Developing JAX-WS Web Services for Oracle
WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server.

javax.jws.SOAPBinding At the class level the SOAP bindings of the Web Service (such as,
document-encoded or document-literal-wrapped). For more information, see
"Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)" in Developing JAX-WS Web Services for Oracle
WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server.

Note: The JAX-WS JWS annotations are relevant to JAX-WS Web
Services only. This section does not apply to JAX-RPC Web Services.

Table 3–3 JAX-WS (JSR-244) Annotations

This annotation . . . Specifies . . .

javax.xml.ws.Action Whether to allow an explicit association of a WS-Addressing Action
message addressing property with input, output, and fault messages
of the mapped WSDL operation.

javax.xml.ws.BindingType The binding to use for a Web Service implementation class. For more
information, see "Specifying the Binding Type to Use for an Endpoint
(@BindingType Annotation)" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

javax.xml.ws.FaultAction Whether to allow an explicit association of a WS-Addressing Action
message addressing property with the fault messages of the WSDL
operation mapped from the exception class. The @FaultAction
annotation is used inside an @Action annotation.

javax.xml.ws.RequestWrapper The request wrapper bean to be used at runtime for the methods in the
endpoint interface.

javax.xml.ws.ResponseWrapper The response wrapper bean to be used at runtime for the methods in the
endpoint interface.

javax.xml.ws.ServiceMode Whether a provider implementation works with the entire protocol
message or with the payload only.

javax.xml.ws.WebEndpoint The getPortName() methods of a generated service interface.

javax.xml.ws.WebFault Service-specific exception classes to customize to the local and
namespace name of the fault element and the name of the fault bean.

Table 3–2 (Cont.) Standard JSR-181 JWS Annotations

This annotation . . . Specifies . . .

JAXB Annotations (JSR-222)

JWS Annotation Reference 3-5

3.4 JAXB Annotations (JSR-222)

The JAXB (JSR-222) at http://jcp.org/en/jsr/detail?id=222 specification defines
the JAXB annotations that you can use in your JWS file to specify the shape and
behavior of your Web Service. The JAXB annotations are summarized in the following
table. Each of these annotations are available with the javax.xml.bind.annotation
package at
http://download.oracle.com/javaee/6/api/javax/xml/bind/annotation/package-
summary.html and are described in more detail in "Customizing Java-to-XML Schema
Mapping Using JAXB Annotations" in Developing JAX-WS Web Services for Oracle
WebLogic Server or the JAXB (JSR-222 at http://jcp.org/en/jsr/detail?id=222)
specification.

javax.xml.ws.WebServiceClient A generated service interface.

javax.xml.ws.WebServiceProvider A provider implementation class.

javax.xml.ws.WebServiceRef A reference to a Web Service. For more information, see "Defining a Web
Service Reference Using the @WebServiceRef Annotation" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Note: The JAXB JWS annotations are relevant to JAX-WS Web
Services only. This section does not apply to JAX-RPC Web Services.

Table 3–4 JAXB Mapping Annotations (JSR-222)

This annotation . . . Specifies . . .

javax.xml.bind.annotation.XmlAccessorType Whether fields or properties are serialized by default. For
more information, see "Specifying Default Serialization of
Fields and Properties (@XmlAccessorType)" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

javax.xml.bind.annotation.XmlElement That a property contained in a class be mapped to a local
element in the XML schema complex type to which the
containing class is mapped. For more information, see
"Mapping Properties to Local Elements (@XmlElement)" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

javax.xml.bind.annotation.XmlRootElement That a top-level class be mapped to a global element in the
XML schema that is used by the WSDL of the Web Service.
For more information, see "Mapping a Top-level Class to a
Global Element (@XmlRootElement)" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

javax.xml.bind.annotation.XmlSeeAlso The other classes to bind when binding the current class. For
more information, see "Binding a Set of Classes
(@XmlSeeAlso)" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

javax.xml.bind.annotation.XmlType That a class or enum type be mapped to an XML Schema
type. For more information, see "Mapping a Value Class to a
Schema Type (@XmlType)" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Table 3–3 (Cont.) JAX-WS (JSR-244) Annotations

This annotation . . . Specifies . . .

Common Annotations (JSR-250)

3-6 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.5 Common Annotations (JSR-250)
The following table summarizes the JAX-WS (JSR-250) annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service.

Each of these annotations are available with the javax.annotation package at
http://download.oracle.com/javaee/6/api/javax/annotation/package-summary.h
tml and are described in more detail in the Common Annotations for the Java Platform
(JSR-250) specification at http://jcp.org/en/jsr/detail?id=250.

3.6 WebLogic-specific Annotations
WebLogic Web Services define a set of JWS annotations that you can use to specify
behavior and features in addition to the standard JSR-181 JWS annotations. The
following table summarizes the WebLogic-specific annotations and whether they are
supported for JAX-WS or JAX-RPC. (The majority of annotations are supported for
JAX-RPC only.) Each annotation is described in more detail in the sections that follow.

Table 3–5 Common Annotations (JSR-250)

This annotation . . . Specifies . . .

javax.annotation.Resource A resource that is needed by the application. This annotation may be
applied to an application component class or to fields or methods of the
component class.

javax.annotation.PostConstruct A method that needs to be executed after dependency injection is done to
perform initialization.

javax.annotation.PreDestroy A callback notification om a method to signal that the instance is in the
process of being removed by the container.

Table 3–6 WebLogic-specific Annotations

This annotation . . . Specifies . .

JAX-WS,
JAX-RPC,
or Both?

Section 3.6.1,
"com.oracle.webservices.api.jms.JMST
ransportClient"

That the web service client supports SOAP over JMS
transport connection protocol.

JAX-WS

Section 3.6.2,
"com.oracle.webservices.api.jms.JMST
ransportService"

That the web service supports SOAP over JMS transport
connection protocol.

JAX-WS

Section 3.6.3,
"weblogic.jws.AsyncFailure"

The method that handles a potential failure when the main
JWS file invokes an operation of another Web Service
asynchronously.

JAX-RPC

Section 3.6.4,
"weblogic.jws.AsyncResponse"

The method that handles the response when the main JWS
file invokes an operation of another Web Service
asynchronously.

JAX-RPC

Section 3.6.5, "weblogic.jws.Binding" Whether the Web Service uses version 1.1 or 1.2 of the
Simple Object Access Protocol (SOAP) implementation when
accepting or sending SOAP messages.

JAX-RPC

Section 3.6.6,
"weblogic.jws.BufferQueue"

The JNDI name of the JMS queue to which WebLogic Server
stores:

■ Buffered Web Service operation invocation.

■ Reliable Web Service operation invocation.

JAX-RPC

WebLogic-specific Annotations

JWS Annotation Reference 3-7

Section 3.6.7, "weblogic.jws.Callback" That the annotated variable is a callback, which means that
you can use the variable to send callback events back to the
client Web Service that invoked an operation of the target
Web Service.

JAX-RPC

Section 3.6.8,
"weblogic.jws.CallbackMethod"

The method in the client Web Service that handles the
messages it receives from the callback Web Service.

JAX-RPC

Section 3.6.9,
"weblogic.jws.CallbackService"

That the JWS file is actually a Java interface that describes a
callback Web Service.

JAX-RPC

Section 3.6.10, "weblogic.jws.Context" That the annotated field provides access to the runtime
context of the Web Service.

JAX-RPC

Section 3.6.11,
"weblogic.jws.Conversation"

That a method annotated with the @Conversation
annotation can be invoked as part of a conversation between
two WebLogic Web Services or a stand-alone Java client and
a conversational Web Service.

JAX-RPC

Section 3.6.12,
"weblogic.jws.Conversational"

That a JWS file implements a conversational Web Service. JAX-RPC

Section 3.6.13,
"weblogic.jws.FileStore"

That the Web Service does not use the default WebLogic
Server default filestore to store internal state information,
such as conversational state, but rather uses one specified by
the programmer.

JAX-RPC

Section 3.6.14,
"weblogic.jws.MessageBuffer"

Which public methods of a JWS are buffered. If specified at
the class-level, then all public methods are buffered; if you
want only a subset of the methods to be buffered, specify the
annotation at the appropriate method-level.

JAX-RPC

Section 3.6.15, "weblogic.jws.Policies" An array of @weblogic.jws.Policy annotations. Both

Section 3.6.16, "weblogic.jws.Policy" That a WS-Policy file, which contains information about
digital signatures, encryption, or Web Service reliable
messaging, should be applied to the request or response
SOAP messages.

Both

Section 3.6.17,
"weblogic.jws.ReliabilityBuffer"

Reliable messaging properties for an operation of a reliable
Web Service, such as the number of times WebLogic Server
should attempt to deliver the message from the JMS queue
to the Web Service implementation, and the amount of time
that the server should wait in between retries.

JAX-RPC

Section 3.6.18,
"weblogic.jws.ReliabilityErrorHandler
"

The method that handles the error that results when a client
Web Service invokes a reliable Web Service, but the client
does not receive an acknowledgement that the reliable Web
Service actually received the message.

JAX-RPC

Section 3.6.19,
"weblogic.jws.ServiceClient"

That the annotated variable in the JWS file is a stub used to
invoke another WebLogic Web Service when using the
following features:

■ Web Service reliable messaging

■ Asynchronous request-response

■ Conversations

JAX-RPC

Section 3.6.20,
"weblogic.jws.StreamAttachments"

That the WebLogic Web Services runtime use streaming APIs
when reading the parameters of all methods of the Web
Service.

JAX-RPC

Table 3–6 (Cont.) WebLogic-specific Annotations

This annotation . . . Specifies . .

JAX-WS,
JAX-RPC,
or Both?

WebLogic-specific Annotations

3-8 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Section 3.6.21,
"weblogic.jws.Transactional"

Whether the annotated operation, or all the operations of the
JWS file when the annotation is specified at the class-level,
runs or run inside of a transaction.

JAX-RPC

Section 3.6.22, "weblogic.jws.Types" A comma-separated list of fully qualified Java class names of
the alternative data types for a return type or parameter.

JAX-RPC

Section 3.6.23,
"weblogic.jws.WildcardBinding"

The XML Schema data type to which a wildcard class, such
as javax.xml.soap.SOAPElement or
org.apache.xmlbeans.XmlObject, binds.

JAX-RPC

Section 3.6.24,
"weblogic.jws.WildcardBindings"

An array of @weblogic.jws.WildcardBinding annotations. JAX-RPC

Section 3.6.25,
"weblogic.jws.WLHttpTransport"

The context path and service URI sections of the URL used to
invoke the Web Service over the HTTP transport, as well as
the name of the port in the generated WSDL.

JAX-RPC

Section 3.6.26,
"weblogic.jws.WLHttpsTransport"

The context path and service URI sections of the URL used to
invoke the Web Service over the HTTPS transport, as well as
the name of the port in the generated WSDL.

JAX-RPC

Section 3.6.27,
"weblogic.jws.WLJmsTransport"

The context path and service URI sections of the URL used to
invoke the Web Service over the JMS transport, as well as the
name of the port in the generated WSDL.

JAX-RPC

Section 3.6.28, "weblogic.jws.WSDL" Whether to expose the WSDL of a deployed WebLogic Web
Service.

JAX-RPC

Section 3.6.29,
"weblogic.jws.security.CallbackRoles
Allowed"

An array of @SecurityRole JWS annotations that list the
roles that are allowed to invoke the callback methods of the
Web Service.

JAX-RPC

Section 3.6.30,
"weblogic.jws.security.RolesAllowed"

Whether to enable basic authentication for a Web Service. JAX-RPC

Section 3.6.31,
"weblogic.jws.security.RolesReference
d"

The list of role names that reference actual roles that are
allowed to invoke the Web Service.

JAX-RPC

Section 3.6.32,
"weblogic.jws.security.RunAs"

The role and user identity which actually runs the Web
Service in WebLogic Server.

JAX-RPC

Section 3.6.33,
"weblogic.jws.security.SecurityRole"

The name of a role that is allowed to invoke the Web Service. JAX-RPC

Section 3.6.34,
"weblogic.jws.security.SecurityRoleRe
f"

A role name reference that links to an already-specified role
that is allowed to invoke the Web Service.

JAX-RPC

Section 3.6.35,
"weblogic.jws.security.UserDataConst
raint"

Whether the client is required to use the HTTPS transport
when invoking the Web Service.

JAX-RPC

Section 3.6.36,
"weblogic.jws.security.WssConfigurati
on"

The name of the Web Service security configuration you
want the Web Service to use.

Both

Section 3.6.37,
"weblogic.jws.soap.SOAPBinding"

The mapping of a Web Service operation onto the SOAP
message protocol.

JAX-RPC

Section 3.6.38,
"weblogic.jws.security.SecurityRoles
(deprecated)"

The roles that are allowed to access the operations of the
Web Service.

JAX-RPC

Table 3–6 (Cont.) WebLogic-specific Annotations

This annotation . . . Specifies . .

JAX-WS,
JAX-RPC,
or Both?

WebLogic-specific Annotations

JWS Annotation Reference 3-9

3.6.1 com.oracle.webservices.api.jms.JMSTransportClient
Target: Class

Enables and configures SOAP over JMS transport for JAX-WS web service clients.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

■ Reliability

■ Scalability

■ Quality of service

For more information about using SOAP over JMS transport, see "Using SOAP Over
JMS Transport as the Connection Protocol" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Attributes
Optionally, you can configure the following JMS transport properties using the
@JMSTransportClient annotation. For a description of the properties, see "Configuring
JMS Transport Properties" in Developing JAX-WS Web Services for Oracle WebLogic
Server.

■ destinationName

■ destinationType

■ enabled

■ jmsHeaderProperty

■ jmsMessageProperty

■ jndiConnectionFactoryName

■ jndiContextParameters

Section 3.6.39,
"weblogic.jws.security.SecurityIdentit
y (deprecated)"

The identity assumed by the Web Service when it is invoked. JAX-RPC

Section 3.6.40,
"weblogic.wsee.jws.jaxws.owsm.Prop
erty"

A policy configuration property override.

Use this annotation with the
weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
annotation to override a configuration property when
attaching a policy to a web service client.

JAX-WS

Section 3.6.41,
"weblogic.wsee.jws.jaxws.owsm.Secur
ityPolicies"

An array of
@weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
annotations.

JAX-WS

Section 3.6.42,
"weblogic.wsee.jws.jaxws.owsm.Secur
ityPolicy"

That an Oracle Web Services Manager (OWSM) security
policy be attached to the web service or client.

JAX-WS

Section 3.6.43,
"weblogic.wsee.wstx.wsat.Transaction
al"

Whether the annotated class or method runs inside of a web
service atomic transaction.

JAX-WS

Table 3–6 (Cont.) WebLogic-specific Annotations

This annotation . . . Specifies . .

JAX-WS,
JAX-RPC,
or Both?

WebLogic-specific Annotations

3-10 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

■ jndiInitialContextFactory

■ jndiURL

■ messageType

■ priority

■ replyToName

■ targetService

■ timeToLive

Example
The following sample snippet shows how to use the @JMSTransportClient annotation
in a client file to enable SOAP over JMS transport.

...
import javax.xml.ws.WebServiceClient;
import com.oracle.webservices.api.jms.JMSTransportClient;
...
@WebServiceClient(name = "WarehouseService", targetNamespace = "http://oracle.com/samples/",
 wsdlLocation="WarehouseService.wsdl")
@JMSTransportClient (
 destinationName="myQueue",
 replyToName="myReplyToQueue",
 jndiURL="t3://localhost:7001",
 jndiInitialContextFactory="weblogic.jndi.WLInitialContextFactory" ,
 jndiConnectionFactoryName="weblogic.jms.ConnectionFactory" ,
 deliveryMode="PERSISTENT", timeToLive="1000", priority="1",
 messageType="TEXT"
)

public class WarehouseService extends Service { ... }

3.6.2 com.oracle.webservices.api.jms.JMSTransportService
Target: Class

Enables and configures SOAP over JMS transport for JAX-WS web services.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

■ Reliability

■ Scalability

■ Quality of service

For more information about using SOAP over JMS transport, see "Using SOAP Over
JMS Transport as the Connection Protocol" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Note: You cannot use SOAP over JMS transport in conjunction with
web services reliable messaging or streaming SOAP attachments, as
described in Developing JAX-WS Web Services for Oracle WebLogic
Server.

WebLogic-specific Annotations

JWS Annotation Reference 3-11

Attributes
Optionally, you can configure JMS transport properties using the
@JMSTransportService annotation. For a description of the properties, see
"Configuring JMS Transport Properties" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Example
The following sample snippet shows how to use the @JMSTransportService
annotation in a JWS file to enable SOAP over JMS transport. The
@ActivationConfigProperty is used to set service-side MDB configuration properties.

import javax.jws.WebService;
import com.oracle.webservices.api.jms.JMSTransportService;
import com.sun.xml.ws.binding.SOAPBindingImpl;
import javax.ejb.ActivationConfigProperty;
@WebService(name="NotifyServicePortType", serviceName="NotifyService",
 targetNamespace="http://examples.org/")
@JMSTransportService(destinationName="myQueue",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "javax.jms.Topic"),
 @ActivationConfigProperty(
 propertyName = "subscriptionDurability",
 propertyValue = "Durable"),
 @ActivationConfigProperty(propertyName = "topicMessagesDistributionMode",
 propertyValue = "One-Copy-Per-Application")})
@BindingType(SOAPBindingImpl.SOAP11_JMS_BINDING)
public class NotifyServiceImpl {..}

3.6.3 weblogic.jws.AsyncFailure
Target: Method

Specifies the method that handles a potential failure when the main JWS file invokes
an operation of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the
response (or exception, in the case of a failure) does not return immediately after the
operation invocation, but rather, at some later point in time. Because the operation
invocation did not wait for a response, a separate method in the JWS file must handle
the response when it does finally return; similarly, another method must handle a
potential failure. Use the @AsyncFailure annotation to specify the method in the JWS
file that will handle the potential failure of an asynchronous operation invocation.

The @AsyncFailure annotation takes two parameters: the name of the stub for the Web
Service you are invoking and the name of the operation that you are invoking
asynchronously. The stub is the one that has been annotation with the @ServiceClient
annotation.

The method that handles the asynchronous failure must follow these guidelines:

■ Return void.

Note: SOAP over JMS transport is not compatible with the following
web service features: reliable messaging and HTTP transport-specific
security.

WebLogic-specific Annotations

3-12 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

■ Be named onMethodNameAsyncFailure, where MethodName is the name of the
method you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.getQuoteAsync (apc, symbol);

where getQuote is the non-asynchronous name of the method, apc is the
asynchronous pre-call context, and symbol is the usual parameter to the getQuote
operation.

■ Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCallContext object) and the Throwable
exception, potentially thrown by the asynchronous operation call.

Within the method itself you can get more information about the method failure from
the context, and query the specific type of exception and act accordingly.

Typically, you always use the @AsyncFailure annotation to explicitly specify the
method that handles asynchronous operation failures. The only time you would not
use this annotation is if you want a single method to handle failures for two or more
stubs that invoke different Web Services. In this case, although the stubs connect to
different Web Services, each Web Service must have a similarly named method,
because the Web Services runtime relies on the name of the method
(onMethodNameAsyncFailure) to determine how to handle the asynchronous failure,
rather than the annotation. However, if you always want a one-to-one correspondence
between a stub and the method that handles an asynchronous failure from one of the
operations, then Oracle recommends that you explicitly use @AsyncFailure.

See "Invoking a Web Service Using Asynchronous Request-Response" in Developing
JAX-RPC Web Services for Oracle WebLogic Server for detailed information and examples
of using this annotation.

Attributes
The following table lists the attributes of the @AsyncFailure annotation.

Example
The following sample snippet shows how to use the @AsyncFailure annotation in a
JWS file that invokes the operation of another Web Service asynchronously; only the
relevant Java code is included:

package examples.webservices.async_req_res;

Table 3–7 Attributes of the weblogic.jws.AsyncFailure Annotation

Name Description Data Type Required?

target The name of the stub of the Web Service for which you want
to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

operation The name of the operation that you want to invoke
asynchronously.

This is the actual name of the operation, as it appears in the
WSDL file. When you invoke this operation in the main
code of the JWS file, you add Async to its name.

For example, if set operation="getQuote", then in the JWS
file you invoke it asynchronously as follows:

port.getQuoteAsync (apc, symbol);

String Yes

WebLogic-specific Annotations

JWS Annotation Reference 3-13

...
public class StockQuoteClientImpl {
 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;
 @WebMethodpublic void getQuote (String symbol) {
 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("symbol", symbol);
 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }
 }
...
 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }
}

The example shows a stub called port, used to invoke the Web Service located at
http://localhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and any exception from this invocation is handled by the
onGetQuoteAsyncFailure method, as specified by the @AsyncFailure annotation.

3.6.4 weblogic.jws.AsyncResponse
Target: Method

Specifies the method that handles the response when the main JWS file invokes an
operation of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the
response does not return immediately after the operation invocation, but rather, at
some later point in time. Because the operation invocation did not wait for a response,
a separate method in the JWS file must handle the response when it does finally
return. Use the @AsyncResponse annotation to specify the method in the JWS file that
will handle the response of an asynchronous operation invocation.

The @AsyncResponse annotation takes two parameters: the name of the stub for the
Web Service you are invoking and the name of the operation that you are invoking
asynchronously. The stub is the one that has been annotation with the @ServiceClient
annotation.

The method that handles the asynchronous response must follow these guidelines:

■ Return void.

■ Be named onMethodNameAsyncResponse, where MethodName is the name of the
method you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.getQuoteAsync (apc, symbol);

WebLogic-specific Annotations

3-14 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

where getQuote is the non-asynchronous name of the method, apc is the
asynchronous pre-call context, and symbol is the usual parameter to the getQuote
operation.

■ Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCallContext object) and the usual return value
of the operation.

Within the asynchronous-response method itself you add the code to handle the
response. You can also get more information about the method invocation from the
context.

Typically, you always use the @AsyncResponse annotation to explicitly specify the
method that handles asynchronous operation responses. The only time you would not
use this annotation is if you want a single method to handle the response for two or
more stubs that invoke different Web Services. In this case, although the stubs connect
to different Web Services, each Web Service must have a similarly named method,
because the Web Services runtime relies on the name of the method
(onMethodNameAsyncResponse) to determine how to handle the asynchronous
response, rather than the annotation. However, if you always want a one-to-one
correspondence between a stub and the method that handles an asynchronous
response from one of the operations, then Oracle recommends that you explicitly use
@AsyncResponse.

See "Invoking a Web Service Using Asynchronous Request-Response" in Developing
JAX-RPC Web Services for Oracle WebLogic Server for detailed information and examples
of using this annotation.

Attributes

Example
The following sample snippet shows how to use the @AsyncResponse annotation in a
JWS file that invokes the operation of another Web Service asynchronously; only the
relevant Java code is included:

package examples.webservices.async_req_res;
...
public class StockQuoteClientImpl {
 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;

Table 3–8 Attributes of the weblogic.jws.AsyncResponse JWS Annotation Tag

Name Description Data Type Required?

target The name of the stub of the Web Service for which you want
to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

operation The name of the operation that you want to invoke
asynchronously.

This is the actual name of the operation, as it appears in the
WSDL file. When you invoke this operation in the main
code of the JWS file, you add Async to its name.

For example, if set operation="getQuote", then in the JWS
file you invoke it asynchronously as follows:

port.getQuoteAsync (apc, symbol);

String Yes

WebLogic-specific Annotations

JWS Annotation Reference 3-15

 @WebMethodpublic void getQuote (String symbol) {
 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("symbol", symbol);
 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }
 }
...
 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc, int quote) {
 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");
 }
}

The example shows a stub called port, used to invoke the Web Service located at
http://localhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and the response from this invocation is handled by the
onGetQuoteAsyncResponse method, as specified by the @AsyncResponse annotation.

3.6.5 weblogic.jws.Binding
Target: Class

Specifies whether the Web Service uses version 1.1 or 1.2 of the Simple Object Access
Protocol (SOAP) implementation when accepting or sending SOAP messages. By
default, WebLogic Web Services use SOAP 1.1.

Attributes

Example
The following example shows how to specify SOAP 1.2; only the relevant code is
shown:

package examples.webservices.soap12;
...
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.Binding;
@WebService(name="SOAP12PortType",
 serviceName="SOAP12Service",

Table 3–9 Attributes of the weblogic.jws.Binding JWS Annotation Tag

Name Description Data Type Required?

value Specifies the version of SOAP used in the request
and response SOAP messages when the Web Service
is invoked.

Valid values for this attribute are:

■ Type.SOAP11

■ Type.SOAP12

The default value is Type.SOAP11.

enum No

WebLogic-specific Annotations

3-16 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 targetNamespace="http://example.org")
@Binding(Binding.Type.SOAP12)
public class SOAP12Impl {
 @WebMethod()
 public String sayHello(String message) {
...
 }
}

3.6.6 weblogic.jws.BufferQueue
The following sections describe the annotation in detail.

3.6.6.1 Description
Target: Class

Specifies the JNDI name of the JMS queue to which WebLogic Server stores:

■ Buffered Web Service operation invocation.

■ Reliable Web Service operation invocation.

When used with buffered Web Services, you use this annotation in conjunction with
@MessageBuffer, which specifies the methods of a JWS that are buffered. When used
with reliable Web Services, you use this annotation in conjunction with @Policy, which
specifies the reliable messaging WS-Policy file associated with the Web Service.

If you have enabled buffering or reliable messaging for a Web Service, but do not
specify the @BuffereQueue annotation, WebLogic Server uses the default Web Services
JMS queue (weblogic.wsee.DefaultQueue) to store buffered or reliable operation
invocations. This JMS queue is also the default queue for the JMS transport features. It
is assumed that you have already created this JMS queue if you intend on using it for
any of these features.

See "Creating Buffered Web Services" and "Using Web Services Reliable Messaging" in
Developing JAX-RPC Web Services for Oracle WebLogic Server for detailed information
and examples of creating buffered or reliable Web Services.

3.6.6.2 Attributes

3.6.6.3 Example
The following example shows a code snippet from a JWS file in which the public
operation is buffered and the JMS queue to which WebLogic Server queues the
operation invocation is called my.buffere.queue; only the relevant Java code is shown:

package examples.webservices.buffered;
...
@WebService(name="BufferedPortType",
 serviceName="BufferedService",
 targetNamespace="http://example.org")
@BufferQueue(name="my.buffer.queue")
public class BufferedImpl {

Table 3–10 Attributes of the weblogic.jws.BufferQueue JWS Annotation Tag

Name Description Data Type Required?

name The JNDI name of the JMS queue to which the
buffered or reliable operation invocation is queued.

String Yes

WebLogic-specific Annotations

JWS Annotation Reference 3-17

...
 @WebMethod()
 @MessageBuffer(retryCount=10, retryDelay="10 seconds")
 @Oneway()
 public void sayHelloNoReturn(String message) {
 System.out.println("sayHelloNoReturn: " + message);
 }
}

3.6.7 weblogic.jws.Callback
The following sections describe the annotation in detail.

3.6.7.1 Description
Target: Field

Specifies that the annotated variable is a callback, which means that you can use the
variable to send callback events back to the client Web Service that invoked an
operation of the target Web Service.

You specify the @Callback annotation in the target Web Service so that it can call back
to the client Web Service. The data type of the annotated variable is the callback
interface.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

■ Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

■ JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

■ JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback
message back from the target Web Service via a callback method.

See "Using Callbacks to Notify Clients of Events" in Developing JAX-RPC Web Services
for Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

The @Callback annotation does not have any attributes.

3.6.7.2 Example
The following example shows a very simple target Web Service in which a variable
called callback is annotated with the @Callback annotation. The data type of the
variable is CallbackInterface; this means a callback Web Service must exist with this
name. After the variable is injected with the callback information, you can invoke the
callback methods defined in CallbackInterface; in the example, the callback method
is callbackOperation().

The text in bold shows the relevant code:

WebLogic-specific Annotations

3-18 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

package examples.webservices.callback;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Callback;
import javax.jws.WebService;
import javax.jws.WebMethod;
@WebService(name="CallbackPortType",
 serviceName="TargetService",
 targetNamespace="http://examples.org/")
@WLHttpTransport(contextPath="callback",
 serviceUri="TargetService",
 portName="TargetServicePort")
public class TargetServiceImpl {
 @Callback
 CallbackInterface callback;
 @WebMethod
 public void targetOperation (String message) {
 callback.callbackOperation (message);
 }
}

3.6.8 weblogic.jws.CallbackMethod
The following sections describe the annotation in detail.

3.6.8.1 Description
Target: Method

Specifies the method in the client Web Service that handles the messages it receives
from the callback Web Service. Use the attributes to link the callback message handler
methods in the client Web Service with the callback method in the callback interface.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

■ Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

■ JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

■ JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback
message back from the target Web Service via a callback method.

See "Using Callbacks to Notify Clients of Events" in Developing JAX-RPC Web Services
for Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

WebLogic-specific Annotations

JWS Annotation Reference 3-19

3.6.8.2 Attributes

3.6.8.3 Example
The following example shows a method of a client Web Service annotated with the
@CallbackMethod annotation. The attributes show that a variable called port must
have previously been injected with stub information and that the annotated method
will handle messages received from a callback operation called callbackOperation().

 @CallbackMethod(target="port", operation="callbackOperation")
 @CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell"))
 public void callbackHandler(String msg) {
 System.out.println (msg);
 }

3.6.9 weblogic.jws.CallbackService
The following sections describe the annotation in detail.

3.6.9.1 Description
Target: Class

Specifies that the JWS file is actually a Java interface that describes a callback Web
Service. This annotation is analogous to the @javax.jws.WebService, but specific to
callbacks and with a reduced set of attributes.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

■ Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

■ JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

■ JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback
message back from the target Web Service via a callback method.

Table 3–11 Attributes of the weblogic.jws.CallbackMethod JWS Annotation Tag

Name Description Data Type Required?

operation Specifies the name of the callback method in the
callback interface for which this method will handle
callback messages.

String Yes

target Specifies the name of the stub for which you want to
receive callbacks.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

WebLogic-specific Annotations

3-20 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Use the @CallbackInterface annotation to specify that the Java file is a callback
interface file.

When you program the callback interface, you specify one or more callback methods;
as with standard non-callback Web Services, you annotate these methods with the
@javax.jws.WebMethod annotation to specify that they are Web Service operations.
However, contrary to non-callback methods, you never write the actual
implementation code for these callback methods; rather, when you compile the client
Web Service with the jwsc Ant task, the task automatically creates an implementation
of the interface and packages it into a Web Service. This generated implementation
specifies that the callback methods all do the same thing: send a message from the
target Web Service that invokes the callback method back to the client Web Service.

See "Using Callbacks to Notify Clients of Events" in Developing JAX-RPC Web Services
for Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

3.6.9.2 Attributes

3.6.9.3 Example
The following example shows a very simple callback interface. The resulting callback
Web Service has one callback method, callbackOperation().

package examples.webservices.callback;
import weblogic.jws.CallbackService;
import javax.jws.Oneway;
import javax.jws.WebMethod;
@CallbackService
public interface CallbackInterface {
 @WebMethod
 @Oneway
 public void callbackOperation (String msg);
}

3.6.10 weblogic.jws.Context
The following sections describe the annotation in detail.

3.6.10.1 Description
Target: Field

Specifies that the annotated field provides access to the runtime context of the Web
Service.

Table 3–12 Attributes of the weblogic.jws.CallbackService JWS Annotation Tag

Name Description Data Type Required?

name Name of the callback Web Service. Maps to the
<wsdl:portType> element in the WSDL file.

Default value is the unqualified name of the Java
class in the JWS file.

String No

serviceName Service name of the callback Web Service. Maps to
the <wsdl:service> element in the WSDL file.

Default value is the unqualified name of the Java
class in the JWS file, appended with the string
Service.

String No

WebLogic-specific Annotations

JWS Annotation Reference 3-21

When a client application invokes a WebLogic Web Service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the Web Service can
use to access, and sometimes change, runtime information about the service. Much of
this information is related to conversations, such as whether the current conversation
is finished, the current values of the conversational properties, changing
conversational properties at runtime, and so on. Some of the information accessible via
the context is more generic, such as the protocol that was used to invoke the Web
Service (HTTP/S or JMS), the SOAP headers that were in the SOAP message request,
and so on. The data type of the annotation field must be
weblogic.wsee.jws.JwsContext, which is a WebLogic Web Service API that includes
methods to query the context.

For additional information about using this annotation, see "Accessing Runtime
Information about a Web Service" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

This annotation does not have any attributes.

3.6.10.2 Example
The following snippet of a JWS file shows how to use the @Context annotation; only
parts of the file are shown, with relevant code in bold:

...
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;

...
public class JwsContextImpl {
 @Context
 private JwsContext ctx;
 @WebMethod()
 public String getProtocol() {
...

3.6.11 weblogic.jws.Conversation

3.6.11.1 Description
Target: Method

Specifies that a method annotated with the @Conversation annotation can be invoked
as part of a conversation between two WebLogic Web Services or a stand-alone Java
client and a conversational Web Service.

The conversational Web Service typically specifies three methods, each annotated with
the @Conversation annotation that correspond to the start, continue, and finish phases
of a conversation. Use the @Conversational annotation to specify, at the class level,
that a Web Service is conversational and to configure properties of the conversation,
such as the maximum idle time.

If the conversation is between two Web Services, the client service uses the
@ServiceClient annotation to specify the wsdl, service name, and port of the invoked
conversational service. In both the service and stand-alone client cases, the client then
invokes the start, continue, and finish methods in the appropriate order to conduct a
conversation.The only additional requirement to make a Web Service conversational is
that it implement java.io.Serializable.

WebLogic-specific Annotations

3-22 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

See "Creating Conversational Web Services" in Developing JAX-RPC Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

3.6.11.2 Attributes

3.6.11.3 Example
The following sample snippet shows a JWS file that contains three methods, start,
middle, and finish) that are annotated with the @Conversation annotation to specify
the start, continue, and finish phases, respectively, of a conversation.

...
public class ConversationalServiceImpl implements Serializable {
 @WebMethod
 @Conversation (Conversation.Phase.START)
 public String start() {
 // Java code for starting a conversation goes here
 }
 @WebMethod
 @Conversation (Conversation.Phase.CONTINUE)
 public String middle(String message) {
 // Java code for continuing a conversation goes here
 }
 @WebMethod
 @Conversation (Conversation.Phase.FINISH)
 public String finish(String message) {
 // Java code for finishing a conversation goes here
 }
}

3.6.12 weblogic.jws.Conversational
The following sections describe the annotation in detail.

Table 3–13 Attributes of the weblogic.jws.Conversation JWS Annotation Tag

Name Description Data Type Required?

value Specifies the phase of a conversation that the
annotated method implements.

Possible values are:

■ Phase.START

Specifies that the method starts a new
conversation. A call to this method creates a
new conversation ID and context, and resets its
idle and age timer.

■ Phase.CONTINUE

Specifies that the method is part of a
conversation in progress. A call to this method
resets the idle timer. This method must always
be called after the start method and before the
finish method.

■ Phase.FINISH

Specifies that the method explicitly finishes a
conversation in progress.

Default value is Phase.CONTINUE

enum No

WebLogic-specific Annotations

JWS Annotation Reference 3-23

3.6.12.1 Description
Target: Class

Specifies that a JWS file implements a conversational Web Service.

You are not required to use this annotation to specify that a Web Service is
conversational; by simply annotating a single method with the @Conversation
annotation, all the methods of the JWS file are automatically tagged as conversational.
Use the class-level @Conversational annotation only if you want to change some of
the conversational behavior or if you want to clearly show at the class level that the
JWS if conversational.

If you do use the @Conversational annotation in your JWS file, you can specify it
without any attributes if their default values suit your needs. However, if you want to
change values such as the maximum amount of time that a conversation can remain
idle, the maximum age of a conversation, and so on, specify the appropriate attribute.

See "Creating Conversational Web Services" in Developing JAX-RPC Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

3.6.12.2 Attributes

Table 3–14 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

maxIdleTime Specifies the amount of time that a conversation
can remain idle before it is finished by
WebLogic Server. Activity is defined by a client
Web Service executing one of the phases of the
conversation.

Valid values are a number and one of the
following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum idle time of
ten minutes, specify the annotation as follows:

@Conversational(maxIdleTime="10 minutes")

If you specify a zero-length value (such as 0
seconds, or 0 minutes and so on), then the
conversation never times out due to inactivity.

Default value is 0 seconds.

String No

WebLogic-specific Annotations

3-24 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.12.3 Example
The following sample snippet shows how to specify that a JWS file implements a
conversational Web Service. The maximum amount of time the conversation can be
idle is ten minutes, and the maximum age of the conversation, regardless of activity, is
one day. The continue and finish phases of the conversation can be executed by a user

maxAge The amount of time that a conversation can
remain active before it is finished by WebLogic
Server.

Valid values are a number and one of the
following terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a maximum age of three
days, specify the annotation as follows:

@Conversational(maxAge="3 days")

Default value is 1 day.

String No

runAsStartUser Specifies whether the continue and finish
phases of an existing conversation are run as the
user who started the conversation.

Typically, the same user executes the start,
continue, and finish methods of a conversation,
so that changing the value of this attribute has
no effect. However, if you set the
singlePrincipal attribute to false, which
allows users different from the user who
initiated the conversation to execute the
continue and finish phases of an existing
conversation, then the runAsStartUser attribute
specifies which user the methods are actually
"run as": the user who initiated the conversation
or the different user who executes subsequent
phases of the conversation.

Valid values are true and false. Default value
is false.

boolean No

singlePrincipal Specifies whether users other than the one who
started a conversation are allowed to execute
the continue and finish phases of the
conversation.

Typically, the same user executes all phases of a
conversation. However, if you set this attribute
to false, then other users can obtain the
conversation ID of an existing conversation and
use it to execute later phases of the
conversation.

Valid values are true and false. Default value
is false.

boolean No

Table 3–14 (Cont.) Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

WebLogic-specific Annotations

JWS Annotation Reference 3-25

other than the one that started the conversation; if this happens, then the
corresponding methods are run as the new user, not the original user.

package examples.webservices.conversation;
...
@Conversational(maxIdleTime="10 minutes",
 maxAge="1 day",
 runAsStartUser=false,
 singlePrincipal=false)
public class ConversationalServiceImpl implements Serializable {
...

3.6.13 weblogic.jws.FileStore
The following sections describe the annotation in detail.

3.6.13.1 Description
Target: Class

Specifies that the Web Service does not use the default WebLogic Server default
filestore to store internal state information, such as conversational state, but rather
uses one specified by the programmer. If you do not specify this JWS annotation in
your JWS file, the Web Service uses the default filestore configured for WebLogic
Server.

You can also use this JWS annotation for reliable Web Services to store internal state.

If you deploy the Web Service in a cluster, be sure you specify the logical name of the
filestore so that the same name of the filestore can be used on all servers in the cluster.

3.6.13.2 Attributes

3.6.14 weblogic.jws.MessageBuffer
The following sections describe the annotation in detail.

3.6.14.1 Description
Target: Class, Method

Specifies which public methods of a JWS are buffered. If specified at the class-level,
then all public methods are buffered; if you want only a subset of the methods to be
buffered, specify the annotation at the appropriate method-level.

When a client Web Service invokes a buffered operation of a different WebLogic Web
Service, WebLogic Server (hosting the invoked Web Service) puts the invoke message
on a JMS queue and the actual invoke is dealt with later on when the WebLogic Server
delivers the message from the top of the JMS queue to the Web Service
implementation. The client does not need to wait for a response, but rather, continues
on with its execution. For this reason, buffered operations (without any additional

Note: This annotation applies only to filestores, not to JDBC stores.

Table 3–15 Attributes of the weblogic.jws.FileStore JWS Annotation Tag

Name Description Data Type Required?

storeName Specifies the name of the filestore. String Yes

WebLogic-specific Annotations

3-26 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

asynchronous features) can only return void and must be marked with the @Oneway
annotation. If you want to buffer an operation that returns a value, you must use
asynchronous request-response from the invoking client Web Service. See "Invoking a
Web Service Using Asynchronous Request-Response" in Developing JAX-RPC Web
Services for Oracle WebLogic Server for more information.

Buffering works only between two Web Services in which one invokes the buffered
operations of the other.

Use the optional attributes of @MessageBuffer to specify the number of times the JMS
queue attempts to invoke the buffered Web Service operation until it is invoked
successfully, and the amount of time between attempts.

Use the optional class-level @BufferQueue annotation to specify the JMS queue to
which the invoke messages are queued. If you do not specify this annotation, the
messages are queued to the default Web Service queue, weblogic.wsee.DefaultQueue.

See "Creating Buffered Web Services" in Developing JAX-RPC Web Services for Oracle
WebLogic Server for detailed information and examples for using this annotation.

3.6.14.2 Attributes

3.6.14.3 Example
The following example shows a code snippet from a JWS file in which the public
operation sayHelloNoReturn is buffered and the JMS queue to which WebLogic Server
queues the operation invocation is called my.buffere.queue. The WebLogic Server
instance that hosts the invoked Web Service tries a maximum of 10 times to deliver the
invoke message from the JMS queue to the Web Service implementation, waiting 10

Table 3–16 Attributes of the weblogic.jws.MessageBuffer JWS Annotation Tag

Name Description Data Type Required?

retryCount Specifies the number of times that the JMS queue on
the invoked WebLogic Server instance attempts to
deliver the invoking message to the Web Service
implementation until the operation is successfully
invoked.

Default value is 3.

int No

retryDelay Specifies the amount of time that elapses between
message delivery retry attempts. The retry attempts
are between the invoke message on the JMS queue
and delivery of the message to the Web Service
implementation.

Valid values are a number and one of the following
terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a retry delay of two days,
specify:

@MessageBuffer(retryDelay="2 days")

Default value is 5 seconds.

String No

WebLogic-specific Annotations

JWS Annotation Reference 3-27

seconds between each retry. Only the relevant Java code is shown in the following
snippet:

package examples.webservices.buffered;
...
@WebService(name="BufferedPortType",
 serviceName="BufferedService",
 targetNamespace="http://example.org")
@BufferQueue(name="my.buffer.queue")
public class BufferedImpl {
...
 @WebMethod()
 @MessageBuffer(retryCount=10, retryDelay="10 seconds")
 @Oneway()
 public void sayHelloNoReturn(String message) {
 System.out.println("sayHelloNoReturn: " + message);
 }
}

3.6.15 weblogic.jws.Policies
The following sections describe the annotation in detail.

3.6.15.1 Description
Target: Class, Method

Specifies an array of @weblogic.jws.Policy annotations.

Use this annotation if you want to attach more than one WS-Policy files to a class or
method of a JWS file. If you want to attach just one WS-Policy file, you can use the
@weblogic.jws.Policy on its own.

See "Using Web Services Reliable Messaging" in Developing JAX-RPC Web Services for
Oracle WebLogic Server and "Configuring Message-Level Security" in Securing WebLogic
Web Services for Oracle WebLogic Server for detailed information and examples of using
this annotation.

This JWS annotation does not have any attributes.

3.6.15.2 Example
@Policies({
 @Policy(uri="policy:firstPolicy.xml"),
 @Policy(uri="policy:secondPolicy.xml")
 })

3.6.16 weblogic.jws.Policy
The following sections describe the annotation in detail.

3.6.16.1 Description
Target: Class, Method

Specifies that a WS-Policy file, which contains information about digital signatures,
encryption, or Web Service reliable messaging, should be applied to the request or
response SOAP messages.

WebLogic-specific Annotations

3-28 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

This annotation can be used on its own to apply a single WS-Policy file to a class or
method. If you want to apply more than one WS-Policy file to a class or method, use
the @weblogic.jws.Policies annotation to group them together.

If this annotation is specified at the class level, the indicated WS-Policy file or files are
applied to every public operation of the Web Service. If the annotation is specified at
the method level, then only the corresponding operation will have the WS-Policy file
applied.

By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the direction
attribute.

Also by default, the specified WS-Policy file is attached to the generated and published
WSDL file of the Web Service so that consumers can view all the WS-Policy
requirements of the Web Service. Use the attachToWsdl attribute to change this default
behavior.

See "Using Web Services Reliable Messaging" in Developing JAX-RPC Web Services for
Oracle WebLogic Server and "Configuring Message-Level Security" in Securing WebLogic
Web Services for Oracle WebLogic Server for detailed information and examples of using
this annotation.

3.6.16.2 Attributes

Table 3–17 Attributes of the weblogic.jws.Policy JWS Annotation Tag

Name Description Data Type Required?

uri Specifies the location from which to retrieve the
WS-Policy file.

Use the http: prefix to specify the URL of a
WS-Policy file on the Web.

Use the policy: prefix to specify that the WS-Policy
file is packaged in the Web Service archive file or in
a shareable Java EE library of WebLogic Server, as
shown in the following example:

@Policy(uri="policy:MyPolicyFile.xml")

If you are going to publish the WS-Policy file in the
Web Service archive, the WS-Policy XML file must
be located in either the META-INF/policies or
WEB-INF/policies directory of the EJB JAR file (for
EJB implemented Web Services) or WAR file (for
Java class implemented Web Services), respectively.

For information on publishing the WS-Policy file in
a library, see "Creating Shared Java EE Libraries and
Optional Packages" in Developing Applications for
Oracle WebLogic Server.

String Yes

direction Specifies when to apply the policy: on the inbound
request SOAP message, the outbound response
SOAP message, or both (default).

Valid values for this attribute are:

■ Policy.Direction.both

■ Policy.Direction.inbound

■ Policy.Direction.outbound

The default value is Policy.Direction.both.

enum No

WebLogic-specific Annotations

JWS Annotation Reference 3-29

3.6.16.3 Example
 @Policy(uri="policy:myPolicy.xml",
 attachToWsdl=true,
 direction=Policy.Direction.outbound)

3.6.17 weblogic.jws.ReliabilityBuffer
The following sections describe the annotation in detail.

3.6.17.1 Description
Target: Method

Specifies reliable messaging properties for an operation of a reliable Web Service, such
as the number of times WebLogic Server should attempt to deliver the message from
the JMS queue to the Web Service implementation, and the amount of time that the
server should wait in between retries.

See "Using Web Services Reliable Messaging" in Developing JAX-RPC Web Services for
Oracle WebLogic Server for detailed information about enabling Web Services reliable
messaging for your Web Service.

3.6.17.2 Attributes

attachToWsdl Specifies whether the WS-Policy file should be
attached to the WSDL that describes the Web
Service.

Valid values are true and false. Default value is
false.

boolean No

Note: It is assumed when you specify this annotation in a JWS file
that you have already enabled reliable messaging for the Web Service
by also including a @Policy annotation that specifies a WS-Policy file
that has Web Service reliable messaging policy assertions.

If you specify the @ReliabilityBuffer annotation, but do not enable
reliable messaging with an associated WS-Policy file, then WebLogic
Server ignores this annotation.

Table 3–18 Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation Tag

Name Description Data Type Required?

retryCount Specifies the number of times that the JMS queue on
the destination WebLogic Server instance attempts
to deliver the message from a client that invokes the
reliable operation to the Web Service
implementation.

Default value is 3.

int No

Table 3–17 (Cont.) Attributes of the weblogic.jws.Policy JWS Annotation Tag

Name Description Data Type Required?

WebLogic-specific Annotations

3-30 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.17.3 Example
The following sample snippet shows how to use the @ReliabilityBuffer annotation
at the method-level to change the default retry count and delay of a reliable operation;
only relevant Java code is shown:

package examples.webservices.reliable;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

...
import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.Policy;
@WebService(name="ReliableHelloWorldPortType",
 serviceName="ReliableHelloWorldService")

...
@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.inbound,
 attachToWsdl=true)
public class ReliableHelloWorldImpl {
 @WebMethod()
 @Oneway()
 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")
 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);
 }
}

3.6.18 weblogic.jws.ReliabilityErrorHandler
The following sections describe the annotation in detail.

retryDelay Specifies the amount of time that elapses between
message delivery retry attempts. The retry attempts
are between the client's request message on the JMS
queue and delivery of the message to the Web
Service implementation.

Valid values are a number and one of the following
terms:

■ seconds

■ minutes

■ hours

■ days

■ years

For example, to specify a retry delay of two days,
specify:

@ReliabilityBuffer(retryDelay="2 days")

Default value is 5 seconds.

String No

Table 3–18 (Cont.) Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation Tag

Name Description Data Type Required?

WebLogic-specific Annotations

JWS Annotation Reference 3-31

3.6.18.1 Description
Target: Method

Specifies the method that handles the error that results when a client Web Service
invokes a reliable Web Service, but the client does not receive an acknowledgement
that the reliable Web Service actually received the message.

This annotation is relevant only when you implement the Web Service reliable
messaging feature; you specify the annotation in the client-side Web Service that
invokes a reliable Web Service.

The method you annotate with the @ReliabilityErrorHandler annotation takes a
single parameter of data type
weblogic.wsee.reliability.ReliabilityErrorContext. You can use this context to
get more information about the cause of the error, such as the operation that caused it,
the target Web Service, the fault, and so on. The method must return void.

The single attribute of the @ReliabilityErrorHandler annotation specifies the
variable into which you have previously injected the stub information of the reliable
Web Service that the client Web Service is invoking; you inject this information in a
variable using the @weblogic.jws.ServiceClient annotation.

3.6.18.2 Attributes

3.6.18.3 Example
The following code snippet from a client Web Service that invokes a reliable Web
Service shows how to use the @ReliabilityErrorHandler annotation; not all code is
shown, and the code relevant to this annotation is shown in bold:

package examples.webservices.reliable;
...
import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;
import examples.webservices.reliable.ReliableHelloWorldPortType;
import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;
@WebService(name="ReliableClientPortType",
...
public class ReliableClientImpl
{
 @ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?WSDL",
 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")
 private ReliableHelloWorldPortType port;
 @WebMethod
 public void callHelloWorld(String input, String serviceUrl)
 throws RemoteException {
 ...
 }
 @ReliabilityErrorHandler(target="port")
 public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

Table 3–19 Attributes of the weblogic.jws.ReliabilityErrorHandler JWS Annotation Tag

Name Description Data Type Required?

target Specifies the target stub name for which this method
handles reliability failures.

String Yes

WebLogic-specific Annotations

3-32 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 ReliableDeliveryException fault = ctx.getFault();
 String message = null;
 if (fault != null) {
 message = ctx.getFault().getMessage();
 }
 String operation = ctx.getOperationName();
 System.out.println("Reliable operation " + operation + " may have not invoked.
The error message is " + message);
 }
}

In the example, the port variable has been injected with the stub that corresponds to
the ReliableHelloWorldService Web Service, and it is assumed that at some point in
the client Web Service an operation of this stub is invoked. Because the
onReliableMessageDeliveryError method is annotated with the
@ReliabilityErrorHandler annotation and is linked with the port stub, the method is
invoked if there is a failure in an invoke of the reliable Web Service. The reliable error
handling method uses the ReliabilityErrorContext object to get more details about
the cause of the failure.

3.6.19 weblogic.jws.ServiceClient
The following sections describe the annotation in detail.

3.6.19.1 Description
Target: Field

Specifies that the annotated variable in the JWS file is a stub used to invoke another
WebLogic Web Service when using the following features:

■ Web Service reliable messaging

■ Asynchronous request-response

■ Conversations

You use the reliable messaging and asynchronous request-response features only
between two Web Services; this means, for example, that you can invoke a reliable
Web Service operation only from within another Web Service, not from a stand-alone
client. In the case of reliable messaging, the feature works between any two application
servers that implement the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf. In the
case of asynchronous request-response, the feature works only between two WebLogic
Server instances.

You use the @ServiceClient annotation in the client Web Service to specify which
variable is a port type for the Web Service described by the @ServiceClient attributes.
The Enterprise Application that contains the client Web Service must also include the
stubs of the Web Service you are invoking; you generate the stubs with the clientgen
Ant task.

See Developing JAX-RPC Web Services for Oracle WebLogic Server for additional
information and examples of using the @ServiceClient annotation.

WebLogic-specific Annotations

JWS Annotation Reference 3-33

3.6.19.2 Attributes

3.6.19.3 Example
The following JWS file excerpt shows how to use the @ServiceClient annotation in a
client Web Service to annotate a field (port) with the stubs of the Web Service being
invoked (called ReliableHelloWorldService whose WSDL is at the URL
http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?WSDL); only
relevant parts of the example are shown:

package examples.webservices.reliable;
import javax.jws.WebService;
...
import weblogic.jws.ServiceClient;
import examples.webservices.reliable.ReliableHelloWorldPortType;
@WebService(...
public class ReliableClientImpl
{
 @ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?WSDL",

Table 3–20 Attributes of the weblogic.jws.ServiceClient JWS Annotation Tag

Name Description Data Type Required?

serviceName Specifies the name of the Web Service that you
are invoking. Corresponds to the name attribute
of the <service> element in the WSDL of the
invoked Web Service.

If you used a JWS file to implement the invoked
Web Service, this attribute corresponds to the
serviceName attribute of the @WebService JWS
annotation in the invoked Web Service.

String Yes

portName Specifies the name of the port of the Web
Service you are invoking. Corresponds to the
name attribute of the <port> child element of the
<service> element.

If you used a JWS file to implement the invoked
Web Service, this attribute corresponds to the
portName attribute of the @WLHttpTransport
JWS annotation in the invoked Web Service.

If you do not specify this attribute, it is assumed
that the <service> element in the WSDL
contains only one <port> child element, which
@ServiceClient uses. If there is more than one
port, the client Web Service returns a runtime
exception.

String No

wsdlLocation Specifies the WSDL file that describes the Web
Service you are invoking.

If you do not specify this attribute, the client
Web Service uses the WSDL file from which the
clientgen Ant task created the Service
implementation of the Web Service to be
invoked.

String No

endpointAddress Specifies the endpoint address of the Web
Service you are invoking.

If you do not specify this attribute, the client
Web Service uses the endpoint address specified
in the WSDL file.

String No

WebLogic-specific Annotations

3-34 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 serviceName="ReliableHelloWorldService",
 portName="ReliableHelloWorldServicePort")
 private ReliableHelloWorldPortType port;
 @WebMethod
 public void callHelloWorld(String input, String serviceUrl)
 throws RemoteException {
 port.helloWorld(input);
 System.out.println(" Invoked the ReliableHelloWorld.helloWorld operation
reliably.");
 }
}

3.6.20 weblogic.jws.StreamAttachments
The following sections describe the annotation in detail.

3.6.20.1 Description
Target: Class

Specifies that the WebLogic Web Services runtime use streaming APIs when reading
the parameters of all methods of the Web Service. This increases the performance of
Web Service operation invocation, in particular when the parameters are large, such as
images.

You cannot use this annotation if you are also using the following features in the same
Web Service:

■ Conversations

■ Reliable Messaging

■ JMS Transport

■ A proxy server between the client application and the Web Service it invokes

The @StreamAttachments annotation does not have any attributes.

3.6.20.2 Example
The following simple JWS file shows how to specify the @StreamAttachments
annotation; the single method, echoAttachment(), simply takes a DataHandler
parameter and echoes it back to the client application that invoked the Web Service
operation. The WebLogic Web Services runtime uses streaming when reading the
DataHandler content.

package examples.webservices.stream_attach;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.StreamAttachments;
import javax.activation.DataHandler;
import java.rmi.RemoteException;
@WebService(name="StreamAttachPortType",
 serviceName="StreamAttachService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="stream_attach",
 serviceUri="StreamAttachService",
 portName="StreamAttachServicePort")
@StreamAttachments
/**

WebLogic-specific Annotations

JWS Annotation Reference 3-35

 * Example of stream attachments
 */
public class StreamAttachImpl {
 @WebMethod()
 public DataHandler echoAttachment(DataHandler dh) throws RemoteException {
 return dh;
 }
}

3.6.21 weblogic.jws.Transactional
The following sections describe the annotation in detail.

3.6.21.1 Description
Target: Class, Method

Specifies whether the annotated operation, or all the operations of the JWS file when
the annotation is specified at the class-level, runs or run inside of a transaction. By
default, the operations do not run inside of a transaction.

3.6.21.2 Attributes

3.6.21.3 Example
The following example shows how to use the @Transactional annotation to specify
that an operation of a Web Service executes as part of a transaction:

package examples.webservices.transactional;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Transactional;
@WebService(name="TransactionPojoPortType",
 serviceName="TransactionPojoService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="transactionsPojo",
 serviceUri="TransactionPojoService",
 portName="TransactionPojoPort")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
*/
public class TransactionPojoImpl {

Table 3–21 Attributes of the weblogic.jws.Transactional JWS Annotation Tag

Name Description Data Type Required?

value Specifies whether the operation (when used at the
method level) or all the operations of the Web
Service (when specified at the class level) run inside
of a transaction.

Valid values are true and false. Default value is
false.

boolean No

timeout Specifies a timeout value, in seconds, for the current
transaction.

The default value for this attribute is 30 seconds.

int No

WebLogic-specific Annotations

3-36 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 @WebMethod()
 @Transactional(value=true)
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

3.6.22 weblogic.jws.Types
The following sections describe the annotation in detail.

3.6.22.1 Description
Target: Method, Parameter

Specifies a comma-separated list of fully qualified Java class names of the alternative
data types for a return type or parameter. The alternative data types must extend the
data type specified in the method signature; if this is not the case, the jwsc Ant task
returns a validation error when you compile the JWS file into a Web Service.

For example, assume you have created the Address base data type, and then created
USAAddress and CAAddress that extend this base type. If the method signature specifies
that it takes an Address parameter, you can annotate the parameter with the @Types
annotation to specify that the public operation also takes USAAddress and CAAddress as
a parameter, in addition to the base Address data type.

You can also use this annotation to restrict the data types that can be contained in
parameters or return values of collection data types, such as java.util.Collection or
java.util.List. By restricting the allowed contained data types, the generated WSDL
is specific and unambiguous, and the Web Services runtime can do a better job of
qualifying the parameters when a client application invokes a Web Service operation.

If you specify this annotation at the method-level, then it applies only to the return
value. If you want the annotation to apply to parameters, you must specify it at the
parameter-level for each relevant parameter.

3.6.22.2 Attributes

3.6.22.3 Example
The following example shows a simple JWS file that uses the @Types annotation, with
relevant Java code shown in bold:

package examples.webservices.types;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Types;
import examples.webservices.types.BasicStruct;

Table 3–22 Attributes of the weblogic.jws.Types JWS Annotation Tag

Name Description Data Type Required?

value Comma-separated list of fully qualified class names
for either the alternative data types that can also be
used instead of the original data type, or the allowed
data types contained in the collection-type
parameter or return value.

String[] Yes

WebLogic-specific Annotations

JWS Annotation Reference 3-37

@WebService(serviceName="TypesService",
 name="TypesPortType",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="types",
 serviceUri="TypesService",
 portName="TypesServicePort")
public class TypesImpl {
 @WebMethod()
 @Types({"examples.webservices.types.ExtendedStruct"})
 public BasicStruct echoStruct(
 @Types({"examples.webservices.types.ExtendedStruct"}) BasicStruct struct)
 {
 System.out.println("echoStruct called");
 return struct;
 }
}

In the example, the signature of the echoStruct() method shows that it takes a
BasicStruct value as both a parameter and a return value. However, because both the
method and the struct parameter are annotated with the @Types annotation, a client
application invoking the echoStruct operation can also pass it a parameter of data
type ExtendedStruct; in this case the operation also returns an ExtendedStruct value.
It is assumed that ExtendedStruct extends BasicStruct.

3.6.23 weblogic.jws.WildcardBinding
The following sections describe the annotation in detail.

3.6.23.1 Description
Target: Class

Specifies the XML Schema data type to which a wildcard class, such as
javax.xml.soap.SOAPElement or org.apache.xmlbeans.XmlObject, binds. By default,
these Java data types bind to the <xsd:any> XML Schema data type. By using this
class-level annotation, you can specify that the wildcard classes bind to <xsd:anyType>
instead.

3.6.23.2 Attributes

Table 3–23 Attributes of the weblogic.jws.WildcardBinding JWS Annotation Tag

Name Description Data Type Required?

className Specifies the fully qualified name of the wildcard
class for which this binding applies. Typical values
are javax.xml.soap.SOAPElement and
org.apache.xmlbeans.XmlObject.

String Yes

binding Specifies the XML Schema data type to which the
wildcard class should bind.

You can specify one of the following values:

■ WildcardParticle.ANY

■ WildcardParticle.ANYTYPE

enum Yes

WebLogic-specific Annotations

3-38 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.23.3 Example
The following example shows how to use the @WildcardBinding annotation to specify
that the Apache XMLBeans data type XMLObject should bind to the <xsd:any> XML
Schema data type for this Web Service:

@WildcardBindings({
 @WildcardBinding(className="org.apache.xmlbeans.XmlObject",
 binding=WildcardParticle.ANY),
 @WildcardBinding(className="org.apache.xmlbeans.XmlObject[]",
 binding=WildcardParticle.ANY)})
public class SimpleImpl {
...

3.6.24 weblogic.jws.WildcardBindings
The following sections describe the annotation in detail.

3.6.24.1 Description
Target: Class

Specifies an array of @weblogic.jws.WildcardBinding annotations.

This JWS annotation does not have any attributes.

See Section 3.6.23, "weblogic.jws.WildcardBinding" for an example.

3.6.25 weblogic.jws.WLHttpTransport
The following sections describe the annotation in detail.

3.6.25.1 Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP transport, as well as the name of the port in the generated
WSDL.

You can specify this annotation only once (maximum) in a JWS file.

3.6.25.2 Attributes

Table 3–24 Attributes of the weblogic.jws.WLHttpTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path of the Web Service. You use this value
in the URL that invokes the Web Service.

For example, assume you set the context path for a
Web Service to financial; a possible URL for the
WSDL of the deployed WebLogic Web Service is as
follows:

http://hostname:7001/financial/GetQuote?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is HelloWorldImpl.java, then
the default value of its contextPath is
HelloWorldImpl.

String No

WebLogic-specific Annotations

JWS Annotation Reference 3-39

3.6.25.3 Example
@WLHttpTransport(contextPath="complex",
 serviceUri="ComplexService",
 portName="ComplexServicePort")

3.6.26 weblogic.jws.WLHttpsTransport
The following sections describe the annotation in detail.

3.6.26.1 Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTPS transport, as well as the name of the port in the generated
WSDL.

You can specify this annotation only once (maximum) in a JWS file.

serviceUri Web Service URI portion of the URL. You use this
value in the URL that invokes the Web Service.

For example, assume you set this attribute to
GetQuote; a possible URL for the deployed WSDL of
the service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is HelloWorldImpl.java, then
the default value of its serviceUri is HelloWorldImpl.

String No

portName The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String No

Note: The @weblogic.jws.WLHttpsTransport annotation is
deprecated as of version 9.2 of WebLogic Server. You should use the
@weblogic.jws.WLHttpTransport annotation instead because it now
supports both the HTTP and HTTPS protocols. If you want client
applications to access the Web Service using only the HTTPS protocol,
then you must specify the
@weblogic.jws.security.UserDataConstraint JWS annotation in
your JWS file.

Table 3–24 (Cont.) Attributes of the weblogic.jws.WLHttpTransport JWS Annotation Tag

Name Description Data Type Required?

WebLogic-specific Annotations

3-40 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.26.2 Attributes

3.6.26.3 Example
@WLHttpsTransport(portName="helloSecurePort",
 contextPath="secure",
 serviceUri="SimpleSecureBean")

3.6.27 weblogic.jws.WLJmsTransport
The following sections describe the annotation in detail.

3.6.27.1 Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the JMS transport, as well as the name of the port in the generated WSDL.
You also use this annotation to specify the JMS queue to which WebLogic Server
queues the SOAP request messages from invokes of the operations.

Table 3–25 Attributes of the weblogic.jws.WLHttpsTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path of the Web Service. You use this value
in the URL that invokes the Web Service.

For example, assume you set the context path for a
Web Service to financial; a possible URL for the
WSDL of the deployed WebLogic Web Service is as
follows:

https://hostname:7001/financial/GetQuote?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is HelloWorldImpl.java, then
the default value of its contextPath is
HelloWorldImpl.

String No

serviceUri Web Service URI portion of the URL. You use this
value in the URL that invokes the Web Service.

For example, assume you set this attribute to
GetQuote; a possible URL for the deployed WSDL of
the service is as follows:

https://hostname:7001/financial/GetQuote?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is HelloWorldImpl.java, then
the default value of its serviceUri is HelloWorldImpl.

String No

portName The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String No

WebLogic-specific Annotations

JWS Annotation Reference 3-41

You can specify this annotation only once (maximum) in a JWS file.

3.6.27.2 Attributes

3.6.27.3 Example
The following example shows how to specify that the JWS file implements a Web
Service that is invoked using the JMS transport. The JMS queue to which WebLogic
Server queues SOAP message requests from invokes of the service operations is
JMSTransportQueue; it is assumed that this JMS queue has already been configured for
WebLogic Server.

WLJmsTransport(contextPath="transports",
 serviceUri="JMSTransport",
 queue="JMSTransportQueue",
 portName="JMSTransportServicePort")

3.6.28 weblogic.jws.WSDL
The following sections describe the annotation in detail.

3.6.28.1 Description
Target: Class

Specifies whether to expose the WSDL of a deployed WebLogic Web Service.

Table 3–26 Attributes of the weblogic.jws.WLJmsTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path (or context root) of the Web
Service. You use this value in the URL that
invokes the Web Service.

String No

serviceUri Web Service URI portion of the URL used by
client applications to invoke the Web Service.

String No

queue The JNDI name of the JMS queue that you
have configured for the JMS transport. See
"Using JMS Transport as the Connection
Protocol" in Developing JAX-RPC Web Services
for Oracle WebLogic Server for details about
using JMS transport.

The default value of this attribute, if you do
not specify it, is
weblogic.wsee.DefaultQueue. You must still
create this JMS queue in the WebLogic Server
instance to which you deploy your Web
Service.

String No

portName The name of the port in the generated WSDL.
This attribute maps to the name attribute of
the <port> element in the WSDL.

If you do not specify this attribute, the jwsc
generates a default name based on the name
of the class that implements the Web Service.

String No

connectionFactory The JNDI name of the JMS connection factory
that you have configured for the JMS
transport. See "Using JMS Transport as the
Connection Protocol" in Developing JAX-RPC
Web Services for Oracle WebLogic Server for
details about using JMS transport.

String Yes

WebLogic-specific Annotations

3-42 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

By default, the WSDL is exposed at the following URL:

http://[host]:[port]/[contextPath]/[serviceUri]?WSDL

where:

■ host refers to the computer on which WebLogic Server is running.

■ port refers to the port number on which WebLogic Server is listening (default value
is 7001).

■ contextPath and serviceUri refer to the value of the contextPath and
serviceUri attributes, respectively, of the @WLHttpTransport JWS annotation of
the JWS file that implements your Web Service.

For example, assume you used the following @WLHttpTransport annotation:

@WLHttpTransport(portName="helloPort",
 contextPath="hello",
 serviceUri="SimpleImpl")

The URL to get view the WSDL of the Web Service, assuming the service is running on
a host called ariel at the default port number, is:

http://ariel:7001/hello/SimpleImpl?WSDL

3.6.28.2 Attributes

3.6.28.3 Example
The following use of the @WSDL annotation shows how to specify that the WSDL of a
deployed Web Service not be exposed; only relevant Java code is shown:

package examples.webservices;
import weblogic.jws.WSDL;
@WebService(name="WsdlAnnotationPortType",
 serviceName="WsdlAnnotationService",
 targetNamespace="http://example.org")
@WSDL(exposed=false)
public class WsdlAnnotationImpl {
...
}

3.6.29 weblogic.jws.security.CallbackRolesAllowed
The following sections describe the annotation in detail.

3.6.29.1 Description
Target: Method, Field

Table 3–27 Attributes of the weblogic.jws.WSDL JWS Annotation Tag

Name Description Data Type Required?

exposed Specifies whether to expose the WSDL of a deployed
Web Service.

Valid values are true and false. Default value is
true, which means that by default the WSDL is
exposed.

boolean No

WebLogic-specific Annotations

JWS Annotation Reference 3-43

Specifies an array of @SecurityRole JWS annotations that list the roles that are allowed
to invoke the callback methods of the Web Service. A user that is mapped to an
unspecified role, or is not mapped to any role at all, would not be allowed to invoke
the callback methods.

If you use this annotation at the field level, then the specified roles are allowed to
invoke all callback operations of the Web Service. If you use this annotation at the
method-level, then the specified roles are allowed to invoke only that callback method.
If specified at both levels, the method value overrides the field value if there is a
conflict.

3.6.29.2 Attributes

3.6.29.3 Example
The following example shows how to use the @CallbackRolesAllowed annotation at
the method level to specify that the role engineer is allowed to invoke the callback
method:

@CallbackMethod(target="port", operation="callbackOperation")
@CallbackRolesAllowed(@SecurityRole(role="engineer", mapToPrincipals="shackell"))
public void callbackHandler(String msg) {
 System.out.println (msg);
}

3.6.30 weblogic.jws.security.RolesAllowed
The following sections describe the annotation in detail.

3.6.30.1 Description
Target: Class, Method

Specifies whether to enable basic authentication for a Web Service. In particular, it
specifies an array of @SecurityRole JWS annotations that describe the list of roles that
are allowed to invoke the Web Service. A user that is mapped to an unspecified role, or
is not mapped to any role at all, would not be allowed to invoke the Web Service.

If you use this annotation at the class-level, then the specified roles are allowed to
invoke all operations of the Web Service. To specify roles for just a specific set of
operations, specify the annotation at the operation-level.

3.6.30.2 Attributes

Table 3–28 Attributes of the weblogic.jws.security.CallbackRolesAllowed JWS Annotation Tag

Name Description Data Type Required?

value Array of @Section 3.6.30, "weblogic.jws.security.RolesAllowed" that list
the roles allowed to invoke the callback methods.

String[] Yes

Table 3–29 Attributes of the weblogic.jws.security.RolesAllowed JWS Annotation Tag

Name Description Data Type Required?

value Array of @Section 3.6.30,
"weblogic.jws.security.RolesAllowed" that list the roles
allowed to invoke the Web Service methods.

String[] Yes

WebLogic-specific Annotations

3-44 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.30.3 Example
package examples.webservices.security_roles;
...
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
public class SecurityRolesImpl {
...

In the example, only the roles manager and vp are allowed to invoke the Web Service.
Within the context of the Web Service, the users juliet and amanda are assigned the
role manager. The role vp, however, does not include a mapToPrincipals attribute,
which implies that users have been mapped to this role externally. It is assumed that
you have already added the two users (juliet and amanda) to the WebLogic Server
security realm.

3.6.31 weblogic.jws.security.RolesReferenced

3.6.31.1 Description
Target: Class

Specifies the list of role names that reference actual roles that are allowed to invoke the
Web Service. In particular, it specifies an array of @SecurityRoleRef JWS annotations,
each of which describe a link between a referenced role name and an actual role
defined by a @SecurityRole annotation.

This JWS annotation does not have any attributes.

3.6.31.2 Example
package examples.webservices.security_roles;
...
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
import weblogic.jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRoleRef;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
@RolesReferenced (
 @SecurityRoleRef (role="mgr", link="manager")
)
public class SecurityRolesImpl {
...

WebLogic-specific Annotations

JWS Annotation Reference 3-45

In the example, the role mgr is linked to the role manager, which is allowed to invoke
the Web Service. This means that any user who is assigned to the role of mgr is also
allowed to invoke the Web Service.

3.6.32 weblogic.jws.security.RunAs
The following sections describe the annotation in detail.

3.6.32.1 Description
Target: Class

Specifies the role and user identity which actually runs the Web Service in WebLogic
Server.

For example, assume that the @RunAs annotation specifies the roleA role and userA
principal. This means that even if the Web Service is invoked by userB (mapped to
roleB), the relevant operation is actually executed internal as userA.

3.6.32.2 Attributes

3.6.32.3 Example
package examples.webservices.security_roles;
import weblogic.jws.security.RunAs;
...
@WebService(name="SecurityRunAsPortType",
 serviceName="SecurityRunAsService",
 targetNamespace="http://example.org")
@RunAs (role="manager", mapToPrincipal="juliet")
public class SecurityRunAsImpl {
...

The example shows how to specify that the Web Service is always run as user juliet,
mapped to the role manager, regardless of who actually invoked the Web Service.

3.6.33 weblogic.jws.security.SecurityRole
The following sections describe the annotation in detail.

3.6.33.1 Description
Target: Class, Method

Specifies the name of a role that is allowed to invoke the Web Service. This annotation
is always specified in the JWS file as a member of a @RolesAllowed array.

Table 3–30 Attributes of the weblogic.jws.security.RunAs JWS Annotation

Name Description Data Type Required?

role Specifies the role which the Web Service should
be run as.

String Yes

mapToPrincipal Specifies the principal user that maps to the role.

It is assumed that you have already configured
the specified principal (user) as a valid WebLogic
Server user, typically using the WebLogic Server
Administration Console. See "Create users" in the
Oracle WebLogic Server Administration Console
Online Help for details.

String Yes

WebLogic-specific Annotations

3-46 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

When a client application invokes the secured Web Service, it specifies a user and
password as part of its basic authentication. It is assumed that an administrator has
already configured the user as a valid WebLogic Server user using the WebLogic
Server Administration Console; for details see "Create Users" in the Oracle WebLogic
Server Administration Console Online Help.

The user that is going to invoke the Web Service must also be mapped to the relevant
role. You can perform this task in one of the following two ways:

■ Use the WebLogic Server Administration Console to map the user to the role. In
this case, you do not specify the mapToPrincipals attribute of the @SecurityRole
annotation. For details, see "Add Users to Roles" in the Oracle WebLogic Server
Administration Console Online Help.

■ Map the user to a role only within the context of the Web Service by using the
mapToPrincipals attribute to specify one or more users.

To specify that multiple roles are allowed to invoke the Web Service, include multiple
@SecurityRole annotations within the @RolesAllowed annotation.

3.6.33.2 Attributes

3.6.33.3 Example
package examples.webservices.security_roles;
...
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
public class SecurityRolesImpl {
...

In the example, only the roles manager and vp are allowed to invoke the Web Service.
Within the context of the Web Service, the users juliet and amanda are assigned the
role manager. The role vp, however, does not include a mapToPrincipals attribute,
which implies that users have been mapped to this role externally. It is assumed that
you have already added the two users (juliet and amanda) to the WebLogic Server
security realm.

Table 3–31 Attributes of the weblogic.jws.security.SecurityRole JWS Annotation

Name Description Data Type Required?

role The name of the role that is allowed to invoke
the Web Service.

String Yes

mapToPrincipals An array of user names that map to the role.

If you do not specify this attribute, it is assumed
that you have externally defined the mapping
between users and the role, typically using the
WebLogic Server Administration Console.

String[] No

WebLogic-specific Annotations

JWS Annotation Reference 3-47

3.6.34 weblogic.jws.security.SecurityRoleRef
The following sections describe the annotation in detail.

3.6.34.1 Description
Target: Class

Specifies a role name reference that links to an already-specified role that is allowed to
invoke the Web Service.

Users that are mapped to the role reference can invoke the Web Service as long as the
referenced role is specified in the @RolesAllowed annotation of the Web Service.

3.6.34.2 Attributes

3.6.34.3 Example
package examples.webservices.security_roles;
...
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
import weblogic.jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRoleRef;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
@RolesReferenced (
 @SecurityRoleRef (role="mgr", link="manager")
)
public class SecurityRolesImpl {
...

In the example, the role mgr is linked to the role manager, which is allowed to invoke
the Web Service. This means that any user who is assigned to the role of mgr is also
allowed to invoke the Web Service.

3.6.35 weblogic.jws.security.UserDataConstraint
The following sections describe the annotation in detail.

3.6.35.1 Description
Target: Class

Table 3–32 Attributes of the weblogic.jws.security.SecurityRoleRef JWS Annotation

Name Description Data Type Required?

role Name of the role reference. String Yes

link Name of the already-specified role that is allowed to invoke
the Web Service. The value of this attribute corresponds to
the value of the role attribute of a @SecurityRole
annotation specified in the same JWS file.

String Yes

WebLogic-specific Annotations

3-48 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

Specifies whether the client is required to use the HTTPS transport when invoking the
Web Service.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection between the
client and Web Service if the transport attribute of this annotation is set to either
Transport.INTEGRAL or Transport.CONFIDENTIAL in the JWS file that implements the
Web Service.

If you specify this annotation in your JWS file, you must also specify the Section 3.6.25,
"weblogic.jws.WLHttpTransport" annotation (or the <WLHttpTransport> element of
the jwsc Ant task) to ensure that an HTTPS binding is generated in the WSDL file by
the jwsc Ant task.

3.6.35.2 Attributes

3.6.35.3 Example
package examples.webservices.security_https;
import weblogic.jws.security.UserDataConstraint;
...
@WebService(name="SecurityHttpsPortType",
 serviceName="SecurityHttpsService",
 targetNamespace="http://example.org")
@UserDataConstraint(
 transport=UserDataConstraint.Transport.CONFIDENTIAL)
public class SecurityHttpsImpl {
...

3.6.36 weblogic.jws.security.WssConfiguration
The following sections describe the annotation in detail.

3.6.36.1 Description
Target: Class

Specifies the name of the Web Service security configuration you want the Web Service
to use. If you do not specify this annotation in your JWS file, the Web Service is
associated with the default security configuration (called default_wss) if it exists in
your domain.

Table 3–33 Attributes of the weblogic.jws.security.UserDataConstraint JWS Annotation

Name Description Data Type Required?

transport Specifies whether the client is required to use the
HTTPS transport when invoking the Web Service.

Valid values are:

■ Transport.NONE—Specifies that the Web Service
does not require any transport guarantees.

■ Transport.INTEGRAL—Specifies that the Web
Service requires that the data be sent between
the client and Web Service in such a way that it
cannot be changed in transit.

■ Transport.CONFIDENTIAL—Specifies that the
Web Service requires that data be transmitted so
as to prevent other entities from observing the
contents of the transmission.

Default value is Transport.NONE.

enum No

WebLogic-specific Annotations

JWS Annotation Reference 3-49

The @WssConfiguration annotation only makes sense if your Web Service is
configured for message-level security (encryption and digital signatures). The security
configuration, associated to the Web Service using this annotation, specifies
information such as whether to use an X.509 certificate for identity, whether to use
password digests, the keystore to be used for encryption and digital signatures, and so
on.

WebLogic Web Services are not required to be associated with a security configuration;
if the default behavior of the Web Services security runtime is adequate then no
additional configuration is needed. If, however, a Web Service requires different
behavior from the default (such as using an X.509 certificate for identity, rather than
the default username/password token), then the Web Service must be associated with
a security configuration.

Before you can successfully invoke a Web Service that specifies a security
configuration, you must use the WebLogic Server Administration Console to create it.
For details, see "Create a Web Services security configuration" in the Oracle WebLogic
Server Administration Console Online Help. For general information about message-level
security, see "Configuring Message-Level Security" in Securing WebLogic Web Services
for Oracle WebLogic Server.

3.6.36.2 Attributes

3.6.36.3 Example
The following example shows how to specify that a Web Service is associated with the
my_security_configuration security configuration; only the relevant Java code is
shown:

package examples.webservices.wss_configuration;
import javax.jws.WebService;
...
import weblogic.jws.security.WssConfiguration;
@WebService(...

Note: All WebLogic Web Services packaged in a single Web
Application must be associated with the same security configuration
when using the @WssConfiguration annotation. This means, for
example, that if a @WssConfiguration annotation exists in all the JWS
files that implement the Web Services contained in a given Web
Application, then the value attribute of each @WssConfiguration must
be the same.

To specify that more than one Web Service be contained in a single
Web Application when using the jwsc Ant task to compile the JWS
files into Web Services, group the corresponding <jws> elements
under a single <module> element.

Table 3–34 Attributes of the weblogic.jws.security.WssConfiguration JWS Annotation Tag

Name Description Data Type Required?

value Specifies the name of the Web Service security configuration that is
associated with this Web Service. The default configuration is called
default_wss.

You must create the security configuration (even the default one) using
the WebLogic Server Administration Console before you can
successfully invoke the Web Service.

String Yes

WebLogic-specific Annotations

3-50 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

...
@WssConfiguration(value="my_security_configuration")
public class WssConfigurationImpl {
...

3.6.37 weblogic.jws.soap.SOAPBinding
The following sections describe the annotation in detail.

3.6.37.1 Description
Target: Method

Specifies the mapping of a Web Service operation onto the SOAP message protocol.

This annotation is analogous to @javax.jws.soap.SOAPBinding except that it applies
to a method rather than the class. With this annotation you can specify, for example,
that one Web Service operation uses RPC-encoded SOAP bindings and another
operation in the same Web Service uses document-literal-wrapped SOAP bindings.

3.6.37.2 Attributes

Note: Because @weblogic.jws.soap.SOAPBinding and
@javax.jws.soap.SOAPBinding have the same class name, be careful
which annotation you are referring to when using it in your JWS file.

Table 3–35 Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

style Specifies the message style of the request and
response SOAP messages of the invoked
annotated operation.

Valid values are:

■ SOAPBinding.Style.RPC

■ SOAPBinding.Style.DOCUMENT.

Default value is SOAPBinding.Style.DOCUMENT.

enum No

use Specifies the formatting style of the request and
response SOAP messages of the invoked
annotated operation.

Valid values are:

■ SOAPBinding.Use.LITERAL

■ SOAPBinding.Use.ENCODED

Default value is SOAPBinding.Use.LITERAL.

enum No

WebLogic-specific Annotations

JWS Annotation Reference 3-51

3.6.37.3 Example
The following simple JWS file shows how to specify that, by default, the operations of
the Web Service use document-literal-wrapped SOAP bindings; you specify this by
using the @javax.jws.soap.SOAPBinding annotation at the class-level. The example
then shows how to specify different SOAP bindings for individual methods by using
the @weblogic.jws.soap.SOAPBinding annotation at the method-level. In particular,
the sayHelloDocLitBare() method uses document-literal-bare SOAP bindings, and
the sayHelloRPCEncoded() method uses RPC-encoded SOAP bindings.

package examples.webservices.soap_binding_method;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import weblogic.jws.WLHttpTransport;
@WebService(name="SoapBindingMethodPortType",
 serviceName="SoapBindingMethodService",
 targetNamespace="http://example.org")
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
@WLHttpTransport(contextPath="soap_binding_method",
 serviceUri="SoapBindingMethodService",
 portName="SoapBindingMethodServicePort")
/**
 * Simple JWS example that shows how to specify soap bindings for a method.
 */
public class SoapBindingMethodImpl {
 @WebMethod()
 @weblogic.jws.soap.SOAPBinding(
 style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.BARE)
 public String sayHelloDocLitBare(String message) {
 System.out.println("sayHelloDocLitBare" + message);
 return "Here is the message: '" + message + "'";
 }
 @WebMethod()
 @weblogic.jws.soap.SOAPBinding(
 style=SOAPBinding.Style.RPC,

parameterStyle Determines whether method parameters
represent the entire message body, or whether
the parameters are elements wrapped inside a
top-level element named after the operation.

Valid values are:

■ SOAPBinding.ParameterStyle.BARE

■ SOAPBinding.ParameterStyle.WRAPPED

Default value is
SOAPBinding.ParameterStyle.WRAPPED

Note: This attribute applies only to Web Services
of style document-literal. Or in other words, you
can specify this attribute only if you have also set
the style attribute to
SOAPBinding.Style.DOCUMENT and the use
attribute to SOAPBinding.Use.LITERAL.

enum No

Table 3–35 (Cont.) Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

WebLogic-specific Annotations

3-52 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 use=SOAPBinding.Use.ENCODED)
 public String sayHelloRPCEncoded (String message) {
 System.out.println("sayHelloRPCEncoded" + message);
 return "Here is the message: '" + message + "'";
 }
}

3.6.38 weblogic.jws.security.SecurityRoles (deprecated)
The following sections describe the annotation in detail.

3.6.38.1 Description
Target: Class, Method

Specifies the roles that are allowed to access the operations of the Web Service.

If you specify this annotation at the class level, then the specified roles apply to all
public operations of the Web Service. You can also specify a list of roles at the method
level if you want to associate different roles to different operations of the same Web
Service.

3.6.38.2 Attributes

Note: The @weblogic.security.jws.SecurityRoles JWS annotation
is deprecated beginning in WebLogic Server 9.0.

Note: The @SecurityRoles annotation is supported only within the
context of an EJB-implemented Web Service. For this reason, you can
specify this annotation only inside of a JWS file that explicitly
implements javax.ejb.SessionBean. See "Securing Enterprise
JavaBeans (EJBs)" in Developing Applications with the WebLogic Security
Service for conceptual information about what it means to secure
access to an EJB. See "Should You Implement a Stateless Session EJB?"
in Developing JAX-WS Web Services for Oracle WebLogic Server for
information about explicitly implementing an EJB in a JWS file.

Table 3–36 Attributes of the weblogic.jws.security.SecurityRoles JWS Annotation

Name Description Data Type Required?

rolesAllowed Specifies the list of roles that are allowed to
access the Web Service.

This annotation is the equivalent of the
<method-permission> element in the
ejb-jar.xml deployment descriptor of the
stateless session EJB that implements the Web
Service.

Array of
String

No

WebLogic-specific Annotations

JWS Annotation Reference 3-53

3.6.38.3 Example
The following example shows how to specify, at the class-level, that the Web Service
can be invoked only by the Admin role; only relevant parts of the example are shown:

package examples.webservices.security_roles;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import weblogic.ejbgen.Session;
import javax.jws.WebService;
...
import weblogic.jws.security.SecurityRoles;
@Session(ejbName="SecurityRolesEJB")
@WebService(...
// Specifies the roles who can invoke the entire Web Service
@SecurityRoles(rolesAllowed="Admnin")
public class SecurityRolesImpl implements SessionBean {
...

3.6.39 weblogic.jws.security.SecurityIdentity (deprecated)
The following sections describe the annotation in detail.

3.6.39.1 Description
Target: Class

Specifies the identity assumed by the Web Service when it is invoked.

Unless otherwise specified, a Web Service assumes the identity of the authenticated
invoker. This annotation allows the developer to override this behavior so that the
Web Service instead executes as a particular role. The role must map to a user or group
in the WebLogic Server security realm.

rolesReferenced Specifies a list of roles referenced by the Web
Service.

The Web Service may access other resources
using the credentials of the listed roles.

This annotation is the equivalent of the
<security-role-ref> element in the
ejb-jar.xml deployment descriptor of the
stateless session EJB that implements the Web
Service.

Array of
String

No

Note: The @weblogic.security.jws.SecurityIdentity JWS
annotation is deprecated beginning in WebLogic Server 9.1.

Table 3–36 (Cont.) Attributes of the weblogic.jws.security.SecurityRoles JWS

Name Description Data Type Required?

WebLogic-specific Annotations

3-54 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.39.2 Attributes

3.6.39.3 Example
The following example shows how to specify that the Web Service, when invoked,
runs as the Admin role:

package examples.webservices.security_roles;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import weblogic.ejbgen.Session;
import javax.jws.WebService;
...
import weblogic.jws.security.SecurityIdentity;
@Session(ejbName="SecurityRolesEJB")
@WebService(...
// Specifies that the Web Service runs as the Admin role
@SecurityIdentity(value="Admin")
public class SecurityRolesImpl implements SessionBean {
...

3.6.40 weblogic.wsee.jws.jaxws.owsm.Property
The following sections describe the annotation in detail.

3.6.40.1 Description
Target: Class

Specifies a policy configuration property override.

Use this annotation with the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
annotation to override a configuration property when attaching a policy to a web
service client.

Note: The @SecurityIdentity annotation only makes sense within
the context of an EJB-implemented Web Service. For this reason, you
can specify this annotation only inside of a JWS file that explicitly
implements javax.ejb.SessionBean. See "Securing Enterprise
JavaBeans (EJBs)" in Developing Applications with the WebLogic Security
Service for conceptual information about what it means to secure
access to an EJB. See "Should You Implement a Stateless Session EJB?"
in Developing JAX-WS Web Services for Oracle WebLogic Server for
information about explicitly implementing an EJB in a JWS file.

Table 3–37 Attributes of the weblogic.jws.security.SecurityIdentity JWS Annotation

Name Description Data Type Required?

value Specifies the role which the Web Service assumes
when it is invoked. The role must map to a user or
group in the WebLogic Server security realm.

String Yes

Note: This annotation can be used for web service clients only. It is
not supported for web service (server-side) policy attachment.

WebLogic-specific Annotations

JWS Annotation Reference 3-55

See "Attaching Policies to Java EE Web Services and Clients Using Annotations" in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.40.2 Example
@SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy",
 properties = {
 @Property(name="keystore.recipient.alias", value="mykey")
 })

3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
The following sections describe the annotation in detail.

3.6.41.1 Description
Target: Class

Specifies an array of @weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
annotations.

Use this annotation if you want to attach more than one OWSM security policy to the
class of a JWS file. If you want to attach just one OWSM security policy, you can use
the @weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation.

See "Attaching Policies to Java EE Web Services and Clients Using Annotations" in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.41.2 Example
@SecurityPolicies({
 @SecurityPolicy(uri="oracle/wss_saml20_token_over_sll_service_policy"),
 @SecurityPolicy(uri="oracle/binding_authorization_permitall_policy")
 })

3.6.42 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
The following sections describe the annotation in detail.

3.6.42.1 Description
Target: Class

Attaches an OWSM security policy file to the web service or client.

This annotation can be used on its own to apply a single OWSM security policy to a
class. If you want to attach more than one OWSM security policy to a class, use the
@weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation to group them
together.

See "Attaching Policies to Java EE Web Services and Clients Using Annotations" in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

WebLogic-specific Annotations

3-56 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.42.2 Attributes

3.6.42.3 Examples
The following example shows how to attach the wss_saml20_token_over_ssl_
service_policy to a web service.

@SecurityPolicy(uri="policy:oracle/wss_saml20_token_over_ssl_service_policy",
 enabled=true)

The following example shows how to attach the wss10_message_protection_client_
policy to a web service client and override the keystore.recipient.alias configuration
property.

@SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy",
 properties = {
 @Property(name="keystore.recipient.alias", value="mykey")
 },
 enabled=true)

3.6.43 weblogic.wsee.wstx.wsat.Transactional
The following sections describe the annotation in detail.

3.6.43.1 Description
Target: Class, Method

Specifies whether the annotated class or method runs inside of a web service atomic
transaction.

Table 3–38 Attributes of the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy JWS
Annotation Tag

Name Description Data Type Required?

uri Specifies the name of the OWSM security policy.

Use the policy: prefix to specify that the OWSM
policy is packaged in the OWSM policy repository,
as shown in the following example:

@SecurityPolicy(uri="policy:oracle/wss_
saml20_token_over_ssl_service_policy")

For more information about the OWSM repository,
see "Managing the OWSM Repository" in Securing
Web Services and Managing Policies with Oracle Web
Services Manager.

String Yes

properties Note: This attribute can be specified for web service
clients only. This attribute is not supported for web
service (server-side) policy attachment.

Specifies policy configuration override information.
You specify one or more configuration property
values using the
weblogic.wsee.jws.jaxws.owsm.Property
annotation, as described in Section 3.6.40,
"weblogic.wsee.jws.jaxws.owsm.Property."

String No

enabled Specifies whether the OWSM policy file is enabled.

Valid values are true and false. Default value is
true.

boolean No

WebLogic-specific Annotations

JWS Annotation Reference 3-57

If you specify the @Transactional annotation at the web service class level, the
settings apply to all two-way synchronous methods defined by the service endpoint
interface. You can override the flow type value at the method level; however, the
version must be consistent across the entire transaction.

WebLogic web services enable interoperability with other external transaction
processing systems, such as WebSphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

■ WS-AtomicTransaction Version (WS-AT) 1.0, 1.1, and 1.2:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2
-spec-cs-01.html

■ WS-Coordination Version 1.0, 1.1, and 1.2:
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor
-1.2-spec-cs-01.html

3.6.43.2 Attributes

The following table summarizes the valid values for flow type and their meaning on
the web service and client. The table also summarizes the valid value combinations
when configuring web service atomic transactions for an EJB-style web service that
uses the @TransactionAttribute annotation.

Table 3–39 Attribute of the weblogic.wsee.wstx.wsat.Transactional Annotation

Name Description Data Type Required?

version Version of the web services atomic transaction
coordination context that is used for web services
and clients. For clients, it specifies the version used
for outbound messages only. The value specified
must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and
DEFAULT. The DEFAULT value for web services is all
three versions (driven by the inbound request); the
DEFAULT value for web service clients is WSAT10.

For example:

@Transactional(version=
 Transactional.Version.WSAT10])

String No

value Whether the web service atomic transaction
coordination context is passed with the transaction
flow. For valid values, see Table 3–40.

String No

WebLogic-specific Annotations

3-58 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

3.6.43.3 Example
@Transactional(value = Transactional.TransactionFlowType.SUPPORTS,
 version="Transactional.Versino.WSAT12

Table 3–40 Flow Types Values

Value Web Service Client Web Service
Valid EJB @TransactionAttribute
Values

NEVER Do not export
transaction
coordination context.

Do not import
transaction
coordination context.

NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, SUPPORTS

SUPPORTS (Default) Export transaction
coordination context if
transaction is
available.

Import transaction
coordination context if
available in the
message.

REQUIRED, SUPPORTS

MANDATORY Export transaction
coordination context.
An exception is
thrown if there is no
active transaction.

Import transaction
coordination context.
An exception is
thrown if there is no
active transaction.

MANDATORY, REQUIRED, SUPPORTS

4

Web Service Reliable Messaging Policy Assertion Reference 4-1

4Web Service Reliable Messaging Policy
Assertion Reference

[5] This chapter provides reference information about web service reliable messaging
policy assertions in a WS-Policy file for WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Overview of a WS-Policy File That Contains Web Service Reliable Messaging
Assertions

■ WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and
1.1

■ WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0
(Deprecated)

4.1 Overview of a WS-Policy File That Contains Web Service Reliable
Messaging Assertions

You use WS-Policy files to configure reliable messaging capabilities of a WebLogic web
service running on a destination endpoint. Use the @Policy JWS annotations in the
JWS file that implements the web service to specify the name of the WS-Policy file that
is associated with a web service. A WS-Policy file is an XML file that conforms to the
WS-Policy specification at http://www.w3.org/TR/ws-policy/.

The root element of a WS-Policy file is always <wsp:Policy>. To configure web service
reliable messaging, you first add a <wsrmp:RMAssertion> child element; its main
purpose is to group all the reliable messaging policy assertions together. Then, you
add child elements to <wsrmp:RMAssertion> to define the web service reliable
messaging. All these assertions conform to the WS-PolicyAssertions specification.

WebLogic Server includes default WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own
WS-Policy file. The default WS-Policy files are defined in:

■ JAX-WS: "Pre-Packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection" in Developing JAX-WS Web Services for Oracle WebLogic Server

■ JAX-RPC: "Pre-Packaged WS-Policy Files for Reliable Messaging" in Developing
JAX-RPC Web Services for Oracle WebLogic Server

For task-oriented information about creating a reliable WebLogic web service, see:

■ JAX-WS: "Using Web Services Reliable Messaging" in Developing JAX-WS Web
Services for Oracle WebLogic Server

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

4-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

■ JAX-RPC: "Using Web Services Reliable Messaging" in Developing JAX-RPC Web
Services for Oracle WebLogic Server

4.2 WS-Policy File With Web Service Reliable Messaging
Assertions—Version 1.2 and 1.1

The following sections describe how to create a WS-Policy file with web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.2 and 1.1 at http://docs.oasis-open.org/ws-rx/wsrmp/200702.

■ Section 4.2.1, "Example of a WS-Policy File With Web Service Reliable Messaging
Assertions 1.2 and 1.1"

■ Section 4.2.2, "Element Descriptions"

4.2.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2
and 1.1

The following example shows a simple WS-Policy file used to configure reliable
messaging for a WebLogic web service.

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

4.2.2 Element Descriptions
The element hierarchy of web service reliable messaging policy assertions in a
WS-Policy file is shown below. Each element is described in more detail in the
following sections.

wsp:Policy
 wsrmp:RMAssertion
 wsrmp:SequenceSTR
 wsrmp:SequenceTransportSecurity
 wsrmp:DeliveryAssurance
 wsp:Policy

4.2.2.1 wsp:Policy
Groups nested policy assertions.

Note: You must enter the assertions in the ordered listed below.

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

Web Service Reliable Messaging Policy Assertion Reference 4-3

4.2.2.2 wsrmp:DeliveryAssurance
Specifies the delivery assurance (or quality of service) of the web service. You can set
one of the delivery assurances defined in the following table. If not set, the delivery
assurance defaults to ExactlyOnce.

The delivery assurance must be enclosed by wsp:Policy element. For example:

<wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
</wsrmp:DeliveryAssurance>

4.2.2.3 wsrmp:RMAssertion
Main web service reliable messaging assertion that groups all the other assertions
under a single element. The presence of this assertion in a WS-Policy file indicates that
the corresponding web service must be invoked reliably.

The following table summarizes the attributes of the wsrmp:RMAssertion element.

4.2.2.4 wsrmp:SequenceSTR
Specifies that in order to secure messages in a reliable sequence, the runtime will use
the wsse:SecurityTokenReference that is referenced in the CreateSequence message.
You can only specify one security assertion; that is, you can specify
wsrmp:SequenceSTR or wsrmp:SequenceTransportSecurity, but not both.

4.2.2.5 wsrmp:SequenceTransportSecurity
Specifies that in order to secure messages in a reliable sequence, the runtime will use
the SSL transport session that is used to send the CreateSequence message. This
assertion must be used in conjunction with the sp:TransportBinding assertion that
requires the use of some transport-level security mechanism (for example,
sp:HttpsToken). You can only specify one security assertion; that is, you can specify
wsrmp:SequenceSTR or wsrmp:SequenceTransportSecurity, but not both.

Table 4–1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

wsrmp:AtMostOnce Messages are delivered at most once, without duplication. It
is possible that some messages may not be delivered at all.

wsrmp:AtLeastOnce Every message is delivered at least once. It is possible that
some messages are delivered more than once.

wsrmp:ExactlyOnce Every message is delivered exactly once, without
duplication.This value is enabled by default.

wsrmp:InOrder Messages are delivered in the order that they were sent. This
delivery assurance can be combined with one of the
preceding three assurances. This value is enabled by default.

Table 4–2 Attributes of <wsrmp:RMAssertion>

Attribute Description Required?

optional Specifies whether the web service requires the operations to be
invoked reliably. Valid values for this attribute are true and
false. Default value is false.

No

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-4 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

4.3 WS-Policy File With Web Service Reliable Messaging
Assertions—Version 1.0 (Deprecated)

The following sections describe how to create a WS-Policy file with web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion 1.0 at http://schemas.xmlsoap.org/ws/2005/02/rm/policy/.

■ Section 4.3.1, "Example of a WS-Policy File With Web Service Reliable Messaging
Assertions"

■ Section 4.3.2, "Element Description"

4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions
The following example shows a simple WS-Policy file used to configure reliable
messaging for a WebLogic web service:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >
 <wsrm:RMAssertion >
 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="200" />
 <beapolicy:Expires Expires="P1D" optional="true"/>
 </wsrm:RMAssertion>
</wsp:Policy>

4.3.2 Element Description
The element hierarchy of web service reliable messaging policy assertions in a
WS-Policy file is shown below. Each element is described in more detail in the
following sections.

wsp:Policy
 wsrm:RMAssertion
 wsrm:InactivityTimeout
 wsrm:BaseRetransmissionInterval
 wsrm:ExponentialBackoff
 wsrm:AcknowledgementInterval
 beapolicy:Expires
 beapolicy:QOS

4.3.2.1 beapolicy:Expires
Specifies an amount of time after which the reliable web service expires and does not
accept any new sequences. Client applications invoking this instance of the reliable

Note: You must enter the assertions in the ordered listed below.

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

Web Service Reliable Messaging Policy Assertion Reference 4-5

web service will receive an error if they try to invoke an operation after the expiration
duration.

The default value of this element, if not specified in the WS-Policy file, is for the web
service to never expires.

4.3.2.2 beapolicy:QOS
Specifies the delivery assurance (or Quality Of Service) of the web service:

4.3.2.3 wsrm:AcknowledgementInterval
Specifies the maximum interval, in milliseconds, in which the destination endpoint
must transmit a stand alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message
immediately after it has received a message from a source endpoint, or it can send one
separately in a stand alone acknowledgement. In the case that a return message is not
available to send an acknowledgement, a destination endpoint may wait for up to the
acknowledgement interval before sending a stand alone acknowledgement. If there are
no unacknowledged messages, the destination endpoint may choose not to send an
acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as
transmitted. Its purpose is to communicate the timing of acknowledgements so that
the source endpoint may tune appropriately.

Table 4–3 Attributes of <beapolicy:Expires>

Attribute Description Required?

Expires The amount of time after which the reliable web service expires.
The format of this attribute conforms to the XML Schema
duration at
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dur
ation data type. For example, to specify that the reliable web
service expires after 3 hours, specify Expires="P3H".

Yes

Table 4–4 Attributes of <beapolicy:QOS>

Attribute Description Required?

QOS Specifies the delivery assurance. You can specify exactly one of
the following values:

■ AtMostOnce—Messages are delivered at most once,
without duplication. It is possible that some messages may
not be delivered at all.

■ AtLeastOnce—Every message is delivered at least once. It
is possible that some messages be delivered more than
once.

■ ExactlyOnce—Every message is delivered exactly once,
without duplication.

You can also add the InOrder string to specify that the
messages be delivered in order.

If you specify one of the XXXOnce values, but do not specify
InOrder, then the messages are not guaranteed to be in order.
This is different from the default value if the entire QOS
element is not specified (exactly once in order).

This attribute defaults to ExactlyOnce InOrder.

Example: <beapolicy:QOS QOS="AtMostOnce InOrder" />

Yes

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-6 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

This element is optional. If you do not specify this element, the default value is set by
the store and forward (SAF) agent configured for the destination endpoint.

4.3.2.4 wsrm:BaseRetransmissionInterval
Specifies the interval, in milliseconds, that the source endpoint waits after transmitting
a message and before it retransmits the message.

If the source endpoint does not receive an acknowledgement for a given message
within the interval specified by this element, the source endpoint retransmits the
message. The source endpoint can modify this retransmission interval at any point
during the lifetime of the sequence of messages. This assertion does not alter the
formulation of messages as transmitted, only the timing of their transmission.

This element can be used in conjunctions with the <wsrm:ExponentialBackoff>
element to specify that the retransmission interval will be adjusted using the algorithm
specified by the <wsrm:ExponentialBackoff> element.

This element is optional. If you do not specify this element, the default value is set by
the store and forward (SAF) agent configured for the source endpoint. If using the
WebLogic Server Administration Console to configure the SAF agent, this value is
labeled Retry Delay Base.

4.3.2.5 wsrm:ExponentialBackoff
Specifies that the retransmission interval will be adjusted using the exponential
backoff algorithm.

This element is used in conjunction with the <wsrm:BaseRetransmissionInterval>
element. If a destination endpoint does not acknowledge a sequence of messages for
the amount of time specified by <wsrm:BaseRetransmissionInterval>, the
exponential backoff algorithm will be used for timing of successive retransmissions by
the source endpoint, should the message continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals
should increase exponentially, based on the base retransmission interval. For example,
if the base retransmission interval is 2 seconds, and the exponential backoff element is
set in the WS-Policy file, successive retransmission intervals if messages continue to be
unacknowledged are 2, 4, 8, 16, 32, and so on.

This element is optional. If not set, the same retransmission interval is used in
successive retries, rather than the interval increasing exponentially.

This element has no attributes.

Table 4–5 Attributes of <wsrm:AcknowledgementInterval>

Attribute Description Required?

Milliseconds Specifies the maximum interval, in milliseconds, in which the
destination endpoint must transmit a stand alone
acknowledgement.

Yes

Table 4–6 Attributes of <wsrm:BaseRetransmissionInterval>

Attribute Description Required?

Milliseconds Number of milliseconds the source endpoint waits to
retransmit message.

Yes

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

Web Service Reliable Messaging Policy Assertion Reference 4-7

4.3.2.6 wsrm:InactivityTimeout
Specifies (in milliseconds) a period of inactivity for a sequence of messages. A
sequence of messages is defined as a set of messages, identified by a unique sequence
number, for which a particular delivery assurance applies; typically a sequence
originates from a single source endpoint. If, during the duration specified by this
element, a destination endpoint has received no messages from the source endpoint,
the destination endpoint may consider the sequence to have been terminated due to
inactivity. The same applies to the source endpoint.

This element is optional. If it is not set in the WS-Policy file, then sequences never
time-out due to inactivity.

4.3.2.7 wsrm:RMAssertion
Main web service reliable messaging assertion that groups all the other assertions
under a single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding web
service must be invoked reliably.

Table 4–7 Attributes of <wsrm:InactivityTimeout>

Attribute Description Required?

Milliseconds The number of milliseconds that defines a period of inactivity. Yes

Table 4–8 Attributes of <wsrm:RMAssertion>

Attribute Description Required?

optional Specifies whether the web service requires the operations to be
invoked reliably.

Valid values for this attribute are true and false. Default value
is false.

No

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-8 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

5

Web Service MakeConnection Policy Assertion Reference 5-1

5Web Service MakeConnection Policy Assertion
Reference

[6] The chapter provides reference information about web service MakeConnection policy
assertions in a WS-Policy file for WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Overview of a WS-Policy File That Contains MakeConnection Assertions

■ Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

■ Element Descriptions

5.1 Overview of a WS-Policy File That Contains MakeConnection
Assertions

You use WS-Policy files to enable and configure MakeConnection on a web service.
Use the @Policy JWS annotations in the JWS file that implements the web service to
specify the name of the WS-Policy file that is associated with a web service. A
WS-Policy file is an XML file that conforms to the WS-Policy specification at
http://www.w3.org/TR/ws-policy/.

The root element of a WS-Policy file is always <wsp:Policy>. To configure web service
MakeConnection, you simply add a <wsmc:MCSupported> child element. The policy
assertions conform to the WS-PolicyAssertions specification.

WebLogic Server includes default WS-Policy files that contain typical MakeConnection
assertions that you can use if you do not want to create your own WS-Policy file. The
default WS-Policy files are defined in "Pre-Packaged WS-Policy Files for Web Services
Reliable Messaging and MakeConnection" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

For task-oriented information about enabling and configuring MakeConnection, see
"Using Asynchronous Web Service Clients Through a Firewall (MakeConnection)" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

The following sections describe how to create a WS-Policy file with web service
MakeConnection assertions that are based on WS-MakeConnection specification at
http://docs.oasis-open.org/ws-rx/wsmc/200702.

Note: This section applies only to JAX-WS web services, and not to
JAX-RPC web services.

Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

5-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5
The following example shows a simple WS-Policy file used to configure
MakeConnection for a WebLogic web service. It specifies support for WS-Policy 1.5.

<?xml version="1.0"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy"
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702">
 <wsmc:MCSupported wsp15:Optional="true" />
</wsp15:Policy>

5.3 Element Descriptions
The element hierarchy of web service MakeConnection policy assertions in a
WS-Policy file is shown below. Each element is described in more detail in the
following sections.

wsp:Policy
 wsmc:MCSupported

5.3.1 wsp:Policy
Groups nested policy assertions.

5.3.2 wsmc:MCSupported
The presence of this assertion in a WS-Policy file indicates that the corresponding web
service uses MakeConnection as the transport model.

The following table summarizes the attributes of the wsmc:MCSupport element.

Table 5–1 Attributes of <wsmc:MCSupport>

Attribute Description Required?

optional Specifies whether MakeConnection must be used by the web
service client. Valid values for this attribute are true and false.
Default value is true. If set to false, both ReplyTo and FaultTo
headers must contain MakeConnection anonymous URIs.

No

6

Oracle Web Services Security Policy Assertion Reference 6-1

6Oracle Web Services Security Policy Assertion
Reference

[7] This chapter provides reference information about the security assertions you can
configure in a WebLogic Server 12.1.3 web services security policy file using the
proprietary schema.

Previous releases of WebLogic Server, released before the formulation of the OASIS
WS-SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for web services security policy. This release
of WebLogic Server supports security policy files that conform to the OASIS
WS-SecurityPolicy 1.2 specification at
http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-
1.2-spec-cd-01.pdf. It still supports the proprietary web services security policy files
first included in WebLogic Server 9, but this legacy policy format is deprecated and
should not be used for new applications.

This chapter includes the following sections:

■ Overview of a Policy File That Contains Security Assertions

■ Example of a Policy File With Security Elements

■ Element Description

■ Using MessageParts To Specify Parts of the SOAP Messages that Must Be
Encrypted or Signed

6.1 Overview of a Policy File That Contains Security Assertions
You can use policy files to configure the message-level security of a WebLogic web
service. Use the @Policy and @Policies JWS annotations in the JWS file that
implements the web service to specify the name of the security policy file that is
associated with a WebLogic web service.

A security policy file is an XML file that conforms to the WS-Policy specification at
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/.
The root element of a WS-Policy file is always <wsp:Policy>. To configure
message-level security, you add policy assertions that specify the type of tokens

Note: This section applies only to JAX-RPC web services using
policies written under the Oracle web services security policy schema,
and not to JAX-WS web services or to policies written under the
OASIS WS-SecurityPolicy 1.2 specification.

Example of a Policy File With Security Elements

6-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

supported for authentication and how the SOAP messages should be encrypted and
digitally signed.

Policy files using the Oracle web services security policy schema have the following
namespace

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >

This release of WebLogic Server also includes a large number of packaged policy files
that conform to the OASIS WS-SecurityPolicy 1.2 specification. WS-SecurityPolicy 1.2
policy files and Oracle proprietary web services security policy schema files are not
mutually compatible; you cannot use both types of policy file in the same web services
security configuration. For information about using WS-SecurityPolicy 1.2 security
policy files, see "Using WS-SecurityPolicy 1.2 Policy Files" in Securing WebLogic Web
Services for Oracle WebLogic Server.

See "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle
WebLogic Server for task-oriented information about creating a message-level secured
WebLogic web service.

6.2 Example of a Policy File With Security Elements
<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>

Note: These security policy assertions are based on the assertions
described in the December 18, 2002 version of the Web Services Security
Policy Language (WS-SecurityPolicy) specification. This means that
although the exact syntax and usage of the assertions in WebLogic
Server are different, they are similar in meaning to those described in
the specification. The assertions are not based on the latest update of
the specification (13 July 2005.)

Element Description

Oracle Web Services Security Policy Assertion Reference 6-3

 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(Assertion)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo />
 </wssp:Confidentiality>
</wsp:Policy>

6.3 Element Description
The element hierarchy of web service reliable messaging policy assertions in a
WS-Policy file is shown below. Each element is described in more detail in the
following sections.

Policy {1}
 Identity {1}
 SupportedTokens {0 or 1}
 SecurityToken {1 or more}
 Claims {0 or 1}
 UsePassword {0 or 1}
 ConfirmationMethod {0 or 1}
 TokenLifeTime {0 or 1}
 Length {0 or 1}
 Label {0 or 1}
 Integrity {1}
 SignatureAlgorithm {1}
 CanonicalizationAlgorithm {1}
 SupportedTokens {0 or 1}
 SecurityToken {1 or more}
 Target {1 or more)
 DigestAlgorithm {1}
 Transform (0 or more)
 MessageParts {1}
 Confidentiality {1}
 KeyWrappingAlgorithm {1}
 Target {1 or more}
 EncryptionAlgorithm {1}
 Transform {0 or more)
 MessageParts {1}
 KeyInfo {1}
 SecurityToken {0 or more)
 SecurityTokenReference {0 or more}
 MessageAge {1}

Element Description

6-4 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

6.3.1 CanonicalizationAlgorithm
Specifies the algorithm used to canonicalize the SOAP message elements that are
digitally signed.

6.3.2 Claims
Specifies additional metadata information that is associated with a particular type of
security token. Depending on the type of security token, you can or must specify the
following child elements:

■ For username tokens, you can define a <UsePassword> child element to specify
whether you want the SOAP messages to use password digests. For more
information, see Section 6.3.23, "UsePassword".

■ For SAML tokens, you must define a <ConfirmationMethod> child element to
specify the type of SAML confirmation (sender-vouches or holder-of-key). For
more information, see Section 6.3.4, "ConfirmationMethod".

By default, a security token for a secure conversation has a lifetime of 12 hours. To
change this default value, define a <TokenLifeTime> child element to specify a new
lifetime, in milliseconds, of the security token. For more information, see
Section 6.3.21, "TokenLifeTime".

This element does not have any attributes.

6.3.3 Confidentiality
Specifies that part or all of the SOAP message must be encrypted, as well as the
algorithms and keys that are used to encrypt the SOAP message.

For example, a web service may require that the entire body of the SOAP message
must be encrypted using triple-DES.

Note: The WebLogic web services security runtime does not support
specifying an InclusiveNamespaces PrefixList that contains a list of
namespace prefixes or a token indicating the presence of the default
namespace to the canonicalization algorithm.

Table 6–1 Attributes of <CanonicalizationAlgorithm>

Attribute Description Required?

URI The algorithm used to canonicalize the SOAP message being
signed.

You can specify only the following canonicalization algorithm:

http://www.w3.org/2001/10/xml-exc-cl4n#

Yes

Table 6–2 Attributes of <Confidentiality>

Attribute Description Required?

SupportTrust10 .

The valid values for this attribute are true and false. The
default value is false.

No

Element Description

Oracle Web Services Security Policy Assertion Reference 6-5

6.3.4 ConfirmationMethod
Specifies the type of confirmation method that is used when using SAML tokens for
identity. You must specify one of the following two values for this element:
sender-vouches or holder-of-key. For example:

 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>

This element does not have any attributes.

The <ConfirmationMethod> element is required only if you are using SAML tokens.

The exact location of the <ConfirmationMethod> assertion in the security policy file
depends on the type configuration method you are configuring. In particular:

sender-vouches:

Specify the <ConfirmationMethod> assertion within an <Identity> assertion, as shown
in the following example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

holder-of-key:

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion. The
reason you put the SAML token in the <Integrity> assertion for this confirmation
method is that the web service runtime must prove the integrity of the message, which
is not required by sender-vouches.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
 <wssp:Integrity>

Element Description

6-6 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

For more information about the two SAML confirmation methods (sender-vouches or
holder-of-key), see "SAML Token Profile Support in WebLogic Web Services" in
Understanding Security for Oracle WebLogic Server.

6.3.5 DigestAlgorithm
Specifies the digest algorithm that is used when digitally signing the specified parts of
a SOAP message. Use the <MessageParts> sibling element to specify the parts of the
SOAP message you want to digitally sign. For more information, see Section 6.3.14,
"MessageParts".

6.3.6 EncryptionAlgorithm
Specifies the encryption algorithm that is used when encrypting the specified parts of
a SOAP message. Use the <MessageParts> sibling element to specify the parts of the
SOAP message you want to digitally sign. For more information, see Section 6.3.14,
"MessageParts".

Table 6–3 Attributes of <DigestAlgorithm>

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the
specified parts of a SOAP message.

You can specify only the following digest algorithm:

http://www.w3.org/2000/09/xmldsig#sha1

Yes

Element Description

Oracle Web Services Security Policy Assertion Reference 6-7

6.3.7 Identity
Specifies the type of security tokens (username, X.509, or SAML) that are supported
for authentication.

This element has no attributes.

6.3.8 Integrity
Specifies that part or all of the SOAP message must be digitally signed, as well as the
algorithms and keys that are used to sign the SOAP message.

For example, a web service may require that the entire body of the SOAP message
must be digitally signed and only algorithms using SHA1 and an RSA key are
accepted.

Table 6–4 Attributes of <EncryptionAlgorithm>

Attribute Description Required?

URI The encryption algorithm used to encrypt specified parts of the
SOAP message.

Valid values are:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#aes128-cbc

When interoperating between web services built with
WebLogic Workshop 8.1, you must specify
http://www.w3.org/2001/04/xmlenc#aes128-cbc as the
encryption algorithm.

Yes

Table 6–5 Attributes of <Integrity>

Attribute Description Required?

SignToken Specifies whether the security token, specified using the
<SecurityToken> child element of <Integrity>, should
also be digitally signed, in addition to the specified parts
of the SOAP message.

The valid values for this attribute are true and false.
The default value is true.

No

SupportTrust10 .

The valid values for this attribute are true and false.
The default value is false.

No

X509AuthConditional Whenever an Identity assertion includes X.509 tokens in
the supported token list, your policy must also have an
Integrity assertion. The server will not accept X.509
tokens as proof of authentication unless the token is also
used in a digital signature.

If the Identity assertion accepts other token types, you
may use the X509AuthConditional attribute of the
Integrity assertion to specify that the digital signature is
required only when the actual authentication token is an
X.509 token. Remember that abstract Identity assertions
are pre-processed at deploy time and converted into
concrete assertions by inserting a list of all token types
supported by your runtime environment.

No

Element Description

6-8 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

6.3.9 KeyInfo
Used to specify the security tokens that are used for encryption.

This element has no attributes.

6.3.10 KeyWrappingAlgorithm
Specifies the algorithm used to encrypt the message encryption key.

6.3.11 Label
Specifies a label for the security context token. Used when configuring
WS-SecureConversation security contexts.

This element has no attributes.

6.3.12 Length
Specifies the length of the key when using security context tokens and derived key
tokens. This assertion only applies to WS-SecureConversation security contexts.

The default value is 32.

This element has no attributes.

6.3.13 MessageAge
Specifies the acceptable time period before SOAP messages are declared stale and
discarded.

When you include this security assertion in your security policy file, the web services
runtime adds a <Timestamp> header to the request or response SOAP message,
depending on the direction (inbound, outbound, or both) to which the security policy
file is associated. The <Timestamp> header indicates to the recipient of the SOAP
message when the message expires.

For example, assume that your security policy file includes the following
<MessageAge> assertion:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 >
...
 <wssp:MessageAge Age="300" />

Table 6–6 Attributes of <KeyWrappingAlgorithm>

Attribute Description Required?

URI The algorithm used to encrypt the SOAP message encryption key.

Valid values are:

■ http://www.w3.org/2001/04/xmlenc#rsa-1_5

(to specify the RSA-v1.5 algorithm)

■ http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

(to specify the RSA-OAEP algorithm)

Yes

Element Description

Oracle Web Services Security Policy Assertion Reference 6-9

</wsp:Policy>

The resulting generated SOAP message will have a <Timestamp> header similar to the
following excerpt:
<wsu:Timestamp
 wsu:Id="Dy2PFsX3ZQacqNKEANpXbNMnMhm2BmGOA2WDc2E0JpiaaTmbYNwT"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd">
 <wsu:Created>2005-11-09T17:46:55Z</wsu:Created>
 <wsu:Expires>2005-11-09T17:51:55Z</wsu:Expires>
</wsu:Timestamp>

In the example, the recipient of the SOAP message discards the message if received
after 2005-11-09T17:51:55Z, or five minutes after the message was created.

The web services runtime, when generating the SOAP message, sets the <Created>
header to the time when the SOAP message was created and the <Expires> header to
the creation time plus the value of the Age attribute of the <MessageAge> assertion.

The following table describes the attributes of the <MessageAge> assertion.

The following table lists the properties that describe the timestamp behavior of the
WebLogic web services security runtime, along with their default values.

Table 6–7 Attributes of <MessageAge>

Attribute Description Required?

Age Specifies the actual maximum age time-out for a SOAP
message, in seconds.

No

Table 6–8 Timestamp Behavior Properties

Property Description Default Value

Clock
Synchronized

Specifies whether the web service assumes synchronized
clocks.

true

Clock
Precision

If clocks are synchronized, describes the accuracy of the
synchronization.

Note: This property is deprecated as of release 9.2 of
WebLogic web services. Use the Clock Skew property
instead. If both properties are set, then Clock Skew takes
precedence.

60000
milliseconds

Clock Skew Specifies the allowable difference, in milliseconds, between
the sender and receiver of the message.

60000
milliseconds

Lax Precision Allows you to relax the enforcement of the clock precision
property.

Note: This property is deprecated as of release 9.2 of
WebLogic web services. Use the Clock Skew property
instead.

false

Max
Processing
Delay

Specifies the freshness policy for received messages. -1

Validity Period Represents the length of time the sender wants the
outbound message to be valid.

60 seconds

Element Description

6-10 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

You typically never need to change the values of the preceding timestamp properties.
However, if you do need to, you must use the WebLogic Server Administration
Console to create the default_wss web service Security Configuration, if it does not
already exist, and then update its timestamp configuration by clicking on the
Timestamp tab. See "Create a web service security configuration" for task information
and "Domains: Web Services Security: Timestamp" in the Oracle WebLogic Server
Administration Console Online Help for additional reference information about these
timestamp properties.

6.3.14 MessageParts
Specifies the parts of the SOAP message that should be signed or encrypted,
depending on the grand-parent of the element. You can use either an XPath 1.0
expression or a set of pre-defined functions within this assertion to specify the parts of
the SOAP message.

The MessageParts assertion is always a child of a Target assertion. The Target
assertion can be a child of either an Integrity assertion (to specify how the SOAP
message is digitally signed) or a Confidentiality assertion (to specify how the SOAP
messages are encrypted.)

See Section 6.4, "Using MessageParts To Specify Parts of the SOAP Messages that Must
Be Encrypted or Signed" for detailed information about using this assertion, along
with a variety of examples.

6.3.15 Policy
Groups nested policy assertions.

6.3.16 SecurityToken
Specifies the security token that is supported for authentication, encryption or digital
signatures, depending on the parent element.

Table 6–9 Attributes of <MessageParts>

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP
message that should be signed or encrypted. If this attribute is
not specified, then XPath 1.0 is assumed.

The value of this attribute must be one of the following:

■ http://www.w3.org/TR/1999/REC-xpath-19991116:
Specifies that an XPath 1.0 expression should be used
against the SOAP message to specify the part to be signed
or encrypted.

■ http://schemas.xmlsoap.org/2002/12/wsse#part:
Convenience dialect used to specify that the entire SOAP
body should be signed or encrypted.

■ http://www.bea.com/wls90/security/policy/wsee#part:
Convenience dialect to specify that the WebLogic-specific
headers should be signed or encrypted. You can also use
this dialect to use QNames to specify the parts of the
security header that should be signed or encrypted.

See Section 6.4, "Using MessageParts To Specify Parts of the
SOAP Messages that Must Be Encrypted or Signed" for
examples of using these dialects.

Yes

Element Description

Oracle Web Services Security Policy Assertion Reference 6-11

For example, if this element is defined in the <Identity> parent element, then is
specifies that a client application, when invoking the web service, must attach a
security token to the SOAP request. For example, a web service might require that the
client application present a SAML authorization token issued by a trusted
authorization authority for the web service to be able to access sensitive data. If this
element is part of <Confidentiality>, then it specifies the token used for encryption.

The specific type of the security token is determined by the value of its TokenType
attribute, as well as its parent element.

By default, a security token for a secure conversation has a lifetime of 12 hours. To
change this default value, add a <Claims> child element that itself has a
<TokenLifeTime> child element, as described in Section 6.3.2, "Claims."

6.3.17 SecurityTokenReference
For internal use only.

You should never include this security assertion in your custom security policy file; it
is described in this section for informational purposes only. The WebLogic web
services runtime automatically inserts this security assertion in the security policy file
that is published in the dynamic WSDL of the deployed web service. The security
assertion specifies WebLogic Server's public key; the client application that invokes the
web service then uses it to encrypt the parts of the SOAP message specified by the
security policy file. The web services runtime then uses the server's private key to
decrypt the message.

Table 6–10 Attributes of <SecurityToken>

Attribute Description Required?

DerivedFromTokenType Specifies what security token it is derived from. For
example, a value of
"http://schemas.xmlsoap.org/ws/2005/02/sc/sct"
specifies that it is derived from an old version of
Secure Conversation Token.

No

IncludeInMessage Specifies whether to include the token in the SOAP
message.

Valid values are true or false.

The default value of this attribute is false when used
in the <Confidentiality> assertion and true when
used in the <Integrity> assertion.

The value of this attribute is always true when used in
the <Identity> assertion, even if you explicitly set it to
false.

No

TokenType Specifies the type of security token. Valid values are:

■ http://docs.oasis-open.org/wss/2004/01/oasis-2
00401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 token)

■ http://docs.oasis-open.org/wss/2004/01/oasis-2
00401-wss-username-token-profile-1.0#Userna
meToken (To specify a username token)

■ http://docs.oasis-open.org/wss/2004/01/oasis-2
004-01-saml-token-profile-1.0#SAMLAssertion
ID (To specify a SAML token)

Yes

Element Description

6-12 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

6.3.18 SignatureAlgorithm
Specifies the cryptographic algorithm used to compute the digital signature.

6.3.19 SupportedTokens
Specifies the list of supported security tokens that can be used for authentication,
encryption, or digital signatures, depending on the parent element.

This element has no attributes.

6.3.20 Target
Encapsulates information about which targets of a SOAP message are to be encrypted
or signed, depending on the parent element.

The child elements also depend on the parent element; for example, when used in
<Integrity>, you can specify the <DigestAlgorithm>, <Transform>, and
<MessageParts> child elements. When used in <Confidentiality>, you can specify
the <EncryptionAlgorithm>, <Transform>, and <MessageParts> child elements.

You can have one or more targets.

6.3.21 TokenLifeTime
Specifies the lifetime, in seconds, of the security context token or derived key token.
This element is used only when configuring WS-SecurityConversation security
contexts.

The default lifetime of a security token is 12 hours (43,200 seconds).

This element has no attributes.

6.3.22 Transform
Specifies the URI of a transformation algorithm that is applied to the parts of the
SOAP message that are signed or encrypted, depending on the parent element.

Table 6–11 Attributes of <SignatureAlgorithm>

Attribute Description Required?

URI Specifies the cryptographic algorithm used to compute the
signature.

Note: Be sure that you specify an algorithm that is compatible
with the certificates you are using in your enterprise.

Valid values are:

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Yes

Table 6–12 Attributes of <Target>

Attribute Description Required?

encryptContentOnly Specifies whether to encrypt an entire element, or just its
content.

This attribute can be specified only when <Target> is a
child element of <Confidentiality>.

Default value of this attribute is true, which means that
only the content is encrypted.

No

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

Oracle Web Services Security Policy Assertion Reference 6-13

You can specify zero or more transforms, which are executed in the order they appear
in the <Target> parent element.

6.3.23 UsePassword
Specifies that whether the plaintext or the digest of the password appear in the SOAP
messages. This element is used only with username tokens.

6.4 Using MessageParts To Specify Parts of the SOAP Messages that
Must Be Encrypted or Signed

When you use either the Integrity or Confidentiality assertion in your security
policy file, you are required to also use the Target child assertion to specify the targets
of the SOAP message to digitally sign or encrypt. The Target assertion in turn requires
that you use the MessageParts child assertion to specify the actual parts of the SOAP
message that should be digitally signed or encrypted. This section describes various
ways to use the MessageParts assertion.

See Section 6.2, "Example of a Policy File With Security Elements" for an example of a
complete security policy file that uses the MessageParts assertion within a
Confidentiality assertion. The example shows how to specify that the entire body, as
well as the Assertion security header, of the SOAP messages should be encrypted.

Table 6–13 Attributes of <Transform>

Attribute Description Required?

URI Specifies the URI of the transformation algorithm.

Valid URIs are:

■ http://www.w3.org/2000/09/xmldsig#base64 (Base64
decoding transforms)

■ http://www.w3.org/TR/1999/REC-xpath-19991116 (XPath
filtering)

For detailed information about these transform algorithms, see
XML-Signature Syntax and Processing at
http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg.

Yes

Table 6–14 Attributes of <UsePassword>

Attribute Description Required?

Type Specifies the type of password. Valid values are:

■ http://docs.oasis-open.org/wss/2004/01/oasis-200401-w
ss-username-token-profile-1.0#PasswordText: Specifies
that cleartext passwords should be used in the SOAP
messages.

■ http://docs.oasis-open.org/wss/2004/01/oasis-200401-w
ss-username-token-profile-1.0#PasswordDigest:
Specifies that password digests should be used in the
SOAP messages.

Note: For backward compatibility reasons, the two preceding
URIs can also be specified with an initial "www." For example:

■ http://www.docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-username-token-profile-1.0#PasswordText

■ http://www.docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-username-token-profile-1.0#PasswordDigest

Yes

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-14 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

You use the Dialect attribute of MessageParts to specify the dialect used to identify
the SOAP message parts. The WebLogic web services security runtime supports the
following three dialects:

■ Section 6.4.1, "XPath 1.0"

■ Section 6.4.2, "Pre-Defined wsp:Body() Function"

■ Section 6.4.3, "WebLogic-Specific Header Functions"

Be sure that you specify a message part that actually exists in the SOAP messages that
result from a client invoke of a message-secured web service. If the web services
security runtime encounters an inbound SOAP message that does not include a part
that the security policy file indicates should be signed or encrypted, then the web
services security runtime returns an error and the invoke fails. The only exception is if
you use the WebLogic-specific wls:SystemHeader() function to specify that any
WebLogic-specific SOAP header in a SOAP message should be signed or encrypted; if
the web services security runtime does not find any of these headers in the SOAP
message, the runtime simply continues with the invoke and does not return an error.

6.4.1 XPath 1.0
This dialect enables you to use an XPath 1.0 expression to specify the part of the SOAP
message that should be signed or encrypted. The value of the Dialect attribute to
enable this dialect is http://www.w3.org/TR/1999/REC-xpath-19991116.

You typically want to specify that the parts of a SOAP message that should be
encrypted or digitally signed are child elements of either the soap:Body or
soap:Header elements. For this reason, Oracle provides the following two functions
that take as parameters an XPath expression:

■ wsp:GetBody(xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Body.

■ wsp:GetHeader(xpath_expression)—Specifies that the root element from which
the XPath expression starts searching is soap:Header.

You can also use a plain XPath expression as the content of the MessageParts
assertion, without one of the preceding functions. In this case, the root element from
which the XPath expression starts searching is soap:Envelope.

The following example specifies that the AddInt part, with namespace prefix n1 and
located in the SOAP message body, should be signed or encrypted, depending on
whether the parent Target parent is a child of Integrity or Confidentiality
assertion:

<wssp:MessageParts
 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
 xmlns:n1="http://www.bea.com/foo">
 wsp:GetBody(./n1:AddInt)
</wssp:MessageParts>

The preceding example shows that you should define the namespace of a part
specified in the XPath expression (n1 in the example) as an attribute to the
MessageParts assertion, if you have not already defined the namespace elsewhere in
the security policy file.

The following example is similar, except that the part that will be signed or encrypted
is wsu:Timestamp, which is a child element of wsee:Security and is located in the
SOAP message header:

<wssp:MessageParts

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

Oracle Web Services Security Policy Assertion Reference 6-15

 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
 wsp:GetHeader(./wsse:Security/wsu:Timestamp)
</wssp:MessageParts>

In the preceding example, it is assumed that the wsee: and wse: namespaces have
been defined elsewhere in the security policy file.

6.4.2 Pre-Defined wsp:Body() Function
The XPath dialect described in Section 6.4.1, "XPath 1.0" is flexible enough for you to
pinpoint any part of the SOAP message that should be encrypted or signed. However,
sometimes you might just want to specify that the entire SOAP message body be
signed or encrypted. In this case using an XPath expression is unduly complicated, so
Oracle recommends you use the dialect that pre-defines the wsp:Body() function for
just this purpose, as shown in the following example:

<wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
</wssp:MessageParts>

6.4.3 WebLogic-Specific Header Functions
Oracle provides its own dialect that pre-defines a set of functions to easily specify that
some or all of the WebLogic security or system headers should be signed or encrypted.
Although you can achieve the same goal using the XPath dialect, it is much simpler to
use this WebLogic dialect. You enable this dialect by setting the Dialect attribute to
http://www.bea.com/wls90/security/policy/wsee#part.

The wls:SystemHeaders() function specifies that all of the WebLogic-specific headers
should be signed or encrypted. These headers are used internally by the WebLogic
web services runtime for various features, such as reliable messaging and addressing.
The headers are:

■ wsrm:SequenceAcknowledgement

■ wsrm:AckRequested

■ wsrm:Sequence

■ wsa:Action

■ wsa:FaultTo

■ wsa:From

■ wsa:MessageID

■ wsa:RelatesTo

■ wsa:ReplyTo

■ wsa:To

■ wsax:SetCookie

Note: It is beyond the scope of this document to describe how to
create XPath expressions. For detailed information, see the XML Path
Language (XPath), Version 1.0, at http://www.w3.org/TR/xpath
specification.

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-16 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

The following example shows how to use the wls:SystemHeader() function:

<wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
</wssp:MessageParts>

Use the wls:SecurityHeader(header) function to specify a particular part in the
security header that should be signed or encrypted, as shown in the following
example:

<wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsa:From)
</wssp:MessageParts>

In the example, only the wsa:From security header is signed or encrypted. You can
specify any of the preceding list of headers to the wls:SecurityHeader() function.

7

WebLogic Web Service Deployment Descriptor Schema Reference 7-1

7WebLogic Web Service Deployment Descriptor
Schema Reference

[8] This chapter provides information about the WebLogic web services deployment
descriptor file, weblogic-webservices.xml, for WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Overview of weblogic-webservices.xml

■ Example of a weblogic-webservices.xml Deployment Descriptor File

■ Element Descriptions

7.1 Overview of weblogic-webservices.xml
The standard Java EE deployment descriptor for web services is called
webservices.xml. This file specifies the set of web services that are to be deployed to
WebLogic Server and the dependencies they have on container resources and other
services. See the web services XML Schema at
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd for a full
description of this file.

The WebLogic equivalent to the standard Java EE webservices.xml deployment
descriptor file is called weblogic-webservices.xml. This file contains
WebLogic-specific information about a WebLogic web service, such as the URL used to
invoke the deployed web service, configuration settings such as timeout values, and so
on.

For the XML Schema file that describes the weblogic-webservices.xml deployment
descriptor, see
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webserv
ices.xsd.

Both deployment descriptor files are located in the same location on the Java EE
archive that contains the web service. In particular:

■ For Java class-implemented web services, the web service is packaged as a Web
application WAR file and the deployment descriptors are located in the WEB-INF
directory.

■ For stateless session EJB-implemented web services, the web service is packaged
as an EJB JAR file and the deployment descriptors are located in the META-INF
directory.

The structure of the weblogic-webservices.xml file is similar to the structure of the
Java EE webservices.xml file in how it lists and identifies the web services that are

Example of a weblogic-webservices.xml Deployment Descriptor File

7-2 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

contained within the archive. For example, for each web service in the archive, both
files have a <webservice-description> child element of the appropriate root element
(<webservices> for the Java EE webservices.xml file and <weblogic-webservices>
for the weblogic-webservices.xml file)

This section is published for informational purposes only. Typically, configuration
updates are made using the WebLogic Server Administration Console or using JWS
annotations and you will not need to edit either of the deployment descriptor files
directly.

7.2 Example of a weblogic-webservices.xml Deployment Descriptor File
The following example shows a simple weblogic-webservices.xml deployment
descriptor:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-webservices
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-webservices">
 <webservice-description>
 <webservice-description-name>MyService</webservice-description-name>
 <port-component>
 <port-component-name>MyServiceServicePort</port-component-name>
 <service-endpoint-address>
 <webservice-contextpath>/MyService</webservice-contextpath>
 <webservice-serviceuri>/MyService</webservice-serviceuri>
 </service-endpoint-address>
 <wsat-config>
 <version>WSAT10</version>
 <flowType>SUPPORTS</flowType>
 </wsat-config>
 <reliability-config>
 <inactivity-timeout>P0DT600S</inactivity-timeout>
 <base-retransmission-interval>P0DT3S</base-retransmission-interval>
 <retransmission-exponential-backoff>true
 </retransmission-exponential-backoff>
 <acknowledgement-interval>P0DT3S</acknowledgement-interval>
 <sequence-expiration>P1D</sequence-expiration>
 <buffer-retry-count>3</buffer-retry-count>
 <buffer-retry-delay>P0DT5S</buffer-retry-delay>
 </reliability-config>
 </port-component>
 </webservice-description>
</weblogic-webservices>

7.3 Element Descriptions
The element hierarchy of the weblogic-webservices.xml deployment descriptor file is
shown below. The number of occurrences allowed is listed in braces following the
element name. Each element is described in detail in the following sections.

Note: The data type definitions of two elements in the
weblogic-webservices.xml file (Section 7.3.31, "login-config" and
Section 7.3.61, "transport-guarantee") are imported from the Java EE
Schema for the web.xml file. See the Servlet Deployment Descriptor
Schema at http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd for
details about these elements and data types.

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-3

<weblogic-webservices> {1}
 <webservice-description> {1 or more}
 <webservice-description-name> {1 or more}
 <webservice-type> {0 or 1}
 <wsdl-publish-file {0 or 1}
 <port-component> {0 or more}
 <port-component-name> {1}
 <service-endpoint-address> {0 or 1}
 <webservice-contextpath> {1}
 <webservice-serviceuri> {1}
 <auth-constraint> {0 or 1}
 <login-config> {0 or 1}
 <transport-guarantee> {0 or 1}
 <deployment-listener-list> {0 or 1}
 <deployment-listener> {1 or more}
 <wsdl> {0 or 1}
 <exposed> {1}
 <transaction-timeout> {0 or 1}
 <callback-protocol> {1}
 <stream-attachments> {0 or 1}
 <validate-request> {0 or 1}
 <http-flush-response> {0 or 1}
 <http-response-buffersize> {0 or 1}
 <reliability-config> {0 or 1}
 <customized> {0 or 1}
 <inactivity-timeout> {0 or 1}
 <base-retransmission-interval> {0 or 1}
 <retransmission-exponential-backoff> {0 or 1}
 <non-buffered-source> {0 or 1}
 <acknowledgement-interval> {0 or 1}
 <sequence-expiration> {0 or 1}
 <buffer-retry-count> {0 or 1}
 <buffer-retry-delay> {0 or 1}
 <non-buffered-destination> {0 or 1}
 <messaging-queue-jndi-name> {0 or 1}
 <messaging-queue-mdb-run-as-principal-name> {0 or 1}
 <persistence-config> {0 or 1}
 <customized> {0 or 1}
 <default-logical-store-name> {0 or 1}
 <buffering-config> {0 or 1}
 <customized> {0 or 1}
 <request-queue> {0 or 1}
 <name> {0 or 1}
 <enabled> {0 or 1}
 <connection-factory-jndi-name> {0 or 1}
 <transaction-enabled> {0 or 1}
 <response-queue> {0 or 1}
 <name> {0 or 1}
 <enabled> {0 or 1}
 <connection-factory-jndi-name> {0 or 1}
 <transaction-enabled> {0 or 1}
 <retry-count> {0 or 1}
 <retry-delay> {0 or 1}
 <wsat-config> {0 or 1}
 <version> {0 or 1}
 <flowType> {0 or 1}
 <operation> {0 or more}
 <name> {0 or 1}
 <wsat-config> {0 or 1}
 <version> {0 or 1}

Element Descriptions

7-4 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

 <flowType> {0 or 1}
 <soapjms-service-endpoint-address> {0 or 1}
 <lookup-variant> {0 or 1}
 <destination-name> {0 or 1}
 <destination-type> {0 or 1}
 <jndi-connection-factory-name> {0 or 1}
 <jndi-initial-context-factory> {0 or 1}
 <jndi-url> {0 or 1}
 <jndi-context-parameter> {0 or 1}
 <time-to-live> {0 or 1}
 <priority> {0 or 1}
 <delivery-mode> {0 or 1}
 <reply-to-name> {0 or 1}
 <target-service> {0 or 1}
 <binding-version> {0 or 1}
 <message-type> {0 or 1}
 <enable-http-wsdl-access> {0 or 1}
 <run-as-principal> {0 or 1}
 <run-as-role> {0 or 1}
 <mdb-per-destination> {0 or 1}
 <activation-config> {0 or 1}
 <fastinfoset> {0 or 1}
 <logging-level> {0 or 1}
 <webservice-security> {0 or 1}
 <mbean-name> {1}

7.3.1 acknowledgement-interval
The <acknowledgement-interval> child element of the <reliability-config>
element specifies the maximum interval during which the destination endpoint must
transmit a stand-alone acknowledgement.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMS

Table 7–1 describes the duration format fields. This value defaults to P0DT3S (3
seconds).

For more information, see "Configuring the Acknowledgement Interval" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Table 7–1 Duration Format Description

Field Description

nY Number of years (n).

nM Number of months (n).

nD Number of days (n).

T Date and time separator.

nH Number of hours (n).

nM Number of minutes (n).

nS Number of seconds (n).

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-5

7.3.2 activation-config
The <activation-config> child element of the
<soapjms-service-endpoint-address> element specifies activation configuration
properties passed to the JMS provider. Each property is specified using name-value
pairs, separated by semicolons (;). For example: name1=value1;...;nameN=valueN

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server. For a list of valid activation properties, see
"Configuring JMS Transport Properties" in Developing JAX-WS Web Services for Oracle
WebLogic Server.

7.3.3 auth-constraint
The <auth-constraint> element defines the user roles that are permitted access to this
resource collection.

The XML Schema data type of the <j2ee:auth-constraint> element is
<j2ee:auth-constraintType>, and is defined in the Java EE Schema that describes the
standard web.xml deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

7.3.4 base-retransmission-interval
The <base-retransmission-interval> child element of the <reliability-config>
element specifies the interval of time that must pass before a message is retransmitted
to the RM destination. This element can be used in conjunction with the
<retransmission-exponential-backoff> element to specify the algorithm that is used
to adjust the retransmission interval.

If a destination endpoint does not acknowledge a sequence of messages for the time
interval specified by <base-retransmission-interval>, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint, should
the message continue to go unacknowledged.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMS

Table 7–1 describes the duration format fields. This value defaults to P0DT3S (3
seconds).

For more information, see "Configuring the Base Retransmission Interval" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.5 binding-version
The <binding-version> child element of the <soapjms-service-endpoint-address>
element defines the version of the SOAP JMS binding. This value must be set to 1.0 for
this release, which equates to org.jvnet.ws.jms.JMSBindingVersion.SOAP_JMS_1_0.
This value maps to the SOAPJMS_bindingVersion JMS message property.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Element Descriptions

7-6 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

7.3.6 buffer-retry-count
The <buffer-retry-count> child element of the <reliability-config> element
specifies the number of times that the JMS queue on the destination WebLogic Server
instance attempts to deliver the message from a client that invokes the reliable
operation to the web service implementation. This value defaults to 3.

For more information, see "Using Web Services Reliable Messaging" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.7 buffer-retry-delay
The <buffer-retry-delay> child element of the <reliability-config> element
specifies the amount of time that elapses between message delivery retry attempts.
The retry attempts are between the client's request message on the JMS queue and
delivery of the message to the web service implementation.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMS

Table 7–1 describes the duration format fields.This value defaults to P0DT5S (5
seconds).

For more information, see "Using Web Services Reliable Messaging" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.8 buffering-config
The <buffering-config> element groups together the buffering configuration
elements. The child elements of the <buffering-config> element specify runtime
configuration values such as retry counts and delays.

For more information, see "Configuring Message Buffering for Web Services" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.9 callback-protocol
The <callback-protocol> child element of the <port-component> element specifies
the protocol used for callbacks to notify clients of an event. Valid values include: http,
https, or jms.

7.3.10 connection-factory-jndi-name
The <connection-factory-jndi-name> child element of the <request-queue> and
<response-queue> elements specifies the JNDI name of the connection factory to use
for request and response message buffering, respectively.

For more information, see "Configuring Message Buffering for Web Services" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.11 customized
The <customized> child element of the <reliability-config>,
<persistence-config>, and <buffering-config> is a Boolean flag that specifies
whether the configuration has been customized.

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-7

7.3.12 default-logical-store-name
The <default-logical-store-name> child element of the <persistence-config>
element defines the name of the default logical store.

For more information, see "Managing Web Service Persistence" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.13 delivery-mode
The <delivery-mode> child element of the <soapjms-service-endpoint-address>
element specifies the delivery mode indicating whether the request message is
persistent. Valid values are org.jvnet.ws.jms.DeliveryMode.PERSISTENT and
org.jvnet.ws.jms.DeliveryMode.NON_PERSISTENT. This value defaults to PERSISTENT.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.14 deployment-listener-list
For internal use only.

7.3.15 deployment-listener
For internal use only.

7.3.16 destination-name
The <destination-name> child element of the <soapjms-service-endpoint-address>
element defines the name of the destination queue or topic. This value defaults to
com.oracle.webservices.jms.RequestQueue.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.17 destination-type
The <destination-type> child element of the <soapjms-service-endpoint-address>
element defines the destination type. Valid values are
org.jvnet.ws.jms.JMSDestinationType.QUEUE or
org.jvnet.ws.jms.JMSDestinationType.TOPIC. This value defaults to QUEUE.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.18 enable-http-wsdl-access
The <enable-http-wsdl-access> child element of the
<soapjms-service-endpoint-address> element is a Boolean value that specifies
whether to publish the WSDL through HTTP.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.19 enabled
The <enabled> child element of the <request-queue> and <response-queue> elements
specifies whether request and response message buffering is enabled, respectively.

Element Descriptions

7-8 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

For more information, see "Configuring Message Buffering for Web Services" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.20 exposed
The <exposed> child element of the <wsdl> element is a boolean attribute indicating
whether the WSDL should be exposed to the public when the web service is deployed.

7.3.21 fastinfoset
The <fastinfoset> child element of the <port-component> element is a Boolean flag
that specifies whether Fast Infoset is supported for the web service port component.

For more information, see "Using Fast Infoset" in Developing JAX-WS Web Services for
Oracle WebLogic Server.

7.3.22 flowType
The <flowtype> child element of the <wsat-config> element specifies Whether the
web service atomic transaction coordination context is passed with the transaction
flow. Valid values include: NEVER, SUPPORTS, and MANDATORY. The value defaults to
SUPPORTS.

For complete details on the valid values and their meanings, and valid value
combinations when configuring web service atomic transactions for an EJB-style web
service that uses the @TransactionAttribute annotation, see the "Flow Type Values"
table in "Enabling Web Services Atomic Transactions on Web Services" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.23 http-flush-response
The <http-flush-response> child element of the <port-component> element specifies
whether or not you want to flush the reliable response. This value defaults to true.

7.3.24 http-response-buffersize
The <http-response-buffersize> child element of the <port-component> element
specifies the size of the reliable response buffer that is used to cache the request on the
server. This value defaults to 0.

7.3.25 inactivity-timeout
The <inactivity-timeout> child element of the <reliability-config> element
specifies an inactivity interval. If, during the specified interval, an endpoint (RM
source or RM destination) has not received application or control messages, the
endpoint may consider the RM sequence to have been terminated due to inactivity.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMnS

Table 7–1 describes the duration format fields. This value defaults to P0DT600S (600
seconds).

For more information, see "Configuring Inactivity Timeout" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-9

7.3.26 jndi-connection-factory-name
The <jndi-connection-factory-name> child element of the
<soapjms-service-endpoint-address> element defines the JNDI name of the
connection factory that is used to establish a JMS connection. This value defaults to
com.oracle.webservices.jms.ConnectionFactory.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.27 jndi-context-parameter
The <jndi-context-parameter> child element of the
<soapjms-service-endpoint-address> element defines additional JNDI environment
properties. Each property is specified using name-value pairs, separated by semicolons
(;). For example: name1=value1;...;nameN=valueN.

JNDI properties. Each property is specified using name-value pairs, separated by
semicolons (;). For example: name1=value1;...;nameN=valueN.

This property can be specified more than once. Each occurrence of the
jndiContextParameter property specifies a JNDI property name-value pair to be
added to the java.util.Hashtable sent to the InitialContext constructor for the
JNDI provider.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.28 jndi-initial-context-factory
The <jndi-initial-connection-factory> child element of the
<soapjms-service-endpoint-address> element defines the name of the initial context
factory class used for JNDI lookup. This value defaults to
weblogic.jndi.WLInitialContextFactory.

This value maps to the java.naming.factory.initial property.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.29 jndi-url
The <jndi-url> child element of the <soapjms-service-endpoint-address> element
defines the JNDI provider URL. This value maps to the java.naming.provider.url
property. This value defaults to t3://localhost:7001.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.30 logging-level
The <logging-level> child element of the <port-component> element sets the
logging level for the port component. Valid values include: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, ALL, and OFF.

Element Descriptions

7-10 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

7.3.31 login-config
The <j2ee:login-config> element specifies the authentication method that should be
used, the realm name that should be used for this application, and the attributes that
are needed by the form login mechanism.

The XML Schema data type of the <j2ee:login-config> element is
<j2ee:login-configType>, and is defined in the Java EE Schema that describes the
standard web.xml deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

7.3.32 lookup-variant
The <lookup-variant> child element of the <soapjms-service-endpoint-address>
element defines the method used for looking up the specified destination name. This
value must be set to jndi to support SOAP over JMS transport.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.33 mbean-name
The <mbean-name> child element of the <webservice-security> element specifies the
name of the web service security configuration (specifically an instantiation of the
WebserviceSecurityMBean) that is associated with the web services described in the
deployment descriptor file. The default configuration is called default_wss.

The associated security configuration specifies information such as whether to use an
X.509 certificate for identity, whether to use password digests, the keystore to be used
for encryption and digital signatures, and so on.

You must create the security configuration (even the default one) using the WebLogic
Server Administration Console before you can successfully invoke the web service.

7.3.34 mdb-per-destination
The <mdb-per-destination> child element of the
<soapjms-service-endpoint-address> element is a Boolean value that specifies
whether to create one listening message-driven bean (MDB) for each requested
destination. This value defaults to true.

If set to false, one listening MDB is created for each web service port, and that MDB
cannot be shared by other ports.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Note: The web service security configuration described by this
element applies to all web services contained in the
weblogic-webservices.xml file. The jwsc Ant task always packages a
web service in its own JAR or WAR file, so this limitation is not an
issue if you always use the jwsc Ant task to generate a web service.
However, if you update the weblogic-webservices.xml deployment
descriptor manually and add additional web service descriptions, you
cannot associate different security configurations to different services.

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-11

7.3.35 message-type
The <message-type> child element of the <soapjms-service-endpoint-address>
element specifies message type to use with the request message. A value of BYTES
indicates the javax.jms.BytesMessage object is used. A value of TEXT indicates
javax.jms.TextMessage object is used. This value defaults to BYTES.

The web service uses the same message type when sending the response. If the request
is received as a BYTES, the reply will be sent as a BYTES.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.36 messaging-queue-jndi-name
The <messaging-queue-jndi-name> child element of the <reliability-config>
element specifies the JNDI name of the destination queue or topic.

For more information, see "Using Web Services Reliable Messaging" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.37 messaging-queue-mdb-run-as-principal-name
The <messaging-queue-mdb-run-as-principal-name> child element of the
<reliability-config> element specifies the principal used to run the listening MDB.

For more information, see "Using Web Services Reliable Messaging" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.38 name
The <name> child element of the <operation> element defines the name of the web
service operation.

7.3.39 non-buffered-destination
The <non-buffered-destination> child element of the <reliability-config>
element is a Boolean value that specifies whether to disable message buffering on a
particular destination server to control whether buffering is used when receiving
messages.

For more information, see "Configuring a Non-buffered Destination for a Web Service"
in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.40 non-buffered-source
The <non-buffered-source> child element of the <reliability-config> element is a
Boolean value that specifies whether to disable message buffering on a particular
source server to control whether buffering is used when delivering messages. This
value should always be set to false; message buffering should always be enabled on
the source server.

For more information, see "Configuring a Non-buffered Destination for a Web Service"
in Developing JAX-WS Web Services for Oracle WebLogic Server.

Element Descriptions

7-12 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

7.3.41 operation
The <operation> element defines characteristics of a web service operation. The child
elements of the <operation> element defines the name and configuration options of
the web service operation.

7.3.42 persistence-config
The <persistence-config> element groups together the persistence configuration
elements. The child elements of the <persistence-config> element specify the default
logical store.

For more information, see "Managing Web Service Persistence" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.43 port-component
The <port-component> element is a container of other elements used to describe a web
service port. The child elements of the <port-component> element specify
WebLogic-specific characteristics of the web service port, such as the context path and
service URI used to invoke the web service after it has been deployed to WebLogic
Server.

7.3.44 port-component-name
The <port-component-name> child element of the <port-component> element specifies
the internal name of the WSDL port. The value of this element must be unique for all
<port-component-name> elements within a single weblogic-webservices.xml file.

7.3.45 priority
The <priority> child element of the <soapjms-service-endpoint-address> element
defines the JMS priority associated with the request and response message. Specify
this value as a positive Integer from 0, the lowest priority, to 9, the highest priority.
This value defaults to 0).

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.46 reliability-config
The <reliability-config> element groups together the reliable messaging
configuration elements. The child elements of the <reliability-config> element
specify runtime configuration values such as retransmission and timeout intervals for
reliable messaging.

For more information, see "Using Web Services Reliable Messaging" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.47 reply-to-name
The <reply-to-name> child element of the <soapjms-service-endpoint-address>
element defines the JNDI name of the JMS destination to which the response message
is sent.

For a two-way operation, a temporary response queue is generated by default. Using
the default temporary response queue minimizes the configuration that is required.
However, in the event of a server failure, the response message may be lost. This

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-13

property enables the client to use a previously defined, "permanent" queue or topic
rather than use the default temporary queue or topic, for receiving replies.

The value maps to the JMSReplyTo JMS header in the request message.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.48 request-queue
The <request-queue> child element of the <buffering-config> element. defines the
JNDI name of the connection factory to use for request message buffering. This value
defaults to the default JMS connection factory defined by the server.

For more information, see "Configuring the Request Queue" in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.49 response-queue
The <response-queue> child element of the <buffering-config> element. defines the
JNDI name of the connection factory to use for response message buffering. This value
defaults to the default JMS connection factory defined by the server.

For more information, see "Configuring the Response Queue" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.50 retransmission-exponential-backoff
The <retransmission-exponential-backoff> child element of the
<reliability-config> element is a boolean attribute that specifies whether the
message retransmission interval will be adjusted using the exponential backoff
algorithm. This element is used in conjunction with the
<base-retransmission-interval> element.

If a destination endpoint does not acknowledge a sequence of messages for the time
interval specified by <base-retransmission-interval>, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint, should
the message continue to go unacknowledged.

This value defaults to false—the same retransmission interval is used in successive
retries, rather than the interval increasing exponentially.

For more information, see "Configuring the Retransmission Exponential Backoff" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.51 retry-count
The <retry-count> child element of the <buffering-config> element. defines the
number of times that the JMS queue on the invoked WebLogic Server instance
attempts to deliver the message to the web service implementation until the operation
is successfully invoked. This value defaults to 3.

For more information, see "Configuring Message Retry Count and Delay" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.52 retry-delay
The <retry-delay> child element of the <buffering-config> element. defines the
number of times that the JMS queue on the invoked WebLogic Server instance

Element Descriptions

7-14 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

attempts to deliver the message to the web service implementation until the operation
is successfully invoked. This value defaults to 3.

Amount of time between retries of a buffered request and response. Note, this value is
only applicable when RetryCount is greater than 0.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMS

Table 7–1 describes the duration format fields. This value defaults to P0DT30S (30
seconds).

For more information, see "Configuring Message Retry Count and Delay" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.53 run-as-principal
The <run-as-principal> child element of the <soapjms-service-endpoint-address>
element defines the principal used to run the listening MDB.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.54 run-as-role
The <run-as-role> child element of the <soapjms-service-endpoint-address>
element defines the role used to run the listening MDB.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.55 sequence-expiration
The <sequence-expiration> child element of the <reliability-config> element
specifies the expiration time for a sequence regardless of activity.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMS

Table 7–1 describes the duration format fields. This value defaults to P1D (1 day).

For more information, see "Configuring the Sequence Expiration" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.56 service-endpoint-address
The <service-endpoint-address> element groups the WebLogic-specific context path
and service URI values that together make up the web service endpoint address, or the
URL that invokes the web service after it has been deployed to WebLogic Server.

These values are specified with the <webservice-contextpath> and
<webservice-serviceuri> child elements.

7.3.57 soapjms-service-endpoint-address
The <soapjms-service-endpoint-address> element groups the configuration
properties for SOAP over JMS transport.

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-15

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.58 stream-attachments
The <stream-attachments> child element of the <port-component> element is a
boolean value that specifies whether the WebLogic web services runtime uses
streaming APIs when reading the parameters of all methods of the web service. This
increases the performance of web service operation invocation, in particular when the
parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same
web service:

■ Conversations

■ Reliable Messaging

■ JMS Transport

■ A proxy server between the client application and the web service it invokes

7.3.59 target-service
The <target-service> child element of the <soapjms-service-endpoint-address>
element defines the port component name of the web service. This value is used by the
service implementation to dispatch the service request. If not specified, the service
name from the WSDL or @javax.jms.WebService annotation is used.

This value maps to the SOAPJMS_targetService JMS message property.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.60 time-to-live
The <time-to-live> child element of the <soapjms-service-endpoint-address>
element defines the lifetime, in milliseconds, of the request message. A value of 0
indicates an infinite lifetime. If not specified, the JMS-defined default value (180000) is
used.

On the service side, timeToLive also specifies the expiration time for each MDB
transaction.

For more information, see "Using SOAP Over JMS Transport" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.61 transport-guarantee
The j2ee:transport-guarantee element specifies the type of communication between
the client application invoking the web service and WebLogic server.

Valid values include:

■ INTEGRAL—Application requires that the data sent between the client and server be
sent in such a way that it cannot be changed in transit.

■ CONFIDENTIAL—Application requires that the data be transmitted in a way that
prevents other entities from observing the contents of the transmission.

■ NONE—Application does not require transport guarantees.

Element Descriptions

7-16 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

The XML Schema data type of the j2ee:transport-guarantee element is
j2ee:transport-guaranteeType, and is defined in the Java EE Schema that describes
the standard web.xml deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

7.3.62 transaction-enabled
The <transaction-enabled> child element of the <request-queue> and
<response-queue> elements is a Boolean value that specifies whether transactions
should be used when storing and retrieving messages from the request and response
buffering queues, respectively. This flag defaults to false.

For more information, see "Configuring Message Buffering for Web Services" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.63 transaction-timeout
The <transaction-timeout> child element of the <port-component> element specifies
a timeout value for the current transaction, if the web service operation(s) are running
as part of a transaction.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMnS

Table 7–1 describes the duration format fields. This value defaults to 30 seconds.

7.3.64 validate-request
The <validate-request> child element of the <port-component> element is a boolean
value that specifies whether the request should be validated.

The value specified must be a positive value and conform to the XML schema duration
lexical format, as follows:

PnYnMnDTnHnMnS

Table 7–1 describes the duration format fields. This value defaults to P0DT3S (3
seconds).

7.3.65 version
The <version> child element of the <wsat-config> element specifies the version of the
web service atomic transaction coordination context that is used for web services and
clients. For clients, it specifies the version used for outbound messages only. The value
specified must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT. The DEFAULT value for web
services is all three versions (driven by the inbound request); the DEFAULT value for
web service clients is WSAT10.

For more information about web service atomic transactions, see "Using Web Service
Atomic Transactions" in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.66 weblogic-webservices
The <weblogic-webservices> element is the root element of the WebLogic-specific
web services deployment descriptor (weblogic-webservices.xml).

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-17

The element specifies the set of web services contained in the Java EE component
archive in which the deployment descriptor is also contained. The archive is either an
EJB JAR file (for stateless session EJB-implemented web services) or a WAR file (for
Java class-implemented web services)

7.3.67 webservice-contextpath
The <webservice-contextpath> element specifies the context path portion of the URL
used to invoke the web service. The URL to invoke a web service deployed to
WebLogic Server is:

http://host:port/contextPath/serviceURI

where

■ host is the host computer on which WebLogic Server is running.

■ port is the port address to which WebLogic Server is listening.

■ contextPath is the value of this element

■ serviceURI is the value of the Section 7.3.71, "webservice-serviceuri" element.

When using the jwsc Ant task to generate a web service from a JWS file, the value of
the <webservice-contextpath> element is taken from the contextPath attribute of the
WebLogic-specific @WLHttpTransport annotation or the <WLHttpTransport> child
element of jwsc.

7.3.68 webservice-description
The <webservice-description> element is a container of other elements used to
describe a web service. The <webservice-description> element defines a set of port
components (specified using one or more <port-component> child elements) that are
associated with the WSDL ports defined in the WSDL document.

There may be multiple <webservice-description> elements defined within a single
weblogic-webservices.xml file, each corresponding to a particular stateless session
EJB or Java class contained within the archive, depending on the implementation of
your web service. In other words, an EJB JAR contains the EJBs that implement a web
service, a WAR file contains the Java classes.

7.3.69 webservice-description-name
The <webservice-description-name> element specifies the internal name of the web
service. The value of this element must be unique for all
<webservice-description-name> elements within a single
weblogic-webservices.xml file.

7.3.70 webservice-security
Element used to group together all the security-related elements of the
weblogic-webservices.xml deployment descriptor.

7.3.71 webservice-serviceuri
The <webservice-serviceuri> element specifies the web service URI portion of the
URL used to invoke the web service. The URL to invoke a web service deployed to
WebLogic Server is:

http://host:port/contextPath/serviceURI

Element Descriptions

7-18 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

where

■ host is the host computer on which WebLogic Server is running.

■ port is the port address to which WebLogic Server is listening.

■ contextPath is the value of the Section 7.3.67, "webservice-contextpath" element

■ serviceURI is the value of this element.

When using the jwsc Ant task to generate a web service from a JWS file, the value of
the <webservice-serviceuri> element is taken from the serviceURI attribute of the
WebLogic-specific @WLHttpTransport annotation (JAX-RPC only) or the
<WLHttpTransport> child element of jwsc.

7.3.72 webservice-type
The <webservice-type> element specifies whether the web service is based on the
JAX-WS or JAX-RPC standard. Valid values include: JAXWS and JAXRPC. This value
defaults to JAXRPC.

7.3.73 wsat-config
The <wsat-config> element enables and configures web service atomic transaction
configuration at the class or synchronous method level. The child elements of the
<wsat-config> element specify the WS-AtomicTransaction version supported and
whether or not the web service atomic transaction coordination context is passed with
the transaction flow.

For more information about web service atomic transactions, see "Using Web Service
Atomic Transactions" in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.74 wsdl
The <wsdl> element groups together all the WSDL-related elements of the
weblogic-webservices.xml deployment descriptor.

7.3.75 wsdl-publish-file
The <wsdl-publish-file> element specifies a directory (on the system that hosts the
web service) to which WebLogic Server should publish a hard-copy of the WSDL file
of a deployed web service; this is in addition to the standard WSDL file accessible via
HTTP.

For example, assume that your web service is implemented with an EJB, and its WSDL
file is located in the following directory of the EJB JAR file, relative to the root of the
JAR:

META-INF/wsdl/a/b/Fool.wsdl

Further assume that the weblogic-webservices.xml file includes the following
element for a given web service:

<wsdl-publish-file>d:/bar</wsdl-publish-file>

This means that when WebLogic Server deploys the web service, the server publishes
the WSDL file at the standard HTTP location, but also puts a copy of the WSDL file in
the following directory of the computer on which the service is running:

d:/bar/a/b/Foo.wsdl

Element Descriptions

WebLogic Web Service Deployment Descriptor Schema Reference 7-19

The value of this element should be an absolute directory pathname. This directory
must exist on every machine which hosts a WebLogic Server instance or cluster to
which you deploy the web service.

Note: Only specify this element if client applications that invoke the
web service need to access the WSDL via the local file system or FTP;
typically, client applications access the WSDL using HTTP, as
described in "Browsing to the WSDL of the web service" in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Element Descriptions

7-20 WebLogic Web Services Reference for Oracle WebLogic Server 12.1.3

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)

	1 Introduction
	2 Ant Task Reference
	2.1 Overview of WebLogic Web Services Ant Tasks
	2.2 clientgen
	2.2.1 Taskdef Classname
	2.2.2 Child Elements
	2.2.2.1 binding
	2.2.2.2 jmstransportclient
	2.2.2.3 xmlcatalog

	2.2.3 Attributes
	2.2.4 Examples

	2.3 jwsc
	2.3.1 Taskdef Classname
	2.3.2 Child Elements
	2.3.2.1 binding
	2.3.2.2 clientgen
	2.3.2.3 descriptor
	2.3.2.4 jmstransportservice
	2.3.2.5 jws
	2.3.2.6 jwsfileset
	2.3.2.7 module
	2.3.2.8 WLHttpTransport
	2.3.2.9 WLHttpsTransport
	2.3.2.10 WLJMSTransport

	2.3.3 Attributes
	2.3.3.1 WebLogic-Specific jwsc Attributes
	2.3.3.2 Standard Ant Attributes and Child Elements That Apply to jwsc

	2.3.4 Examples

	2.4 wsdlc
	2.4.1 Taskdef Classname
	2.4.2 Child Elements
	2.4.2.1 binding
	2.4.2.2 xmlcatalog

	2.4.3 Attributes
	2.4.3.1 WebLogic-Specific wsdlc Attributes
	2.4.3.2 Standard Ant javac Attributes That Apply To wsdlc

	2.4.4 Example

	2.5 wsdlget
	2.5.1 Taskdef Classname
	2.5.2 Child Elements
	2.5.3 Attributes
	2.5.4 Example

	3 JWS Annotation Reference
	3.1 Overview of JWS Annotation Tags
	3.2 Web Services Metadata Annotations (JSR-181)
	3.3 JAX-WS Annotations (JSR-224)
	3.4 JAXB Annotations (JSR-222)
	3.5 Common Annotations (JSR-250)
	3.6 WebLogic-specific Annotations
	3.6.1 com.oracle.webservices.api.jms.JMSTransportClient
	3.6.2 com.oracle.webservices.api.jms.JMSTransportService
	3.6.3 weblogic.jws.AsyncFailure
	3.6.4 weblogic.jws.AsyncResponse
	3.6.5 weblogic.jws.Binding
	3.6.6 weblogic.jws.BufferQueue
	3.6.6.1 Description
	3.6.6.2 Attributes
	3.6.6.3 Example

	3.6.7 weblogic.jws.Callback
	3.6.7.1 Description
	3.6.7.2 Example

	3.6.8 weblogic.jws.CallbackMethod
	3.6.8.1 Description
	3.6.8.2 Attributes
	3.6.8.3 Example

	3.6.9 weblogic.jws.CallbackService
	3.6.9.1 Description
	3.6.9.2 Attributes
	3.6.9.3 Example

	3.6.10 weblogic.jws.Context
	3.6.10.1 Description
	3.6.10.2 Example

	3.6.11 weblogic.jws.Conversation
	3.6.11.1 Description
	3.6.11.2 Attributes
	3.6.11.3 Example

	3.6.12 weblogic.jws.Conversational
	3.6.12.1 Description
	3.6.12.2 Attributes
	3.6.12.3 Example

	3.6.13 weblogic.jws.FileStore
	3.6.13.1 Description
	3.6.13.2 Attributes

	3.6.14 weblogic.jws.MessageBuffer
	3.6.14.1 Description
	3.6.14.2 Attributes
	3.6.14.3 Example

	3.6.15 weblogic.jws.Policies
	3.6.15.1 Description
	3.6.15.2 Example

	3.6.16 weblogic.jws.Policy
	3.6.16.1 Description
	3.6.16.2 Attributes
	3.6.16.3 Example

	3.6.17 weblogic.jws.ReliabilityBuffer
	3.6.17.1 Description
	3.6.17.2 Attributes
	3.6.17.3 Example

	3.6.18 weblogic.jws.ReliabilityErrorHandler
	3.6.18.1 Description
	3.6.18.2 Attributes
	3.6.18.3 Example

	3.6.19 weblogic.jws.ServiceClient
	3.6.19.1 Description
	3.6.19.2 Attributes
	3.6.19.3 Example

	3.6.20 weblogic.jws.StreamAttachments
	3.6.20.1 Description
	3.6.20.2 Example

	3.6.21 weblogic.jws.Transactional
	3.6.21.1 Description
	3.6.21.2 Attributes
	3.6.21.3 Example

	3.6.22 weblogic.jws.Types
	3.6.22.1 Description
	3.6.22.2 Attributes
	3.6.22.3 Example

	3.6.23 weblogic.jws.WildcardBinding
	3.6.23.1 Description
	3.6.23.2 Attributes
	3.6.23.3 Example

	3.6.24 weblogic.jws.WildcardBindings
	3.6.24.1 Description

	3.6.25 weblogic.jws.WLHttpTransport
	3.6.25.1 Description
	3.6.25.2 Attributes
	3.6.25.3 Example

	3.6.26 weblogic.jws.WLHttpsTransport
	3.6.26.1 Description
	3.6.26.2 Attributes
	3.6.26.3 Example

	3.6.27 weblogic.jws.WLJmsTransport
	3.6.27.1 Description
	3.6.27.2 Attributes
	3.6.27.3 Example

	3.6.28 weblogic.jws.WSDL
	3.6.28.1 Description
	3.6.28.2 Attributes
	3.6.28.3 Example

	3.6.29 weblogic.jws.security.CallbackRolesAllowed
	3.6.29.1 Description
	3.6.29.2 Attributes
	3.6.29.3 Example

	3.6.30 weblogic.jws.security.RolesAllowed
	3.6.30.1 Description
	3.6.30.2 Attributes
	3.6.30.3 Example

	3.6.31 weblogic.jws.security.RolesReferenced
	3.6.31.1 Description
	3.6.31.2 Example

	3.6.32 weblogic.jws.security.RunAs
	3.6.32.1 Description
	3.6.32.2 Attributes
	3.6.32.3 Example

	3.6.33 weblogic.jws.security.SecurityRole
	3.6.33.1 Description
	3.6.33.2 Attributes
	3.6.33.3 Example

	3.6.34 weblogic.jws.security.SecurityRoleRef
	3.6.34.1 Description
	3.6.34.2 Attributes
	3.6.34.3 Example

	3.6.35 weblogic.jws.security.UserDataConstraint
	3.6.35.1 Description
	3.6.35.2 Attributes
	3.6.35.3 Example

	3.6.36 weblogic.jws.security.WssConfiguration
	3.6.36.1 Description
	3.6.36.2 Attributes
	3.6.36.3 Example

	3.6.37 weblogic.jws.soap.SOAPBinding
	3.6.37.1 Description
	3.6.37.2 Attributes
	3.6.37.3 Example

	3.6.38 weblogic.jws.security.SecurityRoles (deprecated)
	3.6.38.1 Description
	3.6.38.2 Attributes
	3.6.38.3 Example

	3.6.39 weblogic.jws.security.SecurityIdentity (deprecated)
	3.6.39.1 Description
	3.6.39.2 Attributes
	3.6.39.3 Example

	3.6.40 weblogic.wsee.jws.jaxws.owsm.Property
	3.6.40.1 Description
	3.6.40.2 Example

	3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
	3.6.41.1 Description
	3.6.41.2 Example

	3.6.42 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
	3.6.42.1 Description
	3.6.42.2 Attributes
	3.6.42.3 Examples

	3.6.43 weblogic.wsee.wstx.wsat.Transactional
	3.6.43.1 Description
	3.6.43.2 Attributes
	3.6.43.3 Example

	4 Web Service Reliable Messaging Policy Assertion Reference
	4.1 Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions
	4.2 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1
	4.2.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2 and 1.1
	4.2.2 Element Descriptions
	4.2.2.1 wsp:Policy
	4.2.2.2 wsrmp:DeliveryAssurance
	4.2.2.3 wsrmp:RMAssertion
	4.2.2.4 wsrmp:SequenceSTR
	4.2.2.5 wsrmp:SequenceTransportSecurity

	4.3 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)
	4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions
	4.3.2 Element Description
	4.3.2.1 beapolicy:Expires
	4.3.2.2 beapolicy:QOS
	4.3.2.3 wsrm:AcknowledgementInterval
	4.3.2.4 wsrm:BaseRetransmissionInterval
	4.3.2.5 wsrm:ExponentialBackoff
	4.3.2.6 wsrm:InactivityTimeout
	4.3.2.7 wsrm:RMAssertion

	5 Web Service MakeConnection Policy Assertion Reference
	5.1 Overview of a WS-Policy File That Contains MakeConnection Assertions
	5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5
	5.3 Element Descriptions
	5.3.1 wsp:Policy
	5.3.2 wsmc:MCSupported

	6 Oracle Web Services Security Policy Assertion Reference
	6.1 Overview of a Policy File That Contains Security Assertions
	6.2 Example of a Policy File With Security Elements
	6.3 Element Description
	6.3.1 CanonicalizationAlgorithm
	6.3.2 Claims
	6.3.3 Confidentiality
	6.3.4 ConfirmationMethod
	6.3.5 DigestAlgorithm
	6.3.6 EncryptionAlgorithm
	6.3.7 Identity
	6.3.8 Integrity
	6.3.9 KeyInfo
	6.3.10 KeyWrappingAlgorithm
	6.3.11 Label
	6.3.12 Length
	6.3.13 MessageAge
	6.3.14 MessageParts
	6.3.15 Policy
	6.3.16 SecurityToken
	6.3.17 SecurityTokenReference
	6.3.18 SignatureAlgorithm
	6.3.19 SupportedTokens
	6.3.20 Target
	6.3.21 TokenLifeTime
	6.3.22 Transform
	6.3.23 UsePassword

	6.4 Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed
	6.4.1 XPath 1.0
	6.4.2 Pre-Defined wsp:Body() Function
	6.4.3 WebLogic-Specific Header Functions

	7 WebLogic Web Service Deployment Descriptor Schema Reference
	7.1 Overview of weblogic-webservices.xml
	7.2 Example of a weblogic-webservices.xml Deployment Descriptor File
	7.3 Element Descriptions
	7.3.1 acknowledgement-interval
	7.3.2 activation-config
	7.3.3 auth-constraint
	7.3.4 base-retransmission-interval
	7.3.5 binding-version
	7.3.6 buffer-retry-count
	7.3.7 buffer-retry-delay
	7.3.8 buffering-config
	7.3.9 callback-protocol
	7.3.10 connection-factory-jndi-name
	7.3.11 customized
	7.3.12 default-logical-store-name
	7.3.13 delivery-mode
	7.3.14 deployment-listener-list
	7.3.15 deployment-listener
	7.3.16 destination-name
	7.3.17 destination-type
	7.3.18 enable-http-wsdl-access
	7.3.19 enabled
	7.3.20 exposed
	7.3.21 fastinfoset
	7.3.22 flowType
	7.3.23 http-flush-response
	7.3.24 http-response-buffersize
	7.3.25 inactivity-timeout
	7.3.26 jndi-connection-factory-name
	7.3.27 jndi-context-parameter
	7.3.28 jndi-initial-context-factory
	7.3.29 jndi-url
	7.3.30 logging-level
	7.3.31 login-config
	7.3.32 lookup-variant
	7.3.33 mbean-name
	7.3.34 mdb-per-destination
	7.3.35 message-type
	7.3.36 messaging-queue-jndi-name
	7.3.37 messaging-queue-mdb-run-as-principal-name
	7.3.38 name
	7.3.39 non-buffered-destination
	7.3.40 non-buffered-source
	7.3.41 operation
	7.3.42 persistence-config
	7.3.43 port-component
	7.3.44 port-component-name
	7.3.45 priority
	7.3.46 reliability-config
	7.3.47 reply-to-name
	7.3.48 request-queue
	7.3.49 response-queue
	7.3.50 retransmission-exponential-backoff
	7.3.51 retry-count
	7.3.52 retry-delay
	7.3.53 run-as-principal
	7.3.54 run-as-role
	7.3.55 sequence-expiration
	7.3.56 service-endpoint-address
	7.3.57 soapjms-service-endpoint-address
	7.3.58 stream-attachments
	7.3.59 target-service
	7.3.60 time-to-live
	7.3.61 transport-guarantee
	7.3.62 transaction-enabled
	7.3.63 transaction-timeout
	7.3.64 validate-request
	7.3.65 version
	7.3.66 weblogic-webservices
	7.3.67 webservice-contextpath
	7.3.68 webservice-description
	7.3.69 webservice-description-name
	7.3.70 webservice-security
	7.3.71 webservice-serviceuri
	7.3.72 webservice-type
	7.3.73 wsat-config
	7.3.74 wsdl
	7.3.75 wsdl-publish-file

